
Chapter 6
Photon Interaction with Clusters
and Microparticles

Abstract There are various mechanisms of particle interaction with photons that
cause photon absorption. In the case of dielectric particles it results from interac-
tion of the radiation field with a particle dipole moment which is induced by this
field. Absorption of infrared radiation by a particle proceeds by excitation of internal
degrees of freedom that in the case of separation of the particle in molecules corre-
sponds to molecular vibrations and rotations. The latter is of importance for radiative
transitions in aerosols, i.e. in atmospheric particles. The interaction of metal particles
with an electromagnetic wave takes place through an electron subsystem twofold. If
the electron subsystem partakes in this interaction as a whole, the photon absorption
is determined by its plasma properties. In other case, the absorption results from
electron excitation of metal atoms which constitute the metal particle. In particular,
from the analysis of experimental data it is shown that light absorption is described
by radiative transitions in individual atoms which interact strongly with surrounding
ones. In addition, electrons of the metal particles screen an electromagnetic field, and
if a particle size is not too small, absorption proceeds in a thin layer near its surface,
or in the skin layer.

6.1 Scattering of the Electromagnetic Wave on Atomic
and Small Particles

6.1.1 Resonance Fluorescence Involving Molecules and
Atoms

Interaction of an atomic particle with an electromagnetic wave results in processes of
scattering of this wave and its absorption. Elementary processes of photon collisions
with a molecule are presented in Fig. 6.1. They include one-photon processes—
absorption and emission during photon-molecule collisions. Last three processes are
two-photon processes. Rayleigh scattering is an elastic photon-molecule process,
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Fig. 6.1 Types of photon scattering on the molecule

other two processes in Fig. 6.1, i.e. the Stokes process and anti-Stokes process, are
inelastic collisions with a loss and increase of the photon energy.

One can see the symmetry between some processes of Fig. 6.1. This symmetry is
expressed through the principle of detailed balance which connects the cross sections
of direct and inverse processes with each other. In particular, the symmetry between
one-photon processes, i.e. between processes of emission and absorption, follows
from formulas (2.2.24) and (2.2.25). We below show the connection between the
Stokes process and anti-Stokes one, i.e. two-photon processes in photon-molecule
scattering which are presented in Fig. 6.1.

Note that the most intense Stokes and anti-Stokes processes as a result of two-
photon scattering on a molecule are realized, if the first step of these processes is the
resonance photon absorption in accordance with Fig. 6.2 for molecule transitions.
Similar resonance processes for atoms are shown in Fig. 6.3; they take into account
that the final state include a group of levels which may be degenerated. These lev-
els belong to states of fine or superfine structures; we characterize each level by a
momentum J0 for the initial state and a momentum Jk for the final state, so that the
statistical weights for the initial state g0 and for the final one are

g0 = 2J0 + 1, gk = 2Jk + 1

We below determine the connection between rates of the processes of resonance
fluorescence which are shown in Fig. 6.3. These processes are detailed inverse ones,
and we use the cross section of photon absorption (2.2.24) for the total radiative
process as a transition between electron terms, and the radiative time τk0 accounts for
the radiative transition between electron terms which are identical for both radiative
processes in Fig. 6.3. In considering the transition states i and j of these processes as
to be related to the same electron state and assuming the process to be incoherent,
one can express the cross sections of the processes of Fig. 6.3 through the same
parameters. Indeed, assuming the collision character of broadening of spectral lines,
we have for the cross section of the direct radiative process using the formula (2.2.24)
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Fig. 6.2 Resonant photon scattering on a molecule, so that the first step of the radiative process is
photon absorption, and the second step is photon emission

Fig. 6.3 Resonance fluorescence in photon scattering on an atom; the initial and final states include
the corresponding group of levels

σ(ω, i → j) = 2Jk + 1

2(2J0 + 1)

πc2

ω2

1

τmiτjm

1
[
(ωji − ω)2 + (ν/2)2

] , (6.1.1)

where ωji = (Ej − Ei)/h, so that Ej, Ei are the energies of these levels, m is an
intermediate state, τmi, τjm are partial radiative lifetimes of an intermediate state m
with respect to the transition into states i and j respectively. In the same manner we
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have for the cross section of the inverse process

σ(ω, j → i) = 2J0 + 1

2(2Jk + 1)

πc2

ω2

1

τmiτjm

1
[
(ωji − ω)2 + (ν/2)2

] , (6.1.2)

It should be noted that if we assume the radiation to be incoherent and therefore
it is based on statistical principles, one can obtain the probability of the transition
to a state of this group of levels as 1/2J + 1. If the width of the spectral line is
determined by radiative decay of the excited state, one can obtain an estimate for the
fluorescence cross section ν ∼ 1/τmi

σ ∼ πc2

ω2
∼ πλ̄2, (6.1.3)

where λ̄ = c/ω is the photon wavelength. It is seen that this cross section does not
depend on the fine structure constant α = e2/�c unlike the analogous non-resonance
cross sections. Hence, the cross section for resonance fluorescence is much larger
(in (ωjiτji)

2 times) than the cross section for non-resonance fluorescence. Note also
that (6.1.3) is the maximum cross section of photon absorption, for the transition of
the atomic particle from the state i to the state j.

6.1.2 Raman Scattering on Atomic Particles

Raman spectroscopy is based on the elastic light scattering (see Fig. 6.1) that gives
information about molecular vibrations. In the case of the Rayleigh scattering the
energy exchange between incident and scattered photons is absent. But due to the
interaction with the molecule, a photon can obtain vibrational quanta from the
molecule, and then this process is known as anti-Stokes Raman scattering. Oppo-
sitely, if the molecule acquires vibration quanta from the photon, then the frequency
of scattered light is lower than that of the incident light, and this process is called
Stokes Raman scattering.

Combination scattering (orRaman scattering) [1–6] is photon scattering on atomic
particles or on atomic systems at which the direction of the photon motion and,
possibly, its frequency, change (Fig. 6.1). We consider here only relatively weak
intensities of the electromagnetic wave, when the radiation electric field strength is
assumed to be small compared to the atomic field strength. Then the process of the
radiation scattering on atomic particles (or systems) is a two-photon process; various
channels of this process are shown in Fig. 6.1. Participation of three andmore photons
is insignificant due to the weak radiation intensity. It is seen from Fig. 6.1 that there
are three channels of the photon scattering during its capture by a virtual level and
subsequent birth of another photon. In the case of the Rayleigh scattering the photon
with the same frequency appears, while at the Stokes and anti-Stokes scattering
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processes, the atomic particle transfers to higher, or lower level, respectively. In the
case of photon scattering on molecules, the Stokes and anti-Stokes processes allows
to determine the molecular spectrum for a given symmetry of states.

We here regard photon scattering as a two-photon process inwhich the first photon
of frequency ω1 is absorbed and a second photon of frequency ω0 is emitted, with the
simultaneous transition of an atomic electron from the initial state i to the final state
j. This process differs from fluorescence in that the final state j can differ from the
initial state i (this is so-called combination scattering or Raman scattering). Consider
first the case of resonant Raman scattering, where the photon frequency ω1 is nearly
the same as the excitation frequency ωji of the state i of the atomic electron. The
photo-absorption distribution function is given by (2.1.40). Subsequent steps in the
solution of this problem are parallel to the solution in Sect. 2.1, except that (2.1.40)
should be multiplied by the factor τj/τmj, where τmj is the lifetime of the statemwith
respect to the transition into the final state j. As a result, instead of (2.1.40) we find

σc = 2Jk + 1

2 (2J0 + 1)

πc2

ω2

1

τmjτmi

1

(ωmi − ω)2 + [1/ (2τm)]2
. (6.1.4)

In particular, the result at the exact resonance is

σmax
c = 2Jk + 1

2 (2J0 + 1)

4πc2

ω2

τ 2
k

τjmτmi
. (6.1.5)

As should be the case, this quantity is less than the maximum value for the photoab-
sorption cross section. We observe that (6.1.4) is of the same order of magnitude as
the resonant fluorescence cross section.

