
Chapter 4
Radiative Processes in Molecular Gases

Abstract Selection rules are analyzed for vibration-rotation radiative transitions.
Within the framework of the harmonic model for atomic oscillations the selection
rule corresponds to a change of the vibrational number by one in radiative transitions,
whereas rotational number may be conserved or be changed by one in vibrational-
rotational transitions. The expression is presented for the absorption coefficient as a
result of radiative vibrational-rotational transitions in diatomic molecules, as well as
the expression for the spectral line intensity. The absorption coefficient is obtained
for radiative vibrational-rotational transitions in atmospheres of the Earth and Venus
due to atmospheric carbon dioxide molecules.

4.1 Selection Rules for Radiation of Molecular Gases

4.1.1 Selection Rules for One-Photon Transitions Between
Vibrational States in Molecules

Molecules consistingof bound atoms are the simplest atomic systems; their properties
are determined by interaction between atoms. Large difference in masses of nuclei
and electrons gives the possibility to split the problem of calculation of molecular
energy levels in two parts. First we determine a surface of potential energy, i.e.,
energy levels at fixed positions of nuclei and obtain molecular energy with infinitely
heavy nuclei which depend on the nuclear configuration. In the case of diatomic
molecules the potential energy surface is the electron term (potential curve), where
the molecular electron energy depends on a distance between nuclei. Analogously
to infinite numbers of atomic electron levels, the infinite number of electron terms
relates to each molecule. As an example of electron terms for low excited states of
the NH molecule are shown in Fig. 4.1.

The other part of the molecular energy levels results from nuclear motion within
a given electron term. We consider atomic nuclei as particles which interact with
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Fig. 4.1 Electron terms of
the molecule NH resulted
from interaction of hydrogen
and nitrogen atoms. At large
separation these electron
terms correspond to isolated
nitrogen atom which is found
in various electron states,
and the hydrogen atom in the
ground state [1]

each other by means of some interaction potential U (R), where R describes the
sum of nuclear coordinates. Below we consider only the motion of nuclei with re-
spect to their center of inertia which can be connected with radiative transitions.
This motion within the framework of each potential well of a diatomic molecule
consists of the vibrational and rotational degrees of freedom. Emission and absorp-
tion of molecules in the infrared spectrum range are determined by large number
of vibrational-rotational transitions, and the molecule spectrum consists of a large
number of broadened spectral lines due to these transitions. We below are restricted
by diatomic and triatomic molecules where three atoms are located in the same line.
Then under thermodynamic equilibrium the number density of molecules Nv,J in a
given vibrational-rotational state is equal

Nv,J = No
B

T
exp

(
−�vωo

T

)
exp

[
− BJ (J + 1)

T

]
, (4.1.1)

this thermodynamic equilibrium in a gas is supported by collisions involving these
molecules. Here No is the molecular number density in the ground vibrational and
rotational states, �ωo is the excitation energy of the vibrational level, v is the quantum
number of this level, J is the rotational quantum number, B = �

2/2μ · r2o is the
rotational constant (μ is the reduced mass of nuclei, ro is the distance between
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nuclei), T is the gas temperature expressed in the energy units. Usually B � T , and
below we assume this relation to be fulfilled.

Let us consider the character of interaction in diatomicmolecules and its influence
on radiative transitions in molecules. Evidently, the interaction potentialU (r) in the
molecule depends on a distance between nuclei r . Excluding the angle dependence
of the wave function of nuclei, one can reduce the problem of the nuclear motion
to their one-dimensional motion in the standard method by addition the centrifugal
potential and introduce in this manner the effective interaction potential as

Ûeff(r) = U (r) + �
2

2μr2
K̂ 2

Here μ is the reduced mass of the molecule, K̂ = Ĵ − L̂ is the nuclear rotational
momentum, so that Ĵ is the total molecular angular momentum, L̂ is the electron
orbital momentum. One can average the effective interaction potential Ûeff(r) in
the adiabatic approximation over the electron state at a fixed value of r . Thus, the
effective interaction potential takes the form

Ueff(r) = U (r) + �
2

2μr2
K (K + 1)

The nuclear motion within one electron term may be described as small oscilla-
tionswith respect to the equilibriumnuclear position. In the lowest order of expansion
we have

Ueff(r) = U (r) + �
2

2I
K (K + 1) + μω2

o (r − r0)
2

2

Here ro is the equilibrium distance between nuclei, I = μr20 is the molecular moment
of inertia, ωo is the frequency of the classical oscillator, i.e.

ωo =
√
U" (ro)

μ

The last term in the expression for Ueff(r) presents the potential of one-dimensional
harmonic oscillator. Therefore molecular energy levels are of the form

EK ,v = E0 + �ω0

(
v + 1

2

)
+ �

2

2I
K (K + 1); v = 0, 1, 2, . . . ; K = 0, 1, 2, . . .

(4.1.2)
This gives the following estimation for the vibrational frequency

ω0 ∼ 1√
M

.
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Since μ � me, where me is the electron mass, typical vibrational energies are small
compared to a difference between the neighboring electron terms which are of the
order of an atomic unit.

Let us consider electron terms at fixed positions of nuclei and ignoring the molec-
ular rotation. Along with the projection � of the electron orbital momentum onto
the molecular axis and quantum number v of vibrational motion, it is necessary
to include into consideration the projection � of the total electron spin S onto the
molecular axis which values are � = −S,−S + 1, . . . ,+S. The projection of the
total rotational momentum of electrons on the molecular axis is � = � + � and
its values are � = � + S,� + S − 1, . . . , � − S. Thus, an electron level with the
quantum number � splits into 2S + 1 sublevels of the fine structure with various
values of �. Since the spin-orbital interaction potential is proportional to L̂ Ŝ, the

corresponding spin-orbital splitting can be presented as A(r)�, since the vector
〈
L̂

〉
is directed along the molecular axis. At a certain value� the electron energy is equal
toU (r) + A(r)�. Hence, the energy difference of neighboring levels is the same. It
should be noted that the above consideration is valid for molecules of light elements
where relativistic effects are negligibly small.

We nowcompare the rates of radiative transitions between vibrational and electron
molecular states. The difference of these rates is, on the one hand, due to difference
in transition energies. On the other hand, the matrix elements of the molecular dipole
moment are different. We have seen above that the ratio of photon energies for the
vibrational transition �ωo and the electron transition �ωe is equal to

�ωo

�ωe
∼

√
me

μ

The matrix element of the molecular dipole moment for the transition between two
neighboring vibrational states is estimated as

〈v |D| v − 1〉 = e

√
�v

2μωo

Hence, its ratio to the matrix element of the dipole moment De for the electron
transition is of the order 〈v |D| v − 1〉

De
=

√
v
me

M

ωe

ωo

It is seen that the rates of vibrational transitions are much less than the rates of
electron transitions.

One can prove that the matrix element of the dipole moment for radiation transi-
tions between vibrational states of a diatomic molecule consisting of two identical
atoms is equal to zero. We first determine the dipole moment of the molecule, con-
sidering the nuclei to be in fixed positions, and viewing these nuclei as sources of a
potential field. The molecule is symmetrical for reflection with respect to the plane
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which is perpendicular to the molecule axis and bisects it. In addition, the electron
density also has axial symmetry with respect to the molecular axis. Therefore the
electron density ρ is invariant with respect to inversion of all electrons. The dipole
moment is thus

D =
∫ ∑

i

eriρdr1dr2...drn = −
∫ ∑

i

eriρdr1dr2...drn = 0

for a fixed internuclear distance. Therefore, the matrix element of this operator be-
tween vibrational states is zero, and radiative vibrational transitions are absent in this
case.

This conclusion holds true also, if nuclei are of different isotopes because the
symmetry is determined by fields which results from interaction of these nuclei with
electrons. However, this statement is violated, if the molecular rotation influences
the electron state. Then the inversion symmetry of the electron wave function is lost
because two nuclei have different masses. But, even for identical nuclei of a diatomic
molecule this violation is not strict, because a very weak interaction of the nuclear
spins with the electrons disrupts the above symmetry of the electron wave function,
since two nuclear spins may have a different direction and then their influence on
the electron density is different. In this case interaction of electrons with the total
nuclear spin will lead to a weak mixing of electron states of opposite parity, so that
dipole transitions become possible.

