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Foreword

This book is an invitation. Since the winter of 2009, when I first had the idea
of Mathematics of Planet Earth, it has become a passion for me to learn how
the mathematical sciences can help us understand our planet, its ecosystems, and
its organization, and how we as pure and applied mathematicians can contribute
to protecting our planet from the effects of climate change, extreme events, and
other risk factors. For a pure mathematician like me, it is not always easy to make
one’s way through the relevant literature, which—too often—is either targeting
specialists or too elementary on the mathematical side. This book fills the gap.
It is an invitation to our professional community to explore the new challenges
for mathematics related to planet Earth and, at the same time, enrich the cultural
heritage of science on our planet. The subjects—not so standard and very diverse—
are likely to pique everyone’s interest, as they did for me. Did you know that the
surface of the Earth is not so solid and reacts to the sliding of glaciers? Or that the
sea-level rise can vary substantially from one region of the globe to another? The
book addresses these and many other interesting questions, like how to measure
biodiversity and what mathematics can say about the sixth mass extinction, which
is being driven by current human behavior. Other chapters are focused on how to
optimize the long-term human use of natural capital or how to plan for infrastructure
restoration after an extreme event. The reader is introduced to the mathematics of
food systems and food security—new topics that are likely to become paramount as
the world population experiences the limits of sustainable development. The subject
of infectious diseases is treated with new examples, which can bring new ideas into
a modeling course or motivate modeling projects for the students. I hope that this
book will draw you in, as it did me.

Montreal, QC, Cananda Christiane Rousseau
November 2018
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Preface

Planet Earth offers a wealth of challenges to science. The planet is at risk, and as
scientists, we have a responsibility to get involved and apply the particular skills of
our discipline to face these challenges.

Mathematics of Planet Earth is a concerted effort to identify these challenges
and bring them to the attention of the mathematical sciences research community.
Conceived by Christiane Rousseau (Université de Montréal, Canada) in 2009, the
first manifestation of this effort was a yearlong program, Mathematics of Planet
Earth 2013. MPE2013 started out as a grassroots organization, which grew quickly
into an international partnership of more than 150 scientific societies, universities,
research institutes, and organizations. It brought the challenges facing our planet to
the attention of the mathematics research community and organized many outreach
activities to show the public how mathematics contributes to our understanding of
planet Earth, the nature of the challenges our planet is facing, and how mathematical
scientists address these challenges. It underscored the multidisciplinary nature of the
problems facing the planet and emphasized multidisciplinary partnerships to address
these problems. An anthology of blogs posted during MPE2013 was published in
2015 by the Society for Industrial and Applied Mathematics (SIAM).1

At the end of 2013, MPE2013 morphed into Mathematics of Planet Earth (MPE).
A new structure was designed to support the ongoing research efforts and maintain
the momentum created by MPE2013. A program of technical and educational
workshops, MPE2013+ (supported by DIMACS at Rutgers University2 and by the
National Science Foundation, grant DMS-1246305), was instrumental in furthering
the goals of MPE. So was the formation of a SIAM Activity Group on Mathematics
of Planet Earth (SIAG/MPE).3 The editors also recognize the initiative by Springer
Verlag to initiate a book series on the themes of MPE.

1http://bookstore.siam.org/ot140.
2http://dimacs.rutgers.edu/archive/SpecialYears/2013_MPE/.
3https://www.siam.org/membership/Activity-Groups/detail/.
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viii Preface

From the beginning, MPE has been interpreted in the broadest possible sense.
While the geosciences have long been concerned with our planet as a physical
system, there is a growing awareness of the human impact on the ecosystem and a
gradual realization that natural resources are not infinite. Sustainability has become
a concern, and risks, both social and economic, are receiving increased attention.
These themes define the core activities of MPE.

The purpose of this book is to introduce challenging problems in MPE-related
topic areas to the mathematical sciences research community, to demonstrate
the application of a wide range of mathematical ideas to these challenges, and
to raise awareness in the application disciplines that the mathematical sciences
offer novel opportunities for quantitative and qualitative analysis. The book is
potentially of interest to scientists in academia, the private sector, government,
and nonprofit organizations active in application areas, such as the geophysical
sciences, climate science, ecology, environmental science, public health, and
socioeconomics.

The book covers some but by no means all topics of interest to MPE; it is
meant to give a flavor of selected topics of current interest. As Professor Rousseau
states in her Foreword, it is an invitation to explore new challenges. Among the
topics covered are climate change, the spread of infectious diseases, multistability
of ecosystems, biodiversity, infrastructure restoration after extreme events, urban
environments and the Internet of Things, food security, and food safety. These
topics illustrate the wide range of challenges for mathematical modeling. They
also highlight the variety of mathematical techniques brought to bear on these
challenges, from differential equations and dynamical systems theory, optimiza-
tion, statistics, operations research, discrete mathematics, graph theory, and data
analytics.

The prerequisite mathematics for the various chapters varies, but much of the
material should be accessible to advanced undergraduate and graduate students.
Selected chapters can be used as a text for seminars or self-study. Application
scientists (including graduate students) and decision-makers with background
knowledge in one or more of the mathematical topics listed in the previous
paragraph will find a wealth of tools that they may wish to explore for practical
purposes.

The chapters in this book were solicited from a diverse group of experts. Each
chapter of the book was peer-reviewed. The editors worked with the authors to revise
their chapters and to put them all into a common language and approach. The editors
thank the (anonymous) reviewers for their extensive efforts to improve the quality
of the presentations.

We hope that this volume will stimulate the readers to explore the challenges of
MPE and apply the tools of the mathematical sciences to solve the problems of our
planet.
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Road Map

Mathematics of Planet Earth (MPE) views our planet through multiple lenses.
Broadly speaking, it considers our planet as a physical system, as a system
supporting life, as a system organized by humans, and as a system at risk. Each lens
provides a different perspective and may require different tools and techniques from
the mathematical sciences. But the common goal is to gain a better understanding
of how the state of our planet influences and is influenced by human activities.

The chapters in this volume are grouped into four parts. The following is a brief
introduction to each part and an overview of the chapters selected.

Part I: Geo- and Physical Sciences

In Part I, we consider planet Earth as a physical system. Here, the focus is on Earth’s
climate system, the physical processes that occur in the various components of the
system (atmosphere, oceans, etc.), their dynamics, and mutual interactions. We have
selected three case studies of physical systems which present typical challenges for
mathematical and statistical modeling and analysis.

Chapter 1 discusses a conceptual model of the coupled atmosphere-ocean system
which emphasizes the critical role of atmospheric carbon dioxide (CO2) in the
dynamics of glacial-interglacial cycles during the Pleistocene Epoch. The chapter
also offers an interesting application of techniques from the theory of dynamical
systems.

Chapter 2 presents a closely related problem from geophysics, namely, the
Glacial Isostatic Adjustment problem—that is, the adjustment of the Earth’s surface
to a varying load due to the waxing and waning of ice sheets during a glacial-
interglacial cycle.

Chapter 3 addresses a practical problem, namely, how to measure precipitation.
Unlike temperature, precipitation is highly variable, both in space and in time.
The chapter also describes various statistical methods to identify precipitation

xi



xii Road Map

patterns from data—a highly relevant problem, for example, for flood control and
reservoir management, especially as precipitation patterns are changing due to
climate change.

Part II: Life Sciences

In Part II and the following Part III, we consider planet Earth as a system supporting
life. Topics of interest are many, including population dynamics, epidemiology,
invasive species, the carbon cycle, natural resources, issues of sustainability and
equity, mathematical ecology, evolution, and effects of climate change on living
organisms. In Part II, we have collected three case studies in epidemiology; in
Part III, we will turn our attention to ecology and evolution.

Environmental conditions have always been of profound importance in shaping
the epidemiology of infectious diseases. Malaria is a good example; it is caused by
plasmodium parasites and spread by the Anopheles mosquito, and the life cycle of
both depends sensitively on temperature. Thus, global warming may shift and/or
expand the geographic range of the disease. This topic is addressed in Chap. 4 with
geographic focus on Africa, where the burden of malaria is greatest.

Chapter 5 is concerned with Buruli ulcer (BU), another infectious disease
prevalent in Africa, especially Ghana. The disease is spread by a pathogen which
shares its environment with humans. The mathematical model also accounts for
the fact that not all individuals are equally susceptible to infection. The chapter
illustrates the importance of data for model validation.

Chapter 6 presents three case studies from health science. They demonstrate
some of the challenges a modeler is likely to encounter in attempting to develop and
test a model that reflects real data. The first case is a source-attribution problem for
food-related salmonellosis: identify possible pathways from food source to infected
individual from a historical dataset listing human cases and Salmonella sources.
Which food source(s) contribute the most infections? A second source-attribution
problem arises for highly pathogenic avian influenza (HPAI), a communicable
veterinary disease that affects poultry. Data on cell turnover rates are available but
do not fit any of the standard population models for immune cells. The challenge is
met with data-driven statistical modeling and bona fide detective work with genetic
evidence.

Part III: Ecology and Evolution

This part continues the study of planet Earth as a system supporting life. Here, the
emphasis is on mathematical ecology, evolution, and biodiversity.

Ecosystems are highly nonlinear dissipative systems characterized by multiple
equilibria, some stable and some unstable. As the likelihood of extreme events
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(floods, wildfires, storms, etc.) increases due to environmental change, an ecosystem
may experience abrupt transitions from one stable state to another which may be
desirable or undesirable. If the new state is undesirable, the effect can be disastrous;
for example, the transition from a vegetated state to a desert state due to an extended
period of drought is clearly undesirable. Chapter 7 gives examples of dry-land
ecosystems which show distinct vegetation patterns on a path toward desertification
due to different soil-water feedback mechanisms.

The health of an ecosystem is often judged by its biodiversity. But how do
we measure biodiversity? The question is fundamental for a proper assessment
of different intervention scenarios and progress toward a healthy ecosystem.
Traditional attempts to measure biodiversity consider two components: richness (the
number of species in the ecosystem) and evenness (the extent to which species are
evenly distributed). Chapter 8 describes attempts to define richness and evenness
mathematically in an effort to make the concept of biodiversity more precise.

Chapter 9 addresses the problem of estimating extinction risks across many
levels ranging from an entire ecosystem or population to a single species. The
chapter surveys current deterministic and stochastic methods of analysis and extends
existing theory in two directions by considering the possibility of evolutionary
rescue from extinction in a changing environment and the posthumous assignment
of an extinction date from sighting records.

Part IV: Socioeconomics and Infrastructure

In Part IV, we focus on planet Earth both as a system organized by humans and a
system at risk. Under the first theme, the focus is on infrastructure, ecosystem ser-
vices, socioeconomics, social organization, public health, and rules and regulations.
The second theme covers extreme events, risk assessment and risk management,
emergency planning, and strategies for mitigation and adaptation. Again, too many
topics to cover in a single volume, let alone a single part of a collection like the one
facing us.

For this part, we have selected four topics which touch on both themes,
namely, food systems and food security, ecosystem services and natural capital,
infrastructure restoration after an extreme event, and infrastructure management
enabled by the Internet of Things.

Chapter 10 introduces the topic of food systems and food security. The motiva-
tion is clear: enough food is being produced to provide enough nutrients for every
person on Earth, but sizable fractions of the population suffer from malnutrition or
are overweight. Mathematical models may provide insight into the design of a food
system that improves food security for all.

Natural resources and natural environments often provide benefit flows beyond
the net revenues generated by their harvest, extraction, or visits by the users.
Chapter 11 argues that dynamic optimization is the tool of choice to determine the
value of natural capital and ecosystem services. A model of a renewable resource—
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the stock of oysters in northern Chesapeake Bay—illustrates the case. The oyster
population provides not only net revenue to watermen (harvesters) but also an
ecosystem service in the form of improved water quality through the removal of
nutrients.

Chapter 12 focuses on the recovery of critical infrastructure systems from
large-scale disruptive events. This problem is especially difficult when different
infrastructure systems depend on each other. (For example, you cannot pump
gas without power.) Decision-makers need tools to determine optimal orders for
restoration of such interdependent infrastructure systems and guide the restoration
process. This chapter shows how an infrastructure system can be modeled as a
network flow problem and how optimization can help decision-makers to assess
the impact of the disruption on the services provided by the system.

Chapter 13, the final chapter, takes us to the future, when it becomes feasible
to perform online estimation, optimization, and control by leveraging the data col-
lected through the Internet of Things. The chapter gives two particular applications
that are important to effectively manage a city: transportation and municipal water
services.
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Chapter 1
Modeling the Dynamics of Glacial Cycles

Hans Engler, Hans G. Kaper, Tasso J. Kaper, and Theodore Vo

Abstract This chapter is concerned with the dynamics of glacial cycles observed
in the geological record of the Pleistocene Epoch. It focuses on a conceptual model
proposed by Maasch and Saltzman (J Geophys Res 95(D2):1955–1963, 1990),
which is based on physical arguments and emphasizes the role of atmospheric CO2
in the generation and persistence of periodic orbits (limit cycles). The model consists
of three ordinary differential equations with four parameters for the anomalies of
the total global ice mass, the atmospheric CO2 concentration, and the volume of
the North Atlantic Deep Water. In this chapter, it is shown that a simplified two-
dimensional symmetric version displays many of the essential features of the full
model, including equilibrium states, limit cycles, their basic bifurcations, and a
Bogdanov–Takens point that serves as an organizing center for the local and global
dynamics. Also, symmetry breaking splits the Bogdanov–Takens point into two,
with different local dynamics in their neighborhoods.

Keywords Bifurcation analysis · Bogdanov–Takens unfolding · Conceptual
model · Glacial cycles · Maasch–Saltzman model · Pleistocene climate

1.1 Introduction

Earth’s climate during the Pleistocene Epoch—the geological period from
approximately 2.6 million years before present (2.6 Myr BP) until approximately
11.7 thousand years before present (11.7 Kyr BP)—is of great interest in the

H. Engler · H. G. Kaper (�)
Mathematics and Statistics, Georgetown University, Washington, DC, USA
e-mail: engler@georgetown.edu; hans.kaper@georgetown.edu
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geosciences community. The geological record in the Northern Hemisphere gives
evidence of cycles of advancing and retreating continental glaciers and ice sheets,
mostly at high latitudes and high altitudes.

To reconstruct the Pleistocene climate, geoscientists rely on geological proxies,
particularly a dimensionless quantity denoted by δ18O, which is measured in parts
per mille. This quantity measures the deviation of the ratio 18O/16O of the stable
oxygen isotopes 18O and 16O in a given marine sediment sample from the same
ratio in a universally accepted standard sample. The relative amount of the isotope
18O in ocean water is known to be higher at tropical latitudes than near the poles,
since water with the heavier oxygen isotope is slightly less likely to evaporate
and more likely to precipitate first. Similarly, water with the lighter isotope 16O
is more likely to be found in ice sheets and in rain water at high latitudes, since it
is favored in atmospheric transport across latitudes. The global distribution of δ18O
in ocean water therefore varies in a known way between glacial and interglacial
periods. A record of these variations is preserved in the calcium carbonate shells of
foraminifera, a class of common single cell marine organisms. These fossil records
may be sampled from deep sea sediment cores, and their age and δ18O may be
determined. Details are described in [34].

Figure 1.1 shows the LR04 time series of δ18O over the past 5.3 million years,
reconstructed from sediment core data collected at 57 geographically distributed
sites around the globe [34]. As the observed isotope variations are similar in shape
to the temperature variations reconstructed from ice core data for the past 420 Kyr at
the Vostok Station in Antarctica, the values of δ18O (right scale) have been aligned
with the reported temperature variations from the Vostok ice core (left scale) [43].
The graph shows a relatively stable temperature during the period preceding the
Pleistocene and increasing variability during the Pleistocene.

The typical pattern throughout most of the Pleistocene resembles that of a
sawtooth wave, where a slow glaciation is followed by a rapid deglaciation. In
the early Pleistocene, until approximately 1.2 Myr BP, the period of a glacial
cycle averages 41 Kyr; after the mid-Pleistocene transition, which occurred from
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Fig. 1.2 Time series of the global mean temperature for the past 420,000 years. [Data from
Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory
(http://cdiac.ornl.gov)]

approximately 1.2 Myr BP until approximately 0.8 Myr BP, the glacial cycles of
the late Pleistocene have a noticeably greater amplitude, and their period averages
100 Kyr. Figure 1.2 shows the global mean temperature for the past 420 Kyr,
reconstructed from Vostok ice core data. The 100 Kyr cycle and the sawtooth pattern
are clearly visible.

These observations suggest a number of questions for climate science. What
caused the glacial oscillations during the Pleistocene? Why were the periods of the
glacial cycles during the early and late Pleistocene different? What could possibly
have caused the transition from 41 Kyr cycles to 100 Kyr cycles during the mid-
Pleistocene?

In this chapter, we discuss a conceptual model of the Pleistocene climate
proposed by Maasch and Saltzman in [35] to explain the phenomenon of glacial
cycles. The model is conceptual, in the sense that it describes the state of the
climate in a few variables, ignoring most of the processes that go into a complete
climate model, but still captures the essence of the phenomenon. It is based on
sound physical principles and, as we will see, makes for an interesting application
of dynamical systems theory.

The numerical continuation results for the bifurcation curves reported in this
chapter were obtained using the software package AUTO [17]; see also [15, 16].
Some recent texts on issues of climate dynamics are [10, 14, 28, 36, 52].

Outline of the Chapter In Sect. 1.2, we present background information to moti-
vate the particular choices underlying the Maasch–Saltzman model. In Sect. 1.3,
we derive the Maasch–Saltzman model from physical principles and formulate it
as a dynamical system in a three-dimensional state space with four parameters.
In Sect. 1.4, we introduce two simplifications that render the Maasch–Saltzman
model symmetric and reduce it to a two-dimensional dynamical system with
two parameters that can be analyzed rigorously and completely. In Sect. 1.5, we
introduce asymmetry into the simplified two-dimensional model and show the
effects of symmetry breaking. In the final Sect. 1.6, we summarize our results.

http://cdiac.ornl.gov
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1.2 Background

There is general agreement that the periodicity of the glacial cycles is related to
variations in the Earth’s orbital parameters [33]. To first order, Earth’s climate is
driven by the Sun. The Earth receives energy from the Sun in the form of ultraviolet
(short wavelength) radiation. This energy is redistributed around the globe and
eventually reemitted into space in the form of infrared (long wavelength) outgoing
radiation. The amount of energy reaching the top of the atmosphere per unit area and
per unit time is known as the insolation (incident solar radiation), which is measured
in watts per square meter.

1.2.1 Orbital Forcing

The insolation varies with the distance from the Earth to the Sun and thus depends
on Earth’s orbit around the Sun. This is the basis of the Milankovitch theory of
orbital forcing [28, 38].

The Earth moves around the Sun in an elliptical orbit; its eccentricity varies
with time but has dominant frequencies at approximately 100 Kyr and 400 Kyr. As
the Earth moves around the Sun, it rotates around its axis. The axis is tilted with
respect to the normal to the orbital plane; the tilt, known as obliquity, is also close to
periodic, with a dominant frequency of approximately 41 Kyr. (This tilt is the main
cause of the seasonal variation of our climate.)

In addition, the Earth is like a spinning top wobbling around its axis of rotation.
This component of the Earth’s orbit is called precession; its period varies from 19
to 23 Kyr.



1 Modeling the Dynamics of Glacial Cycles 7

Fig. 1.3 Time series of Q65 during the month of July for the past 4.5 million years. [Data
from [32]]

Given the three orbital parameters (eccentricity, obliquity, precession), one can
compute the insolation at any latitude and at any time of the year. An example is
given in Fig. 1.3, which shows the time series of Q65—the average insolation at 65◦
North—during the month of July for the past 4.5 million years; other months show a
similar behavior. A cycle with a period of approximately 400 Kyr is clearly visible.
A spectral analysis reveals a dominant frequency around 21 Kyr coming from two
clustered spikes in the power spectrum and another, smaller frequency component
at approximately 41 Kyr.

1.2.2 Atmospheric Carbon Dioxide

The Pleistocene climate and, in particular, the mid-Pleistocene transition are topics
of great interest in the geosciences community. The 41 Kyr glacial cycles of the
early Pleistocene are commonly attributed to the 41 Kyr cycle of Earth’s obliquity;
see, for example [24, 45]. In contrast, there is less agreement on the origin of the
100 Kyr cycles of the late Pleistocene.

Some authors [20, 22, 27] attribute the 100 Kyr cycles to the eccentricity of
Earth’s orbit. However, simple energy balance considerations imply that variations
in eccentricity are too weak to explain the surface temperature variations that
are observed in the paleoclimate record. The Earth’s eccentricity varies between
approximately 0.01 and 0.05. At times of maximum eccentricity, the semi-major
and semi-minor axes of the Earth’s orbit therefore never differ by more than approxi-
mately 0.1% from the corresponding values at times of minimum eccentricity. Then
the minimum solar constant at times of high eccentricity does not differ by more
than 0.2% from the solar constant when eccentricity is low, implying an equilibrium
temperature variation by approximately 0.05%, or less than 0.2 K [28, Chapter 2].

A possible way for orbital effects to influence the Earth’s surface temperature
is suggested by the greenhouse effect and the almost perfect correlation between
fluctuations in the atmospheric CO2 concentration and the surface temperature that
is observed, for example, in the Vostok ice core data [43]; see Fig. 1.4.
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Fig. 1.4 Correlation of global mean temperature (blue) and atmospheric CO2 concentration (red)
for the past 420 Kyr. [Data from Carbon Dioxide Information Analysis Center (CDIAC) at Oak
Ridge National Laboratory (http://cdiac.ornl.gov)]

Orbital variations have only a very weak effect on the composition of a planet’s
atmosphere. Moreover, they would affect not only CO2, but other atmospheric
components as well, and their effect would be negligible on the time scale of
the glacial cycles. Hence, it is unlikely that orbital variations alone are the direct
cause of the fluctuations in atmospheric CO2 concentrations. On the other hand, a
feedback mechanism connecting and reinforcing the influence of orbital forcing on
surface temperatures and changes in atmospheric CO2 appears to be plausible [47].
Changes in the carbon cycle and the climate system would then amplify each other
to produce the glacial cycles, and atmospheric CO2 would have to play a central role
in such a feedback mechanism.

Saltzman was the first to propose a conceptual climate model that highlighted
the role of atmospheric CO2 in the dynamics of glacial cycles [48]. The model was
further developed in joint work with Maasch in a series of chapters [35, 49, 50]. In
this chapter, we focus on the model proposed by Maasch and Saltzman in [35].

1.2.3 Other Models

There certainly is no unique way to explain the phenomenon of glacial cycles and
the Pleistocene climate in a comprehensive manner. Other conceptual models can be
found, for example, in [3, 4, 9, 20, 26, 39–42, 46, 51, 54]. An interesting case was
made by Huybers [26], who argued that the reconstruction of the temperature record
from proxy data presented in Fig. 1.1 relies on orbital assumptions and is therefore
subject to bias. Huybers developed an unbiased age model which does not rely on
orbital assumptions and showed that the late Pleistocene glacial terminations are
paced by changes in Earth’s obliquity [25]. This theory would imply that the entire
Pleistocene climate regime can be explained by obliquity alone. We refer the reader
to [11] for a summary of the current state of the art.

As a final note, we caution that any model is a mathematical construct, and
any phenomenon that results from its analysis is merely a manifestation of the

http://cdiac.ornl.gov
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assumptions underlying the model. The question whether the model reflects the true
cause(s) of the glacial cycles lies outside the domain of mathematics.

1.3 The Maasch and Saltzman Model

The Pleistocene climate model proposed by Maasch and Saltzman [35] involves five
state variables. They are, with their associated units in square brackets:

• the total global ice mass, I [kg],
• the atmospheric CO2 concentration, μ [ppm],
• the volume of the North Atlantic Deep Water (NADW), N [m3],
• the global mean sea surface temperature (SST), τ [K], and
• the mean volume of permanent (summer) sea ice, η [m3].

The volume of the NADW is a measure of the strength of the global oceanic
circulation (thermohaline circulation, THC). We can think of N as a measure of
the strength of the oceanic CO2 pump, since the oceanic CO2 pump is an integral
part of the THC. The other variables are self-explanatory.

The state variables vary with time, albeit on rather different time scales. The total
global ice mass, atmospheric CO2 concentration, and NADW vary on the order of
thousands of years, while the SST and summer sea ice vary on the order of decades
or centuries. Here the focus is on the slow time scale, where we assume that the fast
variables equilibrate essentially instantaneously. That is, the long-term dynamics
of the climate system are described in terms of I , μ, and N (the prognostic vari-
ables); τ and η are diagnostic variables, which follow the prognostic variables in
time.

1.3.1 Model Formulation

The climate model is formulated in terms of anomalies—deviations from long-term
averages, which are indicated with a prime. The governing equations follow from
plausible physical principles, which are detailed in [49, §2].

The global mean SST (τ ) and the mean volume of permanent sea ice (η) vary
with the total global ice mass (I ) and the atmospheric CO2 concentration (μ) but
are independent of the NADW (N ); in particular, τ decreases as I increases or μ

decreases, while η increases as I increases or μ decreases. To leading order, the
dependences are linear, so

τ ′ = −αI ′ + βμ′,

η′ = eI I
′ − eμμ

′.
(1.3.1)
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In the absence of external forces, the governing equations for I ′, μ′, and N ′ are

dI ′

dt ′
= −s1τ

′ − s2μ
′ + s3η

′ − s4I
′,

dμ′

dt ′
= r1τ

′ − r2η
′ − (r3 − b3N

′)N ′ − (r4 + b4N
′2)μ′ − r5I

′,

dN ′

dt ′
= −c0I

′ − c2N
′.

(1.3.2)

Time t ′ is measured in units of 1 year [yr]. The coefficients in these equations are
positive (or zero). Maasch and Saltzman also included an external forcing term
related to Q65 in the equation for I ′, but since we are interested in the internal
dynamics of the system, we don’t include external forcing.

The physical assumptions underlying these equations are:

• The prognostic variables relax to their respective long-term averages, so their
anomalies tend to zero as time increases; in particular, I ′ and N ′ decay at a
constant rate, while the decay rate of μ′ increases quadratically with N ′ [49,
§2.V].

• If the SST exceeds its mean value (τ ′ > 0), the total global ice mass decreases
and the atmospheric CO2 concentration increases (due to outgassing); if the SST
is less than its mean value (τ ′ < 0), the opposite happens. The coupling is linear
to leading order.

• Since CO2 is a greenhouse gas, an increase in the atmospheric CO2 concentration
leads to a warmer climate and thus a decrease in the total global ice mass.

• If the volume of permanent sea ice exceeds its mean value (η′ > 0), the total
global ice mass increases and the atmospheric CO2 concentration decreases; if
the volume of permanent sea ice is less than its mean value (η′ < 0), the opposite
effect happens. The coupling is linear to leading order.

• A greater-than-average total global ice mass (I ′ > 0) negatively affects both
the atmospheric CO2 concentration and the strength of the North Atlantic
overturning circulation; a less-than-average total global ice mass (I ′ < 0) has
the opposite effect. The coupling is linear to leading order.

• The atmospheric CO2 concentration decreases as the strength of the North
Atlantic overturning circulation increases, but the coupling weakens (strength-
ens) as the strength of the NADW is above (below) average [49, §2.III a,b].

Upon substitution of the expressions (1.3.1), the governing equations (1.3.2)
become

dI ′

dt ′
= −a0I

′ − a1μ
′,

dμ′

dt ′
= −b0I

′ + (b1 − b4N
′2)μ′ − (b2 − b3N

′)N ′,

dN ′

dt ′
= −c0I

′ − c2N
′,

(1.3.3)
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where

a0 = s4 − (αs1 + eI s3), a1 = s2 + βs1 + eμs3,

b0 = r5 + αr1 + eI r2, b1 = βr1 + eμr2 − r4, b2 = r3.

Following [35, 49], we take b0 = 0 and assume that the remaining coefficients are
all positive. Note that a0 and b1 involve positive as well as negative contributions,
so the implicit assumption is that the positive contributions dominate.

1.3.2 Dimensionless Form

Next, we reformulate the system of Eq. (1.3.3) by rescaling time,

t = a0t
′, (1.3.4)

and introduce dimensionless variables,

X = I ′

Î
, Y = μ′

μ̂
, Z = N ′

N̂
, (1.3.5)

where Î , μ̂, and N̂ are reference values of I , μ, and N , respectively. Since a0 ≈
1.00 · 10−4 yr−1, a unit of t corresponds to (approximately) 10 Kyr.

The governing equations for X, Y , and Z are

Ẋ = −X − â1Y,

Ẏ = (b̂1 − b̂4Z
2)Y − (b̂2 − b̂3Z)Z,

Ż = −ĉ0X − ĉ2Z,

(1.3.6)

where the dot ˙ indicates differentiation with respect to t . Recall that we have set
b0 = 0. The remaining coefficients are dimensionless combinations of the physical
parameters in the system of Eq. (1.3.3),

â1= a1μ̂

a0Î
, b̂1= b1

a0
, b̂2 = b2N̂

a0μ̂
, b̂3 = b3N̂

2

a0μ̂
, b̂4 = b4N̂

2

a0
, ĉ0 = c0Î

a0N̂
, ĉ2 = c2

a0
.

A rescaling of the variables X, Y , and Z,

x =
(
(ĉ0/ĉ2)

√
b̂4

)
X, y =

(
â1(ĉ0/ĉ2)

√
b̂4

)
Y, z =

(√
b̂4

)
Z, (1.3.7)
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leads to the following dynamical system for the triple (x, y, z):

ẋ = −x − y,

ẏ = ry − pz+ sz2 − yz2,

ż = −qx − qz.

(1.3.8)

The coefficients p, q, r , and s are combinations of the physical parameters,

p = â1b̂2ĉ0

ĉ2
, q = ĉ2, r = b̂1, s = â1b̂3ĉ0

ĉ2
√
b̂4

. (1.3.9)

The coefficients are assumed to be positive, with q > 1. The system of Eq. (1.3.8)
is the model proposed by Maasch and Saltzman in [35, Eqs. (4)–(6)]. Note that the
model considered here does not include external forcing, so it describes the internal
dynamics of the climate system.

1.3.3 Discussion

The system of Eq. (1.3.8) is what is known as a conceptual model. Its derivation
involves physical arguments, but there is no guarantee that it corresponds to what
actually happened in the climate system during the Pleistocene. Its sole purpose is
to describe a possible mechanism that explains the observed behavior of the glacial
cycles.

Loosely speaking, we identify x, y, and z with the anomalies of the total amount
of ice, the atmospheric CO2 concentration, and the volume of the NADW (the
strength of the oceanic CO2 pump), respectively. Time is normalized and expressed
in units of the characteristic time of the total global ice mass, typically of the order
of 10 Kyr.

Because of the various transformations needed to get from the physical sys-
tem (1.3.3) to the dynamical system (1.3.8), it is difficult to relate the parameters to
actual physical processes. The best we can do is look at their effect on the possible
solutions. For example, a nonzero value of the parameter s renders the problem
asymmetric, so s is introduced to achieve the observed asymmetry of the glacial
cycles. The coefficient q is the characteristic time of NADW (expressed in units of
the characteristic time of the total global ice mass). The assumption q > 1 implies
that NADW changes on a faster time scale than the total global ice mass, and as q

increases, this change occurs on an increasingly faster time scale. If we rewrite the
second equation as ẏ = (r − z2)y − pz − sz2, we see that the growth rate r of
the atmospheric CO2 concentration is balanced by the anomaly of NADW. Lastly,
the coefficient p expresses the sensitivity of the atmospheric CO2 concentration to
NADW.

Conceptually, the following sequence of events hints at the possible existence
of periodic solutions: (1) As the amount of CO2 in the atmosphere increases and
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y becomes positive, the total amount of ice decreases and x becomes negative
(first equation); (2) As x becomes negative, the volume of NADW increases and
z becomes positive (third equation); (3) As z becomes positive, the amount of
atmospheric CO2 decreases and y becomes negative (second equation). This is the
first part of the cycle.

In the second part of the cycle, once y is negative, the opposite effects happen.
(4) The total global ice mass starts to increase again and x becomes positive (first
equation); (5) As a result, the volume of NADW decreases and eventually z becomes
negative (third equation); (6) Once z is negative, y starts to increase again (second
equation). This completes the full cycle and sets the stage for the next cycle. Of
course, these arguments do not guarantee the existence of a periodic cycle and do not
say anything about its period. The particulars will depend critically on the parameter
values.

1.3.4 Computational Results

Maasch and Saltzman found computationally that the system (1.3.8) generates a
limit cycle with a 100 Kyr period at the parameter values p = 1.0, q = 1.2,
r = 0.8, and s = 0.8. The limit cycle is shown in Fig. 1.5. The three curves
represent the total ice mass (black), the atmospheric CO2 concentration (red), and
the volume of NADW (blue) in arbitrary units. Each cycle is clearly asymmetric:
a rapid deglaciation is followed by a slow glaciation. Also, the three variables are
properly correlated: as the concentration of atmospheric CO2 (a greenhouse gas)
increases, the climate gets warmer and the total ice mass decreases; as the volume
of NADW increases, the strength of the North Atlantic overturning circulation
increases, more atmospheric CO2 is absorbed by the ocean and, consequently, the
atmospheric CO2 concentration decreases.

More detailed numerical calculations show that the Maasch–Saltzman model
possesses limit cycles in large portions of parameter space. We integrated the

0 10 20 30 40

–2

0

2

t 10 Kyr

x,
y,

z

Fig. 1.5 Limit cycle of (1.3.8) at p = 1.0, q = 1.2, r = 0.8, s = 0.8
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Fig. 1.6 Color map of
x(p, r) for the system (1.3.8)
at q = 1.2, s = 0.8,
indicating convergence to an
equilibrium state or a limit
cycle
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system (1.3.8) forward in time for a range of values of (p, r), keeping q and s

fixed at the values q = 1.2 and s = 0.8, starting from a randomly chosen initial
point for each (p, r), until there was a clear indication of either a limit cycle or a
limit point. We then determined the quantity x for each pair (p, r),

x = lim sup
t→∞

x(t). (1.3.10)

Figure 1.6 shows the function (p, r) �→ x(p, r) as a color map. A limiting
value 0 (light green) indicates convergence to the trivial state, a nonzero negative
value (dark green) convergence to a nontrivial equilibrium state, and a nonzero
positive value (orange or pink) convergence to a limit cycle with a finite amplitude.
Limit cycles were observed in the entire orange-colored region of the (p, r)

plane. These findings, as well as other results reported by Maasch and Saltzman
in [35], especially when the effects of orbital forcing are included, suggest that the
conceptual model (1.3.8) may indeed provide an explanation for the Pleistocene
climate record.

1.4 Simplifying the Maasch–Saltzman Model

The system (1.3.8) has four positive parameters, p, q, r , and s, where q > 1. As
noted in Sect. 1.3.3, the parameter s introduces asymmetry into the model. If s =
0, the equations are invariant under reflection: if (x, y, z) is a solution, then so is
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(−x,−y,−z). Note furthermore that, as q → ∞, the differential equation for z

reduces, at least formally, to the identity z = −x, so the system (1.3.8) becomes
two-dimensional. These observations suggest that it may be helpful to analyze the
dynamics of the Maasch–Saltzman model (1.3.8) in stages where we first focus on
the special case q = ∞ and s = 0 and then consider the effects of finite values of q
and positive values of s.

If we set q = ∞ and s = 0, the system (1.3.8) reduces formally to a two-
dimensional system with Z2 symmetry,

ẋ = −x − y,

ẏ = ry + px − x2y.
(1.4.1)

The state variables are x and y, the state space is R
2, p and r are parameters,

and the parameter space is R
2+. Its dynamics can be analyzed rigorously and

completely.

1.4.1 Equilibrium States and Their Stability

The origin P0 = (0, 0) is an equilibrium state of the system (1.4.1) for all values
of p and r . If r > p, there are two additional equilibrium states, P1 = (x∗1 ,−x∗1 )
with x∗1 =

√
r − p, and P2 = (x∗2 ,−x∗2 ) with x∗2 = −√r − p. A linear stability

analysis shows that P0 is stable if 0 < r < min(p, 1), unstable otherwise; P1 and
P2 are stable if 0 < p < min(r, 1), unstable otherwise. Thus, the parameter space
is partitioned into four regions,

O = {(p, r) ∈ R
2+ : r < p for p < 1, r < 1 for p > 1},

I = {(p, r) ∈ R
2+ : 1 < r < p for p > 1},

II = {(p, r) ∈ R
2+ : 1 < p < r for r > 1},

III = {(p, r) ∈ R
2+ : p < r for r < 1, p < 1 for r > 1}.

(1.4.2)

The regions are shown in Fig. 1.7, together with representative trajectories in
regions O, I, and II. The diagonal r = p is the locus of pitchfork bifurcations, where
P1 and P2 are created as stable nodes as (p, r) crosses the diagonal from region O
into region III or as unstable nodes as (p, r) crosses the diagonal from region I into
region II. The parabolic curves C1 = {p = 1

4 (r + 1)2} and C2 = {r = 1
4 (p + 1)2}

(dashed curves shown in purple), which are tangent to the diagonal r = p at the
point (1, 1), mark the boundaries between spirals and nodes.
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Fig. 1.7 (Left) Stability regions of the equilibrium states P0, P1, and P2 of (1.4.1). (Right)
Representative trajectories in region O (top), I (middle), and II (bottom)

1.4.2 Hopf Bifurcations

The system (1.4.1) is equivalent with the Liénard equation

ẍ + g(x)ẋ + f (x) = 0, (1.4.3)

where f and g are polynomial functions,

f (x) = x3 − (r − p)x, g(x) = x2 − (r − 1). (1.4.4)

A Hopf bifurcation occurs when f (x∗) = 0, f ′(x∗) > 0, and x∗ is a simple zero
of g. The natural frequency of oscillations is ω∗ = √f ′(x∗), and the first Lyapunov
coefficient at x∗ is

�∗ = −ω∗

8

d

dx

g′(x)
f ′(x)

∣∣∣∣
x=x∗

, (1.4.5)

see [31, §3.5]. If �∗ < 0, the Hopf bifurcation is supercritical; if �∗ > 0, it is
subcritical. The sign of �∗ is the same as that of f ′′(x∗)g′(x∗) − f ′(x∗)g′′(x∗),



1 Modeling the Dynamics of Glacial Cycles 17

which in the case of the polynomial functions f and g given in (1.4.4) is the same
as that of 3(x∗)2 + r − p.

The red line segments in Fig. 1.7 are loci of Hopf bifurcations. On the horizontal
segment at r = 1, which is associated with P0, we have x∗ = 0. The sign of �∗ is
the same as that of 1−p, which is negative, so the Hopf bifurcation is supercritical.
The natural frequency is ω∗ = √p − 1. On the vertical segment at p = 1, which is
associated with P1 and P2, we have (x∗)2 = r − p. The sign of �∗ is the same as
that of 4(r−1), which is positive, so the Hopf bifurcation is subcritical. The natural
frequency is ω∗ = √2(r − 1).

1.4.3 Organizing Center

The point (p, r) = (1, 1) plays a pivotal role in understanding the complete
dynamics of the system (1.4.1). To see why, rotate the coordinate system by the
transformation (x,−(x+y)) �→ (x, y). In the new coordinates, the system (1.4.1) is

ẋ = y,

ẏ = (r − p)x + (r − 1)y − x2y − x3,
(1.4.6)

and the equilibrium points are P0 = (0, 0), P1 = (x∗1 , 0), and P2 = (x∗2 , 0).
Let P = (x∗, 0) be any of the equilibrium points, with x∗ = 0, x∗1 , or x∗2 . The

Jacobian of the vector field at P is

(
0 1

r − p − 3(x∗)2 r − 1− (x∗)2

)
. (1.4.7)

The matrix has a double-zero eigenvalue at the point (p, r) = (1, 1), so the sys-
tem (1.4.6) undergoes a Bogdanov–Takens (BT) bifurcation. Holmes and Rand [23]
refer to such a point as an organizing center. Specifically, given the Z2 symmetry
of the system (1.4.6), the point (p, r) = (1, 1) is a BT point with Z2 symmetry;
examples of such points are discussed in [7, Ch. 4.2] and [31, § 8.4].

The system (1.4.6) can be analyzed in the neighborhood of the organizing center
by the unfolding procedure outlined in the original papers by Bogdanov [5] and
Takens [53, pp. 23–30] (reprinted in [6, Chapter 1]) and described in the textbooks
of Guckenheimer and Holmes [21, §7.3] and Kuznetsov [31, §8.4]. Here, we
summarize the results; the details are given in Sect. 1.4.5 below.

Near the point (p, r) = (1, 1), region III of Fig. 1.7 decomposes into three
subregions; see Fig. 1.8. In region IIIa, there is one stable limit cycle, with a pair
of unstable limit cycles in its interior, one around each of the equilibrium states
P1 and P2. As (p, r) transits from region IIIa into region IIIb, the two unstable
periodic solutions merge to become a pair of unstable homoclinic orbits to the
saddle P0. This homoclinic bifurcation curve (shown in blue) is tangent to the
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Fig. 1.8 (Left) A sketch of the bifurcation curves of (1.4.1) near the organizing center (the actual
curves are shown in Fig. 1.9). (Right) Trajectories in region IIIa (top), IIIb (middle), and IIIc
(bottom)

line r − 1 = −4(p − 1) at the organizing center (1, 1). In region IIIb, there is
one stable limit cycle with an unstable limit cycle in its interior. As (p, r) transits
from region IIIb into region IIIc, there is a curve of saddle-node bifurcations of
limit cycles, along which the stable and unstable limit cycles disappear. This curve
(shown in black) is tangent to the line r−1 ≈ −3.03(p−1) at the organizing center
(1, 1). In region IIIc, only the three equilibrium states remain, P0 as an unstable
saddle, P1 and P2 as stable spirals or nodes.

1.4.4 Computational Results

To complement the analysis, we performed an integration of the system (1.4.1)
forward in time for a range of values of (p, r), following the procedure described
in Sect. 1.3.4 for Fig. 1.6, to determine the quantity x = lim supt→∞ x(t), as
in (1.3.10). Figure 1.9 shows the function (p, r) �→ x(p, r) as a color map, together
with the bifurcation curves obtained with AUTO. A limiting value 0 (light green)
indicates convergence to the trivial state, a nonzero negative value (dark green)
convergence to a nontrivial equilibrium state, and a nonzero positive value (orange
or pink) convergence to a limit cycle with a finite amplitude.
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Fig. 1.9 Color map of x(p, r) and bifurcation curves for the system (1.4.1)

The stability region O of the trivial state P0 is clearly visible, as is its
Hopf bifurcation curve. As one crosses the Hopf bifurcation curve in the direc-
tion of increasing r , the color changes slowly toward increasing values of x,
indicating a supercritical Hopf bifurcation and periodic orbits with amplitudes
O(
√
r − 1).

Throughout regions I and II, the color map changes from orange to pink as
r increases, indicating that the solutions all approach the stable limit cycle that
surrounds P0; cf. Fig. 1.7.

In region IIIa, there is a similar shift to pink as r increases. One also sees some
green and orange patches in region IIIa, indicating that some of the randomly chosen
initial conditions lie in the basins of attraction of the stable equilibrium states P1
and P2. Next, in region IIIb, the color map has largely the same characteristics
as in region IIIa, corresponding to the fact that solutions with initial conditions
that lie inside the large unstable limit cycle approach one of the stable equilibria
(green or orange), and those with initial conditions outside the unstable limit
cycle approach the large stable limit cycle (pink). Finally, in region IIIc, the color
map consists entirely of green and orange, indicating that all of the solutions are
attracted either to P1 or to P2, as expected since there are no stable limit cycles in
region IIIc.
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1.4.5 Bogdanov–Takens Unfolding

In Sect. 1.4.3, we presented the results of a bifurcation analysis of the system (1.4.6)
in a neighborhood of the organizing center at (p, r) = (1, 1). In this section, we
present the details of the Bogdanov–Takens unfolding procedure used to establish
these results. The section is somewhat technical, but since it is self-contained, it can
be skipped at first reading.

The unfolding is achieved by introducing a small positive parameter η (not to
be confused with the mean volume of permanent sea ice η used in Sect. 1.3) and
rescaling the dependent and independent variables,

x(t) = ηu(t̃), y(t) = η2v(t̃), t̃ = ηt. (1.4.8)

If (x, y) is a solution of the system (1.4.6), then (u, v) must satisfy the system

u̇ = v,

v̇ = μu− u3 + η(λ− u2)v.
(1.4.9)

Here, the dot ˙ stands for differentiation with respect to the variable t̃ , and λ and μ

are parameters, which are defined in terms of p and r ,

λ = r − 1

η2
, μ = r − p

η2
. (1.4.10)

Note that μ is negative in region I and positive in regions II and III (Fig. 1.7).
Henceforth, we omit the tilde and write t , instead of t̃ .

Remark The definition (1.4.10) of λ and μ generates a linear relation between p

and r ,

(λ− μ)(r − 1) = λ(p − 1). (1.4.11)

This is the equation of a pencil through the organizing center (1, 1) parameterized
by λ. Referring to the regions labeled I, II, and III in Fig. 1.7, we note that λ

increases from 0 to infinity as one rotates counterclockwise from the horizontal line
{p > 1, r = 1} through region I, then decreases as one continues to rotate through
region II, until λ = 1 at the vertical line {p = 1, r > 1}, and decreases further as
one rotates through region III, until λ = 0 at the horizontal line {0 < p < 1, r = 1}.

The results of the local analysis of Sects. 1.4.1 and 1.4.2 may be recovered
directly from the system (1.4.9), as follows. The origin (0, 0) is an equilibrium state
of (1.4.9) for all λ and μ, and if μ > 0, there are two additional equilibrium states,
(±√μ, 0). A linearization of (1.4.9) with μ < 0 about (0, 0) shows that the real
parts of the two eigenvalues pass through zero at λ = 0, which corresponds to the
line of supercritical Hopf bifurcations {p > 1, r = 1}. Similarly, a linearization
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of (1.4.9) with μ > 0 about (±√μ, 0) shows that the real parts of the two
eigenvalues pass through zero at λ = μ, which corresponds to the line of subcritical
Hopf bifurcations {p = 1, r > 1}.

1.4.5.1 Hamiltonian Structures

The equilibrium states of the system (1.4.9) are independent of η, so they persist as
η→ 0. In the limit, (1.4.9) reduces to the Hamiltonian system

u̇ = v,

v̇ = μu− u3.
(1.4.12)

Closed orbits of this system are level curves of the Hamiltonian, H(u, v) = 1
2v

2 −
1
2μu2 + 1

4u
4. If μ < 0, H(u, v) reaches its minimum value 0 at the origin, so

the closed orbits are nested and surround the origin. The more interesting case is
μ > 0, where H(u, v) reaches its minimum value at (±√μ, 0), and H(u, v) = 0
at the saddle point at the origin. We will analyze the case μ > 0 in detail and return
to the case μ < 0 in Sect. 1.4.5.5. Recall that μ > 0 implies that r > p, so the
following analysis applies to the regions II and III in Fig. 1.7.

Figure 1.10 shows the phase portrait of the Hamiltonian system (1.4.12) with
μ = 1. (The phase portrait for other positive values of μ is similar.) We see that there
are several types of closed orbits. There is a pair of homoclinic orbits to the origin,
there are periodic orbits in the interior of each of the homoclinic orbits surrounding
the equilibrium states (±1, 0), and there are large-amplitude periodic orbits external
to the homoclinic orbits. The question is, which of these closed orbits persist as the
Hamiltonian system (1.4.12) is perturbed to the system (1.4.9). Because of the Z2
symmetry, it suffices to consider the homoclinic orbit in the right half of the (u, v)

plane and the periodic orbits in its interior; the results for the closed orbits in the left

Fig. 1.10 Phase portrait of
the Hamiltonian
system (1.4.12) with μ = 1

u

v

−1 1

Γ0
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half of the (u, v) plane follow by reflection. Of course, we also need to consider the
large-amplitude periodic orbits that are external to the homoclinic orbits. Notice the
clockwise orientation of all these orbits.

1.4.5.2 Melnikov Function

The persistence of closed (homoclinic or periodic) orbits of Hamiltonian systems
under perturbations can be analyzed by means of the Melnikov function. This
function dates back at least to Poincaré [44]; it features in chapters by Melnikov [37]
and Arnold [2] and in the book by Andronov et al. [1]. A definitive discussion can be
found in the book of Guckenheimer and Holmes [21, §4.5]. The Melnikov function
and the associated theory apply to a range of different systems, but for our purposes
it suffices to summarize the results for the general system

u̇ = v,

v̇ = f (u)+ ηg(u, v).
(1.4.13)

(The functions f and g are not to be confused with those in Sect. 1.4.2.) In the limit
as η→ 0, this system reduces to the Hamiltonian system

u̇ = v,

v̇ = f (u).
(1.4.14)

Let Γ0 = {t �→ (u(t), v(t)), t ∈ I } be any closed orbit of (1.4.14). The
Melnikov function associated with Γ0 is the integral

∫
I
g(u(t), v(t))v(t) dt . Thus,

the Melnikov function measures the cumulative effect of the projection of the
perturbed component of the vector field, [0 g]t, on the normal vector, [−f v]t, of
the unperturbed vector field along Γ0. If the Melnikov function vanishes on Γ0, then
there exists—under suitable nondegeneracy conditions—a family of closed orbits
Γη of the perturbed system (1.4.13) which are O(η) close to Γ0 as η→ 0. Moreover,
if the Melnikov function vanishes on Γ0 and is positive (negative) on nearby orbits
that are to the right as Γ0 is traversed, then the Γη are locally stable (unstable).

1.4.5.3 Dynamics in Regions II and III

We apply the general results of the previous section to the closed orbits of (1.4.9)
identified at the end of Sect. 1.4.5.1: either the homoclinic orbit in the right half
of the (u, v) plane, or one of the periodic orbits in its interior, or one of the large-
amplitude periodic orbits external to the homoclinic orbits (Fig. 1.10). We assume,
without loss of generality, that μ = 1, so f (u) = u− u3 and g(u, v) = (λ− u2)v.

Let γ = {(u(t), v(t)) : t ∈ R} be any of these closed orbits. To indicate a
particular orbit, we label γ by the maximum value of its first coordinate, u(t), on its
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trajectory. We consider this label as a variable and denote it by x (not to be confused
with the dependent variable x in the Maasch–Saltzman model). Thus, the function
γ : x �→ γ (x) is defined for all x ∈ (1,∞). Specifically, γ (x) is the homoclinic
orbit in the right half plane if x = √

2, a periodic orbit inside this homoclinic if
x ∈ (1,

√
2), and a large-amplitude periodic orbit that is external to the double

homoclinic if x >
√

2.

Remark There are several ways to choose an identifier for γ . For example, we could
equally well have chosen the level-set value h = H(γ ), as was done in [8].

Consider the closed orbit γ (x) = {(ux(t), vx(t)) : t ∈ I (x)} for any x > 1,
where I (x) = R if x = √2, and I (x) is a period interval otherwise. The Melnikov
function associated with γ (x) is

M(λ, x) =
∫

I (x)

(λ− u2(t))v2(t) dt =
∮

γ (x)

(λ− u2) v(u) du = λI0(x)− I2(x),

(1.4.15)
where I0 and I2 are defined by

I0(x) =
∮

γ (x)

v(u) du, I2(x) =
∮

γ (x)

u2 v(u) du. (1.4.16)

Here, we have used the relation v = u̇ to convert the time integral to a contour
integral on the closed orbit γ (x).

Recall that γ (x) is oriented clockwise; hence, Green’s theorem yields the identity
I0(x) =

∫∫
D(x)

du dv, where D(x) is the domain enclosed by γ (x). Consequently,
I0(x) > 0, so the condition M(λ, x) = 0 is satisfied if and only if

λ = R(x), where R(x) = I2(x)

I0(x)
. (1.4.17)

If, given λ, M(λ, x) = 0 at x = x̃, then M(λ, x) > 0 for nearby orbits that are to the
right of γ (x̃) if R′(x̃) < 0, and M(λ, x) < 0 for such nearby orbits if R′(x̃) > 0.
Hence, the local stability of closed orbits is determined by the sign of R′(x̃).

Since the components of the homoclinic and periodic orbits are known in terms
of hyperbolic and elliptic functions, respectively, R(x) can be evaluated explicitly.
The computations were first done by Carr [7] and subsequently refined by Cushman
and Sanders [12]. For example, for the homoclinic orbit,

γ (
√

2) = {(√2 sech t,−√2 sech t tanh t), t ∈ R}, (1.4.18)

and M(λ,
√

2) = 4
3λ − 16

15 . It follows that M(λ,
√

2) = 0 if and only if λ = 4
5 .

Moreover, λ = 4
5 is a simple zero. Therefore, for all sufficiently small η there exists

a λ(η) = 4
5 + O(η) and a homoclinic orbit near γ (

√
2), with a symmetric result in

the left half of the (u, v) plane. In the (p, r) plane, the homoclinic bifurcation curve
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is, to leading order, tangent to the line r − 1 = −4(p − 1) at the organizing center
(1, 1); see (1.4.11).

The figure below shows the graph of R : x �→ R(x) for 1 < x < 2.

x

R
(x

)

0.
6

0.
8

1.
0

1.0 1.5 2.0

l

Starting from the values R(1) = 1 and R′(1) = 0, R(x) and R′(x) decrease
monotonically as x increases. At the homoclinic orbit (marked by a black dot),
x = √

2, R(
√

2) = 4
5 , and limx→√2 R′(x) = −∞. Beyond the homoclinic orbit,

R(x) decreases further, while R′(x) increases until R′(x) = 0; at that point (marked
by a black cross), x = x∗ ≈ 1.471 and R′′(x∗) > 0, so R(x) reaches its minimum
value Rmin(x

∗) = λ∗ ≈ 0.752. Beyond this point, R(x) increases monotonically;
R(x) ∼ x2 as x →∞.

Proofs of these statements, which do not use elliptic functions, can be found, for
example, in [8]. It follows that closed orbits exist only for λ > λ∗, and they are
locally stable only for x > x∗.

1.4.5.4 Limit Cycles in Regions II and III

The properties of the Melnikov function listed in the previous section lead to the
following results for the dynamics of the perturbed system (1.4.9) with μ = 1. In
all statements, it is assumed that η is sufficiently small positive.

• For λ > 1 (region II), there are only stable large-amplitude limit cycles which
encircle the origin and pass through points (x, 0) with R(x) > 1;

• For 4
5 < λ < 1 (region IIIa), there are stable large-amplitude limit cycles which

encircle the origin and unstable limit cycles in their interior which encircle the
equilibrium points (±1, 0);

• For λ = 4
5 + O(η), there is a symmetric pair of unstable homoclinic orbits, one

in each half plane;
• For 0.752 . . . < λ < 4

5 (region IIIb), there is a stable large-amplitude limit cycle
and an unstable large-amplitude limit cycle in its interior, both encircling the
origin;
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• At λ = 0.752 . . . + O(η), the stable and unstable large-amplitude limit cycles
join in a saddle-node bifurcation;

• For λ < 0.752 . . . (region IIIc), there are no limit cycles.

Thus, in addition to the homoclinic bifurcation curve found earlier, which is
tangent to the line r − 1 = −4(p − 1) at the organizing center, there is a curve
of saddle-node bifurcations of limit cycles, which, to leading order, is tangent to the
line r−1 ≈ −3.03(p−1) at the organizing center. This follows from (1.4.11), with
μ = 1 and λ∗ ≈ 0.752. The two bifurcation curves partition the region III of Fig. 1.7
into the three regions IIIa, IIIb, and IIIc, as sketched in Fig. 1.8 and superimposed
on the color map of Fig. 1.9.

1.4.5.5 Limit Cycles in Region I

It remains to investigate the dynamics of the system (1.4.9) for μ < 0 (r < p,
region I in Fig. 1.7). This case is considerably simpler than the case μ > 0. Without
loss of generality, we may assume that μ = −1. The Hamiltonian is H(u, v) =
1
2v

2+ 1
2u

2+ 1
4u

4. The closed orbits can again be identified by the maximum value, x,
of its first coordinate u(t), which in this case ranges over all positive values, x > 0.
The Melnikov function is given by the same expression (1.4.15) and vanishes if
λ = R(x), as in (1.4.17). In this case, both R(x) and R′(x) increase as x increases,
so the Melnikov theory establishes that, for each x > 0, there exists a value of λ

(given by the simple zero of the Melnikov function) such that, for some λ(η) that is
O(η) close to this value, the perturbed system has a unique limit cycle.

1.5 The Asymmetric Two-Dimensional Model

Having a complete understanding of the dynamics of the symmetric two-
dimensional model (1.4.1), we are in a position to study the effects of symmetry
breaking. The asymmetric two-dimensional model is derived formally from the
Maasch–Saltzman model (1.3.8) by setting q = ∞ (z = −x),

ẋ = −x − y,

ẏ = ry + px + sx2 − x2y.
(1.5.1)

We will see that this system has two nondegenerate Bogdanov–Takens points,
which act as organizing centers in the (p, r) parameter space. The geometry of
these organizing centers and the bifurcation curves emanating from them may
be understood naturally as a result of the breaking of the lone Z2-symmetric
Bogdanov–Takens point studied in Sect. 1.4.3.
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1.5.1 Equilibrium States and Their Stability

The origin P0 = (0, 0) is an equilibrium state of (1.5.1) for all (positive) values of
p, r , and s. If r > p − 1

4 s
2, there are two additional equilibrium states, namely

P1 = (x∗1 ,−x∗1 ) and P2 = (x∗2 ,−x∗2 ), where

x∗1 = 1
2 [−s +

√
s2 + 4(r − p)], x∗2 = 1

2 [−s −
√
s2 + 4(r − p)]. (1.5.2)

We refer to the line r = p − 1
4 s

2 as the shifted diagonal (marked “sd” in Fig. 1.11).
Note that x∗2 < x∗1 < 0 if p − 1

4 s
2 < r < p, and x∗2 < 0 < x∗1 if r > p.

Let P = (x∗,−x∗) be any of the equilibrium states, with x∗ = 0, x∗1 , or x∗2 . The
Jacobian of the vector field at P is

( −1 −1
p + 2sx∗ + 2(x∗)2 r − (x∗)2

)
. (1.5.3)

The system is linearly stable at P if the trace is negative, −1+ r − (x∗)2 < 0, and
the determinant is positive, p − r + 3(x∗)2 + 2sx∗ > 0.

The stability results are illustrated in Fig. 1.11. We see that the parameter
space R

2+ is partitioned into six regions, which depend on s. Referring to the labels
in Fig. 1.11, these regions are

Fig. 1.11 Stability regions of
P0, P1, and P2 for (1.5.1)
with s = 0.8
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Oa =
{
(p, r) ∈ R

2+ : between “d0” and “d2”, below “e0”
}
,

Ob =
{
(p, r) ∈ R

2+ : right of “d2”, below “e0”
}
,

I =
{
(p, r) ∈ R

2+ : right of “sd”, above “e0”
}
,

IIa =
{
(p, r) ∈ R

2+ : between “e2” and “sd”
}
,

III =
{
(p, r) ∈ R

2+ : left of “d0” and “e1”
}
,

IIIo =
{
(p, r) ∈ R

2+ : between “e1” and “e2”, above “e0” and “d2”
}
.

(1.5.4)

Summarizing the results of the stability analysis, we find that

• P0 is stable in regions Oa and Ob, undergoes a supercritical Hopf bifurcation
on “e0” with natural frequency ω∗0 =

√
p − 1;

• P1 is stable in region III, undergoes a subcritical Hopf bifurcation on “e1” with
natural frequency ω∗1 =

√
2(r − 1)+ s

√
r − 1; and

• P2 is stable in regions Oa, III, and IIIo, undergoes a subcritical Hopf bifurcation
on “e2” with natural frequency ω∗2 =

√
2(r − 1)− s

√
r − 1.

The introduction of asymmetry (s > 0) results in two changes. The vertical line
{p = 1, r > 1}, which is the locus of Hopf bifurcations for P1 and P2 in the
symmetric case (Fig. 1.7), unfolds into a parabola. The vertex of this parabola is at
the point (1, 1), and the parabola is tangent to the shifted diagonal r = p − 1

4 s
2

at the point (1 + 1
2 s

2, 1 + 1
4 s

2). As we will see in Sect. 1.5.2, both these points are
organizing centers. For convenience, we label them

Q1 = (1, 1), Q2 = (1+ 1
2 s

2, 1+ 1
4 s

2). (1.5.5)

As (p, r) moves across the shifted diagonal in the direction of decreasing p, the
equilibrium states P1 and P2 emerge in a saddle-node bifurcation. If the crossing
occurs above Q2, P1 and P2 are both unstable; if it occurs below Q2, P1 is unstable
while P2 is stable. In the region Oa, P0 and P2 co-exist as stable equilibria, while P1
is an unstable equilibrium. On the diagonal for p < 1, P0 and P1 exchange stability
in a transcritical bifurcation.

1.5.2 Organizing Centers

We make the change of variables (x,−(x + y)) �→ (x, y) as in Sect. 1.4.3. In the
new coordinate system, (1.5.1) becomes

ẋ = y,

ẏ = (r − p)x + (r − 1)y − (s + y)x2 − x3.
(1.5.6)
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This is a special case of general four-parameter planar vector fields which arise as
part of the unfolding of vector fields ẋ = y, ẏ = −x3−x2y; they have been studied
extensively in [13, 29] (codimension-two singularities) and [18] (codimension-three
singularities).

The equilibrium points of the system (1.5.6) are P0 = (0, 0), P1 = (x∗1 , 0), and
P2 = (x∗2 , 0), where x∗1 and x∗2 are again given by (1.5.2).

Let P = (x∗, 0) be any of the equilibrium points. The Jacobian of the vector
field at P is

(
0 1

r − p − 2sx∗ − 3(x∗)2 r − 1− (x∗)2

)
. (1.5.7)

If x∗ = 0, the Jacobian has a double-zero eigenvalue at Q1 for any s, and if x∗ =
x∗1 or x∗ = x∗2 , it has a double-zero eigenvalue at Q2. Hence, the introduction of
asymmetry causes the organizing center to unfold into a center at Q1 associated
with P0 and a center at Q2 associated with P1 and P2.

Figure 1.12 shows the bifurcation curves emanating from the two organizing
centers for s = 0.8 (the value chosen by Maasch and Saltzman). They were
computed with the AUTO continuation package.

There are three Hopf bifurcation curves (shown in red), two emanating from
Q1 and one emanating from Q2: (1) a parabolic curve to the left of Q1, where P1
undergoes a subcritical Hopf bifurcation; (2) a horizontal line {r = 1, p > 1} to the
right of Q1, where P0 undergoes a supercritical Hopf bifurcation; and (3) a parabolic
curve to the right of Q2, along which P2 undergoes a subcritical Hopf bifurcation.
These three curves are the same as the ones identified in the local analysis, cf.
Sect. 1.5.1. In addition, there are three homoclinic bifurcation curves (shown in
blue), two emanating from Q1 (solid blue) and one emanating from Q2 (dashed

0 1 2
1

2

3

p

r

e0

e1

e2

d0

Q1 Q2

Q2�

Fig. 1.12 Stability boundaries and bifurcation curves for the system (1.5.1) with s = 0.8. The
inset shows a neighborhood of Q2
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Fig. 1.13 Phase planes of the system (1.5.1) at the six small, black diamond markers in Fig. 1.12.
The markers all lie on the vertical line p = 1.55; (a) r = 1.2, (b) r = 1.45, (c) r = 1.6, (d) r = 2.0,
(e) r = 2.5, (f) r = 3.0

blue). These curves are identified by an unfolding procedure, as in Sect. 1.4.5. Since
the points Q1 and Q2 are both nondegenerate Bogdanov–Takens points, there are
no other bifurcation curves besides the Hopf and homoclinic bifurcation curves
emanating from them.

Figure 1.13 shows the phase portraits at the six small black diamond markers
along the vertical line p = 1.55 in Fig. 1.12. The color scheme is as follows: The
flow of (1.5.1) is shown as blue streamlines. The black and red curves correspond
to the stable and unstable limit cycles, respectively. The equilibrium states P0, P1,
and P2 are indicated by black, red, and green markers, respectively.

• Frame (a), r = 1.2: a stable limit cycle surrounds the unstable equilibrium
point P0.

• Frame (b), r = 1.45: the equilibrium points P1 and P2 exist but are unstable, a
stable limit cycle surrounds P1 and P2.

• Frame (c), r = 1.6: the equilibrium points P1 and P0 have switched positions,
P2 has become stable, an unstable limit cycle surrounds P2.

• Frame (d), r = 2.0: the unstable limit cycle has disappeared in the homoclinic
bifurcation.

• Frame (e), r = 2.5: a large-amplitude unstable limit cycle exists inside the large-
amplitude stable limit cycle.

• Frame (f), r = 3.0: the large-amplitude stable and unstable limit cycles have
disappeared in a saddle-node bifurcation; P2 is the only attractor.
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1.6 Summary

The purpose of this chapter is to show an interesting application of dynamical
systems theory to a problem of climate science. The object of investigation is a
model of the Pleistocene climate, proposed by Maasch and Saltzman in 1990. The
model is a conceptual model designed specifically to explain the persistence of
glacial cycles during the Pleistocene Epoch. The Milankovitch theory of orbital
forcing establishes a correlation between glacial cycles and periodic oscillations in
the Earth’s orbit around the Sun, but orbital forcing by itself is insufficient to explain
the observed temperature changes.

The Maasch–Saltzman model incorporates a feedback mechanism that is driven
by greenhouse gases, in particular atmospheric CO2. The model is based on
plausible physical arguments, and preliminary computational experiments indicate
that it reproduces several salient features of the Pleistocene temperature record. In
this chapter, the emphasis is on the internal dynamics of the model. We focused on
the prevalence and bifurcation properties of limit cycles in the various parameter
regimes in the absence of external forcing.

The Maasch–Saltzman model is formulated in terms of the anomalies of the
total global ice mass, the atmospheric CO2 concentration, and the volume of
the North Atlantic Deep Water (NADW, a measure of the strength of the North
Atlantic overturning circulation). It consists of three differential equations with
four parameters and is difficult to analyze directly. Our results indicate how one
can obtain fundamental insight into its complex dynamics by first considering a
highly simplified two-dimensional version. The dimension reduction is achieved
by (formally) letting one of the parameters—representing the rate of change of the
volume of NADW relative to that of the total global ice mass—tend to infinity. The
approximation is justified by the observation that the NADW changes on a much
faster time scale than the total global ice mass.

The two-dimensional model has two primary parameters, p and r , which are both
positive, and one secondary parameter s, which reflects the asymmetry between
the glaciation and deglaciation phases of the glacial cycles. By first ignoring the
asymmetry (s = 0), we obtained a complete understanding of the dynamics and the
persistence of limit cycles.

Figure 1.8, which is a sketch of the various bifurcation curves in the (p, r)

parameter space, summarizes the main results. The origin is an equilibrium state
P0 for all (p, r); P0 is stable in region O. In addition, there are two equilibrium
states P1 and P2 in regions II and IIIa-c; they are generated in a pitchfork bifurcation
along the diagonal r = p and are stable in region IIIa-c. Stable limit cycles exist
in regions O, I, II, IIIa, and IIIb. They are created in supercritical Hopf bifurcations
along the boundary between regions O and I. In region I, they surround the unstable
equilibrium state P0, and in the other regions they surround all three equilibrium
states. Along the boundary between regions II and IIIa, a pair of unstable limit
cycles, each surrounding one of the two stable equilibrium states P1 and P2, are
created in a subcritical Hopf bifurcation. These newborn limit cycles grow in
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amplitude until they become homoclinic orbits at the boundary between regions IIIa
and IIIb; in region IIIb, they have merged into one large-amplitude unstable limit
cycle, which surrounds the three equilibrium states and sits just inside the large-
amplitude stable limit cycle. Finally, the stable and unstable large-amplitude limit
cycles merge and disappear in a saddle-node bifurcation as (p, r) crosses the lower
boundary of region IIIb into region IIIc. All these results have been confirmed
computationally; see Fig. 1.9.

Having thus obtained a complete understanding of the dynamics of the symmetric
simplified model, we then re-introduced asymmetry (s > 0). A comparison of
Fig. 1.12 with Fig. 1.8 shows the effects of symmetry breaking. The main change
is that the single organizing center, which governed the dynamics in the symmetric
case, splits into two organizing centers. Also, the curves of homoclinic bifurcations
and saddle-node bifurcations of limit cycles become more complex.

The complexity of the bifurcation diagram of Fig. 1.12 gives an indication why
it is difficult to analyze the dynamics of the Maasch–Saltzman model directly.
It also justifies our approach of first analyzing the highly simplified model and
then gradually relaxing the constraints that were imposed to derive the simplified
model [19]. In that paper, we briefly examine the effects of slowly varying the
parameters p and r in the full model and identify this as a slow passage through
a Hopf bifurcation curve, with a resulting delayed loss of stability. This is the
main mechanism for the mid-Pleistocene transition in the Maasch–Saltzman model.
The effects of orbital forcing on the model are shown to be important also for this
mechanism, since they may advance or delay the loss of stability further.
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Chapter 2
Mathematics of the Not-So-Solid Solid
Earth

Scott D. King

Abstract As a result of climatic variations over the past 700,000 years, large ice
sheets in high-latitude regions of the Earth formed and subsequently melted, loading
and unloading the surface of the Earth. This chapter introduces the mathematical
analysis of the vertical motion of the solid Earth in response to this time-varying
surface loading. This chapter focuses on two conceptual models: the first, proposed
by Haskell [Physics, 6, 265–269 (1935)], describes the return to equilibrium of a
viscous half-space after the removal of an applied surface load; the second, proposed
by Farrell and Clark [Geophys. J. Royal Astr. Soc., 46, 647–667 (1976)], illustrates
the changes in sea level that occur when ice and water are rearranged on the surface
of the Earth. The sea level equation proposed by Farrell and Clark accounts for the
fact that sea level represents the interface between two dynamic surfaces: the sea
surface and the solid Earth, both of which are changing with time.

Keywords Gravitational potential · Sea level · Stokes equation · Viscous
relaxation

2.1 Ice Ages and Glacial Isostatic Adjustment

For the past 700,000 years, the Earth’s climate has alternated between glacial
and interglacial conditions, with a periodicity on the order of 100,000 years.
A conceptual model emphasizing the roles of orbital variations and atmospheric
CO2 concentration is explored in Chap. 1 of this volume. During glacial periods,
lower temperatures result in the growth of large ice sheets at higher latitudes,
removing water from the ocean basins and lowering sea levels. During interglacial
periods, these large ice sheets melt, returning water stored on land to the oceans,
resulting in a relative rise in sea levels. The movement of water in both liquid and
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solid form between continental land masses and ocean basins during the glacial–
interglacial cycle creates a time-varying mass load on the surface of the Earth on a
time scale that is short compared with the response time of the Earth’s surface. The
mass of these ice sheets is sufficient to deform the solid Earth, causing subsidence
and then, upon subsequent melting of the ice sheet, rebound of the surface. The
response of the solid Earth to the time-varying surface load brought about by the
waxing and waning of large-scale ice sheets is called Glacial Isostatic Adjustment
(GIA). Isostasy (or isostatic) is a term used by Earth scientists to describe the
Archimedean principle that any object, wholly or partially immersed in a stationary
fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.

During the last great ice age, Scandinavia and North America were covered with
thick sheets of ice up to 5 km thick (Fig. 2.1). In northern Europe, the northward
extent of the ice sheet covered Svalbard and Franz Josef Land, and the southern
boundary passed through Germany and Poland. In North America, the ice covered
most of Canada, extending as far south as the Missouri and Ohio Rivers, and
eastward to Manhattan. When the ice sheets melted, the surface of the Earth began to
return to its equilibrium elevation (rebound), a process that continues to the present
day [21, 22, 39, 42]. The water stored in these ice sheets lowered the sea level
globally by 115–135 m relative to present-day sea levels [23], and present-day sea
levels are at or near the maximum level in the glacial–interglacial cycle.

While water is also present both in the atmosphere and stored as groundwater
within the near surface of the Earth, the volumes of water involved in the
atmospheric water cycle (e.g., precipitation, evaporation, and transpiration) and
stored as groundwater do not vary significantly over the glacial/interglacial time
scale. Changes in these water reservoirs have a much smaller effect on the solid
Earth in comparison with the changing mass load of the ice sheets.

Fig. 2.1 Ice thickness 26,500 years before present based on the ICE-6G model [34]
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2.1.1 Sea Level Changes

Tidal gauges were originally designed to measure the daily and monthly changes
in water level due to tides in shallow harbors. A typical tidal gauge would consist
of a mechanical float enclosed in a cylindrical well to isolate the float from wind
waves. After removing the daily and monthly tidal signals, it is possible to derive
a record of the mean sea level from these historical tidal gauge measurements; at
some locations, the records are continuous, covering several centuries. Of course,
these records are spatially limited to coastal regions, for obvious reasons. It is also
necessary to reference a tidal gauge to a local geodetic benchmark, to ensure that
the local land surface is stable and that the recorded measurement reflects a change
in sea level and not local subsidence or uplift of the land. While still used in some
locations, these early gauges have been superseded by pressure, acoustic/ultrasonic,
or radar gauges. (Here and throughout the remainder of this chapter, we use the
term “sea level” to refer to the level of a hypothetical ocean surface in the absence
of wind waves.)

Figure 2.2 shows a time series of annual mean sea level anomalies for Amster-
dam [43] and Stockholm [7]. (The sea level anomaly is the deviation of the actual sea
level from some reference level.) The point of this figure is to illustrate the trend as a
function of time, and this is not dependent on the specifics of the reference baseline.
In Amsterdam, the sea level increased nearly 200 mm during the period 1700–
1925, while the sea level in Stockholm decreased almost 1000 mm between 1770
and 1980. While sea level observations at these locations continue to be recorded,
the changes in instrumentation and analysis techniques mean that matching modern
tide-gauge measurements with these historical records is a nontrivial exercise. For
the purpose here, these historical records are sufficient to illustrate the longer-term
trends in the sea-level observations.

The traditional approach to estimating the impact of ice sheets on the sea level
assumed that measuring the age of submerged beaches (e.g., by radiocarbon dating)
in stable areas was sufficient to determine the historical changes in sea level. The
assumption was that sea level rise is a global phenomenon and that, just as increasing
the water level in a bathtub would increase the water level everywhere, sea level rise
at one point would inform the global trend. This allowed researchers to extend the

Fig. 2.2 Annual mean sea level anomalies for Amsterdam [43] and Stockholm [7]. Data obtained
from http://www.psmsl.org/data/longrecords/

http://www.psmsl.org/data/longrecords/
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sea-level record further back in time, although with a greater degree of uncertainty.
The time series in Fig. 2.2 present a problem for this traditional approach. Why does
the sea level appear to be rising at one location and falling at another? The model
described by Farrell and Clark [9], which we will discuss in Sect. 2.3, illustrates
that the distribution of ice and the shape of the surface of the solid Earth play an
important role in the analysis of sea-level change.

In any given area, the local sea level is the intersection of two dynamic surfaces:
the sea surface and the irregular solid surface, both of which are changing with time.
Globally, the sea level is not at a uniform radial distance from the center of the Earth
(or some other suitable reference frame) but varies spatially because it follows a
surface of equal gravitational potential. While water is removed and added from the
ocean basin with the growth and melting of the ice sheets, the gravitational attraction
of the ice sheets deforms the ocean surface, thus changing the gravitational potential
in the region around the sheet. Also, the change in the mass of both the ocean and
the ice sheet as water moves from one to the other creates a time-varying load that
deforms the surface of the Earth. As the surface deforms, matter within the Earth is
redistributed, the gravitational attraction changes, and the sea level responds in turn.
This is the topic that will be analyzed in detail in the remainder of the chapter.

Outline of the Chapter Following is an outline of the chapter. Section 2.2 contains
a review of the classical problem studied by Haskell [11, 12] of a mass load on the
surface of a viscous half-space. The analysis yields an estimate of the viscosity
of the interior of the Earth, which justifies the assumption that the effects of
momentum and rotation on the slow creeping flow in the interior of the Earth can
be neglected. Haskell’s analysis predicts a uniform rise in sea level everywhere.
Section 2.3 focuses on spatial variations of the gravitational potential, following
the classical work of Farrell and Clark [9]. The analysis assumes a rigid Earth but
allows for a nonuniform sea level rise. The subsequent Sect. 2.4 builds on this work
by adding elastic deformations to obtain a more realistic model of a solid Earth.
Since purely elastic behavior is not consistent with the GIA observations, some
degree of viscous behavior is required. The most common model of a viscoelastic
medium is the Maxwell rheology model, which is discussed in Sect. 2.5. The final
section, Sect. 2.6, summarizes the main points of the chapter with references to more
in-depth reviews and describes various open problems.

2.2 The Haskell Problem: Viscous Relaxation of the Solid
Earth

It may seem extraordinary that on time scales longer than we can perceive the terra
firma upon which we go about our daily lives actually behaves like a fluid, albeit a
highly viscous fluid. Yet, the study of Earth’s tectonic plates shows that the surface
of the Earth moves with velocities on the order of tens of millimeters per year
[26, 38, 45]—that is, roughly the rate at which human finger nails grow [3]. In



2 The Not-So-Solid Solid Earth 39

addition to the horizontal motions of the Earth’s surface, the surface deforms
vertically as a result of both imposed surface loads and stresses from within the
Earth [4].

The first mathematical formulation of the rebound of the surface of the Earth
after the melting of an ice sheet was given by Haskell [11, 12]. Haskell calculated
the flow within a semi-infinite, incompressible, viscous half-space, subject to an
initial periodic surface displacement given by

wm = wm0 cos
2πx

λ
. (2.2.1)

Here, λ is the wavelength of the initial load. The amplitude of the deformation
of the surface is assumed to be much smaller than its wavelength, wm � λ. The
load-induced displacement generates a hydrostatic pressure gradient, which acts to
restore the surface of the Earth to the undeformed equilibrium state (w = 0).

The equation of mass conservation for an incompressible fluid is

∇ · U = 0, (2.2.2)

where U is the velocity vector describing the fluid motion. The equation of
momentum conservation is obtained by applying Newton’s second law to the fluid
motion and using the assumption that the stress in the fluid is the sum of a pressure
term and a viscous term that is proportional to the gradient of the velocity. The
resulting equation is the Navier–Stokes equation, which describes the dynamics of
fluids in many areas of engineering and science,

ρ

[
∂U

∂t
+ U · ∇U

]
= −∇p + η∇2U. (2.2.3)

Here, ρ is the density of the fluid, p the pressure, and η the viscosity; ∂·
∂t

is the partial
derivative with respect to time.

Viscosityis a measure of the resistance of a fluid to gradual deformation by shear
stress. Honey is more resistant to flow than water, so honey has a larger viscosity
than water. In the SI system of units, viscosity is measured in Pascal-seconds (Pa s).
The viscosities of some common fluids are listed in the adjacent table.

Density Viscosity
Fluid (kg/m3) (Pa s)

Air 1.3 10−5

Water 1000 10−3

Olive oil 916 0.1

Honey 1450 10

Glacial ice 800–900 1015
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While it may not be obvious that the solid interior of the Earth deforms, consider
the movement of glaciers. Glaciers are sometimes called “rivers of ice,” and they
actually flow in response to gravity acting on their own mass. The rate of glacial
motion ranges from less than a meter per year to as much as 30 m per day when the
base of the glacier is decoupled from the underlying bedrock by soft sediments and
meltwater.

For specific problems, it is often possible to simplify the Navier–Stokes equation
because one or more terms in the equation are significantly smaller than the others.
To show this, it is helpful to rewrite the equation in terms of dimensionless variables,
which are of order 1, multiplied by a dimensional scaling constant. For example,
length can be written as x = x′L, where x′ is of order 1 and L represents the
characteristic length scale of the problem. In the problem under consideration, the
length scale is the wavelength of the applied load, λ. Similarly, the depth can be
written as y = y′L, using the same length scale of the problem, L. The velocity can
be rewritten as U = U ′U0, where U0 is the characteristic velocity of the problem.
Here, the velocity of Earth’s tectonic plates serves as a reasonable estimate of the
characteristic velocity, U0 = 0.01 m/yr, or U0 ≈ 3.16× 10−9 m/s. (Even though the
second is the unit of time in the SI system, geoscientists think of plate velocities in
millimeters per year. There are approximately π×107 s in a year.) The characteristic
time can now be defined in terms of L and U0, t = t ′L/U0. A logical choice for
pressure scaling is p = p′ηU0/L, which results in units of Pascals, the SI unit of
pressure.

Substituting the above relationships into Eq. (2.2.3), we obtain the Navier–Stokes
equation in dimensionless form,

Re

[
∂U ′

∂t ′
+ U ′ · ∇′U ′

]
= −∇′p′ + (∇′)2U ′, (2.2.4)

where the scaling constants and properties of the fluid have been grouped into a
single term, the Reynolds number,

Re = ρU0L

η
. (2.2.5)

The units in the Reynolds number cancel, so Re is a dimensionless quantity—one
of several that arise in the study of fluid mechanics. It is also noteworthy that
the primed Eq. (2.2.4) is dimensionless. This is useful for a variety of reasons;
for example, if the physical properties of different problems result in the same
Reynolds number, their solutions will be identical. Hence, if the characteristic
length is increased by a factor of 10, the dimensionless solution will be the same
if the viscosity is also increased by a factor of 10. The dimensional solution can be
recovered by multiplying the dimensionless solution by the scaling constants.

While nothing has been said yet about the viscosity of the interior of the Earth, it
is not hard to imagine that it is large, at least as large as the viscosity of glacial ice;
hence, the Reynolds number will be very small, and the terms on the right-hand side
of the Navier–Stokes equation can be ignored. This assumption will be checked after
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the final solution has been obtained. Following the same procedure, it is easy to show
that the terms representing the effects of the Earth’s rotation are similar in magnitude
to the momentum terms on the left-hand side of the Navier–Stokes equation. Thus,
if our analysis shows that momentum can be ignored, so can rotation.

Consider a 2-dimensional domain in a vertical plane. Choose a Cartesian coor-
dinate system in the plane, with horizontal coordinate x and vertical coordinate y,
with y increasing downward. The surface of the Earth is represented by a function
y = w(x). Let u and v denote the x and y components, respectively, of the velocity
vector U .

The components of Eq. (2.2.4) in the x and y direction are

−∂p

∂x
+ η

(
∂2u

∂x2 +
∂2u

∂y2

)
= 0, (2.2.6)

−∂p

∂y
+ η

(
∂2v

∂x2 +
∂2v

∂y2

)
= 0. (2.2.7)

This set of equations can be solved using the stream-function formulation [2];
a step-by-step solution can be found, for example, in [14]. In 2-dimensions, the
stream function, ψ(x, y, t), is a scalar whose partial derivatives are related to the
components of the velocity,

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (2.2.8)

Note that, by construction, U = (u, v) satisfies the equation of mass conserva-
tion (2.2.2).

