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5
Derivatives

5.1	� Futures, Forwards and Options

A derivative is a financial instrument whose payoff depends on the values of 
other more basic variables. The variables underlying derivatives are often the 
prices of traded securities. Derivatives separate market and credit risks from 
the underlying assets and liabilities, and offer the ability to reduce a risk expo-
sure through its transfer to a party that is prepared to take on and manage 
those risks. Derivative securities are also known as contingent claims, and can 
be contingent on almost any variable—from the price of a commodity to 
weather outcomes. There are two basic types of derivatives—futures/forwards 
and options.

Forward and futures contracts are agreements to buy or sell an underlying 
asset at a predetermined time in the future for a specified price. Futures are 
exchange standardized contracts, whereas forward contracts are direct agree-
ments between two parties. The cash flows of the two contracts also occur at 
different times. Futures are marked-to-market daily, with cash flows passing 
between the long and the short position to reflect the daily futures price 
change, whereas forwards are settled once at maturity. If future interest rates 
are known with certainty, then futures and forwards can be treated as the same 
for pricing purposes.

There are two sides to every forward contract. The party who agrees to buy 
the asset holds a long forward position, while the seller holds a short forward 
position. At the maturity of the contract (the ‘forward date’), the short posi-
tion delivers the asset to the long position in return for the cash amount 
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agreed in the contract, often called the delivery price. Figure 5.1 shows the 
profit and loss profile to the long forward position at the maturity of the con-
tract. If T represents the contract maturity date, a long forward payoff is 
expressed as ST – K, where ST represents the asset price at time T, and K rep-
resents the agreed delivery price. The payoff can be positive or negative, 
depending on the relative values of ST and K. The short position has the oppo-
site payoff to the long position, that is, K − ST , as every time the long position 
makes a profit, the short incurs a loss and vice versa. As the holder of a long 
forward contract is guaranteed to pay a known fixed price for the spot asset, 
futures and forwards can be seen as insurance contracts providing protection 
against the price uncertainty in the spot markets.

For an arbitrage relationship to exist, the forward price has to equal the cost 
of financing the purchase of the spot asset today and holding it until the for-
ward maturity date. Let F represent a forward contract price on a spot asset 
that is currently trading at S, T the maturity date of the contract, c the cost of 
holding the spot asset (which includes the borrowing costs for the initial pur-
chase and any storage costs) and d the continuous dividend yield paid out by 
the underlying asset. The price of a forward contract at time t and the spot 
instrument on which it is written are related via the ‘cost of carry’ formula:

	 F S c d T t= −( ) −( )e 	 (5.1)

where T −  t represents time in years. The continuous dividend yield, for 
example, can be interpreted as the yield on index futures, the foreign interest 
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Fig. 5.1  Payoff to a long forward position
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rate in foreign exchange futures contracts and the convenience yield for vari-
ous energy contracts.

Options contracts are the second foundation to the derivatives markets. 
Options are asymmetrical relationships where the option holder has a right, 
but not an obligation, to transact at a contracted price called the exercise 
price. There are two basic types of options. A call option gives the holder the 
right but not the obligation to buy the spot asset on or before a predetermined 
date (the maturity date) at a certain price (the strike price), which is agreed 
today. A put option is the right to sell at the exercise price. Option sellers, or 
writers, are obliged to commit to the purchaser’s decision. Figure 5.2 shows 
the payoff to the holder of a call option.

Options differ from forward and futures contracts in that a payment, or the 
option price or premium, must be made by the buyer, usually at the time 
when entering the contract. If the spot asset price is below the agreed strike or 
exercise price K at the maturity or expiration date, the holder lets the option 
expire worthless, forfeits the premium and buys the asset in the spot market. 
For asset prices greater than K, the holder exercises the option, buying the 
asset at K and has the ability to immediately make a profit equal to the differ-
ence between the two prices less the initial premium. The holder of the call 
option therefore essentially has the same positive payoff as the long forward 
contract without the downside risk.