Let us consider the selection rules for radiative vibrational transitions in diatomic
molecules which are determined by properties of the matrix element

〈
v

∣∣D̄∣∣ v′〉, where
v and v′ are vibrational quantum numbers, and D̄ is the dipole moment averaged over
that part of the electron configuration, that does not change as a result of the dipole
transition; the value D̄ is taken at a certain distance between nuclei and then it is
averaged. This corresponds to the adiabatic approximation, where the motion of
the nuclei proceeds slower than the electron motion. We use that the amplitude of
vibrations of nuclei is small compared to a distance between them, that allows us to
employ the expansion

D̄ = D̄0 +
∑
i

(
∂D̄
∂Qi

)
0

Qi + 1

2

∑
i,k

(
∂2D̄

∂Qi∂Qk

)
0

Qi Qk + · · · (4.1.3)

Here the Qi are normal coordinates of nuclei, and an index i enumerates the type
of vibrations. The quantity D̄0 describes the dipole moment of the molecule at the
equilibrium configuration of the nuclei. Derivatives of the normal coordinates are
also evaluated for the equilibrium configuration.

Within the framework of the harmonic oscillator model for nuclear vibrations, we
have that the matrix element of the normal coordinate Qi for the second term of the
right-hand side of relation (4.1.15) is nonzero only for transitions with a change of
the vibrational quantum number v by one. This matrix element is of the form
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〈v |Qi | v − 1〉 =
√

�v

2Miωi
,

Here Mi is the reduced mass of the molecule for a given type of vibrations, and ωi is
the frequency of this vibration for the mode i . As is seen from formula (4.1.15) for
the mean dipole moment, transitions with a change of vibrational quantum number
by two are possible owing to the third term on the right-hand side of relation (4.1.15).

We now compare the expressions for the radiative transition rates with a change
of vibrational quantum number by two to those with a change by one. The ratio of
the rates of these radiative transitions is given by

w (v → v − 2)

w (v → v − 1)
∼

∣∣∣∣∣
〈
v

∣∣D̄∣∣ v − 2
〉

〈
v

∣∣D̄∣∣ v − 1
〉
∣∣∣∣∣
2

∼

∼

∣∣∣∣∣∣∣∣

∑
i,k

(
∂2D̄

∂Qi∂Qk

)
0
〈v |Qi Qk | v − 2〉

∑
i

(
∂D̄
∂Qi

)
0
〈v |Qi | v − 1〉

∣∣∣∣∣∣∣∣

2

∼

∣∣∣∣∣∣∣∣

∑
i,k

(
∂2D̄

∂Qi∂Qk

)
0

√
�v(v−1)
Mi Mkωiωk

∑
i

(
∂D̄
∂Qi

)
0

√
�v
Miωi

∣∣∣∣∣∣∣∣

2

,

where we have used the rule of matrix multiplication

〈v |Qi Qk | v − 2〉 = 〈v |Qi | v − 1〉 〈v − 1 |Qk | v − 2〉

The oscillator frequency is given in atomic units, it is estimated as

ωi ∼ 1√
Mi

The derivation of the dipole moment is of the order of the atomic value. Hence, we
obtain the following estimation for the ratio of probabilities

w (v → v − 2)

w (v → v − 1)
∼ v

√
me

μ
(4.1.4)

Numerically, this ratio is of the order of 10−2–10−3. Thus, the most probable radia-
tive transitions between vibrational states take place with change of the vibrational
quantum number by one. Transitions with change of the vibrational quantum number
by two are relatively weak if the vibrational quantum number v is not too large. The
ratio of the rates (4.1.16) becomes of the order of one if the quantum number v is of
the order of

v ∼
√

μ

me
� 1
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If this criterion holds true, the vibrational energy is of the order of the electron
energy, �vωi ∼ εe which would imply that the harmonic oscillator approximation is
not valid. Consequently, the above analysis is not suitable for this case.

Transitions with v → v − 2 also take place in the first-order term in the expansion
of the dipole moment D̄, if we take into account the anharmonicity of the nuclear
oscillations. To estimate this effect, we introduce the anharmonic term αQ3 into the
Hamiltonian, describing vibrations. The value of α is of the order of an atomic value.
For simplicity, we shall consider only one type of vibrations with the frequency ωo,
so we below omit the indexes i and k. In the first-order perturbation theory, the
correction to the harmonic wave function ψ(0)

v−2 of the state with the quantum number
v − 2 is of the form

ψ(1)
v−2 = α

∑
v′

〈
v′ ∣∣Q3

∣∣ ν − 2
〉

ε(0)
v−2 − ε(0)

v′
.

Wenowextract the termwith v′ = v − 1 (other termswith v′ = v + 1, v − 3, v − 5
have the same estimate). Then we find that the matrix element

〈
v′ ∣∣Q3

∣∣ v − 2
〉
is of

the order of

〈
v′ ∣∣Q3

∣∣ v − 2
〉 ∼ [〈v − 1 |Q| v − 2〉]3 ∼

(
�v

Mωo

)3/2

and

〈
ψ(0)

v |Q|ψ(1)
v−2

〉
∼ α

〈
ψ(0)

v |Q| ψ(0)
v−1

〉 〈
v − 1

∣∣Q3
∣∣ v − 2

〉
ε(0)
v−2 − ε(0)

v−1

∼ α

�ωo

(
�v

Mωo

)2

Let us estimate the ratio of the radiative transition rates

w (v → v − 2)

w (v → v − 1)
∼

∣∣∣∣ 〈v |Q| v − 2〉
〈v |Q| v − 1〉

∣∣∣∣
2

∼ α2

(�ωo)
2

(
�v

μωo

)4 μω0

�v
∼ v3

μ3ω5
o

∼ v3
√
me

μ

This ratio becomes of the order of one, if the vibrational quantum numbers v ∼
(μ/me)

1/6. Then the vibrational energy is of the order of

v�ωo ∼
(
me

μ

)1/3

εe � εe

It is small compared to a typical electron energy εe. As is seen, the correction to the
rate of the transition v → v − 2 due to anharmonicity of nuclear vibrations is larger
than that due to the dependence of the mean dipole moment on a distance between
nuclei at high vibrational quantum numbers. However, both corrections are of the
same order of magnitude for small vibrational numbers v.

It is seen, that the rates for transitions with v → v − 2 and v → v − 1 become of
the same order of magnitude if the correction to the wave function
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Fig. 4.2 Parameters of
radiative vibrational
transitions for the CO
molecule [2]. Here Ev is the
excitation energy of the
vibration level with the
vibration number v, A is the
Einstein coefficient for
transition between indicated
levels, λ is the wavelength
for this transition

ψ(1)
v−2 ∼ v3/2

(
me

μ

)1/4

ψ(0)
v−1; v ∼

(
μ

me

)1/6

due to anharmonicity is comparable to the unperturbed harmonic wave function
ψ(0)

v−1. The harmonic approximation is inapplicable under such circumstances, and
these quantum numbers v are indeed absent even though the corresponding energies
are still small compared to the typical electron energies εe. From the above analysis
one can conclude that the vibrational number v is a “good” quantumnumber, themost
effective radiative transitions take place with the change of v by one. But with growth
of the vibrational quantum number transitions v → v ± 2 become remarkable. This
is shown in Fig. 4.2, where the rates of radiative transitions (Einstein coefficients) are
given for radiative transitions of the CO molecule with the change of the vibrational
quantum number both by one and by two. The results of Fig. 4.2 confirm the above
conclusion that the two-photon radiative transitions between vibrational states of a
diatomic molecule are weaker than the single-photon ones; however, their role rises
as the vibrational quantum number increases.
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4.1.2 Selection Rules for Transitions Between Rotational
States of Diatomic Molecules

Wenowanalyze radiative transitions between rotational states of a diatomicmolecule
and determine the selection rules. For the sake of simplicity, we consider first only
the electron terms for which the total molecular spin is zero. We denote by J the
total angular momentum of the molecule in the initial state. It is composed of the
orbital electron momentum and the rotational angular momentum of the nuclei. The
projection of the total angular momentum on a fixed axis is denoted byM . The orbital
momentum � conserves its projection onto the molecular axis at the transition due
to the axial symmetry of the molecule. Since the rotational angular momentum is
perpendicular to the molecular axis, then the quantity � also presents the projection
of the total angular momentum of the molecule onto its axis. Analogous quantities
for the final state of the molecule are marked by a prime.

