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Preface

Starting from Newton, the spectroscopy played an important role in the develop-
ment of various directions of physics. Spectroscopy data were a basis of foundation
of quantum physics, and the theory of radiative transitions was the first complete
theory of quantum mechanics. This book contains the description of quantum
theory of radiative transitions involving atomic particles (atoms and molecules) and
atomic systems (nanoclusters and microparticles) under simple conditions. Namely,
an electromagnetic field interaction with atomic particles and systems is weak, the
interaction has a nonrelativistic character, and we are restricted by the strongest,
so-called dipole radiative transitions. An important part of the contemporary
spectroscopy consists in some phenomena which result from the interaction of laser
interaction with atomic particles, and data banks which collect a rich information
about radiative transitions. The goal of this book is also to establish the connection
between the classical theory of radiative transitions in atomic particles or systems
and contemporary branches of spectroscopy.

Dolgoprudny, Russia Vladimir Krainov
Moscow, Russia Boris M. Smirnov
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Introduction

This book is devoted to radiative processes involving atomic particles and atomic
systems, and at the beginning, the understanding of these problems was connected
at a great extent with spectroscopy. The history of spectroscopy starts from I.
Newton who used the word “spectrum” in order to describe various colors of light
and decomposed white light in rainbow of colors with a prism. The understanding
of these problems is contained in his treatise “Optics” (1704). The development of
spectroscopy includes many separate steps, and we indicate a small part of those
which are of importance for radiative atomic properties. Namely, J.von Fraunhofer
(1815) replaced a prism with a diffraction grating to decompose white light that
allows him to observe dark spectral lines in the solar spectrum and to find their
wavelengths. G. R. Kirchhoff and R. Bunsen (1859) proved the identities of
emission and absorption spectral lines and concluded that each element has specific
properties as regards the light it emits. This allows one to identify an atom of each
element by a combination of corresponding spectral lines which are responsible for
radiative transitions of these atoms. Since the width of a separate spectral line is
relatively small, this fact becomes a fine instrument to measure parameters of
atomic particles. This instrument was of decisive importance in creation the
quantum mechanics and in the understanding the physics of atomic particles.

This book contains three lines in the analysis of radiative atomic processes. The
first one gives the apparatus of quantum mechanics for the description of the properties
of atomic particles and systems, as well as processes with their participation. The
second line is the analysis of radiative processes in gases or plasmas due to atomic
particles from which they contain. The third line of this book relates to applications of
this area. Indeed, spectroscopy allows to measure some parameters of atoms with a
high accuracy, and this property may be used in precise devices; in the first place, this
consists in the detection of atoms of a certain element in various applications, starting
from metallurgy. Radiative processes involving atomic particles are the basis of lasers,
detectors of infrared radiation, optical magnetometers, etc. In addition, such phe-
nomena, as optical alignment of atoms, cooling of an atom ensemble up to low
temperatures are explained by the interaction of radiation with atoms under certain
conditions. This will be considered in this book.
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The material of the first part of the book, which is devoted to the quantum theory
of radiative transitions in atoms and atomic particles, is analogous to that
description of this quantum apparatus for radiative processes in the classical books
[1, 2]. In order to simplify this apparatus, we consider the strongest radiative
transitions which correspond to the dipole approximation. We combine spec-
troscopy of atoms and radiation transitions in atoms with the atomic structure and
principles of atom construction [3–17]. We consider also the structure of simple
molecules, their spectroscopy and radiative transitions in simple molecular systems
and nanoclusters, which are presented in [18–27].

Because we are guided by the active readers, who make some evaluations and
estimations about certain atomic systems, we include some reference data in the
book which refer to spread information for atomic systems and spectra [28–30],
including Grotrian diagrams [31–34] and the rates of radiative transitions in atomic
systems [35–43]. The second part of the book uses statistical properties of radiation
and emission of gases and plasmas [44–48]. The latter includes both hot or ionized
gases [46, 47, 49–52] and planet atmospheres [53– 61]. Interactions of radiation
with atomic particles in gases and plasmas lead to broadening of spectral lines
[62, 63] that influences on the character of radiation for these atomic systems. The
third part of the book which is connected with applications of radiative pro-
cesses includes fine spectroscopy of gases [64–66] and uses polarized light and
atoms [67–69] and behavior of radiative atoms in magnetic fields.

An essential part of applications is connected with highly excited atoms [70, 71].
The peculiarity of contemporary applications of fine spectroscopy is a narrow
spectral beam of radiation compared with a natural width of spectral lines for
atomic states [64, 66, 72] that leads to various effects in the behavior of atomic
systems. The above list of references which includes only books shows a wide
circle of problems which are based on contemporary spectroscopy. Our goal is to
join these problems such that the last parts of the book follow from the previous
ones. In addition, we try to make the analysis as simple as it is possible without the
loss of its rigidity. Therefore, this book is best suited for graduate students and
researchers in the field of quantum mechanics, atomic and molecular physics,
plasma physics and laser physics. It should be noted that the material of the pre-
vious books of the authors [73–75] is used partially in this book which contains a
more wide analysis of the structure of atomic particles, radiative processes in gases
and plasmas, and special applications of the fine spectroscopy.
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Chapter 1
Single-Photon Transitions of Atomic
Particles

Abstract Radiative transitions in atoms and atomic particles result from interaction
between the radiation field and atomic electrons. Representing an atom as a system
of electrons located in the Coulomb motionless center, we have that bound atomic
states has a discrete character and bound energy states are described by certain
quantum numbers. A weakness of interaction between an atom and radiation field
follows from a small velocity of bound electrons compared to light speed. Therefore,
parameters of radiative transitions in atomsmay be determined within the framework
of the perturbed theory of quantum mechanics. This approach exhibits that dipole
transitions are the strongest one and allows one to analyze the character of atom
spectroscopywhich including the selection rule and the sum rules. Some applications
of atom spectroscopy are based on a narrow width of spectral lines for transitions
between discrete states of atomic particles.

1.1 Principles of Atomic and Molecular Structure

1.1.1 One and Two-Electron Atoms

An atom is the simplest object; we consider its interaction with the radiation. There-
fore, first we analyze general properties of atoms. As a physical object, an atom
consists of a positively charged nucleus and electrons. Because the nucleus mass
is large compared to that of electrons, one can represent an atom as a motionless
Coulomb center and electrons which interact with this charged center and with each
other. Being guided by this standpoint, we consider general properties of atoms as
quantum systems. A more detailed description of atoms and atomic systems is given
in specific books, for example, [1–7].

We first consider properties of the hydrogen atom or hydrogenlike ions [8, 9]
which consist of a nucleus with the charge Ze (Z is an integer, e is the electron
charge) and one electron. It is convenient to describe this system applying to it the
apparatus of quantum mechanics [10]. The Hamiltonian of this system has the form
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2 1 Single-Photon Transitions of Atomic Particles

Ĥ = − �
2

2me
� − Ze2

r
, (1.1.1)

where m is the electron mass, � is the Planck constant, r is a distance between an
electron and nucleus. The atom energy levels may be determined as the eigenvalues
εn of the Schrödinger equation for the electron wave function �n , that has the form

Ĥ�n = εn�n (1.1.2)

Simultaneously, this allows one to determine quantum numbers which describe the
atom state. In the case of the hydrogen atom, the electron quantum numbers are the
electron principal quantum number n, the orbital momentum of the bound electron
l ≤ n − 1, the momentum projection m onto a given direction m = −l.. + l and the
projection of electron spin onto this direction σ = ±1/2. Thus, an electron state in
the Coulomb field is characterized by quantum numbers

n, l,m,σ

The energy of the bound state with these quantum numbers is

εn = − Ry

n2
, Ry = mee4

2�2
= 13.6 eV (1.1.3)

This binding electron energy characterizes the atom ionization potential Jn for this
state, i.e. Jn = −εn . As is seen, the electron energy levels of the hydrogen atom are
degenerated with respect to the quantum numbers l,m and σ. Therefore 2n2 states
correspond to each electron level. In addition, n = 1 corresponds to the ground state.
In the case of the hydrogenlike ion with a charge Z of the nucleus we have

εn = − Z2Ry

n2
(1.1.4)

Note that the Hamiltonian (1.1.1) describing the hydrogen atom does not contain
the electron spin. This means that the space and spin electron coordinates are sepa-
rated, and the electron wave function � is the product of the electron ϕ(r) and spin
χσ wave functions

� = ψ(r)χσ, (1.1.5)

where r is the electron coordinate, and σ = ±1/2 is the spin projection onto a given
direction. Correspondingly, the spatial wave function which describes the electron
state which quantum numbers are nlm, is

ψ(r) = Rnl(r)Ylm(θ,ϕ), (1.1.6)

where r, θ,ϕ are electron spherical coordinates, Ylm(θ,ϕ) is the spherical function.
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For an atom containing several electrons we use the one-electron approximation,
where the atom wave function is the combination of products of one-electron wave
functions. This combination must satisfy to the Pauli exclusion principle [11–13]
according to which location of two electrons in identical electron states is prohibited.
Thismeans that in the one-electron approach two electrons cannot be characterized by
identical quantum numbers. If the electron state is described by its space coordinate
and spin, this means that two electrons with identical spin direction cannot be located
at the same coordinate. The Pauli exclusion principle requires a certain symmetry of
the wave function, namely, the total wave function of electrons changes a sign as a
result of permutation of two electrons.

The Pauli exclusion principle causes a specific interaction between atomic elec-
trons and influences on the atomic structure. It is convenient to demonstrate this for
the helium atom where two electrons are characterized by the same quantum num-
bers, namely, the principal quantum number is n = 1 and the orbital momentum is
l = 0. In this case the spin state of the helium atom is separated from the spatial one,
and there are two spin states of this atom, with the total spin S which may be equal 0
and 1. The spin wave function for the singlet spin state (S = 0) is antisymmetric with
respect to permutation of two electrons, and the spin wave function for the triplet
spin state (S = 1) is symmetric at this operation. Since the total wave function is
the product of the spatial wave function of electrons and their spin function, from
the Pauli exclusion principle follows that in the first case (S = 0) the spatial wave
function is symmetric with respect to exchange of spatial electron coordinates, and
for the triplet spin state (S = 1) the spatial wave function of electrons is antisym-
metric with respect to electron exchange. In other words, the spatial wave function
of electrons for these states is given by

�(r1, r2) = 1√
2
[ψ(r1)ϕ(r2) ± ψ(r2)ϕ(r1)], (1.1.7)

where sign plus corresponds to the singlet state (S = 0) and sign minus refers to
the triplet state (S = 1). Next, r1, r2 are spatial coordinates of two electrons, the
spatial wave functions ψ(r) and ϕ(r) correspond to states with n = 1 and n = 2
respectively.

One can define the atom energy E as

E = 〈�|Ĥ |�〉, (1.1.8)

where � is the wave function of electrons for a given state, and Ĥ is the electron
Hamiltonian. It is seen, that the energies E of singlet and triplet states are different
even in the approximation under consideration where the wave function of individual
electrons are identical. Then the difference of energies between singlet and triplet
states �E are equal

� = 2〈ψ(r1)ϕ(r2)]Ĥ |ψ(r2)ϕ(r1)〉, (1.1.9)
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It follows from this consideration that the energies are different for states with the
various total spins. It is seen, that this effect is determined by the symmetry of the
spatialwave function, rather than by themagnetic interaction of spins. The interaction
due to the symmetry of the electron wave function, or the exchange interaction, is of
importance for atomic properties.

1.1.2 Light Atoms

We now, following to [14], analyze the quantum numbers of the light atom with
several electrons neglecting the relativistic effects. The Hamiltonian of the system
of atomic electrons in a light atom is given by

Ĥ = − �
2

2me

∑

i

�i −
∑

i

Ze2

ri
+

∑

i �= j

e2

|ri − r j | , (1.1.10)

where ri is a spatial coordinate of i-th electron. In this case the interaction between
electrons is important, unlike the case of the hydrogen atom. Our goal is to deter-
mine quantum numbers of a light atom. According to general principles of quantum
mechanics, an operator corresponding to a given quantum number commutates with
the Hamiltonian (1.1.3).

Let us introduce operators of a total atomic spin Ŝ and of a total atomic orbital
momentum L̂ as

Ŝ =
∑

i

ŝi ; L̂ =
∑

i

l̂i , (1.1.11)

where ŝi is the spin of i-th electron, l̂i is the orbital momentum of the i-th electron.
Since in this approach the Hamiltonian does not depend on electron spins, one

can obtain that the commutator
[
Ŝ, Ĥ

]
= 0, and hence the total electron spin S

and its projection MS onto a given direction are the atomic quantum numbers. One

can find also that the commutator
[
L̂, Ĥ

]
= 0. Hence, the total orbital momentum

L and its projection ML onto a given direction are also atomic quantum numbers.
Thus, the quantities L , S, ML , MS are quantumnumbers of a light atom, if we neglect
relativistic effects. Each atomic level is degenerated, including (2ML + 1) (2MS + 1)
states.

The atomic spectroscopy allows us to determine energies of atomic levels with
a high accuracy. Therefore below we consider the most significant relativistic inter-
actions. In the case of light atoms, this is spin-orbital interaction, i.e., interaction
between the spin and the orbital magnetic moment. As a result, an atom is char-
acterized by the total atomic angular momentum J which is the sum of spin and
orbital momenta. Then quantum numbers J, L , S, MJ determine an atomic state.
Here MJ is the projection of the atomic total momentum onto a given direction.
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Table 1.1 Electron shells of
atoms with valence
p-electrons

LS-shell LS-term Total
momentum J

p 2P 1/2

p 2P 3/2

p2 3P 0

p2 3P 1

p2 3P 2

p2 1D 2

p2 1S 0

p3 4S 3/2

p3 2D 3/2

p3 2D 5/2

p3 2P 1/2

p3 2P 3/2

p4 3P 2

p4 3P 0

p4 3P 1

p4 1D 2

p4 1S 0

p5 2P 3/2

p5 2P 1/2

p6 1S 0

The degeneration power, i.e. the number of states with the same energy, is equal to
(2J + 1).

The notations for atomic orbital momenta L = 0, 1, 2, 3, 4, 5... are used S, P, D,

F,G..., respectively. In the notation of the atomic state, the value (2S + 1) is pre-
sented as the left upper index of the notation for orbital momentum L . The total
angular momentum J is presented as the right lower index. For example, the nota-
tion 2P3/2 means that the total spin is S = 1/2, the total orbital momentum is L = 1
and the atomic total angular momentum is J = 3/2.

We now construct the atomic structure by subsequent addition of electrons to the
Coulomb field of a nucleus; we use the model that the Coulomb interaction potential
of an electron with the charged nucleus is large compared to the interaction potential
with other electrons. Taking into account the Pauli principle and constructing the
lowest bound state, one can put one electron into one state of the hydrogenlike system.
As a result, the lowest bound state has the atomic shell structure, i.e., electrons are
located in the nucleus Coulomb field and in a self-consisting field of other electrons
occupying the lower energy states of the hydrogenlike ion.
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Fig. 1.1 Filling of the electron shell of the nitrogen atom. Six cells of the box take into account
the electron states, where m is the projection of electron momentum onto a given state, and σ is the
projection of the spin onto this direction. Filling of electron shell of the nitrogen atom for the state
with the maximum spin S = 3/2 is denoted by crosses, and the atom state with the maximum atom
orbital momentum L = 1 is denoted by circles

The state of an individual electron in the self-consisting field is characterized
by quantum numbers n, l,m,σ. Notations s, p, d, f, g... denote orbital momenta
l = 0, 1, 2, 3, 4... of the corresponding electron. In the notation of an atomic state,
the number of electrons with a given value of quantum numbers nl is presented as
right upper index after l. Thus, electrons are distributed on atomic shells, so that
each atomic shell corresponds to the fixed value of nl. For example, the electron
shells of oxygen atom with 8 electrons are denoted as 1s22s22p4. If we distribute
electrons over atomic shells, states with the lower energy correspond to lower values
of the principal quantum number n. At the fixed value of n, states with lower energy
correspond to lower values of the orbital momentum l. This empirical rule is valid,
at least, for small values of quantum numbers, i.e. for light atoms. However, it is
violated if s and d electron shells are filled. In fact, an electron of s-shell with higher
value of the principal quantum number n is filled before than electron d-shell is
occupied with the lower value of n. In particular, the electron structure of the ground
state in the vanadium atom with Z = 23 is V(3d34s2), while the electron structure
of the ground state in the chromium atom with Z = 24 is Cr(3d54s). However, this
empirical rule is valid for filling of p-shells.

States of a given electron shell can have different energies. Indeed, atomic energy
levels are eigenvalues of the Schrödinger equation (1.1.8) and according to the Pauli
principle the wave function of atomic electrons is antisymmetric with respect to
exchange of any two electrons. Therefore, the splitting of atomic levels follows from
the exchange interaction inside the electron system.Due to the exchange nature of this
splitting, dipole radiative transitions are forbidden between these states (Table1.1).
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Taking into account that atomic states are determined by quantum numbers
J LSMJ , we consider as an example the nitrogen atomcontaining unperturbed atomic
shell N(2p3) (we do not take into account inner atomic shells). In order to solve this
problem, we distribute these electrons over states which differ by orbital momentum
projection m onto a given direction and by the spin projection σ onto this direction,
as it is given in Fig. 1.1. As a result, three p-electrons are distributed over six states.
Because of the identity of electrons, there are C3

6 = 20 possibilities of this distribu-
tion. Thus, we have 20 different states for electron shell 2p3. States with maximum
values 3/2 of the total spin determine the electron term 4S3/2 including 2J + 1 = 4
stateswith differentmomentumprojectionsMS . The stateswith themaximumorbital
momentum form the level 2D3/2,5/2 which includes 10 states. Hence, an additional
electron term 2P1/2,3/2 contains 6 states.

Thus, the nitrogen atom with the electron shell 2p3 is characterized by three
electron terms which are placed according to energy growth. From the first empir-
ical Hund rule [16] it follows that the lowest state should have the maximum spin.
According to the second empirical Hund rule [16], if spins of two states coincide
with each other the lower one has maximum orbital momentum. Hence, the ground
state of nitrogen atom is 4S3/2, the next two excited states are 2D3/2,5/2 and the higher
excited states are 2P1/2,3/2.

In the case of D states of the nitrogen atom, 3 electrons are distributed over 10
states. According to the third Hund rule [16], if the number of electrons is less that
a half of corresponding states (this case), the lower state of fine structure should
have a larger total momentum. Therefore the energy of state 2D5/2 is lower than the
energy of the state 2D3/2. In the case of P-states of the nitrogen atom, 3 electrons
are distributed over 6 states. According to the third Hund rule [16], if the number of
electrons is more or equal to a half of corresponding states, the lower state of fine
structure should have a less total momentum. Therefore the energy of state 2P1/2 is

Fig. 1.2 Energy levels of lower states of the nitrogen atom with the electron shell 2p3 of electron
shells [15]. Excitation energies presented inside rectangles are expressed in cm−1, the radiative
lifetimes are located inside triangles and are given in s, the wavelengths of radiative transitions are
presented near arrows in Å, energies of fine splitting of levels are given inside squares in cm−1. The
total atomic momentum is shown above arrows
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lower than the energy of the state 2P3/2. In the same manner, one can analyze the
electron states of other atoms with an incomplete electron shells containing valence
p-electrons. Figure1.2 [15] contains energies of lower states of the nitrogen atom
and presents also the wavelengths of radiative transitions between these states

1.1.3 LS- and jj-Coupling Schemes

Though relativistic interactions are small for light atoms, they determine the addition
rules of electron momenta in the total atomic momentum. Having in mind light
atoms, we analyze how to construct the atomic structure. We above consider the
LS-coupling scheme. It is based on the assumption that the exchange interaction
inside the atom is large compared to the spin-orbit interaction that determines the
fine structure of atomic levels. Note that within the framework of the atomic shell
structure, internal electrons fill complete electron shells, so that atomic states are
determined by valence electrons. Next, ignoring the spin-orbit interaction, we sum
separately orbital momenta of valence electrons into the atomic orbital momentum
L , and spins of valence electrons into the total atomic spin, as it was shown above
from commutation properties of momenta for light atoms. Hence, in this scheme
(so called LS coupling scheme) quantum numbers of the atomic electron system are
LSMLMS , where ML and MS are the projections of the total orbital momentum of
the atom and the total atomic spin onto a given direction.

These atomic momenta L and S are added into the total atomic momentum J , and
atomic quantumnumbers are LSJMJ , whereMJ is the projection of the total angular
momentum of the atom J onto a given direction. Another limiting case corresponds
to the other character of momentum summation, so that at first the orbital momentum
and spin of an individual electron are added in the total electron momentum j , and
then totalmomenta of individual electrons are added into the total atomicmomentum.

It is convenient to demonstrate the character of summation of momenta, as well
as notations for the states, on an example of excited inert gas atoms. Indeed, the
valence electron shell of an inert gas atom is completed and has the form np6; lower
excited states correspond to transition of one valence electron from the state np to
the state (n + 1)s, and the electron shell for these states is np5(n + 1)s. There are
12 excited states which correspond to this electron shell; this number is the product
of the number of atomic core states np5 (6) and the number of states for the valence
electron (n + 1)s (2). Within the framework of the LS coupling scheme, the states
3P2, 3P1, 3P0, 1P1 are realized, and the energies of their excitation from the ground
state increase according to the Hund rule [16].

Within the framework of j j-coupling scheme, this sequence of states is as follows:

s

[
3

2

]

2

s

[
3

2

]

1

s ′
[
1

2

]

0

s ′
[
1

2

]

1

(1.1.12)
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Fig. 1.3 Energy levels of
low excited states of argon
atom with the electron shell
3p54s. Parameters of
radiative transitions to the
ground state are given.
Electron energies are
counted off the first excited
state. Notations of Paschen
are given for these levels.
Notations within the frames
of LS- and j j-coupling
schemes are shown to the
right of energy levels

The notations are such that the total momentum of the atomic core is given inside
square brackets, and the low index is the total atomic momentum. Figure1.3 presents
notations of electron terms of an excited atom of inert gases. In addition, so called
Paschen notations are used often for excited atoms of inert gases due to their sim-
plicity. The sequence of states under consideration at the increasing of the excitation
energy is denoted as 1s5, 1s4, 1s3 and 1s2. Below we take the energy of the state 1s5
to be zero and denote the difference of excitation energies of the other states and this
state as ε4, ε3 and ε2. Table1.2 contains some parameters of lowest excited states for
atoms of inert gases [17, 18]. The energies of excitation of these states demonstrate
the character of interaction between electron shells for a given atom.

One can describe this interaction numerically by extraction the principal interac-
tions in these atoms from the Hamiltonian

Ĥ = −a l̂ŝ1 − bŝ1ŝ2, (1.1.13)

where l̂ is the operator of the orbital momentum of the atomic core, ŝ1 is the spin
operator of the core, ŝ2 is the spin operator of the excited s-electron. The parameter
a of this formula is responsible for the fine splitting of the ion levels; in absence of
the excited s-electron we have a = 2� f /3, where � f is the energy difference for
2P3/2 and 2P1/2 ion states. The other parameter of this formula b is responsible for
exchange interaction between the valence electron and the atomic core.

From solution of the Schrödinger equation

Ĥ�k = εk�k

with the Hamiltonian (1.1.13) one can find the energies of states. Taking ε5 = 0, one
can determine the eigen energies of the Schrödinger equation, which are [19]
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Table 1.2 Energetic parameters of the first excited states of inert gas atoms. All the energetic
parameters are expressed in cm−1 [19]

Atom � f ε3 b b/a ε2 − ε4
√
9a2/4 + b2 − ab

Ne 780 777 1488 2.9 1430 1430

Ar 1432 1410 1453 1.5 1649 1653

Kr 5370 5220 1600 0.46 4930 4923

Xe 10537 9129 1966 0.32 9140 8674

ε2,4 = 3

4
a + 1

2
± 1

4

√
9a2 − 4ab + 4b2, ε3 = 3

2
a (1.1.14)

These values and their components are given in Table1.3, where a = 2� f /3 and
b = ε4 + ε2 − ε3. It follows from data of Table1.2, that the exchange interaction
potential depends slowly on the atomic number. We also give in the Table1.2 the
value

√
9a2/4 + b2 − ab, that is, according to the obtained formulas equals to the

difference ε2 − ε4. From the data of this Table one can conclude that the Hamiltonian
(1.1.13) describes enoughwell excited states of the inert gas atoms at various relations
between parameters a and b.

Evidently, one can expect that in the limiting case b � a, the LS scheme of
the momentum coupling takes place, while in the other limiting case b 	 a the j j
scheme of momentum coupling is realized. It is seen, that in the argon and krypton
cases we have an intermediate coupling, and then the Hamiltonian (1.1.13) describes
well the positions of energy levels for these atoms.

Analyzing the results given inTable1.2, one canfind that the relativistic interaction
is determined mostly by the spin-orbit interaction. Even in the krypton case the ion
fine splitting and the difference of energies for levels 1s3 and 1s5 differ by 2.8%,
whereas in the xenon case this difference is about 13%. Next, under assumptions
used, the relative position of levels of 1s2 and 1s4 states differs from its experimental
value by 0.14% in the krypton case, while in the xenon case this difference is above
5%.We conclude that the higher is the accuracy of the approach under consideration,
the less are the relativistic corrections to the atom energy, and the error of this
model increases nonlinearlywith respect to relativistic interactions.Hence, additional
relativistic interactions are remarkable when the j − j coupling scheme is valid. In
addition, the interaction of shells of 1s and 2p in Paschen notations, that is stronger
for xenon than for other inert gas atoms, influences on the accuracy of the model
under consideration also. Note that this interaction between shells, which mixes
shells np5(n + 1)s and np5(n + 1)p as a result of exchange interaction between
electrons, influences on the parameter bwhich is responsible for exchange interaction
in the atom. Because the (n + 1)p excited electron interacts weakly with internal
electrons, it does not influence on the fine splitting of levels of the atomic core; thus,
the interaction between shells does not influence on the spin-orbit interaction of the
atomic core. Therefore, deviation of the difference ε3 − ε5 from the fine splitting of
ion levels for xenon can be produced by additional relativistic effects.
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1.1.4 Parentage Scheme of Atom

We consider an atom or atomic ion within the framework of one-electron approx-
imation where the total wave function of electrons is the combination of products
of one-electron wave functions; on the basis of the Pauli principle, the total wave
function of electrons change its sign at the permutation of any two electrons. Next,
these electrons are distributed over the shells, and usually internal atom shells are
not excited, i.e. they are filled. If the shell of valence electrons is not filled, there
are different atomic states in the same electron shell. These combinations can be
taken on the basis of total wave function of electrons which are eigenfunctions of the
electron Hamiltonian. In particular, ignoring relativistic interactions, we have that
quantum numbers LSMLMS are quantum numbers of a light atom.

In the analysis of transitions of an atom to an excited state, it is convenient to
apply one-electron approximation where one valence electron varies its state. For
description of this process we extract the transferring electron and represent the
wave function of valence electrons as the product of the wave function of the trans-
ferring electron and the wave function of an atomic core. This approach is called
the parentage scheme of the atom. On the basis of the total symmetry of the atomic
electron system, the total wave function of n valence electrons is given by

�LSMLMS (1, 2, ....., n) = 1√
n
P̂

∑

L ′M ′
L S

′M ′
Smσ

GLS
L ′S′(l, n)

[
l L ′ L
m M ′

L ML

] [
1
2 S′ S
σ M ′

S MS

]
ψl 12mσ(1) · �L ′S′M ′

L M
′
S
(2, ....., n), (1.1.15)

Here the operator P̂ transposes positions and spins of a test electron which is
described by the argument 1 and atomic electrons; LSMLMS are quantum numbers
of the atom, L ′S′M ′

LM
′
S are the quantum numbers of the atomic core, l, 1/2,m,σ;

are quantum numbers (the orbital momentum, the spin, and their projections onto
a given direction) of an extracted valence electron, GLS

L ′S′(l, n) is so called the frac-
tional parentage coefficient or the Racah coefficient [20, 21] which is responsible
for binding of an electron and atomic core to form the atom. Note that there are
a finite number of states of an atomic core at the removal of the valence electron
from an atom. Table 1.3 lists the values of fractional parentage coefficients for s and
p-electron shells. In the case of d- and f -electrons removal of one valence electron
can lead to various states of the atom with the same values L and S. Then the atom
state is described by the additional quantum number v that is the seniority of state.

Fractional parentage coefficients satisfy to some relations. In particular, it follows
from the condition of normalization of the wave function

∑

L ′S′v

[
GLS

L ′S′(l, n, v)
]2 = 1
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Table 1.3 Fractional parentage (Racah) coefficients for valence s- and p-electron shells. The
electron shell and the state term for the atom and atomic core are indicated

Atom Atomic rest GLS
L ′S′ Atom Atomic rest GLS

L ′S′

s(2S) (1S) 1 p3(2P) p2(1S)
√
2/3

s2(1S) s(2S) 1 p4(3P) p3(4S) −1/
√
3

p(2P) (1S) 1 p3(2D)
√
5/12

p2(3P) p(2P) 1 p3(2P) −1/2

p2(1D) p(2P) 1 p4(1D) p3(4S) 0

p2(1S) p(2P) 1 p3(2D)
√
3/4

p3(4S) p2(3P) 1 p3(2P) −1/2

p2(1D) 0 p4(1S) p3(4S) 0

p2(1S) 0 p3(2D) 0

p3(2D) p2(3P) 1/
√
2 p3(2P) 1

p2(1D) −1/
√
2 p5(2P) p4(3P)

√
3/5

p2(1S) 0 p4(1D) 1/
√
3

p3(2P) p2(3P) −1/
√
2 p4(1S) 1/

√
15

p2(1D) −√
5/18 p6(1S) p5(2P) 1

1.2 Single-Photon Transitions

1.2.1 Rates of Single-Photon Transitions for Nonrelativistic
System

Radiative transitions result from interaction between the radiation field and atomic
systems. If we deal with radiative transitions in atoms, which are transitions between
bound states of valence electrons, they are governed by a small parameter that is
the ratio of a typical electron velocity to the light speed c. A typical velocity of
atom valence electrons is e2/�, and in this case a small parameter of the theory
is the fine structure constant e2/�c = 1/137. This small parameter provides low
rates of radiative transitions compared to typical atomic rates, and therefore the
theoryof radiative transitions is the perturbation theoryof quantummechanics.Below
we represent the apparatus of quantum mechanics for radiative transitions which is
based on the above small parameter. In addition, because typical times of radiative
transitions are large, spectral lines for these transitions are narrow. This fact is the
basis of spectroscopy.

In considering radiative transitions between two discrete states, we use below
notations given in Fig. 1.4. The radiative transition under consideration takes place
between states i and j , and a photon which partake in this transition has the energy
�ω = E j − Ei , where E j and Ei are the energies of states between them the transition
proceeds.Webelow represent the nonrelativistic theory of radiative transitions,where
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Fig. 1.4 Radiative
transitions between two
discrete states and used
notations

the operator of interaction between the electromagnetic field and the atomic system
is given by

V̂ = − e

mc

(
p̂A + Ap̂

) + e2

2mec2
A2 (1.2.1)

whereA (r, t) is the vector potential of the electromagnetic radiation) radiation field,
and p̂ is themomentumoperator of an atomic electron that participates in the radiation
transition. We presume that the radiation wavelength is large compared to a typical
atomic dimension (i.e. the Bohr radius). This statement can be written as

Ŝ =
∑

i

ŝi ; L̂ =
∑

i

l̂i ,
c

ω
� �

2

mee2
(1.2.2)

where ω is the radiation frequency. This inequality can be rearranged to read
e2/(�c) 	 1 since the radiation frequency ω is of the order of the frequency of
an atomic transition mee4/�

3. Then we see that the dipole approximation is applica-
ble as the consequence of the condition v/c 	 1. The interaction Hamiltonian can
be written in the simpler form

V̂ = −E · D (1.2.3)

Here E is the electric field strength of the radiation field being considered, and D is
the dipole moment operator of the atomic particle.

Through most of this book, we shall also assume that the energy of interaction
between the radiation field and the atomic system is small compared to the transition
energy. This justifies the description in the framework of the perturbation theory
for emission and absorption processes involving photons of the radiation field. The
perturbation theory is applicable if the electric field strength E is small compared to
a typical internal electric field of the atom. From the dimensionality analysis we can
take this internal field to be of the order of m2

ee
5/�

4. Thus, we assume that

E � Eo; Eo = m2
ee

5

�4
= 5.14 · 109 V/cm (1.2.4)
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If this criterion holds true, one can use the operator (1.2.1) for the analysis of radiative
transitions between states of an atomic particle and use a small parameter to construct
the perturbation theory.

We use the interaction potential (1.2.1) as a perturbation for radiative pro-
cesses under consideration. Additional terms of expansion over a small parameter
v/c, v ∼ e2/� correspond to weak processes.Within the framework of the perturba-
tion theory under consideration, the electric field strength of the radiation field may
be represented in the form of a sum of those for monochromatic waves

E =
∑

ω

Re
[
Eω exp(iωt)

]
, (1.2.5)

where Eω is the complex strength of the electric field of a frequency ω. Let us
denote by δω the difference between neighboring wave frequencies and assume the
differences of neighboring wave frequencies to be nearby. Denoting the spectrum
width by �ω, we assume that the value Eω varies slightly within this width, i.e., the
criterion �ω � δω is fulfilled. Thus, many frequency components partake in the
radiative transitions.

If the phases of the amplitudesEω are statistically independent, one can neglect an
interaction between waves. Then basing on the time-dependent perturbation theory
for radiative transitions, we employ the first-order perturbation theory which leads to
transition of one photon in the absorption or emission processes. Then the transition
lifetime 1/w, or the residence time in the upper state of transition is large compared
to a typical atomic time that is of the order of �

3/(mee4).
Since the interaction between an atomic electron and each monochromatic com-

ponent of the electromagnetic wave can be considered separately, one can represent
the operator of interaction of an atomic electron and a monochromatic wave of the
radiation field in the form

V̂ = −D · Re [
Eω exp (iωt)

]
(1.2.6)

The Hamiltonian of an atomic system, i.e. a system of bound electrons, in absence
of the electromagnetic field is Ĥo and describes the behavior of valence electrons
or vibrations of atoms for a molecular system. Let us denote by ψk the system
of eigenfunctions of the Hamiltonian Ĥo, where εk are the corresponding energy
eigenvalues. Thesewave functions are solutions of the time-independent Schrödinger
equation

Ĥ0ψk = εkψk (1.2.7)

The wave function of the system in terms of the eigenfunctions ψk can be presented
in the form

� =
∑

k

ckψk (r) exp
(

− iεk t

�

)
(1.2.8)
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Here r is a set of coordinates of atomic electrons, or the coordinates that determine
vibrational or rotational molecular states. Let us the expansion (1.2.8) for the wave
function of atomic electrons in the Schrödinger equation

i�
∂�

∂t
= Ĥ�, (1.2.9)

where Ĥ = Ĥo + V̂ is the total Hamiltonian of the system. Then multiplying the
resulting equation by ψ∗

m , we integrate over coordinates of the atomic electron and
use the orthogonality conditions for the eigenfunctions ψk of the unperturbed atomic
electron. We thus obtain for the coefficients ck the equation

i�
∂cm
∂t

=
∑

k

Vmkck exp (iωmkt) (1.2.10)

Here
ωmk = εm − εk

�
,

Vmk is the matrix element of the time-dependent interaction operator, and this equa-
tion includes the states of atomic electrons. Using first-order perturbation theory, we
suppose that the perturbation is absent at time t = 0, before which the electron is
in a state i . Therefore in zero approximation we have c(0)

j i = δ j i , where δ j i is the
Kronecker function.

Let us take the radiation field to be linearly polarized, that means that Eω is a real
value. Subsequently we replace Eω by E. This replacement does influence the result.
On the basis of (1.2.6) we have

V̂ = −D · E cosωt, (1.2.11)

and in the first approximation the set of equations (1.2.9) gives

c(1)
j = −D j i · E

2�

{
1 − exp

[
i
(
ω j i − ω

)
t
]

ω j i − ω
+ 1 − exp

[
i
(
ω j i + ω

)
t
]

ω j i + ω

}
(1.2.12)

As it follows from (1.2.12), the strongest transitions correspond to such states j
for which the resonance condition ω j i = ω is fulfilled. In this case, one can conserve
only the first term in (1.2.12). The probability for transition to the state j is

∣∣∣c(1)
j

∣∣∣
2 = E2

(
D j i · s)2
�2

· sin
2[(ω j i − ω)t/2]
(ω j i − ω)2

, (1.2.13)

where s is the polarization vector, that is the unit vector directed along the electric
field. In the case of small a and large t , the factor of formula (1.2.13) sin2 (at) /a2 may
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be replaced by πtδ (a), where δ (a) is the Dirac delta function. This delta function
is δ (a) = 0, if a �= 0, and δ (a) = ∞ at a = 0, and

∞∫

−∞
δ(a)da = 1 (1.2.14)

The function sin2 (at) (
(
πa2t

)
) has properties of delta-function δ (a), and just

this expression is used often for definition of delta function. Note that the condition
t → ∞ is required for this. Assuming this requirement to be fulfilled, we have for
the transition rate

w = 1

t

∣∣∣c(1)
j

∣∣∣
2 = E2

2�2

(
D j i · s)2 δ

(
ω j i − ω

)
(1.2.15)

This formula is valid if t is not extremely large, as long aswt 	 1 and the perturbation
theory is applicable. From another standpoint, the relationship ω j i t � 1 should be
fulfilled in order the delta function could be formed.

We now take into account that the radiation field has many modes. Then one can
replace by integration the summation over frequencies in the following manner

∑

ω

→ 1

δω

∫
dω,

where δω is the frequency difference of neighboring modes (see above), and the
quantity 1/δω is the energy density of the states. Next, let us express the rate of
transition w through the number of photons nω located in one state with a frequency
ω, instead of the electric field strength E. Then the quantity

1

2

(
E2 + H 2

8π

)
= E2

8π
(1.2.16)

is the average energy density of the electromagnetic field in a single mode of the
field. Arriving this result, we replace the time average value of cos2 ωt by 1/2, and
take into account that the electric field strength |E| for an electromagnet plane wave
is equal to the magnetic field strength |H|. We then have for the energy density of
modes in the frequency range from ω up ω + dω as E2/(8π) · dω/δω. From another
point of view, this quantity is also given by

�ωnω · 2dk
(2π)3

= �nωω3dω

π2c3
, (1.2.17)

where k is the photonwave number, dk/ (2π)3 is the number of states per unit volume
and unit frequency ω, nω is the number of photons located in one state, and the factor
2 takes into account two photon polarizations. The wave number k is connected with
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the photon frequency ω by the dispersion relation ω = ck, where c is the light speed.
As a result, we find the connection between the electric field strength E and the
number of photons nω located in one state

w = 4ω3nω

�c3
(
D j i · s)2 , ω j i = ω (1.2.18)

The integration takes into account the property (1.2.14) of the delta function, that is
correct, if the frequency width �ω of the transition is large compared with typical
values of the difference |ω j i − ω| � t−1 � w, i.e.�ω � w. Thus, formula (1.2.18)
is valid in the case of a weak field strength with a broad frequency spectrum and
at moderate times of observation. It is necessary to require also the incoherence of
waves with different frequencies.

Formula (1.2.18) is derived for the case nω � 1. Indeed, we assume in its deriva-
tion that the electric field strength does not change at the radiation transition, whereas
the number of photons in this state decreases by one as a result of the absorption
process. Nevertheless, formula (1.2.18) is correct at any values of nω . Namely, from
the nature of the photon absorption, it follows that the absorption probability is pro-
portional to the number of photons in this state, and this formula is valid also at
nω ∼ 1.

One can average the expression (1.2.18) for the rate of the radiative transition over
the polarization direction s and integrate over the solid angle

〈
cos2 θ

〉 = 1/3, where
θ is the angle between vectors D and s. As a result, we obtain the transition rate

wi j = w (0, nω → k, nω − 1) = 4ω3

3�c3
|D j i |2g j nω (1.2.19)

Here we introduce the factor g j which is the statistical weight of the final state and
equals to the number of states of the final level. In contrast to the expression (1.2.18),
formula (1.2.19) does not depend on the field polarization.

The above expressions (1.2.18) and (1.2.19) relate to the process of photon absorp-
tion. In the same manner, one can find the rate of the photon emission. For a certain
photon polarization described as before by the unit vector s this rate by analogy with
formula (1.2.18) takes the form

w j i = 4ω3

�c3
(
D j i · s)2 gi · (nω + 1), (1.2.20)

where gi is the statistical weight of the lower state of transition.
The value 1/w is the timebetween two subsequent events of the photon absorption.

But a time of absorption of one photon ismuch less; it is determined by the uncertainty
principle, which gives that this value is of the order of 1/ω j i . Next, from formula
(1.2.12) it follows that at very small times the transition rate is proportional to t2.
However, this rate is so small that it is experimentally unobservable. On the other
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hand, the result for the transition rate is incorrect at large times, where w j i t > 1. In
this limit, the rate of transition differs from the linear dependence.

In contrast to the case of photon absorption, photon emission from an excited
atomic state includes two parts. The first one, so-called spontaneous transition rate,
describes emission in the absence of an external electromagnetic field, so that the
spontaneous radiation occurs due to the interaction of a charged atomic particle with
the electromagnetic vacuum field. The second part takes place under the action of
an external electromagnetic field, corresponds to production of photons stimulated
by the external field, and is called induced radiation. As a result, the total rate of
emission from the excited state j may be represented in the form

w j i = w ( j, nω → 0, nω + 1) = A ji + Bjinω, (1.2.21)

where the quantities A ji and Bji are called the Einstein coefficients. Subsequently
we present the connection between Einstein coefficients and the spontaneous lifetime
τ of an excited state considering the system of atoms and photons which are found
in thermodynamic equilibrium.

1.2.2 Intensity of Radiative Transitions

Let us introduce the intensity I of the absorption process as the energy change per
unit time due to the photon absorption. Then multiplying formula (1.2.18) by the
photon energy �ω, we obtain the emission intensity

I = 4ω4nω

c3
(
D j i · s)2 (1.2.22)

Although this expression does not contain the Planck constant, it becomes classical
only in the limit nω � 1. In order to transfer to the classical limit, it is necessary to
replace the matrix element of the dipole moment of an atomic system, D j i , by the
Fourier component of the time-dependent dipole moment with respect to the transi-
tion frequency ω j i = (

ε j − εi
)
/�. This is an example of the Bohr correspondence

principle [22].
We now determine the intensity of the spontaneous radiation process as the energy

radiated per unit time per one atomic particle or system which is described by the
dipole operator D. Characterizing the photon polarization by a unit vector s, one can
obtain from expression (1.2.20) the intensity of radiative transition from an upper
state j to a lower state m as

�ω jmw jm = 4ω4
jm

c3
(
D jm · s)2 gm, (1.2.23)
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where �ω jm is the photon energy or the energy difference between states j and
m. Averaging over polarizations of and emitted photon and taking, for simplicity,
gm = 1, one obtain the total intensity of spontaneous radiation

I jm = 4ω4
jm

3c3
|D jm |2 (1.2.24)

Transiting to the classical limit, we summarize the partial intensity I jm over all
statesm with the energy below that of the state j . This gives for the radiative intensity
from a state j in the classical limit

I j =
∑

m,ω jm>0

I jm (1.2.25)

Using general principles of quantummechanics, we find that the matrix elementD jm

is proportional to exp
(
iω jmt

)
, that gives

d2D jm

dt2
= −ω2

jmD jm . (1.2.26)

From this relation we obtain

I j = 4

3c3
∑

m,ω jm>0

|D̈ jm |2 = 4

3c3
∑

m,ω jm>0

|ω2
jmD jm |2 (1.2.27)

It is important that the summation in formula (1.2.27) over all the states gives

∑

m

|D̈ jm |2 = (
D̈2

)
j j . (1.2.28)

Note that the main contribution in the quasi-classical sum (1.2.27) is produced by
states m which are nearby by energy to the state j . In fact, the values of the matrix
elements D̈ jm calculated with quasi-classical wave functions decrease quickly with
an increasing energy difference between states j andm, because of oscillations in the
integrand, which grow sharply with the increasing of the energy difference. Indeed,
matrix elements of the dipole moment operator decrease exponentially, while square
of energy difference increases much slower. Now we take into account that states
m, which are close to the state j by energy, are distributed symmetrical with respect
to j . This gives

∑

m,ω jm>0

|D̈ jm |2 =
∑

m,ω jm<0

|D̈ jm |2 = 1

2

(
D̈2

)
j j (1.2.29)
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In the classical limit, the diagonal matrix element of a quantum operator for
a given physical quantity coincides with the average value of this operator. This
average value, in turn, yields the classical value for the physical quantity. Thus from
formula (1.2.27) we obtain the total radiation intensity of an atom in the classical
limit

I (t) = 2

3c3
[
D̈(t)

]2
(1.2.30)

The classical dipole moment D in this expression should be regarded as a given
function of time. It follows from the above analysis, that the radiative lifetime of a
given state is determined by spontaneous transitions to nearby states in the classical
limit.

1.2.3 Selection Rules for Single-Photon Radiative Transitions

The rate of radiative dipole transitions under consideration according to formula
(1.2.15) is proportional to the square of the matrix element from the dipole moment
operator. We first formulate the selection rule for an individual electron located in a
structureless central field, and its state is described by quantum numbers n, l,m,σ.
The selection rule requires a nonzero value of the matrix element of the dipole
moment operator. Let us consider the matrix element of the dipole moment operator
−er of an individual electron using thewave function (1.1.6). The factor that includes
the angle dependence of thewave functions is expressed through the Clebsch-Gordan
coefficients and is equal

∫
Y ∗
l ′m ′

l
Y1qYlmld� =

√
3 (2l + 1)

4π (2l ′ + 1)

〈
l1,mlq|l ′m ′

l

〉 〈
l1, 00|l ′0〉

Here the spherical functions Ylml and Yl ′m ′
l
correspond to initial and final angular

wave functions, respectively, the index q characterizes a photon polarization. The
Clebsch-Gordan coefficient

〈
l1,mlq|l ′m ′

l

〉
is nonzero only when m ′

l = ml, ml ± 1
since q = −1, 0,+1.

Thus, selection rules for one-electron transitions are of the form

l − l ′ = ±1; s − s ′ = 0; ml − m ′
l = 0,±1; ms − m ′

s = 0 (1.2.31)

In the case of several identical electrons located in the unfilled electron shell, the
above selection rule must be generalized. Since the operator of the dipole moment
is the orbital vector, then matrix elements of all its components can be nonzero only
for transitions in which the orbital momentum of the electron shell changes no more
than by one, i.e. L → L , L ± 1. In addition, the selection rule forbids transitions
between any two states with L = 0. This rule follows from the value of the Clebsh-
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Gordan coefficients [23, 24]; in this case because of the spherical symmetry of states
with L = 0, there is no the vector for direction of the matrix element of the dipole
moment.

Since the operator of the dipole moment

D = e
∑

i

ri

is odd function at the reflection of all electrons with respect to plane which contains
the atomic center, matrix elements of this operator between states of the same par-
ity are zero. This is so called Laporte rule [25]. This rule forbids transitions with
L = L ′ in single-electron atoms since in this case the orbital quantum number L
determines the parity of the state (−1)L . On the other hand, there is no direct con-
nection between the total orbital momentum of themulti-electron atom and its parity;
thus, the condition L = L ′ does not contradict the Laporte rule.

We consider a light atom which undergoes a radiative single-electron transition
from a state with orbital angular momentum L and spin S to a state with orbital
angular momentum L ′ and spin S′. The fine structure of the atom in the initial state
is determined by the total angular momentum J = L + S. We designate by M the
projection of the total angular momentum J on a fixed direction. Find the relative
probability of the atom to be in the final state J ′ after single-electron transition. We
presume LS-coupling to hold true. The states are characterized by the following
quantum numbers: the orbital momentum L , the spin momentum S and the total
momentum J. Since the dipolemoment Dq is is the orbital vector, its matrix elements
are diagonal with respect to S.

On the basis of formula (1.2.20) we find the total rate of emission from the excited
state to a given final state that is proportional to

w ∼
∑

q,M ′

∣∣〈JMLS
∣∣Dq

∣∣ J ′M ′L ′S
〉∣∣2 ,

where q = −1, 0, 1 and J, MJ , L , S are, respectively, the total angular momentum,
its projection onto a given direction, the orbital and spin angular momentum quantum
numbers of the atom in its initial state.We omit all other quantum numbers necessary
to describe the initial and final states.

One can present atomic spectra and radiative transitions in atomswithin the frame-
work of theGrotrian diagram. Examples of theGrotrian diagrams are given in Fig. 1.5
for the sodium atom and in Fig. 1.6 for the nitrogen atom [18]. The sodium atom has
one valence electron above filled shells; atomic levels and radiative transitions relate
to a single valence electron only. In the case of the nitrogen atom there are three
valence electrons, and their coupling corresponds to the LS-scheme of addition of
electron momenta.
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Fig. 1.5 Grotrian diagram for the sodium atom
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Fig. 1.6 Grotrian diagram for the nitrogen atom

The matrix element of the dipole moment operator for the LS-scheme of momen-
tum addition for the initial and final states can be expressed through the Wigner
6 j-symbols

w ∼ (
2L ′ + 1

) (
2J ′ + 1

) ∑

q,M ′

〈
L ′1, 00|L0〉2 〈

1J ′, qM ′|JM 〉2
{
L ′ 1 L
J S J ′

}2

=

(1.2.32)

= (
2L ′ + 1

) (
2J ′ + 1

) 〈
L ′1, 00|L0〉2

{
L ′ 1 L
J S J ′

}2

Selection rules on L → L ′ follow from the selection rules (1.2.31) for the one-
electron atom. The same rules follow also from the Clebsch-Gordan coefficient〈
L ′1, 00|L0〉 of formula (1.2.32).
The mathematical formalism based on usage of Clebsch-Gordan coefficients and

the fractional parentage coefficients possesses the central place in the atomic theory.
This formalism allows one to take into account the symmetry of atomic particles in
the analysis of their properties. In particular, the selection rule for radiative transitions
is based on this formalism. The rate of radiative transition between two atomic states
is proportional to the square of the matrix element of the dipole moment operator
between transition states. Within the framework of the scheme for the light atom,
this transition is possible between states with �S = 0 and �L = 0,±1.



24 1 Single-Photon Transitions of Atomic Particles

In the samemanner, selection rules for J follow from the properties of theWigner
6 j-symbol {

L ′ 1 L
J S J ′

}

This symbol is nonzero if J − J ′ = 0,±1 (except the transition J = 0 → J ′ = 0).
According to formula (1.2.32), the relative probability for the transition to the

state with a given total angular momentum J ′ is of the form

w ∼ (
2J ′ + 1

) {
L ′ 1 L
J S J ′

}2 ∑

J ′

(
2J ′ + 1

) {
L ′ 1 L
J S J ′

}2

= (2L + 1))
(
2J ′ + 1

) {
L ′ 1 L
J S J ′

}2

This sum is derived using the known rules of addition of 6 j-symbols. Thus, we
find the rate of radiative transition to the given level of fine structure

w
(
J, L → J ′, L ′) = (2L + 1)

(
2J ′ + 1

) {
L ′ 1 L
J S J ′

}2

w
(
J, L → L ′) (1.2.33)

One can average this expression over the total angular momentum J of the initial
state. The probability of atom location in the initial state with a given value of the
total atom momentum J is proportional to the statistical weight of this state of fine
structure, i.e. to the ratio of the statistical weight of this state to the statistical weight
of the electron term SL

w
(
J, L → L ′) = 2J + 1

(2L + 1) (2S + 1)
w

(
L → L ′) (1.2.34)

From formulas (1.2.33) and (1.2.34) we obtain

w
(
J, L → J ′, L ′) = (2J + 1)

(
2J ′ + 1

)

(2S + 1)

{
L ′ 1 L
J S J ′

}2

w
(
L → L ′) (1.2.35)

We now sum this quantity over the initial total momentum J to obtain

w
(
L → J ′, L ′) =

∑

J

w
(
J, L → J ′, L ′) =

(
2J ′ + 1

)

(2L ′ + 1) (2S + 1)
w

(
L → L ′)

(1.2.36)
This formula is valid for the sum over intensities of all lines of a spectral multiplet
with the same final level; it is proportional to the statistical weight of this final level.

In particular, let us consider the transitionwith L ′ = L − 1. Substituting the appro-
priate quantum numbers in the Wigner 6 j-symbol of formula (1.2.33) under the
assumption J � 1, one can obtain the ratio
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w (J, L → J − 1, L − 1)

w (J, L → J, L − 1)
= 1

2

(J + L)2 − S2

(J − L)2 − S2
;

w (J, L → J, L − 1)

w (J, L → J + 1, L − 1)
= 2

(J + L)2 − S2

(J − L)2 − S2

Thus, among the lines of a multiplet, the most intense is the line with �J =
�L , the so-called principal spectral line. The spectral line with �J = �L + 1 is
approximately by J 2 times weaker, since at J � 1 we have J ≈ L . Finally, the
spectral line with �J = �L + 2 is approximately by J 4 times weaker than the
principal line. These last two lines are called satellites. The greater the value of
the total angular momentum J , the stronger the principal line in comparison to the
satellite lines.

If the condition J � 1 is not fulfilled, the analysis is more complicated, except
relatively simple expressions for alkali atoms. Let us consider an atom with a sin-
gle valence electron located in the field of an atomic core with zero spin and zero
total angular momentum. We then have S = 1/2. The initial term L splits into two
sublevels with J = L ± 1/2, and the final term with L ′ = L − 1 also splits into two
sublevels, but with J ′ = L − 1/2 and J ′ = L − 3/2. The selection rules on J allow
three transitions from the term L to the term L − 1. Their relative probabilities are
found from the general expression (1.2.35)

w
(
J = L + 1/2 → J ′ = L − 1/2

)

w (J = L − 1/2 → J ′ = L − 1/2)
= (L + 1) (2L − 1) ; (1.2.37)

w
(
J = L − 1/2 → J ′ = L − 1/2

)

w (J = L − 1/2 → J ′ = L − 3/2)
= 1

(L − 1) (2L + 1)

The fourth transition with J = L + 1/2 → J ′ = L − 3/2 is forbidden since it
would require �L = 2, in contradiction with the selection rule followed from
formula (1.2.37). In the limit L � 1 we have for the first and third transitions
�J = �L = 1. Thus, both these transitions correspond to principal spectral lines,
and their intensities are comparable. In the case of the second spectral line, �J =
�L − 1 = 0, so that this is a satellite line with an intensity approximately 2L2 times
weaker than that the principal lines.

One can generalize this example as well as the previous one, where transitions
from an initial state of a multiplet with a certain value of J were considered. It fol-
lows that accounting all possible transitions between states of two multiplets with
J � 1, one can obtain themost intense lines with�J = �L , which are the principal
spectral lines. The greater the difference�J − �L , the weaker is the intensity of the
corresponding line.We can average over initial or final states of amultiplet, for exam-
ple, for radiation in a gas with the large temperature compared to the fine structure
splitting, but small compared to the energy difference for neighboring multiplets.

We now consider radiative transitions between components of hyperfine structure.
Hyperfine structure of atomic levels occurs as a result of interactions of the atomic
electrons with the nonzero nuclear spin. By analogy with the above consideration,
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where the total atomic momentum J is the sum the orbital momentum L and spin
angular momentum S, and the interaction potential does not depend on the spin, one
can present the total momentum F as a sum of the total electronmomentum J and the
nuclear spin I . Therefore, along with the above cited selection rule J − J ′ = 0,±1
we have now the selection rule F ′ = F, F ± 1.

Due to the similarity of these two problems, one can rewrite formula (1.2.35) by
change J → F , L → J , and S → I . This gives

w
(
F, J → F ′, J ′) = (2F + 1)

(
2F ′ + 1

)

(2I + 1)

{
J ′ 1 J
F S F ′

}2

w
(
J → J ′)

The total rate of transition from a given state of hyperfine structure follows from
formula (1.2.34)

w
(
F, J → J ′) =

∑

F ′
w

(
F, J → F ′, J ′) = (2F + 1)

(2J + 1) (2I + 1)
w

(
J → J ′)

The radiative transition rate from all components of the hyperfinemultiplet to a given
hyperfine state of the other multiplet follows from formula (1.2.36)

w
(
J → J ′, F ′) =

∑

F

w
(
F, J → F ′, J ′) =

(
2F ′ + 1

)

(2J ′ + 1) (2I + 1)
w

(
J → J ′)

The statistical weights for these two expressions are the relative probabilities for
filling of given states of the hyperfine structure.

Because of a weak interaction between electrons and nuclear spin, the selection
rules with respect to electron total momentum J and electron parity remain valid for
the above transitions. In particular, dipole transitions are forbidden between com-
ponents of hyperfine structure for the same term because of the identical parity for
these states. Thus, we have that radiative transitions of the type J = 0 → J ′ = 0 are
forbidden in the dipole approximation, as well as for the transition F = 0 → F ′ = 0.

1.2.4 Polarization of Spontaneous Radiation of Atomic
Particles

Polarization is one of the photon parameters at the interaction of a photon with
atomic particles and atomic systems. Indeed, each emitted spontaneous photon is
characterized by a direction of propagation that coincides with the wave vector k
and by a polarization vector s that is perpendicular to the vector of propagation k of
an electromagnetic wave. There are two polarizations, so that the their vectors are
mutually perpendicular to each other and to the wave vector k, and in a general case
the polarization vector is a superposition of these two vectors. For induced radiation,
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the ejected photon has the same polarization as the initial photon impacting on he
atomic system. However, for spontaneous radiation, the problem of the polarization
of the emitted photon remains open for investigation.

Let us obtain the spontaneous emission rate from an excited atom of a photon,
expressed in terms of specific polarization and emission direction. The rate for the
spontaneous transition j → i is given by formula (1.2.20),wherewemust put nω = 0

w j i = 4ω3

�c3

∣∣∣D̂ j i s
∣∣∣
2
gi

The statistical weight of the final state is

gi = 1

2

d�

4π
,

where d� is the solid angle element for the emitted photon, and the factor 1/2 appears
because of the two directions of the the photon polarization. We then obtain the
spontaneous emission rate for a photon in a certain directionwith a given polarization
vector s as

dwi j = ω3

2π�c3

∣∣∣D̂ j i s
∣∣∣
2
d�

Let us introduce spherical components sq and Dq of vectors s and D that allows
one to rewrite this expression in the form

dwi j = ω3

2π�c3

∣∣∣∣∣
∑

q

s−q
〈
LML

∣∣Dq

∣∣ L ′M ′
L

〉
∣∣∣∣∣

2

d�, (1.2.38)

where L , ML are the orbitalmomentumand its projection onto the z axis respectively;
the other quantum numbers for this state are omitted. The same quantities with the
primes refer to the final state 0. We also introduce the quantity �ML = ML − ML ′ .

Only one term in the sum over q in formula (1.2.38) is nonzero for each of the
three possible transitions with �ML = 0,±1. If �ML = 0, then q = 0. It follows
from formula (1.2.38) the rate for emission of a photon polarized in the plane defined
by k and z axis

dw
(
LML → L ′ML ′

) = ω3s2z
2π�c3

∣∣〈LML |Dz| L ′ML
〉∣∣2 d� (1.2.39)

The quantity sz is the projection of unit polarization vector on the z axis. We
define θ to be the angle between the z axis and direction n = k/k of the emitted
photon. Then the direction of the vector s can be chosen to be either in the plane of
n and the z axis or perpendicular to this plane. In the first case we have sz = sin θ,
since the vectors s and n are normal to each other. In the second case sz = 0, since
the vector s is perpendicular to the z axis. We thus obtain two spontaneous rates:
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one corresponding to the emitted photon with the polarization in the plane of n and
the z axis; and the second rate corresponding to the emission of a photon with a
polarization perpendicular to this plane. These rates are

dw1 = ω3

2π�c3
∣∣〈LML |Dz| L ′ML

〉∣∣2 sin2 θd�, dw2 = 0 (1.2.40)

Summarizing over two terms and integrating over angles, we get the total rate of
photon emission for polarization in the plane of vectors n and the z axis

w
(
LML → L ′M ′

L

) = 4ω3

3�c3
∣∣〈LML |Dz| L ′ML

〉∣∣2

If�ML = −1, then only one term is retained in the sumover q in formula (1.2.38)
that gives

s−1
〈
LML |D1| L ′ML + 1

〉 = 1

2

(
sx − isy

) 〈
LML

∣∣Dx + i Dy

∣∣ L ′ML + 1
〉

This formula determines the photon emission in the xy plane with left circular polar-
ization. Analogously, if �ML = +1, only one term is conserved in the sum over q
in formula (1.2.38), which is

s1
〈
LML |D−1| L ′ML − 1

〉 = 1

2

(
sx + isy

) 〈
L , ML

∣∣Dx − i Dy

∣∣ L ′, ML − 1
〉

This determines photon emission in the xy plane with right circular polarization.
If there is no the reason for selection of the z axis, then an atom will be located in

each of its ML substates with equal probabilities. The transition rate dw
(
L → L ′)

is obtained by summarizing the expression for dw over ML ′ and averaging over
ML . There is a simpler alternative way to arrive at the same result. Averaging over
a direction of the z axis in formula (1.2.38) with respect to the direction of the
polarization vector s, one can obtain thereby

dws
(
L → L ′) = ω3

2π�c3
1

2L + 1

∑

ML ,M ′
L

∣∣〈LML |Dz| L ′M ′
L

〉∣∣2 d� =

= ω3

6π�c3
1

2L + 1

∑

ML ,M ′
L

∣∣〈LML |D| L ′M ′
L

〉∣∣2 d� =

= e2ω3

6π�c3
1

2L + 1

∣∣〈L |r | L ′〉∣∣2 d� (1.2.41)

As is seen, emission is isotropic. This follows from the fact that all directions in
space are equivalent. The quantity

〈
L |r | L ′〉 in formula (1.2.41) is the radial matrix
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element. Integration of formula (1.2.41) over angles is equivalent to multiplication
by 4π because of isotropic emission. As a result, we have

w1,2
(
L → L ′) = 2e2ω3

3�c3
1

2L + 1

∣∣〈L |r | L ′〉∣∣2

This expression determines the total rate of photon emission with a fixed polar-
ization direction, but the result does not depend on this direction. Summarizing over
two independent polarizations, one can obtain the ratew that determines the lifetime
of the excited state and is equal

w
(
L → L ′) = 1

τ
= 4e2ω3

3�c3
1

2L + 1

∣∣〈L |r | L ′〉∣∣2

The transitions considered above relate to an atom in the absence of an external
field, and now we consider the case of a weak magnetic field. Let us evaluate the
relative intensity of Zeeman spectral lines both along and perpendicular to the direc-
tion of the magnetic field. Let the z axis to be directed along the magnetic field and
first the wave vector k of photon propagation be directed along the z axis also, so
that the polarization vector is placed in the xy plane. According to formula (1.2.20),
the photon emission rate is proportional to

∣∣〈LML |Ds | L ′ML ′
〉∣∣2, where L , ML and

L ′, ML ′ are, respectively, the orbital angular momentum and its projection on the z
axis for the initial and final states.

