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Abstract The dependence in the operator form for the shearing stress in nonsta-
tionary fluid friction is obtained. The transfer functions for the shearing stress of the
velocity of the moving element and the pressure gradient are determined. Based on
the analysis of amplitude-frequency characteristics, the boundaries of a
quasi-stationary approach are established for calculating the forces of nonstationary
viscous friction on the moving elements of hydraulic devices. To calculate the
shearing stress, considering the effect of the inertia of the flow structure, we con-
sider a nonstationary plane laminar motion of incompressible fluid in the gap
between a moving and a fixed element in the Cartesian coordinate system. The
solution of the equation of motion in partial derivatives is fulfilled using the Laplace
transform. The estimation of the boundaries of the quasi-stationary approach to the
calculation of the forces of nonstationary viscous friction is made from the
amplitude-frequency characteristics of vibrations of the moving element and the
pressure gradient. As the boundaries of quasi-stationarity, the frequencies at which
the amplitude changes by more than 5% are adopted.

Keywords Fluid friction � Shearing stress � Equation of motion � Kinematic
viscosity � Transfer function

1 Introduction

The most difficult and responsible stage in the calculation and development of new
elements and devices, machines and mechanisms, drives and control systems is the
development of the mathematical models of the nonstationary workflows occurring
in them [1–4]. It is very important not to allow excessive unjustified complication
of the mathematical models as they may not be suitable for practical use. At the
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same time, neglecting phenomena that significantly affect the work processes can
make the model too rough, not providing the required accuracy and also not
reflecting the main features of the ongoing processes.

The nonstationary hydromechanical processes refer to the complex physical
phenomena in which unsteady fluid flows arise with changes in velocities and
pressures not only in time but also in the space occupied by flow [5–8]. The direct
description of such processes leads to the systems of nonlinear equations in partial
derivatives, and the boundary conditions necessary for the solution of these
equations are often themselves differential equations describing the dynamic pro-
cesses in those devices with which fluid flows interact. The use of such complex
models requires the implementation of labor-intensive calculations, which may not
yield visible results.

The important parameter in calculations of hydromechanical processes is the
force of viscous fluid friction, which is characterized by the shearing stress arising
in the working medium contacting the surface of the moving element of the
actuating, regulating, distributing, or auxiliary hydraulic devices [9–14]. In the
presence of a gap between the surfaces of the elements, the shearing stresses arise
when relative motion of these surfaces and the motion of the medium are affected
by the pressure difference.

2 Literature Review

The traditional approaches [5, 15–20] to the development of mathematical models
of nonstationary hydromechanical processes are mainly based on the fact that real
flows are replaced by a successive sequence of flows with a quasi-stationary dis-
tribution of hydrodynamic quantities over the live flow cross-section. This allows
us to introduce into account the coefficients and characteristics obtained for sta-
tionary flows. In fact, the structure of nonstationary flows differs from the
quasi-stationary flow [1, 5, 8], and it is not always known how and under what
conditions such a difference can affect the change in hydrodynamic characteristics.

In real devices, the gap is small in such a way that the flow is considered as a
laminar plane between parallel walls (Fig. 1), and the velocity distribution (Fig. 2)
has the form [6, 7, 21, 22]

u
u0

¼ d2

2qm
dp
dx

y
d

1� y
d

� �
þ y

d
; ð1Þ

where x, y—coordinates; u—velocity of the fluid in the gap; u0—speed of move-
ment of the moving element (or relative speed of motion of the surfaces); d—size of
the gap; dp=dx—pressure gradient; and q, m—density and kinematic viscosity of the
fluid.
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The shearing stress is calculated on the basis of the velocity distribution (1)
according to the Newton’s law of viscous friction [7, 19, 21].

The aim of the paper is to obtain dependencies for calculating the shearing stress
in nonstationary fluid friction, considering the inertia of the change in the flow
structure in the gap, and also estimating the boundaries of the quasi-stationary
approach for calculating the forces of nonstationary viscous friction on the moving
elements of hydraulic devices.