The payoff to a call option is defined as:

	
max ,S K−( )0

	
(5.2)

The second basic type of option, a put option, gives the holder the right, but 
not the obligation, to sell the asset on or before the maturity date at the 
strike price.

The payoff for a put option is defined as:

	
max ,K S−( )0

	
(5.3)

Figure 5.3 shows the payoff to the holder of a put option.
As with forwards, there are two sides to every option contract. One party 

buys the option and has the long position, while the other party writes or sells 
the option and takes a short position. Figure 5.4 shows the four possible com-
binations of payoffs for long and short positions in European call and put 
options at the maturity date T. Options are also classified with respect to their 
exercise conventions. European options can only be exercised on the maturity 
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Fig. 5.2  Payoff for a call option
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Fig. 5.3  Payoff for a put option

date itself, whereas American-style options can be exercised at any time, up to 
and including the expiration date. While early exercise of an American option 
is generally not optimal, there are exceptions to the rule. One example is 
where the underlying asset pays dividends, reducing the value of the asset and 
any call options on that asset, in which case, the call option may be exercised 
before maturity.

Forwards and options are also the key building blocks of more complex 
derivatives, and these building blocks are themselves interdependent. The 
decomposition of derivatives into their components assists in identifying a 
derivative’s risk characteristics, which promotes more accurate pricing and 
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Fig. 5.4  Payoffs for European options

better risk management strategies. The basic futures and options described are 
the building blocks of all derivative securities, and the principles are consis-
tent across all underlying markets. In some markets, however, derivative struc-
tures exhibit a number of important differences from other underlying 
markets. These differences arise due to the complex contract types that exist in 
these industries, as well as the complex characteristics of the relevant underly-
ing prices. Both the type of derivative and the associated modelling need to 
capture the evolution of the underlying prices to reflect these differences.

5.2	� The Replicating Portfolio and Risk-Neutral 
Valuation

The modern theory of option pricing is possibly one of the most important 
contributions to financial economics. The breakthrough came in the early 
1970s, with work by Fisher Black, Myron Scholes and Robert Merton (Black 

5  Derivatives 



88

and Scholes 1973; Merton 1973). The Black–Scholes–Merton (BSM) 
modelling approach not only proved to be important in providing a compu-
tationally efficient and relatively easy way of pricing an option, but also dem-
onstrated the principal of no-arbitrage risk-neutral valuation. Their analysis 
showed that the payoff to an option could be perfectly replicated with a con-
tinuously adjusted holding in an underlying asset and a risk-free bond. As the 
risk of writing an option can be completely eliminated, the risk preferences of 
market participants are irrelevant to the valuation problem, and it can be 
assumed that they are risk-neutral. In this construct, all assets earn the risk-
free rate of interest, and therefore, the actual expected return on the asset does 
not appear in the Black–Scholes formula.

Options can be valued by deriving the cost of creating the replicating port-
folio such that both the option and the portfolio provide the same future 
returns, and therefore must sell at the same price to avoid arbitrage opportu-
nities. The portfolio consists of ∆ units of an underlying asset S and an amount 
B borrowed against ∆ units at the risk-free rate r. This combination of the 
borrowing and the underlying asset creates the same cash flows or returns as 
an option. A binomial model can be used to illustrate the replicating portfo-
lio. The binomial model assumes that the underlying asset price follows a 
binomial process, where at any time, the asset price S at t0 can only change to 
one of two possible values over the time period ∆t, either up to uS or down to 
dS at time t1, where u t= eσ ∆  and d = 1/u. Figure 5.5 is a binomial model for 
a one-period process, in which a risk-free portfolio consisting of the underly-
ing asset and the call option is illustrated.

