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Abstract. In this paper the performance of AQM mechanism based on
three PIα controllers and the impact of traffic self-similarity on network
utilization are investigated with the use of discrete event simulation mod-
elling. The queue is divided into several thresholds. Each segment of the
queue is controlled by a different PIα mechanism. We analyze in tests
the length of the queue and the number of rejected packets. The results
obtained by the proposed approach are compared to the results obtained
for AQM mechanism based on single PIα controller.
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1 Introduction

The most important factor of the TCP/IP network traffic control is the rejection
of packets arriving to an IP router to be queued and send then forward. At first,
packets are queued following FIFO algorithm and rejected only when the whole
buffer space used to queue the packets was already occupied. Since many years,
the recommended by IETF active queue management (AQM) where packets are
rejected following a certain algorithm, enhances the efficiency of transfers [20]
and cooperates better with TCP congestion window mechanism in adapting the
flows intensity to the congestion of the network [2].

In the classic RED algorithms (the basic AQM mechanism) the incoming
packet is dropped according to the given by a predefined function. Usually, this
function is linear and depends on the queue length [8,11,15].

Our previous works proposed to base the probability function on the answer
of the PIα controller [5–7,10,13]. The considered models were based on the
controller with the non-integer integrate/derivative orders.

In this article we reconsider this problem by extending the controller to
include variable parameters. Similarly to algorithm DSRED [22] (the well-known
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variant of the RED algorithm) we divided the queue length into the three sep-
arate segments. For each segment we choose a different set of parameters (con-
troller PIα coefficients and integrate/derivative orders). The first two controllers
are weak i.e. for high traffic load the bulk of packets are dropped due to maximal
queue size exceeding. The third controller is strong: its main task is to counter-
act the buffer overloading. Such choice of controllers enables the incremental
increase of controller response as a result of growth of the traffic load.

The remainder of the paper is organized as follows: Sect. 2 gives basic
notions on active queue management and presents the DSRED algorithm, Sect. 3
presents briefly theoretical basis for PIα controller. Section 4 discusses numerical
results. Some conclusions are given in Sect. 5.

2 The RED and DSRED Algorithms

The RED algorithm was the solution which fundamentally changed the principles
of discarding packets in a router queue. In the case of passive queue management
newly incoming packets are dropped only when the buffer is totally full. In the
case of RED queue packets are rejected earlier - when the queue length exceeds a
planned level. The authors of the RED algorithm: Sally Floyd and Van Jacobson
[15] suggested that the destiny of this type of mechanism is to cooperate with
transport protocols and congestion control mechanisms based on the positive
acknowledgment.

Its performance is based on a drop function giving the probability that a
packet is rejected. In RED drop function there are two thresholds: Minth and
Maxth. The argument avg of this function is a weighted moving average queue
length. If avg < Minth, all packets are admitted. If Minth < avg < Maxth,
then dropping probability p increases linearly:

p = pmax
avg − Minth

Maxth − Minth

The value pmax corresponds to a probability of packet rejection in the case of
avg = Maxth. If avg > Maxth then all packets are dropped. Efficient operation
of the RED mechanism is dependent on the proper selection of its parameters.
There were several works studying the impact of various parameters on the RED
performance.

Many variations of the RED mechanism were developed to improve its per-
formance. They can be classified according to the modification of the method of
control variable or dropping packet function calculation and according to how
to configure and set the parameters of the algorithm.

One of the possibilities is to increase the thresholds number in the queue. In
the algorithm DSRED (Double-Slope RED) [22], the bufor is divided into four
sections. Three thresholds Kl, Km and Kh (usually Km = (Kl + Kh)/2) and
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parameter γ determine two slopes of this drop function:

p(avg) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if avg < Kl

α(avg − Kl) if Kl ≤ avg < Km

1 − γ + β(avg − Km) if Km ≤ avg < Kh

1 if Kh ≤ avg ≤ N

where

α =
2(1 − γ)
Kh − Kl

, β =
2γ

Kh − Kl
.

The double slope function makes the algorithm more elastic (more parameters
to fix); gentle at the beginning (for low congestion) drop function enhances
throughput and reduces queue waiting times. The advantages of this algorithm
authors presented in [4] (Fig. 1).

Fig. 1. The probability function of rejection the packet for the DSRED mechanism [4]

3 AQM Mechanism Based on Non-integer Order PIα

Controller.