Because the initial displacement of the surface varies in x with a functional form
cos(2πx/λ), the stream function will vary with a functional form sin(2πx/λ). By
taking the derivative of Eq. (2.2.6) with respect to y and the derivative of Eq. (2.2.7)
with respect to x and subtracting the two resulting equations, we eliminates the
pressure. Then, upon substitution of the expressions (2.2.8) we obtain a single
biharmonic equation for the scalar ψ . Separating ψ into a function that varies only
in x (i.e., sin(2πx/λ)) and a function that varies only in Y (y), we find that the
stream function must have the form

ψ = sin

(
2πx

λ

)[
(A+ By)e−2πy/λ + (C +Dy)e2πy/λ

]
, (2.2.9)

where A, B, C, and D are constants, to be determined by the boundary conditions.
The constants C and D must be zero because the components of the velocity
field must remain finite as the depth of the half-space (y) goes to infinity.
Differentiating ψ , the components of velocity are

u = sin

(
2πx

λ

)[
2π

λ
(A+ By)− B

]
e−2πy/λ, (2.2.10)
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v = cos

(
2πx

λ

)
2π

λ
(A+ By) e−2πy/λ. (2.2.11)

The shear tractions exerted on the solid Earth by the atmosphere are negligible,
so the horizontal velocity of the flow in the solid Earth is zero at the deformed
surface—that is, at y = w(x). Since the displacements of the solid Earth (at most
hundreds of meters) are small compared to the size of a typical ice sheet (a thousand
kilometers or more), we may assume that w � λ and apply the boundary conditions
at the equilibrium surface—that is, at y = 0—instead. Johnson and Fletcher [14]
show how to apply the boundary conditions to the deformed surface when w is
not small; their solution reduces to the one presented here in the case of small
deformations. Setting u = 0 at y = 0 yields B = 2πA/λ.

To find A, the hydrostatic pressure resulting from the topography (−ρgw, where
g is the acceleration due to gravity) is set equal to the normal stress generated by
the flow at the surface (p − 2μ∂v

∂y
), where ρ is the density of the mantle,

− ρgw = p − 2μ
∂v

∂y
. (2.2.12)

The pressure at y = 0 can be found by substituting Eqs. (2.2.10) and (2.2.11) into
Eq. (2.2.6) and integrating,

p|y=0 = 2μA

(
2π

λ

)2

cos

(
2πx

λ

)
. (2.2.13)

Because ∂v
∂y
|y=0 = 0, Eq. (2.2.12) reduces to

w = −2μA

ρg

(
2π

λ

)2

cos

(
2πx

λ

)
. (2.2.14)

The key step is to substitute Eq. (2.2.11) (with B = 2πA/λ) into Eq. (2.2.14) and
recognize that the vertical velocity at the surface is the derivative of the displacement
with time, v = dw/dt (at y = w). Once again, because the displacements are small
compared with the size of a typical ice sheet, we apply this condition at y = 0,

v|y=0 = dw

dt

∣∣∣∣
y=0

= A
2π

λ
cos

(
2πx

λ

)
= −w

λgρ

4πμ
. (2.2.15)

Upon integration, we obtain the expression for w,

w(t) = wm0 exp

(
− λgρ

4πμ
t

)
. (2.2.16)
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Hence, the surface of the Earth decays to an equilibrium position as the “fluid”
mantle flows from regions of elevated topography to regions of low topography. The
grouping of constants 4πμ

λgρ
has units of time and is the characteristic time scale of

the Glacial Isostatic Adjustment (GIA)—that is, the time it takes the topography to
decay by 1/e. Using reasonable values for the density of the solid Earth, ρ = 3300
kg m−3, the acceleration due to gravity, g = 10 m s−2, and the spatial scale of the ice
sheet, λ = 1000 km, matching the time scale of GIA from the tide-gauge and beach
data requires the viscosity of the mantle to be on the order of η ∼ 1021 Pa s. This
is sometimes referred to as the Haskell value of mantle viscosity and is an average
or effective value, as it assumes that the Earth is a homogeneous fluid. Using the
same values of ρand λ, taking u = 0.01 m yr−1 and the Haskell value of viscosity,
η = 1021 Pa s, we obtain a Reynolds number on the order of 10−21, which justifies
the initial assumption that the inertial terms in the Navier–Stokes equation can be
ignored.

While the Haskell problem is simplified, the characteristic time of GIA, 4πμ
λgρ

, is
approximately 12,000 years. The last glacial maximum (i.e., the time when the ice
sheets were at their largest spatial extent) occurred approximately 26,500 years ago
and the North American and European ice sheets began to retreat about 20,000 years
ago. The characteristic time predicts that vertical rebound of the Earth’s surface
should still be continuing—a prediction that has been validated with high-precision
GPS observations [13, 21, 22, 27, 30, 39, 42]. Other independent geophysical
constraints on mantle viscosity are broadly consistent with the Haskell result [16].
Until recently, observations of vertical uplift were measured almost exclusively
along coast lines via sea- and lake-level changes, requiring climatic, hydrographic,
and tectonic corrections, and horizontal motions could not be accurately observed
at all. This state of affairs changed with the development of high-precision GPS.

2.3 Gravitational Potential: The Spatial Variability of Sea
Level

One might assume that estimating the change in sea level is as simple as estimating
the mass of ice sheets at their maximum extent, converting this mass to an equivalent
volume of water, and adding that volume of water to the ocean. This approach
predicts that sea level should have risen by an equal amount everywhere, which is
inconsistent with the observations [22, 35], as shown, for example, in the time-series
of Fig. 2.2. Two effects are missing: First, there is a gravitational attraction between
the ocean and ice sheets, and second, both the ocean and the ice sheets deform the
Earth’s surface. Sea level is the intersection of these two dynamic surfaces (the sea
surface and the solid Earth surface), both of which are changing with time.

To illustrate the role of gravitational attraction on sea level, consider the
simplified problem of a rigid sphere that is initially covered by a thin ocean of
uniform depth. This problem is discussed in Farrell and Clark [9], and the text below
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follows their derivation. We will simplify the problem further by assuming that the
ocean has zero density, yet is at the same time in gravitational equilibrium (which
assumes that the ocean has a nonzero density). While these assumptions are clearly
inconsistent, they allow for an analytic solution of the problem.

For a spherically symmetric Earth, where r is the distance between the observer
and the Earth’s center of mass, the gravitational potential is

V (r) = GME

r
, (2.3.1)

where G is Newton’s gravitational constant and ME is the total mass of the Earth
(which includes the solid Earth and the ocean). Equation (2.3.1) is valid for r ≥ a,
where a is the radius of the Earth. A direct result of the spherical symmetry of
the problem is that the sea level of this uniform-depth ocean will be equal to a

everywhere, because the gravitational potential at the surface, V (a), is a constant.
Now suppose that an ice sheet of mass MI is extracted from the surface at r = a and
placed at a single point on the Earth’s surface. Let θ measure the angular distance
between the point mass (ice sheet) and an observer. Then the new gravitational
potential field is

V I (r, θ) = G(ME −MI)

r
+ GMI√

r2 + a2 − 2ar cos θ
. (2.3.2)

The superscript I denotes the combined potential of the Earth plus ice sheet.
Note that ME − MI , and therefore the first term in Eq. (2.3.2), is still spherically
symmetric; however, V I (a, θ) is a function of θ and therefore r = a is no longer
the sea level because V I (a, θ) is not constant. Defining a new surface at r = a + ε,
where V I (a + ε, θ) = V I (a) and assuming that MI � ME , it follows that ε � a

and a first-order Taylor expansion can be used to approximate V I (a + ε, θ),

V I (a + ε, θ) = V I (a, θ)+ ε
∂V I (a, θ)

∂r
. (2.3.3)

It is sufficiently accurate to use the approximation ∂V R(a,θ)
∂r

= −g, where g is
the acceleration due to gravity at the Earth’s surface. Rearranging Eq. (2.3.3) and
substituting g = GM

a2 , we obtain

ε(θ) = MIa

ME

(
1

2 sin(θ/2)
− 1

)
. (2.3.4)

At this point, the analysis has yet to account for the volume of water that has been
lost from the ocean; therefore, V I (a + ε(θ), θ) is constant but is not the sea level.
To account for the reduced ocean volume, recall that if a + ε(θ) is an equipotential
surface, then for any constant c � a, a+ε(θ)+c = a+ε2(θ) is also an equipotential
surface. The trick is to choose a value of c so as to conserve the total mass of the
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system. Farrell and Clark suggest that the result thus obtained is an accurate estimate
of sea level.

To calculate c, note that the volume between the surfaces a and a + ε integrated
over the sphere is zero, so in order to conserve mass, it must be the case that

∫ π

0
2πρwca2 sin θ dθ +MI = 0, (2.3.5)

where ρw is the density of sea water. Solving Eq. (2.3.5) for c and using ME =
(4/3)πa3ρE , where ρE is the mean density of the Earth, we obtain

ε2(θ) = MIa

ME

(
1

2 sin(θ/2)
− 1− ρE

3ρw

)
. (2.3.6)

The first two terms on the right-hand side represent the distortion of sea level due
to the gravitational attraction of the ice; the third term is the uniform fall in sea
level due to the removal of a volume of water equivalent to the ice mass MI from
the oceans. Figure 2.3 shows the change in sea level (normalized by the predicted
uniform sea-level drop) due to the removal of an amount of water equivalent to MI

as a function of the angular distance from the ice mass.
At a point 60◦ from the ice mass, the predicted sea-level drop is the same

as predicted from the uniform sea-level decrease. Beyond 60◦, the sea-level drop
is greater than the uniform prediction, while within 20◦ of the ice load the sea
level actually rises due to the gravitational attraction indexgravitational attractionof
the ice acting on the ocean. This result provides a qualitative explanation for the
historical sea-level trends observed at Amsterdam and Stockholm shown in Fig. 2.2:
Stockholm is closer to the center of the Fennoscandian ice sheet than Amsterdam.
However, a word of caution is appropriate here, because the assumptions made in
this section may limit the applicability of the results. Nonetheless, it is instructive as
an illustration of the role of the gravitational attraction of the ice sheet on sea level.

The problem described here considers the shoreline to be spatially fixed with time
as the sea level rises and falls during a glacial cycle. Or to help the reader visualize,
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Fig. 2.3 The normalized change in sea level as a function of distance from the ice mass for a rigid
Earth, including the effect of the gravitational attraction of the ice sheet
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it is equivalent to assuming that the edges of the ocean basins are characterized
by steep cliffs that prevent the water from moving either landward or oceanward.
More accurate and complex shoreline calculations are described and compared in
Mitrovica and Milne [24].

2.3.1 Extending the Solution to an Irregular Ice Distribution

To extend the point-mass problem to any arbitrary volume of ice, Eq. (2.3.6) is
convolved with a function that represents the variation in ice thickness, I (θ ′, φ′).
The change in sea level, S(θ, φ), due to a change in ice mass is given by the integral

S(θ, φ) =
∫∫

ice

[
a

ME

(
1

2 sin(α/2)
− 1− ρE

3ρw

)]
ρI I (θ

′, φ′) a sin(θ ′) dθ ′ dφ′,

(2.3.7)

where α is the arc length between a point (θ, φ) on the ocean and the location (θ ′, φ′)
of the ice. The term in brackets, which is identical to (2.3.6) with unit ice mass (MI ),
is the Green’s function for this problem.

To account for the gravitational attraction of the mass of the ocean on sea level,
one can similarly convolve the Green’s function with sea level. An iterative solution
strategy for this problem is discussed in Farrell and Clark [9].

2.4 Deformation of the Solid Earth: The Elastic Earth

While the analysis in Sect. 2.3 is instructive and provides a possible qualitative
explanation for the trends observed in the sea-level curves shown in Fig. 2.2, the
results of Sect. 2.3 are inconsistent with the Haskell problem in Sect. 2.2 because
the Earth was assumed to be rigid. In this section we will outline how the sea-level
equation, Eq. (2.3.7), can be extended to include the deformation of the solid Earth.
First, it is necessary to briefly review the possible ways in which the solid Earth
might deform.

When placed under a load, the surface of the Earth exhibits both elastic
and viscous behavior. A material is said to behave elastically when it deforms
instantaneously in response to an applied force and returns to its original state
immediately after the force is removed. A spring is often used as the classic
example of elastic behavior. On the other hand, a viscous material undergoes
transient, permanent deformation when a force is applied. Honey is often used as
the classic example of a viscous fluid. A material that behaves both elastically and
viscously is called a viscoelastic material. A viscoelastic material will experience
both instantaneous and transient deformation upon the application of a force. When
the original force is removed, the transient deformation is reversed; however, unlike
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the elastic material, the viscoelastic material does not return to it’s initial state and
some permanent deformation is retained. The child’s toy Silly-Putty is often used as
an example of a viscoelastic material. When Silly-Putty is dropped, it bounces like a
rubber ball, exhibiting elastic behavior in response to the short-timescale force of the
Silly-Putty and accelerating due to the force of gravity as it falls, until it is stopped
by the immovable floor. If a similar force is applied over a longer time period, the
Silly-Putty yields and stretches into a long thin strand, much like taffy.

The Earth also exhibits this dual deformation behavior depending on the time
scale of the forcing function. Over the time period of several million years, Earth’s
surface deforms viscously when subjected to an applied load such as the mass
of a volcano or the volume of water in the ocean basin [8]. This is the mode of
deformation that Haskell assumed to be appropriate in the problem described in
Sect. 2.2. On a time scale of seconds to hours, the Earth behaves elastically in
response to seismic waves. Since the time scale of the growth and decay of ice sheets
is on the order of 100,000 years, elastic deformation cannot be ignored [22, 46]. The
derivation of the elastic response of an incompressible spherically symmetric Earth
is given in [1, 5, 9]. Here, we focus on how the sea-level equation (2.3.7) can be
modified to account for the deformation of the Earth.

The solution of the elastic deformation problem requires solving the linear
momentum equation (similar to the Navier–Stokes equation for viscous flow) for
the displacement (instead of the velocity as in the viscous flow problem), coupled
with the solution of a Poisson equation for the gravitational potential of a spherically
symmetric body with material properties that are functions only of the radius,
subject to a disk-shaped surface boundary load. The elastic deformation of a
spherical body subject to a disc point load can be represented in terms of three
Love numbers, hl, kl, and ll , which depend only upon the radius, r , and the degree
of the spherical harmonic, l [20].

A short digression here is necessary to introduce spherical harmonics [29,
Chapter 14.30]. Spherical harmonics are often used to represent functions on a
sphere. They play the same role on a sphere as sines and cosines on a line; as such
they appear frequently in geophysical problems. With the proper normalization,
spherical harmonics can be written in terms of Legendra polynomials, Plm(cos θ),
multiplied by cosines and sines in the azimuth φ,

Ylm(θ, φ) = Plm(cos θ)(C cosmφ + S sinmφ), (2.4.1)

where l is the spherical harmonic degree and m is the spherical harmonic order. The
spherical harmonic functions form a set of basis functions on a sphere, so they can
be used to represent any function on a sphere with an infinite set of coefficients,
with many similarities between spherical harmonics and Fourier series analysis in
terms of solution techniques. For example, if the topography of a planet is given by
topo(θ, φ), then

topo(θ, φ) =
inf∑
l=0

l∑
m=−l

TlmYlm(θ, φ), (2.4.2)
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Fig. 2.4 Plots of normalized spherical harmonics for degree and orders 1 through 4

where the coefficients Tlm are independent of θ and φ. The spherical harmonic
functions, normalized so that their integral over the sphere is one, for degrees 1
through 4 are plotted in Fig. 2.4. Spherical harmonics of order zero (m = 0) are only
functions of latitude; they are often called zonal harmonics. Spherical harmonics
with equal degree and order (l = m) are only functions of longitude; they are often
called sectoral harmonics, because their pattern resembles the sections of an orange.
The other harmonics are simply called mixed harmonics.

Two practical rules of thumb, which are useful when thinking about spherical
harmonics: Plm(cos θ) has (l−m) zero crossings between the North and South pole,
while cos(mφ) has 2m zero crossings between 0 ≤ φ ≤ 2π . Thus, when thinking
about scaling properties represented in spherical harmonics on the surface of the
Earth (6371 km), 2π ·6371

l−m
≈ 40,000

l−m
km, and for longitude, 2π ·6371

m
≈ 40,000

m
km.

Returning to the elastic response of a spherical body subject to a disc point load,
we note that each set of boundary conditions defines a distinct Green’s function
and, thus, a different triplet of Love numbers. While the determination of the Love
numbers is beyond the scope of this chapter (see [1, 5, 9, 20] for details), the Love
numbers have a straight forward interpretation. If Vl is a single term in the spherical
harmonic expansion of the gravitational potential V with a perturbation of degree l,



2 The Not-So-Solid Solid Earth 49

then klVl is the gravitational potential due to the elastic deformation within the
Earth. In the spherically symmetric elastic deformation problem, the solution is
comprised of only the zonal spherical harmonics (m = 0). Thus, the perturbation in
the gravitational potential of degree l on the surface is the sum of the perturbation
due to the applied mass, Vl , and the perturbation due to the new arrangement of
matter within the Earth, klVl . The quantity hlVl/g is the radial displacement of
the solid surface away from the reference spherical surface, r = a. When hlVl/g

is positive, the radius of the Earth’s solid surface after the deformation is greater
than the original radius a, and when hlVl/g is negative, the radius the Earth’s solid
surface after the deformation is smaller than the original radius a. The Love number
ll , is related to tangential displacements and is not relevant to the vertical load
problem.

To apply the Love numbers to the sea-level equation, starting with Eq. (2.3.2),
the gravitational potential is expanded in terms of Legendre polynomials,

V (r, θ) = a g

ME

∞∑
l=0

(a
r

)l+1
Pl(cos θ), (2.4.3)

where the Pl is the Legendre polynomial of order l. At the surface (r = a), the
infinite series has the finite sum,

∞∑
l=0

Pl(cos θ) = 1

2 sin(θ/2)
, (2.4.4)

which implies the equivalence of Eqs. (2.3.2) and (2.4.3). While Eq. (2.4.4) is at first
not obvious, it follows from the Legendra polynomial generating function,

∞∑
l=0

xlPl(μ) = 1

(1− 2μx + x2)1/2 , (2.4.5)

with x = 1, μ = cos θ , and the trigonometric identity sin(θ/2) = √(1− cos θ)/2.
For each spherical harmonic degree l, (1 + kl)Vl is the perturbation potential

on the spherical surface r = a and hlVl/g is the displacement of the solid
boundary with respect to the reference surface, r = a. It follows that the perturbed
gravitational potential on the displaced boundary of the solid Earth is V E

l = (1+kl+
hl)Vl , because −g(hlVl/g) is the change in the gravitational potential that occurs
when moving from the reference surface (r = a) to the newly deformed boundary.
The Green’s function for the elastic problem can therefore be represented by

V E
l = ag

ME

∞∑
l=0

(1+ kl + hl) Pl(cos θ), (2.4.6)
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and the solution for the sea level proceeds following the approach described for the
rigid Earth in Sect. 2.3 [9].

2.5 Deformation of the Solid Earth: The Maxwell Rheology

While Sect. 2.4 illustrates the solution to the sea-level equation for a purely elastic
Earth, elastic deformation is not consistent with the GIA observations. When the
deforming force is removed, an elastic material instantaneously returns to the
equilibrium state; therefore, the elastic deformation model predicts that the Earth’s
surface would have returned to the equilibrium state as the ice sheets melted and
today no deformation due to GIA should be expected. Hence, some degree of
viscous behavior is required to explain the GIA observations.

While there are several possible models for viscoelastic materials, the Maxwell
rheology model is the one that is predominantly used in GIA studies. In the context
of Maxwell rheology, the sea-level equation becomes time dependent.

Figure 2.5 shows a simple representation of a Maxwell solid as a purely viscous
damper connected in series with a purely elastic spring. Under an applied axial
stress, the total stress, σTotal, and the total strain, εTotal, are defined as follows:

σTotal = σD = σS, (2.5.1)

εTotal = εD + εS. (2.5.2)

The subscript D refers to the damper (viscous deformation), the subscript S to the
spring (elastic deformation). Taking the derivative of strain with respect to time, we
obtain

dεTotal

dt
= dεD

dt
+ dεS

dt
= σ

η
+ 1

E

dσ

dt
, (2.5.3)

where E is the elastic modulus and η the viscosity.
Calculating sea-level changes on a viscoelastic Earth requires a Green’s function

for the perturbation to the gravitational potential, which depends on both the
distance from a point mass and the time that has elapsed since the mass was
applied to the Earth’s surface. The Green’s function contains all the necessary
information relating to the rheological structure of the Earth. Green’s functions for
a range of Maxwell Earth models were determined by Peltier [33], who used the
correspondence principle in conjunction with classical elastodynamics.

Fig. 2.5 The Maxwell
rheology model, a linear
spring and viscous dashpot in
series
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2.6 Discussion

While there has been significant progress in understanding the response of the solid
Earth and sea level due to changes in the distribution of ice and water over the
surface of the Earth, challenges remain. A comprehensive overview of the processes
that affect sea level can be found in a recent article by Cazenave and Nerem [6].
Other factors that could affect sea-level changes can be grouped into four broad
categories: (1) changes in the volume of the ocean basin as the result of a change
in the topography of the ocean floor; (2) changes in the shape of the gravitational
potential; (3) local subsidence or uplift of the land-sea interface; and (4) changes in
the total volume of water in the ocean basin. We briefly discuss some details of each
category.

Changes in the Volume of the Ocean Basin A change in the volume of the
ocean basin will occur when tectonic plates reorganize or when there is a change
in the velocity of an oceanic plate. This is because the ocean-floor topography,
which geoscientists call bathymetry, is controlled by the conductive cooling of the
oceanic plates [31]. A half-space that cools due to conduction has a square-root of
time functional form. Parsons and Sclater [31] show that ocean bathymetry should
increase with the square root of age of the ocean flow, where the new crust that
forms at a mid-ocean ridge defines time zero. If the ocean plate moves away from
a mid-ocean ridge faster, then the bathymetry will be shallower at a fixed distance
from the ridge. If the ocean plate moves slower, then the bathymetry will be deeper
at the same distance. Thus, if the velocity of an oceanic plate increases, the volume
of the ocean will decrease (over time) and sea level will increase (all other factors
being equal), while if the velocity of an oceanic plate decreases, the volume of the
ocean will increase and sea level will fall. This change in shape of the sea floor
changes on a time scale of millions to tens of millions of years, significantly longer
than the time scale of GIA, and does not impact current estimates of sea level.

Changes in the Shape of the Gravitational Potential A change in the shape of
the gravitational potential is controlled by the time scale of the redistribution of
mass. The distribution of ice/water on the surface of the Earth (Sect. 2.3) is already
included in the GIA analysis. On the other hand, the erosion of rock by ice sheets,
which generates material that is then incorporated into the ice and subsequently
deposited as the ice melts, is not accounted for in current GIA models. Ice sheets
transport eroded material away from the center of glaciation to the continental
shelf edge, where it is deposited in a series of fans. Nygård et al. [28] estimate
that 32,000 km3 of sediment have been deposited on the North Sea Fan off the
west coast of Norway over the last 450 Myr. This time span is significantly longer
than the glacial–interglacial cycle, so the accumulation of sediment from a single
glacial–interglacial cycle is probably significantly less. Even so, the total mass of
sediment is small compared to the estimate of 5 × 106 km3 of ice that was loaded
onto (and then removed from) the Fennoscandian platform in a period of roughly
100,000 years [18]. The effects of other changes such as anthropogenic groundwater
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pumping or climate-related processes have been shown to be small compared with
the GIA signal [19, 36].

Local Subsidence or Uplift of the Land-Sea Interface Local subsidence and
uplift of the land surface that are not due to GIA are monitored by carefully tying the
tide-gauge measurements into a global geodetic reference frame. In this regard, the
development of high-precision GPS measurements has significantly reduced one of
the major sources of uncertainty in the GIA observations. In addition, because GPS
can measure uplift and horizontal motions over land, this has significantly expanded
the range of GIA observations [13, 21, 22, 27, 30, 39, 42].

Changes in the Total Volume of Water in the Ocean Basin One of the effects
of anthropogenic climate change is that the large ice sheets over Greenland and
Antarctic are melting at increasingly faster rates. The resulting changes in sea level
have been shown to possess a unique pattern indicating where the most active
melting is currently taking place [25, 41]. This melting will change the volume of
water in the ocean basin and will change the shape of the gravitational potential
because of the redistribution of the ice/water, following the same logic as described
in Sect. 2.3. In principle, this can be modeled with the same analysis used to study
the longer-time scale processes associated with the melting of glacial–interglacial
ice sheets. The challenge is unraveling the ongoing effect of GIA from the last
glacial cycle with the present-day changes in ice/water due to current melting of
the Greenland and Antarctic ice sheets.

Two significant areas of uncertainty in the analysis of GIA observations are the
distribution of ice at the last glacial maximum [34] and the rheology of the man-
tle [16]. Mantle rheology impacts not only the response of the surface to imposed
surface loads such as ice and water, but also controls the motion of the tectonic
plates [10] and regulates the heat flow from within the Earth by controlling the
vigor of convection within the solid Earth [37]. While the viscosity of minerals that
make up the mantle is strongly dependent on temperature and pressure and could
vary with grain size and strain rate, depending on the deformation mechanism [16],
many GIA studies focus on depth-dependent viscosity profiles. While viscosity
models other than depth-dependent models have been considered [32, 40, 44, 46],
the primary control on vertical surface motion is from depth-dependent rheology,
which is by far the rheology that has been given the most attention. Lateral variations
in rheology are likely to be most prevalent at the boundary between continents and
oceans [15, 17], which is where the sea-level observations are made.

The ongoing deformation of the solid Earth and the associated change in sea
level in response to the glacial cycle are challenging interdisciplinary problems
with a strong historical connection to the mathematical community. Advancing our
understanding would benefit from new data assimilation and modeling strategies,
improvements in viscoelastic modeling, a better understanding of mantle rheology,
and a more complete understanding of present-day changes in ice load.
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Chapter 3
Mathematical Challenges in Measuring
Variability Patterns for Precipitation
Analysis

Maria Emelianenko and Viviana Maggioni

Abstract This chapter addresses some of the mathematical challenges associated
with current experimental and computational methods to analyze spatiotemporal
precipitation patterns. After a brief overview of the various methods to measure
precipitation from in situ observations, satellite platforms, and via model sim-
ulations, the chapter focuses on the statistical assumptions underlying the most
common spatiotemporal and pattern-recognition techniques: stationarity, isotropy,
and ergodicity. As the variability of Earth’s climate increases and the volume of
observational data keeps growing, these assumptions may no longer be satisfied,
and new mathematical methodologies may be required. The chapter discusses
spatiotemporal decorrelation measures, a nonstationary intensity-duration-function,
and 2-dimension reduction methodologies to address these challenges.

Keywords Centroidal Voronoi tessellation · Data reduction · Decorrelation ·
Empirical orthogonality functions · Ergodicity · Isotropy · Precipitation
patterns · Stationarity · Statistical assumptions

3.1 Introduction

Precipitation occurs when a portion of the atmosphere becomes saturated with water
vapor, so that the water condenses and precipitates by gravity. Precipitation is a
critical component of the water and energy cycles, providing moisture for processes
such as runoff, biogeochemical cycling, evapotranspiration, groundwater recharge,
carbon exchange, and heat fluxes. The main forms of precipitation include rain,
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sleet, snow, and hail, but this chapter discusses liquid precipitation only, and the
term “precipitation” is used here as a synonym for “rain.”

Precipitation is highly variable, both in space and time. This variability affects
the dynamics of many hydrological processes at and near ground level. Information
on precipitation characteristics and precipitation patterns is therefore critical for
understanding these complex hydrological processes, as well as for monitor-
ing and predicting extreme events such as floods and droughts [63]. Access to
high-resolution high-quality rainfall data and information about spatiotemporal
precipitation patterns can benefit applications at all levels; examples are hazard
mitigation, agricultural planning, and water resources management at the regional
level [33, 37, 46]; controlling stormwater runoff, managing reservoirs and detention
ponds, cleaning streams and channels, and closing roads or parking lots during
extreme precipitation events at the local level.

However, estimating precipitation is challenging because it involves many
factors, including the natural temporal and spatial variability of precipitation,
measurement errors, and sampling uncertainties, especially at fine temporal and
spatial scales. The spatiotemporal variability of precipitation patterns is changing
heterogeneously due to climate change, and those changes have an impact on
the tools used to make decisions and optimize water management. This chapter
focuses on some of the mathematical and statistical issues related to variability of
precipitation patterns.

Outline of the Chapter In Sect. 3.2, we briefly discuss various methods to measure
precipitation, whether in situ, remotely, or by using model simulations. In Sect. 3.3,
we review the strengths and limitations of current methods to analyze spatiotem-
poral precipitation patterns. We discuss decorrelation measures in Sect. 3.4 and
dimension reduction strategies in Sect. 3.5. In Sect. 3.6, we present some concluding
remarks.

3.2 Estimating Precipitation

Precipitation can be estimated through three main approaches: (1) in situ mea-
surements, (2) remote sensing (including weather radars and satellite sensors), and
(3) model simulations [52].

3.2.1 In Situ Measurements

The only direct method to measure precipitation is through rain gauges (also known
as pluviometers) which collect and measure the amount of rain over a period of
time. There are several types of rain gauges; the most common one is the tipping
bucket. Precipitation is collected in a funnel and channeled into a small container.
After a set amount of precipitation is collected, the device tips, dumping the water,
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Fig. 3.1 Number of stations used by the global precipitation climatology center (GPCC) for May
2012. Figure produced with “GPCC Visualizer” [61], courtesy of National Center for Atmospheric
Research Staff (Eds), last modified 29 Jun 2018. Retrieved from https://climatedataguide.ucar.edu/
climate-data/gpcc-global-precipitation-climatology-centre

and sending a signal that is automatically recorded by a data logger. Rain gauges
may underestimate rainfall because of wind effects and evaporation.

Rain-gauge networks can provide measurements with high temporal resolu-
tion, but obtaining a spatially representative measurement requires a sufficiently
large number of samples to account for variability of terrain, microclimate, and
vegetation. Moreover, in situ measurements are localized and limited in spatial
and temporal coverage [43]. One of the main applications of ground-monitoring
networks is for assessing flood risk through early warning systems [3]. However,
their usefulness is limited by the spatial representativeness of local measurements
and the network density, especially over important climatic regions like the tropical
rain forests and mountainous areas (Fig. 3.1).

A ground-based alternative to monitor precipitation is weather radar which
provides spatially distributed information on rainfall (Fig. 3.2). Weather radars
send directional pulses of microwave radiation connected to a parabolic antenna.
Wavelengths are of the order of a few centimeters, which is about ten times
larger than the average diameter of water droplets and ice particles. These particles
bounce part of the energy in each pulse back to the radar (reflectivity). As they
move farther from the source, the pulses spread out, crossing a larger volume

https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
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Fig. 3.2 Average precipitation maps for Summer 2015 from a satellite precipitation product that
combines infrared and microwave observations (left) and ground-based weather radars (right)
across the continental USA

of air, and therefore their resolution decreases with distance. Doppler radars are
common and observe not only rainfall rates, but also the motion of rain droplets.
However, weather radar estimates are affected by uncertainties associated with rain-
path attenuation, the lack of uniqueness in the reflectivity-to-rain-rate relationship,
radar calibration and contamination by ground return problems, sub-resolution
precipitation variability, and complex terrain effects [10, 46, 51]. Moreover, ground-
based monitoring systems, like rain gauges and weather radars, require substantial
financial and technological investments to support their operation and maintenance
on a continuous basis over a long period.

3.2.2 Remote Sensing

A way to overcome these issues is the use of satellite precipitation products,
which are nowadays available on a global scale at increasing spatial and temporal
resolution. Precipitation estimates can be derived from a range of observations from
many different on-board satellite sensors. Specifically, rainfall can be inferred from
visible imagery, since thick clouds, which are more likely to be associated with
rainfall, tend to be brighter than the surface of the Earth. Infrared (IR) images are
more suitable because they are available night and day, and heavier convective
rainfall tends to be associated with larger taller clouds with colder cloud tops.
Another method uses passive microwave (PMW) sensors, since emissions from
rain droplets lead to an increase in PMW radiation. And scattering caused by
precipitating ice particles leads to a decrease in PMW radiation.

Several techniques have been developed to exploit the synergy between IR
radiances and PMW observations (Fig. 3.2). Examples include the TRMM multi-
satellite precipitation analysis (TMPA) [41], the climate prediction center morph-
ing (CMORPH) technique [42], and, most recently, the integrated multi-satellite
retrievals for GPM (global precipitation measurement) (IMERG) [40], which
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merges precipitation estimates from PMW and IR sensors and monthly surface
rain-gauge data to provide half-hourly precipitation estimates on a 0.1◦ grid over
the 60◦N-S domain. In other cases, artificial neural networks (ANNs) are used to
derive precipitation estimates by combining information from multichannel and
multisensor observations, like the precipitation estimation from remotely sensed
information using ANNs (PERSIANN) [39]. The availability of these products
has opened new venues to support water management and hydrologic applications
globally. Especially in poorly gauged regions, satellite precipitation products may
be the only input data to allow flow predictions downstream with enough lead time
to implement management and response actions [64].

Satellite observations can be affected by detection errors, as well as systematic
and random errors. Detection errors include missed events (when satellite observes
no rain, but there is rain at the ground) and false alarms (when the satellite sees
rain, but it does not rain). In the case of successful detection, the estimated rain
rate may still be affected by systematic and/or random errors, which depend on
the accuracy of the remote sensor (retrieval error) and the lack of continuity in the
coverage by low earth-orbiting satellites (sampling error, [7]). Typical sources of
retrieval error are due to sub-pixel inhomogeneity in the rainfall field [48], whereas
sampling errors are related to the satellite orbit, swath width, and space-time
characteristics of rainfall [14]. The performance of satellite precipitation products
is also influenced by factors such as seasonal precipitation patterns, storm type, and
background surface [31, 33, 57, 66]. Detection, systematic, and random errors all
play a pivotal role in hydrological applications (e.g., flood forecasting) and water
resource management.

High-mountain regions are among the most challenging environments for precip-
itation measurements (whether from the ground or from satellites) due to extreme
topography and large weather and climate variability. These regions are typically
characterized by a lack of in situ data, but are also prone to flash floods whose
consequences can be devastating.

3.2.3 Model Simulation

Numerical weather prediction (NWP) models provide a third option for estimating
precipitation at global and regional scales. NWP models estimate the state of
the atmosphere (including air density, pressure, temperature, and velocity) at a
given time and location using fluid dynamics and thermodynamics equations.
These models are rather accurate for large-scale organized systems. However, their
performance deteriorates in the case of more localized events that are not governed
by large-scale flows and whose spatial and temporal variability cannot be explicitly
captured by the model resolution. NWP model forecasts can be improved by more
accurate parameterizations and by constraining model analyses with moisture-,
cloud-, and precipitation-related observations through data assimilation systems,
such as 4D-Var and ensemble Kalman filter methods [6, 50].
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3.3 Assessment of Spatial and Temporal Patterns

Changes in spatiotemporal precipitation patterns have a direct impact on the
spatial and temporal distribution of water resources and the occurrence of natural
hazards [69]. The hydrological community has adopted a set of geostatistical tools
for measuring spatiotemporal correlations in rainfall [5, 65]. As mentioned in
multiple sources [65], some of the notions come with tacit assumptions that often
lead to their misuse in practice. While the complete list is beyond the scope of this
chapter, we will review some of the key elements of such analyses and point out
some of their strengths and limitations.

3.3.1 Definitions

Assume that rainfall corresponds to a stochastic process η(u, t), where u ≡ (x, y)

is a vector representing the spatial coordinates in a given area, t stands for time,
and η(·) is a measure of the intensity of the rainfall. In a practical setting, one
typically considers an observation map in the form of a snapshot matrix A =
Ai,j ∈ R

N×n, where Ai,j = η(ui , tj ) is the rainfall observed at location i at
time tj (i = 1, . . . , N; j = 1, . . . , n). Typically, for hydrological applications,
N � n. Different statistical characterizations of the process are used, depending on
the purpose of the study.

Spatial Variability If the focus is on spatial correlations, time series may be
integrated over time at each location. Following [5], we define the depth, Z, of the
rainfall over a time interval of length T at the location u, by the integral

Z(u) =
∫ t+T

t

η(u, τ ) dτ, (3.3.1)

and its intensity, X, by the integral

X(u) = 1

T

∫ t+T

t

η(u, τ ) dτ. (3.3.2)

The mean, m, of the rainfall at u is

m(u) = E[Z(u)], (3.3.3)

where E[·] denotes the expected value over all realizations of the process—that is,
over all different measurements at a certain location. After subtracting the mean, we
obtain the detrended or centered process, Y ,

Y (u) = Z(u)−m(u). (3.3.4)
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The covariance function is defined in terms of the detrended process.

Cov(u1,u2) = E[Y (u1)Y (u2)] = E[Z(u1)Z(u2)] −m(u1)m(u2). (3.3.5)

Similarly, the covariance matrix is Σ = E[YT Y ] = E[ZT Z] − mT m, where
the (i, j)th entry represents the covariance between the depth of rainfall at the ith
and j th spatial location. The correlation function is a normalized version of the
covariance function,

R(u1,u2) = Cov(u1,u2)

σ (u1)σ (u2)
, (3.3.6)

where σ is the standard deviation,

σ(ui ) =
{
E[Z(ui )−m(ui )]2

}1/2 = E[Y 2(ui )]1/2. (3.3.7)

A concept that is commonly used in hydrology is that of a semivariogram function,

Γ (u1,u2) = 1

2
E{[Y (u1)− Y (u2)]2}. (3.3.8)

The covariance and semivariogram functions are symmetric,

Cov(u1,u2) = Cov(u2,u1), Γ (u1,u2) = Γ (u2,u1).

Note that the covariance is a measure of the association between the two vari-
ables Z(u1) and Z(u2), while the semivariogram function is a measure of their
dissociation.

The above definitions of the various statistical quantities work for any time
interval [t, t + T ]. For instance, one may decide to study daily, monthly, or yearly
averages, as appropriate. The longer the period over which the data are integrated,
the more one may expect temporal variations to be suppressed.

Temporal Variability If temporal variability is of interest, it is important to keep as
much of the original temporal information as possible when computing variograms
and correlations. So, while integrated data are attractive from the processing point
of view, in climate research one always defines statistical characteristics using the
original map η(u, t). Thus, the mean is defined as a time average,

m(u) = 〈η(u, t)〉, (3.3.9)

and the centered data (also called anomalies) are given by

Y = Y (u, t) = η(u, t)−m(u). (3.3.10)
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The correlation function, standard deviation, and semivariogram are defined in terms
of anomalies as in (3.3.6)–(3.3.8).

The statistical quantities defined above all have discrete analogs. For example,
mi = 1

n

∑n
j=1 Ai,j is the time average of a certain realization of the rainfall field

at location i; the anomalies yi,j = ai,j − mi are the entries of the anomaly matrix
Y = yi,j , and the corresponding covariance matrix is Σ = YT Y ∈ R

n×n. The
eigenvectors of this covariance matrix Σ are the empirical orthogonal functions,
which we will discuss in Sect. 3.5. Note that, while the size of the matrix Σ is
normally much smaller than that of the original detrended matrix Y , the condition
of the covariance matrix is given by cond(Σ) = cond(Y )2, so it is not surprising
that ill-conditioning in the original data presents an issue for many geospatial
applications [1].

The correlation function, standard deviation, and semivariogram function are
collectively referred to as variograms of the process; they represent the structure
of the spatial dependence of the process and variability in the reference area A.

3.3.2 Statistical Assumptions in Hydrological Analyses

The effective use of the statistical quantities defined in Sect. 3.3.1 depends critically
on a number of regularity assumptions for the underlying stochastic process. In
hydrological analyses, the rainfall process is commonly assumed to be second-order
stationary, isotropic, and ergodic. We briefly recall the relevant definitions.

Stationarity The field Z(u) is first-order stationary if

E[Z(u)] = m = constant, ∀u ∈ A, (3.3.11)

and second-order stationary or weakly stationary if it is first-order stationary and,
in addition,

Var[Z(u)] = σ 2 = constant, ∀u ∈ A, (3.3.12)

Cov(u1,u2) = Cov(u1 − u2), ∀u2,u2 ∈ A. (3.3.13)

For a second-order stationary process, Γ (u1,u2) = Γ (u1 − u2) = Γ (h), where
h = u1 − u2, and Cov(u1,u2) = Cov(h) = E[Z(u + h)Z(u)] − m2 for all u2,

u2 ∈ A. Furthermore,

Γ (h) = 1
2E[Z(u− h)− Z(u)]2

= 1
2E[Z(u+ h)2] − E[Z(u)Z(u+ h)] + 1

2E[Z(u)]2
= Cov(0)− Cov(h).
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Isotropy The field Z(u) is isotropic if spatial variability, measured by the covari-
ance or semivariogram function, does not depend on the direction of the vector
h = u1 − u2,

Cov(h) = Cov(|h|) = Cov(h), (3.3.14)

Γ (h) = Γ (|h|) = Γ (h), (3.3.15)

where h = |h| is the distance between two locations u1 and u2.

Ergodicity A dynamic process is said to be ergodic if time averages coincide with
sample averages,

E(η(u, t)) = 〈η(u, t)〉. (3.3.16)

In the case of an ergodic process, the estimates of the moments obtained on the basis
of the available realizations converge in probability to the theoretical moments as the
sample size increases. The process will tend to a limiting distribution regardless of
the initial state [44]. In practice, this enables one to obtain estimates even from a
single realization of the process.

3.3.3 What If the Assumptions Are Not Satisfied?

Figure 3.3 shows a realization of the precipitation process. The data (blue dots)
represent the annual maximum precipitation (in inches) recorded at Beardstown in
the State of Illinois (USA) during the period 1903–2000. Connecting the dots, we
see that the maximum moves up and down without much regularity, but a linear
regression analysis shows an overall upward trend (solid blue line). The mean
(solid purple line) is approximately 2.3 in. over the first 55 years (1903–1958) and
approximately 2.8 in. over the next 42 years (1958–2000), an increase of more
than 20%. The variance (dotted red lines) also increases over time, albeit more
slowly. The example shows that the rainfall process is clearly not stationary, so at
least one of the hypotheses discussed in Sect. 3.3.2 is violated. Then the question is,
what to do?

Nonstationarity The paper by Milly et al. [53] entitled Stationarity Is Dead:
Whither Water Management?, which appeared in Science in 2008, served as a wake-
up call for scientists in the field of hydrology and water resources engineering.
Water management systems have been designed and operated for decades under the
assumption of stationarity. However, this assumption has long been compromised
by human disturbances in river basins such as dams, diversions, irrigation, land-
use change, channel modifications, and drainage work. In addition, the timing and
characteristics of precipitation—the most critical hydrological input—are also being
modified by a changing climate, as demonstrated in Fig. 3.3. The hydrological
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Fig. 3.3 Example of nonstationary changes in both the precipitation mean and variance [9]

literature on the analysis of long-term precipitation and runoff data is very thin [35].
Hodgkins and Dudley [36] show that most North American streams are experiencing
earlier spring runoff, and DeGaetano et al. [24] show that nearly two-thirds of the
trends in the 2-, 5-, and 10-years return-period rainfall amounts are positive. At
the same time, the expected recurrence intervals have decreased by about 20%; for
example, the 50 year storm based on 1950–1979 data is expected to occur once
every 40 years based on 1950–2007 data.

Nonstationarity introduces multiple challenges for hydrological analysis, as
recognized by several authors [35, 36, 49, 53]. Bonnin et al. [9] show trends in
the intensity-duration-frequency (IDF) rainfall curves for the Ohio river basin. A
particularly active area of research is the development of nonstationary rainfall
IDFs, where theoretical advances in extreme value theory (EVT) turn out to be
especially useful (see [16] and references therein). In particular, Cheng et al. [16]
describes a new framework for estimating stationary and nonstationary return
levels, return periods, and extreme points, which relies on Bayesian inference; the
framework is implemented in NEVA software [15]. Ref. [16] offers a case study
based on a global temperature dataset, comparing predictions based on stationary
and nonstationary extreme value analysis. The study combines local processes
(urbanization, local temperature change) and global processes (ENSO cycle, IOD,
global temperature change) as time covariates for rainfall IDF, based on Hyderabad
data [2]. The comparison shows that the IDF curves derived from the stationary
models are underestimating the extreme events of all duration and for all return
periods.
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Nonisotropy Hydrological processes (soil moisture, streamflow, evapotranspira-
tion) are extremely sensitive to small-scale temporal and spatial rainfall variability.
Although ground-based weather radars have been particularly popular for forcing
hydrological models that simulate a basin hydrological response, several authors
have indicated that the interaction between the variability of precipitation (including
spatial and temporal variations) and the resolution of a hydrological model is
still poorly understood, especially when radar data are used in an urban environ-
ment [12, 22, 54]. If we assume a perfect hydrological model, and we force it with
perfect rainfall input, we should expect that the accuracy of a streamflow simulation
increases as the resolution of the model and the input increase. However, the finest
available radar rainfall temporal resolution does not necessarily provide the best
estimation of peak streamflow in a distributed hydrological model. This is the result
of uncertainty and errors related to both the precipitation measurement techniques,
as discussed in Sect. 3.2, and the model physics [4, 58].

The spatial resolution of precipitation data must be functionally coupled with
the temporal resolution to fully reproduce the hydrological response of an urban
catchment. For instance, Berne et al. [8] proposed the relation Δs = 3

2

√
Δt to

couple the spatial scale (Δs, in km) with the temporal scale (Δt , in minutes) for
rainfall processes in urban catchments.

More recently, Ochoa-Rodriguez et al. [55] fitted the variogram of the spatial
structure of rainfall over a peak storm period with an exponential model. They
concluded that the minimum required spatial resolution was one-half the charac-
teristic length scale rc of the storm, which they defined in terms of the variogram
range r[L], rc = (2π/3)1/2 r[L]. A unique relationship linking the temporal and
spatial resolutions of precipitation adequate for the reproduction of the hydrological
response of a catchment basin is yet to be found.

Nonergodicity Most of the literature simply assumes without evidence that pre-
cipitation and hydrological processes in general are ergodic; for example, see [27,
45, 56]. However, a recent study [67] indicates that the assumption may not be
fully justified. The author proposed an approach to assess the mean ergodicity
of hydrological processes based on the autocorrelation function of a dataset. The
approach was tested on monthly rainfall time series at three locations, two in China
and one in the State of Michigan (USA). The results showed that, at all three
locations, the ergodicity assumption was met only during a few months of the year.
Therefore, statistical metrics computed on the basis of data collected during those
months do not meet the ergodicity assumption (sample statistics) and cannot be
used as proper approximations for the population statistics. Moreover, the ergodicity
assumption was met in different months at different locations, so ergodicity cannot
be transferred to a different region and/or period. More work is clearly needed to
establish the limits of validity of the ergodicity assumption.

Scenarios where the ergodicity assumption is not met have been studied even less
frequently than scenarios where the stationarity and isotropy assumptions are not
met, partially because of the difficulty of testing it in the absence of large quantities
of high-quality data spanning a reasonable period of time.
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In statistical mechanics, one often uses nonergodic Monte Carlo simulations to
create multiple realizations for estimating statistical information on the dynamic
processes over the region in question [47]. In the geospatial sciences, this approach
is often infeasible.

An attempt has been made to formulate nonergodic versions of covariograms
for the case of preferentially sampled data. However, as argued in [23], these
measures do not offer a clear advantage over standard ergodic statistics for studying
spatial dependence or making spatial predictions. Developing appropriate data
transformations is considered a more promising direction.

In the mathematical literature, much attention is currently being paid to fractional
diffusion processes, which typically generate nonergodic behavior. Some recent
work aims to develop a metric quantifying nonergodicity [62]. This direction may
also be useful for hydrological applications.

3.4 Decorrelation Measures

Correlation functions are standard tools for measuring spatial and temporal depen-
dencies in the rainfall fields [11, 17]. Figure 3.4 shows both the temporal and spatial
correlation functions for a precipitation dataset for the State of Oklahoma (USA)
during the period March–October, 2011.

In the case of spatial correlations, one computes the correlation of the two time
series associated with any two measurement points (for example, two rain gauges
or two pixels) as a function of their distance. A common approximation is the
exponential model with the so-called nugget effect [19, 20],

ρg(d) = c0 exp
[− (d/d0)

s0
]
. (3.4.1)

Fig. 3.4 (a) Temporal and (b) spatial correlations of CMORPH precipitation data for the State of
Oklahoma (USA) at 8 km/1 h resolution during the period March–October, 2011
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Here, c0 is the nugget parameter, which corresponds to the correlation value for
near-zero distances [21]; d is the separation distance, the distance between the two
measurement points; d0 is the scale parameter, which corresponds to the spatial
decorrelation distance; and s0 is the correlogram shape parameter, which controls
the behavior of the model near the origin for small separation distances. The
quantity (1 − c0) is the instant decorrelation due to random errors in the rainfall
observations [18]. The separating distance at which the correlation is 1/e defines
the correlation length for the (assumed) exponential variogram model.

In the case of temporal dependencies, autocorrelations are plotted as a function
of the time lag. The lag-1 correlation is commonly adopted as a viable index of
rainfall decorrelation in time [38, 60].

The exponential model (3.4.1) with the corresponding “1/e rule” is only one of
several models for fitting semivariograms; linear, spherical, and Gaussian models
are possible alternatives [5]. The choice of model has to be made based on the
analysis of statistical data, and one should not adopt the decorrelation definition
provided above as the default option. In fact, one may suspect that for regions with
slowly decaying correlations (for example, flat regions with low spatial variability),
the “1/e rule” might only work after a sufficient increase in the domain size. In other
cases, the data might not support the exponential modeling assumption at all, and
corresponding adjustments of the methodology would have to be performed. These
modeling subtleties and tacit assumptions are sometimes a source of ambiguity in
the literature, which may lead to erroneous conclusions.

3.5 Dimension Reduction Techniques

One of the many challenges of modeling and understanding spatiotemporal precip-
itation patterns is the large amount of data that needs to be processed. For example,
in the relatively small-scale NASA Merra dataset, precipitation is given by monthly
averages on a 50 × 91 grid representing a map of the contiguous USA at 50 km
resolution over a period of 35 years, amounting to a total of 1,911,000 entries.
However, much more detailed information at higher spatial (on the order of 100 m
regionally and 1 km globally) and temporal (hourly) resolutions is required to assess
the storage, movement, and quality of water at and near the land surface [68].
Higher-resolution data bring higher data volumes: for the previous example, there
would be more than 3·1012 entries for a map of the contiguous US at 1 km resolution
and hourly intervals. Some form of data and dimension reduction is called for.

In a general sense, one may attempt to find a decomposition of the data (signal)
of the form

η(u, t) =
N∑

k=1

αk(t)pk(u)+ noise, (3.5.1)

where the pk are characteristic patterns used to approximate the data (also called
guess patterns or predictors), and the αk are the amplitudes or principal components
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of the corresponding patterns. The patterns pk are spatial structures that account for
temporal variations of the rainfall data η(u, t). When plotted as functions of time,
the amplitudes αk convey information on how the patterns evolve in time.

Mathematically, finding the “best” patterns and principal components for a given
dataset is a projection problem, “Find a subspace approximating a given set of data
in an optimal (for example, least-squares) sense.” To solve this problem, various
treatments have been proposed within the geophysical community by different
groups and authors [65]. Here, we attempt to place these methods in perspective
against methodologies developed independently in the mathematics community.
While some techniques exist in both literatures (sometimes under different names),
other methods have not yet penetrated the language barrier between the two
disciplines.

EOF Method The method of empirical orthogonal functions (EOF) is one of the
staple tools in geostatistics, which has received much attention in the hydrological
literature. As mentioned in Sect. 3.3.1, EOFs are the eigenvectors of the covariance
matrix YT Y . In the mathematical and statistical literature, the EOF method is
referred to as singular value decomposition (SVD) or principal component analysis
(PCA) and belongs to the class of proper orthogonal decomposition (POD) methods.
In geospatial theory, it goes by the name Karhunen–Loève analysis.

Let Y denote the N × n matrix of detrended observations (also called “snapshot
matrix” if n < N), whose columns are modified snapshots of rainfall data at a
given time. If C = 1

n
Y T Y is the normalized correlation matrix, then a POD basis is

comprised of the vectors

φi = 1√
nλi

Yχi, i = 1, . . . , n,

where χi is the normalized eigenvector (|χi | = 1) corresponding to the ith largest
eigenvalue λi of C. The POD basis vectors are the first n left singular vectors of the
snapshot matrix Y obtained by using the SVD decomposition of Y , Y = UΣV T ,
so φi = ui for i = 1, . . . , n.

Let {ψi}ni=1 be an arbitrary orthonormal basis for the span on the modified
snapshot set {xj }nj=1. Then the projection onto the d-dimensional subspace spanned
by {ψi}ni=1 is

Pψ,dxj =
d∑

i=1

(ψi, xj )φi . (3.5.2)

The POD basis is optimal in the sense that the approximation error

ε =
n∑

j=1

|xj − Pψ,dxj |2 (3.5.3)

is minimized for ψi = φi, i = 1, . . . , d.
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While EOFs present an attractive tool for studying spatiotemporal variability
patterns in precipitation data, care should be taken when interpreting the results
of such analysis, as pointed out in [26]. In short, while it is tempting to find physical
relevance for each of the EOF “modes,” the orthogonality condition built into this
methodology often renders such interpretation useless. Rotated EOF technique is
often used as a better alternative; however, a deeper analysis is normally needed to
decipher the meaning of the EOF-based patterns.

CVT-Based Techniques In the mathematical community, an alternative dimension
reduction technique based on centroidal Voronoi tessellations (CVTs) has recently
gained popularity. While the list of applications is growing quickly, the method
remains relatively under-explored in hydrological applications. The presentation
below is based on [13].

The idea of the CVT technique is to find a fixed number of representative
points (“generators”) to decompose the original high-dimensional space into a finite
number of subspaces with relatively small loss of accuracy. The main ingredient of
this method is the “density function,” usually denoted ρ(x), which can be constant
or a function of x, depending on the application. For instance, ρ can be used to
represent a variety of physical characteristics such as the local characteristic length
scale [59], signal intensity [32], or the desired grid resolution [28]. In [25], ρ is used
to represent spatial rainfall variability.

More precisely, given a snapshot matrix X = {xj }nj=1 ∈ W ⊂ R
N , the goal is

to find a set of points {zi}ki=1 ∈ R
N , such that W can be decomposed in Voronoi

regions, W = ∪k
i=1Vi , with a minimum tessellation error, E [{zi , Vi}ki=1]. A Voronoi

region Vi is defined as

Vi = {x ∈ W : |x− zi | ≤ |x− zj |, j = 1, . . . , k, j �= i}, (3.5.4)

and the tessellation error is given by

E [{zi , Vi}ki=1] =
k∑

i=1

∑
x∈Vi

ρ(x)|x− zi |2. (3.5.5)

It can be shown that the tessellation error is minimal if and only if zi = z∗i for
i = 1, . . . , k, where z∗i is the mass centroid of the Voronoi region Vi [30]. At the
minimum,

∑
x∈V (z∗)

ρ(x)|x− z∗|2 = inf
z∈RN

∑
x∈V (z)

ρ(x)|x− z|2. (3.5.6)

Figure 3.5 gives two examples of CVTs for different types of densities.
In the discussion of the EOF method, we saw that the optimal basis was

comprised of the set of vectors {φi}di=1. In the CVT method, the situation seems
similar: the optimal basis is the set of generators {zi}ki=1. However, there are many
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Fig. 3.5 Two CVT tessellations of the unit square, W = [0, 1]2; (left) ρ(x, y) = 1, (right)
ρ(x, y) = exp−20(x2+y2)

differences between the two approaches. POD minimizes the functional ε as in
(3.5.3), while CVT minimizes the error E given by (3.5.5). POD requires one to
solve an n × n eigenvalue problem, where n is the number of snapshots, which
is not very amenable to adaptive computations. While the CVT methodology is
in general cheaper than POD, there are often numerical caveats associated with
CVT computations. For an overview of CVT-related numerical techniques, we refer
the reader to [29, 34]. Several case studies based on rainfall data highlighting the
features of the CVT and POD approaches are presented in [25].

3.6 Concluding Remarks

In this chapter, we have presented an overview of experimental and computational
methodologies and reviewed some of the mathematical challenges associated
with the field of precipitation analysis. In particular, we focused our attention
on the statistical assumptions underlying some of the commonly used pattern-
recognition techniques. Because of the instability of the current climate, the validity
of these assumptions should naturally fall under scrutiny. As abundant satellite
and in situ observation data continue to pour in, one must reconsider the long-
standing notions of stationarity, homogeneity, and ergodicity and be prepared to
adopt new mathematical methodologies. In this chapter, we reviewed decorrelation
measures, nonstationary extensions of intensity-duration-functions, and two types
of dimension reduction methodologies with associated challenges. While some of
these efforts are well under way, others are still in their infancy, and rigorous
mathematical analysis is needed to address these challenges.
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Chapter 4
Mathematics of Malaria and Climate
Change

Steffen E. Eikenberry and Abba B. Gumel

Abstract This chapter is concerned with malaria and the impact of climate change
on the spread of malarial diseases on the African continent. The focus is on
mathematical models describing the dynamics of malaria under various climate
scenarios. The models fit into the Ross–Macdonald framework, with extensions
to incorporate a fuller description of the Anopheles mosquito life cycle and the
basic physics of aquatic anopheline microhabitats. Macdonald’s basic reproduction
number, R0, is used as the primary metric for malaria potential. It is shown that
the inclusion of air–water temperature differences significantly affects predicted
malaria potential. The chapter includes several maps that relate the local ambient
temperature to malaria potential across the continent. Under plausible global
warming scenarios, western coastal Africa is likely to see a small decrease in malaria
potential, while central, and especially eastern highland Africa, may see an increase
in malaria potential.

Keywords Anopheles mosquito · Malaria · Ross–Macdonald framework · Basic
reproduction number · Malaria potential · Africa

4.1 Introduction

Environmental conditions have always been of profound importance in shaping
the epidemiology of infectious diseases. This fact is perhaps best exemplified by
the ancient disease of malaria or, more precisely, the collection of closely related
malarial diseases.

Caused by plasmodium parasites, malaria is spread via the Anopheles mosquito.
Five species are known to cause the disease in humans, namely P. falciparum, P.
vivax, P. ovale, P. malariae, and P. knowlesi [4]. The first of these, P. falciparum,
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accounts for nearly all global malaria mortality, and most of these deaths occur in
children under the age of five in sub-Saharan Africa [105].

The life cycles of both Plasmodium and Anopheles depend sensitively and
nonlinearly on temperature. Thus, anthropogenic global warming may shift and/or
expand the geographic range of malarial disease. This phenomenon has been the
object of much mathematical modeling and is also the topic of interest in the current
chapter. What do mathematical models tell us about the effects of climate change
on the dynamics of malaria? Our geographic focus is on Africa, given the burden of
disease on this continent.

Outline of the Chapter The chapter is organized as follows. In Sect. 4.2, we
provide basic information about malaria: the history of the disease, biology of
malaria, its immunology and epidemiology, and the influence of weather and climate
on the dynamics of the disease. We then move to mathematics in Sect. 4.3.1. After
an overview of the panoply of mathematical models of malaria, we introduce the
Ross–Macdonald framework, which forms the basis for most modeling efforts. We
discuss thermal-response functions for the various parameters in this framework,
and map the resulting malaria potential as a function of temperature across the
globe, with and without climate change. In Sect. 4.4, we incorporate elements of the
more complex vector life cycle into the Ross–Macdonald framework. We present
the hydrodynamics of an immature anopheline habitat and compare predicted
anopheline abundance—obtained with the extended model, which includes rainfall,
the vector life cycle, and hydrodynamics—with historical data from the WHO’s
Garki Project in northern Nigeria. We close this section with several maps of
malaria potential over the African continent under different modeling options. We
summarize our conclusions in the final Sect. 4.5.

4.2 Basic Information About Malaria

It is generally believed that a combination of local and global environmental changes
caused the initial spread of P. falciparum malaria in proto-agricultural Africa,
around 10,000 years ago, when the last ice age ended with a period of global
warming, and the onset of the climatically stable Holocene Epoch created conditions
favorable to agriculture [22]. Warmer temperatures and increased anopheline habitat
created by the clearing of forests for crops, along with concentrated human
settlements, created the conditions for both vector and parasite to thrive [83, 103].
By historical times, P. falciparum and P. vivax had likely spread to much of the
inhabited world, even reaching Britain within the last 1000 years [83].

4.2.1 History of Malarial Disease

In antiquity, it was known that in certain seemingly unhealthy areas the population
was prone to, among other ailments, periodic fevers (a hallmark of malarial disease),
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especially in the summer and autumn. By the late eighteenth century, it was
established that, while certain diseases apparently spread directly from person to
person (a process termed contagion), others were endemic to certain parts of the
world and, it seemed, contracted from the environment itself. The putative cause of
this latter form of transmission was termed miasma (Greek for “pollution”), a kind
of poisonous air thought to emanate from soil or rotting matter, and it was believed
that the high temperature, humidity, and soils of tropical areas, per se, gave rise to
the disease [32].

The central role of low temperatures in limiting the range of malaria was recog-
nized by the mid 1800s by German investigators, who determined that native malaria
transmission was limited to areas with average summer temperatures above 15 or
16 ◦C [65]. In the late nineteenth century (predating modern control programs),
malarial disease was likely at its global maximum and clearly concentrated in the
warm equatorial band, with its burden falling progressively toward the poles [65].

The close historical concordance between climate and malaria is illustrated
visually in Fig. 4.1. The map in the left panel, reconstructed from the famous 1968
publication of Lysenko and Semashko [65], shows the approximate global burden
of malarial disease at its global maximum, which happened in most areas in the late
nineteenth century. Lysenko and Semashko drew upon a wide variety of sources to
construct the first comprehensive map of the global distribution of malaria. Hay and
colleagues more recently published a digitized version of this map [55], which has
been used in multiple articles, for example, [45].

Why certain tropical areas and marshy regions seemed so prone to malarial
disease was finally discerned mechanistically in the late 1800s. Charles Laveran
discovered writhing protozoan parasite within the red blood cells of malaria patients
in 1880 [29], while Sir Ronald Ross (1857–1932), a British physician, discerned that

Fig. 4.1 (Left) The approximate distribution of malaria at its global maximum, based on the
1968 publication of Lysenko and Semashko [65]. The map was digitized by color-coding the
textures of the original map, and then georeferenced and extracted using QGIS 2.14.3 with GRASS
7.04. (Right) Mean surface temperature and mean precipitation, based on the WorldClim 2.0
database [41]
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Fig. 4.2 (Left) P. falciparum parasite rate (fraction of 2–10 year olds) across continental Africa in
2000 [53], which is fairly similar to the global maximum. (Right) African population distribution
in 2010 [25]. In combination, these maps show the populations (as opposed to the areas) most at
risk

these protozoans were spread victim to victim by the female Anopheles mosquito,
which requires standing water and heat to breed [29]. Ross elucidated the malaria
transmission cycle first in birds (1897) and later in humans, in Freetown, Sierra
Leone (1899).

Economic and agricultural modernization, urbanization, and large-scale malaria
control programs in the twentieth century led to a dramatic retreat of malaria across
the globe [83]. The exception was Africa, where disease burden stayed near its peak
until quite recently [22]. Figure 4.2 shows the P. falciparum parasite rate (fraction
of 2–10 year olds with detectable blood-stage parasites) across continental Africa
in 2000. (Data from the Malaria Atlas Project [53].) Figure 4.2 also shows the
modern population across Africa. (Data from the Gridded Population of the World
database, version 4 [25].) Population is mainly concentrated in warm coastal West
Africa, where malaria is highly endemic (especially in heavily populated Nigeria),
and in the cooler eastern highland areas surrounding Lake Victoria and in Ethiopia,
where the malaria burden is appreciably lower. Since 2000, parasite rates as well as
mortality rates in Africa have fallen dramatically [13].

4.2.2 Basic Biology

Plasmodium parasites, the causative agents of malaria, are eukaryotic protozoans
belonging to the large order haemosporidia—a diverse assemblage of parasites
that infect and transition between an array of vertebrate hosts and blood-sucking
dipteran insect vectors (flies and mosquitoes), and that likely have existed almost as
long as the dipterans themselves, at least 150 million years [22]. The consensus is
that the haemosporidia first evolved as free-living, sexually reproducing parasites,
which colonized the midguts of aquatic insects via a form of extracellular sexual
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reproduction known as sporogony. Subsequently, they evolved an additional form
of intracellular asexual reproduction, known as schizogony, which occurs in the
vertebrate host and dramatically increases the proliferation potential of the para-
site [22, 88].

Plasmodia are known to infect mammals, lizards, birds, and, in the highly
unusual case of the Mesnilium genus, amphibious fish via an unknown vector [88].
We therefore start the discussion of the malaria life cycle with the injection of
motile sporozoites from the salivary glands of an infectious mosquito into the skin
of its human victim. Within minutes, the sporozoites travel to the liver, where
they infect hepatocytes, expand asexually via an initial round of “pre-erythrocyte”
schizogony, and ultimately produce 30–40,000 merozoites per infected hepatocyte.
The hepatocyte then ruptures, spilling the merozoites into the bloodstream, where
they initiate the erythrocyte cycle of schizogony, repeatedly infecting and rupturing
erythrocytes every 48 or 72 h, and thus yielding the classical tertian (in the cases of
P. vivax and P. falciparum) and quartan (for P. malariae) malarial fevers [4].

Merozoites are not able to infect mosquitoes, so in a subset of infected ery-
throcytes, the invading merozoites ultimately terminally differentiate into male and
female gametocytes, which are incapable of further schizogony but may initiate
sporogony in the mosquito when they are ingested. Upon ingestion, the male
and female gametocytes recombine extracellularly in the mosquito midgut, thus
initiating the sexual sporogonic cycle, and undergo a series of transformations and
invade into the mosquito body cavity, ultimately yielding an oocyte which, once
mature, ruptures and releases many thousands of sporozoites that make their way
to the unfortunate mosquito’s salivary glands, for the cycle to continue [4, 31].
This basic process and some of the key differences between the sporogonic and
schizogonic cycles are summarized graphically in Fig. 4.3.

The Anopheles mosquito also has a relatively complex life cycle, divided broadly
into free-flying adult (imago) and aquatic juvenile stages. The adult female mosquito
life cycle is dominated by the gonotrophic cycle, which entails the initial taking of
a blood meal to fuel egg development, temperature-dependent blood digestion, and
egg maturation, and is terminated with oviposition of eggs in an aquatic habitat,
only to begin again. In water, the eggs hatch to become actively feeding, motile
larvae divided into four instar stages, which eventually become nonfeeding pupae
that yield adult mosquitoes [35].

4.2.3 Immunology and Epidemiology

Epidemiologically, malaria transmission was classified by Macdonald [66] in
extremes as either stable or unstable. In the stable case, malaria is endemic (Greek
for “in the people”). The population is very frequently exposed to infectious
bites, inducing a basic level of immunity throughout the population (except in
the youngest children), and thus, malaria incidence fluctuates but little, except for
normal seasonal changes related to rainfall, temperature, etc. Epidemics (a marked
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Fig. 4.3 The basic plasmodium life cycle in mosquito and man. Sporogony, which entails
the sexual reproductive process beginning with ingested gametocytes and ending in salivary
sporozoites, is depicted on the left, while asexual schizogony in man is shown on the right

increase in disease from the normal baseline) are unlikely, and malaria is also more
difficult to control or, especially, eliminate. On the other hand, in the unstable case,
malaria is characterized by low exposure to infectious bites, a varying and low level
of population-level immunity, and hence vulnerability to dangerous and sudden
epidemics. However, under such conditions, elimination is far more feasible.

Within endemic areas (and typically stable malaria), the unique immunology
of malaria is of profound importance in shaping the burden of disease. When
transmission is intense, clinical malaria is extremely common, severe, and fre-
quently life-threatening during the first few years of life. It manifests itself as an
uncomplicated febrile disease in adolescence and becomes quite rare by adulthood.
Indeed, while historically on the order of 50% of all West African children suc-
cumbed to malaria before age five [22], Europeans long thought that adult Africans
were incapable of acquiring or transmitting the disease [32]. However, adults very
frequently have detectable parasites in their blood, yet no clinical symptoms. Thus,
there exists a profound disparity between clinical immunity—protection against the
clinical manifestations of disease such as fever, malaise, and, in more severe cases,
profound anemia, multi-organ dysfunction, or cerebral malaria—and anti-parasite
immunity—protection against infection by parasites per se [31]. Clinical immunity
is slowly gained over the course of years as a consequence of numerous infectious
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bites, while true anti-parasite immunity is rarely, if ever, attained. However, it
should be noted that, while blood-borne parasites are detected at nearly the same
rates (in a binary sense) in old and young in holoendemic areas, the density of
parasites in the old is vastly lower [101]. Furthermore, clinical immunity is relatively
short-lived and requires frequent re-exposure for maintenance. Adults who move
away from endemic areas become vulnerable to severe disease within just a few
years [42], although protection against the most severe and life-threatening forms
of disease may be longer-lasting [51, 52]. As a consequence, malaria eradication
efforts are complicated by the waning of immunity induced by increased control.
Thus, initially beneficial control measures have the potential to increase disease
later in time [47]. In the worst case, when control measures lapse, transmission can
shift to an unstable scenario with the potential for devastating epidemics. The latter
scenario is not merely hypothetical and has occurred on multiple occasions from the
1960s onward [28, 103].

4.2.4 Weather and Climate

Vector and parasite life histories depend in highly nonlinear ways on temperature.
Adult and immature aquatic mosquito survival is maximized at temperatures in the
mid-20s (◦C), with survival tailing off rather symmetrically at higher and lower
temperatures. The developmental rates of plasmodium parasites, immature anophe-
lines, and mosquito eggs, however, all generally increase with temperature up to at
least 30 ◦C. Temperature variability is also likely important in determining survival
and development [12, 82], and temperatures may also vary appreciably across the
micro-environments to which anophelines are regularly exposed [14, 77, 95].

Like temperature, precipitation and hydrology are fundamental environmental
determinants of malarial disease. Malaria transmission often follows a highly sea-
sonal pattern, where the most intense transmission occurs during the rainier season.
For example, in the relatively arid African Sahel region, inter-annual variations in
disease and Anopheles abundance are strongly linked to variations in rainfall [15]; in
the Sahel and much of coastal West Africa, highly seasonal rainfall correlates with a
highly seasonal pattern of malaria transmission [20]. Moreover, in the Sahel, clinical
malaria incidence tends to track rainfall, but with a delay [16]. Monthly rainfall is
also positively associated with malaria incidence in both the highlands [26] and
coast of Kenya [59]. An. gambiae, which tends to breed in small, temporary pools
associated with human activity, seems particularly sensitive to short-term rainfall
patterns; Koenraadt et al. [60] observed a significant correlation between rainfall
lagged by 1 week and adult An. gambiae numbers in a Kenyan village.

The relationship between anopheline abundance and rainfall is complex and
varies across space and time. For example, the rainiest regions in Sri Lanka actually
have the lowest malaria incidence, as strong rainfall results in constantly moving
waters that make poor anopheline habitat, while drought may lead to standing
waters that breed malaria mosquitoes [18]. However, the malaria incidence pattern
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still follows that of rainfall, as seasonal malaria cases peak a few months after the
seasonal rainfall peak [18]. Thomson and colleagues [98, 99] observed a nonlinear,
quadratic relationship between seasonal rainfall and the logarithm of malaria
incidence in Botswana: while rain is necessary for habitat, excessive precipitation
could wash out anopheline breeding grounds. An experiment by Paaijmans et al.
[76] reported a similar phenomenon at the microscale. These authors monitored
larvae attrition in artificial habitats over the course of the rainy season in western
Kenya and observed that larval death rates were much greater on rainy nights.
Bomblies et al. [16] also found the temporal pattern of rainy days during the rainy
season itself to be important in explaining inter-annual variations in Anopheles
abundance.

Malaria, whose distribution depends so profoundly upon temperature and envi-
ronment, now threatens to change with anthropogenic global warming—warming
that is driven principally by the continuously accelerating combustion of fossil fuels,
and secondarily by global land-use changes, including deforestation, and large-scale
agriculture [97]. Increasing global temperatures are expected to directly affect the
capacity of Anopheles mosquitoes to transmit malaria.

4.3 Mathematical Modeling

Almost since the first elucidation of its life cycle, malaria has been a subject
of mathematical modeling and analysis. In the early 1900s, Ross proposed some
simple mechanistic models for malaria transmission [96]. Subsequently, George
Macdonald developed a simple model for transmission that included the delay from
mosquito infection to infectivity [66]. Macdonald also introduced the basic repro-
duction number R0—the average number of secondary cases a single initial case
generates in a completely susceptible (uninfected and non-immune) population—
as an indicator of malaria potential. Macdonald showed that this number is most
sensitive to changes in the adult mosquito daily survival probability [66]. His work
provided a theoretical justification for the Global Malaria Eradication Programme
(GMEP, 1955–1969) of the World Health Organization (WHO). GMEP relied
mainly upon indoor residual insecticide spraying for adult vector control, along
with mass drug administration [71]. Since the pioneering contributions of Ross
and Macdonald, the interest in malaria modeling has expanded considerably, and
while many complex models exist, the majority are based upon the Ross–Macdonald
framework [89].

Temperature may be incorporated into Ross–Macdonald-style models by making
key parameters, such as adult mosquito survival, functions of ambient temperature.
Such thermal-response functions are typically determined from experimental data,
and allow us to predict malaria potential as a function of current and projected
temperature patterns. The inclusion of rainfall in climate-focused mathematical
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models has varied. Some models ignore rainfall entirely, while others (generally
when the focus is upon mapping malaria) apply some kind of mask or weighting
according to either total or seasonal rainfall or an index of wetness such as
NVDI [92] or soil moisture [100]. Several dynamical models have used relatively
simple relations between rainfall and either oviposition or the larvae carrying
capacity of the habitat [57, 104], while yet others—for example, [5, 6, 16]—
have employed more physically realistic hydrodynamic modeling to drive the
accumulation and loss of water within topographic depressions.

Even if we are interested in the role of temperature (the chief parameter altered
by global warming) in determining malaria potential, it is unlikely that we can
ignore rainfall and hydrodynamics completely, as the water temperature in aquatic
microhabitats is an essential determinant of larval development time and survival.
This temperature is, in general, not equal to the ambient temperature, especially in
equatorial areas [77, 78]. In fact, the difference can vary with habitat size, time of
year, and latitude.

In the last two decades, a large number of mathematical models, both statistical
and mechanistic, have been developed to assess the possible impact of climate
change upon malaria disease potential. A partial list of references includes [1, 3, 11,
12, 15, 16, 27, 30, 33, 39, 40, 57, 62–64, 67, 68, 70, 72, 74, 75, 84, 85, 92, 100, 104,
106], and one may also see Eikenberry and Gumel [37] for a recent review. These
models have led to varying conclusions. Some of the earlier models predicted a large
expansion in the global land area vulnerable to malaria [21, 67, 68, 84], while others
predicted only smaller shifts in malaria range [45, 54, 90], as some areas where
malaria is highly endemic become too hot to support the Anopheles vectors, while
other cooler areas may become capable of more intense transmission. While the
debate on expansion versus shift is still open, several recent process-based modeling
efforts support the notion that, in western coastal Africa, the malaria burden may
be minimally affected or decrease with global warming [92, 106], while central
and eastern highland Africa may see greater disease potential [92]. The impact of
global warming on the highlands of western Kenya (in eastern Africa) has been of
particular interest in recent years, given the large population increase and concurrent
large-scale deforestation [86, 87].

Our objective in this chapter is to introduce the basic mathematical tools neces-
sary to address the question of how climate change may affect malaria potential. We
focus mainly on models derived within the Ross–Macdonald framework.

4.3.1 Ross–Macdonald Framework

Sir Ronald Ross (1857–1932), the discoverer of the malaria life cycle, was a
polymath who proposed several simple mathematical models for the transmission
of malaria among humans and mosquitoes. The 1911 version is a system of two
ordinary differential equations [96],
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dX

dt
= abm z (H −X)− r X,

dZ

dt
= ac x (M − Z)− g Z,

(4.3.1)

where H and X are, respectively, the total and infected human population, and
similarly, M and Z the total and infected mosquito population. The parameters are a,
the mosquito biting rate (bites/mosquito/day); b, the probability of human infection
after an infectious bite (b = 1 in Ross’s original formulation); c, the probability of a
human infecting a mosquito upon biting; m = M/H , the number of mosquitoes per
human; z = Z/M , the fraction of infectious mosquitoes; x = X/H , the proportion
of infected humans or parasite rate; r , the human recovery rate (day−1); and g,
the mosquito death rate (day−1). The last parameter is related to the daily survival
probability p,

g = − lnp. (4.3.2)

The Ross Institute and Hospital for Tropical Diseases was established shortly
before Ross’s death in 1932. The British malariologist George Macdonald (1903–
1967), who became its director in 1947, went on to develop a greatly influential
model based upon the ideas of his predecessor but with two major modifica-
tions [66]. First, and most significantly, the delay from initial infection to infectivity
in mosquito was included, with n denoting the time of the sporogonic cycle,
also known as the extrinsic incubation period (EIP). Second, since humans may
be infected by multiple Plasmodium strains, which are all cleared independently,
Ross’s recovery parameter r was replaced by ρ(r, h), the rate at which new human
infections occur. Here, r is the strain-specific rate of recovery and h the inoculation
rate (to be defined shortly).

To obtain Macdonald’s model, we recast the system (4.3.1) as a set of delay
differential equations,

dx

dt
= abm z(t)(1− x(t))− ρ(h, r)x(t),

dz

dt
= ac x(t − n)(1− z(t − n))e−gn − g z(t),

(4.3.3)

where x(t) is the parasite rate and z(t) now represents the fraction of mosquitoes that
have completed the EIP to become infectious to humans. Thus, z(t) is equivalent to
the “sporozoite rate,” the fraction of mosquitoes with sporozoites in saliva, denoted
s by Macdonald. Note that the growth term in the z equation is now a function of x
and z at time t − n, and also includes the factor e−gn to account for those mosquito
deaths that occur before sporogony is complete. For example, if n = 10 days, and
the daily survival probability is p = 0.9 (hence, g = 0.1054), then 65% of initially
infected mosquitoes survive to become infectious; if p falls to 0.7, then fewer than
3% of infected mosquitoes survive to infectiousness.
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Macdonald formulated his model solely in terms of x(t) by introducing the
inoculation rate, h ≡ h(t) = abm z(t),

dx

dt
= h(1− x(t))− ρ(r, h)x(t), (4.3.4)

While Macdonald originally gave an erroneous form for the overall recovery rate
ρ(r, h), the correct form is [36, 96]

ρ(r, h) = h

eh/r − 1
. (4.3.5)

At equilibrium, the sporozoite rate is constant, z(t) = s, and

h = abms = a2bcmpnx

ax − lnp
= a2bcmx

ax + g
e−gn. (4.3.6)

This model yields the following expression for Macdonald’s basic reproduction
number:

R0 = a2bcmpn

−r lnp
= a2bcme−gn

rg
. (4.3.7)

The key conclusion is that R0 is most sensitive to p, the adult daily survival
probability. Thus, the model provides a powerful theoretical justification for malaria
eradication efforts based upon insecticidal measures, which underpinned the WHO’s
Global Malaria Eradication Programme (GMEP). Somewhat later, the closely
related vectorial capacity (VC) metric was defined [43] as the number of new
malarial cases (or infectious bites) that could result from a single case in a single
day. In terms of the Ross–Macdonald parameters [44], this metric is given by

VC = a2cmpn

− lnp
= b

r
R0. (4.3.8)

Thus, VC is the component of R0 that depends only on vectorial parameters and is
independent of human parameters.

4.3.2 Thermal-Response Functions for Ross–Macdonald
Parameters

Nearly all the Ross–Macdonald parameters depend in some way upon climate and
weather. The most studied and basic relationships are the temperature dependence
of survival (p or g), sporogonic duration and EIP (n), and mosquito biting rate
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(a), often taken as the inverse of the duration of the gonotrophic cycle. Less
appreciated is the fact that both b and c depend on temperature as well, although
this dependence is not typically included in models. This leaves only m lacking
explicit temperature dependence. While taken as an imposed parameter in the
Ross–Macdonald framework, m is clearly a function of the temperature-dependent
parameters a and p, as well as the weather-dependent immature Anopheles life
cycle, which is completely neglected by Ross–Macdonald models.

Adult Mosquito Survival (p or g) Generally speaking, Anopheles survival peaks
at temperatures in the mid- to low-20s celsius, and falls fairly symmetrically about
this peak. However, rates of the developmental processes of gonotrophy (mosquito
egg development) and sporogony (parasite development) hasten with increasing
temperatures up to at least the low-30s, and may be modeled either by a hyperbolic,
monotonically increasing function, or via an asymmetric, unimodal function that
drops off rapidly at high temperatures. We briefly review some of the data and
functional forms used to model these processes.

While several earlier models, most notably the epidemic potential models of
Martens and colleagues, fitted a quadratic curve to three data points from 1949,
more recent work has relied on a series of experiments by Bayoh [8], where
adult An. gambiae was exposed to constant temperatures between 5 and 45 ◦C at
several different relative humidities (RHs). The data are equally well described by
a quadratic curve; other authors (e.g., [11]) have used Gaussian distributions. The
results are summarized in Fig. 4.4.

If, as is typically (at least implicitly) assumed in most models, the probability
of death does not vary with time—that is, p is independent of age—then the
death rate g is the inverse of survival time, p = e−g = e−1/S , and survival
time is exponentially distributed. However, this assumption is actually false, as
the probability of death increases with age in both laboratory and wild mosquito
populations [91]. Such a phenomenon may be described using a variety of proba-
bility distributions; the most important ones are the Gompertz distribution, which
is widely used and the best fit for many datasets, and the Gamma distribution,
which may be straightforwardly incorporated into ODE models, as done, e.g., by
Christiansen-Jucht et al. [27]. A discussion of this complication falls outside the
scope of the chapter.