S,C

Dt

uS, Cu = Max(uS–K,0)

dS, Cd = Max(dS–K,0)

Fig. 5.5  Binomial model of an asset price and call option
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The call option is defined as:

	
C S B≈ −( )∆

	

The value of the portfolio is the same, regardless of whether the asset price 
moves up or down over the period ∆t:

	
C uS r Bu = − +( )∆ 1

	

and

	
C dS r Bd = − +( )∆ 1

	

which after rearranging becomes:

	
− + = − +C uS C dSu d∆ ∆

	
(5.4)

This is the equivalent to:

	

∆ =
−
−( )

C C

u d S
u d

	

(5.5)

The portfolio must earn the continuously compounded risk-free rate of inter-
est as it is risk-free:

	
− +( ) = − +( )C uS C Sr t∆ ∆∆e

	
(5.6)

Substituting into Eq. (5.6) for ∆S, using Eq. (5.5) and rearranging for the call 
price at t0 obtains:

	

C
d

u d
C

u

u d
Cr t

r t

u

r t

d=
−
−

+
−
−











−e
e e∆

∆ ∆

	

(5.7)

The actual probabilities of the asset moving up or down have not been used in 
deriving the option price, and therefore, the option price is independent of 
the risk preferences of investors. Equation (5.7) can be interpreted as taking 
discounted expectations of future payoffs under the risk-neutral probabilities. 
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This provides a means to derive the risk-neutral probabilities directly from the 
asset price:

	
uSp dS p S r t+ −( ) =1 e ∆

	
(5.8)

for which the return can now be assumed as being the risk-free rate. 
Rearranging gives:

	
p

d

u d

r t

=
−
−

e ∆

	
(5.9)

for the risk neutral probability for uS, and 1 – p for dS. Equation (5.7) can 
now be written as:

	
C pC p Cr t

u d= + −( )( )−e ∆ 1
	

This is the price of the call option with one period to maturity.

5.3	� A Model for Asset Prices

The evolution of uncertainty over time can be conceptualized and modelled 
as a mathematical expression, known as a stochastic process, which describes 
the evolution of a random variable over time. Models of asset price behaviour 
for pricing derivatives are formulated in a continuous time framework by 
assuming a stochastic differential equation (SDE) describes the stochastic pro-
cess followed by the asset price. The most well-known assumption made about 
asset price behaviour, which was made by Black and Scholes (1973), is geo-
metric Brownian motion (GBM).

The GBM assumption in the Black–Scholes model is the mathematical 
description of how asset prices evolve through time. In the GBM assumption, 
proportional changes in the asset price, denoted by S, are assumed to have 
constant instantaneous drift, μ, and volatility, σ. A non-dividend paying asset 
S following a  GBM is represented by the following stochastic differential 
equation (SDE):

	 dS Sdt Sdz= +µ σ 	 (5.10)

  J. Rogers
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where dS represents the increment in the asset price process during a (infini-
tesimally) small interval of time dt, and dz is the underlying uncertainty driv-
ing the model, representing an increment in a Weiner process during dt. The 
risk-neutral assumption implies that the drift can be replaced by the risk-free 
rate of interest (i.e., μ = r). Any process describing the stochastic behaviour of 
the asset price will lead to a characterization of the distribution of future asset 
values. An assumption in Eq. (5.10) is that future asset prices are lognormally 
distributed, or that the returns to the asset are normally distributed. Dividing 
through by S gives:

	

dS

S
dt dz= +µ σ

	
(5.11)

In Eq. (5.11), the percentage change or return in the asset price dS/S has 
two components. The first is that during the small interval of time dt, the 
average return on the asset is μdt, which is deterministic. The parameter μ is 
known as the drift. Added to this drift is the random component made up of 
the change dz, in a random variable z, and a parameter σ, which is generally 
referred to as the volatility of the asset. The random variable z, or equivalently, 
the change dz is called a Weiner process. A Weiner process is defined by two 
key properties. The first is that dz is normally distributed with mean zero and 
variance dt or the standard deviation of the square root of dt. The second is 
that the values of dz over two different non-overlapping increments of time 
are independent. Equations (5.10) and (5.11) are examples of an Itô process, 
as the drift and volatility only depend on the current value of the variable (the 
asset price) and time. In general, the stochastic differential equation for a vari-
able S following an Itô process is:

	
dS S t dt S t dz= ( ) + ( )µ σ, ,

	
(5.12)

where the functions μ(S,t) and σ(S,t) are general functions for the drift and 
volatility. Many models for the behaviour of asset prices assume that the 
future evolution of the asset price depends only on its present level and not on 
the path taken to reach that level. A stochastic process possessing this property 
is known as Markovian.