Let us consider the transition JM → J ′M ′ between rotational states of the
molecule for a given electron state, that is, for fixed quantum number �. The prob-
lem is reduced to calculation of the matrix element for the dipole moment operator.
The matrix element of the component Dq (where q is a spherical component) of the
dipole moment vector in the rest system can be expressed via the analogous matrix
element in the rotating coordinate system in which the z axis is along the direction
of the molecular axis

〈
J ′M ′�

∣∣Dq

∣∣ JM�
〉 =

√
2J ′ + 1

2J + 1

〈
J ′1, M ′q|JM 〉 〈

J ′1,�0|J�
〉 〈� |Dz| �〉

(4.1.5)
The index q takes the values 0,±1. Is is clear that the matrix element of the dipole
moment operator does not depend on the rotational quantum numbers in the frame of
reference associated with the molecular axis; it is determined only by the electronic
state of the molecule. Thus, this matrix element is diagonal with respect to rotational
transition; it is equal to the mean dipole moment of the molecule, D̄ = 〈� |Dz| �〉.
The selection rules for dipole rotational transitions follow from the properties of the
Clebsch-Gordan coefficients contained in the (4.1.5) as

J − J ′ = ±1; M − M ′ = q = 0,±1 (4.1.6)

Since the energies εJ of the rotational states are determined by formula εJ =
BJ (J + 1), then the spontaneous transition from the state with angular momentum
J to the lower state is possible onlywith J ′ = J − 1. On the basis of formula (1.2.18)
for the rate of radiative processes, we obtain

w
(
J → J ′ = J − 1

) = 4ω3
J J ′ D̄2

3�c3
〈J − 1, 1; �0|J,�〉2

∑
M ′,q

〈
J − 1, 1; M ′, q|J, M 〉2

(4.1.7)
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This expression is averaged over polarizations of emitted photons and integrated over
the angle of emission. When we carry out the sum in (4.1.7) and use explicit values
of the Clebsch-Gordan coefficients, we find the spontaneous transition rate

w (J → J − 1) = 32B3 D̄2

3�c3
J 2

(
J 2 − �2

)
2J + 1

; B = �
2

2μr2o
(4.1.8)

This result relates to the transition at which the vibrational and electronic states of
the molecule do not change.

If the spin of themolecule is nonzero, the results must bemodified somewhat. One
can consider two limiting cases. If the spin interaction with the molecular axis due
to spin of electrons of both atoms is large compared to the difference of neighboring
rotational levels, the molecule rotation does not destroy spin coupling, and the pro-
jection of the total spin onto the molecular axis � is conserved. Then the projection
of the total angular momentum onto the molecular axis is� = � + �. In this case it
is necessary to replace� by� in formula (4.1.8). In the opposite limiting case, where
the spin interaction with the molecular axis is small compared to the difference of
rotational energies for neighboring states, rotation destroys the spin-axis coupling.
Then one can introduce the conserved orbital and rotational quantum numbers. The
total angular momentum J = K + S is also conserved, where S is the spin vector
of the molecule, and K is the rotational momentum. Each rotational level splits into
a multiplet with 2S + 1 components, which have angular momenta ranging from
J = K − S to J = K + S. If we do not specify the component of the multiplet, then
the total rotational transition rate is obtained from (4.1.8) by replacing J with K .
However, for relative probabilities involving individual lines of themultiplet, thenwe
obtain expressions by analogy with those in the case of radiative transitions between
components of fine structure. Namely, in this case the angular momentaK and S are
coupled by analogy to the summation of momenta L and S in the fine structure of
light atoms. In this case there is no coupling of the angular momenta K and S with
the molecular axis.

Let us compare the rates of radiative transitions between rotational and electronic
molecular states. It follows from formula (4.1.8) for J � 1 that

wrot

we
∼ J 3

(me

M

)3 � 1 (4.1.9)

From this one can conclude that the rate of rotational transitions is small compared
to that of electron ones. One can compare this with the above ratio of the rates of
vibrational and electronic transitions that is given by

wvib

we
∼ v

(
me

μ

)2

� 1 (4.1.10)
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Here v is the vibrational quantum number. It follows from comparison of formulas
(4.1.9) and (4.1.10) that the rate of rotational transitions is less also than that of the
vibrational transitions.

Let us discuss the selection rules for rotational quantum numbers in vibrational-
rotational transitions with a change of the vibrational quantum number. This problem
is a generalization of the previous one, where the rotational transition rate takes
place without a change of the vibrational state. In that case, the matrix element of
the projection of the dipole moment onto the molecular axis was equal to the mean
dipole moment of the molecule at the distance r = ro between the nuclei, where ro is
the equilibrium distance. This matrix element is zero for transitions associated with
a change in vibrational state as a consequence of the orthogonality of vibrational
wave functions. Therefore now we present the next term of expansion of the dipole
moment averaged over an electron state over a small differences Q = r − r0. The
term proportional to Q leads to matrix elements arising from the linear harmonic
oscillator coordinate that is nonzero for transitions between neighboring vibrational
states only. Thus, the selection rule v′ − v = ±1 is valid for the vibrational quantum
number v.

Considering the radiative vibrational-rotational transitions, we now concentrate
on the change of the rotational state. For a diatomic molecule, the dipole moment
operator of the molecule is directed along its axis with the unit vector n in this
direction. The matrix element of the dipole moment is proportional to the quantity〈
JM

∣∣nq ∣∣ J ′M ′〉, where the component nq is connected with the vector n in the same
manner, as Dq relates to D. Correspondingly, the rate of this spontaneous transition
with a given change of quantum numbers is proportional to the square of this matrix
element, i.e.,

w
(
v, J, M → v′, J ′, M ′) ∼ ∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 ,

where v, J, M are the vibrational quantum number, the total angular momentum of
the linear molecule, and its projection onto a fixed axis in a space respectively. The
primed quantities v′, J ′, M ′ are the same quantum numbers for the final molecular
state.

The total transition rate into all rotational states is an inverse lifetime of this state,
or

1

τ
=

∑
J ′,M ′,q

w
(
v, J, M → v′, J ′, M ′)

On the basis of the normalization condition

∑
J ′,M ′,q

∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 =
∑
q

〈
JM

∣∣n2q ∣∣ JM 〉 = 1,

one can obtain from the last two expressions

w
(
v, J, M → v′, J ′, M ′) = 1

τ

∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 ; q = M ′ − M
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Table 4.1 The probability �JM
(
J ′, M ′) for molecular vibrational-rotational transitions

J ′ = J − 1 J ′ = J + 1

M ′ = M − 1 (J+M)(J+M−1)
2(2J−1)(2J+1)

(J−M+1)(J−M+2)
2(2J+1)(2J+3)

M ′ = M J 2−M2

(2J−1)(2J+1)
(J+1)2−M2

(2J+1)(2J+3)

M ′ = M + 1 (J−M)(J−M−1)
2(2J−1)(2J+1)

(J+M+1)(J+M+2)
2(2J+1)(2J+3)

We now calculate the matrix element from the projection of the unit vector nq .
Using the Clebsch-Gordan coefficients, one can obtain

�JM
(
J ′M ′) = ∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 = 2J ′ + 1

2J + 1

〈
J ′1, M ′q|JM 〉2 〈

J ′1, 00|J0〉2 ,

(4.1.11)
where q is equal to 0,−1,+1. The second factor in expression (4.1.11) is nonzero
only if J ′ = J ± 1. Therefore the only transition is possible with a change of the
rotational quantum number by one. Values of the function �JM

(
J ′M ′) for various

values of J ′ and M ′ are given in Table 4.1.
The function �JM

(
J ′M ′) is satisfied the following sum rules

∑
M ′

�JM
(
J − 1, M ′) = J

2J + 1
;

∑
M ′

�JM
(
J + 1, M ′) = J + 1

2J + 1

From this we also have ∑
J ′M ′

�JM
(
J ′, M ′) = 1

One can obtain from formula (4.1.11) the average rates of the radiative spon-
taneous transitions v → v − 1 over projections M ′ of the molecular angular mo-
mentum. These rates for spontaneous emission for transitions with an increase and
decrease by one of the rotational quantum number J are equal

w (v, J → v − 1, J + 1) = J + 1

2J + 1

1

τ
, w (v, J → v − 1, J − 1) = J

2J + 1

1

τ
,

(4.1.12)

where τ is the lifetime of the initial state due to the spontaneous radiative decay.
These expressions describe spontaneous emission of photons of any polarization.
Since the rate for emission of a photon with a given polarization does not depend on
the direction of its polarization because of an average over projections of the total
angular momentum, the rate of this process for a certain polarization is one half of
the total rate.

We also consider selection rules for rotational states of triatomic linear molecules.
If the oscillation takes place only in the molecular axis direction, the selection rules
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Table 4.2 Values of Clebsch-Gordan coefficient C J ′m′
J,m−μ;1μ for addition of momenta and their

projections J,m′ and 1,μ into the momentum J ′m′

Branch J ′ μ = −1 μ = 0 μ = +1

P J − 1
√

(J−m′)(J−m′+1)
2(J+1)(2J+1)

√
(J−m′+1)(J+m′+1)

(J+1)(2J+1)

√
( j+m′)( j+m′+1)
2( j+1)(2 j+1)

Q J
√

(J−m′)(J+m′+1)
2J (J+1)

m′√
J (J+1)

−
√

(J+m′)(J−m′+1)
2J (2J+1)

R J + 1
√

(J+m′)(J+m′+1)
2J (2J+1) −

√
(J−m′)(J+m′)

J (2J+1)

√
(J−m′)(J−m′+1)

2J (2J+1)

for a triatomic molecule are identical to those of a diatomic molecule. We denote
below a vibrational quantum number by v and a rotational momentum by j . Our
goal is to determine the rate of radiative transition w(v, j −→ v′, j ′). Modeling
vibrations in the CO2 molecule by a harmonic oscillator, we obtain the selection rule
for vibrational radiative transitions v −→ v ± 1 for linear molecules including the
CO2 molecule. Because of a large time of radiative transitions inmolecules compared
with collision ones in atmospheric air, the number density of molecules N j in a given
rotational state J is determined by the Boltzmann formula

N j = No(2J + 1)
B

T
exp

[
− BJ (J + 1)

T

]
, (4.1.13)

where No is the total number density of molecules for this vibrational state, T is the
gas temperature expressed in energetic units, B is the rotational constant, BJ (J + 1)
is the excitation energy for this rotational state, and the normalized constant is taken
from the condition B � T .

