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6
Derivative Model Applications

6.1	� Spot Price Models

The Black–Scholes GBM (geometric Brownian motion) model can be gener-
alized to other models that are more realistic for particular markets. The vari-
ous simple extensions to the Black–Scholes model assume constant parameters 
for ease of calculation. In reality, the properties of time series such as volatility, 
mean reversion, long-term levels and jump behaviour will at the very least 
vary through time with reasonably predictable patterns. These characteristics 
can be included in spot models.

6.1.1	� Geometric Brownian Motion

The GBM assumption defined in Eq. (5.10) as a process that describes the 
dynamics of the prices of financial instruments is an approximation of the 
behaviour observed in real markets. GBM models are frequently used for 
security prices, interest rates, commodities and other economic and financial 
variables, and follow what has been defined as a random walk. The Weiner 
process is the continuous limit of a discrete time random walk. A generalized 
Weiner process introduces the concept of an expected drift rate. The drift rate 
is the average increase in a stochastic variable for each unit of time. In models 
for financial variables, the expected drift rate is replaced with a constant drift 
rate. Another issue in GBM models is that the uncertainty associated with the 
price path is greater the longer the time horizon. As the variance of the Weiner 
process increases linearly as the time horizon increases, the standard deviation 
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grows as the square root of the time horizon. This is the equivalent to the defi-
nition of volatility, where scaling the standard deviation by the square root of 
T annualizes the volatility σ.

The GBM process represented in Eq. (5.10) was discretized in Eqs. (5.20) 
and (5.21) for the simulation of a spot price. Figure 6.1 illustrates a GBM 
process simulated 100 times with the parameters S  =  100, r  –  δ  =  0.05, 
σ = 0.30, and ∆t = 1/250. In this example, r – δ is the drift, and σε ∆t  is the 
stochastic component. One observation is that the sample paths in Fig. 6.1 
tend to wander from the initial starting point of σ = 100. While this may be 
realistic for some variables, and can be verified in tests for random walks, it 
may, however, not be suitable for other financial and economic time series.

6.1.2	� Mean Reversion

The usual assumption made for asset price evolution in many markets is the 
GBM model assumption. This model, however, allows prices to wander off to 
unrealistic levels when applied to markets such as energy and commodities. 
Mean reversion was first described by Vasicek (1977) for modelling interest 
rate dynamics and has subsequently been widely adapted. Mean reversion can 
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Fig. 6.1  Illustration of 100 simulated GBM paths
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be understood by looking at a simple model of a mean reverting spot price 
(Schwartz 1997), represented by the following equation:

	
dS S Sdt Sdz= −( ) +α µ σln

	
(6.1)

Figure 6.2 illustrates the log form of a mean reverting process simulated 
100 times with the parameters S  =  100, α  =  3, S =100 , σ  =  0.30, and 
∆t = 1/250. In this model, the spot price mean reverts to the long-term level 
S = eµ  at a speed given by the mean reversion rate, α, that is taken to be 
strictly positive. If the spot price is above the long-term level S ,  then the drift 
of the spot price will be negative and the price will tend to revert back towards 
the long-term level. Similarly, if the spot price is below the long-term level, 
then the drift will be positive and the price will tend to move back towards S .  
Note that, at any point in time, the spot price will not necessarily move back 
towards the long-term level as the random change in the spot price may be of 
the opposite sign and greater in magnitude than the drift component. This 
formulation of the mean reversion process represents one of a number of pos-
sible equations that capture the same type of market evolution of prices over 
time. In reality, the spot price does not mean revert to a constant long-term 
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Fig. 6.2  Illustration of 100 simulated mean reversion paths
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level. Information on the level to which the spot price mean reverts is con-
tained in the forward curve prices and volatilities.