We now treat nonresonance Raman scattering. The probability of the two-photon
transition induced by fields with electric field strengths E1 and E2 is determined
by the second-order perturbation theory. According to the “Fermi golden rule” of
quantum mechanics we have

wij = πE2
1E

2
2

8�2

∣∣∣
∣∣

∑

m

[(
s2Djm

)
(s1Dmi)

ωji − ω1
+

(
s1Djm

) (
s2Dji

)

ωmi + ω2

]∣∣∣
∣∣

2

δ
(
ωji − ω1 + ω2

)

(6.1.6)
Here we take into account that the incident photon with the frequency ω1 is absorbed,
and the photon with the frequency ω2 is emitted.

According to results of the Chap.1 we can connect the electric field strength E of
the incident electromagnetic wave with the photon number nω

E2 = 8�ω3δω

πc3
nω

(δω is the difference of frequencies of the neighboring modes). Then, substituting
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∑

k

→ 1

δω

∫
dω, (6.1.7)

in (6.1.2), one obtains

w0m =
∣∣
∣∣∣

∑

k

[
(s2Dmk) (s1Dk0)

ωk0 − ω1
+ (s1Dmk) (s2Dk0)

ωk0 + ω2

]∣∣
∣∣∣

2

δ (ωm0 − ω1 + ω2)×

× ω1ω2dk1dk2
8π3�2

. (6.1.8)

Here we suppose that in the incident photon beam there are no photons with the
frequency ω2, that is nω2 = 0.

Since both absorbed and emitted photons in (6.1.8) have definite polarizations (s1
and s2, accordingly), then the flow density of incident photons is equal to

jω = nω1ω
2
1dω1

2π2c3
(6.1.9)

Thus it follows from (6.1.8) the expression for cross section of nonresonance com-
bination scattering

dσc = ω1ω
3
2

c4�2

∣
∣∣∣∣

∑

m

[
(s2Dmk) (s1Dmi)

ωmi − ω1
+ (s1Dmk) (s2Dmi)

ωmi + ω2

]∣
∣∣∣∣

2

d�2. (6.1.10)

In the derivation of this expression we integrated (6.1.8) over frequency ω2 of
the emitted photon, using the energy conservation law for this process. The quantity
d�2 is the solid angle of the scattered photon, and m is the index labeling the final
state of the atomic electron. The energy conservation law gives ωji − ω1 + ω2 = 0.
In particular, when the initial and final states are the same, that is, when j = i and
ω1 = ω2, (6.1.10) gives the nonresonance fluorescence cross section.

Now we calculate the cross section for photon scattering by a free electron. We
suppose that the energy of the incident photon is small as compared to the elec-
tron rest energy, that is, �ω � mec2. The photon momentum is �ω/c. The change
of photon momentum in the scattering process and the electron momentum after
scattering are of the same order of magnitude: �ω/c (excluding scattering through
very small angles). The energy gained by the electron in the collision is of the order
of (�ω)2 /

(
mec2

) ; it is small as compared to the rest energy, which is equivalent
to the statement that the velocity increment v of the electron from the scattering is
small as compared to c. The electron motion is thus nonrelativistic one. Since the
change of the energy of the photon, also ∼ (�ω)2 /

(
mc2

)
, is small compared to the

initial photon energy �ω, the photon-electron scattering is quasi-elastic, whichmeans
ω1

∼= ω2.
We shall use (6.1.10) for the calculation of the cross section assuming that ω1 =

ω2, and using the semiclassical approximation for the free electron states due to the
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semiclassical character of the initial continuum electron state i. The dipole operator
of an electron is D = −er, where r is the electron coordinate. Equation (6.1.4) leads
to

dσc = 4ω4

c4�2

∣
∣∣∣∣

∑

m

(s2rim) (s1rmi)
ωmi

ω2
mi − ω2

∣
∣∣∣∣

2

d�. (6.1.11)

We wish to evaluate the sum in (6.1.11). The coordinate axes are selected so that
s1 is along the z axis and s2 is in the xz plane. The sum is then of the form

s2x
∑

k

ωmiximzk0 + s2z
∑

m

ωmi |zmi|2 .

The first of the sums in this expression is zero because of the odd parity of the product
ωmiximzmi : it changes sign when z → −z. The second sum can be calculated using
the sum rule, (1.3.20) of the Sect. 1.3.2, for dipole transitions. The above expression
then yields

�s2z
2me

= � (s1s2)
2me

(6.1.12)

Substituting this expression into (6.1.11) for cross section of Raman scattering gives
this cross section in the form

dσ = r2e (s1s2)2 d� (6.1.13)

Here the quantity

re = e2

mec2
(6.1.14)

is the classical electron radius. Equation (6.1.13) is called the Thomson formula. It
is a purely classical result, since the Planck constant does not appear. To calculate
the total cross section, we integrate (6.1.13) over the solid angle d�. We select the
polar axis of a system of spherical coordinates to lie along the polarization vector s1
of the incident photon. The notation θ is introduced for the angle between vectors
s1 and k2. Since vectors s2 and k2 are perpendicular to each other, then we find that
s1s2 = sin θ. If the vector s2 is normal to the plane composed from vectors s1 and
k2 the cross section of scattering is zero, since then vectors s1 and s2 will be normal
to each other. Hence,

σ = r2e

∫
sin2 θd� = 8π

3
r2e . (6.1.15)

Equations (6.1.13) and (6.1.15) can be also obtained in the classical radiation
theory by solving theNewtonian equations ofmotion for induced electron oscillations
and considering the emission of secondary waves with the same frequency. The
classical results fail when the photon energy �ω is of the order of the electron rest
energy mc2 or greater. Then most of the incident photon energy is transferred to
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the electron, and the scattering is therefore inelastic. In this case, relativistic and
quantum effects will be important simultaneously, and the electron spin will be also
an essential element in the description of the scattering.

Furtherwe calculate the low-energy scattering cross section for a photon scattering
from an atom with zero angular momentum. The frequency of the photon is taken
to be small compared to typical atomic frequencies, ω � ωmi. This limit is thus
opposite to that considered for a photon scattering of a free electron with ω � ωmi.

The small frequency condition allows us to simplify (6.1.10) to

dσc = 4ω4

c4�2

∣∣∣∣∣

∑

m

(s2Dim) (s1Dmi)

ωmi

∣∣∣∣∣

2

d�, (6.1.16)

The initial state i is specified to be an S state, so that its magnetic quantum number
isMi = 0 . The state m is therefore a P state in accordance with the dipole selection
rule, and so Mm = 0,±1. We take the axis of quantization z to lie along s1. The
vector D is along the z direction. In the opposite case, the quantity Dims1 vanishes.
Hence we have

D0ks2 = (s1s2) (Dz)im . (6.1.17)

We now define the polarizability tensor

αij = 2
∑

m

(Di)im
(
Dj

)
mi

�ωmi
(6.1.18)

It follows from the above considerations thatαij is a diagonal tensor, so thatαij = αδij
and

α = 2e2

�

∑

m

|zmi|2
ωmi

. (6.1.19)

When this result is substituted into (6.1.16), we find the scattering cross section

dσ = ω4α2

c4
(s1s2)2 d� = ω4α2

c4
sin2 θd�, (6.1.20)

where θ is the angle between the polarization direction s1 of the incident photon and
the direction k2 of the wave vector of the scattered photon. After integration over the
angular coordinates, we find the total cross section for photon scattering by an atom
in the low photon frequency limit to be

σ = 8πω4α2

3c4
. (6.1.21)

We now wish to solve the same problem by the classical approach. From (1.2.31),
the intensity of scattered light is
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I(t) = 2

3c3
∣∣D̈(t)

∣∣2 , (6.1.22)

where D is the induced dipole moment produced by the field of an electromagnetic
wavewith an electric field given byE cosωt. By the definition of atomic polarizability
α, we have D = −αE cosωt. We are thus led to the intensity of scattered light
expressed as

I(t) = 2ω4α2

3c3
E2 cos2 ωt. (6.1.23)

To find the cross section, we should divide this quantity by the energy flux of
the incident radiation. This energy flux is given by the Poynting vector c [E,H] /4π,
where E and H are the electric and magnetic fields of the electromagnetic wave. In
our case, the energy flux has the magnitude cE2 cos2 ωt/4π. When we define the
scattering cross section as the ratio of the intensity of scattered light to the energy
flux of the incident radiation, we obtain

σ = 8πω4α2

3c4
. (6.1.24)

This agrees with the quantum result in (6.1.21). The advantage of the quantum-
mechanical derivation is that it makes it possible to obtain the explicit expression
for atomic polarizability. It is seen from the derivation that the scattering process
considered is purely classical one. A classical dipole moment radiates the same
frequency that is induced by the electromagnetic wave. Such scattering is called
Rayleigh scattering. It is interesting that both Rayleigh scattering (ω � ωji) and
Thomson scattering (ω � ωji) are purely classical phenomena. The maximum in
the scattering of visible light by atoms with absorption frequencies in the ultraviolet
range corresponds to the violet cut-off of the spectrum, since the scattering cross
section increases very strongly with frequency: as ω4. The limit ω � ωji holds true
nevertheless. This explains the blue color of the sky. Sunset is of a red color for
the same reason: the strong scattering of the violet part of the solar spectrum in the
direct flux of the solar rays leaves a predominance of red in the remaining part of the
sunlight.