The stochastic process followed by any derivative can be inferred from the 
assumption of the behaviour of the asset price on which the derivative’s payoff 
is dependent. It follows that, using the Black–Scholes concept of constructing 
a riskless portfolio, a partial differential equation can be derived that governs 
the price of the derivative security.
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5.4	� The Black–Scholes Formula

The stochastic differential equation for the asset price S is the starting point 
for any derivative model. As the process for the asset and the process for the 
derivative have the same source of uncertainty, it is possible to combine the 
two securities in a portfolio in such a way as to eliminate that uncertainty. A 
portfolio consisting of a short position in an option and a long position in 
an underlying asset can be constructed such that the change in its value over 
an infinitesimal increment of time is independent of the source of random-
ness, and is therefore risk-free. This relationship leads to the Black–Scholes 
partial differential equation. The Black–Scholes formulae for standard 
European call and put options are the result of solving this partial differen-
tial equation.

As the expected return on the underlying asset does not appear in the 
Black–Scholes partial differential equation, the value of the derivative is inde-
pendent of the risk preferences of investors. The implication of this risk-
neutral pricing is that the present value of any future random cash flow—for 
example, the payoff for an option—is given by the expected value of the ran-
dom future value discounted at the riskless rate. Replacing the expectation 
with the integral and solving obtains the Black–Scholes equation.

The Black–Scholes formula for a European call option on a non-dividend 
paying stock is:

	
c S N d K N dr T t= ( ) − ( )− −( )

0 1 2e
	

(5.13)

where,
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while the corresponding equation for the European put is:

	
p K N d S N dr T t= −( ) − −( )− −( )e 2 0 1 	

(5.14)

and the parameters are:
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S0 = the value of S at time zero,
K = the strike price of the option,
r = the risk-free interest rate,
t = a point in time,
T = Time at maturity of a derivative.

One of the qualities that has led to the enduring success of the Black–
Scholes model is its simplicity. The inputs of the model are defined by the 
contract being priced or are directly observable from the market. The only 
exception to this is the volatility parameter, and there is now a vast amount of 
published material in the finance literature for deriving estimates of this fig-
ure, either from historical data or as implied by the market prices of options.

One widely used relaxation of the original formula takes into account assets 
that pay a constant proportional dividend. Assets of this kind are handled by 
reducing the expected growth rate of the asset by the amount of the dividend 
yield. If the asset pays a constant proportional dividend at a rate d over the life 
of the option, then the original Black–Scholes call formula (5.13) can be used 
with the adjustment where the parameter S is replaced by the term Se−d(T−t). 
This adjustment has been applied to value options on broad-based equity 
indices, options on foreign exchange rates, and real options that allow for 
competition, where the fall in value due to competition is equivalent to the 
dividend yield.

The intuition of the replicating portfolio concept can be illustrated with 
the Black–Scholes formula. The Black–Scholes formula can be defined as a 
combination of two binary options—a cash-or-nothing call and an asset-or-
nothing call:

Asset-or-nothing call:

	
S N dT te− −( ) ( )δ

1 	
(5.15)

Cash-or-nothing call:

	
K N dr T te− −( ) ( )2 	

(5.16)

A European call option represents a long position in an asset-or-nothing 
call and a short position in a cash-or-nothing call, where the cash payoff on 
the cash-or-nothing call is equivalent to the strike price. A European put is a 
long position in a cash-or-nothing put and a short position in an asset-or-
nothing put, where the strike price represents the cash payoff on the cash-or-
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nothing put. N(d1), the option delta, is the number of units of the underlying 
asset required to form the portfolio, and the cash-or-nothing term is the num-
ber of bonds, each paying $1 at expiration.