6.1.3	� Jumps and Seasonal Patterns

Jumps can be a significant component of the behaviour of spot prices. This 
type of behaviour, where the price exhibits sudden, large changes, can be 
modelled by using jump processes. A simple and realistic model for a spot 
price, which is identical to the Black–Scholes model except for the addition of 
a jump process, is the jump-diffusion model introduced by Merton (1976). 
This model is described by the following stochastic differential equation (SDE):

	 dS Sdt Sdz Sdq= + +µ σ κ 	 (6.2)

where the lognormal jumps are driven by a Poisson process, and the annual-
ized frequency of jumps is given by ϕ, the average number of jumps per year 
(ϕ) is defined by prob(dq = 1) = ϕdt). The proportional jump size is κ, which 
is random and determined by the natural logarithm of the proportional jumps 
being normally distributed:

	
ln ~ ln1 1

1

2
2 2+( ) +( ) −






κ κ γ γN ,

	
(6.3)

where κ  is the mean jump size and γ is the standard deviation of the propor-
tional jump size. The jump process (dq) is a discrete time process, that is, 
jumps do not occur continuously, but at specific instants of time. Therefore, 
for typical jump frequencies, most of the time dq = 0 and only takes the value 
1 when a randomly timed jump occurs. When no jump occurs, the spot price 
behaviour is identical to GBM and only differs when a jump occurs. The pro-
portional jumps (or equivalently jump returns) in Eq. (6.2) are normally dis-
tributed and therefore symmetrical, that is, the number of positive and 
negative jumps and the range of sizes of the proportional jumps will be equal 
on average.

Season patterns can be taken into account by including seasonality as a 
deterministic process in the stochastic process for the underlying price path. 
Discrete methods such as Fourier Transforms that include Sine, Cosine and 
Fast Fourier Transforms can be specified as continuous processes and included 
in the specification of the underlying price path.

  J. Rogers
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6.2	� Stochastic Volatility

The assumption in the Black–Scholes model that volatility is constant does 
not always hold. The GARCH (generalized autoregressive conditional hetero-
skedasticity) process is one representation of a stochastic volatility model. 
Many other models have been proposed for the behaviour of volatility. The 
Heston (1993) form of the stochastic volatility model is described by the fol-
lowing processes for the spot price and the spot price return variance V =σ 2 ;

	

dS

S
dt dWt

t
t t= +µ υ

	

(6.4)

	
dv dt v dZt t v t t= −( ) +κ θ υ σ

	
(6.5)

Equation (6.4) is the GBM model with volatility νt, which is not constant 
and changes randomly. The behaviour of the volatility is determined by Eq. 
(6.5), which specifies the process followed by the variance, the square of the 
volatility. The variance mean reverts to a long-term level θ at a rate given by κ. 
The absolute volatility of the variance is σv√ν, which is proportional to the 
square root of the variance, that is, the volatility of the spot price. The source 
of randomness in the variance, dZt, is different from the dWt driving the spot 
price, although it may be correlated with correlation coefficient ρ.

The following illustrates the estimation of the parameters for the Heston 
stochastic volatility model.

Two sources of uncertainty reflected in FX options are the stochastic FX 
rate and stochastic volatility. The Black–Scholes model addresses the first, 
while stochastic volatility models address both the first and second. The 
Heston model (1993) is a common method applied to capture stochastic dif-
fusion volatility:

	

dS

S
dt dWt

t
t t= +µ υ

	

(6.6)

	
dv dt v dZt t v t t= −( ) +κ θ υ σ

	
(6.7)

	
dW dZ dtt t = ρ

	
(6.8)

Stochastic volatility induces smiles and skews that decrease as the option 
maturity increases. The positive volatility of volatility (σv) generates a smile, or 
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fatter tails in the distribution, while a non-zero correlation (ρ) generates skew 
of the same sign, that is, shifts the probability weight to either one of the tails 
of the distribution.

Calibrating the Heston model ensures the model matches the market 
and avoids arbitrage. The Heston model requires the estimation of five 
parameters:

•	 kappa (κ), the rate of mean reversion in the volatility
•	 theta (θ), the long run mean
•	 the asset volatility (vt)
•	 volatility of volatility (σv), which influences the kurtosis of the distri-

bution, and
•	 the correlation (ρ)

This is achieved by finding the set of parameters that produce Heston model 
prices that match vanilla Black–Scholes option market prices.

The Black–Scholes model has a number of applications in the OTC FX 
options market:

•	 Market prices are quoted as Black–Scholes implied volatilities instead of 
option prices, and are provided at a Black–Scholes delta (δ) instead of 
the strike.

•	 Liquidity is typically at five delta levels, 10 δ put, 25 δ put, 0 δ straddle, 25 
δ call and 10 δ call.