Being guided by the dipole character of radiation, where the rate of a radiative
transition is proportional to the square of the matrix element of the dipole moment
operator between transition states, one can obtain the following expression for the
rate of a vibrational-rotational transition

w(v, J −→ v′, J ′) = 1

τvv′
· |〈JM |n|J ′M ′〉|2 = W (J ′M ′)

τvv′
(4.1.14)

Here τvv′ is the radiative time for transition between indicated vibrational states, n
is the unit vector directed along a molecular vibrations, J, M; J ′, M ′ are rotational
momenta and their projections onto a given axis for the initial and final transition
states correspondingly. This matrix element in formula (4.1.14) results from sum-
mation of the initial momentum and unit photon momentum into the momentum of
a final state [3–5] and is expressed through the Clebsch-Gordan coefficient. Values
of Clebsch-Gordan coefficients which are responsible for a radiative transition are
given in Table 4.2 [6].

Values of the Clebsch-Gordan coefficients leads to the selection rules for radiative
rotational transitions, and according to them the following transitions are possible
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Table 4.3 Probabilities of radiative vibrational-rotational transitions in a given rotational state

Branch Transition energy W⊥ W‖
P (J ′ = J − 1) �ωo + 2B(J + 1) (J+1)(J+2)+m2

2(J+1)(2J+1)
2J+3

3(2J+1)

Q (J ′ = J ) �ωo
J (J+1)−m2

2J (J+1)
1
3

R (J ′ = J + 1) �ωo − 2BJ J (J−1)+m2

2J (2J+1)
2J−1

3(2J+1)

�ε = �ωo − 2BJ, J ′ = J − 1 −→ P-band,

�ε = �ωo, J
′ = J −→ Q-band,

�ε = �ωo − 2B(J + 1), J ′ = J + 1 −→ R-band, (4.1.15)

The probability of a given final rotational state depends on relative directions of
vibrational and rotational axes. These probabilities for their identical directions W‖
and their perpendicular directionsW⊥ are given in Table 4.3 depending on rotational
quantum numbers Jm.

Note that for an antisymmetric vibrational state, aswell as for a diatomicmolecule,
the probability of a givenfinal rotational state isW‖,whereas for torsionvibrations it is
equal to (W‖ + W⊥)/2. Averaging these probabilities over the momentum projection
m onto a rotational axis which varies from 0 to J , we use that the average square of
the momentum projection is equal

m2 = J (J + 1)

3
(4.1.16)

This averaging leads to the following expression for each band

WP = 2J + 3

3(2J + 1)
, WQ = 1

3
, WR = 2J − 1

3(2J + 1)
(4.1.17)

where indices indicate a branch. In the limit of large j these probabilities become
identical and are equal to 1/3. Being guided by large rotational momenta j , we be-
low take the probability of each branch to be 1/3. Thus, the analysis of spectroscopic
properties of CO2 molecule allows us to select vibrational-rotational radiative tran-
sitions in linear molecules which compose the molecular spectrum and determine
the rates of these transitions.

4.1.3 Radiative Properties of CO2 Molecule

In continuation of the analysis of molecular radiative properties, we consider below
the carbon dioxide molecule from this standpoint. The study of radiative properties
of the carbon dioxide molecule is of importance twofold. On the one hand, this is
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a symmetric linear molecule; therefore it is a simple example for demonstration of
the general positions in radiation of molecular gases. On the other hand, carbon
dioxide is of importance for the greenhouse phenomenon in atmosphere of the Earth
and Venus. Therefore, radiative parameters of CO2 molecules are required for the
analysis of these phenomena. In consideration vibrational-rotational transitions of
CO2 molecules, we use the Born-Oppenheimer approximation [7] which account
for a fast reaction of an electron subsystem to displacements of nuclei. As a result,
molecular oscillations take place in a potential field which is formed by electrons at
a given configuration of nuclei [8, 9].

Being guided by lower excitations which are associated with vibrational and
rotational degrees of freedom for this molecule, we are restricted by the ground
electron state with zero spin. Then the distribution of the electron number density
is characterized by the axial symmetry, i.e. the electron state of this molecule is
conserved as a result of turn around themolecular axis at any angle. Correspondingly,
the electron state is conserved at electron reflection with respect of any plane which
passes through the molecular axis.

Restricting by nuclear positions near theminimum of the potential energy surface,
one can reduce the nuclear motion to their vibrations as harmonic oscillations. In the
case of triatomic molecules, where three atoms are located in one line, there are 9
degrees of freedom which include three translation ones, two rotational ones for the
molecule axis and four vibrational degrees of freedom. Four types of oscillations for
CO2 molecules which include the symmetric oscillation, where a distance between
each oxygen atom and a central carbon atom are kept identical during this vibration,
and the antisymmetric oscillation, where the distance between oxygen atoms is not
changed in these oscillations along the molecular axis. In the course of the torsion
oscillation (or the deformation vibration) the carbon atom moves perpendicular to
the molecular axis, and because of two directions perpendicular to the molecular
axis, two torsion oscillations are realized. Because the dipole moment operator is
antisymmetric for molecular reflection with respect to the plane, which is perpen-
dicular to the molecular axis and passes through the carbon nucleus, the radiative
transitions involving vibrational states do not include symmetric oscillations. Only
a change in antisymmetric and torsion vibrational states can lead to radiative dipole
transitions.

Let the molecular axis be directed along the axis z, so that torsion oscillations
occur in directions x and y. In particular, in the case of excitation of the lower
torsion vibration one can compose two vibrations such that thewave function of eigen
oscillation are proportional to exp(iϕ) and exp(−iϕ),whereϕ is the angle in the plane
xy with respect to the axis x . In this interpretation we present torsion vibrations and
rotations in the plane xy. In the case of the inversion transformation x ↔ −x, y ↔
−y, z ↔ −z the torsion states are separated in even and odd substates in accordance
with the property of the eigenfunction to conserve or change its sign. Namely, the
torsion vibrations are evenwith respect to the inversion transformation are odd for the
odd number of torsion vibrational quanta, and they are even, if a number of torsion
excitations for this state is even.
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Note that the abundance of the isotope 12C in nature is 98.9%, and the abundance
of the isotope 16O is 99.76%. The nuclear spin of each of these isotopes is zero,
so that practically all the CO2 molecules in nature contain nuclei with zero spin.
This leads to the symmetry for molecular reflection with respect to the plane which
is perpendicular to the molecular axis and passes through the carbon atom. This
operation is analogous to exchange by oxygenmolecules which are identical because
of zero nuclear spin; in addition it corresponds to reflection of the carbon atom with
respect to the symmetry plane. Since the nuclear spin of the carbon atom is zero, and
its electron state is conserved at this operation, we obtain the total conservation of
the state of the 12C16O2 as a result of the above reflection.

Since the electron, vibrational and rotational degrees of freedom are separated,
the total wave function of this molecule is the product of the electron, vibrational
and rotational wave functions. Because of the symmetry of the electron state of this
molecule both for inversion and reflection with respect to the symmetry plane, the
vibrational and rotational statesmust have a certain symmetry. Because the rotational
wave function for the state with the rotation momentum J of the molecule changes
as (−1)J as a result of inversion [4], this gives the rotational states which can be
realized for a given vibrational state. Indeed, the wave functions of symmetric and
antisymmetric oscillations along the molecular axis are not changed as a result of
the inversion operation, whereas due to torsion oscillations, the vibrational wave
function is conserved for an even number of torsion quantum number and changes
its sign for odd values of the torsion quantum number.

Thus, we obtain that in the case of the even value of the torsion quantum number,
only rotational states with even values of the rotational momenta J exist, while in the
case of an odd torsion quantum number, there are rotational states with odd J only
realized. The CO2 molecule is symmetric for reflection with respect to the symmetry
plane, and its rotational states are separated into the even and odd states. These states
are connected with the rotational momentum. Namely, the wave functions of states
with even rotational numbers are conserved at the indicated operation, but the wave
functions of rotational states with odd values of rotational numbers change a sign at
this operation [4].