Although it is possible to obtain closed-form solutions such as Eq. (5.13) 
for certain derivative pricing problems, there are many situations when ana-
lytical solutions are not obtainable, and therefore, numerical techniques need 
to be applied. Examples include American options and other options where 
there are early exercise opportunities, ‘path-dependent’ options with discrete 
observation frequencies, models that incorporate jumps and models depen-
dent on multiple random factors. The description of two of these techniques 
is the subject of the next section.

5.5	� Numerical Techniques

Two numerical techniques that are most commonly used by practitioners to 
value derivatives in the absence of closed-form solutions are binomial and 
trinomial trees and Monte Carlo simulation. Practitioners also use other tech-
niques such as finite difference schemes, numerical integration, finite element 
methods and others. It is possible to price not only derivatives with compli-
cated payoff functions dependent on the final price using trees and Monte 
Carlo simulation techniques, but also derivatives whose payoff is determined 
also by the path the underlying price follows during its life.

5.5.1	� Monte Carlo Simulation

Monte Carlo simulation provides a simple and flexible method for valuing 
complex derivatives for which analytical formulae are not possible. The 
method can easily deal with multiple random factors, can be used to value 
complex path-dependent options, and allows the inclusion of price processes 
such as price jumps. In general, the present value of an option is the expecta-
tion of its discounted payoff. Monte Carlo simulation derives an estimate of 
this expectation by simulating a large number of possible paths for the asset 
price from time zero to the option maturity, and computing the average of the 
discounted payoffs.

GBM for non-dividend spot prices with constant expected return μ and 
volatility σ is represented by the SDE in Eq. (5.10). The Black–Scholes per-
fect replication argument leads to the risk-neutral process in which the actual 
drift of the spot price μ is replaced by the interest rate r:

  J. Rogers
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	 dS rSdt Sdz= +σ 	 (5.17)

If the asset pays a constant continuous dividend yield δ, then the risk-neutral 
process becomes:

	
dS r Sdt Sdz= ( ) +– δ σ

	
(5.18)

Transforming the spot price to the natural log of the spot price x = ln(S) gives 
the following process for x:

	 dx vdt dz= +σ 	 (5.19)

where v r= − −δ σ
1

2
2 . The transformed GBM process represented in Eq. 

(5.10) can be discretized as:

	
x x v t z zt t t t t t+ += + + −( )( )∆ ∆∆ σ

	
(5.20)

In terms of the original asset price, the discrete form is:

	
S S v t z ztt t t t t+ += + −( )( )∆ ∆∆exp σ

	
(5.21)

Equations (5.20) or (5.21) can be used to simulate the evolution of the spot 
price through time. The change in the random Brownian motion, zt+∆t − zt, has 
a mean of zero and a variance of ∆t. It can therefore be simulated using random 
samples from a standard normal distribution multiplied by t∆ , that is, ∆tε   
where ε ~ N 01,( ) . In order to simulate the spot price, the time period [0,T] 
is divided into N intervals such that ∆t = T/N, ti = i∆t, i = 1, …, N. Using, for 
example, Eq. (5.21) gives:

	
S S t tt t ii i

= +( )−1
exp ν σ ε∆ ∆

	
(5.22)

As the drift and volatility terms do not depend on the variables S and t, the 
discretization is correct for any chosen time step. Therefore, the option can be 
simulated to the maturity date in a single time step if the payoff is a function 
of the terminal asset value and does not depend on the asset’s path during the 
life of the option. Repeating this process N times, and choosing εi randomly 
each time, leads to one possible path for the spot price for each simulation.
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At the end of each simulated path, the terminal value of the option CT is 
evaluated. Let CT,j represent the payoff to the contingent claim under the jth 
simulation. For example, a standard European call option terminal value 
is given by:

	
C S KT j T j, ,max ,= −( )0

	
(5.23)

Each payoff is discounted using the simulated short-term interest rate sequence:

	
C r du Cj

T

u T j0 0, ,exp= −( )∫
	

(5.24)

In the case of constant or deterministic interest rates, Eq. (5.24) simplifies to:

	
C P T Cj T j0 0, ,= ( ),

	
(5.25)