Let us choose two independent polarizations, s1 = ix , and s2 = iy , where ix and
iy are unit vectors directed along the x and y axes. The rate w� summed over photon
polarizations has the form

w� ∼ ∣∣〈LML |Dx | L ′M ′
L

〉∣∣2 + ∣∣〈LML

∣∣Dy

∣∣ L ′M ′
L

〉∣∣2 =
∑

q=±1

∣∣〈LML

∣∣Dq

∣∣ L ′M ′
L

〉∣∣2

(1.2.42)
Let us consider right circularly (�ML = 1) and left circularly (�ML = −1) polar-
ized light which propagates along the z axis. Then relative intensities (called σ
components) correspond to terms in formula (1.2.42) with q = −1 and q = +1,
respectively. These relative intensities are proportional to squares of the correspond-
ing Clebsch-Gordan coefficients

�ML = +1;w+
�

∼ ∣∣〈L , 1; ML ,−1|L ′, ML − 1
〉∣∣2 ; (1.2.43)

�ML = −1;w−
�

∼ ∣∣〈L , 1; ML ,+1|L ′, ML + 1
〉∣∣2

We now turn our attention to observation of light in directions perpendicular to
the magnetic field vector. One can select the direction k as the y axis. Then the
polarization vector s of an emitted photon is placed in the xz plane. Taking s1 = iz,
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and then s2 = ix , one can find after summation, that the photon emission rate is
proportional to the quantity

w⊥ ∼ ∣∣〈LML |Dz| L ′M ′
L

〉∣∣2 + ∣∣〈LML |Dx | L ′M ′
L

〉∣∣2

By definition, Dx = (D1 + D−1) /
√
2, so that

∣∣(Dx ) j i
∣∣2 = 1

2

∣∣∣∣∣∣

∑

q=±1

(
Dq

)
j i

∣∣∣∣∣∣

2

= 1

2

∑

q=±1

∣∣∣
(
Dq

)
j i

∣∣∣
2 + 1

2

[
(D1) j i

(
D−1

)∗
j i + (D1)

∗
j i

(
D−1

)
j i

]

(1.2.44)
The last two terms of this expression must be zero, since for fixed values j and i
both matrix elements (D1) j i and (D−1) j i cannot be nonzero simultaneously. If we
take �ML = +1, the matrix element (D−1) j i is zero, and if we take �ML = −1,
the matrix element (D1) j i is zero. We thus obtain

∣∣(Dx ) j i
∣∣2 = 1

2

∑

q=±1

∣∣∣
(
Dq

)
j i

∣∣∣
2

The rate w⊥ after summation over polarizations of emitted photon can be written in
the form

w⊥ ∼ ∣∣〈LML |Dz| L ′M ′
L

〉∣∣2 + 1

2

∑

q=±1

∣∣〈LML

∣∣Dq

∣∣ L ′M ′
L

〉∣∣2

One can express these matrix elements through the Clebsch-Gordan coefficients

�ML = +1; w+
⊥ ∼ 1

2

∣∣〈L , 1; ML ,−1|L ′, ML − 1
〉∣∣2 ; (1.2.45)

�ML = −1; w−
⊥ ∼ 1

2

∣∣〈L , 1; ML ,+1|L ′, ML + 1
〉∣∣2

It follows from comparison of formulas (1.2.43) and (1.2.44) that the emission rate
perpendicular to the magnetic field is two times less than that along the magnetic
field.

The intensity of the component with �ML = 0 (the so-called π-component) is
proportional to the quantity

w0
⊥ ∼ ∣∣〈L , 1; ML , 0|L ′, ML

〉∣∣2 (1.2.46)

On the basis of properties of theClebsch-Gordan coefficients, one canfind the relative
intensities of various components which are given in Table 1.4. As a supplement to
this table, we note that

w0
�

= 0; w+
�

= 2w+
⊥; w−

�
= 2w−

⊥
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Table 1.4 Relative emission rates for components of Zeeman splitting

w+
⊥ w0⊥ w−

⊥
L ′ = L − 1 (L + ML ) (L + ML − 1) 4

(
L2 − M2

L

)
(L − ML ) (L − ML − 1)

L ′ = L (L + ML ) (L − ML + 1) 4M2
L (L − ML ) (L + ML + 1)

L ′ = L + 1 (L − ML + 1) (L − ML + 2) 4
(
(L + 1)2 − M2

L

)
(L + ML + 1) (L + ML + 2)

Note also the absence of transitions L ′ = L in the one-electron spectrum due to parity
conservation.

Nowwe consider a relative intensity of spectral lines and their splitting that occurs
when an atom is placed in an electric field (Stark effect).We find the relative intensity
of Stark spectral lines when light is observed along the direction of the electric field
vector compared to the direction perpendicular to the field. A constant electric field
causes both shifting and splitting of atomic levels. Except the hydrogen atom case,
shifts and splitting of electron levels are determined by the second-order perturba-
tion theory. As above, the radiation polarization is determined by the observation
direction. Let the z-axis be directed along the electric field. If radiation is observed
along this direction, emitted photons are polarized in the xy-plane that corresponds
to transitions ML → ML ± 1 which are called as σ-components. In the perpendicu-
lar direction with respect to the electric field vector, π-components are observed as
well as σ-components. They correspond to transitions ML → ML and are polarized
in xz-plane.

If ML = 0, there is no difference with the previous case of the magnetic field,
so that one can use the results of Table 1.4, taking ML = 0. If ML �= 0, the energy
levels are doubly degenerate with respect to the sign of ML . Hence, intensities of
the π-components are doubled compared to the magnetic field case for radiation
polarization. The degeneracy arises from the fact that transitionswithML → ML and
−ML → −ML are characterized by the same energies. In the case of σ-components,
we find that the energies of transitions ML → ML − 1 and −ML → 1 − ML are
identical. The first transition is associated with emission of right-handed circularly
polarized light and the second to emission of left-handed circular polarization of
light. As it follows from data of Table 1.4, their intensities are identical, so that the
sum doubles their intensities. Thus, the factor 2 is a general factor for Table 1.4 data
and it may be omitted for relative values. Hence, the data of Table 1.4 may be used
for the electric field case, if w+

⊥ is replaced by w⊥(|ML | → |ML − 1|) and w−
⊥ is

replaced by w⊥(|ML | → |ML + 1|).
This analysis is simplified in the case of one-electron spectra of alkali metals.

We consider the excitation of an alkali metal atom from the ground s-state with
projections σ = ±1/2 on the reference axis to the excited 2PJ state by a circularly
polarized electromagnetic field. After emission of a spontaneous photon, the atom
returns to the same s-state with the projections σ′ = ±1/2 of its spin on the same
reference axis. The number densities of atoms with spin projections +1/2 and −1/2
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are labeled as N+ and N− respectively. The balance equations for populations of
these atomic spin states in the initial s-state are

dN+
dt

= −w (1/2 → −1/2) N+ + w (−1/2 → +1/2) N−;
dN−
dt

= −w (−1/2 → +1/2) N− + w (1/2 → −1/2) N+

In the case of a steady process, one neglect the left hand side of these equations,
and then the atomic average spin, which determines the atom polarization, is given by

S̄ = N+ − N−
2 (N+ + N−)

= 1

2

w (−1/2 → +1/2) − w (1/2 → −1/2)

w (−1/2 → +1/2) + w (1/2 → −1/2)

We now determine the relative probabilities of the radiative transitions. For def-
initeness, we assume the circular polarization of the excited electromagnetic field
to be right, so that the projection of the orbital angular momentum increases by
one as a result of excitation: m → m + 1. The relative probability for atomic exci-
tation from the state with spin 1/2 and spin projection σ into the state with total
angular momentum J and its projection MJ = σ + 1 according to a general formula
(1.2.20) for the transition rate is proportional to the squared Clebsch-Gordan coeffi-
cient |〈1/2, 1;σ, 1|J,σ + 1〉|2. The relative probability for photon emission from the
atom state JM-state for the transition back to an s-state with the spin projection σ′ is
proportional to the squared Clebsch-Gordan coefficient

∣∣〈J, 1;σ + 1,m|1/2,σ′〉∣∣2.
This leads to the following relative transition probabilities

w (−1/2 → +1/2) = |〈1/2, 1;−1/2, 1|J, 1/2〉|2 |〈J, 1; 1/2, 0|1/2, 1/2〉|2 ;
w (+1/2 → −1/2) = 0.

The conclusion is that the final average spin projection of a valence electron is
σ = 1/2, so that an initially unpolarized atomic system becomes polarized through
interactionwith the circularly polarized light. From the physical standpoint this result
may be explained as follows. Taking first J = 1/2., we obtain that only atoms are
excited with the initial spin projection σ = −1/2. As a result of their radiation, states
with the spin projection σ′ = 1/2 are formed, as well as with σ′ = −1/2. However,
because of the absence of transitions from the state σ′ = +1/2, subsequently all the
atoms transit in the state σ′ = −1/2. Thus, the population of the σ = −1/2 state will
diminish in time and all electrons will be finally in the σ = 1/2 state.

If the excited state has the total momentum J = 1/2, then excitation of both the
σ = 1/2 and σ = −1/2 initial states take place. In the latter case, the excited state
with M = 3/2 is produced. The spontaneous decay of this state according to the
selection rule proceeds only to the state with σ′ = 1/2. Thus, through a time the
population of the state with σ = −1/2 decreases, whereas transitions from σ = 1/2
to the state with σ′ = −1/2 are forbidden, and all the atoms transit in the σ′ = 1/2
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state. A typical time τ for establishment of the spin polarization is the inverse quantity
with respect to the transition rate

τ ∼ 1

w (−1/2 → 1/2)

1.3 Oscillator Strength for Radiative Transition

1.3.1 Sum Rules

Let us introduce the oscillator strength fi j for radiative transitions between i and j
atomic states on the basis of the relation

fi j = 2me

�e2
ω j i

∣∣(Dz) j i
∣∣2 , (1.3.1)

where i and j are the initial and final states of the radiative transition, ω j i is the
radiation frequency for the transition between these states, and (Dz) j i is the matrix
element of the projection of the dipole moment operator onto the polarization direc-
tion z which is taken between these states. The concept of the oscillator strength
arises from a model of the electric properties of a matter in which we suppose
that the atomic electrons are in equilibrium positions and react elastically to small
perturbations. This means that a low-intensity electromagnetic field causes a weak
harmonic motion of electrons around their equilibrium positions. In reality, electrons
have not stable equilibrium positions in atoms, but there is the statistical distribution
of such positions which is determined by the square modulus of the wave function.
From the classical standpoint, there is a part of this square of the wave function
modulus that characterizes the oscillator strength for a given frequency.

Let us introduce the real part of the oscillator strength fi j on the basis of formula
(1.3.1). Using formula (1.2.19), we have for the rate of a radiative transition

wi j = 2e2ω2
j i

mec3
fi jg j (nω + 1) (1.3.2)

Here we take the frame of reference in such a manner that the z axis is directed along
the polarization vector s. Equation (1.3.2) shows that the oscillator strength is the
dimensionless parameter that measures the rate of a given radiative transition.

The Hamiltonian Ĥ of the system of atomic electrons consists of the sum of the
electron kinetic energies and the potential energies of their interactions with each
other and with the atomic nucleus. The commutator between the projection of the
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momentum operator p̂ j z for an j-th electron along the field with the coordinate
projection z j in this direction is given by the expression

[
p̂ j z, z j

] = p̂ j z z j − z j p̂ j z = −i� (1.3.3)

From this it follows that the commutator of the Hamiltonian Ĥ and z j arises from
the kinetic energy part only and is equal

[
Ĥ , z j

]
= 1

2me

[
p̂2j z, z j

] = − i�

me
p̂ j z (1.3.4)

For the commutator of the Hamiltonian Ĥ and the projection of the total dipole
moment, we obtain expression

[
Ĥ , Dz

]
= − i�

me

∑

j

p̂ j z (1.3.5)

The matrix element in this relation taken between states i and j is equal

ω j i (Dz)i j = ie

me

∑

j

(
p̂ j z

)
i j (1.3.6)

Inserting this expression into formula (1.3.1) for the oscillator strength, one can
obtain

fi j = 2i

e�

∑

j

(
p̂ j z

)
i j (Dz) j i , (1.3.7)

which may be rewritten as

fi j = − 2i

e�

∑

j

(
p̂ j z

)
j i (Dz)i j , (1.3.8)

with using the properties of operators p̂ j z and Dz at any conjugation of electrons.
We now express the oscillator strength as half the sum of two above expressions

to give it the symmetrical form

fi j = i

�

∑

j, j ′

[(
p̂ j z

)
i j

(
z j ′

)
j i − (

z j ′
)
i j

(
p̂ j z

)
i j

]
(1.3.9)

Summarizing this expression over all final states j , we obtain

∑

j

fi j = i

�

∑

j, j ′

[
p̂ j z, z j ′

]
i i

(1.3.10)
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Since the momentum operator of each electron commutes with the operator of space
coordinates for of any other electron, then the double sum above reduces to the case
j = j ′ only. Furthermore, using the commutation relation (1.3.4), we find

∑

j

fi j = n, (1.3.11)

where n is the total number of electrons in the atomic system. If the sum is restricted
only to such transitions in which valence electrons take part, then n is the number of
valence electrons in the atom.

The sum (1.3.11) is taken over states of the discrete and continuum spectrum. As
is seen, this sum is independent of quantum numbers of the initial atomic state i .
If the state i is a highly excited state, then we encounter with the classical problem
of the sum rule. Let us analyze this by analogy with the radiation intensity in the
classical limit. Because of the symmetry of energy levels near a test one in the
classical case, we obtain zero instead of n for the right-hand side of formula (1.3.11).
This exhibits that the classical approach cannot not give the correct result for the
oscillator strengths. This means that the main contribution to the sum (1.3.11) in the
classical case follows from states which energies differs from the energy of the state
i strongly, so that the symmetry in the level distribution is violated.

We now introduce the static polarizability of an atomαi , which is found in the state
i and is placed in a constant electric field of a strength E , in terms of the oscillator
strengths as

dδεi
dE

= −αi E, (1.3.12)

where δεi is the static Stark energy shift [26] for a state i under the action of an
electric field of strength E . This energy shift may be determined as the second-order
energy shift of the perturbation theory, that gives for a state i

δεi = E2

�

∑

j

∣∣(Dz)i j
∣∣2

ωi j
(1.3.13)

This leads to the following quantum expression for the static polarizability of an
atom

αi = −2

�

∑

j

∣∣(Dz)i j
∣∣2

ωi j
= e2

me

∑

j

fi j
ω2
i j

, (1.3.14)

where we use the expression (1.3.1) for the oscillator strength.
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Note that the static polarizability of a harmonic oscillator of a frequency ω in the
classical limit is determined also from formula (1.3.12), where δεi is the energy of
the oscillator in the electric field. Then we have for the polarizability of a harmonic
oscillator

α = e2

meω2
(1.3.15)

From comparison of formulas (1.3.14) and (1.3.15) it follows these the atom polar-
izability is the sum of polarizabilities of atomic oscillators, and each of them appears
in this sum with a weight fi j that is the oscillator strength. This explains the origin
of the term oscillator strength.

1.3.2 Sum Rules for One-Electron Atom

The matrix apparatus of quantummechanics allows one to determine, along with the
oscillator sum, the sums of similar quantities for a single-electron atom which are
defined as

S(m)
i = 2me

3e2�2

∑

k

(
ε j − εi

)m ∣∣(D) j i
∣∣2 , m = 0, 1, 2, 3, 4 (1.3.16)

for single-electron atomic states. Below we present these sum rules.
In the first case m = 0 we have for a single-electron atom

S(i)
0 = 2me

3�2

∑

j

∣∣(r) j i
∣∣2 = 2me

3�2

(
r2

)
i i (1.3.17)

In the classical limit, the quantity
(
r2

)
i i
is the average value of the electron distance

square r2(t) from the center. For a hydrogen atom or hydrogenlike ion with a charge
Z we have for the initial atomic state with the principal quantum number n and orbital
momentum l

(
r2

)
00 = n2�4

2Z2e4m2
e

(
5n2 − 3l(l + 1) + 1

)
(1.3.18)

From this we have

S(0)
nl = n2

3Z2Ry

(
5n2 − 3l(l + 1) + 1

)
, Ry = mee4

�2
(1.3.19)
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For the case m = 1 in formula (1.3.16) the sum is given by the relation (1.3.11)

S(1)
i =

∑

j

fi j = 1 (1.3.20)

In the case m = 2 of formula (1.3.16) we use the condition of completeness of
eigenfunctions

∑

j

∣∣∣
(
p̂
)
j i

∣∣∣
2 = (

p2
)
i i = 2me (E − V )i i (1.3.21)

and take into account that
(
p̂
)
j i = imeω j ir j i . Thus, we get

S(2)
i = 2me

3

∑

k

ω2
j i

∣∣r j i
∣∣2 = 4

3
(E − V )i i (1.3.22)

In the classical limit, this expression has the form

S(2)
i = 4

3
T (t)

where T (t) is the average value of the electron kinetic energy. For a hydrogenlike
ion we have according to the virial theorem for an electron located in the Coulomb
field T (t) = −En = Z2Ry/(2n2) and

S(2)
nl = 2Z2Ry

3n2
(1.3.23)

in the case m = 3 of formula (1.3.16), according to the Ehrenfest theorem [27] of
quantum mechanics, we have

d

dt

(
p̂
)
j i = iω j i

(
p̂
)
j i = − (∇V ) j i (1.3.24)

Using these relations, we find

∑

j

ω j i

∣∣∣
(
p̂
)
j i

∣∣∣
2 = i

∑

j

(
p̂
)
i j (∇V ) j i = −i

∑

j

(∇V )i j
(
p̂
)
j i =

= i

2

(
p̂ · ∇V − ∇V · p̂)

i i = �

2
(�V )i i

Thus we have for the sum with m = 3 of formula (1.3.16)

S(3)
i = 2me�

3

∑

j

ω j i

∣∣ω j i (r) j i
∣∣2 = �

2

3me
(�V )i i (1.3.25)
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Since according to the Maxwell equation �V = 4πeρ, where ρ is the density of the
positive charge producing the potential energy V , one can obtain

S(3)
i = 4πe�2

3me
(ρ)i i (1.3.26)

In particular, taking ρ = Zeδ (r) for a hydrogenlike ion, we have from formula
(1.3.25)

S(3)
0 = 4πZe2�2

3me
|ψ0 (0)|2 (1.3.27)

Since the limit r → 0 we have ψ0(r) ∼ rl , where l is the orbital angular momentum
for the state 0, one can obtain that S(3)

0 = 0 for l �= 0. If l = 0, one can obtainψ0(0) =
(πn3a3o)

−1/2, where n is the principal quantum number and ao = �
2/

(
Zmee2

)
. Thus

we have

S(3)
n = 4Z4Ry2

3n3
(1.3.28)

Finally,we consider the casem = 4 of formula (1.3.16).Again using theEhrenfest
theorem, we have

∑

j

ω2
j i

∣∣∣
(
p̂
)
j i

∣∣∣
2 =

∑

j

∣∣(∇V ) j i
∣∣2 = [

(∇V )2
]
i i

(1.3.29)

We then obtain

S(4)
i = 2me�

2

3

∑

j

ω4
j i

∣∣(r) j i
∣∣2 = 2�

2

3me

[
(∇V )2

]
i i

(1.3.30)

For the hydrogenlike ion we have

(∇V )2 = Z2e4

r4
, (1.3.31)

that gives

S(4)
0 = 2Z2

�
2e4

3me

(
1

r4

)

00

(1.3.32)

This expression diverges in the case l = 0, while it is finite for l �= 0. Substituting
the corresponding average value, one obtains for l ≥ 1

S(4)
nl = 8Z6Ry3

3n5
(
4l2 − 1

)
(2l + 3)

[
3n3

l(l + 1)
− 1

]
(1.3.33)
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The sum rules may be used for estimation of matrix elements in the asymptotic
limit. For example, from formula (1.3.16) it follows for m = 3 that, if ε j → ∞, part
of this sum takes the form ∫

ω3
j i

∣∣(r) j i
∣∣2 dω j i (1.3.34)

Because of convergence of this integral, one can conclude the following dependence
for the matrix element (r) j i

(r) j i ∼ 1

ε
p
j

(1.3.35)

for p > 2.

1.3.3 Peculiarities of the Oscillator Strength

On the basis of the single-electron approximation one can determine the influence
of the Pauli exclusion principle, which forbids location of two electrons in the same
state, on the shell atom model. One can seen from the first glance that the Pauli
principle should influence the sum rule (1.3.11), according to which the sum of the
oscillator strengths is equal to the number of atomic electrons. In fact, in summation
(1.3.11) over all possible states of electron in the self-consistent field of the atomic
core, according to Pauli principle it is necessary to exclude filled electron states
from this sum. However, we prove below that the Pauli principle does not violate the
oscillator strength sum (1.3.11).

Indeed, the sum of oscillator strengths for a given electron, located in a state j ,
in the single-electron approximation taking into account the Pauli principle has the
form ∑

i

f j i ,

where index i refers to the empty electron states. Applying formula (1.3.11) for a
given electron, we have ∑

k

f jk = 1,

where k refers to all possible electron states. From this it follows

∑

j,k

f jk = n,

where n is the number of electrons, and

∑

j,i

f j i =
∑

j,k

f jk −
∑

j, j ′
f j j ′ ,
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where j and j ′ are filled states. According to definition (1.3.1) of the oscillator
strength we have f j j ′ = − f j ′ j , that gives

∑

j, j ′
f j j ′ = 0

This leads to formula (1.3.11)

∑

j,i

f j i = n

Thus, the Pauli principle does not affect the sum rule for the oscillator strengths. An
analogous conclusion may be obtained for other sums (1.3.16) with odd values ofm.

We below determine the dependence of the oscillator strength on the principal
quantum number n of this state in the case of transitions for highly excited atom
states n � 1. Indeed, expressing the oscillator strength between highly excited states
(Rydberg states) fnl,n′l ′ through the matrix element of the electron dipole moment
with using the radial wave functions, we have

fnl,n′l ′ ∼
∣∣∣∣∣∣

∞∫

0

Rnl(r)Rn′l ′(r)r
3dr

∣∣∣∣∣∣

2

Here Rnl and Rn′l ′ are radial wave function in the single-electron approximation
for the initial (nl) state and final

(
n′l ′

)
highly excited state. The other factors in

formula (1.3.1) for the oscillator strength fnl,n′l ′ including εn − εn′ , do not depend
on n′ because of the condition |εn| � |εn′ |. Thus, in order to find the dependence of
the oscillator strength fnl,n′l ′ on the principal quantum number n′ � 1 for the highly
excited state, it is necessary to estimate the functions Rnl and Rn′l ′ . In addition, we
must extract the most values of r which give the main contribution to the integral for
the matrix element of the dipole moment.

For simplicity and for clarity improvement, we use the system of atomic units
me = e = � = 1 in this operation. Since n′ � 1, one can use the semiclassical
expression [8, 9] for the radial wave function Rn′l ′

Rn′l ′ = a

r
√
kn′l ′(r)

cos

[∫ r

r1

kn′l ′
(
r ′) dr ′ − π

4

]
,

where
kn′l ′(r) = √

2 (En′ − Vl ′(r)),

and En′ = −1/
(
2n′2) is the energy of the term with the principal quantum number

n′. This term is hydrogenlike one due to the condition n′ � 1. The quantity
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Vl ′(r) = −1

r
+ l ′

(
l ′ + 1

)

2r2

is the effective potential for radial motion of an electron. The index l ′ is the orbital
quantumnumber of the final state, and r1 is the left turning point for the corresponding
classical motion.

One can predict n, l ∼ 1 for the initial atomic state. Then we find r ∼ ao for the
range r , where the wave function Rnl(r) is relatively large, and hence this range of
r gives the main contribution to the radial matrix element of the dipole moment.
Furthermore, it follows from the dipole selection rule that at l ∼ 1 also l ′ ∼ 1. In
the range r ∼ ao we have kn′,l ′ ∼ 1, and consequently, Rn′,l ′(r) ∼ b. Under these
conditions, we evaluate the normalization factor b of the radial wave function for a
highly excited final state. The normalization condition has the form

∞∫

0

R2
n′l ′(r)r

2dr = 1

In the semiclassical approximation this condition may be represented as

b2

2

r2∫

r1

dr

kn′l ′
= 1

From this condition it follows

1

b2
=

r2∫

r1

dr

2
√

− 1
(n′)2 + 2

r − l ′(l ′+1)
r2

,

where r2 is the right turning point for the corresponding classical motion of an
electron. Since for the important region in the integrand we have r ∼ ao(n′)2 �
ao, and l ′ ∼ 1, one can neglect the contribution of the centrifugal potential in the
normalization integral. We thus obtain

1

b2
=

r2∫

r1

dr

2
√

− 1
(n′)2 + 2ao

r

= (n′)3
x2∫

x1

dx

2
√

−1 + 2
x

∼ (n′)3

Our final result is b ∼ (
n′)−3/2

.
In the range r ∼ ao which gives the main contribution to the integrand fnl,n′l ′ , we

have Rnl ∼ 1 and Rn′l ′ ∼ b that leads to the result

fnl,n′l ′ ∼ |Rn′l ′ |2 ∼ 1

(n′)3
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The coefficient in this dependence is of the order of one in atomic units. In
particular, the accurate calculation for the ground state of the hydrogen atom(
n = 1, l = 0, l ′ = 1

)
yields

f10,n′1 = 1.6

(n′)3
(1.3.36)
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Chapter 2
Properties of Radiation Field

Abstract Mechanisms of broadening of spectral lines are presented, including that
due to a finite lifetime of an emitting atom, the Doppler broadening, as well as the
impact and quasistatic theories of broadening of spectral lines. Criteria for various
mechanisms of line broadening are given and combined cases are considered. Prop-
erties of an equilibrium radiation field for a strong interaction with an atomic system
are given, and laws of blackbody radiation are represented. This equilibrium causes
the existence of stimulated and spontaneous emission. The parameters of interaction
of photons with an individual atom and with an ensemble of gaseous atoms include
the cross section for absorption and emission of photons by an atomic particle, the
absorption coefficient of a gas for a given frequency, and the optical thickness of a
gaseous layer. The outgoing partial radiative flux from a uniform and weakly nonuni-
form gas layer is analyzed and expressed through the radiative temperature at a given
frequency. The character of emission of a gaseous layer is described.

2.1 Broadening of Spectral Lines

2.1.1 Broadening of Spectral Line for Isolated Atom

It is of importance that the width of spectral lines is small compared to a typical
frequency difference between neighboring spectral lines. Therefore, the spectrum of
each atom is specific, and the spectroscopy is a strong instrument for diagnostics of
elements which allows one to determine the composition of materials. Therefore the
spectroscopy gave a significant contribution for physics development. In particular,
the spectroscopy of atoms became a basis for creation and development of quantum
mechanics.
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44 2 Properties of Radiation Field

Belowwe analyze broadening of spectral lines that determines thewidth and shape
of spectral lines. These parameters determine the character of photon propagation
through a matter and are included in the distribution function aω over frequencies
ω, so that aωdω is the probability that the photon frequency is found between ω and
ω + dω. Correspondingly, this distribution function is normalized as

∞∫

0

aωdω = 1 (2.1.1)

We below analyze the form of the photon distribution function aω under various
physical conditions.

Here we consider the structure of the photon distribution function as a result of
the elementary emission process. The shape of this function aω follows from the non-
stationarity of the emission process, and the broadening of spectral lines in this case
is called radiative broadening. Radiative broadening is a property of the emission
process, so that the shape of the distribution function follows from a finite lifetime
τ j of the initial state j in the transition to the state i .

Let us consider a single-photon transition between the initial excited state j and
the ground state i . Ifw is the transition rate which is determined by formula (1.2.20),
according to which at times t such that t � w−1, the atom will be in its ground state
with a probability approaching unity. Due to the non-stationarity of the initial state
j , photons can be emitted with various frequencies in the vicinity of the frequency
ω j i . We now determine the distribution function aω for emitted photon frequencies.
Equation (1.2.10) for amplitudes cm of atom location an atom in a state m have the
form

i�
dc j
dt

=
∑
m

Vj,iωciω exp
[
i
(
ω j i − ω

)
t
] ; (2.1.2)

i�
dciω
dt

= Viω, j c j exp
[−i

(
ω j i − ω

)
t
]

Here ciω is the probability amplitude for the atom location in a state i after emission
of a photon with a frequency ω. The initial conditions for the equation set (2.1.2) are
c j (0) = 1 and ciω(0) = 0. We express the solution of (2.1.2) in the form

c j (t) = exp

(
−wt

2

)

Here w is the quantity to be determined. When we substitute this solution into the
second equation of the set (2.1.2), one can obtain

ciω(t) = Viω, j
exp

[−i
(
ω j i − ω

)
t − wt/2

] − 1

�
(
ω j i − ω − iw/2

) (2.1.3)



2.1 Broadening of Spectral Lines 45

The resonant character of this equation justifies the resonance approach we have
employed in the interaction of an atomic electron with the electromagnetic field.
Also, from formula (1.2.3), we have

Viω, j = −1

2
Di jE

Substitution (2.1.3) into the first equation of the set (2.1.2) leads to the expression
(1.2.20) for w with nω = 0. Hence, w = 1/τ j , where τ j is the lifetime of state j .
Correspondingly, from (2.1.3), the probability for emission of a photon of a frequency
ω is

aω = |cω (∞)|2 = 1

2πτ j

1(
ω j i − ω

)2 + [
1/

(
2τ j

)]2 (2.1.4)

In derivation formula (2.1.4), we integrated over the solid angle of emitted photons
and summed over their polarizations. This formula is valid under condition ω j iτ j �
1. Note that we neglect a small shift of the spectral line, so that formula (2.1.4) with
the Lorenz shape of spectral lines describes the radiative mechanism of broadening.

In the case of two sources of the Lorentz line broadening with widths of 1/τ1
and 1/τ2, which relate to the upper and lower states, we find the shape and width
of the compound line. In a general case, if we have two independent broadening
mechanismswith the distribution functions a1(ω) and a2(ω), the distribution function
for the compound line has the form

aω =
∞∫

−∞
a1(ω

′)a2(ω − ω′)dω′, (2.1.5)

Applying this expression several times, it is possible to take into account the arbitrary
number of broadening mechanisms. Obviously, the shape of the final spectral line
does not depend on the number of mechanisms under consideration.

Using formulas (2.1.4) and (2.1.5), we have

aω = 1

4π2τ1τ2

∞∫

−∞

dω′[(
ω j i − ω′)2 + [1/ (2τ1)]

2
] [(

ω j i − ω′)2 + [1/ (2τ2)]
2
]
(2.1.6)

The integrand in this expression can be rewritten as

1

ωk0 − ω − i
2τ1

− i
2τ2

{
1

ω′ − ωk0 + i
2τ1

− 1

ω′ − ω + i
2τ2

}
×

× 1

ωk0 − ω + i
2τ1

+ i
2τ2

{
1

ω′ − ωk0 − i
2τ1

− 1

ω′ − ω − i
2τ2

}
.
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The integral can then be accomplished in the complex plane by employing a path
that encloses the two poles in the upper half plane to give the result

aω = 1

2πτ12

1(
ω j i − ω

)2 + [1/ (2τ12)]
2
, (2.1.7)

where the spectral width of the compound line is given by

1

τ12
= 1

τ1
+ 1

τ2
(2.1.8)

Thus, the shape of the compound line is also the Lorentz one, and its width is
equal to sum of widths of each lines. This result can be directly generalized on the
arbitrary number of sources of the Lorentz broadening. The compound line has also
the Lorenz profile, and its width is equal to the sum of widths of individual lines. In
particular, one can generalize formula (2.1.4) of the above formula to the case where
an excited state j may decay spontaneously not only into the state i , but also into
other atomic states. Then the quantity w in the expression for c j (t) = exp (−wt/2)
is the total width of the state j . It is in accordance with first equation of the set (2.1.2),
where we should add terms due to transitions into other states. As a result, we obtain
again (2.1.2), where now the quantity τ j takes into account transitions in all the states.
A similar generalization can be made in the case if the final state i is not the ground
one, but has some total width τ−1

i of the spontaneous decay into other lower atomic
states. According to formula (2.1.7) we obtain that the distribution function has the
following form instead of (2.1.4)

aω = 1

2πτ j i

1(
ω j i − ω

)2 + [
1/

(
2τ j i

)]2 (2.1.9)

Here the quantity
1

τ j i
= 1

τ j
+ 1

τi
(2.1.10)

defines the reduced width of the spectral line and the reduced lifetime τ j i .
Another mechanism of broadening of spectral lines is determined by motion of

a radiative particle. The Doppler broadening of spectral lines results from different
velocities of the radiative source and receiver. We assume the radiation receiver
to be motionless and the frequency of the emitted photon depends on the velocity
of a radiating particle. Thus, the frequency distribution of the emitted photons is
determined by the velocity distribution of radiating particles. We assume the emitted
frequency is fixed strictly. Then the distribution function of received photons over
frequencies is determined by the distribution of emitted particles over velocities. The
basis of Doppler broadening of spectral lines is the Doppler law according to which
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a detected frequency ω is expressed through the frequency ω0 of an emitted photon
and the velocity of the radiation source v by the relation

ω = ω0 (1 + vx/c) , (2.1.11)

where c is the speed of light, and vx is the projection of the relative velocity of
the radiator and receiver onto the direction of the photon propagation. This formula
corresponds to approach of the radiator and receiver.

In order to determine the frequency distribution of the emitted photons,we transfer
to the laboratory frame of reference. The probability that an atom has a velocity in a
range from vx up to vx + dvx is vxdvx , which is normalized to unity

∞∫

−∞
f (vx ) dvx = 1.

On the basis of formula (2.1.11) connected the radiation frequency and the atomic
velocity, one can obtain the distribution function over photon frequencies ω

aωdω = f (vx )dvx = c

ω0
f

(
ω − ω0

ω0

)
dω (2.1.12)

Specifically, in the case of theMaxwell velocity distribution, the distribution function
is

f (vx ) =
√

M

2πT
exp

(
−Mv2

x

2T

)
,

where M is the mass of an emitting atom and T is the temperature expressed in
energy units. Then formula (2.1.12) gives

aωdω = 1

ω0

√
Mc2

2πT
exp

[
−Mc2 (ω − ω0)

2

2ω2
0T

]
(2.1.13)

From this expression, a typical Doppler width may be estimated as

�ωD = ω0 · α, α =
√

T

Mc2
(2.1.14)

In order to understand the scale of values for theDopplerwidth<weconsider a certain
case of sodium atoms located in a buffer gas at the temperature T = 500K and the
radiative transition Na((3s → 3p) of the wavelength λ = 589 nm (the frequency
ω = 3.2 · 1016 s−1) which is characterized by the radiative lifetime of τ = 16 ns (see
Fig. 1.4). In this case we have α = 1.4 · 10−6, ωτ = 5.1 · 107, that gives for the
relation between the Doppler and radiative widths of spectral lines �ωDτ = 72.
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As is seen, the Doppler width of the spectral line is larger than that due to the
radiative one.

In considering the Doppler broadening of a spectral line, we assume an emitted
atom to be moved as a free particle with a constant velocity. We now consider
another case with the diffusion character of motion for a radiating particle, so that
an excited atom experiences many collisions with other atoms during its radiative
lifetime τ j i . Also we assume that the line broadening is caused by the Doppler effect.
In determination the shape of the spectral line, we fix the origin of coordinates x0 = 0
on an atom at time t = 0 and introduce the probability W (x0, t) that this atom will
be found at a distance x0 at time t . We first study the one-dimensional atomic motion,
so that the probability W (x0, t) satisfies the diffusion equation

∂W

∂t
= D

∂2W

∂x2
, (2.1.15)

where D is the diffusion coefficient of an atom in the gas. The probability W is
normalized by the condition

∞∫

−∞
W (x0, t) dx0 = 1

The electric field strength for the electromagnetic wave emitted spontaneously by
an atom located at a coordinate x at time t , has the form

E = E0 exp
[
ik (x − x0) − iω j i t

]
,

where the wave vector k = ω j i/c. Averaging this field strength over positions of the
radiating atom, one can obtain

E = E0

∞∫

−∞
W (x0, t) dx0 = E0 J (t) exp

[
ikx − iω j i t

]
,

where

J (t) = D

∞∫

−∞
exp (−ikx0)W (x0, t) dx0

In order to find the function J (t), let us multiply equation (2.1.15) by exp (−ikx0)
and integrate it over positions x0. This gives

dJ

dt
= D

∞∫

−∞
exp (−ikx0)

∂2W (x0, t)

dx20
dx0
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Integration by parts two times, with application of the boundary conditionsW (x0 →
±∞) = 0, gives

dJ

dt
= −Dk2t

The solution of this equation with the initial condition J (0) = 1 (since x0(0) = 0) is

J (t) = exp
(−Dk2t

)

From this it follows that the average electric field strength of the emitted spontaneous
photon is

Ē = E0 exp
[
ikx − iω j i t − Dk2t

]

In a classical treatment, this field is generated by a dipole moment that oscillates
with a frequency ωk0 and depletes with time, that is, the dipole moment behaves as

d ∼ exp
[
ikx − iω j i t − Dk2t

]

According to formula (1.2.20) for the rate of a radiative transition and, hence, the
spectral distribution function aω , is determined by the square module of a Fourier
component at a frequencyω for a dipolemomentd. The quantity aω may be expressed
through the square of the second derivative for the Fourier component of the dipole
moment (1.2.30) that (under the condition d = 0 at t < 0) gives for the frequency
distribution function which is normalized to unity

aω = 1

π

k2D(
ω − ω j i

)2 + (
k2D

)2 , (2.1.16)

As is seen, the distribution function has the Lorentz form, by analogy to the case of
radiative broadening. The spectral width is equal to 2k2D. Combining this effect with
a finite lifetime τ j i of the initial state due to the radiative transition j → i , one can
obtain the Lorentz spectral shape of the combined linewith thewidth 2k2D + 1/2τ j i .

Note that for the broadeningmechanismunder consideration only the atommotion
in the direction of the photon propagation is significant, even in the case of the three-
dimensional diffusion. There is an analogy for theDoppler broadening and thatwhere
the transverse motion of the radiating atom accompanies its displacement. Next, the
criterion of validity of formula (2.1.16) is that a time τ j i is large compared to the
time of the mean free path of a radiating atom in a gas. In particular, this condition
is fulfilled in masers. The opposite limit leads to the Doppler broadening considered
above. It should be noted that the diffusion coefficient D in formula (2.1.16) is
proportional to the mean thermal atomic velocity, i.e. to the square root of the gas
temperature.
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Let us find the spectral line shape resulting from simultaneous action of Doppler
broadening and radiative broadening due to finite lifetime of the state, basing on
formula (2.1.5). The central frequency ω0 = ω j i is shifted according to the Doppler
law because of the particle motion. Taking this shift into account and averaging over
the velocity distribution of radiating particles, we obtain the general expression for
the spectral line shape

aω = 1

2πτ j i

c

ω j i

∞∫

−∞

f
[
c
(
ω′ − ω j i

)
/ω j i

]
(ω − ω′)2 + (

1/2τ j i
)2 dω′ (2.1.17)

Taking f (v) the Maxwell velocity distribution function, we analyze limiting cases.
We first consider the case where along with the broadening of the spectral line due to
the radiative transition (2.1.4), its Doppler shift takes place, and the Doppler width
is small compared to the natural (radiative) width

�ωD = ω j i

√
T

Mc2
<<

1

τ j i
.

Then on the basing of the replacement

c

ω j i
f

[
c(ω′ − ω j i

ω j i

]
→ δ(ω′ − ω j i )

we arrive at formula (2.1.4). In the opposite limiting case the relation �ωDτ j i � 1
the Doppler broadening (2.1.13) takes place for the central part of the spectral line.
In this case it is convenient to separate the integral (2.1.17) in two parts, namely,
ω′ − ω j i ∼ �ωD and ω′ − ω j i ∼ 1/τ j i . The contribution from the first range gives

1

2πτ j i

1(
ω − ω j i

)2 ,

while the integral from the second range of formula (2.1.17) is equal to

1√
π�ωD

exp

[
−
(
ω − ω j i

)2
(�ωD)2

]

Thus, the Doppler broadening of the spectral line takes place in a range not far from
the central part, whereas if the following relation holds true

exp

[
−
(
ω − ω j i

)2
(�ωD)2

]
� 1

τ j i

�ωD(
ω − ω j i

)2 ,
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then the distribution function has the form

aω = 1

2πτ j i

1(
ω − ω j i

)2

Thus, in the case of competition between Lorentz andDoppler broadening of spectral
lines, wings of the spectral lines are always determined by the Lorentz mechanism,
whereas the central part of the spectral line is determined by the short-range mech-
anism of broadening.

If two sources of broadening lead of the Gaussian shape of spectral lines with
widths�1 and�2, the frequency distribution function for the combined spectral line
has the form

aω = 1

π�1�2

∞∫

−∞
exp

[
−
(
ω′ − ω j i

)2
�2
1

−
(
ω′ − ω

)2
�2
2

]
dω′ = 1√

π�
exp

[
−
(
ω − ω j i

)2
�2

]
,

(2.1.18)

where � =
√

�2
1 + �2

2. Thus the combine line has the Gaussian shape also, and its
width is the root mean square of the partial widths.

2.1.2 Collision Broadening of Spectral Lines

The collision or impact broadening of spectral lines follows from a short-time inter-
action of a radiating atomic particle with surrounding gaseous particles in collisions.
This is valid if the radiative lifetime of the upper state of the radiative transition
j → i is large compared to a time between neighboring collisions involving a radi-
ating atomic particles. In order to determine the width of a spectral line for this
mechanism of broadening, let us expand the wave functions of transition states over
stationary states as

�i =
∑
n

cin(t)ψn exp (−iεnt) /�; � j =
∑
m

c jm(t)ψm exp (−iεmt) /�, (2.1.19)

whereψn,ψm are spatial parts of stationarywave functions of the the radiating atomic
particle, and εn , εm are energies of these states, and the initial conditions for these
amplitudes are ain(0) = δin , a jm(0) = δ jm . The amplitudes cin(t), c jm(t) vary in
time due to collisions with atoms or molecules of a surrounding gas.

Let us introduce the spectral function as

ϕ(t) ≡ fnm(t) = cin(t)c
∗
jm(t) exp

[
i
(
ε j − εi

)
/�
]
, (2.1.20)
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and define the correlation function by the expression

�(τ ) = lim
T→∞

⎡
⎣ 1

T

T∫

0

ϕ(t)∗(t)ϕ(t + τ )dt

⎤
⎦ (2.1.21)

Let us express the photon frequency distribution function aω in terms of the
correlation function �(τ ). The interaction (1.2.3) between an atomic electron and
the radiationfield has the dipole character, and the transition amplitude is proportional
to the matrix element of the dipole moment operator between the initial and final
states in the transition, that is,

〈
�i |D| � j

〉 = ∑
m,n

Dmncin(t)c
∗
jm(t) exp [i (εn − εm) /�] , (2.1.22)

where Dmn = 〈ψn |D| ψm〉. The Fourier component of formula (2.1.22) gives the
amplitude for the emission of a photon of a given frequency. The probability for
radiation of a photon of frequency ω is therefore proportional to

aω ∼
∣∣∣∣
∫

exp (iωt)
〈
�i |D| � j

〉
dt

∣∣∣∣
2

(2.1.23)

Taking into account that the frequency range nearω j i is of interest, one can restrict
in formula (2.1.22) by terms with m = j and n = i . Then on the basis of formula
(2.1.19) and (2.1.20) we obtain

aω ∼
∣∣∣∣
∫

exp (iωt)ϕ (t) dt

∣∣∣∣
2

(2.1.24)

This integral can be written in the form

aω ∼
∫

dt1

∫
dt2ϕ (t1)ϕ∗ (t2) exp [iω (t1 − t2)]

Introducing new variables τ = t1 − t2 and t = t2, we have

aω ∼
∫

dτ exp (iωτ )

∫
dtϕ (t)ϕ∗ (t + τ )

On the basis of the definition of the correlation function (2.1.21), we obtain

aω = 1

2π

∞∫

−∞
�(τ ) exp (iωτ ) dτ , (2.1.25)
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where the normalization condition (2.1.1) for the distribution function aω is fulfilled.
The relation (2.1.25) connects the frequency distribution function aω of emitted
photons with the Fourier product of the correlation function for a given frequency of
the radiating photon.

Our goal is to determine the shape of a spectral line if it is determined by collisions
of an excited atom with atoms of a surrounding gas. This broadening mechanism
for spectral lines allows us to express the photon distribution function aω through
scattering phases in collisions of a radiating atom with gas atoms. Assuming atom
motion to be classical, one can consider the wave function of a radiating atom in the
initial excited state j as the solution of the Schrödinger equation

i�
∂� j

∂t
= ε j� j + Vj j (t)� j , (2.1.26)

whereVj j (t) is the diagonalmatrix element of the interactionpotential of the radiating
atom with surrounding atomic particles of a gas. We neglect non-diagonal matrix
elements which result in transitions from the state j to other atomic states. Then the
Schrödinger equations for different states of a radiating atom are independently. On
the basis of equation (2.1.26), we obtain for the amplitude c j j (t), defined by formula
(2.1.19)

a j j (t) = exp

⎡
⎣− i

�

t∫

−∞
Vj j

(
t ′
)
dt ′

⎤
⎦ (2.1.27)

Interaction between a radiating atom and perturbed gas atoms takes place during
a short time and proceeds randomly. Let ti be a time of i-th collision, Ri be a
distance between a radiating atom and perturbed atomic particle in i-th collision.
In considering quantum states of a radiating atom, we assume the motion colliding
particles to be classical. As a result of a single collisions, the wave function of the
initial state of a radiating atom acquires an additional phase

χ(i)
j = 1

�

∞∫

−∞
Vj j (Ri ) dt

′ (2.1.28)

This allows one to represent the amplitude (2.1.19) with accounting for collisions in
the form

c j j (t) = exp

[
−i

∑
i

χ(i)
j η (t − ti )

]
, (2.1.29)

where the step Heaviside function η (t) is defined as

η (t) = 0, t < 0;
η (t) = 1, t > 0.
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This function accounts for a collision time smallness compared to a radiative lifetime.
Formula (2.1.27) gives for the correlation function ϕ (t)

ϕ (t) = exp

[
iω j i t + i

∑
i

χiη (t − ti )

]
, (2.1.30)

where

χi = χi (k) − χ(0)
i = 1

�

∞∫

−∞

[
Vj j (Ri ) − Vii (Ri )

]
dt ′ (2.1.31)

The quantityχi is the phase shift introduced by the difference between the interaction
potentials for the upper and lower transition states with taking into account that
collision times ti are identical for states j and i .

The correlation function defined by formula (2.1.21) may be written as

�(τ ) = 〈
ϕ∗(t)ϕ(t + τ )

〉
,

where a time average is carried out on time t . To find the correlation function �(τ ),
we combine the combination of the correlation functions

��(τ ) = �(τ ) − exp
(−iω j i�τ

)
�(τ + �τ ) = (2.1.32)

= 〈
ϕ∗(t)

[
ϕ(t + τ ) − exp

(−iω j i�τ
)
ϕ(t + τ + �τ )

]〉

A time range�τ is small compared to a typical time τ of collision broadening, which
is given by the free path flight time of excited atom. However, �τ is large compared
to a collision time. Because of �τ � τ , only one collision takes place during �τ
(or no collisions), and the probability of two collisions is negligibly small. Then
expressing the quantity ϕ(t + τ + �τ ) via ϕ(t + τ ) on the basis (2.1.30), one can
represent (2.1.32) in the form

�� (τ ) =
〈
ϕ∗(t)ϕ(t + τ )

⎡
⎣1 − exp

⎛
⎝i

∑
i

χi
[
η (t + τ + �τ − ti ) − η (t + τ − ti )

]
⎞
⎠
⎤
⎦
〉

,

(2.1.33)
where the summation takes place over times ti during a range between t + τ and
t + τ + �τ . Because of a random character of the collisions, one can average over
various collisions independently. Thismeans that in consideration of a given collision
one can neglect previous collisions. Therefore the value (2.1.33) may be represented
as a product of individual averages, that gives

��(τ ) = �(τ ) 〈1 − exp [iχ (ρ)]〉 ; t + τ < ti < t + τ + �τ , (2.1.34)
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where ρ is the impact parameter of collision which according to (2.1.31) determines
the valueχ. According to (2.1.34), an averaging over time t is equivalent to averaging
over collision times ti in a narrow time range. Since in the classical limit the impact
parameter of collision is unambiguously connected with ti , it is convenient to carry
out the averaging in terms of ρ.

The volume related to one perturbed particle is equal 1/Nb, where Nb is the
number density of the gas atoms. The volume element in integration is v�τ2πρdρ,
where v is the relative velocity of colliding particles. Thus, the averaging factor under
conditions (2.1.34) may be rewritten in the form

〈1 − exp [iχ (ρ)]〉 = v�τN

∞∫

0

2πρdρ {1 − exp [iχ (ρ)]} (2.1.35)

In the limit �τ → 0 in formula (2.1.32) one can obtain on the basis of formulas
(2.1.34) and (2.1.35)

��(τ ) = �(τ ) − exp
(−iω j i�τ

) [
�(τ ) + d�(τ )

dτ
�τ

]
=

= −�τ

[
d�(τ )

dτ
− iω j i�(τ )

]
=

= �(τ )�τNv

∞∫

0

2πρdρ {1 − exp [iχ (ρ)]} (2.1.36)

This is equivalent to

d�(τ )

dτ
− iω j i�(τ ) = −�(τ ) Nbv

(
σ′ + iσ”

)
(2.1.37)

with notations

σ′ =
∞∫

0

2πρdρ(1 − cosχ); σ” =
∞∫

0

2πρdρ sinχ (2.1.38)

The solution of equation (2.1.37) with using these cross sections is

�(τ > 0) = exp
[
iω j iτ − Nv

(
σ′ + iσ”

)
τ
]

(2.1.39)

Substituting formula (2.1.39) into (2.1.25) and taking �(τ < 0) = �∗ (τ > 0), one
can obtain for the photon frequency distribution function

aω = ν

2π

1(
ω − ω j i + �ν

)2 + (ν/2)2
, ν = Nvσ′; �ν = Nvσ” (2.1.40)
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Formula (2.1.40) exhibits the Lorenz form of the spectral line. In contrast to the
radiative broadening (2.1.21), a shift of spectral line �ν = Nvσ” takes place in this
case, and its value is comparable with the width of the spectral line.

Let us consider the impact theory of line broadening for the dispersion interaction
potential U (R) radiating and perturbed atoms in the form

U (R) = −C6

R6
(2.1.41)

as it takes place at large distances R between neutral atomic particles. Then the total
cross section of their collision is equal [1]

σt = 8.1

(
C6

�v

)2/5

(2.1.42)

Averaging over collision velocities with the Maxwell distribution function, one can
obtain for the specific width of the spectral line in accordance with the Lindholm-
Foley theory [2, 3]

ν

Nb
= 7.2

(
2T

μ

)3/10 (C6

�

)2/5

, (2.1.43)

where T is the gas temperature expressed in energetic units, and μ is the reduced
mass of colliding molecules.

In order to estimate the scale of this broadening, let us return to the above example
of sodium atoms located in a buffer gas at the temperature T = 500K, and take neon
as a buffer gas. Then the constant of dispersion interaction is C6 ≈ 50e2a5o (e is the
electron charge, ao is the Bohr radius), so that formula (2.1.43) gives at a tempera-
ture T = 500K for the specific width of the spectral line νb/Nb = 1.9 · 10−9 cm3/s.
Comparing with Doppler broadening which width for this case according to formula
(2.1.14) is equal �ωD = 4.5 · 109 s−1. The Doppler and collision widths are equal-
ized in this case at the number density of neon atoms Nb = 2.4 · 1018 cm−3, that
corresponds to the neon pressure p = 37 Torr. Note that we assume the concentra-
tion of sodium atoms in neon to be small, that is, interaction between excited and
nonexcited sodium atoms is ignored. In addition, we determine the average total cross
section of scattering of a radiating sodium atom on a neon atom which is defined as

σt (T ) = ν

(v)Nb

,

This gives σt (T ) = 2.8 · 10−14 cm2 for the case under consideration.
In the range of competition between Doppler and collision mechanisms of line

broadening, so called the Voigt profile [4], in principle, is analogous to competition
between the Doppler and radiative broadening mechanisms, where the frequency
distribution function is given by formula (2.1.17), though the velocity dependence
of the collision frequency change the classical Voigt profile [5–8]. The tables are
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composed [9] for the line profile in this range because this is of importance in
reality. The general conclusion, as it was shown above, wings of the spectral line are
determined by the collision mechanism of broadening.

2.1.3 Quasistatic Broadening of Spectral Lines

The quasi-static theory of broadening of spectral lines corresponds to physical condi-
tions opposite to the collision mechanism of line broadening. In the quasistatic case,
broadening is created during times that are small compared to times of atom motion.
This allows us to consider the perturbed atoms to be motionless, and the spectral
frequency shift resulted from interaction of a radiating atom with surrounding atoms
in a gas is a sum of shifts due to pairwise interactions with each perturbed atom at
the fixed spatial configuration of these atoms, and this interaction energy is small
compared to a typical atomic energy. The perturbation theory is thus appropriate for
treatment of this broadening. In addition, the pairwise interaction is averaged over
states of gaseous particles.

A general goal of the quasi-static theory of spectral line broadening consists
in determination the frequency distribution function of emitted photons aω; let us
introduce the probability w(R) for a perturbed atom to be located at a coordinate
R per unit volume with respect to a radiating atom. In the first order perturbation
theory, the frequency shift for an emitted photon due to interaction of the radiating
atom particle with neighboring perturbing particles is

ω j i − ω = −1

�

∑
m

U (Rm) (2.1.44)

Here, an index m described m-th perturbed atom, Rm is the coordinate of m-th
perturbed atomwith respect to a radiating atom, andU (Rm) is the difference between
the interaction potentials for the upper and the lower states of this radiative transition.
Equation (2.1.44) is averaged over the quantum states of both particles, that is, it is
the diagonal matrix element of the pairwise interaction between atoms.

Note that formula (2.1.44) implies the pairwise character for interaction of a
radiating and gaseous atoms, where interaction with some perturbed atom does not
influence on that with other one. This testifies about weak pair interactions which do
not change the state of a radiating atom. This condition is also the criterion of the
gaseousness of the system. From this one can estimate the width of the spectral line
�ωS under the above conditions

�ωS ∼ U (N−1/3
b )� (2.1.45)

Equation (2.1.44) refers to a fixed coordinate Rm of a radiating atom. If this dis-
tance varies, the frequency shift varies also changes due to a change of the interaction
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potential U (Rm) = Um . Let us introduce the probability ρ (Um) dUm that the pair-
wise interaction potential lies in an interval fromUm up toUm + dUm for a perturbed
particle described by an indexm. According to definition of the distribution function
of emitted photons aω , we have

aωdω =
∏
m

ρ (Um) dUm, (2.1.46)

where it is assumed the pairwise character of a radiating atom with perturbed ones.
According to definition, we have

ρ (Um) dUm = w (Rm) dRm (2.1.47)

Taking a normalization volume, where a radiating particle is located, to be one
(w = 1), we have that a perturbed atom is located in spatial element dRm .

Let us evaluate first the Fourier component from the frequency distribution func-
tion aω that on the basis of formulas (2.1.44) and (2.1.46) gives

μ (t) = e

∞∫

−∞
exp

[
i
(
ω − ω j i

)
t
]
aωdω =

∏
m

∫
exp

(
iUmt

�

)
ρ (Um) dUm

(2.1.48)
Let us introduce the correlation function F(t) as

F(t) =
∫

exp

(
iUt

�

)
ρ (U ) dU

According to formula (2.1.47), this quantity may be represented in the form

F(t) =
∫

exp

(
iU (R) t

�

)
w (R) dR (2.1.49)

Combining formulas (2.1.48) and (2.1.49), we have

μ (t) =
∏
m

F (t)

If Nb is the number density of perturbed particles, the number of these particles in a
normalization volume � is Nb�

μ (t) = FNb�(t) = lim

{
1 + Nb

Nb�

∫ [
exp

(
iU (R) t

�

)
− 1

]
w (R) dR

}Nb�

= exp

{
Nb

∫ [
exp

(
iU (R) t

�

)
− 1

]
w (R) dR

}
(2.1.50)
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Returning to the frequency distribution function aω through the inverse Fourier trans-
formation, we obtain

aω = 1

2π

∞∫

−∞
exp

[−i
(
ω − ω j i

)
t
]
μ (t) dt

= 1

2π

∞∫

−∞
exp

{
−i

(
ω − ω j i

)
t + Nb

∫ [
exp

(
iU (R) t

�

)
− 1

]
w (R) dR

}
dt

(2.1.51)

The same result may be obtained by the other way, by analogy with the method of
determination of the correlation function F(t) for the collision broadening mecha-
nism. Namely, one can write the equation for variation of μ (t) for small time �t ,
which is described by the differential equation for �t → 0. Solving of this equation
leads to formulas (2.1.50) and (2.1.51). Note that the quantity U (R) in expression
(2.1.51) is identical to the corresponding quantity in the case of collision broadening.

As is seen, a general expression (2.1.51) for the distribution function aω has a
complicated character and does not correspond to the Lorentz profile. Only if the
exponent

exp

(
iU (R) t

�

)

of formula (2.1.51) is expanded in the Taylor series, one can obtain the Lorentz line
shape with zero width ν = 0 and the Stark shift

�ν = −Nb

�

∫
U (R)w (R) dR (2.1.52)

In particular, if we assume in formula (2.1.52) w = 1 and R = vt which corre-
sponds to a straight-line classical trajectory with U � E), formula (2.1.52) leads
to formula (2.1.37), if sinχ is replaced by χ. Thus, within the framework of the
perturbation theory, the impact and quasi-static theories of the spectral line broad-
ening lead to the same result. The second-order of the perturbation theory on the
basis of (2.1.51) gives a nonzero addition to the broadening cross section, but it is
not a Lorentz form. The additional term is proportional to t2, whereas it must be
proportional to t if it is to give rise to a Lorentzian line shape.

Let us give the criteria of the collision and quasistatic broadening mechanisms
for free motion of interacted particles, that gives dt = dR/v where v is the relative
velocity of colliding particles. Because of a weak interaction, a shift phase defined by
formula (2.1.31), isχ � 1, and then the broadening cross section in formula (2.1.37)
is small compared to the line shift cross section. Because in this case according
to formula (2.1.31) χ ∼ RU (R)/�v, where R is a typical distance of approach of
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colliding particles, and smallness of the phase shift that is the criterion of collision
broadening is

U (R)R

�v
� 1

In reality, the impact theory of broadening of spectral lines is valid, if a collision
time ρ/v is small, where v is the relative velocity of colliding particles, and ρ is
a typical impact parameter. The impact parameter can be estimated to be given by
the Weisskopf radius

√
σt , where σt is the total elastic scattering cross section for

interacting particles. The collision theory of broadening of spectral lines is valid if
a collision time is small compared to the flight time of the mean free path for the
colliding particles, that is (Nvσt )

−1. A collision time should be also short compared
to a detection time for the frequency shift the spectral line, which is given by the
Heisenberg uncertainty principle as

∣∣ω − ω j i

∣∣−1
. Thus the collision theory of spectral

line broadening requires fulfilment of criteria

v√
σt

� max
[∣∣ω − ω j i

∣∣ , Nvσt
]

(2.1.53)

In particular, the criterion of the collision theory at wings of a spectral line has the
form ∣∣ω − ω j i

∣∣ � v√
σt

(2.1.54)

For the central part of the spectral line we have

∣∣ω − ω j i

∣∣ � ν ∼ Nbvσt ,

and the collision theory of line broadening is valid if

Nbσ
3/2
t � 1 (2.1.55)

As is seen, the impact theory of spectral lines is not correct for far wings of a spectral
line.

Let us apply this to the interaction potential U (R) = −C6/R6 in the above case,
where a radiating sodium atom is located in neon as a buffer gas. Taking as above
the neon temperature T = 500K, that leads to the total cross section of scattering
of a radiating sodium atom on a neon atom σt (T ) = 2.8 · 10−14 cm2, we obtain the
criterion of validity of the impact theory of line broadening (2.1.55) Nb � 2.1 ·
1020 cm−3 or the neon pressure pb � 4 atm. Thus, in this case we have a wide
range of the neon number densities, where the collision line broadening dominates.
Indeed, the width of spectral line increases in 90 times as a result of transition from
the boundary, where the Doppler and collision widths are equal, up to that, where
the collision width coincides with the quasistatic one.
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We now turn to the validity criteria of the quasistatic theory of spectral line
broadening. A typical time

∣∣ω − ω j i

∣∣−1
, during which the frequency shift ω − ω j i

is detected, is small compared to a typical time ρ/v of strong interaction with a
perturbed atom during collisions. This gives the criterion of the quasistatic theory

∣∣ω − ω j i

∣∣ � v√
σt

(2.1.56)

This is opposite to that (2.1.54) for the validity of the collision theory of broadening.
There is an intermediate range

∣∣ω − ω j i

∣∣ ∼ v√
σt

,

where both collision theory and quasistatic theory are invalid. In addition, the qua-
sistatic theory of line broadening becomes better at wings far from the central part
of spectral line. One can obtain also for the central part of the quasistatic theory∣∣ω − ω j i

∣∣ ∼ Nvσt , that leads on the basis of (2.1.56) to the criterion of the validity
of the quasistatic theory

Nσ
3/2
t � 1, (2.1.57)

that is also opposite to the criterion (2.1.55) of validity for the the impact theory
of line broadening. Thus the impact and quasistatic theories of line broadening are
opposite.

We also give formula for the photon distribution function at wings of the spectral
line, where

∣∣ω − ω j i

∣∣ → ∞, and typical times t which give the contribution to the

integral (2.1.51), are of the order of
∣∣ω − ω j i

∣∣−1
. Let us consider the integrand of

formula (2.1.51) given by

exp

{
Nb

∫ [
exp

(
iU (R) t

�

)
− 1

]
w (R) dR

}
,

and estimate the exponent in this expression. This exponent can be represented as
Nr30 , where r0 is a typical size in the integrand which value is determined by the
relation

exp

(
iU (R)

�
(
ω − ω j i

)
)

∼ 1

Taking U (R) to be monotonous function of R, we have at large R, if R > r0,

exp

(
iU (R)

�
(
ω − ω j i

)
)

− 1 → 0,
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so that the contribution to the integrand of large values R is small. Hence r0 follows
from the relationU (r0) ∼ �

∣∣ω − ω j i

∣∣. In the limit |ω − ω j i | → ∞ it follows r0 → 0,
that gives Nr30 � 1 for a far wing of the spectral line. In this limit on can expand the
exponent (2.1.50) in a Taylor series, so that expression (2.1.51) takes the form

aω = Nb

2π

∫
w(R)dR

∞∫

−∞
exp

[−i
(
ω − ω j i

)
t
] [

exp

(
iU (R) t

�

)
− 1

]
dt

(2.1.58)
Since ω − ω j i �= 0, the second term in this expression is zero. The first term gives a
delta function, and so we obtain

aω = Nb

∫
δ

(
ω − ω j i − U (R)

�

)
w(R)dR = 4π�NbR

2 w(R)

dU/dR
|U (R)=�(ω−ω j i)

(2.1.59)

As is seen, the quasistatic theory gives the same dependence on the number density
of perturbed atoms Nb as in the case of the collision broadening of spectral lines.

One can obtain the latter formula from a simple consideration using a small
probability of location of perturbed atomic particles at low distances from a radiating.
For the spherically symmetric interaction potential U (R), the probability to find a
perturbed atomic particle in a distance range between R and R + dR is Nbw(R)dR,
and

aωdω = Nbw(R)dR

Equation (2.1.44) gives dω = dU (R)/�, that leads to formula (2.1.59)

aω = 4π�N R2w(R) (dU/dR)−1

Let us consider the case when the difference of interaction potentials for transition
states is approximated as U (R) = C/Rn and w(R) = 1. Then ignoring the shift of
a spectral line, one obtain

aω = 4π�NbRn+3

Cn
= 4πNb

n

(
C

n

)3/n 1∣∣ω − ω j i

∣∣1+3/n (2.1.60)

One can see that that the Lorentzian shape of spectral lines at wings is possible only
for n = 3. If n > 3, then aω decreases at wings slighter than that for a Lorentz profile.

