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4
Financial Statistics

4.1	� Time Series Analysis

The econometric analysis of economic, financial and business time series has 
become an integral part in the research and application of quantitative descrip-
tions of the real world. A time series typically consists of a set of observations 
of some observational unit or variable, y, which is taken at equally spaced 
intervals over time (Harvey 1993). A time series can be considered from two 
aspects—analysis and modelling. The objective of a time series analysis is to 
identify and summarize its properties and describe its prominent characteris-
tics. The analysis can be framed in either the time domain or the frequency 
domain. In the time domain, the focus is on the relationship between obser-
vations at various points in time, whereas in the frequency domain, the analy-
sis focuses on the cyclical movements of a series.

Economic, business and financial time series will have at least one of the 
following key features:

•	 Trends: are one of the main features of many time series. Trends can have 
any number of attributes, such as upward or downward, with relatively dif-
ferent slopes, and linear, exponential or other functional forms.

•	 Seasonality: time series can often display a seasonal pattern. Seasonality is a 
cyclical pattern that occurs on a regular calendar basis.

•	 Irregular observations: there can be periods or samples within a time series 
that are inconsistent with other periods, and therefore the series is subject 
to regime changes.
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•	 Conditional heteroskedasticity: is a time series condition where there is varia-
tion (as opposed to constancy) in the variance or volatility and patterns 
emerge in clusters, that is, high volatility is followed by high volatility, and 
low volatility is followed by low volatility.

•	 Non-linearity: generally, a time series can be described as non-linear when 
the impact of a shock to the series depends if it is positive or negative and 
is not proportional to its size.

A stochastic time series is generated by a stochastic process, that is, each 
value of y in a series is a random draw from a probability distribution. 
Inferences can be made about the probabilities of possible future values of the 
series by describing the characteristics of the series randomness. Much of the 
research in time series has focused on investigating the hypothesis as to 
whether a series is a random walk or reverts back to a trend after a shock. The 
simplest random walk process assumes that each successive change in yt is 
drawn from a probability distribution with zero mean:

	
y yt t t= +−1 ε

	
(4.1)

where εt is an error term which has a zero mean and whose values are indepen-
dent of each other. The price change Δyt = yt – yt−1 is therefore the error εt and 
is independent of price changes.

The question of whether economic variables follow random walks or tend 
to revert back to a long-run trend after a shock is an important issue for mod-
elling. Most financial models of futures, options and other instruments tied to 
an underlying asset are based on the assumption that the spot price follows a 
random walk. In some markets, however, the prices of such assets as energies 
and commodities are tied in the long run to their marginal production cost. 
Although the price of an energy or commodity may be subject to sharp short-
run fluctuations, it typically tends to return to a mean level based on cost.

A number of methods exist to test hypotheses about the properties of a 
time series. One technique is to examine its autocorrelation properties. Time 
series can be characterized by a set of autocorrelations, which can provide 
insights into possible models to describe the time series. A correlogram displays 
the autocorrelation and partial autocorrelation functions up to the specified 
order of lags. These functions characterize the pattern of temporal depen-
dence in time series data. Another method for testing the hypothesis that the 
process is a random walk against the alternative that it is stationary, that is, the 
stochastic process in fixed time, is the unit root test introduced by Dickey and 
Fuller. Formally stated, the simplest model tested is:
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y y t Tt t t= + = …−φ ε1 2,

	
(4.2)

where the null hypothesis is ϕ = 1 and the alternative hypothesis is ϕ < 1. The 
generalization of the test for a unit root is known as the augmented Dickey–
Fuller (ADF) test (1979, 1981).