Gonotrophic Cycle and Mosquito Biting Rate (a) The gonotrophic cycle is
divided into three stages: (I) the search for a host and attack, (II) temperature-
dependent blood meal digestion and egg maturation, and (III) oviposition in a
suitable body of water [35]. Since only a single blood meal is usually necessary
to nourish their eggs, and host attack is a risky energy-intensive process, female
anophelines generally take only a single blood meal per cycle (stage I). The overall
cycle length, which we denote GC , can therefore be taken as the inverse of the
biting rate, a (supposing, as with the adult survival time and death rate, that GC is
exponentially distributed and age-independent).
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Fig. 4.4 Temperature-dependent Ross–Macdonald parameters. (Left) Mean daily survival S (top)
and daily survival probability p (bottom), derived under the (false but expedient) assumption that
survival is exponentially distributed. Data points show laboratory survival for An. gambiae at either
60 or 80% relative humidity (RH), obtained from [9], together with a quadratic fit to S (blue
curve) and Mordecai et al.’s fit to p (red curve). (Middle) Biting rate a and its inverse, gonotrophic
duration (1/a). Data points from Lardeux et al. [61], and fits due to Moshkovsky’s formula (plus
24 h for stages I and III) [35], Lardeux et al. [61], and Mordecai et al. [70]. (Right) Sporogonic
duration n and rate 1/n. Data points compiled from a variety of sources as reported in [79], and
fits using either Moshkovsky’s formula [35], or Briere functions due to either Paaijmans et al. [79]
or Mordecai et al. [70]

Stage II of the gonotrophic cycle is dominant in terms of time and relates to
ambient temperature hyperbolically (at least up to fairly high temperatures). The
classical formula of Moshkovsky is based upon the “sum of heat” hypothesis—
that is, a certain amount of heat, integrated over time, is necessary to complete
development—has been widely used to model this phenomenon. Moshkovsky’s
expression for the duration of stage II, GII , is

GII = D

T − Tmin

, (4.3.9)

where Tmin is the minimum temperature for development, T > Tmin is the mean
ambient temperature (◦C), and D is an empirical constant measured in degree-
days. Detinova [35] gave D = 37.1 and Tmin = 9.9 for the European vector An.
maculipennis at relative humidity RH = 70–80%, based on 1938 experiments by
Shlenova [94].

The expression (4.3.9) is purely monotonic, while basic physiology suggests
that very high temperatures should, at some point, impede egg development [70].
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Thus, we may also use some asymmetric unimodal function, such as the Briere
function [17], which relates the rate r of gonotrophy to temperature T as r(T ) =
cT (T − T0)(Tm − T )1/2. This relation was used by Mordecai et al. [70], with
parameters based on much more recent experimental work by Lardeux et al. [61],
who examined oviposition in An. pseudopunctipennis under different temperatures.
Lardeux et al. [61] themselves employed a qualitatively similar unimodal function
given graphically in Fig. 4.4.

Stage II generally dominates the gonotrophic cycle. To obtain the complete cycle
length GC , we may add about 24 h to GII for stages I and III [35], although limited
habitat availability may prolong stage III and additional time may be needed for the
search for suitable waters [50].

Several aspects of mosquito biology can complicate the modeling of the biting
rate and temperature. First, multiple blood meals may be taken per gonotrophic
cycle, although this is generally only observed among newly emerged anophelines
that lack sufficient nutritional reserves to fuel egg development from a single blood
meal [93]. The time to first blood meal also takes 1–3 days and is temperature
dependent [81]. Finally, and possibly quite significantly [24], malarial infection
itself may alter anopheline feeding patterns, and infectious mosquitoes (i.e., those
with sporozoites in their salivary glands) have been observed taking more frequent,
smaller blood meals, while mosquitoes carrying pre-infectious plasmodium stages
(e.g., oocysts) may take fewer blood meals [23].

Lastly, we note that several mathematical models have also assumed a constant
hazard of death with each blood meal attempt, such that roughly half of all
attempts end in death. This introduces a further “hidden” temperature dependency
on adult mosquito survival. But this dependence is often ignored when a and p are
considered as independent, imposed parameters.

Sporogonic Cycle Duration (n) Similarly to gonotrophy, the duration of sporo-
gony (or EIP), n, has been described classically using the formula of Moshkovsky
(Eq. (4.3.9)), with D = 111 degree-days for P. falciparum and D = 105 degree-
days for P. vivax, with Tmin = 14.5 ◦C for the relatively cold-tolerant P. vivax and
Tmin = 16 ◦C for all other plasmodia.

Note that it has long been recognized that temperatures above 30–32 ◦C can
impede the sporogonic cycle [35, 66], although the major effect may be that higher
temperatures impede the early stages of sporogony that immediately follow inges-
tion of a blood meal, but may not block development beyond the oocyst stage [38].
Okech et al. [73] also found that wild strains of West African An. gambiae developed
under fluctuating field temperatures up to 33 ◦C without apparent difficulty. In any
case, such observations motivate, as for gonotrophy, the adoption of a unimodal
Briere function as done by Mordecai et al. [70] and Paaijmans et al. [79], or a
modification of Eq. (4.3.9) to block sporogony above, say, 32–34 ◦C.
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4.3.3 Temperature and Malaria Potential

Using the above relations, we compute the temperature-dependence of R0. The
result, obtained with a quadratic fit to Bayoh’s adult mosquito survival data [8] and
unimodal Briere functions for gonotrophy and sporogony, is shown in Fig. 4.5.

Given the above (or similar) relations relating key Ross–Macdonald parameters
to temperature, one can construct a map representing malaria potential as a function
of temperature, as multiple authors have done, often employing some index of
transmission potential derived either from Macdonald’s R0 or from a newer
model [30, 46, 67, 92], While such a map is sometimes framed as displaying
(relative) R0 across space, as only vector- and parasite-specific parameters vary with
temperature, it is perhaps more appropriate to cast it in terms of vectorial capacity
(VC) (equivalent to R0 sans the human-specific components).

Probably the simplest possible approach to malaria mapping would be to
calculate VC or R0 as a function of mean annual temperature. But this may be
misleading, as temperatures are often only seasonally suitable for malaria and the
relationship between temperature and R0 is nonlinear. As daily average tempera-
tures are typically only available for global climate datasets at a monthly scale, this
is the temporal resolution typically employed [30, 92], although an innovative work
by Gething et al. [46] reconstructs approximate daily temperature variations, and
daily temperature variation may be crucial to malaria potential [11, 82].

Using the WorldClim 2.0 database [41], we computed monthly values of
Macdonald’s R0. Even at this time-scale and disregarding precipitation, malaria
potential can vary quite appreciably over the year. The mean monthly R0, shown in
Fig. 4.6, yields a crude measure of annual malaria potential as a function solely
of temperature at the global scale. Note that we could simply use mean yearly
temperatures instead, to yield a single R0 value at each location. However, this
single yearly value varies somewhat from the mean of the R0 values calculated

Fig. 4.5 Ross–Macdonald R0 as a function of temperature, based on the thermal-response
functions detailed in the text for a, n, and p, while other parameters are representative of a malaria-
endemic region
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Fig. 4.6 (Left) Global malaria potential based on the Ross–Macdonald model, as a function of
temperature alone, for 1970–2000 baseline conditions (per the WorldClim 2.0 database [41]).
(Right) The same calculations using projected climate change under the HADCM3 model using
the IPCC SRES A1B emissions scenario [102]

across each month individually, suggesting that weather variability is important to
account for. In Fig. 4.6, we see surprisingly good visual concordance between the
model and Lysenko’s historical malaria map. The main points of disagreement are in
the extremely arid Saharan region and in the far Eurasian north, where the relatively
cold-tolerant P. vivax historically caused short-lived epidemic malaria [65]. Malaria
potential is also overestimated in the Kalahari Desert of southern Africa.

A variety of other (generally more sophisticated) metrics and methods may be
followed in relating temperature to malaria potential. The above efforts do not
incorporate precipitation or land cover at all, and precipitation may be included
as an independent index of malaria potential (as done in [30]), or we may simply
apply a precipitation mask to our map, such that transmission is prohibited anywhere
rainfall is sufficiently low. We could also scale R0 with precipitation in some way,
presuming it to be a marker of immature anopheline habitat availability. Ryan et al.
[92] applied a mask based on the NDVI, and precipitation and soil moisture may
also be more directly incorporated into the underlying model [100]. While we have
simply employed VC/R0, other indices may be used, such as epidemic potential (a
metric derived from VC by Martens et al. [67]), or an explicitly time-varying index
proportional to VC, as employed by Gething et al. [46].

How might the malaria potential be affected by climate change in the Ross–
Macdonald framework? Using the HADCM3 model—a down-sampled GCM cli-
mate projection—and the IPCC SRES A1B emissions scenario [102], we have
calculated the projected monthly mean R0 for the 2080s. The results, shown in
the right panel of Fig. 4.6, indicate a global expansion of land area that is at some
risk and a shift in potential within Africa, where the areas at greatest risk shift
roughly south and eastwardly. A similar phenomenon is seen in Figs. 4.13 and 4.14
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(Sect. 4.4.2), where we compare predictions under the baseline Ross–Macdonald
framework, using an augmented model that considers immature mosquito dynamics.

4.4 Augmented Ross–Macdonald Framework

In our discussions above, we have already alluded to multiple complicating factors
that make the Ross–Macdonald framework likely insufficient for capturing the full
range of climate effects on malaria epidemiology. Potentially most important, in
our view, is the neglect of the immature anopheline life cycle, which is affected by
a broad array of environmental factors, including temperature, rainfall, and local
hydrodynamics and land use. These factors have been modeled in different ways
by multiple authors. Here, we augment the basic Ross–Macdonald framework to
explicitly include immature mosquito dynamics as well as adult vectors.

4.4.1 Modeling Immature Anophelines

Immature mosquitoes develop from egg, through four actively feeding larval instar
stages, and to a final pupal stage. In a differential equations setting, we may
variously lump these developmental stages. Here, we consider a model framework
with all four larval instar stages,

dE

dt
= Λ− σEE − μEE,

dL1

dt
= σEE − σLL1 − μLL1 −Φ,

dLi

dt
= σLLi−1 − σLLi − μLLi −Φ, i = 2, 3, 4,

dP

dt
= σLL4 − σPP − μPP.

(4.4.1)

E(t), L1(t), . . . L4(t), and P(t) are the number of mosquitoes in the egg, first
through fourth larval instar, and pupal stage, respectively, at time t ; σi ≡ σi(TW )

is the temperature-dependent development rate for stage i (i = E,L, P ); TW

represents water temperature; μi ≡ μi(TW ,R) is the death rate for stage i (i =
E,L, P ), which depends, in general, upon both the water temperature and rainfall
history, denoted R. The rate at which eggs are oviposited by adult mosquitoes
is given generically as Λ. The function Φ ≡ Φ

(∑
i Li, R

)
denotes density-

dependent mortality among larvae, which is expected to depend upon rainfall, as this
is the source of much anopheline habitat, and upon hydrodynamics more broadly,
including topology, vegetation, soil type, etc.
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This general framework for immature mosquito dynamics may be coupled to
the Ross–Macdonald delay-differential description for adult mosquito dynamics by
augmenting the system (4.3.3) by an equation for the total mosquito population, M ,

dM

dt
= σPP − gM. (4.4.2)

We first examine the temperature dependence of development and mortality
rates, which is the weather dependency that has been studied most extensively
and incorporated into models. Then we examine how this dependence affects an
“augmented” version of Macdonald’s R0, which incorporates immature anopheline
dynamics. We then turn to a discussion of rainfall and hydrodynamics, and examine
the time-varying dynamics of anopheline populations and malarial infections when
such behaviors are more fully accounted for. Furthermore, we use microscale hydro-
dynamic simulations to estimate the relation between air and water temperature as a
function of time and latitude to refine the malaria potential map under the augmented
Ross–Macdonald model.

Temperature-Dependent Parameters Similar to sporogony and gonotrophy, the
rates of immature anopheline development, σi , generally increase hyperbolically
with temperature, at least up to a point. A purely monotonic relation for larval
development time based on work done by Jepson in 1947 [58] has been used in
multiple papers, while Bayoh et al. [9] used a unimodal function on the basis
of experimental data; the same data were used by Mordecai et al. [70] for a
morphologically extremely similar Briere function. The resulting development rates
are summarized graphically in Fig. 4.7. Note, however, that while the unimodal
functions go to zero because, beyond about 34 ◦C, larvae fail to develop into adults,
it is not clear whether this failure is actually due to increased attrition at high
temperatures, rather than arrested development. Laboratory larval survival time as
a function of temperature is also given in Fig. 4.7, based on [9, 10], with death rate
and survival time described using a fourth-order polynomial fit.

Basic Reproduction Number, R0 Considering the model framework for immature
Anopheles dynamics given above, but excluding any dependence upon rainfall,
we extend Macdonald’s R0 as follows. First, we simplify the general model by
omitting density-dependent mortality in the larval compartment, and supposing that
oviposition, Λ, is limited by a logistic term,

Λ = aλM

(
1− E

K

)
. (4.4.3)

Here, M is the total adult mosquito population, a the biting rate (necessarily
equal to the oviposition rate), λ is eggs per oviposition, and K is a carrying capacity,
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Fig. 4.7 (Left) Immature anopheline development rates, along with unimodal fits due to Bayoh
et al. [9], Mordecai et al. [70], or the monotonic relation by Jepson [58]. (Right, top) An. gambiae
survival times as well as the fraction surviving to adulthood [10]. (This curve is shifted to the right
relative to crude survival, as development is faster at higher temperatures.) (Right bottom) Survival
time transformed to death rate, assuming exponentially distributed survival, and a fourth-order
polynomial fit to the data

which will generally be proportional to habitat availability as determined by land
cover and precipitation patterns. We assume, furthermore, that all development
(σi) and death (μi) parameters are constant, and that we have a single larval
compartment. At steady-state, M is given by the expression

M =
(

λaσEσLσP

g(μP + σP )(σL + μL)
− σE − μE

)
K

λa
, (4.4.4)

and m = M/H . Using the thermal-response functions related above, and assuming
for simplicity that the temperature-dependent death rates for all immature anophe-
lines are equal, we get the curves for the normalized and absolute R0 as a function
of the ambient temperature TA given in Fig. 4.8.

When water and air temperatures are equal, immature dynamics may have only
a small effect upon the optimum temperature for malaria transmission, as expressed
by R0, but quite dramatically shift the R0 curve to the left when water is even a
few degrees warmer than air. Interestingly, there is an asymmetry such that when
water is colder than air, the temperature for peak R0 is affected minimally, but the
absolute magnitude of R0 decreases across the entire temperature range, and R0
falls to zero at the lower temperature range. This pattern is also observed in Fig. 4.8.
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Fig. 4.8 Normalized (top panels) and absolute values (lower panels) of R0 as a function of
ambient temperature, TA, under the augmented Ross–Macdonald model, including immature
anopheline dynamics, for different constant values of ΔT = TW − TA. The standard Ross–
Macdonald R0 curve is also given for comparison. As seen, higher water temperatures shift the
curve markedly to the left, while colder water temperatures mainly reduce R0 at small TA and
decrease the magnitude of R0 across the entire TA domain

4.4.2 Rainfall and Habitat Dependence

Rainfall Many important anophelines rely upon ephemeral bodies of water often
associated with human activity (ruts, hoofprints, etc.), the availability of which is
strongly linked to recent rainfall patterns. In our generic model framework, the
rainfall time-series, R, must be translated into some measure of habitat availability.
Most commonly, this is manifested either at the level of oviposition or via density-
dependent larval mortality; see, for example, [27, 57, 85, 104]. Seasonal anopheline
abundance and rainfall patterns often track closely, as is strikingly illustrated
in an example dataset drawn from the Garki Project [69] in Fig. 4.9. Thus, we
may conclude that the Ross–Macdonald parameter m (mosquitoes per human) is
fundamentally related to rainfall, as are R0 and vectorial capacity. Furthermore, the
parameter m varies with temperature; this relationship is generally not independent
of rainfall, as water temperature is partially determined by rainfall and habitat size,
as can be demonstrated both experimentally (see, for example, [77, 78]) and from
detailed mathematical modeling.

Several works have employed complex, realistic physical models of water accu-
mulation to form Anopheline habitat, but simpler options exist [27, 57, 104]. White
et al. [104] took larval carrying capacity (loosely speaking) to be a convolution of
recent rainfall and some weighting function, with the best (of those considered)
determined to be an exponential weighting of past rainfall. Earlier work by Hoshen
and Morse [57] took the rate of oviposition to be linearly proportional to the
sum of rainfall over the last 10 days. A more data-driven approach can also be
taken. For example, Lunde et al. [64] calculated immature anopheline carrying
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Fig. 4.9 Precipitation and An. gambiae counts (from pyrethrum spray collections) in the Ajura
Village included in the Garki Project [69]. Seasonal peaks in mosquitoes clearly track the seasonal
rainfall pattern, although within each season, total precipitation is a rather poor predictor of total
mosquitoes collected

capacity for different spatial grid-cells as a composite function of soil moisture
and potential river length. The latter quantity was derived from the HydroSHEDS
database, which provides data on the potential for water accumulation, given the
topology of the Earth’s surface. Bomblies et al. [16] developed a more compre-
hensive model, explicitly including runoff, flow, and water accumulation within
depressions at village scale topography, and coupled this to an agent-based model
for malaria mosquitoes. This work also formed the basis for several more recent
studies [15, 106].

Habitat Regardless of how the accumulation and loss of habitat volume and/or
surface area is determined, this metric must be translated into some kind of carrying
capacity or density-dependent death term, etc. Several authors have assumed a
biomass carrying capacity for anopheline ponds of about 300 mg m−2, with stage-
four instars weighing 0.45 mg [16, 33, 100]. Under the augmented Ross–Macdonald
model, we may also simply limit oviposition via a logistic term, with the egg
carrying capacity proportional to water surface area.

At the microscale, we can apply first principles from physics to describe water
in a suitable depression as habitat for immature mosquitoes. Such a model can
yield a time-varying immature carrying capacity, help elucidate the relationship
between water and air temperature, give insight into the relationship between habitat
parameters such as depth or shading and anopheline numbers, as well as justify or
motivate simpler phenomenological relationships between anopheline habitat and
rainfall.

Our first task is to define some habitat geometry that relates depth (d), surface
area (A), and volume (V ). Options include, for example, a cylindrical geometry,
right-angle cone, or a somewhat more general geometry proposed by Hayashi
and colleagues [19, 56], which describes a depression by maximum surface area,
maximum depth, and a dimensionless shape parameter, p.

The various mechanisms involved in microscale habitat hydrodynamics are
schematically summarized in Fig. 4.10. Water volume is gained at a rate proportional
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Fig. 4.10 Schematic for heat and volume balance in an anopheline microhabitat. Heat is gained
and lost via both short- and long-wave radiation, precipitation, infiltration, runoff, and washout,
while the same mechanisms lead directly or indirectly (i.e., via latent heat lost in the form of water
vapor) to volume changes

to precipitation (both directly and via runoff over some catchment area), while it is
lost through evaporation and infiltration into the soil. Volume balance is described
by the ordinary differential equation

dV

dt
= P(A+ Rfrac(Acatch − A))− A(E + I ), (4.4.5)

where P ≡ P(t) is the precipitation time-series (m); Acatch is the catchment
area for precipitation runoff, with Rfrac the fraction running off; E and I are
volume losses due to evaporation (latent heat flux) and infiltration, respectively, with
infiltration dominant in the Sahel [16, 34]. The infiltration rate varies nonlinearly;
a simple expression is given in [5]. Washout, which happens when influx exceeds
the maximum volume of the habitat, can serve as a source of larval mortality, as
demonstrated experimentally in artificial habitats by Paaijmans et al. [76]. It has
been incorporated into models, for example, by having larval mortality increase
with precipitation [100] or via a quadratic relationship between egg survival and
rainfall [85].

As evaporation represents the loss of both water and heat, the heat balance of a
habitat is directly coupled to its volume balance. This suggests a modeling compli-
cation of potentially fundamental importance: water and ambient temperatures are
not necessarily equal, nor do they necessarily differ by a constant offset. The heat
balance in a habitat can be described by an ordinary differential equation for the
total heat, Q (joules),
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dQ

dt
= A(Rn − λE −H −G)+ PQ − IQ. (4.4.6)

Here, A is habitat surface area, Rn is net radiation per unit area, λE is latent heat
flux (i.e., the heat contained in evaporating water), H is sensible heat flux, and G

is heat flux through the surrounding soil [2, 6]. The units are m2 for A and Wm−2

for the quantities inside the parentheses. Heat is gained via precipitation and runoff,
PQ, and lost via infiltration, IQ.

Further mathematical details and model formulations can be found in [5–7, 16,
77, 78, 85, 100].

Figure 4.11 demonstrates how rainfall in the Ajura village of the Garki Project
might translate into habitat volume and adult mosquito populations. The results were
obtained with the model represented in Fig. 4.10, assuming a relatively large habitat
(maximum surface area 100 m2 and maximum depth of 1.5 m). The graphs show that
the “impulse response function”—that is, the habitat volume time-series response
following a single pulse of rainfall—is essentially an exponential, concordant with
the conclusions of White et al. [104].

Fig. 4.11 Simulated water temperatures, habitat volume, and adult mosquito populations (both
total and infectious), based on ambient air temperature and precipitation data for the Garki
region [69]. Maximum and minimum air temperatures were used to develop sinusoidally varying
daily temperature profiles, and daily solar insolation was calculated from time of year and latitude
(12.4◦N). (Top) Smoothed time-series of ambient and (simulated) water temperatures. (Center)
Precipitation and simulated habitat volume. (Bottom) Modeled adult Anopheles populations and
corresponding data-points from the Ajura village
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Fig. 4.12 Simulated water temperatures under sunny, low-wind conditions, for small and large
habitats, at the equator and at 20◦N, at the height of summer. The four panels on the left show
how the minimum, mean, and maximum values of the water temperature, TW , vary with mean air
temperature, TA. The two panels on the right show time-series of diurnally varying air and water
temperatures in a small (top) and large (bottom) habitat. The average ΔT is similar across habitat
sizes, but actual TW is much more variable in the smaller habitat

The top panel in Fig. 4.11 indicates that ambient and water temperatures can
differ significantly. Water temperatures are typically around 2–6 ◦C greater than air
temperatures, and about 4 ◦C greater on average. This is consistent with experiments
by Paaijmans et al. [77, 78], who recorded diurnally varying ambient and water
temperatures in a nearly equatorial area of Kenya in artificial anopheline habitats
and found water to be several degrees warmer, especially at the height of the day.

By modeling the heat balance of microhabitats, we can get a better idea of the
likely difference ΔT = TW − TA across time and space and use this information
to motivate an improved set of temperature-dependent malaria potential maps.
Figure 4.12 shows how, under simulated diurnal temperature and solar radiation
variation, water and ambient temperature vary over the course of a day. The
variability in water temperature is greater for smaller habitats, although ΔT is fairly
insensitive to habitat size. We also see from this figure that the average of ΔT is
likely not constant but varies with TA, such that ΔT is greater at lower ambient
temperatures.

We emphasize that, while insolation at the equator is almost invariant throughout
the year, there is nontrivial seasonal variability even at ±20◦ latitude. Simulations
suggest that, at 20◦N under low-wind and sunny conditions, ΔT may range from
about −4 to +1 ◦C in winter, but around +4 to +8 ◦C during summer. We have
generated a set of ΔT data points as a function of month (using the first Julian day
of the month), latitude, and average TA, which yields a multiple linear regression
for ΔT at any time and spatial point.
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Fig. 4.13 Temperature-dependent malaria potential (as measured by R0) across continental
Africa. (Left) Baseline conditions (based on WorldClim 2.0 [41]). (Right) 2080s global warming
conditions (based on the HADCM3 model and SRES A1B scenario [102]). (Top) Basic Ross–
Macdonald framework. (Bottom) Augmented Ross–Macdonald model with ΔT = 0 ◦C

4.4.3 Malaria Potential Across Africa

Figures 4.13 and 4.14 show how temperature-dependent malaria potential varies
across continental Africa under three scenarios, two where ΔT is fixed (ΔT = 0 ◦C
and ΔT = 3 ◦C) and one where ΔT varies with date and latitude, under baseline
conditions and a possible global warming scenario. All models predict a contraction
in malaria potential under global warming in west coastal Africa. When ΔT is
variable, the models predict appreciably more malaria potential in heavily populated
eastern highland Africa compared to a fixed ΔT of 3 ◦C.

4.5 Summary and Conclusions

Malaria epidemiology is fundamentally linked to weather and climate, and it
remains to be seen how anthropogenic global warming will ultimately influence this
disease. Multiple mathematical models have addressed this question, with somewhat
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Fig. 4.14 Similar to Fig. 4.13. Temperature-dependent malaria potential under baseline conditions
(left) and 2080s global warming conditions (right). (Top) Augmented Ross–Macdonald model with
ΔT = 3 ◦C. (Bottom) ΔT varying with month and latitude

varying conclusions, although the most likely outcome is a modest expansion of the
global geographic areas potentially at risk. Within Africa, where almost the entire
malaria burden is currently felt, there may be a shift in the areas and populations
most at risk, from western to central and eastern Africa, particularly in some
populous highland areas in western Kenya, Uganda, and Ethiopia. Furthermore,
there are likely to be seasonal shifts in disease transmission [92], and precipitation,
land use, and hydrology are all likely to be important environmental factors at local
and regional scales [16, 86]. The goal of this chapter has been to establish the basic
biology of malarial disease, and present in some detail how this is translated into
the Ross–Macdonald framework (and extensions thereof), which forms the basis for
hundreds of mathematical models and yields a widely used expression for the basic
reproduction number, R0.

The Ross–Macdonald number R0 relates malaria potential to several key
quantitative parameters. These parameters all depend on temperature, and at least
one, namely the mosquito-to-human ratio (m), depends additionally on rainfall
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and land use. Because the Ross–Macdonald number forms the basis of many
climate-focused mathematical malaria models, we have examined the thermal-
response functions and data sources in detail for some of the key parameters, namely
the duration of the sporogonic cycle (n), the mosquito biting rate (a), and the daily
survival probability (p). Given these thermal-response functions, we can compute
R0 as a function of temperature, and thus produce global and continental-scale maps
of malaria potential, both under current and projected climatic conditions.

We extended the Ross–Macdonald framework to include a basic model for
immature Anopheles dynamics. Using this augmented Macdonald framework, we
show that the temperature-dependence of R0 may vary appreciably, depending upon
how air and water temperature relate. This can significantly affect predicted malaria
potential.

Precipitation and hydrodynamics are also fundamentally important to vectorial
capacity. We examined how they may be reasonably modeled at the small scale to
predict Anopheles abundance. We incorporated the effect of different air and water
temperatures into the augmented Ross–Macdonald framework to generate malaria
potential maps under various climate change scenarios. The results show that the
populations of western Africa may be less susceptible to malaria under climate
change, but those in the east may be more vulnerable. This finding is consistent with
several more sophisticated modeling studies [92, 106]. Incorporating precipitation
more directly into large-scale malaria potential maps is likely essential to reach a full
understanding of the effect of global warming on malaria potential, but we defer that
task to the future.

Finally, a variety of other phenomena affect malaria, and it is essential to at
least mention some of these factors. From our discussion on modeling anopheline
habitat, rainfall, and water heat- and volume-balance, we have already seen that
water temperature may differ from ambient, and this difference can affect the
optimum temperature for malaria transmission. In our discussion of mapping
malaria potential under the Ross–Macdonald framework, we also demonstrated
the importance of monthly temperature variations. It comes as no surprise then
that daily variations in both ambient and water temperature also appreciably affect
malaria potential, as has been demonstrated in several recent experimental and
theoretical works [12, 14, 79, 80, 82]. Overall, temperature variability seems likely to
asymmetrically affect malaria potential such that transmission is reduced at higher
temperatures, while it may have a smaller effect at colder temperatures [12].

As elaborated in Sect. 4.2.3, the unique immunology of malaria is central to its
epidemiology. But this fact has generally been ignored in mathematical malaria
models that focus on the potential impact of climate change (but see, e.g., [106] for
an exception). However, there exists a substantial mathematical literature focused on
this aspect of the disease, dating at least to the influential Garki Model developed by
Dietz et al. [36]. More recent works are [42, 47–49, 51, 52]. A full accounting for the
interaction between climate and immunity is likely to be a fundamental challenge
for the future.
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Chapter 5
A Risk-Structured Mathematical Model
of Buruli Ulcer Disease in Ghana

Christina Edholm, Benjamin Levy, Ash Abebe, Theresia Marijani,
Scott Le Fevre, Suzanne Lenhart, Abdul-Aziz Yakubu, and Farai Nyabadza

Abstract This chapter discusses a mathematical model for the spread of an infec-
tious disease with transmission through a pathogen in an environment, including
the effects of human contact with the environment. The model assumes a structured
susceptible population consisting of both “low-risk” and “high-risk” individuals. It
also includes the effects of shedding the pathogen by the infected population into the
environment. The model has a disease-free equilibrium state, and a linear stability
analysis shows three possible transmission routes. The model is applied to Buruli
ulcer disease, a debilitating disease induced by Mycobacterium ulcerans. There is
some uncertainty about the exact transmission path, but the bacteria is known to
live in natural water environments. The model parameters are estimated from data
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on Buruli ulcer disease in Ghana. This chapter includes a sensitivity analysis of the
total number of infected individuals to the parameters in the model.

Keywords Infectious disease · Buruli ulcer disease · Pathogen in environment ·
Risk-structured model · Ghana

5.1 Introduction

Modeling infectious diseases with an indirect transmission route through pathogens
in the environment is an area of significant current interest. The mechanisms and
types of interaction terms to include vary depending on the disease. Some diseases
have both direct transmission via infected individuals and indirect transmission
via a contaminated environment. For example, cholera is frequently modeled with
both direct and indirect transmission due to cholera vibrios in drinking or bathing
water [20, 31, 43]. For Johne’s disease in dairy cattle, the length of time that the
pathogen (Mycobacterium avium subspecies paratuberculosis) can survive in a
pasture depends on temperature. In fact, this disease has several transmission routes
besides the environmental one, such as vertical transmission and contaminated milk
and colostrum [11, 28]. As Breban showed, the length of time that a pathogen can
survive in the environment gives an indication which transmission routes should be
included in a model [8].

In this chapter, we turn our attention to diseases that have only one transmission
route, which is indirect through pathogens in the environment. We illustrate this case
with data and simulations for Buruli ulcer disease.

Outline of the Chapter Section 5.2 gives details of the Buruli ulcer (BU) disease
and describes results of earlier research. Section 5.3 introduces a mathematical
model that applies to BU and similar diseases. The model consists of five coupled
ordinary differential equations, one for each of five state variables. The state
variables are the number of susceptible individuals at “high” risk for coming into
contact with the pathogen, the number of susceptible individuals at “low” risk for
coming into contact with the pathogen, the number of infected individuals, the
number of individuals undergoing treatment, and the concentration of pathogens
in the environment. The model includes the effects of shedding by the infected
population of the pathogen into the environment. Section 5.4 gives some basic
properties of the model. The disease-free equilibrium (DFE) state is introduced in
Sect. 5.5, and the basic reproductive number in Sect. 5.6. Section 5.7 is devoted
to a linear stability analysis of the DFE state. The model involves a number of
parameters, which are estimated in Sect. 5.8 from data for BU disease in Ghana.
Section 5.9 contains numerical results based on these estimated parameter values.
The endemic equilibrium state is discussed in Sect. 5.10. Section 5.11 contains a
sensitivity analysis for the total number of infected individuals to variations in the
parameters. This chapter concludes with a summary and outline of future work in
Sect. 5.12.
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5.2 Buruli Ulcer Disease

Buruli ulcer (BU) disease has been reported in over 30 countries on four continents.
It is not limited to tropical environments, as can be seen in Fig. 5.1, but most cases
occur in Africa, especially in the western and central regions [51]. Cases of BU
disease are concentrated in rural areas near still-water sources [21, 37, 40]. After
tuberculosis and leprosy, BU disease is the third most common human mycobacte-
rial disease, and after tuberculosis the second most prevalent mycobacterial disease
in Ghana [2].

Cases of BU disease were recorded as far back as 1897 [9], but more extensive
research on this disease was not completed until the 1940s [19, 23, 37]. In the 1980s,
BU disease gained attention because of an increase of cases, possibly linked to
changes in the environment [30]. In 1998, the World Health Organization (WHO)
created the Global Buruli Ulcer Initiative, which implemented control programs that
contributed to the reduction of cases in more recent years [37, 47]. We also note that
climate plays a role in BU disease due to the fact that the bacteria live in water
environments, which are affected by climate change [32, 46].

Mycobacterium ulcerans (MU), which causes dermal BU disease, is becoming a
debilitating affliction in many countries worldwide. MU causes an infection of the
skin and soft tissue, which can lead to permanent disfigurement and disability [52].
The disease first presents itself as a small bump under the skin, varying in
appearance based on the strain of MU, and then, if left untreated, BU disease can
progress to a large lesion, possibly requiring amputation [14]. MU is slow-growing
but does not grow in moving water [37]. MU can adapt to a dark environment; it has
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Fig. 5.1 Global Buruli ulcer disease case map. Data from the World Health Organization (WHO)
(http://apps.who.int/gho/data/node.main.A1631)
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been identified in various organisms around the water such as fish, plants, or insects.
There are different strains, which may affect the likelihood of human infection;
in general, low-risk strains are prevalent in America and Asia, while Africa and
Australia have more high-risk infective strains [37].

Transmission of MU from the environment to humans remains a topic of
uncertainty, despite much recent research. Portaels et al. [36] put forth the idea
that water bugs from several plants in swamps in Benin and Ghana ingest water-
filtering organisms with concentrations of MU. Such bugs would infect humans by
biting, and the trauma associated with the bite seems to be necessary for infection.
Subsequently, various scientific groups studied environments with hosts and water
bugs to explore the possibility that water insect vectors are needed for infection.
Marsollier et al. [27] conducted a study of water bugs biting the tails of mice that
had been submerged in water and interpreted the development of BU disease in the
mice as evidence of transmission by insect bite. De Silva et al. [10] reported that
there is no human-to-human infection, and that water bugs previously associated
with BU infection do not deliberately bite humans. Benbow et al. [3, 4] expressed
caution due to the uncertainty about the transmission of MU.

Williamson et al. [48] conducted a study in Ghana focusing on both endemic
and non-endemic villages. Oftentimes, villages in the study were relatively close,
using the same watershed, but one village would have BU disease, while the
other villages would not. They concluded that key elements of MU infection and
transmission are human contact with water and focal demography. Marion et al. [26]
investigated MU dynamics in Cameroon using mice to explore water bugs as vectors
for MU. Williamson et al. [49] also showed that people do contribute to the spread
and distribution of MU in the environment. In a follow-up study, Williamson et
al. [50] investigated whether skin abrasions would lead to a BU infection in pigs
and humans. They found that, to become infected, there needed to be an injection
underneath the skin, which could result from specific puncture wounds or possibly
an insect bite. Most recently, Morris et al. [33] studied the location and spread of MU
and discovered that MU infects many organisms, none of which had been considered
hosts, and these organisms are critical to the MU life cycle. They also found that,
since MU does not reproduce rapidly, the bacterium had evolved to be able to move
between various sources such as humans.

The idea of water insect vectors (water bugs) having a role in infection has
been used in two epidemiological models with systems of ordinary differential
equations [7, 34]. These models include transmission from bites of water bugs,
the pathogen in the environment, and fish populations that prey on infected water
bugs. Garchitorena et al. [17] considered different routes of transmission, using
Cameroon data and spatial statistical models. Water bugs infecting humans were
included as a mode of transmission along with environmental contamination. They
concluded that environmental transmission was more important than transmission
through water bugs. Lastly, we mention the application of an individual-based model
by Garchitorena et al. [16], which focuses on the economic impacts of the disease
on population-level inequalities, without the inclusion of water bugs.
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5.3 Model Formulation

In this section, we formulate a model to study how increased risk of a human
subpopulation contact with an environment containing a pathogen affects the spread
of a disease, with only indirect transmission.

The state of the system is described at any time by five variables. Two state
variables are SL, the number of susceptible individuals (susceptibles) at “low” risk
of infection from contact with the pathogen in the environment, and SH , the number
of susceptibles at “high” risk of infection from contact with the pathogen in the
environment. The three additional state variables are I , the number of infected
individuals; T , the number of infected individuals undergoing treatment; and B,
the pathogen density in the environment; see Table 5.1.

The state variables change over time due to various interactions among the
classes of individuals and the environment, as indicated in the diagram in Fig. 5.2.
Low-risk susceptibles can transfer into the class of high-risk susceptibles and
vice versa. Recruitment into the class of low-risk susceptibles takes place through

Table 5.1 The model variables and their description

Variable Description

SL Number of susceptible individuals at low risk

SH Number of susceptible individuals at high risk

I Number of infected individuals

T Number of infected individuals undergoing treatment

B Concentration of pathogen in the environment

Fig. 5.2 Flow diagram for the BU disease model. Solid lines represent flows between classes, the
straight dashed line represents the infected class shedding pathogen into the environment, and the
solid curved lines represent the source of new infections resulting from susceptibles interacting
with the pathogen in the environment



114 C. Edholm et al.

external sources like birth and immigration. There is indirect transmission into the
infected class when individuals from either class of susceptibles make contact with
the environment. Since BU disease is treatable, infected individuals transition into
the class of individuals being treated, from which they transition back into the either
of the two susceptible classes. Lastly, individuals may die a natural death at every
stage.

We assume that the class of pathogens in the environment has logistic growth.
It is possible that the carrying capacity changes over time due to variations in
rainfall, temperature, etc. The pathogens in the environment spread the disease to
susceptibles when the latter come into contact with the environment. Importantly,
the infected class can also shed the pathogen into the environment. The pathogen in
the environment decays at its natural rate.

These interactions are captured in the following system of ordinary differential
equations (ODEs, the prime indicates differentiation with respect to time):

S′L = −
(
α1 + βL

B

k + B
+ μ

)
SL + α2SH + (1− ρ)τT + πh,

S′H = α1SL −
(
α2 + βH

B

k + B
+ μ

)
SH + ρτT ,

I ′ = βL

B

k + B
SL + βH

B

k + B
SH − (μ+ γ ) I,

T ′ = γ I − (μ+ τ) T ,

B ′ = r

(
1− B

K1(t)

)
SH + η I − δ B.

(5.3.1)

The parameters in the model are described in Table 5.2.

Table 5.2 The model parameters and their description

Parameter Description

α1 Transition rate from SL to SH

α2 Transition rate from SH to SL

βL Transmission rate from SL to I

βH Transmission rate from SH to I

τ Recovery rate with treatment

ρ Proportion of those transitioning out of T into SH

γ Treated rate for infected individuals

μ Natural death rate

πh Recruitment of susceptibles

K1 Carrying capacity of B in the environment

r Intrinsic growth rate of B

η Shedding rate of infected individuals

δ Rate of decay of B

k Half-saturation constant
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5.4 Basic Properties

Here, we examine some basic properties of the system (5.3.1). The total human
population is made up of susceptibles, infected individuals, and infected individuals
undergoing treatment, so if N(t) is the total number of individuals, then

N(t) = SL(t)+ SH (t)+ I (t)+ T (t)

at any time t . Adding the ODEs for SL, SH , I , and T , we obtain an ODE for N ,

N ′ = πh − μN.

Since πh is constant in time, the equation is readily integrated,

N(t) = πh

μ
+
(
N(0)− πh

μ

)
e−μt .

In particular,

N∞ = lim
t→∞N(t) = πh/μ,

so πh = μN∞. Furthermore, if 0 < N(0) ≤ N∞, then 0 < N(t) ≤ N∞ for all
t > 0.

If there exist positive constants K2 and K3 such that K2 ≤ K1(t) ≤ K3 for all
t > 0, then B satisfies the differential inequality

B ′ ≤ r(1− B/K3)B − δB + ηN∞.

Let B∞ = (K3/2r)
(
r − δ + ((r − δ)2 + 4ηrN∞/K3

)1/2
)

. Note that B∞ is the

stable equilibrium solution of the differential inequality for B with strict equality
(i.e., ≤ replaced by =). If 0 < B (0) ≤ B∞, then 0 < B(t) ≤ B∞ for all t > 0.

Hence, any solution of the system (5.3.1) that starts inside the domain Ω ,

Ω =
{
(SL, SH , I, T , B) ∈ R

5+ | 0 < SL + SH + I + T ≤ N∞, 0 < B ≤ B∞
}

remains inside Ω as time progresses [39].

5.5 Disease-Free Equilibrium

We assume for simplicity that the carrying capacity K1 of the pathogen in the
environment is constant.
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The system (5.3.1) has a disease-free equilibrium (DFE) solution, where every
human is susceptible and there are no Mycobacterium ulcerans in the environment.
This solution corresponds to the point P0 in state space,

P0 =
(
S∗L, S∗H , 0, 0, 0

)
, (5.5.1)

where

S∗L =
α2 + μ

α1 + α2 + μ
N∞, S∗H =

α1

α1 + α2 + μ
N∞.

Here we have used the relation πh = μN∞. In Sect. 5.8, we will use estimated
values for the parameters for BU disease in Ghana; in that case, α2 + μ > α1, so
S∗L > S∗H .

5.6 Basic Reproduction Number

To find the basic reproduction number, R0, we use the next-generation matrix
approach [12, 13, 44, 45]. We rewrite the system (5.3.1) as a system of equations for
the vectors x and y,

x =
(
I

B

)
, y =

⎛
⎝

SL

SH

T

⎞
⎠ .

Assuming that shedding is not a new infection, we are dealing with a system of the
form

x′ = F (x, y)− V (x, y),

y′ = g(x, y),

where F incorporates new infections and V transition terms,

F =
(
βL

B
k+B

SL + βH
B

k+B
SH

r
(

1− B
K1

)
B

)
, V =

(
(γ + μ)I

−ηI + δB

)
.

(Later, we will compare with the case where shedding is considered a new infection.)
The Jacobian matrices F and V associated with F and V , respectively, at P0 are

F =
(

0 (βLS
∗
L + βHS∗H )/k

0 r

)
, V =

(
γ + μ 0
−η δ

)
.
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Since F is nonnegative and V is a nonsingular M-matrix, the basic reproduction
number R0 is the spectral radius of FV −1. Thus,

R0 = R0,B +R0,L +R0,H ,

with

R0,B = r

δ
, R0,L = βLη

(γ + μ)δk
S∗L, R0,H = βHη

(γ + μ)δk
S∗H .

That is, R0 is determined by the pathogen growth rate in the environment and
the transmission rates from the pathogen to the susceptible classes SL and SH . If
there is no shedding by the infected individuals into the environment (η = 0), then
R0 = R0,B . In this case, if r > δ, the disease will persist as the pathogen grows in
the environment. If there is shedding from infected individuals into the environment
(η > 0), the two additional terms characterize how the susceptible classes become
infected. Specifically, the term R0,L contains the parameters that account for the
transition from low-risk susceptible to infected individuals; the sum γ + μ is the
rate at which the infected individuals leave the infected class. Meanwhile, βL/k

relates to the transition of susceptibles into the infected class as a result of an
interaction with the pathogen in the environment. Lastly, η/δ is the fraction of the
rate of infected shedding MU over the pathogen decay rate. The interpretation of
the term R0,H is similar.

5.7 Stability Analysis

The following local stability result follows from [44, Theorem 2].

Theorem 1 If R0 < 1, the disease-free equilibrium state P0 is locally asymptoti-
cally stable. If R0 > 1, P0 is unstable.

In other words, if R0 < 1, a small outbreak of the BU disease will be eradicated in
the course of time, but if R0 > 1, the BU disease will persist.

Clearly, R0 > 1 if any one of R0,B , R0,L, or R0H is greater than 1. Hence, in
addition to the pathogen concentration in the environment, both high- and low-risk
transmission paths must be controlled in order to eliminate the BU disease.

The next theorem addresses the global stability of P0.

Theorem 2 If R0 < 1, the disease-free equilibrium state P0 is globally asymptoti-
cally stable in Ω .

In other words, if R0 < 1, the BU disease will be eradicated.

Proof Again using the x and y notation, we let Q = ωT V −1x, where ωT is the left
Perron eigenvector of V −1F corresponding to the eigenvalue R0. (Recall that V −1F
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is irreducible.) Proceeding as in Ref. [38], we write the x differential equations in
the form

dx

dt
= F (x, y)− V (x, y) = (F − V ) x − f (x, y),

where F and V are the Jacobian matrices associated with F and V , respectively, at
P0, and

f (x, y) =
((

βL

(
S∗L/k − SL/(k + B)

)+ βH

(
S∗H/k − SH/(k + B)

))
B

rB2/K1

)
.

Clearly, rB2/K1 ≥ 0. Let A = min {βL, βH }. Since S∗+S∗H = N∞ and SL+SH ≤
N∞,

(
βL

(
S∗L
k
− SL

k + B

)
+ βH

(
S∗H
k
− SH

k + B

))
B ≥ AB

k + B
(N∞ − (SL + SH )) ≥ 0.

Hence, f (x, y) ≥ 0. It follows that the vector Q satisfies the differential inequality

dQ

dt
≤ (R0 − 1) ωT x − ωT V −1f (x, y) ≤ (R0 − 1) ωT x ≤ 0 in Ω.

Hence, Q is a Lyapunov function. The statement of the theorem follows from
LaSalle’s invariance principle [22].

Recall that, in the definition of F and V , we assumed that shedding was not a
new infection. If shedding is regarded as a new infection, then

F =
(

0
(
βLS

∗
L + βHS∗H

)
/k

η r

)
, V =

(
γ + μ 0

0 δ

)
,

and R̂0 is the positive root of the quadratic equation

f (λ) = λ2 −R0,Bλ− (R0,L +R0,H ) = 0.

From the signs of the coefficients, this equation has a unique positive root, R̂0. If
R̂0 < 1, then f (1) > 0 and R0 = R0,B +R0,L +R0,H < 1. Similarly, if R̂0 > 1,
then f (1) < 0 and R0 = R0,B +R0,L +R0,H > 1.

Note that f (1) = 1−(R0,B+R0,L+R0,H ) = 1−R0, giving the same threshold
as derived for R0. Thus, using R̂0 instead of R0, Theorems 1 and 2 remain true
when shedding is regarded as new infection.

In the next section, we calculate the basic reproduction numbers R0 and R̂0 for
BU disease in Ghana, using estimated parameter values obtained from actual data.
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5.8 Parameter Estimation

Table 5.3 shows the monthly number of BU disease cases in Ghana for the period
2008–2015. The last column lists the total population of Ghana during the same
period.

Figure 5.3 shows the total population, together with a best linear fit.
We use the slope of the linear function to represent the growth of susceptibles, πh.

For the natural death rate, we use the life expectancy in Ghana, which is approx-
imately 61 years [41]; hence, μ = 1/(61 × 365), using days as the underlying
time unit. The remaining parameters in the model are estimated by minimizing
the L2 norm of the difference between the simulation results and the data at the
corresponding time points,

J (θ) = ‖MI(θ)−MI ∗‖2.

Here, θ is the vector of (unknown) parameter values, MI(θ) is the vector with the
number of monthly infections of BU disease in the numerical simulation, and MI ∗ is
the vector with the corresponding data. The minimization is done with the function
fmincon in the MATLAB optimization toolbox. Since fmincon is a local solver,
the multistart algorithm allows for a full exploration of the parameter space, using a
large number of starting points to find the global minimum. The function fmincon
also allows for linear inequality constraints on some of the parameters, which we
use to mimic ecological constraints. For instance, with respect to the transitions
between SL and SH , we assume that there are far fewer people transitioning to an
area, job, or lifestyle where they will experience a drastic increase in exposure to
the water environment. We model this constraint by imposing the constraint α1 <

0.2α2 as part of the parameter-fitting process. Additionally, the SH class contains
susceptibles with increased water contact. Assuming that their transmission rate to
infected is much greater than that of susceptibles with normal water contact, SL, we
impose the constraint βL < 0.2βH on the transmission rates.

Using a total population figure of 23 million individuals, we start the mini-
mization procedure by assigning 2% of the individuals to the class of high-risk
susceptibles SH and set the initial values B(0) = 1000, I (0) = 0, and T (0) = 0.
The resulting estimates of the parameter values are listed in the third column of
Table 5.4.

5.9 Numerical Results

Figure 5.4 shows the number of infected individuals computed with the parameter
values given in Table 5.4 and the monthly data of infected individuals given in
Table 5.3. The computational results match the data quite well; therefore, it is
reasonable to adopt the numerical values of the parameters given in Table 5.4.
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Fig. 5.3 Scatterplot of the total population (in millions) of Ghana for the period 2008–2015,
together with a best linear fit

Table 5.4 Model parameters and their estimated values obtained with the fmincon function in
the MATLAB optimization toolbox

Parameter Description Value

α1 Transition rate from SL to SH 0.00065

α2 Transition rate from SH to SL 0.1

βL Transmission rate from SL to I 1.00× 10−10

βH Transmission rate from SH to I 1.47× 10−5

τ Recovery rate with treatment 0.17097

ρ Proportion of those transitioning out of T into SH 0.89916

γ Treated rate for infected individuals 0.01000008

μ Natural death rate 1/(61× 365)

πh Recruitment of susceptibles (1/365)× 106

K1 Carrying capacity of B in the environment 9671.63899

r Intrinsic growth rate of B 0.001000073

η Shedding rate of infected 3.37× 10−6

δ Rate of decay of B 0.00563

k Half-saturation constant 0.2500004

We remark that the same procedure applied to a model with a single susceptible
population did not fit the data as well as the model with two susceptible populations.

Connecting back to Sect. 5.5, we calculate the value of the basic reproductive
numbers with these parameter values. If shedding is considered a new infection, then
R̂0 = 1.2644; otherwise, R0,B = 0.1778, R0,L = 0.0014, and R0,H = 1.3725,
giving R0 = 1.5518. Therefore, the disease-free equilibrium is unstable in both
cases.
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Fig. 5.4 BU disease cases in Ghana for the period 2008–2015. Blue curve: computed from
Eqs. (5.3.1); red dots: actual monthly data from Table 5.3

5.10 Endemic Equilibrium

As before, we assume for simplicity that the carrying capacity K1 of the pathogen
in the environment is constant.

The model (5.3.1) admits an endemic equilibrium state, in addition to the disease-
free equilibrium state discussed in Sect. 5.5. It satisfies the system (5.3.1) where the
left-hand sides are all zero and is represented by the point P1 in state space,

P1 = (S∗∗L , S∗∗H , I ∗∗, T ∗∗, B∗∗). (5.10.1)

For BU disease in Ghana, using the parameter values given in Table 5.4, we find

P1 = (27, 000, 000, 3344, 32, 118, 527, 1, 878, 129, 169, 669).

The Jacobian of the system (5.3.1) at P1 (omitting double asterisks) is

⎛
⎜⎜⎜⎜⎜⎝

−(α1 + βL
B

k+B
+ μ) α2 0 (1− ρ)τ −βL

k
(k+B)2 SL

α1 −(βH
B

k+B
+ α2 + μ) 0 ρτ −βH

k
(k+B)2 SH

βL
B

k+B
βH

B
k+B

−(γ + μ) 0 0

0 0 γ −(τ + μ) 0
0 0 η 0 (1− 2B/K1)r − δ

⎞
⎟⎟⎟⎟⎟⎠

.
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With the values found above, the eigenvalues of the Jacobian are all negative, which
indicates that the endemic equilibrium is stable. Note, however, that the equilibrium
values are far from the current BU situation in Ghana.

5.11 Sensitivity Analysis

We performed a global sensitivity analysis, using the total number of infected
individuals I as the outcome variable. We applied Latin Hypercube Sampling
(LHS) to sample the parameter space and Partial Rank Correlation Coefficients
(PRCC) to evaluate the sensitivity of the outcome variable to variations in the input
variables [6, 25]. We included all the parameters from Table 5.2, except μ and πh

which are known demographic parameters for Ghana. Each parameter was varied
over an interval from 50% below to 50% above the value given in Table 5.4 with
a uniform probability distribution over the interval. Following the recommendation
in [29], we took N > 4K/3 draws for the LHS sampling scheme, where K is the
number of input parameters; in our case, K = 12 and N = 50.

PRCC is a powerful technique for assessing the monotonicity of the relationship
between the total number of infected individuals and a particular parameter while
holding the remaining parameters constant. Unlike the Pearson product–moment
correlation, PRCC provides meaningful results even when the relationship is not
linear. We applied the Fisher transformation to the PRCC as in [15, 24]. We
calculated the PRCC between the output (total number of infected individuals) and a
parameter ρ̂i , i = 1, . . . , K , using the partial regression approach described in [25].
The Fisher transformation is

Fi = 1

2
log

(
1+ ρ̂i

1− ρ̂i

)
,

and Fi follows an approximate Gaussian distribution with zero mean and variance
(N − K − 3)−1 if the true mean of ρ̂i is 0 [24]. To test the significance of the ith
PRCC, we calculated the p-values corresponding to ρ̂i by calculating the probability
that the absolute value of a randomly sampled value from the standard Gaussian
distribution exceeds |Fi |

√
N −K − 3. Since we performed multiple (K = 12)

hypothesis tests, we corrected the resulting p-values using the false discovery rate
(FDR) method of [5]. PRCC values with an adjusted p-value less than 0.01 are
considered significantly different from 0. The results of the sensitivity analysis are
displayed in Table 5.5; statistically significant PRCC values are indicated in red.

Note that the PRCC values for α1, α2, βH , γ , δ, and k are statistically significant
based on the adjusted p-values. The parameters α1 and βH show significant positive
correlation with the total number of infected individuals, while α2, γ , δ, and k show
significant negative correlation with the number of infected individuals.

Next, we ranked the six parameters identified as significant in Table 5.5 with
respect to their correlation with the total number of infected individuals, using
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Table 5.5 Model
parameters, corresponding
PRCC and FDR adjusted
p-values resulting from the
sensitivity analysis

Variable PRCC p-value

α1 0.9299 <0.0001

α2 −0.9426 <0.0001

βL −0.2334 0.2634

βH 0.9243 <0.0001

τ −0.2214 0.2650

ρ −0.0584 0.7699

γ −0.4902 0.0027

η −0.0487 0.7699

δ −0.9292 <0.0001

K1 −0.1791 0.3697

r 0.1327 0.5080

k −0.4882 0.0027

Significant values (p < 0.01) are
highlighted in red

Table 5.6 FDR adjusted
p-values using comparisons
of Fisher transforms of the
PRCC values

α2 βH γ δ k

α1 <0.0001 0.9279 <0.0001 <0.0001 <0.0001

α2 <0.0001 <0.0001 0.7435 <0.0001

βH <0.0001 <0.0001 <0.0001

γ <0.0001 0.9910

δ <0.0001

pairwise testing of all the
(6

2

)
PRCC values. To evaluate the difference ρ̂i − ρ̂j ,

we use Fi −Fj , which follows an approximate Gaussian distribution N(0, σ 2) with
σ 2 = 2(N − K − 3) if the true PRCC values are equal. Thus, pairwise difference
p-values are calculated and FDR corrections are applied accordingly as described
above for PRCC significance testing. The results are given in Table 5.6; PRCC
values that differ significantly are indicated in red.

We were unable to differentiate the PRCC values with the total number of
infected individuals of the parameter pairs {α1, βH }, {α2, δ}, and {γ, k}; however,
all other pairs are identified as significantly different. The PRCC values given
in Table 5.5 yield the following ranking of the parameters with respect to their
correlation with the total number of infected individuals: (1) α1 and βH have a
strong positive influence on the output, (2) α2 and δ have a strong negative influence
on the output, (3) γ and k have a moderate negative influence on the output.

The strong influence of α1 and βH is to be expected; α1 moves individuals
into SH , and βH is a transmission rate from bacteria into the environment. On the
other hand, the moderate influence of α2 and δ can be explained by the fact that α2
moves individuals out of SH into SL and δ is a decay rate for the bacteria in the
environment which is responsible for transmission.
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5.12 Conclusions

In this chapter, we studied a Buruli ulcer (BU) disease model where susceptibles
are separated into two classes based on their risk for exposure to a pathogen in
the environment. The model admits three transmission paths, and the resulting
expression for the basic reproduction number R0 consists accordingly of three
parts. The model admits a disease-free equilibrium (DFE) state, which is unstable
whether or not the shedding of the pathogen into the environment is considered a
new infection in the Next Generation Matrix Method.

We applied the model to the situation in Ghana, using monthly data for the BU
disease for the period 2008–2015. The data were supplied by the Ghana Health
Service. Ghana is a BU endemic region, albeit the number of new BU infections
appears to be decreasing. From the data we estimated values of all the model
parameters. The results of numerical computations showed a reasonable fit with the
data. However, it should be kept in mind that the model may not accurately represent
the disease transmission mechanisms and the environmental conditions.

When shedding is regarded as a new infection, we obtain the value R̂0 = 1.2644
for the basic reproduction number. However, when shedding is not regarded as a new
infection, we obtain the value R0 = 1.5518, and each of the three constituent parts
of R0 is less than one. Therefore, targeting high-risk groups such as people in rural
areas with no access to a continuous supply of clean water should be considered in
formulating public health policies to reduce the impact of BU disease.

A global sensitivity analysis of the impact of parameters on the total number
of infected individuals leads to the following conclusions about correlations. The
transmission rate of new infections from both susceptible classes has a high
positive impact on the output. As expected, reduction of human contact with MU-
contaminated water leads to fewer infections. Additionally, we found a strong
negative influence associated with the decay rate of MU in the environment,
implying that a reduction of the amount of MU in the environment reduces the
number of infections. The transition rates between the two susceptible classes also
strongly influence the output, since fewer susceptibles in the higher water-contact
class lead to reduced contact with the pathogen.

Future work will include a more detailed study of BU disease dynamics.
Specifically, data at a smaller spatial scale, like villages or small towns, will enable
a better representation of the interaction of humans and their water environment.

The model framework presented in this chapter, with two classes of susceptibles
based on the risk of contact with a pathogen in the environment, can be applied to
a variety of diseases. This type of indirect transmission may be strongly affected by
changes in temperature, precipitation, and other environmental features. Much of the
research connecting climate change and infectious diseases has focused on the role
of temperature, more than other environmental features [1]. But as some recent work
has demonstrated, there are many links between climate change and the dynamics
of infectious diseases requiring attention. For example, warmer temperatures and
heavy rainfall are linked to diarrheal diseases through contaminated water and
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undercooked seafood [35]. Similarly, a loss of biodiversity affects the spread of
infectious diseases among wildlife [42].

Environmental health and the health of wildlife, domestic animals, and humans
are all part of One Health—the concept that the health (and ultimate survival) of
any one group is intimately related to the health of the others. Viewing the effects
of climate change and the dynamics of infectious diseases through the lens of One
Health is one of the urgent challenges facing the scientific community.
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Chapter 6
Data-Informed Modeling in the Health
Sciences

Antonios Zagaris

Abstract The adoption of automation and technology by health professionals is
triggering an explosion of databases and data streams in that sector. The emergence
of this data torrent creates the pressing need to mine it for value, which in turn
requires investment for the development of modeling and analysis tools. In view
of this, dynamicists are presented with the terrific opportunity to enrich their
discipline by supplying it with new tools, expanding its scope, and elevating its
social impact. This chapter is written in that spirit, examining three concrete
case studies encountered in the field: quantifying the salmonellosis risk posed by
distinct food sources, assimilating genetic data into a dynamical model for avian
influenza transmission, and statistically decontaminating gas chromatography/mass
spectroscopy time series. We review available prototypical models and build on
them guided by data and mathematical abstraction, demonstrating in the process
how to root a model into data. This takes us quite naturally into the realm of
probabilistic and statistical modeling and reopens a decades-old discussion on the
role of discrete models in applied mathematics. We also touch briefly on the timely
subject of mathematicians being employed as such outside math departments and
attempt a short outlook on their prospects and opportunities.

Keywords Probabilistic and data-driven modeling · Parameter inference ·
Extramural mathematics · Infection source attribution · Mathematical
epidemiology · Data decontamination · Bayesian hierarchical models

6.1 Introduction

May you live in interesting times. There is, perhaps, no better description of this age
in mathematics than this apocryphal mixed blessing. Broadly seen, our discipline
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remains a cornerstone of civilization, its place in the pantheon of human intellect
as secure as ever. Mathematics continues to push boundaries, inspire, and bewilder,
and it will do so for as long as it can attract young talent. Applied mathematicians,
however, are necessarily caught up in the frenzy of our times: data. Although
the scientific enterprise—let alone daily life—revolves around data collection and
analysis, mathematics does not: at best, it handles data and then again not very often.
Should we strive to incorporate data into everyday mathematical practice? And what
would that entail?

The situation may seem unprecedented, but a parallel can be drawn to the arrival
of cheap computational power. On the one hand, the study of many analytical tools
of the past was so tied to computational limitations that the removal of the latter
caused many tools to fall by the wayside. On the other hand, an entire cocoon
of analysis grew around computers to form the uniquely powerful tool known as
scientific computing. (And if truth be told, old tools still nod from the wayside
every so often, with a curious tenacity.) These developments reestablished the
social relevance of mathematics and created vast opportunities for mathematical
practitioners, attracting talent, rejuvenating academic programs, and enriching
scholarship. Numerical mathematics today is such an integral part of mathematical
reality that it is hard to imagine a time when it was not.

Importantly, the seminal character of that advent lies not in that it sped up
calculation but that it enabled it, precipitating a steep increase in the complexity
of problems amenable to modeling and analysis and a commensurate expansion
into other fields. Technology adoption depends on the end user, however, and math-
ematicians embraced computers to transgress insurmountable analytic difficulties
and not as a stratagem for expanding mathematical reign. This is a salient difference
with the present, as data is not a mathematical tool. And yet, it unlocks the same
doors: relevance, expansion, improved interdisciplinarity, and the promise of new
mathematics, science, and technology. The sooner this truth is embraced, the more
effectively that promise can be fulfilled.

This chapter aims to present real-world examples of modeling driven by specific
data types, and it primarily targets junior dynamicists and mathematical analysts.
The problems we treat here were encountered in the field by the scientists acknowl-
edged in this chapter, and modeling was done in full collaborative mode and outside
the confines of a mathematical faculty. The material is far more about answering
questions with mathematics than in mathematics, reflecting the author’s belief that
modeling starts with a question and not with an expertise. This attitude is evident
in many researchers who use mathematics as a probe, prioritize problem over tool,
and appropriate theory on demand. The most extraordinary among them are active
at both ends, resembling primary producers in the mathematical ecosystem, who
keep generating mathematics by doing science. This chapter makes no such claim;
instead, it highlights a particular mode of thinking and the substantial challenges a
data-minded modeler is likely to encounter. By bringing such considerations to the
fore, we hope to make mathematics of planet earth viable in the here and now, so
that we can dream of mathematics on other planets in the near future.
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Outline of the Chapter We start in Sect. 6.2 with a historical dataset of salmonel-
losis (a disease caused by ingested Salmonella bacteria), which lists human cases
and data on food-related Salmonella sources. We develop a stochastic model
to formulate and calibrate a source attribution problem: Which food source(s)
contribute the most infections? In Sect. 6.3, we explore the problem of resolving
avian influenza transmission and incorporating genetic evidence into the solution.
Using a Bayesian scaffold, we differentiate individual infectors and incorporate
genetic data in a natural manner. In Sect. 6.4, we focus on a large dataset of
molecular count time series and ask the question: Why do standard models fail
to describe these data? Using signal processing and statistical tools, we identify
the culprit in the form of a molecular contaminant and decontaminate the samples
algorithmically.

6.2 Source Attribution

Our first example comes from mathematical epidemiology, a classical field tackling
questions on the spread of infectious diseases. Most dynamicists are familiar with
SIR models [20], which describe the (spatio)temporal evolution of epidemics. Our
task in this section is somewhat different, in that we are not asked to predict how
a disease spreads but to assess the relative importance of distinct transmission
pathways. We start with a historical dataset of salmonellosis, which lists human
cases and data on food-related Salmonella sources. To assess the infectious potential
of those pathways, we develop below a toy model to attribute cases to sources; the
more cases a source is projected to cause, the more important the corresponding
pathway. Problem definition is a sizable part of the problem and the main motivation
for this section, which is meant as a springboard for exploring the chapter theme.

Source attribution has a celebrated history, dating back to John Snow [26],
who famously traced a cholera outbreak to a public water pump; see [30] for
a critical exposition. Since that prototypical scientific whodunit, attribution has
relied both on lab and field work and on modeling—the former produces data,
which the latter transforms to quantifiable, actionable insights. Source attribution
is today also part of the major epidemiological theme of food safety, which informs
regulatory frameworks, trade, and policy. For an extreme example of how that
theme impacts society, we refer the interested reader to the recent outbreak of
E. coli O104:H4 and its effect on trade and international relations [19]. Even
in the absence of catastrophic events, attribution serves to identify major drivers
of pathogen transmission in logistics chains and to improve public health by
shaping meaningful intervention strategies. Within that field, modeling is perceived
as an exploratory analytical tool that provides causative clues, identifies data
gaps and intervention points and, importantly, predicts the efficacy of envisioned
intervention.
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6.2.1 Data and Modeling

We start with a few thoughts on the problem of assigning infection events to
specific infectors. Infection plainly presupposes transmission, which is the main
theme of the aforementioned SIR framework. In models of that variety, the modeler
partitions populations meaningfully, for example, into susceptible and infected sub-
populations, and models the dynamic interaction between them. These interactions
include an element of chance (stochasticity), which however often averages out over
large populations. Once parameterized, SIR models are used to make inferences
on disease progression. Data play an important role in that enterprise, because
epidemiological model parameters admit no universal values; instead, they depend
strongly on the situation at hand and are estimated by data fitting. Because of this,
the nature of a model is largely dictated by the available data. We will take heed of
this during model formulation below.

Here, we specifically consider historical data from a setting commonly encoun-
tered in practice, in which one monitors human Salmonella infections caused
by distinct food sources. Transmission occurs by ingestion, but further details—
including the precise source of each infection—are not part of the dataset. Although
dynamics are present in the data (each case occurs at a specific time and place),
resolving it is not part of our task. Hence, the SIR framework is not directly
applicable and we will start nearly from scratch.

Before we proceed, it is important to outline the role of modeling in such
problems; for a more extensive, characteristically lucid view on the matter, we refer
the reader to [6]. First, attribution is a causal problem at heart, yet statistical and
mathematical considerations alone hardly allow causal inferences; see [23] for a
detailed discussion. Field epidemiological methods, such as contact tracing, are
much better suited to answer causal questions but may be hampered by their reliance
on infrastructures and resources that are not universally present. Such methods are
of no use here specifically, because such information is absent from our dataset—a
common situation in historical data collections. In that sense, modeling work in the
health sciences often acts as surrogate for more direct but unavailable assessment
methods. When that is the case, it is exceedingly important that modelers steer
their work to answer the overarching question and understand the limitations of
modeling. In that spirit, the reader is invited to pinpoint substantial weaknesses in
our work below.

6.2.1.1 Data

For this expository presentation, we consider the Salmonella dataset in Table 6.1,
copied verbatim from [16]. Indeed, our discussion here owes much to [16, 17], and
we direct the interested reader there for a starting point into this domain. The dataset
identifies four distinct infection sources—pork, beef, and two kinds of poultry—and
treats humans as a uniform population. A case is a confirmed, human Salmonella
infection, with the total coming to 3880 for the duration of the study. Our task
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Table 6.1 Data [16] used to formulate and calibrate the source attribution model

Types Percentages (%)

Serotype Humans Pork Beef Broiler flocks Layer flocks

S. Enteritidis 67.2 0.0 0.0 24.5 85.4

S. Typhimurium 17.5 54.0 10.5 18.2 6.8

S. Hadar 1.6 0.0 0.0 3.7 0.0

S. Manhattan 1.1 0.0 0.0 3.0 0.0

S. Infantis 0.9 17.2 0.0 17.5 4.9

S. Virchow 0.8 0.2 0.0 0.4 0.0

S. Agona 0.8 0.0 0.0 1.1 0.0

S. Derby 0.6 6.3 10.5 1.1 0.0

S. Newport 0.6 0.0 0.0 0.0 0.0

S. Java 0.5 0.0 0.0 0.0 0.0

S. Stanley 0.5 0.0 0.0 0.0 0.0

S. Braenderup 0.4 0.0 0.0 0.0 0.0

S. Bovismorbificans 0.4 0.0 0.0 0.0 0.0

S. Glostrup 0.3 0.0 0.0 0.0 0.0

S. Heidelberg 0.3 0.0 0.0 0.0 0.0

S. Saintpaul 0.3 0.0 0.0 0.0 0.0

S. Dublin 0.3 0.2 68.5 0.0 0.0

Others incl. nontypable 6.1 21.9 10.5 30.5 2.9

Number typed

3880 448 19 269 103

is to assess how sources contribute to those cases—that is, to estimate the total
number of cases caused by each source and not to assign individual cases to sources.
Since all sources harbor the same pathogen, no sensible model can do so without
additional factors differentiating sources. Our saving grace here is that pathogens
assume multiple forms (types) differing in specifics, for example, in surface antigens
(serotypes). These types can be differentiated in the lab, and nearly all cases in the
table are of a specific type. Types cannot identify a source directly, as they are found
in multiple sources (cf. S. Typhimurium found in all sources). However, distinct
sources harbor types in different relative abundances; below, we develop a simple
attribution scheme that uses these type distributions as source signatures.

To introduce notation, we consider an arbitrary number M of infection sources
harboring N pathogen types and causing L infections in a single human compart-
ment over a certain time period T . In the context of Table 6.1, L = 3880, M = 4,
and N = 17. We write C = {c1, . . . , cL} for the cases, S = {s1, . . . , sM} for
the pathogen sources, and T = {t1, . . . , tN } for the pathogen types. We denote
arbitrary cases, sources, and types by c�, sm, and tn or, where no confusion can
arise, simply by �, m, and n. We assume that cases can be typed unambiguously
through some typing function mapping cases to pathogen types. In the context of
Table 6.1, this means that we discard untyped cases (but see Sect. 6.2.3). Finally,
we assume that the typing distribution of each source m is known, through lab
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analysis of infected food samples, and represented by γ1|m, . . . , γN |m; in the context
of Table 6.1, these numbers comprise the column of the mth source. These values
represent relative type abundances in source m, are nonnegative, and sum to one; we
write this compactly as 1TΓ = 1T, with 1T = (1, . . . , 1) and Γ the N ×M matrix
having entries γn|m. Note that Γ carries no information on pathogen prevalence, as
it only quantifies positive (i.e., infected) food samples; this is consistent with the
given data.

The approach we take below is to set up an infection model, similar to SIR
infection modules; parameterize it, using the data in Table 6.1; and finally infer
the infectious potential of the sources from the parameterized model.

6.2.1.2 Infection Model

The essential functionality of an infection module is to summarize the transmission
mechanism of the pathogen. To illustrate the complexity of this task for our problem,
we note that the path mediating food consumption includes factors that can hardly
be modeled—let alone parameterized—with any degree of certainty; for example,
farm, slaughter house, and selling point conditions; transport; cooking practices; and
many more. The situation is further exacerbated by unknown transmission rates, the
impossibility of performing controlled experiments, and the fact that consumers are
exposed differentially to food sources. Given the scarcity of detail in Table 6.1,
resolving transmission pathways at that level is out of the question; we resort,
instead, to a highly abstracted model.

To formulate a minimal model of pathogen transmission that operates at the
level of our data, we treat humans and sources as homogeneous compartments
lacking detail. Specifically, we assume each source m to cause an infection of
type n in the human compartment at some constant but unspecified rate λn|m. In
other words, we model infection as a standard memoryless stochastic process, see
also Fig. 6.1. Stochasticity is non-essential but mathematically palatable, as we can
easily show that a number of processes derived from these simple building blocks
are also memoryless. In particular, m causes an infection (of any type) at rate
μm =∑N

n=1 λn|m, whereas infections of type n (caused by any source) occur at rate
νn = ∑M

m=1 λn|m; infections in general occur at rate
∑M

m=1
∑N

n=1 λn|m. Defining
the N ×M matrix Λ and column vectors μ, ν in the obvious way, we have ν = Λ1
and μ = ΛT1—that is, ν and μ are the row and column sums of Λ. This simple
model forms the basis of our attribution scheme.

6.2.1.3 Attribution Scheme

The memoryless model above describes the infection process but does not address
our original problem. To attribute infections, we fix an arbitrary time τ and define
I , a Boolean random variable (r.v.) that determines whether an infection occurred
or not in that time (I = 1 or 0). If it did, then the probability that it was caused
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source 1 source 2 source M

human

type 1
type 2
type 3
type 4
type 5
type 6

Fig. 6.1 Schematic representation of the model discussed in Sect. 6.2.1. Each source (bottom)
harbors pathogen types in different proportions and causes human infections at different rates. The
contribution of sources to the human compartment (top) yields the stable distribution of types in it
that is witnessed in the data

by source m and was of type n is given by the conditional probability mass
function (pmf)

fS,T |I (m, n|1) = lim
τ↓0

fS,T ,I (m, n, 1)

fI (1)
.

Here, the limit τ ↓ 0 eliminates the probability of multiple infections. In this
equation, fS,T ,I : S × T × {0, 1} → R+ is a pmf determining the probability
fS,T ,I (m, n, 1) that source m caused a type-n infection in the fixed time τ . The
marginal fI specifies the probability that an infection occurred at all (also in time τ )
and the overall equation defines the conditional. Since event times for memoryless
processes are exponentially distributed, we have

fS,T |I (m, n|1) = lim
τ↓0

1− e−τλn|m

1− e−τ
∑

m,n λn|m
= λn|m∑

m′,n′ λn′|m′
. (6.2.1)

This equation represents the probability that an infection has a certain type and is
caused by a certain source; the denominator is a normalization constant. Note again
how the stochastic framework led directly to this first result.

For our attribution scheme, we are interested in quantifying the probability that
an infection is caused by a specific source no matter what its type. We can compute
that probability by marginalizing Eq. (6.2.1),

fS|I (m|1) =
∑
n

fS,T |I (m, n|1) =
∑

n λn|m∑
m′,n′ λn′|m′

= μm∑
m′ μm′

. (6.2.2)
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Thus, given L cases, our scheme assigns on average Lm infections to source m,
where

Lm = fS|1(m|1)L = μm∑
m′ μm′

L. (6.2.3)

Note that we assign infection totals and not individual cases; this is consistent with
the lack of individuality in the dataset informing our model.

To employ scheme (6.2.3), we must estimate μ-values by fitting them to the
available data. Parameter estimation is a field of its own, and we shall not delve
deep into it here; a conceptual primer is included in the Appendix at the end of
this chapter. For use below, we note here various conditionals and marginals of
Eq. (6.2.1). Writing all pmfs as column vectors and omitting notation signifying
that all probabilities are conditioned on an infection occurring, we have the compact
forms

fT = ν

1Tν
, fS = μ

1Tμ
, fT |S = Λ diag(μ)−1, fS|T = diag(ν)−1Λ. (6.2.4)

These are, respectively, the probabilities that an infection was of a specific type,
caused by a specific source, of a specific type given the source, and caused by a
specific source given the type. The simplicity of these relations can be traced back
to that of Bayes’ law—another advantage of using a probabilistic approach.

6.2.1.4 Parameter Inference

Parameterizing scheme (6.2.3) means estimating the column sums μ of Λ, which in
turn entails some sort of optimization. For example, maximum likelihood estimation
(MLE; see Appendix) returns parameter values that maximize the probability of
observing the given data (likelihood). Optimization in high-dimensional spaces
is problem-prone because of local minima, wide confidence intervals (sloppi-
ness [15]), and more. Here, we only work in M = 4 dimensions, yet estimation
shall turn out to be entirely impossible in that the model parameters are non-
identifiable [24].

To see this play out in practice, we build and maximize the data likelihood for our
model. For memoryless processes, the number of events occurring in a fixed time T

is Poisson-distributed. Assuming, also, that the infection processes of distinct types
are independent and writing Ln for the number of type-n cases in the data, we find
the likelihood

L (Λ|L1, . . . , LN) = prob(L1, . . . , LN |Λ) =
N∏

n=1

(T νn)
Lne−T νn

Ln! . (6.2.5)

The Poisson components in Eq. (6.2.5) are evaluated at parameter values Λ, making
the likelihood L a function of them. According to MLE, maximizing L yields
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the optimal parameter values in view of the existing data; for other approaches
to parameter inference, see, for example, [4]. However, Eq. (6.2.5) involves type-
specific infection rates ν (row sums) and not source-specific rates μ (column
sums); this could have been anticipated, as our data differentiates between types but
aggregates sources. As a consequence, parameter estimates can only be obtained at
that aggregation level. Indeed, maximizing the log-likelihood,

lnL =
N∑

n=1

Ln ln νn − T
∑
n

νn −
N∑

n=1

Ln! + L ln T , (6.2.6)

yields ν̂n = Ln/T . Unfortunately, these empirical type rate estimates yield little
information on μ-entries. To proceed further, we need to add detail to our model.

6.2.2 Additional Modeling

To estimate the parameters in our attribution scheme, we need to express our
likelihood in terms of μ. Since ν and μ are row and column sums of the same
matrix, there is no one-to-one relation between them generally speaking. Instead,
we need additional modeling assumptions that go beyond memorylessness and
well into specifics. For our exposition here, we describe a simple approach which,
realistically, should be replaced by input from domain experts involved in the study.
The detail we add to the model is that sources do not “emit” pathogen types
at whichever rates but, instead, at rates proportional to their prevalence in those
sources. Since the type proportions are γ1|m, . . . , γN |m, our assumption is expressed
mathematically as λn|m = γn|m μm. In words, the potential of a source m to cause
nth type infections is proportional to the relative abundance of that type in the
source. In matrix format,

Λ = Γ diag(μ), ν = Γ μ. (6.2.7)

This leaves the attribution scheme (6.2.3) unaltered; its sole purpose is to enable
estimation of μ by tying it to that of ν, with the latter having been carried out in
Eq. (6.2.6). The matrix Γ relating the two can be read off the data, cf. Sect. 6.2.1.

6.2.2.1 Inferring the New Parameters

Returning to the parameter inference problem, we use Eq. (6.2.7) and the chain rule
∇μL = ∇νL ∇μν to obtain the MLE condition

0 = ∇μ lnL =
(
L1

ν1
− T , . . . ,

LN

νN
− T

)
Γ.
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Using the identity 1TΓ = 1T and transposing, we arrive at

Γ T

⎛
⎜⎝

L1/ν1
...

LN/νN

⎞
⎟⎠ = T 1 subject to ν = Γ μ. (6.2.8)

This system is comprised of M equations, with T acting as a scaling parameter
that is immaterial for attribution. If M > N (more sources than types), then
solution (6.2.6) applies generically, but the system has no unique solution in terms
of μ. In the more interesting case M < N , which also corresponds to Table 6.1,
solution (6.2.6) does not apply in general. In that case, the system is polynomial in
μ and can be solved numerically; see [14] for a demonstration and below for the
question of existence and uniqueness of solutions.

6.2.2.2 A Reinterpretation of the Model

The stochastic model set up above assumed a specific infection mechanism that
relied on memoryless processes. Another way to look at it is through the lens of a
probabilistic identity which it obeys by virtue of Eq. (6.2.4),

fT (n) =
M∑

m=1

fS(m)fT |S(n|m). (6.2.9)

Here again, we omitted notation pertaining to an infection occurring. The left mem-
ber of this equation (fT ) represents the typing pmf in the human compartment—that
is, the first column of Table 6.1; the conditional pmfs in the right member (fT |S)
represent the typing distributions of the different sources—that is, the remaining
four table columns; and the entries of fS are model parameters subject to inference,
as they are proportional to μ by Eq. (6.2.4). In other words, data fitting boils down to
approximating a given pmf by a linear combination of M = 4 given pmfs (the four
rows of Γ ). Such models are known in the statistical literature as mixture models;
see [3] and the references given there for an overview.

The interpretation of (6.2.9) as a mixture model offers an abstract view into
the associated existence and uniqueness problem. Specifically, any pmf lies in the

unit (N − 1)-simplex D = {f |1Tf = 1} ∩ RN+ ; hence, linear combinations of
fT |S(·|1), . . . , fT |S(·|M) define an (M − 1)-simplex D′ ⊂ D. If M < N , then D′
is of lower dimension than D; generically, then, fT ∈ D\D′ and thus the vector fT

cannot be expressed as a linear combination of the vectors fT |S(·|1), . . . , fT |S(·|M).
Therefore, data fitting becomes the approximation problem of finding the point(s) in
D′ that are closest to fT . Since D′ is a compact and convex set, any strictly convex
notion of closeness leads to a unique minimizer in D′—that is, to a unique optimal
solution of Eq. (6.2.9).
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It is instructive to note here that the added value of this short section is its first
paragraph, as it translates our original (mechanistic) model in statistical terms which
are more accessible to domain experts. The paragraph above, on the other hand, may
be mathematically stimulating but unlikely to come up in an applied discussion; in
fact, the author would argue it is an overkill for a tentative toy model, as a numerical
investigation would suffice. And yet, it does have value for the modeler for two
reasons: first, it provides a mental model in terms of known quantities (vectors,
subspaces, distances); and second, it introduces one to the important problem of
quantifying closeness between probability distributions. Indeed, it is not self-evident
how to define a meaningful distance between pmfs or even whether a distance, with
its significant overhead, is the right notion. We worked above with likelihoods and
shall revisit the problem in Sect. 6.4.4, but there is nothing exhaustive about our
treatment. To the contrary, this question has generated significant literature that
presents an excellent opportunity to expand one’s mathematical knowledge; see,
for example, the classic reference [22]. This lends strong advocacy to applied work,
as noted much earlier: “The researcher’s purely mathematical ingenuity is likely to
be exercised more, not less, by the fact of his dealing with genuine problems” [6].

6.2.2.3 Self- and Multidirectional Attribution

Although this model is a fair starting point for pathogens such as Salmonella, there
are situations where infection spreads also within the general population or from it
to other compartments. A particularly relevant example is antimicrobial resistance,
a property of bacteria to acquire and transfer genetic material encoding antibiotic-
fighting mechanisms. These resistance genes can be highly mobile, both vertically
(across bacterial generations) and horizontally between bacteria of the same or
other species; indeed, monitoring programs have produced evidence of transmission
between human and animal reservoirs [12].

High mobility suggests a network of interactions, in which resistance genes travel
both within and across compartments. An additional layer of complexity is that these
genes are found in multiple bacterial species, making aggregation possible at many
levels. To apply directly the framework above, one can introduce an additional r.v. R
for the receiver compartment of the infection, work with an M ×M × N array Λ

holding infection rates λr,s,t of type-t transmission from source s to receiver r ,
compute the pmf fR,S,T , and set up the attribution scheme fS|R . In doing that,
the data type remains the same: resistance gene counts, possibly supplemented by
bacterial types. The model is parameterized by the M×M matrix μ of transmission
rates fS|R within and between compartments, which increases dramatically the
number of model parameters (curse of dimensionality). However, the thorny issue
here is less the sharp increase in the number of rates and more that attribution
becomes impossible, as any number of infections within a compartment can be
attributed intracompartmentally. This is easiest seen in the context of Eq. (6.2.9),
which now becomes
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fT |R(n|m) =
M∑

m′=1

fS|R(m′|m)fT |S,R(n|m′,m).