Let us consider the case (2.1.41) for the interaction potential U (R) = −C6/R6

which relates to interaction of neutral atomic particles at large separations R. Then
we have on the basis of formula (2.1.60) for the frequency distribution function at
wings of the spectral line

aω == 2πNb

3
∣∣ω − ω j i

∣∣3/2
(
C6

�

)1/2n

(2.1.61)
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In the case of the collision broadening of the spectral line formulas (2.1.40) and
(2.1.43)

aω == 7.2Nb

2π
∣∣ω − ω j i

∣∣2
(
2T

μ

)0.3 (C6

�

)0.4

(2.1.62)

Equalizing these distribution functions, one can find the boundary shift �ωc of the
spectral line above which the quasistatic theory of broadening holds true

�ωc = 0.3

(
2T

μ

)0.6 (C6

�

)−0.2

(2.1.63)

This shift corresponds to the line width (2.1.40) at the transiting number density of
perturbed atoms Nb = σ

−3/2
t . In the case of a radiating sodium atoms in neon as a

buffer gas this frequency shift is �ωc = 3 · 1011 s−1.
Thus, if the impact theory of line broadening is valid for the central part of a

spectral line in accordance with the criterion (2.1.55), and the transition takes place
to the quasistatic theory, as we remove from the line center at �ωc. According to
formulas (2.1.54) and (2.1.56), transition from collision broadening to quasistatic
one takes place at frequencies

∣∣ω − ω j i

∣∣ ∼ v√
σt

Since
v√
σt

� Nbvσt ,

then the transition from collision broadening to quasistatic one occurs at far wings
of a spectral line. Let us analyze the transiting region of a spectral line. Since there

∣∣ω − ω j i

∣∣ ∼ v√
σt

,

we have

U (R) ∼ �v√
σt

,

in the transition region.We thus find that R ∼ √
σt . Hence, the frequency distribution

function is of the order

aω ∼ �NbR2

U (R)
∼ Nbσ

3/2
t∣∣ω − ω j i

∣∣ ∼ Nbσ
2
t

v
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From another point of view, one can obtain within the framework of the collision
broadening mechanism from formula (2.1.37) for the frequency distribution function

aω ∼ ν∣∣ω − ω j i

∣∣2 ∼ Nbvσt

v2/σt
∼ Nbσ

2
t

v
.

Thus, in the transition range where

∣∣ω − ω j i

∣∣ ∼ v√
σt

,

the results of the collision and quasistatic theories are of the same order ofmagnitude,
as one can would expect. Outside this range, the dependence of aω on the frequency
ω, and the order of magnitude of aω are different within the two theories of line
broadening.

2.2 Equilibrium Radiation

2.2.1 Laws of Blackbody Radiation

The radiation field, i.e. a system of electromagnetic waves, is formed in processes of
emission and absorption of photons as a result of interaction with atomic particles or
atomic systems. We now consider an equilibrium radiation field, which follow from
photon absorption and emission processes, using, for definiteness, photon interaction
with atomic particles or with a solid surface. In particular, considering a system of
photons as elementary particles of an electromagnetic field, one can present the
equilibrium radiation as a system of photons which are found in an equilibrium due
to interactionwith a surface. In this case, we first consider this systemof photons to be
located in a cavity inside a vessel, so that photons are absorbed and emitted at vessel
walls which temperature is T . This radiation inside the vessel is called blackbody
radiation and may leave the cavity through a small hole. The latter process does not
violate the equilibrium of the radiation field with walls, but allows one to obtain
information about the radiation field.

Wefirst determine the average number of photons nω in a given state of a frequency
ω taking into account that photons are subjected to the Bose-Einstein statistics.
According to the Boltzmann formula, the probability for n photons of energy �ω are
found in a given state is equal to exp(−�ωn/T ). From this it follows for the average
number of photons nω in this state

nω =
∑
n

n exp(−�ωn
T )

∑
n
exp(−�ωn

T )
= 1

exp
(

�ω
T

) − 1
(2.2.1)
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This is the Planck distribution which is the case of the Bose-Einstein distribution
with zero chemical potential.

It is convenient to deal with the spectral radiation densityUω which is the energy
of radiation per unit time, per unit volume, and per unit frequency range. Below
we obtain expressions for this quantity. The radiation field energy in a frequency
range from ω to ω + dω according to the above definition is VUωdω, where V is
the cavity volume inside the vessel. On the other hand, the above specific energy of
the radiation field is equal to 2�ωnωVdk/(2π)3, where Vdk/(2π)3 is the number of
states in a given element of the phase space, k is the photon wave number, nω is the
number of photons for one state, and the factor 2 accounts for the two polarizations
of an electromagnetic wave, because it is the transverse wave. Using the dispersion
relation ω = ck between the frequency ω and wave vector k of the photon (c is the
velocity of light), one can obtain from the above relations

Uω = �ω3

π2c3
nω = �ω3

π2c3[exp(�ω/T ) − 1] (2.2.2)

This is the Planck radiation formula which uses the Planck distribution (2.2.1).
Let us consider the limiting cases of the Planck formula. In the classical limiting

case �ω � T this formula is transformed into the Rayleigh-Jeans formula. This is a
classical formula which does not contain the Planck constant �

Uω = ω2T

π2c3
, �ω � T (2.2.3)

The Wien formula describes another limiting case

Uω = �ω3

π2c3
exp

(
−�ω

T

)
, �ω � T (2.2.4)

We now evaluate the radiative flux emitted by a blackbody surface on the basis
of formula (2.2.3). A blackbody surface emits isotropically, and the flux per unit
solid angle and per a frequency interval dω is equal to cUωdω. The resultant flux is
directed perpendicular to the surface. Projecting the radiative flux onto this direction,
we have for the total radiative flux from a blackbody surface

J =
1∫

−1

∞∫

0

cUωdω cos θ
d cos θ

2
= c

4

∞∫

0

Uωdω = σT 4, (2.2.5)

where θ is the angle between a direction of an emitting photon motion and the
perpendicular to the surface. Equation (2.2.5) is called the Stefan-Boltzmann law
[10, 11]. The value σ is the Stefan-Boltzmann constant that equals
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σ = 1

4π2c2�3

∞∫

0

[exp(x) − 1]−1x3dx = π2

(60c2�3)
= 5.67 · 10−12 W

cm2K4

(2.2.6)
Note that the dependence of the radiation flux (2.2.5) on the problem parameters
may be obtained in the simplest way on the basis of dimensionality considerations.
Indeed, the result—the energy flux J can depend on the radiative temperature T ,
the Planck constant �, and the velocity of light c. From these parameters one can
compose only one combination of the flux dimensionality which is given by formulas
(2.2.5) and (2.2.6).

We above consider the flux of equilibrium radiation as a result of emission of a
hard surface. It is clear that the same result relates to a gaseous system with a sharp
boundary, such that radiation propagate outside this surface. Then the mean free path
of photons of a given frequency inside the gas is small compared to a size of gaseous
system. This means that radiation is absorbed and emitted inside a gas intensively.
As a result, the energy flux Iω at a given frequency ω which propagates inside the
gaseous system, is equal

Iω = cUω = �ω3

π2c3[exp(�ω/T ) − 1] (2.2.7)

The energy flux of photons Jω at a given frequency which leave a gas volume through
a flat surface, directs perpendicular to the separated surface and is equal

Jω = Iω
4

= �ω3

4π2c3[exp(�ω/T ) − 1] (2.2.8)

From this one can find the isotropic flux iω of photons inside an equilibrium matter,
and the photon flux jω which intersects the plane boundary of this matter

iω = Iω
�ω

= ω2

π2c3
[
exp(�ω/T ) − 1

] , jω = Jω

�ω
= ω2

4π2c3
[
exp(�ω/T ) − 1

] ,
(2.2.9)

2.2.2 Spontaneous and Stimulated Emission

We now analyze parameters described the rates of emission and absorption of an
atomic gas which proceed according to the scheme

�ω + A ←→ A∗ (2.2.10)
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Denoting by nω the number of photons in one state of a given frequency ω, we have
that the absorption rate W is proportional to this value

W (i, nω → j, nω−1) = Ai jnω, (2.2.11)

where index i relates to the lower state of the transition (2.2.10), and index f refers
to the upper state of this transition. As is seen, in the absence of photons (nω = 0)
the transition is absent. The quantity A does not depend on the electromagnetic field
strength, i.e. on the number of photons in one state, and is determined only by the
parameters of the atomic particle. In the same manner, we have for the rate of the
elementary emission process (2.2.10)

W ( j, nω → i, nω−1 + 1) = 1

τ j i
+ Bjinω (2.2.12)

Here 1/τ j i is the reciprocal lifetime of the upper state j with respect to the radiative
transition in the lower state i or the rate of spontaneous emission of an excited atom
which proceeds in the absence of an external field, and the quantity B refers to
stimulated radiation by an external electromagnetic field. The quantities Ai j and Bji

are called the Einstein coefficients [12, 13]. Both Einstein coefficients depend only
on properties of the atomic particle.

The connection between the parameters 1/τ j i , Ai j and Bji can be obtained from
the analysis of equilibrium in atomic and photon systems. The relation between the
number densities of atomic particles in the excited N j and ground Ni states is given
by the Boltzmann law

N j = g j

gi
Ni exp

(
−�ω

T

)
, (2.2.13)

where gi and g j are the statisticalweights of the lower and upper states, and the photon
energy �ω coincides with the energy difference (E j − Ei ) between transition states
(see Fig. 1.4). As a result of the equilibrium, we have from the equality of average
emission and absorption rates

Ni W (i, nω → j, nω − 1) = N j W ( j, nω − 1 → i, nω) (2.2.14)

On the basis of formulas (2.2.11) and (2.2.12) this relation is transformed to the form

Ni Anω = N j (1/τ j i + Bjinω) (2.2.15)

Substituting the Planck distribution (2.2.10) and Boltzmann distribution (2.2.13) in
formula (2.2.15), one can one can obtain the following expressions for the Einstein
coefficients

Ai j = g j/(giτ j i ), Bji = 1/τ j i (2.2.16)



68 2 Properties of Radiation Field

This leads to the following formulas for rates of the one-photon radiative processes

W (i, nω → j, nω − 1) = Ai j nω = g j

gi τ j i
nω, W ( j, nω → i, nω − 1) = 1

τ j i
+ B ji nω = 1

τ j i
+ nω

τ j i

(2.2.17)

As it follows from this analysis, the stimulated radiation is of fundamental importance
and is a part of equilibrium between the radiation field and an atomic gas.

2.2.3 Cross Section and Parameters of Radiative Processes

Our goal is to determine parameters of the elementary processes of interaction
between radiation and atomic particles. The cross section of absorption or emission
is the parameter that characterizes the transition between states of an atomic particle
as a result of absorption or emission of one photon. At low intensities of incident
radiation this parameter does not depend on the intensity. Below we determine the
absorption cross section which corresponds to transition between two discrete states
i and j of an atomic particle according to the following scheme in accordance with
Fig. 1.4

Ai + n�ω → A j + (n − 1) �ω

Here A is an atomic particle, the lower index shows its state; �ω is the energy photon
of a frequency ω. According to definition, the absorption cross section is the ratio of
the photon absorption ratewa to the flux of incident photons jω for a given frequency
range, i.e.

σa = wa

jω
(2.2.18)

The process of induced radiation of photons proceeds according to the scheme

A j + n�ω → Ai + (n + 1) �ω

The cross section of induced radiationmaybe determined by analogywith the absorp-
tion cross section as the ratio of the photon radiation rate wr to the flow density of
incident photons jω , i.e.

σr = wr

jω
(2.2.19)

The cross sections of absorption and induced radiation are characteristics of radi-
ation propagation through a gas. Let Iω be the intensity of radiation of a frequency ω
propagated through a gas. The intensity of radiation Iω varies due to absorption and
induced radiation. The number of the emission and absorption events is proportional
to the number of photons participated in these processes. Therefore variation of the
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intensity of the photon beam along the path is proportional to the intensity and is
given by the Beer-Lamberte law [14, 15]

dIω
dx

= −kω Iω, (2.2.20)

where x characterizes the direction of propagation of the photon beam. The quantity
kω is called the absorption coefficient.

Wenowuse the formalismof radiative transitions betweendiscrete states of atomic
particles represented in the previous chapter. The rate of this radiative transition
i → j is given by formula (1.2.19) and in scales of transition frequency ω j i the rate
can be represented in the form

w ∼ δ
(
ω j i − ω

)
,

where �ω j i is the energy difference between the states. The frequency distribution
function aω for photon absorption or emission is of importance for description of
these processes, where aωdω is the probability that the photon frequency is located
in a range between ω and ω + dω. In scales of the transition frequency it may be
represented as

aωdω = δ
(
ω j i − ω

)
dω (2.2.21)

where the normalization condition is described by formula (2.1.1). Note that in scales
of small frequencies compared with ω j i formula (2.2.21) is violated, i.e. in these
scales the structure of delta function is determined by a corresponding mechanism
of line broadening.

Let us express the absorption and induced radiation cross sections through the
frequency distribution function aω . The process of photon absorption proceeds in
some range of frequencies in the vicinity ofω j i , and the value aωdω is the probability
that the frequency of an absorbed photon is found in a range between ω and ω + dω.
Replacing the discrete spectrum of absorption by a continuous one, we obtain the
probability of photon absorption

dwa = w j i aωdω,

where this probability is averaged over polarizations of incident photons.
One can introduce the radiative lifetime τ of an excited state j with respect to

spontaneous decay into the state i in accordance with formula (1.2.20), where we
take nω = 0

1

τ j i
= 4ω3

j i

3�c3
∣∣D j i

∣∣2 gi ,

where gi is the statistical weight of the state i . Then one can rewrite formula for the
absorption rate on the basis of formula (2.2.17)
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dwa = Ai jnωaωdω = 1

τ j i

g j

gi
nωaωdω (2.2.22)

Let an incident photon flux be interacted with an atomic particle. Taking the number
of photons nω located in one state, we have for the number density of photons in this
state per unit volume

dNω = nω · 2dk
(2π)3

= nωω2d!
π2c3

,

where the factor 2 takes into account two photon polarizations. From this we have
for the photon flux in a frequency range from ω up to ω + dω

d jω = c · dNω = nωω2dω

π2c2
(2.2.23)

The cross section of photon absorption is introduced by formula (2.2.19) as the ratio
of the absorption rate to the photon flux. According to formulas (2.2.22) and (2.2.23)
it is given by

σa = dwa

d jω
= Ai jaω

(πc

ω

)2 =
(πc

ω

)2 aω

τ j i

g j

gi
(2.2.24)

for photon absorption with the atom transition from a state i to a state j . In the
same manner one can determine the cross section of induced radiation as the ratio of
the rate of induced radiation given by formula (1.2.20) to the photon flux (2.2.23).
Expressing the rate (1.2.20) through the radiative lifetime τ of the upper state with
respect to this transition, one can obtain for the cross section σr of induced radiation

σr = Bjiaω

(πc

ω

)2 =
(πc

ω

)2 aω

τ j i
(2.2.25)

Let us express the absorption coefficient kω defined by formula (2.2.20) through
the cross sections of radiative processes.Wedenote by Ni and N j the number densities
of atomic particles in the lower i and upper j states of the radiative transition. Because
the product Niσa characterizes the lost of photons, and the value N jσr describes its
increase due to stimulated emission, so that the absorption coefficient is determined
by the expression

kω = Niσa − N jσr (2.2.26)

Substituting formulas (2.2.24) and (2.2.25) for the absorption cross section and the
induced radiation cross section into expression (2.2.26), one can represent the absorp-
tion coefficient in the form

kω = N j

(πc

ω

)2 aω

τ j i

(
Ni

N j

g j

gi
− 1

)
(2.2.27)
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In the case of thermodynamic equilibrium between states i and j this formula gives

kω = Ni

(πc

ω

)2 aω

τ j i

g j

gi

[
1 − exp

(
−�ω

T

)]
= Ai j Ni

(πc

ω

)2
aω

[
1 − exp

(
−�ω

T

)]

(2.2.28)

Let us consider integral relations for radiative cross sections. Integrating the cross
section (2.2.24) over frequencies in the vicinity of the spectral line of transition and

∫
σa (i → j) dω = 4π2ω j i

3�c

∣∣D j i

∣∣2 , (2.2.29)

where we put for simplicity gi = g j = 1. Note that integration over all possible
frequencies of absorbed photons corresponds to summation over all possible states of
the atomic particle in formula (2.2.28) (including states of the continuum spectrum).
Using the sum rule and taking into account the relation

∣∣Di j

∣∣2 = 3
∣∣(Dz)i j

∣∣2, one can
obtain ∫

σrdω = 2π2e2n

mec
(2.2.30)

Here me is the electron mass, and n is the number of electrons in an atom which
partake in the radiative process.

Note that (2.2.20) describes propagation of the radiative flux of a small intensity
through a gas, and the gas is an absorber for the radiation. Let us consider this gas
consisting of flat layers, and if the radiation propagates perpendicular to these layers,
the measure of depleting of the radiation flux at a given frequency is the parameter

uω =
∫

kωdx, (2.2.31)

where the integral is taken along the path x in the transverse direction with respect to
the layer. The quantity uω is the optical thickness of this layer at a given frequency.
The optical thickness is the characteristic of the gas layer as an absorber at a given fre-
quency. It is convenient to express the equilibrium flux outside the gaseous absorber
on the basis of its optical thickness. Indeed, let an absorbed gas be separated from a
vacuum or a transparent gas by a flat boundary, and in accordance with Fig. 2.1 the
photon flux jω , i.e. the number of photons crossed the surface per unit area and unit
time, is given by

jω =
1∫

0

d cos θ

uo∫

0

duω exp
(
− uω

cos θ

)
iω, uω(z) =

z∫

0

kωdz, (2.2.32)
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Fig. 2.1 Geometry for an outgoing photon in the course of photon emission from a plane gas layer
where the gas temperature depends on a distance from the boundary only. Here t is trajectory of
a propagated photon, p is the plane boundary of an emitted gas, 1 is the origin, 2 is a point of its
intersection with a line of photon motion, 3 is the projection of this point onto the boundary plane
direction

where iω is the equilibrium photon flux at a given frequency, uo is the total optical
thickness of the gas, and the flux in formula (2.2.32) results from collection of
photons at the gas boundary. In the equilibrium case, where a gas is uniform with the
temperature T and infinite optical thickness uo = ∞ at a given frequency, we have
for the partial photon flux inside the gas iω = Iω/(�ω), where iω is given by formula
(2.2.26). Then the total photon jω flux is equal

jω = iω
4

= ω2

4π2c3
[
exp (�ω/T ) − 1

] (2.2.33)

As is seen, the partial photon flux is equal jω = Jω/(�ω), where the partial energy
flux due to photons Jω is given by formula (2.2.9).

We now generalize the expression (2.2.33) for the partial photon flux on the case
of the local thermodynamic equilibrium. This means that the gas temperature varies
in a space, but the temperature gradient is relatively small, i.e.

λ
d ln T

dx
� 1, (2.2.34)

where λ is the mean free path for atomic particles of the gas, and under this condition
the stationary state of the gas is supported. We also assume that the radiation flux
at each point is characterized by the gas temperature there. Therefore the flux of
photons in this case is given by formula (2.2.9)

jω = ω2

4π2c3 {exp [�ω/T (r)] − 1} , (2.2.35)
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where r is the coordinate of a point from which photon is emitted. Let us rewrite
this formula for the case of a flat gas layer, where gas parameters depend only on a
distance z from its boundary, as

jω = ω2

2π2c2

1∫

0

d cos θ

uo∫

0

duω exp
(
− uω

cos θ

)
F(uω), uω(z) =

z∫

0

kωdz, F(uω) =
{
exp

[
�ω

T (z)

]
− 1

}−1

,

(2.2.36)
where u∗, the total optical thickness of the layer at a given frequency, is large u∗ � 1.
If the gas temperature is constant over this layer, this is transformed into formula
(2.2.9) for the equilibrium radiation.

In the case under consideration, where the gas temperature varies at removal from
the boundary, but the local thermodynamic equilibrium is conserved, i.e. the criterion
(2.2.34) holds true, one can expand the integrand of formula (2.2.36) over a small
parameter (2.2.34). This is equivalent to expansion of the function F(uω), namely,

F(uω) = F(uo) + (uω − uo)F
′(uo) + 1

2
(uω − uo)

2F ′′(uo)

We choose the parameter uo such, that the second term of the expansion vanishes
after integration. Finally we obtain for the energy flux of radiation [16, 17]

Jω = Iω(uo)(1 − α); uo = 2

3
; α = 5F ′′(uo)

18F(uo)
Iω = ω3

4π2c3 {exp [�ω/Tω] − 1} ,
(2.2.37)

where Iω is the energy flux transported by photons from the surface of a blackbody
in accordance with formula (2.2.20). This means that the flux of outgoing radiation
at a given frequency is the equilibrium flux, which temperature Tω is equal to the
temperature of a layer with the optical thickness of 2/3 from the boundary. In other
words, we have [16, 17]

Tω = T (zω), u(zω) =
zω∫

0

kωdz = 2

3
(2.2.38)

The above results relate to a large optical thickness uo of the total gas layer.
We below generalize them to the case of a finite optical thickness uo at a given
frequency. According to the geometry of photon propagation toward the boundary,
given in Fig. 2.1, the total radiative flux of the layer with the same temperature T is
equal

jω = jωg(uω), g(uω) = 2

1∫

0

d cos θ

u∫

0

dx exp
(
− x

cos θ

)
, (2.2.39)
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where u is the total optical thickness for a given frequency, and g(u) represented
in Fig. 2.2 tends to one in the limit u → ∞. It is convenient to use the following
approximation for g(x)

g(x) = 1 − exp(−1.6x), (2.2.40)

and both functions are represented in Fig. 2.2. Thus, the function g(u) characterizes
the probability to emit a photon of a given frequency, where this probability is one for
an optically thick layer. In addition, g(u) is the probability for a photon to reach the
opposite boundary of the layer if it emits at another boundary. Hence the probability
to survive for the photon in the course of propagation through the layer is equal
1 − g(u).

For a slightly nonuniform gas layer, the radiative temperature is given by formula
(2.2.38), if this layer is optically thick. By analogy with derivation of this formula,
in the general case we introduce the quantity uef as the optical depth of a layer; its
temperature coincideswith the radiative temperature of radiation at a given frequency.
Repeating operations at derivation this formula, we have

uef = 2

1∫

0

d cos θ

u∫

0

xdx exp
(
− x

cos θ

)
(2.2.41)

Fig. 2.2 Function g(u)

according to formulas
(2.2.39) and (2.2.40) [18]

Fig. 2.3 Effective optical
thickness uef (u) in
accordance with formulas
(2.2.41) and (2.2.42) [18]
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In the limit of a large optical thickness u at a given frequency this formula is trans-
formed into (2.2.38). The dependence uef(u) is presented in Fig. 2.3 together with
the following approximation of this dependence

uef(u) = u

2 exp(−u) + 1.5u
(2.2.42)

It is clear that if we operate with radiative temperature as a parameter of the radia-
tion, a certain equilibrium takes place in a gas through which photons propagate. Let
us consider the character of this equilibrium. Evidently, in the case of the local ther-
modynamic equilibrium of a gaseous system, an equilibrium is established at each
spatial point of a gas under action of external field and as a result of collisions of
gaseous atoms or molecules. Then the radiation field does not influence on this equi-
librium because of large times of radiative transitions. On contrary, since the number
density of atomic particles in the upper state of the radiative transition is determined
by the equilibrium, the radiative temperature of the photon flux is associated with
this equilibrium. The case when radiative transitions influence on the distribution of
excited atomic particles requires a special consideration. In particular, this case is
realized if resonance radiation propagates in rarefied gases.
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Chapter 3
Resonant Radiation in Atomic Gases

Abstract Emission of resonance radiation proceeds as a result of dipole radiation
from the resonantly excited states of atoms to their ground state. Because of a strong
interaction between atoms in the ground and resonantly excited states, this interaction
determine the broadening of spectral lines for resonance radiation even at a low
concentration of radiating atoms. Propagation of resonance radiation in a weakly
ionized gas is analyzed for the regimewhere quenching of excited atoms in collisions
with electrons or atoms is negligible. Transport of resonance radiation results in
reabsorption of resonant photons at wings of the spectral line. The phenomenon of
self-reversal of spectral lines results due to a high optical thickness of a gas for
resonance radiation and also due to low temperature of electrons near the plasma
boundary.

3.1 Radiation Involving Resonantly Excited Atoms

3.1.1 Broadening of Resonant Spectral Lines

One can extract the resonantly excited atom states as lower excited atom states,
so that the dipole radiative transition is possible from these states in the ground
atom states. Atoms in these states are of importance for properties of an excited gas
[1]. Correspondingly, the resonant radiation is emitted and is absorbed as a result of
radiative transition between those and ground atom states. The operator of interaction
between atoms in the ground and resonantly excited states at large separations R is
given by

V (R) = D1D2 − 3(D1n)(D2n)

R3
, (3.1.1)

where D1, D2 are the operators of the dipole moment for the first and second atoms
correspondingly,n is the unit vector along the direction connected neighboring atoms.
The matrix element from the interaction operator (3.1.1) is nonzero for a system
consisting of two atoms of the same sort in the ground and resonantly excited states,
so that the interaction potential depends on a distance R between atoms as ∼ R−3
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and depends on the momentum projection onto the axis for a molecule consisting of
these atoms, as well as on the symmetry of this state.

The total cross section σt of scattering of atoms in the ground and resonantly
excited states includes processes of elastic collision of atoms, excitation transfer and
turn of the atom momentum. This cross section depends also on the momenta of
colliding atoms. Being guided by alkali metal atoms, we assume the momenta of
colliding atoms to be L = 0 and L = 1. In this case the total collision cross section
of atoms σt in the ground and resonantly excited states, which is expressed in terms
of the matrix element of the dipole moment operator D between the ground and
excitation states of the atom, is equal [2, 3]

σt = 4.8πd2

�v
, (3.1.2)

where v is the relative collision velocity of the atoms, and d2, the square of the matrix
element from the operator dipole moment between the ground state of the sodium
atom with a moment 0 and its projection 0, and the excited sodium atom with a
moment 1 and its projection M = 0, ±1, is given by formula

d2 = 1

3

∑

M

|〈00|D|1M〉|2 (3.1.3)

and in the case of a sodium atom this quantity is d2 = 6.28e2a2o , where e is the
electron charge, ao is the Bohr radius. Accordingly, the width of the absorption or
radiation spectral line for the impact mechanism of broadening is [3, 4]

ν = 4.8πd2N (3.1.4)

where N is the number density of these atoms formed a vapor. Table3.1 contains
the parameters of radiative transitions involving resonance states of alkali atoms and
broadening of corresponding spectral lines. Namely, in this Table λ is the photon
wavelength for a given transition, τ is the spontaneous lifetime for resonantly excited
atoms, �ωD is the Doppler width, �ωL is the collision width, NDL is the atomic
number density, at which the Doppler width is equal to the collision one, N is the
atomic number density, N∗ is the atomic number density, at which the quasistatic
width is equal to the collision width. These data correspond to the temperature of
500K.

In the above analysis we will be guided by the case of sodium located in neon as
a buffer gas. In the case of a sodium vapor the specific width of the resonant spectral
line is ν/N = 5.8 · 10−7 cm3/s, where N is the number density of sodium atoms.
If a sodium vapor is located in a buffer gas–neon, an additional broadening of a
spectral line results from interaction of a radiating sodium atomwith neon atoms. As
it follows from formula (2.1.43), at the temperature T = 500K for the specific width
of the spectral line is νb/Nb = 1.9 · 10−9 cm3/s. Comparing it with the broadening
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Table 3.1 The broadening parameters for spectral lines of alkali atoms

Element Li Na Na K K Rb Rb Cs Cs

Transition 22S–
32P

32S1/2–

32P1/2

32S1/2–

32P3/2

42S1/2–

42P1/2

42S1/2–

42P3/2

52S1/2–

52P1/2

52S1/2–

52P3/2

62S1/2–

62P1/2

62S1/2–

62P3/2
λ, nm 670.8 589.59 589.0 769.0 766.49 794.76 780.03 894.35 852.11

τ , ns 27 16 16 27 27 28 26 31 27

�ωD ,
109 s−1

8.2 4.5 4.5 2.7 2.7 1.7 1.8 1.2 1.3

�ωL/N ,
10−7 cm3/s

2.6 1.6 2.4 2.0 3.2 2.0 3.1 2.6 4.0

NDL ,
1016 cm−3

16 15 9.4 6.5 4.2 4.5 2.9 2.43 1.6

N∗,
1018 cm−3

3.2 2.5 1.4 1.2 0.6 0.7 0.4 0.3 0.2

of resonant spectral lines due to interaction of a radiating sodium atom with other
sodium atom one can find that the contributions to the broadening due to the above
broadening channels are identical at the concentration of sodium atoms in neon of
0.3%.

It is of importance the character of equilibrium of resonantly excited atoms in
an excited gas. This equilibrium is determined by collisions involving atoms in the
ground and resonantly excited states and usually takes place in a weakly ionized gas,
so that it results from collisions involving electrons. Figure3.1 [5] represents the
radiative and collision processes which influence on this equilibrium. In particular,
the thermodynamic equilibrium involving excited atoms and electrons of this plasma,
takes place at high number density Ne of electrons

Ne � Nq = 1

kqτ
, (3.1.5)

where kq is the rate constant of quenching of the resonantly excited state in colli-
sions with electrons, τ is the lifetime of this excited state with respect to its location
in the plasma volume. It is of importance that at small electron energies the rate

Fig. 3.1 Radiative and
collision processes which
connect the ground and
resonantly excited states of
an atom
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constant of quenching is independent on this energy. In particular, for resonantly
excited sodium atoms in states Na(32P) we have kq = (2.0 ± 0.3) · 10−7 cm3/s [6].
If resonant radiation is not closed in the plasma volume, the lifetime of an excited
atom is the radiative lifetime, and then the boundary number density of electrons
is Nq ≈ 3 · 1015 cm−3. In the case, if resonant radiation is closed in the plasma vol-
ume, the limited electron number density Nq is lower. Nevertheless, thermodynamic
equilibrium may be fulfilled only in arc, but in glow discharge it is violated. This
means that a resonant excitation formed in a plasma is conserved in the course of
reabsorption of resonant radiation in a plasma. We below consider namely this case
of equilibrium in a weakly ionized gas.

3.1.2 Propagation of Resonant Radiation in Excited Gas

We now consider propagation of resonance radiation in an excited gas in the opposite
regime to (5.4.5) where the lifetime of resonant excitation in this gas is determined
by outgoing of the resonant radiation outside the gas. In this case we should con-
sider the behavior of elementary excitations in a plasma [7–9], rather than resonant
photons. It is used that transitions between resonant photons and excited atoms lead
to conservation of a number of excitations, because quenching of excited atoms in
collisions with electrons is a weak process. Let us introduce the probability P(r)
that a resonant photon survives at a distance r from a point of its formation, and this
distance exceeds significantly the mean free path of the photon for the center of a
spectral line 1/ko (ko is the absorption coefficient in the center of the resonant line).
Assuming the statistical character for an emitting frequency in the limit of the small
line width, we obtain that this probability is the product of the probability aω dω of
photon emission with a given frequency and the probability exp(−kωr) of photon
surviving during its propagation between these points, that is

P(r) =
∫

aωdω exp(−kωr) (3.1.6)

Let us use this formula for the Lorentz (2.1.4) and Doppler (2.1.13) line shape. In
the case of the Lorentz shape of spectral lines we have, introducing a new variable
s = (ω − ωo)/ν,

aωdω = ds

π(1 + s2)
, kω = ko

1 + s2
, (3.1.7)

where ko is the absorption coefficient for the spectral line center. Let us use u = kor
the optical thickness on this way for the center line frequency that is defined by
formula (2.2.31); according to the problem condition, u � 1. Substituting this in
formula (3.1.7), we obtain
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P(r) = 1

π

∞∫

−∞

ds

(1 + s2)
exp

(
− u

1 + s2

)

For a dense plasma the main contribution in this integral follows from large s � 1,
and for the probability P(r) for the photon to pass a given distance r we have in this
limit

P(r) = 1√
πu

, u � 1 (3.1.8)

For the Doppler shape of the spectral line we introduce a new variable

t = u exp

[
−mc2

2T

(
ω − ωo

ωo

)2
]

that gives for the probability to pass a distance r for the resonant photon

P(r) = 1√
πu

u∫

0

e−tdt
(
ln

u

t

)−1 = 1√
πu

√
ln u + C

, (3.1.9)

where C = 0.577 is the Euler constant. Since the frequency distribution function
drops at wings of the Doppler spectral line sharper than that in the case of the
Lorentz spectral line, the probability to propagate on large distances for the Lorentz
spectral line is larger than that for the Doppler one at the same optical thickness of
the layer.

Reabsorption of a resonant photon results in its formation and subsequently in
its absorption in other spatial point. We will characterize this process by the prob-
ability G(r′, r), so that G(r′, r)dr′ is the probability for a photon formed at point
r′ to be absorbed in a volume dr′ near the point r′. This probability satisfies to the
normalization condition ∫

G(r′, r)dr′ = 1,

where the integral is taken over all the space. We obtain the expression for this
probability by analogy with that in formula (3.1.7) which has the form

G(r′, r) =
∫

aωkωdω

4π |r − r′|2 exp
(

−
∫

kωdx

)
(3.1.10)

One can use the reabsorption process in the balance equation for the number density
N∗ of excited atoms located in a plasma where the reabsorption process is included
along with the processes of atom excitation and quenching by electron impact and
spontaneous remission of an excited atom. This equation has the form [7, 10, 11]
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∂N∗
∂t

= NeNokex − NeN∗kq − N∗
τ

+ 1

τ

∫
N∗(r′)dr′

∫
aωkωdω

4π |r − r′|2 exp

(
−

∫
kωdx

)

(3.1.11)
and is named the Biberman–Holstein equation.

In particular, for the Lorentz profile of the spectral line (2.1.4) and for a uniform
plasma, this probability is

G(R)= ko
4πR2

∫
ds

(1 + s)2
exp

(
− koR

1 + s2

)
,

where we use the variable s = 2(ω − ωo)/ν and ko is the absorption coefficient at
the line center. In the limiting case of an optically thick plasma koR � 1 this formula
gives

G(R) = 1

(4πko)1/2R7/2
(3.1.12)

Correspondingly, in the case of the Doppler profile of the spectral line (2.1.13), using
a new variable s = [(ω − ωo)/ωo](mc2/T )1/2, we have aωdω = π−1/2 exp(−s2)ds
and kω = ko exp(−s2). Substituting this in formula (3.1.10) and introducing the vari-
able t = koR exp(−s2), one can obtain

G(R) = ko
4(π)3/2R2

∞∫

−∞
ds exp(−s2 − t) = 1

4(π)3/2koR4

ko R∫

0

te−tdt√
ln(koR/t)

Replacing the upper limit of integration by infinity in the limiting case of an optically
thick plasma koR � 1 and accounting for ln(koR) � 1, one can obtain

G(R) = 1

4(π)3/2koR4
√
ln(koR/to)

,

where to is the solution of the equation

to∫

0

te−tdt
√
ln(t/to) = 0,

i.e. to = 1.52. From this we have

G(R) = 1

4(π)3/2koR4
√
ln(koR) − 0.42

(3.1.13)

We obtain that propagation of resonance radiation in a gas or plasma has a specific
character. In contrast to diffusion transfer of atomic particles in a gaseous matter,
radiation transfer proceeds at wings of the spectral line for the radiative transition,
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and the larger is the optical gas thickness, the more remote wings of the spectral
line are responsible for radiation transfer. As an example of the radiative transfer of
thid type, we consider emission of a cylinder plasma region for the Lorentz profile
(2.1.4) of the spectral line. In the limit of an optically thin plasma (kod � 1, where
d is the tube diameter), if all the formed photons leave the plasma region, the flux j
of photons is [12]

J = N∗
τr

V

S
= N∗d

4τr
,

where V = L · πd2/4 and S = L · πd are the volume and surface area for a plasma
region of a length L , respectively. In the limit of an optically thick plasma kod � 1
the photon flux is

j = N∗
τr

∫
P(r) cos θdr

4πr2
,

where r is a distance of the point of photon formation from the surface, P(r) is
the probability of photon surviving at a distance r from its formation, and θ is the
angle between the photon direction and perpendicular to the plasma surface (Fig.2.1).
Evaluating this integral, we obtain for the photon flux [12]

j = 0.39
N∗R1/2

k1/2o τr
(3.1.14)

As is seen, the photon flux from an optically thick plasma is lower in (kod)1/2 than
that from an optically thin plasma.

Let us introduce the effective radiative time τef of the resonantly excited state as

τef = τr
J

j
,

and τr is the radiative lifetime for an isolated atom; the flux J corresponds to an
optically thin gas, i.e.,

J = N∗V
τr S

,

where S is the area of the plasma surface, V is its volume, and this plasma assumes to
be uniform. The effective radiative time depends both on the geometry of the volume
occupied by the plasma and on the character of broadening of the spectral line. In
particular, if an optically thick uniform plasma is located inside a cylinder tube, and
the Lorentz character (2.1.4) of spectral line broadening occurs, on the basis of the
above result we have [6]

τef = 1.3τr (koR)1/2 (3.1.15)

The above analysis shows that the system under consideration consisting of a
buffer gas (neon) and the radiating impurity (sodium) exists at the buffer gas pressure
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of the order of 1Torr, andpresenceof a buffer gas does not affect the resonant radiation
of the impurity. Let us analyze the character of radiation output from this system.
We have the following expression for the absorption cross section σω at the given
frequency [13, 14]

σω = π2c2

ω2

aω

τ

[
1 − exp

(
−�ω

T

)]
, (3.1.16)

where aω is the distribution function of photons over frequencies, τ is the radiative
time, and the last factor takes into account the induced radiation. Restricted to the
impact mechanism of broadening of spectral lines, we have for the absorption cross
section σo and for the absorption coefficient ko = Nσo at the spectral line center,
ignoring the induced radiation

σo = π2c2

ω2

2

πντ
, ko = λ2

2πτν/N
, (3.1.17)

whereλ = 2πc/ω is the radiationwavelength. According to this formula, the absorp-
tion coefficient ko at the center of a spectral line does not depend both on the number
density of irradiating atoms, and on their mass. Next, since according to formula
(2.1.40), the specific width of the spectral line ν/N for a resonant transition is pro-
portional to the square of the matrix element of the dipole moment d2 between states
of the radiative transition, aswell as the rate of the radiative transition 1/τ , the absorp-
tion coefficient ko does not depend on this value. Let us determine this parameter for
a sodium vapor, where λ = 589nm, τ = 1.6 · 10−8 s, ν/N = 5.8 · 10−7 cm3/s. This
gives ko = 5.8 · 104 cm−1. Correspondingly, the absorption coefficient of photons kω

at frequencies ω at the spectral line wing, in accordance with the formula (2.1.40), is

kω = ko
ν2

4(ω − ωo)2
(3.1.18)

Let us consider the spectral line profile of outgoing resonance radiation from a
nonuniformplasmaunder real conditionswhere the temperature at plasmaboundaries
is less than that far from the boundary. Radiation emitted by a plasma at frequencies
near the center of the spectral line is formed in a plasma region near its boundaries.
If we are based on formula (2.2.33) for the radiative flux jω from the equilibrium
plasma, it is necessary to use there the temperature T of the layer that gives the main
contribution to the radiation flux. This layer lies at the distance xω from the boundary
such that the optical thickness of this region is of the order of one

u(xω) =
xω∫

0

kωdx ∼ kωxω ∼ 1

This formula describes self-reversal of spectral lines with a dip at the line center
as it is shown in Fig. 3.2 for the case when the plasma temperature drops sharply near
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Fig. 3.2 Character of self-reversal for the spectral line, where the radiative temperature near the
boundary of an excited gas is low compared to that far from the boundary. 1—the shape of the
spectral line for an isolated atom, 2—the shape for the constant temperature, 3—the shape of the
spectral line for a nonuniform excited gas

the plasma boundary. Evidently, the condition for a strong minimum of the radiation
flux for the spectral line center has the following form

1

ko

�ω

T

dT

dx
� 1, (3.1.19)

in the case �ω > T .
Thus, propagation of resonance radiation in an optically thick gas results from

radiative transitions involving resonantly excited atoms and atoms in the ground
state, and according to the above analysis the nature of this process is not diffusive.
Therefore transport of photons on large distances compared with the mean free path
of photons for the spectral line center is determined by photon frequencies at spectral
line wings. This is explained by many events of photon absorption at the line center
and a large mean free path for photons at far wings. Let us consider the behavior
inside a gas for photons with a small mean free path compared the gas size, where
the following criterion holds true

kωL � 1 (3.1.20)

Here the absorption coefficient kω is equal kω = Noσa(ω) − N∗σr (ω) according to
formula (2.2.26). Because of the effective absorption and emission of photons with
this frequency inside the gas, the equilibrium is established for these photons, i.e.
rates of the absorption and emission events are equal. Let iω be the flux of photons of
frequency ω inside the gas, so that the number of photons absorbed per unit volume
per unit time in a frequency range from ω to ω + dω is equal iωkωdω. The reduced
number of absorbing photons is equal to the corresponding number of emitting
photons, which is given by N jaωdω/τr . From this we obtain for the isotropic flux of
photons at a given frequency
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iω = aωN∗
kωτr

= ω2

π2c2

(
No

N∗
g∗
go

− 1

)−1

(3.1.21)

If atoms in the ground and excited states are in thermodynamic equilibrium, this
formula coincides with formula (2.2.9).

As for the outgoing photon flux through a flat surface at a given frequency, it is
equal

jω =
1∫

0

iω cos θd cos θ

⎛

⎝
1∫

−
d (cos θ)

⎞

⎠
−1

= iω
4

, (3.1.22)

This coincides with formula (2.2.9). Here θ is the angle between the normal to the
gas surface and the direction of photon propagation; and we have taken into account
that the total photon flux outside the system is normal to the gas surface.

Formula (3.1.9) for the partial outgoing flux can be presented in the form

jω = ω2

2π2c2

1∫

0

d(cos θ)

uω∫

0

dxdu exp
(
− u

cos θ

) (
No

N∗
g∗
go

− 1

)−1

, (3.1.23)

Here the current optical thickness of a layer is defined as uω =
x∫

0
kωdx ′ and the total

optical thickness of the layer at a given frequency is uω =
L∫

0
kωdx , i.e. duω = kωdx .

This formula allows us to estimate the width of the spectral line of radiation that
leaves the plasma. The boundaries of the spectral line can be estimated from the
relation

uω =
L∫

0

kωdx ∼ kωL ∼ 1 (3.1.24)

This formula determines the width of the spectral line �ω of the total radiation.
Indeed, in the case of Lorentz broadening of the spectral linewe have from formula

(2.1.4) for the absorption coefficient at the line wing

kω = ko
ν2

(ω − ωo)2
,

and the width of the spectral line for the total radiation flux is estimated as

�ω ∼ ν
√
koL, koL � 1 (3.1.25)

Correspondingly, for the Doppler profile (2.1.13) of the atom spectral line we obtain
the width of the spectral line of total radiation
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�ω ∼ �ωD

√
ln(koL), koL � 1, (3.1.26)

where �ωD is the Doppler width of the spectral line in the case of a small optical
thickness of the gas. Thus, the yield of the resonance radiation from the optically
thick gas plasma is characterized by a broad spectral line compared with the spectral
line from an individual atom, because the main contribution to the outgoing radiation
flux arises from wings of the spectral line for individual atoms.

3.2 Applying Aspects of Resonant Photons

3.2.1 Optical Pumping

Radiative transitions from the ground atomic state to the resonantly excited state
results from the strongest interaction between the radiation states and free atoms;
hence they are realized in effective processes of gas excitation [1, 15]. Therefore
excitation of atoms by resonance radiation is a simple and strong process. Excitation
of the resonantly excited state is the first stage of optical pumping [16–18], so that
first resonantly excited atoms are formed, and these atoms are used subsequently for
various goals.We below consider briefly principles of various applications of excited
atoms [19].

It is clear that if the excited state includes several sublevels and excitation leads
to population of one of these sublevels, this process allows one to create a laser or a
maser. In particular, as an example of a device on the basis of optical pumping we
consider below the rubidiummaser which uses the isotope 87Rb [20–23]. The orbital
momentum is zero for the ground state of the rubidium atom, its electron spin equals
1/2, and the nuclear angular momentum is 3/2. Therefore, two hyperfine states exist
for the rubidium atom in the ground state with the total momentum F = 2 for the
upper state and F = 1 for the lower state. If rubidium atoms are excited by circularly
polarized resonant radiation, subsequent emission of excited atoms leads to formation
of atoms in the ground electron state and mostly in the superfine state with F = 2.
This inverse population of levels is used in the rubidium maser which is an element
of the optical frequency standard (see, in particular, [24, 25]). We neglect relaxation
processes due to atomic collisions which mix states of the superfine structure. This
example demonstrates also the possibility to separate certain nuclear states in spite
of a small energy difference for corresponding levels.

In addition, this method of formation of rubidium atoms in a given superfine state
may be used for measurement of low magnetic fields (for example, [26–30], if the
splitting and shift of magnetic field is compensated by transitions under the action
of a high-frequency electromagnetic field. We below consider another example of
optical alignment is a magnetometer created on the isotope 4He (its prevalence is
nearly 100%) [31–33]. Gas discharge is initiated in the cell with the concentration of
helium atoms in the ground state of the order of 1016 cm−3. As a result, metastable
atoms He(23S) are produced with a concentration of the order 1010 cm−3. Resonance
polarized radiation excites atoms into state He(23P). Inverse process is the spon-
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taneous transition He(23P) → He(23S). Thus, atoms in the state He(23S) acquire
maximum projection of angular momentum to the direction of radiation. In an exter-
nal magnetic field this state is splitting in three sublevels. Resonance transitions
between these magnetic sublevels are produced by a radio-frequency electromag-
netic field. On the basis of measured resonant radio-frequencies one can determine
weak magnetic fields of the order of 10−7 G.

Other approach for measurements of magnetic fields as a result of optical pump-
ing is so called the double radio-optical resonance method. It was first realized using
resonance excitation of Hg vapors [17, 34]. In this case mercury atoms are excited
firstly from the ground state Hg(63S0) by polarized resonance radiation with the
wavelength 253.7nm into the state Hg(63P1) with the projection of orbital momen-
tum M = 1. The polarization of radiation emitted by atoms in the direction which
differs from the direction of the initial radiation is measured. If the cell is found in a
magnetic field, then the atomic level is splitting into three sublevels. Measurement
the frequency of an applied radio-frequency field which produces the most strong
variation of emitted radiation, it is possible to determine the value of the magnetic
field strength.

We consider above only some examples of optical pumping by the polarized radi-
ation. In this case absorption of radiation changes the atomic angular momentum.
Oppositely, spontaneous emission of an atom does not change its average angular
momentum. As a result, after several processes of radiation absorption and spon-
taneous radiation an atom returns to the initial atomic state; there arises so called
optical alignment of atoms. The above concepts are used for various atomic objects
[35–37].

3.2.2 Cooling of Atoms in Laser Field

Though spectroscopymethods are used during several centuries and played an impor-
tant role in development of physics, in particular, in creation of quantum mechanics.
Subsequent development of laser physics related to laser spectroscopy [19, 37–40]
led to sources of monochromatic radiation with very narrow width of the spectral
line, and this allows one to solve principally new problems. Lasers as a sources of
monochromatic radiation open additional possibilities in gas excitation, though basic
methods of optical pumping and subsequent methods for the action on atomic sys-
tems were developed just before creation of lasers. Nevertheless, lasers allow one to
use new methods of gas excitation. Below we demonstrate this on the example of
atom cooling as a result of optical pumping.

The method of optical pumping, where atoms are transferred into a resonantly
excited state bymeans of a resonant excitation, and then return to the ground state due
to spontaneous emission, is the basic of atomic cooling and creation of optical traps
for atoms. Radiation of a tunable laser is tuned for this goal to the tail of the velocity
distribution function of atoms. Then absorption of these photons and subsequent
atomic transition to the ground state due to spontaneous emission diminishes the
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atom velocity and, thus, decreases the atomic temperature. Deceleration of atoms
results from interaction between atoms and an electromagnetic field. Since atoms are
moving in various directions, in the best methods six laser jets are used, where laser
beams propagate towards each other in three mutual perpendicular directions. In the
course ofmotion in a laser field, atoms breaks [41], so that the electromagnetic field is
similar to viscous medium in this interaction. The motion of atoms in a viscous fluid
of photons or optical molasses [42] is analogous to diffusion in classical Brownian
motion. It should be noted that this configuration of electromagnetic fields does not
produce a trap for atoms, but leads to their braking.

Developed methods of atomic cooling based on braking of atoms in the optical
molasses allow one to cool a gas up to ultra-low temperatures of the order of 10−7 K.
We below consider application of this method to sodium atoms. Transition of these
atoms from the ground 32S1/2 state to the excited 32P1/2 state results from resonant
radiation with the wavelength of λ = 589nm. The optimal atomic confinement can
to be realized under low densities, if the width of the spectral radiation line � is
the natural width � = 1/τ , where τ is the radiative lifetime of the excited atom
state. Then in the sodium case the temperature of TD = 240µKmay be attained. Of
course, this is an enough costly method, so that the number of photon emission and
absorption events per atom can excess 104.

In considerationof interactionbetween atomsandelectromagnet field in the course
of atom cooling, in the first approximation one can neglect the influence of radiation
on the spatial distribution of atoms. Then the lowest atomic temperature is determined
by interaction of atoms with individual photons. As a result of an elementary act of
absorption or spontaneous emission an atom acquires the momentum

�p = �k = �ω

c
,

where k is the photon wave number, c is the light speed of and ω = kc is the radiation
frequency. Equalized this quantity to variation of the atomic momentum as a result
of the radiative process, one can obtain for variation of the atomic velocity

�vR = �k

M
= �ω

Mc
,

where M is atomic mass. From this one can obtain the energy acquired by an initial
motionless atom or the recoil energy

ER = M(�vR)2

2
= (�k)2

2M

The temperature TR = 2ER is called the limiting recoil temperature. In the case
of sodium atoms we have �vR = 3cm/s, ER = 2.4µK and the limiting recoil tem-
perature is TR = 2ER = 5µK. A thermal velocity of the sodium atom at room tem-
perature is 5.0 · 104 cm/s. However, if the temperature is equal to TD = �/2 and the
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distribution function for atomic velocities is determined by the natural width of the
spectral line, the thermal atomic velocity is �vD = 30cm/s and the recoil velocity
is �vR = 3cm/s.

Let us consider the character of interaction between laser radiation and sodium
atoms. The maximum absorption cross section takes place at the natural width of
spectral line

σmax = 3λ2

2π
= 1.6 · 10−9 cm2,

where λ = 589nm is the wavelength of resonant radiation; the coefficient 3 is the
ratio of statistical weights for upper and lower transition states. The mean free path
of resonant photons is of the order of 100cm at the typical atomic concentration
of 107 cm−3 that is large compared to the size of a cell that is of the order 1cm.
Further, a small intensity of laser radiation 1W/cm2 corresponds to the photon flux
of 3 · 1018 cm−2s−1 for sodium atoms. Hence, the rate of radiative transitions is esti-
mated as 5 · 104 s−1. The thermal velocity of atoms is 5 · 104 cm/s at room tempera-
ture, and the mean free path for atoms which interact with resonant radiation is of the
order of 0.1µm. Note that this estimation corresponds to the low limit of the atom
mean free path, and from this it follows that many events of absorption and emission
including an individual atom occur under typical conditions where atoms move in a
viscous medium of the optical molasses.

In order to create a trap for atoms based on the optical molasses it is convenient
to use the combination of a polarized radiation and magnetic field. In the case of
the quadrupole magnetic trap with zero magnetic field strength at the cell center,
atoms tend to the cell center at a certain detuning of laser radiation from the line
center, if polarized laser jets directed in opposite sides each to other. This type of
magneto-optical trap permits to capture about of 4 · 1010 sodium atoms [43].

Another method of atom capture into a trap on the basis of the optical molasses
and polarized jets of laser radiation is the modulation of laser radiation. The spatial
field distribution of each from two plane polarized waves is shown in Fig. 3.3. A
laser beam of the first polarization excites atoms with the spin projection +1/2 on
the beam direction, and the second beam excites atomswith the spin projection−1/2
with respect to the direction of the second beam. The electromagnetic field is taken
as a stationary wave and it is tuned to the center of spectral line. Hence only atoms
having zero kinetic energy during the excitation process interact with the field. After
photon absorption, an atom emits a photon with other wavelength and therefore it
loses the kinetic energy. Thus, atoms are captured by the stationary electromagnetic
wave and oscillate in the potential well of this wave which lose their energy. Of
course, atoms with the kinetic energies higher than the top of the potential well
move free. However, these atoms move in the optical molasses and therefore they
are decelerated. Finally, atoms are captured by such a trap, and their energy is of the
order of the recoil energy.

The recoil energy is not the principal limit for atomic energies. First, it is possible
to use two-photon absorption for oppositely propagating photons. Then recoils at the
absorption of two photons with opposite momenta compensate each other. Second, a
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Fig. 3.3 Sisyphus effect in interaction between atoms and two oppositely directed laser jets with
different polarizations. λ is the period of the field intensity variation in a space (a). Detuning of
laser radiation from the spectral line center leads to absorption in such a way that an atom “climbs”
to the potential hill and thus gives part of its kinetic energy to the wave (b)

recoil occurs in atom-photon interaction in the limit of low intensities of laser radia-
tion. At high intensities of laser radiation and a specific direction and polarization of
beams the optical lattice [44, 45] is formed, and atoms may be captured by potential
wells of this lattice. The process of photon scattering on atoms which are located in a
potential well created by the radiation field is analogous to the scattering of X-ray on
a crystal lattice. We have considered above the most prospective methods to obtain
ultra-low temperatures. They are based on processes of interaction between atoms
and laser radiation.

3.2.3 Light Induced Drift

Optical pumping is a strong method to input an energy into a certain degree of
freedom of an atomic system, and then this system develops along a certain channel
that leads to a nonequilibrium state of this atomic system. We below consider the
method of light induced drift. The idea of this method [46] is that if monochromatic
radiation is tuned to awing of the resonance spectral line, than at not high gas pressure
where the Doppler broadening of spectral lines is realized, absorption at a wing of
the spectral line relates to atoms of a certain velocity. Because an excited atom emits
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in a random direction, the action of radiation creates a force which acts on atoms of
a certain kind.

This method was checked experimentally and developed (for example, [47–50])
and may be used practically twofold. The first application is separation of isotopes.
This process may be realized in a gasdynamic beam of atoms where laser radiation
is directed perpendicular to a beam. Then the space distribution of an exciting iso-
tope becomes nonuniform in the transverse direction; if the beam after irradiation
is divided in two beams, the concentration of a given isotope in two beams will be
different.

This method may be used practically. Indeed, the relative excitation energy is of
the order of me/M , where me is the electron mass, M is the nucleus mass, and the
relative difference of excitation energies δ is

δ ∼ �M

M

me

M
, (3.2.1)

where�M is the difference of the masses for isotopes under consideration. In partic-
ular, in the case of lithium isotopes 6Li and 7Li we have δ ∼ 10−4, while the Doppler
width of a spectral line (2.1.12) the ratio of the width to the excitation energy is of the
order of 10−6. From this it follows the possibility to separate isotopes in this method.
This method of isotope separation was realized for various elements (for example,
[51–54]). But in analogy with other methods based on optical pumping, this method
of isotope separation requires a relative large energy, and hence its application in
reality is problematic.

Another application of the method of light induced drift is separation of elements.
The character of this process is similar to electrophoresis [55–58], where space
separation of elements results from the action of the electric field. Then in amixture of
some components the electric field acts of the ions formed fromatoms ormolecules of
a certain component. The similar situation takes place in the method of light induced
drift, where the radiation creates a force which acts on one component only. As a
result, a space separation of components proceeds. But in contrast to electrophoresis,
which may be used for gases and liquids, the method of light induced drift is used
for separation of elements which are located in the gaseous matter.

3.2.4 Photoresonant Plasma

Because resonant spectral lines are narrow, it gives an effective instrument for exci-
tation of gases and their diagnostics. Lasers as a sources of monochromatic radiation
open additional possibilities in gas excitation, though basicmethods of optical pump-
ing and subsequent methods for the action on atomic systems were developed just
before creation of lasers. Nevertheless, it is convenient to use tunable lasers for
excitation resonantly excited atom states.
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If the gas or vapor pressure is enough high, excited atoms are destroyed as a result
of collisions, and the radiative energy absorbed by this gas remains there. Under
these conditions the specific input energy may be high. As a result of collisions of
resonantly excited atoms with each other and also with electrons, so called photores-
onant plasma is formed in a small region. Hence, at a certain level of the gas pressure
and radiative flux the exciting gas is heated and is transformed in a plasma. Therefore
this plasma is compact and has a high specific internal energy that results in vari-
ous applications [59–61]. Hence, this plasma may be used as a source of negative
and multicharged ions. In addition, since a fast heating takes place in a small space
region, it is a convenient acoustic source.

There are various regimes of realization of the photoresonant plasma depending on
the intensity of the absorbed photon flux. We first consider the regime of low photon
intensities [62, 63] where an absorption energy is compensated by spontaneous
emission of resonantly excited atoms, i.e. processes in the photoresonant plasma
proceed according to the scheme

�ω + A ↔ A∗, (3.2.2)

and the appropriate balance equation for the number density of resonantly excited
atoms N∗ has the form

dN∗
dt

= jωσabsN0 − jωσemN∗ − N∗
τ

, (3.2.3)

where �ω is the photon energy, jω = Jω/(�ω) is the photon flux, so that Jω is the
energy radiative flux, σabs is the absorption cross section, σem = σabsg0/g∗ is the
cross section of stimulated emission, so that g0, g∗ are the atom statistical weights in
the ground and excited states, τ is the radiative lifetime of excited atoms in a plasma
that in the absence of reabsorption processes is equal to the radiative lifetime of an
individual atom. One can introduce the temperature T∗ of excitation as

N∗
N0

= g∗
g0

exp

(
−�ω

T∗

)
(3.2.4)

On the basis of this temperature, the stationary regime of the balance equation (3.2.2)
takes the form

jωko

[
1 − exp

(
−�ω

T∗

)]
= N∗

τ
, (3.2.5)

where ko = σabsN0 is the absorption coefficientwhich does not depend on the number
density of atoms N0 for the resonance interaction. One can present this equation as

jω = jo

exp
(

�ω
T∗

)
− 1

; jo = N0g∗
g0koτ

(3.2.6)
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Table 3.2 Parameters of interaction of resonant radiation with vapors of alkali metals [62]

ko, 105 cm−3 T∗,eV jo/N0, 100cm/s Io/N0, 10−17 W · cm
Li(22P) 1.6 2.61 2.3 6.8

Na(32P1/2) 1.1 3.04 5.6 19

Na(32P3/2) 1.4 3.04 4.4 15

K(42P1/2) 0.85 2.32 4.5 15

K(42P3/2) 1.1 2.33 3.6 9.4

Rb(52P1/2) 0.91 2.25 3.9 10

Rb(52P1/2) 1.2 2.29 3.2 8.0

Cs(62P1/2) 0.77 2.00 4.3 9.6

Cs(62P3/2) 1.0 2.10 3.7 8.6

This relation connects the flux of resonance photons in the spectral line center and
the temperature of excitation. This relation can be represented in the form

T∗ = �ω

ln 1+η
η

; η = jω
jo

= jωσabsτ
g0

g∗
(3.2.7)

In particular, if jω = jo, we have T∗ = 1.44�ω. Table3.2 contains values of this
excitation temperature T∗, of the specific photon flux jo/N0 for g∗/g0 = 1 and the
specific intensity of incident radiation Io/N0 = �ω · jo/N0 for alkali metal vapors
at the Lorenz shape of a spectral line. These data allow one to estimate the range of
parameters for this regime of the photoresonant plasma. Indeed, taking the pressure
of alkali metal vapor p ∼ 1Torr, that corresponds to the number density of atoms in
the ground state N0 ∼ 1016 cm−3, we find a typical radiative flux Jo ∼ 1W/cm2.

This regime of the photoresonant plasma corresponds to the scheme (3.2.2); it is
realized at low radiative fluxes jω . An increase of the number density of resonantly
excited atoms opens new channels of the energy loss. As a result, free electrons are
formed, at the beginning as a result of associative ionization

2A∗ → A+
2 + e (3.2.8)

When the number density of electron becomes sufficiently high, the electron subsys-
tem is formed, where the equilibrium in the electron subsystem is established faster
then that in the atomic subsystem. Then one can introduce the electron tempera-
ture Te, and the energy distribution function of electrons has the Maxwellian form.
Under these conditions, another regime of the photoresonant plasma is realized in
accordance with the following processes

e + A∗ ↔ e + A, e + A∗, e + A ↔ 2e + A+, e + A∗ → 2e + A+ (3.2.9)
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where A, A∗ mean an atom in the ground and resonantly excited states. According
to the first equation, the temperature of excitation and the electron temperature are
identical T∗ = Te. The second and third equations mean an increase of the electron
number density. Let us restrict by the impact mechanism of broadening of spectral
lines, so the absorption coefficient at the center of the spectral line is equal (ignoring
the induced radiation)

ko = λ2

2πτν/N
, (3.2.10)

whereλ = 2πc/ω is the radiationwavelength. According to this formula, the absorp-
tion coefficient ko at the center of a spectral line does not depend both on the num-
ber density of irradiating atoms, and on their mass. Next, the specific width of the
spectral line ν/N is determined by collision of atoms in the ground and resonantly
excited states, so that it is proportional to the square of the matrix element of the
dipole moment d2 between states of the radiative transition, similar to the rate of the
radiative transition 1/τ . Therefore, the absorption coefficient ko does not depend on
this value. Correspondingly, the absorption coefficient of photons kω at spectral line
wings according to formula (3.1.18) is given by

kω = ko
ν2

4(ω − ωo)2
(3.2.11)

Considering transport of resonant radiation in a gas, where the photon mean free
path at the line center λo = 1/ko is small compared to a system size, we have that
the character of this process differs from that for transport of particles in a dense
gas which has the diffusion character. In the case of diffusion particle transport of
a particle displacement in one transfer act takes place for a distance of the order
of the particle mean free path in a gas, which is small compared to a system size.
Propagation of resonant radiation in a gas occurs in other manner and is described
by the Biberman-Holstein equation [7, 10, 11]. As it follows from this equation, the
displacement of a resonant photon for long distances in the gas does not occur as
a result of many reabsorptions near the spectral line center, but it proceeds due to
radiation at a spectral line wing, and the probability of such an event is small. It is
convenient to use the Veklenko concept [8, 9] for the analysis of resonant radiation
propagation in a gas, where the subject of consideration is an individual excitation,
rather than a resonant photon. Correspondingly, the lifetime of the excited state
τef, i.e., the time of the location of excitation inside the volume gas, is estimated as
τef ∼ τ/P∗, where τ is the radiative lifetime of an isolated atom, P∗ is the probability
of emission of a photon at a frequency ω∗, for which the mean free path of a photon
is comparable to a size of the system L , that is, k(ω∗)L ∼ 1. Since koL � 1, we
have P∗ ∼ ν/|ω∗ − ωo|, and the effective lifetime of excitation residence inside a
gas volume is estimated as

τef ∼ τ
√
koL, koL � 1 (3.2.12)
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In particular, if this gas is located inside a cylindrical discharge tube of a radius
R, then at the uniform gas distribution the residence time of an excitation inside the
tube volume is equal to [6]

τef = 2.6τ
√
koR (3.2.13)

Summarizing the above analysis, one can find the following character of creation
of the photoresonant plasma at high intensities of resonant radiation [63, 64]. On the
first stage of this process, atoms are excited in a narrow space region of micron sizes
∼ 1/ko, i.e. radiation acts on a small region that causes large specific powers injected
in the gas. When the number density of atoms in the ground and resonantly excited
states become comparable, the gas is cleared with respect to absorption of resonant
radiation, so that radiation penetrates in more deep regions. As the excitation wave
propagates inside the gas, the number density of electrons increases. Thus creation
of photoresonant plasma proceeds in the form of an ionization wave, and in the case
of a pulse resonant radiation, a photoresonant plasma is formed in a restricted space
region of the gas.
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Chapter 4
Radiative Processes in Molecular Gases

Abstract Selection rules are analyzed for vibration-rotation radiative transitions.
Within the framework of the harmonic model for atomic oscillations the selection
rule corresponds to a change of the vibrational number by one in radiative transitions,
whereas rotational number may be conserved or be changed by one in vibrational-
rotational transitions. The expression is presented for the absorption coefficient as a
result of radiative vibrational-rotational transitions in diatomic molecules, as well as
the expression for the spectral line intensity. The absorption coefficient is obtained
for radiative vibrational-rotational transitions in atmospheres of the Earth and Venus
due to atmospheric carbon dioxide molecules.