3 Research of Shearing Stress in Nonstationary Fluid
Friction

Let the speed of motion of the moving element (or the relative speed of motion of
surfaces) be nonstationary

u0 ¼ VðtÞ: ð2Þ

Fig. 1 Laminar flow between parallel planes. a Flow scheme; b velocity distribution in the
absence of a pressure gradient (Couette flow); c velocity distribution for fixed boundary planes
(flow in a flat channel)

Fig. 2 Dimensionless
velocity profiles for the
general case of fluid flow
between parallel walls
ðp� ¼ �d2dp=dx=ð2qmu0ÞÞ
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Then, for a quasi-stationary approach, the shearing stress on the moving surface
(quasi-stationary shearing stress), taking (1) into account,

s0qs ¼ qm
du
dy

¼ � d
2
dp
dx

þ qm
d
VðtÞ: ð3Þ

We transform (3) by the Laplace [23–25] and establish the transfer functions for
the quasi-stationary shearing stress with respect to the velocity of the moving
element and the pressure gradient

WsV :qsðsÞ ¼
s0qsðsÞ
VðsÞ ¼ ksV : ð4Þ

Wsp:qsðsÞ ¼
s0qsðsÞ
dp
dx ðsÞ

¼ ksp: ð5Þ

where s—Laplace variable and transfer coefficients ksV = qm/d, ksp = –d/2.
In order to obtain the transfer functions for the shearing stress, considering the

influence of the inertia of the flow structure, we consider the nonstationary laminar
motion of incompressible fluid in the gap between fixed and moving elements in the
Cartesian coordinate system (Fig. 1). Assuming the flow is plane, the equation of
fluid motion is represented in the known form [6]

@u
@t

¼ � 1
q
@p
@x

þ m
@2u
@y2

: ð6Þ

For the fluid velocity u, which is the function of time t and the coordinate y, we
define the boundary conditions:

u ¼ 0; y ¼ 0;
u ¼ VðtÞ; y ¼ d:

�
ð7Þ

To simplify the mathematical calculations, we make the change of variables

z ¼ y� d; ð8Þ

and also consider that for the flow under consideration

@p
@x

¼ dp
dx

: ð9Þ

Taking (8, 9) into account, in place of (6, 7) we have:
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@u
@t

¼ � 1
q
dp
dx

þ m
@2u
@z2

; ð10Þ

u ¼ 0; z ¼ �d;
u ¼ VðtÞ; z ¼ 0:

�
ð11Þ

Applying the one-dimensional Laplace transform under zero initial conditions,
we obtain instead of the partial differential equation (10) the equation in ordinary
derivatives

d2uðsÞ
dz2

� s
m
uðsÞ ¼ pðsÞ

qs
; ð12Þ

where u(s), p(s)—Laplacian image of velocity u and the pressure gradient dp/dx.
The solution of Eq. (12) has the form

uðsÞ ¼ A1 exp z
ffiffiffiffiffiffiffi
s=m

p� �
þA2 exp �z

ffiffiffiffiffiffiffi
s=m

p� �
� pðsÞ

qs
; ð13Þ

where A1, A2—integration constants.
The shearing stress on the surface of the moving element is found according to

the Newton’s law of viscous friction

s0ðsÞ ¼ qm
@uðsÞ
@y

� �����
y¼d

¼ qm
@uðsÞ
@z

� �����
z¼0

: ð14Þ

Substituting (13) into (14), we have

s0ðsÞ ¼ qm
ffiffiffiffiffiffiffi
s=m

p
A1 � A2ð Þ: ð15Þ

The value A1 − A2 is determined using the boundary conditions (11) and the
obtained solution (13):

0 ¼ A1 exp �
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
þA2 exp

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
� p sð Þ

qs ;

VðsÞ ¼ A1 þA2 � p sð Þ
qs :

8><
>: ð16; 17Þ

We multiply (17) by exp �
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
and subtract (16), then we have

VðsÞ exp �
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
¼ �2A2sh

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
þ p sð Þ

qs
1� exp �

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �� �
:

ð18Þ
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The subtraction (16) from (17), multiplied by exp
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
, gives

VðsÞ exp
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
¼ �2A1sh

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
þ pðsÞ

qs
1� exp

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �� �
: ð19Þ

We summarize (18) and (19)

2VðsÞch
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
¼ 2ðA1 � A2Þsh

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
þ 2pðsÞ

qs
1� ch

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �� �
;