Most statistical tools are designed to model the conditional mean of a ran-
dom variable. Autoregressive conditional heteroskedasticity (ARCH) models 
are specifically designed to model and forecast conditional variances. ARCH 
models were introduced by Engle (1982) and generalized as GARCH (gener-
alized ARCH) by Bollerslev (1986). These models are widely used in econo-
metrics, especially in financial time series analysis. The modelling of variance 
or volatility can be used, for example, in the analysis of the risk of holding an 
asset or in the valuation of an option. In a GARCH model, there are two sepa-
rate specifications—one for the conditional mean and one for the conditional 
variance. The standard GARCH(1,1) specification is:

	
yt t t= +α σ ε0 	

(4.3)

	
σ ϖ α ε βσt t t

2
1 1

2
1

2= + +− − 	
(4.4)

where yt is the log return of a series, and the mean equation in (4.3) is written 
as a function of exogenous variables with an error term. As σt2 is the one-
period ahead forecast variance based on past information, it is called the con-
ditional variance. The conditional variance equation specified in (4.4) is a 
function of three terms—the mean, news about volatility from the previous 
period, measured as the lag of the squared residual from the mean equation 
(the ARCH term), and last period’s forecast variance (the GARCH term).

4.2	� Regression Models

Regression analysis is a statistical tool that can identify the correlation between 
two or more variables as a causal relationship by formulating a hypothesis that 
a dependent variable is a function of one of more independent variables. 
Applications include the Capital Asset Pricing Model (CAPM), which repre-
sents the relationship between a financial asset’s risk and return, and Factor 
Models, which use multiple explanatory variables for asset returns to decom-
pose risk and return into observable and unobservable components.
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4.3	� Volatility

Volatility, defined as the annualized standard deviation of price returns, is one 
of the critical concepts in option pricing and risk management. A percentage 
is derived as:

	

r
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t

t

= −
−1

1
	

(4.5)

where St is the spot price at time t. Price returns are typically calculated by 
taking the natural logarithms of the price ratios:
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(4.6)

which is an approximation of the percentage change. Log returns are usually 
used to calculate volatility, as the natural log of St/St–1 is equivalent to the 
natural log of 1 + r, which is approximately equal to r. Another advantage is 
the log of a product is equal to the sum of the logs, and therefore, a log return 
over a time period can be calculated as the sum of log returns for the sub-
periods. Figure  4.1 illustrates the inflation adjusted S&P 500 index from 
January 4, 1950 to December 31, 2018, and Fig. 4.2, the S&P returns from 
February 4, 2015 to August 17, 2015.

Volatility, rather than standard deviations or variances, is used as a measure 
of uncertainty so that any comparisons of distributions are equivalent. 
Normalizing a price return’s standard deviation into a volatility measure cre-
ates a consistent measure of magnitude of random behaviour, and therefore, 
facilitates the comparison of various markets and models. The volatility of a 
price process also measures the annualized distribution of price returns, 
whereas standard deviations can measure the width of any distribution. The 
probability of exceeding an option’s exercise price increases as a result of the 
volatility of the underlying asset, which is why volatility increases the value of 
options. Typically, the greater the volatility associated with an underlying 
asset, the greater the value of an option on that asset.

Volatility can be estimated from historical data or implied from option mar-
ket prices. If there is a reasonably liquid market for traded options, then the 
implied volatility can be derived through an iteration process using an analyti-
cal pricing formula, such as the Black–Scholes model, the option price and the 
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Fig. 4.1  S&P 500—January 4, 1950 to December 31, 2018, GDP inflation adjusted, 
2012 = 100. US Bureau of Economic Analysis, Gross Domestic Product: Implicit Price 
Deflator [GDPDEF], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.
stlouisfed.org/series/GDPDEF, March 5, 2019. Note—the index contained 90 stocks up 
to 1957, and then, expanded to the current 500
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Fig. 4.2  S&P 500 returns (×100)—February 4, 2015 to August 17, 2015

known variables such as the interest rate, time to maturity and exercise price. 
The result is a forecast of the volatility implied in the quoted price of the 
option, with the forecast horizon being the maturity or expiry of the option. 
Volatility can also be derived from historical data by annualizing the standard 
deviation of the log returns through a scaling factor defined as the square root 
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of time. The annualization factor depends on the price data frequency. If the 
data is monthly, the factor is √12, for weekly data, √52, and for the daily data 
for each calendar day, it is √365. If the data is available for trading days only, 
the relevant number may vary from √250 to √260, according to public holidays.