4.1 Selection Rules for Radiation of Molecular Gases

4.1.1 Selection Rules for One-Photon Transitions Between
Vibrational States in Molecules

Molecules consistingof bound atoms are the simplest atomic systems; their properties
are determined by interaction between atoms. Large difference in masses of nuclei
and electrons gives the possibility to split the problem of calculation of molecular
energy levels in two parts. First we determine a surface of potential energy, i.e.,
energy levels at fixed positions of nuclei and obtain molecular energy with infinitely
heavy nuclei which depend on the nuclear configuration. In the case of diatomic
molecules the potential energy surface is the electron term (potential curve), where
the molecular electron energy depends on a distance between nuclei. Analogously
to infinite numbers of atomic electron levels, the infinite number of electron terms
relates to each molecule. As an example of electron terms for low excited states of
the NH molecule are shown in Fig. 4.1.

The other part of the molecular energy levels results from nuclear motion within
a given electron term. We consider atomic nuclei as particles which interact with
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100 4 Radiative Processes in Molecular Gases

Fig. 4.1 Electron terms of
the molecule NH resulted
from interaction of hydrogen
and nitrogen atoms. At large
separation these electron
terms correspond to isolated
nitrogen atom which is found
in various electron states,
and the hydrogen atom in the
ground state [1]

each other by means of some interaction potential U (R), where R describes the
sum of nuclear coordinates. Below we consider only the motion of nuclei with re-
spect to their center of inertia which can be connected with radiative transitions.
This motion within the framework of each potential well of a diatomic molecule
consists of the vibrational and rotational degrees of freedom. Emission and absorp-
tion of molecules in the infrared spectrum range are determined by large number
of vibrational-rotational transitions, and the molecule spectrum consists of a large
number of broadened spectral lines due to these transitions. We below are restricted
by diatomic and triatomic molecules where three atoms are located in the same line.
Then under thermodynamic equilibrium the number density of molecules Nv,J in a
given vibrational-rotational state is equal

Nv,J = No
B

T
exp

(
−�vωo

T

)
exp

[
− BJ (J + 1)

T

]
, (4.1.1)

this thermodynamic equilibrium in a gas is supported by collisions involving these
molecules. Here No is the molecular number density in the ground vibrational and
rotational states, �ωo is the excitation energy of the vibrational level, v is the quantum
number of this level, J is the rotational quantum number, B = �

2/2μ · r2o is the
rotational constant (μ is the reduced mass of nuclei, ro is the distance between
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nuclei), T is the gas temperature expressed in the energy units. Usually B � T , and
below we assume this relation to be fulfilled.

Let us consider the character of interaction in diatomicmolecules and its influence
on radiative transitions in molecules. Evidently, the interaction potentialU (r) in the
molecule depends on a distance between nuclei r . Excluding the angle dependence
of the wave function of nuclei, one can reduce the problem of the nuclear motion
to their one-dimensional motion in the standard method by addition the centrifugal
potential and introduce in this manner the effective interaction potential as

Ûeff(r) = U (r) + �
2

2μr2
K̂ 2

Here μ is the reduced mass of the molecule, K̂ = Ĵ − L̂ is the nuclear rotational
momentum, so that Ĵ is the total molecular angular momentum, L̂ is the electron
orbital momentum. One can average the effective interaction potential Ûeff(r) in
the adiabatic approximation over the electron state at a fixed value of r . Thus, the
effective interaction potential takes the form

Ueff(r) = U (r) + �
2

2μr2
K (K + 1)

The nuclear motion within one electron term may be described as small oscilla-
tionswith respect to the equilibriumnuclear position. In the lowest order of expansion
we have

Ueff(r) = U (r) + �
2

2I
K (K + 1) + μω2

o (r − r0)
2

2

Here ro is the equilibrium distance between nuclei, I = μr20 is the molecular moment
of inertia, ωo is the frequency of the classical oscillator, i.e.

ωo =
√
U" (ro)

μ

The last term in the expression for Ueff(r) presents the potential of one-dimensional
harmonic oscillator. Therefore molecular energy levels are of the form

EK ,v = E0 + �ω0

(
v + 1

2

)
+ �

2

2I
K (K + 1); v = 0, 1, 2, . . . ; K = 0, 1, 2, . . .

(4.1.2)
This gives the following estimation for the vibrational frequency

ω0 ∼ 1√
M

.
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Since μ � me, where me is the electron mass, typical vibrational energies are small
compared to a difference between the neighboring electron terms which are of the
order of an atomic unit.

Let us consider electron terms at fixed positions of nuclei and ignoring the molec-
ular rotation. Along with the projection � of the electron orbital momentum onto
the molecular axis and quantum number v of vibrational motion, it is necessary
to include into consideration the projection � of the total electron spin S onto the
molecular axis which values are � = −S,−S + 1, . . . ,+S. The projection of the
total rotational momentum of electrons on the molecular axis is � = � + � and
its values are � = � + S,� + S − 1, . . . , � − S. Thus, an electron level with the
quantum number � splits into 2S + 1 sublevels of the fine structure with various
values of �. Since the spin-orbital interaction potential is proportional to L̂ Ŝ, the

corresponding spin-orbital splitting can be presented as A(r)�, since the vector
〈
L̂

〉
is directed along the molecular axis. At a certain value� the electron energy is equal
toU (r) + A(r)�. Hence, the energy difference of neighboring levels is the same. It
should be noted that the above consideration is valid for molecules of light elements
where relativistic effects are negligibly small.

We nowcompare the rates of radiative transitions between vibrational and electron
molecular states. The difference of these rates is, on the one hand, due to difference
in transition energies. On the other hand, the matrix elements of the molecular dipole
moment are different. We have seen above that the ratio of photon energies for the
vibrational transition �ωo and the electron transition �ωe is equal to

�ωo

�ωe
∼

√
me

μ

The matrix element of the molecular dipole moment for the transition between two
neighboring vibrational states is estimated as

〈v |D| v − 1〉 = e

√
�v

2μωo

Hence, its ratio to the matrix element of the dipole moment De for the electron
transition is of the order 〈v |D| v − 1〉

De
=

√
v
me

M

ωe

ωo

It is seen that the rates of vibrational transitions are much less than the rates of
electron transitions.

One can prove that the matrix element of the dipole moment for radiation transi-
tions between vibrational states of a diatomic molecule consisting of two identical
atoms is equal to zero. We first determine the dipole moment of the molecule, con-
sidering the nuclei to be in fixed positions, and viewing these nuclei as sources of a
potential field. The molecule is symmetrical for reflection with respect to the plane
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which is perpendicular to the molecule axis and bisects it. In addition, the electron
density also has axial symmetry with respect to the molecular axis. Therefore the
electron density ρ is invariant with respect to inversion of all electrons. The dipole
moment is thus

D =
∫ ∑

i

eriρdr1dr2...drn = −
∫ ∑

i

eriρdr1dr2...drn = 0

for a fixed internuclear distance. Therefore, the matrix element of this operator be-
tween vibrational states is zero, and radiative vibrational transitions are absent in this
case.

This conclusion holds true also, if nuclei are of different isotopes because the
symmetry is determined by fields which results from interaction of these nuclei with
electrons. However, this statement is violated, if the molecular rotation influences
the electron state. Then the inversion symmetry of the electron wave function is lost
because two nuclei have different masses. But, even for identical nuclei of a diatomic
molecule this violation is not strict, because a very weak interaction of the nuclear
spins with the electrons disrupts the above symmetry of the electron wave function,
since two nuclear spins may have a different direction and then their influence on
the electron density is different. In this case interaction of electrons with the total
nuclear spin will lead to a weak mixing of electron states of opposite parity, so that
dipole transitions become possible.

Let us consider the selection rules for radiative vibrational transitions in diatomic
molecules which are determined by properties of the matrix element

〈
v

∣∣D̄∣∣ v′〉, where
v and v′ are vibrational quantum numbers, and D̄ is the dipole moment averaged over
that part of the electron configuration, that does not change as a result of the dipole
transition; the value D̄ is taken at a certain distance between nuclei and then it is
averaged. This corresponds to the adiabatic approximation, where the motion of
the nuclei proceeds slower than the electron motion. We use that the amplitude of
vibrations of nuclei is small compared to a distance between them, that allows us to
employ the expansion

D̄ = D̄0 +
∑
i

(
∂D̄
∂Qi

)
0

Qi + 1

2

∑
i,k

(
∂2D̄

∂Qi∂Qk

)
0

Qi Qk + · · · (4.1.3)

Here the Qi are normal coordinates of nuclei, and an index i enumerates the type
of vibrations. The quantity D̄0 describes the dipole moment of the molecule at the
equilibrium configuration of the nuclei. Derivatives of the normal coordinates are
also evaluated for the equilibrium configuration.

Within the framework of the harmonic oscillator model for nuclear vibrations, we
have that the matrix element of the normal coordinate Qi for the second term of the
right-hand side of relation (4.1.15) is nonzero only for transitions with a change of
the vibrational quantum number v by one. This matrix element is of the form
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〈v |Qi | v − 1〉 =
√

�v

2Miωi
,

Here Mi is the reduced mass of the molecule for a given type of vibrations, and ωi is
the frequency of this vibration for the mode i . As is seen from formula (4.1.15) for
the mean dipole moment, transitions with a change of vibrational quantum number
by two are possible owing to the third term on the right-hand side of relation (4.1.15).

We now compare the expressions for the radiative transition rates with a change
of vibrational quantum number by two to those with a change by one. The ratio of
the rates of these radiative transitions is given by

w (v → v − 2)

w (v → v − 1)
∼

∣∣∣∣∣
〈
v

∣∣D̄∣∣ v − 2
〉

〈
v

∣∣D̄∣∣ v − 1
〉
∣∣∣∣∣
2

∼

∼

∣∣∣∣∣∣∣∣

∑
i,k

(
∂2D̄

∂Qi∂Qk

)
0
〈v |Qi Qk | v − 2〉

∑
i

(
∂D̄
∂Qi

)
0
〈v |Qi | v − 1〉

∣∣∣∣∣∣∣∣

2

∼

∣∣∣∣∣∣∣∣

∑
i,k

(
∂2D̄

∂Qi∂Qk

)
0

√
�v(v−1)
Mi Mkωiωk

∑
i

(
∂D̄
∂Qi

)
0

√
�v
Miωi

∣∣∣∣∣∣∣∣

2

,

where we have used the rule of matrix multiplication

〈v |Qi Qk | v − 2〉 = 〈v |Qi | v − 1〉 〈v − 1 |Qk | v − 2〉

The oscillator frequency is given in atomic units, it is estimated as

ωi ∼ 1√
Mi

The derivation of the dipole moment is of the order of the atomic value. Hence, we
obtain the following estimation for the ratio of probabilities

w (v → v − 2)

w (v → v − 1)
∼ v

√
me

μ
(4.1.4)

Numerically, this ratio is of the order of 10−2–10−3. Thus, the most probable radia-
tive transitions between vibrational states take place with change of the vibrational
quantum number by one. Transitions with change of the vibrational quantum number
by two are relatively weak if the vibrational quantum number v is not too large. The
ratio of the rates (4.1.16) becomes of the order of one if the quantum number v is of
the order of

v ∼
√

μ

me
� 1
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If this criterion holds true, the vibrational energy is of the order of the electron
energy, �vωi ∼ εe which would imply that the harmonic oscillator approximation is
not valid. Consequently, the above analysis is not suitable for this case.

Transitions with v → v − 2 also take place in the first-order term in the expansion
of the dipole moment D̄, if we take into account the anharmonicity of the nuclear
oscillations. To estimate this effect, we introduce the anharmonic term αQ3 into the
Hamiltonian, describing vibrations. The value of α is of the order of an atomic value.
For simplicity, we shall consider only one type of vibrations with the frequency ωo,
so we below omit the indexes i and k. In the first-order perturbation theory, the
correction to the harmonic wave function ψ(0)

v−2 of the state with the quantum number
v − 2 is of the form

ψ(1)
v−2 = α

∑
v′

〈
v′ ∣∣Q3

∣∣ ν − 2
〉

ε(0)
v−2 − ε(0)

v′
.

Wenowextract the termwith v′ = v − 1 (other termswith v′ = v + 1, v − 3, v − 5
have the same estimate). Then we find that the matrix element

〈
v′ ∣∣Q3

∣∣ v − 2
〉
is of

the order of

〈
v′ ∣∣Q3

∣∣ v − 2
〉 ∼ [〈v − 1 |Q| v − 2〉]3 ∼

(
�v

Mωo

)3/2

and

〈
ψ(0)

v |Q|ψ(1)
v−2

〉
∼ α

〈
ψ(0)

v |Q| ψ(0)
v−1

〉 〈
v − 1

∣∣Q3
∣∣ v − 2

〉
ε(0)
v−2 − ε(0)

v−1

∼ α

�ωo

(
�v

Mωo

)2

Let us estimate the ratio of the radiative transition rates

w (v → v − 2)

w (v → v − 1)
∼

∣∣∣∣ 〈v |Q| v − 2〉
〈v |Q| v − 1〉

∣∣∣∣
2

∼ α2

(�ωo)
2

(
�v

μωo

)4 μω0

�v
∼ v3

μ3ω5
o

∼ v3
√
me

μ

This ratio becomes of the order of one, if the vibrational quantum numbers v ∼
(μ/me)

1/6. Then the vibrational energy is of the order of

v�ωo ∼
(
me

μ

)1/3

εe � εe

It is small compared to a typical electron energy εe. As is seen, the correction to the
rate of the transition v → v − 2 due to anharmonicity of nuclear vibrations is larger
than that due to the dependence of the mean dipole moment on a distance between
nuclei at high vibrational quantum numbers. However, both corrections are of the
same order of magnitude for small vibrational numbers v.

It is seen, that the rates for transitions with v → v − 2 and v → v − 1 become of
the same order of magnitude if the correction to the wave function
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Fig. 4.2 Parameters of
radiative vibrational
transitions for the CO
molecule [2]. Here Ev is the
excitation energy of the
vibration level with the
vibration number v, A is the
Einstein coefficient for
transition between indicated
levels, λ is the wavelength
for this transition

ψ(1)
v−2 ∼ v3/2

(
me

μ

)1/4

ψ(0)
v−1; v ∼

(
μ

me

)1/6

due to anharmonicity is comparable to the unperturbed harmonic wave function
ψ(0)

v−1. The harmonic approximation is inapplicable under such circumstances, and
these quantum numbers v are indeed absent even though the corresponding energies
are still small compared to the typical electron energies εe. From the above analysis
one can conclude that the vibrational number v is a “good” quantumnumber, themost
effective radiative transitions take place with the change of v by one. But with growth
of the vibrational quantum number transitions v → v ± 2 become remarkable. This
is shown in Fig. 4.2, where the rates of radiative transitions (Einstein coefficients) are
given for radiative transitions of the CO molecule with the change of the vibrational
quantum number both by one and by two. The results of Fig. 4.2 confirm the above
conclusion that the two-photon radiative transitions between vibrational states of a
diatomic molecule are weaker than the single-photon ones; however, their role rises
as the vibrational quantum number increases.
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4.1.2 Selection Rules for Transitions Between Rotational
States of Diatomic Molecules

Wenowanalyze radiative transitions between rotational states of a diatomicmolecule
and determine the selection rules. For the sake of simplicity, we consider first only
the electron terms for which the total molecular spin is zero. We denote by J the
total angular momentum of the molecule in the initial state. It is composed of the
orbital electron momentum and the rotational angular momentum of the nuclei. The
projection of the total angular momentum on a fixed axis is denoted byM . The orbital
momentum � conserves its projection onto the molecular axis at the transition due
to the axial symmetry of the molecule. Since the rotational angular momentum is
perpendicular to the molecular axis, then the quantity � also presents the projection
of the total angular momentum of the molecule onto its axis. Analogous quantities
for the final state of the molecule are marked by a prime.

Let us consider the transition JM → J ′M ′ between rotational states of the
molecule for a given electron state, that is, for fixed quantum number �. The prob-
lem is reduced to calculation of the matrix element for the dipole moment operator.
The matrix element of the component Dq (where q is a spherical component) of the
dipole moment vector in the rest system can be expressed via the analogous matrix
element in the rotating coordinate system in which the z axis is along the direction
of the molecular axis

〈
J ′M ′�

∣∣Dq

∣∣ JM�
〉 =

√
2J ′ + 1

2J + 1

〈
J ′1, M ′q|JM 〉 〈

J ′1,�0|J�
〉 〈� |Dz| �〉

(4.1.5)
The index q takes the values 0,±1. Is is clear that the matrix element of the dipole
moment operator does not depend on the rotational quantum numbers in the frame of
reference associated with the molecular axis; it is determined only by the electronic
state of the molecule. Thus, this matrix element is diagonal with respect to rotational
transition; it is equal to the mean dipole moment of the molecule, D̄ = 〈� |Dz| �〉.
The selection rules for dipole rotational transitions follow from the properties of the
Clebsch-Gordan coefficients contained in the (4.1.5) as

J − J ′ = ±1; M − M ′ = q = 0,±1 (4.1.6)

Since the energies εJ of the rotational states are determined by formula εJ =
BJ (J + 1), then the spontaneous transition from the state with angular momentum
J to the lower state is possible onlywith J ′ = J − 1. On the basis of formula (1.2.18)
for the rate of radiative processes, we obtain

w
(
J → J ′ = J − 1

) = 4ω3
J J ′ D̄2

3�c3
〈J − 1, 1; �0|J,�〉2

∑
M ′,q

〈
J − 1, 1; M ′, q|J, M 〉2

(4.1.7)
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This expression is averaged over polarizations of emitted photons and integrated over
the angle of emission. When we carry out the sum in (4.1.7) and use explicit values
of the Clebsch-Gordan coefficients, we find the spontaneous transition rate

w (J → J − 1) = 32B3 D̄2

3�c3
J 2

(
J 2 − �2

)
2J + 1

; B = �
2

2μr2o
(4.1.8)

This result relates to the transition at which the vibrational and electronic states of
the molecule do not change.

If the spin of themolecule is nonzero, the results must bemodified somewhat. One
can consider two limiting cases. If the spin interaction with the molecular axis due
to spin of electrons of both atoms is large compared to the difference of neighboring
rotational levels, the molecule rotation does not destroy spin coupling, and the pro-
jection of the total spin onto the molecular axis � is conserved. Then the projection
of the total angular momentum onto the molecular axis is� = � + �. In this case it
is necessary to replace� by� in formula (4.1.8). In the opposite limiting case, where
the spin interaction with the molecular axis is small compared to the difference of
rotational energies for neighboring states, rotation destroys the spin-axis coupling.
Then one can introduce the conserved orbital and rotational quantum numbers. The
total angular momentum J = K + S is also conserved, where S is the spin vector
of the molecule, and K is the rotational momentum. Each rotational level splits into
a multiplet with 2S + 1 components, which have angular momenta ranging from
J = K − S to J = K + S. If we do not specify the component of the multiplet, then
the total rotational transition rate is obtained from (4.1.8) by replacing J with K .
However, for relative probabilities involving individual lines of themultiplet, thenwe
obtain expressions by analogy with those in the case of radiative transitions between
components of fine structure. Namely, in this case the angular momentaK and S are
coupled by analogy to the summation of momenta L and S in the fine structure of
light atoms. In this case there is no coupling of the angular momenta K and S with
the molecular axis.

Let us compare the rates of radiative transitions between rotational and electronic
molecular states. It follows from formula (4.1.8) for J � 1 that

wrot

we
∼ J 3

(me

M

)3 � 1 (4.1.9)

From this one can conclude that the rate of rotational transitions is small compared
to that of electron ones. One can compare this with the above ratio of the rates of
vibrational and electronic transitions that is given by

wvib

we
∼ v

(
me

μ

)2

� 1 (4.1.10)
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Here v is the vibrational quantum number. It follows from comparison of formulas
(4.1.9) and (4.1.10) that the rate of rotational transitions is less also than that of the
vibrational transitions.

Let us discuss the selection rules for rotational quantum numbers in vibrational-
rotational transitions with a change of the vibrational quantum number. This problem
is a generalization of the previous one, where the rotational transition rate takes
place without a change of the vibrational state. In that case, the matrix element of
the projection of the dipole moment onto the molecular axis was equal to the mean
dipole moment of the molecule at the distance r = ro between the nuclei, where ro is
the equilibrium distance. This matrix element is zero for transitions associated with
a change in vibrational state as a consequence of the orthogonality of vibrational
wave functions. Therefore now we present the next term of expansion of the dipole
moment averaged over an electron state over a small differences Q = r − r0. The
term proportional to Q leads to matrix elements arising from the linear harmonic
oscillator coordinate that is nonzero for transitions between neighboring vibrational
states only. Thus, the selection rule v′ − v = ±1 is valid for the vibrational quantum
number v.

Considering the radiative vibrational-rotational transitions, we now concentrate
on the change of the rotational state. For a diatomic molecule, the dipole moment
operator of the molecule is directed along its axis with the unit vector n in this
direction. The matrix element of the dipole moment is proportional to the quantity〈
JM

∣∣nq ∣∣ J ′M ′〉, where the component nq is connected with the vector n in the same
manner, as Dq relates to D. Correspondingly, the rate of this spontaneous transition
with a given change of quantum numbers is proportional to the square of this matrix
element, i.e.,

w
(
v, J, M → v′, J ′, M ′) ∼ ∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 ,

where v, J, M are the vibrational quantum number, the total angular momentum of
the linear molecule, and its projection onto a fixed axis in a space respectively. The
primed quantities v′, J ′, M ′ are the same quantum numbers for the final molecular
state.

The total transition rate into all rotational states is an inverse lifetime of this state,
or

1

τ
=

∑
J ′,M ′,q

w
(
v, J, M → v′, J ′, M ′)

On the basis of the normalization condition

∑
J ′,M ′,q

∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 =
∑
q

〈
JM

∣∣n2q ∣∣ JM 〉 = 1,

one can obtain from the last two expressions

w
(
v, J, M → v′, J ′, M ′) = 1

τ

∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 ; q = M ′ − M
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Table 4.1 The probability �JM
(
J ′, M ′) for molecular vibrational-rotational transitions

J ′ = J − 1 J ′ = J + 1

M ′ = M − 1 (J+M)(J+M−1)
2(2J−1)(2J+1)

(J−M+1)(J−M+2)
2(2J+1)(2J+3)

M ′ = M J 2−M2

(2J−1)(2J+1)
(J+1)2−M2

(2J+1)(2J+3)

M ′ = M + 1 (J−M)(J−M−1)
2(2J−1)(2J+1)

(J+M+1)(J+M+2)
2(2J+1)(2J+3)

We now calculate the matrix element from the projection of the unit vector nq .
Using the Clebsch-Gordan coefficients, one can obtain

�JM
(
J ′M ′) = ∣∣〈JM ∣∣nq ∣∣ J ′M ′〉∣∣2 = 2J ′ + 1

2J + 1

〈
J ′1, M ′q|JM 〉2 〈

J ′1, 00|J0〉2 ,

(4.1.11)
where q is equal to 0,−1,+1. The second factor in expression (4.1.11) is nonzero
only if J ′ = J ± 1. Therefore the only transition is possible with a change of the
rotational quantum number by one. Values of the function �JM

(
J ′M ′) for various

values of J ′ and M ′ are given in Table 4.1.
The function �JM

(
J ′M ′) is satisfied the following sum rules

∑
M ′

�JM
(
J − 1, M ′) = J

2J + 1
;

∑
M ′

�JM
(
J + 1, M ′) = J + 1

2J + 1

From this we also have ∑
J ′M ′

�JM
(
J ′, M ′) = 1

One can obtain from formula (4.1.11) the average rates of the radiative spon-
taneous transitions v → v − 1 over projections M ′ of the molecular angular mo-
mentum. These rates for spontaneous emission for transitions with an increase and
decrease by one of the rotational quantum number J are equal

w (v, J → v − 1, J + 1) = J + 1

2J + 1

1

τ
, w (v, J → v − 1, J − 1) = J

2J + 1

1

τ
,

(4.1.12)

where τ is the lifetime of the initial state due to the spontaneous radiative decay.
These expressions describe spontaneous emission of photons of any polarization.
Since the rate for emission of a photon with a given polarization does not depend on
the direction of its polarization because of an average over projections of the total
angular momentum, the rate of this process for a certain polarization is one half of
the total rate.

We also consider selection rules for rotational states of triatomic linear molecules.
If the oscillation takes place only in the molecular axis direction, the selection rules
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Table 4.2 Values of Clebsch-Gordan coefficient C J ′m′
J,m−μ;1μ for addition of momenta and their

projections J,m′ and 1,μ into the momentum J ′m′

Branch J ′ μ = −1 μ = 0 μ = +1

P J − 1
√

(J−m′)(J−m′+1)
2(J+1)(2J+1)

√
(J−m′+1)(J+m′+1)

(J+1)(2J+1)

√
( j+m′)( j+m′+1)
2( j+1)(2 j+1)

Q J
√

(J−m′)(J+m′+1)
2J (J+1)

m′√
J (J+1)

−
√

(J+m′)(J−m′+1)
2J (2J+1)

R J + 1
√

(J+m′)(J+m′+1)
2J (2J+1) −

√
(J−m′)(J+m′)

J (2J+1)

√
(J−m′)(J−m′+1)

2J (2J+1)

for a triatomic molecule are identical to those of a diatomic molecule. We denote
below a vibrational quantum number by v and a rotational momentum by j . Our
goal is to determine the rate of radiative transition w(v, j −→ v′, j ′). Modeling
vibrations in the CO2 molecule by a harmonic oscillator, we obtain the selection rule
for vibrational radiative transitions v −→ v ± 1 for linear molecules including the
CO2 molecule. Because of a large time of radiative transitions inmolecules compared
with collision ones in atmospheric air, the number density of molecules N j in a given
rotational state J is determined by the Boltzmann formula

N j = No(2J + 1)
B

T
exp

[
− BJ (J + 1)

T

]
, (4.1.13)

where No is the total number density of molecules for this vibrational state, T is the
gas temperature expressed in energetic units, B is the rotational constant, BJ (J + 1)
is the excitation energy for this rotational state, and the normalized constant is taken
from the condition B � T .

Being guided by the dipole character of radiation, where the rate of a radiative
transition is proportional to the square of the matrix element of the dipole moment
operator between transition states, one can obtain the following expression for the
rate of a vibrational-rotational transition

w(v, J −→ v′, J ′) = 1

τvv′
· |〈JM |n|J ′M ′〉|2 = W (J ′M ′)

τvv′
(4.1.14)

Here τvv′ is the radiative time for transition between indicated vibrational states, n
is the unit vector directed along a molecular vibrations, J, M; J ′, M ′ are rotational
momenta and their projections onto a given axis for the initial and final transition
states correspondingly. This matrix element in formula (4.1.14) results from sum-
mation of the initial momentum and unit photon momentum into the momentum of
a final state [3–5] and is expressed through the Clebsch-Gordan coefficient. Values
of Clebsch-Gordan coefficients which are responsible for a radiative transition are
given in Table 4.2 [6].

Values of the Clebsch-Gordan coefficients leads to the selection rules for radiative
rotational transitions, and according to them the following transitions are possible
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Table 4.3 Probabilities of radiative vibrational-rotational transitions in a given rotational state

Branch Transition energy W⊥ W‖
P (J ′ = J − 1) �ωo + 2B(J + 1) (J+1)(J+2)+m2

2(J+1)(2J+1)
2J+3

3(2J+1)

Q (J ′ = J ) �ωo
J (J+1)−m2

2J (J+1)
1
3

R (J ′ = J + 1) �ωo − 2BJ J (J−1)+m2

2J (2J+1)
2J−1

3(2J+1)

�ε = �ωo − 2BJ, J ′ = J − 1 −→ P-band,

�ε = �ωo, J
′ = J −→ Q-band,

�ε = �ωo − 2B(J + 1), J ′ = J + 1 −→ R-band, (4.1.15)

The probability of a given final rotational state depends on relative directions of
vibrational and rotational axes. These probabilities for their identical directions W‖
and their perpendicular directionsW⊥ are given in Table 4.3 depending on rotational
quantum numbers Jm.

Note that for an antisymmetric vibrational state, aswell as for a diatomicmolecule,
the probability of a givenfinal rotational state isW‖,whereas for torsionvibrations it is
equal to (W‖ + W⊥)/2. Averaging these probabilities over the momentum projection
m onto a rotational axis which varies from 0 to J , we use that the average square of
the momentum projection is equal

m2 = J (J + 1)

3
(4.1.16)

This averaging leads to the following expression for each band

WP = 2J + 3

3(2J + 1)
, WQ = 1

3
, WR = 2J − 1

3(2J + 1)
(4.1.17)

where indices indicate a branch. In the limit of large j these probabilities become
identical and are equal to 1/3. Being guided by large rotational momenta j , we be-
low take the probability of each branch to be 1/3. Thus, the analysis of spectroscopic
properties of CO2 molecule allows us to select vibrational-rotational radiative tran-
sitions in linear molecules which compose the molecular spectrum and determine
the rates of these transitions.

4.1.3 Radiative Properties of CO2 Molecule

In continuation of the analysis of molecular radiative properties, we consider below
the carbon dioxide molecule from this standpoint. The study of radiative properties
of the carbon dioxide molecule is of importance twofold. On the one hand, this is
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a symmetric linear molecule; therefore it is a simple example for demonstration of
the general positions in radiation of molecular gases. On the other hand, carbon
dioxide is of importance for the greenhouse phenomenon in atmosphere of the Earth
and Venus. Therefore, radiative parameters of CO2 molecules are required for the
analysis of these phenomena. In consideration vibrational-rotational transitions of
CO2 molecules, we use the Born-Oppenheimer approximation [7] which account
for a fast reaction of an electron subsystem to displacements of nuclei. As a result,
molecular oscillations take place in a potential field which is formed by electrons at
a given configuration of nuclei [8, 9].

Being guided by lower excitations which are associated with vibrational and
rotational degrees of freedom for this molecule, we are restricted by the ground
electron state with zero spin. Then the distribution of the electron number density
is characterized by the axial symmetry, i.e. the electron state of this molecule is
conserved as a result of turn around themolecular axis at any angle. Correspondingly,
the electron state is conserved at electron reflection with respect of any plane which
passes through the molecular axis.

Restricting by nuclear positions near theminimum of the potential energy surface,
one can reduce the nuclear motion to their vibrations as harmonic oscillations. In the
case of triatomic molecules, where three atoms are located in one line, there are 9
degrees of freedom which include three translation ones, two rotational ones for the
molecule axis and four vibrational degrees of freedom. Four types of oscillations for
CO2 molecules which include the symmetric oscillation, where a distance between
each oxygen atom and a central carbon atom are kept identical during this vibration,
and the antisymmetric oscillation, where the distance between oxygen atoms is not
changed in these oscillations along the molecular axis. In the course of the torsion
oscillation (or the deformation vibration) the carbon atom moves perpendicular to
the molecular axis, and because of two directions perpendicular to the molecular
axis, two torsion oscillations are realized. Because the dipole moment operator is
antisymmetric for molecular reflection with respect to the plane, which is perpen-
dicular to the molecular axis and passes through the carbon nucleus, the radiative
transitions involving vibrational states do not include symmetric oscillations. Only
a change in antisymmetric and torsion vibrational states can lead to radiative dipole
transitions.

Let the molecular axis be directed along the axis z, so that torsion oscillations
occur in directions x and y. In particular, in the case of excitation of the lower
torsion vibration one can compose two vibrations such that thewave function of eigen
oscillation are proportional to exp(iϕ) and exp(−iϕ),whereϕ is the angle in the plane
xy with respect to the axis x . In this interpretation we present torsion vibrations and
rotations in the plane xy. In the case of the inversion transformation x ↔ −x, y ↔
−y, z ↔ −z the torsion states are separated in even and odd substates in accordance
with the property of the eigenfunction to conserve or change its sign. Namely, the
torsion vibrations are evenwith respect to the inversion transformation are odd for the
odd number of torsion vibrational quanta, and they are even, if a number of torsion
excitations for this state is even.
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Note that the abundance of the isotope 12C in nature is 98.9%, and the abundance
of the isotope 16O is 99.76%. The nuclear spin of each of these isotopes is zero,
so that practically all the CO2 molecules in nature contain nuclei with zero spin.
This leads to the symmetry for molecular reflection with respect to the plane which
is perpendicular to the molecular axis and passes through the carbon atom. This
operation is analogous to exchange by oxygenmolecules which are identical because
of zero nuclear spin; in addition it corresponds to reflection of the carbon atom with
respect to the symmetry plane. Since the nuclear spin of the carbon atom is zero, and
its electron state is conserved at this operation, we obtain the total conservation of
the state of the 12C16O2 as a result of the above reflection.

Since the electron, vibrational and rotational degrees of freedom are separated,
the total wave function of this molecule is the product of the electron, vibrational
and rotational wave functions. Because of the symmetry of the electron state of this
molecule both for inversion and reflection with respect to the symmetry plane, the
vibrational and rotational statesmust have a certain symmetry. Because the rotational
wave function for the state with the rotation momentum J of the molecule changes
as (−1)J as a result of inversion [4], this gives the rotational states which can be
realized for a given vibrational state. Indeed, the wave functions of symmetric and
antisymmetric oscillations along the molecular axis are not changed as a result of
the inversion operation, whereas due to torsion oscillations, the vibrational wave
function is conserved for an even number of torsion quantum number and changes
its sign for odd values of the torsion quantum number.

Thus, we obtain that in the case of the even value of the torsion quantum number,
only rotational states with even values of the rotational momenta J exist, while in the
case of an odd torsion quantum number, there are rotational states with odd J only
realized. The CO2 molecule is symmetric for reflection with respect to the symmetry
plane, and its rotational states are separated into the even and odd states. These states
are connected with the rotational momentum. Namely, the wave functions of states
with even rotational numbers are conserved at the indicated operation, but the wave
functions of rotational states with odd values of rotational numbers change a sign at
this operation [4].

Figure4.3 contains the spectrum for radiative vibrational-rotational transitions of
the CO2 molecule. This information is taken from the HITRAN data bank, relates to
the temperature T = 296 K, and includes radiative transitions from the states with
the rotational number J = 16 for even vibrational states and J = 17 for odd ones.
The distribution function of CO2 molecules over rotational states has the maximum
at these rotational numbers for the used gas temperature T = 296 K. Three atoms of
the CO2 molecule lie on a line, and three types of oscillations are as follows: ν1 is the
symmetric oscillation, ν2 is the torsion one, and ν3 is the antisymmetric oscillation.
We are restricted ourselves by lower vibrational states which give a remarkable
contribution to the absorption coefficient due to vibrational-rotational transitions
of the CO2 molecule. Therefore such excited vibrational states are excluded from
Fig. 4.3.

Let us formulate the selection rules for the carbon dioxide molecule being guided
by those for diatomic molecules. For the strongest vibrational radiative transitions,
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Fig. 4.3 Absorption spectrumof the carbon dioxidemolecule and its radiative parameters according
to HITRAN data bank [10, 11]. The energies of radiative transitions are expressed in cm−1 and are
given in green; letters P , Q and R correspond to P , Q and R-branches of the rotational transitions
correspondingly. Values of the Einstein coefficient are presented in red; they are expressed in s−1.
The initial rotational state for all the radiative transitions correspond to the rotational number J = 16,
if the initial state admits only even rotational momenta, and J = 17 for odd rotational momenta in
the initial state

the change of the vibrational quantum number is one as well as in the model of the
harmonic oscillator. Note that in the case under consideration we assume vibrational
excitation to be not strong, so that vibrational states of different types are separated,
i.e. the total vibrational wave function is a product of wave functions for vibrational
states of a different type. Evidently, if the torsion vibrational state is not changed
at the radiative transitions, the selective rule is the same, as in the case of diatomic
molecules. Other selection rules are in the case where the torsion vibration state is
changed.

We now analyze vibrational states with a lower excited state of the torsion exci-
tation. From two torsion states with oscillations in two perpendicular directions one
can combine two rotational states around the molecular axis, and formally one can
present the total molecular momentum as a sum of rotation of themolecular axis with
a momentum J and torsion rotation which momentum we take to be 1/2 because of
two rotational states. Correspondingly, the wave function � of total rotations can
be constructed from the wave function ψ of axial rotation, and wave function ϕ for
torsion rotation. Summarizing rotationmomenta, one can formally represent the total
wave functions of rotations as

�J+1/2 = 1√
2

(
ψJϕ1/2 + ψJ+1ϕ−1/2

)
, �J−1/2 = 1√

2

(
ψJϕ−1/2 + ψJ−1ϕ1/2

)
,

(4.1.18)
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It should be noted that J , as the rotational number of the initial state, is an even num-
ber, at which this state is stable. Correspondingly, at torsion excitation the states with
rotational numbers J + 1 and J − 1/2 are stable, whereas the state with rotational
number J is unstable, as it follows from the symmetry of the total wave function
if three atoms which are arrayed along a line [4]. If the carbon atom deviates from
the line, this symmetry requirement disappears. Hence, the wave function with the
rotational number J is zero only at the nuclear configuration if they form one line.
As a unstable state, this state decays subsequently, but it is present in the absorption
spectrum along with stable states.

We now determine the probabilities WP , WQ, WR for realization the P, Q and
R-branches of radiation in the case if the torsion vibrational state is changed at
this transition. Assuming that the states with total rotational numbers J + 1/2 and
J + 1/2 are formed with the equal probability, we find on the basis of the wave
functions (4.1.18) the probabilities of realization of P, Q and R branches are equal
correspondingly

WP = 1

4
, WQ = 1

2
, WR = 1

4
, (4.1.19)

and the relation between the Einstein coefficients A for these branches is as follows

AQ = 2AP = 2AR (4.1.20)

4.1.4 Spectroscopic Databases

Analyzing processes in molecular gases, we use parameters of radiative transitions
in molecular gases for the HITRAN data bank. Therefore we use partially notations
of this data bank for molecular gases. Along with this, other data banks exist where
information for various aspects of spectroscopy is given. We represent below a list
of such data banks along with the HITRAN one [11].

Millimeter and Submillimeter Molecular Spectroscopy Catalog, Jet Propulsion
Laboratory, USA

TheCologneDatabase forMolecular Spectroscopy (CDMS), Universität zuKöln,
Germany

GEISA SpectroscopicDatabase, Laboratoire deMetrorologieDynamique, France
PNNL Vapor Phase Infrared Spectral Library, Pacific Northwest National Labo-

ratory, USA
ExoMol, Molecular line lists for exoplanet and cool star atmospheres, University

College London, UK
Ames Molecular Spectroscopic Data For Astrophysical and Atmospheric Studies,

NASA Ames, USA
TheoReTs, Internet accessible information system “Theoretical Reims-Tomsk

Spectral data, University de Reims, France and Institute of Atmospheric Optics,
Russia
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Spectroscopy and Molecular Properties of Ozone. University de Reims, France
and Institute of Atmospheric Optics, Russia

NIST Wavenumber Calibration Tables from Heterodyne Frequency Measure-
ments, National Institute of Standards and Technology, USA NIST Atomic Spectra
Database, National Institute of Standards and Technology, USA

CHIANTI, An Atomic Database for Spectroscopic Diagnostics of Astrophysical
Plasmas, George Mason University (USA), University of Michigan (USA), Univer-
sity of Cambridge (UK).

4.2 Absorption of Infrared Radiation in Gas of Linear
Molecules

4.2.1 Infrared Radiation of Molecular Gas

We above have considered radiative transitions between discrete atom states, where
the spectrum of absorption or emission is characterized by separate spectral lines.
Each line can be splitted in a multiplet due to fine and superfine interactions inside an
atom or atomic ion, but the frequency width of eachmultiplet is relatively small. This
means that the spectrum of atoms or atomic ions consists of separate spectral lines
which can be splitted in a multiplet, but at frequencies between neighboring spectral
lines or multiplets it is zero. In the case of radiative transitions between electronic
states of molecules, vibrational and rotational spectra apply with the electron one. As
a result, an absorption line in the atomic case is transformed in an absorption band for
molecular particles with an oscillating spectrum structure as a frequency function.
Because of a high frequency width of an absorption band, neighboring bands may
be overlapped, so that the physical picture of radiation interaction with molecular
particles differs from that in the case of atoms and ions.

In order to consider the nature of vibrational-rotational transitions from the general
positions of molecular spectroscopy [12–16], we below analyze the character of
of absorption and emission of molecular gases. Moreover, we consider radiative
transitions without change of the electron state; first we are restricted ourself by one
vibrational transition. Next, for simplicity, we consider the case of linear molecules.
The absorption of a molecular gas corresponds to the infrared spectrum range, and
due to selection rules radiative transitions are accompanied by change of vibrational
v and rotational J quantum numbers in the following way v, J → v′, J ′ with v′ =
v ± 1, J ′ = J, J ± 1. Thus, according to selection rules Q-branch correspond to
the rotational transition J → J , P-branch refers to the transition J → J + 1, and
R-branch relates to the rotational transition J → J − 1. Note that in the case of a
diatomic molecule, where vibrations take place along the molecular axis, Q-branch
is absent for rotational transitions.

The energy of the rotational state of the molecule EJ is [4]
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EJ = BJ (J + 1), (4.2.1)

Here B = �
2/2μ is the rotational constant, and the energy of the rotational state is

equal �ωJ = �ωo − 2BJ for P-branch with the transition J → J + 1 it is equal
�ωJ = �ωo − 2BJ , and for R- branch with the transition J → J − 1, the energy
of the transition is �ωJ = �ωo + 2B(J + 1), where �ωo is the energy difference for
vibrational states of the transition.

We now consider radiative properties of a molecular gas where broadening of
spectral lines is determined by collisions with molecules of a buffer gas where radi-
ating molecules are located. Note the difference for broadening of spectral lines for
atoms and molecules. In the atomic case, the interaction potential of a radiating atom
in the upper state of transition with a buffer gas atom exceeds significantly that for
the lower transition state; therefore broadening of an atom spectral line for the impact
and quasistatic theory is determined by interaction in the upper transition state. In
the case of molecular radiation, parameters of interaction of a radiating molecule
and a buffer gas atom in the upper and lower states of the radiative transition are
nearby, i.e. the difference of interaction potentials for the upper and lower states of
the radiative transition is small.

Let us analyze this effect for molecules of CO2 in a parent gas approximating
the interaction potential of two CO2 molecules at large distances between them by
formula (2.1.41)U (R) = −C6/R6. Taking the difference of the interaction potentials
for the upper and lower states of the radiative vibration transition as �U (R) =
−�C6/R6, one can obtain instead of formula (2.1.43) for the width of the spectral
line

ν

Nb
= 7.2

(
2T

μ

)3/10 (
�C6

�

)2/5

(4.2.2)

Let us use the experimental value of the width of the spectral line for the vibrational
transition 001 → 000 at 667 cm−1 that is equal according to measurements ν =
0.16cm−1 [17–20]. Then formula (4.2.2) gives for the difference �C6 = 32e2a5o ,
whereas its value is C6 = 118e2a5o [1]. This shows the degree of the difference of
the interaction potentials for neighboring molecular vibrational states.

Onemore peculiarity of spectral lines due to vibrational transitions is their restrict-
ed width for the collision mechanism of broadening. Indeed, at wings of a spectral
line the distribution function aω according to formula (2.1.40) has the form

aω = ν

2π (ω − ωo)
2 (4.2.3)

The broadening is determined by collisions with buffer gas atoms or molecules, and
ωo is the frequency at the line center. In derivation of formula (2.1.40) for collision
broadening of the spectral line we assume a collision time to be zero, and then
the distribution function (4.2.3) is spreading up to infinite frequency. But according
to the nature of this effect, it is necessary to restrict frequencies in this formula
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Fig. 4.4 Parameters of the
Lennard-Jones interaction
potential for two molecules

by |ω − ωo| ∼ 1/τc, where τc is a duration time of the collision event. We below
estimate this time for collisions of a radiating CO2 molecule which is located in a
parent gas, approximating, for simplicity, the interaction potential of two molecules
of carbon dioxide by the Lennard-Jones interaction potential [21, 22]

U (R) = D

[
2

(
Re

R

)6

−
(
Re

R

)12
]

, (4.2.4)

Here D is the depth of the potential well for the interaction of two molecules, Re

is the equilibrium distance between molecules, which corresponds to a minimum
of the interaction potential, and its parameters are given in Fig. 4.4. Though the
spherically symmetric interaction potential is a crude approximation for interaction
of carbon dioxide molecules, but this allows us to describe simply the effect under
consideration. One can determine parameters of the interaction potential between
two CO2 molecules on the basis of the similarity law by comparison the interaction
parameters of carbon dioxide molecules and inert gas atoms. Indeed, the scaling law
for inert gases [23, 24] allows one to connect critical parameters of inert gases and
carbon dioxide, and also their parameters near the triple point with parameters of
the pair interaction potential inside these systems. In this manner, one can determine
parameters of the pair interaction potential of molecules in formula (4.2.4), which
in the case of carbon dioxide molecules gives D = (38 ± 7) meV and Re = 0.32
nm. As is seen, the accuracy of this operation is restricted. This comparison allows
us to determine the van der Waals interaction constant C6 = 2DR6

e ≈ 140e2a5o on
the basis of the above scaling law, using parameters of inert gases. This exceeds the
calculated value [1] by 20%.

One can define a typical collision time for twomolecules of carbon dioxide τc as a
time of approach of slowmolecules from the distance Re at the minimum interaction
potential of molecules to the distance ro = Re/21/6 that corresponds to the potential
wall for slow molecules at zero orbital angular momentum (see Fig. 4.3), which is
equal to
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1

τc
≡ �ω = 10

Re
·
√
2D

m
, (4.2.5)

where m is the mass of the carbon dioxide molecule. Hence we obtain the following
estimate for the wing width of the absorption band of carbon dioxide molecules in
carbon dioxide �ω ≈ 70 cm−1. This fact restricts the flux of IR radiation emitted by
carbon dioxide due to spectral line wings.

4.2.2 Vibrational-Rotational Radiative Transitions
for Diatomic Molecules

We now determine the absorption coefficient kω due to optically active diatomic
molecules under conditions of the thermodynamic equilibrium between vibrational
and rotational molecular states. According to the selection rule, the strongest transi-
tion for a diatomic molecule within the framework of the harmonic oscillator model
is v → v + 1 in the process of the photon absorption. Separating vibrational and
rotational states, one can obtain the number density of molecules in the lower state

Ni = CNv(2J + 1) exp

[
− BJ (J + 1)

T

]
,

Here the normalization coefficient C under the criterion B � T is equal C = B/T ,
and Nv is the number density of molecules in the lower vibrational state of the
radiation transition; it is described by vibrational and rotational states with quantum
numbers v J .We thus have for the absorption coefficient Nv = ∑

i Ni where Ni is the
number density of molecules in the lower transition state, and gi = 2J + 1 because
the radiative transition takes place from a rotational state with the quantum number
J . Under these conditions formula (2.2.28) gives for the absorption coefficient

kω = NvAi jg j exp

(
− Ei

T

)(πc

ω

)2
aω

B

T

[
1 − exp

(
−�ω

T

)]
, (4.2.6)

where g j = 2J ′ + 1 is the statistical weight for the final state j with the rotational
quantum number J ′, Ei = BJ (J + 1) is the rotational energy of the initial state i .

In order to reduce this expression to parameters of the HITRAN data bank which
data are used below, we introduce the spectral line intensity as

Si j =
∫

σωdν =
∫

kω

Nv

dω

2πc
, (4.2.7)

where the cross section of absorption is introduced as σω ≡ σi j = kω/Nv , and the
value ν is the reciprocal wavelength of radiation ν = 1/λ = ω/(2πc). Using the
normalization condition (2.1.1), one can obtain
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S(ω) = Ai jg j
B

T
exp

(
− Ei

T

) ( πc

2ω2

) [
1 − exp

(
−�ω

T

)]
(4.2.8)

The spectral line intensity is a convenient characteristic of vibrational-rotational tran-
sitions because this value does not depend on broadening of corresponding spectral
lines.

It is necessary to compare this expression with that [25] given by the HITRAN
data bank. Taking into account that the value Si j has the dimensionality of length
and accepting the spectroscopy unit cm−1 and thermal unit K as the energy units,
one can present the spectral line unit of the HITRAN data bank [25] in the form

Si j = Ia
Io

Ai j

8πcν2
i j

gi

Q(T )
exp

(
− Ei

T

) [
1 − exp

(
−�ω

T

)]
(4.2.9)

In rewriting the HITRAN expression for the spectral line intensity, we accept that
the units cm−1 and K to be the energy units. Next, the inertia moment is Ia =
μr2o = �

2/(2B) (μ is the reduced mass of nuclei, ro is the equilibrium distance
between them), the atomic value of this dimensionality is Io = mea2o (ao is the Bohr
radius), the reciprocalwavelength for this radiative transition ν j i is expressed through
the frequency ω as ν j i = ω/2πc; in addition, we consider the frequency ω as a
continuous variable. Next, Ei = BJ (J + 1) is the rotational energy, and Q(T ) =∑

k gk exp(−Ek/T ) is the partition function. Being guided by real conditions, where
T � B, and only the lower vibrational state gives the contribution to the partition
function, we replace the sum by integral and obtain Q(T ) = T/B. Then formulas
(4.2.8) and (4.2.9) coincide with each other. Below, considering the frequency ω as
a continuous variable and being guided by large J , we have

g j = 2J + 1 = �(ω − ωo)

B

This allows us to rewrite formula (4.2.8) in the form

S(ω) = Ai j
λ2

8πc

�|ω − ωo|
T

exp

(
−�

2|ω − ωo|2
4BT

) [
1 − exp

(
−�ω

T

)]
, (4.2.10)

where λ = 2πc/ω is the radiation wavelength, �ωo is the energy difference be-
tween energies of vibrational states of this transition. This expression relates both
to P−branch and R−branch. We use this expression below in determination of the
spectral line intensity.

Note that we consider above the frequency ω as a continuous variable. Then the
spectral line intensity has the maximum at �ωmax = 2

√
BT , and the maximum value

of this quantity is equal
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Smax = A(Jmax)
λ2
m

8πc
√
e

√
2B

T

[
1 − exp

(
−�ω

T

)]
, (4.2.11)

where Jmax is the rotational momentum, λm is the radiation wavelength. Correspond-
ingly, one can express the spectral line intensity S(ω) through its maximum value
Smax as

S(ω) = √
2eSmax

�|ω − ωo|
2
√
BT

exp

(
−�

2|ω − ωo|2
4BT

)
(4.2.12)

One can compare this value with that from the HITRAN data bank [11] in the
case of CO-molecules. At the temperature T = 296 K and for the rotational con-
stant of the CO molecule B = 1.93 cm−1, the maximum of the spectral line in-
tensity corresponds to Jmax = 7; the photon energy is �ω7 = 2116 cm−1 for P-
branch, and �ω7 = 2173 cm−1 for R-branch. Taking values of the Einstein coef-
ficient A7 = 18.4 cm−1 and A7 = 17.5 cm−1 for these cases, we have the values of
the spectral line intensity S7 = 3.87 · 10−19 cm for P-branch and S7 = 4.56 · 10−19

cm for R-branch according to data of HITRAN bank [11]. Formula (4.2.11) gives for
these cases S7 = 4.2 · 10−19 cm for P-branch and S7 = 3.8 · 10−19 cm for R-branch.
As is seen, agreement between these results take place with the accuracy of 20%.

4.2.3 Absorption Coefficient for Gas of Diatomic Molecules

We below construct the absorption coefficient kω for a certain band of a radiative
vibrational transition of a linear molecule in the case of collision broadening of
spectral lines. Then the lower and upper transition states of Fig. 1.4 are characterized
by the vibrational v and rotational J quantum numbers which relate to the number
of vibrational or rotational states. The selection rules extract a restricted number
of transitions, and the strongest transitions for absorption of radiation are v, J →
v + 1, J + 1 for P−branch and v, J → v + 1, J − 1 for R−branch. The absorption
coefficient kω accounted for a transition between two states is given by formula
(2.2.28) and is equal

kω = Ai j Nv

λ2

4

�|ω − ωo|
T

aω exp

[
−�

2(ω − ωo)
2

4BT

] [
1 − exp

(
−�ω

T

)]
, (4.2.13)

where λ is the radiation wavelength. We above separate vibrational and rotational
states, so that in this formula Nv is the number density of molecules in the lower
vibrational state v for the radiative transition v → v′, and indices i and j correspond
to the initial J and final J ′ rotational states, ω is the transition frequency, �ωo is
the energy difference for vibrational transition states, c is the speed of light, Ai j is
the first Einstein coefficient which depends weakly on the rotational number; it is
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taken into account a large number of rotational states which determine the absorption
coefficient, and the summation in formula (4.2.13) is made over rotational states. We
assume molecules in rotational and vibrational states to be under thermodynamic
equilibrium with the temperature T . According to the selection rule, the vibrational
number is changed by onewithin the framework of the harmonic oscillator formolec-
ular vibrations. The criterion J � 1 allows one also to neglect interaction of nuclear
rotation with electronmomenta, i.e., J = K , where K is the total molecular moment.

Formula (4.2.13) joins transitions for P−branchwithω ≥ ωo and R−branchwith
ω ≤ ωo. The variation energy �ωJ for a given vibrational transition and the initial
rotational momentum J of the molecule is given by

�ωJ = �ωo − B ± B(2J + 1), (4.2.14)

where the sign minus relates to P absorption branch, sign plus corresponds to R-
branch. From this it follows for P and R branches �ωJ = �ωo − B ± 2BJ for large
J � 1 that we use below. As is seen, the energy difference between neighboring
rotational states is constant that corresponds to the Elsasser model [26], and this
difference is 2B. The photon distribution function aω for a certain transition has
the Lorentz shape (2.1.4); in the case of the collision mechanism of broadening of
spectral lines which is of the most interesting, the photon distribution function has
the form

aω =
∑
J

νJ

2π
[
(ω − ωo − ωJ )2 + ( νJ

2 )2
] , (4.2.15)

where the width νJ of spectral lines depends weakly on J .
The absorption coefficient is a harmonic function of the frequency (or almost

harmonic one, if we take into account a weak frequency dependence of parameters
in formulas (4.2.13) and (4.2.15)), and the period of oscillations is 2B/�. We now
determine the average absorption coefficient averaged over frequencies. Account-
ing for the normalization condition (2.1.1) and the distance between neighboring
resonance frequencies to be 2B/�, we obtain on the basis of formula (2.2.28) for
the average absorption coefficient χ(ω) which is expressed through the spectral line
intensity S(ω) defined by formula (4.2.7), as

χ(ω) = kω ≡ �

2B

∞∫
−∞

kωdω = 2�Nvπc

d
S(ω) = Nvλd S(ω), (4.2.16)

Here λd = 2πc�/d is the wavelength for a photon of an energy d, which is in turn
the difference of neighboring energy levels, and in the case of diatomic molecules is
equal to d = 2B.

Finally, the value of this quantity in the case of optically active diatomicmolecules
is given by
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χ(ω) = Ai j Nv

λ2

8

�
2|ω − ωo|

BT
exp

(
−�

2(ω − ωo)
2

4BT

) [
1 − exp

(
−�ω

T

)]
(4.2.17)

A general form of the absorption coefficient is

kω = χ(ω)ϕ(ω),

∞∫
−∞

ϕ(ω)dω = 1 (4.2.18)

and the function ϕ(ω) takes into account the oscillation character of the absorption
coefficient. One can rewrite also the connection between the spectral line intensity
and average absorption coefficient on the basis of formulas (4.2.7) and (4.2.16)

S(ω) = χ(ω)d

Nv · 2πc , (4.2.19)

Here d is the energy difference for neighboring transitions, and for diatomic
molecules we have d = 2B.

In order to determineϕ(ω), we use theMittag-Leffler theorem, that takes the form
[27]

∞∑
k=−∞

[
(x − k)2 + y2

]−1 = π sinh 2πy

y(cosh 2πy − cos 2πx)
(4.2.20)

Taking now x = �(ω − ωo)/B and y = �ν/4B, one can present the absorption co-
efficient kω into a given absorption band in the form (4.2.18) (for example, [28–30])
with

ϕi (ω) = sinh
π�ν

2B

[
cosh

π�ν

2B
− cos

π�(ω − ωi )

B

]−1

, (4.2.21)

Thus, we have that the absorption coefficient is an oscillation function of the
frequency; according to formulas (4.2.18) and (4.2.21), the ratio of the neighboring
maximum kmax and minimum kmin values of the absorption coefficient is

kmax

kmin
= cosh π�ν

2B + 1

cosh π�ν
2B − 1

, (4.2.22)

In the limit of a low pressure, if �ν � B, this formula takes the form

kmin

kmax
=

(
π�ν

4B

)2

(4.2.23)

Note that in summarizing over rotational momenta we assume that the photon
distribution function aω depends on the frequency stronger than other functions in
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the expression (4.2.13). Let us check it for the distribution function of molecules
on energies, i.e. for the dependence of exp[−�

2(ω − ωo)
2/4BT ], where the expo-

nent varies through one period 2B/� by the value �|ω − ωo|/2T . Hence, formulas
(4.2.17), (4.2.18) and (4.2.21) hold true if the following criterion is fulfilled

�|ω − ωo| � 2T (4.2.24)

4.2.4 Absorption Coefficient Produced by Carbon Dioxide
Molecules

In consideration the spectrum of the CO2 molecule, we are based on spectroscopy of
a diatomic molecule, but take into account peculiarities of CO2 molecules. Carbon
dioxide is an important atmospheric component which gives a remarkable contri-
bution to the greenhouse phenomenon of the Earth’s and Venus atmospheres. From
another standpoint, this molecule is the linear one, that allows us to analyze spectro-
scopic properties of gases contained carbon dioxide in the simple manner. For these
reasons we analyze spectroscopic properties of a gas with carbon dioxide molecules
as one of its components in detail. In evaluating the absorption coefficient kω of
a gas with CO2 molecules, we use the above expressions (4.2.17), (4.2.16), and
(4.2.21) for diatomic molecules. In this analysis we take into account that the CO2

molecule differs from diatomic molecules as an absorber of infrared radiation, since
this molecule has only even values of the rotational momentum J or only odd ones
depending on the parity of the vibration state. For this reason, the energy difference
for neighboring vibrational-rotational radiative transitions is equal to 4B instead of
2B, for diatomic molecules, where B is the molecular rotational constant. In addi-
tion, radiative transitions of the Q−branch are realized in the radiative spectrum of
CO2 molecules if the torsion vibration state changes at this transition.

In the case of a radiative vibrational-rotational transition of P− or R−branches,
one can use formulas (4.2.17), (4.2.16), and (4.2.21) for the absorption coefficient
kω with the change the rotational constant B by 2B. Then the absorption coefficient
for P and R−branches is determined by formula

kPω = A(ω)Nv
λ2

4

�|ω − ωo|
T

exp

[
−�

2(ω − ωo)
2

4BT

] [
1 − exp

(
−�ω

T

)]
sinh π�ν

4B

cosh π�ν
4B − cos π�(ω−ωi )

2B

,

(4.2.25)

where we go from the integer rotational momentum J to a continuous quantity
ω − ωo; negative values of�(ω − ωo) correspond to P−branch,while positive values
of this parameter relate to R−branch. As is seen, the absorption coefficient as a
frequency function has an oscillation structure. Figure4.5 gives this dependence in a
narrow spectrum range for P branch of the radiative vibrational transition 00o0 →
01o0 of CO2 molecules in air at atmospheric pressure. On the basis of formula
(4.2.16), this formula may be presented in the form
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Fig. 4.5 Absorption coefficient for P branch of the 15µm vibrational transition 00o0 → 01o0 due
CO2 molecules in air at atmospheric pressure in a narrow range of frequencies

kP
ω = NvSmax

λB

4
· �|ω − ωo|

2
√
BT

exp

[
−�

2(ω − ωo)
2

4BT

]
sinh π�ν

4B

cosh π�ν
4B − cos π�(ω−ωi )

2B

(4.2.26)

Figure4.5 demonstrates this dependence for the strongest vibrational transition of
CO2 molecules in air at room temperature.

Let us consider Q−branch of radiative transitions which proceed without the
change of the rotational momentum J . In this case the energy of excitation of the
rotational state is given by formula (4.2.1) EJ = BJ (J + 1), but the transition energy
or the photon energy �ωJ is given by the formula

�ωJ = �ωo − �J (4.2.27)

instead of (4.2.14). In particular, on the basis of HITRAN data [11] we have for this
parameter �J in the case of the strongest radiative transition 00o0 → 01o0 with the
energy 667 cm−1, the following approximation

�ωo = 667.377 cm−1, �J = bJ + cJ2, b = 2.4 · 10−3cm−1, c = 1.0 · 10−3cm−1

(4.2.28)

Let us assume that the function d�J/dJ = b + 2cJ depends weakly on J that holds
true at large J . The latter means that with taking into account that only even values
of J are realized, the function ϕ(ω) according to formula (4.2.21) has the form

ϕQ(ω) = sinh
π�ν

2(b + 2cJ )

[
cosh

π�ν

2(b + 2cJ )
− cos

π�(ω − ωo)

b + 2cJ

]−1

, ω ≥ ωo,

(4.2.29)
At moderate value of J , where the above assumption is not fulfilled, ϕ(ω) = 1,
whereas at large values of J , where oscillations in this function are realized, this
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Fig. 4.6 Width of the
spectral line for the
vibrational transition
00o0 → 01o0 of the CO2
molecule as a function of the
rotational momentum J .
This function is the same for
P , Q and R-branches [10]

assumption is fulfilled. The half-width of this spectral line according to HITRAN
bank data [11] is nearby to �ν/2 = 0.07 cm−1; therefore remarkable oscillations start
from the the rotational momenta Jo = 16, that corresponds to the maximum of the
absorption coefficient.

In determination of the absorption coefficient as a function of the photon fre-
quency ω, it is necessary to find the connection between the photon frequency and
the rotational momentum J . In order to reduce the expression for the absorption
coefficient to the above expressions, we take approximately �J = cJ (J + 1), that
holds true at large J . Taking this dependence instead of formula (4.2.14), we have
for the distribution function over rotational states f J which is normalized to one
(
∫

f j d J/2 = 1), taking into account that the rotational states with even rotational
momenta exist only

f J = 2B(2J + 1)

T
exp

[
− BJ (J + 1)

T

]
= 4

√
B

T

√
ω − ωo

�ω
exp

[
−�(ω − ωo)

�ω

]
, �ω = cT

�B
(4.2.30)

This expression relates to positive values ω − ωo. For the temperature at the Earth’s
surface T = 288 K, this parameter is equal �ω = 0.051 cm−1.