Figure4.3 contains the spectrum for radiative vibrational-rotational transitions of
the CO2 molecule. This information is taken from the HITRAN data bank, relates to
the temperature T = 296 K, and includes radiative transitions from the states with
the rotational number J = 16 for even vibrational states and J = 17 for odd ones.
The distribution function of CO2 molecules over rotational states has the maximum
at these rotational numbers for the used gas temperature T = 296 K. Three atoms of
the CO2 molecule lie on a line, and three types of oscillations are as follows: ν1 is the
symmetric oscillation, ν2 is the torsion one, and ν3 is the antisymmetric oscillation.
We are restricted ourselves by lower vibrational states which give a remarkable
contribution to the absorption coefficient due to vibrational-rotational transitions
of the CO2 molecule. Therefore such excited vibrational states are excluded from
Fig. 4.3.

Let us formulate the selection rules for the carbon dioxide molecule being guided
by those for diatomic molecules. For the strongest vibrational radiative transitions,
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Fig. 4.3 Absorption spectrumof the carbon dioxidemolecule and its radiative parameters according
to HITRAN data bank [10, 11]. The energies of radiative transitions are expressed in cm−1 and are
given in green; letters P , Q and R correspond to P , Q and R-branches of the rotational transitions
correspondingly. Values of the Einstein coefficient are presented in red; they are expressed in s−1.
The initial rotational state for all the radiative transitions correspond to the rotational number J = 16,
if the initial state admits only even rotational momenta, and J = 17 for odd rotational momenta in
the initial state

the change of the vibrational quantum number is one as well as in the model of the
harmonic oscillator. Note that in the case under consideration we assume vibrational
excitation to be not strong, so that vibrational states of different types are separated,
i.e. the total vibrational wave function is a product of wave functions for vibrational
states of a different type. Evidently, if the torsion vibrational state is not changed
at the radiative transitions, the selective rule is the same, as in the case of diatomic
molecules. Other selection rules are in the case where the torsion vibration state is
changed.

We now analyze vibrational states with a lower excited state of the torsion exci-
tation. From two torsion states with oscillations in two perpendicular directions one
can combine two rotational states around the molecular axis, and formally one can
present the total molecular momentum as a sum of rotation of themolecular axis with
a momentum J and torsion rotation which momentum we take to be 1/2 because of
two rotational states. Correspondingly, the wave function � of total rotations can
be constructed from the wave function ψ of axial rotation, and wave function ϕ for
torsion rotation. Summarizing rotationmomenta, one can formally represent the total
wave functions of rotations as

�J+1/2 = 1√
2

(
ψJϕ1/2 + ψJ+1ϕ−1/2

)
, �J−1/2 = 1√

2

(
ψJϕ−1/2 + ψJ−1ϕ1/2

)
,

(4.1.18)
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It should be noted that J , as the rotational number of the initial state, is an even num-
ber, at which this state is stable. Correspondingly, at torsion excitation the states with
rotational numbers J + 1 and J − 1/2 are stable, whereas the state with rotational
number J is unstable, as it follows from the symmetry of the total wave function
if three atoms which are arrayed along a line [4]. If the carbon atom deviates from
the line, this symmetry requirement disappears. Hence, the wave function with the
rotational number J is zero only at the nuclear configuration if they form one line.
As a unstable state, this state decays subsequently, but it is present in the absorption
spectrum along with stable states.

We now determine the probabilities WP , WQ, WR for realization the P, Q and
R-branches of radiation in the case if the torsion vibrational state is changed at
this transition. Assuming that the states with total rotational numbers J + 1/2 and
J + 1/2 are formed with the equal probability, we find on the basis of the wave
functions (4.1.18) the probabilities of realization of P, Q and R branches are equal
correspondingly

WP = 1

4
, WQ = 1

2
, WR = 1

4
, (4.1.19)

and the relation between the Einstein coefficients A for these branches is as follows

AQ = 2AP = 2AR (4.1.20)

4.1.4 Spectroscopic Databases

Analyzing processes in molecular gases, we use parameters of radiative transitions
in molecular gases for the HITRAN data bank. Therefore we use partially notations
of this data bank for molecular gases. Along with this, other data banks exist where
information for various aspects of spectroscopy is given. We represent below a list
of such data banks along with the HITRAN one [11].

Millimeter and Submillimeter Molecular Spectroscopy Catalog, Jet Propulsion
Laboratory, USA

TheCologneDatabase forMolecular Spectroscopy (CDMS), Universität zuKöln,
Germany

GEISA SpectroscopicDatabase, Laboratoire deMetrorologieDynamique, France
PNNL Vapor Phase Infrared Spectral Library, Pacific Northwest National Labo-

ratory, USA
ExoMol, Molecular line lists for exoplanet and cool star atmospheres, University

College London, UK
Ames Molecular Spectroscopic Data For Astrophysical and Atmospheric Studies,

NASA Ames, USA
TheoReTs, Internet accessible information system “Theoretical Reims-Tomsk

Spectral data, University de Reims, France and Institute of Atmospheric Optics,
Russia
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Spectroscopy and Molecular Properties of Ozone. University de Reims, France
and Institute of Atmospheric Optics, Russia

NIST Wavenumber Calibration Tables from Heterodyne Frequency Measure-
ments, National Institute of Standards and Technology, USA NIST Atomic Spectra
Database, National Institute of Standards and Technology, USA

CHIANTI, An Atomic Database for Spectroscopic Diagnostics of Astrophysical
Plasmas, George Mason University (USA), University of Michigan (USA), Univer-
sity of Cambridge (UK).

4.2 Absorption of Infrared Radiation in Gas of Linear
Molecules

4.2.1 Infrared Radiation of Molecular Gas

We above have considered radiative transitions between discrete atom states, where
the spectrum of absorption or emission is characterized by separate spectral lines.
Each line can be splitted in a multiplet due to fine and superfine interactions inside an
atom or atomic ion, but the frequency width of eachmultiplet is relatively small. This
means that the spectrum of atoms or atomic ions consists of separate spectral lines
which can be splitted in a multiplet, but at frequencies between neighboring spectral
lines or multiplets it is zero. In the case of radiative transitions between electronic
states of molecules, vibrational and rotational spectra apply with the electron one. As
a result, an absorption line in the atomic case is transformed in an absorption band for
molecular particles with an oscillating spectrum structure as a frequency function.
Because of a high frequency width of an absorption band, neighboring bands may
be overlapped, so that the physical picture of radiation interaction with molecular
particles differs from that in the case of atoms and ions.

In order to consider the nature of vibrational-rotational transitions from the general
positions of molecular spectroscopy [12–16], we below analyze the character of
of absorption and emission of molecular gases. Moreover, we consider radiative
transitions without change of the electron state; first we are restricted ourself by one
vibrational transition. Next, for simplicity, we consider the case of linear molecules.
The absorption of a molecular gas corresponds to the infrared spectrum range, and
due to selection rules radiative transitions are accompanied by change of vibrational
v and rotational J quantum numbers in the following way v, J → v′, J ′ with v′ =
v ± 1, J ′ = J, J ± 1. Thus, according to selection rules Q-branch correspond to
the rotational transition J → J , P-branch refers to the transition J → J + 1, and
R-branch relates to the rotational transition J → J − 1. Note that in the case of a
diatomic molecule, where vibrations take place along the molecular axis, Q-branch
is absent for rotational transitions.

The energy of the rotational state of the molecule EJ is [4]
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EJ = BJ (J + 1), (4.2.1)

Here B = �
2/2μ is the rotational constant, and the energy of the rotational state is

equal �ωJ = �ωo − 2BJ for P-branch with the transition J → J + 1 it is equal
�ωJ = �ωo − 2BJ , and for R- branch with the transition J → J − 1, the energy
of the transition is �ωJ = �ωo + 2B(J + 1), where �ωo is the energy difference for
vibrational states of the transition.

We now consider radiative properties of a molecular gas where broadening of
spectral lines is determined by collisions with molecules of a buffer gas where radi-
ating molecules are located. Note the difference for broadening of spectral lines for
atoms and molecules. In the atomic case, the interaction potential of a radiating atom
in the upper state of transition with a buffer gas atom exceeds significantly that for
the lower transition state; therefore broadening of an atom spectral line for the impact
and quasistatic theory is determined by interaction in the upper transition state. In
the case of molecular radiation, parameters of interaction of a radiating molecule
and a buffer gas atom in the upper and lower states of the radiative transition are
nearby, i.e. the difference of interaction potentials for the upper and lower states of
the radiative transition is small.