ð20Þ

and hence, we obtain

A1 � A2 ¼ pðsÞ
qs

ch
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
� 1

sh
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� � þVðsÞcth
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
: ð21Þ

We substitute (21) into (15), then we transform to the form

s0ðsÞ ¼ � d
2
pðsÞ 2ffiffiffiffiffiffiffiffiffiffiffi

d2s=m
q

ch
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �
� 1

sh
ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� � þ qm
d
VðsÞ

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q
cth

ffiffiffiffiffiffiffiffiffiffiffi
d2s=m

q� �	 

:

ð22Þ

This expression is the nonstationary shearing stress on the surface of the moving
element in the operator form.

According to Eq. (22), we obtain the transfer function for the nonstationary
shearing stress with respect to the velocity of the moving element

WsVðsÞ ¼ s0ðsÞ
VðsÞ ¼ ksV

ffiffiffiffiffi
Ts

p
cth

ffiffiffiffiffi
Ts

p
; ð23Þ

where ksV—transfer coefficient, introduced according to the expression (4);
T ¼ d2=m—time constant.

Consider the dimensionless transfer function

( )
( )
( ).

,V
V

V кс

W s
W s s cth s

W s
τ

τ
τ

= = ð24Þ
where �s ¼ sT—dimensionless Laplace variable. By the function (24), we determine
the amplitude-frequency characteristic
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AsV ð�xÞ ¼ mod W sVðj�xÞ
� �

; ð25Þ

where j ¼ ffiffiffiffiffiffiffi�1
p

; �x ¼ xT—dimensionless frequency.
The graph AsV ð�xÞ, shown in Fig. 3a, shows, that for �x\0:81, the nonstationary

of motion leads to an increase in the amplitude of the shearing stresses fluctuations
by no more than 5%. Therefore, in this range, it is permissible to use the
quasi-stationary transfer function (4) to calculate the frequency characteristics.
Thus, this frequency value can be considered as the boundary of a quasi-stationary
approach for calculating the viscous friction forces for vibrations of the moving
element.

Also, by expression (22), we establish the transfer function for the nonstationary
shearing stress with respect to the pressure gradient

WspðsÞ ¼ s0ðsÞ
pðsÞ ¼ ksp

2ffiffiffiffiffi
Ts

p ch
ffiffiffiffiffi
Ts

p � 1

sh
ffiffiffiffiffi
Ts

p ; ð26Þ

where ksp—transfer coefficient, introduced according to the expression (5).
By the dimensionless transfer function

( )
( )
( ).

2 1p
p

p кс

W s ch sW s
W s s sh s

τ
τ

τ

−
= = ð27Þ

determine the dimensionless amplitude-frequency characteristic

�Aspð�xÞ ¼ mod �Wspðj�xÞ
� �

: ð28Þ

The graph Asqð�xÞ, shown in Fig. 3b, shows, that for �x\3:34 the decrease in
amplitude of the shearing stresses fluctuations by no more than 5%. Therefore, in

Fig. 3 Shearing stress characteristic. a Dimensionless amplitude-frequency shearing stress
characteristic (for vibrations of the moving element); b dimensionless amplitude-frequency shear
stress characteristic (for the pressure gradient vibrations)
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this range, it is permissible to use the quasi-stationary transfer function (5) to
calculate the frequency characteristics. Thus, this frequency value can be consid-
ered as the boundary of a quasi-stationary approach for calculating viscous friction
forces for the pressure gradient vibrations.

A good approximation of the transfer functions (23, 26) gives their approxi-
mation by the following functions:

WsvðsÞ � ksv 1þ 0:387Tsð Þ; WspðsÞ � ksp
0:098Tsþ 1

: ð29Þ

4 Conclusions

Thus, the dependence in the operator form for the shearing stress for nonstationary
fluid friction is obtained. The transfer functions for the shearing stress with respect
to the velocity of the moving element and the pressure gradient are determined.
Based on the analysis of amplitude-frequency characteristics, the boundaries of a
quasi-stationary approach for calculating the forces of nonstationary viscous fric-
tion on the moving elements are established. The approximate transfer functions for
the nonstationary shearing stress are proposed, which allow to establish the con-
nection between the originals in the form of ordinary linear differential equations.
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