Our papers [5–7,10] describe how to use the response from PIα(non-integer
integral order) to calculate the probability of packet loss. It is described by a
formula:

pi = max{0,−(KP ek + KIΔ
αek) (1)

where KP ,KI are tuning parameters, ek is the error in current slot ek = Qk −Q,
i.e. the difference between current queue Qk and desired queue Q.
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For standard PI controller (for α = −1 and β = 1) the packet dropping
probability is defined as follows:

pi = max{0,−(Kpei + Ki

0∑

j=i

ej)} (2)

In this approach, the dropping probability depends on three parameters: the
coefficients for the proportional and integral terms (Kp,Ki) and integrals (α)
orders.

The Fractional Order Derivatives and Integrals (FOD/FOI) definitions unify
the notions of derivative and integral to one differintegral definition. The most
popular formulas to calculate differintegral numerically are Grunwald-Letnikov
(GrLET) formula and Riemann-Liouville formulas (RL) [3,16,18].

Differintegral is a combined differentiation/integration operator. The q-differ-
integral of function f , denoted by Δqf is the fractional derivative (for q > 0) or
fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function
is the function itself.

In the case of discrete systems (in the active queue management, packet
drop probabilities are determined at discrete moments of packet arrivals) there
is only one definition of differ-integrals of non-integer order. This definition is a
generalization of the traditional definition of the difference of integer order to
the non-integer order and it is analogous to a generalization used in Grunwald-
Letnikov (GrLET) formula.

For a given sequence f0, f1, ..., fj , ..., fk

�qfk =
k∑

j=0

(−1)j

(
q

j

)

fk−j (3)

where q ∈ R is generally a non-integer fractional order, fk is a differentiated
discrete function and

(
q
j

)
is generalized Newton symbol defined as follows:

(
q

j

)

=

⎧
⎨

⎩

1 for j = 0
q(q − 1)(q − 2)..(q − j + 1)

j!
for j = 1, 2, . . .

(4)

Articles [5,7,10] show that using the non-integer order PIα controller as
AQM mechanism is more efficient in network congestion control than standard
RED mechanism and improves the router performance. The approach proposed
in the article divides the queue length into several segments and for each of
them use a different set of controller coefficients. This solution should result in
more flexible behavior of AQM mechanism independently of the network load
or long-range dependence of the network traffic.



404 A. Domański et al.

4 Packet Dropping Scheme Based on the Answer
of the Three PIα Controllers

The AQM algorithms drop packets following a dropping packet function. The
choice of the proper coefficients of this function is not easy. These parameters
may differ and depend on the network traffic profile.

This problem also exists in the case of the dropping packets functions based
on the answers of the PIα controllers. Our previous works show significant influ-
ence of the traffic parameters (intensity and self-similarity) on the choice of the
optimal controller parameters. The AQM mechanism should change its param-
eters during operation as a result of traffic load. One of the possibilities is to
change the parameters of the controller as a function of the queue occupancy.

This article presents the DSRED-like solution. We divide the queue length
iwith the use of thresholds. Each segment of the queue is controlled by a different
PIα mechanism.

For queue length between 0 and 180 (packets) we use only one controller.
For queue length from 180 to 220 the probability of packet dropping is a sum of
answers of the first and second controller. When the queue occupancy exceeds
220 the probability is the sum of responses of all three controllers.

The packet dropping probability may be defined as follows:

p(q) =

⎧
⎨

⎩

p1(q) if q < 180
p1(q) + p2(q) if 180 ≤ q < 220
p1(q) + p2(q) + p3(q) if 220 ≤ q

where

p1 - answer of the first controller,
p2 - answer of the second controller,
p2 - answer of the third controller.

All presented in this article results were obtained using the simulation model.
The simulations were done using the Simpy Python packet. To accelerate the
calculations the PIα module was written in C language. During the tests, we
analyzed the following parameters of the AQM transmission: the length of the
queue and the number of rejected packets. The input traffic intensity λ = 0.5 was
considered independently of the Hurst parameter. During the tests we changed
the Hurst parameter of the input traffic within the range from 0.5 to 0.90. We
use a fast algorithm for generating approximate sample paths for a fGn process,
first introduced in [17]. After each trace generation the Hurst parameter was
estimated with the use of popular self-similarity parameter estimators [9,12,14]:
the R/S statistic, aggregated variance, periodogram as well known methods with
a significant history of use in estimating LRD and wavelet based method, local
Whittle’s estimator as newer techniques. Traditional Hurst parameter estimators
can be really biased [1,21]. Additionally, the different implementations of the
same method may give varying results [19]. Only Hurst parameter estimator
based on wavelets can be treated as unbiased and robust [21].
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The Table 1 presents the estimations for sample generated trace with the
assumed Hurst parameter. These results show that the assumed and estimated
Hurst parameters are not the same. The obtained results changed for subsequent
generated samples and differed depending on the method of estimating the Hurst
parameter. For all differences in results, the dependence of the increase in the
estimated Hurst parameter with the increase in the assumed parameter is clearly
visible.