The EUR-USD is used as an illustration. Calibrating the Heston model 
consists of:

	1.	 converting the EUR-USD option delta quotes into strikes
	2.	 deriving the Black–Scholes option prices using the implied volatilities, the 

derived strikes, EUR-USD forwards and interest rates for the two cur-
rencies, and

	3.	 calibrating the Heston model parameters to the Black–Scholes prices across 
the volatility surface

The Black–Scholes option model is equivalent to the Black model when the 
risk-free interest rate is zero, which reflects the forward price, and then dis-
counted to derive the present value.

Figure 6.3 shows the EUR-USD implied volatility surface.

  J. Rogers



109

9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0

0.0
10D Call

25D Call

75D Call

90D CallATM

8
0.17

0.25
0.33

0.50
0.75

1.00
1.50

2.00

Fig. 6.3  EUR-USD implied volatility surface. As at 5/15/08

The five FX option quotes for each maturity are:

•	 A delta-neutral straddle (ATMV) implied volatility. A straddle equals the 
sum of a call and a put with the same strike. Delta neutral implies that δ(c) 
plus δ(p) is equal to zero, with N(d+) equal to 0.5, and d+ equal to zero. 
Therefore, ATMV ≡ IV(50 δ c) (= IV(−50 δ p) by put call parity). IV is the 
implied volatility, c equals call, p equals put, d is the delta and N() is a 
standard normal function.

•	 25-delta Risk Reversal (RR25). The RR25 describes the slope of a smile, 
which represents the skew in the risk neutral distribution of the return. 
RR25 ≡ IV (25δc) − IV (25δp).

•	 25-delta Strangle Margin (SM25), or a butterfly spread. A strangle equals 
the sum of a call and a put with two different strikes, and captures the smile 
curvature, or the distribution’s kurtosis. SM25 ≡ (IV (25δc) + IV (25δp)) 
/2 − ATMV.

•	 10-delta Risk Reversal (10RR), and
•	 10-delta Strangle Margin (10SM)

The implied volatility quotes for the five deltas have the following relationships:

•	 IV (0δs) = ATMV
•	 IV (25δc) = ATMV + RR25/2 + SM25
•	 IV (25δp) = ATMV − RR25/2 + SM25
•	 IV (10δc) = ATMV + RR10/2 + SM10, and
•	 IV (10δp) = ATMV − RR10/2 + SM10

6  Derivative Model Applications 
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Table 6.1  The Heston parameters

Kappa (κ) 2.044
Theta (θ) 1.16%
Asset volatility (V) 1.57%
Vol of Vol (σ) 35.62%
Correlation (ρ) 0.173

The EUR-USD option deltas are converted into the strike surface as:

	
K F IV N IV

rf= ± ( ) ±( ) + ( )





−exp , ,δ τ τ δ δ τ ττ1 21

2
e

	
(6.9)

where for each maturity:

K = the option strike,
F = FX Forward,
IV = implied volatility,
δ = strike delta,
τ = time to expiry,
N−1() = the inverse of the standard normal cumulative distribution, and
rf = the USD interest rate.

Out-of-the-money Black prices are then calculated across the surface using 
the implied volatility quotes and the derived strikes. Finally, the stochastic 
volatility parameters are derived by minimizing the squared error, scaled by a 
weight derived as the inverse of the delta implied volatility bid/offer spread 
quote, between the Heston and Black prices across the whole surface.

Table 6.1 illustrates the Heston model parameter estimates for the EUR-
USD FX option.

6.3	� Forward Curve Models

Forwards and futures markets are often used by risk managers to hedge risk, 
with liquid forward prices providing a price discovery mechanism to deter-
mine the fair value for future delivery. Forward curves contain information 
about the prices an investor can lock into today to buy or sell at a certain time 
in the future. Forward curves are well known and understood in the debt 
markets. Forward rate agreements and exchange traded futures contracts are 
heavily traded and allow users to lock in borrowing and lending rates for 
future time periods.

  J. Rogers
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In contrast to futures and forwards, price forecasts are predictions on the 
likely spot price for periods in the future, and can differ widely between mar-
ket participants. Forward prices, however, depend on the relationship between 
traded instruments. Tradable prices today for future spot transactions can be 
locked in using forward prices, and as such, capture the market reality. 
Therefore, prices from forwards and futures markets are key inputs to many 
derivative pricing models, and are as essential in the pricing of derivatives as 
spot prices.