Making the normative assumption that each source emits types in identical propor-
tions to all receivers, we can rewrite this equation as

fT |R(n|m) =
M∑

m′=1

fS|R(m′|m)fT |S(n|m′).

Assuming now more strongly that that proportion corresponds to the relative
abundance of types in the source, as in Eq. (6.2.7), we can finally write

fT |R(n|m) =
M∑

m′=1

fS|R(m′|m)fT |R(n|m′).

Here, fT |R(·|m) encodes type prevalences for an arbitrary compartment m and
fS|R(m′|m) the strength of the connection from it to compartment m′. Interpreting
all terms in this equation as matrices, we obtain the matrix equation fT |R =
fT |RfS|R , with fS|R unknown and fT |R encoding the data. This system has the
solution fS|R = diag(1), which is exact but unfortunately trivial: each compartment
emits only to itself, thus generating its own distribution perfectly. We defer the
problem of formulating an attribution scheme for network transmission that can
resolve self-attribution to the interested reader, noting that it is of substantial interest
in the applied community studying antimicrobial resistance.

6.2.3 Discussion

In this section, we developed an infection attribution scheme tailored to a spe-
cific data collection. Our main motivation was to demonstrate the process of
building a data-informed model, which in effect consisted of mixing abstraction,
pragmatism, and a pinch of domain expertise. The model itself was underpinned
by a mechanistic, intuitive premise, but it also turned out to be interpretable in
the language of choice in source attribution literature (statistical modeling). Such
conceptual clarity is particularly compelling, as it enables one to assess model
limitations and applicability; the link to statistics is also highly desirable, as it
enables communication between different communities.

Of these three ingredients, abstraction is the one most accessible to mathemati-
cians and pragmatism the easiest to acquire by practicing mathematics “in the
field.” The one trait modelers are not expected to emulate is domain knowledge:
that presupposes sustained communication with domain experts, ideally in their
natural habitat. Modelers undertaking that effort often encounter suspicion, and
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complaints on the inapplicability (or sheer impenetrability) of applied mathematical
work often ring true; there is no shortage of studies where unrealistic assumptions
meet mathematical overkill to answer irrelevant questions. However, it is important
to remember that this is a double-edged sword: domain experts will always lack
mathematical refinement, yet they are often reluctant to relinquish creative control
and likely to overestimate the power of modeling. Where mathematicians promise
too much, because they fall in love with their models, practitioners expect too much
because they do the same with their data. Famously, “all models are wrong” [6]
but, also, all data is bad; and yet, the two must successfully fuse into science. The
completion of this seemingly impossible task relies on involving modelers early on
in study, preferably during study design already. Doing this enables them to share in
the common goal, understand its complexity, and contribute to experimental design.
At the same time, it helps experts understand what modeling can or cannot do and
plan their study accordingly. To not do this is to run an oft-quoted danger: “To
consult the statistician after an experiment is finished is often merely to ask him
to conduct a post mortem examination. He can perhaps say what the experiment
died of ” [13].

Reasonable as the above may seem, it often fails to happen—all the more so
because of data reuse. Our work above is an extreme example, since our model was
built to accommodate immutable historical data. In such cases, and as trite as it may
sound, modelers must remember to construct a model around what they have and not
what they wish they did—if for no other reason, then merely to avoid “the choice of a
[...] model being determined by the researcher’s background, the tradition prevalent
within a discipline, or because the modeller is unaware of or unfamiliar with other
modelling techniques” [2]. Experts might be able to glean additional information
channels, which again speaks for establishing communication early on, but data
nature and quality are likely to pose strong methodological constraints anyhow. Such
constraints may present an appreciable challenge to budding dynamicists trained
primarily to use differential equations (DEs), but they also represent veritable
opportunities to work with new concepts and expand mathematical knowledge.

Finally, it is important to emphasize here that our modeling work was not com-
pleted with (6.2.3) nor with (6.2.9). At the very least, every proposed model must
be validated before being deployed and, ideally, supplemented with a sensitivity
analysis for random/systematic model error and a strategy to account for missing
data. Model validation is by far the most important of these yet conspicuously
absent from much of mathematical literature and virtually all mathematics curricula;
that is one important aspect in which applied mathematics needs to catch up with
faster-moving disciplines, such as data science or machine learning. Sensitivity
analysis quantifies the effect that uncertainty in model input (data) has on model
output (here, μ) and thus also the reliability of our estimates. In our case, such
uncertainty may arise from the moderate size of the data collection in Table 6.1 or
from typing errors; see [14] for a demonstration of their impact. Systematic biases
can be generally harder to identify, but in this section there is at least one obvious
source of possible bias: the origin of Salmonella bacteria. Indeed, we took for
granted the assertion that all cases are due to one of the four given sources, despite
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lack of factual substantiation. (The existence of “other” types in the data may very
well indicate undocumented infection sources.) This was our primary motivation in
calling this a toy model, with the lack of a concrete strategy for dealing with missing
data (“other” types, asymptomatic transmission, and more) a close second. These
modeling aspects are out of scope here but of the utmost importance in real life.

6.3 Genetic Evidence and Epidemic Models

We saw above how data can be used to parameterize a mechanistic infection
model and the source attribution scheme derived from it. The second example
we treat also comes from the field of mathematical epidemiology but has a
modern twist. We specifically consider highly pathogenic avian influenza (HPAI), a
communicable veterinary disease that infects poultry routinely and disastrously. The
2003 HPAI epidemic in The Netherlands left in its wake approximately 30 million
dead birds, 20,000 affected flocks, 89 infected people including one fatality, and
economic losses in the billions of Euros [28]. This prompted the establishment of
a preparedness network providing accurate diagnostics within hours of a warning
signal and assessing the risk posed by disease reintroductions. The action for
infected farms is largely prescribed [9] and entails transport restrictions, as well
as depopulation of infected (and conditionally also of neighboring) flocks. Such
control measures can be devastating for farmers and animals alike, so proper risk
assessment is of the utmost importance. This is where model-based decision support
comes into play.

In light of the above, a model could conceivably help quantify the risk that an
HPAI reintroduction will spread under various control scenarios. That is indeed one
of the tasks set for the epidemiological team at Wageningen Bioveterinary Research
(WBVR) in The Netherlands. The data that can be accessed are both current and
historic, with the latter pertaining to the 2003 epidemic and smaller outbreaks.
These multimodal collections specifically encompass, on the individual farm level:
locations and populations, dates of diagnosis and depopulation, genetic sequences
of virus isolates, transport events between farms, and possibly other, more or less
structured information such as weather data or field notes.

6.3.1 A Modeling Scaffold

Since spatiotemporal variability and disease transmission are both present, the
problem can and has been interpreted as being of the SIR variety. A dynamicist
attempting an off-the-shelf implementation of an SIR model, however, would
encounter significant technical incongruences: time is not represented continuously
but quantized; farms stay put instead of mixing homogeneously; farm densities are
meaningless, since action is undertaken at the single-farm level; and so on. These
considerations highlight the inherent discreteness of our setup and precipitate the
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realization that—just as in the previous section—DEs are altogether inappropriate
here and other tools are required. We must, however, acknowledge that the methods
employed in these two sections do share something with DEs, namely the notion
of mechanism. In the next section, we will foray into statistical modeling and that
connection will be all but lost. The work in Sects. 6.3.2 and 6.3.3 is an abridged
re-interpretation of [5], with a few modifications that simplify our presentation. The
genetic component in Sect. 6.3.4 is new.

The independent variable in our setting is time t and takes values in the timeframe
T = {0, 1, . . . , T } (in days). This is the grid in which historic data are reported,
with t = 0 marking the beginning of an outbreak and t = T its end. Although spatial
information exists and is significant, space is not considered an independent variable
because farm locations are fixed. The dependent variable is the system state—that
is, the totality of individual states of all farms in the ensemble {0, . . . , K}. For our
purposes here, we assume that the kth farm can be unambiguously declared to be in
state Xt

k ∈ X = {S, I, R}, at any time t ∈ T . The vector Xt = (Xt
0, . . . , X

t
K) is

the system state at that time and takes values in the system state space X K+1. This
mimics classic SIR models but also abstracts the problem to its limits as, in reality,
the farm–virus relation is much more nuanced. For example, is a farm exposed if
virus is present in animals or merely in particulate matter? In the former case, how
many exposed animals and which viral loads are required to call the farm exposed?
What are the effects of a delayed diagnosis? Do farms enter the R-state upon culling
or does infectiousness wane gradually? These and other questions are part and parcel
of applied work, often debated upon at length in expert circles; the ability to navigate
such ambiguity is a key success factor in applicable work.

The model we develop below is considerably more involved than that in the last
section. To assist the presentation, we supplement it with a prototypical three-farm
system (K = 2) wherever that helps illustrate model development.

6.3.2 State Evolution

To obtain a simple model, we must dress the scaffold above with dynamics—that
is, prescribe laws for the state evolution function X : T → X K+1. In our discrete
setting, this means specifying rules for state transitions Xt �→ Xt+1 and requires
detailed knowledge of infection mechanisms, disease progression, and regulatory
affairs. By the nature of the epidemic we model, each farm can only transition
according to the linear chain S �→ I �→ R; this rules out the majority of the
possible (system) state transitions. The rules for the permissible transitions are
constructed from single-farm transition rules, by assuming that changes in daily
farm states occur independently. In mathematical language,

fXt+1|Xt

(
xt+1
∣∣∣ xt
)
=

K∏
k=0

f
Xt+1

k |Xt

(
xt+1
k

∣∣∣ xt
)
. (6.3.1)
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Here, the left member is the probability distribution for the state of the kth farm at
time t + 1, conditioned on the system state at time t ; this reduces our problem to
specifying distributions f

Xt+1
k |Xt (x

t+1
k |xt ), for xt+1

k ∈X and xt ∈X K+1. In terms

of our prototypical three-farm system, Eq. (6.3.1) becomes

fXt+1|Xt

(
xt+1

0 , xt+1
1 , xt+1

2

∣∣∣ xt
0, x

t
1, x

t
2

)

= f
Xt+1

0 |Xt

(
xt+1

0

∣∣∣ xt
0, x

t
1, x

t
2

)
f
Xt+1

1 |Xt

(
xt+1

1

∣∣∣ xt
0, x

t
1, x

t
2

)
f
Xt+1

2 |Xt

(
xt+1

2

∣∣∣ xt
0, x

t
1, x

t
2

)
.

Note that the probability of observing a farm state on day t+1 only depends on (the
totality of) farm states the day before.

The introduction of probabilities here is reminiscent of our approach in
Sect. 6.2.1 and warranted by our de facto inability to predict virus (S �→I )
transitions. Historical data additionally show considerable variability of
susceptibility periods between similar farms, a fact that is evocative of “chance
factors.” By such factors we understand here transmission determinants that we do
not explicitly model, such as farm hygiene, weather and environment, traffic, farm
visits, and numerous others. The existence of such factors in the problem also points
to probabilistic modeling.

6.3.2.1 Communal and Noncommunal State Transitions

To model the conditional distributions in Eq. (6.3.1), we further impose the rule

f
Xt+1

k |Xt (x
t+1
k |xt ) = f

Xt+1
k |Xt

k
(xt+1

k |xt
k), xt

k �= S.

In plain terms, we assume that the transitions of I - and R-farms depend solely
on their own state. Although evidently false for susceptible farms (infection is a
communal phenomenon), this is a viable and useful simplification for all other
categories. For example, for farm k = 0 in our three-farm system, this rule reads

f
Xt+1

0 |Xt

(
xt+1

0

∣∣∣ I, xt
1, x

t
2

)
= f

Xt+1
0 |Xt

0

(
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0
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)
,

f
Xt+1

0 |Xt

(
xt+1

0

∣∣∣R, xt
1, x

t
2

)
= f

Xt+1
0 |Xt

0

(
xt+1

0

∣∣∣R
)
.

All distributions here are Bernoulli (i.e., binary) by virtue of chain linearity, as farms
either retain their state or switch to the next one in the chain. For example, removed
farms remain depopulated for the duration of the epidemic,

f
Xt+1

k |Xt
k
(S|R) = f

Xt+1
k |Xt

k
(I |R) = 0, f

Xt+1
k |Xt

k
(R|R) = 1. (6.3.2)
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Similarly, an infected farm can only remain infected or enter the R-state,

f
Xt+1

k |Xt
k
(S|I ) = 0, f

Xt+1
k |Xt

k
(I |I ) = 1− f

Xt+1
k |Xt

k
(R|I ). (6.3.3)

The probability of the I �→ R transition appearing here needs additional modeling,
as it encodes disease progression and policy response. The same is true of S �→ I ,
which amounts to our transmission model. Before we delve into that, we note the
probability of a specific transition in our three-farm illustration,

fXt+1|Xt (R, I, I |I, I, S)
= f

Xt+1
0 |Xt (R|I, I, S) f

Xt+1
1 |Xt (I |I, I, S) f

Xt+1
2 |Xt (I |I, I, S)

= f
Xt+1

0 |Xt
0
(R|I ) f

Xt+1
1 |Xt

1
(I |I ) f

Xt+1
2 |Xt (I |I, I, S) .

(6.3.4)

6.3.2.2 Transitions S �→ I

The step most relevant to risk assessment is infection spread, S �→ I . Above,
we obliterated extraneous factors by assuming that the infection process is only
informed by the overall system state,

f
Xt+1

k |Xt (I |x) = pkt , f
Xt+1

k |Xt (S|x) = 1− pkt , xt
k = S. (6.3.5)

To model pkt , we mechanistically envision susceptible farms being independently
challenged by each farm in the infectious set It = {k′ |Xt

k′ = I}. Letting pkk′ denote
the probability that farm k′ ∈ It infects farm k in the interval (t−1, t), we can then
write

1−pkt =
∏

k′∈It

(1−pkk′) = e−FOIkt , FOIkt = −
∑
k′∈It

ln(1−pkk′) > 0. (6.3.6)

The quantity FOIkt is the (time-integrated/cumulative) force of infection exerted on
the kth farm in the time interval (t − 1, t).

In the context of our three-farm model, and at the time t that we used in
Eq. (6.3.4), we have a sole susceptible farm (k = 2) and two infectious ones
(k = 0, 1). As a result, the infectious set is It = {0, 1} and the FOI on k = 2
becomes FOI2t = − ln [(1− p20)(1− p21)]. By Eqs. (6.3.5) and (6.3.6), then, the
probability in Eq. (6.3.4) of that farm succumbing within the day is

f
Xt+1

2 |Xt (I |I, I, S) = 1− (1− p20)(1− p21). (6.3.7)

Infection spread is the only process in the model that couples farms; time only enters
through the infectious set It . For a discussion of our modeling assumptions, see
Sect. 6.3.5. Note also that the infection module in [5] differs in specifics.
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6.3.2.3 Transitions I �→ R

The switch I �→ R is modeled via the transition time T R|I and usually has memory;
this is evident in that T R|I follows a localized, instead of an exponential, distribu-
tion. To regain the computationally and analytically palatable memorylessness, one
often represents the transition through a chain of memoryless “elementary” steps

I1 �→ . . . �→ IM �→ R, with i.i.d. transition times T1, . . . , TM. (6.3.8)

(As usual, i.i.d. stands for independent and identically distributed r.v.s.) If r denotes
the daily transition probability for each step, then elementary transition times follow
the geometric distribution:

Tm ∼ fTm(t) = (1− r)t−1 r = r e(t−1) ln(1−r), t ∈ N. (6.3.9)

As a result, the overall transition time T R|I = T1 + . . . + TM follows a gamma
distribution fT R|I , which is indeed localized.

This transition necessarily also covers regulatory aspects, namely policy response
to detection of an infected flock. In our model, this response always ends with
removal of the flock and stochasticity only affects the time intervening between
detection and removal (a matter of a few days in The Netherlands). Note also that
the simplistic model above parameterizes this transition simply in terms of r and
(possibly) of M . Alternatively, one could set up a within-farm model describing the
flock in detail up to detection (usually by observation of clinical signs). Although
such a multiscale model may represent reality more accurately, the data must
support it; either way, a model of that sort falls far outside the scope of this
presentation.

6.3.3 Parameterization

Once supplemented with parameter values pkk′ , r , and M , the model above can
be simulated to provide insight into infection spread. Here also, as in Sect. 6.2,
epidemiological parameters must be estimated by data fitting, a process that
effectively reverses simulation by inferring input (parameter values) from output
(outbreak evolution). There, working the parameterization out in detail effectuated
the realization that our data supported a more specific infection model than the
original. The situation is similar here: through additional modeling, we will reduce
drastically the number of elemental infection probabilities pkk′ .

6.3.3.1 Revisiting the Infection Module

Our FOI in Eq. (6.3.6) uses the laws of probability to aggregate individual influences
pkk′ but says nothing about what those influences might be. A physical infection
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process should constrain those terms to a lower-dimensional set of hyperparam-
eters θ and reduce accordingly the search directions in parameter space during
optimization (data fitting). Since infection first spreads locally, a decisive factor
is the between-farm distance rkk′ . To reflect that, we make the modeling choice to
constrain infection probabilities through an algebraic relation pkk′ = K(rkk′ | θI |S),
for some positive decreasing function K controlled by hyperparameters θI |S .
Common sense dictates that these hyperparameters should include the amplitude
of K and a length scale r0 representing interaction range, but additional parameters
tuning other features of K may be included as needed.

A significant feature of a kernel of this form is that it approximates transmission
by an isotropic process, as it incorporates no other (e.g., angular) information on
farm locations. Specifically, it disregards anisotropic and network-like components,
such as wind- or transport-mediated transmission. Interestingly, isotropic kernels
can describe both local (diffusion) and nonlocal infection spread (Lévy flights),
so data fitting can potentially answer whether a given dataset supports nonlocal
spread or not. Here also, such information can supplement contact tracing methods
in understanding infection dynamics. A solid mathematical understanding within
this context of the link between kernel-based approaches and PDEs would be a
welcome addition to the domain literature.

6.3.3.2 Parameter Inference

Once the infection module has been reparameterized by θI |S and disease progression
and culling by some separate set θR|I , we must return to parameter inference. As
we saw, MLE specifically yields parameter values maximizing the probability of
observing the given data. In technical terms, the probability of observing the specific
instantiation (x0, . . . , xT ) of system states (X0, . . . , XT ) reported in the data is

L
(
θ

∣∣∣x0, . . . , xT
)
=

T−1∏
t=0

fXt+1|Xt ,Θ

(
xt+1
∣∣∣ xt , θ
)

=
T−1∏
t=0

K∏
k=0

f
Xt+1

k |Xt ,Θ

(
xt+1
k

∣∣∣ xt , θ
)
. (6.3.10)

The probability distributions here are also functions of the (hyper)parameter set Θ ,
making the overall probability L of observing the data (likelihood) depend on those
as well. Maximizing the likelihood yields optimal parameter values in view of
the existing data. Once these values are known, together with some measure of
variance accounting for uncertainty in their estimation, simulation-based inferences
on infection spread can be properly drawn.

It is worth working out here likelihood (6.3.10) for our familiar three-farm model.
For concreteness, we assume that the farm k = 0 starts off as infected at time
τ
I |S
0 = 0 (original infector); system transitions are further assumed to occur at
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times (part of the data) satisfying 0 < τ
I |S
1 < τ

I |S
2 < τ

R|I
0 < τ

R|I
1 < τ

R|I
2 . Writing

t
R|I
k = τ

R|I
k − τ

I |S
k for the infection period of farm k, we then obtain the likelihood

L
(
θ

∣∣∣x0, . . . , xT
)
= (1− p10)

τ
I |S
1 −1 p10

× (1−p20)
τ
I |S
2 −1(1−p21)

τ
I |S
2 −τ

I |S
1 −1 [1− (1−p20)(1−p21)]

× fT R|I (tR|I0 )fT R|I (tR|I1 )fT R|I (tR|I2 ). (6.3.11)

The first product component aggregates the escape probability for farm k = 1, and
the second one is its capture probability. The next three components do the same
for farm k = 2, and the final three quantify the probability of the given infectious
periods. These terms depend, of course, on the problem parameters θ = (θI |S, θR|I ).

6.3.3.3 Infection Times

The parameter inference based on the likelihood of Eq. (6.3.10) presupposes that
individual transition times τ I |S and τR|I are known. According to our description
of the data collection, however, culling times τR|I are available, but infection times
τ I |S may not be. The normative way out is to marginalize the likelihood and
work with the probability that a given farm is culled on a specific day τR|I . That
probability is obtained by summing the probabilities of all (τR|I , τ I |S)-pairs with
τ I |S unknown, similarly to the construction that yielded fT R|I from Eq. (6.3.9).
Contrary to the situation there, however, an analytic formula is here out of reach
because the unknown infection times τ I |S affect and are affected by the FOI through
Eq. (6.3.6). In practice, one introduces individual infection times into the estimation
scheme as model parameters. Due to the high dimensionality of the resulting
problem, estimation requires advanced computational tools well beyond the scope of
this chapter. Quantifying the certainty with which infection times can be estimated
and understanding their effect on the primary estimation problem for the epidemio-
logical parameters would be a welcome mathematical contribution to the field.

6.3.4 Genetic Module

The framework above calibrates an infection model using farm locations and
available temporal data. Increasingly frequently, such information is supplemented
by genetic data and, specifically, by RNA sequences of virus isolates collected
at infected farms. Incorporating such information into the framework developed
so far is not trivial, as one cannot simply define a “genetic infectious process.”
Indeed, unlike geographic closeness, genetic similarity is not a driver of infection
but evidence of it and must be incorporated as such into the model.
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The ramifications of this remark are easy to unravel. First off, genetic similarity
is a pairwise measure linking infected farms to potential, individual infector farms,
whereas our infection module aggregated individual infector potencies into an FOI.
To account for this, we need to modify the module to accommodate causal infection
relations (infection trees), which resolve infection history at the individual level. We
do this below by adding a genetic module providing evidence of such causality. The
new setting effectively amounts to a Bayesian network, which includes our original
model as a marginal over infection trees.

6.3.4.1 Parameter Inference

To ease the reader into the new framework, we revisit our MLE-based parameter
inference scheme of Sect. 6.3.3 that produced optimal parameter values. Bayes law
enables us to go one step beyond producing specific parameter values and view
parameters as r.v.s having a posterior probability distribution

fΘ|T = 1

fT

fT |Θ fΘ. (6.3.12)

Here, fT is a normalization constant. In this setting, both the parameter values Θ

and temporal data T are seen as (multi-dimensional) r.v.s and their specific
instantiations written as θ and t . The prior distribution fΘ(θ) on parameters
encodes our knowledge (or assumptions) on what these values may be, whereas
fT |Θ(t |θ) is the model-specific likelihood of observing the temporal data t given
specific parameter values θ—here, it is the marginalization of Eq. (6.3.10) over the
unknown infection times. Combined as in Eq. (6.3.12), these yields the conditional
distribution fΘ|T (·|t) for the parameter values given the temporal data t . Note that
our earlier MLE scheme corresponds to maximizing the posterior after postulating a
flat prior—that is, after assuming all parameter values to be equally likely a priori.

This Bayesian framework is important here because it allows us to assign specific
infectors to infected farms—that is, to introduce infection trees Y . Crucially, these
shall enable us to exploit genetic similarities between infected farms and (potential)
infectors. We treat Y as a r.v. and model, below, the probability fY |T ,Θ(y|t, θ) of
a specific infection tree y given temporal data t and hyperparameters θ . From that
probability, we can pass to a joint probability distribution of infection trees and
hyperparameters through the laws of probability,

fY,Θ|T = 1

fT

fY |T ,Θ fT |Θ fΘ. (6.3.13)

Here again, fT is a normalization constant. The simpler model (6.3.12) can be
recovered from this one by marginalizing over all infection trees Y .

The final module is designed to assimilate genetic data into our parameter
inference scheme. As we discussed above, genetics do not drive infection spread
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but provide evidence on the (im)probability of infection tree branches. To assimilate
genetic data, we extend Eq. (6.3.13) through

fY,Θ|T ,S = 1

fT,S

fS|Y,T ,Θ fY |T ,Θ fT |Θ fΘ. (6.3.14)

The new, genetic module fS|Y,T ,Θ(s|y, t, θ) is the probability of observing the RNA
sequences s reported in the data, under specific parameter values θ , temporal data t ,
and a (postulated) infection tree y. Parameters values are then distributed according
to the marginal

fΘ|T ,S(θ |t, s) =
∑
y

fY,Θ|T ,S(y, θ |t, s)

= fT |Θ(t |θ)fΘ(θ)

fT,S(t, s)

∑
y

fS|Y,T ,Θ(s|y, t, θ) fY |T ,Θ(y|t, θ).

(6.3.15)

Here also, estimation of the model parameters Θ can proceed by maximizing
this posterior; however, this does not cover the uncertainty inherent in parameter
estimation (see Appendix). More sensibly, one can sample that distribution and use
the resulting parameter values to simulate the stochastic epidemic model developed
in Sect. 6.3.2. Repeatedly sampling and simulating yields outcome statistics that
factor in both model and parameter uncertainty.

6.3.4.2 Infection Trees

An infection tree in our setting is a r.v. in the form of a (K + 1) × (K + 1)
binary matrix Y , with (k, k′) element Ykk′ = 1 if farm k′ infected farm k and
Ykk′ = 0 otherwise. Rows corresponding to the original infector (k = 0) or to farms
that remained uninfected throughout are identically zero. We allow here multiple
infectors, so that the remaining rows can have an arbitrary number of units; see the
discussion below. We also work with rooted trees, meaning that the farm that caused
the outbreak (original infector) is assumed to be known with certainty. For example,
the probable infection trees for the three-farm model with the settings leading to
Eq. (6.3.11) are

y1 =
⎡
⎣

0 0 0
1 0 0
1 0 0

⎤
⎦ , y2 =

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦ , y3 =

⎡
⎣

0 0 0
1 0 0
1 1 0

⎤
⎦ . (6.3.16)

This ensemble expresses that farm k = 1 was necessarily infected by the original
infector k = 0, whereas farm k = 2 may have been infected by either (or both) of
them; recall that 0 < τ

I |S
1 < τ

I |S
2 < τ

R|I
0 < τ

R|I
1 < τ

R|I
2 by earlier assumptions.
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In our work above, the probability of a specific time trajectory was built from
daily, individual farm transitions; recall Eq. (6.3.10). The salient component of that
scheme was Eq. (6.3.6), which expressed the infection pressure exerted on farm k

by aggregating contributions from potential infectors. The actual infector(s) in that
model remained unknown due to aggregation. In the current setting, a (postulated)
infection tree y yields the set

I (k|y) = {k′ | ykk′ = 1}, (6.3.17)

which identifies explicitly the infectors of k. With this information in hand, we can
build an infection module from individual transitions but with transition probability

f
Xt+1

k |Xt (I |x) =
⎛
⎝ ∏

k′∈It\I (k|y)
(1− pkk′)

⎞
⎠
⎛
⎝ ∏

k′′∈I (k|y)
pkk′′

⎞
⎠ . (6.3.18)

(Here again, xt
k = S, by assumption.) Aggregation occurs separately for infectors

and non-infectors, and trees where infections antedate the appearance of infectors
are assigned zero probability. The escape probability is f

Xt+1
k |Xt (S|x) = ∏k′∈It

(1− pkk′), so it complements the probabilities above by virtue of the identity

|It |∑
I=0

∑

k′1,...,k′I

⎛
⎝ ∏

k′ �∈{k′1,...,k′I }
(1− pkk′)

⎞
⎠
(

I∏
i=1

pkk′i

)
= 1.

The inner sum here ranges over I -element subsets of It , with each summand
corresponding to the probability of simultaneous infection by a specific subset of
I infectors; the case I = 0 is the escape probability. A consequence of this is that
FOI-based infection probabilities may be recovered by summing tree-based ones,
as long as farms are allowed to have multiple infectors. Naturally, this corresponds
to an immense number of admissible trees, with multiple-infector ones being higher
order in the already small pairwise daily infection probabilities. In practice, these
are extremely improbable and effectively discarded by tree-sampling algorithms. An
alternative is to include those minuscule higher order terms in the escape probability,
see again our discussion in Sect. 6.3.5.

Revisiting our three-farm system with event times as previously assumed, we
find, for example, for infection tree y1 the probability

fY |T ,Θ(y1|t, θ) = (1− p10)
τ
I |S
1 −1p10

× (1− p20)
τ
I |S
2 −1p20(1− p21)

τ
I |S
2 −τ

I |S
1

× fT R|I (tR|I0 )fT R|I (tR|I1 )fT R|I (tR|I2 ).

(6.3.19)
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Effectively, the aggregated capture probability by either farm in Eq. (6.3.11),

1− (1− p20)(1− p21) = p20(1− p21)+ (1− p20)p21 + p20p21,

has been replaced here by p20(1 − p21). This term models capture by k′ = 0 and
escape from k′′ = 1, which is precisely the scenario encoded in y1.

6.3.4.3 Genetics

The tree-based model above increases model complexity substantially but does not
necessarily lead to more accurate predictions; see the discussion in Sect. 6.3.5. To
harvest its potential, we must assimilate evidence of infection branches; this is
precisely where genetic data come into play. The significant element in genetic data
is that each infected farm is assigned the RNA sequence of the virus strain isolated
in it. Such a sequence is specifically modeled as a “word” and formed by collating
a number L of “letters” (base pairs) drawn from the alphabet

P =
⎧⎨
⎩

g

|
c

,

a

|
u

,

u

|
a

,

c

|
g

⎫⎬
⎭ .

These pairs are composed of the RNA bases g(uanine), a(denine), u(racil), and
c(ytosine). Each base pairs with a unique counterpart; hence, a double-stranded
sequence can be recovered from a single, consistently selected (i.e., top or bottom)
strand. On account of this, we work below with single-stranded sequences—that is,
words of length L from the single-base alphabet B = {g, a, u, c}.

We build fS|Y,T ,Θ using infection events—i.e., infection tree branches—through

fS|Y,T ,Θ(s|y, t, θ) =
∏

k∈∪τIτ

fSk |Y,T ,Θ(sk|y, t, θ)

=
∏

k∈∪τIτ

L∏
�=1

fSk�|Y,T ,Θ(sk�|y, t, θ).
(6.3.20)

Here, s = (s1, . . . , sK) are the observed RNA sequences and we have written that
of the kth farm as sk = sk1 . . . skL; each sk� ∈ B here is a single base, so that
sk is a string of such bases. The outer product runs over all farms infected during
the outbreak and the inner over RNA loci, so this model assumes that loci mutate
independently of each other. The elemental probability fSk�|Y,T ,Θ corresponds to
observing a specific �th base in the RNA sequence of the kth farm and demands
additional modeling.

We envision infection as transmission of viral strains between farms with
the possibility of mutation, so that the RNA sequence observed at an infected
farm is a mutant of those in its infectors. From a modeling perspective, the
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infection tree y serves to identify the “origins” of sk through the farm’s infector(s);
cf. Definition 6.3.17. In view of that, we must compare the �th base of the infected
farm to the homologous bases of its infector(s),

fSk�|Y,T ,Θ(sk�|y, t, θ) = fSk�|SI (k|y) �
(
sk�| ∪k′∈I (k|y) {sk′�}

)
. (6.3.21)

The standard model for base mutations is [21], which treats them as occurring with
time- and loci-invariant probabilities,

fSk�|Sk′� (b|b′) = Pbb′, with P =

⎡
⎢⎢⎣

pw pu pv/2 pv/2
pu pw pv/2 pv/2

pv/2 pv/2 pw pu

pv/2 pv/2 pu pw

⎤
⎥⎥⎦ . (6.3.22)

Here, bases are ordered as in B and P is a Markov matrix, hence pw = 1−pu−pv .
This simple model divides bases into purines (g, a) and pyrimidines (t, c) and
specifies transition probabilities pu and pv within and between these families
(transitions and transversions). If farm k has a single infector k′ = I (k|y), then this
model can be applied verbatim. In the case of multiple infectors, one must formulate
another scheme, for example, compare to the infected a randomly sampled (or the
most probable) infector. Since multi-infector trees are improbable, any reasonable
choice should suffice provided one can demonstrate that specific choices do not
affect end results crucially. We stress, at this point, that working with genetic
sequences demands developing a certain understanding of specifics, so that one feels
at ease with such terms as quasispecies, consensus sequence, and conserved regions.

Finally, we return one last time to our three-farm model as we left it in
Eq. (6.3.19). We write once again sk = (sk1, . . . , skL), for k = 1, 2, 3, and recall
that farm k = 0 infects both k = 1 and k = 2 according to y1. Next, we write
uk , vk , and wk = L − uk − vk for the number of transitions, transversions, and
conservations between the RNA sequences of farm k = 1, 2 and k = 0. It now
follows from Eqs. (6.3.20)–(6.3.22) that

fS|Y,T ,Θ(s|y1, t, θ)=
(
pu1
u pv1

v pw1
w

) (
pu2
u pv2

v pw2
w

)=pu1+u2
u pv1+v2

v pw1+w2
w . (6.3.23)

Substituting into Eq. (6.3.14) from this formula and from earlier results, we obtain
the posterior fY,Θ|T ,S(y1, θ |t, s) as needed.

6.3.5 Discussion

In our work above, we extended a classic, discrete SIR model to accommodate
genetic evidence. Our construction of the inferential framework relied on elemen-
tary probability laws, but the differentiation between mechanism and evidence was a
crucial element in devising the data assimilation scheme (6.3.14) and (6.3.15). The
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model itself involved numerous modeling assumptions, among which Eq. (6.3.6)
for the FOI. This affected the framework strongly through the likelihood (6.3.10)
and encapsulated our assumption that I -farms challenge S-farms independently.
In formulating it, we effectively modeled daily infection risk through a series of
independent, non-identical, biased coin tosses (Bernoulli trials): an infection occurs
if at least one succeeds. Independence is intuitive and mathematically appealing
but opens the door to multiple infectors (multiple successes), which then propagates
into infection trees and sequence matching; recall our discussion of Eqs. (6.3.18)
and (6.3.22). To avoid this, one can impose a single infector by excluding multiple
success events from the event space, but that destroys challenge independence; we
invite the reader to verify this for our three-farm model and ponder on the implied
dichotomy.

6.3.5.1 Effect of Infection Time Uncertainty

The major complication in the inferential framework based on Eq. (6.3.10) is lack
of knowledge of infection times. The essence of the problem is that the resolution
of parameters affecting the distribution of two random variables, T1 and T2, must be
based on observations of their sum, T = T1 + T2. In an idealized scenario, where
Ti ∼ fi(t) = θie−θi t with θ1 �= θ2, one has

T ∼ f (t) = θ1θ2

θ2 − θ1
(e−θ1t − e−θ2t ).

Given observations t1, . . . , tN for T , the likelihood then reads

L (θ |t1, . . . , tN )=
(

θ1θ2

θ2 − θ1

)N N∏
n=1

(
e−θ1tn − e−θ2tn

)
.

Exponential sums are difficult to fit accurately [32] and hence, although an optimal
parameter set is identifiable by MLE in principle, the confidence region around it
may be so wide as to render it useless in practice. How these considerations play
out in a network setting where interactions are described by multiple parameters
is unclear. A more thorough mathematical investigation, starting from simple,
idealized network models would be a welcome contribution.

6.3.5.2 Effect of Infection Tree Uncertainty

We incorporated genetics into the framework in two steps, first by passing to
infection trees in Eq. (6.3.13) and then by assimilating genetic data through
scheme (6.3.14). Model (6.3.13) only uses temporal data, so it can in principle
be implemented to yield causal information. In The Netherlands, where outbreak
data shows poultry farms forming dense clusters with multiple infections per
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day, one cannot expect that temporal model to be able to resolve infection trees;
fY,Θ|T would have a wide support over many trees. Tree inference is also nuanced
mathematically, as the number of parameters to resolve—the infection branches—
grows with the number of infection events. In a classical setting, estimators return
a fixed number of parameter values so estimator variance is reduced by additional
data; the sampling distribution converges in probability. This is not the case here,
meaning that additional cases do not necessarily mitigate uncertainty. To obtain
more accurate estimates, one must use an independent information channel—that
is where genetic data enter the game. This should be contrasted to our approach in
Sect. 6.2, where this issue was circumvented by aggregating individuals into a fixed
number of homogeneous compartments. It would be interesting to see this examined
in a detailed mathematical manner in this or a similar context.

6.3.5.3 Effect of Mutation Rate Uncertainty

In a similar vein, good prior estimates on mutation rates p = (pu, pv, pw) must
be available, since assessing genetic similarity in a dataset using a model and
inferring model parameters using that dataset is evidently circular. This can be seen
in a simplified model, where we fix a sequence s0 and use Eq. (6.3.22) repeatedly
on each base (with known, fixed P ) to generate a linear chain of sequences
s∗ = (s1, . . . , sK). Let us assume that the set {s1, . . . , sK } is given and our task is
to order it—that is, to infer the chain (s1, . . . , sK). The likelihood of a given chain
s = (si1 , . . . , siK ) can be approximated, for KL � 1, by the bivariate Gaussian
[14]

L(s|p) = e−H0(p|p̂)

2π
√

detΣ(p̂)
, H0(p|p̂) = 1

2
(p − p̂)TΣ−1(p̂)(p − p̂). (6.3.24)

Here, p̂ = (u, v,w)/KL are the empirical mutation rates for s, inferred from the
total number of transitions (u), transversions (v), and conservations (w) it exhibits.
The covariance matrix Σ(p̂) is the inverse Hessian at p̂ of the function

H(p|p̂) = −KL
(
p̂u ln(pu)+ p̂v ln(pv/2)+ pw ln(p̂w)

)
(6.3.25)

around its maximum p̂ = p. Only chains with p̂ − p = O(1/(KL)) are probable;
the rest have exponentially small probabilities. Since rearrangements of s∗ generate
(a subset of) a square lattice on (p̂s, p̂v)-plane with step size 1/(KL), only an
O(1) number of sequences among K! possible rearrangements are probable. As
a consequence, the likelihood of a candidate chain s is effectively determined by
how close its empirical rates p̂ are to the actual rates p in a Mahalanobis-like
distance; this demonstrates the crucial role of information on the actual mutation
rates. Here also, an exhaustive mathematical study of such problems would be of
definite interest.
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6.4 A Case of Bad Data

Although our work up to now focused on transmission mechanisms at various
levels of detail, modeling work in the health sciences is far from limited to disease
transmission. In this section, we consider a very different, application-oriented
question that arose during a particular study of the population dynamics of immune
cells. The subject matter is inference of the turnover rate of certain cell types, which
at first glance should not be radically different from our earlier work as it is an
inferential task. Indeed, data can be fitted to standard ODE models that describe
well the dynamics of the large and (presumably) homogeneous cell populations in
vivo. As will become apparent below, though, the data at our disposal do not fit those
models at all. It will be our task in this section to seek the root cause and develop a
remedy for this situation. Interestingly, and although the population model is ODE-
based, our work below owes more to data-driven statistical modeling and bona fide
detective work than to DEs. Here, more than elsewhere, we encourage a hands-on
approach to the problem; to that end, we have made datasets and code available [14].

6.4.1 Data and Question

6.4.1.1 Experiment

Before diving into the data, it is necessary to give a short overview of the experi-
mental protocol that generated it. As mentioned earlier, the experiment in question
was designed to measure cellular turnover rates—that is, rates at which immune cell
populations renew themselves. Under physiological conditions, the primary cellular
processes—cell division, death, and migration between tissues—balance each other
out and the population maintains its size. Because of this, assessing that rate requires
that one disentangles processes that add to/subtract from the population, i.e., that one
differentiates between “new” and “old” cells. This problem has a fascinating history
intertwining experimental design with theory—see [34] as a starting point—with
the main idea being to count newly generated cells by labeling them. In the past,
labels were radioactive isotopes and counting involved Geiger counters. At present,
the label of choice is deuterium (2H), which replaces hydrogen atoms in de novo
synthesized adenine deoxyribose (dR) molecules (moieties) within cellular DNA.
Labeled and unlabeled moieties (written dR∗ and dR) differ by molecular weight,
which creates a window of opportunity for their experimental differentiation.

The data at our disposal was collected from a group of young goats according
to a strict experimental protocol. Build-up of dR∗ in cellular DNA was effectuated
by administering heavy water (2H2O) over an initial uplabeling time period [0, τ ].
The administration period was followed by a washout stage during which no
deuterium was administered in any form, so that dR∗ in DNA decreased due to
cell death. A model for label proliferation was developed in [31], with build-up and
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loss proportional to 2H2O levels in the body and to the labeled population size,
respectively. The resulting linear ODEs were integrated analytically to yield the
enrichment ratio E—that is, the proportion of labeled adenosine moieties,

E(t) = h(t, t), t ≤ τ ; E(t) = h(t, τ ), t ≥ τ, (6.4.1)

where we have defined the auxiliary function

h(x, y) = cpf

δ − d

[
δ

d

(
edy − 1

)
e−dx − (eδy − 1

)
e−δx + β

f

(
e−dx − e−δx

)]
.

Values for the parameters δ, β, and f are determined by procedures we shall not
cover, so fitting model (6.4.1) to a time series is a matter of estimating the turnover
rate d and the additional parameter cp. Figure 6.2a shows a representative time
series E(t1), . . . , E(tN ) for this setup derived from an older experiment, together
with the corresponding least squares fit. Note carefully that both the data and the fit
exhibit clear uplabeling and washout stages.

6.4.1.2 Question

Although the data in Fig. 6.2a trace well the labeling curve described by (6.4.1),
the data from our experiment mostly do not. Figure 6.2b shows a particular time
series that deviates remarkably from the expected trend. Our task is to identify the
root cause of that behavior and, if possible, rectify things. To achieve this, we must
investigate the pipeline turning cellular counts into time series (one per cell type,
see [14]). We describe the procedure briefly below, using hindsight to eliminate
much of the inessential complexity.

Label Administration Deuterium was administered by mixing heavy water into
milk with a concentration of 2–3%; the goats had no other drinking sources. That
concentration was kept constant throughout the uplabeling period, which started on
day zero. The washout period lasted from week 4 to 14, during which time the goats
only received ordinary drinking water.

Sample Collection Biological material was collected on a weekly basis from
blood, bone marrow, and various organs and lymph nodes; see [14]. Each goat was
sampled once in time but yielded samples from several organs; as a result, distinct
points on an enrichment time series necessarily correspond to different animals. The
sole exception to this were blood samples, which were collected weekly from the
same goats. Each sample was marked clearly with the goat and organ from which it
was collected, so mix-ups are improbable.

Cellular Extraction Single cell suspensions were made from the collected mate-
rial, independently per sample. Cells were stained with fluorescent antibodies
directed against different cellular markers, fixed and kept overnight at 4 ◦C. Those
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Fig. 6.2 Enrichment data from two distinct datasets. Panel (a): A dataset (golden/green points)
and its best fit to model (6.4.1) (solid golden curve), demonstrating the characteristic behavior
described in the main text: enrichment increases towards saturation while heavy water is adminis-
tered (up to week 4) and then decreases exponentially. Multiple points in the same week indicate
multiple independent samples; with the exception of week 6, these yield similar enrichment levels.
Panel (b): A much less well-behaved dataset. Samples here were measured twice, yielding pairs
of data points joined by a vertical line with the average marked on it (solid green point). Samples
correspond to weeks 0, 2, 4, . . . , 14, but we have perturbed their abscissae by a fractional amount
to enhance visibility. Also shown (solid golden points) are data averages per week; these outline
a trend (golden dotted line) that deviates markedly from the characteristic behavior in panel (a).
Panel (c): The dataset of panel (b) after decontamination (cf. Sect. 6.4.4). Data points and their
weekly averages are shaded by the proportion of contaminant 1 − as in the original profiles, see
Eq. (6.4.6); as the shade darkens, the proportion decreases from 100% to 0%. Variation between
duplicates and distinct samples in the same week is reduced appreciably, and the trend also matches
the characteristic behavior much better

cells underwent fluorescent-activated cell sorting (FACS) the day after, and only the
cells of interest were retained per sample.

DNA Purification DNA was extracted from the retained cells of each sample using
a standard DNA extraction kit according to manufacturer guidelines. Through this
final preparatory step, each cellular sample (i.e., goat and organ) yielded a single
DNA sample.

Enrichment Quantification Labeled and unlabeled moieties in each sample were
counted twice using gas chromatography/mass spectroscopy (GC/MS). Specifically,
samples from the same organ were run through GC/MS independently but in
tandem, yielding (double) counts M∗ and M of labeled and unlabeled molecules
per sample. The enrichment value for each sample was obtained as the ratio
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E = M∗/(M + M∗), for each of the duplicate runs, and assigned to the time t

at which the biological material was collected.

Time Series For each organ, a time series E(t1), . . . , E(tN ) collecting enrichment
levels from different goats was produced; recall Fig. 6.2b.

The glitch can be anywhere in this process, starting with the obvious but least
specific candidate: biological variability. Indeed, since the enrichment time series
for each organ collates data from different animals, some degree of variability must
be expected; this is evident already in the well-behaved data of Fig. 6.2a. However,
this causative candidate is overly pessimistic, if not outright facile, and it also fails
to explain the high deuteration levels deep in the washout period. Since rectification
potential decreases as one goes deeper into the pipeline, we work backwards starting
from GC/MS quantification of DNA samples. Identifying putative problems in that
step presupposes an understanding of how GC/MS works; we cover basics below.

6.4.2 Enrichment Quantification

The function of the GC/MS unit is to count accurately the dR and dR∗ molecules in
a sample by separating them from all other molecules. It achieves that by means of
a highly specific, two-tier molecular identification process that combines elements
of chromatography and mass spectroscopy. Concretely, a sample undergoes a first
separation into its constituents by being passed through a chromatographic column.
Different molecules traverse that column with different speeds and emerge from it
at different times; that is the first differentiation level. Of course, exit times vary
stochastically among chemically identical molecules, so distinct molecular species
can still interfere with dR and dR∗ moieties. Our samples contain thousands of
distinct DNA fragments, so interference is inevitable and compromises specificity.
To enhance it, the unit ionizes emerging molecules and passes them through a
mass spectrometer, so that they are separated by their mass-to-charge (m/z) value.
Ionized molecules with distinct m/z values are then counted individually. By
combining these two stages, we tag each molecule by its detection time (t) and
m/z value (r). This double-tagging increases differentiation by reducing drastically
the interference between dR or dR∗ molecules and other substances.

Importantly, GC/MS reports a list of detection times and m/z values per molecule
and not summary molecular counts M and M∗. In practice, time is quantized into
successive intervals I1, . . . , IT lasting time δt (a few milliseconds), whereas m/z

values are quantized naturally into r1, . . . , rK . The output data assumes a matrix
form C, with ctk the number of molecules detected in time interval It at m/z value
rk . Here, we focus on dR and dR∗ molecules with known m/z-values rk and rk∗ , so
we consider time series (profiles)

g = {ctk | t = 1, . . . , T } for dR, g∗ = {ctk∗ | t = 1, . . . , T } for dR∗. (6.4.2)



160 A. Zagaris

The total numbers M and M∗ of dR and dR∗ molecules are obtained by summing
molecular counts over time,

M =
tmax∑

t=tmin

ctk, M∗ =
t∗max∑

t=t∗min

ctk∗; E = M∗

M +M∗ . (6.4.3)

Following the literature, we will use the shorthand AUC (area under the curve) for
the profile counts M and M∗ above. The time intervals

T = {tmin, . . . , tmax} ⊂ {1 . . . , T } and T ∗ = {t∗min, . . . , t
∗
max} ⊂ {1 . . . , T } (6.4.4)

are chosen to engulf the profiles of interest with minimal interference from other
molecular species at the same m/z value; see Sect. 6.4.3.

It is important for our work below to note that normalization of the profiles
(g, g∗) in Eq. (6.4.2) turns them into pmfs f : T → R+ and f ∗ : T ∗ → R+ for
the molecular detection time,

f (t) = 1

M
g(t), f ∗(t) = 1

M∗ g
∗(t). (6.4.5)

Figure 6.3a,b shows a pair of (normalized) profiles derived from a commercially
available pure (control) sample used for calibration. Such samples have superbly
low noise-to-signal ratios and serve in what follows as (statistical) models for our
sample-derived (biological) samples; their characteristic bimodality is due to the
cis/trans isomerization of adenosine [8]. Biological samples are more susceptible to
noise, as they contain numerous DNA fragments interfering with dR and dR∗ even
after double selection; examples—some extreme—are shown in Fig. 6.3c–h.

6.4.3 Data Exploration

As evident from Eq. (6.4.3), the enrichment E of a sample is controlled by the
count ratio M∗/M of labeled over unlabeled molecules. Errors in estimating that
ratio (e.g., due to interfering molecules) are directly passed to the enrichment value,
so the estimation of M∗ and M is a focal point in our root cause analysis.

6.4.3.1 Integration Windows

To count dR and dR∗ molecules without interference, one must adhere to carefully
controlled lab procedures and set tight integration windows T , T ∗. In our analysis,
these windows are modeled after the corresponding windows for the control
profile(s) shown in Fig. 6.3a, b. First, we define a generously broad, crude time
window that contains the entire control distribution f (respectively, f ∗); all profiles
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Fig. 6.3 Unlabeled (dR) and labeled (dR∗) profiles for various samples. The right axis reports
molecular counts per time interval (lasting dt = 10−3 s). The left axis tabulates the pmf obtained
by normalizing each profile by its AUC. (a–b) Averaged pmfs and 95% confidence intervals (CIs)
derived from four control samples. The dR, dR∗ profiles and CIs are effectively identical; molecular
counts (in the millions) are sample-specific and not reported for these averaged profiles. (c–h)
dR (light blue) and dR∗ (pink) profiles from three biological samples corresponding to different
animals and organs. The primary features of the unlabeled profiles are quite stable. Labeled
profiles, instead, exhibit secondary peaks, background noise, and highly variable left modes.
Profile mollification (dark blue/red) with a zero-mean Gaussian kernel (σ = 3dt) ameliorates the
stochastic variation induced by low counts. In (h), the mollification reveals a contaminant, evident
in the bimodality of the left mode; see main text for details

in Fig. 6.3 are plotted over such crude windows. Then, we define a tighter time
window that holds 95% of the distribution’s AUC. More specifically, we separate
the bimodal distribution into left/right modes by means of the intervening local
minimum (valley), compute the AUC of each mode, and crop the interval supporting
each mode to retain 95% of that mode’s AUC.

These (labeled/unlabeled) control-derived time windows are used to crop each
(labeled/unlabeled) sample-derived profile in panels c–h after alignment. Indeed,
it can be seen in Fig. 6.3 that distinct profiles are shifted in time due to machine
specifics immaterial for our analysis. Estimating and removing that time shift is
a classic signal registration problem in 1D with various possible solutions—for
example, using a stable profile feature (right peak location, midpoint of the full
width at half maximum (FWHM), or other) or a statistical approach (maximizing
cross-correlation or similar). Automating this registration procedure increases
pipeline throughput and eliminates human error but, concurrently, allows profiles
that would have been flagged by visual inspection to pass muster; cf. panels d
and f. Below, we examine the origin of such aberrant profiles and their effect on
enrichment ratios.
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6.4.3.2 Profile Stability

The control profiles in Fig. 6.3a, b were derived by averaging multiple (normalized)
runs of distinct control samples, so we were able to also plot confidence intervals.
Our first observation is that those intervals are narrow, meaning that control profiles
are very stable: labeled and unlabeled profiles are well-defined and only subject to
small variations. This should indeed be the case, as the shape of the detection time
distribution has robust (chemical) origins and care was taken to prepare and measure
samples in a controlled environment.

Next to the control profiles in panels a and b, Fig. 6.3 shows pairs of labeled and
unlabeled profiles for several animals and organs. Evidently, the unlabeled profiles
are also rather stable, cf. panels c, e, and h. Note, however, that individual profiles
exhibit small random and systematic noise in the form of short-scale variations and
spurious tail peaks. These effects are much more pronounced for the labeled profiles
in panels d, f, and h, where irregularity is apparent not only in the form of additional
peaks but, also, in the variable relative heights of the dominant ones. Given our
earlier assertion that bimodality is a robust feature, this variability appears highly
peculiar; we attempt to assess its statistical significance below.

6.4.3.3 Quantifying Profile Aberration

Figure 6.4 quantifies the AUC held by the left distribution mode for a specific cell
type (i.e., time series). An analysis of control dR and dR∗ profiles shows that their
left mode holds, on average, μ = 24% of the total AUC with standard deviation
σ = 1%. The individual deviations from μ of the eight control samples are plotted
in Fig. 6.4 (diamonds) in units of σ , both for the unlabeled (blue) and labeled (red)
profiles. Plainly, all control samples have roughly the same left-mode AUC (μ)
within a couple of standard deviations.

Repeating this analysis for the unlabeled biological profiles, we see that their
left-mode AUC is slightly but systematically larger than μ by a few σ ; see the 25
blue dots in the same figure. The deviations of the labeled profiles, on the other
hand, are also positive and systematic but much more extreme. This implies that
the left-mode AUC in biological dR∗ profiles is significantly higher than in their
pure counterparts. A systematic deviation in the tens of standard deviations looks
suspiciously close to a smoking gun, so we take a closer look below.

6.4.3.4 Root Cause of the Aberration

The nature of the problem becomes evident at close inspection of labeled profiles,
such as that shown in Fig. 6.3h. The left mode here is visibly heavier than its pure
counterpart in panel b and (its mollified, noise-attenuated version) features a small
kink indicating bimodality. Since sufficiently separated unimodal distributions add
up to bimodal ones, this finding indicates an additional distribution overlapping
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Fig. 6.4 (a) Scatter plot of left-mode AUC proportions for controls and biological samples
measured in duplo (note the nonlinear scale). Each point represents duplicate measurements of
one sample (blue/red: dR/dR∗). The proportion statistics of controls (diamonds) are (μ, σ ) ≈
(0.24, 0.01), both for dR and dR∗ profiles, and all proportions are standardized so that a value n

denotes the proportion μ + nσ . Control proportions are very stable; recall Fig. 6.3a, b. Unlabeled
profiles of biological samples slightly exceed μ, but labeled ones deviate by tens of standard
deviations. This irregularity is systematic, seen in that duplicate variation (deviation from diagonal)
is uniformly small. (b) Contaminant profile (green) and average (labeled) control profile (red)
for the organ in Fig. 6.3a, b. Note the contaminant position relative to the control profile, which
explains strong interference with left-mode AUC

with the left profile mode and elevating its AUC. Combined with earlier findings,
this becomes damning evidence of contamination. We postulate, specifically, that
irregular labeled profiles are composite and made up of a stable bimodal distribu-
tion (seen in control profiles) and a (still elusive) contaminant distribution. This
hypothesis explains the elevated left-mode AUC values of such profiles and is
corroborated by secondary observations, such as left modes being heavy-tailed or
shifting closer to right modes. Evidently, the contaminant distribution is caused by
molecules having the same m/z-value and similar detection times as dR∗. Their
strong influence is due to the low dR∗ counts (in the mere thousands, per time
interval), and the sole imaginable remedy is algorithmic removal of the contaminant
profile (decontamination).

We must remark here that root cause identification is hardly ever as linear
as presented above. Instead, it is riddled with contradictory observations, false
leads, and omnipresent human biases that lend it the allure of detective-like work.
Modelers are brought in to furnish their distinctive mental and mathematical models
but, also, their disciplinary expertise and focus on facts. Solid mathematical and
scientific principles and the ability to stay the course are pivotal in that mission.
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6.4.4 Data Modeling and Decontamination

We saw above that the observed deviations in enrichment values are likely due
to the data being contaminated; our task in this section is to decontaminate the
labeled profiles and rectify enrichment ratios accordingly. To that end, we consider
a profile g∗ corresponding to a biological sample and its associated distribution f ∗
in Eq. (6.4.5). We hypothesized that f ∗ is the sum of a stable bimodal distribution
and a contaminant distribution; we write this as

f ∗(t) = asf
∗
s (t)+ (1− as)f

∗
c (t), where f ∗, f ∗s , f ∗c : T ∗ → R+. (6.4.6)

Here, f ∗ represents the observed distribution (data), f ∗s and f ∗c are blueprints
(statistical models) of the signal and contaminant distributions, and the weight
0 ≤ as ≤ 1 quantifies the signal content of the measured profile. This is plainly
a mixture model, similar to the one in Eq. (6.2.9). Under Eq. (6.4.6), the rectified
(i.e., decontaminated) distribution is f̄ ∗(t) = asf

∗
s (t) that corresponds to the profile

ḡ∗ = as M
∗ f ∗s . As a result, the rectified enrichment ratio is

Ē = as M
∗

M + as M∗ < E. (6.4.7)

This result should be compared to Eq. (6.4.3). We have not rectified the profile g, as
evidence points to insignificant contamination levels for unlabeled profiles; recall
our earlier discussion. Through Eq. (6.4.7), rectification reduces to estimating the
weight (i.e., signal content) as .

6.4.4.1 Signal and Contaminant Distributions

To decompose a measured distribution f ∗ as in Eq. (6.4.6), one must first specify
signal and contaminant distributions. Previously, we considered controls to be
practically contaminant-free and declared statistically significant deviations from
them as evidence of contamination. On account of that, we use the average of
all control distributions as f ∗s ; cf. Fig. 6.3. Modeling f ∗c is more challenging, as
we have no access to “pure contaminant/signal-free” samples. By the same token,
however, profiles with extreme left-mode AUC must be superbly contaminant-rich;
hence, we approximate the contaminant profile f ∗c by their average. Figure 6.4b
shows the signal and contaminant profiles for the cell type considered in Fig. 6.4a.

It should be evident that our contaminant model f ∗c is a limiting step in our
analysis, certainly more so than our signal model f ∗s . Indeed, as the secondary
peaks in Fig. 6.4b suggest, even highly contaminated profiles hold signal from dR∗
molecules (middle peak) and from secondary contaminants (rightmost peak). It is
important to remember this below, where we discuss data fitting schemes in detail.
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6.4.4.2 Data Fitting for the Mixture Model

The distributions f ∗s and f ∗c can be tabulated for each cell type, provided that we
have access to both controls and exceedingly contaminated samples. If this is the
case, then as is estimated by decomposing the distribution f ∗ of each sample as
in Eq. (6.4.6). All distributions in that equation are meant as idealized statistical
models, but, in reality, we only have finite-sample approximations (histograms). It
is therefore improbable that Eq. (6.4.6) will hold exactly for any value of as , and we
have to resort once again to data fitting.

Data are typically fit to mixture models using expectation–maximization (EM)
algorithms, which are engineered to maximize the likelihood corresponding to
Eq. (6.4.6); see [3] for an overview and available computational resources. In the
spirit of this chapter, we present here an intuitive approach enabled by the inherent
discreteness of our setup. Recalling from Eq. (6.4.4) that time in the integration
windows is binned, we rewrite Eq. (6.4.6) as

⎡
⎢⎣
f ∗s (t∗min)− f ∗c (t∗min)

...

f ∗s (t∗max)− f ∗c (t∗max)

⎤
⎥⎦ as =

⎡
⎢⎣
f ∗(t∗min)− f ∗c (t∗min)

...

f ∗(t∗max)− f ∗c (t∗max)

⎤
⎥⎦ . (6.4.8)

Since the two vectors are known from our tabulation of f ∗, f ∗s , and f ∗c , this is an
overdetermined linear system in one unknown (as) and can thus only be solved in
an approximate, optimal sense. A normative choice is to use least squares (ordinary
or otherwise), but another approach can be developed by summing both sides of
Eq. (6.4.6) to obtain the relation

t2∑
t=t1

f ∗(t) = as

t2∑
t=t1

f ∗s (t)+ (1− as)

t2∑
t=t1

f ∗c (t), with t1, t2 arbitrary.

This is readily solved to yield an explicit estimate âs for as ,

âs =
∑t2

t=t1

(
f ∗(t)− f ∗c (t)

)
∑t2

t=t1

(
f ∗s (t)− f ∗c (t)

) ; t∗min ≤ t1 < t2 ≤ t∗max. (6.4.9)

This simple scheme lumps molecular counts into left/right sums, i.e., only uses
two bins, and appeals primarily on account of the uncertainty surrounding the
contaminant profile. Applied to the data shown in Fig. 6.2b, it yields the visibly
improved dataset of Fig. 6.2c. Here, we used the valley and right endpoint locations
as natural choices for t1 and t2; see also our discussion at the end of this section.

This concludes our task of decontaminating the data and reevaluating enrichment
ratios. Below, we highlight certain topics that are important for algorithmic imple-
mentation and add necessary mathematical nuance to the discussion.
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6.4.4.3 Stochastic Noise Models

We rooted our short discussion above in the need to match data and model but
avoided specifying an indicator of “goodness of fit.” Here, as before, optimality
presupposes an understanding of closeness between the measured and modeled
distributions which, in turn, points to some measure of distance between them;
recall our discussion in the context of Eq. (6.2.9). One typically works with the Lp

norm ‖f ∗(·|as) − f ∗‖p between the model f ∗(·|as) (right member of Eq. (6.4.6))
and the data f ∗ (left member); the case p = 2 corresponds to the aforementioned
least squares. It is conceptually important to realize that such notions of distance
arise from stochastic models for our system and encapsulate our mechanistic
understanding of it. We illustrate this point directly below by modeling the ensemble
of individual molecular detection times.

In particular, we model detection times as i.i.d. r.v.s. distributed according to
f ∗(·|a∗s ), for some true value a∗s subject to estimation. Equation (6.4.6) then states
that the data f ∗ is sampled from f ∗(·|a∗s )—that is, the histogram of those individual
detection times approximates the actual distribution. Informally, the identity

f ∗ − f ∗(·|as) =
(
f ∗ − f ∗(·|a∗s )

)+ (f ∗(·|a∗s )− f ∗(·|as)
)

states that the difference between the observed data and a postulated model distri-
bution may be attributed to sampling stochasticity, for one part, and to systematic
deviation for the rest. A fitting algorithm differentiates between these two error
terms and aspires to remove the latter. Doing that necessitates a model of sampling
stochasticity, which we now develop for our problem. In the framework here, the
probability that f ∗(·|as) generates the measured profile g∗ = M∗f ∗ is given by a
multinomial distribution,

L(as |g∗) = prob(g∗|as) = M∗!
t∗max∏

t=t∗min

(
f ∗(t |as)

)g∗(t)
g∗(t)! . (6.4.10)

Here also, the MLE is âs = arg maxL(as |g∗). A precise investigation of this
stochastic model is not in place here, but we note that an approximation similar
to Eq. (6.3.24) is possible in the regime min g∗ � 1. The log-likelihood is then
approximated by a bilinear form defined by some (covariance) matrix Σ—that
is, by a weighted L2 norm; the interested reader can work out the details. This
application of the CLT motivates the choice and, in fact, general applicability of least
squares. The careful reader might also want to take stock of the similarity between
Eq. (6.4.10) and Sect. 6.3.4 dealing with genetic mutations. There, bases performed
i.i.d. trials that determined their mutated state, while here labeled molecules perform
i.i.d. trials determining their detection time; both yield multinomial distributions
differing only in specifics. This is how stochastic, mechanistic modeling on the
microscopic level informs our macroscopic optimization problem.
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6.4.4.4 Profile Alignment and Cropping

The first, simple but significant application of signal processing to our problem was
the profile mollification in Fig. 6.3; that process step attenuated noise and enabled
the visual identification of the contaminant. The biggest algorithmic headache,
however, is not background noise but that profiles drift in time for reasons pertaining
to GC/MS operating principles.

Drifting is already evident from control samples quantified before and after a
series of GC/MS runs (start/end controls), in that the resulting distributions are
noticeably shifted and possibly stretched or compressed—their clocks are linearly
related; see [14] for a demonstration. Biological profiles processed by the machine
between start/end controls also appear to follow their own clocks. Making profiles
share the same clock, i.e., aligning them, is a (possibly non-rigid) registration
problem that must be solved to fix integration windows—recall Sect. 6.4.3—and
to estimate parameters through the detailed scheme (6.4.8)—we implicitly assumed
there that f ∗, f ∗s , and f ∗c were aligned pointwise.

Given the uncertainty surrounding the contaminant profile, a disproportionate
investment of time and effort in solving that problem would be penny wise and
pound foolish. The lumped scheme of Eq. (6.4.9) may not arise from a specifically
enunciated noise model, but it is rather robust as it only demands profile matching
at two time points. For our work here, we chose t1 to be a prominent profile
feature—the valley separating the two modes—and t2 the right profile cut-off. This
choice is informed by common sense, as opposed to mathematical proof, in that
the valley/right peak locations are more robust to the presence of the contaminant
than features in the left mode. As we saw, decontamination using that scheme had a
remarkable effect on the dataset, cf. Fig. 6.2c.

Another significant hindrance to data fitting is the presence of additional profile
peaks due to secondary contaminants; these are clearly seen in Fig. 6.3d–f. If such
contaminants fall within the cropping interval T ∗, they can bias estimation even
after profile alignment. Although an obvious cure would be to add more components
to the mixture model in Eq. (6.4.6), this would necessitate expanding the integration
window with the danger of including even more spurious peaks. Here, we took the
opposite approach and chose to exclude secondary peaks from the molecular counts
by cropping profiles to intervals even smaller than those dictated by the 95% AUC
rule. Naturally, this entails that part of the signal is also lost; to preserve the ratio
M/M∗, care must be taken to crop labeled and unlabeled profiles proportionally.
This way of working was implemented in producing Fig. 6.2; its relative crudeness
certainly explains part of the residual between model and data.

Finally, we reiterate here that the accuracy of our denoising is also limited by the
quality of the mixture model (6.4.6) and its components. As stated repeatedly, our
signal model f ∗s is practically unassailable and supported by superb post-alignment
stability of the control profiles. The contaminant model f ∗c , on the other hand, is
rather crude; in view of the two-bin scheme (6.4.9), one is left wondering whether
modeling f ∗c as being fully contained in the left bin would not be an equally viable
assumption. The accuracy of Eq. (6.4.6) can also be called into question, as it leaves
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out various noise sources. The most obvious among them is uniform background
noise, which can be modeled by a uniformly distributed mixture component; the
interested mathematician can examine whether uniform noise and contaminant can
be merged. A more complete model would also account for error propagation by
including confidence intervals, which could then be used to weigh datasets during
curve fitting. This level of detail, however, is irrelevant to the aim of this section.

6.4.5 Discussion

We saw above an entertaining application of elementary signal processing tech-
niques to data decontamination. A key message in this work is that a modeler must
be actively engaged in data collection and analysis, if not already in experimental
design; recall the earlier quote on the autopsy of dead experiments. Sadly, data
analysis and modeling are still performed after the fact much more often than before
it, at least in the experience of this mathematical practitioner. Why this is so is
a thorny question with no clear answer. For example, although interdisciplinary
projects have substantial trouble raising funds [7], successful large-scale studies
in the health sciences nowadays often include modeling components anyhow.
In the author’s front-line experience, and not to put too fine a point on it, the
blame frequently lies with the modelers themselves, in that they fail to make their
presence felt, communicate their added value, or establish a clear role. Aspiring
interdisciplinary modelers should not forget that non-mathematical practitioners
may be mathematically limited, if not outright semiliterate [33], for reasons that
probably lie in the origins of biology as a descriptive science. It is up to us, then, to
express ourselves in a language they understand; this demands a certain willingness
to learn that language and, in the process, much of the content it enunciates. The
converse will often not hold. This may sound asymmetric or outright unfair, but
there is a reason why we examined here the application of mathematics to the health
sciences and not the converse.

Our second key message is that an autopsy of a “failed” experiment can
have substantial merit, particularly if data recollection is out of scope or simply
impossible. The health sciences are famously conservative when it comes to
accuracy and precision, to the point of producing genuinely interesting work on
linear regression to this day [27, 29]. This is of course with good reason, as the
enterprise they represent is superbly data-driven and deals with matters of life and
death. However, where a scientist may see an experiment that must be repeated with
stricter controls, a mathematician (and, inescapably, an engineer) may see a realistic
situation where noise obscures information; the challenge is to separate the wheat
from the chaff. This may appear precarious, but in reality there is little choice to be
had. Modern societies mine incomplete, unstructured, noisy data increasingly often,
e.g., in the context of IoT technologies that affect the way we collect, interpret,
and react to biosignals (through wearables, labs-on-a-chip, or even self-driving
cars). Such a practical spirit may be ill-fitted to absolute understanding but is far
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more conducive to navigating the world we live in. As these trends play out and
evolve, data processing algorithms will be increasingly applied in real time and in
the open; the opportunities presented to adventurous mathematicians will intensify
accordingly.

We close this chapter with a few words on the day-to-day business of developing
mathematical solutions for practical problems. Earlier admonitions in this chapter
focused on co-developing a lingua franca with practitioners and sticking to the
problems on display; both indeed remain page one in the manual. However, a
problem that is clear right off the bat is a rare occurrence in the real world, so much
of modeling factually turns out to be problem definition. Interpreting and tackling
ill-defined problems is a superbly fluid business, and a creative mathematical mind
is sure to find many tangents to go off on. Earlier philippics against focusing
on problems of purely mathematical interest aside, to not go off on a tangent is
to forgo one’s mathematical identity; this is a grave danger for mathematicians
working as such extramurally. This is so because “mathematicians are good for
ideas” [27] but, incidentally, also for much more, so they are routinely mistaken
for programmers, data analysts, generalists, jacks of all trades, and magicians. It is
up to modelers to establish their identity and role in the interdisciplinary projects
they serve and, when necessary, to expand work boundaries with the prospect of
including certain “tangents” in them. Cross-scientific mutualism is often the very
saber of creation, and mathematics and applications have a long-standing tradition
of feeding one another with extradisciplinary solutions or broad “tangents.” (Certain
topics in this chapter also came about this way—for example, existence, uniqueness
and asymptotics, genetic chains, and stochastic noise models.) Scratching the
mathematical itch too often may be professionally irresponsible, but not indulging
it at all is criminally defeatist; this (somewhat schizophrenic) tension is a central
theme in extramural mathematics. Although this work mode may not suit everybody,
it has its own charms, valor, and value: “The ability to juggle symbols as the pure
mathematician does without regard to the immediate meaning of the symbols is but
half of being a mathematician. The other half is the ability to apply the mathematics
to the real world” [18].

Appendix: A Short Primer on Parameter Estimation

The fundamental belief underpinning any modeling endeavor is that system mea-
surements can be approximately generated by a specific model. In general terms,
inference uses such measurements to mitigate uncertainty present in the underlying
model. In this short appendix, we assume a well-defined class of candidate models
that differ only in particulars; our task is to locate among them the one that best fits
the available measurements (data). Here, these models share a common functional
form containing finitely many parameters, so we speak of a parametric family and
parametric inference. Lifting the uncertainty surrounding the parameter values is
the inferential task par excellence.
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Parameter values can be inferred in various ways joined by a common thread.
Typically, unknown values are obtained as solutions to an optimization problem
involving the model class and available data; in the problems treated here, that
data is model outputs such as values of the dependent variables. For a deterministic
model, a reasonable minimal requirement for an estimator would seemingly be self-
consistency: given data generated by simulating a model with specific parameter
values, a self-consistent estimator would return those precise parameter values, i.e.,
invert the simulation. Imposing that condition is reasonable, as long as distinct
parameter values yield well-defined, distinct data (parameter identifiability [24]).
However, the models treated in this chapter are probabilistic: specific parameter
settings only have a certain probability to generate specific data. This makes the
correspondence between parameter values and data both one-to-many and many-
to-one, and it necessitates rethinking what can be reasonably expected from an
estimator.

To address this problem, we start with univariate r.v.s X1, . . . , XN defined on
a common sample space Ω and having distributions fX1 , . . . , fXN

. We then write
X = (X1, . . . , XN) : Ω → X for the multivariate r.v. collecting them, and we
recognize X ⊂ RN as the space where data resides. This data space is equipped
with an induced joint probability distribution fX : X → R+, and each point
x = (x1, . . . , xN) in it corresponds to a full set of system measurements. In general,
this joint distribution does not follow trivially from the marginals fX1 , . . . , fXN

;
determining it may be a sizable part of the modeling process and a closed-form
expression outside reach, if the problem does not possess additional structure. A
favorable case occurs when X1, . . . , XN are pairwise independent, as fX then has
the product decomposition fX(x) = ∏N

n=1 fXn(xn); another, trivial case occurs
when r.v. components are algebraically constrained. Often, neither is true and
modeling fX is nontrivial. As a concrete example, the reader should derive the
sampling distribution of X = ∑N

n=1 Xn/N (sample mean) corresponding to i.i.d.
Gaussian r.v.s X1, . . . , XN .

We now assume that fX depends on a set of parameters Θ = (θ1, . . . , θM) ∈ Δ

and write fX|Θ(·|θ) to reflect this. The parameter values θ are the subject of
inference, i.e., of mapping data to parameter values by means of an estimator
Θ̂ : X → Δ. This function will unambiguously (i.e., deterministically) map
specific data to specific parameter values without recourse to the parameter values
that generated the data. It is in this sense that parameter estimation reverse-
engineers data generation. To proceed intelligently with estimator design, we note
that parameter values generate data probabilistically—by sampling fX|Θ(·|θ)—
but Θ̂ maps these to parameter estimates deterministically. The combination of
sampling and estimation is therefore probabilistic in nature, meaning that a fixed set
of parameter values generates different data and thus gives rise to various estimates
of those values. In fact, the composite map Θ̂ ◦X : Ω → Δ is a transformed version
of X and hence automatically an r.v. in its own right. Indeed, any measurable set U
in parameter space Δ is assigned the measure of its pre-image Θ̂−1(U) in data space
X which, in turn, inherits that of X−1(Θ̂−1(U)) in sample space Ω .
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Being a r.v., the estimator is distributed according to some sampling distribution
f
Θ̂|Θ that depends on the unknown parameters values. This observation suggests

adapting the deterministic notion of self-consistency to that of an unbiased estima-
tor, which amounts to demanding that

∫

Δ

θ̂ f
Θ̂|Θ(θ̂ |θ) dθ̂ =

∫

X
Θ̂(x) fX|Θ(x|θ) dx = θ, θ ∈ Δ. (6.4.11)

If this condition holds, then the expected parameter estimates match the true param-
eter values, i.e., the estimator is correct on average although individual estimates
inevitably deviate from the truth. That deviation can be quantified (again on average)
using the variance of f

Θ̂|Θ , which one would like to keep as low as possible; note
that some variance is inevitable, see the Cramér–Rao bound [11]. These notions of
estimator bias and variance permeate estimation theory fundamentally. For example,
the aforementioned variance bound links to information theory and geometry [1],
whereas modern machine learning work often involves biased estimators that trade
off accuracy for precision.

In our work in this chapter, we employed the likelihood L(θ |x) = fX|Θ(x|θ)
with which parameter values θ ∈ Δ generate given data x ∈ X . We specifically
used the maximum likelihood estimator (MLE),

Θ̂(x) = arg max
θ

L(θ |x) = arg max
θ

fX|Θ(x|θ), x ∈X . (6.4.12)

In words, the estimate for the parameter value generating given data is the
value maximizing the probability (likelihood) of generating that data. The evident
circularity in this statement manifests that sampling and inference run contrary to
each other. Note that neither existence nor uniqueness of the MLE is automatic (nor
universal) and that the MLE is often biased. However, if X1, . . . , XN are i.i.d. and
N → ∞, then f

Θ̂|Θ(·|θ) is an approximate Gaussian centered at θ by the central
limit theorem (CLT). For more detailed introductions to parameter inference at two
different levels, we refer the reader to [10, 25].
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Chapter 7
Multistability in Ecosystems: Concerns
and Opportunities for Ecosystem
Function in Variable Environments

Ehud Meron, Yair Mau, and Yuval R. Zelnik

Abstract Ecosystems are highly nonlinear dissipative systems characterized by
multiplicity of stable and unstable states. Two major concerns are associated with
multistable ecosystems in variable environments. The first is related to the increased
likelihood of extreme climate events at regional scales, such as droughts, floods, and
heat waves, that may result in abrupt transitions to malfunctioning ecosystem states.
The second concern is related to the dominant role played by humans in shaping
and transforming the ecology of the Earth, and to the detrimental effects that such
transformations often have. Using mathematical models of dryland ecosystems as
a case study, we discuss recent advances that shed new light on these concerns.
We first argue that state transitions can be gradual or incomplete rather than
abrupt, providing opportunities for prevention and recovery. We further argue that
analyzing the unstable states that exist along with the stable ones, identifying their
existence ranges and their stable and unstable manifolds, can help to devise human
intervention forms that direct ecosystems towards desired functional ecosystem
states, without impairing ecosystem function. We conclude by presenting open
problems and delineating further research directions.

Keywords Dryland ecosystems · Vegetation patterns · Multistability · Front
dynamics · Abrupt and gradual state transitions · Human intervention
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7.1 Introduction

Ecosystems are highly nonlinear dissipative systems involving various positive
feedbacks between biotic and abiotic factors [52, 60, 81]. The stabilizing effects
that these feedbacks have on ecosystem states result in multiplicity of stable
states in wide ranges of environmental conditions [62]. These states often include
spatially periodic patterns and localized structures, in addition to spatially uniform
states [59, 60]. Ecosystems, however, seldom have the time span to converge to
stable asymptotic states [35]; rather, their dynamics are interrupted by natural
drivers, such as droughts, fires, floods, or forest pest outbreaks, and by human
intervention motivated by various functional needs, including ecosystem services,
land-use changes, and restoration of degraded ecosystems.

The varying conditions that ecosystems are subjected to, natural and human
driven, can induce transitions to malfunctioning states by driving ecosystems across
basin boundaries, or across thresholds where stable functioning states are destabi-
lized or disappear. These state transitions, or “regime shifts,” can be abrupt [71, 72],
but are not necessarily so—they can also proceed gradually through the propagation
of degradation fronts as model studies predict [3, 76, 92, 93]. Abrupt transitions
involving large decline in ecosystem function are of high concern because of
the projections for increased climate variability at regional scales [21, 51]. This
concern is reflected by an intensive current effort to devise early-warning signals for
impending abrupt transitions [41, 70]. The conditions under which state transitions
are expected to be gradual rather than abrupt, and thereby provide opportunities for
prevention or recovery, are far less understood.

Varying conditions can also affect the multiple unstable states that exist along
with the stable states, changing their stable and unstable manifolds or their
very existence. Understanding these states, whether they are spatially uniform,
periodic, or localized, is essential for studying transient ecosystem dynamics in
general [35], and transient dynamics induced by human intervention in particular.
Unlike natural drivers of ecosystem change, which are erratic and unpredictable,
human intervention is generally planned and controlled, and yet is often detrimental
to the ecosystem in question [15, 16, 66]. Studying unstable states holds much
promise for devising human intervention forms that direct ecosystem dynamics
towards desired self-organized functional states. This can be achieved by identifying
the growing eigenmodes associated with unstable states and studying the dynamics
in the phase space they span. This approach, which puts ecosystems on tracks of
self-organization towards desired ecosystem states from the start, has hardly been
pursued.

Out of all contexts of ecological multistability, dryland ecosystems stand out
as an excellent case study for closing the knowledge gaps mentioned above. In
addition to the variety of research problems that drylands pose, related to the
escalating concerns about desertification and biodiversity loss [1, 17], they show
striking phenomena of vegetation pattern formation (Fig. 7.1) [14, 22, 23, 86], and
they are describable by mathematical models that capture remarkably well a wide
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Fig. 7.1 Areal photographs of nearly periodic vegetation patterns in nature: (a) a spot pattern in
Zambia [4], (b) a stripe pattern in Niger [86], (c) a gap (“fairy circle”) pattern in Namibia (courtesy
of S. Getzin). From [59]

+

+

Fig. 7.2 Schematic illustration of the general positive feedback that drives vegetation pattern
formation in water-limited systems. While accelerating vegetation growth in existing patches,
these processes inhibit the growth in the patch surroundings, thereby favoring vegetation pattern
formation. From [59]

range of observed phenomena [4, 59, 60], including multistability of uniform states,
periodic patterns, and localized structures [23, 79, 92, 93].

The formation of large-scale vegetation patterns in drylands has been attributed
to small-scale positive feedbacks between local vegetation growth and water
transport towards the growth location, as Fig. 7.2 illustrates. Depending on the
water transport mechanism, different feedbacks have been distinguished [59, 60]:
(1) overland water flow induced by increased infiltration of surface water into the
soil in areas of denser vegetation (infiltration feedback); (2) water conduction by
laterally extended roots, the size of which increases with above-ground biomass
(root-augmentation feedback); and (3) soil-water diffusion induced by strong local
uptake at the vegetation-growth location and the soil-water gradients it forms (soil-
water diffusion feedback). The infiltration feedback is strong in landscapes where
bare soil tends to form physical or biological crusts that significantly reduce the
infiltration rate relative to areas covered by vegetation [18, 23, 68]. The root-
augmentation feedback is strong for plant species with high root-to-shoot ratios
and laterally spread root systems [2, 24, 26]. The soil-water diffusion feedback is
strong for plants with high root-to-shoot ratios and confined root systems, and for
sandy soils with high hydraulic conductivities [9, 42, 93]. While these feedbacks
promote local vegetation growth by drawing water from the adjacent areas of sparser
vegetation, they inhibit the growth of the sparser vegetation [49, 58, 67]. This favors
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nonuniform vegetation growth, or the growth of spatially periodic modes, which
leads to vegetation patterns. Another pattern-forming feedback is associated with
water advection, such as overland water flow on a slope [73, 75, 78] or fog advection
by wind [5]. The interception of advected water by vegetation patches produces a
shadowing effect on water transport in the slope or wind directions that leads to
banded vegetation.

Several mathematical models have been proposed to describe vegetation pattern
formation in drylands [24, 43, 48, 68, 77, 89]. These models represent a continuum
modeling approach [systems of partial differential equations (PDEs)] in which
the lowest level of description refers to small-scale processes rather than to
individual plants, as in individual-based models [12, 13, 29]. The advantage of the
continuum approach in the present context is that it lends itself to the powerful
methods of pattern-formation theory. Indeed, considerable progress has been made
in understanding the variety of uniform, periodic, and localized ecosystem states
along the rainfall gradient, using pattern formation tools such as linear stability
analysis of uniform states [26, 42, 73] and of patterned states [78, 79], derivation
of amplitude (normal-form) equations [28, 87], and computation of bifurcation
diagrams using numerical continuation methods [11, 76, 92, 93].

Despite the progress that has been made so far using PDE models of dryland
ecosystems, many ecologically significant questions that are addressable with
such models are still open or unstudied. In this paper we present and discuss
open questions related to the two concerns described earlier: state transitions to
malfunctioning ecosystem states and detrimental effects of human intervention.

Outline of the Chapter In Sect. 7.2, we discuss two dryland ecosystems—
grasslands in western Namibia and northwestern Australia—which show striking
pattern-formation phenomena and provide excellent opportunities to confront model
predictions with empirical data. Since the two ecosystems feature different pattern-
forming feedbacks, they are also described by different PDE models. We then use
these models to address problems related to state transitions in Sect. 7.3 and to the
effects of human intervention in Sect. 7.4, and describe some of the progress that has
been made. We conclude by delineating directions for future research in Sect. 7.5.