We now determine the absorption coefficient on the basis of formula (2.2.28).
Averaging it over oscillations, we obtain for the averaged absorption coefficient

χQ(ω) = A(ω)Nv

λ2

2�ω
exp

[
−�(ω − ωo)

�ω

] [
1 − exp

(
−�ω

T

)]
, �ω = cT/(�B)

(4.2.31)
Correspondingly, the absorption coefficient qω for Q-branch of radiative rotational
transitions in accordance with formula (4.2.18) is given by

qω = A(ω)Nv
λ2

2�ω
exp

[
− (ω − ωo)

�ω

] [
1 − exp

(
−�ω

T

)]
sinh y

cosh y − cos y(ω−ωi )
ν

, y = π�ν

2(b + 2cJ )

(4.2.32)
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Fig. 4.7 Dependence of the
Einstein coefficient A for the
photon absorption process on
the rotational momentum J
for the vibrational transition
00o0 → 01o0 of the CO2
molecule and for P , Q and
R-branches [10]

Considering the absorption coefficient due to CO2 molecules as a result of
vibrational-rotational transitions, we assume their parameters to be independent on
the rotational excitation because of the large vibrational energy compared with the
rotational one. Of course, this assumption restricts the accuracy of calculations. In
order to estimate this accuracy, we analyze the dependence of parameters of radiative
transitions between two vibrational states on the rotational momentum J using the
data of the HITRAN bank [11], restricting by the strongest transition between the
ground 00o0 and the lowest excited 01o0 vibrational states As for the width ν of the
spectral line of this transition due to collisions with air molecules at atmospheric
pressure, this value is practically identical for the branches P, Q and R, but depend
on the rotational number J . This dependence is given in Fig. 4.6.

Figure4.7 contains the dependence of the first Einstein coefficient A(ω) on the ro-
tationalmomentum J for the vibrational transition 00o0 → 01o0of theCO2 molecule
in the cases of P , Q and R-branches. We consider above two cases of momentum
coupling which lead to relations (4.1.17) and (4.1.19); these relations correspond to
different ratios of the energy difference for neighboring rotational levels to the inter-
action potential between deformation oscillation and rotation. One can expect that
the first case of momentum coupling holds true that leads to formulas (4.1.17) for the
probability of various transition branches. Nevertheless, real values of probabilities
for various branches of radiative transitions according to Fig. 4.7 data relate to the
second case of momentum coupling.

The absorption coefficient due to CO2 molecules is the sum of absorption coeffi-
cients for P , Q and R branches which describe the absorption process in different
spectrum ranges. One can see that Q−branch is included in the total absorption coef-
ficientwhich has the formof a narrowpeak,while P and R−branches give oscillating
functions in a more wide range. We now use the above formulas for the absorption
coefficient for atmospheric carbon dioxide in atmospheres of the Earth and Venus.
Taking the average temperature of the Earth’s surface to be T = 288K,we obtain that
four vibrational transitions create emission of the atmosphere due to CO2 molecules,
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Fig. 4.8 Total absorption coefficient kω at the Earth’s surface due to atmospheric carbon dioxide
molecules for the standard atmosphere model according to formula (4.2.33) [31]

Fig. 4.9 Intensity of spectral lines due to absorption by carbon dioxide molecules in atmospheric
air according data of HITRAN bank [10]

so that the absorption coefficient due to CO2 molecules as a frequency function has
the form

kω =
4∑

i=1

kω = χ(ω)(i)ϕ(i)(ω) + q(ω)(i), (4.2.33)

Here components of this expression are given by formulas (4.2.18), (4.2.21), (4.2.28),
and subindex indicates the number of the vibrational transition with accounting for
lower transitions of Fig. 4.3. Figure4.8 represents the atmospheric absorption coeffi-
cient due toCO2 molecules near theEarth surface for frequencieswhichdetermine the
radiative flux to the Earth which is emitted by the atmosphere due to CO2 molecules.
We take into account an atmospheric pressure near the Earth’s surface; the concen-
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Fig. 4.10 The absorption coefficient kω near the surface of Venus due to carbon dioxide molecules,
calculated on the basis of formula (4.2.31) [32]

tration c = 0.04% for CO2 molecules that corresponds to their number density near
the Earth surface Nv = 1 · 1016 cm−3.

As it follows from Fig. 4.8, three radiative vibrational transitions determine the
absorption coefficient in the CO2 molecule at the room temperature. This means
that the radiative flux in the infrared spectrum range is determined by these three
vibrational transitions which screen more weak vibrational transitions. The same
conclusion follows from the analysis of the HITRAN bank data for the spectral line
intensity which is presented in Fig. 4.9.

In the same manner, one can determine the absorption coefficient due to carbon
dioxide molecules in the Venus atmosphere. The temperature of the Venus surface is
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737 K, the pressure is 92 atm and the main part of the atmospheric gas is the carbon
dioxide. This pressure leads to a large width of spectral lines, and neighboring lines
are overlapped, so that ϕ(i)(ω) = 1. In addition, because of a high temperature,
there are six vibrational-rotational transitions presented in Fig. 4.3. Therefore, the
absorption coefficient is given by the following formula

kω =
6∑

i=1

kω = χ(ω)(i) + q(ω)(i), (4.2.34)

Figure4.10 gives the frequency dependence of the absorption coefficient due to the
atmospheric carbon dioxide near the Venus surface.
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Chapter 5
Elementary Radiative Processes

Abstract Parameters of elementary processes involving photons and atomic parti-
cles are evaluated. These processes include photoionization of atoms, and photore-
combination of electrons and atomic ions, photodetachment of negative ions, and
photorecombination of electrons and atoms, photodissociation of molecules. Photo-
processes involving highly excited atoms are analyzed. Bremsstrahlung results from
collisions of electrons with atoms or ions in a weakly ionized gas. The character of
emission of the solar photosphere is analyzed that consists of electron photoattach-
ment to the hydrogen atom. The scheme of the detector of sub-millimeter radiation
on the basis of highly excited atoms is described.

5.1 Radiative Transitions Involving States of Continuous
Spectrum

5.1.1 Photoionization and Phodetachment of Atomic
Particles

We give in Table 5.1 the list of single-photon processes involving atomic parti-
cles. Three first processes related to transitions between discrete states of atoms and
molecules, are considered above. We now study the transitions between bound and
continuum spectrum states induced by a photon. The first task is to obtain the ex-
pression for the cross section of photoionization of an atomic particle. In this way
we modify formula (1.2.19) for the absorption rate of an atomic particle with taking
into account that the frequency of an absorbed photon lies in a continuous spectrum
range. We consider both the photoionization of atoms and that of negative ions. The
first process (process 4 of Table 5.1) is described by a scheme

A + �ω → A+ + e,

while the second process (process 6 of Table 5.1) takes the form

© Springer Nature Switzerland AG 2019
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Table 5.1 Elementary processes of interaction between photons and atomic particles [1]

Number Process Scheme of the process

1 Excitation as a result of photon absorption �ω + A → A∗

2 Spontaneous radiation of an excited atom A∗ → �ω + A

3 Stimulated photon emission �ω + A∗ → 2�ω + A

4 Atomic photoionization �ω + A → A+ + e

5 Photorecombination of an electron and and ion e + A+ → A + �ω

6 Photodetachment of a negative ion �ω + A− → A + e

7 Radiative attachment of an electron to an atom e + A → A− + �ω

8 Photodissociation of a molecule AB + �ω → A + B

9 Photorecombination of atoms A + B → AB + �ω

10 Bremsstrahlung in electron-atom collisions e + A → e + A + �ω

11 Bremsstrahlung in electron-ion collisions e + A+ → e + A+ + �ω

A− + �ω → A + e.

Becausewave functions of the continuumspectrumrange are not square-integrable
in the conventional sense, it is necessary to define an alternative normalization scheme
for continuum spectrum wave functions. It is convenient to adopt the normalization

∫
ψq (r) ψ∗

q′ (r) dr = (2π)3 δ
(
q − q′) (5.1.1)

where r is a distance between an ejected electron and the atomic core, ψq (r) is the
electron wave function which determines its relative motion with the wave vector q
in the center-of-mass frame of reference. We now consider electrons to be contained
within a large space volume, which can be equal to one, since it is absent in all
physical results. We below find the connection between the wave function ψq (r)
and the wave function ψk (r), which is normalized per unit volume according to

∫
|ψk (r)|2 dr = 1

These wave functions are coincided with the accuracy up to a factor C , that is intro-
duced as ψk (r) = Cψq (r). For determination C we use the normalization condition

∫
ψ∗
k (r) ψm (r) dr = δkm,

or

∑
m

∫
ψ∗
k (r) ψm (r) dr = 1
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If we replace an index k by the wave vector q, and an index m by the wave vector
q′, these conditions yield

∑
m

∫
ψ∗
k ((r) ψm (r) dr = 1 = C2

∫
dq′

(2π)3

∫
ψ∗
qψq(r)dr = C2

From this it follows C = 1. The wave function ψ (r) is transformed in a plane wave
at a large distance between an electron and atomic core, where interaction between
them is negligible, with the accuracy up to logarithm terms in the exponent for the
Coulomb interaction and with accounting for the normalization condition we have
in the limit r → ∞

ψq (r) → exp (iqr)

We now obtain the expression for the photodetachment cross section of an atom or
positive ion, or the photodetachment cross section for a negative ion. Let us rewrite
expression (1.2.20) for the absorption rate with using the wave function ψq (r) for
the transition matrix element instead of ψ j (r). This corresponds to a change of

the matrix element square
∣∣Di j

∣∣2 by
∣∣Doq

∣∣2, where the final-state wave function is
normalized by condition (ion1). The statistical weight g j of the final state is now
given by

g j = dq

(2π)3
= q2dq

8π3
d�q, (5.1.2)

where d�q is the element of solid angle that characterizes the relative motion of an
ejected electron. Now we employ the condition of energy conservation

�ω = I + �
2q2

2me
, (5.1.3)

where I is the electron binding energy for its initial state, andme is the electronmass.
This gives

qdq = medω

�

Substituting this in formula (5.1.3) and using formula (1.2.20) for the rate of a
radiative transition, we obtain

dwi = 4ω3
∥∥Doq

∣∣2 nω

3�c3
meq

�π3
dωd�q

Evidently, the normalizing volume disappears from this expression. Dividing the
probability dwi by the photon flux according to formula (2.2.23)
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d j = nωω2dω

π2c2
,

one can obtain the expression for the cross section of photoionization or photode-
tachment of the negative ion

dσ = meqω

6π�2c

∣∣Doq
∣∣2 d�q (5.1.4)

It is convenient to analyze this result on the basis of one-electron approximation
for the wave function of atomic electrons. Then a valence electron is located in
a self-consistent field of the atomic core and other electrons, and the potential of
the self-consistent field assumes to be spherically symmetric. In addition, transfer
of a valence electron does not change the state of atomic core with other valence
electrons. Using formula (5.1.4) for the cross section of this process, we characterize
the state of a transferring electron by the principal quantum number n, the angular
momentum number l, and the magnetic number m which is the projection of the
angular momentum onto a given direction. Denoting the initial bound state by 0, let
us represent the wave function of a transferring electron in the form

ψ0 (r) = unl(r)

r
Ylm (θ,ϕ) ,

where r, θ,ϕ are the spherical coordinates of the valence electron, unl(r) is the radial
wave function of the electron, normalized by the condition

∞∫

0

u2nl(r)dr = 1,

and Ylm (θ,ϕ) is a normalized spherical function. The final state of the liberated
electron with momentum �q can be expressed in terms of spherical functions in the
form

ψq (r) → exp (iqr) = 1

r

∞∑
l=0

(2l + 1) i lunl (q, r) Pl
(
cos θqr

)

Here θqr is the angle between vectors q and r, and unl (q, r) is the radial wave
function of a free electron with an angular momentum l. Far from the atomic core,
this wave function has the asymptotic form

unl (q, r) = 1

r
sin

(
qr − πl

2
+ δl

)
,
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where δl is the phase shift for scattering of an electron by the atomic core. This
expression is valid for photodetachment of a negative ion. In the case of atomic
photoionization, the phase shift δl depends on r .

If a released electron is fast, one can neglect the electron interaction with an
atomic core, and the electron wave function in the final state has the form ψq (r) →
exp (iqr), hence

unl(q, r) =
√

πr

2q
JL+1/2 (qr)

where JL+1/2 (qr) is the half-integer Bessel function. A general form of the pho-
todetachment cross section (5.1.4) in the single-electron approximation under the
assumption of the spherically symmetric form of the potential of the self-consistent
field for release of one valence electron has the form

dσ = qω

6πaoc

∣∣r0q∣∣2 d�q (5.1.5)

Here ao = �
2/

(
mee2

)
is the Bohr radius, and for a given transferring electron we

haveD = −er. We now calculate the integral (5.1.5). Let us introduce the unit vector
s such, that the projection of the electron momentum onto a given direction for the
initial electron state is zero for this direction. Hence, since m = 0, the angular wave
function of the initial state takes the simple form

Ylm (θ,ϕ) =
√
2l + 1

4π
Pl (cos θrs) ,

where θrs is the angle between vectors r and s. On the basis of the these expressions
for the wave functions, let us rewrite the above integral in the form
∫ ∣∣r0q∣∣2 d�q =

∫
d�q×

×
∣∣∣∣∣∣
∫ ∫

rdrd�runl (r)

√
2l + 1

4π
Pl (cos θrs)

∞∑
l′=0

(
2l ′ + 1

)
i l

′
ul′ (q, r) Pl′

(
cos θqr

)
∣∣∣∣∣∣
2

Replacing the integral square by two integrals, we have
∫

d�q

∫ ∫ ∫ ∫
drdr ′ (rr′) d�rd�r′unl (r)unl (r)

2l + 1

4π
Pl (cos θrs) Pl

(
cos θr′s

)×

×
∞∑
l ′=0

∞∑
l”=0

i l
′−l” (2l ′ + 1

)
(2l” + 1) Pl ′

(
cos θqr

)
Pl”

(
cos θqr′

)
ul ′ (q, r) ul ′′

(
q, r ′)

Integrating over the solid angle d�r′ , we use the addition theorem for Legendre
polynomials
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Pl”
(
cos θqr′

) = Pl” (cos θrr′) Pl”
(
cos θqr

)+
+

∑
m

(l” − m)!
(l” + m)! P

m
l” (cos θrr′) Pm

l”

(
cos θqr

)
cos [m (ϕr − ϕr′)]

Indices at the polar angle θ indicate vectors between which it is taken, and ϕ is
the azimuthal angle. The sum over l” in the above expression is omitted due to the
orthogonality of Legendre polynomials with different indices, so that

π/2∫

−π/2

Pl (cos θ) Pl ′ (cos θ) sin θdθ = 2l + 1

4π
δll ′ .

We obtain thereby

∫ ∣∣roq∣∣2 d�q =
∞∑
l ′=0

|Rll ′ |2 ×

×
∫ ∫

d�rd�r′ cos θrr′ (2l + 1)
(
2l ′ + 1

)
Pl (cos θrs) Pl (cos θr′s) Pl (cos θrr′ ) ,

where the used notations lead to the radial matrix element

Rll ′ =
∞∫

0

unl(r)rul ′ (q, r) dr

In order to use the orthogonality of the Legendre polynomials, we introduce the
following recursion relation

(
2l ′ + 1

)
x Pl ′ (x) = (

l ′ + 1
)
Pl ′+1 (x) + l ′Pl ′−1 (x)

This leads to formula

∫ ∣∣roq∣∣2 d�q =
∞∑
l ′=0

∣∣Rll ′ ∣∣2
∫ ∫

d�rd�r′ (2l + 1) Pl (cos θrs) Pl
(
cos θr′s

)×

× {(
l ′ + 1

)
Pl+1 (cos θrs) Pl+1

(
cos θr′s

) + l ′Pl−1 (cos θrs) Pl−1
(
cos θr′s

)}

Using the addition theorem for the Legendre polynomials, we get finally

∫ ∣∣roq∣∣2 d�q = (4π)2

2l + 1

{
l
∣∣Rl,l−1

∣∣2 + (l + 1)
∣∣Rl,l+1

∣∣2}
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Weuse above the conditions of the orthonormality andnormalization for theLegendre
polynomials. From this we have the cross section of photodetachment for a single-
electron ion or atom in the form

σi = 8πqω

3aoc(2l + 1)

{
l
∣∣Rl,l−1

∣∣2 + (l + 1)
∣∣Rl,l+1

∣∣2} (5.1.6)

It follows from the above operations, that the selection rules for radiative transitions
of electrons into the continuous spectrum state are fulfilled for the single-electron
atomic structure. According to the selection rules, the orbital angular momentum
changes by one, i.e. the electron orbital momentum l in the initial state and the
electron momentum l ′ of a released electron are connected by the relation

l ′ = l ± 1 (5.1.7)

The electron parity changes due to this radiative transition. In addition, the threshold
behavior of the cross section σi ∼ q for photodetachment of a negative ion corre-
sponds to the general law for the threshold electron process with a neutral particle
in the final state (5.1.6); hence at a large distance from the core the electron wave
function is described by the plane wave. Another threshold law corresponds to the
photoionization process with the Coulomb interaction between the ejected electron
and the positive ion at large separations. Note that formula (5.1.6) describes the case,
where an absorbed photon has a certain polarization.

5.1.2 Two-Step Photoionization of Atoms

Laser radiation is a fine instrument which allows one to excite an atomic gas within
the framework of the method of optical pumping. On the other hand, an atomic ion-
ization with production of electrons and ions gives the possibility to analyze products
of ionization in a simple manner on the basis of electric fields. Joining of these meth-
ods leads to a sensitive method to analyze gaseous systems. This is realized in the
method of two-step atomic ionization. The peculiarity of atomic ionization under the
action of radiation is a non-resonance character of this process. In other words, the
dependence of the ionization cross section on the photon frequency depends weakly
on the photon energy at the photon energies higher than the ionization threshold.
Therefore, if we have a mixture of different kinds of gases, and the photon energy
exceeds the ionization threshold for each component of gaseous atoms or molecules,
the photoionization of each gaseous component occurs with a different efficiency.
Thus, the photoionization process is not selective with respect to various gaseous
components. Another situation takes place in the case of the two-step ionization ap-
proach, when the radiation includes two wavelengths. Then atoms of a certain kind
are excited by radiation with the first wavelength. These excited atoms are ionized
by radiation with the second wavelength, since energies of the second photons are
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insufficient for ionization of atoms. This method of ionization is selective, since the
photon wavelength for excitation of atoms is in resonance with the excitation of this
kind of atoms.

As an example, we consider the two-step ionization method of cesium atoms [2]
which are located in a buffer gas. Cesium atoms are excited from its ground state
into an excited state by the first laser. Then excited atoms are ionized by photons
of the second laser. Formed ions are detected by standard methods of detection of
charged atomic particles. As a result, it is possible to fix several atoms in the volume
which contains about of 1019 atoms of a buffer gas. This is equivalent to discover of
an element which area is less than 1 cm2 on the Earth surface!

The same concept is used in the optohalvanic method [3–5] to analyze the sort
of atoms in gases. In this case a weak gas discharge is created in a gas, so that
an electric current passes through this weakly ionized gas. This gas is irradiated
by a beam from a tunable laser, so that the current strength varies depending on
the radiation wavelength. Peaks at certain radiation wavelength testify about the
presence of atoms or molecules of a given sort in a gaseous mixture, and the value
of these peaks allows one to restore the concentration of these atoms or molecules.
In addition, this action of radiation on the discharge electric current may occur due
to various radiative transitions that improve the accuracy of this method which give
the possibility to determine the presence of admixtures in gaseous mixture with the
concentration up to 10−10. In particular, this method is used for detection of gunshot
residues on hands [6].

5.1.3 Photodetachment of Hydrogen Negative Ion

We now calculate the cross section for photodetachment of a negative ion with a
valence s-electron and photodetachment of the hydrogen negative ion as a particular
process of this type. We are based on formula (5.1.6), and since existing negative
ions have two electrons, i.e. valence electrons fill the shell (s2 1S)(H−), we use the
factor 2 in formula (5.1.6) for l = 0

σi = 16πqω

3aoc
R2
01 (5.1.8)

Our goal now is to calculate the matrix element in this formula. Extracting a
weakly bound electron of a negative ion and denoting its binding energy as EA =
�
2γ2/(2me), one can obtain the Schrödinger equation for the electron radial wave

function u0(r) in the form

ü0 = γ2u0

In obtaining this equation, we neglect the interaction between a valence electron
and the atom core because of the short-range interaction between them. Thus for a
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short-range interaction between an electron and remaining atom, the electron wave

function, normalized by the condition
∞∫
0
u20(r)dr = 1 and obtained as the solution of

the Schrödinger equation, is

u0(r) = √
2γ exp (−γr)

This expression is violated at electron-atom distances of the order of ao where other
electrons are located, but it is small compared with an electron size ∼1/γ. Therefore
in a basic region of location of a weakly bound electron one can present its wave
function as

u0(r) = B
√
2γ exp (−γr)

The parameter B is determined by the electron behavior in the region of location of
other electrons; for the negative hydrogen ion this parameter is equal B = 1.16 [7].
In the limit γ → 0 this parameter has the limit B = 1.

The radial wave function of a released electron with l = 1 is the first harmonic
in the expansion of the wave function as the plane wave exp (ipr) over Legendre
polynomials

ul(q, r) =
√

πr

2q
J3/2(qr) = 1

q

(
sin qr

qr
− cos qr

)

One can obtain the following expression for the radial matrix element on the basis
of this wave function

R01 =
∞∫

0

u0(r)ru1(q, r) = 2q
√
2γ(

γ2 + q2
)2

From this we obtain the expression for the cross section of photodetachment of the
negative ion under consideration

σdet = 4πnB2

3

e2

�c

γv3
e

ω3
, (5.1.9)

where n = 2 is the number of electrons in the negative hydrogen ion, so that process
can lead to release of each electron; ve�q/m is the velocity of the released electron.
The parameter B in this expression takes into account the fact that the electron wave
function is cut off at distances r ∼ ao from the nucleus. This factor is equal to one
in the limit γ → 0, and B = 1.16 for the negative hydrogen ion. The energy of an
absorbed photon is equal

�ω = �
2

2me

(
γ2 + q2

)
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Note that the expression (5.1.9) for the cross section of photodetachment of a
negative ion with valence s-electrons is based on the assumption that a size ∼1/γ
of the negative ion is large compared with the region of interaction of a transferring
electron with a remaining neutral atom. Therefore it holds true at small binding
energies of an electron in a negative ion. The expression obtained is not valid for large
values of q because the main contribution to the matrix element R01 follows from
electron-nucleus distances r ∼ 1/q, and these distances must be large compared
with atomic sizes. According to formula (5.1.9), the maximum of cross section
is observed at �ω = 2EA where the cross section equals σmax = 0.37 Å2 for the
hydrogen negative ion. The threshold of this process corresponds to the photon energy
�ω = EA = 0.754 eV, i.e., to the wavelength λ = 1.64 µm. According to formula
(5.1.9), the maximum cross section, that is observed at the wavelength λ = 0.82 µm,
is equal to 4.2 · 10−17 cm2. Figure5.1 represents the photodetachment cross section
for the hydrogen negative ion as a function of the wavelength according to formula
(5.1.9) and also experimental data. In the limit q � γ (but, nevertheless, q 	 1/ao),
formula (5.1.9) gives for the photodetachment cross section the following asymptotic
form

σdet = 64π

3

e2

�c

γ

q3
, q � γ

On contrary, near the threshold, where q 	 γ, formula (5.1.9) gives

σi = 64π

3

e2

�c

q3

γ5
, q 	 γ

The dependence σi ∼ q3 reflects the fact that the released electron is found in p-
state (not an s-state) which wave function u1(r) at small distances from the nucleus
r 	 1/q decreases proportional to r .

Fig. 5.1 Cross section of
photodetachment of the
hydrogen negative ion
�ω + H− → H + e [7].
Solid curve corresponds to
formula (5.1.9), signs relate
to experimental data



5.1 Radiative Transitions Involving States of Continuous Spectrum 143

5.1.4 Photoionization of Hydrogen Atom

We now determine the cross section of photoionization of the hydrogen atom in its
ground state on the basis of a general formula (5.1.8) that in this case of the one
valence electron has the form

σi = 8πqω

3aoc
R2
01,

and our goal is calculation of the matrix element R01. For simplicity, we use in this
operation the atomic system of units e2 = me = � = 1. The radial wave function of
an electronwith l = 1 and themomentum q in the continuum spectrum of a Coulomb
field is equal

u1(q, r) = 2

3

√
q
(
1 + q2

)
1 − exp (−2π/q)

r2 exp(iqr)F

(
i

q
+ 2, 4, 2iqr

)

Here F (α, γ, z) is the confluent hypergeometric function. Taking the radial wave
function of the hydrogen atom in the ground state u0(r) = 2r exp(−r), one can
obtain the matrix element R01 as

R01 =
∞∫

0

2r exp(−r)u1(q, r)dr

To evaluate this integral, we use formula

∞∫

0

exp (−λz) zγ−1F (α, γ, kz) dz = �(γ)λα−γ (λ − k)−α

This gives

R01 = 8
√
2π√

q(1 + q2)5

exp
(
− 2

q arctan
1
q

)
√
1 − exp

(
− 2π

q

)

From this formula, the photoionization cross section of the hydrogen atom from the
ground state is equal (the Stobbe formula)

σi = 29π2

3c

exp
[
− 4

q arctan
(
1
q

)]
(
1 + q2

)4 [
1 − exp

(
− 2π

q

)] (5.1.10)
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Let us consider now limiting cases of formula (5.1.10). For small q this formula
leads to the threshold dependence for the photoionization cross section

σi = 29π2

3e4
αa2o = 6.3 · 10−18cm2, (5.1.11)

where α = e2/�c is the fine structure constant, and we use now usual units, rather
than the atomic ones. As it follows from formula (5.1.11), the threshold cross section
is a finite value. This follows from the behavior of the wave function of a slow
electron, when it is located in the Coulomb field of the nucleus. Then the dipole
matrix element tends to infinity near the threshold as∼q−1/2, and the matrix element
at the threshold q 	 1 is equal

R01 = 8

e2

√
2π

q
(5.1.12)

In formula (5.1.12), as well as in formula (5.1.11), e = 2.718, is the base of the
natural logarithm. Note that in the absence of the Coulomb field, i.e. if a released
electron interacts with a neutral atomic particle, we have R01 ∼ q at q 	 1, that
leads to the threshold cross section σi ∼ q3. Thus, the Coulomb interaction leads to
a specific electron behavior near the charged nucleus. Next, for large q � 2π, when
the photon energy exceeds significantly the ionization potential I of ground-state
hydrogen atom, that is

�ω ≈ �
2q2

2me
� 4π2 I ≈ 40I

then formula (5.1.10) gives

σi = 256π

3

αa2o
(qao)

7 ≈ 256π

3
αa2o

(
I

�ω

)7/2

= σo

(
I

�ω

)7/2

, (5.1.13)

where σo = 5.48 · 10−17cm2, and the ionization potential of the hydrogen atom e-
quals

I = mee4

2�2
= 13.6 eV

As it follows from formula (5.1.13), the photoionization cross section of the
hydrogen atom as a function of the photon energy decreases at large photon energies
faster than the photodetachment cross section for the negative ion, where σdet ∼ q−3.
If we take in formula (5.1.13) �ω = I , one can expect that the photoionization cross
section would be close to its threshold value (5.1.11). In fact, it differs from the
threshold value by the factor e4/2π, which is about an order ofmagnitude. Thismeans
a very extended transition from the range q 	 to the range q � 1. The transition to
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the asymptotic dependence (5.1.13) is very slowly due to a large numerical factor
in the above criterion �ω � 40I. A decrease of the photoionization matrix element
and cross section according to a power law for q � 1 follows from the singularity
of the Coulomb potential at r = 0. In fact, the matrix element R01 for q � 1 is the
Fourier component for large values of the argument. Without the singularity in the
interaction potential, the Fourier component would have an exponential dependence
rather than a power dependence on the argument. Formula (5.1.13)) is valid up to
values of the frequency�ω ∼ mec2,where relativistic effects becomeessential. These
effects are not taken into account in above consideration, and this follows from the
general expression (5.1.10), according to which the photoionization cross section
has maximum at the threshold. If the photon energy �ω increases, the cross section
decreases first as ω−8/3, and then as ω−7/2 in accordance with formula (5.1.13).

We now determine the angular distribution of the ejected photoelectrons at the
photoionization of the ground state of the hydrogen atom. According to formula
(1.2.18), the rate of photoionization and, correspondingly, the photoionization cross
section with ejection of a released electron into the solid angle element d�q is equal

dσi ∼ (ns)2 d�q,

where n is the unit vector in the direction of emission of the ejected photoelectron,
and s is the unit vector along the direction of polarization of the absorbed photon.
One can use the normalization condition according to which the integration over the
solid angle in this expression must give the total cross section (5.1.10). One obtains

dσi = 3

4π
σi (ns)2 d�q (5.1.14)

As it follows from formula (5.1.14), the most part of released electrons are emitted
in the direction close to that of the polarization vector of the incident radiation. The
probability to emit in the perpendicular direction, including that of propagation of
the incident radiation, is zero. Next, if the incident radiation is unpolarized, (5.1.14)
must be averaged over polarization directions s at a fixed direction n0 of the wave
vector of the incident radiation. Then, from the relations cos θns = sin θnn0 cosϕs

and
〈
cos2 ϕs

〉 = 1/2, we have

dσi = 3

8π
σi [n,n0]

2 d�q (5.1.15)

If we consider photoionization of an atom K -shell which contains two electrons, it is
necessary to double all the above cross sections. Applying the above formulas for the
cross section of photoionization to hydrogen like ions or to electrons of the K -shell,
it is necessary to change the Bohr radius ao to ao/Z , where Z is the nuclear charge.
Then according to formula (5.1.11) we have σi ∼ Z−2 near threshold, while from
formula (5.1.13) it follows that σi ∼ Z5 for large photon energies.

On the basis of the above results, let us analyze a general character of the
electron angular distribution in the photoionization process, using single-electron
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approximation. It follows from formula (1.2.18), that the photoionization cross sec-
tion is determined by the matrix element

∫
ψ∗
q (r) (r · s)ψnlm (r) dr (5.1.16)

Here, the vector s characterizes the polarization of the incident radiation, andq = p/�

is the wave vector of the released electron, so that p is its momentum. Let us take
the direction q as the quantum axis for the quantum numbers nlm of the initial
state of a valence electron which is released in the process under consideration. The
differential cross section should be averaged over all projections m = −l, ...l − 1, l
of the angularmomentumof the released electron. If the shellnl is filled only partially,
this averaging is correct until we neglect external fields, for example, the field of the
crystal cell where this atom is located. Let us denote by ϑ the angle between vectors
s and q; this angle determines the averaged cross section 〈dσi 〉. An average over m
is similar to an average over all directions of the quantum axis r. We label as ϑ′ the
angle between vectors r and q. On the basis of the addition theorem for trigonometric
functions we have

r · s = r
(
cosϑ cosϑ′ + sin ϑ sin ϑ′ cosϕ

)
, (5.1.17)

where ϑ and ϑ′ are polar angles of these vectors, and ϕ is the difference of their
azimuthal angles in a given frame of reference. Substituting this expression into
formula (5.1.16), taking its square and averaging the result over the angle ϕ, one can
obtain that the term cosϑ cosϑ′ · sin ϑ sin ϑ′ 〈cosϕ′〉 = 0. Next, averaging of squares
of each terms in formula (5.1.16) over the angle ϑ′, one can obtain the following form
of the photoionization cross section

〈dσi 〉 = (
α + β cos2 ϑ

)
d�q (5.1.18)

The fact that the photoionization cross section does not contain terms of the odd
power of cosϑ means that that it does not depend on the sign of the momentum of a
released electron, or on the signofq, that canbeobtained fromgeneral considerations.
Indeed, a change of the sign of q is analogous to a change of the sign of r in the
wave function ψ∗

q (r). But the operation r → −r leads to multiplication of the wave
functionψnlm by a factor (−1)l . Since the photoionization cross section is a quadratic
function of the dipole matrix element, the cross section does not change as the result
of such a transformation.

If the initial state nl is an S-state, i.e. (l = 0), the angular dependence of the
photoionization cross section is simplified. In this case, it is convenient to expand the
wave function of the final state over the Legendre polynomials, which are functions
of the angle ϑ′ between the vectors r and q, that is

ψq (r) =
∞∑
l=0

ul(q, r)Pl
(
cosϑ′) (5.1.19)
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The wave function of the initial state does not depend on angles. Since the function
(5.1.19) does not depend on the angle ϕ′, the second term of formula (5.1.17) is zero
due to the relation

2π∫

0

cosϕ′dϕ′ = 0

Thus, the dipole matrix element is proportional to cosϑ, and the cross section has
the form

dσi = β cos2 ϑd�q (5.1.20)

5.1.5 Radiation of Solar Photosphere

As an example where the photoprocesses under consideration are of importance, is
emission of the Sun. This process proceeds in the solar photosphere, and radiation
results from the process

e + H ←→ H− + �ω (5.1.21)

Analyzing radiation of the solar photosphere in the visible spectral range, we give
basic parameters for the plasma of the solar photosphere [8–10], as well as the
processes occurring in it. The main component of the photosphere are hydrogen
atoms, whose concentration in this region is approximately 92%, so that further we
neglect the presence of other components in the photosphere. Radiation of the Sun in
the visible spectrum range occurs due to the photoattachment of electrons to hydrogen
atoms, and to the opposite process—the photodecay of a negative hydrogen ionwhich
determines absorption of photons when they try to leave the solar atmosphere. Due
to a relatively large number density of hydrogen atoms in the photospheric plasma,
a local thermodynamic equilibrium is maintained with respect to the formation of
charged atomic particles

e + H ↔ 2e + H+; e + H− ↔ 2e + H (5.1.22)

Considering the equilibrium properties of the photospheric plasma, we have the
following relations between the number densities of hydrogen atoms NH, electrons
Ne, protons Np, and negative ions N− with taking into account the condition of
plasma quasineutrality

Ne = Np 	 NH (5.1.23)
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Due to the local thermodynamic equilibrium, the number density of charged particles
and hydrogen atoms in the photospheric plasma of Sun are connected by the Saha
relations [11]

Ne = (NoNH)1/2 exp

(
− J

2T

)
, N− = N 3/2

H

4N 1/2
o

exp
(
−ε1

T

)
, No =

(
meT

2π�2

)3/2

(5.1.24)
Here T is the plasma temperature, J = 13.605 eV is the ionization potential of the
hydrogen atom, ε1 = J/2 − E A = 6.048eV, where E A = 0.754eV is the electron
affinity to the hydrogen atom. Formula (5.1.24) gives No = 4.3 · 1014cm−3 at the
average plasma temperature T = 5777K. We use the NASA data for the parameters
of the solar photosphere [10], namely, the pressure at the bottom of the photosphere
is 125 mbar, and at the top of the photosphere it is 0.87mbar. Accordingly, the
temperature of the photosphere is 6600K at the bottom and 4400K at the top, and
the photosphere thickness is 500 km. Taking into account the local thermodynamic
equilibrium in the photosphere plasma, we obtain for the number density of atomic
particles near the photosphere bottom NH = 1.4 · 1017cm−3, Ne = 4.6 · 1010cm−3,
and N− = 1.7 · 1013cm−3, whereas at the photosphere top these parameters are NH =
1.5 · 1015cm−3, Ne = 1.6 · 107cm−3, and N− = 6.4 · 107cm−3.

Note that the surface of the Sun consists of convective cells—granules of a size
of the order of 1000km. A plasma from the inner regions of the Sun falls into the
photosphere region as a result of convection, so that in the central regions of cells,
in which the plasma penetrates from deeper regions of the Sun, the temperature is
higher than that in regions between cells [8, 12]. This means that the solar surface is
non-uniform, and the above parameters of the photosphere characterize their mean
values.

We also have that the gradient of the number density of hydrogen atoms is not
connectedwith the gravity.Assuming, according to theNASAdata [10], the thickness
of the photosphere to be equal to � = 500km, we have for the temperature gradient

dT

dz
= 4.4K/km (5.1.25)

In addition, by approximating the dependence of the number densities of hydrogen
atoms NH and negative hydrogen ions N− on the altitude h by

NH(h) = NH(0) exp(−h/�H), N−(h) = N−(0) exp(−h/�−), (5.1.26)

we obtain from the above NASA data for the scale of the change of the number
density of atoms and negative hydrogen ions �H = 110 km, �− = 40 km.

Next, let us compare these data with parameters which follow from the analysis of
the photospheric radiative properties. Indeed, absorption of a photon is determined
by the photodecay process of a negative hydrogen ion. In the simplest version, in
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calculating the matrix element from the dipole moment between the states of the
radiative transition, one can neglect the interaction between a transferring electron
and atomic core, that leads to the following expression for the photodecay cross
section of the negative hydrogen ion [7] which is in accordance with results of the
experiments [13, 14]

σph(ω) = σmax · 8ω
3/2
o (ω − ωo)

3/2

ω3
(5.1.27)

Here ω is the photon frequency, the threshold energy of this photoprocess is
�ω = E A = 0.754 eV, and the maximum cross section σmax = 4 · 10−17cm2 cor-
responds to the photon energy �ωmax = 2�ωo = 1.51 eV or the photon wavelength
λ = 0.8µm.

Let us determine the absorption photosphere parameters. At the wavelength
λ = 0.8µm, where the absorption is maximal, we have from formula (5.1.24) for
the number density of negative ions N− = 1 · 1010cm−3. From this it follows on
the basis of the NASA data that the photosphere bottom is located at an altitude of
h = 300km with respect to the photosphere bottom for a frequency of the maximum
absorption cross section. At this altitude, the number density of negative hydrogen
ions is approximately N− = 1 · 1010cm−3, which corresponds to the number density
of hydrogen atoms NH = 9 · 1015cm−3 and the number density of electrons (protons)
Ne = 4 · 108cm−3 at this altitude. Obviously, this altitude characterizes the temper-
ature, which corresponds to radiation at a photon wavelength of λ = 0.8µm. For
other wavelengths, radiation is formed in deeper photosphere layers and corresponds
to higher temperatures. Therefore, this altitude h = 300km determines the position
of the photosphere top. The position of the photosphere bottom is determined by the
width of the radiation band, which is referred to the solar photosphere.

The above analysis holds true if the parameter α in formula (2.2.37) is small.
According to the NASA data [10] dT/dh = 4.4 K/km, and the scale of the number
density change for negative ones as absorbing particles is �− = 40 km. This gives
for a small parameter (2.2.37) under typical conditions α = 0.07, i.e. the description
of the photosphere radiation based on this criterion is valid.

5.1.6 Photoprocesses Involving Atmospheric Molecules

Processes of photoionization and photodissociation of atmospheric molecules N2

and O2 determine principal properties of upper layers of the Earth’s atmosphere.
Hard solar radiation is absorbed in the upper atmosphere, and this leads to ionization
of air molecules and atoms, as well as to dissociation of atmospheric molecules.
As a result, the content of the upper atmosphere and their electric properties are
determined by these processes which we consider below partially. The main part
of the solar radiation is created by the solar photosphere and relates to the visible
spectrum.Alongsidewith that, solar radiation contains also photons in ultraviolet and
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Fig. 5.2 Average flux of
photons in the ultraviolet and
vacuum ultraviolet spectrum
ranges [15, 16]

vacuum ultraviolet spectrum ranges, and the photon flux in these spectrum ranges
is given in Fig. 5.2. These photons are able to ionize and dissociate atmospheric
molecules.

As a result, electrons and ions are produced, and electrons lead to the negative
charge of the atmosphere at altitudesmore than 80 km. Figure5.3 connects altitudes at
which the solar radiation of a given wavelength is absorbed, with atoms or molecules
which are responsible for this absorption. The wavelength 102.5 nm corresponds to
the ionization threshold of oxygen molecules (the ionization potential is equal to
12.88 eV) as a result of the process

O2 + �ω → O+
2 + e. (5.1.28)

Fig. 5.3 Altitudes where hard and ultraviolet radiation is absorbed and atmospheric atoms and
molecules which are responsible for this absorption [17]
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The wavelength 98.0 nm corresponds to the ionization threshold of nitrogen
molecules (the ionization potential is equal to 15.58 eV) in the process

N2 + �ω → N+
2 + e (5.1.29)

Hard solar radiation which causes ionization of atmospheric air, is produced by
the solar corona, which, in turn, is formed in inner regions of the Sun which are
sources of plasma fluxes. These fluxes are produced as a result of reconnection of
magnetic lines of force. Plasmas of the solar corona are characterized by the electron
temperature of the order of 100 eV and by the number density in the range of (108–
1010) cm−3. In contrast to the solar photosphere with stable parameters of its ionized
gas, parameters of plasmas in the solar corona are varied sharply in time. During
the solar flare, the electron number density in the solar corona can be increased by
several orders of magnitude. These fluxes are averaged in time, or they correspond
to conditions of the standard atmosphere.

Let us return to Fig. 5.3 and establish the connection between the atmosphere
altitude where photons of a given frequency are absorbed, and the absorption cross
section of these photons by the atmosphere molecules. It is important that the atmo-
sphere is nonuniform. Then the main contribution into absorption of photons with a
given frequency is determined by altitudes at which the optical depth is estimated as

u(h) = �NσωN (h) ∼ 1,

where σω is the absorption cross section at a given photon frequency by atmospheric
molecules, N (h) is the number density of absorbingmolecules at altitude h (Fig. 5.4).

It is possible to clarify this expression, investigating penetration of the solar ra-
diation through the atmosphere. Indeed, equation for the intensity Iω of the incident
solar radiation of a given frequency Iω(h) at altitude h has the form

dIω(h)

dh
= −Iω(h)σωN (h) (5.1.30)

Here for simplicity we consider the normal incidence of the solar radiation upon
the Earth surface. If an incident angle θ is less than π/2, one can substitute the
optical density u of the atmospheric layer by the quantity u/ sin θ. The solution of
the equation (5.1.30) has the form

ln

[
Iω(h)

I0

]
= −�NσωN (h), (5.1.31)

where I0 = Iω (∞). It follows from this expression that the probability of survival
for photons of a given frequency at altitude h of the atmospheric layer is

P(h,ω) = P(x) = Iω(h)

I0
; x =

[
h − h0(ω)

�N

]
,
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Fig. 5.4 Dependence of the
surviving probability of solar
photons P(x) and its
derivative p(x) on the
reduced altitude
x = [h − h0(ω)]/�N [18]

where x is the reduced height of the layer. Thus one obtains for the probability of
photon at a given frequency

P(x) = P (h,ω) = exp
[−u (h0) exp (−x)

]
(5.1.32)

The altitude h0 of the layer can be determined from the relation for the optical
depth u (h0) = 1. Then relation (5.1.32) can be rewritten in the form

P(x) = P (h,ω) = exp
[− exp (−x)

]
(5.1.33)

The dependence of the photon survival probability P(x) on the reduced layer
altitude x is represented in Fig. 5.5. It is seen that more than a half of photons are
absorbed at altitudes from h0 + 0.6�N [P(x) = 0.578] to h0 − 0.6�N [P(x) =
0.162]. Along with P(x), Fig. 5.5 contains also its derivative

p(x) = dP(x)

dx
= P(x) exp (−x)

Themaximumof this quantity corresponds to themaximum rate of photon absorption
at a given frequency, so that the the maximum number of absorbed photons per unit
time and unit layer depth is equal to 0.378I0/�N . It is obviously that the maximum
rate of photon absorption at a given frequency occurs at altitudes, where dp(x)/dx =
0; according to Fig. 5.5 it corresponds to the condition x = 0. Thus, the condition of
the maximum absorption rate has the form

u0 (h0) = �NσωN (h0) = 1 (5.1.34)

As it follows from (5.1.34), the density of absorbing particles determines the optimal
altitude for maximum photon absorption at a given frequency. Therefore, basing on
the cross section of photon absorption at a given frequency, one can determine the
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Fig. 5.5 Dependence of the
photon absorption cross
section at a given frequency
on the altitude of the
atmospheric layer, where the
absorption rate has the
maximum. The absorption
cross sections for nitrogen
and oxygen molecules
assume to be identical. The
maximum absorption rate of
photons of a given frequency
corresponds to the condition
dp(x)/dx = 0 [18]

Fig. 5.6 Photoabsorption
cross section of the oxygen
molecule in the range of the
Schuman–Runge band (a)
and in the range of
Schuman–Runge continuum
(b) [17, 19, 20]

altitude of atmospheric layerswhere themain absorption takes place. Figure5.6 gives
the absorption cross section as a function of the altitude, where the maximum rate
of absorption is observed.

Note that the ionization potential of the oxygen atom as one of the atmospheric
air components is 13.61 eV that corresponds to the wavelength of λ = 91.1 nm.
The ionization potential of the nitrogen atom is 14.54 eV that corresponds to the
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Fig. 5.7 Positions of
molecular potential curves
which are responsible for
photodissociation of the
molecule. Radiative
transitions into a bound
molecular state give a
discrete spectrum of this
process, whereas transitions
in a repulsive molecular term
lead to a continuous
spectrum of this process

wavelength of λ = 85.3 nm. These components are responsible for the ionization in
the upper atmosphere at altitudes more that 100 km. Let us consider photoionization
of atmosphere air on the basis of the above results. According to observations, the
maximum ionization of atmospheric air occurs at altitudes about of 160km, where
number densities of nitrogenmolecules and oxygen atoms are equal approximately to
5 · 1010cm−3. According to Fig. 5.2 data, this takes place in the range of wavelengths
of 60–90 nm. It follows fromFig. 5.5 that the photonflux for this range ofwavelengths
is of the order of I0 = 2 · 109cm−2 s−1. In addition, from data of Fig. 5.6 one can
find that the photoionization cross section at these heights is estimated as σω ∼
1 · 10−17cm−2. In addition, according to data of Fig. 5.3 the photoionization rate at
these altitudes is 0.328I0/�N ∼ 400 cm−3 s−1 due to transitions in helium atoms
and multicharge oxygen ions with the charge +4.

Let us consider photodissociation in the Earth atmosphere. The above analysis
connects the photoabsorption cross section and the altitude of the atmosphere layer
which gives the main contribution to the rate of photon absorption at a given fre-
quency. This analysis is valid not only for ionization of the atmosphere molecules
and atoms by solar radiation, but also for photodissociation of molecules which oc-
curs due to the electron excitation of molecules and subsequent decay of the excited
molecule. If the excited molecule is decayed by means of tunneling transition of
atoms, then the spectrum of molecular photoabsorption has a discrete structure. The
broadening of each spectral line refers to an appropriate vibration-rotation state.
If the molecular excitation occurs to the repulsing term, the subsequent decay of
atoms results in the continuum spectrum of photoabsorption. These possibilities are
represented in Fig. 5.7.

Both mechanisms are realized at the photodissociation of the molecular oxygen;
it contains the photoprocess in the range of the Schuman–Runge band (Fig. 5.4a)
and the Schuman–Runge continuum (Fig. 5.4b). These processes are described by
the scheme
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�ω + O2 → O(1D) + O(1P) (5.1.35)

and lead to production of excited oxygen atoms O(1D) which are important in the
atmospheric chemistry. These processes are responsible for production of atomic
oxygen at altitudes more than 120 km. At lower altitudes up to 40 km oxygen atoms
are produced due to photon absorption at wavelengths from 200 to 250 nm in the
Herzberg continuum; according to Fig. 5.6 the photoabsorption cross section is of
the order of 10−24–10−23 cm2. This radiation does not penetrate into more lower
atmosphere layers since it is absorbed by ozone at larger altitudes (See Fig. 5.2).

Alongside with nitrogen and oxygen, ozone is of importance for absorption the
solar radiation. The most strong absorption by ozone molecules takes place in the
Hartley band and continuum at photon wavelengths below 320 nm. The dependence
of the absorption cross section on thewavelength in this spectral region is presented in
Fig. 5.8. In addition, a weak absorption takes place in the Chappinc band for photons
with wavelengths of 400–600 nm. Ultraviolet solar radiation is absorbed by ozone in
the range of wavelengths 200–300 nm at altitudes around of 40 km (See Fig. 5.2 and
it does not reach the Earth surface. The ozone absorption in the Hartley band takes
place according to the scheme

�ω + O3 → O1D + O2(a
1�g) (5.1.36)

Thus, photodecay of atmospheric ozone molecules induced by solar radiation
leads to production of atoms and molecules which determine the chemical activity
of the upper atmosphere. The quantum yield of excited oxygen atoms at the ozone
photodissociation as a function of the radiation wavelength confirms the process of
themolecular ozone photoabsorption according to the channel (5.1.36) (See Fig. 5.9).

The number density of ozone molecules as an altitude function in the atmosphere
depends significantly on the geographic coordinate, season and time of day. We
average over these parameters within the frame of the standard atmosphere [16].
Approximately 97% of ozone molecules are located at altitudes between 15 and 55
km; the maximum number density of the ozone molecules 5 · 1012cm−3 corresponds

Fig. 5.8 Photoabsorption
cross section by the ozone
molecule in the Hartley band
[17, 19–21]
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Fig. 5.9 Quantum yield of
excited oxygen atoms in
O(1D) states at the
photodissociation of the
ozone molecule. Various
symbols correspond to
different experimental data
[18]

to altitudes 20–25 km, while the maximum concentration of the ozone molecules
cmax ∼ 10−5 refers to altitudes about 35 km. The total ozone molecule density per
unit area of the Earth is

∫
N(O3)dh = (2 − 3) · 1019 cm−2,

where N(O3) is the number density of ozone molecules. As it follows from the pho-
toabsorption cross section by the ozone molecule represented in Fig. 5.8, the optical
thickness of the atmosphere is uω = 200 − 300 for radiation with the wavelength of
250 nm. Absorption by ozone molecules in the Hartley band prevents penetration of
the main part of solar UV radiation to the Earth surface. Other processes of electron
excitation of the atmosphere molecules are given in [22, 23].

Excited atoms and molecules produced in the reaction described by the scheme
(5.1.36) are of importance for chemistry of the upper atmosphere. Excited atoms
O(1D) disappear effectively in collisions with molecules and atoms of the upper
atmosphere, in spite of a low density of the atmosphere air. Oppositely, excited
molecules O2(a1�g) are formed accumulated at altitudes of 40–80 km, where ozone
is distributed. Variations of the density of metastable molecules O2(a1�g) are rela-
tively high because of variations of the ozone density as the source of thesemolecules
and due an unstable flux of solar radiation which can be absorbed in higher atmo-
sphere layers. Figure5.10 demonstrates the dependence of the number density of
metastable molecules O2(a1�g) on the altitude of atmospheric layers. It is seen, that
the number density of these molecules depends sharply on an incident angle of solar
radiation.

Figure5.11 contains the dependence of the absorption cross section by excited
oxygen molecules O2(a1�g) at wavelengths where this process leads to molecular
ionization. These data allow one to determine the optical thickness of the atmosphere
with respect to ionization of atmospheric molecules O2(a1�g)
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Fig. 5.10 Number density
of metastable molecules
O2(a1�g) in the day
atmosphere as a function of
the altitude at various values
of the incident angle of solar
radiation [17, 24]

Fig. 5.11 Absorption cross
section by metastable
molecules O2(a1�g) in the
range of vacuum ultraviolet
radiation range [17, 25]

uω = σω

∫
N∗(h)dh

cos θ
(5.1.37)

Data of Fig. 5.10 allows one to find that the number density of metastable
molecules O2(a1�g) per unit area of the Earth surface lies in the range

∫
N∗(h)dh

cos θ
≈ (0.3 − 2) 1017 cm−2

In accordance with Fig. 5.11 data, the photoionization cross section of the excited
oxygen molecules O2(a1�g) is of the order of σω ∼ 5 · 10−18cm2, so that the optical
thickness of the atmospherewith respect to absorption by excited oxygenmolecules is
of order of uω ∼ 0.2 − 1. Thus, excited molecules in the metastable state O2(a1�g)

can give a remarkable contribution to ionization of atmospheric air in the above
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mentioned range of wavelengths (in addition to the NO molecules) in spite of a
smallness of the photon energy for ionization of molecules in the ground state (See
Fig. 5.2).

Let us consider finally ionization of tropospheric air by solar and cosmic gamma-
radiation. It was shown above that photons are absorbed in atmosphere mainly in
a region where the optical thickness is of the order of one. One can use this for
absorption of any radiation by a nonuniform gas. Now we use this conception for
cosmic radiation assuming at some frequencies that some part of this radiation pen-
etrates into troposphere. According to contemporary understanding of the problem
of cosmic rays penetrated in the Earth atmosphere, high-energy nucleons should be
charged and the main part of nucleons are protons. Protons must have a high energy
in order to overcome the Earth’s magnetic field. In particular, in order to reach the
Earth’s surface in the equator region, the proton energy should excess 14 GeV. We
consider below the possibility for photon components in cosmic ray and estimate the
photon energy which can produce ionization in the troposphere.

Let us determine the absorption cross section at altitudes of 11–15 km where
according to Fig. 5.12 the ionization rate of the atmosphere by cosmic radiation is
maximum. It is obvious that the process of photoionization of air molecules starts
from ionization of K -shell electrons of nitrogen and oxygen molecules. This process
continues with participation of secondary electrons. The ionization potentials of
helium-like ions of nitrogen, oxygen and argon which take part in this process,
are 667, 871 and 4121 eV, respectively. Thus, photons which are responsible for
ionization of the troposphere air, should have a large energy.

Let us find the optimal cross section for absorption of X-ray photons which pro-
duce ionization at altitudes of 11–15 km. The temperature at these altitudes is about
200 K, the number density of air molecules for the standard atmosphere model is
equal N = 7.6 · 1018cm−3 (the altitude of 11 km) and N = 4.0 · 1018cm−3 (the alti-
tude of 15 km). In the latter case the number density of molecular nucleons is twice
larger. Thus, the optimal absorption cross section is 1.6 · 10−25cm−3 at the altitude
of 11 km, and 3.0 · 10−25 cm−3 at the altitude of 15 km. The photon absorption cross

Fig. 5.12 Ionization rates of
atmospheric air by cosmic
rays at various altitudes [26,
27]
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section involving the hydrogenlike ion at high photon energies �ω compared to the
ionic ionization potential J is given by the Stobbe formula

σω = σo

Z2
eff

(
J

�ω

)7/2

; �ω � J (5.1.38)

Here we take into account that ionization can result from an ejection of each electron
from K -shell, and Zeff = Z − 0.75 is the effective charge the nucleon and valence
electrons for the ejected electron, Z is the nuclear charge, σo = 0.55 · 10−16cm2.
It should be noted that the nuclear concentrations ci of basic air components, i.e.
nitrogen, oxygen and argon, are 0.79, 0.20 and 0.005 respectively, while the rela-
tive contributions of these components to the rate of ionization of tropospheric air
according to formula (5.1.38) is 0.58, 0.28 and 0.14, respectively. On the basis of
formula (5.1.38) one can obtain the following equation for the altitude ho at which
the maximum rate of air ionization is observed [18]

2�NσoN(ho)

(�ω)7/2
·
[
2c(N2)J (N2)

7/2

Z2
eff (N2)

+ 2c(O2)J (O2)
7/2

Z2
eff (O2)

+ 2c(Ar)J (Ar)7/2

Z2
eff (Ar)

]
= ln(2)

(5.1.39)

Here N(ho) is the total number density of air molecules. From this it follows that
the photon energy 2.4 and 2.0 keV corresponds to the maximum of the rate of air
ionization at altitudes of 11 km and 15 km, respectively. These energies correspond
to wavelengths of 5.1 and 6.1Å.

5.2 Photoprocesses Involving Rydberg States

5.2.1 Photoexcitation and Photoionization of Rydberg Atoms

Properties of highly excited atoms or Rydberg atoms are determined by the Coulomb
interaction of aweakly bound electronwith the charge of a nucleus [28]. Therefore the
states of a highly excited atomexhibit the same behavior as an excited hydrogen atom.
In particular, the electron binding energy for a highly excited atom has the simple
form εn = −1/

(
2n2

)
within an accuracy of the order of 1/n3. These parameters

are expressed through atomic units � = me = e2 = 1 which are used throughout this
section. We first find the dependence of the absorption cross section for the transition
of an atom to a Rydberg state on the principal quantum number n and its connection
with the photoionization cross section of this atom near threshold. Indeed, taking
the cross section of atom photoexcitation according to formula (2.2.24), expressing
the rate of the radiative process 1/τ through the oscillator strength and using the
asymptotic dependence (1.3.36) for the oscillator strength for transition in a highly
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excited state, we have for the cross section σn of formation of a highly excited state
from a bound electron state

σn ∼ aω

ω2τ
∼ ω3

n0|Dn0|2
ω2

a (ω − ωn0) ∼ fn0a (ω − ωn0) ,

that is,

σn ∼ C

n3
a (ω − ωn0)

Here a (ω − ωn0) is the distribution function for absorbed photons of frequency ω,
and the frequency difference between the initial and final (Rydberg) state is given by

ωn0 = − 1

2n2
− εo,

where εo is the binding energy for the initial atom state.
The width of the distribution function is determined by the mechanism of spectral

line broadening. In the limiting case, where the spectral line width exceeds signif-
icantly the frequency difference for neighboring levels, this photoexcitation cross
section coincides with the photoionization cross section. Indeed, in this case the dis-
crete spectrum of excited electrons appears to an incident photon to be the same as
a continuous spectrum, and the behavior of weakly bound electrons and low-energy
free electrons is similar in the field of the atomic core. Thus we have

σi =
∑
n

σn = C
∑
n

a (ω − ωn0)

n3
(5.2.1)

Note that in this photoionization cross sectionσi contains transitions in smoothedRy-
dberg states with formation of a slow electron with the orbital angular momentum of
a weakly bound electron in the Rydberg state. For determination of the normalization
constant C we replace summation in formula (5.2.1) by integration, so that

σi = C
∫

a

(
ω + εo + 1

2n2

)
d

(
1

2n2

)

From the normalization condition (2.1.1) one can obtain σi = C . Because the pho-
toionization cross section is constant near threshold, the relation σi = C holds true
for any relation between the width of the spectral line and the the energy difference
between neighboring excited states of the Rydberg atom. Thus, we have the follow-
ing relation between the cross section σn of photoexcitation of a highly excited atom
with the principal quantum number n (at a given orbital momentum l) and the cross
section σi of atom photoionization near the threshold for the same value of l

σn = σi

n3
a (ω − ωn0) (5.2.2)
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Let us estimate the limiting binding energy of a weakly bound electron, where
formula (5.2.2) holds true. Let us assume that an atom is excited by a laser with a
narrow spectral line. If a gas where exciting atom is located, is rareness, the width
of the absorption spectral line is determined by the Doppler broadening mechanism.
Selective excitation of states with the principal quantum number n is realized, if the
width of the absorption spectral line is less than the energy difference for the neigh-
boring levels. In this case, according to formula (2.1.14) the width of the Doppler
broadening is

�ωD = ωn0 ·
√

T

Mc2
,

where T is the gas temperature, andM is the atomicmass. The possibility of selective
excitation of Rydberg levels is determined by the condition that the width of the
absorption line is small compared to the frequency difference for the transition to
neighboring levels of the same symmetry, that for the neighboring Rydberg levels is
equal n−3. This condition has the form

n3 <
c

ωn0

√
T

Mc2

∼ c

√
M

T
(5.2.3)

This condition gives at the room temperature n < 100. In this estimation we assume
that photons excited the state with the principal quantum number n, corresponds to
the optical and neighboring spectral ranges. One can change themethod of generation
of Rydberg atoms by using the stepwise way, so that the final stage of this process
is excitation from the Rydberg state with a principal quantum number n′ to a given
state with the principal quantum number n. In this case instead of the criterion (5.2.3)
one can obtain

n3 <
(
n′)2 c

√
M

T
(5.2.4)

In particular, taking n′ = 100, one can obtain according to criterion (5.2.4) for the
Doppler broadening of spectral lines that it is possible the selective production of
Rydberg levels even with n ∼ 1000.

Let us determine the dependence of the photoexcitation cross section on the photon
frequency near the photoionization threshold for the Lorentz broadening of spectral
lines. Now the width of spectral lines � in the frequency distribution function of
absorbed photons a (ω − ωn0) may be both larger and smaller than the frequency
difference n−3 for transition in neighboring Rydberg levels. According to formula
(5.2.2) the cross section for excitation of theRydberg levelwith the principal quantum
number n is equal for the Lorentz frequency distribution function of photons

a (ω − ωn0) = 1

2π

�

(ω − ωn0)
2 + �2/4
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The photoabsorption cross section for a given frequency ω may be represented as a
sum of the excitation cross sections σn over all Rydberg levels

σa(ω) =
∑
n

σn = σi
�

2π

∑
n

1

n3
1

(ω − ωn0)
2 + �2/4

(5.2.5)

Themain contribution to the sum in (5.2.5) can be written in terms of effective values
n∗ (which are not necessary integers) for which ωn∗ = ω, and the summarizing value
has the maximum. Expanding the transition frequency ωn0 near the maximum n∗ in
the Taylor series, we have

ωn0 − ω = (
n − n∗) dωn0

dn
|n=n∗ = n − n∗

n∗3 (5.2.6)

Substituting this expansion in formula (5.2.5), we have

σa(ω) = σi
�

2πn∗3

∞∑
n=1

[
(n − n∗)2

n∗6 + �2

4

]−1

(5.2.7)

Because of the strong convergence of the series (5.2.7), one can extend the lower
limit of the summation range, so that−∞ < n < ∞. According to theMittag–Leffler
theorem [29]), we have

∞∑
n=−∞

1

(n − x)2 + y2
= π sinh (2πy)

y [cosh (2πy) − cos (2πx)]

On the basis of this relation one can rewrite formula (5.2.7) as

σa(ω) = σi
sinh

[
(π(n∗)3�

]
cosh

[
π(n∗)3�

] − cos (2πn∗)
(5.2.8)

The parameter n∗ in this equation may be expressed through the frequency of the
absorbed photon as

n∗ = 1√
2|εo + ω| ;ω < |εo|

Figures5.13 and 5.14 show the dependence of σa on the frequency ω for ε0 =
−1/2 (the ground state of hydrogen atom) and � = 0.05 a.u.