This value represents the value of the option along one possible asset price 
path. The simulations are repeated M times and the average of all the out-
comes is taken to compute the expectation, and hence, the option price:

	

ˆ
,C

M
C

j

M

j0
1

0

1
=

=
∑

	

(5.26)

Therefore, Ĉ0  is an estimate of the true value of the option, C0, but with 
an error due to the fact that it is an average of randomly generated samples, 
and so, is itself random. In order to obtain a measure of the error, the standard 
error SE(.) is estimated as the sample standard deviation, SD(.), of Ct,j divided 
by the square root of the number of samples:

	
SE C

SD C

M

jˆ ,

0

0( ) = ( )
	

(5.27)

where SD(C0,j) is the standard deviation of C0:

	

SD C
M

C Cj
j

M

j0
1

0

21

1
0, ,( ) =

−
−( )

=
∑ 

	

(5.28)
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For many American-style options, early exercise can be optimal, depending 
on the level of the underlying price. It is rare to find closed-form solutions for 
prices and risk parameters of these options, so numerical procedures must be 
applied. Using Monte Carlo simulation for pricing American-style options, 
however, can be difficult. The problem arises because simulation methods 
generate trajectories of state variables forward in time, whereas a backward 
dynamic programming approach is required to efficiently determine optimal 
exercise decisions for pricing American options. Therefore, practitioners usu-
ally use binomial and trinomial trees for the pricing of American options.

5.5.2	� The Binomial and Trinomial Method

The binomial model of Cox et al. (1979) is a well-known alternative discrete 
time representation of the behaviour of asset prices following GBM.  This 
model is important in several ways. First, the continuous time limit of the 
proportional binomial process is exactly the GBM process. Second, and per-
haps most importantly, the binomial model is the basis of the dynamic pro-
gramming solution to the valuation of American options. Section 5.2 discussed 
a one-step binomial tree as part of the overview of the replicating portfolio. To 
price options with more than one period to maturity, the binomial tree is 
extended outwards for the required number of periods to the maturity date of 
the option. Figure 5.6 illustrates a binomial tree for an option that expires in 
four periods of time.

A state in the tree is referred to as a node, and is labelled as node (i,j), where 
i indicates the number of time steps from time zero and j indicates the num-
ber of upward movements the asset price has made since time zero. Therefore, 
the level of the asset price at node (i,j) is Si,j = Sujdi–j and the option price will 
be Ci,j. At the lowest node at every time step j = 0, and j will remain the same 
when moving from one node to another via a downward branch, as the num-
ber of upward moves that have occurred would not have changed. It is gener-
ally assumed that there are N time steps in total, where the Nth time step 
corresponds to the maturity date of the option. As is the case with the one 
period example, the value of a call option at the maturity date is the payoff:

	
C S KN j N j, ,max ,= −( )0

	
(5.29)

As the value of the option at any node in the tree is its discounted expected 
value, at any node in the tree before maturity:
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Fig. 5.6  A four-step binomial tree for an asset

	
C pC p Ci j

r t
i j i j, , ,= + −( )( )−
+ + +e ∆
1 1 11

	
(5.30)

where the binomial risk neutral probabilities p and (1 – p) are derived as:

	
p

d

u d

r t

=
−
−

e ∆

	

and r is the risk free rate.
Using Eqs. (5.29) and (5.30), the value of the option can be computed at 

every node for time step N – 1. Equation (5.30) can then be reapplied at every 
node for every time step, working backwards through the tree to compute the 
value of the option at every node in the tree. The value of a European option 
can be derived using this procedure. To derive the value of an American 
option, the value of the option, if it is exercised, is compared at every node to 
the option value if it is not exercised, and the value at that node set to the 
greater of the two.

Although binomial trees are used by many practitioners for pricing 
American-style options, trinomial trees offer a number of advantages over the 
binomial tree. As there are three possible future movements over each time 
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period, rather than the two of the binomial approach, the trinomial tree pro-
vides a better approximation to a continuous price process than the binomial 
tree for the same number of time steps. The trinomial tree is also easier to 
work with because of its more regular grid and is more flexible, allowing it to 
be fitted more easily to market prices of forwards and standard options, an 
important practical consideration. A discussion of trinomial trees follows.