7.2 The Namibian and Australian Grassland Ecosystems

Empirical testing of vegetation pattern-formation phenomena in controlled labo-
ratory experiments is generally impractical because of the long time scales of
plant growth. Remote-sensing observations provide a good alternative in fairly
homogeneous and undisturbed areas, especially when the spatial scales involved
are large enough to be detectable by satellite images. The availability of satellite
images that go backward in time along with long-term future observations provide
probes for pattern dynamics too. While vegetation pattern formation has been
observed worldwide [14], two grassland ecosystems stand out in meeting the
conditions of spatial homogeneity, lack of disturbances, and large spatial scales.
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These are the so-called fairy circles of western Namibia [22, 40] and the recently
discovered fairy circles of northwestern Australia [23]. Fairy circles are circular
gaps of barren soil in grasslands that show large-scale order as Fig. 7.1c shows. The
average gap diameters, 6 m in Namibia and 4 m in Australia, are large enough to be
easily detectable in satellite images. The fairy circles of Namibia and of Australia
show similar biomass patterns, but differ in their soil properties. In the Namibian
ecosystem the soil is sandy and thus characterized by high infiltration rates of
rainfall into the soil and by high hydraulic conductivities. In contrast, the top-
soil layer in the Australian ecosystem is a hardly permeable claypan that generates
overland water flow (runoff). As a consequence, different pattern-forming feedbacks
are expected to generate the fairy-circle patterns in the two ecosystems: the soil-
water diffusion feedback in Namibia and the infiltration feedback in Australia [23].
Since the plant species in both ecosystems have confined root systems, the root-
augmentation feedback appears to be less significant.

In what follows, we consider the vegetation model introduced by Gilad et
al. [24, 26, 60], which, unlike other models, captures all three feedbacks. The model
consists of integral-partial differential equations for the areal densities of above-
ground biomass B(r, t), soil water W(r, t), and overland water H(r, t), all in units
of [kg/m2], where r = (x, y) [m] represents the spatial coordinates in the plane,
and t [y] represents time. Depending on the dominant feedback at work, different
model simplifications can be made [60]. The confined roots in both ecosystems
can be used to simplify the integral terms in the general model to algebraic terms,
assuming highly localized, delta-function root kernels [42]. The resulting system
of three partial differential equations (PDEs) can be further simplified in studying
the Namibian ecosystem, because of the high infiltration rate of sandy soil, which
prevents runoff. In that case, the system of three PDEs can be reduced to a pair
of PDEs for the biomass and soil-water variables [93]. The PDEs that describe the
Australian and Namibian ecosystems, in dimensional forms, are as follows:

Australian Ecosystem

∂tB = GBB (1− B/K)−MB +DB∇2B ,

∂tW = IH − LWW −GWW +DW∇2W ,

∂tH = P − IH − LHH −∇ · J ,

(7.2.1)

where J = −2DHH∇(H + Z) is the overland water flux, which depends on the
ground topography function, Z = Z(x, y), assumed to be independent of time (no
erosion or deposition processes).

Namibian Ecosystem

∂tB = GBB (1− B/K)−MB +DB∇2B ,

∂tW = P − LWW −GWW +DW∇2W .
(7.2.2)
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In Eqs. (7.2.1) and (7.2.2), ∇2 = ∂2
x + ∂2

y is the Laplacian in the plane, and

LW = NW

1+ RWB/K
, LH = NH

1+ RHB/K
, I = A

B +Qf

B +Q
, (7.2.3)

GB = ΛW(1+ EB)2 , GW = Γ B(1+ EB)2 , (7.2.4)

are, respectively, the rates of soil-water evaporation, overland water evaporation,
infiltration, biomass growth, and water uptake. The quantity P [mm/y] represents
the precipitation rate, K [kg/m2] represents late-growth species-specific biomass
constraints, such as stem strength for woody vegetation or maximal attainable
biomass in the life cycle of annuals, and E [m2/kg] represents the root-to-shoot
ratio. In obtaining Eq. (7.2.2) we assumed a flat or mildly sloped terrains that
do not induce overland water flow. We note that the specific biomass dependence
of GB and GW in Eq. (7.2.4) follows from a root architecture described by a
Gaussian root kernel in the original model [60]. Other choices of root distributions
can lead to different forms for GB and GW . Information about the remainder of
the parameters and about non-dimensional forms of the model equations can be
found in Refs. [23, 59, 60]. Although we refer here to two particular ecosystems
involving herbaceous vegetation, the models are more general and applicable to
woody vegetation as well.

Out of the three pattern-forming feedbacks, the Namibian ecosystem model
captures only the soil-water diffusion feedback. The strength of this feedback
is controlled by the root-to-shoot ratio E and by the soil-water diffusivity DW ;
increasing any of these parameters strengthens the feedback, as it acts to increase
soil-water diffusion towards vegetation patches. The Australian ecosystem model
captures in addition the infiltration feedback; a strong feedback is obtained with
sharp infiltration contrast f � 1 (see I in Eq. (7.2.3)) and large runoff transport
coefficient DH , as both act to speed up overland water flow. The two feedbacks
suggest different spatial distributions of soil-water with respect to biomass: anti-
phase distributions (maxima of biomass coincide with minima of soil water) in
the case of the soil-water diffusion feedback, and in-phase distributions in the case
of the infiltration feedback. A linear stability analysis of the uniform vegetation
state indeed confirms these expectations [42]. In the Namibian ecosystem, where
the soil-water diffusion feedback appears to be the dominant one, the distributions
are expected to be anti-phase. A recent empirical study indeed supports this
expectation [8]. An additional support for the soil-water diffusion feedback comes
from another recent study according to which lateral water transport in the soil
occurs over distances as large as 7.5 m, which is consistent with the typical length
scale associated with the fairy circles [9]. In the Australian ecosystem the infiltration
feedback is the dominant one, because of the claypan top layer that forms a hardly
permeable soil crust. As overland water infiltrates mostly in vegetation patches, the
biomass and soil-water distributions are likely to be in-phase [23]. An additional
biomass-water feedback captured by the model equations for both ecosystems is
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associated with reduced evaporation in vegetation patches, hereafter the “shading
feedback.” This is a positive but non-pattern-forming feedback because it does not
involve water transport. Yet, it plays an important role in inducing multiple stable
states as we discuss below.

It should be noted that an alternative explanation of the fairy-circle phenomenon
has been proposed, according to which the circles represent foraging areas of termite
nests [40, 83]. The termite hypothesis, however, does not explain the fairy circles of
Australia, where termite nests were found to be uncorrelated to the circles [23]. The
correlations that have been found between rainfall patterns and fairy-circle dynamics
in Namibia [22, 93], the occurrence of Namibian fairy circles within a narrow
rainfall range between the 70 and 120 mm/y isohyets [22], and observations of fairy
circles with no termite colonies also in Namibia [65], pose additional challenges to
the termite hypothesis.

The general Gilad et al. model [26] and its two simplified versions (7.2.1)
and (7.2.2) show a universal sequence of basic vegetation states along the rainfall
gradient as Fig. 7.3 illustrates [28, 50, 59, 68, 89]: bare soil, hexagonal spot pattern,
stripe pattern, hexagonal gap pattern, and uniform vegetation. The emergence of
gap patterns from uniform vegetation and the morphology changes that these
patterns go through as rainfall decreases, first to stripe patterns and then to spot
patterns, represent a population-level mechanism to cope with water stress. By self-
organizing in spatial patterns the vegetation benefits not only from direct rainfall,
but also from water transport towards vegetation patches from the surrounding
bare-soil patches. In the Namibian ecosystem water is transported mainly by soil-
water diffusion [9, 65, 93], whereas in the Australian ecosystem the transport
is mainly through overland water flow [23]. With further rainfall decrease the
water-contributing bare-soil areas should increase in size to compensate for the
lower rainfall, which drives the two morphological changes mentioned above.
Both the Namibian and Australian ecosystems show strikingly regular gap patterns
(Fig. 7.1c). Statistical analyses of these patterns, including the calculation of pair-
correlation functions, show a dominating hexagonal order, where each gap is
surrounded on average by six equidistant gaps, as the models predict [22, 23].

bare soil spot pattern stripe pattern gap pattern uniform veg.

precipitation

Fig. 7.3 The five basic vegetation states along the rainfall gradient as obtained by model
simulations; uniform vegetation, hexagonal gap pattern, stripe pattern, hexagonal spot pattern, and
bare soil. From [59]
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Fig. 7.4 Bifurcation diagram showing different types of bistability ranges along the rainfall
gradient. The diagram shows four solutions of the Namibian ecosystem model (7.2.2) in 1d,
representing bare soil, uniform vegetation, periodic vegetation pattern, and a single vegetation
patch (pulse). The vertical axis is the L2 norm of the biomass variable, while the horizontal axis
represents the precipitation rate. Solid (dashed) lines represent stable (unstable) solutions. The
thresholds P4, P3, P2, P1 denote, respectively, the uniform instability of bare soil, the appearance
of periodic patterns in a saddle-node bifurcation, the nonuniform instability of uniform vegetation,
and the disappearance of isolated vegetation patches, represented by a pulse solution, in a saddle-
node bifurcation. The horizontal double arrows represent three types of bistability ranges: (1) bare
soil and uniform vegetation, BS-UV (P2 < P < P4), (2) uniform vegetation and periodic patterns,
UV-PP (P2 < P < P3), and (3) bare soil and periodic patterns, BS-PP (P1 < P < P3). The latter
range includes periodic patterns made of weakly interacting pulses. Note that the UV-PP bistability
range is, in fact, a tristability range as the bare-soil solution is also stable

The model Eqs. (7.2.1) and (7.2.2) also predict several forms of multiple stable
states along the precipitation axis, associated with the positive biomass-water
feedbacks that the equations capture. Figure 7.4 shows a bifurcation diagram that
illustrates three types of bistability ranges. The simplest form is bistability of bare
soil and (spatially) uniform vegetation (BS-UV in Fig. 7.4), which results from a
uniform (zero wavenumber) imperfect pitchfork bifurcation [59, 82] of bare soil to
uniform vegetation (P = P4 in Fig. 7.4). Note that the negative-biomass solution
is discarded as it does not represent a physical state. This bistability range can
be realized with high evaporation rates in bare soil, which stabilize the bare-soil
solution up to precipitation values where uniform vegetation is also a stable solution.
In the Namibian ecosystem model these conditions can be realized when the soil-
water evaporation is fast relative to water uptake and vegetation growth. In the model
for the Australian ecosystem the condition for bare-soil stabilization can be realized
with a high evaporation rate of overland water relative to the infiltration rate [23].
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Such a high evaporation rate is consistent with observed surface temperatures in
bare soil, which can be as high as 75 ◦C [23].

Besides bistability of uniform states, two main bistability forms that involve
uniform and patterned states, are possible: bistability of uniform vegetation and
periodic patterns—hexagonal gap patterns in two spatial dimensions (2d) (UV-
PP in Fig. 7.4), and bistability of bare soil and periodic patterns—hexagonal spot
patterns in 2d (BS-PP in Fig. 7.4). These bistability forms are obtainable with strong
pattern-forming feedbacks that lead to subcritical nonuniform (finite-wavenumber)
instabilities of uniform vegetation [59], and act to stabilize the patterned states once
they are formed. In the Australian ecosystem model (7.2.1) this is the infiltration
feedback (small f ), while in the Namibian ecosystem model (7.2.2) it is the soil-
water diffusion feedback (large E and DW/DB ). A third bistability form involving
uniform and patterned states is possible under conditions of weak shading feedback
(small RW and RH in Eq. (7.2.3)) in addition to a strong pattern-forming feedback.
In that case, the instability of bare soil to uniform vegetation is supercritical,
resulting in a stability range of uniform low-biomass vegetation as Fig. 7.10 shows.

Conditions that give rise to both bistability of bare soil and uniform vegetation
and bistability of uniform vegetation and periodic patterns result in a tristability
range of uniform vegetation, periodic patterns, and bare soil (see Fig. 7.4). Indeed,
aerial images of fairy circles in Australia reveal mixtures of nearly periodic gap pat-
terns and large bare-soil areas, suggesting the possible stability of both states [23].
In the next section we discuss possible implications of these multistability forms to
state transitions.

7.3 Abrupt vs. Gradual State Transitions

Underlying the view of regime shifts as abrupt state transitions is the presumption
that these transitions are global, encompassing the whole system. This view does not
take into account the spatial confinement of most disturbances, such as clear-cutting,
grazing, fires, or infestation, which often induce local state transitions, rather than
global transitions. The dynamics that follow local state transitions crucially depend
on the transition zones that separate the two alternative stable states. These zones
are fronts whose structures and dynamics have thoroughly been studied in various
pattern formation contexts [10, 32, 36, 59, 63]. Depending on the dynamics of a
single front, on the interactions between adjacent fronts, and on instabilities that
fronts may go through, different asymptotic states can result.

We begin by discussing the simpler case of bistability of uniform states. In the
context of dryland ecosystems, bistability of two uniform states can be realized
in precipitation ranges where both uniform vegetation and bare soil are stable
states (see Fig. 7.4). In this case fronts generically propagate. A particular control-
parameter value may exist for which the front is stationary, often called the Maxwell
point, but any deviation from this value results in front motion [59]. A simple
example can illustrate these general results. Consider the equation
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∂tu = λu+ αu2 − u3 + ∂2
xu . (7.3.1)

For α > 0 the zero solution goes through a subcritical pitchfork bifurcation at λ = 0
that results in bistability range, −α2/4 < λ < 0, of the zero solution and the
nonzero solution, u+ = α/2 + √(α/2)2 + λ > 0. Within this range propagating
front solutions that are biasymptotic to the two states exist, e.g., u→ 0 as x →−∞
and u → u+ as x → ∞. The front speed, c, of a propagating front is uniquely
determined by the parameters λ and α [59] and can be calculated by considering
constant-speed fronts. Inserting u(x, t) = u(x − ct) into Eq. (7.3.1) we obtain

d2u

dz2 + c
du

dz
− dV

du
= 0 , (7.3.2)

where z = x − ct and

V = −λ

2
u2 − α

3
u3 + 1

4
u4 + V0 (7.3.3)

is a double-well potential with minima V0 = V (0) and V+ = V (u+) at the zero and
nonzero solutions. Multiplying Eq. (7.3.2) by du/dz and integrating we find

c ∝
∫ ∞
−∞

dV

du

du

dz
dz =
∫ u+

0

dV

du
du = V+ − V0 . (7.3.4)

The Maxwell point corresponds to the value λ = λM = −2α2/9 at which V+ = V0,
i.e., to a stationary front. Clearly, any deviation from the Maxwell point results in
wells of different depth and, consequently, in front motion.

A consequence of the generic property of front propagation is that domains of one
stable state embedded in the second stable state either shrink or expand. In the course
of time the fronts that bound these domains approach one another, their tails begin
to overlap and the fronts interact [36]. When these interactions are attractive, as in
the particular example given by Eq. (7.3.1), expanding domains coalesce into bigger
ones by front annihilation. In that case, a disturbance that results in an expanding
domain of a given state will eventually lead to a global transition to this state, but in
a gradual manner—by front propagation. Note that such a transition can take place
anywhere from the Maxwell point to the edge of the bistability range or the tipping
point where an abrupt global transition occurs [3]. Global transitions of this kind
are also possible with weak repulsive front interactions, but when the interactions
are strong enough the fronts may come to a stop rather than annihilate [27, 32]. In
the case of Eq. (7.2.2), repulsive front interactions can prevent a global transition
from uniform vegetation to bare soil, as Fig. 7.5 illustrates. Repulsive interactions
result from reduced competition for water in diminishing vegetation domains. When
these interactions are strong enough the asymptotic state is not uniform, but rather
a spatial pattern. That pattern consists of large bare-soil domains separated by
vegetation stripes, and reflects a partial regime shift [59, 91].
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Fig. 7.5 Global vs. partial gradual regime shifts. Shown are the dynamics of a locally disturbed
uniform vegetation state, obtained by solving Eq. (7.2.2) numerically in 2d at two precipitation
values that are sufficiently below the Maxwell point, where small bare-soil domains expand into the
surrounding vegetation areas. Top row: P = 165 [mm/y], far below the Maxwell point, where fast
expansion of initially small bare-soil domains eventually leads to a global shift to uniform bare soil.
Bottom row: P = 170 [mm/y], closer to the Maxwell point, where bare-soil domains expand more
slowly and repulsive front interactions result in a partial regime shift to large bare-soil domains
separated by narrow vegetation stripes. See Ref. [91] for additional information. From [91]

Fronts in bistable systems may go through two general types of instabilities,
transverse and longitudinal, as Fig. 7.6 illustrates for an activator-inhibitor type
system [59]. Transverse instabilities involve front-structure changes along the front
line [27, 30], such as curvature modulations (Fig. 7.6a). By contrast, longitudinal
instabilities involve changes normal to the front, e.g., a change in the position of
an inhibitor front relative to an activator front. A good example is the so-called
Nonequilibrium Ising-Bloch (NIB) bifurcation [7, 32]. In a bistable system with an
inversion symmetry, this is a pitchfork front bifurcation in which a stationary (Ising)
front is destabilized to a pair of counter-propagating (Bloch) fronts [7, 31, 32, 39, 61]
(Fig. 7.6b). Although front instabilities are local processes, occurring in the confined
front zone, their influence usually extends to the entire system. A transverse
instability results in the growth of fingers that split at their tips into new fingers,
which grow and tip-split again until the entire system is filled up with a stationary
labyrinthine pattern (Fig. 7.6a) [27, 30]. Note that this process requires repulsive
front interactions to prevent the coalescence of adjacent fingers into larger domains.
A longitudinal instability, such as the NIB bifurcation, can result in counter-
propagating front segments that develop in the course of time into space-filling spiral
waves [31, 33, 53]. In both types of front instability the asymptotic state is a spatial
pattern, either stationary or time dependent, rather than an alternative uniform state.
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Fig. 7.6 Local front instabilities can lead to global patterns. Shown are snapshots of numerical
simulations of a FitzHugh–Nagumo model (time proceeds from left to right) that illustrate
transverse (a) and longitudinal (b) front instabilities, and the asymptotic patterns they lead to—
labyrinthine pattern and spiral wave, respectively. Further details in Ref. [30]. From [59]

Front instabilities may well be found in models of dryland vegetation as these
are also activator-inhibitor systems showing bistability of uniform states (UV and
BS), where biomass is the activator and lack of soil-water—the inhibitor [44]. Front
dynamics in bistability of uniform vegetation and bare soil have received little
attention so far [20, 76]. Further studies are needed to test the relevance of incom-
plete regime shifts, driven by repulsive front interactions and front instabilities, to
real ecosystems, such as the Namibian and the Australian ecosystems discussed in
Sect. 7.2.

More attention has been devoted to the two bistability forms of uniform and
patterned states: uniform vegetation and periodic gap patterns, and periodic spot
patterns and bare soil [6, 11, 74, 79, 80, 92–95]. According to pattern-formation
theory, and in contrast to bistability of uniform states, when one of the alternative
states is a periodic pattern, fronts can be stationary or pinned in a range of the
control parameter [64]. In this range alternative-state domains can remain fixed in
size, neither expanding nor retracting, forming a multitude of stable hybrid states.
The latter can be spatially localized, representing single alternative-state domains
of different sizes, or spatially extended, corresponding to various combinations of
localized domains. In a bifurcation diagram, such as that shown in Fig. 7.7 for the
Namibian ecosystem model, localized hybrid states appear as solution branches that
snake back and forth as the sizes of the domains they represent change, a behavior
that has been termed “homoclinic snaking” [45, 46]. The snaking solution branches
occupy a subrange of the bistability range—the snaking range. Thus, three front
types can be distinguished in a bistability range of uniform and patterned states: a
stationary pinned front within the snaking range and two fronts moving in opposite
directions on either side of this range. Local disturbances within a snaking range
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Fig. 7.7 Bifurcation diagram for the Namibian ecosystem model (7.2.2) in 1d. The vertical axis is
the L2 norm of the biomass variable. Solid (dashed) lines represent stable (unstable) solutions. The
diagram shows a precipitation (P ) range where both uniform vegetation and periodic vegetation
pattern are stable. Within this range there exists a subrange of hybrid states. The insets show spatial
profiles of a 1d periodic gap pattern (a) and of a hybrid state consisting of a periodic gap pattern
with a missing gap, i.e., with the smallest domain of the alternative uniform vegetation state (b).
From [59]

should have little effect as the fronts are stationary and initial alternative-state
domains quickly converge to nearby hybrid states. Local disturbances outside the
snaking range, but still inside the bistability range, result in gradual shifts. Gradual
shifts may also occur within the snaking range when the system is subjected to
environmental fluctuations. Such fluctuations, if strong enough, can kick the system
temporarily outside the snaking range, where fronts do propagate, and thereby
induce hybrid-state transitions that gradually shift the system towards the alternative
stable state [3, 93]. The wider the snaking range the more resilient the system is to
environmental fluctuations and local disturbances. Identifying the biotic and abiotic
parameters that control the width of the snaking range relative to the bistability range
is therefore a highly significant unstudied problem.

Hybrid states are likely to exist in the Namibian ecosystem, as the satellite images
in Fig. 7.8 suggest [93]. Finding empirical evidence for hybrid-state transitions and
gradual regime shifts is more intricate. The closest evidence comes from studies of
fairy-circle “birth” and “death” events [85], which have been interpreted recently
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Fig. 7.8 Patterned states in the Namibian ecosystem. Hexagonal gap pattern obtained by integrat-
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Adapted from [93]

as hybrid-state transitions induced by rainfall variability [93]. Figure 7.9a shows
satellite images that span a period of 10 years and demonstrate the birth of a
fairy circle after a severe drought in 2007. Figure 7.9b shows a simulation of the
Namibian ecosystem model, using the first satellite image in 2004 as an initial
condition with a precipitation value within the snaking range, and mimicking the
2007 drought by a precipitation downshift that takes the system outside the snaking
range for a period of 1 year. As the simulation snapshots show, a new gap has
appeared after a 10-year period, exactly at the same location where the actual fairy
circle has appeared. The simulated temporal escape from the snaking range that was
needed to induce the formation of the new gap supports the view of fairy-circle
birth events as hybrid-state transitions. A series of droughts can result in a cascade
of hybrid-state transitions and a gradual shift [93], but empirical evidence for such
a cascade has not been reported yet.

Homoclinic snaking can also be found in a bistability range of low-biomass
uniform vegetation and periodic spot pattern, as Fig. 7.10 shows [11], implying the
feasibility of hybrid-state transitions and gradual shifts in fluctuating environments.
However, when the periodic-pattern solution branch extends to the stability range
of the bare-soil state, homoclinic snaking breaks down in what appears to be a
Belyakov–Devaney transition [38]. In that case shifts from periodic patterns to bare
soil, or desertification, are found to be abrupt [95]. While most model studies predict
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wide bistability ranges of spot patterns and bare soil, and thus the likelihood of
abrupt desertification, these studies have been confined to a single species. Quite
often dryland landscapes consist of woody and herbaceous species, forming a
bistability range of woody spot patterns and uniform herbaceous vegetation [25].
Studies of two-species models do predict homoclinic snaking [47], suggesting that
the degradation of woody spot patterns may be gradual rather than abrupt.

In the tristability range of bare soil, periodic patterns, and uniform vegetation
[see Fig. 7.7] many front types are expected to coexist, pinned, or moving; fronts
separating domains of uniform vegetation and bare soil, domains of uniform
vegetation and periodic patterns, and domains of periodic patterns and bare soil.
The dynamics, interactions, and stability properties of these front solutions, and the
implications for regime shifts have hardly been studied [96].

7.4 Human Intervention Along Unstable Eigenmodes

The dominant role played by humans in shaping and transforming the ecology of the
Earth is well recognized [19]. More than three-quarters of the terrestrial biosphere
have already been transformed into anthropogenic biomes by human populations
and this trend is intensifying. A major question that arises in this regard is how
to intervene in ecosystem dynamics so as to achieve the intervention goal without
harming ecosystem function. While this question appears to be overwhelmingly
hard in many contexts of human intervention, it may be tractable for selected
contexts that are simple enough to be modeled mathematically and yet ecologically
significant. In the following we focus on a specific example of such a context,
vegetation restoration in fluctuating environments, and use it to illustrate a general
approach to human intervention that highlights the roles of unstable states.

A common restoration practice is water harvesting by spatially periodic ground
modulations, such as parallel micro-catchments, that capture overland water flow
and along which vegetation is planted [88]. This is a spatial resonance problem
where a system that tends to form a periodic pattern with a preferred wave-number
k0 is forced to follow an external template with a different wave-number kf . The
question we wish to address here is the following: given a stripe-like template of
ground modulations in the x direction, characterized by a wave-vector kf = (kf , 0),
what should be the vegetation-planting pattern in order to achieve the restoration
goal of establishing a bio-productive state that remains functional in a fluctuating
environment?

We address this question using Eq. (7.2.1), modified to include a periodically
modulated infiltration rate to mimic periodic soil-crust removal, a lighter and more
cost-effective intervention form than micro-catchments [56],

I (B) = A
B +Qf

B +Q
, f = f0

[
1+ γf

2

(
1+ cos (kf x)

)]
, (7.4.1)
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Fig. 7.11 Resonant responses to stripe-like ground modulations with wave-vector kf = (kf , 0).
Top panels: a resonant stripe pattern (a) and a resonant rhombic pattern (b) in the x (horizontal)
and y plane, obtained by numerical integration of Eqs. (7.2.1) and (7.4.1). Dark shades denote high
biomass. Bottom panels: the corresponding Fourier transforms (in absolute value), where darker
dots denote higher absolute values, and the circle |k| = k0. The peaks at ±kf and the absence
of peaks on the circle of radius k0 in (a) indicate that the stripe pattern is in 1:1 resonance with
the forcing. The four peaks on the circle of radius k0 in (b) represent the two oblique modes,
k∓ = (−kx,∓ky), and their complex conjugates, −k∓. The value kx = kf /2 indicates that the
rhombic pattern is 2:1 resonance with the forcing. From [56]

where f0 � 1 is the infiltration contrast of an unmodulated soil and γf represents
the modulation strength. According to this form the infiltration rate in a densely
vegetated area is high, I ≈ A, because the biomass density there is significantly
higher than Q, a species-dependent reference value representing an over 50%
increase of the infiltration rate, whereas in bare soil it is much lower, I = Af0
in unmodulated bare soil and I = (1 + γf )Af0 in bare soil with removed crust.
Figure 7.11 shows two types of resonant patterns and the absolute values of their
Fourier transforms: (a) a stripe pattern that locks to the forcing in a 1:1 resonance
(vegetation stripe at each ground modulation), (b) a rhombic pattern that locks to
the forcing in a 2:1 resonance (vegetation spot at every second ground modulation).
The Fourier transforms show the basic modes that constitute these patterns; a stripe
mode, k = kf = (kf , 0), in the case of a stripe pattern (and its conjugate
mode (−kf , 0)), and three modes in the case of a rhombic pattern, a stripe mode,
kf = (kf , 0), and two oblique modes, k± = (kx,±ky), where kx = kf /2 and ky
are such that the total wave-number k is equal to the preferred wave-number k0, i.e.,
satisfies k2 = k2

x + k2
y = k2

0. Note that the three wave-vectors kf and k± satisfy the



194 E. Meron et al.

resonance relation, kf + k+ + k− = 0, which drives the simultaneous growth of
the three modes, and that in the case of an exact resonance (kf = k0) the rhombic
pattern becomes a hexagonal pattern consisting of three wave-vectors 120◦ apart.
Numerical studies of Eqs. (7.2.1) and (7.4.1) reveal a bistability range of resonant
stripe and rhombic patterns and that rhombic patterns extend to lower precipitation
values than stripe patterns [56].

Both stripe and rhombic patterns represent productive states, and establishing
any one of them would satisfy the restoration goal. The larger area of vegetation
coverage in the case of stripe patterns does not necessarily imply higher total
biomass or productivity, because of the larger water-contributing areas in the case
of rhombic patterns, which results in higher biomass densities in the vegetation
patches. The remaining question is which of the two patterns is more resilient
to droughts, and thus better functioning in fluctuating environments? Figure 7.12
shows the response of resonant stripe patterns to a moderate precipitation downshift,
which results in convergence to a rhombic pattern (top row), and to a stronger
downshift, which results in collapse to bare soil (bottom row) despite the existence
of stable rhombic patterns. The same numerical experiment conducted with an initial
rhombic pattern results in no significant pattern change. These results suggest that
stripe patterns are less resilient to droughts than rhombic patterns.

In order to understand the mechanism of collapse to bare soil let us focus on the
amplitudes A, a+, a− of the stripe and the two oblique modes, respectively, in terms
of which the state variables U = (B,W,H) can be approximated as

U(x, t) ≈ U0 + U1 Aeikf x + U2 a+ eik−·r + U3 a− eik+·r + c.c. , (7.4.2)

where U0, U1, U2, U3 are constant vectors, and we assumed proximity to the bare-
soil instability and weak ground modulations. Equations for the amplitudes A, a+,

Fig. 7.12 Resilience of stripe patterns to droughts. Numerical simulations of Eqs. (7.2.1) and
(7.4.1) showing the response of a resonant stripe pattern, obtained at a precipitation value within
the bistability range of stripe and rhombic patterns, to precipitation downshifts of different strength
to a range where rhombic patterns are still stable. The response to a moderate downshift results in
quick convergence to a rhombic pattern (top row), while the response to a stronger downshift
results in collapse to bare soil. Adapted from [56]
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a− have been derived for a simple pattern-formation model, the Swift–Hohenberg
equation with parametric spatial forcing [54–56]. Derivation of amplitude equations
for the vegetation model (7.2.1) and (7.4.1) is harder and has not been done yet.
However, because of the universal character of amplitude equations we may expect
their general form to apply to the restoration problem as well. Indeed, the amplitude
equations can produce a bifurcation diagram similar to that found by numerical
integration of the vegetation model [56], interpreting the bifurcation parameter as
the precipitation rate P . In the following we use these amplitude equations to study
the response to precipitation downshifts. A schematic form of the diagram obtained
from the amplitude equations is shown in Fig. 7.13.

Consider two precipitation downshifts of different strengths, applied to stable
stripe patterns as the arrows in Fig. 7.13 indicate: a moderate downshift to P2 where
stripe solutions exist but are unstable (green arrow), and a stronger downshift to
P1 where stripe solutions do not exist (red arrow). Note that both downshifts take
the system to a precipitation range where rhombic patterns are still stable solutions
and significantly far from the saddle-node bifurcation at which they disappear.
Figure 7.14 shows the phase planes spanned by the amplitude moduli ρS = |A|
and ρR = |a+| = |a−| at P2 and P1, where we took advantage of the symmetry
between the two oblique modes in the precipitation range we consider. Shown in

Rhombic

Bare soil

Stripe

S 2

B
io

m
as

s

Precipitation
P P1P

Fig. 7.13 A schematic bifurcation diagram for vegetation restoration. The solution branches
describe bare soil, stripe pattern, and rhombic pattern, where solid (dashed) lines denote stable
(unstable) solutions. The vertical axis represents the L2 norm of the biomass expressed in
terms of the modes’ amplitudes,

√|A|2 + |a+|2 + |a−|2. The precipitation value PS denotes the
disappearance of unstable stripe solutions in a saddle-node bifurcation. The green and red arrows
represent precipitation downshifts from the stability range of stripe patterns to precipitation values
P2 > PS and P1 < PS , respectively. Adapted from [56]
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Fig. 7.14 Phase-space dynamics in the plan spanned by ρS = |B| and ρR = |a±| at (a) P = P2,
where a pair of unstable stripe solutions exists, (b) at P = P1, where the unstable stripe solutions
no longer exist (see Fig. 7.13). The solid (hollow) circles denote stable (unstable) stationary states.
The labels B, S, and R denote the bare-soil state, stripe patterns, and rhombic patterns, respectively,
and the arrows denote the vector field of the amplitude equations. The responses of a stable
resonant stripe pattern to precipitation downshifts are shown by the thick black phase portraits:
(a) A moderate shift to a range where unstable stripe solutions still exist, results in a smooth
transition to a rhombic pattern. (b) A stronger shift to a range where stripe solutions no longer
exist, results in a collapse to bare soil. Adapted from [56]

these phase planes are the stationary uniform and patterned states (fixed points)
that exist at the respective precipitation value, and their stability properties. Also
shown in Fig. 7.14 are phase trajectories (black lines) of numerical solutions of the
amplitude equations, starting with stripe solutions that were computed at a higher
P within their range of stability. A moderate downshift to P2 results in a smooth
transition to a rhombic pattern as Fig. 7.14a shows. The unstable large-amplitude
stripe solution plays a crucial role in this response; its unstable manifold, which
represents the growth of the two oblique eigenmodes, acts as a barrier for the flow
in phase space and prevents convergence to the stable bare-soil solution. By contrast,
a stronger downshift to P1 results in collapse to bare soil, as the stripe solution and
its unstable manifold no longer exists to constrain the phase-space flow.

This analysis shows that the common and intuitive restoration practice in a 1:1
stripe pattern, where the planting pattern coincides with the ground modulation pat-
tern, can result in a productive state but suffers from poor resilience to precipitation
downshifts (droughts). By contrast, restoration in a rhombic pattern, which initiates
the growth of the oblique modes, results in a productive and resilient state. More
generally, these results suggest to disentangle the planting pattern from the ground
modulation pattern and determine the former by identifying the growing (unstable)
eigenmodes and analyzing the phase space they span. By focusing on the dynamical
constraints that unstable states impose through their stable and unstable manifolds,
judicious choices of planting patterns that result in functional ecosystem states can
be made.
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The phase-space information may also be used in managing ecosystems that have
already been restored. The resilience of restored stripes can possibly be improved by
spatial periodic biomass modulations, obtained by trimming or by managed grazing.
This is because of the unstable rhombic solution whose stable manifold separates
the basins of attraction of the bare-soil state and the stable rhombic pattern. Periodic
biomass modulations will place the system in the attraction basin of the rhombic
pattern by creating projections along the oblique eigenmodes.

These considerations can be generalized and applied to other contexts of human
intervention in ecosystem dynamics, besides restoration, such as range management,
regime-shift control, agroecology, and others. While they appear to rely on the
availability of faithful mathematical models, empirical data analysis may prove
to be a possible alternative when mathematical models are absent, such as the
extraction of eigenmodes and phase-space elements from spatial Fourier transforms
of satellite images. We note that the growing eigenmodes need not be spatially
extended like the stripe and oblique modes in the restoration example. Contexts that
involve localized structures, such as fronts in gradual regime shifts, can give rise to
localized eigenmodes associated with translation symmetry [59] and possible front
instabilities [34, 37, 91].

7.5 Conclusion

While pattern-formation phenomena in dryland ecosystems have been the subject
of many theoretical and empirical studies [4, 13, 14, 57–59, 67, 84], many fewer
studies have addressed the implications of pattern formation to ecosystem function
in variable and disturbed environments [60], where state transitions may take
place [41, 69], and in ecosystems subjected to human intervention. In Sect. 7.3 we
considered several cases of bistable ecosystems, distinguishing between bistability
of two uniform states and bistability of uniform and patterned states. In each case we
discussed the implications of front dynamics to transitions from functional ecosys-
tems states to less functional or dysfunctional states, emphasizing three aspects of
front dynamics: single-front motion, front interactions, and front instabilities. The
latter two aspects have received little attention even in the simplest bistability case of
two uniform states [20]. The availability of fairly realistic models that are still simple
enough to be mathematically tractable, such as the Namibian ecosystem model,
should motivate additional studies. Because of the disparate length scales associated
with biomass fronts (short) and water fronts (long) singular-perturbation methods
may prove very useful in such studies [30, 36]. The relevance of homoclinic snaking
in bistability ranges of uniform and patterned states to dryland vegetation has been
demonstrated in several studies [11, 93, 94], including two-species models [47], but
the physical and ecological factors that affect front pinning and determine the size
of the homoclinic snaking range have remained unexplored.

Another intriguing and unstudied question is related to the similarity of pattern-
formation phenomena in bistability ranges of uniform and patterned states and
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bistability ranges of two uniform states. An example of such a phenomenon is a
single gap of bare soil in otherwise uniform vegetation. Such a gap can be realized
in a bistability range of uniform vegetation and periodic pattern as a hybrid state,
but it can also be realized in a bistability range of uniform vegetation and bare
soil as an outcome of repulsive front interactions. The capacity to determine which
mechanism is at work in a given realization of a single gap is highly significant.
In the former case rainfall fluctuations may drive the system outside the snaking
range and induce a gradual shift to the less productive periodic gap pattern, which
amounts to moderate desertification. In the latter case rainfall fluctuations may drive
the system below the Maxwell point and induce a gradual shift to the unproductive
bare-soil state, which amounts to severe desertification.

Although the significance of unstable states in ecosystem dynamics has already
been stressed [35], the roles these states may play in planning human intervention
have remained largely unexplored. An example of a significant problem that can
be studied using an approach similar to that described for the restoration of
degraded landscapes is range management in drought-prone ecosystems. Consider,
for example, managing grazing in uniform grasslands. The disappearance of
unstable uniform-vegetation solutions at low precipitation rates may induce collapse
to bare soil rather than convergence to a periodic pattern, very much like the
disappearance of unstable stripe solutions in the restoration problem. This suggests
the management of grazing in spatial patterns, in order to locate the system in the
basin of attraction of the periodic solution. Such management may result not only in
the achievement of an ecosystem service—feeding livestock—but also in improved
resilience to droughts.

Finally, the difficulty to conduct controlled laboratory experiments calls for the
development of advanced data-analysis methods for remote sensing observations,
geared to test model predictions of structural and dynamical fairy-circle character-
istics, such as large-scale hexagonal order disrupted by penta-hepta defects [63] and
hybrid-state transitions [22, 90, 93].
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Chapter 8
Measurement of Biodiversity: Richness
and Evenness

Fred S. Roberts

Abstract Evidence about the health of ecosystems is often thought to be related to
biodiversity. Traditional attempts to define biodiversity consider two components:
richness—the number of species in the ecosystem—and evenness—the extent to
which species are evenly distributed. This chapter studies attempts to make both
concepts precise using mathematical approaches. It describes a number of evenness
indices that have been widely used, studies axioms for evenness that an index could
be required to satisfy, and explores which evenness indices satisfy those axioms.
The chapter also considers evenness indices that “preserve” certain partial orders.
The relationship between richness and evenness and attempts to derive measures of
biodiversity based on both richness and evenness are explored.

Keywords Axiomatic approach · Biodiversity · Ecosystem · Evenness · Index ·
Measure · Partial order · Richness

8.1 Introduction

The planet is constantly changing, but the pace of change has accelerated in
recent decades. Construction and deforestation change habitats. Fishing, hunting,
and poaching affect the population of many species. Fossil fuel combustion leads
to increasing atmospheric greenhouse gas concentrations and, in turn, changing
climates that affect the ability of existing species to survive in an ecosystem while
opening up the same ecosystem for new, sometimes competing, species. Commerce
and transport introduce nonnative species that can impact the population of existing
species. All of this has led to concerns about the health of the planet and in
particular the health of important ecosystems. We need evidence about the health
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of ecosystems in order to make better decisions about them and about the activities
that affect them.

Evidence about the health of ecosystems is often obtained by measuring
“biodiversity.” An index of biodiversity allows us to set specific goals and
measure progress toward them. This chapter will describe approaches to measuring
biodiversity and, in particular, axiomatic approaches leading to measures or indices
of biodiversity.

The 1992 Convention on Biological Diversity [49] set the goal: By 2010, achieve
a significant reduction of the current state of biodiversity loss at the global, regional,
and national level [50]. But how can we tell if we have achieved this goal? We need
to be able to measure biodiversity. There is a long history of attempts to develop
indices of biodiversity, raising many mathematical challenges. We will discuss some
of these approaches and challenges in this chapter.

But what is biodiversity? There is a long history of trying to define it, and it is
a multidimensional concept. Components of biodiversity include species diversity,
genetic diversity within species, ecosystem diversity, and ecosystem services and
processes. Tracing back to the work of Whittaker [51], many ecologists distinguish
among alpha, beta, and gamma diversity, defined, respectively, as the diversity of a
given site in a region, the difference in diversity among sites in the region, and the
diversity of the region as a whole. We return to this distinction below.

The Convention on Biodiversity defines biodiversity as the variability among
living organisms from all sources including, inter alia, terrestrial, marine and other
aquatic ecosystems, and the ecological complexes of which they are part; this
includes diversity within species, between species and of ecosystems [49].

The term “biodiversity” was coined by Walter Rosen during a 1986 National
Forum on BioDiversity [45] and was first used in the literature in the proceedings
of that meeting [53]. Since then, hundreds of papers have attempted to define it
precisely. The literature is based on ideas from other disciplines that go back more
than 100 years. Over the years, many indices have been proposed. However, by way
of warning, there is a remarkable inconsistency in the literature of measurement
of biodiversity. The same term has been used for different indices. Some papers
use a measure and others its negative or its reciprocal. Some “normalize” it, so it
is a measure between 0 and 1. A lower number means lower biodiversity in some
indices, higher biodiversity in others. (For example, 0 could be lowest or highest.)
Unfortunately, there are some papers that use names for indices without saying
which version of the index they are using.

Consider a toy example. One ecosystem has six butterflies, one grasshopper
and one beetle. (Of course, there are many species of butterflies, grasshoppers,
beetles, etc., but we disregard that.) A second ecosystem has four butterflies and
four grasshoppers. Which has more biodiversity? The first has more species. The
second has its species more evenly distributed in terms of numbers. Traditional
approaches consider two basic determinants of biodiversity: richness, or the number
of species in an ecosystem; and evenness, or the extent to which species are equally
distributed [25]. We will discuss measurement of each of these concepts and how to
combine them into one measure.
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However, are richness and evenness reasonable determinants of biodiversity,
and are they the only ones? Among other things, these concepts assume that all
species are equal, all individuals are equal (disregarding differences in size, health,
etc.), and that spatial distribution is irrelevant. But are these assumptions enough
to give us useful indices of biodiversity? Do we really want an ecosystem with
as many leopards as zebras? Is a forest with 100 hemlock trees and 100 oak
trees, well interspersed, equally as diverse as a forest with 100 hemlocks in one
half and 100 oaks in another half? Moreover, some species are highly “visible”
or considered centrally important for the purposes of conservation biology (e.g.,
lions, elephants). Other species are indicator species of the health of an ecosystem,
and we may want to give their presence (or absence) higher priority. For instance,
lichens respond to changes in forest structure resulting from changes in air quality
or climate. Disappearance of lichens may indicate environmental stress (high levels
of sulfur dioxide, nitrogen oxides, etc.). Similarly, algal species in aquatic systems
may indicate organic pollution and nutrient loading (e.g., nitrogen, phosphorus) and
mussels are sensitive to siltation and low dissolved oxygen in water.

Outline of the Chapter In Sect. 8.2, we discuss several factors that come into
play when one tries to define a measure of the richness of an ecosystem. We
suggest that, when details are ignored, the number of species is a good measure
of richness. In Sect. 8.3, we address the second measure of biodiversity, namely
evenness. Here, we introduce Simpson’s index, the Coefficient of Variation, the
Shannon–Wiener index, Pielou index, and the Gini index, with their mathematical
definitions. In Sect. 8.4, we present several axioms originally formulated in an
economics context by Dalton and show that the five indices discussed in Sect. 8.3 all
satisfy Dalton’s axioms. In Sect. 8.5, we list additional axioms that could be applied
to select specific measures of the evenness of ecosystems. In the following sections
we address the issue of how to compare the evenness of different ecosystems using
the concept of partial order. In Sect. 8.6, we introduce the Lorenz partial order and
the generalized Lorenz partial order and show that the Gini index and the Coefficient
of Variation both reflect the general Lorenz partial order, while the other three
indices (Simpson, Shannon—Wiener, and Pielou) do not. Section 8.7 highlights the
(tenuous) relationship between the measures of richness and evenness. Section 8.8
is devoted to attempts to combine richness and evenness in a single measure of
biodiversity through the development of a sequence of partial orders. The choice of
a particular partial order from the sequence can be tested through a set of axioms,
which are discussed in Sect. 8.9. In the final Sect. 8.10, we summarize our discussion
and present some ideas for further investigation.

8.2 Measuring Richness

Richness S is usually interpreted as the number of different species in an ecosystem.
This has some major drawbacks. It disregards the presence or absence of “impor-
tant” or “indicator” species. It may depend on the sampling process to detect species,
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and that sampling process could be biased, could depend on the length of time
sampling is done, the intensity of the sampling process, and the size of the area
sampled [4, 16, 43]. Richness defined this way also increases with the presence of
species we don’t want to have (e.g., invasive species) [21, 26].

Some of these problems with richness have been made precise through various
mathematical models. Consider the case of the connection between time spent
sampling and number of species detected. Soberon and Llorente [43] note that there
is evidence that, as time spent collecting increases, the number of species identified
asymptotically approaches some limit. They investigate different assumptions about
the probability of detecting a new species in a given time period, given the number
of species that have been detected so far.

Let P(j, t,Δt) be the probability that one new species is detected during a time
interval Δt after time t , given that the search has already identified j species at
time t . Soberon and Llorente assume that P grows linearly with Δt ,

P(j, t,Δt) = F(j, t)Δt. (8.2.1)

The simplest assumption about F(j, t) is that it is constant over time and varies
linearly with the number of species already found,

F(j, t) = a − bj. (8.2.2)

That is, as the species list grows, the probability of identifying a new species in
the interval Δt decreases proportionally to the size of the list. This model may
be appropriate in a small area or with a well-known group of species. It leads to
a differential equation involving the probability p(j, t) that at time t the list has
exactly j species. The solution gives the expected richness S(t) at time t ,

S(t) = (a/b)[1− e−bt)]. (8.2.3)

This solution does exhibit the asymptotic property.
Soberon and Llorente also study an exponential model,

F(j, t) = ae−bj . (8.2.4)

Here, as the species list grows, the probability of identifying a new species in the
time interval Δt decreases exponentially with the size of the list. This assumption
may be reasonable in a large area or with species relatively unknown and where the
probability of finding a new species never reaches zero. The solution to the resulting
differential equation depends on assumptions about the probability distribution
p(j, t),

Lamas et al. [20] studied the collection of butterflies at the Pakitza Biological
Station at Parque Nacional Manu in Peru. They fitted the data to the linear and
exponential models and a third model. All fits were good. The largest asymptote
was 905 species, but they extrapolated to different numbers of species found.
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The conclusion is that the answer to the question whether a linear, exponential,
or other model is most suitable may depend upon the collecting experience or
procedure—for example, whether the probability of finding a new species becomes
dramatically more and more difficult over time.

Another line of modeling work seeks to connect the richness S to the area A

being sampled. One model of the relationship is the power law,

S = kAc, (8.2.5)

where k and c are constant. The parameter k is called the species richness factor and
the parameter c the species accumulation factor. This model goes back to Arrhenius
in 1921 [1], is widely used, and has a large amount of theoretical and empirical
support [32, 33, 44]. One downside of this model is that the intensity of sampling is
a factor in the richness measured, not just the area. If you sample more intensively,
clearly you should find more species.

In spite of the number of species found being connected to area sampled,
sampling method, and other factors, the number of species is still considered a good
measure of one part of biodiversity, namely richness.

As noted earlier, ecologists distinguish among alpha, beta, and gamma diversity.
In terms of richness, alpha diversity can be interpreted as the number of species
in a given site in a region, gamma diversity as the number of species in the entire
region, and beta diversity between two sites as the number of species in one but
not the other. However, there are many more subtle issues involved in making these
concepts precise. For instance, beta diversity could be percentage similarity among
various sites in a region, ratio of gamma diversity to average alpha diversity, etc. For
a discussion and a variety of definitions, see [46, 47].

8.3 Measuring Evenness

Consider two toy ecosystems. The first has two snakes, two lizards, two turtles, two
salamanders, two toads, two birds, two beetles, and two frogs. The second has one
snake, one lizard, one turtle, one salamander, one toad, one bird, one beetle, and
eight frogs. They have the same number of species, so are equally rich. The first
has as even a distribution as possible, while the second is highly uneven. Clearly,
richness and evenness are two different concepts.

Measures of evenness in ecology are frequently based on ideas going back in
the economic literature to the early 1900s, specifically to the work of Gini [13, 14]
on measure of even income or wealth distribution and to the work of Dalton [7]
on measures of inequality. Other measures of biodiversity or of evenness go back
to work in communication theory, in particular the work of Claude Shannon [39]
on entropy in information theory. These ideas are predated in statistical mechanics
by Boltzmann’s work on entropy in the nineteenth century. The notion of evenness
is also applied in other areas. For example, it is used to study the extent to which
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we have achieved a stable degree of social or economic equity [11, 12], to study
scientific collaboration [31], to study interdisciplinarity of journals [22], and many
other topics.

The literature has many proposed measures of evenness. The papers [42, 48]
provide surveys of popular evenness indices. Before discussing a few examples, we
introduce some notation.

• S, the number of species;
• xi , the abundance of species i—that is, the number of individuals or, in some

cases, some measure of biomass of species i in the ecosystem;
• x = (x1, x2, . . . , xS), the abundance vector;
• ai , species i’s proportion of the population, ai = xi/

∑
j xj ;

• a = (a1, a2, . . . , aS);
• f (x) = f (x1, x2, . . . , xS), the evenness of the ecosystem.

Unless otherwise indicated, sums are taken over all species (i = 1, . . . , S). We
adopt the convention that f (x) is low if the ecosystem is very even, high if it is very
uneven. It is common in the literature to take f (x) to be between 0 and 1.

In the example given at the beginning of this section, the first population
has abundance vector x = (2, 2, 2, 2, 2, 2, 2) and the second has vector x =
(1, 1, 1, 1, 1, 1, 8). Also, the first population has a = (1/7, 1/7, . . . , 1/7), while
the second has a = (1/14, 1/14, . . . , 1/14, 8/14).

8.3.1 Simpson’s Index

A well-known index of evenness is Simpson’s index [41], given by

Simpson’s index, λ(x) =
∑
i

ai
2. (8.3.1)

This is the probability that any two individuals drawn at random from an infinite
population will belong to the same species. In our example if f (x) = λ(x), then for
the first population, f (x) = (1/7)2+(1/7)2+ . . .+(1/7)2 = 7/49 = 1/7 = 0.143.
For the second population, f (x) = (1/14)2+ (1/14)2+ . . .+ (1/14)2+ (8/14)2 =
0.357. Some biologists prefer high evenness to mean more even, and so use 1−λ(x)
or 1/λ(x) instead of λ(x).

8.3.2 Coefficient of Variation

Another index of evenness is the Coefficient of Variation, given by

Coefficient of Variation, V (x) = σ/μ, (8.3.2)
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where μ is the mean and σ the standard deviation,

μ = (1/S)
∑
i

xi , σ 2 = (1/S)
∑
i

(xi − μ)2. (8.3.3)

If f (x) = V (x), xi = μ for all i, so f (x) = 0. For any population without a
perfectly even distribution, f (x) > 0. For example, when x = (1, 1, 1, 1, 1, 1, 8),
μ = 2, σ = √6 = 2.449, and V (x) = 1.225.

8.3.3 Shannon–Wiener Diversity Index

A third index of evenness, coming out of information theory, is the Shannon–Wiener
Diversity index or, as it is called in information theory, the Shannon Entropy,

Shannon–Wiener Diversity (Shannon Entropy) index, H ′(x) = −
∑
i

ai ln ai .

(8.3.4)
This index quantifies (in expected value) the information contained in a message,
in units such as bits. A fair coin has entropy of one bit. If a coin is unfair and
you are asked to bet, you will have less uncertainty. The Shannon–Wiener index is
maximized if each xi is the same. We use−H ′ so that the index will be minimized if
each xi is the same. For example, when x = (2, 2, 2, 2, 2, 2, 2), −H ′(x) = −1.946,
while if x = (1, 1, 1, 1, 1, 1, 8), −H ′(x) = −1.451.

8.3.4 Pielou Index

An index derived from the Shannon–Weiner index is the Pielou index [29, 30],
named after Canadian statistical ecologist Evelyn Chrystalla “E.C.” Pielou.

Pielou index, J (′x) = H ′/H ′
max = H ′/ ln S, (8.3.5)

where H ′ is the Shannon–Wiener Index and H ′
max is the maximum value that

H ′ attains, i.e., ln S, which occurs when all xi are equal. We will use −J ′,
so that the more even distribution of population gets the lower number. When
x = (2, 2, 2, 2, 2, 2, 2), −J ′(x) = −0.278, while if x = (1, 1, 1, 1, 1, 1, 8),
−J ′(x) = −0.207.
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8.3.5 Gini Index

The Gini index was introduced in econometrics by Italian statistician Corrado Gini
in 1909 [13] and 1912 [14]. It is defined as follows. Start with counting all of the
absolute differences among all the counts xi ,

M =
∑
i

∑
j

|xi − xj |. (8.3.6)

The average M/S2 is called the mean absolute difference. Next, normalize by
dividing by the average value of xi , i.e., by

A = 1

S

∑
i

xi . (8.3.7)

The ratio M/A is called the relative mean absolute difference and gives the Gini
index,

Gini index, G′(x) = M/(S
∑
i

xi). (8.3.8)

The Gini index is easiest to calculate if the xi are ordered. If we order from high
to low, we get M = ∑ (S + 1− 2i)xi . Dividing by S

∑
xi gives the following

formula for the Gini Index:

Gini index, G′(x) = S + 1

S
− 2

S

∑
i

iai . (8.3.9)

If the xi are ordered from low to high, we get the negative of this expression,

G′(x) = 2

S

∑
i

iai − S + 1

S
. (8.3.10)

There are a number of variations of this in the literature. The Gini index is
widely used to measure things like inequality of income or wealth distribution. For
example, G′ = 0.25 for Denmark, 0.70 for Namibia. Higher G′ means things are
more uneven.

If all the xi are the same, then ai = 1/S for all i, and

∑
i

iai = 1

S

∑
i

i = 1

S
[( 1

2S)(S + 1)] = 1
2 (S + 1). (8.3.11)

Thus, G′ = 0. In all other cases, G′ > 0. We will give a geometric interpretation of
the Gini index in Sect. 8.6.
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In our example, when x = (2, 2, 2, 2, 2, 2, 2), G′ = 0. If x = (1, 1, 1, 1, 1, 1, 8),
then using the low to high version of the equation for the Gini index, we get G′ =
(2/7)(1/14+ 2/14+ 3/14+ 4/14+ 5/14+ 6/14+ 56/14)− 8/7 = 3/7 = 0.429.

8.4 Dalton’s Axioms

There are many other indices of evenness that have been proposed over the years.
How does one choose? One idea is to write down some general principles (axioms)
that a measure of evenness should satisfy and see which of the suggested indices
satisfy them. This approach has been widely used in other areas of application,
the famous Arrow’s axioms for a social welfare function being a prime example.
In the case of Arrow, his impossibility theorem [2] shows that there is no social
welfare function (“voting rule,” “consensus function”) that satisfies a reasonable set
of axioms. By way of contrast, there are a variety of well-known examples where
the given axioms uniquely determine a given function, as for example the axioms
that uniquely determine a single solution called the Shapley value in a multi-player
game [40], or the axioms that uniquely determine a measure of distance between
preference rankings [19]. Another example is the set of axioms for a measure of
trophic status of a species in a food web, for which there are multiple solutions, but
one minimal one [19]. See [35] for a discussion of these and other examples.

We present some axioms originally due to Dalton [7] in the economics literature
and widely discussed in the literature of biodiversity (see for example [9, 10, 36]).
(For a different set of axioms, aimed at diversity more generally, see [17].)

Dalton’s Principle of Permutation Invariance says that concentration or diversity
or evenness is not a property of (names of) individual species but of a group of
species considered as a whole. Precisely, this is interpreted to mean that if π is a
permutation of {1, 2, . . . , S}, then

f (xπ(x1), xπ(x2), . . . , xπ(xS)) = f (x1, x2, . . . , xS). (8.4.1)

Dalton’s Principle of Scale Invariance says that a measure of concentration or
diversity or evenness should not be influenced by the units used. Precisely, if c is a
constant, then

f (cx1, cx2, . . . , cxS) = f (x1, x2, . . . , xS). (8.4.2)

It could be argued that this is not just about units. For instance, (400, 100) might
be considered more evenly distributed than (4, 1), since the larger number of the
second species at least creates the impression of more evenness. This might be
more a matter of diversity than evenness. Also, (4, 1) is not particularly diverse,
since having only one individual of the second species creates a very vulnerable
situation. However, vulnerability is not a matter of evenness. All this having been
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said, Dalton’s Principle of Scale Invariance has been widely accepted as a reasonable
requirement for a measure of evenness.

Dalton’s Transfer Principle says that when the rich get richer and the poor get
poorer, inequality rises. In other words, if you increase the population of a more
abundant species and decrease the population of a less abundant species, there is
less evenness. This is made precise as follows: If xi < xj and 0 < h ≤ xi , then

f (x1, x2, . . . , xi−1, xi−h, xi+1, . . . , xj−1, xj+h, xj+1, . . . , xS)>f (x1, x2, . . . , xS).

(8.4.3)
We may now ask: Which evenness indices satisfy these axioms? In particular,

which of the indices we have defined above do so?
All five indices we have defined—Simpson’s index, Coefficient of Variation,

Shannon–Wiener index, Pielou index, and Gini index—satisfy all three of these
Dalton axioms/principles. Verifying this for the first two principles is straightfor-
ward. Consider the Transfer Principle. For the Simpson index, f = λ = ∑i ai

2.
Let T =∑k xk . If xi < xj and h > 0, then

f (x1, x2, . . . , xi−1, xi − h, xi+1, . . . , xj−1, xj + h, xj+1, . . . , xS)

− f (x1, x2, . . . , xS) = (1/T 2)(2xjh− 2xih+ 2h2) > 0.
(8.4.4)

Next, consider the Shannon–Wiener index (Shannon Entropy), −H ′, and assume S

= 2. Figure 8.1 shows that H ′ is maximized when a1 = a2 = 0.5; moving to the left
(reducing x1 by h and increasing x2 by h) decreases H ′. Thus, this switch increases
−H ′, as required by the Transfer Principle. Similar reasoning applies when S > 2.

Fig. 8.1 Shanon–Wiener index H ′ (not −H ′) normalized to a scale of 0 to 1
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It is not hard to verify the Transfer Principle for the other three indices considered
so far—Coefficient of Variation, Pielou, and Gini.

Since the five indices we have defined all satisfy the three Dalton axioms, how
can we choose among these indices? One way, of course, is to add more axioms.

8.5 Additional Axioms for Measures of Evenness

Here are two new principles that we might impose on measures of evenness. First,
the If the Rich-Get-Richer Principle. If xi is the maximum of {x1, x2, . . . , xS}, then
for every h > 0,

f (x1, x2, . . . , xi−1, xi + h, xi+1, . . . , xS) > f (x1, x2, . . . , xS). (8.5.1)

Second, the Principle of Nominal Increase. If not all xi are equal, then for every
h > 0,

f (x1 + h, x2 + h, . . . , xS + h) < f (x1, x2, . . . , xS). (8.5.2)

The latter principle implies that, if everyone receives the same nominal increase
in salary, there is less inequality (f decreases) or, if the population of every
species increases by the same number of individuals, then there is less inequality.
Unfortunately, even these two new principles do not allow us to separate the five
evenness indices we have defined.

Egghe and Rousseau [10] show that the If the Rich get Richer Principle and the
Principle of Nominal Increase follow from the earlier Dalton Axioms of Permutation
Invariance, Scale Invariance, and the Transfer Principle.

Here is another interesting principle: The Replication Principle says that, if a
population is replicated and a new population consists of the old plus the new one,
then the evenness should not change. For instance, this principle says that (3, 7)
and (3, 7, 3, 7) should have the same evenness. There is room for discussion as to
whether this principle is applicable to evenness of populations in ecosystems.

The Pielou index −J ′ violates Replication. For example, if x = (8,2) and y =
(8,8,8,8,8,8,8,8,8,8,2,2,2,2,2,2,2,2,2,2) then −J ′(x) = −0.72, −J ′(y) = −0.86.
Of course, since −H ′ = −J ′ ln S, Shannon–Wiener also violates Replication.
The Simpson index also violates this condition; for example, if x = (8,2) and y =
(8,8,2,2), we get λ(x) = 0.68 and λ(y) = 0.34. However, it is not hard to show that
Gini and the Coefficient of Variation satisfy Replication.

Of course, we might add other axioms to further separate the various evenness
indices, and also derive other indices that satisfy collections of axioms of interest.
There is still much work to be done using axiomatic approaches in this way, and
to identify which axioms are appropriate for which biodiversity contexts. It would
certainly be interesting to seek out a set of axioms which determine a unique
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measure of evenness, as in the Shapley value in game theory and the Kemeny–Snell
measure of distance between preference rankings discussed above.

8.6 The Lorenz Partial Order

In this section, we take a different approach. Certain abundance vectors are clearly
less evenly distributed than others. We introduce an order relation, ≺, on abundance
vectors called the Lorenz Partial Order and seek out measures of evenness that
reflect this partial order. (This section is heavily based on [27, 28, 38]; see also [15].)

If x and y are two abundance vectors, we will want an evenness index so that
x ≺ y implies that the evenness index of x is less than the evenness index of y. This
means x is more even than y. It seems reasonable to want ≺ to be a partial order,

if x ≺ y, then y ⊀ x, (8.6.1)

if x ≺ y and y ≺ z, then x ≺ z. (8.6.2)

However, it could be that neither x ≺ y nor y ≺ x, in which case we say that x and y
are incomparable.

The literature has several widely used ways to define such partial orders, although
approaches to derive this partial order axiomatically or derive it from fundamental
theories about species distributions are lacking. A widely used way to define the
partial order ≺ follows an idea developed by Max Lorenz in 1905 [23] in a study of
inequality of wealth distribution. We discuss this idea next.

Assume that x1 ≤ x2 ≤ · · · ≤ xS. Let bj = a1+ a2+ · · · + aj for j = 1, . . . , S,
so bj is the cumulative proportion of the population due to the first j species. The
Lorenz curve for the abundance vector x = (x1, x2, . . . , xS) is the curve in 2-space
that connects the S+1 points (0, 0), (1/S, b1), (2/S, b2), . . . , (S/S, bS) by straight
lines.

For example, if x = (2,4,4,10), then a = (1/10,2/10,2/10,5/10) and b1 =
1/10, b2 = 3/10, b3 = 5/10, b4 = 1. The Lorenz curve for x connects the points
(0,0), (1/4,1/10), (2/4,3/10), (3/4,5/10), and (1,1); see Fig. 8.2. Note that the Lorenz
curve for (4,8,8,20) is the same as the Lorenz curve for (2,4,4,10); again, we use the
points (0,0), (1/4,1/10), (2/4,3/10), (3/4,5/10), and (1,1). In general, (x1, x2, . . . , xS)

and (cx1, cx2, . . . , cxS) have the same Lorenz curve.
Figure 8.3 compares the Lorenz curve for x = (2,4,4,10) with the Lorenz curve for

y = (5,5,5,5), where all species are equal. The latter is the curve of perfect evenness.
It is not hard to show that the Gini index for a given abundance vector is the ratio

of the area between the Lorenz curve for that vector and the line of perfect evenness
and the area under the line of perfect evenness. Since the latter is 1/2, the Gini index
is twice the area between the two Lorenz curves.
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Fig. 8.2 Lorenz curve for the abundance vector (2,4,4,10)

Fig. 8.3 Lorenz curves for the abundance vectors (2,4,4,10) (blue) and (5,5,5,5) (pink)

Sometimes the curve for one abundance vector x is strictly above the curve for
another vector y at all points, i.e., xi > yi for all i. If that is the case, we define
x ≺ y in the Lorenz partial order and say that x is more even than y.

Figure 8.4 shows the curves for x = (5,6,20,25) and y = (2,3,7,44). The former
lies entirely above the latter, and therefore x ≺ y and x is more even than y.

Two Lorenz curves can cross over, as in Fig. 8.5, which shows the curves for
x = (5, 6, 20, 25) and y = (2, 12, 13, 29). In this case, neither x ≺ y nor y ≺ x.
The two abundance vectors are incomparable in the Lorenz partial order.

We can now define a partial order on Lorenz curves that corresponds to the
partial order≺ on abundance vectors: Two Lorenz curves L and L′ satisfy the partial
order relation L ≺ L′ if curve L lies strictly above curve L′.

This partial order ≺ on curves allows us to do more than the partial order defined
so far on vectors. We can now compare abundance vectors with different numbers of
species. Defined this way, the order (either on abundance vectors or Lorenz curves)
is called the generalized Lorenz partial order.

Using this generalized Lorenz partial order, we see in Fig. 8.6 that the curve
for x = (5, 6, 20, 25) is above the curve for y = (2, 3, 7, 44, 44), so x ≺ y, and
(5,6,20,25) is more even than (2,3,7,44,44).
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Fig. 8.4 Lorenz curves for the abundance vectors (5,6,20,25) (blue) and (2,3,7,44) (pink). The
former is more even than the latter

Fig. 8.5 The Lorenz curves for the abundance vectors (5,6,20,25) (blue) and (2,12,13,29) (pink)
cross over. These two abundance vectors are incomparable in the Lorenz partial order

Fig. 8.6 The Lorenz curve for the vector (5,6,20,25) is above the Lorenz curve for the vector
(2,3,7,44,44), so the former is more even than the latter

The next requirement we would like to place on an evenness function f is that it
reflects the (generalized) Lorenz partial order,

x ≺ y ⇒ f (x) < f (y). (8.6.3)
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Fig. 8.7 A Lorenz partial
order for Cocody Bay,
Mauritius. Adapted from [27]

Table 8.1 Gini index for Cocody Bay, Mauritius, as calculated in [27]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.234 0.224 0.181 0.173 0.107 0.076 0.109 0.255 0.130 0.220 0.292 0.114

All of the indices we have defined so far satisfy this condition if the number
of species in x and y are the same. However, this is not the case if the number of
species can differ and we are dealing with the generalized Lorenz partial order. It
is not hard to show that, if the number of species in x and y can differ, then the
Gini index and the Coefficient of Variation satisfy this additional requirement, but
Simpson, Shannon–Wiener, and Pielou do not.

To illustrate the ideas, consider the Lorenz partial order derived for Cocody Bay,
Mauritius, shown in Fig. 8.7. The partial order is computed in [27] from data in [6].
We see, for example, that Jun≺Dec, Mar≺Feb, and Sep≺Aug. June should get the
lowest evenness. Table 8.1 shows the values of the Gini index G′. It is easy to see
that the Gini index “preserves” the partial order,

x ≺ y ⇒ G′(x) < G′(y). (8.6.4)

8.7 Richness vs. Evenness

We have discussed two components of biodiversity, richness and evenness. Here we
ask: How are they related?

Wilsey et al. [52] and Ma [24] compared richness and evenness at grassland
sites in the North American Great Plains and in agricultural fields in Finland,
respectively. Wilsey et al. found a weak negative correlation between richness and
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evenness, while Ma found no consistent relationship. Bock et al. [3] did a much
more extensive comparison using many more species. (The earlier studies only
used flowering plants.) They studied 48 plots in the grasslands and mesquite-oak
savannas in the Sonoita Valley of southeastern Arizona in the USA. The study
involved 150 species of flowering plants, 32 of grasshoppers, 70 of butterflies, 9 of
lizards, 87 of summer birds, 92 of winter birds, and 48 of rodents. Correlations of
richness and evenness were neutral to moderately negative for each group. Thus,
richness alone is an incomplete representation of biodiversity, since it does not
account for species evenness.

Zhang et al. [54] note that “the relationship between species richness and
evenness across communities remains an unsettled issue in ecology from both
theoretical and empirical perspectives. As a result, we do not know the mechanisms
that could generate a relationship between species richness and evenness, and how
this responds to spatial scale.” Using Pielou’s index J ′ to study sub-alpine meadow
communities in the eastern Qinghai-Tibetan Plateau, they found a consistent
negative correlation between S and J ′.

One may ask: To what extent does richness or evenness impact long-term bio-
diversity? Daly et al. [8] study this question using a stochastic, spatial, individual-
based model to simulate ecosystem dynamics. They study a community of four
interacting bacterial species and simulate long-term system behavior. Their results
show that higher initial evenness has “a small stabilizing effect on ecosystem
dynamics by extending the time until the first extinction.”

In the next section we discuss ways to use both concepts, richness and evenness,
to define a measure of biodiversity.

8.8 Combining Richness and Evenness

Since biodiversity is more than just richness and more than just evenness, we
can explore ways of combining both measures into one index. Jost [18] discusses
whether it is possible to decompose biodiversity into independent richness and
evenness components. We shall take a different approach, defining different partial
orders that reflect richness and evenness and discussing the idea that a biodiversity
measure can preserve a given partial order. One way to do that is to use the Lorenz
curve L, as well as the number of species S. We will represent an abundance vector
by a pair (S, L) and introduce a number of different partial orders ≺k between pairs
(S, L) and (S′, L′). Then we seek biodiversity functions B that reflect the partial
order ≺k in question,

(S, L) ≺k (S′, L′)⇒ B(S,L) < B(S′, L′). (8.8.1)

The reader should note that, in the present discussion, a lower B value means more
biodiversity, just as a lower f value means more evenness when f is an evenness
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index. The ideas in the following discussion are due to Rousseau and van Hecke [37]
and Rousseau et al. [38].

We introduce a sequence of partial orders, labeled ≺1 , ≺2, etc., and identify the
first partial order, ≺1, with the generalized Lorenz partial order.

The generalized Lorenz partial order does not account for richness. If richness is
the main factor, we could use the partial order ≺2,

x ≺2 y if S > S′ or (S = S′ and L(x) ≺ L′(y)), (8.8.2)

where ≺ is the ordinary Lorenz partial order. (This is “lexicographic ordering.”)
If both the number of species and the Lorenz curve are considered, we could

use ≺3,

x ≺3 y if (S ≥ S′ and L(x) ≺ L(y)). (8.8.3)

A fourth partial order arises from an altered Lorenz curve called an intrinsic
diversity profile or a k-dominance curve. List xi in nondecreasing order. Plot the
points (0, 0), (1, b1), (2, b2), . . . , (S, bS). Recall that bj = a1 + a2 + . . . + aj .

In other words, plot the cumulative number of species on the horizontal axis and
the cumulative proportion of the population on the vertical axis. The result is a k-
dominance curve. Figure 8.8 shows the k-dominance curves for x = (1, 3, 4, 10)
(pink) and y = (1, 1, 3, 3, 4, 4, 10, 10) (blue). If we accept the Replication
principle, then these populations have the same evenness. However, x has fewer
species, so it should have less biodiversity and therefore higher B than y. In general,
we say that

x ≺4 y if the k-dominance curve for x lies below that for y. (8.8.4)

In the example, y ≺4 x.
Rousseau et al. [38] give two more partial orders, which we will not discuss here.
We want to find biodiversity measures B that have the property

x ≺k y ⇒ B(x) < B(y). (8.8.5)

Fig. 8.8 k-dominance curves for (1,3,4,10) and (1,1,3,3,4,4,10,10)
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But how do we decide which of the partial orders ≺k to use to derive a biodiversity
measure? One approach is to use axioms, as we did for evenness. That is the
approach we take in the next section.

8.9 Axioms to Select a Partial Order to Compare
Biodiversity Using Both Richness and Evenness

Rousseau, van Hecke, Nijssen, and Bogaert have proposed a number of axioms (or
principles) that can be applied to the selection of a partial order when both richness
and evenness are used to compare biodiversity [38].

The Inheritance Principle says that, if species richness S is held fixed, then
classical evenness determines the partial order to use.

The Dual Inheritance Principle says that, if two abundance vectors have the
same (classical) Lorenz curve, then species richness determines the partial order. A
special case is Pielou’s axiom, which says that, given two communities each having
complete evenness, one with S species and the other with S + 1 species, the latter
should be more biodiverse and therefore have a lower biodiversity index.

The Balance Property says that there must be two abundance vectors of different
species richness that are incomparable in the partial order. Thus, species richness
cannot completely determine biodiversity.

The Dual Balance Property says that there must be two abundance vectors
of different evenness (as determined by the generalized Lorenz curves) that are
incomparable in the partial order. Thus, evenness cannot completely determine
biodiversity.

The generalized Lorenz order ≺1 violates Pielou’s axiom and therefore the Dual
Inheritance Principle.

The second partial order ≺2 violates the Balance Property, since species richness
determines the order if two populations have different species richness.

The third partial order ≺3 satisfies both Inheritance principles and both Balance
properties. For example, consider x = (S, L) = (1, 3, 4, 10) and y = (S′, L′) =
(1, 1, 3, 3, 3, 3, 11, 11). Then S < S′, and it can be shown that L′ ≺1 L. It follows
that x and y are incomparable in ≺3, so both Balance axioms hold.

The fourth partial order ≺4 also satisfies both Inheritance principles and both
Balance properties.

Since both ≺3 and ≺4 satisfy the four axioms proposed in [38], the question is
how to choose between the two of them. For every x and y, x ≺3 y implies x ≺4 y.
Thus,≺4 allows us to make at least as many (and in fact more) comparisons than≺3.
In that sense, ≺4 is preferable.

We now seek a biodiversity index B that reflects ≺4,

x ≺4 y ⇒ B(x) < B(y). (8.9.1)

Rousseau et al. found one index B that satisfies this condition. It is defined up to a
scaling factor by the area below the k-dominance curve. They called it an adapted
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Gini index. Much work remains to be done to assess whether this or other measures
of biodiversity are useful.

8.10 Concluding Remarks

The discussion of richness, evenness, and a combination of richness and evenness
shows that more research is needed to define useful measures of biodiversity that
can be precisely defined and used by a wide variety of researchers. To give just
one example of a problem that needs to be addressed, we note that the classical
approach to evenness could be modified to incorporate weights of importance of
different species such as indicator species or invasive species.

Different indices of biodiversity, even different indices of evenness, have dif-
ferent advantages and disadvantages. It can be important to see if different indices
yield consistent conclusions. We have already observed that richness and evenness
might even be negatively correlated. However, an interesting line of research could
be to study families of biodiversity indices that depend upon some parameter and
give conditions on the range of values of the parameter where the indices will
give consistent conclusions, e.g., consistent rankings of biodiversity. This idea is
discussed in [5, 34].

We have given criteria (axioms) for a measure of evenness, but not for a measure
of biodiversity. As with evenness, such criteria need to be made precise, perhaps
using mathematical formulations similar to those discussed in this chapter. There is
already a literature on this topic; for example, see [17].

Since variations of different measures are widely used, and numbers obtained are
compared, it is important to make sure that everyone is using the same definition.
Many authors try to “normalize,” so that measures of biodiversity (or evenness) take
on values between 0 and 1. It is often assumed, going back to Dalton as one of his
axioms, that B(x1, x2, . . . , xS) = 0 when all xi are equal.

To make the maximum value of B equal to 1, we might make a transformation.
For instance, some people use the Coefficient of Variation V in its inverse
form, 1/V . This can be normalized by using instead (2/π) arctan (1/V ).

Ideally, a measure of biodiversity should be “intelligible”—intuitively meaning-
ful, easy to explain, easy to understand. For example, Simpson’s index has a simple
probabilistic interpretation and Gini’s index has a simple geometric interpretation.

The biodiversity measure should be sensitive in the sense that it reflects changes
in data. However, it should also be robust in the sense that it is insensitive to small
changes, especially when the data are not known to great accuracy. Both those
concepts could be made precise using mathematical language.

A measure of biodiversity is applied to a particular ecosystem at a particular
instant of time. A goal of biodiversity preservation is to create systems that maintain
relatively stable biodiversity into the future. A good measure of biodiversity should
be usable in models that help us predict that under certain conditions of an evolving
ecosystem, the biodiversity will remain relatively stable.
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There is no one “best” measure of biodiversity. The measure that is used should
be tied to the application for which it is used. This will depend in turn on potential
biases and problems in data gathering, the sampling procedure used, the area of the
region in question, the goals of the study, etc.

We need to be able to understand the uncertainty in claims about (positive or
negative) changes in biodiversity and to find ways to use biodiversity measures to
understand how to achieve ecosystems that are sustainable and maintain stability
into the future. Only by putting the measurement of biodiversity on a firm
mathematical foundation can we be confident that we are capturing the true diversity
in nature.
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Chapter 9
The Mathematics of Extinction Across
Scales: From Populations to the
Biosphere

Colin J. Carlson, Kevin R. Burgio, Tad A. Dallas, and Wayne M. Getz

Abstract The sixth mass extinction poses an unparalleled quantitative challenge
to conservation biologists. Mathematicians and ecologists alike face the problem of
developing models that can scale predictions of extinction rates from populations
to the level of a species, or even to an entire ecosystem. We review some of
the most basic stochastic and analytical methods of calculating extinction risk at
different scales, including population viability analysis, stochastic metapopulation
occupancy models, and the species–area relationship. We also consider two exten-
sions of theory: the possibility of evolutionary rescue from extinction in a changing
environment and the posthumous assignment of an extinction date from sighting
records. In the case of the latter, we provide a new example using data on Spix’s
macaw, the “rarest bird in the world,” to demonstrate the challenges associated with
extinction date research.
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9.1 Introduction

Every species, like every living organism, has a finite lifespan. From the origin
of a species onward, every species changes and adapts to its environment. Some
species exist longer than others, but all eventually face extinction (or are replaced by
their descendants through evolution). Currently, there are approximately 8.7 million
eukaryote species alone. But in the history of the Earth, it is estimated that there
have been a daunting 4 billion species altogether, and at least 99% of them are now
gone [78].

How long can a species exist? Of the species currently on Earth, some are deeply
embedded in the geological record and have changed very little over the span of
hundreds of millions of years, such as coelacanths and ginkgo trees. Most species
persist for a few millions of years or more, and in periods of environmental stability,
extinctions typically occur at a low and steady baseline rate. But at various points
in the history of the Earth, extinction rates have suddenly accelerated for brief and
eventful periods that biologists term mass extinction events. In 1982, based on the
marine fossil record, Raup and Sepkoski [84] suggested that five of these mass
extinctions happened over the past half billion years. In all five, more than half of all
contemporary species disappeared [75], and each extinction was sufficiently drastic
to be identified with the end of a geological era: the Ordovician 444 million years
ago (mya), Devonian 375 mya, Permian 251 mya, Triassic 200 mya, and Cretaceous
66 mya.

In recent years, ecologists have reached the consensus that the biosphere is
currently experiencing, or at the very least entering, the sixth mass extinction [61].
Unlike the previous five, which were caused by planetary catastrophes and other
changes in the abiotic environments, the sixth mass extinction is the undeniable
product of human activities. While anthropogenic climate change is one of the most
significant contributors, a number of other factors have exacerbated extinction rates,
including habitat loss and fragmentation, biological invasions, urbanization, over-
harvesting, pollution, pests, and emerging diseases.

How does the sixth mass extinction scale up against the last five? The number of
extinctions alone is an unhelpful metric, as species richness changes over time. A
more convenient unit of measurement commonly used by scientists is the number
of extinctions per million species-years (E/MSY). From a landmark study by
Gerardo Ceballos and colleagues, we know that in the geological record, vertebrates
normally go extinct at a rate of 2 E/MSY in the periods in-between mass extinctions.
But since 1900, that rate is an astounding 53 times higher [20]. One study has
suggested that the sixth mass extinction is comparable to other mass extinctions
in E/MSY rates, meaning that with enough time, the geological definition of a mass
extinction (three quarters extinction) could be achieved in hundreds to thousands of
years [7]. Or, to consider another metric: a 1970 study estimated that at a baseline,
one species goes extinct per year [67], while a decade later that estimate was revised
to just up to one species per hour [79]. Plants, insects, and even micro-organisms all
face similarly catastrophic threats; and these across-the-board losses of biodiversity
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pose a threat to human survival that some argue could even threaten our own species
with extinction.

The crisis of extinction is, for scientists, a crisis of prediction. While extinction
is a natural part of ecosystem processes and of the history of the planet, the job of
conservation biologists is to protect species that would otherwise be brought to an
untimely and avoidable end. To do that, conservationists must sort and prioritize
the 8.7 million eukaryotes (and even some prokaryotes) to assess which species face
the greatest threat—and which can, and cannot, be saved by human intervention.
Assessment is easiest at the finest scales: by marking and tracking all the individuals
in a region, a population ecologist can make a statistically informed estimate of
the probability of imminent extinction. Above the population level, assessment is
much more challenging, requiring sophisticated (and complicated) metapopulation
models that are typically data-intensive. If a species is rare enough and the data
are “noisy,” its extinction may seem uncertain even after the fact; but mathematical
models can help assign a probability to the rediscovery of a species once thought
extinct, and resolve when (and even why) a species has disappeared long after it
is gone. Above the level of a single species, measuring extinction is an altogether
different problem, requiring a different type of model to explain how biodiversity
arises and is maintained over time. Each of these modeling approaches represents
a different aspect of a connected problem, and we deal with each in turn in this
chapter. The models we present are seminal and well-known, but extinction risk
modeling is a dynamic and rapidly growing field. Consequently, these models only
present a handful of many different approaches that link different temporal and
spatial scales of extinction together.

Outline of the Chapter We begin by discussing the basic mechanics of extinction
as a demographic process at the population scale, including population viability
analysis, with a case study on evolutionary rescue processes (Sect. 9.2). In Sect. 9.3,
we progress up to the metapopulation scale, including patch occupancy models
and island biogeography. At the species scale, we dive deeper into the issue of
evolutionary rescue, including the potential for plasticity to buffer species from
extinction in a changing environment (Sect. 9.4). Expanding at the species level, we
discuss the recently growing literature on using sighting records to determine the
odds that species are extinct, with a handful of case studies including Spix’s macaw
and the ivory-billed woodpecker. In the final Sect. 9.5, we discuss how extinction
scales up to the community level, and how extinction rates are inferred from habitat
loss using macroecological theory.

9.2 The Population Scale

Even though many make a terminological distinction between extinction (the loss
of a species) and extirpation (the eradication of a population), extinction is still
fundamentally a process that begins at the population scale. With the exception
of sudden, unexpected catastrophes, extinction at the population scale is almost
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always the product either of a declining population or of stochastic variations in
an already small population, both of which follow mathematical rules that can
be used to quantify extinction risk. Perhaps the most significant body of theory
about population extinction deals with the estimation of a population’s mean time
to extinction (MTE, typically TE in mathematical notation), an important quantity
to both theoretical ecologists and to conservation efforts. For both theoretical
and applied approaches to extinction, understanding the uncertainty around TE

requires an understanding of the shape of the extinction time distribution, including
developing and testing demographic theory that accurately captures both the central
tendencies [29] and the long tail [30] of empirical extinction times. We begin by
reviewing some of the basic population-scale approaches that scale up to ecosystem-
level theory of extinction.