Let us analyze this effect for molecules of CO2 in a parent gas approximating
the interaction potential of two CO2 molecules at large distances between them by
formula (2.1.41)U (R) = −C6/R6. Taking the difference of the interaction potentials
for the upper and lower states of the radiative vibration transition as �U (R) =
−�C6/R6, one can obtain instead of formula (2.1.43) for the width of the spectral
line

ν

Nb
= 7.2

(
2T

μ

)3/10 (
�C6

�

)2/5

(4.2.2)

Let us use the experimental value of the width of the spectral line for the vibrational
transition 001 → 000 at 667 cm−1 that is equal according to measurements ν =
0.16cm−1 [17–20]. Then formula (4.2.2) gives for the difference �C6 = 32e2a5o ,
whereas its value is C6 = 118e2a5o [1]. This shows the degree of the difference of
the interaction potentials for neighboring molecular vibrational states.

Onemore peculiarity of spectral lines due to vibrational transitions is their restrict-
ed width for the collision mechanism of broadening. Indeed, at wings of a spectral
line the distribution function aω according to formula (2.1.40) has the form

aω = ν

2π (ω − ωo)
2 (4.2.3)

The broadening is determined by collisions with buffer gas atoms or molecules, and
ωo is the frequency at the line center. In derivation of formula (2.1.40) for collision
broadening of the spectral line we assume a collision time to be zero, and then
the distribution function (4.2.3) is spreading up to infinite frequency. But according
to the nature of this effect, it is necessary to restrict frequencies in this formula
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Fig. 4.4 Parameters of the
Lennard-Jones interaction
potential for two molecules

by |ω − ωo| ∼ 1/τc, where τc is a duration time of the collision event. We below
estimate this time for collisions of a radiating CO2 molecule which is located in a
parent gas, approximating, for simplicity, the interaction potential of two molecules
of carbon dioxide by the Lennard-Jones interaction potential [21, 22]

U (R) = D

[
2

(
Re

R

)6

−
(
Re

R

)12
]

, (4.2.4)

Here D is the depth of the potential well for the interaction of two molecules, Re

is the equilibrium distance between molecules, which corresponds to a minimum
of the interaction potential, and its parameters are given in Fig. 4.4. Though the
spherically symmetric interaction potential is a crude approximation for interaction
of carbon dioxide molecules, but this allows us to describe simply the effect under
consideration. One can determine parameters of the interaction potential between
two CO2 molecules on the basis of the similarity law by comparison the interaction
parameters of carbon dioxide molecules and inert gas atoms. Indeed, the scaling law
for inert gases [23, 24] allows one to connect critical parameters of inert gases and
carbon dioxide, and also their parameters near the triple point with parameters of
the pair interaction potential inside these systems. In this manner, one can determine
parameters of the pair interaction potential of molecules in formula (4.2.4), which
in the case of carbon dioxide molecules gives D = (38 ± 7) meV and Re = 0.32
nm. As is seen, the accuracy of this operation is restricted. This comparison allows
us to determine the van der Waals interaction constant C6 = 2DR6

e ≈ 140e2a5o on
the basis of the above scaling law, using parameters of inert gases. This exceeds the
calculated value [1] by 20%.

One can define a typical collision time for twomolecules of carbon dioxide τc as a
time of approach of slowmolecules from the distance Re at the minimum interaction
potential of molecules to the distance ro = Re/21/6 that corresponds to the potential
wall for slow molecules at zero orbital angular momentum (see Fig. 4.3), which is
equal to
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1

τc
≡ �ω = 10

Re
·
√
2D

m
, (4.2.5)

where m is the mass of the carbon dioxide molecule. Hence we obtain the following
estimate for the wing width of the absorption band of carbon dioxide molecules in
carbon dioxide �ω ≈ 70 cm−1. This fact restricts the flux of IR radiation emitted by
carbon dioxide due to spectral line wings.

4.2.2 Vibrational-Rotational Radiative Transitions
for Diatomic Molecules

We now determine the absorption coefficient kω due to optically active diatomic
molecules under conditions of the thermodynamic equilibrium between vibrational
and rotational molecular states. According to the selection rule, the strongest transi-
tion for a diatomic molecule within the framework of the harmonic oscillator model
is v → v + 1 in the process of the photon absorption. Separating vibrational and
rotational states, one can obtain the number density of molecules in the lower state

Ni = CNv(2J + 1) exp

[
− BJ (J + 1)

T

]
,

Here the normalization coefficient C under the criterion B � T is equal C = B/T ,
and Nv is the number density of molecules in the lower vibrational state of the
radiation transition; it is described by vibrational and rotational states with quantum
numbers v J .We thus have for the absorption coefficient Nv = ∑

i Ni where Ni is the
number density of molecules in the lower transition state, and gi = 2J + 1 because
the radiative transition takes place from a rotational state with the quantum number
J . Under these conditions formula (2.2.28) gives for the absorption coefficient

kω = NvAi jg j exp

(
− Ei

T

)(πc

ω

)2
aω

B

T

[
1 − exp

(
−�ω

T

)]
, (4.2.6)

where g j = 2J ′ + 1 is the statistical weight for the final state j with the rotational
quantum number J ′, Ei = BJ (J + 1) is the rotational energy of the initial state i .

In order to reduce this expression to parameters of the HITRAN data bank which
data are used below, we introduce the spectral line intensity as

Si j =
∫

σωdν =
∫

kω

Nv

dω

2πc
, (4.2.7)

where the cross section of absorption is introduced as σω ≡ σi j = kω/Nv , and the
value ν is the reciprocal wavelength of radiation ν = 1/λ = ω/(2πc). Using the
normalization condition (2.1.1), one can obtain
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S(ω) = Ai jg j
B

T
exp

(
− Ei

T

) ( πc

2ω2

) [
1 − exp

(
−�ω

T

)]
(4.2.8)

The spectral line intensity is a convenient characteristic of vibrational-rotational tran-
sitions because this value does not depend on broadening of corresponding spectral
lines.

It is necessary to compare this expression with that [25] given by the HITRAN
data bank. Taking into account that the value Si j has the dimensionality of length
and accepting the spectroscopy unit cm−1 and thermal unit K as the energy units,
one can present the spectral line unit of the HITRAN data bank [25] in the form

Si j = Ia
Io

Ai j

8πcν2
i j

gi

Q(T )
exp

(
− Ei

T

) [
1 − exp

(
−�ω

T

)]
(4.2.9)

In rewriting the HITRAN expression for the spectral line intensity, we accept that
the units cm−1 and K to be the energy units. Next, the inertia moment is Ia =
μr2o = �

2/(2B) (μ is the reduced mass of nuclei, ro is the equilibrium distance
between them), the atomic value of this dimensionality is Io = mea2o (ao is the Bohr
radius), the reciprocalwavelength for this radiative transition ν j i is expressed through
the frequency ω as ν j i = ω/2πc; in addition, we consider the frequency ω as a
continuous variable. Next, Ei = BJ (J + 1) is the rotational energy, and Q(T ) =∑

k gk exp(−Ek/T ) is the partition function. Being guided by real conditions, where
T � B, and only the lower vibrational state gives the contribution to the partition
function, we replace the sum by integral and obtain Q(T ) = T/B. Then formulas
(4.2.8) and (4.2.9) coincide with each other. Below, considering the frequency ω as
a continuous variable and being guided by large J , we have

g j = 2J + 1 = �(ω − ωo)

B

This allows us to rewrite formula (4.2.8) in the form

S(ω) = Ai j
λ2

8πc

�|ω − ωo|
T

exp

(
−�

2|ω − ωo|2
4BT

) [
1 − exp

(
−�ω

T

)]
, (4.2.10)

where λ = 2πc/ω is the radiation wavelength, �ωo is the energy difference be-
tween energies of vibrational states of this transition. This expression relates both
to P−branch and R−branch. We use this expression below in determination of the
spectral line intensity.

Note that we consider above the frequency ω as a continuous variable. Then the
spectral line intensity has the maximum at �ωmax = 2

√
BT , and the maximum value

of this quantity is equal
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Smax = A(Jmax)
λ2
m

8πc
√
e

√
2B

T

[
1 − exp

(
−�ω

T

)]
, (4.2.11)

where Jmax is the rotational momentum, λm is the radiation wavelength. Correspond-
ingly, one can express the spectral line intensity S(ω) through its maximum value
Smax as

S(ω) = √
2eSmax

�|ω − ωo|
2
√
BT

exp

(
−�

2|ω − ωo|2
4BT

)
(4.2.12)

One can compare this value with that from the HITRAN data bank [11] in the
case of CO-molecules. At the temperature T = 296 K and for the rotational con-
stant of the CO molecule B = 1.93 cm−1, the maximum of the spectral line in-
tensity corresponds to Jmax = 7; the photon energy is �ω7 = 2116 cm−1 for P-
branch, and �ω7 = 2173 cm−1 for R-branch. Taking values of the Einstein coef-
ficient A7 = 18.4 cm−1 and A7 = 17.5 cm−1 for these cases, we have the values of
the spectral line intensity S7 = 3.87 · 10−19 cm for P-branch and S7 = 4.56 · 10−19

cm for R-branch according to data of HITRAN bank [11]. Formula (4.2.11) gives for
these cases S7 = 4.2 · 10−19 cm for P-branch and S7 = 3.8 · 10−19 cm for R-branch.
As is seen, agreement between these results take place with the accuracy of 20%.