The static polarizability can be exactly calculated for the ground state of the
hydrogen atom. The result is that α = (9/2) a3o where ao = �

2/mee2 is the Bohr
radius. Hence the cross section for the hydrogen ground state for low-energy photon
scattering, with �ω � �

2/mea2o , is given by

dσ = 81

4
r2e

(
�
3ω

me4

)4

(s1s2)2d� (6.1.25)

This expression describes accurately the elastic scattering cross section from zero
frequency up to the frequency of the first resonancewhen�ω = �ωk0 = 3me4/

(
8�2

)
.

The indices 1 and 2 refer, respectively, to the ground and first excited states of the
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hydrogen atom. An additional problem with accounting for degeneracy of the state
i with respect to magnetic quantum numbers appears in the case of nonzero angular
momentum. If the low-energy photon is scattered by an atom in an excited state,
then Raman scattering occurs as well as Rayleigh scattering, with the consequent
transition of the atom to a lower lying state m.

We now calculate the dependence of the intensity of induced Raman scattering
on the propagation distance of the photon beam in the gas. We consider (6.1.10) for
the Raman scattering cross section dσc when an atomic electron makes a transition
from the initial state i to the final state j . If we denote by N/� the density of atoms,
then the quantity

g = N

�
σc (6.1.26)

presents the number of photons with frequency ω2 that is generated in a unit distance
along the photon beam. The total Raman scattering cross section, σc, is obtained
from (6.1.10) by performing the integration over the angles of the emitted photons
of frequency ω2.

We now have nω2 �= 0, since the photons transfer from an incident beam of fre-
quency ω1 to photons of scattered light with frequency ω2. If we select coordinates
with the z axis along the propagation direction of the incident beam, then by the
requirement that each absorbed photon gives rise to a scattered photon, we have

nω1(z) + nω2(z) = const = nω1(0), (6.1.27)

where nω1(0) is the initial amount of photons in the incident beam. In the usual
scheme of quantization, each mode of oscillation is contained in the volume �, so
we suppose that the typical characteristic length along the z axis is much greater
than �1/3. We can now write balance equations that determine the dependence of
the quantities nω1(z) and nω2(z) on z. Equation (6.1.26) establishes the amount of
photons that appears in a unit length along the photon beam, under the condition that
there is one photon of frequency ω1 and no photons of frequency ω2. However, if at
the coordinate z we have the amount nω1(z) photons with frequency ω1 and nω2(z)
photons of frequency ω2 then (6.1.8) means that the amount of photons appearing in
a unit length along the beam with frequency ω2 is

w(z) = gnω1(z)
[
1 + nω2(z)

]
. (6.1.28)

Hence, the balance equations are of the simple form

dnω1(z)

dz
= −dnω2(z)

dz
= −w(z). (6.1.29)

The solution of the system (6.1.29) under the conditions (6.1.27) is elementary. We
write it in the form
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nω2(z) = exp (Gz) − 1

1 + [
exp (Gz) /nω1(0)

] , (6.1.30)

where the quantity G is defined as

G = g
[
1 + nω1(0)

] = N

�
σc

[
1 + nω1(0)

]
. (6.1.31)

The quantity G is called the increment coefficient. We see that the amount of
scattered photons increases at first linearly with z. This corresponds to the general
theory developed above in this chapter. This linear dependence occurs whenGz � 1.
When Gz ∼ 1, the linear increase becomes an exponential one. Finally, when Gz >

1, saturation takes place, nω2(z) → nω1(0), so that all photons from the incident beam
are replaced by photons in the scattered state.

The intensity of the induced Raman scattering for photons with frequency ω2 is
given by

I2(z) = c�ω2
nω2(z)

�
, (6.1.32)

where nω2(z) is determined by (6.1.27). In the linear regime, (6.1.30) becomes

nω2(z) = Gz
nω1(0)

1 + nω1(0)
, (6.1.33)

which is in good agreement with (6.1.10). If we take the volume � with the length z
in the direction of the photon beamwith frequency ω1, whereN the number of atoms
in this volume, then the cross section of the volume � is �/z. We now calculate the
energy flux through this volume for the photons of frequency ω1, and obtain

I1(z)
�

z
= c�ω1

nω1(z)

�

�

z
= −Gc�ω1

nω1(0)

1 + nω1(0)
+ c�ω1

nω1(0)

z
. (6.1.34)

Using (6.1.31) for the parameterG we rewrite the first term in (6.1.34) in the form

− N

�
σcc�ω1nω1(0) (6.1.35)

To calculate the cross section we divide (6.1.35) by the particle density N/� and by
the photon flux of the incident photons c�ω1nω1(0). As should be expected, we obtain
σc, the Raman scattering cross section given in (6.1.10). In the nonlinear regime, the
increment coefficient G is more useful than the cross section σc.
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6.1.3 Rayleigh Scattering by Dielectric Particles

Scattering and absorption of solar light by small dielectric dust particles is produced
by their polarization in the external electric field. There is no skin-layer inside a
dielectric particle, so that the external field penetrates through the whole particle.
Besides of this, the magnetic component of scattering is small compared to the
electric part, due to absence of the conduction currents.

There are condensation nuclei, tiny suspended particles, either solid or liquid,
upon which water vapor condensation begins in the atmosphere. There are also
much smaller nuclei in the atmosphere. The discovery that the air is full of tiny
particles around which water droplets may condense to create clouds was made
by Scottish physicist John Aitken (1839–1919). Much smaller particles are called
Aitken nuclei. They ordinarily play no role in cloud formation because they do not
induce condensation unless the air is highly supersaturated with water vapor. Most
condensation nuclei are produced by wave action over the oceans and by natural and
man-made fires over land. When mixed with the more hygroscopic material, dust
and soil particles blown into the atmosphere also are sources of nuclei. Numerous
measurements provide support for the hypothesis that layers of high concentrations
of Aitken nuclei near the tops of marine clouds are due to photochemical nucleation.
Chemical factors support the view thatAitken nuclei are dielectric particles of sizes in
the range 0.01–0.1µm.On average, their concentration varies from less than 103/cm3

over oceans to 106/cm3 in urban areas. It is tentatively concluded that Aitken particles
in the troposphere account for most of the sulfate in the atmosphere.

We first consider scattering of light on the dielectric dust particles. The radius of
this particle ro is assumed to be small compared to the wavelength of the incident
light λ = 2πc/ω, that is

λ

ro
∼ c

ωr0
� 1. (6.1.36)

We assume also that the dielectric permittivity ε (ω) is not too large, i.e. the condition

1 <
√

ε � c

ωro
(6.1.37)

is fulfilled. Then we can solve the static problem (the Laplace equation) both inside
and outside of the particle. It should be noted that the inequality (6.1.37) is fulfilled
well also for polar molecules for which the dielectric permittivity ε is near unit for
light range of the electromagnetic frequencies. As a result, the temporal dependence
of the electrostatic potential can be neglected everywhere.