Let us consider the limiting cases of formula (5.2.8). If � >> (n−∗)3 and neigh-
boring levels are overlapped, then σa(ω) = σi . In this case photoabsorption corre-
sponds to photoionization of an atom. In the opposite limiting case � 	 n−∗3, we
have
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Fig. 5.13 Dependence of the ratio σa/σi on the frequency ω of the absorbed photon for the case
ε0 = −1/2 (ground state of hydrogen atom) and � = 0.05 a.u. according to formula (5.2.8). The
range of frequencies of the absorbed photon is 0.44 − 0.5 a.u. [30]

σa(ω) = σi
π(n∗)3�

1 − cos (2πn∗) + [
π(n∗)3�

]2
/2

(5.2.9)

As the value n∗ varies, the photoabsorption cross section σa oscillates from the
minimum value

σmin
a = σi

π(n∗)3�
2

	 σi

at half-integer values of n∗ up to the maximum value of the photoabsorption cross
section

σmax
a = σi

2

π(n∗)3�
� σi

for integer values n∗. The ratio of these values is equal

σmax
a

σmin
a

=
[

2

π(n∗)3�

]2

� 1
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Fig. 5.14 Dependence of the ratio σa/σi on the frequency ω of the absorbed photon for ε0 = −1/2
(ground state of hydrogen atom) and � = 0.05 a.u. according to formula (5.2.8). The range of
frequencies of the absorbed photon is 0.1 − 0.3 a.u. [30]

The valueσmax
a corresponds to resonance excitation of a discrete level with a principal

quantum number n = n∗, where n∗ is an integer. In the vicinity of the integer n, using
n∗ = n + (n∗ − n), one can obtain

1 − cos
(
2πn∗) = 2π2

(
n∗ − n

)2

which according to formula (5.2.9) gives for the photoabsorption cross section

σa(ω) = σi

n3
1

2π

�

(ω − ωn0)
2 + �2/4

(5.2.10)

As is seen, this relation coincides with (5.2.2). Next, integrating over all frequencies
ω, one can obtain the sum rule

∫
σa(ω)dω = σi

n3
(5.2.11)
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5.2.2 Photoionization of Rydberg Atoms

We now evaluate the photoionization cross sections of atoms from Rydberg states
near the threshold. We first determine the oscillator strength between the nearby
Rydberg states n, l and the states n′, l ± 1, where �n = n′ − n 	 n, n′. As the first
step of this procedure we determine the matrix element of the atomic dipole moment
operator between given highly excited states. Because both initial and final states
are quasi-classical one, the correspondence principle of quantum mechanics can be
invoked, which gives these matrix elements as the Fourier components from classical
coordinates for the corresponding time-dependent values. In the case of bound states
of an electron located in the Coulomb field of the atomic core, where the principal
quantum number of the electron is n and the orbital angular momentum quantum
number is l, it is convenient to parameterize the rectangular electron coordinates x(t)
and y(t) for its elliptic motion in the xy plane in terms of a variable ξ, such that

x = n2 (cos ξ − ε) ; y = n2
√
1 − ε2 sin ξ; t = n3 (ξ − ε sin ξ)

This describes the electronmotion of an ellipse trajectorywith an eccentricity ε given
by

ε =
√
1 −

(
l

n

)2

Let us calculate first the matrix element of the y coordinate

ynn′ = 1

T

T∫

0

y(t) exp

(
i�nt

n3

)
dt,

where T = 2πn3 is the period of motion. This integral is equal to

ynn′ = in2
√
1 − ε2

ε�n
J�n (ε�n)

In the same fashion, the matrix element of the x coordinate is found as

xnn′ = n2

ε�n
J ′
�n (ε�n)

In the above expressions, J and J ′ denote the Bessel function and its derivative,
respectively. The evaluation of the integrals is accomplished through an integration
by parts and the use of the integral representation of the Bessel function
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Jn(z) = 1

2π

2π∫

0

exp [i (nξ − z sin ξ)] dξ

The operator x + iy corresponds to decreasing the magnetic quantum number by
one. In the classical case, the orbital angular momentum then also decreases by one.
In the samemanner, the operator x − iy corresponds to increasing the orbital angular
momentum by one. Thus, we have

(x ± iy)nl;n′l±1 = n2

�n

[
J ′
�n (ε�n) ±

√
1 − ε2

ε
J�n (ε�n)

]

According to formula (1.3.1), the oscillator strength for the transition nl → n′l ±
1 with n, n′ � 1 and �n 	 n, n′, is given by

f
(
nl → n′l ± 1

) = 2

3
ωn′n

∣∣∣∣ 1√
2

(x ± y)nl→n′l±1

∣∣∣∣
2

,

that is,

f
(
nl → n′l ± 1

) = n

3�n

[
J ′
�n (ε�n) ±

√
1 − ε2

ε
J�n (ε�n)

]2

(5.2.12)

Summarized this expression over the final electron angular momentum l ′ = l ± 1,
one can obtain the total oscillator strength for transition between states with a given
values of the principal quantum numbers n → n′

f (n → n′) = 2n

3�n

[
J ′2
�n (ε�n) + 1 − ε2

ε2
J 2
�n (ε�n)

]
(5.2.13)

As it follows from formula (5.2.13), in the case n � 1 the oscillator strength
f
(
nl → n′l ′

) ∼ n (sum rule). The oscillator strength decreases strongly with an
increase of �n, as it follows from the properties of semiclassical matrix elements.

Let us determine the average oscillator strength for transition between Rydberg
states with principal quantum numbers n and n′ under the assumption that the initial
substates of a given Rydberg state are equally populated. In this case, averaging the
oscillator strength (5.2.13) over all the available substates for the initial state with
principal quantum number n, we obtain for the average oscillator strength

f
(
n → n′) = 1

n2

n−1∑
l=0

(2l + 1) f
(
nl → n′l ′

)
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This formula takes into account the (2l + 1)-fold degeneration for a state with the
orbital angular momentum quantum numbers l, and the total number of substates
for a principal quantum number n is n2. Using a large value of n, one can change
summation by integration, take the variable ε instead of l, and introduce the relation
n2εdε = −ldl, which follows from the definition of ε2 = 1 − l2/n2. This gives

f
(
n → n′) = 4n

3�n

1∫

0

ε

[
J ′2
�n (ε�n) + 1 − ε2

ε2
J 2
�n (ε�n)

]
dε

In order to evaluate this integral, let us use the property of the Bessel functions

z

[
J ′2
p (z) +

(
p2

z2
− 1

)
J 2
p (z)

]
= d

dz

[
z Jp (z) J ′

p (z)
]
,

that gives

f
(
n → n′) = 4n

3 (�n)2
J�n (�n) J ′

�n (�n) (5.2.14)

Expression (5.2.14) may be simplified for a large difference of the principal quan-
tum numbers �n = n′ − n that allows us to use the asymptotic form of the Bessel
function. In this case we have for the Bessel function and its derivative

J�n (�n) = 1

2π

∞∫

−∞
exp

(
i�nξ3

6

)
dξ = 1

2π
√
3

(
6

�n

)1/3

�

(
1

3

)
;

J ′
�n (�n) = 1

2π

∞∫

−∞
ξ exp

(
i�nξ3

6

)
dξ = 1

2π
√
3

(
6

�n

)2/3

�

(
2

3

)

On the basis of these relations we have from formula (5.2.14)

f
(
n → n′) = 2n

3π2 (�n)3
�

(
1

3

)
�

(
2

3

)

We also use the property of the gamma functions

� (x) � (1 − x) = π

sin (πx)

This gives the following expression for the averaged oscillator strength

f
(
n → n′) = 4n

3π
√
3 (�n)3

; n � 1 (5.2.15)
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The above expressions for the oscillator strength allow us to determine the pho-
toionization cross section for the Rydberg states of an atom near the ionization
threshold. We are based on the above concept that in the limit of a broad spectral line
the photoabsorption cross section coincides with the photoionization cross section
near the ionization threshold. On the basis of formula (2.2.24) one can represent the
photoabsorption cross section in the form

σa = 2π2

c
f
(
n → n′) a (ω − ωn′n)

Using formula (5.2.15) for the oscillator strength under the criterion �n � 1, one
can rewrite this formula

σa = 8πn

3
√
3c (�n)3

a (ω − ωn′n)

Taking into account the relation �n = ωn3, we have from this

σa = 8π

3
√
3cω3n8

a (ω − ωn′n) (5.2.16)

In order to evaluate the photoionization cross section σi , we use relation (5.2.11)
for connection between the cross sections σi and σa . Integrating the cross section
(5.2.16) over ω and taking into accounting the normalization condition (2.1.1) for
the photon frequency distribution function a (ω − ωn′n), one can obtain the Kramers
formula [31] for the photoionization cross section

σi = 8π

3
√
3cω3n5

(5.2.17)

This expression means that the final Rydberg state n′ is located in the spectrum
range where the width of the distribution function a (ω − ωn′n) is large compared the
frequency difference for neighboring levels. If the ionization potential of the final
state is small compared to that of the initial state, that is ω = 1/

(
2n2

)
, then formula

(5.2.17) gives

σi = 64π

3
√
3

e2

�c
na2o (5.2.18)

In this formula we have returned from atomic units to the usual ones, and ao is the
Bohr radius. Thus the photoionization cross section for a highly excited atom near
the ionization threshold, which is the maximum photoionization cross section as a
frequency function, varies proportional to n, whereas the area of a highly excited
atom is proportional to n4a2o .
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Fig. 5.15 Scheme of the detector of submillimeter radiation of the basis of highly excited atoms;
1—beam of sodium atoms, 2—laser radiation for production of highly excited atoms in the 22D-
state, 3—window for thermal radiation; 4—electric field for ionization of atoms in 23P-state [32]

5.2.3 Rydberg Atoms in Detector of Submillimeter Radiation

Radiation transitions including highly excited atoms are elements of the various sen-
sitive physical devices and methods. As a demonstration of this, we below consider
detector of submillimeter radiation [32]which scheme is presented in Fig. 5.15. Then,
a beam of sodium atoms passes through a gap into a camera which temperature is
14 K. This beam is excited by two tunable lasers; one laser has the wavelength of
λ = 589 nm that causes the transition 32S1/2 → 32P1/2 from the ground state to the
resonantly excited state of the sodium atom. Radiation of the wavelength of 485 nm
of the second laser creates transition from the resonantly excited state of the sodi-
um atom to the Rydberg 22D-state. Figure 5.16 represents positions of atom levels
which participate in the work of this device.

It is of principle the selectivity in detection of highly excited atoms in the s-
tate 23P . Let us introduce the critical field strength Ecr of the electric field as
Ecr = Eo/

(
16n4

)
, where Eo = 5.1 · 109 V/cm is the atomic field strength. A typi-

cal flight time for excited atoms with the principal quantum number n = 30 between
capacitor plates having the field strength E ∼ Ecr is τ ∼ 10−6 s. If this field varies so

Fig. 5.16 Spectrum of
highly of the excited sodium
atom which partakes in the
work of the detector of the
submillimeter radiation
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Fig. 5.17 Dependence of the output signal on the temperature of the source of thermal radiation
[32]

that (Ecr − E) /Ecr = 4.5% − 4.9%, the decay probability of highly excited atom-
s during the flight through the region of the electric field varies from 20 to 80%.
For decay of highly excited atoms with the principal quantum number n = 31 the
quantity (Ecr − E) /Ecr should be about of 12%.

Let us present typical parameters of the device under consideration. Under used
conditions [32], approximately 0.1% of atoms from the incident beam are excited to
the 22D-state< so that the flux of highly excited atoms in the incident beam is of order
of 1011 s−1. The radiation lifetime of atoms in the state Na(22D) is approximately
10−5 s, and about of 5%of excited atoms achieve the region of the electric field,where
they are detected. In order to analyze the thermal radiation, one uses the 22D → 23P
transition of frequency 95 GHz. The electric field ionizes atoms in the 23P-state, but
it does not influence atoms in the 22D-state. The rate of the transition 22D → 23P
produced by the thermal radiation is about of 1300 s−1. Therefore at this temperature
the rate for production of atoms in the 23P-state is about of 105s−1. The efficacy of
detection of the excited atoms is 0.003, that is, about of 300 s−1 atoms are detected,
if the temperature of a thermal source is 300 K. The character of measurements on
the basis of this device is represented in Fig. 5.17.

5.3 Photoprocesses Involving Free Electrons

5.3.1 Character of Photorecombination of Atomic Particles

Let us consider general properties of photorecombination of atomic particles x and
Y that proceeds according to the scheme

X + Y → XY + �ω

Taking into account that this process is inverse with respect to the photoionization
process, one can use the principle of detailed balance, that connect the cross sections
of photorecombination σr and photoionization σi in the following manner
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σr

σi
= gr

gi

jph
jpar

(5.3.1)

Here, gr , gi are the statistical weights of initial and final states, jph and jpar are the
fluxes of photons and constituent atomic particles if one photon is located in a given
volume. The statistical weights of states in the initial and final channels are equal

gi = gXgY
4πq2dq

(2π)3
; gr = gXY · 24πk

2dk

(2π)3
,

where gX , gY , gXY are the statistical weights of indicated, k is the photon wave
vector, and q is the wave vector of the relative motion of the particles. The photon
flux if one one photon is located in an unit volume, is jph = c, and the particle flux
in this case is jpar = v, where v = �q/μ, and μ is the reduced mass of particles X
and Y , and the dispersion relation gives for the photon wave vector k = ω/c. This
leads to the following relation between the photorecombination and photoionization
processes

σr = 2
k2

q2

gXY

gXgY
σi (5.3.2)

If one of particles in the photorecombination process is an electron μ = me, one can
make the estimation for the ratio

k

q
∼ ω

c
√
2meε/�2

∼ e2

�c
∼ 10−2,

From this it follows that σr < σi , since k < q. In particular, if the photon frequency
corresponds to the visible spectrum range, difference between the photorecombina-
tion and photodetachment (photoionization) cross sections is roughly four orders of
magnitude.

Let us consider the photorecombination process involving a slow electron and ion
according to the scheme

e + A+ → A∗ + �ω, (5.3.3)

The main contribution to the photorecombination cross section gives transitions to a
Rydberg state with principal quantum number n ∼ e2/�v, where v is the velocity of
an incident electron. Belowwe take the statistical weights of an electron and ion to be
ge = gi = 1 since the transition under consideration is not connected with electron
and ion spins. The statistical weight of the atomic state is ga = n2, that is the number
of substates of the degenerated Rydberg state with the principal quantum number n.
Substituting the Kramers formula (5.2.17) for the photoionization cross section in
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formula (5.3.2), one obtains the Kramers formula for the photorecombination cross
section involving a slow electron

σr = 16π

3
√
3

1

v2n3ωc3
(5.3.4)

We use here atomic units. In order slow electrons could be considered as classical
particles, the condition e2/ (�v) � 1 should be fulfilled.

TheKramers’s formulas have a simple form and hencemay be use for small values
of n as estimations. In particular, if employing formula (5.2.18) for n = 1, one can
obtain for the photoionization cross section of the hydrogen atom in the ground state
with using atomic units

σi = 64π

3
√
3c

,

whereas the exact value according to formula (5.1.11) this cross section is equal

σi (exact) = 29π2

3e4c
,

where e = 2.72. The ratio of these cross sections is

e4

8π
√
3

≈ 1.25,

that is, these cross sections are nearby to each other. The accuracy of the semiclassical
cross section increases with an increase of n.

As for the frequency dependence of the photoionization cross section near the
threshold, the semiclassical and exact results for n = 1 are also similar. According to
formula (5.2.17) we have σi ∼ ω−3, while the accurate result according to formula
(5.1.10) is σi ∼ ω−8/3. The accuracy of semiclassical formulas decreases with an
increase of photon frequency ω (and correspondingly the electron velocity v). Let
us compare the cross section of photoionization at large electron velocities v (and,
respectively, the photon frequencies ω). Then the Born approximation holds true,
and the the photoionization cross section far from the threshold is given by formula
(5.1.13). Taking the ratio of the semiclassical (Kramers) and Born cross sections for
the hydrogen atom in the ground state n = 1, we have with using atomic units for
large photon frequencies (ω � 1)

σi (Kramers)

σi (exact)
=

√
ω

2
√
6

> 1.

As is seen, the semiclassical approximation is not applicable far from the threshold.
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5.3.2 Bremsstrahlung Processes Involving Electrons

We now study radiative processes resulted from the interaction of free electrons
with atoms and ions, i.e. the bremsstrahlung process involving electrons (this term
follows from the German word “die Bremsstrahlung”). In this case scattering of an
electron on an atom or ion results from its interaction with a center of force. Let at
the beginning the electron wave vector be q, and scattering on a center of force be
q′, and the scattering process is accompanied by photon emission of a frequency ω.
Because of the law of energy conservation, we have

�ω = �
2

2me

(
q2 − q′2) (5.3.5)

Using formula (1.2.20) for the rate of spontaneous radiation (nω = 0) and normalized
the electron wave function in the initial and final states in the standard manner, one
can obtain for the bremsstrahlung rate

dwb = 4ω3

3�c3
∣∣Dqq′

∣∣2 dq
(2π)3

where the summation is fulfilled over final photon states. Here the dipole moment
equals D = −er where r is the electron coordinate. We neglect displacement of the
nucleus during this process.

The flux density of incident electrons is

j = �

2mei

(
ψ∗
q∇ψq − ψq∇ψ∗

q

) = �q
m

,

since far from the scattering center, the electron wave function is ψq = exp (iqr). In
addition, the energy conservation law (5.3.5) gives

dω = �q ′dq ′

me

Dividing the transition rate on the incident flux density, we have for the cross
section of bremsstrahlung

dσb

dω
= e2m2

eω
3q ′

6π3�3c3q

∫ ∣∣rqq′
∣∣2 d�q′ , (5.3.6)

where d�q′ is the element of solid angle into which an electron is scattered in
collision. Let us simplify formula (5.3.6) assuming the system to be spherically
symmetric. This allows us to expand the electron wave function over the Legendre
polynomials in the form
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ψq(r) = 1

r

∞∑
l=0

i l (2l + 1) Pl
(
cos θqr

)
ul (q, r) .

The same expansion takes place for the wave function ψq′ (r) of the final state. Let
us evaluate first the integral

I =
∫ ∣∣rqq′

∣∣2 d�q′

that with accounting for the above expansions has the form

I =
∑

l,l ′,p,p′
Rll ′ Rpp′ (2l + 1)

(
2l ′ + 1

)
(2p + 1)

(
2p′ + 1

)×

×
∫

cos θrr′ Pl
(
cos θqr

)
Pl ′

(
cos θq′r

)
Pp

(
cos θqr′

)
Pp′

(
cos θq′r′

)
d�rd�r′d�q′

Here indices of the angle θ indicate vectors between them this angle is taken, and
d� is the element of solid angle for the direction shown by the subscript vector. The
radial matrix element has the form

Rll ′ =
∞∫

0

ul (q, r) ul ′
(
q ′, r

)
rdr

The final cross section of bremsstrahlung will be expressed through these matrix
elements.

We first integrate over the solid angle d�q′ with using the addition theorem for
the Legendre polynomials

Pp′
(
cos θq′r′

) = Pp′
(
cos θq′r

)
Pp′ (cos θrr′) +

+ 2
∑
m

(
p′ − m

)!
(p′ + m)! P

m
p′
(
cos θq′r

)
Pm
p′ (cos θrr′) cos

(
mϕq′

)

Taking into account the orthogonality property of the Legendre polynomials, we
obtain from this

I = 4π
∑
l,l ′,p

Rll ′ Rpp′ (2l + 1)
(
2l ′ + 1

)
(2p + 1) ×

×
∫

cos θrr′ Pl
(
cos θqr

)
Pl ′

(
cos θq′r

)
Pp

(
cos θqr′

)
d�rd�r′
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Integrating over the solid angle d�r′ , we use the recurrence relation for the Legendre
polynomials

(
2l ′ + 1

)
x Pl ′(x) = (

l ′ + 1
)
Pl ′+1(x) + l ′Pl ′−1(x),

as well as the above addition rule for the Legendre polynomials and the orthogonality
property. As a result, we obtain

I = 16π2
∑
l,l ′,p

Rll ′ Rpp′ (2l + 1) ×

×
∫

Pl
(
cos θqr

)
Pp

(
cos θqr

) [(
l ′ + 1

)
δp,l ′+1 + l ′δp,l ′−1

]
d�r

or

I = 64π3
∞∑
l=0

[
l R2

l,l−1 + (l + 1) R2
l,l+1

]

This expression may be rewritten in the form

I = 64π3
∞∑
l=0

(l + 1)
[
R2
l,l+1 + R2

l+1,l

]

Substituting this expression in formula (5.3.6), we obtain the cross section of
bremsstrahlung for an electron scattered by a spherical atomic particle

dσb

dω
= 32meω

3q ′

3�c3aoq

∞∑
l=0

(l + 1)
[
R2
l,l+1 + R2

l+1,l

]
(5.3.7)

One can simplify this expression on the basis of additional assumptions. Let us
determine the cross section for emission of bremsstrahlung photons of long wave-
lengths, if the energy of the emitted photon is small compared to that of the electron,
that is, �ω 	 q2/2me. Let us use the asymptotic expression for the radial wave
function of a scattered electron far from the scattering center, that has the form

ul (q, r) = 1

q
sin

(
qr − πl

2
+ δl

)
,

where δl is the partial scattering phase. In this case we assume that the main contribu-
tion to the the radial matrix elements Rl,l+1 that is responsible for bremsstrahlung, is
determined by large distances between a scattered electron and the scattering center.
Then we obtain
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Rl,l+1 = 1

qq ′

∞∫

0

sin

(
qr − πl

2
+ δl (q)

)
sin

(
q ′r − π(l + 1)

2
+ δl+1

(
q ′)) rdr

Excluding from this expression a strongly oscillating term, because |q − q ′| 	 q,
we obtain

Rl,l+1 = 1

2q2

∞∫

0

cos
[(
q − q ′) r + π

2
+ δl (q) − δl+1 (q)

]
rdr,

where we replace q ′ by q if it is possible. As is seen, the main contribution to
the integral comes from r ∼ 1/(q − q ′). One can evaluate this integral by twice
integration by parts and excluding strongly oscillating terms. As a result, we obtain

Rl,l+1 = sin
[
δl (q) − δl+1 (q)

]
2q2(q − q ′)2

Evaluating the matrix element Rl+1,l in the same manner, one can transform formula
(5.3.7) for the cross section of bremsstrahlung in the case of emission of long wave
photons to the form

dσb

dω
= 32meω

3

3�c3ao

1

2q4(q − q ′)4

∞∑
l=0

(l + 1) sin2 (δl (q) − δl+1 (q))

Introducing the electron energy ε = �
2q2/(2me) and the photon frequency ω =

�q(q − q ′)/me, one can obtain finally under the criterion �ω 	 ε

dσb

dω
= 16�e2

3m2
ec

3ω

∞∑
l=0

(l + 1) sin2 (δl (q) − δl+1 (q)) (5.3.8)

Note that if this cross section is integrated over ω, one can obtain the logarithm
divergence. This means that the perturbation theory is violated at low frequencies.

Let us estimate the minimum emitted frequency ωmin above which the expression
(5.3.8) holds true. The probabilityw of the photon emission must be small within the
framework of the perturbation theory, and emission of a single photon must be more
probable than emission of two photons and more. However, at small photon frequen-
cies, ω → 0, this is not true, since the number of emitted photons becomes infinitely
large. According to formula (5.3.8) one can give the estimate for the probability to
emit with a frequency above ω as the ratio of the cross section σb of bremsstrahlung
to the scattering cross section

w ∼
(mec

�

)2
σb ∼ e2

�c
ln

ε

�ω
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Therefore the criterion

e2

�c
ln

ε

�ωmin
< 1, or �ωmin > ε exp

(
−�c

e2

)
= ε exp(−137)

gives the limit of the applicability of formula (5.3.8) for the bremsstrahlung cross
section that is based on the perturbation theory.

Wenowdetermine the bremsstrahlung cross section for scattering of a fast electron
by an ion on the basis of formula (5.3.6). Let us replace the matrix element of the
electron coordinate by the matrix element of the electron momentum, using pqq′ =
imeωrqq′ . For determination the matrix element pqq′ , we employ the wave function
in the momentum space. Because of a large electron velocity, we use perturbation
theory for the electron wave function. This gives

ψq (q1) = δ(q − q1) + 2me

�2
(
q2 − q2

1

)V (
q − q1

)
,

where V
(
q − q1

)
is the Fourier transform of the interaction potential. One can use

the same procedure for the wave function of the electron in the final state. Within the
framework of first-order perturbation theory with respect to the interaction, one can
represent the matrix element of the momentum operator in the form

pqq′ =
∫

2me�

�2
(
q ′2 − q2

1

)V (
q′−q1

)
qδ

(
q′ − q1

)
dq1+

+
∫

2me�

�2
(
q2 − q2

1

)V (
q − q1

)
q′δ

(
q′ − q1

)
dq1

= q − q′

ω
V

(
q − q′) ,

where

�ω = �
2

2me

(
q2 − q ′2)

From this, we obtain the expression for the cross section of bremsstrahlung in the
Born approximation

dσb

dω
= e2m2

eω
3q ′

6π3�3c3q

1

m2
eω

2

1

ω2

∫ ∣∣q − q′∣∣2 ∣∣V (
q − q′)∣∣2 d�q′

In the case of electron scattering on the nucleus of a charge Z , the interaction
potential between an electron and ion is V = −Ze2/r , where Z and its Fourier
transformation is
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V
(
q − q′) = − 4πZe2

|q − q′|2

On the basis of this expression, one can determine the integral

∫ ∣∣q − q′∣∣2 ∣∣V (
q − q′)∣∣2 d�q′ = 16π2Z2e4

∫
d�q′

|q − q′|2 =

32π2Z2e4
1∫

−1

dx

q2 + q ′2 − 2qq ′x
= 32π2Z2e4

qq ′ ln

∣∣∣∣q + q ′

q − q ′

∣∣∣∣

Here θ is the angle between the vectors q and q′. From this we obtain the expression
for the cross section of bremsstrahlung from an electron scattered by an ion with a
charge Z

dσb

dω
= 16Z2

3q2ω

(
e2

�c

)3

ln

∣∣∣∣q + q ′

q − q ′

∣∣∣∣ (5.3.9)

The validity of the Born approximation for the scattering of a particle in a Coulomb
field is better the higher is the velocity of this particle. The criterion for the validity
of the Born approximation has the form Ze2/(�c) 	 1. Note that, as in the previous
case, the cross section for emission of soft photons integrated over frequencies ω
diverges logarithmically. In the other limiting case q ′ = 0, i.e. the total electron
energy is transferred to a formed photon, this cross section is zero. Outside the Born
approximation, both limiting cases give nonzero results.

We now consider bremsstrahlung in scattering of a slow electron on an atom.
Then our task is determination of the sum of formula (5.3.7)

∞∑
l=0

(l + 1)
[
R2
l,l+1 + R2

l+1,l

]

The difference q − q′ is not small now compared with q, and we must take into
account the main contribution to the matrix element Rl,l+1 comes from distances r ∼
1/q → ∞. Then one can use asymptotic formulas for the electron wave functions far
from the scattering center, where thesewave functions are close to thewave functions
of a free electron, if a force center is absent. Let us denote the matrix element as
R(0)
l,l+1 in the latter case in contrast to Rl,l+1 in the case of electron scattering on a

force center. Because free electrons do not radiate, we have

∞∑
l=0

(l + 1)
[
R(0)2
l,l+1 + R(0)2

l+1,l

]
= 0 (5.3.10)
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Note that the maximum difference between the matrix elements Rl,l+1 and R(0)
l,l+1

relates to small l. At low electron energies only l = 0 gives the contribution to the
cross section, so that one can take Rl,l+1 = R(0)

l,l+1, l �= 0. Then we have

∞∑
l=0

(l + 1)
[
R2
l,l+1 + R2

l+1,l

] = R2
01 − [R(0)

01 ]2 + R2
10 − [R(0)

10 ]2

We now evaluate thematrix element R(0)
01 . The corresponding electronwave functions

are

u0 (q, r) = sin qr

qr
, u1 (q, r) = 1

q

(
cos qr − sin qr

qr

)

On the basis of these wave functions we obtain

R(0)
01 = 1

qq ′

∞∫

0

r sin qr

(
cos q ′r − sin q ′r

q ′r

)
dr =

= 1

2qq ′

∞∫

0

r
[
sin

(
q + q ′) r − sin

(
q − q ′) r] dr−

− 1

2qq ′2

∞∫

0

[
cos

(
q − q ′) r − cos

(
q + q ′) r] dr

Each of the four terms in this integral gives zero after integration. The contribution
from r → ∞ is zero because of the strong oscillations of trigonometric functions.
Thus, one obtains R(0)

0,1 = 0. Thematrix element R(0)
10 can be obtained from thematrix

element R(0)
01 by replacing q � q ′ that gives R(0)

10 = 0.We can find also that all matrix
elements R(0)

l,l+1 = R(0)
l+1,l = 0. It follows also from formula (5.3.10) which contains

the sum of positive terms.
For evaluation the matrix elements R01 and R10, we use the asymptotic expression

for the wave function u0 for a slow electron, which is

u0 (q, r) = sin (qr + δ0)

qr
,

since the integral is determined by large distances r between an electron and atom.
The scattering phase δ0 relates to scattering of s-electron on an atom, and at low
electron energies this phase equals δ0 = −Lq, where L is the electron scattering
length and does not depend on q. For the state l = 1 we use the wave function of a
free electron. As a result we have
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R0,1 = 1

2qq ′

∞∫

0

r
[
sin

[(
q + q ′) r + δ0

] − sin
[(
q − q ′) r + δ0

]]
dr−

− 1

2qq ′2

∞∫

0

[
cos

[(
q − q ′) r + δ0

] − cos
[(
q + q ′) r + δ0

]]
dr

Evaluating this integral, one obtains taking into account that δ0 = −Lq 	 1

R0,1 = 2Lq ′
(
q2 − q ′2

)2

The value R10 may be obtained from R01 by replacing q → q′ and q ′ → q, so that

R10 = 2Lq(
q2 − q ′2

)2 ,

and thus we obtain

∞∑
l=0

(l + 1)
[
R2
l,l+1 + R2

l+1,l

] = 4L2
(
q2 + q

′2)
(
q2 − q ′2

)4 = σe
q2 + q

′2

π
(
q2 − q ′2

)4 ,

where σe = 4πL2 is the cross section of elastic scattering of a slow electron on a
given atom. Substituting these expressions in formula (5.3.7), we obtain for the cross
section of bremsstrahlung as a result of scattering of a slow electron on an atom

dσb

dω
= 32meω

3q ′

3�c3aoq
σe

q2 + q
′2

π
(
q2 − q ′2

)4

Let us express the electron wave vectors q and q ′ through the energy of an emitted
photon

�ω = �
2

2me

(
q2 − q

′2
)

and the energy of the incident electron

ε = �
2q2

2me

This gives

dσb

dω
= 4

3π

e2

mec3
(2 − �ω/ε)

√
1 − �ω/ε

(�ω/ε)
σe (5.3.11)
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The cross section of bremsstrahlung increases monotonically as the frequency ω
decreases. For soft photons (�ω 	 ε) formula (5.3.11) gives

dσb

dω
= 8

3π

e2ε

mec3
σe

�ω
(5.3.12)

This result follows also from formula (5.3.8) if we take into account only the term
with l = 0 in the sum over l and substitute δ0 = −Lq 	 1. Note that, as well as in
the previous case, the cross section of bremsstrahlung according to formula (5.3.11)
becomes zero at �ω = ε, if the total initial electron energy is transformed into the
energy of an emitted photon.

In the classical limit we use formula (1.2.30) for the intensity of dipole radiation
and within the framework of the classical physics evaluate the total electron energy
that is consumed on radiation in one collision event. Introducing the impact parameter
ρ of collision, one can obtain for the radiation intensity I as a result of bremsstrahlung

dI

dω
= �ω

dσb

dω
= 8πe2ω4

3c3

∞∫

0

|rω|2 2πρdρ, (5.3.13)

where rω is the Fourier component for the electron space coordinate.
The classical approximation holds true if the photon energy �ω is small compared

to a typical atomic energy. One can see that there is no dipole radiation in the collision
of two electrons. Indeed, the operator of the dipole moment for two electrons is
e (r1 + r2) = 2eR, where R is the coordinate of the center of mass for the electrons.
Bremsstrahlung is accompanied by a change of the electron energy in the center-of-
mass frame of reference, that is, to a change of relative positions of electrons. One can
see that bremsstrahlung does not lead to a change inR. Separating space coordinates
of two electrons in those related to their relative positions and coordinates of the
center-of-mass, one can obtain because of the state of the center-of-mass of particles
is not changed as a result of pair collisions, the matrix element of the dipole operator
is zero in collisions of two electrons. Thus, the bremsstrahlung process is not realized
in collision of two electrons.

We now calculate the cross section of bremsstrahlung as a result of scattering of
a slow electron on an ion, if the energy of an incident electron is small compared
to typical atomic energies. We use the Kramers formula for the photorecombination
cross section (5.3.4) in collisions between a slow electron and ion that is expressed
in atomic units and results in formation of Rydberg atomic states

σr = 16π

3
√
3

1

v2n3ωc3

The photorecombination process transits into the bremsstrahlung one, if the photon
energy �ω is less than the energy of an incident electron. In atomic units the law of
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conservation energy for the photorecombination and bremsstrahlung processes has
the form

ω = 1

2n2
+ v2

2
,

so that, differenting this relation, one can obtain dω = −dn/n3. The recombination
cross section of an electron and ion with emission of a photon and electron transition
to the Rydberg state with the principal quantum number n may be obtained from this
if we get dn = 1 in this formula. If dn = s, one can find the photorecombination
cross section through s neighboring equidistant Rydberg states. Then the Kramers
formula (5.3.4) leads to the following expression for the bremsstrahlung cross section
which is given in atomic units

dσb = 16π

3
√
3

dω

v2ωc3

One can rewrite this expression for the bremsstrahlung cross section in usual units
introducing in it the charge Z of the atomic ion

dσb

dω
=

(
e2

�c

)3 16π�
2

3
√
3m2

ev
2

Z

ωc
(5.3.14)

The criteria for the validity of this formula is

mee4

�3
� ω � mev

3

e2
, (5.3.15)

i.e. formula (5.3.14) holds true for emitted frequencieswhich are restricted both above
ωmax = mee4/�

3 and downωmin = mev
3/e2.According to the conditionω 	 m4

e/�
3,

the radiative frequency is small compared to a typical atomic energy that requires the
electron motion to be slow. This allows one to use the classical description for the
electron. In order to explain the lower frequency limit, let us introduce the minimum
distance rmin between an electron and ion at a given impact parameter ρ of collision
where an attraction between them is maximal. This distance is determined from the
condition that the Coulomb attractive potential is equal to the centrifugal electron
energy, i.e.,

e2

rmin
∼ mev

2ρ2

r2min

This gives

rmin ∼ ρ2ε

e2
,
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where ε = mev
2/2 is the electron energy far from an ion. Let us estimate the impact

parameter ρwhich gives themain contribution to emission of a photonwith frequency
ω. This frequency is of the order of ω ∼ vmax/rmin, where vmax is the maximum
electron velocity that corresponds to the minimum distance between an electron and
an ion. The latter velocity follows from the momentum conservation law mevρ =
mevmaxrmin, that gives vmax = vρ/rmin. From this it follows

ω ∼ vρ

r2min

,

or

ω ∼ e4v

ε2ρ3

Thus, we find

ρ ∼
(
e4v

ε2ω

)1/3

; rmin ∼ ρ2ε

e2
∼

(
e2v2

εω2

)1/3

We have that formula (5.3.14) holds true under the condition rmin 	 ρ, where
the centrifugal energy is much larger than the kinetic energy. Thus, we have two
limits of validity of the bremsstrahlung cross section (5.3.14). The low limit of the
criterion (5.3.15) gives the Coulomb electron-ion interaction at minimum approach
exceeds significantly the electron kinetic energy far from the ion, that is the closest
electron-ion approach rmin is small compared to the impact parameter ρ of collision,
so that the Coulomb interaction is determined bremsstrahlung emission, as it was
used above. Another criterion (5.3.15) requires the classical character of this process.
Indeed, the classical description of this collision process is valid, if large collision
momenta

l = meρv

�
∼

(
mee4

�3
ω

)1/3

� 1

gives the main contribution to the cross section. Thus, the upper limit of the criterion
(5.3.15) is the semiclassical criterion. Finally, the Kramers formula (5.3.14) for the
bremsstrahlung cross section has a simple form, but this is realized in a restricted
range of frequencies in accordance with criterion (5.3.15).

5.3.3 Radiation of Dissociative Air

The above results for photorecombination and bremsstrahlung in electron-ion col-
lisions may be used for the analysis various cases of ionized gases. As an example
of this, we below consider radiation of the plasma channel which is formed in at-
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mospheric air during propagation through it a lightning electric current. Lightning is
a complex phenomenon in the Earth’s atmosphere [33–39], where the electric cur-
rent passes between regions which has a different electric potential. The lightning
phenomenon includes several stages, and from the standpoint of plasma emission
we consider radiation of a plasma channel through which the electric current passes.
In particular, this stage is the recurrent stroke, where discharging results from the
electric current propagation through the conductive channel that is similar to a spark
discharge [40]. There is a wide range of lightning parameters [33–36, 38], and we
take below its average parameters, namely, the average electric field strength in the
course of the thunderstorm weather E = 200 V/cm, during a time τ = 70µs of this
stage a current of I = 30 kA passes through the conductive channel, and a radius of
a glowing channel is several cm. In addition, spectroscopic measurement far from
lightning which are based on comparison the intensities of different spectral lines of
atmospheric atoms and ions gives the lightning temperature 20000–30000 K. The
analysis shows that the channel contains a fully ionized plasma with the number den-
sity of electrons and ions Ne ∼ 1018 cm−3. From the conductivity of this plasma at
the indicated temperature it follows that the plasma radius which is provided indicat-
ed parameters is r ≈ 0.3 cm [18], i.e. this plasma is nonuniform in the longitudinal
direction. We will be guided below the parameters at the channel center.

In this analysis we will be guided by the above parameters (E = 200V/cm, I =
30 kA, τ = 70µs, r = 0.3 cm) and estimate the radiative specific energy. Note that
the sound velocity inside the conductive channel is cs ∼ 105 cm/s, i.e. a time of es-
tablishment of an external pressure is τp ∼ 1µs, i.e. an identical pressure inside the
conductive channel and outside it is supported in the course of the current propaga-
tion. In addition, the conductive channel gas is fully dissociated and ionized under
indicated conditions. Radiation in the conductive channel is determined by pho-
torecombination and bremsstrahlung processes involving electrons and ions of this
plasma according to the scheme

e + A+ → e′ + A+; e + A+ → A(n) (5.3.16)

Here e, e′ are the incident and scattered electrons, A(n) is an excited atom with the
principal quantum number n. The first process corresponds to the bremsstrahlung
at the electron-ion scattering, while the second one corresponds to the electron-ion
photorecombination. In this analysis an electron can be considered as a classical
particle, that is, a highly excited atom is produced in the course of the recombination
process. We can unify both processes and use the Kramers formula (5.3.14) for their
cross sections. Accordingly, the cross section dσ for scattering of a classical electron
which moves with the speed v and forms in the end a bound state with the principal
quantum number n is given by formula (5.3.14) that in usual units has the form

dσ

dω
= 16πe6

3
√
3m2

ec
3v2

1

�ω
(5.3.17)
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This expression is valid both for the bremsstrahlung and for the recombination
electron-ion process. Let us restrict by the photorecombination process which gives
the main contribution to the radiation power. Then we have for the the photorecom-
bination cross section expressed in usual units and related to formation of highly
excited atom with the principal quantum number n

σr = 16πe10

3
√
3mec3v2n3�4ω

(5.3.18)

It is seen from this, that the main contribution to the radiation power is determined
by small n. Though this expression is valid for large n we use below this formula for
n = 1 of the excited atom, based on the above experience, that the Kramers formula
leads to an error of 25% for the photoionization cross section from the ground state
of the hydrogen atom.

The specific radiation power Wrad per unit volume of a uniform plasma is given
by

Wrad = 〈NeNi�ωσr 〉 =
(
e2

�c

)3 16πe4

3
√
3men3

〈
1

v

〉
(5.3.19)

We consider quasi-neutral plasmas, where the number densities of electrons Ne

and ions Ni are equal, i.e. Ne = Ni . Assuming the Maxwell distribution function of
electrons over velocities, we have

〈
1

v

〉
=

√
2me

πTe
,

where Te is the electron temperature. This leads to the radiation power per unit
volume as a result of the photorecombination of electrons and ions

Wrad = N2
e

(
e2

�c

)3
16

√
2π

3
√
3

e4

n3
√
meTe/εo

= N2
e wo

n3
√
Te/εo

, wo =
(
e2

�c

)3
16

√
2π

3
√
3

e2�

me
,

(5.3.20)

where εo = mee4/�
2 = 27.2eV is the atomic unit of the energy. Note that in the case

under consideration, where the plasma located in a cylinder tube of a radius r , the
radiation power per unit length Prad with electron transition in a bound state with the
principal quantum number N is equal

Prad = N 2
e por

2

n3
√
Te/εo

, po = πwo =
(
e2

�c

)3 16π
√
2π

3
√
3

e2�

me
(5.3.21)
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Let us return to the problem of radiation of the lightning channel. Taking typ-
ical parameters of the lightning plasma which are given above, namely, Ne =
1018 cm−3, Te = 20000K, r = 0.3 cm. One can obtain for n = 1 wo = 8 · 10−32

W · cm3,Wrad = 3 · 105 W/cm3 and Prad = 9 · 104 W/cm. For comparison, the spe-
cific power resulted from the electric current pass is I E = 6 · 106 W/cm, i.e. two
orders of magnitude higher than that due to photorecombination. Note that in this
evaluation we assume that the radiative plasma is optically think. This is valid if the
specific power of radiation Prad is small compared with that Pb of a black body with
the same temperature. The Stephan–Boltzmann law gives now

Pb = σT 4
e · 2πr,

whereσ = 5.67 · 10−12 W/(cm2 · K4) is the Stephan–Boltzmann constant.Using the
above parameters, one can obtain on the basis of this formula Pb = 2 · 106 W/cm.As
is seen, the assumption about optically transparent plasma holds true. Note also that
thoughwe concentrate by radiation of a plasma columns formed in the atmosphere as
a lightning channel, a similar object aswell as radiative processes under consideration
are realized in other systems. In particular, lamps of high pressure as sources of a
power radiation of awide continuous spectrum both in visible range and in ultraviolet
ones take place use the plasma which are similar to this one.

5.4 Reflection of Radiowaves from Ionosphere

5.4.1 Reflection of Radiowaves by the Ionosphere E-Layer

The dielectric permittivity of the ionosphere related with free electrons is [41]

ε = 1 − 4πNee2

meω2
(5.4.1)

Here ω is the radiowave frequency, and ne is the electron number density. We can
neglect the contribution of neutral molecules into the medium polarization. E-layer
of the ionosphere corresponds to the altitudes of 90–140 km. In this region the
experimental electron number density ne is the linear function of the altitude z.
Hence, we can express the dielectric permittivity in the form

ε (z) =
(ωp

ω

)2 z0 − z

l
, (5.4.2)

where the quantity l determines the speed of increasing of electron number den-
sity with altitude. When z = z0 we have ε (z0) = 0. The plasma frequency ωp =√
4πNmax

e e2/m corresponds to the maximum altitude z0 and to the maximum elec-
tron number density Nmax

e . At the lower boundary z = z1 of E-layer ne = 0 and
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ε ≈ 1. In practice we have Ne = 2 · 104 cm−3 at z = z1 = 90 km and Ne = 105

cm−3 at z = zmax = 140 km. Then it follows from formula (5.4.2) that

z0 − z1
l

=
(

ω

ωp

)2

In the case ω > ωp we have z0 > z1 + l = zmax and electromagnetic waves with
these frequencies penetrate through the E-layer. Oppositely, for ω 	 ωp we have
z0 → z1.

We now consider the electromagnetic wave which propagates along the vertical
direction z. The Maxwell equation for the electric field strength E is

∂2E

∂z2
+ εω2

c2
E = 0 (5.4.3)

One can rewrite this equation with taking into account (5.4.2)

∂2E

∂z2
+ z0 − z

d3
E = 0 (5.4.4)

Here d3 = l
(
c/ωp

)2
. The quantity d is the distance where the electric field strength

E changes significantly. This quantity does not depend on the radiowave frequency
ω. Formula (5.4.4) may be simplified with using new independent dimensionless
variable u = (z0 − z)/d

∂2E

∂u2
+ uE = 0 (5.4.5)

This is so called Airy equation. It has the analytic solution when u >> 1 :

E(z, t) = A

u1/4
cos

(
2

3
u3/2 − π

4

)
exp (−iωt) (5.4.6)

If u < 0 (z > z0), the solution of equation (5.4.5) exponentially decreases. Thus
corresponds to reflection of the radiowave by plasma of the E-layer. The value of
z0 determines the reflection altitude. The experimental value is z0 = 130 km for the
frequency ν = ω/2π = 4 MHz. It should be noted that the plasma frequency on the
upper border of the E-layer at the electron number density of Ne = 105 cm−3 is
ωp = 2 · 107 s−1. The thickness of the E-layer is l = 50 km. Hence,

d =
[
l

(
c

ωp

)2
]1/3

= 0.2 km 	 z0

This small value determines the typical distance where the electric field of the ra-
diowave exponentially decreases.
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5.4.2 Reflection of Radiowaves by the Ionosphere F-Layer

The experimental electron number density in the ionosphere F-layer (140–300 km)
can be approximated by the parabola

ne(z) = nmax
e

[
1 − a

(
z − zm
zm

)2
]

, (5.4.7)

Here nmax
e = 7 · 105 cm−3 is the maximum value of the electron number density,

zm = 250 km is the altitude, where this maximum is achieved, and a = 14. The
altitude z0 from which the radiowave is reflected, is determined from equation

ε (z0) = 1 − 4πe2ne (z0)

mω2
= 0 (5.4.8)

Substituting formula (5.4.7) in (5.4.8), one can obtains

ε0

1 + ε0
= a

(
zm − z0

zm

)2

, (5.4.9)

where the notation is introduced

ε0 = 4πe2nmax
e

mω2
− 1 > 0 (5.4.10)

It follows from this equation that

zm − z0 = zm

√
ω2

p − ω2

aω2
p

(5.4.11)

In the case ω = ωp we have from formula (5.4.11) zm = z0 and according to
classical mechanics the radiowave with this frequency penetrates inside the F-layer.
However, it is known from quantummechanics that the penetration coefficient in this
case is equal 0.5. Ifω < ωp, penetration of a radiowave inside F-layer is exponentially
small in the quantum consideration. On contrary, if ω > ωp, the exponentially small
probability of quantum reflection of the radiowave by the parabolic barrier is given
by

w = exp

(
−πω2zmεo

cωp
√
a

)
	 1 (5.4.12)

We have zm ∼ 250 km and c/ωp ∼ 5 m, so that the exponent in formula (5.4.12) is
larger than one at ω > ωp.



References 189

References

1. B.M. Smirnov, Physics of Ionized Gases (Wiley, New York, 2001)
2. G.S. Hurst, M.H. Nayfeh, J.P. Young, Phys. Rev. A 15, 2283 (1977)
3. L.J. Radziemski, R.W. Solarz, J.A. Paisner (eds.), Laser Spectroscopy and Its Applications

(Marcel Dekker, New York, 1987)
4. V.N.Ochkin,N.G. Preobrazhensky,N.V. Shaparev,OptphalvanicEffect in IonizedGas (Gordon

and Breach, London, 1998)
5. V.N. Ochkin, Spectroscopy of Low Temperature Plasma (Wiley, Berlin, 2009)
6. C.R. Dockery, S.R. Goode, Appl. Opt. 42, 6153 (2003)
7. B.M. Smirnov, Negative Ions (McGrow Hill, New York, 1982)
8. https://en.wikipedia.org/wiki/Photosphere
9. https://scied.ucar.edu/sun-photosphere
10. https://nssdc.gsfs.nasa.gov/planetary/factsheet
11. M.N. Saha, Proc. Roy. Soc. 99A, 135 (1921)
12. D.J. Mullan, Physics of the Sun (CRC Press, Boca Raton, 2009)
13. S.J. Smith, D.S. Burch, Phys. Rev. 116, 1125 (1959)
14. D. Feldman. Zs.Naturforsch 25, 621 (1970)
15. M. Ackerman, in Mesospheric Models and Related Experiments, ed. by G. Fiocco (Springer,

New York, 1971)
16. U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, 1976)
17. M.J. McEwan, L.F. Phillips, Chemistry of the Atmosphere (Halsted Press, New York, 1975)
18. B.M. Smirnov, Microphysics of Atmospheric Phenomena (Springer, Switzerland, 2017)
19. K. Watanabe, E.C.Y. Inn, M. Zelikoff, J. Chem. Phys. 21, 1026 (1953)
20. J.W. Chamberlain, Theory of Planetary Atmospheres: An Introduction to their Physics and

Chemistry (Academic Press, Orlando, 1987)
21. M. Griggs, J. Chem. Phys. 49, 857 (1968)
22. R.P. Wayne, Ann. N. Y. Acad. Sci. 171, 199 (1970)
23. K.N. Liou, An Introduction to Atmospheric Radiation (Academic Press, Amsterdam, 2002)
24. M.H. Hirsch, P.N. Eisner, J.A. Slevin, Phys. Rev. 178, 175 (1969)
25. R.E. Huffman, J. Geophys. Res. (e.a.) 76, 1028 (1971)
26. H.V. Neher, J. Geophys. Res. 72, 1527 (1967)
27. H.V. Neher, J. Geophys. Res. 76, 1637 (1971)
28. T.F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994)
29. E.T. Whittaker, G.N. Watson, Modern Analysis (Cambridge University Press, London, 1940)
30. V.P. Krainov, H.R. Reiss, B.M. Smirnov, Radiative Processes in Atomic Physics (Wiley, New

York, 1997)
31. H.A. Kramers, Phil. Mag. 46, 836 (1923)
32. H. Figger, G. Leuchs, R. Strauchinger, H. Walther, Opt. Commun. 33, 37 (1980)
33. M.A. Uman, Lightning (McGrow Hill, New York, 1969)
34. J. Latham, I.M. Stromberg, The thunder cloud, in Lightning, ed. by R.H. Golde (Academic

Press, London, 1977), p. 99
35. M.A. Uman, About Lightning (Dover, New York, 1986)
36. M.A. Uman, The Lightning Discharge (Academic Press, New York, 1987)
37. E.M.Bazelyan,Y.Raizer,LightningPhysics and LightningProtection (IOPPublishing, Bristol,

2000)
38. V.A. Rakov, M.A. Uman, Lightning, Physics and Effects (Cambridge University Press, Cam-

bridge, 2003)
39. J.R. Dwyer, M. Uman, Phys. Rep. 534, 147 (2014)
40. E.M. Bazelyan, Y. Raizer, Spark Discharge (CRC Press, Roca Baton, 1997)
41. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

https://en.wikipedia.org/wiki/Photosphere
https://scied.ucar.edu/sun-photosphere
https://nssdc.gsfs.nasa.gov/planetary/factsheet


Chapter 6
Photon Interaction with Clusters
and Microparticles

Abstract There are various mechanisms of particle interaction with photons that
cause photon absorption. In the case of dielectric particles it results from interac-
tion of the radiation field with a particle dipole moment which is induced by this
field. Absorption of infrared radiation by a particle proceeds by excitation of internal
degrees of freedom that in the case of separation of the particle in molecules corre-
sponds to molecular vibrations and rotations. The latter is of importance for radiative
transitions in aerosols, i.e. in atmospheric particles. The interaction of metal particles
with an electromagnetic wave takes place through an electron subsystem twofold. If
the electron subsystem partakes in this interaction as a whole, the photon absorption
is determined by its plasma properties. In other case, the absorption results from
electron excitation of metal atoms which constitute the metal particle. In particular,
from the analysis of experimental data it is shown that light absorption is described
by radiative transitions in individual atoms which interact strongly with surrounding
ones. In addition, electrons of the metal particles screen an electromagnetic field, and
if a particle size is not too small, absorption proceeds in a thin layer near its surface,
or in the skin layer.

6.1 Scattering of the Electromagnetic Wave on Atomic
and Small Particles

6.1.1 Resonance Fluorescence Involving Molecules and
Atoms

Interaction of an atomic particle with an electromagnetic wave results in processes of
scattering of this wave and its absorption. Elementary processes of photon collisions
with a molecule are presented in Fig. 6.1. They include one-photon processes—
absorption and emission during photon-molecule collisions. Last three processes are
two-photon processes. Rayleigh scattering is an elastic photon-molecule process,
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Fig. 6.1 Types of photon scattering on the molecule

other two processes in Fig. 6.1, i.e. the Stokes process and anti-Stokes process, are
inelastic collisions with a loss and increase of the photon energy.

One can see the symmetry between some processes of Fig. 6.1. This symmetry is
expressed through the principle of detailed balance which connects the cross sections
of direct and inverse processes with each other. In particular, the symmetry between
one-photon processes, i.e. between processes of emission and absorption, follows
from formulas (2.2.24) and (2.2.25). We below show the connection between the
Stokes process and anti-Stokes one, i.e. two-photon processes in photon-molecule
scattering which are presented in Fig. 6.1.

Note that the most intense Stokes and anti-Stokes processes as a result of two-
photon scattering on a molecule are realized, if the first step of these processes is the
resonance photon absorption in accordance with Fig. 6.2 for molecule transitions.
Similar resonance processes for atoms are shown in Fig. 6.3; they take into account
that the final state include a group of levels which may be degenerated. These lev-
els belong to states of fine or superfine structures; we characterize each level by a
momentum J0 for the initial state and a momentum Jk for the final state, so that the
statistical weights for the initial state g0 and for the final one are

g0 = 2J0 + 1, gk = 2Jk + 1

We below determine the connection between rates of the processes of resonance
fluorescence which are shown in Fig. 6.3. These processes are detailed inverse ones,
and we use the cross section of photon absorption (2.2.24) for the total radiative
process as a transition between electron terms, and the radiative time τk0 accounts for
the radiative transition between electron terms which are identical for both radiative
processes in Fig. 6.3. In considering the transition states i and j of these processes as
to be related to the same electron state and assuming the process to be incoherent,
one can express the cross sections of the processes of Fig. 6.3 through the same
parameters. Indeed, assuming the collision character of broadening of spectral lines,
we have for the cross section of the direct radiative process using the formula (2.2.24)
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Fig. 6.2 Resonant photon scattering on a molecule, so that the first step of the radiative process is
photon absorption, and the second step is photon emission

Fig. 6.3 Resonance fluorescence in photon scattering on an atom; the initial and final states include
the corresponding group of levels

σ(ω, i → j) = 2Jk + 1

2(2J0 + 1)

πc2

ω2

1

τmiτjm

1
[
(ωji − ω)2 + (ν/2)2

] , (6.1.1)

where ωji = (Ej − Ei)/h, so that Ej, Ei are the energies of these levels, m is an
intermediate state, τmi, τjm are partial radiative lifetimes of an intermediate state m
with respect to the transition into states i and j respectively. In the same manner we



194 6 Photon Interaction with Clusters and Microparticles

have for the cross section of the inverse process

σ(ω, j → i) = 2J0 + 1

2(2Jk + 1)

πc2

ω2

1

τmiτjm

1
[
(ωji − ω)2 + (ν/2)2

] , (6.1.2)

It should be noted that if we assume the radiation to be incoherent and therefore
it is based on statistical principles, one can obtain the probability of the transition
to a state of this group of levels as 1/2J + 1. If the width of the spectral line is
determined by radiative decay of the excited state, one can obtain an estimate for the
fluorescence cross section ν ∼ 1/τmi

σ ∼ πc2

ω2
∼ πλ̄2, (6.1.3)

where λ̄ = c/ω is the photon wavelength. It is seen that this cross section does not
depend on the fine structure constant α = e2/�c unlike the analogous non-resonance
cross sections. Hence, the cross section for resonance fluorescence is much larger
(in (ωjiτji)

2 times) than the cross section for non-resonance fluorescence. Note also
that (6.1.3) is the maximum cross section of photon absorption, for the transition of
the atomic particle from the state i to the state j.

6.1.2 Raman Scattering on Atomic Particles

Raman spectroscopy is based on the elastic light scattering (see Fig. 6.1) that gives
information about molecular vibrations. In the case of the Rayleigh scattering the
energy exchange between incident and scattered photons is absent. But due to the
interaction with the molecule, a photon can obtain vibrational quanta from the
molecule, and then this process is known as anti-Stokes Raman scattering. Oppo-
sitely, if the molecule acquires vibration quanta from the photon, then the frequency
of scattered light is lower than that of the incident light, and this process is called
Stokes Raman scattering.

Combination scattering (orRaman scattering) [1–6] is photon scattering on atomic
particles or on atomic systems at which the direction of the photon motion and,
possibly, its frequency, change (Fig. 6.1). We consider here only relatively weak
intensities of the electromagnetic wave, when the radiation electric field strength is
assumed to be small compared to the atomic field strength. Then the process of the
radiation scattering on atomic particles (or systems) is a two-photon process; various
channels of this process are shown in Fig. 6.1. Participation of three andmore photons
is insignificant due to the weak radiation intensity. It is seen from Fig. 6.1 that there
are three channels of the photon scattering during its capture by a virtual level and
subsequent birth of another photon. In the case of the Rayleigh scattering the photon
with the same frequency appears, while at the Stokes and anti-Stokes scattering
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processes, the atomic particle transfers to higher, or lower level, respectively. In the
case of photon scattering on molecules, the Stokes and anti-Stokes processes allows
to determine the molecular spectrum for a given symmetry of states.

We here regard photon scattering as a two-photon process inwhich the first photon
of frequency ω1 is absorbed and a second photon of frequency ω0 is emitted, with the
simultaneous transition of an atomic electron from the initial state i to the final state
j. This process differs from fluorescence in that the final state j can differ from the
initial state i (this is so-called combination scattering or Raman scattering). Consider
first the case of resonant Raman scattering, where the photon frequency ω1 is nearly
the same as the excitation frequency ωji of the state i of the atomic electron. The
photo-absorption distribution function is given by (2.1.40). Subsequent steps in the
solution of this problem are parallel to the solution in Sect. 2.1, except that (2.1.40)
should be multiplied by the factor τj/τmj, where τmj is the lifetime of the statemwith
respect to the transition into the final state j. As a result, instead of (2.1.40) we find

σc = 2Jk + 1

2 (2J0 + 1)

πc2

ω2

1

τmjτmi

1

(ωmi − ω)2 + [1/ (2τm)]2
. (6.1.4)

In particular, the result at the exact resonance is

σmax
c = 2Jk + 1

2 (2J0 + 1)

4πc2

ω2

τ 2
k

τjmτmi
. (6.1.5)

As should be the case, this quantity is less than the maximum value for the photoab-
sorption cross section. We observe that (6.1.4) is of the same order of magnitude as
the resonant fluorescence cross section.

We now treat nonresonance Raman scattering. The probability of the two-photon
transition induced by fields with electric field strengths E1 and E2 is determined
by the second-order perturbation theory. According to the “Fermi golden rule” of
quantum mechanics we have

wij = πE2
1E

2
2

8�2

∣∣∣
∣∣

∑

m

[(
s2Djm

)
(s1Dmi)

ωji − ω1
+

(
s1Djm

) (
s2Dji

)

ωmi + ω2

]∣∣∣
∣∣

2

δ
(
ωji − ω1 + ω2

)

(6.1.6)
Here we take into account that the incident photon with the frequency ω1 is absorbed,
and the photon with the frequency ω2 is emitted.

According to results of the Chap.1 we can connect the electric field strength E of
the incident electromagnetic wave with the photon number nω

E2 = 8�ω3δω

πc3
nω

(δω is the difference of frequencies of the neighboring modes). Then, substituting
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∑

k

→ 1

δω

∫
dω, (6.1.7)

in (6.1.2), one obtains

w0m =
∣∣
∣∣∣

∑

k

[
(s2Dmk) (s1Dk0)

ωk0 − ω1
+ (s1Dmk) (s2Dk0)

ωk0 + ω2

]∣∣
∣∣∣

2

δ (ωm0 − ω1 + ω2)×

× ω1ω2dk1dk2
8π3�2

. (6.1.8)

Here we suppose that in the incident photon beam there are no photons with the
frequency ω2, that is nω2 = 0.

Since both absorbed and emitted photons in (6.1.8) have definite polarizations (s1
and s2, accordingly), then the flow density of incident photons is equal to

jω = nω1ω
2
1dω1

2π2c3
(6.1.9)

Thus it follows from (6.1.8) the expression for cross section of nonresonance com-
bination scattering

dσc = ω1ω
3
2

c4�2

∣
∣∣∣∣

∑

m

[
(s2Dmk) (s1Dmi)

ωmi − ω1
+ (s1Dmk) (s2Dmi)

ωmi + ω2

]∣
∣∣∣∣

2

d�2. (6.1.10)

In the derivation of this expression we integrated (6.1.8) over frequency ω2 of
the emitted photon, using the energy conservation law for this process. The quantity
d�2 is the solid angle of the scattered photon, and m is the index labeling the final
state of the atomic electron. The energy conservation law gives ωji − ω1 + ω2 = 0.
In particular, when the initial and final states are the same, that is, when j = i and
ω1 = ω2, (6.1.10) gives the nonresonance fluorescence cross section.

Now we calculate the cross section for photon scattering by a free electron. We
suppose that the energy of the incident photon is small as compared to the elec-
tron rest energy, that is, �ω � mec2. The photon momentum is �ω/c. The change
of photon momentum in the scattering process and the electron momentum after
scattering are of the same order of magnitude: �ω/c (excluding scattering through
very small angles). The energy gained by the electron in the collision is of the order
of (�ω)2 /

(
mec2

) ; it is small as compared to the rest energy, which is equivalent
to the statement that the velocity increment v of the electron from the scattering is
small as compared to c. The electron motion is thus nonrelativistic one. Since the
change of the energy of the photon, also ∼ (�ω)2 /

(
mc2

)
, is small compared to the

initial photon energy �ω, the photon-electron scattering is quasi-elastic, whichmeans
ω1

∼= ω2.
We shall use (6.1.10) for the calculation of the cross section assuming that ω1 =

ω2, and using the semiclassical approximation for the free electron states due to the
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semiclassical character of the initial continuum electron state i. The dipole operator
of an electron is D = −er, where r is the electron coordinate. Equation (6.1.4) leads
to

dσc = 4ω4

c4�2

∣
∣∣∣∣

∑

m

(s2rim) (s1rmi)
ωmi

ω2
mi − ω2

∣
∣∣∣∣

2

d�. (6.1.11)

We wish to evaluate the sum in (6.1.11). The coordinate axes are selected so that
s1 is along the z axis and s2 is in the xz plane. The sum is then of the form

s2x
∑

k

ωmiximzk0 + s2z
∑

m

ωmi |zmi|2 .

The first of the sums in this expression is zero because of the odd parity of the product
ωmiximzmi : it changes sign when z → −z. The second sum can be calculated using
the sum rule, (1.3.20) of the Sect. 1.3.2, for dipole transitions. The above expression
then yields

�s2z
2me

= � (s1s2)
2me

(6.1.12)

Substituting this expression into (6.1.11) for cross section of Raman scattering gives
this cross section in the form

dσ = r2e (s1s2)2 d� (6.1.13)

Here the quantity

re = e2

mec2
(6.1.14)

is the classical electron radius. Equation (6.1.13) is called the Thomson formula. It
is a purely classical result, since the Planck constant does not appear. To calculate
the total cross section, we integrate (6.1.13) over the solid angle d�. We select the
polar axis of a system of spherical coordinates to lie along the polarization vector s1
of the incident photon. The notation θ is introduced for the angle between vectors
s1 and k2. Since vectors s2 and k2 are perpendicular to each other, then we find that
s1s2 = sin θ. If the vector s2 is normal to the plane composed from vectors s1 and
k2 the cross section of scattering is zero, since then vectors s1 and s2 will be normal
to each other. Hence,

σ = r2e

∫
sin2 θd� = 8π

3
r2e . (6.1.15)

Equations (6.1.13) and (6.1.15) can be also obtained in the classical radiation
theory by solving theNewtonian equations ofmotion for induced electron oscillations
and considering the emission of secondary waves with the same frequency. The
classical results fail when the photon energy �ω is of the order of the electron rest
energy mc2 or greater. Then most of the incident photon energy is transferred to
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the electron, and the scattering is therefore inelastic. In this case, relativistic and
quantum effects will be important simultaneously, and the electron spin will be also
an essential element in the description of the scattering.

Furtherwe calculate the low-energy scattering cross section for a photon scattering
from an atom with zero angular momentum. The frequency of the photon is taken
to be small compared to typical atomic frequencies, ω � ωmi. This limit is thus
opposite to that considered for a photon scattering of a free electron with ω � ωmi.