4.2.3 Absorption Coefficient for Gas of Diatomic Molecules

We below construct the absorption coefficient kω for a certain band of a radiative
vibrational transition of a linear molecule in the case of collision broadening of
spectral lines. Then the lower and upper transition states of Fig. 1.4 are characterized
by the vibrational v and rotational J quantum numbers which relate to the number
of vibrational or rotational states. The selection rules extract a restricted number
of transitions, and the strongest transitions for absorption of radiation are v, J →
v + 1, J + 1 for P−branch and v, J → v + 1, J − 1 for R−branch. The absorption
coefficient kω accounted for a transition between two states is given by formula
(2.2.28) and is equal

kω = Ai j Nv

λ2

4

�|ω − ωo|
T

aω exp

[
−�

2(ω − ωo)
2

4BT

] [
1 − exp

(
−�ω

T

)]
, (4.2.13)

where λ is the radiation wavelength. We above separate vibrational and rotational
states, so that in this formula Nv is the number density of molecules in the lower
vibrational state v for the radiative transition v → v′, and indices i and j correspond
to the initial J and final J ′ rotational states, ω is the transition frequency, �ωo is
the energy difference for vibrational transition states, c is the speed of light, Ai j is
the first Einstein coefficient which depends weakly on the rotational number; it is
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taken into account a large number of rotational states which determine the absorption
coefficient, and the summation in formula (4.2.13) is made over rotational states. We
assume molecules in rotational and vibrational states to be under thermodynamic
equilibrium with the temperature T . According to the selection rule, the vibrational
number is changed by onewithin the framework of the harmonic oscillator formolec-
ular vibrations. The criterion J � 1 allows one also to neglect interaction of nuclear
rotation with electronmomenta, i.e., J = K , where K is the total molecular moment.

Formula (4.2.13) joins transitions for P−branchwithω ≥ ωo and R−branchwith
ω ≤ ωo. The variation energy �ωJ for a given vibrational transition and the initial
rotational momentum J of the molecule is given by

�ωJ = �ωo − B ± B(2J + 1), (4.2.14)

where the sign minus relates to P absorption branch, sign plus corresponds to R-
branch. From this it follows for P and R branches �ωJ = �ωo − B ± 2BJ for large
J � 1 that we use below. As is seen, the energy difference between neighboring
rotational states is constant that corresponds to the Elsasser model [26], and this
difference is 2B. The photon distribution function aω for a certain transition has
the Lorentz shape (2.1.4); in the case of the collision mechanism of broadening of
spectral lines which is of the most interesting, the photon distribution function has
the form

aω =
∑
J

νJ

2π
[
(ω − ωo − ωJ )2 + ( νJ

2 )2
] , (4.2.15)

where the width νJ of spectral lines depends weakly on J .
The absorption coefficient is a harmonic function of the frequency (or almost

harmonic one, if we take into account a weak frequency dependence of parameters
in formulas (4.2.13) and (4.2.15)), and the period of oscillations is 2B/�. We now
determine the average absorption coefficient averaged over frequencies. Account-
ing for the normalization condition (2.1.1) and the distance between neighboring
resonance frequencies to be 2B/�, we obtain on the basis of formula (2.2.28) for
the average absorption coefficient χ(ω) which is expressed through the spectral line
intensity S(ω) defined by formula (4.2.7), as

χ(ω) = kω ≡ �

2B

∞∫
−∞

kωdω = 2�Nvπc

d
S(ω) = Nvλd S(ω), (4.2.16)

Here λd = 2πc�/d is the wavelength for a photon of an energy d, which is in turn
the difference of neighboring energy levels, and in the case of diatomic molecules is
equal to d = 2B.

Finally, the value of this quantity in the case of optically active diatomicmolecules
is given by
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χ(ω) = Ai j Nv

λ2

8

�
2|ω − ωo|

BT
exp

(
−�

2(ω − ωo)
2

4BT

) [
1 − exp

(
−�ω

T

)]
(4.2.17)

A general form of the absorption coefficient is

kω = χ(ω)ϕ(ω),

∞∫
−∞

ϕ(ω)dω = 1 (4.2.18)

and the function ϕ(ω) takes into account the oscillation character of the absorption
coefficient. One can rewrite also the connection between the spectral line intensity
and average absorption coefficient on the basis of formulas (4.2.7) and (4.2.16)

S(ω) = χ(ω)d

Nv · 2πc , (4.2.19)

Here d is the energy difference for neighboring transitions, and for diatomic
molecules we have d = 2B.

In order to determineϕ(ω), we use theMittag-Leffler theorem, that takes the form
[27]

∞∑
k=−∞

[
(x − k)2 + y2

]−1 = π sinh 2πy

y(cosh 2πy − cos 2πx)
(4.2.20)

Taking now x = �(ω − ωo)/B and y = �ν/4B, one can present the absorption co-
efficient kω into a given absorption band in the form (4.2.18) (for example, [28–30])
with

ϕi (ω) = sinh
π�ν

2B

[
cosh

π�ν

2B
− cos

π�(ω − ωi )

B

]−1

, (4.2.21)

Thus, we have that the absorption coefficient is an oscillation function of the
frequency; according to formulas (4.2.18) and (4.2.21), the ratio of the neighboring
maximum kmax and minimum kmin values of the absorption coefficient is

kmax

kmin
= cosh π�ν

2B + 1

cosh π�ν
2B − 1

, (4.2.22)

In the limit of a low pressure, if �ν � B, this formula takes the form

kmin

kmax
=

(
π�ν

4B

)2

(4.2.23)

Note that in summarizing over rotational momenta we assume that the photon
distribution function aω depends on the frequency stronger than other functions in
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the expression (4.2.13). Let us check it for the distribution function of molecules
on energies, i.e. for the dependence of exp[−�

2(ω − ωo)
2/4BT ], where the expo-

nent varies through one period 2B/� by the value �|ω − ωo|/2T . Hence, formulas
(4.2.17), (4.2.18) and (4.2.21) hold true if the following criterion is fulfilled

�|ω − ωo| � 2T (4.2.24)

4.2.4 Absorption Coefficient Produced by Carbon Dioxide
Molecules

In consideration the spectrum of the CO2 molecule, we are based on spectroscopy of
a diatomic molecule, but take into account peculiarities of CO2 molecules. Carbon
dioxide is an important atmospheric component which gives a remarkable contri-
bution to the greenhouse phenomenon of the Earth’s and Venus atmospheres. From
another standpoint, this molecule is the linear one, that allows us to analyze spectro-
scopic properties of gases contained carbon dioxide in the simple manner. For these
reasons we analyze spectroscopic properties of a gas with carbon dioxide molecules
as one of its components in detail. In evaluating the absorption coefficient kω of
a gas with CO2 molecules, we use the above expressions (4.2.17), (4.2.16), and
(4.2.21) for diatomic molecules. In this analysis we take into account that the CO2

molecule differs from diatomic molecules as an absorber of infrared radiation, since
this molecule has only even values of the rotational momentum J or only odd ones
depending on the parity of the vibration state. For this reason, the energy difference
for neighboring vibrational-rotational radiative transitions is equal to 4B instead of
2B, for diatomic molecules, where B is the molecular rotational constant. In addi-
tion, radiative transitions of the Q−branch are realized in the radiative spectrum of
CO2 molecules if the torsion vibration state changes at this transition.