The Laplace equation for the electrostatic potential ϕ inside and outside of the
particle is of the form

ϕ(r, θ) = Cr cos θ; r ≤ ro; ϕ(r, θ) = (−Er + D

r2
) cos θ; r ≥ ro (6.1.38)
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Here a � λ,λe is the radius of the dust particle, and λ is the wavelength of
the incident light, λe = λ/

√
ε is the wavelength inside the particle. The quantity

E = E0 exp (−iωt) is the electric field strength of the incident light wave.
Using the continuity condition of the potential on the surface of the particle (at

r = ro), one obtains the connection between coefficients C and D

C = −E + D

r3o
. (6.1.39)

The second equation for these coefficients follows from the continuity condition for
the normal component of the electric displacement

− εC = E + 2D

r30
(6.1.40)

Excluding the quantity D from two last equations, one finds the value of C

C = − 3

ε + 2
E. (6.1.41)

Thus, the field strength of the uniform electric field inside the small dust particle
is

Ein= 3

ε + 2
E (6.1.42)

The electric polarization Pin (the dipole moment of the unit volume) is also uniform
everywhere inside the particle; it is equal to

Pin = ε − 1

4π
Ein= 3

4π

(
ε − 1

ε + 2

)
E, (6.1.43)

and the dipole moment of the whole dust particle is

p =4πa3

3
Pin =

(
ε − 1

ε + 2

)
a3E. (6.1.44)

This solution is equivalent to the well known expression for the static dipole
moment of the dielectric ball in a constant electric field. The difference is only that
(6.1.44) contains the dielectric permittivity ε (ω)which corresponds to the frequency
of the visible light, instead of the static dielectric constant εst. In the case of polar
dielectrics the quantity εst can be several decimal orders of magnitude larger than
the dielectric permittivity ε (ω) in the light frequency range. Now we determine the
differential cross section of scattering; it is obtained from (6.1.20) by substitution the
polarizability which is equal to ratio of the dipole moment (6.1.44) by the electric
field strength of the incident light wave:
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dσs =
(

ε − 1

ε + 2

)2 ω4r6o
c4

(
1 − sin2 ϑ cos2 ϕ

)
d�. (6.1.45)

In order to consider the non-polarized solar light, we should average dσs over the
angle ϕ :

〈dσs〉 =
(

ε − 1

ε + 2

)2 ω4r6o
c4

1 + cos2 ϑ

2
d�. (6.1.46)

Integrating over the solid angle, one obtains the total cross section of the Rayleigh
light scattering on a small spherical dust particle:

〈σs〉 = 8π

3

(
ε − 1

ε + 2

)2 ω4r6o
c4

. (6.1.47)

This cross section is proportional to ω4, and it is much less than the geometrical
cross section of the dust particle πr2o, if a � λ ∼ c/ω. It should be noted that in
the opposite limiting case a � λ, the cross section coincides the geometrical cross
section both for dielectric and for metal dust particles.

The Rayleigh law (6.1.47) ∼ω4 explains the cyan color of the heaven at the scat-
tering of solar light. The maximum of the Planck spectrum of solar light corresponds
to the yellow color. The difference in the intensity of cyan and violet components
of the Planck solar light is less than 20%. The visible cyan color of the heaven is
explained by the human eye sensitivity. The cyan light is perceived by the eye better
than the violet light, by more than one order of magnitude!

6.1.4 Small Dielectric Particles in Electromagnetic Field

Scattering of an electromagnet wave on a macroscopic particle is determined by
electric properties of the particle; in other words, scattering results from reaction of
a particle material to the radiation field. Note that the polarizability of a particle α
characterizes the particle reaction of the action of the electric field. This quantity is
introduced as a connection between the induced dipole momentD of the particle and
the electric field strength E which creates this dipole moment, so that

D(ω) = α(ω)E(ω) (6.1.48)

We first establish the connection between the absorption cross section by a particle
with its polarizability. Indeed, the interaction potential between the particle and
electric field is V = −DE. From this we have for the power absorbed by the particle

P = −
〈
E
dD
dt

〉
,
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where brackets mean the averaging over time. Taking the electric field strength of a
monochromatic electromagnetic wave in the form

E = E0 exp (iωt) + E∗
0 exp (−iωt) ,

where ω is the frequency of the electromagnetic wave, we obtain for the particle
dipole moment induced by the electromagnetic wave as

D =α (ω)E0 exp (iωt) + α∗ (ω)E∗
0 exp (−iωt) ,

where α (ω) is the particle polarizability.
From this it follows for the absorbed power

P = iω|E0|2
(
α∗ − α

)

The flux density of the electromagnetic energy is

J = c|E0|2
2π

Then the absorption cross section σabs by the particle as the ratio of the absorbed
power density to the flux of the electromagnetic energy is equal

σabs = P

J
= 4π

ω

c
Im α (ω) (6.1.49)

Thus, absorption of radiation by a spherical particle is determined by its polar-
izability. On the other hand, this takes place because the dielectric permittivity ε in
the region of particle location differs from that in a surrounding space. Hence, the
dielectric permittivity of a particle matter is connected with its polarizability. Let us
determine this connection for a spherical particle which radius ro is large compared
to the wavelength. One can use the Poisson’s equation for the electric potential ϕ is
�ϕ = 0 under these conditions both inside, and outside the particle. The boundary
condition for the normal component of the electric displacement near the particle
surface has the form

ε
∂ϕ (R → ro − 0)

∂R
= ∂ϕ (R → ro + 0)

∂R
, (6.1.50)

whereR is a distance from a particle center, ro is a particle radius, and ε is its dielectric
permittivity. An electric field induces a particle dipole moment D is connected with
the cluster polarizability asD = εE. This leads to the electric field potentialϕ outside
the particle which is induced by the electric field and by the particle dipole moment

ϕ = −ER + DR
R3

(6.1.51)
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Since the electric potential inside the cluster is restricted, the solution of the
Poisson’s equation �ϕ = 0 may be represented in the form

ϕ = CER, (6.1.52)

where C is a numerical coefficient. This coefficient and the polarizability of the
particle can be found from the condition of continuity of the electric potential ϕ.
This gives

C = 3ε

ε + 2
; α = ε − 1

ε + 2
a3 (6.1.53)

This relation between the polarizability and its cluster dielectric permittivity holds
true also for an alternating electric field E0 cosωt, where it has the form

α (ω) = ε (ω) − 1

ε (ω) + 2
a3, (6.1.54)

Let us consider the classical limit of scattering of electromagnet wave, where the
radiation intensity as a result of scattering is given by formula (1.2.30), i.e.

I(t) = 2

3c3
[
D̈(t)

]2 = 2ω4

3c3
α2(ω)E2 (6.1.55)

The cross section of scattering σs is the ratio of this quantity by the energy fluxE2/4π
of the incident radiation that is given by the Rayleigh formula

σ = 8πω4α(ω)2

3c4
(6.1.56)

6.2 Absorption of Radiation by Metal Particles

6.2.1 Interaction of Metal Particles with the Electromagnetic
Wave

Interaction between an electromagnetic wave and a metal particle is determined, in
the first place, by interaction with valence electrons of the metal. We first consider
such an interactionwith a large particlewhichmay be considered as ametal piece.We
give in Table4.2 electron parameters which influence on the interaction of univalent
metals with the electromagnetic wave. In this case valence electrons of atoms become
metal valence electrons in the metal formation from atoms. Along with the frequency
ω of an electromagnetic wave, one can construct two frequency parameters, namely,
the plasma frequency ωp = √

4πNee2/me and the metal conductivity �.
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In order to understand relation between these values, we consider two cases.
The first case corresponds to the interaction of visible light with a metal surface.
The wavelength of the green color wave is λ = 0.5µm, and its frequency equals
ω = 3.7 · 1016 s−1. Comparing with data of Table4.2, we have

ωp � ω � � (6.2.1)

Another example relates to emission from a metal surface at the temperature
T = 1000K. According to the Wien law, the emission maximum corresponds to
the wavelength λ = 0.29µm, and its frequency equals ω = 3.7 · 1016 s−1, and we
obtain the same relation between the above frequencies. Therefore we ignore below
the plasma frequency and consider only parameters ω and � which determine the
interaction of radiation with a metal particle.

In the case of metal objects the interaction with an electromagnetic wave proceeds
through valence electrons; therefore this interaction is stronger than that involving
dielectric particles. The skin effect takes place for large particles, so that valence elec-
trons in the metal screen the field of the electromagnetic wave. Hence, the interaction
occurs in the metal region near the metal surface; thus, scattering of an electromag-
netic wave by a small metal particle is analogous to that in the case of a bulk metal
(Table6.1).