Table 1. Hurst parameter estimates for IITiS data traces

H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

Estimator Estimated Hurst parameter

R/S method 0.6289 0.6638 0.7338 0.7486 0.7666

Aggregate variance method 0.5710 0.6710 0.7805 0.8785 0.9521

Periodogram method 0.5278 0.6383 0.7601 0.8735 0.9589

Whittle method 0.6889 0.7485 0.8021 0.8429 0.8565

Wavelet-based method 0.5872 0.6859 0.7893 0.8759 0.9337

The service time represents the time of a packet treatment and dispatching.
In packet-switched networks it is the time required to transmit information. We
have used discrete-time model, hence we have assumed that service-time distri-
bution is geometric (which corresponds to Poisson traffic in case of continuous
time models). The distribution of service time μ changed during the test.

The high traffic load was considered for parameter μ = 0.25. The average
traffic load we obtained for μ = 0.5. Small network traffic was considered for
parameter μ = 0.75

The PIα controllers coefficients and setpoints presents Table 2. The impact
of controller parameters on the behavior of the AQM mechanism and packet
dropping probability were described in [5,13]. In presented solution first and
second controllers drop the some packets but mostly the queue size crosses the
third threshold. When the queue size exceeded third threshold, the third con-
troller begin to work. The third (strong) controller protects the queue against
exceeding the maximum size.

Table 2. PIα controllers coefficients

Kp Ki α Setpoint

1 0.0001 0.00040 −0.4 100

2 0.0001 0.00015 −0.5 180

3 0.0001 0.00035 −0.6 220
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The distributions of the queue length present Figs. 2 and 3. The Tables 3, 4
and 5 present the detailed results. The results consider the high traffic load (μ =
0.25). The Table 3 presents the results for the first controller. In our solution
this controller works for the queue occupancy between 0 and 180. The controller
parameters were chosen to maximize the queue length. However, the majority
of packets are dropped by PIα mechanism, several packets are dropped due
to maximum queue length exceeding. The number of packets dropped by the
queue increases with the Hurst parameter. The Table 4 presents the controller
that starts when queue length exceeds 180. This controller is weak. The most
packets are dropped by the queue. The third controller (Table 5) is very strong.
All packets are discarded from the queue by controller mechanism. Obtained
results confirmed the assumptions of the controllers behavior.

Table 3. PIα controller, μ = 0.25, Kp = 0.0001, Ki = 0.0004, α = −0.4, setpoint = 100

Hurst Avg. queue length Packet drop by

PIα Queue

0.50 270.42 2492385 10134

0.60 268.90 2467277 30821

0.70 264.08 2374004 124992

0.80 246.98 2115155 384445

0.90 203.94 1744739 875155

Table 4. PIα controller, μ = 0.25, Kp = 0.0001, Ki = 0.00015, α = −0.5, set-
point = 100

Hurst Avg. queue length Packet drop by

PIα Queue

0.50 296.95 1350549 1149714

0.60 295.94 1339802 1157844

0.70 292.22 1307309 1190066

0.80 275.13 1162557 1339373

0.90 222.05 875029 1735620

The proposed solution sums the behavior of all three presented above con-
trollers. The packet dropping probability increases with assumed thresholds.

Tables 6, 7 and 8 present obtained results for different traffic intensity. The
Table 6 presents the overloaded network. Although two first controllers drop
most packets, the queue length exceeds the third threshold. The advantage of
this solution is a small reaction of the first and second PIα in the case of highly
variable traffic. For H = 0.90 the most packets are dropped by third PIα.
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Fig. 2. Distribution of queue length for high traffic load (μ = 0.25) and H = 0.5, left:
Kp = 0.0001, Ki = 0.00015, α = −0.5, right: Kp = 0.0001, Ki = 0.0004, α = −0.4,
center: Kp = 0.0001, Ki = 0.00035, α = −0.6

Fig. 3. Distribution of queue length for high traffic load (μ = 0.25) and H = 0.9, left:
Kp = 0.0001, Ki = 0.00015, α = −0.5, right: Kp = 0.0001, Ki = 0.0004, α = −0.4,
center: Kp = 0.0001, Ki = 0.00035, α = −0.6
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Table 5. PIα controller, μ = 0.25, Kp = 0.0001, Ki = 0.00035, α = −0.6, set-
point = 100

Hurst Avg. queue length Packet drop by

PIα Queue

0.50 179.73 2499983 0

0.60 179.11 2498358 0

0.70 177.20 2498517 0

0.80 169.19 2504336 0

0.90 142.84 2638408 0

Independently of the degree of self-similarity, no packets are dropped by the
queue.