9.2.1 Stochasticity and the Timing of Extinction

The simplest deterministic equation governing the size N of a population as it
changes over time t (generally measured in units of either years or generations)
is given by

dN

dt
= rN. (9.2.1)

The population is growing if r > 0, while the population heads towards extinction
if r < 0. A slightly more complicated model that captures the phenomenological
capping of the growth of a population at a carrying capacity K is

dN

dt
=
{
rN if 1 < N < K,

0 if N = K.
(9.2.2)

Equations (9.2.1) and (9.2.2) both imply that, if r < 0, ln(N) declines linearly with
slope r . The mean time to extinction, TE , for a shrinking population can be derived
analytically as the amount of time before the population reaches one individual,
N(TE)=1,

TE(N0) = − ln(N0)/r. (9.2.3)

Consequently, the maximum achievable extinction time for a given population with
a fixed r , given a starting stable population size, would be

max(TE) = − ln(K)/r. (9.2.4)
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But deterministic models only tell a part of the story. In the history of con-
servation biology, two paradigms emerged that separately explain the process of
population extinctions. The declining population paradigm explains that popula-
tions shrink and vanish due to a combination of internal and external failures,
and suggests that the key to conserving populations is to identify and prevent
those failures. In contrast, the small population paradigm is rooted in ideas of
stochasticity, suggesting that even without factors like environmental degradation
or disease, smaller, more fragmented populations simply face higher extinction
risk due to stochastic population processes [19]. For one thing, stochasticity
produces populations with a log-normal distributed size (i.e., most populations
are comparatively small relative to a few larger ones) due to Jensen’s inequality,
which can be applied to stochastic processes to show that if r is stochastic, the
expectation E[r] of r will always be greater than the expected real growth rate of
the population [13],

E[r] > E[(Nt/N0)
1/t ]. (9.2.5)

As a result, stochastic sub-exponential populations all tend eventually to extinction.
In reality, populations show a combination of deterministic and stochastic

processes over time, and their extinction is a product of both. In the late 1980s,
the field of population viability analysis (PVA) emerged from the need to find
appropriate analytical and simulation methods for predicting population persistence
over time. According to one history of PVA, Mark Shaffer’s work on grizzly bears in
Yellowstone [9] helped birth the field through two important developments, which
we break down in turn below.

Demographic and Environmental Stochasticity Shaffer’s first major contribu-
tion was the use of extinction risk simulations that account for—and differentiate
between—two major kinds of stochasticity, namely demographic stochasticity,
which is defined at the scale of the individual and occurs through random variation
in demography and reproduction, and environmental stochasticity, which occurs at
a synchronized scale for an entire population (e.g., a bad year may change vital
rates uniformly for all individuals in a population). While the impact of environ-
mental stochasticity is ultimately scale-independent, larger populations become less
sensitive to demographic stochasticity as they grow. This is due to the integer-based
nature of birth and death processes, where populations made up of fewer individuals
will suffer a disproportionate effect from a birth or death event.

Demographic and environmental stochasticity have measurably different effects
on TE in basic population models. A simple modeling framework distinguishing
between them was laid out in a 1993 paper by Lande [63]. That framework begins
again with Eq. (9.2.2), except that we now regard r as an explicit function of time.
In the case of demographic stochasticity, individual variations have no temporal
autocorrelation, and at the population scale,

r(t) ∼ N (r̄, σ 2
d /N), (9.2.6)
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where σ 2
d is the variance of a single individual’s fitness per unit time. Once again,

for populations starting at their carrying capacity,

TE =
(

1

r̄

∫ K

1

e2r(N−1)/σ 2
d

N
dN

)
− lnK

r̄
. (9.2.7)

When r̄ > 0, MTE scales exponentially with carrying capacity, TE ∝
e2r(N−1)/σ 2

d /K , while when r̄ < 0, it scales logarithmically, TE ∝ ln(K), much like
in the deterministic decline given by Eqs. (9.2.3) and (9.2.4). In contrast, in the case
of environmental stochasticity, the variance acts on the entire population at once,

E[lnN(t)] = lnN0 + (r̄ − σ 2
e /2) t, (9.2.8)

and the mean time to extinction is now given by

TE = 2

Vec

(
Kc − 1

c
− lnK

)
, c = 2r̄

σ 2
e

− 1. (9.2.9)

In the case of environmental stochasticity, if the “long-run growth rate” (r̃ = r̄ −
σ 2
e /2) is zero or negative, MTE again scales logarithmically with K . When long-run

growth is positive, the dynamic is a bit more complicated,

TE ≈ 2Kc/(σ 2
e c

2) if c lnK � 1. (9.2.10)

In this case, the scaling of MTE with K curves up if and only if r̄/σ 2
e > 1 (i.e., if

and only if the intrinsic growth rate exceeds environmental variation).

Minimum Viable Populations and Effective Population Size The second major
contribution of Shaffer’s work was the introduction of the concept of a minimum
viable population (MVP). In Shaffer’s original work, MVP is defined as the smallest
possible population for which there is a 95% chance of persistence (a 5% or
lower chance of extinction) after 100 years. In their foundational treatment of the
minimum viable population concept, Gilpin and Soulé [42] identify four special
cases—extinction vortices—in which a population is likely to tend towards its MVP
and ultimate extinction. The first, the R Vortex, is perhaps the most obvious: demo-
graphic stochasticity (variation in r) reduces populations and increases variation in
r , a positive feedback loop of demographic stochasticity directly driving populations
to extinction. The D Vortex occurs when the same processes—potentially in concert
with external forces—produce increased landscape fragmentation (see Sect. 9.3.1
for an explanation of D), which not only reduces local population sizes (increasing
local extinction rate) but also has subtle effects on population genetic diversity. The
final two vortices—the F Vortex and A Vortex—both concern the genetic and evo-
lutionary trajectories of small stochastic populations. In the former, inbreeding and
demographic stochasticity form a feedback cycle, while in the latter, maladaptation
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is the underlying mechanism of extinction. Both are especially relevant in research
surrounding phenomena like climate change, but fully understanding them requires
a mathematical language for the genetic behavior of near-extinction populations.

In heavily subdivided populations with low dispersal, increased inbreeding
can lead to decreased genetic diversity and the accumulation of deleterious or
maladapted alleles that make the total population less viable than its size might
indicate. As a consequence, intermediate-size populations with low genetic diversity
can behave, mathematically, like small populations. Effective population size, Ne,
quantifies that phenomenon, expressing the genetically or reproductively “effective”
number of individuals in a population. In some cases, measuring population size
with Ne may more readily allow the computation of a meaningful and predictive
MVP, by removing some of the variability between different populations of the
same size and by more accurately capturing the long-term reproductive potential
of the available genetic material. (Relatedly, it is worth noting that in one unusual
study, it was found that there is no statistical link between species MVP and global
conservation status [14].)

A number of different approaches exist for the estimation of Ne. Sewall Wright,
who created the concept of effective population size, offered one interpretation
based on neighborhoods. In his model, offspring move a distance away from
their parent based on a two-dimensional spatial normal distribution with standard
deviation σ [107]. If individuals have a density D, then

Ne = 4πσ 2D. (9.2.11)

Wright [108] also provides a more commonly invoked method of calculating Ne

based on sex structure, using Nm and Nf to, respectively, denote the number of
breeding females and males in the population,

Ne = 4NmNf

Nm +Nf

(9.2.12)

In such an approach, a population of all males or all females would have Ne = 0
because no new offspring could be produced in the next generation, rendering the
population functionally extinct. That method of deriving Ne is still frequently cited
in population conservation work, as small populations tend to stochastically deviate
from a 50:50 sex ratio, sometimes severely impacting long-term survival.

A more genetics-based method of calculating Ne comes from the Wright–
Fisher model of a two-allele one-locus system, referred to as the variance effective
population size [21]. In that model, variance between generations σ 2(a) for allele
A with frequency a is given as a(1 − a)/(2N), resulting in an effective population
size

Ne = a(1− a)

2σ 2 . (9.2.13)
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Alternatively, for a locus with a greater degree of polymorphism, or multi-locus
microsatellite data, genetic diversity θ and mutation rate μ are related by

Ne = θ

4μ
. (9.2.14)

A more commonly used metric in current literature is inbreeding effective popula-
tion size. To construct that metric, we start by defining population-level measures of
heterozygosity. In the simplest Hardy–Weinberg formulation for a two-allele system
with allele frequencies a and 1− a, the expected fraction of heterozygote offspring
is E(H) = 2a(1−a). By counting the real fraction of heterozygotes and comparing,
we can measure the assortiveness of mating,

f = E(H)−H

H
. (9.2.15)

That value f is called the inbreeding coefficient, ranging from 0 to 1; again
according to Wright [3], Ne should be calculated such that it satisfies

Ne = 1

2Δf
, (9.2.16)

where Δf is the change per generation (in a declining or small population, genetic
diversity decreases at a rate determined by the population size and inbreeding).

Returning to the extinction vortex concept with Ne in mind clarifies the genetic
component of those extinction processes. While the D Vortex reduces Ne as a
byproduct of fragmentation (in fact, decreasing neighborhood size), the last two
extinction vortices bring Ne below the MVP through specifically genetic modes of
extinction. In the F Vortex, a positive feedback loop between increased inbreeding
(hence f , the inbreeding coefficient) and decreases in effective population size
drive a population to extinction over a few generations. A notorious real-world
example of such a process might be the near-extinction (or extinction, depending
on one’s species concept) of the Florida panther, a subspecies of Puma concolor
ultimately rescued through outbreeding with Texas panthers. All things considered,
their rescue was both fortuitous and improbable, as the species was assigned a 5%
or less chance of avoiding imminent extinction in 1995 [55]. Finally, in the A Vortex
(for adaptation), decreased Ne acts as a buffer to the strength of selection acting on
phenotypes that are closely paired with environmental variation or change, leading
to mismatch between them that reduces both r and N (and Ne) until extinction (a
process we cover in much greater detail in Sect. 9.4.1) . Obviously, the four vortices
are not independent processes and probably often exist in combination in real-world
cases of population extinction.

Population Viability Analysis Through Simulation Usually, MVP is often calcu-
lated through simulation methods, which benefit from a greater ease of incorporating
age, sex structure, and other population-scale heterogeneities. Even though these
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methods are still the foundation of most population-level extinction analyses, they
date as far back as P. H. Leslie’s population analyses in the late 1940s in the
framework of discrete matrix models and linear systems theory. Formulations of the
Leslie model and the theory behind such models can be found in several expository
texts [18, 39], with a brief outline provided here.

In the Leslie model, the population is divided into n age classes, where Ni(t) is
used to denote the number of individuals in age class i at time t . In each age class,
the parameter si (0 < si ≤ 1) is used to represent the proportion of individuals
aged i that survive to age i + 1, in which case the variables Ni(t) and Ni+1(t + 1)
are linked by the equation

Ni+1(t + 1) = siNi(t). (9.2.17)

We either terminate this sequence of equations at age n by assuming that sn = 0 (i.e.,
no individuals survive beyond age n), or we interpret Nn as the group of individuals
in the population aged n and older and use the equation

Nn(t + 1) = sn−1Nn−1(t)+ snNn(t) (9.2.18)

to imply that all individuals aged n and older are subject to the survival parameter sn
(i.e., individuals older than age n are indistinguishable from individuals aged n). If
we now interpret N0(t) as all newborn individuals born just after individuals have
progressed one age class, then N0(t) can calculated using the formula

N0(t) =
n∑

i=1

biNi(t), (9.2.19)

where bi is the average (expected) number of progeny produced by each individual
aged i. In this model we have not differentiated between the sexes; so, for example,
if each female aged i is expected to produce three young and the population has a
1:1 sex ratio (same number of males to females), then bi = 1.5 for this age class. If
we now apply Eq. (9.2.17) for the case i = 0, we obtain the equation

N1(t + 1) = s0N0(t) = s0

n∑
i=1

biNi(t). (9.2.20)

Equations (9.2.17)–(9.2.20) can be written compactly in matrix notation,

N(t + 1) = LN(t), (9.2.21)

where
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N =
⎛
⎜⎝
N1
...

Nn

⎞
⎟⎠ , L =

⎛
⎜⎜⎜⎝

s0b1 · · · s0bn−1 s0bn

s1 · · · 0 0
...

. . .
...

...

0 · · · sn−1 sn

⎞
⎟⎟⎟⎠ .

The Leslie matrix L is nonnegative, since all its elements are nonnegative, with at
least one positive element. Further, if there exists some integer p > 0 such that Lp is
positive (i.e., all its elements are positive), then it is known by the Perron–Frobenius
Theorem that the matrix L has a dominant positive eigenvalue λp (known as the
Perron root) and a corresponding eigenvector vp whose elements are all positive;
λp and vp characterize the long-term behavior of N,

N(t) ∼ (λp)
tvp. (9.2.22)

That is, N(t) grows like (λp)
t as t gets very large, and the ratio of different

age classes matches the ratio of elements of vp. This implies that, if λp > 1
(λp < 1), N(t) will grow (decline) geometrically as λt

p and approach the stable
age-distribution characterized by the ratio of consecutive elements of vp. Thus, this
model predicts that the population will go extinct whenever the largest eigenvalue
of L is less than one (0 < λp < 1). On the other hand, if λp > 1, then we expect
density-dependent effects at some point to rein in the unfettered growth by causing
survival rates to decline. In particular, if the survival rate s0 of the youngest age
class is the most dependent of all the survival rates on the total biomass density
B =∑n

1 wiNi , where wi > 0 is the average weight of an individual in age class i,
then we should replace s0 in Eq. (9.2.20) with an expression such as

s0 = ŝ0

1+ (B/K0)γ
, (9.2.23)

where ŝ0 is the density-independent survival rate, K0 is the density at which ŝ0
is halved, and γ > 1 is a so-called abruptness parameter (which controls the
abruptness in the onset of density, approaching a step down function as γ gets
large [38]). Similar modifications can be made to the other survival parameters si ,
depending on their sensitivity to changes in population density.

Stochastic equivalents of these deterministic models typically treat the survival
rates si as probabilities that each individual survives each time period, rather than
as the proportion of individuals surviving each time period; and bi itself is a random
variable drawn from an appropriately defined distribution (usually the binomial
distribution). Stochastic models of this sort can be made even more complex by
adding more population structure (e.g., genetic variability) or increased levels of
complexity (e.g., modeling at the metapopulation scale, discussed in Sect. 9.3, or
adding underlying environmental variation or other landscape structures). Though
MVP or extinction rates might be difficult to calculate analytically for models of
this level of complexity, repeated simulation can easily allow empirical derivation
of these properties of a system [76] and is perhaps the most widespread practice for
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Fig. 9.1 An example of PVA without (a) and with (b) demographic stochasticity, with no
(blue), medium (red), and high (purple) environmental stochasticity. With repeated simulation,
an “extinction curve” can be plotted from the probability of population survival over time (c).
The analysis can be used to make decisions about management and conservation: here, illustrating
that three populations with migration between them survive much longer in a poached population
of rhinos than a single population. An interactive tutorial of PVA, which can be adjusted to
produce anything from the simplest population dynamics to a stochastic, structured metapopulation
experiencing harvesting can be found at http://www.numerusinc.com/webapps/pva

estimating population extinction risk in conservation research. An example using an
interactive web app [40] is shown in Fig. 9.1.

9.2.2 Case Study: PVA, Disease, and Evolutionary Rescue

In 2015, an epidemic of unknown identity eliminated more than half of the
population of the critically endangered saiga antelope (Saiga tatarica) in the short
span of 3 weeks. While the causative agent was ultimately identified as a species
of Pasteurella, the mechanism by which a normally asymptomatic non-pathogenic
bacterium killed at least 130,000 antelopes is still in question [77]. Literature
explaining the die-off, or predicting the consequences for the species, remains
comparatively limited; the fate of the species remains uncertain, and it may yet face
extinction in the coming years.

Disease is rarely responsible for the extinction of a cosmopolitan species. But
for already-threatened species like the saiga, it can be one of the most rapid,
unpredictable and unpreventable mechanisms of extinction. Disease has been
implicated in a handful of notable wildlife extinctions, like that of the thylacine
(Thylacinus cynocephalus) or Carolina parakeet (Conuropsis carolinensis), and has
been the definitive mechanism of extinction for species like the eelgrass limpet
(Lottia alveus) [25]. While most diseases co-evolve with their hosts to an optimal
virulence that prevents the species from reaching extinction, diseases that can persist
in the environment may be released from such constraints and be more likely to
evolve “obligate killer” strategies (like that of anthrax [37]). Fungal pathogens
in particularly tend to have rapid intra-host growth rates and high transmission
potential, which can result in population collapses before optimal virulence levels
can be attained [35].

http://www.numerusinc.com/webapps/pva
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Two notable fungal diseases have recently demonstrated the destructive potential
of environmentally transmitted pathogens. Perhaps the most significant example of
disease-driven extinctions is the trail of destruction caused by the chytrid fungus
Batrachochytrium dendrobatidis (Bd). Bd has been found in at least 516 species
of amphibians [80] and has driven decline or extinction in at least 200 [96],
including at least two-thirds of the genus Atelopus alone [82]. According to some
estimates, current extinction rates that amphibians face (largely but not entirely
due to chytrid) are roughly 200 times the background rate; including declining
species, that estimate is closer to an even more staggering 25–45,000 [73]. White-
nose syndrome (Geomyces destructans), a similar fungal epizootic, has similarly
spread through bat populations in the eastern United States, causing widespread
population-level die-offs since the mid-2000s. While white-nose syndrome has yet
to drive any entire species to extinction, significant concern remains regarding its
ongoing spread; one study in 2010 using population viability analysis suggested a
99% extinction risk for the little brown bat Myotis lucifugus in under two decades.
Even in a best-case scenario where white-nose mortality was reduced to one-
twentieth of its rate, substantially reducing extinction risk, bats would still be
reduced to one percent of their original population size.

White-nose syndrome (WNS) has also become a potential case study for evo-
lutionary rescue, one of the most controversial phenomena in extinction research.
The premise that rare genes for resistance or tolerance can bring a disease-ridden
population back from the brink of extinction has theoretical support, and poten-
tially indicated from the rapid evolutionary response of certain hosts documented
throughout the literature [4]. But WNS constitutes one of the most interesting and
controversial examples because, while populations show some sign of recovery from
the disease at the time of this writing, no definitive genetic mechanism for resistance
has been isolated—a necessary component of demonstrating evolutionary rescue
from disease-induced extinction [4]. Consequently, speculation about evolutionary
rescue is controversial and so far has been conducted in primarily theoretical
settings. In an age-structured matrix population model proposed by Maslo and
Fefferman, two scenarios for recovery from WNS are considered [71]. In one model,
bats’ adaptive immunity leads to re-stabilization at much lower levels overall, but
a much faster recovery to a stable balance of juveniles (J ) and adults (A), with
subscript t denoting the number of individuals in these two age classes at time t . In
that model, in the absence of WNS,

(
Jt+1

At+1

)
=
(

0.95 0.35
0.95 0.87

)(
Jt

At

)
. (9.2.24)

In a second model, recovery comes not from adaptive immunity but from innate
immunity through a genetic mechanism for resistance. In that scenario, a robust type
(R) is present in the gene pool with frequency p, and the remainder of individuals
are wild type (WT), resulting in the matrix model
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(
Jt+1

At+1

)
= pt

(
0.86 0.32
0.86 0.78

)(
JR
t

AR
t

)
+ (1− pt )

(
0.52 0.27
0.52 0.46

)(
JWT
t

AWT
t

)
. (9.2.25)

In this model, an 11-year stabilization period ultimately leads to population recovery
with a positive net growth rate (calculated as the dominant eigenvalue λ = 1.05),
potentially saving populations from extinction. Despite the lack of genetic evidence
for evolutionary rescue, Maslo and Fefferman propose that observed similarities
between the dynamics they observe and real data on white-nose outbreaks suggest
that evolutionary rescue may be happening in real time.

9.3 The Metapopulation Scale

Populations rarely exist in isolation, but are often connected to other popula-
tions through dispersal processes, creating a metapopulation. Metapopulations are
considered to be in a relatively constant state of flux, as local extinctions of
species in habitat patches are buffered by recolonization by dispersal. In this way,
dispersal can be beneficial or detrimental to metapopulation persistence. Under high
dispersal, patches become homogeneous and population dynamics tend to become
synchronous. This synchrony is destabilizing, in that periods of low population sizes
will be experienced by all patches, increasing the likelihood of stochastic extinction
of the entire metapopulation. On the other hand, too little dispersal will result in
spatial clustering of a species, as the species will be confined to the set of patches
that can be successfully reached and colonized and similarly potentially increasing
extinction risk [1, 2].

The importance of dispersal to patch-level colonization and metapopulation
persistence highlights that extinction processes occur at two scales in metapopu-
lations. Specifically, extinction can occur both at the local patch-level (i.e., a single
population in the network of habitat patches) or at the entire metapopulation level
(i.e., either through catastrophic events or cascading local extinctions). Extinctions
of single patches can occur as a result of demographic, environmental, or genetic
stochasticity (addressed in more detail in Sect. 9.2.1), or through extrinsic events
related to habitat loss or natural enemies [48]. Metapopulation level extinction can
also result from environmental stochasticity at the regional scale [17], provided
this stochasticity is spatially autocorrelated, such that it is expected to promote
synchronous dynamics among habitat patches [45].

9.3.1 Basic Metapopulation Models and Extinction

In the classic metapopulation model described by Richard Levins, the balance
between patch colonization (c) and local extinction (e) determines patch occupancy
dynamics. In this case, local habitat patches are either occupied or unoccupied,
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and both patch number and the spatial orientation of patches are undescribed. It
is important to note that in a metapopulation, there are two levels of extinction;
individual habitat patches may go extinct, or the entire metapopulation may go
extinct. Dispersal among habitat patches can rescue patches from extinction or
allow for the recolonization of extinct patches. This becomes more important
when we consider dispersal dynamics, subpopulation synchrony, and environmental
stochasticity.

The basic formulation of the Levins model is

dP

dt
= cP (1− P)− eP, (9.3.1)

where the balance between e and c determines long-term persistence of the
metapopulation [66]. A necessary condition for metapopulation persistence in this
model is

e

c
< 1, (9.3.2)

where, at equilibrium, the patch occupancy is given as

P̂ = 1− e

c
(9.3.3)

In this model, the mean time to extinction of any given population is the inverse
of the rate (i.e., TE = 1/e), providing a link to the models at the population scale
discussed above.

We can take the Levins model a step further to explicate the relationship between
patch occupancy and overall mean time to extinction TM at the metapopulation
scale. Starting with the assumption that each of the H patches has its own average
extinction time TL (which should be the inverse of e), we have

TM = TL exp

((
P̂H
)2

/
(

2H(1− P̂ )
))

. (9.3.4)

Consequently, using Eq. (9.3.3), we can also express TM as

TM = TL exp

(
H

2

(
cTL + 1

cTL

− 2

))
, (9.3.5)

showing that metapopulation extinction time increases exponentially, not linearly,
with the MTE of individual habitat patches [47].

The Levins model is mathematically equivalent to a logistic model, a well-
developed model often used to examine single species population dynamics. The
simplicity of the Levins model has resulted in a sizable body of literature surround-
ing and extending the model. For instance, in the original Levins model all patches
are equidistant from one another, identical in quality, and can only be in one of two
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potential states (occupied or unoccupied), but each of these conditions is frequently
adjusted in derivative stochastic patch occupancy models (SPOMs). Researchers
have shown that despite the simplicity, Levins-type dynamics can emerge from
more complicated stochastic metapopulation models [32], and extensions of the
Levins model continue to provide insight into the influence of habitat patch size
and topography (i.e., spatial orientation of habitat patches) on metapopulation
persistence [41].

Island Biogeography and Metapopulation Capacity A simple extension of
the Levins model considers a set of spatially explicit patches of variable size,
where a distance matrix D describes the distance between all patches in the
metapopulation. The model borrows elements of Island Biogeography Theory [70],
such that distance between patches (Dij ) and patch area (Ai) influence extinction
and colonization processes, where the extinction constant (e) is modified for each
patch based on area (ei = e/Ai) and colonization becomes a property of distance
(Dij ), patch area (Ai), and dispersal rate (α),

ci = e−αDij Ajpj (t). (9.3.6)

This suggests that the mean time to extinction of a habitat patch (1/ei) is determined
by the area of the patch. This makes the occupancy probability of each patch in the
metapopulation, described in terms of matrix M ,

Mij = e−αDij AiAj , (9.3.7)

and the leading eigenvalue of this matrix M describes the persistence of the
metapopulation (metapopulation capacity λm [49]). The condition for metapopu-
lation persistence is that the dominant eigenvalue of M must be greater than the
ratio between extinction and colonization rates,

λM > e/c. (9.3.8)

Since habitat patches vary in their size and connectedness to other patches, it is
possible to determine the relative importance of each habitat patch to metapopula-
tion persistence in this framework [46, 49], potentially informing conservation and
management decisions [102]. While spatially explicit, this approach does assume
that dispersal among habitat patches is determined by patch area and distance to
other patches, ignoring population dynamics in each patch.

Incorporating Patch Dynamics The above extension of the Levins model allows
for patches to vary in size and connectedness. Another extension is to consider
the abundances of habitat patches within the metapopulation, thus considering the
dynamics of each patch and the effects of dispersal among local populations [89],

Ni(t + 1) = Ri(t)Ni(t)e
−Ni/K. (9.3.9)
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This expression assumes that the growth rate of each habitat patch is Ri and
that the carrying capacity is a constant K . If we assume that the population
growth rates (ri) are iid Gaussian random variables, this causes Ri values to
be log-normally distributed and allows us to define persistence thresholds for
the metapopulation based on the variance in the population growth rates ri . The
threshold for metapopulation persistence relies on exceeding a threshold value
(σth) in terms of the variance among local patch population growth rates (ri). This
threshold is

σth >
√

2|μi |, (9.3.10)

where μr is the mean local population growth rate over time. This model can be
extended to yield many interesting conclusions. For instance, if populations have
influence on where their offspring go, population growth rates may be maximized by
seeding offspring in less than suitable “sink” habitat if habitat quality fluctuates with
time, and when the “source” habitat occasionally experiences catastrophes [54]. The
complexity of metapopulation dynamics in the face of environmental stochasticity,
variable patch quality, dispersal, and competition has fueled some great theoretical
work [12, 72]. An obvious next step is to scale from single species metapopulations
to multi-species communities (i.e., metacommunities), which allows for the model-
ing of how species interactions, predator-prey dynamics, and community assembly
relate to persistence [65].

9.4 The Species Scale

Extinction is defined at the scale of the species, but it is also at this level of
taxonomic resolution that it is perhaps hardest to quantify—and, to summarize—
due to considerable diversity of approaches and applications. We explore in this
section two applied extensions of that body of theory, corresponding to two common
quantitative frameworks for species-level extinctions. In the first, the complete loss
of suitable habitat leads to an inevitable—if not immediate—extinction. Species
can escape extinction through three primary channels: acclimation, adaptation, and
migration. Species distribution models are often used to calculate extinction risk
at the community scale in that framework (described in greater detail below), but
they can only at best include the last of those three rescue processes. Evolutionary
models, on the other hand, can link demography and genetics to the overall risk
of extinction in a changing environment. We explore that application here in the
context of both adaptation and phenotypic plasticity.

The second framework is based on the notion that population extinctions become
species extinctions; and so the framework for population (and metapopulation)
viability analysis described above acts as a sufficient method for estimating species
extinction risk. In many cases, that may be a safe assumption, as near-extinction
species are reduced down to a single persistent population or a handful in isolated
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refugia. But in real applications, persistence in small isolated refugia may be
difficult to study, or even observe with any regularity; consequently, an entire body
of literature has been developed to relate extinction risk to the sightings of rare
species. That body of theory allows two applications: the posthumous assignment
of extinction dates to extinct species, and sighting-based hypothesis testing for a
species of unknown extinction status. We explore both applications briefly below.

9.4.1 Adaptation and Plasticity in a Changing Environment

Bounding uncertainty is the seminal challenge to extinction research, and in the
real world, species’ potential to acclimate and adapt to changing environments
confers an unknown degree of robustness that has the potential to give species a
chance at evading extinction. As discussed above, evolutionary rescue has been a
particularly tantalizing—and controversial—idea in the context of disease research.
But more broadly, evidence suggests that extinction risk is heavily complicated by
species’ variable ability to track changing climates (and, more broadly, changing
environments).

Most models that estimate the potential for evolutionary rescue approach the
problem by explicitly modeling fitness curves and the speed of natural selection.
In a foundational paper by Gomulkiewicz and Holt [43], an environmental change
beginning at time 0 is followed by changes determined by fitness W such that

Nt = W̄t−1Nt−1 =
t−1∏
i=1

WiN0. (9.4.1)

If the population has a critical density Nc below which extinction is certain—
essentially, a pseudo-extinction threshold in a PVA framework—extinction time is
evolutionarily fixed without adaptation (i.e., Wt = W0),

TE = lnNc − lnN0

ln W̄0
. (9.4.2)

To address evolutionary potential, Gomulkiewicz and Holt adapt Lande’s equations,
which describe the rate of natural selection on a single phenotypic trait [62]. In
their notation, the trait z has an optimum phenotype normalized to zero, making
dt the distance of observed phenotypes from optimal phenotype at each time step,
and d0 the initial distance (i.e., the initial mean phenotype of the population). Any
individual phenotype z is normally distributed around dt in a distribution p that
determines fitness,

pt [z] ∼ N (dt , σz
2) (9.4.3)
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The corresponding fitness function with width ωz is expressed as

W(z) = Wmaxe
−z2/(2ωz), (9.4.4)

where Wmax is the fitness at z = 0. The same expression can also be used to describe
the overall tendency of the system,

W̄t = Wmax

√
ωz/(σ 2

z + ωz) e
−d2

t /(2σz
2+2ωz). (9.4.5)

The expression can be mildly simplified by defining Ŵ such that it is the growth
rate of the optimum mean phenotype population,

Ŵ = Wmax

√
ωz/(σ 2

z + ωz). (9.4.6)

How does the actual distribution of phenotypes change over time? In real
systems, evolution is seldom a direct progression towards the optimum, even under
hard selection with ample genetic variation. If the trait z has a heritability h2, they
define an “evolutionary inertia,”

k = ωz + (1− h2)σz
2

ωz + σz
2

; 0 ≤ k ≤ 1 (9.4.7)

dt = ktd0 (9.4.8)

which together produce a governing expression for the system,

t ln Ŵ − d0
2

2(ωz + σz
2)

1− k2t

1− k2 = ln
Nc

N0
, (9.4.9)

If this equation has no roots when solving for t , then this indicates the population
will fall and rise without any real extinction risk. But when it does, the roots are
estimates of the time until the population falls below the critical threshold (TE) and
the time until recovery could be evolutionarily possible (TP in their notation, where
Nt passes back above Nc). The interval between these two values is characterized
by a small population that, due to demographic stochasticity, would require much
more intensive conservation efforts (e.g., managed ex situ breeding) than normal to
possibly survive that interval. The time to recovery (growth switches from negative
to positive even though Nt < Nc) is

TR = 1

ln k2

(
ln ln Ŵ − ln

d0
2

2(ωz + σz
2)

)
. (9.4.10)
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From this expression, Gomulkiewicz and Holt derive a useful finding: “tR increases
logarithmically with the degree of initial maladaptation . . . but is independent of the
initial population density.”

The model developed by Gomulkiewicz and Holt sets useful theoretical bounds
on the genetically coded evolution of a trait. But in the real world, phenotypic
plasticity represents some of the most difficult to quantify potential for species to
escape extinction. In an extension of similar models developed by Chevin et al. [22],
the trait z has a developmental trajectory with both a genetic component and the
potential for phenotypic plasticity in response to an environmental gradient ε. Their
model uses a “reaction norm” approach to plasticity (popularized by Schlichting
et al. [94]), breaking down that phenotypic trait into an adaptive genetic compo-
nent a and a plastic component b that responds to the environmental gradient. They
express the distribution of the phenotype p(z) at generation n in an environment
changing at rate ε = ηt as

p(z) ∼ N (z̄, σz
2), (9.4.11)

z̄ = ā + bη
(
T (n− τ)

)
, (9.4.12)

σ 2
z = σa

2 + σe
2, (9.4.13)

where T is the generation time, developmental plasticity takes effect at time τ during
ontogeny, and the strength of plasticity b (the slope of a phenotypic reaction norm)
does not evolve over time. Assuming there is an optimum phenotype θ = Bε, they
define a changing population size with a maximum growth rate Wmax, such that

W(z) = Wmax exp

(
− (z− θ)2

2ωz

− b2

2ωb

)
, (9.4.14)

where both ω’s represent the strength of stabilizing selection (the width of fitness
curves, comparable to above). From there, they make the link to overall population
dynamics, where the intrinsic growth rate r of the population can be scaled with
generation time and related to selection on z,

r = ln(W̄ )

T
= ln(Wmax)

T
− ln(1+ σ 2

z /ωz)+ b2/ωb

2T
− (z̄− θ)2

2T (ωz + σ 2
z )

, (9.4.15)

where the first two terms become the maximum possible growth rate rmax if z

reaches the optimum θ .
From the expression for population dynamics, Chevin et al. derive a formula

for the critical rate of environmental change, above which plasticity and adaptation
cannot prevent extinction,

ηc =
√

2rmaxγ

T

h2σ 2
z

|B − b| . (9.4.16)
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From this expression, it is easy to determine the long-term tendency of the
population to extinction or survival as a function only of the degree of plasticity
and the associated strength of costs (ωb). The greater the extent of plasticity, the
more the costs of plasticity separate out population trajectories; but when plasticity
has a weak slope, the extinction isoclines converge towards the same threshold.
While this conceptualization of adaptation to environmental change as a single-
trait system with readily measured costs of adaptive plasticity is obviously an
idealization, it also clearly illustrates a number of important points. While adaptive
genetic variation has a clear direct relationship to evolutionary rescue, plasticity also
plays an important role; and quantifying plasticity without quantifying its costs can
provide a misleading perspective on the feasibility of adaptation and acclimation.

Is Evolutionary Rescue Real? Evolutionary rescue is not a “silver bullet,” and
the application of evolutionary theory to real populations and metapopulations is
far from straightforward. For one thing, evolutionary rescue requires a sufficiently
large population that a species is buffered against extinction long enough for higher
fitness phenotypes to become predominant [50]. Additional complications include,
but are not limited to

• Initial environmental conditions. Bell and Gonzalez showed that populations
that begin at intermediate stress levels may react the slowest to environmental
“deterioration,” producing a U-shaped curve in adaptive rescue [10]. They
explain this as a product of two competing processes driving evolutionary rescue:
as baseline stress increases, overall mutation rates decline, but the proportion
of beneficial mutations (or, perhaps more accurately, the associated fitness
differential) increases. Populations beginning in “mildly stressful conditions”
may simply be at the low point of both processes. Bell and Gonzalez similarly
show that populations with a history of minor environmental deterioration have a
much greater probability of evolutionary rescue in a fast-changing environment.

• The velocity of environmental change. As Chevin et al.’s model highlights,
environmental changes that are too rapid almost invariably drive species to
extinction, when selection simply cannot operate fast enough to keep pace;
this finding is readily confirmed in environmental settings. Rapid environmental
changes can also functionally reduce mutation rates at a population scale. A
study of E. coli by Lindsey et al. showed that “The evolutionary trajectory of
a population evolving under conditions of strong selection and weak mutation
can be envisioned as a series of steps between genotypes differing by a single
mutation,” and some “priming mutations” may be necessary to arrive at further
genotypic combinations with substantially higher fitness [68]. Consequently, if
environmental changes are too rapid, higher fitness genotypes may be “evolu-
tionary inaccessible.”

• Dispersal rates and metapopulation connectivity. Simulated metapopulation
models by Schiffers et al. showed that higher dispersal rates can severely limit
the propensity of populations to experience local adaptation, especially in a
heterogeneous environment (a phenomenon they refer to as “genetic swamping”),
and thereby potentially limit evolutionary rescue [93]. However, for an entire
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species to persist, intermediate (local) dispersal may be necessary to allow
adaptive mutations to spread, a finding shown experimentally by Bell and
Gonzalez.

• Linkage disequilibrium. Schiffers et al.’s study, which simulated genomes in
an “allelic simulation model,” produced an unusual result suggesting that linkage
between adaptive loci may not actually increase the rate of adaptation. The
interaction this could have with the “priming mutation” process is complex and
poorly explored in a theoretical context.

A final important consideration should be made with regard to what Schiffers
et al. distinguish as complete vs. partial evolutionary rescue. In their models, they
find that when adaptive traits originated but spread poorly (as a combination of
linkage disequilibrium, habitat heterogeneity, and dispersal limitations), it substan-
tially reduced population sizes and ultimately produced an “effective reduction
in the suitable habitat niche.” This type of partial evolutionary rescue could be
most common in real-world scenarios, where adaptation in larger populations
experiencing the slowest rates of environmental change may allow persistence but
not maintain a species throughout its entire range, and may still be followed by a
substantial reduction in overall habitat occupancy.

If current research on global climate change is any indication, this type of partial
evolutionary rescue may ultimately be a poor buffer against extinction. Climate
change may set the events of an extinction in motion, but research suggests that
habitat loss from climate change is rarely the direct and solitary causal mechanism
of an extinction [15]. Instead, climate change may reduce a population to small
enough levels at which other mechanisms drive extinction. Small populations are
especially susceptible to stochastic crashes in population size and may also be
especially susceptible to stochastic collapse due to other factors within-species
(Allee effects in breeding, inbreeding) or from interactions with other species
(competition, invasion, disease). Ultimately, the synergy between these drivers may
produce a greater overall extinction risk that many modeling approaches might not
directly quantify, but that could be most likely to drive species to extinction and
ecosystems into novel assemblages [8].

9.4.2 After Extinction: Lazarus Species, Romeo Errors, and
the Rarest Birds in the World

The job of conservation biologists and extinction researchers is far from over after
the extinction of a species. The auto-ecology of an extinct species (its basic biology,
ecology, natural history, distribution, and other species-level characteristics) often
becomes a permanent unknown, assumed to be lost to the annals of history.
But as statistical tools for ecological reconstruction become more sophisticated,
researchers have the opportunity to explore basic questions about extinction in
retrospect. In particular, the same body of theory that governs the timing of
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extinction in a declining population can be applied in a retrospective sense as well,
to estimate the likely extinction date of a species. (Or, more formally, the estimation
of the MTE from a given point can be used to pinpoint TE , even with the same
data, after extinction has already occurred.) These methods have been used both for
ancient species like the megalodon [81] and for more recent extinctions like that of
the dodo [86]. But perhaps most interestingly, the theory can be applied when the
uncertainty bounds on TE contain the present date, meaning that the extinction of a
species is not taken as a certain part of history. Even ancient “Lazarus species” can
be rediscovered, like the coelacanth, believed to have gone extinct 66 million years
ago but rediscovered in the last century. How can we confidently say the coelacanth
continues to exist, but the megalodon is likely to never be rediscovered?

Basic Statistical Methods for the Sighting Record Once a species is suspected
to be extinct, at what point do we stop looking for them? With limited resources for
conservation, trying to find and conserve a species that is no longer around waste
resources better used elsewhere/ but making a type I error and assuming a species is
falsely extinct (and abandoning conservation efforts) can lead to a “Romeo error,”
whereby giving up on the species can lead to actual extinction [24]. Since 1889,
351 species thought to be extinct have been “rediscovered” [92], highlighting just
how big of a problem this may be. In order to answer these questions, determining
the probability that a species is still extant, despite a lack of recent sightings, is
an important tool in making evidence-based decisions conservation managers must
make about allocating resources.

Consider the plight of the ivory-billed woodpecker (Campephilus principalis),
a charismatic and iconic part of the North American fauna. The ivory-billed
woodpecker’s decline was gradual, and unlike its gregarious and easily-spotted
compatriots (such as the passenger pigeon, Ectopistes migratorius, or the Carolina
parakeet, Conuropsis carolinensis, both extinct in a similar time period), sightings
of the woodpecker were already rare previous to its decline. So while the bird’s
last “credible” sighting was in 1944, the precise date of its extinction remains
controversial, and some believe the bird still exists based on unverified observations
as recent as 2004 (with audiovisual evidence reviewed in a highly controversial
2005 paper in Science [36]). These controversial observations led to one of the
most costly surveys in history, yet yielded no new evidence. In some circles,
the search continues; in 2016, two ornithologists—Martjan Lammertink and Tim
Gallagher—traveled through Cuba searching for remaining populations of the
elusive woodpecker. Was Lammertink and Gallagher’s search justified from a
statistical standpoint?

But how do we determine the likelihood that a species is extinct? How long does
it have to be since the last time an individual was seen before we can say, with some
certainty, that the species is, in fact, gone? The most obvious step is to assemble all
available evidence of when the species was around. The first place to look is in the
specimen record, since this is the “gold standard” of evidence. However, other data
can be brought to bear, including observations, photos, and audio recordings. All
these forms of evidence are collectively referred to as sightings. In 1993, Andrew
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Solow developed an approach to resolve the extinction date of a species based on
sighting records [97]. In Solow’s notation, sightings in a period of surveillance
between time 0 and time T occur at the dates (t1, t2, ..., tn) as a random process
governed by a fixed sighting rate m that becomes 0 at TE , the true date of extinction.
The probability of the data conditional on a current time T and an extinction
date TE , is

P(Tn ≤ tn|TE ≥ T ) = (tn/T )n. (9.4.17)

In that light, Solow says, hypothesis testing is easy: against the null hypothesis
that extinction has yet to happen (i.e., TE > T ), we can test the alternate hypothesis
that the species is extinct (TE < T ). For a given last sighting at TN , we can provide
a p-value for the test with desired significance level α equivalent to

P(TN ≤ α1/nT |TE < T ) = α(T /TE)n (9.4.18)

for values of α1/nT < TE < T ; for values of TE lower than or equal to that critical
value α1/nT , the value of P is equal to 1 and the null hypothesis is rejected with
full certainty. Solow explains, by way of example, that with 10 sightings and 95%
confidence, the critical value of TE/T is 0.74, and so the null hypothesis is sure to
be rejected (extinction is confidently confirmed) if the true extinction date occurs
within the first 74% of the (0, T ) window.

Solow similarly constructs a Bayesian approach, where the likelihood of the
sighting data given H0 is

∫ ∞
0

mne−mT dP (m), (9.4.19)

and given HA is

∫ ∞
0

mne−mTEdP (m). (9.4.20)

From these and other assumptions, he derives the Bayes factor for the hypothesis
test (a metric that does not depend on prior assumptions, which expresses the
posterior: prior odds of H0),

B(t) = (n− 1)/
(
(T /tn)

n−1 − 1
)
. (9.4.21)

Finally, from the original formulation of Solow’s approach, we can also derive a
maximum likelihood estimate of the extinction date [98],

T̂E = n+ 1

n
tn, (9.4.22)
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and, in addition, a 1− α upper confidence interval bound,

T u
E = tn/α

1/n. (9.4.23)

Does this approach make sense? If an extinction happens abruptly on the scale
of sightings data (say, an epidemic wipes a species out within a year), then
sighting rates might remain relatively constant throughout the sighting record.
Similarly, applying this method to paleontological records may make sense, as prior
information about variation in specimen preservation might be limited (and so a
constant rate parameter is the best possible prior). But there are also a number of
situations where the constant sighting rate m simply does not suffice. Lessons from
population ecology remind us that extinction is, at its most fundamental scale, a
process of declining abundance. If sightings are dependent on abundance (which
they generally are), replacing m with a non-constant function has the potential to
sharply refine the process of extinction date estimation.

Similarly, not all sightings are created equally. If you are holding a dead body
of an individual of the species in question, that is good evidence the species was
present the year the specimen was collected. Conversely, if some person claims
they saw an extremely rare species with no corroborating evidence, that person
may have misidentified the individual, or in some cases even lied, meaning that
this sighting could be invalid. Roberts et al. found that these approaches are
sensitive to the data used and can, unsurprisingly, lead to very different estimates
of extinction dates [87]. They partitioned sighting data into three categories: (1)
physical evidence, (2) independent expert opinion, and (3) controversial sightings in
order of certainty. They found that adding independently verified observations to the
analysis can sometimes lead to earlier predicted extinction times, since the “gaps”
within the sighting record are closed up, whereas, by nature, later controversial
sightings, if treated as legitimate (i.e., on par with physical evidence), can greatly
push the estimates of extinction to later years. To account for this uncertainty, a
few approaches have been proposed recently. These approaches largely expand on
Solow’s 1993 Bayesian equation above, modified to consider multiple levels of
uncertainty in the data [64, 99, 103]. For an overview of the assumptions and relative
strengths of these approaches, see Boakes et al. [11].

Finally, some nonparametric approaches to extinction date estimation focus on
the last few sightings of a species, rather than the entire record of their observations.
Solow [98] notes two such methods in a review that covers these methods of
estimations in much greater depth. The first, originally suggested by Robson and
Whitlock [88], just uses the last two sightings,

TE = tn + (tn − tn−1), (9.4.24)

with a fairly clear reasoning: if a large gap exists between the last two sightings,
conservation biologists should wait at least that long before pronouncing a species
certain to be extinct.
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In contrast, the second and far more complex method designed by Solow
(and implemented by Roberts and Solow in their 2003 study of the dodo [86])
accounts for the fact that the last few sightings of the species should, in most
circumstances, follow a Weibull distribution. The method, optimal linear estimation
(OLE), estimates TE through linear algebra,

TE =
k∑

i=1

witn−i+1, where w = (e′Λ−1e)−1Λ−1e. (9.4.25)

Here, e is a column vector consisting of k 1’s and Λ is a k× k matrix with elements

Λij = Γ (2v̂ + i)Γ (v̂ + j)

Γ (v̂ + i)Γ (j)
, where v̂ = 1

k − 1

k−2∑
i=1

ln
tn − tn−k+1

tn − ti+1
. (9.4.26)

While the OLE method is obviously much less transparent, it has been recorded as
one of the most successful methods available for predicting extinction [23], and has
the added bonus of being adjustable through sensitivity analysis to examine how
different extent of sighting data changes the overall estimate.

Case Study: Spix’s Macaw Perhaps the most fruitful body of research concerning
extinction date estimation has been within ornithology, where data on the last
sightings of rare species are often more available than for other groups, due to
tremendous global interest in bird sightings and observation by non-scientists. The
most popular methods for sighting date research have often been developed in
association with data on notable extinct birds, including the dodo, the passenger
pigeon, and the ivory-billed woodpecker. In fact, one of the most expansive reviews
of sighting date estimators, conducted by Elphick, estimated the extinction date of
38 extinct or near-extinct birds from North America (including Hawaii, a hotspot
of bird extinction) [34]. But for rarer birds around the world, basic data on their
extinction may be somewhat more lacking.

One such bird, the Spix’s macaw (Cyanopsitta spixii) has been called “the
world’s rarest bird” [56] and has been the subject of two popular animated movies
(Rio and Rio 2). Currently, Spix’s macaw is considered critically endangered
(possibly extinct in the wild) by the IUCN (2016), with a small number of captive
individuals (∼130) found around the world. Not seen in the wild since 2000, a video
of a Spix’s macaw in Brazil made headlines in 2016. The video was subsequently
examined by ornithologists, and the consensus that the bird was, in fact, a Spix’s
macaw, though many still believe the bird was likely an escaped captive bird.

Sightings of the Spix’s macaw are sporadic, and after the first known specimen
being shot in 1819 by Johann Baptist Ritter von Spix (though he believed the bird to
be a Hyacinth Macaw), it was not recorded again until a wild-caught individual was
procured by the Zoological Society of London in 1878. Collecting sighting records
of the Spix’s macaw relies mostly on data from trappers/poachers and inferring
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data from captive individuals. Given the illicit nature of wildlife poaching, better
data may exist in the husbandry records of the wild-caught individuals currently
in captivity, but those data are not freely available. Verifiable observations are few
and far between, as this species was not subject to any intensive study or searches
until the mid-1980s, when only a handful of individuals were found and, of those
remaining, most were caught by poachers.

For this case study, we collected sighting and specimen data from GBIF (Global
Biodiversity Information Facility; www.gbif.org) and Juniper’s authoritative book
on Spix’s macaw. We found physical evidence (specimens and wild-caught captive
birds) for sightings in the years 1819, 1878, 1884, 1901, 1928, 1954, 1977, 1984,
1985, 1986, and 1987. Due to their rarity and the demand for them, we assumed
individuals were caught in the wild the same year they were procured by the
receiving institution or zoo. We considered all observations of the Spix’s macaw
reported in Juniper’s book as verified, as there aren’t many and these few have
been rigorously scrutinized: 1903, 1927, 1974, 1989, 1990, and 2000. Our only
controversial sighting is the recent video taken in 2016. Taking the approach by
Roberts et al. we partitioned the data into three datasets: (1) physical data only, (2)
physical plus verifiable observation data, and (3) all data (including the controversial
sighting). By eliminating the controversial sighting (in analyses 1 and 2), we
inherently test a methodological question: would extinction date estimators have
pronounced the apparently extant species dead?

Our analysis was conducted using the beta version of the R package sExtinct,
which allows a handful of different extinction analyses to be implemented. (We
encourage prospective users to test the demos available with the package.) Our
analysis uses two of the most common methods. First, we used the original Solow
maximum likelihood approach, plotting the probability of persistence in Fig. 9.2.
The maximum likelihood estimates are given in that method as

• Specimens only: TE = 2040,
• Uncontroversial sightings: TE = 2035,
• All sightings: TE = 2052.

The method suggests, even with the most limited dataset, that the species still
appears to exist. In contrast, the OLE method tells a different story:

• Specimens only: TE = 1988 (95% CI: 1987–2006),
• Uncontroversial sightings: TE = 2002 (95% CI: 2000–2018),
• All sightings: TE = 2021 (95% CI: 2016–2045).

All things considered, both analyses suggest a chance the 2016 sighting may
have been legitimate, and there is a possibility that a wild population of Spix’s
macaws may be out there, yet undiscovered in the Amazon rainforest. But, the
OLE method—for all its documented strength as an approach—would likely have
been far hastier to dismiss the species as extinct before its 2016 “rediscovery.”
Furthermore, it currently only predicts another 5 years of persistence for the species,
and with some researchers hoping to use extinction date estimators as a method of
Red Listing, the Spix’s macaw clearly remains a severely threatened species.

www.gbif.org
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Fig. 9.2 Estimates of likely extinction date of the Spix’s macaw based on extinction estimating
equations in [97]. The lines represent the estimated probability the species is extant each year;
the blue line is the results using physical evidence only (specimens/wild-caught individuals), the
orange line for uncontroversial sightings and physical evidence, and the green line is the results
for all sightings, including controversial. The dotted line is a significance level of 0.05. Once the
probability drops below this level, the species is considered likely extinct

Hope Springs Eternal: The Ivory-Billed Woodpecker and the Hunt for More
Lazarus Species To briefly reconsider Lammertink and Gallagher’s continuing
search for the ivory-billed woodpecker: regardless of how the sighting record for
the ivory-billed woodpecker is analyzed, all indications point to an extremely low
likelihood that the species is extant [34, 44, 99]. In the work of Elphick et al.,
estimates based on physical evidence suggested a TE of 1941 (upper 95% CI: 1945)
and including expert opinion sightings only moves TE towards 1945 (upper 95% CI:
1948). With other models hardly disagreeing on the scale of a full century, the hard
evidence available to modelers casts serious doubts on the validity of the species’
“rediscovery” in 2004 [95], or further, justifies the subsequent, costly search to find
more conclusive evidence of the ivory-billed woodpecker’s existence. Some argue
the search continues as long as hope does, but statistics has a somewhat different
answer in this case. And with other species like the Spix’s macaw still potentially
within the bounds of rescue, the resources of conservation organizations might be
better devoted to saving those species than to chasing the ghosts of woodpeckers
past.

Once it is determined that there is an acceptable level of probability that a
species is extant, one possible way to further leverage the data collected would
be use the data to build species distribution models (SDMs) to aid in the search
and rescue effort. In basic terms, SDMs use information about the conditions where
a species has occurred (and where it has not occurred) to determine the realized



252 C. J. Carlson et al.

niche of the species. This niche can be projected onto geographic space to help
identify areas that appear highly suitable for the species but perhaps have not been
searched yet. This approach has been successful in identifying new populations of
threatened species (e.g., see [74]), with the author identifying new populations of
four of the eight rare plant species in the study. While SDMs are commonly used
in a variety of different ecological and conservation applications, there is a deep
literature on comparisons of SDM methods (see Qiao et al. [83] for an overview),
so much caution must be used in selecting which methods are best for the available
occurrence and environmental data. This approach—of determining the probability
a species is still extant and using SDMs to identify the areas they are most likely to
be—may provide a way forward for conservation agencies for making cost-effective
decisions of which species to pursue and where to look for them.

9.5 The Community Scale and Beyond

Suppose that, in a twisted experiment motivated by an ecology-related childhood
trauma, a mad scientist was developing a scheme to reduce global biodiversity to one
half of the Earth’s total species. Hunting, fishing, and poaching could achieve that
goal slowly but would be particularly inefficient for eradicating insects; and while a
generalist disease might help eradicate a handful of mammals or a sizable fraction
of amphibians, the majority of species would still remain. But perhaps realizing that
habitat loss might be the most efficient tool to destruction, the mad scientist might
cut the Gordian knot by simply bisecting the Earth and destroying one half. Would
his plan come to fruition?

Our mad scientist’s plan is riddled with flaws. If one half of the species were
endemic to each half of the Earth with no overlap, his plan would succeed. But a
handful of species in any clade of life are globally cosmopolitan; and no matter how
his plan was executed, the handful of species occurring on both halves of the Earth
would leave him with far, far more than half the species he started with.

With renewed vigor, the mad scientist sets out on a newly ambitious project:
what percentage scorched earth would be required to achieve his goal? He begins
by counting every species on his sidewalk block, then in his neighborhood, and up
to bigger scales. With enough grant funding and undergraduate assistants, he has
eventually covered a measly 6.25% of the Earth when he realizes he has counted
half of Earth’s species. To enact his master plan, he’s tasked with destroying the
remaining 93.75%. Going by land area alone (his grudges, we suppose, do not
extend to the ocean), he only needs preserve 3.6 million square miles of land—
roughly (conveniently?) the land area of the United States.

The process our nationalist, isolationist villain has enacted is the empirical
construction of the species–area relationship (SAR), one of the oldest and most
powerful scaling laws in macroecology. Because the synthesis of different factors at
global scales is challenging, and habitat loss is one of the easiest extinction drivers
to measure, the SAR gives us a powerful tool for approximating extinction rates—at
the price of not knowing specifically which species will go extinct.
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9.5.1 The Species–Area Relationship

The biogeographer Olof Arrhenius began the process of formalizing the SAR in
a classic 1921 paper entitled “Species and Area” in the Journal of Ecology [6].
Arrhenius observed that, by expanding the area of focus, the number of species
continues to increase at a diminishing rate (but, never reaching an asymptote [106]).
The canonical formula for the SAR has been called the Arrhenius SAR and is
formulated as

S = cAz,

where c is a constant fit to the data and z is a slope, conventionally taken as 0.25.
The application of this formula to extinction rate estimation is relatively obvious;
by changing the amount of area, we can change the number of species,

S′ = c(A′)z,

and calculate the number of extinctions

E(A′) = S − S′.

In our mad scientist’s failed scheme, reducing the area of the Earth by half would
leave us with far more than half the species,

S′

S
=
(

0.5A

A

)0.25

= (0.5)0.25 = 0.84.

In a 2004 Nature paper that has become the most cited study on extinction since
the millennium, a group of researchers led by Chris Thomas refined the global
extinction rate estimate by analyzing species’ habitat losses from climate change
and applying the SAR. Their extinction–area relationship took three forms applied
to n species, with a given Ai area per species before change, and A′i subsequent to
habitat loss,

E1 = 1−
⎛
⎜⎝

∑
i∈(1,n)

A′i
∑

i∈(1,n)
Ai

⎞
⎟⎠

0.25

,

E2 = 1−
⎛
⎝1

n

∑
i∈(1,n)

A′i
Ai

⎞
⎠

0.25

,

E3 = 1

n

∑
i∈(1,n)

(
1−
(
A′i
Ai

)0.25
)
.
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Using those three methods in combination with species distribution models, the
authors estimated that 15–37% of species on Earth might face climate-driven
extinction by 2050. This result is by far one of the most important ones produced
in any study of extinction and has supported a number of the most expansive
conservation programs worldwide.

9.5.2 Everything You Know About the Species–Area
Relationship Is Wrong

Like many “laws” of ecology, the conventional SAR has problems and pitfalls,
and with the tremendous array of approaches developed to study it, it has even
been called ecology’s “most protean pattern” [69]. Subsequent to the publication
of Thomas et al.’s study, one of the most seminal debates in extinction research
has centered around its conclusion that climate change is likely to act as the
most consequential driver of the sixth mass extinction. Different approaches to the
species–area relationship and comparable or derivative macroecological methods
have sprung up in the wake of Thomas’s work. Here, we review a few of the different
approaches that can be used to predict extinction rates at the community level.

z: A Dynamic Scaling Property The most immediate problem with applying the
species–area relationship is that the slope z, normally set to 0.25, is neither universal
nor scale-independent. In part, this is because of two different constructions of the
SAR. The slope of 0.25 derives from the experimental work of Macarthur and
Wilson on island ecosystems, which applied the SAR to the richness of species
on islands of different sizes. For islands (and for application of the island SAR to
extinction), a slope of 0.25 is justified under a set of three (relatively common)
circumstances delineated by Harte and Kitzes: “(1) total abundance in the new area
A is proportional to area, (2) individuals found in A are chosen by a random draw
from all individuals in A0, and (3) the number of individuals of each species in A0
follows a canonical lognormal abundance distribution” [51].

However, the continental “nested” SAR (constructed from nested areas on
a continental scale) does not always follow the same property. This is in part
because the conventionally used SAR assumes self-similarity (or, in more tangible
terms, picking two patches of different area always yields a roughly-the-same-slope
difference in species). As it turns out, self-similarity works within some sites but
not others, and within the Western Ghats mountains of India alone, scaling up from
vegetation sampling plots to broader scales brings z down from values closer to
0.5 to values approaching 0 [52]. Selecting an appropriate slope based on scale is
an important part of appropriate use of the SAR to predict extinction rates, and as
analyses approach the continental scale, the appropriateness of the SAR method
decreases as z approaches zero.
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Alternate Approach Based on the Endemics–Area Relationship In the Thomas
et al. study, the application of the species–area relationship followed three methods,
and while some explicitly predicted extinction risk at the scale of a single species,
all rely on the prediction of reduced species richness based on habitat loss. In place
of this indirect calculation of decreased richness, a more direct approach uses what
is called the endemics–area relationship (EAR), which calculates the number of
endemic species restricted to a given area (all of which should be committed to
extinction when the area is destroyed). As pointed out by He and Hubbell, the SAR
and the EAR are not mirror curves except in a single special case when species
are completely randomly distributed in space; else, the “forwards” and “backwards”
methods of extinction calculation are not, they argue, comparable [53].

Prediction of extinction based on the EAR may be more appropriate for
measuring the immediate effects of habitat loss and is likely to better account for
the “geometry of habitat clearing” [58]. Storch et al. [100] developed an approach to
the SAR and the EAR that scales the area by the mean geographic range size in the
focal clade/area and scales richness by the average number of species in that mean
geographic range. When plotted, the SAR curves upwards while the EAR is roughly
linear with a slope of 1 across most scales. Starting from basic knowledge about the
average geographic range size of a given species, this result indicates that extinction
from habitat loss can be predicted based on the EAR across scales fairly accurately.

Alternate Approach Based on Maximum Entropy Two “unifying” theories have
dominated discussions about macroecology. The first is the unified neutral theory
(UNT) of biogeography and ecology (proposed by Stephen Hubbell), which is
beyond the scope of this chapter; the second is the maximum entropy theory of
ecology (METE) proposed by John Harte. The METE deserves special mention
here, due to a particular focus in the METE literature on improving the applicability
of the SAR to extinction rate prediction. What differentiates both the UNT and
the METE from more general conceptions of the SAR is the explicit treatment
of species abundance as a component of community assembly. The theory of the
METE is far too complex to encapsulate in this chapter (and an entire book by Harte
exists for that purpose), but a few useful derivations are worth mentioning. One is
the derivation by Kitzes and Harte of an extinction probability that is applicable
at the species scale [51] based on proportional area loss (A0/A, shortened to β)
and corresponding reduction in abundance (n from n0) with a general probability
distribution

P(n|n0, A0, A) = ce−λn, (9.5.1)

for which they provide rough approximations,

c ≈ 1

(An0/A0)+ 1
, λ ≈ ln

(
1+ A0

An0

)
. (9.5.2)
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Drawing on similar concepts from the pseudo-extinction thresholds we discuss
above in Sect. 9.4.1, they suggest that the probability that a remainder rc = n/n0 is
left after habitat loss is

Prob

[
n

n0
> rc

]
=
∫ n0

rcn0

ce−λn dn = [n0β/(1+ n0β)]rcn0 − [n0β/(1+ n0β)]n0

(1+ n0β) ln (1+ 1/n0β)
.

(9.5.3)
Given a starting population and a critical population size, analogous results can
be derived for the Thomas et al. calculations; higher level predictions can be
made based on the distribution of abundances and critical abundances within the
community.

In a subsequent publication [59], this extinction–area relationship is extended
even further to extrapolate a MaxEnt-based probability that a given number of
species will remain after habitat loss. It assumes a log-series distribution φ of
abundance for species with a mean μφ , with a single shape parameter p,

φ(n0) = −pn0

ln (1− p)n0
, μφ = −p

(1− p) ln (1− p)
. (9.5.4)

They similarly propose an upper-truncated geometric species-specific abundance
distribution, which provides the probability that n individuals remain in a fraction-
ally reduced area a (β in their other notation) based on a shape parameter q,

Π(n|a, n0) = (1− q)qn

1− qn0+1 , (9.5.5)

where q is solved implicitly based on a and n0 from the equation

an0 = q

1− q
− (n0 + 1)qn0+1

1− qn0+1
. (9.5.6)

The probability that a species is found in area A after habitat loss follows a
distribution g which takes the form

g(a, nc) =
∞∑

n0=1

(1−Π(n≤nc|a, n0))φ(n0), (9.5.7)

which scales up to a community-level richness after area loss,

p(S|S0, g) =
(
S0

S

)
gS(1− g)S0−S, (9.5.8)

where
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g(a, nc, μφ) =
∞∑

n0=1

(
1− qnc+1 − 1

qn0+1 − 1

−pn0

n0 ln (1− p)

)
(9.5.9)

or, if the pseudo-extinction threshold is set to zero (i.e., no species has 0% survival
odds until all individuals are dead) and area loss is severe, this expression can be
reduced to eliminate the q term,

g(a, nc, μφ) = − a

ln(1− p)

∞∑
n0=1

pn0

an0 + 1
. (9.5.10)

This METE approach thus provides a probabilistic species–area relationship
(PSAR) that can be used to provide not only an expected extinction rate under
habitat loss but also a range of confidence. This becomes an especially important
tool in a small community of only a few dozen species or fewer (or in communities
with pervasive low abundance across species), where deviations from SAR-based
predictions may be greater due to stochastic processes.

How does the PSAR scale up against the Thomas-SAR? It has a clear advantage
in the prediction of individual species extinction risk (but correspondingly requires
more data on abundance/demography that may be absent for many poorly known
taxa). Kitzes and Harte provide two illustrations. First, assuming the normal slope
of 0.25, the PSAR predicts a 44% chance of extinction for a species that loses 90%
of its habitat. Second, if we assume a pseudo-extinction threshold of 50 individuals,
the Thomas-SAR under-predicts the extinction risk if n0 is less than 1000 but over-
predicts otherwise.

Tying Up Loose Threads, Thinking Across Scales The various different
approaches to predicting extinction at the broadest scales have driven substantial
controversy among different interpretations of macroecological theory. But one of
the most important problems is that estimates of extinction from these methods are
still poorly connected, by and large, to the rest of the extinction literature—and
to the other types of models we discuss above. One of the most innovative and
unusual approaches in the literature was presented by Rybicki and Hanski [90],
who simulated a stochastic patch occupancy model (similar to those presented in
Sect. 9.3.1) with spatially heterogeneous environmental conditions across patches.
While their model incorporates the standard mainstays of an SPOM (colonization,
extinction, a dispersal kernel), it also incorporates a phenotype and niche breadth
that produce a Gaussian fitness function (like many of the models discussed in
Sect. 9.4.1).

Tying together a number of the important ideas discussed above, the work of
Rybicki and Hanksii made several advances into new territory. For one, they make
a semantic distinction between the EAR (which they define as the S = cAz

relationship applied to the area lost a) and the “remaining species–area relationship”
(RAR),
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S − Sloss = c(Anew/A)z. (9.5.11)

The EAR and RAR, as two methods of calculating extinction risk, are not inter-
changeable or symmetric counterparts. Rybicki and Hanskii highlight a discrepancy
between Storch et al.’s suggested EAR slope of roughly 1, and He and Hubbell’s
values which were a tenth smaller [53], which they suggest can be resolved by the
fact that Storch fit the EAR while He and Hubbell were calculating the RAR. Their
simulations agree with the results of He and Hubbell that the slope of the RAR may
be half or less that of the SAR.

Their empirical approach to simulation leads to a valuable conclusion that
stands in opposition to previous work. While Kinzig and Harte [58] and He and
Hubbell [53] both strongly suggest that the SAR over-estimates extinction risk,
the results of Rybicki and Hanskii’s simulations suggest that in the short term, the
RAR under-estimates extinction while the continental SAR (z ≈ 0.1) is adequate.
Their result ties the population scale to the community scale, as they attribute it to
species’ populations outside destroyed or fragmented habitat falling below critical
thresholds and facing extinction despite the lack of total endemic extirpation. In the
long term, they suggest, the island SAR (z = 0.25) may be the best predictor of
total losses. Finally, they explore the difference between leaving a single patch of
habitat and fragmenting habitat and conclude all models underestimate extinction
risk in scenarios of extreme fragmentation. To address that problem, they propose a
modified species–area relationship

S = cAze−b/λM , (9.5.12)

where λM is the metapopulation capacity (see Sect. 9.3.1) and b is another scaling
parameter like c and z. If n is the number of habitat fragments, they suggest, the
metapopulation capacity scales linearly with A3/n2, meaning that the fragmented
landscape species–area relationship (FL-SAR) can be expressed as

Snew/S = (Anew/A)2e−bn2/A3
. (9.5.13)

While the data to fit such an expression might be challenging to collect (and so the
FL-SAR may not be an immediately useful conservation planning tool), the FL-SAR
provides an important and much needed link between the population processes we
discuss above and our broader understanding of the rate of extinction at landscape
and community scales.

9.6 Last Chance to See

What don’t we know about extinction yet?
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As predictive tools gain precision, our estimates of the extinction rates of well-
known groups like mammals and birds also become more precise. But the majority
of the world’s species are not yet known; most animal diversity is harbored by
insects or parasites (especially nematodes), and the vast majority of species in those
groups are undiscovered or undescribed. Their extinction rates are just as poorly
quantified as their diversity, average range size or abundance distribution, or the
hotspots of their biodiversity. But some basic estimates suggest that 7% of the
planet’s invertebrates may have already gone extinct—at which rate evidence would
suggest that 98% of extinctions on Earth are currently going undetected [85]. It
is also especially difficult to compare these extinction rates to historical baselines,
because the fossil record for most invertebrates and other taxa are incomplete or
nearly absent.

An especially poignant problem is the detection and estimation of coextinction
rates—the secondary extinction of species dependent on others for their ecological
niche—which Jared Diamond suggested in 1989 was one of the four horsemen
of mass extinction (in his words, “overhunting, effects of introduced species,
habitat destruction, and secondary ripple effects”) [26]. Among the most obvious
candidates for coextinction are two main groups: pollinators (which can have a strict
dependency on host plants) and endosymbionts (parasites and mutualists, which
may exhibit strict specificity in their association with plant or animal hosts). While
both groups are believed to be severely at risk of secondary extinction, quantifying
their extinction rate can be challenging, as there is rarely a 1:1 correspondence
between hosts and dependent species. An approach popularized by Koh simulates
host extinctions in a random order and predicts the number of corresponding
coextinctions from the affiliation matrix; by fitting a function to real affiliation
matrices, Koh et al. found that if host specificity is 1:1 then the slope is linear, but
when affiliates use a greater number of hosts, the coextinction function is concave
upward,

Ā = (0.35Ē − 0.43)Ē ln s̄ + Ē, (9.6.1)

where E gives primary extinction risk, A secondary extinction risk, and s is
host specificity [60]. Subsequent work has shown that even though parasites and
mutualists may experience a reduced rate of extinction from host switching, the
majority of threatened species on Earth might still be mutualists and parasites (due
to the tremendous diversity of such species, e.g., the estimated 300,000 species
of helminth alone [27]), and most of those extinctions are poorly cataloged [31].
More data are needed on host-symbiont association networks to better inform
the role that nonrandom structure in those networks might play in increasing or
decreasing extinction rates; some work has suggested that species preferentially
favor more stable host species, the underlying cause of a “paradox of missing co-
extinctions” [101]. Similarly, the potential for species to switch hosts and thereby
avoid extinction is unknown, but likely mitigates global extinction risk. In para-
sitology, the Stockholm Paradigm suggests that host-parasite associations diversify
in changing climates and environments as a function of (1) phenotypic plasticity,
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(2) trait integration, and (3) phylogenetic conservatism of “latent potential” which
together produce a pattern of ecological fitting that might benefit parasites (and
thereby other symbionts) in the face of the sixth mass extinction [16]. A more in-
depth treatment of the theoretical ecology of ecological fitting can be found in the
recent work of Araujo et al. [5].

Is saving microbes and parasites from extinction a reasonable goal? Some argue
that it is [28], but others have recently suggested it’s “time to get real about
conservation” and focus on the fact we’re not adequately preventing catastrophic
population crashes in megafauna like elephants [33] or giraffes. Regardless of
animal type or conservation status, the development of demographic theory and
predictive modeling are our best options to understand and mitigate extinction risk
in natural populations. One such advance is the development of early warning
signals of population collapse. This is a developing body of literature that is
built around the fact that populations on the verge of collapse often produce
detectable statistical signals [91]. If researchers are able to detect these signals in
time series data before it is too late, mitigation efforts and prioritization of at-risk
populations may prevent population collapse. Current work is attempting to scale
the detection of early warning signals to the metapopulation level by developing
spatial early warning signals [57], which could be used to optimize reserve design
and address the influence of dispersal, stochasticity, and local population dynamics
on metapopulation persistence.

The pressure for more accurate, predictive tools will only grow in the next few
decades of research. A recent review by Mark Urban surveyed studies of climate
change-driven extinction risk and found that, despite the variation between different
modeling methods and scopes, projected extinction rates are not only rising but one
in six species might be imminently threatened with extinction [104]. Similarly, in
a study of roughly 1000 species of plants and animals, about half had experienced
population extinctions driven by climate change [105]. As extinction rates accelerate
due to global change and we fully enter the sixth mass extinction, the need for
better analytical and simulation tools—that produce precise estimates from limited
data—will only grow. In light of the constant need to test, revise, and re-test models
of extinction, to a mathematically trained ecologist or an ecologically minded
mathematician, this field of research is a critical opportunity to apply the principles
of ecosystem science towards a high-impact and worthy goal.
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Chapter 10
Modeling Food Systems

Hans G. Kaper and Hans Engler

Abstract When enough food is produced but sizable fractions of the population
suffer from malnutrition or are overweight, it is time to get a better understanding
of the global food system. This chapter introduces food systems and food security
as timely research topics for Mathematics of Planet Earth (MPE).

Keywords Food systems · Food security · Planetary boundaries · Social
justice · Models · Data

10.1 Introduction

The most important thing to know about the global food system is also one of the
least appreciated: there is enough food for everyone on the planet to live a healthy
and nutritious life. In fact, the UN Food and Agriculture Organization (FAO) tells
us that there are about 2800 kcal per person per day available [16]. But the global
food system is deeply inequitable. With about 1 billion people going hungry on the
planet [18] and about 2 billion people with insufficient nutrients [41], undernutrition
and malnutrition are affecting more than half the world’s population. At the same
time, there are about 1.5 billion people who are overweight or obese [43]. Clearly,
when enough food is produced but sizable fractions of the population suffer from
malnutrition or are overweight, we need to get a better understanding of the global
food system. The purpose of this chapter is to introduce some of the challenges to
food system modeling and describe some of the techniques that have been used to
analyze food systems.
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10.1.1 Food Security and Food Systems

A population enjoys food security when all its members, at all times, have access
to enough food for an active and healthy life. Limited or uncertain availability
of nutritionally adequate and safe foods, or limited or uncertain ability to acquire
acceptable foods in socially acceptable ways causes food insecurity. A food system
is the medium that enables a population to achieve food security.

A food system is essentially a supply chain that operates within the broader
context of economics, subject to biophysical and socioeconomic constraints.
Figure 10.1 gives a schematic representation of a food system. It shows three sectors:
producers, who engage in farming, livestock raising, horticulture, aquaculture, and
fishing; food chain actors, who are engaged in “post-farm gate” activities like food
processing, packaging, trading, shipping, storing, and retailing; and consumers, the
ultimate stakeholders of the entire enterprise.

To provide some perspective on the relative economic significance of the three
sectors, we note that in developed countries more than 80% of the market value
from annual food sales is created by post-farm gate establishments [5, 8]. These
food chain actors also consume a considerable share of the natural resources used
in the food system, such as fossil fuels for manufacturing and use in home kitchens,
forest products for packaging, and fresh water (“blue water”) for food-related energy
consumption and in home kitchens [7, 48].

Fig. 10.1 Schematic representation of a food system, showing producers, food chain actors, and
consumers, and their respective activities and contributions to the system
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Foodstuff generally flows from producers to food system actors to consumers,
as indicated by the red arrows in the diagram. Foodstuff can be quantified in
many ways—for example, by its energy content (measured in calories), nutrient
content (grams of protein), mass, volume, or monetary value. However, how
foodstuff flows through the system depends in a fundamental way on decisions by
a myriad of actors—decisions which are based on information that flows in both
directions among the three sectors, as indicated by the green lines in the diagram. In
economics, the process leading from information to decision is encapsulated in the
law of supply and demand, but this “law” is unlike any law of nature—it may be the
result of cultural constraints, social norms, and individual preferences. This poses a
fundamental difficulty for food system modeling, since this kind of information is
difficult, if not impossible to quantify.

Although food systems function within the broader context of economics, they
are more than purely economic systems. To be acceptable, a food system must
be both sustainable and equitable. At every stage, food systems require input of
resources of one kind or another (not shown in the diagram of Fig. 10.1). In
economic studies, these resources are designated collectively as “capital.” They
can be “natural” (water, minerals, energy, etc.); “hard” (manufactured goods like
tractors, machines, roads, and bridges); “soft” (rules and regulations, organizations);
“human” (knowledge and skills); or “social” (cultural institutions, networks, com-
munity). All are part of the input to the supply chain. But equally important are the
indirect costs and impacts that are associated with food systems. For example, food
production affects the ecology and diversity of the environment; food availability
and consumption influence personal well-being and public health; the way food
is distributed and shared affects the social fabric, sometimes in unanticipated ways;
sustainable and safe practices require consensus and public debate. In addition, there
are external global phenomena like climate change, natural disasters, and extreme
events that threaten food security and introduce elements of risk and uncertainty
into the analysis. In short, food systems and food security offer a plethora of
challenges for interdisciplinary research. In this chapter, we will make a case that
mathematicians working on Mathematics of Planet Earth (MPE) can find exciting
opportunities to contribute to this research agenda.

10.1.2 Outline of the Chapter

In Sect. 10.2, we present a framework for the study of food systems that takes into
account both the limits of our physical environment and a human value system.
In Sect. 10.3, we make the case that a food system is a complex adaptive system
requiring appropriate methodologies to capture its key features. In subsequent
sections we discuss various modeling techniques: network models in Sect. 10.4,
agent-based models in Sect. 10.5, equation-based models in Sect. 10.6, system
dynamics models in Sect. 10.7, statistical models in Sect. 10.8, and economic
models in Sect. 10.9. Section 10.10 is devoted to data, data assimilation, data
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visualization, data sources, and issues associated with missing data. In the final
Sect. 10.11, we briefly summarize the discussion.

10.2 A Framework for Discussing Food Systems

Economics has dominated the discussion of food systems since the early nineteenth
century. The English economists Thomas Malthus (1766–1834), best known for
his theory that population growth will always tend to outrun the food supply, and
David Ricardo (1772–1823), one the most important figures in the development
of economic theory, published their seminal papers on land use and agriculture
in 1798 [33] and 1815 [53], respectively, Today, agricultural economics is a
subdiscipline of economics focused entirely on the agricultural sector.

Similarly, aquaculture economics addresses the economics of fisheries, espe-
cially the management of fisheries. Since marine diseases are common in the
world’s oceans, the study of infectious diseases is an integral element of aquaculture
economics.

As explained in Sect. 10.1.1, food systems are supply chains that require inputs
of one form or another at every stage. Consequently, resource economics—the allo-
cation of resources, with the goal of optimizing output—plays a significant role in
the study of food systems, especially in the presence of the biophysical and socioe-
conomic constraints required for a sustainable and equitable operation [10, 52].

Economic geography—the study of the relation between location and the
economics of production—provides yet another perspective on food systems. The
beginning of economic geography is generally identified with the publication of
a pamphlet by Johann von Thünen in 1826 [63], where the author developed a
conceptual mathematical model of a food system to determine the optimal location
of different agricultural production sectors relative to an urban center. Economic
geography was advanced substantially through the work of Paul Krugman (for
example, see [32]), for which he was awarded the Nobel Prize in Economics in 2008.

Concerns about the impact of food systems on the environment and the loss of
biological diversity have led to the specialties of environmental economics and
ecological economics [11]. A useful reference in this context is the System of
Environmental–Economic Accounting (SEEA)—Central Framework, an integrated
environmental and economic accounting framework for organizing data [60]. The
SEEA—Central Framework was adopted in 2014 by a group of international orga-
nizations, including the United Nations, the European Union, and the International
Monetary Fund.

Not every aspect of food systems falls under the purview of economics. The
relation between food and nutrition is a recurrent theme, for example, in the
discussions of obesity and public health. Globalization and urbanization have
increased the risks of infectious diseases and raised concerns about food safety and
public health.
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In this section, we present a framework for the discussion of food systems
that goes beyond economics, accounting for critical issues of sustainability and
social justice. The framework provides a convenient organizing principle for the
development of mathematical models.

10.2.1 Planetary Boundaries

In 2009, a group of Earth system and environmental scientists led by Johan
Rockström (Stockholm Resilience Centre) and Will Steffen (Australian National
University) argued that humanity must stay within defined boundaries for a range of
essential Earth-system processes to avoid catastrophic environmental change [49].
They proposed a framework to measure stress to the Earth system in terms of nine
stress factors: climate change, ocean acidification, biochemical flows, freshwater
use, land-use change, biosphere integrity, ozone layer depletion, air pollution, and
chemical pollution. They also presented control variables (indicators) to introduce
a metric for each stress factor, suggesting upper or lower bounds as appropriate,
for seven of the nine indicators. They referred to these bounds as planetary
boundaries. Crossing even one of the planetary boundaries would risk triggering
abrupt or irreversible environmental changes, and the authors suggested that, if
one boundary were transgressed, there would be a more serious risk of breaching
the other boundaries. In other words, the planetary boundaries jointly constitute
an ecological ceiling, beyond which humanity’s pressure threatens Earth’s life-
supporting capacity.

Table 10.1 lists the stress factors and their indicators, the ecologically acceptable
(upper or lower) bounds on the indicators (“planetary boundaries”), the esti-
mated current values of the indicators and their trends (improving or worsening).
Figure 10.2 gives a graphical representation of the current status. The indicators
are measured from the center; a necessary condition for sustainable development is
that all indicators are within the environmental ceiling. The red sectors indicate that
the boundaries for genetic diversity, nitrogen and phosphorus use have already been
surpassed.

It can be argued that, with our limited understanding of the fundamental
processes controlling the stress factors, it is impossible to present reasonable
numbers, or that the bounds are much more malleable than the boundaries suggest,
or that, with better or worse management, boundaries could be moved. The concept
of planetary boundaries, however, is now generally accepted and has since been
adopted, for example, by the United Nations for ecosystem management and envi-
ronmental governance. Expert commentaries can be found in [1, 2, 6, 38, 39, 50, 51],
a scholarly discussion of boundaries and indicators in [21], and an update of the
original framework in [55]. We also refer to the recent book by Raworth [46] for a
discussion of planetary boundaries in the context of economics.
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Table 10.1 Ecological stress factors of Earth’s system, together with their indicators, planetary
boundaries, estimated current values, and trends

Stress factor Indicator Planetary boundary Current value, trend

Climate change Atmospheric CO2 ≤350 ppm 400 ppm, worsening

concentration

Ocean acidification Average saturation of ≥80% of pre- 84%, intensifying

aragonite (CaCO3) industrial level

at ocean surface

Biochemical flows (1) Phosphorus applied ≤6.2 Mt/yr 14 Mt/yr, worsening

to land as fertilizer

(2) Nitrogen applied ≤6.2 Mt/yr 150 Mt/yr, worsening

to land as fertilizer

Freshwater use Blue water consumption ≤4000 km3/yr 2600 km3/yr, intensifying

Land-use change Forested land area ≥75% of forest- 62%, worsening

covered land prior

to human alteration

Biosphere integrity Species extinction rate ≤10 pms/yr 100–1000 pms/yr, worsening

Ozone layer Stratospheric O3 ≥275 DU 283 DU, improving

depletion concentration

Air pollution TBD

Chemical pollution TBD

Abbreviations used: ppm parts per million, Mt million tons, pms per million species, DU Dobson
units. Adapted from [46, Appendix, Table 2], data from [54]

10.2.2 Social Justice

The concept of planetary boundaries is a recognition of the fact that there are
biophysical and ecological constraints to the Earth system. The planetary boundaries
define a sustainable operating space for humanity; beyond the environmental ceiling
lie unacceptable degradation and potential tipping points. What is missing in this
framework is a recognition that global environmental stresses also pose threats to
human well-being. Eradicating poverty and achieving social justice are inextricably
linked to ensuring ecological stability and renewal. To make the connection, we
must complement the environmental ceiling with a social foundation—a set of
generally accepted social priorities which, if not met, imply unacceptable human
deprivation.