Hence, one can use formulas for scattering of radiation and emission by a small
metal particles on the basis of that for bulk metal which are considered in detail in
[8]. One can construct these formulas with using a small parameter α = ω/2π�. In
this case the penetration depth δ is given by [8]

δ = λ

(2π)3/2

√
ω

�
, (6.2.2)

and the particle radius ro � δ. The electric andmagnetic fields of the electromagnetic
wave decrease inside the metal as exp (−z/δ) where z is the distance from the plane
boundary inside the metal. Correspondingly, the absorption cross section σa of a
electromagnetic wave by the metal particle is [8]

Table 6.1 Parameters of univalent metals at room temperature due to valence electrons [7]. Here ρ
is the metal mass density, Ne is the number density of valence electrons in the metal, � is the metal
conductivity, ωp = √

4πNee2/me is the plasma frequency for electrons of the metal, so that e, me
are the electron mass and charge correspondingly

Parameter/metal Li Na K Cu Rb Ag Cs Au

ρ, g/cm3 0.53 0.97 0.89 9.0 1.5 10.5 1.9 19

Ne, 1022 cm−3 4.6 2.5 1.4 8.5 1.1 5.8 0.87 5.9

�, 1016 s−1 9.7 19 12 54 7.0 57 4.4 40

ωp, 1016 s−1 1.2 0.90 0.66 1.6 0.58 1.4 0.53 1.4
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σa = πr2oκ(α), κ(α) =
√

α

2

[
ln

(
1

α

)
− π

2
+ 1

]
, α = ω

2π�
� 1, (6.2.3)

where κ(α) is the gray coefficient for the metal surface. Correspondingly, the flux
of thermal radiation Iω from the particle surface is given by

Iω = I (0)
ω κ(α), (6.2.4)

where I (0)
ω is the radiative energy flux of the black body (the Planck’s radiation).

In particular, the conductivity of silver is � = 5.5 · 1017 s−1 at the temperature
T = 300 K, and � = 6.6 · 1016 s−1 at the temperature T = 2000K. According to
the Wien’s law, the optimal radiation frequency at the temperature T = 2000 K is
ωmax = 1.3 · 1015 s−1. At this temperature a small parameter is α = 3.1 · 10−3, that
gives for the gray coefficient κ = 0.16.

6.2.2 Absorption of Radiation by Metal Nanoparticles

A size of metal nanoclusters is small compared to the penetration depth for an elec-
tromagnet wave, and these particles are uniform in the interaction with radiation.
Electrons of metal nanoclusters and microparticles can spread freely over the parti-
cle and interact with an electromagnetic wave as free charges. There are two ways of
the behavior of the electron subsystem in this interaction. First, the electron subsys-
tem of the particle partakes in interaction as a whole, so that collective properties of
the electron subsystem determine absorption of an electromagnetic wave by a metal
particle. Second, the spectrum of metal atoms usually includes radiative transitions
in a visible spectral range. These spectral lines are broadening in a condensed metal
due to the interaction with neighboring atoms which consist partially of ions and
electrons. But a general character of radiative transitions in atoms may be conserved
in the system of bound atoms. The choose between these two types of interaction
involving valence electrons can be done on the basis of experimental data.

A cluster is a system of a finite number of bound atoms. We consider here the
metal clusters consisting of large number of bound atoms. This cluster is a uniform
particle of a spherical shape where valence electrons can freely propagate inside a
cluster volume. However, a cluster size is small compared to a depth of the skin-layer
in a bulk metal, and therefore the cross section for interaction of clusters with an
electromagnetic wave is proportional to the number of atoms in the cluster, i.e., to
the number of valence electrons.

In addition, a cluster radius ro is small compared to the radiation wavelength λ

ro � λ (6.2.5)

Considering a metal cluster as a macroscopic system, we take the cluster polar-
izability to be proportional to the number of its atoms. In addition, for this metal
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particle the following criterion holds true

ω � �, (6.2.6)

where� is the specific conductivity of the cluster matter. This criterion allows one to
reduce the problem to the stationary case, where the stationary polarizability of the
spherical cluster is α = r3o . Accordingly, formula (6.1.30) for the absorption cross
section may be represented as

σabs = 12πω

c

ε”

(ε′ + 2)2 + ε”2
r3o = πω

c
r3ogsph (ω) ; gsph(ω) = 12ε”

(ε′ + 2)2 + ε”2
(6.2.7)

Here the dielectric permittivity of the cluster matter is taken in the form ε(ω) =
ε′ (ω) + iε” (ω) It is seen that the absorption cross section by a spherical macroscopic
cluster may be estimated as

σabs ∼ ro
λ

πr2o,

i.e., this cross section is small compared to the geometrical cross section πa2.
We now apply the above results for metal clusters contained of a finite number

of bound atoms. The absorption process is determined by valence cluster electrons.
Assuming that these electrons are free, under criterion (6.2.5), the dielectric permit-
tivity of an electron plasma is given by

ε (ω) = 1 − ω2

ω2
p

(6.2.8)

Here ωp is the plasma frequency or Langmuir frequency, that is given by the expres-
sion

ωp =
√
4πNee2

me
,

where Ne is the electron number density, e and me are the electron charge and mass,
respectively.Assuming that ε” � 1,we transform formula (6.2.7) taking into account
the expression (6.2.8) near the resonance frequency

σabs(ω) = 2π
�ω2

c
a3

�

�2 (ω − ω0)
2 + �2

= σmax
�2

�2 (ω − ω0)
2 + �2

, (6.2.9)

where ω0 is the resonance Mie frequency,

ω0 = ωp√
3
,

� is the resonance width according to
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� = �ω0ε”

6
,

and σmax is the maximum absorption cross section,

σmax = 2π
�ω2

�c
a3. (6.2.10)

From formulas (6.2.9) and (6.2.10) it follows the integral relation

∫
σabs(ω)dω = πσmax

�

2�
(6.2.11)

where the resonance width is assumed to be relatively small. Within the frame of
liquid drop model, the cluster radius is given by [9, 10]

r3o = r3wn,

where rw is the Wigner-Seitz radius, and n is the number of cluster atoms. Under
used conditions, the cluster is assumed to be a uniform particle, and the absorption
cross section is proportional to the number of cluster atoms.

Though the above cluster model of a uniform spherical particle is rough, it is
convenient to demonstrate the mechanisms of cluster absorption through the inter-
action between an electromagnetic field and valence electrons which leads to the
resonance character of the absorption cross section as a function of a photon fre-
quency. In practice, the absorption spectrum has more complex structure, and it can
include several peaks. Table4.3 contains parameters of the absorption cross sections
for some metal clusters for which these cross sections can be approximated by a
simple resonance dependence. Basing on the experimental data [11–14] for the cross
sections of absorption by clusters consisting of Li, K and Ag atoms, one can check
the validity of the plasma model for the absorption cross section of clusters. It is
convenient to introduce the parameter

ξ = σmax
�c

2π�ω2
0a

2
, (6.2.12)

that is equal to one, if formula (6.2.9) is correct.
As it follows from Table 6.2, the parameter ξ differs from one stronger than the

limits of its accuracy. Thismeans violation of themacroscopic character of absorption
in accordance with formula (6.2.7) and prohibits to describe valence electrons as free
ones that leads to formula (6.2.9) for the absorption cross section. Thus, the concept
of the interaction of the electromagnetic wave with cluster electrons as plasma ones
is violated.