The Table 7 presents the results in the case of the average traffic load. The
average queue length does not exceed 80 packets (independently of the traffic
self-similarity). However, the detailed results suggest that temporarily the queue
length exceeds the third thresholds. The number of dropped packet by second
and third controller grows with the degree od self-similarity. This phenomenon is
caused by high variability of queue occupancy. This variability grows with Hurst
parameter.

The average queue length for small network traffic (Table 8) is the largest
in the case of H = 90. The queue length never exceeds the third threshold. All
packets are dropped by two earlier controllers. The queue length exceeds the firt
threshold only in case of degree of self-similarity (expressed in Hurst parameter)
exceeds 0.8.

Table 6. Three PIα controllers, μ = 0.25

Hurst Avg. queue length Packet drop in stage Sum of packet loss

First Second Third

0.50 199.42 62275 2324331 112980 2499586

0.60 199.78 126334 2148758 223179 2498271

0.70 199.32 251743 1758947 491208 2501898

0.80 190.33 317066 1229494 955963 2502523

0.90 158.95 204411 711370 1716164 2631945

Figure 4 presents distributions of the queue lengths depended on the traffic
intensity and the degree of self-similarity.
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Fig. 4. The influence of degree of traffic self-similarity on queue distribution, three
PIα controllers, μ = 0.75 (left), μ = 0.5 (right), μ = 0.25 (bottom)

Table 7. Three PIα controllers, μ = 0.50

Hurst Avg. queue length Packet drop in stage Sum of packet loss

First Second Third

0.50 58.47 33866 0 0 33866

0.60 61.19 86436 62 0 86498

0.70 65.77 208121 20793 2045 230959

0.80 72.98 293810 218707 42700 555217

0.90 78.88 205968 840522 86260 1132750

Table 8. Obtained results for the input traffic intensity μ = 0.75

Hurst Avg. queue length Packet drop in stage Sum of packet loss

First Second Third

0.50 0.79 0 0 0 0

0.60 1.23 0 0 0 0

0.70 3.07 94 0 0 94

0.80 14.0 48981 53 0 49034

0.90 35.9 368562 1097 0 369659



410 A. Domański et al.

5 Conclusions

The Internet Engineering Task Force (IETF) organization recommends that IP
routers should use the active queue management mechanisms (AQMs). The basic
algorithm for AQM is the RED algorithm. There are many modifications and
improvements to the RED mechanism. One of these improvements is the cal-
culation of the probability of packet loss using a PIα controller. Our previous
work has shown the advantage of this solution [5,10].

This paper introduces a new way of packet rejecting probability calculation
based on the answer of three the non-integer order PIα controllers. The addi-
tional controllers start to work when the queue occupancy exceeds the assumed
threshold. The behavior of the proposed solution was also compared to the
behavior of the queue controlled by a single PIα controller. Obtained results
show the advantage of such a solution. Individually, the PIα controllers pre-
sented in the article are poorly adjusted to the network traffic. The first and the
second controller did not work properly in the case of high traffic intensity. Most
packets were dropped due to exceeding the maximum queue size. The reaction
of the third controller was too strong. In the case of low traffic intensity the
number of discarded packets was redundant. Only the combination of described
above controllers allowed to design more flexible AQM mechanism.

Our article presents also the impact of the degree of self-similarity (expressed
in the Hurst parameter) on the length of the queue and the number of rejected
packets. Obtained results are closely related to the degree of self-similarity. The
experiments are carried out for the four types of traffic (H = 0.5, 0.7, 0.8, 0.9).
Additionally, we evaluate the number of dropped packets in assumed queue seg-
ments. This results allowed to select the desired parameters of the controller.

The results described in this article confirm that our approach increases the
efficiency of the AQM mechanism based on the PIα controller. In presented
solution we refere mainly to the queue occupancy. In our future work we will
focus on mechanisms based on the evaluation of the network traffic parameters
and the selection of controller parameters according to the intensity or the self-
similarity of the network traffic.
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5. Domański, A., Domańska, J., Czachórski, T., Klamka, J.: Self-similarity traffic
and AQM mechanism based on non-integer order PIαDβ controller. In: Gaj, P.,
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