The small frequency condition allows us to simplify (6.1.10) to

dσc = 4ω4

c4�2

∣∣∣∣∣

∑

m

(s2Dim) (s1Dmi)

ωmi

∣∣∣∣∣

2

d�, (6.1.16)

The initial state i is specified to be an S state, so that its magnetic quantum number
isMi = 0 . The state m is therefore a P state in accordance with the dipole selection
rule, and so Mm = 0,±1. We take the axis of quantization z to lie along s1. The
vector D is along the z direction. In the opposite case, the quantity Dims1 vanishes.
Hence we have

D0ks2 = (s1s2) (Dz)im . (6.1.17)

We now define the polarizability tensor

αij = 2
∑

m

(Di)im
(
Dj

)
mi

�ωmi
(6.1.18)

It follows from the above considerations thatαij is a diagonal tensor, so thatαij = αδij
and

α = 2e2

�

∑

m

|zmi|2
ωmi

. (6.1.19)

When this result is substituted into (6.1.16), we find the scattering cross section

dσ = ω4α2

c4
(s1s2)2 d� = ω4α2

c4
sin2 θd�, (6.1.20)

where θ is the angle between the polarization direction s1 of the incident photon and
the direction k2 of the wave vector of the scattered photon. After integration over the
angular coordinates, we find the total cross section for photon scattering by an atom
in the low photon frequency limit to be

σ = 8πω4α2

3c4
. (6.1.21)

We now wish to solve the same problem by the classical approach. From (1.2.31),
the intensity of scattered light is
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I(t) = 2

3c3
∣∣D̈(t)

∣∣2 , (6.1.22)

where D is the induced dipole moment produced by the field of an electromagnetic
wavewith an electric field given byE cosωt. By the definition of atomic polarizability
α, we have D = −αE cosωt. We are thus led to the intensity of scattered light
expressed as

I(t) = 2ω4α2

3c3
E2 cos2 ωt. (6.1.23)

To find the cross section, we should divide this quantity by the energy flux of
the incident radiation. This energy flux is given by the Poynting vector c [E,H] /4π,
where E and H are the electric and magnetic fields of the electromagnetic wave. In
our case, the energy flux has the magnitude cE2 cos2 ωt/4π. When we define the
scattering cross section as the ratio of the intensity of scattered light to the energy
flux of the incident radiation, we obtain

σ = 8πω4α2

3c4
. (6.1.24)

This agrees with the quantum result in (6.1.21). The advantage of the quantum-
mechanical derivation is that it makes it possible to obtain the explicit expression
for atomic polarizability. It is seen from the derivation that the scattering process
considered is purely classical one. A classical dipole moment radiates the same
frequency that is induced by the electromagnetic wave. Such scattering is called
Rayleigh scattering. It is interesting that both Rayleigh scattering (ω � ωji) and
Thomson scattering (ω � ωji) are purely classical phenomena. The maximum in
the scattering of visible light by atoms with absorption frequencies in the ultraviolet
range corresponds to the violet cut-off of the spectrum, since the scattering cross
section increases very strongly with frequency: as ω4. The limit ω � ωji holds true
nevertheless. This explains the blue color of the sky. Sunset is of a red color for
the same reason: the strong scattering of the violet part of the solar spectrum in the
direct flux of the solar rays leaves a predominance of red in the remaining part of the
sunlight.

The static polarizability can be exactly calculated for the ground state of the
hydrogen atom. The result is that α = (9/2) a3o where ao = �

2/mee2 is the Bohr
radius. Hence the cross section for the hydrogen ground state for low-energy photon
scattering, with �ω � �

2/mea2o , is given by

dσ = 81

4
r2e

(
�
3ω

me4

)4

(s1s2)2d� (6.1.25)

This expression describes accurately the elastic scattering cross section from zero
frequency up to the frequency of the first resonancewhen�ω = �ωk0 = 3me4/

(
8�2

)
.

The indices 1 and 2 refer, respectively, to the ground and first excited states of the
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hydrogen atom. An additional problem with accounting for degeneracy of the state
i with respect to magnetic quantum numbers appears in the case of nonzero angular
momentum. If the low-energy photon is scattered by an atom in an excited state,
then Raman scattering occurs as well as Rayleigh scattering, with the consequent
transition of the atom to a lower lying state m.

We now calculate the dependence of the intensity of induced Raman scattering
on the propagation distance of the photon beam in the gas. We consider (6.1.10) for
the Raman scattering cross section dσc when an atomic electron makes a transition
from the initial state i to the final state j . If we denote by N/� the density of atoms,
then the quantity

g = N

�
σc (6.1.26)

presents the number of photons with frequency ω2 that is generated in a unit distance
along the photon beam. The total Raman scattering cross section, σc, is obtained
from (6.1.10) by performing the integration over the angles of the emitted photons
of frequency ω2.

We now have nω2 �= 0, since the photons transfer from an incident beam of fre-
quency ω1 to photons of scattered light with frequency ω2. If we select coordinates
with the z axis along the propagation direction of the incident beam, then by the
requirement that each absorbed photon gives rise to a scattered photon, we have

nω1(z) + nω2(z) = const = nω1(0), (6.1.27)

where nω1(0) is the initial amount of photons in the incident beam. In the usual
scheme of quantization, each mode of oscillation is contained in the volume �, so
we suppose that the typical characteristic length along the z axis is much greater
than �1/3. We can now write balance equations that determine the dependence of
the quantities nω1(z) and nω2(z) on z. Equation (6.1.26) establishes the amount of
photons that appears in a unit length along the photon beam, under the condition that
there is one photon of frequency ω1 and no photons of frequency ω2. However, if at
the coordinate z we have the amount nω1(z) photons with frequency ω1 and nω2(z)
photons of frequency ω2 then (6.1.8) means that the amount of photons appearing in
a unit length along the beam with frequency ω2 is

w(z) = gnω1(z)
[
1 + nω2(z)

]
. (6.1.28)

Hence, the balance equations are of the simple form

dnω1(z)

dz
= −dnω2(z)

dz
= −w(z). (6.1.29)

The solution of the system (6.1.29) under the conditions (6.1.27) is elementary. We
write it in the form
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nω2(z) = exp (Gz) − 1

1 + [
exp (Gz) /nω1(0)

] , (6.1.30)

where the quantity G is defined as

G = g
[
1 + nω1(0)

] = N

�
σc

[
1 + nω1(0)

]
. (6.1.31)

The quantity G is called the increment coefficient. We see that the amount of
scattered photons increases at first linearly with z. This corresponds to the general
theory developed above in this chapter. This linear dependence occurs whenGz � 1.
When Gz ∼ 1, the linear increase becomes an exponential one. Finally, when Gz >

1, saturation takes place, nω2(z) → nω1(0), so that all photons from the incident beam
are replaced by photons in the scattered state.

The intensity of the induced Raman scattering for photons with frequency ω2 is
given by

I2(z) = c�ω2
nω2(z)

�
, (6.1.32)

where nω2(z) is determined by (6.1.27). In the linear regime, (6.1.30) becomes

nω2(z) = Gz
nω1(0)

1 + nω1(0)
, (6.1.33)

which is in good agreement with (6.1.10). If we take the volume � with the length z
in the direction of the photon beamwith frequency ω1, whereN the number of atoms
in this volume, then the cross section of the volume � is �/z. We now calculate the
energy flux through this volume for the photons of frequency ω1, and obtain

I1(z)
�

z
= c�ω1

nω1(z)

�

�

z
= −Gc�ω1

nω1(0)

1 + nω1(0)
+ c�ω1

nω1(0)

z
. (6.1.34)

Using (6.1.31) for the parameterG we rewrite the first term in (6.1.34) in the form

− N

�
σcc�ω1nω1(0) (6.1.35)

To calculate the cross section we divide (6.1.35) by the particle density N/� and by
the photon flux of the incident photons c�ω1nω1(0). As should be expected, we obtain
σc, the Raman scattering cross section given in (6.1.10). In the nonlinear regime, the
increment coefficient G is more useful than the cross section σc.
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6.1.3 Rayleigh Scattering by Dielectric Particles

Scattering and absorption of solar light by small dielectric dust particles is produced
by their polarization in the external electric field. There is no skin-layer inside a
dielectric particle, so that the external field penetrates through the whole particle.
Besides of this, the magnetic component of scattering is small compared to the
electric part, due to absence of the conduction currents.

There are condensation nuclei, tiny suspended particles, either solid or liquid,
upon which water vapor condensation begins in the atmosphere. There are also
much smaller nuclei in the atmosphere. The discovery that the air is full of tiny
particles around which water droplets may condense to create clouds was made
by Scottish physicist John Aitken (1839–1919). Much smaller particles are called
Aitken nuclei. They ordinarily play no role in cloud formation because they do not
induce condensation unless the air is highly supersaturated with water vapor. Most
condensation nuclei are produced by wave action over the oceans and by natural and
man-made fires over land. When mixed with the more hygroscopic material, dust
and soil particles blown into the atmosphere also are sources of nuclei. Numerous
measurements provide support for the hypothesis that layers of high concentrations
of Aitken nuclei near the tops of marine clouds are due to photochemical nucleation.
Chemical factors support the view thatAitken nuclei are dielectric particles of sizes in
the range 0.01–0.1µm.On average, their concentration varies from less than 103/cm3

over oceans to 106/cm3 in urban areas. It is tentatively concluded that Aitken particles
in the troposphere account for most of the sulfate in the atmosphere.

We first consider scattering of light on the dielectric dust particles. The radius of
this particle ro is assumed to be small compared to the wavelength of the incident
light λ = 2πc/ω, that is

λ

ro
∼ c

ωr0
� 1. (6.1.36)

We assume also that the dielectric permittivity ε (ω) is not too large, i.e. the condition

1 <
√

ε � c

ωro
(6.1.37)

is fulfilled. Then we can solve the static problem (the Laplace equation) both inside
and outside of the particle. It should be noted that the inequality (6.1.37) is fulfilled
well also for polar molecules for which the dielectric permittivity ε is near unit for
light range of the electromagnetic frequencies. As a result, the temporal dependence
of the electrostatic potential can be neglected everywhere.

The Laplace equation for the electrostatic potential ϕ inside and outside of the
particle is of the form

ϕ(r, θ) = Cr cos θ; r ≤ ro; ϕ(r, θ) = (−Er + D

r2
) cos θ; r ≥ ro (6.1.38)
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Here a � λ,λe is the radius of the dust particle, and λ is the wavelength of
the incident light, λe = λ/

√
ε is the wavelength inside the particle. The quantity

E = E0 exp (−iωt) is the electric field strength of the incident light wave.
Using the continuity condition of the potential on the surface of the particle (at

r = ro), one obtains the connection between coefficients C and D

C = −E + D

r3o
. (6.1.39)

The second equation for these coefficients follows from the continuity condition for
the normal component of the electric displacement

− εC = E + 2D

r30
(6.1.40)

Excluding the quantity D from two last equations, one finds the value of C

C = − 3

ε + 2
E. (6.1.41)

Thus, the field strength of the uniform electric field inside the small dust particle
is

Ein= 3

ε + 2
E (6.1.42)

The electric polarization Pin (the dipole moment of the unit volume) is also uniform
everywhere inside the particle; it is equal to

Pin = ε − 1

4π
Ein= 3

4π

(
ε − 1

ε + 2

)
E, (6.1.43)

and the dipole moment of the whole dust particle is

p =4πa3

3
Pin =

(
ε − 1

ε + 2

)
a3E. (6.1.44)

This solution is equivalent to the well known expression for the static dipole
moment of the dielectric ball in a constant electric field. The difference is only that
(6.1.44) contains the dielectric permittivity ε (ω)which corresponds to the frequency
of the visible light, instead of the static dielectric constant εst. In the case of polar
dielectrics the quantity εst can be several decimal orders of magnitude larger than
the dielectric permittivity ε (ω) in the light frequency range. Now we determine the
differential cross section of scattering; it is obtained from (6.1.20) by substitution the
polarizability which is equal to ratio of the dipole moment (6.1.44) by the electric
field strength of the incident light wave:
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dσs =
(

ε − 1

ε + 2

)2 ω4r6o
c4

(
1 − sin2 ϑ cos2 ϕ

)
d�. (6.1.45)

In order to consider the non-polarized solar light, we should average dσs over the
angle ϕ :

〈dσs〉 =
(

ε − 1

ε + 2

)2 ω4r6o
c4

1 + cos2 ϑ

2
d�. (6.1.46)

Integrating over the solid angle, one obtains the total cross section of the Rayleigh
light scattering on a small spherical dust particle:

〈σs〉 = 8π

3

(
ε − 1

ε + 2

)2 ω4r6o
c4

. (6.1.47)

This cross section is proportional to ω4, and it is much less than the geometrical
cross section of the dust particle πr2o, if a � λ ∼ c/ω. It should be noted that in
the opposite limiting case a � λ, the cross section coincides the geometrical cross
section both for dielectric and for metal dust particles.

The Rayleigh law (6.1.47) ∼ω4 explains the cyan color of the heaven at the scat-
tering of solar light. The maximum of the Planck spectrum of solar light corresponds
to the yellow color. The difference in the intensity of cyan and violet components
of the Planck solar light is less than 20%. The visible cyan color of the heaven is
explained by the human eye sensitivity. The cyan light is perceived by the eye better
than the violet light, by more than one order of magnitude!

6.1.4 Small Dielectric Particles in Electromagnetic Field

Scattering of an electromagnet wave on a macroscopic particle is determined by
electric properties of the particle; in other words, scattering results from reaction of
a particle material to the radiation field. Note that the polarizability of a particle α
characterizes the particle reaction of the action of the electric field. This quantity is
introduced as a connection between the induced dipole momentD of the particle and
the electric field strength E which creates this dipole moment, so that

D(ω) = α(ω)E(ω) (6.1.48)

We first establish the connection between the absorption cross section by a particle
with its polarizability. Indeed, the interaction potential between the particle and
electric field is V = −DE. From this we have for the power absorbed by the particle

P = −
〈
E
dD
dt

〉
,
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where brackets mean the averaging over time. Taking the electric field strength of a
monochromatic electromagnetic wave in the form

E = E0 exp (iωt) + E∗
0 exp (−iωt) ,

where ω is the frequency of the electromagnetic wave, we obtain for the particle
dipole moment induced by the electromagnetic wave as

D =α (ω)E0 exp (iωt) + α∗ (ω)E∗
0 exp (−iωt) ,

where α (ω) is the particle polarizability.
From this it follows for the absorbed power

P = iω|E0|2
(
α∗ − α

)

The flux density of the electromagnetic energy is

J = c|E0|2
2π

Then the absorption cross section σabs by the particle as the ratio of the absorbed
power density to the flux of the electromagnetic energy is equal

σabs = P

J
= 4π

ω

c
Im α (ω) (6.1.49)

Thus, absorption of radiation by a spherical particle is determined by its polar-
izability. On the other hand, this takes place because the dielectric permittivity ε in
the region of particle location differs from that in a surrounding space. Hence, the
dielectric permittivity of a particle matter is connected with its polarizability. Let us
determine this connection for a spherical particle which radius ro is large compared
to the wavelength. One can use the Poisson’s equation for the electric potential ϕ is
�ϕ = 0 under these conditions both inside, and outside the particle. The boundary
condition for the normal component of the electric displacement near the particle
surface has the form

ε
∂ϕ (R → ro − 0)

∂R
= ∂ϕ (R → ro + 0)

∂R
, (6.1.50)

whereR is a distance from a particle center, ro is a particle radius, and ε is its dielectric
permittivity. An electric field induces a particle dipole moment D is connected with
the cluster polarizability asD = εE. This leads to the electric field potentialϕ outside
the particle which is induced by the electric field and by the particle dipole moment

ϕ = −ER + DR
R3

(6.1.51)
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Since the electric potential inside the cluster is restricted, the solution of the
Poisson’s equation �ϕ = 0 may be represented in the form

ϕ = CER, (6.1.52)

where C is a numerical coefficient. This coefficient and the polarizability of the
particle can be found from the condition of continuity of the electric potential ϕ.
This gives

C = 3ε

ε + 2
; α = ε − 1

ε + 2
a3 (6.1.53)

This relation between the polarizability and its cluster dielectric permittivity holds
true also for an alternating electric field E0 cosωt, where it has the form

α (ω) = ε (ω) − 1

ε (ω) + 2
a3, (6.1.54)

Let us consider the classical limit of scattering of electromagnet wave, where the
radiation intensity as a result of scattering is given by formula (1.2.30), i.e.

I(t) = 2

3c3
[
D̈(t)

]2 = 2ω4

3c3
α2(ω)E2 (6.1.55)

The cross section of scattering σs is the ratio of this quantity by the energy fluxE2/4π
of the incident radiation that is given by the Rayleigh formula

σ = 8πω4α(ω)2

3c4
(6.1.56)

6.2 Absorption of Radiation by Metal Particles

6.2.1 Interaction of Metal Particles with the Electromagnetic
Wave

Interaction between an electromagnetic wave and a metal particle is determined, in
the first place, by interaction with valence electrons of the metal. We first consider
such an interactionwith a large particlewhichmay be considered as ametal piece.We
give in Table4.2 electron parameters which influence on the interaction of univalent
metals with the electromagnetic wave. In this case valence electrons of atoms become
metal valence electrons in the metal formation from atoms. Along with the frequency
ω of an electromagnetic wave, one can construct two frequency parameters, namely,
the plasma frequency ωp = √

4πNee2/me and the metal conductivity �.
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In order to understand relation between these values, we consider two cases.
The first case corresponds to the interaction of visible light with a metal surface.
The wavelength of the green color wave is λ = 0.5µm, and its frequency equals
ω = 3.7 · 1016 s−1. Comparing with data of Table4.2, we have

ωp � ω � � (6.2.1)

Another example relates to emission from a metal surface at the temperature
T = 1000K. According to the Wien law, the emission maximum corresponds to
the wavelength λ = 0.29µm, and its frequency equals ω = 3.7 · 1016 s−1, and we
obtain the same relation between the above frequencies. Therefore we ignore below
the plasma frequency and consider only parameters ω and � which determine the
interaction of radiation with a metal particle.

In the case of metal objects the interaction with an electromagnetic wave proceeds
through valence electrons; therefore this interaction is stronger than that involving
dielectric particles. The skin effect takes place for large particles, so that valence elec-
trons in the metal screen the field of the electromagnetic wave. Hence, the interaction
occurs in the metal region near the metal surface; thus, scattering of an electromag-
netic wave by a small metal particle is analogous to that in the case of a bulk metal
(Table6.1).

Hence, one can use formulas for scattering of radiation and emission by a small
metal particles on the basis of that for bulk metal which are considered in detail in
[8]. One can construct these formulas with using a small parameter α = ω/2π�. In
this case the penetration depth δ is given by [8]

δ = λ

(2π)3/2

√
ω

�
, (6.2.2)

and the particle radius ro � δ. The electric andmagnetic fields of the electromagnetic
wave decrease inside the metal as exp (−z/δ) where z is the distance from the plane
boundary inside the metal. Correspondingly, the absorption cross section σa of a
electromagnetic wave by the metal particle is [8]

Table 6.1 Parameters of univalent metals at room temperature due to valence electrons [7]. Here ρ
is the metal mass density, Ne is the number density of valence electrons in the metal, � is the metal
conductivity, ωp = √

4πNee2/me is the plasma frequency for electrons of the metal, so that e, me
are the electron mass and charge correspondingly

Parameter/metal Li Na K Cu Rb Ag Cs Au

ρ, g/cm3 0.53 0.97 0.89 9.0 1.5 10.5 1.9 19

Ne, 1022 cm−3 4.6 2.5 1.4 8.5 1.1 5.8 0.87 5.9

�, 1016 s−1 9.7 19 12 54 7.0 57 4.4 40

ωp, 1016 s−1 1.2 0.90 0.66 1.6 0.58 1.4 0.53 1.4
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σa = πr2oκ(α), κ(α) =
√

α

2

[
ln

(
1

α

)
− π

2
+ 1

]
, α = ω

2π�
� 1, (6.2.3)

where κ(α) is the gray coefficient for the metal surface. Correspondingly, the flux
of thermal radiation Iω from the particle surface is given by

Iω = I (0)
ω κ(α), (6.2.4)

where I (0)
ω is the radiative energy flux of the black body (the Planck’s radiation).

In particular, the conductivity of silver is � = 5.5 · 1017 s−1 at the temperature
T = 300 K, and � = 6.6 · 1016 s−1 at the temperature T = 2000K. According to
the Wien’s law, the optimal radiation frequency at the temperature T = 2000 K is
ωmax = 1.3 · 1015 s−1. At this temperature a small parameter is α = 3.1 · 10−3, that
gives for the gray coefficient κ = 0.16.

6.2.2 Absorption of Radiation by Metal Nanoparticles

A size of metal nanoclusters is small compared to the penetration depth for an elec-
tromagnet wave, and these particles are uniform in the interaction with radiation.
Electrons of metal nanoclusters and microparticles can spread freely over the parti-
cle and interact with an electromagnetic wave as free charges. There are two ways of
the behavior of the electron subsystem in this interaction. First, the electron subsys-
tem of the particle partakes in interaction as a whole, so that collective properties of
the electron subsystem determine absorption of an electromagnetic wave by a metal
particle. Second, the spectrum of metal atoms usually includes radiative transitions
in a visible spectral range. These spectral lines are broadening in a condensed metal
due to the interaction with neighboring atoms which consist partially of ions and
electrons. But a general character of radiative transitions in atoms may be conserved
in the system of bound atoms. The choose between these two types of interaction
involving valence electrons can be done on the basis of experimental data.

A cluster is a system of a finite number of bound atoms. We consider here the
metal clusters consisting of large number of bound atoms. This cluster is a uniform
particle of a spherical shape where valence electrons can freely propagate inside a
cluster volume. However, a cluster size is small compared to a depth of the skin-layer
in a bulk metal, and therefore the cross section for interaction of clusters with an
electromagnetic wave is proportional to the number of atoms in the cluster, i.e., to
the number of valence electrons.

In addition, a cluster radius ro is small compared to the radiation wavelength λ

ro � λ (6.2.5)

Considering a metal cluster as a macroscopic system, we take the cluster polar-
izability to be proportional to the number of its atoms. In addition, for this metal



6.2 Absorption of Radiation by Metal Particles 209

particle the following criterion holds true

ω � �, (6.2.6)

where� is the specific conductivity of the cluster matter. This criterion allows one to
reduce the problem to the stationary case, where the stationary polarizability of the
spherical cluster is α = r3o . Accordingly, formula (6.1.30) for the absorption cross
section may be represented as

σabs = 12πω

c

ε”

(ε′ + 2)2 + ε”2
r3o = πω

c
r3ogsph (ω) ; gsph(ω) = 12ε”

(ε′ + 2)2 + ε”2
(6.2.7)

Here the dielectric permittivity of the cluster matter is taken in the form ε(ω) =
ε′ (ω) + iε” (ω) It is seen that the absorption cross section by a spherical macroscopic
cluster may be estimated as

σabs ∼ ro
λ

πr2o,

i.e., this cross section is small compared to the geometrical cross section πa2.
We now apply the above results for metal clusters contained of a finite number

of bound atoms. The absorption process is determined by valence cluster electrons.
Assuming that these electrons are free, under criterion (6.2.5), the dielectric permit-
tivity of an electron plasma is given by

ε (ω) = 1 − ω2

ω2
p

(6.2.8)

Here ωp is the plasma frequency or Langmuir frequency, that is given by the expres-
sion

ωp =
√
4πNee2

me
,

where Ne is the electron number density, e and me are the electron charge and mass,
respectively.Assuming that ε” � 1,we transform formula (6.2.7) taking into account
the expression (6.2.8) near the resonance frequency

σabs(ω) = 2π
�ω2

c
a3

�

�2 (ω − ω0)
2 + �2

= σmax
�2

�2 (ω − ω0)
2 + �2

, (6.2.9)

where ω0 is the resonance Mie frequency,

ω0 = ωp√
3
,

� is the resonance width according to
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� = �ω0ε”

6
,

and σmax is the maximum absorption cross section,

σmax = 2π
�ω2

�c
a3. (6.2.10)

From formulas (6.2.9) and (6.2.10) it follows the integral relation

∫
σabs(ω)dω = πσmax

�

2�
(6.2.11)

where the resonance width is assumed to be relatively small. Within the frame of
liquid drop model, the cluster radius is given by [9, 10]

r3o = r3wn,

where rw is the Wigner-Seitz radius, and n is the number of cluster atoms. Under
used conditions, the cluster is assumed to be a uniform particle, and the absorption
cross section is proportional to the number of cluster atoms.

Though the above cluster model of a uniform spherical particle is rough, it is
convenient to demonstrate the mechanisms of cluster absorption through the inter-
action between an electromagnetic field and valence electrons which leads to the
resonance character of the absorption cross section as a function of a photon fre-
quency. In practice, the absorption spectrum has more complex structure, and it can
include several peaks. Table4.3 contains parameters of the absorption cross sections
for some metal clusters for which these cross sections can be approximated by a
simple resonance dependence. Basing on the experimental data [11–14] for the cross
sections of absorption by clusters consisting of Li, K and Ag atoms, one can check
the validity of the plasma model for the absorption cross section of clusters. It is
convenient to introduce the parameter

ξ = σmax
�c

2π�ω2
0a

2
, (6.2.12)

that is equal to one, if formula (6.2.9) is correct.
As it follows from Table 6.2, the parameter ξ differs from one stronger than the

limits of its accuracy. Thismeans violation of themacroscopic character of absorption
in accordance with formula (6.2.7) and prohibits to describe valence electrons as free
ones that leads to formula (6.2.9) for the absorption cross section. Thus, the concept
of the interaction of the electromagnetic wave with cluster electrons as plasma ones
is violated.

One more comparison confirms this conclusion. The resonance frequency for
metal clusters with one valence electron per atom which are given in Table 6.2 is
equal to
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Table 6.2 Parameters of the absorption cross sections for metal clusters

Cluster �ω0, eV �, eV σmax/n,Å2 ξ β f

Li+139 2.92 0.90 62 2.8 0.24 0.58

Li+270 3.06 1.15 120 3.2 0.30 0.73

Li+440 3.17 1.32 280 4.9 0.50 1.20

Li+820 3.21 1.10 440 3.3 0.52 0.85

Li+1500 3.25 1.15 830 3.5 0.66 0.91

K+
9 1.93 0.22 26 2.9 0.27 0.91

K+
21 1.98 0.16 88 2.9 0.52 0.96

K+
500 2.03 0.28 1750 4.0 1.3 1.40

K+
900 2.05 0.40 2500 4.5 1.2 1.59

Ag+
9 4.02 0.62 8.84 2.6 0.24 0.87

Ag+
21 3.82 0.56 16.8 2.1 0.26 0.64

ω0 = ωp/
√
3 = e

√
mer3W

The number density of valence electrons is equal to

Ne = 3

4πr3W
,

where rW is the Wigner-Seitz radius. The value of �ω0 is equal to 13.5 eV for large
Li clusters, to 7.1 eV for large K clusters, and to 14.7 eV for for large Ag clusters.
A large difference of these data from measured values of Table6.2 allows us to
conclude that the plasma model for valence electrons in the analysis of absorption
of an electromagnetic wave by metal clusters is incorrect. In addition, we show in
Fig. 6.4 experimental dependencies for the absorption cross sections of some Ag
clusters on the photon frequency. As it is seen, the absorption cross sections can
contain both one and two resonance maxima. This is also rejects the plasma model
for valence electrons.

We now consider the sum rule for a metal cluster. At fixed nuclei the absorption
spectrum of the cluster consists of a finite number of spectral lines; the number of
these lines is comparable with the number of cluster valence electrons. In the limit of
one atom this spectrum is transformed into one or several resonance spectral lines.
Let us introduce the effective oscillator strength f per one valence electron. Then the
total oscillator strength is equal to nf , where n is the number of valence electrons in
the cluster. Due to nuclear motion, the absorption spectrum of clusters is transformed
from set of separate spectral lines into the continuous curve. However, the sum of
the oscillator strengths does not change. One can expect that the effective oscillator
strength f per one atom depends weakly on the cluster size, and it corresponds to
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Fig. 6.4 Absorption cross
sections for silver clusters
[14]

the atomic value. Below we check this concept using the analysis of clusters with a
plasma form of the absorption cross section which are contained in the Table 6.2.

Let us use the general expression for the cross section of photon absorption by an
atomic system in the form

σabs (i → j) = π2c2

ω2

aω

τij

gj

gi
= 2π2c2

mec
fijgkaω (6.2.13)

Here ω is the frequency of a given electron transition between states i (the lower
state) and j (the upper state); gi, gj are statistical weights of these transition states, τij



6.2 Absorption of Radiation by Metal Particles 213

is the radiative lifetime with respect to this transition, aω is the frequency distribution
function for the radiated photons which is normalized as (2.1.1)

∫
aωdω = 1;

finally, fij is the oscillator strength for this transition. The sum rule for dipole radiation
transitions of valence electrons in the spectral range including resonance transitions,
is of the form ∫

σabs(ω)dω = 2π2e2

mec
nf (6.2.14)

This sum rule is analogous to those for atoms (1.3.11).
If the absorption cross section has a resonance structure, analogously to that for

clusters in Table 6.2, the integral relation (6.2.11) is also applicable. Then it follows
from relations (6.2.11) and (6.2.14) that

f = σmax�mec

2π2e2n�
(6.2.15)

The values of the effective oscillator strength for metal clusters with resonance struc-
ture of absorption are given in Table 6.2. Different values for each element are
explained, in our opinion, by a restricted accuracy of used data. Average values of
the oscillator strength for each cluster correspond to oscillator strengths of low-lying
transitions 2S1/2 →2 P1/2 →2 P3/2 of their atoms. The total oscillator strengths are
equal to 0.74 for the lithium atom, 1.5 for the potassium atom, and 0.77 for the silver
atom. Coincidence of the oscillator strengths for clusters with corresponding values
for atoms confirms the fact that the absorption spectra of clusters can be obtained by
transformations of atomic resonance lines due to the interaction between atoms and
due to the nuclear motion.

In considering of the interaction of metal clusters with the radiation field, on
the one hand, these clusters are uniform with respect to radiation, and on the other
hand, they may be considered as macroscopic ones, where the interaction with an
electromagnetic field is determined by the electron subsystem. Let us construct this
cluster from n bound metal atoms and transfer an electron of one of these atoms into
the resonance excited state by means of the dipole radiative transition, so that the
oscillator strength of this transition is of the order of one. This excitation is spread
over the cluster, and the spectrum of cluster excitation consists of n discrete spectral
lines. The total spectrum of cluster excitation with accounting for atom motion has a
continuous structure with one or several maxima. This form of the cluster spectrum
follows also from computer simulations, and the integral absorption cross section is
proportional to the number of valence electrons.



214 6 Photon Interaction with Clusters and Microparticles

6.2.3 Emission of Metal Clusters in Hot Gases

Astrong interaction betweenmetal clusters and resonance radiationmay be of impor-
tance both for radiative properties of metal clusters located in a buffer gas and for the
heat balance of this system. We below determine the spectral radiation power p (ω)

of a cluster at a certain temperature T . This spectral power is expressed through the
absorption cross section σabs according to the Kirchhoff law as

p(ω) = �ω · I(ω) · σabs(ω) , (6.2.16)

where in accordance with formula (2.2.7) I(ω) is the isotropic flux of the black body
radiation at a given frequency and temperature

I(ω) =
( ω

πc

)2 1

exp (�ω/T ) − 1
(6.2.17)

Here σabs(ω) is the absorption cross section for a given cluster as a small particle.
From this it follows that the spectral radiative power by a small cluster has the form

p(ω) = �ω3

π2c2
σabs(ω)

exp (�ω/T ) − 1
(6.2.18)

In particular, the total radiation power of a small macroscopic particle with a
radius a is [15, 16]

P =
∞∫

0

p(ω)dω = 12π

�c
a3gσT 5κ = 46πa3gσT 5

�c
; Ta

�c
� 1 (6.2.19)

Here the quantity

g = ε”

(ε′ + 2)2 + (ε”)2

is given by formula (6.2.7) and is assumed to be independent on the frequency; σ
is the Stephan-Boltzmann constant, and the numerical coefficient is κ = 3.83. It is
seen that the radiation power by a small macroscopic particle under equilibrium
conditions is proportional to T 5, in contrast to the classical dependence ∼T 4 for the
radiative power of a macroscopic black body surface.

According to formula (6.2.7) and (6.2.14), the absorption cross section for a
small cluster is proportional to the number of cluster atoms. Hence, the specific
absorption cross section, i.e., the absorption cross section by one atom, does not
depend on the cluster size. Therefore, the cluster radiative power per unit volume is
proportional to the number density of bound atoms. This statement does not depend
on the distribution function of clusters, or of small particles over their sizes. Thus,
the total radiation power for a given volume of a gas, or of a plasma, is determined
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Table 6.3 The specific radiation power Prad, 107 W/g, and the light yield for large clusters at
various temperatures, expressed in lm/W and given in parentheses

Cluster 3000 K 3500 K 4000 K

Ag 0.71 (51) 1.6 (25) 3.5 (88)

K 4.0 (106) 8.6 (111) 17 (165)

Li 2.0 (51) 4.9 (80) 10 (102)

Black body (22) (39) (57)

by the total number of bound atoms, and it does not depend on the size of the cluster.
This general conclusion is based on the statement that absorption cross section is
proportional to the number of bound atoms and it is valid both for clusters and small
macroscopic particles.

We now use parameters of the absorption cross sections for lithium, potassium
and silver clusters given in Table 6.2 in order to analyze numerically the radiative
parameters of the plasma which contains clusters. Table 6.3 presents the specific
radiation powers for clusters; they are determined by the expression

Prad =
∫

p (ω) dω

M
, (6.2.20)

where M is the cluster mass. Here we take into account that the radiation power
is proportional to the total mass of bound radiating atoms in clusters. Table 6.3
contains also (in brackets) the light yield of cluster radiation where the absorption
cross sections for these clusters are used as model ones. The light radiation yield
characterizes the efficiency of the eye perception that is given by the expression

η =
∫
p(ω)V (ω)dω
∫
p(ω)dω

, (6.2.21)

where the spectral radiation power p(ω) is calculated on the basis of formula (6.2.18),
and the visibility function V (ω) determines the perception of radiation by eye;
this function has maximum about of 683 lm/W for the wavelength of radiation of
λ = 555nm. For comparison, Table 6.3 contains also the light yield of the black
body. It is seen that clusters as light sources are better than a black body because of a
more favorable radiation spectrum (a thermal infrared radiation is excluded from the
radiation spectrum of the clusters). It follows from data of the Table 6.3 that at the
temperature of T = 3600 K the averaged radiation power of the clusters is 1 · 108
W/g. This value is convenient for estimates.

Thus, metal clusters or small macroscopic particles which are located in a hot,
or ionized gas, can be responsible for radiation of these systems. For example, this
occurs in the flame where radiation is produced by small soot particles.
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6.3 Absorption by Atmospheric Particles

6.3.1 Aerosols and Water Microdrops in Atmosphere

Aerosols are particles of nano-sized and micro-sized particles located in the atmo-
sphere [17–22]. Sometimes water microdrops which form clouds and are of impor-
tance in electric and radiative properties of the Earth’s atmosphere, are included in
the list of aerosols [23, 24]. Below the object of our consideration will be just water
drops as an important atmospheric radiator in the infrared spectrum range [25–28].
But first we glance at aerosols as small particles which are influenced by atmospheric
properties.

Figure6.5 contains various types of nanoparticles and microparticles which can
be presented in atmospheric air. For comparison, nanoclusters and electric probes
are added to this list, though these objects exist irrespectively the atmosphere. Aitken
particles were investigated from 19th century [30–33], earlier than other atmospheric
particles. They are located at high altitudes, above clouds, and their basis are radicals
of sulfur compounds which result from vaporization of meteorites at high altitudes
and from processes which proceed at the Earth surface or in the atmosphere at low
altitudes. Since their size is below 0.1µm, Aitken particles are also responsible for a
blue sky color because shortwave photons scatter on these particles effectively. The
number density of Aitken particles at altitudes 10–20km is 102 − 104 cm−3 [34].

Aerosols at low altitudes results from processes which proceed at the Earth’s
surface. Sulfur SOx and nitrogen NOx oxides, as well as atmospheric ions, are nuclei
of condensation in formation of water microdrops. In addition, sulfur and nitrogen

Fig. 6.5 Typical size of aerosols and microparticles located in the Earth atmosphere [29]
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oxides, as well as soot particles, are formed in processes of combustion of solid and
liquid organic compounds in air. A large amount of aerosols is formed as a result of
volcano eruption. Some part of particles in atmospheric air goes up from the Earth’s
surface under the wind action. The putrefaction processes at the Earth’s surface
cause extraction of some aerosols and their transport to the atmosphere. In spite of
the variety of aerosols located in atmospheric air in accordance with Fig. 6.5, they
do not influence radiative properties of the atmosphere because of a small amount.

The Earth’s atmosphere contains a large amount of atmospheric water which
results from circulation of water in the nature. Water circulation consists of water
evaporation from open water reservoirs at the Earth’s surface and rain or snow return
water back to the Earth’s surface. This process establishes the amount of atmospheric
water 1.3 · 1019 g [35–38], and the total rate of water evaporation from the Earth’s
surface is 3.9 · 1020 g/yr [39–42]. Precipitation of atmospheric water on the Earth’s
surface with uniform distribution over it gives a layer of liquid water of a thickness
2.5cm [43]. The average concentration of water molecules in atmospheric air as
approximately 0.4%, whereas near the Earth’s surface the average concentration of
water molecules in air is equal 1.7%, i.e. the number density of atmospheric water
molecules decreases sharper with an altitude increase than that for air molecules. An
average time of residence of water molecules in the atmosphere is approximately
9 days [42]. These data are the basis to analyze the atmospheric greenhouse phe-
nomenon.

A small part of atmospheric water is found in the atmosphere in the form of
water microdrops which interact effectively with infrared radiation. Near the Earth’s
surface, the average partial pressure of water is about 2 Torr, whereas the saturated
water pressure is 4.7 Torr at the surface temperature [44, 45]. Therefore atmospheric
water is in the form of a vapor consisting of free molecules mostly, and a small part
of water exist in the form of aerosols, at least, at altitudes below 3km. Aerosols are
formed and exist at larger altitudes; processes with their participation [21, 26–28,
46, 47] are important for optic and electric atmospheric properties. Formation of
aerosols may proceed if the partial pressure of water exceeds the saturated vapor
pressure at a current atmosphere temperature which is taken from [45]. The ratio of
these pressures is the air moisture. There are reliable methods of measurements of
the global moisture (for example, [48, 49]) which allows one to analyze the evolution
of the moisture of atmospheric air at some altitudes in time.

Atmospheric water is the main greenhouse component and includes a water
vapor consisting of free water molecules and water aerosols which compose clouds.
Figure6.6 gives the absorption spectrum of liquid water. As is seen, the absorp-
tion coefficient in the visible spectral range is lower by seven orders of magnitude
compared with that in the infrared spectral range. This means that water aerosols
are transparent for solar radiation, and clouds are seen due to absorbed admixtures,
whereas these microdrops are sources of IR radiation. Let us estimate the role of
water aerosols in IR emission of the atmosphere taking the cross section of absorp-
tion of an infrared photon σ = πr2 under the criterion λ ≤ r, where r is a drop radius,
and λ is the wave length. Correspondingly, the optical thickness u of the layer with
the depth l and number density N of water microdrops is equal
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Fig. 6.6 Absorption
coefficient for a bulk liquid
water layer under normal
conditions [50]. A cross
indicates the absorption
coefficient for aerosols [51]

u = πr2Nl, (6.3.1)

and the water mass in aerosols per unit square of the Earth’s surface m is

m = 4

3
πr3Nl = 4ruρ

3
, (6.3.2)

where ρ is the water density. One can see that the observed optical thickness of the
atmosphere (u ≈ 3) may be provided by approximately 0.2% of atmospheric water
if it is located in the form of liquid microdrops-aerosols.

Let us note two types of interaction of an electromagnetic wave with a dielectric
particle. Above we considered the case when this interaction results from electric
properties of a particle material which is described by its dielectric constant. Another
character of this interaction consists in absorption of radiation by this particle due
to transitions between molecular states of this particle and also due to transitions
between states owing to interaction between molecules of this condensed matter.
Evidently, the absorption coefficient of Fig. 6.6 for liquid water in the infrared spec-
trum range is determined by such transitions.

Let us analyze also the result of experiment [51] which is given in Fig. 6.6 accord-
ing to which water microdrops of an average radius r = 10µm are characterized by
the absorption cross section σabs = πr2 for thermal atmospheric radiation. Then the
optical thickness u of a layer of a thickness l is equal at the number density N of
microdrops

u = Nlσabs = Nlπr2
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From the another standpoint, the mass per unit area M = ρl is

M = Nl · 4
3
πr3ρ,

where ρ is the mass density of water. On the basis of these formulas, the absorption
coefficient is equal to

kω = u

l
= 3σabs

4r3

Under the above considered conditions (σabs = πr2) the absorption coefficient kω ∼
105 m−1 (it is included in Fig. 6.6 shows the identity of the absorption coefficient for
liquid water and a gas of water microdrops).

6.3.2 Water Microdrops in Clouds

Considering an interaction of an individual atmospheric water microdrop with atmo-
spheric radiation and being guided by experiment [51], we take a drop radius to be
r = 10µm. In this case the absorption cross section of thermal atmospheric radia-
tion λ ∼ r ≈ 10µm by a given microdrop is close to its geometric cross section; it is
equal to σabs ∼ 3 · 10−6 cm2, whereas for solar radiation the absorption cross section
is equal σabs ∼ 10−11 cm2. In order to analyze radiative parameters of a microdrops
in a cumulus, we take typical parameters of water microdrops in cumulus as [52–55])

ro = 8µm, Nd = 103cm−3, (6.3.3)

where ro is the average drop radius, andNd is an average density of water microdrops
in cumulus in a thunderstorm weather. This gives for the absorption coefficient kω =
σabsNd ∼ 10−3 cm−1, and a typical observed optical thickness u = kωL of cumulus
corresponds to its thickness L ∼ 30m.

One can see according to Fig. 6.6 data, that the cloud optical thickness in the visible
spectrum range is equal u ∼ (10−4 − 10−3), i.e. a cloud is transparent for visible
radiation. Hence, clouds in the course of their formation are invisible. Through a time
they become visible as a result of attachment of absorbed components, in particular,
a dust or optically active atoms in the visible spectrum range. Below we estimate
an amount of sodium atoms in a drop which provide absorption of visible radiation.
Sodium atoms are formed in a drop as a result of attachment of molecules NaCl to
this drop or joining of this drop with a small particle of this salt.

We assume that injection of sodium atoms into a water microdrop leads to broad-
ening of an absorption line, so that it is transformed in an absorption band of a width
��ω ∼ 1eV. According to formula (2.2.24) the absorption cross section may be
estimated as

σabs = λ2

4�ωτ
, (6.3.4)
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where a typical wavelength in the visible spectrum range is λ ∼ 0.5µm. Taking a
typical lifetime for an upper state of transition is τ ∼ 10−8 s. This gives a typical
absorption cross section σNa ∼ 5 · 10−17cm2. Let a drop contains n sodium atoms,
and then a cloud becomes nontransparent in a visible spectrum range, if its optical
thickness is

u = NLnσNa ∼ 1

From this consideration we have n ∼ 6 · 109. Because an individual microdrop con-
tains n = 7 · 1013 water molecules, one can find a typical concentration of sodium
atoms in water, that is, ∼0.01%. This amount of sodium solved in water provides
the visibility of clouds in a sky.

Though it is known that the covering of a sky by clouds is approximately 70%. But
this does not mean that the other part of sky is not occupied with water microdrops.
Indeed, at the first stage of the nucleation process that leads to conversion of water
molecules in water microdrops transparent drops are formed, and only through a
time they become visible after attachment of absorbed atoms or dust particles to
microdrops.

Let us take the cross section of absorption σabs by an aerosol particle of a radius
r to be [16]

σabs = πr2, (6.3.5)

if an aerosol radius is large compared to the wavelength of radiation λ. In other
limiting case we have [8]

σabs ∼ r3

λ
, r � λ (6.3.6)

From this one can construct the absorption cross section by an aerosol particle as a
function of an aerosol size in the form

σabs = πr2

1 + C λ
r

(6.3.7)

From the above experimental data it follows that in this frequency range formula
(6.3.5) holds true with an accuracy of 20%, and the cross section of absorption of
thermal radiation by aerosols of a radius (8–10)µm is (2.5 ± 0.5) · 10−6cm2.

This leads to the depth of a formed water layer (30–40)µm that corresponds to
the concentration of atmospheric water in aerosols roughly (1 − 2)%. It is seen that
water aerosols may give a remarkable contribution to atmospheric emission. This
result causes alarm with respect to the climate change because transition of a small
part of an atmospheric water vapor in aerosols may lead to a significant change of
the atmospheric optical thickness. In particular, according to studies [56–59] cosmic
rays influence on formation of aerosols and clouds in the Earth’s atmosphere.

Thus, we have that the spectral radiative flux of the Earth’s atmosphere may
include some frequency bands which are created by vibration-rotation or rotation
radiative transitions of certain components. One can introduce the effective temper-
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ature for a certain frequency band in accordance with formula (7.1.17). The optical
thickness of the atmosphere starting from this layer in the direction perpendicular
to the Earth surface equals to 2/3 at a given frequency, and the temperature of this
atmospheric layer is the radiative temperature for emission at a given frequency. We
below use this concept in the analysis of emission of atmospheric CO2 molecules.

Note that clouds consisting of water aerosols water aerosols influence on the
Earth’s energetics. In accordance with Fig. 6.6, the absorption of radiation by water
aerosols is strong for the infrared spectrum range, whereas water aerosols are trans-
parent for visible radiation. But this fact corresponds to pure liquid water, and if some
chemical components are dissolved in water, the situation may be changed. Hence,
on the first stage of formation of water aerosols they are transparent microdrops, and
subsequently after attachment of some impurities water aerosols become visible.
One can demonstrate the influence of admixtures on optical properties of aerosols
in the case when the sodium salt NaCl is dissolved in water of an aerosol; then the
solute sodium atoms determine the absorption of visible radiation by aerosols.

Let us assume that yellow spectral line of absorption of a free sodium atom is
converted in an absorbed band as a result of interaction with surrounding water
molecules, if a sodium atom is located in water. Taking a width of the absorption
band �ω to be ��ω ∼ 1eV, one can obtain for the absorption cross section σ as a
result of interaction of an electromagnetic wave with a dissolved sodium atom

σvis = λ2

4
· 1

�ωτ
, (6.3.8)

where λ is a wavelength, τ is the radiative lifetime of an excited atom which is
estimated as

1

τ
= 2e2ω2

mec3
f go (6.3.9)

Hereme is the electronmass, f is the oscillator strength for transition between atomic
states, go is the statistical weight of the lower transition state which is the ground
electron state. Because f ∼ 1 and go ∼ 1, it follows from formula (6.3.8) an estimate
for the absorption cross section

σvis ∼ e2

�ωmec
(6.3.10)

This formula gives σvis ∼ 5 · 10−18 cm2. Let us take for definiteness aerosols of
a cumulus clouds with an average radius r = 8µm and the absorption cross section
σ ≈ 2.5 · 10−6 cm2 for infrared radiation. This cross section may be reached as a
result of absorption of dilute sodium atoms if the concentration c(Na) of these atoms
in aerosols is c(Na) ∼ 0.5%. These conditions may be attained in reality.
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6.3.3 Atmospheric Water Microdrops as Atmospheric
Radiators and Absorbers

Water drops are effective radiators and absorbers of infrared radiation. Being located
in the Earth’s atmosphere, they interact effectively with infrared radiation that passes
through the atmosphere. We now consider the energetic balance of an individual
water microdrop which interacts with this infrared radiation through processes of
emission and absorption; it interacts also with surrounding air through the thermal
conductivity process. This microdrop exchange through the thermal conductivity of
air; the power Pκ which the drop takes from air or transfers to it in the case of a
higher drop temperature compared to the air temperature far from the drop, is equal
[15, 16]

Pκ = 4πroκ�T , (6.3.11)

where ro is a drop radius, κ is the air thermal conductivity, and�T is the temperature
difference for the drop under consideration and surrounding air far from it. Here we
assume that the drop radius ro is large compared to the mean free path of molecules
in air.

Considering amicrodrop as a black body, we have the following energetic balance
equation

4πroκ�T = 4πr2oσT
4 − Pabs, �T = T − Ta, (6.3.12)

where σ is the Stephan-Boltzmann constant, T is the drop temperature, Pabs is the
power absorbed by drop in the form of infrared radiation, Ta is the air temperature. In
accordance with Fig. 6.6, we assume that absorbed radiation is emitted at a distance
λ from the drop, that is, the mean free path of an infrared photon in atmospheric air;
then we obtain for the absorbed power

Pabs = 4πr2o

1∫

−1

σT (cos θ)4 = 4πr2o

1∫

−1

σ

[
T + λ

dT

dh
cos θ

]4
= 4πr2oσ

[

T4 + 4

(
λ
dT

dh

)2
T2

]

(6.3.13)
Here dT/dh = 6.5K/km is the temperature gradient in the atmosphere, and we take
roughly λ ≈ 2km for infrared radiation. From this we find the difference between
temperatures of the drop and surrounding air

�T = 4roσT 2

κ

(
λ
dT

dh

)2

(6.3.14)

It is seen that the drop temperature is higher than the temperature of surrounding
air in the case h > λwhich is represented in Fig. 6.7. For a drop radius ro = 10µmwe
take h = λ = 2km, where the temperature is T = 270K with κ = 2.4W/m2 [45];
then we obtain �T = 1 · 10−5 K. This value increases if the altitude decreases. In
particular, when the microdrop reaches the Earth’s surface (h = 0), we have instead
of (6.3.14)
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Fig. 6.7 Geometry of a
microdrop located in
atmospheric air and
interacted with passed
radiation

�T = −2ro
κ

σT 3λ
dT

dh
(6.3.15)

In this case the drop temperature is lower than that for surrounding air, and �T =
−6 · 10−3 K. Thus from this analysis one can conclude that if a microdrop is located
in atmospheric air, its temperature coincides practically with the temperature of
surrounding air.
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Chapter 7
Greenhouse Effect in Atmospheres
of Earth and Venus

Abstract The greenhouse phenomenon in the atmosphere that results from emis-
sion of its molecules and particles in the infrared spectrum range is determined by
atmospheric water in the form of molecules and microdrops and by carbon dioxide
molecules for the Earth atmosphere and by carbon dioxidemolecules and dust for the
Venus atmosphere. The line-by-line method used the frequency dependent radiative
temperature for atmospheric air with a large optical thickness in the infrared spec-
tral range, allows one to separate emission of various components in atmospheric
emission. This method demonstrates that the removal of carbon dioxide from the
Earth’s atmosphere leads to a decrease of the average temperature of the Earth’s
surface by 4K; however, doubling of the carbon dioxide amount causes an increase
of the Earth’s temperature by 0.4K from the total 2K at CO2 doubling in the real
atmosphere, as it follows from the NASA measurements. The contribution to this
temperature change due to injections of carbon dioxide in the atmosphere due to
combustion of fossil fuel, and it is 0.02K. The infrared radiative flux to the Venus
surface due to CO2 is about 30% of the total flux, and the other part is determined
by a dust.

7.1 General Principles of Atmospheric Greenhouse Effect

7.1.1 Nature of Atmospheric Greenhouse Effect

The nature of the greenhouse effect was understood almost two century ago [1, 2];
it is determined by a property of the matter over a surface. In a usual greenhouse,
the Earth surface is heated as a result of absorption of solar radiation and it is cooled
by emission of infrared radiation. This balance establishes the surface temperature.
If place a partition over the surface which is transparent for visible radiation and
returns to the surface partially infrared radiation, its heat balance changes and the
surface temperature increases. In the Earth’s atmosphere the role of this partition
plays its atmosphere that must be transparent for visible solar radiation and it is
not transparent for infrared radiation. As a result, the surface temperature increases
compared with the case if the atmosphere is absent.
© Springer Nature Switzerland AG 2019
V. Krainov and B. M. Smirnov, Atomic and Molecular Radiative Processes,
Springer Series on Atomic, Optical, and Plasma Physics 108,
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Fig. 7.1 Spectrum of
emission of carbons dioxide
molecules and water
molecules located in
atmospheric air and
spectrum of equilibrium
radiation at the temperature
of 288K [8, 9]

Infrared emission of the Earth’s atmosphere is determined by vibration-rotation
transitions of some atmospheric molecules, mostly H2O and CO2, and also by radi-
ation of aerosols and atmospheric particles [3]. As it was indicated above, Fourier
[1, 2] describes the nature of the greenhouse effect in the Earth’s atmosphere. The
next step in understanding the greenhouse effect of the Earth atmosphere was made
by Tyndall [4–6] who shown on the basis of his experiments with molecular gases
[7] that greenhouse atmospheric properties are determined by molecular gases, such
as a water vapor, carbon dioxide and methane.

It should be noted the peculiarity of the greenhouse effect which is demonstrated
by Fig. 7.1 [8, 9]. This figure exhibits emission of atmospheric molecules of carbon
dioxide or water in a restricted spectrum range, and radiation of water molecules is
more important than that due to CO2 molecules for following reasons. First, water
molecules have a dipole moment and hence they are more optically active objects.
In atmospheric radiation it results in radiative rotation transitions without the change
of a vibration molecular state. Rotation transitions determine a long-wave spectrum
range. Second, the number density of water molecules in the atmosphere is higher
than that for carbon dioxide molecules. In particular, the average number density of
water molecules near the Earth’s surface is 4 · 1017 cm−3 compared to 1 · 1016 cm−3

which we used above for the mean number density of atmospheric CO2 molecules.
This shows an important role of aerosols in atmospheric emission.

Because the greenhouse phenomenon is connectedwith the atmosphere energetics
involving solar radiation in the visible spectrum range as well as infrared radiation
of the atmosphere, it is of importance for the energetic balance of the Earth and its
atmosphere. These data represented in Fig. 7.2 are taken from books [10–13] of one
of authors which in turn are based on the NASA data, in particular, on [14]. These
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Fig. 7.2 Expressed in
1016W the powers of
indicated processes which
lead to obtaining or loss of
the energy by the Earth as a
whole as well as by its
atmosphere. Absorbed
powers are given inside
corresponding rectangulars,
consumed powers are
indicated near arrows

data are in accordance with those contained in books [15–20] and also with those of
many papers, in particular, [21–26]. Evidently, the reason of this coincidence within
the limits of a few percent for basic channels is that the data are taken from the same
source—the data of NASA [14]. In addition, because these data relate to various
times within one half century, one can conclude that the rates of these energetic
processes have the natural character and vary weakly during this time range.

In evaluation some atmospheric parameters it is convenient to use the average
energy fluxes. In consideration radiative processes in the atmosphere, it is convenient
to operate with average radiative fluxes which result from dividing the total power
of Fig. 7.2 to the area S = 5.1 · 1014 m2, though the accuracy of these data is not
enough. The average radiative flux of solar radiation in the visible spectrum range
is 340W/m2, the average radiative flux of from the Earth’s surface in the infrared
spectrum range is 386W/m2, the average radiative fluxes of from the atmosphere in
the infrared spectrum range are 327 and 200W/m2 towards the Earth and outside
correspondingly. Additionally, the average radiative flux from the Earth’s surface
that is not absorbed by the atmosphere and goes outside is 20W/m2. Note also that
the average energy flux from the Earth to its atmosphere in accordance with data
of Fig. 7.2 is equal 57W/m2 due to water evaporation from the earth’s surface and
47W/m2 due to convection.

From the energetic balance of the Earth and its atmosphere as a whole given in
Fig. 7.2 it follows that the basis of this balance is solar radiation which is penetrated
in the Earth’s atmosphere and it is converted partially in infrared radiation through
emission and its absorption by the Earth and atmosphere. Note that the Earth emits
infrared radiation almost as a black body. Since the grey coefficient of various objects
on the Earth’s surface in the IR spectral range is close to one [27], the Earth’s surface
may be considered as a black body for emission, that leads to the average Earth’s
temperature to be T = 287K, whereas the standard atmosphere model [28] gives
for the global Earth’s temperature T = 288K. We note also that the atmosphere re-
moval leads to the global temperature T = 278K, if the Earth absorbs solar radiation
completely and emits as a black body.

Let us represent the temperature T at a given point of the globe surface as T =
Tg + δT , where Tg is the global temperature. Assuming that the Earth’s surface emits
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Fig. 7.3 Emissivity of various surfaces via the photon wavelength [27]

as a black body in the IR spectral range, one can obtain for the radiation power Ps
of the Earth’s surfa0 parameter δT/Tg

Ps = σT 4
g S

[
1 + 6

(
δT

Tg

)2
]

, (7.1.1)

where S = 5.1 · 1014 m2 is the area of the Earth’s surface. Because a typical values
the temperature fluctuation δT are several Kelvin, the second term of formula (7.1.1)
is small. Therefore, one can use the average surface temperature for its emission.

One can justify the black body model for the Earth’s surface by data of Fig. 7.3,
where the grey coefficient or emissivity are given in the infrared spectrum range for
objects which can determine the Earth’s emission. The grey coefficient is the ratio
of the photon flux from the surface of a given object with a certain temperature to
that of the black body surface with this temperature. This allows one to consider the
Earth’s surface as a black body in evaluation of its emission, and the accuracy of this
replace is about of several percents.

We now step aside from radiative processes and consider atmospheric phenomena
which are important for the greenhouse effect in the atmosphere. Because this effect
relates to the entire Earth, in its analysis it is convenient to deal with parameters
averaged over the globe and time including a time of day and season. This leads to
the model of standard atmosphere [28] which is characterized by average parameters
and relates roughly to the USA atmosphere. Though atmospheric air consists of
nitrogen (79%) and oxygen (20%), we below assume air molecules to be identical
with the molecular weight m = 29a.u.m. The dependence on the altitude h for the
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Fig. 7.4 Scaling parameter
of formula (7.1.2) (a) and the
atmosphere temperature (b)
as an altitude function for
standard atmosphere

number density Na(h) of air molecules, as well as other atmospheric molecules
which are mixed with air ones, is given by formula

N (h) = N (0) exp

(
− h

�

)
(7.1.2)

The scaling parameter � follows from approximation the data of standard atmo-
sphere by this formula, is represented in Fig. 7.4a. Figure7.4b contains the altitude
dependence of the atmosphere temperature and notations for atmospheric lower lay-
ers. Being guided by the greenhouse effect, we are restricted by the troposphere and
lower stratosphere only, where the temperature gradient in the troposphere is close
to dT/dh = −6.5K/km, as it follows from Fig. 7.4b.

In order to understand the character of atmospheric emission, one can introduce the
effective temperature of an uniform atmosphere for each frequency. In other words,
in the framework of the line-by-linemodel, we introduce the radiative temperature Tω

which determines the emission flux at each frequency of atmospheric CO2 molecules
in the total emission of the Earth’s atmosphere, we first use the radiative flux towards
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the Earth’s surface as the parameter which characterizes atmospheric radiators in
accordance with equation

J↓ =
∞∫
0

�ω3dω

4π2c2

[
exp

(
�ω

Tω

)
− 1

]−1

= 327W/m2, J↑ =
∞∫
0

�ω3dω

4π2c2

[
exp

(
�ω

Tω

)
− 1

]−1

= 200W/m2,

(7.1.3)
where J↓, J↑ are the radiative fluxes toward the Earth and outside it, and the radiative
temperatures for radiation directed to the Earth and outgoing radiation are different.
We below consider various models on the basis of formula (7.1.3). According to the
simplest model, the atmospheric absorption coefficient is independent of frequency
ω, and then the radiative temperature towards the Earth T↓ and outside it T↑ follow
from the Stephan-Boltzmann equation

J↓ = σT 4
↓ , J↑ = σT 4

↑ ,

These equations give for temperatures of layerswhich are responsible for atmospheric
emission [19, 29]

T↓ = 276K, T↑ = 244K (7.1.4)

These temperatures follow from equations T↑ = T ([h↑]) and radiation towards the
Earth T↓ = T [h↓], where T (h) is the temperature at an altitude h. One can use the
following connection between an appropriate of the atmospheric temperature and
altitude for these temperatures

T↓ = TE − h↓
dT

dh
, T↑ = TE − h↑

dT

dh
, (7.1.5)

where within the framework the standard atmosphere model the average temperature
gradient is dT/dh = 6.5K/km, and TE = 288K is the temperature of the Earth’s
surface. From formulas (7.1.4) and (7.1.5) it follows for these altitudes

h↓ = 1.9 km, h↑ = 6.8 km (7.1.6)

It is of importance the local thermodynamic equilibrium for vibrationally excited
molecules which accompanies the atmosphere greenhouse effect and requires large
radiative times compared with collision times involving excited molecules in atmo-
spheric air. Therefore radiative processes do not violate the Boltzmann distribution
over excited vibrational and rotational states; the emission of this gas is determined
by excited molecules which result from collisions of nonexcited molecules with
gaseous ones, rather than from absorption of the radiation. From this consideration
it follows that radiative transport does not give a contribution to the emission of this
gas.

Indeed, the emission of photons created by vibrationally excited molecules does
not violate this distribution if the rate of excitation of an excited state exceeds sig-
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nificantly the rate of radiative decay of this state. In particular, for the basic radiative
transition 0100 → 0000 we have the rate constant of destruction of the upper state
krel = 5 · 10−16 cm3/s at room temperature [70]. Then we obtain the condition for
the number density of air molecules Na of the Boltzmann distribution

Na � 1

krelτr
(7.1.7)

Taking the radiative lifetime τr = 0.33s according to Fig. 4.3 data, we obtain the
criterion (7.1.7) as Na � 3 · 1015 cm−3. This criterion is violated only outside the
stratosphere.

We thus are based on the condition of local thermodynamic equilibrium in at-
mospheric air, and that the optical thickness of the atmosphere is large. Under these
conditions, we reduce the atmosphere with am alternative temperature to that with a
constant temperature. This is possible at a small temperature gradient that is a basis
of expansion over a small parameter. Such an expansion allows us to find the radiative
temperature Tω that characterizes the radiative flux at this frequency.

7.1.2 Global Properties of the Earth’s Atmosphere

Webelowconsider the atmospheric greenhouse effect in detail. The greenhouse effect
is created by three atmospheric components, namely, by water vapor, carbon dioxide
and water aerosols; though other greenhouse components gives a small contribution
to this effect, their influence on the greenhouse effect will be considered also. Note
that molecular greenhouse components, molecules of water and carbon dioxide lo-
cated in atmospheric air, create infrared radiation as a result of vibrational-rotational
or rotational transitions ofmolecules. Rates of such radiative transitions are relatively
low, and hence they do not influence on thermodynamic equilibrium in air between
vibrational and rotational states of greenhouse molecules. Hence, radiation emitted
by the atmosphere is characterized by the air temperature.

Let us introduce the global Earth’s temperature as the temperature of the Earth’s
surface averaged over all the globe surface and time. The global temperature is
a parameter of the Earth’s energetic balance. Variation of the global temperature
in time characterizes the climate change, and our task is to determine the rate of
change of the global temperature dT/dt , and the range of temporal variation which
ismeasured in years. The problem is that chaotic variations of the global temperature,
as well as the temperature at a given geographical point, in the course of a day and
season reach tens degrees, so that the global temperatures averaged over year are
of the order of 1K. But variation of the global temperature for a century does not
exceed 1K.

The method [30] for variation of global temperature allows one to overcome
the indicated problem and to decrease the fluctuations in determination of the global
temperature by one order ofmagnitude.Within thismethodwe compare temperatures
at the samegeographical point and timeof day and season and construct the difference
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Fig. 7.5 Evolution of the
global temperature with
averaging for one and fife
years [31] (a), and for five
and fifteen years [32, 33]
(b). Arrows indicate years
when the global temperature
does not vary in average and
is taken as a basic one

of these temperatures �T at different years. Next this temperature difference is
averaged over the Earth’s surface and also over say and season time during the year.
In this manner one can determine variation�T of the global temperature in time and
the rate d�T/dt of its variation. Fluctuations of variation of the global temperature
in this method are estimated as 0.1K.

Realization of this method requires large information and a labor-intensive work.
Nevertheless, this information follows from data of meteorological stations. A num-
ber of such meteorological stations was about 6 thousands in the second half of 19th
century and now their number decreases in three times only, because the basic infor-
mation follows from satellite measurements. Treatment of this information is made
within the framework of NASA programs [Gottard Institute for Space Studies—
GISS], and results of this treatment are given in [31–36]. Comparison of the global
temperature change in summer and winter, as well as in daytime and night time or in
North and South hemispheres gives that indicated values of �T during a year does
not exceed 0.2K [32, 33].