The guidelines for the UN Conference on Sustainable Development (known as
Rio+20, which took place in June 2012) suggest a set of twelve social priorities,
which form the basis of a social foundation. Table 10.2 lists the social priorities
and their indicators, and estimated values of the indicators for the year(s) listed.
Figure 10.3 gives a graphical representation of the current status. The indicators are
measured from the center; a socially equitable system is realized when the social
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Fig. 10.2 Estimated status of the indicators for seven of the ecological stress factors [55]

foundation is achieved in all sectors. The red sectors indicate not only that we are
falling short on social justice at the global level, but also that there are significant
discrepancies among the various indicators.

The Sustainable Development Goals (SDGs), which were adopted by the
United Nations in 2015 to improve human lives and protect the environment [59],
incorporate the concepts of planetary boundaries and social priorities.

10.2.3 Doughnut Economics

By placing the indicators for social justice inside the planetary boundaries,
Raworth [44–46] achieved a visual representation of a safe and just operating space
for humanity. An economic system that stays inside the ring bounded externally
by the environmental ceiling and internally by the social foundation allows for
sustainable development while maintaining social justice for all. Since the ring
is reminiscent of a (two-dimensional) doughnut, this framework is sometimes
described as doughnut economics.
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Table 10.2 Social priorities and their indicators, estimated current values, and year

Social priority
Indicator (fraction of global population, unless
otherwise stated) % Year

Food Population undernourished 11 2014–2016

Health (1) Population living in countries with under-5
mortality rate

46 2015

(2) Population living in countries with life expectancy
at birth < 70 years

39 2013

Education (1) Adult population aged 15+ who are illiterate 15 2013

(2) Children aged 12–15 out of school 17 2013

Income and work (1) Population living on less than $3.10 per day 29 2012

(2) Proportion of people aged 15–24 seeking but
unable to find work

13 2014

Water and (1) Population without access to improved drinking
water

9 2015

sanitation (2) Population without access to improved sanitation 32 2015

Energy (1) Population lacking access to electricity 17 2013

(2) Population lacking access to clean cooking
facilities

38 2013

Networks (1) Population stating that they are without access to
someone to count on for help in times of trouble

24 2015

(2) Population lacking access to the Internet 57 2015

Housing Global urban population living in slum housing in
developing countries

24 2012

Gender equality (1) Representation gap between women and men in
national parliaments

56 2014

(2) Worldwide earnings gap between women and men 23 2009

Social equity Population living in countries with a Palma ratio ≥ 2 39 1995–2012

Political voice Population living in countries scoring ≤ 0.5/1.0 in
the VAI

52 2013

Peace and justice (1) Population living in countries scoring ≤ 50/100
in the CPI

85 2014

(2) Population living in countries with a homicide
rate ≥ 10 per 10,000

13 2008–2013

Column 3: % of global population unless otherwise stated; Palma ratio: ratio of the income share
of the top 10% of people to that of the bottom 40%.
Abbreviations: VAI Voice and Accountability Index, perceptions of the extent to which a country’s
citizens are able to participate in selecting their government, as well as freedom of expression,
freedom of association, and a free media; CPI Corruption Perception Index, perceived levels of
misuse of public power for private benefit, as determined by expert assessments and opinion
surveys. Adapted from [46, Appendix, Table 1], data from FAO, World Bank, WHO, UNDP,
UNESCO, UNICEF, OECD, IEA, Gallup, ITU, UN, Cobham and Sumner, ILO, UNODC, and
Transparency International
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10.2.4 A Simplified Framework

A simplified framework for food system modeling was presented in a recent report
prepared by the U.S. National Academy of Sciences for the Institute of Medicine
(IOM) and the National Research Council (NRC) [62]. It is based on the conceptual
model shown in Fig. 10.4. (Although the diagram refers to the agricultural sector, it
is equally applicable to other sectors of the food system.)

The food system is comprised of four components: a component labeled “input”
is added to the three standard components (producers, food chain actors, and
consumers) indicated in Fig. 10.1. The number of planetary boundaries is reduced
to four (air, biota, land, water), collectively labeled Natural Resources; similarly, the
number of social priorities is reduced to four (health, markets, policy, well-being),
collectively labeled Human Systems. The figure highlights the role of feedback
mechanisms indicated by the arrows in the diagram, which can influence the evo-
lution of the food system either positively (reinforcing) or negatively (inhibiting).
For example, natural resources like air, soil, water, and biota (pollinators, natural
enemies of food pests) are essential for agricultural production, as well as the
manufacture of many foods like bread, cheese, and wine. Yet, depletion and effluents
from the food system influence the future status of natural resources. Likewise,
the food system depends on a host of human systems that govern our health,
markets, policy, and general well-being. These human systems provide the labor,
entrepreneurship, capital, and technology needed to produce and distribute food.
Once again, the food system generates feedbacks that influence human systems at a
future period.
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Fig. 10.3 Estimated status of the indicators for eight of the social boundaries [44]

Natural Resources
(state 0 → 1)
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Human Systems
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Well-being
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and

Distribution
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Fig. 10.4 Food system as a dynamic process transforming the state of natural resources and human
systems from one period to the next [62]

10.3 A Modeler’s Perspective

Food systems have many of the characteristics of a complex system. While there
is no generally accepted definition of a complex system, complex systems can be
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characterized by what they do [25]. Four properties stand out, each of which adds
complexity to a system:

1. A complex system has internal structure. The structure may consist of many
interacting components, a network that describes which components of the sys-
tem interact, feedback mechanisms across multiple scales of space and/or time,
and symmetries. The components of many complex systems are heterogeneous
and form a hierarchy of subsystems.

2. A complex system shows emergent behaviors. Such behaviors arise from the
interaction of subsystems and are not evident from an analysis of each and every
subsystem. Chaotic dynamics, tipping points, and phase transitions are examples
of emergent behaviors.

3. A complex system can adapt to its environment and evolve without external
guidance. Adaptation and evolution are characteristic of critical infrastructure
systems and fundamental to biological and social systems.

4. Uncertainty is pervasive in complex systems. Quantifying uncertainties and
determining how uncertainties propagate throughout the system is a key aspect
of reliable prediction and control.

Like all complex systems, food systems pose challenges for mathematical
modeling. Clearly, no single model can capture an entire food system; specific
questions require specific models tailored to the scale of the phenomenon of interest.
In the following sections we present various modeling techniques that have been
used in the study of food systems, with case studies where relevant.

10.4 Network Models

Network models are fundamental to understanding interactions within complex
systems. They are also critical for the analysis of a system’s resilience to shocks
and other disturbances.

A network consists of a set of nodes (or vertices) and a set of edges connecting
nodes. A network is more than a graph. Nodes can be complex systems themselves,
so a network exposes the hierarchical structure of the system under consideration.
Nodes can have locations, demographics, and content. Edges are not just connec-
tions; they can have weights, capacities, lengths, and other attributes characterizing
the interactions among the nodes. Networks can change over time, they often
have multiple types of links, and may include higher order interactions (motifs) in
addition to pairwise ones. Many emergent phenomena in complex systems cannot
be understood without understanding the structure of the underlying network.

Often, networks have certain attributes that can be quantified. Examples are its
size (measured by the number of nodes or, less frequently, the number of edges),
density (the ratio of the number of edges to the number of possible edges), average
degree (the average number of edges connected to a node), characteristic path length
(the average number of steps it takes to get from one member of the network
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to another), diameter (the shortest distance between the two most distant nodes),
average clustering coefficient (the average of the ratio of existing links connecting a
node’s neighbors to each other to the maximum possible number of such links), node
centrality (an index used to rank the most important nodes), and node accessibility
(an index measuring how accessible the rest of the network is from a given start
node). All these measures can be meaningfully computed from the structure of
the network alone, and several of them can be used to define types of networks
(small-world, preferential attachment, etc.). We refer the reader to the article by
Newman [42] for a survey of the structure and function of complex networks.

Networks play an important role, for example in transportation modeling. Two
frameworks dominate both the applied and theoretical research on this topic. The
gravity model framework [29] is used to explain interactions between different
locations from basic geographic and demographic properties. Currently the most
complete framework for economic geography is the New Trade Theory, which
is based on the work that won Paul Krugman the Nobel Prize in Economics in
2008 [32]; see [35] for an application to a trade/transportation problem.

Case Study An example of network modeling can be found in [14]. The authors
were interested in the future development of the global wheat trade system and its
resilience to future shocks of differing length and severity. Note that the concept
of resilience encompasses not only the robustness of a system to damage resulting
from shocks but also the speed at which it recovers from shocks [47].

As a first step, the authors used available data for the global wheat trade for the
period 1986–2011 to develop a “backbone” network (referred to as the empirical
network model) by including only those edges corresponding to the largest trades
by volume. The empirical network, shown in Fig. 10.5a, is a simplification which
retains much of the structure of the historic wheat trade system.

The authors then developed a preferential attachment (PA) model to emulate the
empirical network. In this PA model, the probability of a trade (import or export)
between countries i and j occurring at time t depends on the fitness xi(m) of
country i and the fitness xj (m) of country j at time t ,

Pt [xi(m), xj (m)] = αxi(m)xj (m)+ ε

1+ βxi(m)xj (m)
. (10.4.1)

Here, the fitness xi(m) of country i is the ratio xi(m) = Ii(m)/m, where m is the
number of directed edges in the network and li (m) is number of edges connected
to country i; similarly for the fitness xj (m) of country j . The expression (10.4.1)
shows that a PA model favors fitness; to paraphrase, a PA model corresponds to a
system where the rich get richer. The small probability ε is introduced to enable
the formation of an edge between countries i and j when one or both have zero
fitness (that is, one or both are not yet engaged in any trade partnerships). The free
parameters α and β are chosen to match several characteristics of the empirical
network; the details of the matching procedure and a comparison of the two network
models can be found in [14]. The PA network model is shown in Fig. 10.5b.
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Fig. 10.5 (a) Empirical network model and (b) preferential attachment (PA) network model of
the global wheat trade system at the end of the year 2013. Nodes are arranged clockwise, and in
size and color, by total degree. Node labels in the empirical network model correspond to the ISO
3166-1 alpha-3 codes for the countries they represent [14]

An analysis of the time evolution of historical metrics in the empirical network
and predictions of future trends in the PA network model enabled the authors to
present various conclusions concerning the evolution of the global wheat trade
network, the effect of factors such as extreme weather events or agro-terrorism on
its dynamics, and its resilience to short-term and repeated shocks.

10.5 Agent-Based Models

Agent-based models (ABMs) are a class of computational models that are used
to simulate the actions and interactions of autonomous agents. An agent can be
an individual, or a group of individuals, or any other independent entity like a
community, an institution, or a country. Agents act within a specific environment
and interact with and influence other agents according to a given set of rules. The
effect of their interactions often emerges in the behavior of the system as a whole,
as collective phenomena such as patterns, structures, and self-organization, which
were not explicitly programmed into the model but emerge as a result of the agents’
interactions.

Because of their versatility and relatively straightforward implementation, ABMs
are used in several scientific domains including biology, ecology (where they
are referred to as individual-based models, IBMs), and social sciences to gain
explanatory insight into the collective behavior of agents obeying simple rules.
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A typical agent-based model has three elements: (1) a set of agents, their
attributes and behaviors; (2) a set of agent relationships and methods of interaction:
an underlying topology of connectedness, which defines how and with whom agents
interact; and (3) the agents’ environment: agents interact with their environment in
addition to other agents. ABMs are typically implemented as computer simulations,
either using custom software or via ABM toolkits [56]. This software can be then
used to test how changes in individual behaviors will affect the system’s emerging
overall behavior.

Case Study An example of ABM modeling is described in [37]. The ABM
concerns key land-use/land-cover dynamics and livelihood decisions on Isabela
Island in the Galápagos Archipelago of Ecuador.

The common guava (Psidium guajava), which was introduced to the Galápagos
for cultivation in 1858, now covers more than 40,000 ha of land on Isabela Island,
mostly within the agricultural zone and the adjacent protected area of Galápagos
National Park (GNP). Its spread in the agricultural zone is an obstacle to cultivation
and can substantially reduce farm productivity. As a consequence, some households
have decided to alter their land-use patterns by allowing infested fields to lie fallow,
effectively abandoning portions of the farm that are dominated by guava. These
abandoned fields and farms act as source populations that promote the spread
of guava into neighboring farms and the GNP. The spread of guava depresses
household wealth and assets related to agriculture and necessitates the hiring of
contract labor from the Ecuadorian mainland to eradicate problem populations in
farm fields, as well as the imposition of control measures in the GNP.

Figure 10.6 gives a schematic representation of the agent-based model designed
for this study. The assumption is that distal factors (economic markets, pol-
icy, environmental variation) influence more proximate, local (political-economic,
socio-cultural, biophysical) landscapes, which in turn affect agent characteristics,
livelihood decisions, and ultimately land-use patterns. Feedbacks among many of
the factors are present in this framework and specified in the model. Livelihood
decision making involves the selection of one of three options: agriculture, fisheries,
or tourism, which are the largest economic sectors on Isabela Island. Total guava
coverage is the primary output of the model and is used to measure land-cover
change. The model is implemented in the NetLogo software platform [56].

The authors’ primary goal was to evaluate broad population and environment
trends in the study area. By separately testing several levels of direct income subsidy
(increasing annual farmer incomes) and control cost subsidy (reducing the guava
control cost per hectare), the authors were able to estimate the approximate level
of income subsidy required to bring farmers’ incomes in line with the other two
economic sectors (fisheries and tourism), and the approximate level of control cost
subsidy to eliminate the cost of clearing guava; for details, see Ref. [37].
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Fig. 10.6 Conceptual framework for modeling livelihood decisions and land use/land cover
processes on Isabela Island in the Galápagos Archipelago of Ecuador [37]

10.6 Equation-Based Models

If the state of a system on the scale of interest is completely characterized at
any time by one or more state variables and the mutual dependencies among the
state variables are known—for example, following certain laws of nature—then it
is possible to develop an equation-based model (EBM) of the system. Generally
speaking, while individual agents and their mutual interactions (that is, attributes
on the microscale) are the primary concern in ABMs, the focus of EBMs is
usually on aggregate (macroscopic) quantities. EBMs are common in the physical
sciences, where state variables like mass, momentum, and energy are governed by
universal laws like conservation laws, Newton’s laws of motion, and the laws of
thermodynamics. Since there are no such laws in food systems or, more generally,
in social systems, EBMs are less common in this context.

Nevertheless, it is sometimes possible to study a particular observable phe-
nomenon using a conceptual model that embodies general principles derived from
data or even common sense. Such models can be static, describing an equilibrium
state of the system, or dynamic, relating the rate of change of the state variables
to the current state of the system or, if there are memory effects, to the state of
the system over an immediate past time interval. This class of EBMs generally
comprises differential or difference equations, depending on whether time is taken
as a continuous or discrete variable. Since there are usually uncertainties associated
with the data, for example because the measurements were subject to error or the
data were incomplete, statistical techniques may have to be applied to “clean” the
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data and quantify the uncertainties. Processes that occur on scales that are not
captured by the model introduce additional uncertainties, giving rise to stochastic
equations.

Case Study An example of EBM modeling is described in [4]. The case originated
from a project on the Pajaro Valley of California. This region is known for water-
intensive berry farming and has agencies actively seeking sustainable agricultural
practices. The crops under consideration—lettuce, strawberries, raspberries, and
blackberries—have different growing seasons, with raspberries in particular requir-
ing model parameters that vary with time.

Each farmer has a certain amount of arable land and a choice of crops to plant on
the land. The goal is to develop a flexible modeling and optimization framework to
aid the farmers in selecting crop portfolios that offer the best financial outcome,
under sustainable water usage limitations, over specified time frames. The crop
portfolio available to each farmer should not deviate significantly from the existing
crop state, and the optimization problem must take into account constraints, possibly
dynamic, to enforce planting and harvesting schedules.

A flowchart depicting the strategy developed for the optimization problem is
given in Fig. 10.7.

In the preprocessing step, the growing and harvesting schedules for the crops
under consideration are outlined in a calendar that tracks when land becomes
available and what is being harvested. The calendar fixes the constraints which
enforce the details of the growing season and leads to the determination of the
state variables. At each decision point, an inequality constraint must be enforced
to ensure that the total percentage of farm allocation does not exceed 100%. Land
may be left fallow, which is beneficial in scenarios involving water restrictions or
soil treatments used to increase nutrients (and thereby yields) in subsequent planting
periods.

The objective function incorporates the information a farmer uses to make
crop planting decisions. Examples of such information include profitability, limited
changes in crop portfolios from year to year, meeting consumer demand on an

Fig. 10.7 Conceptual framework for modeling crop selection decisions [4]
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annual basis, and minimizing the use of costly resources. The objective function
can be defined as a single target, or it can include multiple, often competing, targets.
For example, minimizing the use of costly resources does not necessarily increase
profitability. Many crops have minimum resource requirements for a successful
harvest, and limiting their use often competes with profitability objectives.

The state variables chosen by the authors for each crop i (i = 1, . . . , N ), together
with their units, are

Yi Yield from one harvest [boxes/acre]

Wi Water usage [acre-ft/acre]

Pi Sales price [$/box]

Di Demand [% crop/year]

Ci Operational planting cost [$/acre]

Profit models can be as complex or as simple as needed once the farming model
is in place. For instance, a simple representation of profit could be

Profit =
N∑
i=1

Ai(YiPi − PwWi − Ci), (10.6.1)

where Ai is the number of acres planted with crop i, and Pw is the current price
of water [$/acre-ft]. The maximization of profit must be accomplished under the
constraints of minimal water usage over the entire growing season,

Water =
N∑
i=1

AiWi, (10.6.2)

and minimal deviation from a given demand vector d = (d1, . . . , dN)T.
The optimization problem can be solved with existing software, for example in

the Matlab suite of programs; details can be found in [4].

10.7 System Dynamics Models

A special class of EBMs is known as system dynamics models (SDMs). These are
basically systems of equations written in a graphical language, showing the system’s
state variables and their causal relationships. The following description is based on
the system dynamics entry in Wikipedia [65], which also gives several examples.

In a SDM, the system of interest is represented as a causal-loop diagram. We
have already encountered such a diagram in Fig. 10.4. Another simple example
is given in Fig. 10.8. There are two feedback loops in this diagram. The positive
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Potential adopters Adoption rate AdoptersB

Market saturation Word of mouth

R

+ +

– +

Fig. 10.8 Causal-loop diagram showing the adoption process of a new product

reinforcement loop (labeled R) on the right indicates that the more people have
already adopted the new product, the stronger the word-of-mouth impact. There
will be more references to the product, more demonstrations, and more reviews.
This positive feedback should generate sales that continue to grow. The second
feedback loop on the left is negative reinforcement (or “balancing” and hence
labeled B). Clearly, growth cannot continue forever, because as more people adopt,
fewer potential adopters remain. Both feedback loops act simultaneously, but at
different times they may have different strengths: one might expect growing sales in
the initial years, and then declining sales in the later years.

In general, a causal-loop diagram does not specify the structure of a system
sufficiently to permit determination of its behavior from the visual representation
alone. To perform a more detailed quantitative analysis, a causal-loop diagram is

Flow
Stock

transformed to a stock-and-flow diagram, a stock being any entity that accumulates
or depletes over time (a state variable) and a flow being the rate of accumulation of
the stock.

Figure 10.9 shows the stock-and-flow diagram for the adoption process described
in Fig. 10.8. In this example, there are two stocks, “Potential adopters” (P ) and
“Adopters” (A), and one flow, “New adopters” (N ). The diagram gives a visual
representation of the ways in which a Potential adopter can become part of the flow:
as an Innovator who adopts the product without prodding, or as an Imitator who
adopts the product after learning about it from an Adopter. For every New adopter,
the number of Potential adopters decreases by one, while the number of Adopters
increases by one. Hence, the sum P +A is constant at all times and equal to P0, the
number of Potential adopters at the start when no one has yet had an opportunity to
adopt the new product. The model results in an S-shaped curve for the number of
Adopters, which rises slowly in the beginning, then increases rapidly and gradually
slows down as the market for the new product saturates.
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Fig. 10.9 Stock-and-flow
diagram for the adoption
process described in Fig. 10.8
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The language of SDMs was developed in the engineering community in the
1950s to better understand the behavior of complex systems. The dynamics of
the system are simulated by updating all variables in small time increments, with
positive and negative feedbacks and time delays structuring the interactions and
control.

10.8 Statistical Models

Statistical models (SMs) are similar to EBMs in the sense that they describe
aggregate properties of populations. But what distinguishes a statistical model
from other mathematical models is that a statistical model is non-deterministic.
Some of the variables do not have specific values; instead, they have probability
distributions—that is, some of the variables are stochastic. Typically, a process
model is assumed to be given, and the emphasis of stochastic modeling is on the
incorporation of the data into the model, the prediction of bulk behavior, and the
assessment of uncertainties.

Since most models of food systems are data-driven, statistics play an important
role. The data may have errors because observations are error-prone, and they may
be incomplete because of limitations of the observational procedure. Moreover,
any model fails to capture sub-scale phenomena, which are then represented by
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parameters whose values must be guessed. All this introduces uncertainties into the
model, which need to be assessed using statistical methods.

For example, to investigate how crop yield varies with precipitation, we assume
a linear relationship of the form “yield = b0 + b1 · precip,” where b0 and
b1 are (unknown) constants. After n observations we have a set of data points
(precipi , yieldi ), i = 1, 2, . . . , n, in the sample space S of all possible pairs (precip,
yield). The data points do not necessarily lie on a straight line, so we modify the
linear relationship to a linear regression model, “yieldi = b0 + b1 · precipi + εi .”
Here, εi is a stochastic error term; without it, the model would be deterministic.
Assuming that the errors are independent and identically distributed (iid) with
a Gaussian distribution N(0, σ 2) with mean 0 and variance σ , we now have a
statistical model with three degrees of freedom, namely b0, b1, and σ , which we
denote collectively by a single symbol, say θ = (b0, b1, σ ). Each possible value
of θ determines a distribution Pθ on S. If Θ is the set of all possible values of θ ,
then P = {Pθ : θ ∈ Θ} is the set of all probability distributions on S. Statistical
inference is the process of deducing properties of the probability distribution P
from the data set.

Among the most common techniques of statistical inference are the classical (or
frequentist) paradigm and the Bayesian paradigm. In the frequentist paradigm, the
properties of a statistical proposition are quantified by repeated sampling of the data
set. The Bayesian paradigm requires the specification of prior distributions for all
unknown parameters, which are subsequently improved upon using available data.
Parameters of prior distributions may themselves have prior distributions, leading
to Bayesian hierarchical modeling, or they may be interrelated, leading to Bayesian
networks.

10.9 Economic Models

Economists have studied food systems mostly for their role within in the overall
economy, maximizing GDP being one of the main drivers. In this section we
highlight two common modeling techniques, input/output models and computable
general equilibrium models.

10.9.1 Input–Output Models

Input/Output (I/O, or simply IO) models are matrix equations that show how output
from one industrial sector may become an input to another industrial sector. (IO can
also stand for Industrial Organization.) The column entries of a typical inter-industry
IO matrix represent inputs to an industrial sector, while row entries represent outputs
from a given sector. The size and sparsity of the matrix depend on the granularity of
the IO model. Researchers typically use matrix algebra tools to analyze IO models.
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The history of IO models in economic analysis goes back to the work of
Wassily Leontief (1906–1999), who was the first to use a matrix representation of a
national (or regional) economy. This work earned him the Nobel Prize in Economics
in 1973. In contemporary environmental accounting, one uses an extended IO
framework, called Environmentally extended input-output analysis (EEIOA), often
in combination with the SEEA—Central Framework discussed at the beginning of
Sect. 10.2. An example can be found in [64].

Input/output models offer universal ways to describe economic sectors, also
on a regional scale, and thus have a profound influence on the ways in which
economic sectors (including the food sector) are described and data are collected.
They are capable of predicting price structures and responses to small changes. A
comprehensive modern reference is [36].

10.9.2 Computable General Equilibrium Models

Computable General Equilibrium (CGE) models are nonlinear versions of I/O
models that take the behavior of economic agents into account and can incorporate
the effects of external factors such as changes of market rules or environmental
change.

A CGE model consists of a set of equations describing the model variables
and their interdependencies, together with a (usually very detailed) database.
The equations often assume cost-minimizing behavior by producers, average-cost
pricing, and household demands based on optimizing behavior. Since CGE models
always contain more variables than equations, some variables must be set outside
the model; these variables are termed exogenous. The remaining variables, which are
determined by the model, are called endogenous. In the language of mathematics,
the endogenous variables are the state variables; once we know their values, we
know the state of the system. The exogenous variables affect the state of the system
but are not affected by it; they can be external forces or parameters.

For example, rainfall is exogenous to a system describing the process of farming
and crop output. There are causal factors that determine the level of rainfall—so
rainfall is endogenous to a weather model—but these factors are not themselves part
of the model used to explain the level of crop output. Variables defining technology,
consumer preferences, and government instruments (such as tax rates) are usually
exogenous.

CGE models are a useful tool to assess the effect of policy changes. One runs
the model twice, once to calculate the equilibrium without the change and once
to calculate the equilibrium with the change. Then one quantifies the impact of
the change on the state of the system by comparing the equilibria from the two
experiments. Time does not enter, and the transient dynamics in the process of
adjustment to a new equilibrium are ignored. This procedure is known as the
comparative-static CGE model.
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In mathematical terms, let x ∈ R
n denote the vector of state variables and

λ ∈ R
m the vector of parameters, and let the function f represent the system of

equations describing the state variables and their interdependencies in the absence
of external forces, f : (λ, x) �→ f (λ, x) for all (λ, x) ∈ dom(f ) ⊂ R

m+n. The
function f is defined in such a way that f (λ, x) = 0 if and only if the state of
the system represented by x is realizable as an equilibrium state for the vector of
parameters λ. (The value 0 is arbitrary and chosen for the sake of convenience.)
Then the comparative-static CGE procedure can be described as follows.

Assume that the system is in a known equilibrium state x∗ for a given vector
λ∗ of parameter values, so f (λ∗, x∗) = 0. If some or all of the parameters are
perturbed, λ∗ changes to λ∗ +Δλ. If the system settles into a new equilibrium, say
x∗ +Δx, then this state must also be realizable, so f (λ∗ +Δ, x∗ +Δx) = 0. The
CGE model is an algorithm to solve this equation for Δx, given Δλ. In practice,
f is a complicated function of many variables, so an “exact” solution is out of the
question, except in very special cases. One must then resort to an approximation
procedure, for example by linearizing the equation, (Dλf )∗Δx + (Dxf )∗Δλ = 0.

However, there is a caveat; namely, if f is nonlinear, there is the possibility
that the equation f (λ, x) = 0 has multiple solutions, and their number may even
depend on λ. Each solution has its own basin of attraction, and a large change in
the parameters can drive the system from one basin of attraction to another. The
linear approximation (or any other, more sophisticated approximation) is essentially
a local approximation, so it is not a priori clear that the CGE algorithm captures the
correct solution. This problem persists if, instead of a one-step CGE procedure,
one uses a multistep implementation, where the change Δλ is split into several
subintervals and the state variables are updated after each step.

A more realistic approach would be to take a global approach and analyze the
bifurcations associated with the vector field f . Then one would know the critical
parameter values, where the nature of the solution could change significantly,
and follow the solution closely as parameters cross critical values. The study of
bifurcation theory falls outside the scope of this chapter; we refer the reader to the
literature [24, 34].

Today there are many CGE models of different systems; one of the better known
is the GTAP model of world trade [27]. Recently, CGE has been a popular way to
estimate the economic effects of measures to reduce greenhouse gas emissions and
to estimate the effects of extreme weather events on certain components of the food
system. The issue of missing and incomplete data comes up regularly in IO as well
as in CGE models and will be discussed below, in Sect. 10.10.4.

Software packages are available to solve CGE models; among the better known
are GAMS [19] and GEMPACK [26]. Their “black-box” characteristics tend to
make them difficult to analyze [12, 22, 26].

Both IO models and CGE models face the problem of balancing economic
data systems in the presence of incomplete data. There is an extensive economic
literature to address this problem. A recent example using a maximum entropy
approach can be found in [23]. A broader discussion of issues related to missing
and incomplete data for food systems will be given below, in Sect. 10.10.4.
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10.10 Data and Information Systems

Food system modeling is a data-driven activity. Data are essential to inform the
mathematical models that help us understand the inner workings of a food system.
This section is devoted to methods to assimilate data into a mathematical model and
techniques to integrate the information in a timely manner and in a format that is
useful for decision makers.

10.10.1 Data Assimilation

Data assimilation is the process of linking data with a mathematical model. It is
an essential technique in any scientific discipline that is data-rich and for which
well-founded mathematical predictive models exist. The technique originated in
engineering and has found widespread application in many other disciplines, most
notably in weather prediction, where it has extended the ability to predict weather
more or less accurately from hours to days. The technique is used in a variety of
modes; for example, to estimate state variables at a certain time using all available
observational data, including those made at a later time (reanalysis or smoothing
mode); or to estimate state variables using only past and present observations
(analysis or filtering mode); or even to estimate state variables that are inaccessible
to observations such as future states or states between measurements (forecasting
or predicting mode). In any of these modes, problems can be approached with
a variety of techniques, including optimization methods, maximum likelihood
methods, and Bayesian methods. The following example illustrates the application
of data assimilation methodology to reanalysis, filtering, and forecasting.

Consider a process with four real-valued state variables, {Xi : i = 1, . . . , 4}. The
state variables are related by the simple mathematical model

Xi+1 = αXi + ξi, i = 1, 2, 3, (10.10.1)

where α is a known positive constant, and the random process error terms ξi are
either identically zero or have a standard normal distribution, ξ ∼ N(0, 1). The data
consist of two observations, {Yi : i = 2, 3}, which are related to the state variables
through the identities

Yi = Xi + ζi, i = 2, 3, (10.10.2)

where the random observation error terms ζi are independent and identically
distributed with a standard normal distribution, ζi ∼ N(0, τ 2). Schematically, the
entire model looks like this:
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X1 #⇒ X2 #⇒ X3 #⇒ X4

⇓ ⇓
Y2 Y3

The mathematical model is represented in the top row, the data model in the bottom
row; the arrows represent the dependencies in the combined model. The problem of
estimating X1 from the observations Y2 and Y3 is a reanalysis problem, estimating
X2 from Y2 or X3 from Y2 and Y3 is a filtering problem, and estimating X4 from Y2
and Y3 is a forecasting problem.

When the processes are time-dependent, the data may arrive as a time series—a
sequence of realizations of a discrete-time stochastic process. In that case, filtering
methods can be applied. A well-known filtering method is due to Kalman (Kalman
filtering); extensions of the Kalman filter are the Extended Kalman filter and the
Ensemble Kalman Filter. We refer the interested reader to the literature for details;
see, for example, [31].

10.10.2 Data Visualization

Data visualization is a general term that describes any effort to help people
understand the significance of data by placing it in a visual context. Patterns, trends,
and correlations that might go undetected in text-based data can be exposed and
recognized easier with data visualization.

A discussion of best ways to visually represent data falls outside the scope of the
chapter, as does a discussion of available visualization software. We refer reader to
the existing literature. The classical treatise by Tufte [57] is a good introduction.

While the Food and Agricultural Organization (FAO) of the United Nations
maintains integrated (and interactive) near-real-time information systems on food
and agriculture, they reflect only currently available data, include many dubious
estimates of important quantities, and no estimates at all of other important quanti-
ties [17]. Moreover, information concerning the demand for food is fragmented and
incomplete. For planning purposes, it would certainly be useful to have a dynamic
and comprehensive display of energy flows throughout the global food delivery
system.

In 2011, the International Commission on Sustainable Agriculture and Climate
Change (ICSACC) issued a series of recommendations for improving global food
security [3]. Of particular interest is Recommendation 7, to create a comprehensive,
shared, integrated information system that encompasses human and ecological
dimensions of agricultural and food systems. Such a system would track changes
in land use, food production, climate, the environment, human health, and well-
being worldwide by regular monitoring on the ground and by public-domain remote
sensing networks.
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10.10.3 Data Sources

There are numerous data sources for topics relevant to food systems and food
security. But, as one might expect, they are heterogeneous, in various formats,
spread across the globe or in cyberspace, and not always easily located. Since it
is impossible to list a fair selection, we mention a few data sources to indicate the
breadth of coverage at the international, national, and regional level.

At the international and multinational level, the Food and Agriculture Organi-
zation (FAO) of the United Nations provides food and agriculture data for over
245 countries and territories and covers all FAO regional groupings from 1961 to
the most recent year available [16]. The World Bank maintains numerous country-
level data sets and indicators that capture both the economic growth and the human
priorities of ongoing development programs around the world [66]. The European
Environmental Agency (EEA) gathers data and produces assessments on agriculture
and topics related to the environment in the EU member states [13]. The Interna-
tional Food Policy Research Institute (IFPRI) has developed websites, portals, and
applications built around open data from its own and external sources [28]. Data
and appealing visualizations on international development issues of all kinds are
available at the Gapminder website [20].

At the national level, the UK Government Department for Environment, Food
and Rural Affairs (DEFRA) publishes a yearly Food Statistics Pocketbook with
information about the food and farming industry in the United Kingdom [58]. In
the United States, the Department of Agriculture (USDA) has several agencies
that perform research to provide analysis and statistics, including the Economic
Research Service (ERS), Foreign Agricultural Service (FAS), and National Agri-
cultural Statistics Service (NASS). A catalog of publicly available USDA data can
be found at [61]. Information about hunger in America can be found, for example, at
the website of Feeding America, a not-for-profit network that is the nation’s largest
domestic hunger-relief organization [15].

Additional sources of data are the websites of non-government organizations
(NGOs); state, provincial, and local agencies; and not-for-profit organizations
such as producer associations, associations of food chain actors, and consumer
organizations. Many universities have academic units whose mission includes the
study of food systems, food policy, and food security. The University of Minnesota’s
Food Protection and Defense Institute maintains the World Factbook of Food,
a reference repository of data related to food which provides the user with a
wide range of food and agriculture data at the food and country level. Johns
Hopkins University’s Center for a Livable Future lists a number of Food Policy
Networks [30].

Scraping the web is a useful technique to obtain information that is not directly
available in published form. An example is found in [9], where data on interstate
live cattle trade were obtained by scraping online records of cattle auction houses.

With current technology it is possible to develop visualization tools to study food
systems and food security in the broader socioeconomic context. An example can
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be found at the website [40], which displays data on demographic and economic
diversity and food security in Montgomery County, Maryland.

Lastly, the report [62] includes four tables—one each on metrics, methodologies,
data sources, and models—that provide samples of existing resources for assessing
health, environmental, social, and economic effects of food systems (Appendix B).

10.10.4 Missing Data

Problems due to missing, incomplete, or otherwise corrupted data are common in
economics and are especially pressing when modeling food systems. In developed
economies, post-farm gate data about foodstuff being processed, transported, and
distributed are generally detailed and accurate, since there is typically a business
interest involved. But when these data are proprietary, they may be inaccessible.
At the production level, data quality and availability are improving due to the
rapid deployment of sensor technology, for example in precision agriculture. At
the consumer level, fine-grained information about food purchases by individual
households is sometimes available, for example from store checkout records.
However, all these data sources come with their own problems. For example,
remote-sensing data for precision agriculture may have observational gaps, and
store checkout data may have geographical or social biases. Far less is known about
the actual food consumption in households compared to, for example, food that is
wasted. Typically, consumers do not record what is going into the trash or what is
being left on the plate at a restaurant.

In developing economies, the logistics for gathering data are often prohibitively
expensive. As a result, much less information is available, and if it is available, its
reliability is often debatable.

10.11 Concluding Remarks

The purpose of this chapter is to introduce the mathematics research community
to a range of problems in the areas of food systems and food security that offer
opportunities for modeling, analysis, computational and data science.

A food system is a network with many actors and relationships, from the
production stage through the distribution stage to the consumption stage. Modeling
such a system is a challenge; yet, models are needed to improve our understanding
of the system and thus the well-being of future generations. There are few, if
any, universal laws; there are significant uncertainties, including climate change,
population growth, and increasing urbanization; and there is little appreciation for
the impact of food shortages and other catastrophic impacts on the social fabric.

In Sect. 10.2, we presented a framework for the study of food systems that
reflects both issues of sustainability and social justice and matches the Sustainable
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Development Goals (SDGs) adopted by the United Nations in 2015 [59]. After
a general discussion of the challenges facing the development of mathematical
models of food systems in Sect. 10.3, we devoted several sections to the various
modeling techniques that have been used to study aspects of the food system, with
case studies where appropriate (Sects. 10.4–10.9). In Sect. 10.10, we outlined data
assimilation methods for integrating data into mathematical models and hinted at
ways to improve the presentation of results that are scientifically justified and useful
for decision makers. We concluded with a sampling of data sources available to the
research community.

The problems are difficult, the tools are sparse, but the challenges must be faced
if we want to contribute to one of the major existential problems facing humanity.
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Chapter 11
Dynamic Optimization, Natural Capital,
and Ecosystem Services

Jon M. Conrad

Abstract This article argues that natural capital should be viewed as a stock or
state variable whose evolution is described by a difference or differential equation.
Ecosystem services are benefit flows produced by stocks of natural capital. To value
natural capital and the ecosystem services they provide, one needs to determine
their value when they are optimally managed. This requires solving a dynamic
optimization problem. The steady-state optimum to such a problem can serve as
a benchmark from which to estimate the losses associated with pure open access
(the tragedy of the commons) or any other sub-optimal steady state. This approach
is illustrated by estimating the ecosystem service from oysters that remove nutrients
from Chesapeake Bay.

Keywords Chesapeake Bay · Dynamic optimization · Ecosystem services ·
Natural capital · Oyster culture · Socioeconomics

11.1 Introduction

Since at least the mid-1960s, economists have been aware that natural resources and
natural environments often provide benefit flows beyond the net revenues generated
by their harvest, extraction, or visits by users. Burton Weisbrod [24] discussed the
value of a park or wilderness area which provided utility flows to visitors (users)
but which also provided value to non-users who wished to preserve their option
to visit that site in the future. Samuelson [16], Hartman [8], and Calish et al. [3]
viewed a standing forest as providing non-timber benefits. Stocks of nonrenewable
resources, such as oil and natural gas, might generate conservation or option value.
For example, Vousden [23] examined how a “conservation motive” might alter the
optimal time path for extraction. Clark [4] posed a problem where a renewable

J. M. Conrad (�)
Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
e-mail: jmc16@cornell.edu

© Springer Nature Switzerland AG 2019
H. G. Kaper, F. S. Roberts (eds.), Mathematics of Planet Earth, Mathematics of
Planet Earth 5, https://doi.org/10.1007/978-3-030-22044-0_11

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22044-0_11&domain=pdf
mailto:jmc16@cornell.edu
https://doi.org/10.1007/978-3-030-22044-0_11


298 J. M. Conrad

resource provided existence value that would increase the optimal steady-state
stock.

Public concern over the conservation of natural resources, environmental quality,
biodiversity, and the impact of climate change has grown significantly since the
1960s, as has the literature in the field of resource and environmental economics.
Despite increased recognition of the importance of natural capital and the ecosys-
tem services they provide, the distinction between these two concepts and the
appropriate methodology for their valuation is not widely understood outside the
field of economics. The objective of this article is to illustrate the role of dynamic
optimization as way to determine the optimal stocks of natural capital and to value
the ecosystem services those optimal stocks provide. The solution of a dynamic
optimization problem with stocks of natural capital can accomplish at least two
things. One, it can provide a benchmark from which to measure the welfare losses
from open access (the tragedy of the commons) or other sub-optimal states, and two,
it can suggest optimal policies for restoring stocks of natural capital to their optimal
or near-optimal levels.

Determining the value of natural capital and ecosystem services via dynamic
optimization has not been the approach typically taken in the empirical literature.
Empirical studies estimating the value of an ecosystem service are typically static;
estimating a benefit flow at a point in time and at a particular location. There are
four common methodologies used to estimate the value of an ecosystem service
(1) hedonic pricing, where land value may be partially determined by the benefit
flow from nearby natural capital, (2) travel cost, where individuals are willing to
incur additional travel cost to visit a site with higher levels of an ecosystem service,
(3) contingent valuation, where people are asked their willingness-to-pay for visits
to sites with visibly different ecosystem services, and (4) alternative provision,
where an ecosystem service is provided by an alternative means which has a known
marginal cost. This last approach was taken by Grabowski et al. [7] to determine
the value of nutrient removal by oysters in Chesapeake Bay based on the lowest
marginal cost for removing those nutrients by reducing the runoff from agricultural
operations or by a more thorough treatment of municipal waste.

More generally, Dasgupta [6] develops a measure of wealth that is based on
manufactured capital, human capital (in the form of knowledge and human health),
and natural capital, which provides ecosystem services. Welfare increases over time
if and only if this comprehensive measure of wealth increases over time. Economists
regard capital, whatever the form, as a stock or state variable whose level may
change over time as a result of management or mis-management. Positively-valued
capital stocks provide a flow of positively-valued services. (Negatively-valued
stocks, for example stock pollutants, might produce negatively-valued flows in the
form of damage to individuals or firms.)

Economists prefer to measure changes in social welfare relative to a benchmark
of efficient or optimal resource allocation. If the current management of capital is
not optimal, the loss or inefficiency of that allocation might be measured relative to
the welfare supported by a first-best, or optimal, allocation of resources. With capital
stocks, the optimal allocation, assuming that it is unique, must be determined by
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solving a dynamic optimization problem. The solution to such a problem will allow
the analyst to identify “shadow prices,” also called “Lagrange Multipliers.” Shadow
prices can be interpreted as the marginal value of a slightly larger stock of natural
capital and play a critical role in determining optimally sustainable (steady-state)
rates of harvest.

In Sect. 11.2 we will develop a simple dynamic model where a renewable
resource, the stock of oysters in northern Chesapeake Bay, provide net revenue
to watermen (harvesters), but also provide an ecosystem service in the form
of improved water quality through the removal of nutrients. In Sect. 11.3, we
characterize the open access equilibrium, where access to the resource and the
amount harvested are unregulated. The opportunity cost of open access can be
calculated based on foregone net revenue and the reduced flow of ecosystem benefits
when compared to the steady-state optimum. In Sect. 11.4, (1) functional forms are
specified, (2) parameters are calibrated, (3) optimal and open access steady states are
computed and compared, (4) sensitivity analysis is conducted, and (5) the optimal
approach to steady state is described. Section 11.5 concludes.

It turns out that oysters actually provide multiple ecosystem services. In addition
to the removal of nutrients, oyster reefs may provide habitat for other valuable
species, for example, blue crab, as discussed in Peterson et al. [15] and Mykoniatis
and Ready [14]. Oyster reefs may also provide shoreline protection, as examined by
Grabowski et al. [7]. Our simple model just considers the value of nutrient removal,
but in Sect. 11.5 we will suggest how additional forms of ecosystem services might
be introduced to formulate a more complete, but also a more complex, dynamic
optimization problem.

11.2 A Simple Model

Let x = x(t) denote the stock of oysters (in bushels) and h = h(t) the harvest (also
in bushels) at instant t , ∞ > t ≥ 0. The change in the oyster population is given
by the differential equation dx/dt = ẋ = F(x) − h, where F(x) is a net growth
function. Oysters are commercially valuable, and the net revenue at instant t (in
dollars) is given by π = π(t) = π(x, h).

The ability of oysters to remove nutrients from the waters of Chesapeake Bay
gives rise to an ecosystem service in the form of improved water quality. Let w =
w(t) be an index of water quality, where arbitrarily 100 ≥ w ≥ 0. Water quality
is also a state variable whose change is given by the differential equation dw/dt =
ẇ = G(w, x;N). The change in water quality depends on the current level of water
quality, w, the stock of oysters, x, and the inflow of nutrients into Chesapeake Bay,
N = N(t). To keep the model as simple as possible, we will assume that the inflow
of nutrients is fixed at a total maximum daily load (TMDL) so that N = N̄ > 0.
In this case, N̄ will be a parameter and we can drop it as an argument of G(•) and
simply write dw/dt = ẇ = G(w, x).
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The water quality index translates into a monetary net benefit according to the
function V = V (w), where V (w), measured in dollars, is nondecreasing and strictly
concave in w. Management of the oyster population must now account for both the
net revenue from harvest, π(x, h), and the net benefit of water quality, V (w), that
is positively influenced by the size of the oyster stock. The dynamic optimization
problem of interest seeks to

maximize{h}
∫∞

0 [π(x, h)+ V (w)]e−δt dt,

subject to ẋ = F(x)− h,

ẇ = G(w, x),

given x(0) > 0, w(0) > 0,

where δ > 0 is the instantaneous rate of discount, and x(0) and w(0) are the initial
conditions for the oyster stock and the water quality index, respectively. The current-
value Hamiltonian may be written as

H = π(x, h)+ V (w)+ μx[F(x)− h] + μwG(w, x), (11.2.1)

where μx and μw are the current-value shadow prices on the oyster stock and water
quality, respectively. The Maximum Principle, specifying conditions that must be
satisfied by optimal harvest, requires

∂H/∂h = πh(•)− μx = 0, (11.2.2)

μ̇x − δμx = −∂H/∂x = −[πx(•)+ μxF
′(x)+ μwGx(•)], (11.2.3)

μ̇w − δμw = −∂H/∂w = −[V ′(w)+ μwGw(•)], (11.2.4)

ẋ = ∂H/∂μx = F(x)− h, (11.2.5)

ẇ = ∂H/∂μw = G(w, x), (11.2.6)

lim
t→∞ e−δtμxx = 0, (11.2.7)

lim
t→∞ e−δtμww = 0, (11.2.8)

where πx(•) = ∂π(x, h)/∂x, πh(•) = ∂π(x, h)/∂h, Gx(•) = ∂G(w, x)/∂x,
Gw(•) = ∂G(w, x)/∂w, and where F ′(x) and V ′(w) are the first derivatives of the
functions F(x) and V (w), respectively. Equation (11.2.2) requires that the marginal
net revenue from harvest be set equal to the shadow price on the oyster population,
or πh(•) = μx . Equation (11.2.3) requires that the interest income from liquidating
one unit of the oyster stock, δμx , must equal the capital gain on the shadow price
of oysters, μ̇x , plus the sum of the marginal net revenue, the value of marginal net
growth, and the marginal value of the contribution to water quality, or

δμx = μ̇x + πx(•)+ μxF
′(x)+ μwGx(•). (11.2.9)
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Equation (11.2.4) places a similar requirement on any marginal reduction in water
quality. The interest payment on the shadow price for water quality must be equated
to the capital gain in that shadow price, plus the sum of the marginal monetary value
of w, V ′(w) and the marginal value in its dynamics, or

δμw = μ̇w + V ′(w)+ μwGw(•). (11.2.10)

Equations (11.2.5) and (11.2.6) simply recover the state equations for x and w.
Equations (11.2.7) and (11.2.8) are the transversality conditions that are required
for convergence of the present-value integral in this infinite-horizon, dynamic
optimization problem.

The benchmark for efficient management and for formulating first-best, public
policy is the stationary optimum obtained by evaluating Eqs. (11.2.2)–(11.2.6) in
steady state. These equations would then require

μx = πh(x, h), (11.2.11)

μw = V ′(w)

δ −Gw(w, x)
, (11.2.12)

δ = F ′(x)+ πx(x, h)+ μwGx(w, x)

μx

, (11.2.13)

h = F(x), (11.2.14)

G(w, x) = 0. (11.2.15)

Equations (11.2.11)–(11.2.15) constitute a five-equation system defining a steady-
state optimum, [x∗, w∗, h∗, μ∗x, μ∗w]. By imposing strict concavity in the functions
π(x, h), F(x), V (w), and G(w, x), the steady-state optimum will be unique and
saddle-point stable with the approach being either most rapid (a most rapid approach
path, or MRAP) or asymptotic.

We can make the problem of solving for the steady-state optimum a bit easier by
substituting Eqs. (11.2.11) and (11.2.12) into Eq. (11.2.13),

δ = F ′(x)+ πx(•)(δ −Gw(•))+Gx(•)V ′(w)

πh(•)(δ −Gw(•)) . (11.2.16)

Then, Eqs. (11.2.14)–(11.2.16) become a three-equation system in [x∗, w∗, h∗].
With functional forms for π(x, h), F(x), V (w), and G(w, x) and their associated
parameter values, it is relatively easy to design an algorithm to solve this three-
dimensional system for [x∗, w∗, h∗] and then use Eqs. (11.2.11) and (11.2.12)
to calculate the shadow prices, μx and μw. We will illustrate this procedure in
Sect. 11.4, but first we want to identify the pure open access equilibrium (steady
state) and show how the opportunity cost of open access might be calculated based
on shadow prices, net revenue, and the monetary value of water quality.
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11.3 Pure Open Access

In pure open access, competitive watermen are unregulated and will harvest the
oyster stock down until profit is zero, π(x, h) = 0. Denote the steady-state,
open access oyster stock as x∞. Open access will typically result in economic
overfishing such that x∞ < x∗, where x∗ is the optimal steady-state biomass
defined by Eqs. (11.2.14)–(11.2.16) above. The steady-state, open access harvest is
h∞ = F(x∞), and again, it is typically the case that h∞ < h∗. Knowing [x∞, h∞],
we can compute w∞ by solving G(w, x∞) = 0. In the pure open access equilibrium,
μx , the shadow price on the oyster stock is zero and a valuable resource has been
rendered worthless. The cost of open access at instant t is measured by the loss in
net revenue and reduced ecosystem services. In our simple model this loss may be
calculated as

Copen access = π(x∗, h∗)+ [V (w∗)− V (w∞)]. (11.3.1)

The lesson in Eq. (11.3.1) is that we need to solve the dynamic optimization problem
in order to determine the extent of the losses (foregone net revenue and ecosystem
services) associated with pure open access or any other sub-optimal equilibrium.

11.4 The Cost of Open Access

In this section we (1) specify functional forms, (2) calibrate parameters, (3) solve for
the steady-state optimum, (4) determine the open access equilibrium, (5) calculate
the cost of open access for the base-case set of parameters, (6) conduct sensitivity
analysis, and (7) describe the optimal approach to the steady-state optimum.

11.4.1 Functional Forms

There are four functions in our simple model from Sect. 11.2: F(x), π(x, h),
G(w, x), and V (w). The following forms are adopted: F(x) = rx(1 − x/K),
π(x, h) = (p − c/x)h, G(w, x) = −γ (N̄)w + βx, and V (w) = α ln(1 + w),
where ln(•) is the natural log operator. In this specification, the oyster population
grows logistically with r > 0 being the intrinsic growth rate and K > 0 being the
carrying capacity of northern Chesapeake Bay, in bushels of oysters.

Net revenue is linear in harvest, h, also measured in bushels of oysters, where
p > 0 is the exvessel price/bushel, and c > 0 is a cost parameter. The term c/x

indicates that harvest cost declines with larger oyster populations.
The function G(w, x) = −γ (N̄)w + βx says that the rate of decline in water

quality depends on the size of the nutrient inflow, N̄ , with larger inflows resulting in
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larger values for γ . Because we have assumed that N̄ is constant at the TDML, the
value for γ is a constant with 1 > γ > 0. Each bushel of oysters can improve the
water quality index according to the parameter β, where 1 > β > 0.

Finally, water quality in the northern Chesapeake Bay is a local public good
with higher values for w resulting in greater welfare for boaters, swimmers, fishers,
birders, and non-users who derive utility from higher quality water. V (w) =
α ln(1 + w), with α > 0, implies that the dollar annual benefit from water quality
improvement is strictly concave in w.

With these functional forms, Eq. (11.2.16) takes the form

δ = r(1− 2x/K)+ cr(1− x/K)(δ + γ )+ αβγ x/(γ + βx)

(px − c)(δ + γ )
, (11.4.1)

so x∗ is the positive root of G(x) = 0, where G is a cubic polynomial in x,

G(x) = [r(1−2x/K)−δ](px−c)(δ+γ )+cr(1−x/K)(δ+γ )+αβγ x/(γ +βx).

(11.4.2)
For the base-case parameter values given in the next subsection, Mathematica
computes two negative roots and one positive root. This is also the case for all
parameter combinations in our sensitivity analysis. We adopt the positive root as
our value for x∗.

11.4.2 Parameter Values

There are seven parameters in our functional forms: r , K , p, c, α, β, and γ . To these
seven parameters we must also specify a value for δ, the instantaneous discount rate.

The oyster population in Chesapeake Bay has been studied extensively. While
growth can vary significantly with salinity, dissolved oxygen, disease (MSX and
Dermo), and the height and extent of an oyster reef, Kaspersky and Wieland [9]
adopt the values r = 0.239 and K = 5.089 × 109 market-sized oysters. There
are approximately 350 market-sized oysters per bushel, so our value for carrying
capacity is K = 14,540,000 bushels.

Table 11.1 contains the harvest (in bushels), dockside value (in dollars), and the
exvessel price per bushel for the 1989–1990 through 2012–2013 seasons. The oyster
season runs from October 1 through March 31 of the following year. The average
price over this period was $23.82/bu with a standard deviation of $5.86/bu. We adopt
the average price as our base-case value for p.

The calibration of the cost parameter, c, is based on the average price, p =
$23.82/bu, and a guess for the open access equilibrium stock, x∞. Net revenue
is driven to zero at the pure open access equilibrium stock implying π(x, h) =
(p − c/x)h = 0. If open access harvest, h∞ > 0, then x∞ = c/p and
c = px∞. Open access equilibrium stocks are often less than 20% of carrying
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Table 11.1 Season, total harvest, dockside value, and exvessel price

Season Total harvest (bu) Dockside value ($) Exvessel price ($/bu)

1989–1990 414,445 9,900,000 23.89

1990–1991 418,393 9,400,000 22.47

1991–1992 323,189 6,400,000 19.80

1992–1993 123,618 2,600,000 21.03

1993–1994 79,618 1,400,000 17.58

1994–1995 164,641 3,200,000 19.44

1995–1996 199,798 3,200,000 16.02

1996–1997 177,600 3,800,000 21.40

1997–1998 284,980 5,700,000 20.00

1998–1999 423,219 7,800,000 18.43

1999–2000 380,675 7,200,000 18.91

2000–2001 347,968 6,800,000 19.54

2001–2002 148,155 2,900,000 19.57

2002–2003 55,840 1,600,000 28.65

2003–2004 26,471 700,000 26.44

2004–2005 72,218 1,100,000 15.23

2005–2006 154,436 4,700,000 30.43

2006–2007 165,059 5,000,000 30.29

2007–2008 82,958 2,600,000 31.34

2008–2009 101,141 2,700,000 26.70

2009–2010 185,245 4,500,000 24.29

2010–2011 123,613 4,300,000 34.79

2011–2012 137,317 4,600,000 33.50

2012–2013 341,132 10,900,000 31.95

Source: Maryland oyster population status report [12]

capacity, x∞/K < 0.20. We set x∞ = 0.15K = 2,181,000 bushels. This implies
c = px∞ = $51,951,420 and h∞ = 443,070 bushels.

The parameters β and γ influence the change in the water quality index according
to the differential equation ẇ = −γw+βx. We calibrate γ assuming that the water
quality index 100 years ago would have been w1916 = 100 and that the water quality
index today is approximately 10 (w2015 � 10). If we suppress the rate of removal
of nutrients by oysters, this would imply that 10 � 100(1 − γ )100. Solving for
gamma yields γ � 0.02276. We assume further that w∞ = 10 = (β/γ )x∞ when
x∞ = 2,181,000 bushels and γ = 0.02276. This implies that β = 1.0436 × 10−7.
We round to β = 1.04 × 10−7, which results in a base-case w∞ = 9.97, close
enough to 10.

The water quality of Chesapeake Bay has also been extensively studied. Cropper
and Isaac [5] review 16 studies conducted between 1985 and 2009 examining the
economic value of improved water quality in Chesapeake Bay or in specific rivers
or creeks that flow into Chesapeake Bay. The studies employed different valuation
methodologies to estimate the benefits from improved water quality to (1) property
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Table 11.2 Base-case parameter values

Parameter Definition Base-case value

p Exvessel price per bushel $23.82

x∞ Open Access Stock 2,181,000 bushels

c = px∞ Cost parameter $51,951,420

r Intrinsic growth rate 0.239

K Carrying capacity 14,540,000 bushels

α Water quality value parameter $21,667,907

β Nutrient removal rate per bushel 1.04x10−7

γ Decay rate for water quality index 0.02276

δ Risk-free discount rate 0.02

owners, (2) recreational users, (3) watermen (harvesters), and (4) non-users (who
derive option or existence value). The valuation methods included (1) contingent
valuation, (2) benefit transfer, (3) hedonic pricing, (4) travel cost, and (5) bio-
economic models.

The studies that estimated benefits for the entire Bay or for households in the
mid-Atlantic region are the most relevant for calibration of α. Van Houtven [22]
estimates that waterfront property owners would see an increase in annual benefits
of between $38.7 to $102.2 million from a marginal reduction in dissolved inorganic
nitrogen (DIN). Bockstael et al. [1], [2] estimate an annual benefit of $77.1 million
for a 40% reduction in the product of nitrogen and phosphorous concentrations
(TNP). Krupnick [10] estimates annual benefits of $103.9 million to recreational
users from a 40% reduction in TNP. Morgan and Owens [13] estimate an annual ben-
efit of $1.25 billion for a 60% improvement in TNP. Finally, Lipton and Hicks [11]
estimate an annual non-use (existence) benefit to mid-Atlantic households of $131.5
million.

We will adopt a conservative calibration for α. Suppose that the annual value of
water quality when w = 100 is $100,000,000. Given the functional form for V (w),
this implies that α ln(101) = $100,000,000 and that α = $100,000,000/ ln(101) =
$21,667,907.

Finally, we adopt a discount rate of δ = 0.02. Weitzman [25] found that the
subjective distribution for the risk-free rate of discount, based on a survey of 2160
economists in 48 counties, was a close fit to a gamma distribution with a modal
value of δ = 0.02. The base-case parameter values are summarized in Table 11.2.

11.4.3 Results

Table 11.3 presents the values for [x∗, h∗, w∗, μ∗x, μ∗w, x∗/K, h∗/x∗, π∗, V (w∗)] at
the steady-state optimum, [x∞, h∞, w∞, V (w∞)] under pure open access, and the
cost of open access in terms of foregone net revenue and ecosystem (water quality)
services. Recall from Eq. (11.3.1) that Copen access = π(x∗, h∗)+[V (w∗)−V (w∞)].
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Table 11.3 The steady-state
optimum and the cost of open
access

Variable Value

x∗ 9,420,834 bushels

h∗ 792,724 bushels

w∗ 43.05

μ∗x $18.31

μ∗w $11,504,177

x∗/K 0.65

h∗/x∗ 0.08414

π∗ $14,511,192

V (w∗) $82,018,970

x∞ 2,181,000 bushels

h∞ 443,070 bushels

w∞ 9.97

π∞ 0

V (x∞) $51,890,107

Copen access $44,640,055

Movement from the pure open access equilibrium to the steady-state optimum
would result in an increase in annual net benefit of $44,640,055. This amount is the
cost of open access, comprised of π(x∗, h∗) = $14,511,192 in net revenue from
harvest at the steady-state optimum and the difference in water quality ecosystem
service of [V (w∗)− V (w∞)] = $30,128,863.

11.4.4 Sensitivity Analysis

Table 11.4 provides sensitivity analysis for changes in α, β, γ , δ, K , r , and p.
The base-case values for α, β, γ , δ, and p are doubled, while the base-case value
of K , is halved. The base-case values from Table 11.3 are listed in Table 11.4
for comparison. We retain x∞ = 0.15K . Then π∞ = 0 requires that c =
px∞ = 0.15pK and because c depends on p and K we do not vary that parameter
independently.

Perhaps the first thing to note in Table 11.4 is that the ratio of the optimal stock
to carrying capacity, x∗/K , is relatively insensitive to changes in α, β, γ , δ, K ,
r , and p. It ranges from 0.59 to 0.73. When the water quality value parameter,
α, is doubled, it significantly increases the cost of open access which goes from
$44,640,055 to $78,278,762. The water quality index is quite sensitive to changes
in β, the rate at which oysters remove nutrients. In the base-case, w∗ = 43.05, while
a doubling of β increases w∗ to w∗ = 86.23.

A doubling of γ also has a significant effect on the water quality index. Recall
that γ is a function of the annual nutrient loading. If that loading were to increase it
would cause an increase in γ , which would cause a more rapid decline in the water
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quality index for a given oyster population. The doubling of γ causes w∗ to decline
from w∗ = 43.05 in the base-case to w∗ = 22.32.

As expected, an increase in the discount rate, δ, causes x∗ to decline. Because
the base-case x∗, when δ = 0.02, and the value of x∗ when δ = 0.04 are both
above the maximum sustainable yield stock of xmsy = K/2, the optimal harvest,
h∗, increases from h∗ = 792,724 to h∗ = 840,056, even though x∗ has declined
from x∗ = 9,420,834 to x∗ = 8,591,584.

Doubling the intrinsic growth rate, r , allows for a significant increase in the level
of harvest, even though x∗ has declined from the base case. Harvest goes from
h∗ = 792,724 in the base case to h∗ = 1,646,389 when r has doubled to r = 0.478.
Annual net revenue from this increased harvest increases to π∗ = $29,644,315.

Finally, a doubling of the exvessel price per bushel of oysters reduces x∗,
increases h∗, and results in a big bump in annual net revenue to π∗ = $29,797,438.
The smaller standing stock of oysters, x∗ = 8,727,317, lowers steady-state water
quality to w∗ = 39.88 causing a decline in value from V (w∗) = $82,018,970 in
the base case to $80,401,175 when the oyster price has doubled.

The take-home from this sensitivity analysis would be (1) the value of water
quality significantly affects the value of ecosystem services, (2) the nutrient loading
and the rate of nutrient removal by oysters significantly affects the water quality
index, w, (3) the intrinsic growth rate will significantly affect the level of harvest
and net revenue in the oyster fishery in Chesapeake Bay, and (4) a doubling of the
exvessel price will have a significant affect on net revenue.

11.4.5 Approach Dynamics

Net revenue, π = π(t) = (p − c/x)h, is linear in harvest, h = h(t). In a model
with a single state variable, x = x(t), this would imply that the optimal approach to
the steady-state optimum (the singular solution) would be most rapid (i.e., the most
rapid approach path or MRAP). If x(t) < x∗, h∗ = 0 until the stock grows to its
optimal level, x∗, at which time h(t) = h∗ = rx∗(1− x∗/k) for the rest of time.

With two or more state variables it may be optimal to maintain the moratorium
on harvest until both state variables have reached their steady-state optimal levels.
Suppose that x(0) < x∗ and w(0) < w∗. This will imply that p − c/x − μx < 0
and h∗ = 0. Suppose further that zero harvest allows x = x(t) to reach x∗ before
w = w(t) reaches w∗. Recall that the instantaneous net benefit was U = (p −
c/x)h+α ln(1+w). The change in net benefit for h constant is dU/dt = (c/x2)hẋ+
[α/(1+ w)]ẇ or

dU/dt = (c/x2)h[rx(1− x/K)− h] + [α/(1+ w)](−γw + βx). (11.4.3)

For h∗ = 0 or h∗ = rx∗(1 − x∗/K), the first term on the right-hand side of
Eq. (11.4.3) will be zero. The second term on the right-hand side of Eq. (11.4.3) will
be positive if w∗ > w(t) > 0 and x(t) ≥ x∗ and zero when w(t) = w∗ and x(t) =
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x∗. In this case the optimal approach is to maintain the moratorium on harvest until
w(t) reaches w∗, then instantaneously harvest [x(t) − x∗] + rx∗(1 − x∗/K) and
then harvest h∗ = rx∗(1−x∗/K) thereafter. The intuition is that the value of growth
in the water quality index under the extended moratorium exceeds the foregone net
revenue at the steady-state optimal harvest when w(t) < w∗.

11.5 Conclusions and Caveats

A simple dynamic optimization model was developed to sharpen the distinction
between natural capital (a stock or state variable) and ecosystem service (a flow
variable). To rigorously value natural capital and ecosystem services one needs to
solve a dynamic optimization problem. This is required because natural capital, like
other capital stocks, must be optimally managed over time to reach its full potential
value to society.

Stocks of natural resources are perhaps the most obvious forms of natural capital.
Forests might provide timber, but they also provide habitat for wildlife, stabilize
soils, sequester carbon, and support recreational activities. Stock of fish and shellfish
can be sustainably harvested, while certain species, such as the eastern oyster,
Crassostrea virginica, provide ecosystem services by (1) removing nutrients which
would otherwise degrade water quality, (2) building reefs which provide habitat for
other valuable marine species, and (3) protecting shorelines during storm surge. Our
simple dynamic model only considered the ecosystem service from nutrient removal
and improved water quality. Specifying plausible functional forms and calibrating
the eight parameters to the dynamic optimization problem permitted the numerical
calculation of a unique steady-state optimum and the pure open access equilibrium,
where net revenue (profit or rent) was driven to zero. Sensitivity analysis yielded
logical comparative statics and estimates for the cost of pure open access ranging
between $37 million and $79 million per year.

Because of the simplicity of the dynamic model, the numerical results should be
taken with a grain of salt. It would be possible to build models with multiple stocks
of natural capital and multiple flows of ecosystem services. For example, adding the
stock of blue crabs would introduce a third state variable and require a state equation
describing the dynamics of the blue crab population. Mykoniatis and Ready [14]
have the oyster population increasing the Chesapeake Bay carrying capacity for blue
crab. Peterson, Grabowski, and Powers [15] identify 11 other species whose growth
or carrying capacity might be enhanced by oyster reefs in the southeastern USA.

Estuarine and marine ecosystems are notoriously noisy. Instead of a single
annual or present value, stochastic models of optimal capital management will yield
stationary distributions for stocks and ecosystem services.

Finally, spatial considerations will almost certainly come into play, particularly
if it is possible to invest in restoration, or if restoration can be enhanced through
permanent or temporary marine reserves where harvest is prohibited. Sanchirico
and Wilen [17, 18], Smith and Wilen [19, 20], and Smith, Sanchirico, and Wilen [21]
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examine the economic role of marine reserves in a spatial-dynamic model. In such
models the value of natural capital will vary by location.

These complexities do not invalidate dynamic optimization as the appropriate
methodology for valuing natural capital and ecosystem services, it just makes it
much more difficult. The analysis of large-scale, stochastic-dynamic-spatial models
of natural capital will likely be based on extensive numerical simulation. The insight
and intuition from simple models, such as the one presented here, can help in
interpreting the simulation results of larger, more complex models, seeking a better
approximation to reality.
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Chapter 12
Quantitative Models for Infrastructure
Restoration After Extreme Events:
Network Optimization Meets Scheduling

Thomas C. Sharkey and Sarah G. Nurre Pinkley

Abstract This chapter focuses on the recovery of critical infrastructure systems
from large-scale disruptive events and shows how optimization can help guide
decision makers in the restoration process. The operation of an infrastructure system
is modeled as a network flow problem, which can be used to assess the impact of the
disruption on the services provided by the system. To restore the disrupted services,
decision makers must schedule the repair operations by allocating scarce resources
such as work crews and equipment over time. An overview of the relevant areas
of network flows and scheduling is followed by a discussion of how techniques
from network optimization and scheduling can be integrated to quantitatively model
infrastructure restoration.

Keywords Disruption · Extreme event · Infrastructure · Network flow ·
Optimization · Restoration · Scheduling

12.1 Critical Infrastructures and Extreme Events

Critical infrastructure systems provide key services to a community and help to
ensure the safety, comfort, and well-being of its citizens. Examples of critical
infrastructure systems include electrical power systems, transportation systems,
telecommunications, water supply systems, and wastewater systems. An important
responsibility of the managers of these systems is to ensure their services are
restored efficiently after they have been disrupted by an extreme event. Extreme
events such as hurricanes, earthquakes, and tsunamis can cause catastrophic damage
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to the components of an infrastructure system and severely disrupt their performance
and their ability to provide services. For example, Hurricane Sandy, which struck
the East Coast of the USA in late October 2012, caused damage estimated at
$65 billion [39] and reduced the power load in Manhattan by 30% and on Long
Island by 70%, see Fig. 12.1. As another example, Hurricane Matthew, which
struck the southeastern USA in October 2016, caused peak outage levels of 10%
in Florida, 7% in Georgia, 33% in South Carolina, 14% in North Carolina, and 7%
in Virginia [38].

Given their importance to society, increasing the resilience of infrastructure
systems is an important direction for public policy. The presidential policy directive
on critical infrastructure resilience [40] defines infrastructure resilience as the infras-
tructure’s “ability to withstand and rapidly recover from unexpected, disruptive
events.” Therefore, the effective restoration of disrupted services after an extreme
event plays an important role in the resilience of an infrastructure system.

Figure 12.2 provides a conceptual curve of infrastructure performance before
and after an extreme event. After the event, the performance degrades until the full
impact of the event is reached. The system then begins to restore services until it
returns to a performance level at or above the level prior to the event. The time to
recover is the length of time between the first impact of the event and the time when
performance is fully restored. The restoration performance is the amount of restored
services, integrated over a finite planning horizon. The restoration performance is
equivalent to the (weighted) average length of a disruption to a customer. In other
words, the time to recover focuses on the longest time a customer is without service,
while the restoration performance focuses on the average time a customer is without
services. The quantitative methods discussed in this chapter can be applied to

Fig. 12.1 The impact of Hurricane Sandy on the power load curves for the New York City and
Long Island areas
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Fig. 12.2 Conceptual curve of infrastructure resilience with respect to a disruptive event. (A
similar curve was proposed in [12])

analyze both the time to recover and the restoration performance of an infrastructure
system.

Outline of the Chapter Section 12.2 introduces the basic framework for modeling
infrastructure systems providing services as flows on networks. Infrastructure
restoration requires an integrated approach to network optimization and scheduling.
Section 12.3 provides an overview of the classical results of network optimization,
discusses the limitations of modeling infrastructure systems using network flows,
and surveys the advances that have been made to better capture the physical
characteristics of infrastructure operations. Section 12.4 provides an overview of
the classical results of network scheduling. Section 12.5 contains a survey of the
literature on network restoration and details of the integration of network opti-
mization and scheduling. Section 12.6 provides extensions of the work discussed
in Sect. 12.5, including approaches to model interdependent infrastructure systems.
The final Sect. 12.7 summarizes the findings and conclusions of the chapter.

12.2 Modeling the Performance of Infrastructures

To quantitatively measure the performance of an infrastructure system, we use the
concept of “flow” across a network [3]. A network or graph, G, is composed of
a set of nodes, N , and a set of arcs, A, connecting nodes, G = (N,A). (Nodes
and arcs are also called vertices and edges, respectively, and the terms can be used
interchangeably.) An arc (i, j) ∈ A provides a relationship between node i and
node j . Throughout this chapter, we assume that the arcs are directed, meaning that
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flow can only move along arc (i, j) from node i to node j . We use the notation Gt

to indicate that the infrastructure varies with time.
From a modeling perspective, nodes represent components that can either

generate services in an infrastructure system (supply nodes), alter the routes of
these services (transshipment nodes), or consume services (demand nodes). Arcs
then connect these different nodes and move the services between them. (This is
the “flow” in the network.) For example, in the electric power system, power plants
would be supply nodes, substations would be transshipment nodes, and anything
ranging from households to factories to hospitals to malls would be demand nodes;
power lines would be the arcs in the network and electricity the flow.

When an infrastructure system is impacted by a disruptive event, the goal is
often to meet as much demand as possible, regardless of the delivery cost. This
process can be modeled using the maximum flow problem, which will be discussed
in Sect. 12.3.

After a disruptive event, damaged components of an infrastructure system must
be repaired and services restored. The repair requires scarce resources such as work
crews and equipment, each of which can only repair one component at a time.
Therefore, an infrastructure manager must create a schedule that describes the times
when a resource is repairing a component. The scheduling focuses on processing a
set of jobs (which would correspond to damaged components) on a set of machines
(corresponding to the work crews available to make these repairs), while minimizing
a certain objective function [31]. A schedule provides completion times for each job
(which we refer to as Ck). Traditional objectives in scheduling include minimizing
the total weighted completion time of the jobs,

∑K
k=1 wkCk , where wk characterizes

the priority of job k, or minimizing the makespan, Cmax = maxk=1,...,K Ck . The
total weighted completion time objective provides the (weighted) average time a
job is completed; this time is similar to the restoration performance in Fig. 12.2.
The makespan objective is similar to the time to recover in Fig. 12.2. Note that in
infrastructure restoration, completing a certain job does not guarantee that services
are restored to any customer. For example, if multiple power lines leading into a
neighborhood are damaged, it is necessary to complete this set of jobs in order to
restore the services.

12.3 The Maximum Flow Problem

The first objective after a disruption of an infrastructure system is often to meet as
much demand for its services as possible, without concern for the cost of delivering
these services. The maximum flow problem is a network optimization problem that
seeks to determine the most one can get out of a particular network.

Definition 1 (Maximum Flow Problem) Consider a network G = (N,A), where
each arc (i, j) ∈ A has a capacity uij . Let s be a source node and t sink node.
The maximum flow problem seeks to determine the largest amount of flow that can
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flow from s to t while respecting the capacities of the arcs and maintaining flow
conservation at all nodes i ∈ A\{s, t}.

Flow conservation is the concept that the amount of flow leaving node i is equal
to the amount of flow coming into node i. More precisely, let A(i) denote the
adjacency list of node i, A(i) = {j : (i, j) ∈ A}, and let xij be the amount of
flow on arc (i, j). Flow conservation implies that

∑
j∈A(i)

xij −
∑

j :i∈A(j)

xji = 0. (12.3.1)

If flow conservation holds for all i ∈ A\{s, t}, then any flow that leaves source
node s must arrive at the sink node t . It is possible to model the maximum flow
problem as a linear program [3], but it is not necessary to present this model for the
purposes of this chapter.

The source node s in the maximum flow problem can be viewed as the supply
node and the sink node t as the demand node. One potential difficulty in modeling
infrastructure performance as a maximum flow problem is the fact that infrastructure
systems often have multiple supply nodes and multiple demand nodes. However, this
difficulty can be overcome through a network expansion technique [29].

In particular, let G = (N,A) represent an infrastructure system, where S ⊂ N

are its supply nodes and D ⊂ N its demand nodes. Each supply node i ∈ S has
a supply level si , which is the maximum amount of supply that can be generated
from it, and each demand node i ∈ D has a demand level di . The network seeks to
determine the maximum amount of demand that can be met by sending flow from
the set of supply nodes to the set of demand nodes, while respecting the capacity
levels of the supply nodes and the arcs in the network and making sure that a demand
node does not receive more than its requested demand level. This problem can be
modeled as a maximum flow problem in an expanded network G′ = (N ′, A′), where
N ′ = N ∪ {s, t} and A′ = A ∪ {(s, i) : i ∈ S} ∪ {(i, t) : i ∈ D}. Taking usi =
si for i ∈ S ensures that the flow out of i does not exceed its supply; similarly,
taking uit = di for i ∈ D ensures that flow into i does not exceed its demand. The
maximum flow from s to t in G′ then provides the amount of demand that can be
met in the infrastructure system.

In the expanded network G′, the maximum flow cannot exceed
∑

i∈D di , since
the capacity of the s-t cut that separates t from the rest of the network is

∑
i∈D uit .

An s − t cut in a network G = (N,A) is a partition of the nodes into two sets N1
and N2, where s belongs to N1, t belongs to N2, N1 ∪ N2 = N , and N1 ∩ N2 = ∅.
The capacity of the cut is

∑
(i,j)∈A:i∈N1,j∈N2

uij .

Definition 2 (Minimum Cut Capacity Problem) Consider a network G =
(N,A) where each arc (i, j) ∈ A has a capacity uij . Let s be a source node
and t sink node. The minimum cut capacity problem seeks to determine the s-t cut
(N∗

1 , N
∗
2 ) that has the minimum capacity of all cuts.



318 T. C. Sharkey and S. G. N. Pinkley

The following theorem establishes the weak duality of the maximum flow
problem and the minimum cut capacity problem.

Theorem 1 The flow from s to t in any feasible flow in the network is less than or
equal to the capacity of any s-t cut in the network.

Proof Given the fact that s ∈ N1 and t ∈ N2 for any s-t cut, flow conservation
implies that each unit of flow must make its way from a node in N1 to a node in N2.
Each time this unit of flow passes along an arc (i, j) with i ∈ N1 and j ∈ N2, it
takes up one unit of capacity in the cut. Since the flow is feasible, no arc can have
an amount of flow exceeding its capacity. &'

A strong duality relationship between these two problems is established by
applying a very intuitive algorithm to find the maximum flow in the network. The
algorithm is similar to the idea of finding a directed path (defined as a sequence of
nodes s-i1- i2-. . .-ik-t from s to t with (s, i1), (i1, i2), . . . (ik, t) ∈ A, where all arcs
along the path have unused capacity, and then pushing as much flow as possible
along this path.

However, this idea does not allow for altering flow already present in the network.
Therefore, it is necessary to introduce the concept of the residual capacity of an arc.
The residual capacity of arc (i, j), based on a flow x in the network, is defined as
the maximum amount of flow that can be sent from i to j either (a) by using the
unused capacity uij − xij of arc (i, j) or (b) by reversing flow xji on arc (j, i). Let
rij = uij − xij + xji . The residual network based on flow x is G(x) = (N,A(x)),
where A(x) = {(i, j) : rij > 0}. Thus, the arc set A(x) is defined to be all arcs with
positive residual capacity.

This construction leads to the Augmenting Path Algorithm (see below, Algo-
rithm 1), also referred to as the Ford–Fulkerson Algorithm [21], to solve the
maximum flow problem. The Augmenting Path Algorithm finds an s-t path in the
residual network (implying that the path has a residual capacity) and pushes as much
flow along this path as possible. This is equivalent to altering the flow along the
arcs and reverse arcs on a similar path in the original network (the δ calculation in
Algorithm 1). Note that δ units of flow are pushed from the source node to the sink
node along this path, thus increasing the maximum flow by δ. The algorithm then
updates the residual capacities of the arcs in the path and removes those arcs from
the residual network whose capacity drops to zero. The algorithm finds not only the
maximum flow but identifies the minimum capacity cut in the network as well.

Theorem 2 The Augmenting Path Algorithm determines the maximum flow and the
minimum cut in the network. Therefore, strong duality exists between the maximum
flow problem and the minimum cut capacity problem.

Proof Consider the residual network at the termination of the Augmenting Path
Algorithm. Let N1 = {i : there exists a directed path from s to i in G(x)} and
N2 = {i : there does not exist a directed path from s to i in G(x)}. Since there is no
directed path from s to t , (N1, N2) defines a valid s-t cut in the original network.
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Algorithm 1 Augmenting path algorithm
1: Input: Network G = (N,A), source node s, sink node t , and capacities uij for (i, j) ∈ A

2: Set max_flow = 0.
3: for (i, j) ∈ A do
4: Set xij = 0
5: Set rij = uij

6: Put (i, j) into A(x)

7: end for
8: while There exists a directed s − t path in G(x) do
9: Find a directed s − t path, P , in G(x)

10: Set δ = min(i,j)∈P rij
11: Set max_flow = max_flow +δ

12: for (i, j) ∈ P do
13: rij = rij − δ

14: if rij = 0 then
15: Remove (i, j) from A(x)

16: end if
17: rji = rji + δ

18: Put (i, j) in A(x)

19: end for
20: end while
21: Return max_flow

Consider an arc (i, j) with i ∈ N1 and j ∈ N2. It must be the case that rij = 0.
The proof is by contradiction. If rij > 0, the directed path from s to i combined
with the arc (i, j) would be a directed path from s to j . Since rij = uij − xij + xji
and the flow must respect the arc capacity, it must be the case that uij − xij ≥ 0 and
xji ≥ 0, which implies that uij − xij = 0 and xji = 0.

Therefore, the current amount of flow that goes from N1 to N2 is equal
to
∑

(i,j):i∈N1,j∈N2
uij , which is the cut capacity of (N1, N2). Because of flow

conservation, this flow must have been generated at s and must be absorbed by
t . Therefore, the flow level of x is equal to the capacity of the cut (N1, N2). By
Theorem 1, the flow level of x is the maximum flow and the capacity of (N1, N2) is
the minimum cut. &'

The idea behind the Augmenting Path Algorithm is important for prioritizing
those infrastructure components needing repair at restoration. Algorithm 1 does not
specify which s-t path to select at each step of the algorithm; in fact, the selection
could impact the running time of the method [3]. If a breadth-first search is applied
to find the s-t path, then one obtains the Edmonds–Karp algorithm [19], which has
a polynomial running time of O(|N ||A|2).

It is important to note that the modeling of infrastructures with the maximum flow
problem is an abstraction, since it is assumed that the only constraints governing
flow are conservation at the nodes and capacities at the arcs. This type of model
is applicable to supply chain networks, where physical goods are moving through
factories, warehouses, distribution centers, and stores.
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A major application of the models proposed in this section is supply chain
restoration, for example, for restoring stores to distribute food, water, and medical
supplies. However, the operation of different infrastructures is constrained and
dictated by intrinsic physical laws, so one must be careful when applying the
insights obtained by analyzing a system in the abstract manner discussed in this
chapter.

For example, the physics of power flow are often captured through the AC flow
model, which relates voltages (represented through complex numbers), angles at
the nodes of the network, and flows on the arcs of the network. Since the AC flow
model is nonlinear, a linear DC flow model is often used instead. An excellent
discussion of the relationship between these two models is given in [9]. There have
been significant advances in linear approximations [16], semi-definite programming
relaxations [18, 27], and convex quadratic relaxations [17, 25] for the AC flow
model. These advances provide much better approximations of the actual operations
of the power grid and should be applied when the focus is on the details of the
infrastructure system.

The power grid is not the only system where additional, often nonlinear,
constraints should be incorporated into the models. For natural gas networks, the
Weymouth equation captures the relationship between the pressure at the nodes and
gas flows on the arcs. This equation is nonconvex; convex relaxations are presented
in [10]. An example of an optimization problem in the context of the Weymouth
equation can be found in [32].

For water distribution networks, the Darcy–Weisbach equations [11] or Hazen–
Williams equations [41] capture the relationship between the flow of water and
pressure throughout the network. The equations are, once again, nonconvex. Zhang
et al. [42] provide effective algorithms to examine water distribution networks that
specifically capture the Hazen–Williams equations.

In general, the inclusion of infrastructure-specific constraints helps to obtain bet-
ter approximations, albeit at the cost of increased computation times. Nevertheless,
insights can often be obtained about effective restoration policies through the use of
simpler models of infrastructure systems.

12.4 Dynamic Allocation of Work Crews

The repair of an infrastructure system after an extreme event requires managers
to allocate work crews over time. In scheduling notation [31], each damaged
component of the system can be viewed as a job k (where K is the set of all jobs)
with a certain weight wk (emphasizing the importance of the job) and a processing
time pk (the duration of the repair operation). It is often the case that the processing
time would also depend on the work crew; however, for ease of presentation, we
will not discuss this case.