In the case of a radiative vibrational-rotational transition of P− or R−branches,
one can use formulas (4.2.17), (4.2.16), and (4.2.21) for the absorption coefficient
kω with the change the rotational constant B by 2B. Then the absorption coefficient
for P and R−branches is determined by formula

kPω = A(ω)Nv
λ2

4

�|ω − ωo|
T

exp

[
−�

2(ω − ωo)
2

4BT

] [
1 − exp

(
−�ω

T

)]
sinh π�ν

4B

cosh π�ν
4B − cos π�(ω−ωi )

2B

,

(4.2.25)

where we go from the integer rotational momentum J to a continuous quantity
ω − ωo; negative values of�(ω − ωo) correspond to P−branch,while positive values
of this parameter relate to R−branch. As is seen, the absorption coefficient as a
frequency function has an oscillation structure. Figure4.5 gives this dependence in a
narrow spectrum range for P branch of the radiative vibrational transition 00o0 →
01o0 of CO2 molecules in air at atmospheric pressure. On the basis of formula
(4.2.16), this formula may be presented in the form
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Fig. 4.5 Absorption coefficient for P branch of the 15µm vibrational transition 00o0 → 01o0 due
CO2 molecules in air at atmospheric pressure in a narrow range of frequencies

kP
ω = NvSmax

λB

4
· �|ω − ωo|

2
√
BT

exp

[
−�

2(ω − ωo)
2

4BT

]
sinh π�ν

4B

cosh π�ν
4B − cos π�(ω−ωi )

2B

(4.2.26)

Figure4.5 demonstrates this dependence for the strongest vibrational transition of
CO2 molecules in air at room temperature.

Let us consider Q−branch of radiative transitions which proceed without the
change of the rotational momentum J . In this case the energy of excitation of the
rotational state is given by formula (4.2.1) EJ = BJ (J + 1), but the transition energy
or the photon energy �ωJ is given by the formula

�ωJ = �ωo − �J (4.2.27)

instead of (4.2.14). In particular, on the basis of HITRAN data [11] we have for this
parameter �J in the case of the strongest radiative transition 00o0 → 01o0 with the
energy 667 cm−1, the following approximation

�ωo = 667.377 cm−1, �J = bJ + cJ2, b = 2.4 · 10−3cm−1, c = 1.0 · 10−3cm−1

(4.2.28)

Let us assume that the function d�J/dJ = b + 2cJ depends weakly on J that holds
true at large J . The latter means that with taking into account that only even values
of J are realized, the function ϕ(ω) according to formula (4.2.21) has the form

ϕQ(ω) = sinh
π�ν

2(b + 2cJ )

[
cosh

π�ν

2(b + 2cJ )
− cos

π�(ω − ωo)

b + 2cJ

]−1

, ω ≥ ωo,

(4.2.29)
At moderate value of J , where the above assumption is not fulfilled, ϕ(ω) = 1,
whereas at large values of J , where oscillations in this function are realized, this
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Fig. 4.6 Width of the
spectral line for the
vibrational transition
00o0 → 01o0 of the CO2
molecule as a function of the
rotational momentum J .
This function is the same for
P , Q and R-branches [10]

assumption is fulfilled. The half-width of this spectral line according to HITRAN
bank data [11] is nearby to �ν/2 = 0.07 cm−1; therefore remarkable oscillations start
from the the rotational momenta Jo = 16, that corresponds to the maximum of the
absorption coefficient.

In determination of the absorption coefficient as a function of the photon fre-
quency ω, it is necessary to find the connection between the photon frequency and
the rotational momentum J . In order to reduce the expression for the absorption
coefficient to the above expressions, we take approximately �J = cJ (J + 1), that
holds true at large J . Taking this dependence instead of formula (4.2.14), we have
for the distribution function over rotational states f J which is normalized to one
(
∫

f j d J/2 = 1), taking into account that the rotational states with even rotational
momenta exist only

f J = 2B(2J + 1)

T
exp

[
− BJ (J + 1)

T

]
= 4

√
B

T

√
ω − ωo

�ω
exp

[
−�(ω − ωo)

�ω

]
, �ω = cT

�B
(4.2.30)

This expression relates to positive values ω − ωo. For the temperature at the Earth’s
surface T = 288 K, this parameter is equal �ω = 0.051 cm−1.

We now determine the absorption coefficient on the basis of formula (2.2.28).
Averaging it over oscillations, we obtain for the averaged absorption coefficient

χQ(ω) = A(ω)Nv

λ2

2�ω
exp

[
−�(ω − ωo)

�ω

] [
1 − exp

(
−�ω

T

)]
, �ω = cT/(�B)

(4.2.31)
Correspondingly, the absorption coefficient qω for Q-branch of radiative rotational
transitions in accordance with formula (4.2.18) is given by

qω = A(ω)Nv
λ2

2�ω
exp

[
− (ω − ωo)

�ω

] [
1 − exp

(
−�ω

T

)]
sinh y

cosh y − cos y(ω−ωi )
ν

, y = π�ν

2(b + 2cJ )

(4.2.32)
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Fig. 4.7 Dependence of the
Einstein coefficient A for the
photon absorption process on
the rotational momentum J
for the vibrational transition
00o0 → 01o0 of the CO2
molecule and for P , Q and
R-branches [10]

Considering the absorption coefficient due to CO2 molecules as a result of
vibrational-rotational transitions, we assume their parameters to be independent on
the rotational excitation because of the large vibrational energy compared with the
rotational one. Of course, this assumption restricts the accuracy of calculations. In
order to estimate this accuracy, we analyze the dependence of parameters of radiative
transitions between two vibrational states on the rotational momentum J using the
data of the HITRAN bank [11], restricting by the strongest transition between the
ground 00o0 and the lowest excited 01o0 vibrational states As for the width ν of the
spectral line of this transition due to collisions with air molecules at atmospheric
pressure, this value is practically identical for the branches P, Q and R, but depend
on the rotational number J . This dependence is given in Fig. 4.6.

Figure4.7 contains the dependence of the first Einstein coefficient A(ω) on the ro-
tationalmomentum J for the vibrational transition 00o0 → 01o0of theCO2 molecule
in the cases of P , Q and R-branches. We consider above two cases of momentum
coupling which lead to relations (4.1.17) and (4.1.19); these relations correspond to
different ratios of the energy difference for neighboring rotational levels to the inter-
action potential between deformation oscillation and rotation. One can expect that
the first case of momentum coupling holds true that leads to formulas (4.1.17) for the
probability of various transition branches. Nevertheless, real values of probabilities
for various branches of radiative transitions according to Fig. 4.7 data relate to the
second case of momentum coupling.

The absorption coefficient due to CO2 molecules is the sum of absorption coeffi-
cients for P , Q and R branches which describe the absorption process in different
spectrum ranges. One can see that Q−branch is included in the total absorption coef-
ficientwhich has the formof a narrowpeak,while P and R−branches give oscillating
functions in a more wide range. We now use the above formulas for the absorption
coefficient for atmospheric carbon dioxide in atmospheres of the Earth and Venus.
Taking the average temperature of the Earth’s surface to be T = 288K,we obtain that
four vibrational transitions create emission of the atmosphere due to CO2 molecules,
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Fig. 4.8 Total absorption coefficient kω at the Earth’s surface due to atmospheric carbon dioxide
molecules for the standard atmosphere model according to formula (4.2.33) [31]

Fig. 4.9 Intensity of spectral lines due to absorption by carbon dioxide molecules in atmospheric
air according data of HITRAN bank [10]

so that the absorption coefficient due to CO2 molecules as a frequency function has
the form

kω =
4∑

i=1

kω = χ(ω)(i)ϕ(i)(ω) + q(ω)(i), (4.2.33)

Here components of this expression are given by formulas (4.2.18), (4.2.21), (4.2.28),
and subindex indicates the number of the vibrational transition with accounting for
lower transitions of Fig. 4.3. Figure4.8 represents the atmospheric absorption coeffi-
cient due toCO2 molecules near theEarth surface for frequencieswhichdetermine the
radiative flux to the Earth which is emitted by the atmosphere due to CO2 molecules.
We take into account an atmospheric pressure near the Earth’s surface; the concen-
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Fig. 4.10 The absorption coefficient kω near the surface of Venus due to carbon dioxide molecules,
calculated on the basis of formula (4.2.31) [32]

tration c = 0.04% for CO2 molecules that corresponds to their number density near
the Earth surface Nv = 1 · 1016 cm−3.

As it follows from Fig. 4.8, three radiative vibrational transitions determine the
absorption coefficient in the CO2 molecule at the room temperature. This means
that the radiative flux in the infrared spectrum range is determined by these three
vibrational transitions which screen more weak vibrational transitions. The same
conclusion follows from the analysis of the HITRAN bank data for the spectral line
intensity which is presented in Fig. 4.9.

In the same manner, one can determine the absorption coefficient due to carbon
dioxide molecules in the Venus atmosphere. The temperature of the Venus surface is
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737 K, the pressure is 92 atm and the main part of the atmospheric gas is the carbon
dioxide. This pressure leads to a large width of spectral lines, and neighboring lines
are overlapped, so that ϕ(i)(ω) = 1. In addition, because of a high temperature,
there are six vibrational-rotational transitions presented in Fig. 4.3. Therefore, the
absorption coefficient is given by the following formula

kω =
6∑

i=1

kω = χ(ω)(i) + q(ω)(i), (4.2.34)

Figure4.10 gives the frequency dependence of the absorption coefficient due to the
atmospheric carbon dioxide near the Venus surface.
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