In the past, the majority of work on modelling prices has focused on sto-
chastic processes for the spot price and other key variables, such as the divi-
dend yields, convenience yields and interest rates. This approach, however, 
can have some fundamental disadvantages. The first is that key state vari-
ables, such as the convenience yield, are unobservable, and second, the for-
ward price curve is an endogenous function of the model parameters, and 
therefore, will not necessarily be consistent with the market observable for-
ward prices. As a result, many industry practitioners require the forward 
curve to be an input into the derivative pricing model, rather than an out-
put from it.

Term structure consistent models model the dynamics of the entire term 
structure in a manner that is consistent with the initial observed market data. 
These models can be further classified into those that fit the term structure of 
prices such as interest rates, and those that fit the term structure of prices and 
price volatilities. There are models in the interest rate world and developments 
in the energy and commodity markets that use term structure approaches. An 
approach based on modelling the entire forward price curve with multiple 
sources of uncertainty uses all the information contained in the term structure 
of futures prices in addition to the historical volatilities of futures returns for 
different maturities.

6.3.1	� A Single Factor Model for the Forward Curve

Forward curve models are defined as models that explicitly model all the for-
ward prices simultaneously instead of just the spot price. A simple single fac-
tor model of the forward curve can be represented by the following stochastic 
differential equation:

	

dF t T

F t T
dz tT t,

,
e

( )
( )

= ( )− −( )σ α

	

(6.10)
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The inputs to the model are the observed forward curve F(t,T), which 
denotes the forward price at time t for maturity date T, and σ αe T t– – ,( )  which 
is the single ‘factor’ or volatility function associated with the source of risk 
dz(t). Equation (6.10) also has no drift term. As futures and forward contracts 
have zero initial investment, their expected return in a risk-neutral world 
must be zero, implying that the process describing their evolution has zero 
drift. The volatility function of Eq. (6.10) has a very simple negative exponen-
tial form illustrated in Fig. 6.4.

For this volatility function, short-dated forward returns are more volatile 
than long-dated forwards. Information occurring in the market today has 
little effect on, say, the 5-year forward price, but can have a significant effect 
on the 1-month forward price. The parameter values used for Fig.  6.4 are 
α = 1.0 and σ = 0.40. Here, σ represents the ‘overall’ volatility of the forward 
curve, while α explains how fast the forward volatility curve attenuates with 
increasing maturity. With an α of 100%, the 1-month forward has a volatility 
of about 37%, decreasing to approximately 2% for the 3-year forward.

The volatility function is not restricted to have the parameterized form of 
Eq. (6.10). The function can be generalized as:

	

dF t T

F t T
t T dz t

,

,
,

( )
( )

= ( ) ( )σ
	

(6.11)
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Fig. 6.4  A negative exponential volatility function for forward prices
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where σ(t,T) is the time t volatility of the T maturity forward price return. 
The form of σ(t,T) can be determined from market data.

6.3.2	� The Dynamics of the Forward Curve

An important observation is that forward prices of different maturities are not 
perfectly correlated. The curves generally move up and down together, but 
they also change shape in quite complex ways. One method that can be used 
to determine the set of common factors that drive the dynamics of the for-
ward curve is principal components analysis (PCA), or eigenvector decompo-
sition of the covariance matrix. This procedure can be utilized to simultaneously 
identify the number of significant factors and estimate the volatility func-
tions. The technique involves calculating the covariances between every pair 
of forward price returns in a historical time series to form a covariance matrix. 
The eigenvectors of the covariance matrix yield estimates of the factors driving 
the evolution of the forward curve.

The implication is that to effectively describe the evolution of the energy 
forward curve, more than a single factor is required. The model described by 
Eq. (6.11) can be modified through the addition of sources of risk and volatil-
ity functions. For a general multifactor model, the behaviour of the forward 
curve can be represented by the following equation:

	

dF t T

F t T
t T dz t

i

n

i i

,

,
,

( )
( )

= ( ) ( )
=
∑

1

σ
	

(6.12)

In this formulation, there are n independent sources of uncertainty, which 
drive the evolution of the forward curve. Each source of uncertainty has asso-
ciated with it a volatility function, which determines by how much, and in 
which direction, that random shock moves each point of the forward curve. 
Therefore, σi(t,T) are the n volatility functions associated with the indepen-
dent sources of risk dzi(t). In practice, n is usually set to n = 1, 2, or 3.