One more comparison confirms this conclusion. The resonance frequency for
metal clusters with one valence electron per atom which are given in Table 6.2 is
equal to
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Table 6.2 Parameters of the absorption cross sections for metal clusters

Cluster �ω0, eV �, eV σmax/n,Å2 ξ β f

Li+139 2.92 0.90 62 2.8 0.24 0.58

Li+270 3.06 1.15 120 3.2 0.30 0.73

Li+440 3.17 1.32 280 4.9 0.50 1.20

Li+820 3.21 1.10 440 3.3 0.52 0.85

Li+1500 3.25 1.15 830 3.5 0.66 0.91

K+
9 1.93 0.22 26 2.9 0.27 0.91

K+
21 1.98 0.16 88 2.9 0.52 0.96

K+
500 2.03 0.28 1750 4.0 1.3 1.40

K+
900 2.05 0.40 2500 4.5 1.2 1.59

Ag+
9 4.02 0.62 8.84 2.6 0.24 0.87

Ag+
21 3.82 0.56 16.8 2.1 0.26 0.64

ω0 = ωp/
√
3 = e

√
mer3W

The number density of valence electrons is equal to

Ne = 3

4πr3W
,

where rW is the Wigner-Seitz radius. The value of �ω0 is equal to 13.5 eV for large
Li clusters, to 7.1 eV for large K clusters, and to 14.7 eV for for large Ag clusters.
A large difference of these data from measured values of Table6.2 allows us to
conclude that the plasma model for valence electrons in the analysis of absorption
of an electromagnetic wave by metal clusters is incorrect. In addition, we show in
Fig. 6.4 experimental dependencies for the absorption cross sections of some Ag
clusters on the photon frequency. As it is seen, the absorption cross sections can
contain both one and two resonance maxima. This is also rejects the plasma model
for valence electrons.

We now consider the sum rule for a metal cluster. At fixed nuclei the absorption
spectrum of the cluster consists of a finite number of spectral lines; the number of
these lines is comparable with the number of cluster valence electrons. In the limit of
one atom this spectrum is transformed into one or several resonance spectral lines.
Let us introduce the effective oscillator strength f per one valence electron. Then the
total oscillator strength is equal to nf , where n is the number of valence electrons in
the cluster. Due to nuclear motion, the absorption spectrum of clusters is transformed
from set of separate spectral lines into the continuous curve. However, the sum of
the oscillator strengths does not change. One can expect that the effective oscillator
strength f per one atom depends weakly on the cluster size, and it corresponds to
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Fig. 6.4 Absorption cross
sections for silver clusters
[14]

the atomic value. Below we check this concept using the analysis of clusters with a
plasma form of the absorption cross section which are contained in the Table 6.2.

Let us use the general expression for the cross section of photon absorption by an
atomic system in the form

σabs (i → j) = π2c2

ω2

aω

τij

gj

gi
= 2π2c2

mec
fijgkaω (6.2.13)

Here ω is the frequency of a given electron transition between states i (the lower
state) and j (the upper state); gi, gj are statistical weights of these transition states, τij
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is the radiative lifetime with respect to this transition, aω is the frequency distribution
function for the radiated photons which is normalized as (2.1.1)

∫
aωdω = 1;

finally, fij is the oscillator strength for this transition. The sum rule for dipole radiation
transitions of valence electrons in the spectral range including resonance transitions,
is of the form ∫

σabs(ω)dω = 2π2e2

mec
nf (6.2.14)

This sum rule is analogous to those for atoms (1.3.11).
If the absorption cross section has a resonance structure, analogously to that for

clusters in Table 6.2, the integral relation (6.2.11) is also applicable. Then it follows
from relations (6.2.11) and (6.2.14) that

f = σmax�mec

2π2e2n�
(6.2.15)

The values of the effective oscillator strength for metal clusters with resonance struc-
ture of absorption are given in Table 6.2. Different values for each element are
explained, in our opinion, by a restricted accuracy of used data. Average values of
the oscillator strength for each cluster correspond to oscillator strengths of low-lying
transitions 2S1/2 →2 P1/2 →2 P3/2 of their atoms. The total oscillator strengths are
equal to 0.74 for the lithium atom, 1.5 for the potassium atom, and 0.77 for the silver
atom. Coincidence of the oscillator strengths for clusters with corresponding values
for atoms confirms the fact that the absorption spectra of clusters can be obtained by
transformations of atomic resonance lines due to the interaction between atoms and
due to the nuclear motion.

In considering of the interaction of metal clusters with the radiation field, on
the one hand, these clusters are uniform with respect to radiation, and on the other
hand, they may be considered as macroscopic ones, where the interaction with an
electromagnetic field is determined by the electron subsystem. Let us construct this
cluster from n bound metal atoms and transfer an electron of one of these atoms into
the resonance excited state by means of the dipole radiative transition, so that the
oscillator strength of this transition is of the order of one. This excitation is spread
over the cluster, and the spectrum of cluster excitation consists of n discrete spectral
lines. The total spectrum of cluster excitation with accounting for atom motion has a
continuous structure with one or several maxima. This form of the cluster spectrum
follows also from computer simulations, and the integral absorption cross section is
proportional to the number of valence electrons.
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6.2.3 Emission of Metal Clusters in Hot Gases

Astrong interaction betweenmetal clusters and resonance radiationmay be of impor-
tance both for radiative properties of metal clusters located in a buffer gas and for the
heat balance of this system. We below determine the spectral radiation power p (ω)

of a cluster at a certain temperature T . This spectral power is expressed through the
absorption cross section σabs according to the Kirchhoff law as

p(ω) = �ω · I(ω) · σabs(ω) , (6.2.16)

where in accordance with formula (2.2.7) I(ω) is the isotropic flux of the black body
radiation at a given frequency and temperature

I(ω) =
( ω

πc

)2 1

exp (�ω/T ) − 1
(6.2.17)

Here σabs(ω) is the absorption cross section for a given cluster as a small particle.
From this it follows that the spectral radiative power by a small cluster has the form

p(ω) = �ω3

π2c2
σabs(ω)

exp (�ω/T ) − 1
(6.2.18)

In particular, the total radiation power of a small macroscopic particle with a
radius a is [15, 16]

P =
∞∫

0

p(ω)dω = 12π

�c
a3gσT 5κ = 46πa3gσT 5

�c
; Ta

�c
� 1 (6.2.19)

Here the quantity

g = ε”

(ε′ + 2)2 + (ε”)2

is given by formula (6.2.7) and is assumed to be independent on the frequency; σ
is the Stephan-Boltzmann constant, and the numerical coefficient is κ = 3.83. It is
seen that the radiation power by a small macroscopic particle under equilibrium
conditions is proportional to T 5, in contrast to the classical dependence ∼T 4 for the
radiative power of a macroscopic black body surface.

According to formula (6.2.7) and (6.2.14), the absorption cross section for a
small cluster is proportional to the number of cluster atoms. Hence, the specific
absorption cross section, i.e., the absorption cross section by one atom, does not
depend on the cluster size. Therefore, the cluster radiative power per unit volume is
proportional to the number density of bound atoms. This statement does not depend
on the distribution function of clusters, or of small particles over their sizes. Thus,
the total radiation power for a given volume of a gas, or of a plasma, is determined
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Table 6.3 The specific radiation power Prad, 107 W/g, and the light yield for large clusters at
various temperatures, expressed in lm/W and given in parentheses

Cluster 3000 K 3500 K 4000 K

Ag 0.71 (51) 1.6 (25) 3.5 (88)

K 4.0 (106) 8.6 (111) 17 (165)

Li 2.0 (51) 4.9 (80) 10 (102)

Black body (22) (39) (57)

by the total number of bound atoms, and it does not depend on the size of the cluster.
This general conclusion is based on the statement that absorption cross section is
proportional to the number of bound atoms and it is valid both for clusters and small
macroscopic particles.

We now use parameters of the absorption cross sections for lithium, potassium
and silver clusters given in Table 6.2 in order to analyze numerically the radiative
parameters of the plasma which contains clusters. Table 6.3 presents the specific
radiation powers for clusters; they are determined by the expression

Prad =
∫

p (ω) dω

M
, (6.2.20)

where M is the cluster mass. Here we take into account that the radiation power
is proportional to the total mass of bound radiating atoms in clusters. Table 6.3
contains also (in brackets) the light yield of cluster radiation where the absorption
cross sections for these clusters are used as model ones. The light radiation yield
characterizes the efficiency of the eye perception that is given by the expression

η =
∫
p(ω)V (ω)dω
∫
p(ω)dω

, (6.2.21)

where the spectral radiation power p(ω) is calculated on the basis of formula (6.2.18),
and the visibility function V (ω) determines the perception of radiation by eye;
this function has maximum about of 683 lm/W for the wavelength of radiation of
λ = 555nm. For comparison, Table 6.3 contains also the light yield of the black
body. It is seen that clusters as light sources are better than a black body because of a
more favorable radiation spectrum (a thermal infrared radiation is excluded from the
radiation spectrum of the clusters). It follows from data of the Table 6.3 that at the
temperature of T = 3600 K the averaged radiation power of the clusters is 1 · 108
W/g. This value is convenient for estimates.