Each work crew can be thought of as a machine m (where M is the set of all
machines). A feasible schedule assigns each of the jobs in K to a machine and then
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orders the set of jobs assigned to machine m. The completion time of job k, denoted
by Ck , is the time the machine needs to finish the job and is the sum of its processing
time and the processing times of all jobs ordered before it on the machine to which
it is assigned.

In the notation of [24], a scheduling problem is indicated by three entries, α|β|γ ,
where α corresponds to the machine environment, β to special characteristics,
and γ to the objective of the problem. For example, 1||∑wkCk refers to the
problem of scheduling jobs on a single machine in order to minimize the total
weighted completion time. The problem Pm|prec|Cmax would refer to the problem
of scheduling jobs with precedence constraints on m parallel identical machines in
order to minimize the makespan.

Recall that the restoration performance (Fig. 12.2) of an infrastructure can be
viewed as the weighted average time that disrupted services are restored to cus-
tomers, which is similar to the total weighted completion time objective. Therefore,
we will examine the problem 1||∑wkCk in order to provide insight into algorithms
that can provide high-quality solutions to infrastructure restoration problems.

A greedy approach to this problem would be to schedule the jobs in non-
increasing order of their weight-to-processing-time ratio, wk/pk . This ratio essen-
tially provides the per-unit time increase in the objective by delaying the scheduling
of job k. In other words, the ratio measures the impact on the objective of delaying
the processing of the job. It therefore makes sense to schedule jobs with higher ratios
earlier in the schedule. This greedy algorithm, often referred to as the weighted
shortest-processing time (WSPT) rule, solves this scheduling problem [36].

Theorem 3 The schedule resulting from applying the WSPT rule is optimal to the
1||∑wkCk problem.

Proof The proof is by contradiction.
Suppose the WSPT schedule is not optimal. Then there are two jobs, say k1 and

k2, where wk1/pk1 > wk2/pk2 and job k2 is scheduled before k1 in the optimal
schedule S .

Suppose that job k2 is processed, followed by jobs �1, . . . , �σ , and k1. If
wk1/pk1 > w�σ /p�σ , then redefine k2 = �σ , so k1 and k2 are adjacent. Otherwise,
redefine k1 = �σ . Then there is one job less between k1 and k2. Repeat the process
until there are no jobs between k1 and k2.

The fact that k1 and k2 are now adjacent in S makes it easier to analyze the
impact of swapping the positions of k1 and k2. Recall that S schedules k2, followed
immediately by k1. Let S ′ be the schedule obtained from S by swapping the
positions of k1 and k2, where k1 is scheduled before k2.

Let Ck is the completion time of job k under S and C′k the completion time
of job k under S ′, and let s = Ck2 − pk2 be the start time of k2 in S , which
also ends up being the start time of k1 in S ′. For all jobs k �= k1, k2, we have
Ck = C′k . This is easily seen for jobs that have Ck ≤ s, since we don’t alter any of
the schedule before S. For jobs that have Ck > s, note that the pair of jobs k1 and
k2 are completed at the same time in both schedules. For S , start k2 at s, finish it
at s + pk2 , immediately start k1, and then complete k1 at s + pk2 + pk1 . For S ′,
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the only change is in the order of the jobs; therefore, start k1 at s and finish k2 at
s + pk1 + pk2 . Hence, a comparison of the total weighted completion times of S
and S ′ can focus completely on the weighted completion times of k1 and k2.

Since S is optimal, it must be the case that

wk1Ck1 + wk2Ck2 ≤ wk1C
′
k1
+ wk2C

′
k2
. (12.4.1)

Substitution of the actual completion times of the jobs in each schedule yields the
inequality

wk1(s+pk1+pk2)+wk2(s+pk2) ≤ wk1(s+pk1)+wk2(s+pk1+pk2). (12.4.2)

Canceling out common terms, we obtain the inequality wk1pk2 ≤ wk2pk1 or,
equivalently, wk1/pk1 ≤ wk2/pk2 , in contradiction with the initial assumption
wk1/pk1 > wk2/pk2 . Therefore, the optimal schedule must follow the WSPT rule.
&'

The proof of Theorem 3 follows a path similar to a number of optimality proofs in
the area of scheduling. In particular, the swapping of jobs that violate the properties
of a decision rule (sometimes referred to as a dispatching rule) is quite common, and
then one looks at a comparison of the objectives between the schedule that violates
the rule and the swapped schedule [31].

The WSPT rule can easily be adapted to situations with parallel identical
machines. In this setting, there are m machines that can process the jobs and have
identical properties. In particular, job k requires pk amount of time to be processed
on any of the machines. The WSPT rule would prioritize the jobs and then, whenever
a machine completes a job, the first job on this priority list which has not been
processed or is not being processed would be started on the available machine.

Most scheduling problems are quite difficult to solve to optimality and, therefore,
relatively simple decision rules like the WSPT rule cannot always provide the opti-
mal solution. In particular, many scheduling problems are NP-hard or, equivalently,
their decision versions are NP-complete [22]. Consequently, there are currently no
solution methods that are polynomial in terms of the input size of the problem. (For
scheduling problems, the input size would be the number of jobs, the number of
machines, log

∑
pk , and log

∑
wk .) For example, the problem of minimizing the

makespan of the jobs on two parallel identical machines, P2||Cmax, is NP-hard.
Dispatching rules can play an important role in approaching NP-hard scheduling
problems, since they are intuitive, efficient, and often provide high-quality solutions.
In fact, a dispatching rule inspired by the WSPT rule often results in high-quality
solutions for infrastructure restoration problems.
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12.5 Infrastructure Restoration: Network Optimization
Meets Scheduling

Modeling infrastructure restoration involves aspects of both network optimization
and scheduling, as indicated by the term integrated network design and scheduling
(INDS) [29].

In the maximum flow INDS problem, we are given an initial network G =
(N,A) with a source node s and sink node t and arc capacities uij . The network
will operate over a planning horizon with T time periods, which can be thought
of as the length of the restoration process. There is a set of arcs A′, which can
be installed into the network by a set of parallel identical machines, denoted by M .
This set can be viewed as the set of components damaged by the extreme event. Note
that focusing on installing just arcs into the network is without loss of generality.
In particular, a damaged node i can be split into two nodes, i1 and i2, with an arc
(i1, i2), and all (j, i) ∈ A being replaced with (j, i1) and all (i, j) ∈ A with (i2, j).
Each arc (i, j) ∈ A′ has a capacity uij and a processing time pij . The schedule of
arcs in A′ on the machines generates their completion times.

Let Gt = (N,At ) where At = A ∪ {(i, j) ∈ A′ : Cij ≤ t}, i.e., the
network at time t is the original network plus all of the arcs that have been
completed by t . The objective in this problem is to maximize

∑T
t=1 P(Gt), where

P(Gt) is the maximum flow level in the network at time t . Figure 12.3 provides
a visualization of this objective function and the improvement in the performance
of the network as arcs are installed into it. Determining the schedule of a single
machine that maximizes

∑T
t=1 P(Gt) (with P(Gt) representing the maximum flow

at time t) is NP-hard [29]. For example, consider the network in Fig. 12.4. Here,
G = ({1, 2, 3},∅), s = 1, and t = 3. We consider a planning horizon of T = 9
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Fig. 12.3 Example of the cumulative objective function, where we to seek to maximize the sum
of the performance of the network at each time until T . (a) Arc-based approach. (b) Path-based
approach
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Fig. 12.4 Example INDS
network. Each arc is labeled
with (xij , uij , pij )

time periods. We have A′ = {(1, 2), (1, 3), (2, 3)}, where all arc capacities are 20,
p12 = p23 = 2, and p13 = 5. Assume that a single machine is available to process
the arcs.

Recall that the WSPT rule examines the impact on the objective function of
delaying (or processing) a certain task. Given that the objective of the INDS problem
is to maximize flow, one may initially suggest that the numerator of a ratio for
an arc (job) could be the improvement in the maximum flow resulting from the
installation of this arc. For our example, the individual installation of arc (1, 2) or
(2, 3) would not increase the maximum flow. For arc (1, 3), its installation would
increase the flow by 20 and, therefore, it would have a ratio of 20/p13 = 20/5 = 4.
We would process arc (1, 3) first, and then either (1, 2) or (2, 3) in any order. The
arc-based approach in Fig. 12.3 shows the performance of the network over time
for this solution. We see an increase in the maximum flow of 20 at time 5 (after
completing (1, 3)) and an additional increase at time 9 (after completing arcs (1, 2)
and (2, 3)), for a total level of performance of 120 over the restoration horizon.
However, by processing arcs (1, 2) and (2, 3) before arc (1, 3), we can achieve our
first increase of 20 at time 4 (p12 + p23), with a total level of performance of 140,
which is demonstrated in the path-based approach in Fig. 12.3.

The choice to process arcs (1, 2) and (1, 3) first in this example results from
the fact that completing them together installs an augmenting path from 1 to 3
with capacity 20, which only takes 4 units of time to complete. This means that
the adaptation of the WSPT rule to our maximum flow INDS problem should view
“jobs” as augmenting paths that could be installed into the network, rather than
on the individual contributions of each arc. Therefore, the proposed dispatching
rule will integrate concepts from both network optimization (augmenting paths) and
scheduling (the WSPT rule).

The augmenting path dispatching rule for the maximum flow INDS problem
will greedily select the augmenting path P that has the largest ratio of residual
capacity (which is the increase in flow resulting from installing the path) to the sum
of the processing times of the uninstalled arcs on the path. For ease of this initial
discussion, we assume that there is a single machine available to process jobs. Let
Gt be the network at time t and suppose that the machine becomes available to
process another set of jobs. We can first determine the maximum flow in the network
Gt , which provides the current performance level. Furthermore, we can determine
the residual network Gt(x) associated with this flow by setting rij = uij −xij +xji
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and only putting arcs into At(x) that have rij > 0. Recall that Gt(x) cannot have
a path from s to t , since it would otherwise contradict that we have determined the
maximum flow in the network.

We can extend this residual network to include all arcs that can still be installed
into the network—that is, for any arc (i, j) ∈ A′\At we set its residual capacity
rij = uij and put it into the arc set A′t (x) of the extended residual network
G′t (x). Any s-t path in the extended residual network represents a path that could
be installed into Gt in order to increase the performance (maximum flow) in the
network. Define P as the set of all directed s-t paths in G′t (x). Since Gt(x) does not
contain a directed s-t path, each path P ∈ P must contain at least one uninstalled
arc with non-zero processing time in A′\At . Our augmenting path dispatching rule
will seek to determine

max
P∈P

min(i,j)∈P rij∑
(i,j)∈P :(i,j)∈A′\At

pij

. (12.5.1)

The numerator in Eq. (12.5.1) is equal to the residual capacity of the path and
is equivalent to the δ parameter of path P in Algorithm 1. The denominator in
Eq. (12.5.1) is equal to the sum of the processing times of the uninstalled arcs in
path P . Therefore, this problem determines the path P that has the largest flow per
unit processing time ratio, which is similar to the weight per unit processing time
ratio of the WSPT rule. The difficulty, though, with determining the optimal path
P ∗ for (12.5.1) is that there could be an exponential number of paths based on the
inputs to the INDS problem. For the traditional WSPT rule, we are able to calculate
the wk/pk ratios in polynomial time. Therefore, more work needs to be done in
analyzing the optimization problem (12.5.1) for it to be solved in polynomial time.

An approach to solve the optimization problem (12.5.1) that relies on an
observation about solving the problem, given that we know the optimal numerator,
is discussed by the authors in [30] and [29]. In particular, suppose that we knew that
δ∗ = min(i,j)∈P ∗ rij was the residual capacity of the path P ∗ that optimizes (12.5.1)
without knowing P ∗. We know that for any (i, j) ∈ P ∗, it must be the case that
rij ≥ δ∗, which is to say that the residual capacity of any arc on the path is greater
than or equal to δ∗. Given that we know the numerator of Eq. (12.5.1), we would
seek to make the denominator as small as possible in order to increase the ratio.
Therefore, P ∗ would be the shortest processing time path from s to t containing
arcs with residual capacities greater than or equal to δ∗. More precisely, we define
the network G′t (x, r) = (N,A′t (x, r)) where A′t (x, r) = {(i, j) ∈ A′t (x) : rij ≥ r}.
Then P ∗ is the shortest processing time path from s to t in G′t (x, δ∗). Since all
processing times are nonnegative, Dijkstra’s algorithm [3] can be used to determine
this path.

However, we do not know δ∗, but we can use the above observation to find the
best path for any fixed residual capacity. In particular, we can determine the shortest
processing time path in G′t (x, r) from s to t for any r to determine how quickly we
can install a path with a residual capacity greater than or equal to r . For any path P ,
its residual capacity must equal the residual capacity of some arc on the path, which
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implies that there are only O(|A| + |A′|) possible values for δ∗ to take in G′t (x).
Therefore, we can solve the optimization problem (12.5.1) by repeatedly solving
shortest path problems in G′t (x, r) for all relevant residual capacity levels (i.e., the
value is equal to the residual capacity of some arc in G′t (x)). For each of the residual
capacity levels, it is straightforward to determine its ratio for the problem (12.5.1)
and then select the path that has the highest ratio of the residual capacity level and
the length of the path from s to t .

For the single machine environment, once we solve (12.5.1), we process the
uninstalled arcs in P ∗ on the machine. For a parallel identical machine environment
(i.e., it requires pij time to process arc (i, j) on any of the machines), we keep
a queue of arcs needing to be processed and solve a slightly different version
of (12.5.1). When a machine becomes available, if there is an arc in the queue,
we process it on the machine. If there is no arc in the queue, we populate it
by solving (12.5.1), where all arcs installed or currently being processed by the
machines are considered “installed.” In other words, we look at the best path to
install after finishing the current installations (but we won’t wait to begin processing
this path). We then populate the queue with the optimal path by solving this modified
version of (12.5.1).

The augmenting path dispatching rule performs quite well in practice. For
example, Nurre and Sharkey [29] examined its computational performance on an
infrastructure network resembling the power grid of lower Manhattan. This network
has |N | = 1603 nodes and |A| + |A′| = 2621 arcs. Before applying the network
expansion technique discussed in Sect. 12.3, it had 14 supply nodes and 134 demand
nodes (which represented aggregate customers; for example, city blocks). Nurre
and Sharkey [29] created instances of the INDS problem by damaging a certain
percentage of the 2621 arcs. Table 12.1 shows the performance of the augmenting
path dispatching rule and solving an integer programming formulation of the
maximum flow INDS problem with CPLEX 12.0.

Table 12.1 Computational results comparing the augmenting path dispatching rule with solving
an integer programming formulation using CPLEX 12.0 over five instances

Dispatching rule CPLEX 12.0

Machines Percentage Time (s) Gap (%) Time (s) Gap (%)

1 25 28.75 0.72 12335.11 0.34

50 31.97 0.07 5178.08 0.03

75 19.33 0.40 14400.00 0.40

2 25 32.13 2.61 14400.00 0.66

50 68.10 0.15 7363.34 0.03

75 43.22 0.39 12100.49 0.27

3 25 29.33 0.61 14400.00 0.51

50 139.59 1.05 14400.00 0.46

75 57.45 0.51 14400.00 0.35

Adapted from [29]
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The dispatching rule is capable of solving problems in under 3 min, which would
be sufficient to support real-time decision making in infrastructure restoration. The
optimality gap of a solution (either determined by the dispatching rule or the best
found solution for the integer program) for this class of problems is calculated from
the formula

Upper Bound on Objective− Objective of Solution

Upper Bound on Objective
. (12.5.2)

Even with a 4-hour time limit, CPLEX 12.0 is not capable of improving significantly
upon the near-optimal solution returned by the heuristic, which is demonstrated by
the fact that the gap does not significantly change between the dispatching rule and
the solution found by CPLEX 12.0. Therefore, the integration of ideas from network
optimization and scheduling can help to provide near-optimal solutions to these
problems in a way that standard optimization approaches cannot.

The objective function of maximizing the cumulative maximum flow
(
∑T

t=1 P(Gt)) would focus on optimizing the restoration performance in Fig. 12.2.
We could also define a maximum flow INDS makespan problem that would model
the time to recover in Fig. 12.2. In particular, we wish to find the minimum amount
of time to achieve a certain level of maximum flow, say F ′. The objective of
the maximum flow INDS makespan problem is then to minimize T̄ such that
P(GT̄ ) ≥ F ′. Figure 12.5 visualizes this objective function. This version of the
problem is NP-complete [29], even for a single machine, and the augmenting path

Fig. 12.5 Example of the makespan objective, where we seek to minimize the time to meet or
exceed a threshold F ′. In this example, F ′ = 35 and the makespan is T = 9
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Table 12.2 Computational results comparing the augmenting path dispatching rule with solving an
integer programming formulation of the maximum flow INDS makespan problem using CPLEX
12.0 over five instances

Dispatching rule CPLEX 12.0

Machines Percentage Time (s) Gap (%) Time (s) Gap (%)

1 25 21.03 4.88 1.61 0.00

50 112.35 6.99 1347.62 0.00

75 130.07 7.11 13759.31a 1.33a

2 25 18.93 6.70 6155.98 0.98

50 83.55 10.81 14400.00 3.44

75 136.73 11.05 14400.00 3.17

3 25 16.68 10.01 8677.14 2.34

50 75.89 11.46 14400.00 3.50

75 121.09 12.04 14400.00 3.15

Adapted from [29]
aTwo of the five instances ran into memory errors. The solution and time right before running into
the memory errors were captured and averaged into the values displayed

dispatching rule can be applied to it as well. Table 12.2 demonstrates the results of
this application to problems focused on recovering 100% of the disrupted services.

The dispatching rule does not perform quite as well for the makespan problems,
which can be explained by the fact that the objective functions are much smaller for
this class of problems. Therefore, “errors” made by the dispatching rule in selecting
which arcs to process have less chance to correct themselves than in the problem
with the cumulative objective. However, given that the dispatching rule can help
infrastructure managers examine both the restoration performance and the time to
recover after a disruptive event, it is a powerful approach to providing solutions to
infrastructure restoration problems.

In recent years, there has been a significant amount of literature studying network
restoration problems. We highlight some of this literature here and refer the reader
to [14] for a review.

Incremental network design problems [7, 20, 26] are special cases of INDS
problems, where exactly one component can be installed per time period. Baxter
et al. [7] and Kalinowski et al. [26] examine incremental network design problems,
where the performance metrics are related to the shortest path in the network and
the max flow in the network, respectively. They provide approximation guarantees
for intuitive greedy algorithms for these problems. Engel et al. [20] show that
the incremental network design problem, where the minimum spanning tree in
the network is the performance of it at time t , can be solved with a greedy
algorithm. Goemans and Unda [23] consider approximation guarantees of greedy
algorithms for a general class of incremental optimization problems. Researchers
have also considered problems associated with clearing debris and re-opening of
roads in order to restore connectivity between supply and demand nodes within the
transportation infrastructure [4–6, 8, 15]. The work of Averbakh [4] and Averbakh
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and Pereira [5, 6] focuses on objectives related to the recovery time of a node, which
is when a path is established from a supply node to it; Çelik et al. [15] consider a
similar problem, but specifically model the fact that the restoration planner may have
incomplete information about the resources required to repair arcs in the network.

12.6 Extensions

The maximum flow INDS problems discussed in Sect. 12.5 focus on modeling the
recovery of an infrastructure system from a disruptive event that is focused on
maximizing the amount of services it provides to its customers (or, equivalently,
minimizing the amount of unmet demand in the system). Once services are restored
to all customers, it may be that the infrastructure is then concerned with the cost of
meeting the demand of the customers, which would be a different type of network
optimization problem, the minimum cost flow problem.

12.6.1 Infrastructure Performance Metric: Minimizing Cost
Flow

Definition 3 (Minimum Cost Flow Problem) Consider a network G = (N,A)

where each node has a supply level b(i) and each arc (i, j) ∈ A has a capacity uij

and a cost cij . The minimum cost flow problem seeks to determine the flow (where
xij is the flow on arc (i, j)) in the network that respects all capacities and maintains
flow balance (i.e., the outflow of a node minus the inflow of the node is equal to
b(i)) that has the smallest cost

∑
(i,j)∈A cij xij .

In the minimum cost flow problem, the concept of flow conservation at the nodes is
replaced by the flow balance. If b(i) > 0, node i is considered a supply node, and if
b(i) < 0, node i is considered a demand node. The identity

∑
j∈A(i)

xij −
∑

j :i∈A(j)

xji = b(i) (12.6.1)

implies that supply nodes “generate” flow (similar to the source node in the
maximum flow problem) and demand nodes “absorb” flow (similar to the sink node
in the maximum flow problem).

The residual network plays an important role in analyzing this problem. In
particular, we examine directed cycles in the residual network. We define the cost
of a directed cycle C in the network as c(C) =∑(i,j)∈C cij (where if arc (i, j) has
cost cij , then its backwards arc (j, i) has cost −cij ). The cost of a cycle represents
the change in the objective that would result in pushing one unit of flow along the
cycle (which would maintain flow balance at all nodes). The following result is
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a generalization of the augmenting path optimality conditions associated with the
maximum flow problem; the proof is given in [3].

Theorem 4 The feasible flow x in a minimum cost flow problem is optimal if and
only if its residual network does not contain a negative cycle.

Nurre and Sharkey [29] discuss how the framework for the augmenting path
dispatching rule can be extended to minimum cost flow INDS problems. In
particular, if C is the set of all cycles in the extended residual network, then we
seek to find the negative cycle C which satisfies the maximization problem

max
C∈C

∣∣c(C)min(i,j)∈C rij
∣∣

∑
(i,j)∈C:(i,j)∈A′\At

pij

. (12.6.2)

The numerator is the absolute value of the product of the decrease in the cost
of pushing one unit of flow along cycle C and the minimum residual capacity
of an arc in the cycle (i.e., how much flow could actually be pushed along the
cycle). Therefore, the numerator provides the impact to the minimum cost flow
of installing the necessary arcs to have cycle C available in the network. We then
seek to determine the cycle that maximizes the decrease in the minimum cost flow
per unit processing time. Nurre and Sharkey [29] show that the optimal solution
of (12.6.2) can be determined by solving minimum cost to time ratio problems [3]
in the extended residual network G′t (x∗, r) for each possible residual capacity.
Therefore, the dispatching rule of Sect. 12.5 can be extended to other performance
metrics.

12.6.2 Modeling Multiple Interdependent Infrastructure
Systems

From a community perspective, it may be important for the set of infrastructure
systems which provide services to the community to come back online rather than
any one single infrastructure. This would then imply that the resilience and the
recovery of the community would need to measure the performance across its set of
infrastructure systems. However, modeling the performance of a set of infrastructure
systems is more complicated than simply individually modeling each of the systems
as a network. This is due to the interdependencies between the operations of the
infrastructures. For example, a subway station needs power to operate within the
subway system. Therefore, if services are not provided to the subway station node
in the power network, it cannot operate in the subway network. Another example
is that a hospital requires power and potable water to provide health services to
its patients. If the hospital node in the power network or the hospital node in the
water network does not receive a proper level of services, it will not be able to
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properly function in its own network. Therefore, it is necessary to account for the
interdependencies between the networks to understand their overall performance.

We can formalize the approach to model the performance of a set of inter-
dependent infrastructure systems. Let I be the set of infrastructure systems,
each of which is represented by a network G� = (N�,A�). We refer to the
interdependent infrastructure network as G = ⋃�∈I G�. The performance of
the set of infrastructures, P(G), is often a weighted sum of the performances
of the individual infrastructure networks, P(G) = ∑�∈I w�P�(G�). Alternative
performance measures of the set of infrastructure networks could focus on the
functionality of certain key nodes, such as hospitals, police stations, shelters, and
emergency response headquarters, based on the set of services received across
infrastructures or to examine how well the community has recovered based on the
services provided by the infrastructures. These performance measures would better
capture the fact that the role of infrastructures is to support the community. An
important distinction in all these measures is that the performance of infrastructure
network � depends on services being provided to nodes in other infrastructures.

In particular, let I�1,�2 be the set of dependencies from infrastructure �1 to
infrastructure �2. For ease of presentation, we assume that each entity in this set
is a pair of nodes (i1, i2) ∈ I�1,�2 , where i1 ∈ N�1 and i2 ∈ N�2 . Note that the
general technique can be extended to situations where a dependency exists between
a node in �1 and an arc in �2. For i2 ∈ N�2 to be able to operate in network G�2 , an
appropriate level of service must be met at node i1 ∈ N�1 , represented as the demand
of i1, di1 . In addition to flow variables, we define variable vi1 to be the level of
service provided to node i1 ∈ N�1 and a binary variable yi1,i2 that indicates whether
or not enough services were met at i1 for i2 to properly function. We then specifically
model the interdependency of (i1, i2) with the following set of constraints:

∑
j∈A�1 (i1)

xi1j −
∑

j :i∈A�1 (j)

xji1 = −vi1 (12.6.3)

di1yi1,i2 ≤ vi1 (12.6.4)
∑

j∈A�2 (i2)

xi2j ≤ Myi1,i2 (12.6.5)

∑
j :i∈A�2(j)

xji2 ≤ Myi1,i2 (12.6.6)

yi1,i2 ∈ {0, 1}. (12.6.7)

Constraint (12.6.3) replaces the flow balance constraint of i1 and says that the
outflow minus the inflow at i1 is equal to the negative of the amount of services
provided to that node. Constraint (12.6.4) ensures that if services were met at i1
(i.e., yi1,i2 = 1), then the services met at i1 are greater than or equal to the demand
of i1. Constraints (12.6.5) and (12.6.6) ensure that node i2 is only operational in �2
(i.e., flow moves in/out of it) if services were met at i1. In other words, if services
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were not met at i1 (vi1 < di1 ), then constraint (12.6.4) forces yi1,i2 = 0 and thus the
right-hand side of constraints (12.6.5) and (12.6.6) must be zero. This would imply
that all flow variables into i2 and out of i2 must be zero.

The above discussion focuses on a specific class of interdependencies, so-
called input interdependencies [28]. In general, Lee et al. [28] discuss how similar
integer programming formulations can be created to model the different classes
of interdependencies between the operations of infrastructure systems. This, in
turn, creates their interdependent layered network model, which can capture the
performance of a set of interdependent infrastructure systems. Cavdaroglu et al.
[13] have examined INDS problems to model the restoration of interdependent
infrastructure systems in the context where the only interdependencies between
the systems are in their operations and there is a centralized decision maker (such
as an emergency manager of a county) controlling the restoration efforts of all
infrastructures.

After an extreme event there may be interdependencies between the restoration
jobs associated with the different infrastructure systems. For example, after Hurri-
cane Sandy, repairs needed to be done to subway stations and subway lines. After
these were completed, it was necessary to run test trains to ensure the safety and
quality of the repairs prior to opening the station and/or line. Therefore, there were
two restoration jobs in the subway system for a particular station, namely the repair
job and the test train job. However, if power was disrupted to the subway station,
then it needed to be restored prior to running the test train job. In other words,
the test train job could not begin until after power was restored to the subway
track. In scheduling terms [31]), this means that there was a precedence constraint
between the power restoration and the test train job. A precedence constraint
(usually expressed as a directed arc between two jobs, A → B) between job A

and job B implies that job B cannot start until job A is complete. Another example
of this type of relationship is when trees bring down power lines onto a road. First,
a safety inspection job must be done by the power company to ensure the street
is safe to enter, then the road can be cleared of debris (often by the Department
of Public Works), and then the downed power lines can be repaired (by the power
company). This means there are precedence constraints between the inspection job
and the debris clearance job as well as between the clearance job and the repair job.
We refer the reader to [35] for a description of the different classes of restoration
interdependencies observed after Hurricane Sandy.

In these examples, the precedence constraints exist between jobs in different
infrastructures. In many cases, there is no centralized decision maker coordinating
the restoration efforts between the infrastructures. In other words, the multiple
infrastructures will be forming their restoration efforts independently of one another,
often with little communication among them. Figure 12.6 provides a comparison
of a centralized decision-making environment with precedence constraints (left)
and a decentralized decision-making environment with precedence constraints for
interdependent infrastructure restoration (right). In the decentralized setting, we can
view each infrastructure as a player in the restoration scheduling game and analyze
the problem in a game-theoretic framework.
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Fig. 12.6 A restoration scheduling environment with tasks A − H and precedence constraints
with a centralized decision maker (left) and with two infrastructures (red and blue) forming their
restoration efforts (right)

An important concept in game theory is the concept of an equilibrium solution.
An equilibrium solution is one in which no player has an incentive to change their
decisions (actions) assuming that all the other players’ decisions remain fixed. In
other words, for our interdependent infrastructure restoration game, a solution is
an equilibrium solution if no infrastructure can improve its restoration objective
by altering its restoration schedule. The importance of an equilibrium solution in
the restoration game is that, if the emergency manager of an area can “suggest”
the restoration schedules to infrastructure managers, then no infrastructure manager
would have an incentive to act differently than the suggested schedule. Therefore,
it can be possible to measure the price of the decentralized decision-making
process. In particular, the price of anarchy [33] measures the differences in the
objective of the worst equilibrium solution and the optimal centralized solution.
Abeliuk et al. [1, 2] have begun to examine issues around interdependent network
restoration games. The analysis of the equilibrium solutions to interdependent
network restoration games is an important area of future work.

Sharkey et al. [34] have examined the price of decentralized decision making
for interdependent infrastructure restoration from an empirical perspective. They
found that information sharing between infrastructures can reduce this price by
between 20% and 60%, while still maintaining the autonomy of the infrastruc-
tures in their decision-making process. In particular, information sharing occurs
when each infrastructure announces its tentative restoration schedule to all other
infrastructures. Each infrastructure can then alter their tentative schedule based
upon this information. In the example of Fig. 12.6, it may be that the weight of
job G is much higher than the weights of job E and H (wG � wE + wH ). If
the blue infrastructure did not know the red infrastructure’s restoration schedule, it
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may observe that, after completing B, G cannot be done until the red infrastructure
completes D. Therefore, not knowing when the red infrastructure starts D, it could
move on to E or hold back resources, expecting to complete G as soon as possible.
However, if the blue infrastructure knows that the red infrastructure will complete
D as soon as possible, the blue infrastructure could determine whether it makes
sense to hold back resources for G or complete E first—that is, it could complete
E before D is completed by the red infrastructure. Sharkey et al. [34] observed that
there are situations where the overall restoration performance could increase after
infrastructures update their plans after information sharing. Smith et al. [37] provide
conditions under which the restoration plans resulting from information sharing
will never converge—that is, there will always be an infrastructure that would
prefer to adapt its restoration plans after receiving the latest round of information.
An interesting area of future work is to formalize the potential gains obtained by
information sharing between the infrastructures.

12.7 Summary and Conclusions

In this chapter, we focused on quantitative models for infrastructure restoration after
a large-scale, disruptive event. We showed how network optimization techniques can
be used to model the operations of an infrastructure system, while the restoration
efforts of the system after the event can be modeled within a scheduling framework.
We reviewed relevant network optimization and scheduling results, which form the
basis for algorithms to provide near-optimal solutions to infrastructure restoration
problems. The integration of both network optimization and scheduling was critical
to create these algorithms. We then discussed how the models can be extended to
interdependent infrastructure restoration and pointed out that game theory could be
an important area to be applied to modeling community restoration efforts.
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Chapter 13
The Internet of Things and Machine
Learning, Solutions for Urban
Infrastructure Management

Ernesto Arandia, Bradley J. Eck, Sean A. McKenna, Laura Wynter,
and Sebastien Blandin

Abstract Urban infrastructure management requires the ability to reason about
a large-scale complex system: What is the state of the system? How can it
be compactly represented and quantified? How is the system likely to evolve?
Reasoning calls for predictive modeling, feedback, optimization, and control. With
an understanding of the system state and its likely evolution, how should resources
be allocated or policies changed to produce a better outcome? By leveraging data
from the Internet of Things, it becomes feasible to perform online estimation,
optimization, and control of such systems to help our cities function better. This
involves taking traditional applications of mathematical sciences into a large-scale,
online, and adaptive setting. We focus in this chapter on two particular applications
that are important to effectively manage a city: transportation and municipal water
services.

Keywords Algorithms · Control · Data · Estimation · Internet of Things ·
Machine learning · Prediction · Smart city · Urban computing

13.1 Introduction

The Internet of Things (IoT) allows for a degree of connectivity that has not been
witnessed before. Everyday consumer objects as well as industrial components
are being equipped with sensors and communication devices that are becoming
ever smaller and more powerful. From home automation to supply chains to city
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infrastructure, IoT has the power to transform our lives. Harnessing this power to
improve the management of urban infrastructure is the focus of this chapter.

While many aspects of a city are touched by IoT and can be improved
by embracing this new technology, we concentrate on two key areas of city
operations—transportation networks and municipal water supply services—and in
particular on how ubiquitous sensing powered by IoT enables improved operations
via the use of machine learning. Transportation and water services both rely on
efficient real-time sensing and control of a city-wide network; hence, they are
archetypes of challenging large-scale monitoring and operations applications.

Urban infrastructure management requires the ability to reason about a large-
scale complex system: What is the state of the system, and how is it likely to evolve?
With an understanding of the system state and its likely evolution, how should
resources be allocated or policies changed to produce a better outcome? While
prediction, reasoning, optimization, and control have been studied for decades, the
Internet of Things and machine learning require embracing a new paradigm, as these
functions must now be performed online and leverage vast amounts of data. They
must also, importantly, quantify uncertainty in observations and models and adapt
to the way in which the system changes over time via learning processes. When
managing an urban infrastructure, the analytics must be designed to continuously
(e.g., online) understand, reason, and learn about the system and use those capacities
to better monitor, control, and manage it. Thus, feedback and adaptive learning are
important components of the system. Figure 13.1 shows a conceptual illustration of
the main functions of such a system.

The particularity of this domain is that it takes the traditional applications of
the mathematical sciences into a large-scale, online, and adaptive learning setting.
Much work has been done in recent years; for example, variants of subgradient and
stochastic optimization methods that permit online learning via the incorporation
of new data in successive iterations are proposed in [12, 29, 130]; a faster version
of model predictive control (MPC)—a common optimal control technique, where a
finite but rolling time horizon is defined and the next time slot is optimized while
taking into account its effect on subsequent time slots—that can be used online is
described in [122]; and an online method for the optimal control of continuous-time
linear systems can be found in [59].

Fig. 13.1 Key functions of a
system leveraging the Internet
of Things for urban
infrastructure management
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Real-time data are key to the effectiveness of these online systems. The Internet
of Things enables the measurement and systematic improvement of the state of
an urban network in real time, thus opening the field of urban computing [132].
An example of a visually interesting collection of real-time urban data and metrics
can be found on a city of London website, http://citydashboard.org/london/, which
collates data on weather, train service quality, bike-share programs, air pollution,
the river water level, and even the general mood of the city [66].

In this chapter, we review advances in the monitoring and control of urban
infrastructure, focusing in particular on transportation networks and water supply
services. In the transportation domain, online sensing means that problems tradi-
tionally solved offline with low-frequency batch data can now be reformulated and
studied as online problems. Examples are rail transport scheduling [17]; vehicle
routing [36]; real-time road traffic prediction—a key input in most online navigation
and traffic control systems [83]; real-time arrival time prediction for an urban bus
network [134]; and real-time train service-level estimation [109].

In municipal water networks, the Internet of Things enables online sensing of
flows, pressures, tank levels, valve settings, and water quality parameters, which
are now routinely monitored in large municipal water systems. Mathematical,
statistical, and machine learning algorithms applied to these new data feeds enable
capabilities such as real-time state estimation for leak localization [39], early
warning of contamination events [67, 81], and temperature-adjusted residence times
for estimation of water aging [32]. Smart meters at network connection points
recording water use with relatively high frequency and publishing that information
through Internet connections can be considered an archetype for IoT devices. They
are increasingly being used by water utilities to better manage drinking-water
networks [96] and identify customer usage patterns [80], among other applications.

Outline of the Chapter The remainder of the chapter is organized as follows. Sec-
tion 13.2 describes the general framework. In Sect. 13.3, we discuss key scientific
methodologies underlying transportation applications, both model-based and data-
driven; specifically, state-space modeling (Sect. 13.3.1), estimation (Sect. 13.3.2),
and control (Sect. 13.3.3). In Sect. 13.4, we give an overview of the main
challenges in effectively managing municipal water supplies for cities. We discuss
two examples: a data-driven estimation problem, namely municipal water-demand
prediction (Sect. 13.4.1); and a control problem, namely pump scheduling for
distribution networks (Sect. 13.4.2). We conclude in Sect. 13.5 with a perspective
on future research at the frontier of the Internet of Things and machine learning.

13.2 General Framework

To set the stage, we briefly describe the state-space formulation, which has served
as the dominant framework for the modeling of monitoring and control problems.

Consider a system with true state at time t denoted by Ψt , and let yt be the vector
of all available observations from the system up to time t . The estimation problem

http://citydashboard.org/london/
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is concerned with the computation of an optimal estimate of Ψ for a predefined
loss function on the state-space model. The solvability of the estimation problem,
which is a necessary condition for the proper understanding of the system of interest
and subsequent applications, depends on the properties of the available data. While
low-latency and high-volume IoT data opens an era of data-intensive scientific
discoveries [54], it is not without challenges. IoT data typically consist of noisy
measurements whose properties vary over time, necessitating novel formulations of
the estimation problem.

Consider the following general discrete-time state-space model:

xt+1 = f (xt , ut )+ wt, (13.2.1)

where x denotes the state variables and u the control variables. Time dependence
is indicated by the subscript t . The function f characterizes the possibly nonlinear
state model, the random variable w ∼ N (0,W) is a white noise term which fully
characterizes modeling errors. In this setting, the true state Ψ is assumed to follow
the dynamics f without additional noise [61]. Measurements are modeled by the
observation equation,

yt = g(Ψt )+ vt , (13.2.2)

where the function g characterizes observations y of the true state Ψ , and v ∼
N (0, V ) is a white noise term, which accounts for measurement errors assumed
uncorrelated with modeling errors. The model parameters f , g, V , and W are esti-
mated from data, using either a model-based approach or a data-driven approach.
Historically, the estimation of these parameters has been data-constrained, and
model-based approaches guided by Occam’s principle have prevailed. In the types
of analytics we explore here, the functional relations f and g need not be derived
from physical principles or calibrated from small datasets. These functions can be
fully data-driven and highly complex as, for example, when they are derived using
neural networks [72].

We propose to analyze the key advances brought by the Internet of Things and
machine learning in this framework through a review of various recent works,
illustrating how traditional modeling, estimation, and control of urban networks
have evolved. This exposition is instantiated on transportation and water supply
settings, but in a framework general enough to allow the transfer of ideas of interest
to other aspects of urban infrastructure, from energy to telecommunications to social
networks.

13.3 Urban Transportation

Transportation networks are fundamental to the effective functioning of every city
in the world. Goods must be transported to serve producers and consumers, people
must be able to travel efficiently to accomplish professional, personal, and social
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objectives. The need for efficient transportation applies to every person in the city
and every business, and the development of increasingly efficient transportation
methods to mitigate spreading congestion phenomena [104] is by nature a large-
scale network problem. While public transport service is often centralized, with one
or a small number of operators, the use of public transport services by the public
brings it to the realm of decentralized systems, in that choices of commuters are
made independently by many individuals, to the extent that mobility on demand
is now competitive with traditional transport services. Road networks are another
example of a highly decentralized system, in spite of the fact that traffic-signal
control is, in some cases, centralized. Hence, transportation is by nature both
critically important to manage and scientifically challenging to analyze, optimize,
and control.

Transportation science has existed for well over 50 years and can be traced
back to the pioneering work of Beckman et al. [11] in 1956, among others. These
authors showed that the way transportation network users choose their route could
be represented as an equilibrium problem, with an equivalent convex optimization
formulation. The work that emerged from these early works gave rise to many
more complex behavioral models, stochastic and dynamic extensions, applications
to networks with both private transport and commercial vehicles, and numerous
other variations. The scientific work encompassed and continues to advance the
state of the art in convex and non-convex optimization, variational inequalities, and
game theory; see the classic reference [90] for more details. The resulting models
and algorithms form the basis of the majority of software in the market today to help
transportation planners and engineers determine the best way to upgrade transport
infrastructure.

Until recently, models relied on relatively little data to calibrate their parameters.
Mobility surveys carried out by transport agencies have been the main source of
information for modeling commuter or public transport passenger demand. The
state of the network itself has historically been known only imprecisely and to
a limited extent. For this reason, classical approaches to modeling transportation
networks deduced the utilization of the system through physical models of how
people travel in general. These models make assumptions on user behavior to
estimate how synthetic users who follow various forms of rational behavior would
arrange themselves on the network. This type of approach has proven useful for
modeling scenarios such as medium-term network optimization.

The Internet of Things, however, turns this scenario upside down and opens
up significant new opportunities and challenges. Whereas in the past, movements
across a transportation network could only be deduced from first principles, today,
in many cases, we can obtain nearly pervasive data on the system utilization [23].
This paradigm shift empowers transport providers with the ability to understand
much more precisely the behavior and thus the needs of their customers, as well as
the quality of the service they are offering with respect to those needs.

Developing machine learning solutions for IoT data also means that problems
that in the past were addressed for a typical commuter at the network-wide level can
now be solved for small groups of individuals, and that network management can be
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tuned to specific user behavior and needs, culminating in mobility on demand. More
formally, while historically the estimation and control problem has been expressed
for the network state x as in (13.2.1) through a macroscopic framework, it is now
conceivable to have finer and finer estimation problems, where x and f characterize
the state of an agent (e.g., a car, a pedestrian) and its dynamics, allowing applications
such as adaptive traffic control [121, 124], self-driving vehicles [87], or on-demand
ride-sharing [2].

The remainder of this section is organized as follows. In Sect. 13.3.1, we present
background information on state-space modeling for urban transportation. Sec-
tion 13.3.2 describes classical approaches and recent progress related to estimation
methods. Given these results, Sect. 13.3.3 discusses a few topics related to control
of urban transportation networks in ways enabled by IoT data and machine learning.

13.3.1 State-Space Modeling

State-space models characterize mathematical relations between the state of dif-
ferent components of the system. The simplest state-space models are linear
and time-invariant (13.2.1), but more complex nonlinear, time-varying, stochastic
models have reached sufficient maturity for applications. State-space models are
typically categorized according to the method underlying their design; model-based
approaches propose to derive mathematical equations from first principles, and these
models usually exhibit interpretable properties, whereas data-driven approaches
are primarily guided by some metric evaluated on data, and usually exhibit good
accuracy properties in the presence of data.

Model-Based Approaches Urban mobility has historically been modeled at three
different scales. At a microscopic scale, vehicles are considered to behave indepen-
dently by reacting to stimuli from neighboring vehicles according to a dynamical
model. Traffic dynamics, for example, can be modeled as a set of coupled ordinary
differential equations. At a mesoscopic scale, vehicles are considered as a large
set of atomic elements with individual behavior following macroscopic laws or
relations. Traffic dynamics can be modeled using gas-kinetic models [95] or cellular
automata [20].

At a macroscopic scale, vehicles are considered to behave as a continuum
medium. Traffic dynamics are modeled as a distributed system, using partial
differential equations (PDEs) inspired from hydrodynamics theory [42, 73, 98].
Consequently, in this framework, the effect of network-wide route choices is not
conveniently accounted for. One of the strengths of macroscopic models resides in
the level of complexity they capture at a relatively low analytical and computational
cost, and with limited data requirements for calibration. This has motivated the use
of macroscopic models in particular for real-time online estimation and corridor
management; see [82] for Metanet and [10] for Mobile Millennium. Furthermore,
the mathematical theory of hydrodynamics brings a solid mathematical structure to
macroscopic models.
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As macroscopic models have become more exhaustive in the level of details they
can include, microscopic models have benefited from increasing data availability
and have become widely used. This is particularly true of pedestrian modeling [25],
which is critical for public transport applications. Indeed, IoT data allows for
identifying commuter movements with far greater granularity, such as identifying
the movements of residents versus tourists. The authors of [127] use Singapore
public transport system farecard data, distinguishing rechargeable-card transactions
from single-ride transactions, to identify tourist movements across the city. Another
source of IoT data, cellphone transaction records, also allows for identifying tourist
trips from those of residents, via the telecommunication code used by mobile
devices in roaming mode versus those attached to a local operator [93].

One of the biggest changes in modeling and managing public transportation
networks enabled through the prevalence of IoT data is in real-time analytics.
Whereas estimating origin-to-destination flows used to rely on surveys and, con-
sequently, were imprecise and could not cover more than a small fraction of
the population, it is now possible to accurately describe commuters’ origin-to-
destination movements using IoT data with a fraction of the effort and far greater
coverage [118]. Telecommunications data has been used for this purpose with some
success [92, 93]. Importantly, these estimates can be generated and updated in near
real time, allowing for a far greater degree of responsiveness in adapting public
transport-related services to commuter demand.

Interestingly, the IoT era has enabled the modeling and estimation of complex
phenomena related to movement patterns, including the generation and management
of traffic externalities, such as pollution emissions [101], energy consumption [115],
and logistics and fleet delivery [9]. Additionally, the coupling of multiple complex
networks such as the road network and the smart grid has received much attention in
recent years [123, 129] under the more general umbrella of cyber-physical systems.

Data-Driven Approaches Data-driven traffic models dispense with much of the
underlying physical relations described above in favor of learning the relations
between variables of interest directly from the IoT data itself. In [83], the authors
propose a space-time autoregressive integrated moving average, or STARIMA,
model to represent the evolution of the traffic state on a road network,

Xt −
p∑

i=1

φiΦBiXt = at +
q∑

j=1

θjΦBjat ,

where Xt is the state vector of traffic flow across the links of the road network
at time t ; at is the error term, Φ a spatial correlation matrix, and B the backshift
operator so that BdXt = Xt−d ; p and q are the order of the autoregressive
and moving average terms, respectively. While the model is data-driven, physical
characteristics are taken into account via the choice of spatiotemporal locations used
in the spatial correlation matrix. The parameters of the model, φ, θ , the variance
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σ 2, and the spatial correlation matrix Φ are estimated from IoT data. A fully data-
driven extension of the model of [83] was presented in [63], which eliminated the
explicit description of interacting network links used in Φ through a lasso-based
procedure [116] for automatic variable selection.

Given the lack of regularity of IoT data sources, both in spatial and temporal
coverage, numerous researchers have investigated alternative methods for modeling
urban traffic, such as support-vector regression (SVR) [58] and deep learning [77].
A comparison of time-series and supervised learning techniques such as SVR and
neural network-based approaches was provided in [74].

IoT data are useful in improving the models and methods used for infrastructure
planning, enabling, for example, the derivation of a real-time actual timetable
of a public transport service. In [56], the authors develop a method to use
telecommunications records to derive the actual timetable of a regional train service,
by identifying transitions of cellphone users in geo-localized regions intersecting
the regional train stations, and detecting bursts over time of the aggregation of those
transitions. The method is shown to work reasonably well in spite of the very low
spatial and temporal frequency of the cellphone records.

In a similar vein, [109] developed a technique for determining the true timetable
of an urban metro system, this time using WiFi data available by passively
monitoring the WiFi “probe requests” produced by mobile devices. This method
has the advantage of using data that are universally accessible to the general public,
neither requiring special software on the mobile devices nor access to proprietary
hardware such as the WiFi access points. The authors propose a technique based
on spectral clustering which serves to identify not only the actual timetable of the
metro service, but can also be used as a low-latency approach for detecting incidents
and delays. Indeed, perturbations, incidents, and other events can be detected in near
real-time and used as input in models to determine the best response both for public
transport passengers and for the operators themselves. Figure 13.2 illustrates the
results of the spectral clustering technique on the passive WiFi data to estimate
a metro timetable in normal conditions (on the left) and in the presence of an
interruption in service (on the right). Pedestrian movements were also estimated

Fig. 13.2 Estimated metro timetable under normal conditions (left: Normal conditions) and a
service disruption (right: Disrupted conditions)
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using machine learning techniques on WiFi data by the authors of [71]. In [40], the
authors estimated travel times between pairs of locations on a motorway using WiFi
signals.

An interesting first step towards the comprehensive use of IoT data for modeling
public transport was taken in [41]. The authors integrate numerous sources of data
from the UK in order to create a multi-modal, weighted, directed, temporal, and
multilayer network of the national public transport system. Their publicly available
network couples the different transport modes including airports, ferry docks, rail,
metro, coach, and bus stations.

13.3.2 Estimation Methods

A significant amount of research has focused on integrating information from data
with prior knowledge. For real-time applications, it is natural to consider a variant of
the estimation problem where data are made available sequentially. In this context,
sequential estimation algorithms often rely on Bayes’ rule and a computationally
explicit optimality criterion (e.g., Gauss–Markov theorem for minimum mean-
squared error (MMSE) estimation). In the case of additive noise, one of the best
known sequential estimation algorithms is the seminal Kalman filter (KF) [62].

State Estimation The Kalman filter sequentially computes the best linear unbiased
estimate (BLUE) at time t + 1 from the BLUE estimate at time t , as follows:

Forecast:

{
xt+1|t = At+1 xt |t ,
Σt+1|t = At+1 Σt |t AT

t+1 +Wt+1,
(13.3.1)

Analysis:

⎧⎪⎪⎨
⎪⎪⎩

xt+1|t+1 = xt+1|t +Kt+1
(
yt+1 − Ct+1 xt+1|t

)
,

Σt+1|t+1 = Σt+1|t −Kt+1 Ct+1 Σt+1|t ,
where Kt+1 = Σt+1|t CT

t+1

(
Ct+1 Σt+1|t CT

t+1 + Vt+1
)−1

.

(13.3.2)

The forecast step (13.3.1) consists in propagating the mean and covariance of the
state through the linear model (13.2.1). The analysis step (13.3.2) amounts to the
computation of the conditional mean of the state given the observations, for the
linear observation model (13.2.2) and jointly Gaussian statistics. The conditional
covariance is computed similarly. From a Bayesian perspective, the Kalman filter
sequentially computes the posterior distribution of the state, based on the prior
distribution given by the state-space model.

The estimation problem can alternatively be formulated as a signal recovery
problem. In the framework of compressed sensing, an unknown sparse matrix
M ∈ (m×t is to be recovered from a random subset of its entries. The matrix in
this case may represent the traffic level, in terms of speed, on the m links of the
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road network at each time step over some n time periods. Clearly, some of the m

links would possess IoT sensor data in some time periods, but the matrix is likely
to have a large number of gaps. Mitrovic et al. [84] propose, for example, using
CX decomposition in an online manner at each time step for this purpose. Related
methods are proposed in [97, 133]; see also [102] for an application to OD-matrix
estimation. As the sources and variety of real-time IoT data on and related to the
traffic state increase, we can expect considerable improvements in the area of traffic
state estimation.

The use of multiple approaches to prediction depending on the characteristics of
the data raises the question of how to perform information fusion. The ensemble
Kalman filter from [34] was recently applied to the problem of highway traffic state
estimation [52], using fixed infrastructure and GPS-enabled mobile devices in [125,
126]. It was shown that accurate estimates can be provided even with low sampling
rates (e.g., 1%). The dependency between data volume and accuracy was further
quantified numerically in [89].

Another method for fusion of fixed-location sensor data and mobile IoT traffic
data was proposed in [105] and is illustrated in Fig. 13.3. As shown in Fig. 13.3,
during calibration periods, actual link speed observations on critical links are
collected. Together with the GPS data received during the same period, these data
points are stored as prediction candidates. The GPS records received in real time
can then be used to determine which prediction candidate is most appropriate.

Revealing the Tail While the physics of traffic and traffic phenomena such as
phantom jams [38] are well understood, and specific modes of traffic can be
monitored [112], precise understanding and quantification of the impact of rare
events such as traffic incidents is much more limited. Paradoxically, rare and
unpredictable traffic incidents, having higher adverse impact potential for traffic
conditions, are by nature the main focus of traffic operators. IoT data allows for
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Fig. 13.3 An example fusion framework for urban road traffic data from IoT devices
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the development of parsimonious models and robust data-driven understanding for
incident-type conditions as well.

Consider a general model of the evolution of the local impact of a road traffic
incident as a piecewise affine model, as illustrated in Fig. 13.4. A piecewise affine
model, while parsimonious by nature, captures the two key properties of interest for
traffic management, namely duration of incident and increase in occupancy—that
is, a traffic jam. The primary difficulty in modeling and estimating properties of the
tail of a distribution is the small number of observations available. In the case of
traffic incidents, incidents of different nature occurring at different spatiotemporal
locations generally have different impact. Given the small number of observations
compared to the dimensionality of the state space (incidents in a typical dataset
represent fewer than 0.01% of all observations), achieving high accuracy of the
estimation models is a challenge.

A parsimonious parameterization of the data-constrained space of traffic inci-
dents includes the initial occupancy alpha, change points knot1, knot2, knot3,
and knot4, and slope beta1 and beta3. The incident impact prediction problem is
concerned with the prediction of the impact of an incident characterized by these
parameters, given incident features such as number of lanes closed and type of
incident [51]. A variety of recent works has proposed social media and text analysis
for such purpose, or for the real-time analysis of large-scale public events [91, 94].

In [51], three approaches are considered for predicting the incident profile
parameter: decision tree (DT), multi-variate decision tree (MVDT), and neural

Fig. 13.4 A demonstration of a regression model on time and occupancy data; alpha is the initial
occupancy; knot1, knot2, knot3, and knot4 are the four change points; beta1 and beta3 are the slopes
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network (NN). Correlation results show that the methods presented perform much
better for variables directly related to incident impact such as occupancy variables,
compared to indirect impact variables such as temporal parameters. Numerical
results indicate that the NN model achieves the smallest prediction error.

13.3.3 Control

The last component of the real-time urban transport decision support system shown
in Fig. 13.5 is the control layer. A machine learning-based system for managing
the road network must go beyond real-time state-space modeling, estimation and
prediction, and needs to include a means to (optimally) control the system as a
function of the estimated (and predicted) state. Control plans include measures such
as real-time adjustment of traffic signals as well as driver information and routing
recommendations. Traffic-signal control has traditionally been based on predefined
signal plans or local adaptive methods. While network-level adaptive signal control
is clearly preferable in terms of optimality of the control plan, computational
requirements have often precluded their real-time use in practice. Given that traffic
congestion is a network phenomenon, significant attention has been devoted to
finding suitable decompositions of the traffic-signal control problem so as to allow
it to run efficiently in real time, as in [99, 113, 135].

Starting with California corridors [19], projects have focused on providing
platforms to support the study of the problem of network-wide, or corridor-wide,
estimation and control [26]. Recent projects have proposed practical solutions for
managing traffic at a network level [55, 70]. The multi-year DECON project [14, 18]

Fig. 13.5 A component flow for a real-time urban transport information and decision support
system
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aimed at demonstrating the benefits of machine learning solutions for road transport
management. The system focuses on managing the impact of traffic incidents, with
localized spatiotemporal properties.

Adaptive traffic control methods [88], able to respond to current local traffic
conditions, have been shown to significantly improve on traditional time-based
control systems in terms of local congestion, in particular on highways [120], where
traffic is more predictable and data more widely available. Recently, inspired by
stability results on telecommunications networks [114], the benefits of decentralized
adaptive traffic control approaches for network-wide stability have been more
thoroughly studied, in particular on arterial networks, and it has been shown [121,
124] that this class of methods, while completely decentralized and operating at
isolated intersections, are throughput-optimal, in the sense that there is a vanishing
probability of having infinite queues. This work has been subsequently extended to
include more realistic constraints, see [47, 48].

These advances in decentralized feedback control applied to traffic-signal actu-
ation have revived the question of the stability of a transportation network, dating
back to the work of Smith [107, 108]. Recent research has focused on the impact
of IoT, smarter devices, and adaptive decision-making [16] on the stability of
transportation networks traversed by human or actuated vehicles. The stability
properties of associated equilibria, in the context of normal conditions or incidents,
have been thoroughly characterized in [21, 22].

The common use of node-based routing rates in modeling traffic flow and
in studying network traffic stability illustrates the tight connection between the
macroscopic scale of network traffic flow and the microscopic scale of individual
drivers and driving vehicles. In the context of IoT and in particular mobile
sensing [68] and mobile routing [15], significant attention has been devoted to online
adaptive routing.

For the user, online adaptive routing means that the route is not specified at the
onset of the journey. An example of such an approach is the stochastic on-time
arrival problem introduced in [35], which focuses on identifying the policy, i.e.,
adaptive turn-by-turn directions, maximizing the probability of reaching the target
destination given a deadline. This adaptive formulation improves significantly on
the traditional path-based initial solution, since random traffic events can cause the
optimal route to contain cycles; see Fig. 13.6. Recent work [86] has shown that
this problem can be solved much faster than expected, although it is still far from
being solvable at speeds required for continent-scale routing [8]. Another issue with
the promise of online routing lies in the lack of robustness of the proposed policy
to the uncertainty in travel-time estimates. Typical estimation methods being only
able to accurately provide average travel time, the need for a complete travel-time
distribution can be problematic. The work of [37, 57] addresses this problem and
proposes robust counterparts to the online stochastic routing problem.

Ideally, personalized recommendations should be made to users. Recommenda-
tions need not always be prescriptive, but may instead aim to nudge the user to
take better actions. Congestion pricing, introduced in Singapore several decades
ago [46], is one such means of encouraging users to make the socially better route or
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Fig. 13.6 A simple network with an optimal routing policy that may contain a loop. Links (b, d)

and (b, a) have deterministic travel times of, respectively, 3 and 1 time units. Link (a, b) has a
travel time of 1 with probability 0.9 and a travel time of 2 with probability 0.1. Link (a, d) has a
travel time of 5 with probability 0.9 and a travel time of 1 with probability 0.1. Adapted from [100]

λ0(t) λa(t, x, β) μ(t)

λb(t, x, β) d

τd

q

Fig. 13.7 Scheme of a pedestrian queue with diversion

mode choices. Recent work has proposed the concept of token-based pricing [46],
inspired by telecommunications networks, and actualized the concept of cordon-
based pricing [131]. A novel approach towards the use of incentives for influencing
transportation choices in a city are the so-called tradable credit schemes. Tradable
credits describe a type of fictitious currency, in general provided with no or minimal
charge to eligible participants, along with a market created for their exchange. The
idea of issuing credits to all eligible individuals and allowing trading among the
individuals to encourage a certain outcome is appealing in that it leverages the
psychological benefit of providing positive rewards to all individuals.

Studies of tradable credits have gained momentum in recent years in the
transportation literature, following the seminal paper of Yang and Wang [128],
which introduced the concept for road network congestion mitigation. In [69], the
authors describe a tradable credits scheme for the choice of using one’s private car
versus using public transport and show that it admits an equivalent potential game,
so that equilibria can be provably reached using simple learning algorithms such
as best response dynamics. With IoT-based time-distance-place road charging being
deployed over the coming years, such novel transport management strategies are
becoming realistic, and the choice to drive or not can be linked to a fixed fee toll,
or indeed to a tradable credits scheme. Furthermore, when public transport payment
uses the same smart card as the payment of the road usage (via tolls or tradable
credits), the usage of the two may be linked.

Incentives for pedestrians are discussed in [27]. The authors present an approach
for optimally determining the minimal incentives needed to encourage pedestrians
to perform an alternative activity and thus to defer joining a queue when the queue
is crowded, as illustrated in Fig. 13.7.
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13.4 Municipal Water Distribution

Water demand (consumption) drives a variety of operational decisions for water util-
ities covering asset management, source water production, treatment volumes, tank
levels, and valve settings, as well as pressures within the distribution network [13].
Estimating daily water consumption 24–48 h in advance to determine the volume
to treat or purchase depends on an accurate demand forecast [28]. Higher temporal
resolution forecasts, e.g., hourly, may be necessary to take advantage of electricity
rate structures for managing pumping activities [3].

A conservative estimate of the total annual cost of non-revenue water (NRW) to
utilities worldwide is USD14 billion [65]. Energy can comprise 30–40% of a util-
ity’s total operating costs [117]. Therefore, reducing NRW and energy consumption
are key objectives, and a finely tuned demand-response plan is a powerful strategy
to achieve them. Exploitation of currently existing data acquisition systems and the
development of dynamic forecasting methods will continue to grow [5, 6].

13.4.1 Water Demand Forecasting

Forecasting demands within drinking-water networks has been an active area of
research for at least 40 years. Initial work focused on employing statistical models
including multiple regression and time-series analysis to provide these forecasts.
Over the past 15 years, forecasting algorithms built on machine learning or artificial
intelligence (AI) approaches have become popular, with artificial neural networks
(ANN), support vector regression (SVR), and fuzzy logic algorithms all being
successfully applied to demand forecasting. Currently, a research emphasis on
hybrid forecasting techniques that combine statistical time-series tools with machine
learning tools is underway with the goal of combining the best attributes of tradi-
tional time-series techniques and improvements accessible through AI approaches.
Further background on the evolution of demand forecasting and their comparison
on example problems can be found in [1, 4, 7, 53].

This section presents a water-usage forecasting method based on seasonal
autoregressive integrated moving average (SARIMA) models [106] and assimilates
demand measurements using a Kalman filter to produce online forecasts and
estimates of uncertainty. Unlike ANNs or other “black box” models, SARIMA can
be cast in state-space form. Parametric structures suitable for water demands with
temporal resolutions ranging from sub-hourly to daily are identified, and offline and
online forecasting approaches are discussed. The offline mode is suitable for utility
operations such as sizing daily water production, while the online mode is often
better suited for operations such as scheduling pumps. The forecast horizon is fixed
to 24 h for consistency with the daily planning of water utilities.

SARIMA Model A SARIMA model denoted by ARIMA(p, d, q)(P,D,Q) is
described in [106]. It is compactly formulated as
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ΦP (Bs)φ(B)∇D
s ∇dxt = δ +ΘQ(Bs)θ(B)εt . (13.4.1)

Here, xt represents the measured water-demand time series and εt a random error
process; t is the time index. B is the backshift operator, Bkxt = xt−k for k =
0, 1, 2, . . .. ΦP (Bs) is the seasonal autoregressive polynomial, ΘQ(Bs) the seasonal
moving average polynomial, φ(B) the ordinary autoregressive polynomial, and
θ(B) the ordinary moving average polynomial, which are defined by the expressions

ΦP (Bs) = 1−Φ1B
s −Φ2B

2s − · · · −ΦPBPs,

ΘQ(Bs) = 1+Θ1B
s +Θ2B

2s + · · · +ΘQBQs,

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p,

θ(B) = 1+ θ1B + θ2B
2 + · · · + θqB

q.

P , Q, p, and q are the orders of the respective polynomials, and s is the seasonal
period. The model involves the seasonal differencing operator ∇D

s = (1−Bs)D and
the ordinary differencing operator ∇D = (1 − B)d . Lastly, δ = μ(1 − φ1 − . . . −
φp)(1 − Φ1 − . . . − ΦP ) is the intercept, where μ is the mean of the demand time
series.

State Space Model To facilitate online updating with a Kalman filter, the SARIMA
model is cast as state-space model decomposed into observation and state equations,

yt = ATut +HTzt + wt , (13.4.2)

zt = Fzt−1 + vt . (13.4.3)

where yt is the vector of observations, zt the state vector consisting of unobserved
variables, and ut a vector of predetermined variables that possibly are lagged values
of yt . A is a predetermined matrix, F and H are parameter matrices, wt and vt

are observation and model error terms, respectively, assumed to be distributed as
white noise with covariance matrices W and R [49]. Equation (13.4.2) has the
form of a linear regression model, and Eq. (13.4.3) is written as a first-order vector
autoregressive model [49].

To obtain the state-space form, a SARIMA(p, d, q)(P,D,Q)s model of the
univariate water-demand series yt is written as an equivalent ARIMA(p + sP, q +
sQ) [103] for a transformed variable y∗t ,

yt = HTzt , (13.4.4)

zt = Fzt−1 + vt , (13.4.5)

where A, ut , and R are set to zero as no exogenous variables are considered in the
predictions here and measurement noise is considered to be negligible. To apply the
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Kalman filter, the matrices F, H, v, and W need to be computed using the previously
estimated parameters of the SARIMA model.

The Kalman filter allows updating the state vector zt every time there is a new
observation, yt [50]. The filter consists of a sequence of steps, where ẑ t is linearly
estimated from known values of ẑ t−1 and yt . An initial step is required where the
prior state z1 is computed from prior information or assumed to be zero in the
absence of such information. The variance of the prior state, P1|0, is also calculated
using estimates of F and W and a prior estimate of P1|0,

ẑ t+1|t = Fẑ t |t−1 + FPt |t−1H(HTPt |t−1H−1(yt −HTẑ t |t−1)), (13.4.6)

where ẑ t |t−1 is the forecast of the true state zt based on a linear function of the
observations y1, . . . , yt−1 and Pt |t−1 is the variance of this forecast. The forecast
variance Pt+1|t is updated through

Pt+1|t = F
[
Pt |t−1 − Pt |t−1H(HTPt |t−1H−1HTPt |t−1)

]
FT +W, (13.4.7)

Throughout the remainder of the chapter, we will use the term “offline” to refer
to forecasts that are obtained by means of parameter re-estimation and “online” to
mean forecasts that result from updating the model parameters (in state-space form)
by applying the Kalman filter.

Water Demand Data The data examined here are a set of flow rate measurements
generated by 550+ individual telemetry instruments distributed over 190 district-
metered areas (DMAs) in the city of Dublin, Ireland. The time series covers a period
of 19 months, from January 2010 through July 2011, with a temporal resolution
of 15 min. The measurements from individual DMAs were aggregated to obtain
a total-system demand series. The mean value (144.11 ML/d) represents roughly
30% of Dublin’s total consumption; however, from a modeling perspective the data
correspond to a high level of aggregation and qualitatively have the characteristics
of a total-system demand series. The data were divided into a training set (60%) and
a validation set (40%); see [4] for more details.

An extensive model selection process was conducted using offline training and
validation [4]; performance measures included the auto and partial correlation
functions of the residuals and various information criteria summary measures of
prediction error.

The results of the model selection process indicate that a seasonal moving
average process is most suitable; thus, the seasonal autoregressive and seasonal
moving average orders were assigned values P = 0 and Q = 1, respectively.
From further detailed analysis, the autoregressive and moving average orders were
assigned values p = 0 and q = 4. The final general structure of the model is

(1− Bs)(1− B)xt = δ + (1+Θ1B
s)

(
1+

4∑
i=1

θiB
i

)
εt , (13.4.8)
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where s depends on the temporal resolution and the seasonal correlation period;
the vector of parameters to estimate is Θ = (Θ1, θ1, θ2, θ3, θ4, σ, δ)

T. The model
designations are assigned as the product of the sampling frequency, inverse of the
sample interval, and the seasonal period of the model; see Table 13.1.

Forecasting Results In addition to the model parameters and the demand mea-
surements, the forecasting algorithm requires values for the length of the training
window, τ , and the forecast horizon, h. The length τ was selected through
experimentation with values ranging from 7 to 28 days. A 7-day window represents
the minimum length of data required to fit a model with a 1-week seasonal period.
Even though the models with a daily period require smaller windows, the same
lower limit was used for all models to facilitate a comparison between periods. The
forecast horizon h was set to 24 h.

Increases in τ resulted in increased prediction error for hourly and sub-hourly
sample data; however, for daily sample data, increasing τ decreased the prediction
errors. This behavior is due to increased noise in the data collected with the shorter
sample intervals. For the final application, we used τ = 7 days for forecasting data
where the sample interval was 1 h or less, and τ = 28 days in cases where the sample
interval was more than 1 day.

A sample of the online forecasts for the sub-hourly (15 min) and daily models
is presented in Fig. 13.8. Each plot shows a data segment with the 1-day-ahead
forecasts and the uncertainty bands (95% confidence level) for the corresponding
data source and resolution. The figure illustrates how the different models respond
to the data characteristics. For instance, the top panel displays good agreement
between data and forecast at the level of total-system demand and when the temporal
resolution is high. The bottom panel also shows good forecast behavior for a coarser
temporal resolution of 1 day. In general, daily models perform better than higher-
resolution models due to noise reduction, or smoothing, of the demand signal
through temporal aggregation.

Using a set of SARIMA parameters estimated during the online forecasting stage,
the Kalman filter was applied to generate online forecasts for each model structure
(Table 13.1). The model parameters were not recalculated in online mode; hence,
the online computational performance was substantially higher, as much as a 97%
reduction in runtime. In most cases, the quality of the forecasts was considerably

Table 13.1 Model performance results

RMSE (ML/d) MAPE (%)

Model Sample interval (h) Seasonal period (days) Offline Online Offline Online

S-96 0.25 1 9.57 3.04 4.21 1.49

S-672 0.25 7 9.31 2.52 3.55 1.43

S-24 1.0 1 8.80 3.21 3.51 1.49

S-168 1.0 7 9.30 4.95 3.53 1.83

S-1 24.0 1 2.48 3.08 1.29 1.96

S-7 24.0 7 2.36 2.33 1.27 1.10
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Fig. 13.8 Sample of the demand forecasts by the models with sub-hourly and daily resolutions; (a)
S-672 model and data, (b) S-7 model and data. The grey bounds indicate the forecast uncertainty
(95% confidence level)
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Fig. 13.9 Comparison of the forecasts before and after applying the Kalman filter; (left) S-672,
(right) S-7

improved as well. An example comparison is presented in Fig. 13.9, where it is
clear that for the S-672 model the Kalman filter noticeably increases the prediction
accuracy; for the S-7 model the improvements are smaller.

RMSE and MAPE results are shown in Table 13.1. MAPE is considered the most
relevant for cross comparison as it normalizes the errors at every measurement. The
median percentage error for all runs is below 2.5%. The results in Table 13.1 show
that tailoring the seasonal component to the temporal resolution of the data can
improve results, with a 7-day period producing MAPE values as low or lower than
the shorter 1-day period.

Addition of the online Kalman filter to the predictions reduces the RMSE and
MAPE values for the hourly and sub-hourly sample data. Additionally, the Kalman
filter homogenizes the MAPE values to be below 2.0% across all temporal intervals
and seasonal period values. Using the online Kalman filter increases the MAPE
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value for the S-1 model relative to the offline results. This increase is due to the lack
of any updating of the SARIMA parameters. For daily forecasting, a frequent (e.g.,
daily) update of the SARIMA parameters is recommended.

13.4.2 Pump Scheduling Under Uncertainty

Water utilities have optimized pump schedules to take advantage of day/night
electricity pricing plans for several decades. As intermittent renewable energy
sources such as solar and wind power provide an increasingly large share of the
available electricity, energy providers are moving to dynamic pricing schemes,
where the electricity price is forecast 24 h in advance with relatively fine temporal
resolution (e.g., 30 min). Water utilities are uniquely positioned to take advantage
of dynamic pricing schemes using their existing infrastructure for pumping and
storage to respond to changing costs for power. Optimization of the pump schedules
under uncertainty in the forecasted energy prices is necessary to minimize electricity
prices.

Techniques to minimize pumping costs in water systems have been the target of
considerable research. Since the early work in the mid-1970s, both mathematical
optimization and metaheuristic approaches to the problem have been proposed.
Mathematical programming methods include dynamic programming [110], linear
programming [60], and mixed-integer linear programming [75]. Metaheuristic
approaches to optimization have also been applied, including hierarchical decompo-
sition [111], genetic algorithms [119], ant colony optimization [76], and simulated
annealing [79]. The most recent approaches, termed hybrid methods, combine
mathematical programming techniques with heuristics to arrive at good solutions
quickly. For example, [45] solves a linear programming relaxation and then uses
this solution to start a greedy algorithm. An approach combining mixed-integer
programming and hydraulic simulation is presented in [85]. A theoretical lower
bound for pump scheduling costs is obtained by [44] by applying a quadratic
approximation for pipe friction [31] and relaxing dynamic constraints.

Most previous research considers the energy price to be given as an input. The
main mechanism of including uncertainty in electricity prices has been through a
maximum demand charge. Under a maximum demand tariff, the total energy cost
depends on both the time of consumption and the maximum power demand over a
billing period such as 1 month. The maximum power demand depends in turn on
the water demand. An optimization method for this problem is proposed in [78].
Their method finds a maximum power demand and uses this to constrain the daily
operational schedule.

The present work focuses on optimizing the daily pumping schedule, but with the
consideration that the energy price fluctuates at 30-min intervals. These fluctuations
occur when renewable but variable power sources such as wind energy connect to
the grid [43]. Historical data on actual prices are used to condition stochastic sam-
pling of daily energy price trajectories, using covariance decomposition methods.
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From this ensemble of realizations, electricity price profiles are classified into a
handful of scenario classes. The optimal pumping schedule for each price class is
then computed. Once the pumping schedule is known, the probability distribution
of cost for that schedule is evaluated using Monte Carlo methods.

In the present section, we summarize the developments reported in [30] for an
operational technique for generating pump schedules and quantifying the uncer-
tainty in the costs of these schedules. Given this information, a system operator can
pump according to a desired level of risk. The overall technique proposed here is
comprised of several steps:

1. Collect a sample of observed historical price trajectories that represent the time
of interest.

2. Expand the sample size by creating an ensemble that fully describes the possible
price scenarios. In this case, 1000 random samples of price profiles are generated
and are statistically similar to the observations.

3. Classify the ensemble members into 10 clusters and identify the medoid price
trajectory of each cluster.

4. Compute the optimal pumping schedule for each cluster using the medoid price
scenario.

5. Estimate the probability density function of daily pumping costs for each
schedule using the set of random samples.

6. Compute the desired objective value from this bootstrapped probability density
function.

Electricity Price Scenario Simulation Expansion of the size of the observed price
scenario dataset to a full ensemble that quantifies uncertainty and can be used in
pump schedule optimization is necessary. The price scenario simulation process
must be capable of preserving the distribution of prices at every time step across the
set of ensembles as well as preserving the temporal correlation of every scenario
across all time steps. The price scenario simulation method proceeds through a
series of four steps:

1. Data Whitening. Temporal correlation in the observed price scenarios is removed
by centering and decorrelating the price scenario: Y = W(x − μ), where μ

is the vector of row means of x and the whitening matrix W = Δ−1/2UT is
computed from an eigen-decomposition of the sample covariance matrix, C. If
C is symmetric positive definite, Δ is the diagonal matrix of eigenvalues and U

is the corresponding matrix of eigenvectors.
2. Positive Definite Covariance. The covariance matrix defined by the observations

will not necessarily be positive definite, and, due to noise in the data, smaller
eigenvalues can be near zero. A reduction in the dimensionality by removing
the lowest eigenvalues (summing to less than 5% of the total spectral energy)
eliminates these issues and guarantees a positive definite covariance matrix for
use in the inverse whitening transform.

3. Simulation and Back Transformation. Generate random uncorrelated samples
by selecting a value, yi , at random and replacing that value with a Gaussian
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deviate drawn from a distribution with mean yi and standard deviation chosen as
1.06σ N−0.20, where N is the number of samples and σ is the sample standard
deviation [33]. In this case, σ = 1 due to the whitening transform (Step 1). The
simulated vector is then transformed back to the original observation space using
the inverse whitening transform with the updated matrices calculated in Step 2.

4. Final Check. The new simulated price scenario, x̂, is checked for feasibility.
Here, simulated scenarios with values outside the range (min-max) of the
observed prices are discarded.

Testing of this price scenario simulation process demonstrates that the generated
scenarios reproduce the observed distributions at each time step and also reproduce
the measured temporal correlation. Clustering of the simulated price scenarios is
done using the partition around medoids (PAM) algorithm developed in [64] with
k = 10 medoids and a Euclidean dissimilarity metric.

Optimal Pump Scheduling The optimization problem considered here is to
schedule pumps to minimize electricity costs. The formulation given here considers
constant-speed centrifugal pumps. The technique of piecewise linearization is used
to model nonlinear pump and pipe hydraulics in a mixed-integer linear program
(MILP).

A water distribution network comprises Nn nodes connected by Nl links. A
subset y of the nodes are tanks, and a subset p of the links are pumps. The decision
variables for each time t in the planning horizon are the hydraulic head at each node,
hi,t ; the flow rate through each link, qij,t ; and the schedule for each pump, sp,t . The
objective function is defined as the total cost of electricity for operating Np pumps
over Nt time periods, each with duration Δt ,

min
Nt∑
t=1

Np∑
p=1

γ Ct

ηp
Δhp,tqp,t Δt. (13.4.9)

The cost of electricity in e/kWh, Ct , may be different for each time period. The
total head delivered by a pump is Δhp,t , and the volumetric flow rate is qp,t . The
pump efficiency is γp, and the specific weight of water is γ . The minimization is
carried out under the hydraulic and operational constraints on the network, including
energy conservation on every link (pipe) between nodes and mass conservation at
every node, with formulations taking into account the particular shape and geometry
for each node that is a tank.

Several operational constraints apply to the solution of this problem. The head
(and thus level) in each tank should be at least as high at the end of the planning
period as the beginning,

hy,Nt ≥ hy,1. (13.4.10)

The flow rate for each pump is positive while operating or zero when off,
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0 < qp,t ≤ sp,tQ
u
p. (13.4.11)

The number of times a pump can be started within a given time period is limited
to Ns ,

Nt∑
t=2

(st,p − st−1,p) ≤ Ns. (13.4.12)

The optimization problem (13.4.9), subject to the constraints mentioned here, is
solved using CPLEX [24] to find the minimum cost pumping schedules that satisfy
the physical requirements of the system. Further details are provided in [30].

Application The methods outlined above were applied to a small network, where
electricity costs dominate operational expenses and dynamic pricing tariffs are
available. The study considered pumping operations of the network for a “typical”
day in May 2013. A hydraulic simulation model was developed and calibrated.
The system includes two pumps drawing from a single reservoir, each pumping
into a storage tank approximately 50 m above the reservoir. The storage tanks are
connected, and system demands are allocated to a single node connected to the
second storage tank. The hydraulic model was applied each day for 7 days, and
simulated tank levels closely approximated measured levels.

Dynamic electricity prices for 68 days from April to June 2013 were obtained
from the electricity market. Prices fluctuate on a 30-min basis according to supply
and demand. Over the study period, energy prices ranged from 5 to 262e/mWh,
with an average value of 63e/mWh. Price levels were correlated to the time of day
but showed considerable fluctuation.

The actual electricity price profiles were used to randomly generate a sample of
1000 similar price profiles using the methods described above. The distribution of
electricity price within each of the 48 half-hour periods was compared between the
simulated and observed electricity prices. The generated price profiles were similar
to observed ones in terms of median value, inter-quartile range, and extreme values.
The simulated electricity price profiles were grouped into ten clusters, and the price
profile nearest the medoid of the cluster was identified in Fig. 13.10.

An optimal pumping schedule was computed for each of the 10 medoid price
profiles. The resulting schedules (Fig. 13.11) are constrained to use a maximum of
6 pump starts per day and tend to emphasize pumping at night, when prices are
generally lower. Between the schedules there are fluctuations in pump start and stop
times according to the different prices. Uncertainty in the daily pumping cost was
explored through calculation of the cost of pumping schedules A–J for every one of
the 1000 randomly generated price profiles.

Considering the foregoing analysis, the question remains as to which pump
schedule should be selected. The answer depends on the criterion of the system
operator and the desired risk profile. Different criteria will produce different



360 E. Arandia et al.

Fig. 13.10 Medoid price trajectories for ten clusters [30, used with permission]

Fig. 13.11 Optimal pump schedules (grey: on, white: off) for 10 medoid price trajectories ([30],
used with permission)

Table 13.2 Values of optimal schedules (e/day) over different measures of pump schedule
performance

Measures Schedule Value Next best

Lowest average cost C 671 A 673

Lowest Std. error of mean A 2.66 C 2.69

Lowest median cost C 667 A 668

Lowest inner quartile range A 103 C 104

Lowest maximum cost A 971 H 987

schedules; see Table 13.2. For example, the schedule with the lowest average cost
(schedule C) differs from that with the lowest maximum cost (schedule A).

Conclusion This work demonstrates how combining a series of techniques can
provide a method for scheduling pumps when electricity prices are unknown.
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Exploitation of the observed covariance between historical energy prices enables
efficient simulation of possible energy price scenarios that can be used to quantify
price uncertainty. Optimization of pump schedules across the entire ensemble of
simulated price scenarios is not feasible. By clustering energy price profiles into
groups, only a modest number of pump scheduling optimizations are required. Once
schedules are obtained, it is possible to evaluate the cost of many possible price
profiles and estimate their cost distribution.

Future work on this problem could examine the role of ensembles of price pre-
dictions in selecting an optimal schedule. Optimization approaches can utilize the
ensemble of scenarios to identify pumping schedules that target cost minimization
against the most likely and/or the worst case scenarios. More complex approaches,
such as robust optimization, utilize multiple scenarios to identify “best worst-case”
scenarios.

13.5 Perspectives

In this chapter, we demonstrated how the Internet of Things along with machine
learning can help cities improve the management of their infrastructure. The basic
ingredients include an urban-scale network, a state-space model, and techniques
for estimation—prediction and optimization—control. We considered two basic
components of a city’s infrastructure in detail, namely the transportation network
and the municipal water supply system. We discussed the similarities of these two
types of networks in the context of monitoring and operations, and illustrated the
general nature of current applications developed for these networks. The current
explosion of IoT data has motivated innovative research explorations, which offer
enhanced models, more accurate estimates, and fine-grained control. Edge devices
such as smart meters and smart phones have played the role of intermediary between
the world of bits and the world of atoms. For the two types of networks considered,
personalization remains a key goal of the revolution brought by IoT, where devices
will able to effectively inform and guide individuals in their travels and manage
their individual consumption of services at home. Other applications include, for
instance, the energy domain, wherein the onset of electric vehicles, smart home
appliances, and on-site generation of electricity through rooftop photovoltaic panels
will create a greater coupling between transportation, activities, and energy.

One important perspective for research is that with increased volumes of sensor
data through IoT devices, it is crucial to quantify uncertainty and to assess its
impact on forecasting and decision making. New and better mathematical tools
are necessary for both. Since mathematical models will be embedded in complex
decision-making systems, the accuracy and reliability of those models will be
critical for the efficiency and safety of the systems that comprise them.

For multimedia data in particular, the advent of deep learning is revolutionizing
the sensing abilities of machines, which are now able to hear, see, and more
generally acquire unstructured data at the human performance level. For higher-
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level applications such as self-driving cars, where automated context understanding
has not yet reached the human performance level, significant effort will be required,
in particular in the modeling and analysis of uncertainty and the design of robust
adaptive methods for online control.

In the future, we expect to see the emergence of networks of sensing and control
agents, operating at the edge, alternating between decentralized and centralized,
with coordination depending on context. To capture the complexity of the real
world and safely deploy virtual agents will require fundamental innovations in
modeling, estimation, and control. In particular, the impact of adverse tail events,
which are very difficult to manage using data-driven methods, is likely to become a
significant concern. Similarly, extending the ability of multi-scale models to adapt
and specialize seems to hold valuable lessons for the modeling of intelligence and
the subsequent generation of innovative research.
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