6.3.3	� The Relationships Between Forward Curve 
and Spot Price Models

Intuitively, a model that describes the evolution of the whole forward curve is 
implicitly describing the front end of the curve, which is simply the spot 
energy price, and so, the forward curve models must be related to spot price 

6  Derivative Model Applications 



114

models. The stochastic differential Eq. (6.12) can be integrated to obtain the 
following solution:

F t T F T u T du u T dz u
i

n t

i

t

i i, , , ,( ) = ( ) − ( ) + ( ) ( )





=
∑ ∫ ∫0

1

21
0

2

0
exp σ σ 













	

(6.13)

This equation expresses the forward curve at time t in terms of its initially 
observed state (time 0) and integrals of the volatility functions. The spot price 
is just the forward contract for immediate delivery, and so, the process for the 
spot price can be obtained by setting T = t, that is:

S t F t t F t u t du u t dz u
i

n t

i

t

i i( ) = ( ) = ( ) − ( ) + ( ) (
=
∑ ∫ ∫, , , ,0

1

21
0

2

0
exp σ σ ))


















	

(6.14)

Equation (6.14) can then be differentiated to yield the stochastic differential 
equation for the spot price:

dS t

S t

F t

t
u t

u t

t
du

u

i

n t

i
i t i( )

( )
=

∂ ( )
∂

− ( )
∂ ( )

∂
+

∂

=
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ln 0

1
0 0
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,
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σ
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t
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i

i
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
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
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(6.15)

The term in square parentheses in the drift can be interpreted as being equiva-
lent to the sum of the deterministic riskless rate of interest r(t) and a conve-
nience yield d(t), which, in general, will be stochastic. Since the last component 
of the drift term involves the integration over the Brownian motion, the spot 
price process will, in general, be non-Markovian—that is, the evolution of the 
spot price will depend upon its past evolution.

One special case of the general model is the simple single factor model 
described by Eq. (6.10). For this model, n  =  1 and σ σ α

1 t T T t, e( ) = − −( ) . 
Clewlow and Strickland (2000) evaluate Eq. (6.15) with this volatility func-
tion and show that the resulting spot price process is given by:

dS t

S t

F t

t
F t S t t( )

( )
=

∂ ( )
∂

+ ( ) − ( )( ) + −( )








−ln
ln ln

0
0

4
1

2
2,

, eα
σ α

 + ( )dt dz tσ
	

(6.16)
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This implies:

	

dS t

S t
t S t dt dz t

( )
( )

= ( ) − ( )  + ( )µ α σln
	

(6.17)

where,

	
µ α

σ αt
F t
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F t t( ) = ∂ ( )
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, e

	

This single factor forward curve model is therefore just the single factor 
Schwartz (1997) model with a time-dependent drift term. It is this term in 
the drift that allows the model to now fit the observed forward prices. Note 
also that this particular form of the forward curve volatility function results in 
a ‘Markovian’ spot price process, as the dependence in the drift on the path of 
the Brownian motion disappears.

The relationship between the forward curve model and the spot return 
model also shows that the mean reverting behaviour of the spot price is 
directly related to the attenuation of volatility of the forward curve. By setting 
α = 0, the Black (1976) model is obtained. This is, therefore, a special case of 
the general model in Eq. (6.12) with σ(t,T) = σ and n = 1. The main advan-
tage of the forward curve modelling approach is the flexibility that the user 
has in choosing both the number and form of the volatility functions. These 
can be chosen in one of two general ways—historically from time series analy-
sis or implied from the market prices of options.

6.4	� Convertible Bonds

Convertibles are hybrid derivative securities that combine the characteristics 
of both bonds and stocks, and include options on the issuer’s common stock 
and debt. A convertible gives the bond holder the right to exchange or convert 
the bond’s par amount for the issuer’s common shares at a fixed rate during a 
specified time period. Convertible bonds can be callable by the issuer on 
specified dates over the life of the convertible, with the call option decreasing 
the value of the convertible.

Convertibles can also contain puts where the buyer can put the bond to the 
issuer, with the put option increasing the value of the convertible. When the 

6  Derivative Model Applications 



116

stock price is relatively low when compared to the conversion price, the con-
vertible is unlikely to be converted into stock, and is therefore effectively a 
straight bond. When the stock price is relatively high when compared to the 
conversion price, the convertible is more likely to be converted into stock, and 
the convertible price is therefore the conversion parity, or the stock price mul-
tiplied by the conversion ratio.