Thus, metal clusters or small macroscopic particles which are located in a hot,
or ionized gas, can be responsible for radiation of these systems. For example, this
occurs in the flame where radiation is produced by small soot particles.
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6.3 Absorption by Atmospheric Particles

6.3.1 Aerosols and Water Microdrops in Atmosphere

Aerosols are particles of nano-sized and micro-sized particles located in the atmo-
sphere [17–22]. Sometimes water microdrops which form clouds and are of impor-
tance in electric and radiative properties of the Earth’s atmosphere, are included in
the list of aerosols [23, 24]. Below the object of our consideration will be just water
drops as an important atmospheric radiator in the infrared spectrum range [25–28].
But first we glance at aerosols as small particles which are influenced by atmospheric
properties.

Figure6.5 contains various types of nanoparticles and microparticles which can
be presented in atmospheric air. For comparison, nanoclusters and electric probes
are added to this list, though these objects exist irrespectively the atmosphere. Aitken
particles were investigated from 19th century [30–33], earlier than other atmospheric
particles. They are located at high altitudes, above clouds, and their basis are radicals
of sulfur compounds which result from vaporization of meteorites at high altitudes
and from processes which proceed at the Earth surface or in the atmosphere at low
altitudes. Since their size is below 0.1µm, Aitken particles are also responsible for a
blue sky color because shortwave photons scatter on these particles effectively. The
number density of Aitken particles at altitudes 10–20km is 102 − 104 cm−3 [34].

Aerosols at low altitudes results from processes which proceed at the Earth’s
surface. Sulfur SOx and nitrogen NOx oxides, as well as atmospheric ions, are nuclei
of condensation in formation of water microdrops. In addition, sulfur and nitrogen

Fig. 6.5 Typical size of aerosols and microparticles located in the Earth atmosphere [29]
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oxides, as well as soot particles, are formed in processes of combustion of solid and
liquid organic compounds in air. A large amount of aerosols is formed as a result of
volcano eruption. Some part of particles in atmospheric air goes up from the Earth’s
surface under the wind action. The putrefaction processes at the Earth’s surface
cause extraction of some aerosols and their transport to the atmosphere. In spite of
the variety of aerosols located in atmospheric air in accordance with Fig. 6.5, they
do not influence radiative properties of the atmosphere because of a small amount.

The Earth’s atmosphere contains a large amount of atmospheric water which
results from circulation of water in the nature. Water circulation consists of water
evaporation from open water reservoirs at the Earth’s surface and rain or snow return
water back to the Earth’s surface. This process establishes the amount of atmospheric
water 1.3 · 1019 g [35–38], and the total rate of water evaporation from the Earth’s
surface is 3.9 · 1020 g/yr [39–42]. Precipitation of atmospheric water on the Earth’s
surface with uniform distribution over it gives a layer of liquid water of a thickness
2.5cm [43]. The average concentration of water molecules in atmospheric air as
approximately 0.4%, whereas near the Earth’s surface the average concentration of
water molecules in air is equal 1.7%, i.e. the number density of atmospheric water
molecules decreases sharper with an altitude increase than that for air molecules. An
average time of residence of water molecules in the atmosphere is approximately
9 days [42]. These data are the basis to analyze the atmospheric greenhouse phe-
nomenon.

A small part of atmospheric water is found in the atmosphere in the form of
water microdrops which interact effectively with infrared radiation. Near the Earth’s
surface, the average partial pressure of water is about 2 Torr, whereas the saturated
water pressure is 4.7 Torr at the surface temperature [44, 45]. Therefore atmospheric
water is in the form of a vapor consisting of free molecules mostly, and a small part
of water exist in the form of aerosols, at least, at altitudes below 3km. Aerosols are
formed and exist at larger altitudes; processes with their participation [21, 26–28,
46, 47] are important for optic and electric atmospheric properties. Formation of
aerosols may proceed if the partial pressure of water exceeds the saturated vapor
pressure at a current atmosphere temperature which is taken from [45]. The ratio of
these pressures is the air moisture. There are reliable methods of measurements of
the global moisture (for example, [48, 49]) which allows one to analyze the evolution
of the moisture of atmospheric air at some altitudes in time.

Atmospheric water is the main greenhouse component and includes a water
vapor consisting of free water molecules and water aerosols which compose clouds.
Figure6.6 gives the absorption spectrum of liquid water. As is seen, the absorp-
tion coefficient in the visible spectral range is lower by seven orders of magnitude
compared with that in the infrared spectral range. This means that water aerosols
are transparent for solar radiation, and clouds are seen due to absorbed admixtures,
whereas these microdrops are sources of IR radiation. Let us estimate the role of
water aerosols in IR emission of the atmosphere taking the cross section of absorp-
tion of an infrared photon σ = πr2 under the criterion λ ≤ r, where r is a drop radius,
and λ is the wave length. Correspondingly, the optical thickness u of the layer with
the depth l and number density N of water microdrops is equal
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Fig. 6.6 Absorption
coefficient for a bulk liquid
water layer under normal
conditions [50]. A cross
indicates the absorption
coefficient for aerosols [51]

u = πr2Nl, (6.3.1)

and the water mass in aerosols per unit square of the Earth’s surface m is

m = 4

3
πr3Nl = 4ruρ

3
, (6.3.2)

where ρ is the water density. One can see that the observed optical thickness of the
atmosphere (u ≈ 3) may be provided by approximately 0.2% of atmospheric water
if it is located in the form of liquid microdrops-aerosols.

Let us note two types of interaction of an electromagnetic wave with a dielectric
particle. Above we considered the case when this interaction results from electric
properties of a particle material which is described by its dielectric constant. Another
character of this interaction consists in absorption of radiation by this particle due
to transitions between molecular states of this particle and also due to transitions
between states owing to interaction between molecules of this condensed matter.
Evidently, the absorption coefficient of Fig. 6.6 for liquid water in the infrared spec-
trum range is determined by such transitions.

Let us analyze also the result of experiment [51] which is given in Fig. 6.6 accord-
ing to which water microdrops of an average radius r = 10µm are characterized by
the absorption cross section σabs = πr2 for thermal atmospheric radiation. Then the
optical thickness u of a layer of a thickness l is equal at the number density N of
microdrops

u = Nlσabs = Nlπr2
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From the another standpoint, the mass per unit area M = ρl is

M = Nl · 4
3
πr3ρ,

where ρ is the mass density of water. On the basis of these formulas, the absorption
coefficient is equal to

kω = u

l
= 3σabs

4r3

Under the above considered conditions (σabs = πr2) the absorption coefficient kω ∼
105 m−1 (it is included in Fig. 6.6 shows the identity of the absorption coefficient for
liquid water and a gas of water microdrops).

6.3.2 Water Microdrops in Clouds

Considering an interaction of an individual atmospheric water microdrop with atmo-
spheric radiation and being guided by experiment [51], we take a drop radius to be
r = 10µm. In this case the absorption cross section of thermal atmospheric radia-
tion λ ∼ r ≈ 10µm by a given microdrop is close to its geometric cross section; it is
equal to σabs ∼ 3 · 10−6 cm2, whereas for solar radiation the absorption cross section
is equal σabs ∼ 10−11 cm2. In order to analyze radiative parameters of a microdrops
in a cumulus, we take typical parameters of water microdrops in cumulus as [52–55])

ro = 8µm, Nd = 103cm−3, (6.3.3)

where ro is the average drop radius, andNd is an average density of water microdrops
in cumulus in a thunderstorm weather. This gives for the absorption coefficient kω =
σabsNd ∼ 10−3 cm−1, and a typical observed optical thickness u = kωL of cumulus
corresponds to its thickness L ∼ 30m.