In the following, it is more convenient to work in terms of the natural loga-
rithm of the spot price as defined in Eq. (5.19). Consider a trinomial model 
of the asset price in which, over a small time interval Δt, the asset price can 
increase by Δx (the space step), stay the same or decrease by Δx, with proba-
bilities pu, pm and pd, respectively. This is depicted in terms of x in Fig. 5.7.

The drift and volatility parameters of the asset price are now captured in 
this simplified discrete process by ∆x, pu, pm and pd. It can be shown that the 
space step cannot be chosen independently of the time step, and that a good 
choice is ∆ ∆x t=σ 3 .  The relationship between the parameters of the con-
tinuous time process and the trinomial process is obtained by equating the 
mean and variance over the time interval Δt and requiring that the probabili-
ties sum to one, that is:

	
E x p x p p x tu m d∆ ∆ ∆ ∆[ ] = ( ) + ( ) + −( ) =0 ν

	
(5.31)

	
E x p x p p x t tu m d∆ ∆ ∆ ∆ ∆2 2 2 2 2 20  = ( ) + ( ) + ( ) = +σ ν

	
(5.32)

	
p p pu m d+ + =1

	
(5.33)

Solving Eqs. (5.31–5.33) yields the following explicit expressions for the 
transitional probabilities:
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(5.34)
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(5.36)

The single period trinomial process in Fig. 5.7 can be extended to form a 
trinomial tree. Figure 5.8 depicts such a tree.
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Fig. 5.7  The trinomial model of an asset price
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Fig. 5.8  A trinomial tree model of an asset price

Let i denote the number of the time step and j, the level of the asset price 
relative to the initial asset price in the tree. If Si,j denotes the level of the asset 
price at node (i,j), then t = ti = i∆t, and an asset price level of Sexp(j∆x). 
Once the tree has been constructed, the spot price is known at every time 
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and every state of the world consistent with the original assumptions about 
its behaviour process, and the tree can be used to derive prices for a wide 
range of derivatives.

The procedure is illustrated with reference to pricing a European and 
American call option with a strike price K on the spot price. The value of an 
option is represented at node (i,j) by Ci,j. In order to value an option, the 
tree is constructed as representing the evolution of the spot price from the 
current date out to the maturity date of the option. Let time step N corre-
spond to the maturity date in terms of the number of time steps in the tree, 
that is, T = N∆t. The values of the option at maturity are determined by the 
values of the spot price in the tree at time step N and the strike price of 
the option:

	
C S K j N NN j N j, ,max , ; , ,= −( ) = − …0

	
(5.37)

It can be shown that option values can be computed as discounted expecta-
tions in a risk-neutral world, and therefore, the values of the option at earlier 
nodes can be computed as discounted expectations of the values at the follow-
ing three nodes to which the asset price could jump:

	
C p C p C p Ci j

r t
u i j m i j d i j, , , ,= + +( )−

+ + + + −e ∆
1 1 1 1 1 	

(5.38)

where e−r∆t is the single period discount factor. This procedure is often referred 
to as ‘backwards induction’ as it links the option value at time i to known 
values at time i  + 1. The attraction of this method is the ease with which 
American option values can be evaluated. During the inductive stage, the 
immediate exercise value of the option is compared with the value if not exer-
cised as computed from Eq. (5.38). If the immediate exercise value is greater, 
then this value is stored at the node, that is:

	
C p C p C p C S Ki j

r t
u i j m i j d i j i j, , , , ,max ,= + +( ) −{ }−

+ + + + −e ∆
1 1 1 1 1

	
(5.39)

This method also provides the optimal exercise strategy for the American 
option, since for every possible future state of the world, that is, every 
node in the tree, it can be determined whether to exercise the option or 
not. The value of the option today is given by the value in the tree at node 
(0,0), C0,0.
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