The motives for financing through the issuance of convertibles include 
delaying equity financing until growth has been realized, and financing when 
the debt markets is not accessible, while for investors, convertibles can offer a 
higher yield than common stock dividend yields and the potential upside in 
the firm’s growth and stock conversion.

Figure 6.5 illustrates a convertible bond price as a function of the stock 
price. The stock price is on the horizontal axis, the conversion ratio on the 
vertical axis, and the horizontal line represents the bond floor. The bond floor 
is the equivalent of the market value of a fixed income bond, where the cou-
pons and redemption value are discounted at an interest rate that reflects the 
credit quality of the issuer. The conversion ratio is the number of ordinary 
shares at which the bond’s notional value is converted, is established at issue 
and typically stays constant over the life of the convertible bond. The conver-
sion price is the bond’s nominal value divided by the conversion ratio. The 
diagonal line represents parity, derived as the conversion ratio multiplied by 
the share price, and represents the market value of the shares received at the 
conversion of the bond.

The option to convert into stock or retain the bond implies that the con-
vertible’s value should be the minimum of that of the stock or the bond. The 
stock and bond’s minimum values therefore function as lower bounds on the 
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Fig. 6.5  A convertible bond price as a function of the stock price
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convertible bond price. The conversion value is the equivalent to a call option 
on the stock, with the market value of the option to convert reflected in the 
difference between the bond floor and the convertible value. The conversion 
becomes more valuable, and the price of the convertible bond will increase as 
the stock volatility increases, with the conversion line in Fig. 6.5 becoming 
less convex.

Convertible bonds are typically priced with binomial lattice trees that 
include the bond’s embedded option at each tree node. The model assumes 
that the convertible bond’s value is a function of the underlying stock price 
volatility. The factors that can influence a convertible bond’s value include the 
market parameters, the terms in the prospectus and their behaviour. A bino-
mial one factor model was used for a simple illustration of a convertible bond’s 
theoretical value. The Cox, Ross and Rubinstein (1979) approach was used 
for the binomial tree. See Sect. 5.5.2 for background on the binomial model.

The following variables are used to illustrate the convertible bond:

•	 the bond notional value is 100,
•	 the bond coupon is 10%
•	 the convertible bond maturity (T) is 5 years
•	 the conversion ratio (m) is 4
•	 calls of $107.5 in year two, which decline by $2.5 every year to maturity
•	 the current stock price is $25
•	 the volatility is 20%
•	 the risk-free rate is 5%

A yield to maturity or flat term structure is assumed for the risk-free inter-
est rate. The bond coupon and interest rate are compounded annually, while 
the volatility can be estimated using historical volatility.

Figure 6.6 illustrates the convertible binomial lattice tree. The convertible 
bond payoff at each node at maturity is derived as the maximum of the bond 
redemption value and coupon, and the binomial tree’s stock price ST,j multi-
plied by the conversion ratio.

	
P mS couponT j T j, ,max= +( ),100

	
(6.18)

The convertible price at each node is then derived recursively to the valuation 
date (t0) as:

	
P mS pP p P Ci j i j

r t
i j i j, , , .max min= + −( )( )( )





−
+ + + −, e ,∆
1 1 1 11

	
(6.19)
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25.00
102.50
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95.66
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16.76
92.75

16.76
102.50

13.72
97.50

13.72
110.00

11.23
102.50

9.20
110.00

Year 0 1 2 3 4 5

Calls 107.5 105.0 102.5 100.0

Fig. 6.6  The convertible binomial lattice tree

with the process continuing up the valuation date. The value of the convert-
ible in the example is calculated as $106.93.

This is a relatively simple example of the valuation of a convertible bond. 
The valuation can be extended to include  stochastic interest rates and the 
probability of default.

Market factors influence the behaviour of the theoretical value of convert-
ibles in a number of ways. A convertible’s value rises along with the parity of 
the underlying stock, as conversion is more probable. The value of a convert-
ible also increases along with the volatility of the underlying stock, as the 
option value to convert the bond to stock is larger and near-the-money.
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A convertible’s value also increases with the put option held by the owner 
of the convertible. A higher put level has a larger value due to the protection 
provided by the put in declining markets, and is greater at lower parity levels. 
The increase in value as a result of puts is also more evident with higher inter-
est rates, as the convertible’s fixed-income value is lower.