While volatility provides a comparative risk parameter, other test statistics 
can provide insights as to how well the assumptions capture the behaviour of 
a time series. The properties of a time series can be depicted by its descriptive 
statistics. The mean and standard deviation are descriptive measures of the 
properties of a time series. Other descriptive measures can be illustrated using 
a histogram, which displays the frequency distribution of a series. A histogram 
divides the range between the maximum and minimum values of a series into 
a number of equal length intervals or bins, and exhibits the number of obser-
vations within each bin. Figure 4.3 illustrates the histogram of the S&P 500 
index log returns from February 2, 2015 to August 17, 2015, chosen as there 
was no trend within the sample.

The descriptive statistics of the S&P returns sample are:

•	 The mean: the average value of the series sample, derived by adding up the 
series sample and dividing by the number of observations.

•	 The median: a measure of central tendency, or the middle value (or average 
of the two middle values) of a series sample sequenced from the smallest to 
the largest. The median is a more robust measure of the centre of the distri-
bution than the mean, as it is less sensitive to outliers.

•	 The maximum and minimum values of the series sample.
•	 The standard deviation: a measure of dispersion or spread in the series.
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Series: S&P 500 Returns

Sample 2/04/2015 8/17/2015
Observations 139

Mean 0.021157
Median 0.000000
Maximum 1.344289
Minimum -2.108692
Std. Dev. 0.670494
Skewness -0.244613
Kurtosis 3.344106

Jarque-Bera 2.071975
Probability 0.354876

Fig. 4.3  Histogram of the S&P 500 returns (×100)—February 4, 2015 to August 17, 2015
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•	 Skewness: a measure of the asymmetry of a series distribution around its 
mean. The skewness of the normal distribution, which is symmetric, is 
zero. Positive skewness implies that a distribution has a long right tail, 
while negative skewness indicates a long left tail.

•	 Kurtosis: measures the peakness or flatness in the distribution of a series. A 
normal distribution has a kurtosis of three. If the kurtosis exceeds three, the 
distribution is leptokurtic or relatively peaked compared to the normal dis-
tribution, while if the kurtosis is less than three, the distribution is platykur-
tic or relatively flat to the normal distribution.

•	 Jarque-Bera: a test statistic for testing whether the series approximates the 
normal distribution. The test statistic measures the differences in the skew-
ness and kurtosis of the series with those from the normal distribution. The 
null hypothesis is that a series has a normal distribution.

The annualized volatility for the S&P 500 index sample period is 10.6%, 
which is 0.670494, the standard deviation multiplied by √250. The histo-
gram in Fig. 4.3 also illustrates the presence of fat tails in the distribution of 
the S&P 500 index returns. Fat tails refers to the probability of extreme 
outcomes in an observed series exceeding the assumed theoretical probability 
distribution. Distributions displaying fat tails are described as leptokurtic and 
are measured by kurtosis, which in this case is 3.344106, and therefore greater 
than three. The skewness, which is zero in a normal distribution, is negative 
in this case, and is typical of many financial assets, such as stock prices.

4.4	� The Lognormal Distribution

A variable has a lognormal distribution if the natural logarithm of the variable 
is normally distributed. Figures 4.4 and 4.5 illustrate the distributions of a 
simulated series and its natural log equivalent, respectively. A lognormal vari-
able can have any value between zero and infinity. As a result, the lognormal 
distribution has a positive skew, and therefore, is unlike the normal distribu-
tion, as indicated by the skewness and kurtosis statistics. The log series, how-
ever, has a skewness close to zero and a kurtosis that is approximately three, 
and therefore can be described as being normally distributed.

The use of the log of financial variables is popular in derivative modelling 
as the price can never become negative, and the return is the relative change 
in the level of the log price. Figure 4.6 illustrates the distribution of the log 
returns of the simulated series. The returns can also be described as being 
normally distributed. The lognormal property of asset prices also can be used 
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Series: Simulation

Sample 1 10,000
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Mean 100.5303

Median 96.1506

Maximum 287.4190

Minimum 26.0233

Std. Dev. 30.9337
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Fig. 4.4  The simulated series
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Sample 1 10,000

Observations 10,000
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Fig. 4.5  The natural log of the simulated series
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Observations 9999
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Fig. 4.6  The simulated log returns
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to describe a price process and its probability distribution. If an asset price 
follows a geometric Brownian motion, then the natural log of an asset price 
follows a process called a generalized Weiner process. This implies that, given 
an asset’s price today, the price at T has a lognormal distributed. The standard 
deviation of the logarithm of an asset is σ√T, that is, it is proportional to the 
square root of the length of time into the future. This stochastic process is the 
basis for the Black–Scholes option pricing model.