Figure7.5 give evolution of the global temperature with averaging over year, five
years and fifteen years. One can see that the larger time of averaging, the smother this
dependence. From Fig. 7.5 it follows that year fluctuations of the global temperature
are of the order of 0.1K. One can see a non-monotonic evolution of the global
temperature in time. Indeed, during 1880–1910 a weak cooling was observed that
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Fig. 7.6 Evolution of global
temperature in last years
[32]. The temperature
variation is counted from the
average global temperature
in 1950–1980

was changed by aweak heating in 1910–1940whichwas continued by cooling during
1940–1950. Next, during 1950–1980 the global temperature did not vary within the
limit of its accuracy, and the Earth heating takes place after 1980. Basing on these
data, we give in Fig. 7.6 evolution of the global temperature after 1985 when the
global temperature was increased monotonically [37]. Approximation of these data
by the linear time dependence gives for evolution of average change of the global
temperature

d�T

dt
= 0.018K/yr, (7.1.8)

and the fluctuation (standard deviation) for data of Fig. 7.6 is equal � = 0.09K.
The latter means that a smooth (linear) time dependence for the global temperature
change �T is valid at time intervals above 5 years.

One of a greenhouse atmospheric component is carbon dioxide. The equilibrium
of atmospheric carbon dioxide results from its conversion in a hard carbon in the
photosynthesis processes, and the inverse process by processes of putrefaction and
breathing of plants. As it follows from the carbon balance in the atmosphere [38–
41], the rate of each process is approximately 2 · 109 ton/yr, while the total carbon
mass in atmospheric carbon dioxide is approximately 2 · 109 ton/yr. This means that
the average residence time of an atmospheric CO2 molecule is 4 years. In addition,
the total carbon mass in fossil fuels, i.e. in coal, oil and methane, is 1 · 108 ton/yr.
This means that only 5% of the rate of carbon dioxide injections in the atmosphere
corresponds to combustion of fossil fuels, i.e. the latter is not important for the
balance of atmospheric carbon dioxide.

Detailed information about atmospheric carbon dioxide follows from monitoring
of atmospheric CO2 that is made from 1959 in the Mauna Loa observatory (Hawaii,
USA) [43–46]. This observatory is located at altitude 3400m above the sea level
< that is far from sources or absorbers of carbon dioxide. Some results of this
monitoring are given in Fig. 7.7. As is seen, the concentration of carbon dioxide



236 7 Greenhouse Effect in Atmospheres of Earth and Venus

Fig. 7.7 Concentration of
CO2 molecules in
atmospheric air during the
last half century (a) and for
the last five years (b)
according to [42, 43]; open
circles corresponds to an
average during a month, and
filled squares relate to
averaged data for year (one
half year before and after an
indicated data)

molecules in atmospheric air increases from 316ppm in 1959 up to 409ppm in
2017. In addition, the rate of an increase of the carbon dioxide concentration grows
in time from 0.7ppm/yr in 1959 up to approximately 2.1ppm in 2017. The reason
of season oscillations of the CO2 concentration is explained that the photosynthesis
process is stronger in the northern hemisphere, where it proceedsmostly in the period
from May to September, and the photosynthesis is absent practically in the period
from October to March. The data of Fig. 7.7a give the contemporary rate of variation
of CO2 concentration as

d ln c

dt
= 0.006 yr−1, (7.1.9)

with an accuracy approximately 10%.
Within the framework of the Arrenius concept [47], one can introduce the equi-

librium climate sensitivity (ECS) [48] as a change of the global Earth temperature
at the doubling of the atmospheric carbon dioxide concentration. This value is given
by
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ECS = �T
ln 2

ln(c2/c1)
, (7.1.10)

where c1 and c2 are concentration of CO2 molecules at the initial and final time,
and �T is the global temperature variation for this time interval. This value may be
determine twofold. In the first case it follows from formulas (7.1.8) and (7.1.9). In
the second case we take the concentration of CO2 molecules to be c1 = 280ppm in
a pre-industrial period, and c2 = 410ppm at the present time, and the temperature
change is � = (0.8 ± 0.1)K [49] for this time. As a result, we obtain

ECS = (2.0 ± 0.3) ◦C (7.1.11)

Note that this value follow fromNASAmeasurements, rather than some evaluations.
The mean amount of atmospheric water is 1.3 · 1019 g [50–53] that corresponds

to the mean water density in the atmosphere as 3g/m3. One can compare the water
mass in the atmosphere with the atmosphere one 5.1 · 1021 g which relates to nitro-
gen and oxygen. This corresponds to the average concentration of water molecules
in atmospheric air as approximately 0.4%, whereas near the Earth’s surface the av-
erage concentration of water molecules in air is equal 1.7%. The total rate of water
evaporation from the Earth’s surface is 3.9 · 1020 g/yr [54–57] (only 1.0 · 1018 g in
the form of snow), and the same rate relates to water returning to the Earth’s sur-
face. As it follows from this consideration, the power of the evaporation process is
equal 2.4 · 1016W (see Fig. 7.2) which is returned as a result of water condensation
in the atmosphere. In this manner, the above power is transferred from the Earth to
atmosphere.

From the amount of atmospheric water and the rate of its formation it follows that
an average time of residence of watermolecules in the atmosphere is approximately 9
days [57]. In thewater balance between the land, ocean and atmosphere, precipitation
of atmospheric water on the Earth’s surface and uniform distribution over it gives a
layer of liquid water of a thickness 2.5cm [58]. The height of a precipitated layer
may be used as a unit for amount of a water vapor in the atmosphere [59–63]. As it
follows from data [59, 60], approximately 80% of atmospheric water is located at
altitudes below 3km. According to data [61–63], the rate of water precipitation on
the Earth’s surface is higher for oceans, whereas season variations of this rate are
more for land.

Atmospheric water contains a small part of Earth’s water with the mass of 1.4 ·
1024 g. If this water would be distributed over the Earth’s surface uniformly, the layer
thickness will be 2.7km. From this it follows that themost part of this water is located
underground. Note that 96% of Earth’s water is salty. In addition, open water located
on the Earth surface is a source of atmospheric water and is found in equilibrium
with it.

Near the Earth’s surface the average partial pressure of water is about 2Torr,
whereas the saturated water pressure is 4.7Torr at the temperature [64, 65]. There-
fore atmospheric water is in the form of a vapor mostly, and a small part of water
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exist in the form of aerosols, at least, at altitudes below 3km. Because of the con-
densation process, the number density of water molecules decreases with an altitude
h sharper than that in the case of air molecules. By analogy with formula (7.1.2),
the dependence of the number density of water molecules N (H2O) on the altitude h
may be approximated by

N (H2O) = No exp(−h/λ), (7.1.12)

and the parameters of formula (7.2.27) are equal according to measurements [61–63]
of the global atmospheric moisture at various altitudes

No = (4.2 ± 0.2) · 1017 cm−3, λ = (2.0 ± 0.2) km, (7.1.13)

Here the data of 1950–1960 and 2000–2010 are used, so that the values of these
parameters vary during this time inside the indicated accuracy. In reality, the total
amount of atmospheric water grows in time with the rate 0.07g/kg per decade (1g
of water per 1kg of air) [66–68], that corresponds to variation of the concentration
of atmospheric water c as

d ln c

dt
= 7 · 10−3 yr−1 (7.1.14)

From the end of 19th century an increase of the air moisture near the Earth’s surface
is equal approximately 4% [69].

7.1.3 Models of Emission from Optically Dense Gaseous
Layer

We below represent the models for emission of the atmosphere considering it in
average as a gaseous layer above the Earth’s surface; its parameters depend on the
altitude only because a typical thickness of the atmospheric layer which is responsi-
ble for its emission is small compared to the Earth’s radius. But it is necessary to take
into account a nonuniform distribution of the atmospheric temperature and number
density of radiating and excited molecules. In this analysis it is of importance the
local thermodynamic equilibrium for vibrationally excited atmospheric molecules
because radiative times are large compared with collision times involving excited
molecules in atmospheric air. Therefore radiative processes do not violate the Boltz-
mann distribution over excited vibrational and rotational states. From this it follows
that radiation does not influences on the distribution, and radiative transport involv-
ing reabsorption processes is negligible. This fact decreases a number of models [70]
which may be used in the analysis of atmospheric emission in the infrared spectrum
range.
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We now use a simple model on the basis of the assumption that the atmospheric
absorption coefficient is independent of the frequency, and also it is a monotonous
function of an altitude [19, 29]. Under these conditions one can determine the average
optical thickness of the atmosphere. Let us approximate the altitude dependence of
the absorption coefficient as

κω ≡ duω

dh
= A exp

(
−h

λ

)
, (7.1.15)

In order to determine the parameters of this formula, we use formula (2.2.37) which
allows one to find the altitude of the layers which are responsible for emission toward
the Earth h↓ and outside the atmosphere h↑. These altitudes satisfy to equations
(2.2.31)

∞∫
h↑

kωdh = 2/3,

h↓∫
0

kωdh = 2/3 (7.1.16)

These equations allow one to determine the parameters of formula (7.1.15) [19, 29]

A = 0.35 km−1, λ = 6.0 km, u = Aλ = 2.1, (7.1.17)

where u is the total optical thickness of the atmosphere. Thus, this model [19, 29]
with the average absorption coefficient over the infrared spectrum range proves the
validity of the model of a weakly varied optical thickness as an altitude function for
optically thick layers under consideration.

Note that the used model for emission of a nonuniform gaseous layer is used a
small parameter (2.2.37) which in the limit �ω > T has the form

α = 5

18

(
�ω

T 2
· dT
du

)2

(7.1.18)

Let us determine altitudes which are responsible for emission toward the Earth and
outside the atmosphere, the values of this small parameter are equal α↓ = 0.03 and
α↑ = 1/4.

We now extract one component from the absorbed gas and present the absorption
coefficient of the entire gas Kω in the form

Kω = κ + kω, (7.1.19)

where kω is the absorption coefficient of an extracted gaseous component and κ is
that for other absorbed component. For example, if the standard atmosphere contains
three main absorbed components: water molecules, water microdrops and carbon
dioxide molecules, one can refer κ to water molecules and water microdrops, while
kω is the absorption coefficient of CO2 atmospheric molecules, and then one can find
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the contribution of CO2 molecules to atmospheric absorption. In another example
kω refers to trace gases, and κ is the absorption coefficient of three basic absorbed
components of the atmosphere. Below we focus on the first example because it is of
the practical interest.

Let us formulate the algorithm to determine the contribution of a certain com-
ponent of atmospheric air to its emission under given conditions. For obviousness,
we will consider below as this example the emission of atmospheric carbon dioxide
toward the Earth. One can use two models for determination the radiative flux jω due
to carbon dioxide, as well as the total radiative flux Jω to the Earth’s surface due to
all atmospheric components. According to formulas (7.1.15) and (7.1.16) one can
characterize radiation at a frequency ω by the radiative temperature Tω that is given
by

Tω = T (hω), hω = 2

3Kω
= 2

3(κ + kω)
(7.1.20)

This formula describes the emission towards the Earth and is based on the assumption
hω 	 λ. Next, the equality of the radiative temperature Tω for a given frequency and
the temperature of an atmospheric layer located at an effective altitude hω means
local thermodynamic equilibrium for radiating molecules.

The radiative temperature Tω allows one to determine the radiative flux toward
the Earth Jω at a given frequency ω according to the Planck formula (2.2.37) [71,
72]

Jω = ω3

4π2c3 {exp [�ω/Tω] − 1} , (7.1.21)

and this gives the total radiative flux as the integral of the partial ones (7.1.21). Using
the partial radiative temperature Tω corresponds to the line-by-line model that means
determination of partial radiative fluxes at each frequency and subsequent integration
of these fluxes in the total radiative flux.

Another model, the absorption band model [19, 70, 73], is more rough and as-
sumes that the emission takes place in a certain frequency range which is called
the absorption band. This model holds true at high pressures where frequency os-
cillations of the absorption coefficient are absent, i.e. according to formula (4.2.16)
kω = χω . In this case we are based on a sharp dependence χ(ω), and one can in-
troduce boundary frequencies ω1 and ω2 of the absorption band on the basis of the
relations

kω1 = kω2 = κ (7.1.22)

It is clear that thismodel does notwork in a transient range of frequencies,whereas os-
cillations expand the transient range and hence decrease of the accuracy of thismodel.
We below analyze the above models of atmosphere emission for main greenhouse



7.1 General Principles of Atmospheric Greenhouse Effect 241

Fig. 7.8 Effective altitude hω which determines the radiative flux at a given frequency at the
contemporary concentration of atmospheric carbon dioxide under the assumption that the absorption
coefficient of atmospheric water is independent of the frequency [74]

components of the atmosphere, namely, carbon dioxide molecules, water molecules
and water microdrops—aerosols.

7.2 Greenhouse Effect in Atmospheres

7.2.1 Emission of Atmospheric CO2 Molecules Towards the
Earth

We now evaluate the radiative flux toward the Earth due to atmospheric molecules of
carbon dioxide. For this it is necessary to take into account vibrational transitions in
accordance with formula (4.2.27) which create the radiative flux towards the Earth.
We use formulas (4.2.17), (4.2.18), and (4.2.21) for the absorption coefficient due to
each vibrational transition, and also formula (4.2.25) for the absorption coefficient
of P and R branches of atmospheric CO2 molecules, as well formulas (4.2.31) and
(4.2.32) for Q-branch. All these evaluations relate for a high optical density of the
atmosphere and the local thermodynamic equilibrium.

We first determine the radiative temperature Tω for atmospheric emission in the
frequency range where it is created by atmospheric CO2 molecules. For the standard
atmosphere model where the temperature gradient is dT/dh = 6.5K/km, formulas
(7.1.5) and (7.1.18) give for the radiative temperature Tω
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Fig. 7.9 Radiative temperatureTω at the contemporary concentrationof atmospheric carbondioxide
for the line-by-line method under assumption that the absorption coefficient of atmospheric water
is independent of the frequency [74]

Tω1 = TE − hω
dT

dh
= TE − α

κ + kω
, (7.2.1)

where TE = 288K is the Earth’s temperature, hω is the altitude which is responsi-
ble for radiation towards the Earth, α = 4.3K/km. Figure7.8 contains the effective
altitude hω which is responsible for radiation at a given frequency and is given by
formula (7.1.20). Figure7.9 gives the radiative temperature due to atmospheric car-
bon dioxide in accordance with formula (7.2.1). Roughly, this dependence may be
approximated by a table-form that corresponds to the absorption band model. This
means that inside the absorption band, the radiative temperature is equal to the Earth’s
temperature because of a high optical thickness of the atmosphere due to atmospheric
CO2 molecules. Outside the absorption band CO2 molecules do not partake in origin
of the radiative temperature, and within the framework of a constant temperature
model the radiative temperature in this range is independent of the frequency.

Within the framework of the absorption model, we have on the basis of formula
(7.1.22) for boundaries frequencies left ω1b and right ω1b from the absorption band
at the contemporary amount of atmospheric carbon dioxide molecules

ω1b = 585 cm−1, ω2b = 750 cm−1 (7.2.2)

Within the framework of the absorption band model, this gives the radiation flux J↓
toward the Earth’s surface due to atmospheric CO2 molecules
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J↓ =
ω2b∫

ω1b

jωdω =
ω2b∫

ω1b

�ω3dω

4π2c2

[
exp

(
�ω

Tω

)
− 1

]−1

, (7.2.3)

where T is the atmosphere temperature near the Earth’s surface. Using parameters of
this formula for the standard atmosphere model, we obtain the value of the radiative
flux at the contemporary number density of atmospheric CO2 molecules (N (CO2)=
1 · 1016 cm−3) [74]

J↓ = 67W/m2 (7.2.4)

One can fulfil the same operation at doubling number density of the amount of at-
mospheric carbon dioxide. Then instead of the values (7.2.2) we have the boundaries
of the absorption band

ω′
1b = 581 cm−1, ω′

2b = 755 cm−1, (7.2.5)

that corresponds to the following radiative flux toward the Earth’s surface [74]

J ′
↓ = 71W/m2 (7.2.6)

On the basis of the line-by-line model, the radiative flux toward the Earth is given
by

J↓ =
ω2b∫

ω1b

jωdω =
ω2b∫

ω1b

�ω3dω

4π2c2

[
exp

(
�ω

Tω

)
− 1

]−1

(7.2.7)

The emission radiative flux J↓ toward theEarth’s surface at the contemporary concen-
tration of CO2 molecules and that J ′

↓ at its doubled concentration are equal according
to this formula [74]

J↓ = 61W/m2, J ′
↓ = 68W/m2 (7.2.8)

As a result, we have for the average radiative flux toward the Earth under these
conditions [74]

J↓ = (64 ± 3)W/m2, J ′
↓ = (70 ± 2)W/m2 �J↓(CO2) = (5 ± 2)W/m2,

(7.2.9)
where �J↓(CO2) is the difference of radiative fluxes toward the Earth due to atmo-
spheric CO2 molecules as a result of doubling of the atmospheric concentration of
CO2 molecules.

Let us assume that inside the absorption bands for atmospheric molecules of
carbon dioxide which boundaries are given by formulas (7.2.2) and (7.2.5) the ra-
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diative atmospheric temperature Tω coincides with the global Earth’s temperature
T = 288K. Then the atmospheric radiative flux is equal J = 67W/m2 at the contem-
porary concentration of carbon dioxide molecules and J ′ = 71W/m2 at the doubled
concentration of carbon dioxide molecules. One can see that these values coincide
within the accuracy limits with evaluations (7.2.9) on the basis of real radiative tem-
peratures. The difference of these radiative fluxes coincides with the accepted flux
difference 4W/m2 [16, 75], but this is not the change of the radiative flux toward
the Earth due to doubling of the amount of atmospheric carbon dioxide because of
a different spectral width of the absorption band. We below determine the change
of the radiative flux toward the Earth due to doubling of the amount of atmospheric
carbon dioxide. Next, from this it follows that the contribution of emission of CO2

molecules to the total radiative flux toward the Earth is approximately 20%.
Wenow improve themodel of frequency independent absorption coefficientwhich

allowed one to determine the altitude hω of an atmospheric layer which is responsible
for emission toward the Earth’s surface and the temperature of this layer T↓ according
to formula (7.1.6) and (7.1.4) as h↓ = 1.9km, T↓ = 276K. We now account for a
heightened radiative flux J↓(CO2) due to CO2 molecules in their spectral range
between ω1 and ω2. Then we have the following equation for the radiative flux

J↓ =
ω1∫
0

�ω3dω

4π2c2

[
exp

(
�ω

T

)
− 1

]−1
+ J↓(CO2) +

∞∫
ω2

�ω3dω

4π2c2

[
exp

(
�ω

T

)
− 1

]−1
= 327W/m2,

(7.2.10)
where T is the radiative temperature outside the absorption band by CO2 molecules.
As a result, we have for parameters of this range

T↓ = 274K, h↓ = 2.2 km κ = 0.30 km−1 (7.2.11)

We now check the validity of the method which allowed one to reduce the atmo-
sphere with a varied temperature to the one where the temperature is independent
of the altitude. It is based on a smallness of the parameter α which is defined by
formula (7.1.18). Outside the absorption band we have

dT

du
= dT

κdh
= 22K,

and formula (7.1.18) gives at boundaries (7.2.2) of the absorption band α(ω1b) =
0.016, α(ω2b) = 0.026 that confirms the validity of the method used.

Let us analyze the change of the radiative flux �J↓ toward the earth’s surface as
a result of doubling of the atmospheric carbon dioxide amount in order to determine
the ECS (equilibrium climate sensitivity) subsequently. This increase leads to an
increase of the radiative temperature for radiation directed toward the Earth, and this
change is represented in Fig. 7.10 [74]. This allows one to determine an increase�J↓
of the radiative flux toward the Earth as a result of doubling of the concentration of
atmospheric CO2 molecules as
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Fig. 7.10 Increase of the radiative temperature for the flux toward the Earth resulted from doubling
of the concentration of carbon dioxide molecules within the framework of the line-by-line model
[74]

�J↓ =
ω2∫

ω1

�ω3dω

4π2c2

{[
exp

(
�ω

Tω

)
− 1

]−1

−
[
exp

(
�ω

T ′
ω

)
− 1

]−1
}

, (7.2.12)

where Tω and T ′
ω are the radiative temperatures at the contemporary and doubled

concentrations of atmospheric carbon dioxide molecules respectively. Note that this
difference determines an additional radiative flux toward the Earth due to doubling
of the concentration of atmospheric CO2 molecules, rather the value �J↓(CO2) in
formula (7.2.9).

It is clear that the usedmodel in which the frequency is independent of the absorp-
tion coefficient, is rough because the absorption coefficient as a frequency function
oscillates strongly in reality. Therefore we take it in a more general form

κ = κo + a cos[b(ω − ωo)], ; (7.2.13)

where a < κo, b ∼ 1cm−1, and κo = 0.3km−1, i.e. the average absorption coeffi-
cient in the range outside of the absorption band due to CO2 molecules is κo and
(7.2.10) is fulfilled. Then formula (7.2.12) gives after averaging over the parameter
b.

�J↓ = (1.0 ± 0.2)W/m2 (7.2.14)

As is seen, this difference �J↓ = J ′
↓ − J↓ is several times less than the that

�J↓(CO2) defined by formula (7.2.9) as the difference of radiative fluxes toward
the Earth which are created by CO2 molecules. This means that increase of the



246 7 Greenhouse Effect in Atmospheres of Earth and Venus

flux due to CO2 molecules is accompanied by a more strong absorption of emitted
radiation. It is convenient to represent formula (7.2.14) in the form

�J↓(CO2)

d ln c
= (1.4 ± 0.3)W/m2 (7.2.15)

In the same manner, one can determine the change of the radiative flux as a result
of the change of the concentration of atmospheric water. Within the framework of
the above model, the water contribution to the atmospheric radiative flux toward the
Earth is characterized by the average absorption coefficient κ in formula (7.1.19).
Indeed, increasing the average absorption coefficient κ by 10%, one can obtain an
increase in the radiativeflux to theEarth’s surface by4.7W/m2.Assuming the average
absorption coefficient κ of atmospheric water to be proportional to the concentration
of atmospheric water, one can obtain by analogy with formula (7.2.15)

�J↓(H2O)

dc(H2O)
≈ 47W/m2 (7.2.16)

7.2.2 Water as Atmospheric Radiator

As we indicate above, basic atmospheric radiators are atmospheric carbon dioxide
and water. From the above evaluations based on spectroscopic parameters of CO2

molecules it follows that carbon dioxide creates approximately 20% of the radiative
flux in the infrared spectrum range that falls on the Earth. Hence atmospheric water
in the form of H2Omolecules and water microdrops is responsible for approximately
80% of the radiative flux which is absorbed by the Earth in the infrared spectrum
range.

Atmospheric water includes water molecules and water microdrops including
those of clouds. One can evaluate the radiative flux due to atmospheric water
molecules in the same matter as we done above in the case of CO2 molecules on
the basis of spectroscopic parameters these molecules taken from the HITRAN data
bank. But because of the complex character of the spectroscopy of water molecules,
the visualization will be lost in this way; since our goal is to represent the physical
picture of the greenhouse phenomenon and to show the role of spectroscopy in cre-
ation of this phenomenon, we use a more rough method for estimation of the role of
water molecules.

In this consideration we return to the concept which is presented in Fig. 7.1. In
spite of a low accuracy of spectra of this Figure compared to contemporary data,
it demonstrates an important concept. Namely, molecules are optically active in a
certain spectral range; continuous radiators, as water aerosols, are necessary to cover
other spectral range. Basing of this concept, we divide the infrared spectrum which
provides the atmospheric greenhouse effect in parts related to certain molecules; the
rest spectrum part is covered by aerosols. Roughly, the absorption band due to carbon
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Fig. 7.11 Spectral intensity of atmospheric water molecules according to the HITRAN data bank
at the temperature T = 296K [76]

dioxide molecules is restricted by the spectral range (7.2.2), and we below estimate
boundaries of the absorption band for atmospheric water molecules..

Let us assume that the boundary frequencies of the absorption band for water
molecules is created at altitudes h ∼ 2km, as it takes place for CO2 molecules.
According to formula (2.2.38) this corresponds to the absorption coefficient kω ∼
3 · 10−6 cm−1. In order to reduce this estimation to data of Fig. 7.11, we express the
absorption coefficient kω averaged over oscillations through the spectral intensity Sω

according to formula (4.2.16)

kω = N (H2O)Sωλd ,

where N (H2O) ∼ 1017 cm−3 is the number density of water molecules; taking an
average energy difference d ∼ 0.1cm−1 for neighboring levels which is comparable
with the line width, one can obtain λd ∼ 10cm for the wavelength of photons which
determine the radiativeflux emitted by the atmosphere due toH2Omolecules. Though
the used formula (4.2.16) relates to molecules with a regular spectrum structure, it
may be taken as an estimation.

From this one can obtain for boundary values of the spectral intensity S∗
ω ∼

3 · 10−24 cm/mol. In addition it would be required the difference of energies for
neighboring resonances d must be less than ν ∼ 0.1cm. If this relation is not ful-
filled, a dip occurs in a dependence kω between neighboring energy levels, and the
absorption at indicated frequencies takes place if
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Sω >
ν2

d2
S∗

ω (7.2.17)

These estimations allows one to analyze the character of absorption of atmospheric
water molecules on the basis of the HITRAN bank data given in Fig. 7.11. Roughly,
the absorption band of water molecules is located from small frequencies up to
absorption band of CO2 molecules. The latter means that removing of carbon dioxide
from the Earth’s atmosphere conserves absorption inside its absorption band due to
water molecules. At larger frequencies ω > 800cm−1 absorption takes place only in
narrow ranges due to some spectral lines.

Note that in contrast to atmospheric carbon dioxide, we are restricted by a rough
consideration of atmospheric water because a real water amount in the atmosphere
varies in wide ranges, whereas the concentration of atmospheric CO2 molecules is
more or less close to its average value because of a large residence time of these
molecules in the atmosphere (approximately about of 4 years). For this reason, in
analyzing the role of atmospheric water in the greenhouse effect we are based on the
energetic balance of the Earth and its atmosphere.

Let us analyze the character of the atmospheric emission directed toward theEarth.
We assume on the basis of Fig. 7.11 that atmospheric water molecules provides emis-
sion of the atmosphere at frequencies below 800cm−1. This range includes also the
absorption band due to CO2 molecules according to (7.2.2), i.e. the absorption bands
due to atmospheric carbon dioxide and atmospheric water molecules are overlapped.
Next, one can take the radiative temperature for atmospheric emission toward the
Earth to be equal to the temperature of the Earth’s surface, as we obtain above inside
the absorption band due to CO2 molecules. This gives the radiative flux toward the
Earth J↓(ω < 800cm−1) = 233W/m2, so that according to Fig. 7.2 data the total
flux is J↓ = 327W/m2; the other part of the flux is J↓(ω > 800cm−1) = 94W/m2.
Evidently, the latter is created by water microdrops since absorption by CO2 and
H2O molecules in this spectral range is weak. Accounting for also the radiative
flux (7.2.9) that is determined by atmospheric carbon dioxide, one can obtain that
the atmospheric radiative flux toward the Earth is created roughly in 20% by CO2

molecules, in 50% by water molecules, and in 30% by water microdrops.
Water microdrops are of importance for atmospheric emission along with atmo-

spheric water molecules and CO2 molecules, in spite of a small amount of atmo-
spheric water mass in the form of microdrops compared with that in the form of
molecules. Because of a high optical thickness of the atmosphere at frequencies in-
side the absorption bands due to water and carbon dioxide molecules, the outgoing
atmospheric radiation emitted by the Earth surface, is located in the spectrum range
ω > 800cm−1). It is approximately Jp = 20W/m2 according to data of Fig. 7.2 or
5% of total emitted power from the Earth’s surface.

Let us estimate the radiative temperature Tω and an effective altitude hω for emis-
sion of aerosols in the range ω > 800cm−1). Above we found the radiative flux in
this frequency range to be J↓(ω > 800cm−1) = 94W/m2; according to the Planck
formula this corresponds to the radiative temperature Tω = 265K, that is realized at
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the altitude hω = 3.6km. The optical thickness u of the atmosphere in the spectral
range where absorbers are water microdrops in accordance with the character of
radiation propagation, follows from the equation

Jp = J ′
E

∞∫
0

f (u)du

1∫
0

exp
(
− u

cos θ

)
d cos θ, (7.2.18)

where J ′
E is the radiative flux from the Earth in this spectral range, f (u) is the

distribution function over optical thicknesses, θ is the angle between the normal to
the Earth’s surface and direction of photon motion. As a blackbody, the the Earth
emits the radiative flux J = 153W/m2 at frequencies above 800cm−1. Evidently,
the flux Jt = 20W/m2 passes through the atmosphere in this spectral range, and the
probability for a photon to pass through the atmosphere in the indicated spectral
range is P = 0.13. On the other hand, taking for simplicity the distribution function
in formula (6.3.2) as f (u) = exp(−u/uo), we take for the probability of surviving
of an emitted photon by the Earth

P =
1∫

0

cos θ

uo + cos θ
d cos θ = 0.13

Solution of this equation gives uo = 3.2, i.e. microdrops form clouds with a large
average optical thickness. It is clear that in reality the optical thickness of the atmo-
sphere varies in time.

In addition, one can estimate the amount of the atmospheric water in microdrops,
being guided by experiment [77]. According to this experiment, the average absorp-
tion cross section σabs of infrared radiation at the wavelength λ = (10 − 12)µm by
water microdrops is σabs = (1.5 − 2.1) · 10−6 cm2. The cross section of a typical
microdrop which radius is ro = 8µm is σ = πr2o = 2.0 · 10−6 cm2 corresponds to
the measured value. On the other hand, the absorption cross section for a ball of a
radius ro with blackbody properties of its surface is given by [78]

σabs = πr3o
ro + Cλ

,

where λ is the wavelength, and the numerical coefficient C ∼ 1. Let us denote the
drop number density in clouds as N , and the average thickness of the layer as L .
Then the optical thickness of this layer is

u = NLσabs

On the other hand, the water mass in microdrops per unit area of the Earth’s surface
under these conditions is
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M = 4

3
πr3oρNL ,

where ρ = 1g/cm3 is the density of liquid water. From this we have

M = 4πr3o
3σabs

ρu = 4(ro + Cλ)

3
ρu (7.2.19)

Under these conditions we obtain M ∼ 10−2 g/cm2, i.e. of the order of 0.3% of the
atmospheric water mass is contained in microdrops, i.e. this atmospheric water is
found in clouds.

Basing on the observed data for evolution of global atmospheric parameters and
the above spectroscopic analysis of the atmospheric greenhouse phenomenon, we
below consider evolution of the global temperature as a result of an increase of the
amount of atmospheric water and carbon dioxide separately. Let us represent the
change of the global temperature Tg, if it is determined by variation of the concen-
trations c(CO2) of atmospheric CO2 molecules and that c(H2O) of water molecules,
in the form

dTg = a
dc(CO2)

c(CO2)
+ b

dc(H2O)

c(H2O)
, (7.2.20)

where a = 0.7K according to (7.1.18). In order to determine the parameter b, we as-
sume that the change (7.2.20) of the global temperature in a real atmosphere as a result
of doubling of the concentration of CO2 molecules is determined by atmospheric car-
bon dioxide andwater, and formula (7.1.18) gives that forCO2 molecules. In addition,
we have that doubling of the concentration of CO2 molecules is caused by an increase
of the radiative flux �J = 1W/m2 due to these molecules and �J↓ = 4W/m2 due
to other atmospheric radiators assuming those to be water molecules.

We above determine the average absorption coefficient κω = 0.33km−1 for
the contemporary concentration of CO2 molecules from equation J↓ = 327W/m2.
Correspondingly, doubling of the carbon dioxide concentration leads to equation
J↓ = 332W/m2 that gives κω = 0.35km−1. Since the global temperature change
due to atmospheric radiators other than CO2 molecules, is 1.6K according to for-
mulas (7.2.27) and (7.2.29), one can obtain from this that b = 25K. As it is seen,
b � a, because on the one hand, the concentration of water molecules near the Earth
surface is 40 times more than that of carbon dioxide molecules, and, on the other
hand, a water molecule due to its dipole moment has a higher optical activity com-
pared to the CO2 molecule. Note also that the correlation between evolution of the
CO2 concentration and global temperature was used in this operation that exists only
last 40 years.

In considering emission of atmospheric water in IR spectral range, we were based
on simple models and measurements related to atmospheric water. One can expect a
more fruitful method is to evaluate the absorption coefficient of atmospheric water on
the basis of high-resolved spectroscopy of water molecules [79] in the same manner
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as it is made for atmospheric carbon dioxide. But it is not reliable because of strong
fluctuations in the concentration of water molecules and an important contribution
of water microdrops which in spite a relatively small mass close the windows of
transparency of water and carbon dioxide atmospheric molecules. Additional data
for atmospheric carbon dioxide and water allow one to increase the reliability of
parameters described the greenhouse atmospheric phenomenon.

In conclusion of the analysis of the greenhouse phenomenon in the Earth’s atmo-
sphere we note that atmospheric CO2 molecules give the contribution of approxi-
mately 20% both in the radiative flux of infrared radiation toward the Earth and the
change of the global temperature due to growth of the amount of atmospheric carbon
dioxide. The other part of these values relate to atmospheric water in the form of H2O
molecules and water microdrops. We determine the contribution from atmospheric
carbon dioxide on the basis of the spectroscopy analysis because of a large residence
time of CO2 molecules in the atmosphere that is approximately 4 years. The amount
of atmospheric water varies in irregular manner depending on time and geographic
point. Therefore we are based on the energetic balance of the Earth’s atmosphere
that is reliable. As a result, we obtain roughly that the contribution to the greenhouse
effect due to CO2 molecules is 20%, due to water molecules is 50% and due to water
microdrops is approximately 30%.

7.2.3 Climate Sensitivity

We above have determined the variation of the radiative flux toward the Earth due to
a change of the concentration of atmospheric CO2 molecules. This causes a change
of the Earth’s temperature, and our task is to determine the connection between these
values. The characteristic of this change is according to Arrenius [47] so called the
equilibrium climate sensitivity [48] which is the change of the global temperature
at doubling of the atmospheric concentration of CO2 molecules. But this problem
may be formulated in a general form, as the global temperature change as a result
of variation of the radiative flux �J↓ toward the Earth/s surface. Let us define the
climate sensitivity [16, 80] S as the ratio of the global temperature variation �T to
the change �J↓ of the radiative flux toward the Earth, and this change causes the
change of the global temperature �T . We have

S = �T

�J↓
(7.2.21)

It is convenient to operate with a reciprocal value F = 1/S, which is called the
radiative forcing, since the total radiative forcing is the sum of partial ones. In this
consideration we assume the interaction of solar radiation with the atmosphere and
Earth is not varied at a small Earth temperature change. This also takes into account
that optical parameters of the atmosphere in the visible spectral range are not varied
if these parameters in the infrared spectral range vary slightly, including the con-
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servation of the Earth albedo. In this consideration, we are based on the standard
atmosphere model, so that the Earth’s temperature is TE = 288K, the temperature
gradient dT/dh = −6.5K/km is constant up to the tropopause at ho = 11 km, where
the atmospheric temperature equals Tmin = 217K, and the temperature difference
between the Earth and tropopause is δT = Te − Tmin = 61K. Let the temperature
change at the Earth be �T , while the tropopause temperature is unvaried. We then
determine the change of energy fluxes under the above conditions, where the water
concentration is supported to be a constant.

One can obtain the temperature Th at a given altitude h and its change �Th under
given conditions

Th = TE

(
1 − δh

ho

)
, �Th = �T

(
1 − h

ho

)
(7.2.22)

Correspondingly, a change �Jh of the radiative flux, if it is created at the altitude h,
is

�Jh = 4σT 3
h �Th = 4Jh�Th

Th
, (7.2.23)

where σ is the Stephan-Boltzmann constant. In determination of the convection flux
change �Jc, we assume the energy flux due to convection to be proportional to the
temperature gradient, that gives

�Jc = Jc
�T

δT
(7.2.24)

We use these relations below in determination the
The radiative flux from the Earth’s surface JE = 386W/m2 is compensated par-

tially by atmospheric emission through carbon dioxide and water molecules which
equals approximately �JE = 216W/m2 in the range ω < 800cm−1. Assuming the
radiative temperature for emission of atmosphericmolecules to be equal to theEarth’s
temperature, one can find the radiative forcing FE due to emission of the Earth and
atmospheric molecules

FE = 4�JE
TE

= 2.4W/(m2 K) (7.2.25)

In accordance with the energetic balance of the Earth given in Fig. 7.2, we
take the average energy flux due to water evaporation from Earth’s surface to be
Jev = 57W/m2 and due to atmospheric convection Jc = 47W/m2. The tempera-
ture dependence of the flux due to water evaporation is ∼ exp(−�ε/T ), where
�ε = 0.43eV is the binding of the water molecule for the liquid phase. The flux
change �Jc due to convection we assume to be proportional to the temperature
change. As a result, we obtain for the change of the energy flux for these channels as
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�Jev = Jev
�ε�T

T 2
E

, �Jc = �T

TE
Jc, (7.2.26)

and these channels give Fev = 3.4W/(m2 K), Fc = 0.16W/(m2 K), Fev + Fc

= 3.6W/(m2 K).
We determine also the feedback which takes into account the connection between

an increase of the global temperature �T and the concentration of optically active
components. Let us use the Pauling concept [81, 82] according to which an increase
of the carbon dioxide concentration in the atmosphere results from an increase of the
global temperature, but not vise versa, as it is assumed in the standard consideration.
In this case an atmospheric amount of carbon dioxide follows from equilibrium with
ocean carbon dioxide which is dissolved in oceans and is located there in the form of
HCO−

3 and other compounds. This equilibrium proceeds through the formation of

CO2 + H2O(liq) ←→ H2CO3, (7.2.27)

that means an equilibrium between free atmospheric CO2 molecules and bound ones
in an indicated compound with liquid water, where the enthalpy of this transition
is �H = 178kc J/mol or 1.8eV [83]. Because an amount of atmospheric carbon
dioxide is less compared with bound carbon dioxide in this chemical compound, the
concentration c(CO2) depends on the temperature as

c(CO2) ∼ exp

(
−�H

T

)
, (7.2.28)

that leads to the following relation of a concentration change for atmospheric carbon
dioxide and a temperature change �T of the Earth’s surface

Delta ln c(CO2)

d�T
= �H

T 2
= 0.26K−1 (7.2.29)

This gives for the radiative forcing Ff (CO2) = 0.4W/(m2 K) due to the feedback
between the change of the atmospheric concentration of carbon dioxide and the
temperature change �T if we use formula (2.2.15).

By analogywith formula (7.2.22), we have for concentration of atmospheric water
molecules

c(H2O) ∼ exp

(
−�εb

T

)
, (7.2.30)

where εb ≈ 0.43eV is the binding energy of the water molecule on the surface of
liquid water. This gives by analogy with formula (7.2.23)

d ln c(H2O)

d�T
= εb

T 2
= 0.06K−1 (7.2.31)

From this on the basis of formula (2.2.15) we have
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F f (H2O) = �J↓(H2O)

d ln c

�c(H2O)

d�T
= 2.8W/(m2 K), F f = F f (H2O) + F f (CO2) = 3.2W/(m2 K)

(7.2.32)

Because the radiative forcing due to an increase of the atmospheric concentration
of water molecules due to an increase of the global temperature, we assume for
simplicity, that the the radiative forcing as a result of the feedback due to the change
of the atmospheric concentrations of carbon dioxide andwater molecules to be equal.
This gives for the radiative forcing due to this feedback Ff = 0.3W/(m2 K).

Summarizing the above values, one can obtain the total radiative forcing

Ft = FE + Fev + Fc − Ff ≈ 2.8W/(m2 K), S ≈ 0.36m2 K/W (7.2.33)

Note a low accuracy of the climate sensitivity since the radiative forcing is the differ-
ence of large values. The error increases also because atmospheric water molecules
and water microdrops are not separated in this evaluation. In addition, according to
evaluations [74] this value equals to S = 0.42m2 K/W.

It follows for the change of the global temperature as a result at doubling of the
concentration of atmospheric CO2 molecules.

�T = (0.4 ± 0.2)K, (7.2.34)

where the error accounts for the accuracy of used values, whereas the result depends
on processes included in the above scheme. Indeed, we assume the atmospheric and
Earth’s albedo, as well as another interaction of solar radiation with the atmosphere
and Earth, to be unvaried in the course of the change of the concentration of CO2

molecules, and also the content of atmospheric water is conserved. Because anthro-
pogenic fluxes of carbon dioxide in the atmosphere resulted from combustion of
fossil fuels is about 5%, the contribution of the human activity to ECS (the tem-
perature change as a result of doubling of the atmospheric carbon dioxide amount)
is

�T = 0.02K, (7.2.35)

i.e. injections of carbon dioxide in the atmosphere as a result of combustion of fossil
fuels is not important for the greenhouse effect. In addition, total removal of CO2

from the atmosphere causes a decrease of the radiative flux toward the Earth by
approximately 9W/m2. This corresponds to a decrease of the global temperature by
approximately 4K.

The value (7.2.27) may be compared with the ECS for a real atmosphere on the
basis of data for evolution of the global temperature during past 150 years [32, 33]
and the monitoring of atmospheric carbon dioxide [43, 46]. This is given by formula
(7.1.11)
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�T = (2.0 ± 0.3)K,

so that atmospheric carbon dioxide provides approximately 20% both the radiative
flux toward the Earth and its change resulted from the change of the concentration of
CO2 molecules. The ECS which follows from treatment of data over past 65 million
years is [80, 84, 85]

�T = (3.5 ± 1.3)K, (7.2.36)

Evidently, a large error is determined by the change of conditions during different
epochs.

For determination of the absorption coefficient (7.1.15), the spectroscopy infor-
mation about these molecules is required, and it is the content of the data bank [86]
that may be used for such evaluations. In the case of CO2 molecules an additional
simplification of a simple structure of this molecule allows one to use the regu-
lar or Elsasser model [87] for its vibrational-rotational spectrum with spectroscopy
parameters according to [88]. As a result, this allows one to determine ECS un-
der conditions, that the concentrations of all the atmospheric radiators except CO2

molecules are constant at doubling of the concentration of carbon dioxide molecules.
As a result, under these conditions, the change of the global temperature within the
framework of the absorption band and line-by line models is equal [19, 29, 74]

ECS = (0.4 ± 0.1)K (7.2.37)

Comparing formula (7.2.37) with (7.1.11), one can conclude that approximately 20%
of the change of the global temperature for a real atmosphere gives carbon dioxide,
and then the contribution to the global temperature change from combustion of fossil
fuels is approximately 1%.

In this consideration,we account for the total radiative flux toward theEarth equals
J↓ = 327W/m2 according to (7.1.12). Considering this as equation for the absorp-
tion coefficient of other atmospheric radiators than atmospheric carbon dioxide,
one can obtain for the contemporary concentration of atmospheric CO2 molecules
κω = 0.33km−1. This corresponds to the altitude h↓ = 2km of a layer which is re-
sponsible for atmospheric emission, and its temperature T↓ = 275K is the radiative
temperature in spectral ranges outside absorption of CO2 molecules. An indicated
temperature differs slightly from (7.1.4) where the absorption coefficient for atmo-
spheric carbon dioxide is averaged over frequencies. At the doubled concentration
of CO2 molecules this equation gives κω = 0.35km−1.

According to the above mentioned NASA investigations, the concentration of at-
mospheric CO2 molecules increases in time from 0.028% at the preindustrial period
which finishes in 19th century, up to 0.041% now. The amount of atmospheric carbon
dioxide results from the equilibrium between atmospheric and surface carbon [38–
41] and consists mostly of the transition between atmospheric carbon dioxide and
solid carbon in composition of plants. The carbon transition from the atmosphere to
the Earth’s surface proceeds in the photosynthesis process, whereas the opposite tran-
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sition results from breathing and degradation of plants, as well as from combustion
of fossil fuels. Roughly, the Earth atmosphere includes 800 billion tons of carbon in
atmospheric carbon dioxide, and the residence time of an individual CO2 molecule in
the atmosphere is approximately 4 years, i.e. an exchange between atmospheric and
surface carbon is approximately 2 · 108 ton/yr. The total carbon amount in coal, oil
and methane which is extracted from the Earth’s interior annually, is approximately
10 billion tons, i.e. the human activity gives the contribution of 5% to the carbon
circulation. Hence, the contribution of the man activity in the equilibrium climate
sensitivity (7.2.37) is

�T = 0.02K (7.2.38)

But a small contribution of injections of carbon dioxide in the atmosphere as
a result of the combustion process does not mean that the influence of the man
activity on global atmospheric parameters ia absent practically at the contemporary
level of the human activity. Indeed, from the preindustrial period up to now the
concentration of atmospheric CO2 molecules increases by (40–50)%. This results
from deforestation under the human activity. One can conclude from this analysis
that contemporary using of fossil fuels which finally are injected in the atmosphere
in the form of carbon dioxide and hence influence on the atmospheric spectroscopic
properties; it gives the contribution to the global temperature changeof approximately
1%.

7.2.4 Energy Balance of Venus and Its Atmosphere

We also apply the results of emission of a gas layer contained CO2 molecules for
the analysis of the energetic balance of the Venus and its atmosphere. Figure 4.10
gives the frequency dependence of the Venus atmosphere near its surface due to
atmospheric CO2 molecules, and belowwe use this to construct the energetic balance
of the Venus and its atmosphere. Let us represent first parameters of the Venus
atmosphere. The Venus atmosphere consists of carbon dioxide (96.5%) and nitrogen
(3.5%) [89]. On the basis of this, for simplicity, we shall further assume that carbon
dioxide is the only component of the Venusian atmosphere. The gas pressure at the
surface of Venus is 92 atm, the temperature is 735 K [89, 90]. The temperature
gradient is about −8K/km in the altitude range from 0 to 60km and then decreases
monotonically, as the altitude increases, to almost zero at an altitude of 100km [90].
On the basis of measurements [90], the scale of the change in the number density
of carbon dioxide molecules � in the Venus atmosphere, which is introduced on
the basis of formula (7.1.2), varies from � = 19km at the surface Venus up to
about 6km at an altitude of 60km, and 4km at an altitude of 100km. The number
density of carbon dioxidemolecules at the Venus surface is N = 9.2 · 1020 cm−3, and
also N = 6.6 · 1018 cm−3 and N = 1.2 · 1015 cm−3 at altitudes of 60km and 100km
respectively.
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Our task is to determine the contribution of carbon dioxide, located in the Venus
atmosphere, the greenhouse effect. Indeed, the average flux of solar radiation per unit
surface area of Venus is (2622 ± 6)W/cm2 [91] (for the Earth’s surface this value
is 1365W/cm2). For the observed surface temperature 735K, the flux of infrared
radiation under these conditions is JV = 1.7W/cm2, i.e. heat fluxes are increased at
approach to the planet surface. If the Venus absorbs all the solar radiation incident
on it and then radiates as a black body, then its surface temperature will be 463K.

In reality, most of the radiation penetrating into the Venus atmosphere is reflected,
and the absorbed energy is consumed partially for creation of convective gas flow,
while its main part is spent on atmosphere radiation. The Venus albedo is of 0.80 ±
0.02 according to [92] and 0.76 ± 0.01 according to [91]. As a result, the average
radiative flux from the Venus atmosphere is (157 ± 6)W/m2 [93]. This corresponds
to an average radiation temperature of about 230K, which agrees with measurements
[94, 95]. This temperature is realized at an altitude of 70km,where the carbon dioxide
pressure is 28Torr.

The analysis of the Venus energetic balance is beyond this work. Our task is to de-
termine the role of carbon dioxide emission in the heat balance of the Venus. We will
assume that the Venus atmosphere consists entirely of carbon dioxide and determine
the radiative temperature in the spectrum rangewhere carbon dioxidemolecules emit.
In the subsequent analysis, we use the representations of molecular spectroscopy (for
example, [96–101]). Moreover, the CO2 molecule is a linear symmetric molecule,
that simplifies the analysis of its oscillations.

Weuse formula (7.1.20) to find the radiative temperature T (ω) of radiation leaving
the Venus atmosphere in the range of the absorption spectrum of carbon dioxide
molecules. Let us introduce the absorption band by molecules of carbon dioxide
such, that the boundary frequencies for this band ω1b and ω2b in accordance with
formula (7.1.22) are given by relations

kω(ω1b)� = kω(ω2b)� = 2

3
, (7.2.39)

where the scale for the change of the number density of radiating molecules is
determined by formula (7.1.2).

If the width of the absorption band is determined by wings of spectral lines for in-
dividual vibrational-rotational transitions, it is convenient to average the absorption
coefficient (4.2.25) for P and R branches over oscillations within one period, i.e.
over the frequency range for transitions between neighboring rotational momenta.
Next, on the basis of formula (7.1.20), we determine the altitude of an atmosphere
layer hω which is responsible for emission of photons at a given frequency, and the
radiation temperature at a given frequency coincides with the temperature of this
layer. Figure7.12 contains the frequency dependence for this altitude. Correspond-
ingly, the radiation temperature T (ω) of photons, which are produced by emission
of carbon dioxide molecules, is given in an indicated range of photon frequencies in
Fig. 7.13 in accordance with formula (7.1.20).
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Fig. 7.12 Effective altitude of the Venus atmosphere which is responsible for creation of the
radiative flux at a given frequency [102]

Fig. 7.13 Effective temperature of the Venus atmosphere which is responsible for creation of the
radiative flux due to emission of atmospheric CO2 molecules as a frequency function [102]

Let us determine the total outgoing radiation flux from the Venus atmosphere
on the basis of formula (7.2.39) assuming that the radiative temperature for a part
of the spectrum, which is not connected with carbon dioxide, is independent of the
frequency. We have for the energy flux of radiation

J↓ =
ω1∫
0

�ω3dω

4π2c2
[
exp

(
�ω
To

)
− 1

] +
ω2∫

ω1

�ω3dω

4π2c2
[
exp

(
�ω
T (ω)

)
− 1

] +
∞∫

ω2

�ω3dω

4π2c2
[
exp

(
�ω
To

)
− 1

] ,

(7.2.40)
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and according to the measurements [93] this flux is J = (157 ± 6)W/m2. Solving
this equation, we find To = (249 ± 3)K,which corresponds to altitudes of 63–64km.
Note that clouds of the Venusian atmosphere, consisting of droplets of sulfuric acid,
are concentrated in the altitude range of 60–70km. Perhaps, these clouds are respon-
sible for emission of thermal radiation in the range of the spectrum, not connected
with molecules of carbon dioxide. We also note that at an altitude of 60km the at-
mosphere temperature is 263K, and the temperature gradient is dT/dh = 4K/km,
and the scale of the change in the number density of CO2 molecules is � = 6km.
This gives a small parameter (7.1.18) α = 0.05, which characterizes the validity of
the assumptions used.

Let us give the parameters of Venus related to the problem under consideration.
The atmosphere of Venus consists of carbon dioxide (96.5%) and nitrogen (3.5%)
[89]. For simplicity, we assume carbon dioxide to be the only component of theVenus
atmosphere. The gas pressure at the Venus surface is 92 atm, the temperature is 737K
[89, 90], that corresponds to the number density of molecules of carbon dioxide near
the Venus surface N = 9.2 · 1020 cm−3. The temperature gradient is about−8K/km
in the altitude range from 0 to 60km [90], and the scale of the change in the density
of carbon dioxide molecules � in the Venus atmosphere, which is introduced on the
basis of formula � = d ln N/d(1/h), where N is the number density of molecules
in the atmosphere, h is the altitude above the Venus surface, and � = 19km.

In constructing the energy balance of the surface of Venus and its atmosphere,
we will model the Venus surface as a blackbody for IR radiation. We have that
an absolutely black body with a temperature of 737K creates an IR radiative flux
Jo = 16.7 kW/m2. On the other hand, the average flux of solar radiation per unit
surface area of Venus 2.6 kW/m2 [91]. The Venus albedo is 0.80 ± 0.02 according
to [92] and 0.76 ± 0.01 according to [91]; we take it to be 0.78. It follows that the
average flux of solar radiation absorbed by the atmosphere and surface of Venus is
0.5 kW/m2.An additional contribution to the power absorbed by the surface ofVenus
is due to IR radiation produced by the molecules of carbon dioxide. To determine the
radiative flux to the Venus surface, which contributes to the Venus energy balance,
it is necessary to analyze the emission spectrum of carbon dioxide molecules in
the infrared spectral range, which is presented in Fig. 4.3, so that the frequency
dependence for the absorption coefficient is represented in Fig. 4.10.

The boundaries of absorption bands for the Venus atmosphere due to carbon
dioxide molecules follow from the relation [13, 103]

kω� = 2/3, (7.2.41)

where � = 19 km is the scale of the change in the number density of molecules of
carbon dioxide in the Venus atmosphere near its surface in accordance with formula
(7.1.2). On the basis of this formula, we have for the boundaries of the first two
absorption bands ω1 = 493cm−1 and ω2 = 1174cm−1, which gives IR radiative
flux to the Venus surface J1 = 3.5 kW/m2. The third absorption band, which is
created by the resonant radiation of the carbon dioxide molecule between the lower
excited antisymmetric state and the ground vibrational state, has the boundaries
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ω1 = 2258cm−1 and ω2 = 2439cm−1 that leads to IR radiative flux to the Venus
surface J3 = 0.9 kW/m2. From this one can obtain the total radiative flux to the
Venus surface, which consists of the absorbed flux of solar radiation and IR radiation
generated by carbon dioxide molecules in the Venus atmosphere is J = 4.9 kW/m2.

As it follows from the data presented, solar radiation absorbedby theVenus surface
contributes 3% to the total energy flux absorbed by the Venus surface. In this case,
the contribution of IR radiation of the Venus atmosphere absorbed by its surface is
26% from the total flux of radiation absorbed or emitted by the Venus surface. Note
that in the case of the Earth’s energy balance, the last channel gives 20% [16, 19, 75].
Thus, we arrive at a contradiction according to which the power of radiation absorbed
by the surface of Venus, is small extent (about one-third) compared to the power of
IR radiation from its surface at the observed temperature. In searching the cause
of the discrepancy between the indicated powers, we first analyze the accuracy of
finding the above powers. For this purpose, we use the absorption band model [19]
for carbon dioxide molecules, according to which radiation at frequencies inside
this band is created by carbon dioxide molecules, whereas outside the absorption
band, carbon dioxide molecules do not contribute to atmospheric emission. This
requires a sharp change of the absorption coefficient kω near the boundary of the
absorption band which is given in Fig. 4.9. The accuracy of calculation the above
radiation powers within the framework of the model used is better than 20%; the
error in calculations also includes the fact that the radiative temperature of the Venus
atmosphere near boundaries of the absorption bands is determined by the layers of
the Venus atmosphere whose temperature differs from the temperature of its surface.

Let us ascertainwhich additional channels in theVenus energy balance can remove
the contradiction obtained. Above we did not take into account the convective heat
transfer from the Venus surface, associated with the vortex movement of carbon
dioxide near its surface under the influence of the atmospheric temperature gradient.
In the case of the Earth, the convective energy flux is about 10% of the total flux
of solar radiation entering the Earth’s atmosphere [16, 19, 75]. It can be expected
that the relative contribution of convective transport in the energy balance of Venus
does not exceed this value due to a high gas pressure in the atmosphere of Venus.
Thus, convective transport in the atmosphere of Venus does not eliminate the above
contradiction, especially since the convective transfer only increases the missing
energy flow to the Venus surface, which is necessary for the fulfillment of the Venus
energy balance.

However, convective heat transfer in the Venus atmosphere causes the dust to
move from the Venus surface to its atmosphere. In the case of micron-size dust
particles, the action of gravity leads to their return to the Venus surface through
years. The weighted dust is optically thick in the IR spectral range and even at a
low dust concentration the IR radiative flux may be provided by dust particles. Note
that in the case of the Earth’s atmosphere, the role of dust does not be important,
since atmospheric dust is washed out by atmospheric water for 8–9 days. At the same
time, the energy balance of Venus and its atmosphere begins with absorption of solar
radiation by the atmosphere [104], and then the absorbed energy is transferred to the
Venus surface as a result of convection and radiative transfer. Herewe do not consider
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the radiative transfer from upper layers of the Venus atmosphere to its surface, but
we solve a simpler problem.

One can estimate a dust amount of the atmosphere from the condition that the dust
optical thickness u with respect to IR radiation is of the order of one. This condition
has the form

uω = kωL = σωNL ∼ 1, (7.2.42)

where σω is the photon absorption cross section of a dust particle, N is the number
density of particles in the atmosphere, L is the thickness of the atmosphere layer
in which the dust is located. Assuming dust particles to be spherical, we assume
a typical dust radius r to be small compared to the wavelength λ ∼ 10µm, which
leads to the following estimate for the photon absorption cross section of the dust
particle [78]

σω ∼ πr2 · r
λ

∼ V

λ
, (7.2.43)

where V is the average volume of dust particles. From this we obtain on the basis of
formula (7.2.42)

ξ = V NL ∼ λuω, (7.2.44)

where ξ is a typical thickness of the dust layer, which ensures the absorption of
infrared radiation of the planet, if atmospheric dust is collected near theVenus surface.

Comparing this amount of dust with the amount of carbon dioxide in the atmo-
sphere of Venus, we obtain that the concentration of dust molecules is ∼10−7 (the
number of molecules of atmospheric dust to the number of molecules of carbon
dioxide in the atmosphere) provides the effect under consideration when this dust
consisting from solid particles of micron and submicron sizes, creates the IR radia-
tive flux absorbed subsequently by the Venus surface. If this dust is collected at the
Venus surface, it forms a layer of thickness of several tens of microns (several IR
wavelengths). Note that the microscopic dust of the Venusian atmosphere is near its
surface, in contrast to the clouds in the Venus atmosphere [95, 105, 106], which are
located at an altitude of 60–70 km and provide IR radiation which goes outside this
planet.

Let us note one more feature of the conducted research. The performed calcula-
tions use information about spectroscopic parameters of carbon dioxide molecules
taken from the HITRAN data bank [79] and include data for several hundred
vibrational-rotational transitions of the carbon dioxide molecule. At present, this
bank has information pertaining to hundreds of thousands of transitions involving
carbon dioxide molecules [79] , i.e. a small part of existed information related to this
problem is sufficient for the calculations of the above parameters.

As is seen, the disperse phase is the basic radiating component for outgoing
radiation as well as for that directed to the Venus surface. In considering the radiative
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Fig. 7.14 Expressed in
kW/m2 average energy
fluxes of the Venus and its
atmosphere [102]

flux toward the Venus surface, we assume that this radiation is created mostly by
dust particles which arose in the atmosphere from the surface under the action of
convective atmospheric motion. We considered sand particles as a more probable
candidate for these particles which are a source of infrared radiation directed toward
the Venus surface. In order to satisfy the energetic balance between the Venus surface
and its atmosphere, it was required that the optical thickness due to sand particles
corresponds to formula (4.1.17) for an atmospheric layer starting from the surface
up to altitude h = 8km. From this one can find the total optical thickness of the
Venus atmosphere due to sand particles as u = 1.8 under the assumption that the
concentration of sand particles is independent of the altitude up to high altitudes.
Hence, the optical density of sand particles starting from the altitude h = 70km up to
infinity is 0.002. Hence, sand particles cannot be responsible for outside radiation.

One can expect that radiators are aerosols which constitute clouds of the Venus
atmosphere [95, 105, 106], are located at altitudes of 60–70km and provide infrared
outgoing radiation of this planet. The Venus is covered by a thick layer of clouds
that extends between 55 and 70km above the surface. These rapidly-moving clouds
are mainly composed of micron-sized droplets of sulphuric acid and other aerosols.
One can estimate a specific mass of aerosols ρξ which are responsible for emission
of outgoing radiation of the Venus, where ρ is the mass density of aerosol material
< and ξ is given by formula (7.2.44). One can find a specific mass m of these
aerosols in analogy with that for dust particles created the radiation toward the Venus
surface. Taking an identical mass density for dust particles near the Venus surface
and aerosol particles in upper layers (ρ = 1.8 g/cm3 for sulfur acid), one can obtain
the same specific mass of particles M ≈ 2mg/cm2 because of the identical optical
thickness of comparable layers. The specific mass of carbon dioxide is 50 g/cm2 for
the Venus atmosphere above 70km, that gives for the aerosol mass concentration
M/m ∼ 4 · 10−5. As is seen, the mass concentration of aerosols which create the
outgoing radiation of the Venus atmosphere is two orders of magnitude higher than
that for dust particles which determine radiation toward the Venus surface.
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Summarized the above data, one can construct the energetic balance of the Venus
and its atmosphere which is presented in Fig. 7.14. Though the convection flux is
included in this Figure, its value is less that the error for radiative fluxes, i.e. the
contribution of the convection flux into the the total one is negligible. Nevertheless,
convection is of importance for Venus energetics because it lifts up dust particles
from the Venus surface which provide its high temperature.

We above use the results for emission of carbon dioxide molecules in the infrared
spectrum range for radiation of the Venus atmosphere, as a demonstration of the
above methods for spectroscopy of molecules in gases. Note two peculiarities of this
process. First, the temperature of the Venus surface is enough high, and the power of
infrared radiation of the Venus atmosphere is two orders of magnitude larger than the
power of solar radiation penetrated in the Venus atmosphere, but solar radiation is
the basis of the energetic balance of the Venus. Second, under known parameters of
the Venus atmosphere, one can evaluate precisely (with the accuracy better 20%) the
power of emission due to atmospheric CO2 molecules, and it is only one third from
the power radiating by the Venus surface. This proves the presence of an atmospheric
dust which amount is seven orders of magnitude less than the amount of atmospheric
carbon dioxide, but this dust provides the atmosphere balance.
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Conclusion

The content of this book includes radiative processes involving atomic particles and
atomic systems. Our analysis starts from general principles of interaction of elec-
tromagnetic waves with atomic particles or systems and uses as a basis theoretical
quantum mechanics and statistic physics. This approach was elaborated a century
ago, and the subsequent development of this area was based on using the new instru-
ments which are radiators and detectors of radiation in a narrow spectral range, as
well as new information about radiative properties of atomic particles as well as
radiative processes with their participation. In this consideration we are restricted by
the strongest radiative transitions as a result of dipole interaction between an elec-
tromagnetic wave and nonrelativistic atomic particles and systems that simplify the
analysis.

The apparatus of quantum mechanics as the basis of the above analysis exists
during a hundred of years, and its development consists in its application to some
physical objects and processes. We above considered various elementary radiative
processes which include radiative transitions between discrete atomic states, pho-
toionization of atoms, photorecombination of electrons and ions, photoattachment
of electrons to atoms, and also bremsstrahlung as a result of electron scattering on
atoms or ions. In addition, radiative processes of interaction of an electromagnetic
wave with a small particles are considered and include scattering and absorption of
radiation by dielectric microparticles, metal nanoclusters and aerosols. On the basis
of these processes, one can analyze two-photon processes including the Rayleigh
and Raman scattering.

A list of applications of this area, in the first turn, includes processes of opti-
cal pumping by a resonant radiation interacting with a gas. These processes are
the cooling of a gas by laser resonance radiation, light-induced drift of gas atoms
which results from radiation tuned in the wing of the resonance spectral line, and the
photoresonant plasma which is formed from irradiation of an atomic gas or vapor
by resonance radiation. Another group of applications includes two-step ionization
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of atoms in a gas, interaction and reflection of radio-waves from the ionosphere,
detection of submillimeter radiation on the basis of radiative transitions for Rydberg
atoms.

Processes of reabsorption of resonance radiation are of importance in propagation
of this radiation through a gas. In this case the main contribution to the outgoing
radiation flux follows from wings of the resonance spectral line, and transport of
resonance radiation through a radiating excited atomic gas is determined by this
character of the radiative process. A general principle presented for emission of an
optically dense gas is such, that themain contribution to emission of a gaseous system
follows from layers with the optical thickness of the order of one from the boundary.
This principle is applied to the solar photosphere and atmospheres of the Earth and
Venus.

The experience of this book shows the importance of precise calculations for
parameters of some processes. In this case, we above have presented the explicit
evaluation of the radiation flux which goes through a boundary of the flat layer
of a gas containing carbon dioxide, due to the thermal emission of carbon dioxide
molecules. We have shown that a strict evaluation of the emission power for the
Earth’s and Venusian atmospheres leads to a certain position with respect to the
greenhouse phenomenon in the atmosphere of these planets.
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