A convertible’s value will decrease as interest rates rise, with the rate of 
decrease larger as the maturity of the convertible increases. The rate of decrease, 
however, is less than an equivalent conventional bond due to the offsetting 
influence of the conversion option, which rises in value as interest rates 
increase. A convertible’s value also decreases as the credit spread increases, 
with the sensitivity to the credit spread increasing with longer maturities.

Call options also decrease the convertible value, with lower call levels pro-
viding the issuer a larger probability for early conversion and reducing the 
conversion option’s time value. The decrease in value with calls is higher at 
higher parity levels. The decrease in a convertible’s value with calls is also more 
evident with lower interest rates, as the convertible’s fixed-income value 
is larger.

6.5	� Compound Options

Compound options, or options on options, where the payoff is another 
option, allow the holder to buy or sell another option for a fixed price. There 
are four compound option types—a call on a call, a put on a put, a call on a 
put, and a put on a call. Projects and investments that are staged as a sequence 
are compound options, where the initial investment cost is the exercise price 
for the subsequent option on the next stage of the investment. Plant develop-
ment, product development and research and development are examples of 
sequential compound options. Compound options are useful for analysing 
the impact of an investment on a firm. Many projects and investments are not 
independent, as assumed in a discounted cash flow (DCF) analysis, but are a 
series of interrelated cash flows where the initial investment is a prerequisite 
for the following outlays.

Geske (1979) developed the original closed form solution for a compound 
option as a call option on a firm’s equity, which itself is a European call option 
on the total value of the firm. The compounding in this specification occurs 
simultaneously, as the firm’s equity, a call option on the leveraged value of the 
firm, and the call option on the equity appear at the same time. Both simul-
taneous and sequential compound options can be solved in trees, although 
the valuation progressively more complicated as more options are added.
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The Geske compound option model is specified as a call option on a stock 
which itself is an option on the firm’s assets. The functional representation of 
this relationship is:

	
C f S t f g V t t= ( ) = ( )( ), , ,

	
(6.20)

where C is the value of a call option, S is the firm’s stock and V is the value of 
the firm. Transformations in the call option value are therefore defined as a 
function of transformations in firm value and time. The Geske model trans-
forms the option’s underlying state variable from the firm’s stock to the firm’s 
market value (V), or the total market value of the firm’s equity and debt. The 
Geske specification therefore provides a measure of firm value when applied 
to listed options.

The Geske model is specified as:
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where,
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V∗ represents the firm’s critical total market value, where the firm’s stock 
level ST1 is equal to the option strike K. ST1 is derived using Merton’s defini-
tion of the Black–Scholes model, where a firm’s stock is the equivalent to 
an option:

	
S VN h T t M N hV
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(6.22)
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Therefore, at t = T1 when ST1 = K

	
S V N h T T M N h KT T V

rF T t
1 1 1 2 2 1 1 2

2 2= + −( ) − ( ) =∗ − −( )σ e
	

(6.23)

where h2 is defined as given earlier. The variable M is the face value of a firm’s 
debt, while T2 represents the debt’s duration. The addition of the M term to 
the Black–Scholes model reflects the effects of leverage, where leverage changes 
the firm’s equity volatility. The Black–Scholes model assumes that a firm’s 
equity volatility is not a function of the level of equity. The Geske model, 
however, considers that a firm’s equity volatility has an inverse relationship 
with a firm’s stock level. As a firm’s stock level increases, the firm’s leverage and 
stock volatility will fall, and the inverse of this relationship also holds. The 
Geske model also implies the volatility of a firm’s total market value, conforms 
to Miller and Modigliani, and is the equivalent to the Black–Scholes model 
when the firm has no debt.