One can see according to Fig. 6.6 data, that the cloud optical thickness in the visible
spectrum range is equal u ∼ (10−4 − 10−3), i.e. a cloud is transparent for visible
radiation. Hence, clouds in the course of their formation are invisible. Through a time
they become visible as a result of attachment of absorbed components, in particular,
a dust or optically active atoms in the visible spectrum range. Below we estimate
an amount of sodium atoms in a drop which provide absorption of visible radiation.
Sodium atoms are formed in a drop as a result of attachment of molecules NaCl to
this drop or joining of this drop with a small particle of this salt.

We assume that injection of sodium atoms into a water microdrop leads to broad-
ening of an absorption line, so that it is transformed in an absorption band of a width
��ω ∼ 1eV. According to formula (2.2.24) the absorption cross section may be
estimated as

σabs = λ2

4�ωτ
, (6.3.4)
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where a typical wavelength in the visible spectrum range is λ ∼ 0.5µm. Taking a
typical lifetime for an upper state of transition is τ ∼ 10−8 s. This gives a typical
absorption cross section σNa ∼ 5 · 10−17cm2. Let a drop contains n sodium atoms,
and then a cloud becomes nontransparent in a visible spectrum range, if its optical
thickness is

u = NLnσNa ∼ 1

From this consideration we have n ∼ 6 · 109. Because an individual microdrop con-
tains n = 7 · 1013 water molecules, one can find a typical concentration of sodium
atoms in water, that is, ∼0.01%. This amount of sodium solved in water provides
the visibility of clouds in a sky.

Though it is known that the covering of a sky by clouds is approximately 70%. But
this does not mean that the other part of sky is not occupied with water microdrops.
Indeed, at the first stage of the nucleation process that leads to conversion of water
molecules in water microdrops transparent drops are formed, and only through a
time they become visible after attachment of absorbed atoms or dust particles to
microdrops.

Let us take the cross section of absorption σabs by an aerosol particle of a radius
r to be [16]

σabs = πr2, (6.3.5)

if an aerosol radius is large compared to the wavelength of radiation λ. In other
limiting case we have [8]

σabs ∼ r3

λ
, r � λ (6.3.6)

From this one can construct the absorption cross section by an aerosol particle as a
function of an aerosol size in the form

σabs = πr2

1 + C λ
r

(6.3.7)

From the above experimental data it follows that in this frequency range formula
(6.3.5) holds true with an accuracy of 20%, and the cross section of absorption of
thermal radiation by aerosols of a radius (8–10)µm is (2.5 ± 0.5) · 10−6cm2.

This leads to the depth of a formed water layer (30–40)µm that corresponds to
the concentration of atmospheric water in aerosols roughly (1 − 2)%. It is seen that
water aerosols may give a remarkable contribution to atmospheric emission. This
result causes alarm with respect to the climate change because transition of a small
part of an atmospheric water vapor in aerosols may lead to a significant change of
the atmospheric optical thickness. In particular, according to studies [56–59] cosmic
rays influence on formation of aerosols and clouds in the Earth’s atmosphere.

Thus, we have that the spectral radiative flux of the Earth’s atmosphere may
include some frequency bands which are created by vibration-rotation or rotation
radiative transitions of certain components. One can introduce the effective temper-
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ature for a certain frequency band in accordance with formula (7.1.17). The optical
thickness of the atmosphere starting from this layer in the direction perpendicular
to the Earth surface equals to 2/3 at a given frequency, and the temperature of this
atmospheric layer is the radiative temperature for emission at a given frequency. We
below use this concept in the analysis of emission of atmospheric CO2 molecules.

Note that clouds consisting of water aerosols water aerosols influence on the
Earth’s energetics. In accordance with Fig. 6.6, the absorption of radiation by water
aerosols is strong for the infrared spectrum range, whereas water aerosols are trans-
parent for visible radiation. But this fact corresponds to pure liquid water, and if some
chemical components are dissolved in water, the situation may be changed. Hence,
on the first stage of formation of water aerosols they are transparent microdrops, and
subsequently after attachment of some impurities water aerosols become visible.
One can demonstrate the influence of admixtures on optical properties of aerosols
in the case when the sodium salt NaCl is dissolved in water of an aerosol; then the
solute sodium atoms determine the absorption of visible radiation by aerosols.

Let us assume that yellow spectral line of absorption of a free sodium atom is
converted in an absorbed band as a result of interaction with surrounding water
molecules, if a sodium atom is located in water. Taking a width of the absorption
band �ω to be ��ω ∼ 1eV, one can obtain for the absorption cross section σ as a
result of interaction of an electromagnetic wave with a dissolved sodium atom

σvis = λ2

4
· 1

�ωτ
, (6.3.8)

where λ is a wavelength, τ is the radiative lifetime of an excited atom which is
estimated as

1

τ
= 2e2ω2

mec3
f go (6.3.9)

Hereme is the electronmass, f is the oscillator strength for transition between atomic
states, go is the statistical weight of the lower transition state which is the ground
electron state. Because f ∼ 1 and go ∼ 1, it follows from formula (6.3.8) an estimate
for the absorption cross section

σvis ∼ e2

�ωmec
(6.3.10)

This formula gives σvis ∼ 5 · 10−18 cm2. Let us take for definiteness aerosols of
a cumulus clouds with an average radius r = 8µm and the absorption cross section
σ ≈ 2.5 · 10−6 cm2 for infrared radiation. This cross section may be reached as a
result of absorption of dilute sodium atoms if the concentration c(Na) of these atoms
in aerosols is c(Na) ∼ 0.5%. These conditions may be attained in reality.
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6.3.3 Atmospheric Water Microdrops as Atmospheric
Radiators and Absorbers

Water drops are effective radiators and absorbers of infrared radiation. Being located
in the Earth’s atmosphere, they interact effectively with infrared radiation that passes
through the atmosphere. We now consider the energetic balance of an individual
water microdrop which interacts with this infrared radiation through processes of
emission and absorption; it interacts also with surrounding air through the thermal
conductivity process. This microdrop exchange through the thermal conductivity of
air; the power Pκ which the drop takes from air or transfers to it in the case of a
higher drop temperature compared to the air temperature far from the drop, is equal
[15, 16]

Pκ = 4πroκ�T , (6.3.11)

where ro is a drop radius, κ is the air thermal conductivity, and�T is the temperature
difference for the drop under consideration and surrounding air far from it. Here we
assume that the drop radius ro is large compared to the mean free path of molecules
in air.

Considering amicrodrop as a black body, we have the following energetic balance
equation

4πroκ�T = 4πr2oσT
4 − Pabs, �T = T − Ta, (6.3.12)

where σ is the Stephan-Boltzmann constant, T is the drop temperature, Pabs is the
power absorbed by drop in the form of infrared radiation, Ta is the air temperature. In
accordance with Fig. 6.6, we assume that absorbed radiation is emitted at a distance
λ from the drop, that is, the mean free path of an infrared photon in atmospheric air;
then we obtain for the absorbed power

Pabs = 4πr2o

1∫

−1

σT (cos θ)4 = 4πr2o

1∫

−1

σ

[
T + λ

dT

dh
cos θ

]4
= 4πr2oσ

[

T4 + 4

(
λ
dT

dh

)2
T2

]

(6.3.13)
Here dT/dh = 6.5K/km is the temperature gradient in the atmosphere, and we take
roughly λ ≈ 2km for infrared radiation. From this we find the difference between
temperatures of the drop and surrounding air

�T = 4roσT 2

κ

(
λ
dT

dh

)2

(6.3.14)

It is seen that the drop temperature is higher than the temperature of surrounding
air in the case h > λwhich is represented in Fig. 6.7. For a drop radius ro = 10µmwe
take h = λ = 2km, where the temperature is T = 270K with κ = 2.4W/m2 [45];
then we obtain �T = 1 · 10−5 K. This value increases if the altitude decreases. In
particular, when the microdrop reaches the Earth’s surface (h = 0), we have instead
of (6.3.14)



6.3 Absorption by Atmospheric Particles 223

Fig. 6.7 Geometry of a
microdrop located in
atmospheric air and
interacted with passed
radiation

�T = −2ro
κ

σT 3λ
dT

dh
(6.3.15)

In this case the drop temperature is lower than that for surrounding air, and �T =
−6 · 10−3 K. Thus from this analysis one can conclude that if a microdrop is located
in atmospheric air, its temperature coincides practically with the temperature of
surrounding air.
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