4.5	� Volatility and the Firm

The volatility of a project, asset or firm is not necessarily the same as the vola-
tility of one of its components. One example is the difference between the 
volatility of a firm’s market value and the volatility of its equity. A firm’s capital 
structure is the mixture of debt, equity and other liabilities that the firm uses 
to finance its assets. Merton (1974) defined the value of a firm’s equity as a call 
option on the assets of the firm, where the strike is the book value of the firm’s 
liabilities, and the underlying asset is the total value of the firm’s assets. 
Merton’s approach illustrated the link between the market value of the firm’s 
assets and the market value of its equity, and provided a framework for deter-
mining the value of a firm’s equity by reference to the underlying market value 
of the firm.

The analysis can be reversed to estimate a firm’s value and volatility from 
the market value of its equity, the volatility of its equity and the book value of 
its liabilities. KMV (now a division of Moody’s Analytics) extended Merton’s 
approach to estimate probabilities of default for credit analysis. If the market 
price of equity is available, the market value and volatility of assets can be 
determined directly using an options pricing-based approach, which recog-
nizes equity as a call option on the underlying assets of the firm. The limited 
liability of equity provides equity holders with the right but not the obligation 
to pay off the debt holders and acquire a firm’s remaining assets. A call option 
on the underlying assets has the same properties. The holder of a call option 
on a firm’s assets has a claim on those assets after fulfilling the option’s strike 
value, which in this case, is equal to the book value of the firm’s liabilities. If 
the value of the assets is not sufficient to meet the firm’s liabilities, the share-
holders, the holders of the call option, will not exercise the option and will 
abandon the firm to its creditors. KMV utilizes the optional nature of equity 
to derive the market value and volatility of a firm’s underlying assets implied 
by its equity market value by solving backwards for the implied asset value 
and asset volatility.

4  Financial Statistics 



82

Bibliography

Bollerslev, T.  Generalized autoregressive conditional heteroskedasticity, Journal of 
Econometrics, 31: 307–27, 1986.

Clewlow, L. and Strickland, C. Implementing Derivative Models, Wiley, 1998.
Clewlow, L. and Strickland, C. Energy Derivatives, Pricing and Risk Management, 

Lacima, 2000.
Culp C.L. The Risk Management Process, Wiley, 2001.
Dickey, D.A. and Fuller, W.A. Distribution of the estimators for autoregressive time 

series with a unit root, Journal of the American Statistical Association, 74, 1979.
Dickey, D.A. and Fuller, W.A. Likelihood ratio statistics for autoregressive time series 

with a unit root, Econometrica, 49: 1057–72, 1981.
Engle, R.F. Autoregressive conditional heteroskedasticity with estimates of the vari-

ance of UK inflation, Econometrica, 50: 987–1008, 1982.
Franses, P.H.  Time Series for Business and Economic Forecasting, Cambridge 

University Press, 1998.
Harvey, A.C. Time Series Models, Harvester Wheatsheaf, 1993.
Hull, J.C. Options, Futures and Other Derivatives, Prentice Hall, ninth edition, 2014.
Merton, R.  On the pricing of corporate debt: the risk structure of interest rates, 

Journal of Finance, 29: 449–70, 1974.
Mills, T.C.  The Econometric Modelling of Financial Time Series, Cambridge 

University Press, third edition, 2008.
Pindyck, R. and Rubenfield, D.  Econometric Models and Economic Forecasts, 

McGraw Hill, 1998.
Taylor, S.J. Modelling Financial Time Series, Wiley, 1984.
Vasicek, O. An equilibrium characterisation of the term structure, Journal of Financial 

Economics, (5): 177–88, 1977.

  J. Rogers


	4: Financial Statistics
	4.1	 Time Series Analysis
	4.2	 Regression Models
	4.3	 Volatility
	4.4	 The Lognormal Distribution
	4.5	 Volatility and the Firm
	Bibliography