A summary of the Geske model variables follows:

C = current market value of a firm’s stock call option
S = current market value of the firm’s stock
V = current market value of the firm’s securities (debt + equity)
V* = the critical total firm market value where V ≥ V* which implies S ≥ K
M = face value of market debt (debt outstanding for the firm)
K = strike price of the option
rFt = the risk-free rate of interest to date t
σV = the instantaneous volatility of the firm market value return
σs = the instantaneous volatility of the equity return
t = current time
T1 = expiration date of the option
T2 = duration of the market debt
N1 (.) = univariate cumulative normal distribution function
N2 (…) = bivariate cumulative normal distribution function
ρ  =  the correlation between the two option exercise opportunities 

at T1 and T2

Refer to Chap. 10 for an example of an application of the Geske compound 
option model.
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6.6	� Model Risk

Over the last 50 years, there has been a huge growth in the use of theoretical 
models for valuation and pricing in financial markets. A large body of the 
theory relates to derivatives, financial instruments where value is derived 
from underlying assets. These theories have been extended into real options, 
where models have been developed for options on real assets. Relying on 
models to analyse and quantify value and risk, however, carries its own risks. 
The term model risk has many connotations and is used in many different 
contexts. The following is based on Rebonato (2001) definition. Model risk 
is the risk, at some point in time, of a significant difference between the 
modelled value of a complex and/or illiquid asset and the realized value of 
that same asset.

In the physical sciences, where quantitative modelling originated, predic-
tions can be made reasonably accurately. Variables in physical science models 
such as time, position and mass exist, regardless of the existence of humans. 
The fundamental unknown in financial markets, however, is certainty. Many 
financial and real assets only trade at certain discrete times, while financial 
variables also only symbolize human expectations. Risk and return refers to 
expected risk and return, variables that are unobserved and not realized. In 
most circumstances, however, models based on financial concepts and theory 
assume causation and stability between the values of these unobserved vari-
ables and asset values.

There a number of ways in which the development of a financial model 
can go wrong:

•	 The most fundamental risk is that modelling is just not appropriate. 
Modelling requires knowledge and context within a discipline. Mathematics 
is a representation or an abstraction of a discipline, and is a means to an 
end and is not the end itself.

•	 All the factors that affect valuation may not have been included in 
the model.

•	 Although a model may be theoretically correct, the model variables such as 
forward prices, interest rates, volatilities, correlations and spreads may be 
poorly estimated. A model’s variables, for example, may be based on his-
torical data from a past regime, and therefore, not provide a good estimate 
of future value.

•	 Incorrect assumptions can be made about the properties of the asset values 
being modelled and the relationships between the variables in a model.
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•	 A model may be inappropriate in the existing market environment, or 
some of the assumptions such as the distributions of variables may not be 
valid. Even if a model itself is satisfactory, the world it is predicting may 
be unstable.

Financial modelling draws on a multitude of disciplines—from business man-
agement and financial theory to mathematics and computer science—and is 
as much art as it is theory and quantitative techniques. An intimate knowl-
edge of markets and how market participants think about valuation and risk 
are also part of the model practitioner’s skill set. Derman (1996) provides 
some procedures for constructing financial models:

•	 Identify and isolate the most important variables used by market partici-
pants to analyse value and risk, and decide which variables can be used in 
mathematical modelling.

•	 Separate the dependent variables and the independent variables.
•	 Determine which variables are directly measurable and those that are more 

in the nature of human expectations, and so, are only indirectly measurable.
•	 Specify which variables can be treated as deterministic and those that must 

be considered as stochastic. Uncertainty will have little effect on the future 
values for some variables and these therefore can be approximated. For 
other variables, however, uncertainty will be a critical issue.

•	 Build a quantitative picture that characterizes how the dependent variables 
are influenced by the independent ones.

•	 Determine how to obtain the market values of independent observable 
variables, and how to derive the implied values of indirectly measurable ones.

•	 Create a mathematical picture of the problem, and determine which sto-
chastic process best describes the evolution of the independent stochastic 
variables. Determine whether an analytical or numerical solution is 
appropriate.

•	 Deliberate the issues and difficulties in solving the model, and simplify it if 
necessary to make the solution as easy as possible. Only give up substance, 
however, for a relatively easy or elegant analytical solution when it is abso-
lutely necessary.

•	 Finally, programme the model, test it and apply to the valuation problem.

The application of financial modelling draws from a palette that includes 
knowledge of the markets, the applicability of the financial model, the rele-
vance of the mathematics used to solve the problem, the systems and  
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software used to implement and present it, and the accurate communication 
and dissemination of the information and knowledge gained from the analy-
sis. Drawing from these various disciplines can address the issues and reduce 
the risks associated with the application of financial modelling.
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