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Abstract. We developed new numerical methods to optimally adjust
the parameters in cardiac electrophysiology models, using optimal con-
trol and non-differentiable optimization methods. We define an optimal
control problem to adjust parameters in single-cell models so that the
trans-membrane potential predicted by a model fits in a least-square (LS)
sense the potential recorded over time. To account for restitution prop-
erties, this LS function measures the discrepancy between predictions
and experiments for a cell paced at various heart rates (HR) of increas-
ing frequency. The methodology is used to adjust parameters in the
Mitchell-Schaeffer model to unscaled non-smoothed experimental record-
ing of the trans-membrane potential obtained in pig heart using optical
fluorescence imaging based on voltage-sensitive dye, and simultaneously
identify scaling factors for the experimental data. The methodology is
validated by adjusting the model for multiple heart beats at a single
HR. The fit for a single HR is excellent (LS function = 0.0065–0.02).
The methodology is applied to adjust the MS model to multiple heart
beats at three different HR. It is observed that the fit remains good when
the range of HR is moderately large (LS function = 0.052), while a larger
HR gap is more challenging (LS function = 0.17).

Keywords: Ionic models · Restitution · Optimal control ·
Non-differentiable optimization · Parameter identification

1 Introduction

Several ionic models are available to describe the evolution of the electrical
potential across cardiac cell membranes. These models usually read as a system of
coupled highly nonlinear differential equations with many adjustable parameters.
The adjustment of parameters becomes increasingly important to be able to
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personalize these models using medical data (see for instance [10,11]), to compare
models with each other in the best possible way or to represent the more complex
dynamical behavior of cardiac cells such as restitution properties. It is not easy
to study the combined effect of varying the parameters and the literature is
usually not too explicit on the way the parameters are adjusted in ionic models.

Parameter adjustment is possible with simpler ionic models using asymp-
totic formula connecting the parameters with the phase durations [6,11,12]. Few
attempts have been made to address the adjustment of the ionic model param-
eters using fully nonlinear models. We are aware of the recent paper [2] where
a genetic algorithm was used to build a cell-specific cardiac electrophysiology
model and [5] where simulated annealing is used to compare two ionic models.
Genetic algorithms were also used to adjust conductances in nonlinear models
[13], then a larger set of parameters in [3]. Direct recording of action potentials
(AP) or membrane resistance were used to build least-square functions. In [13],
AP recorded at various frequencies were included in the least-square function to
eventually match restitution properties.

In [7], we introduced numerical methods to optimally adjust the parameters
in ionic models. Our method is based on the numerical solution of an optimal
control problem with a least-square objective function to fit the main features
of the cardiac AP, e.g. the action potential duration (APD), the depolarization
time (DT), recovery time (RT), etc. We then provided a second function to fit
the trans-membrane potential predicted by the model to experimental recording
on a single cell. The goal of the current paper is to show that this methodol-
ogy naturally leads to parameter identification to match restitution properties
in fully nonlinear ionic models directly from simple potential recordings in a cell
or heart at multiple frequencies. No assumption will be made on the amplitude
of the recorded potential (a limitation of indirect measurement techniques), con-
sequently scaling factors for the data will have to be identified together with the
model parameters.

We will illustrate the efficiency of the method for the Mitchell-Schaeffer model
[6], which is a simple two variables ionic model with a limited set of parameters.
Our methodology is not limited to this model. Numerical results are presented,
in particular model fitting to experimental AP measurements obtained through
an optical fluorescence imaging technique.

2 Mathematical Models

2.1 Mitchell-Schaeffer Model

As one particular example where the proposed parameter identification technique
can be applied, we consider the Mitchell-Schaeffer (MS) two-variable model [6].
This model describes the dynamics of the trans-membrane potential u in the
myocardium and a gating variable v representing in a lumped way the opening
and closing of ionic channels controlling the passage of ions across the cell mem-
branes. Here we consider the 0D model for a single cell (no space dependence of
the variables u and v).
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The dependent variables u = u(t) and v = v(t), t > 0, are solutions of:

du

dt
= f(u, v) + Istim(t), with f(u, v) =

1
τin

vu2(1 − u) − 1
τout

u, (1)

dv

dt
= g(u, v), with g(u, v) =

⎧
⎪⎨

⎪⎩

1−v
τopen

, if u < ugate,

−v
τclose

, if u ≥ ugate.

(2)

The trans-membrane current f(u, v) is the sum of the gated inward current
vu2(1 − u)/τin with time scale τin that tends to depolarize the cardiac cell and
the ungated current −u/τout that tends to repolarize the cardiac cell with time
scale τout. Finally, Istim represent an external current produced by a stimula-
tion electrode. The dynamics of the gating variable v depends on the thresh-
old potential ugate for the initiation of an AP, and on two time constants,
τopen and τclose, respectively controlling the opening and closing of the gate.
We set τ = [τin, τout, τopen, τclose] to simplify notations. The functions f and g
depend on the parameter τ . Equations (1)–(2) require initial conditions u(0) =
u0 and v(0) = v0, where u0, v0 ∈ [0, 1] are given. In the MS model, the vari-
ables u and v are non-dimensional, while the time t is in ms. Consequently, the
parameters τ are in ms, and the source terms f and g are in ms−1.

Since the model needs to be periodically stimulated in order to account for
restitution properties, Istim can then be written as

Istim(t) =

{
A if t ∈ [n · BCL, n · BCL + Δt], n ∈ N

0 otherwise ,
(3)

where BCL, or Basic Cycle Length, is the delay between stimulations, Δt is
the duration of the stimulations and A is their amplitude. As stated in [6], the
amplitude A depends on the model parameters and indirectly on BCL:

A =
1

Δt

(
1
2

−
√

1
4

− τin

τoutv∗

)

· (1 + β) (4)

where v∗ is the value of v at the time of stimulation, β > 0 is a small “safety
factor” set to guarantee depolarization.

2.2 Optimal Control Problem

We introduce a control problem to fit in the least-square (LS) sense the trans-
membrane potential u = u(t) from the model to a recorded potential ũ = ũ(t),
t ∈ [0, T ], measured experimentally, normalized in a specific way and rescaled
using a scaling factor s ∈ (0, 1).

Define J̃ = J̃(τ, s)

J̃(τ, s) =

∫ T

0
| u(t, τ) − s ũ(t) |2 dt
∫ T

0
| s ũ(t) |2 dt

,



Optimal Parameters in Ionic Models with Restitution Properties 49

where u and v are solution of (1)–(2) with parameters τ and Istim is adjusted to
match the BCL of ũ. For the solution of the MS model to reach a stable cyclical
response from beat to beat, we disregard the first five AP in the evaluation of the
cost function J̃ . The parameter ugate is intentionally left out from the parameter
identification as a senstivity analysis showed that ugate has little impact on the
phase durations or the shape of the AP [8].

Now consider multiple different ũi, i = 1, . . . , N , obtained by stimulating the
same heart or cardiac cell at different frequencies and find (τ∗, S∗) minimizing

J(τ, S) =
N∑

i=1

J̃(τ, si) (5)

where S = (s1, . . . , sN ) are the scaling factors for each ũi. The connection
between the parameter τ and the objective function J is occurring through
the dependance of the solutions (u, v) on the parameters τ .

3 Numerical Methods

The equations (1)–(2) are solved using the function ode45 in Octave, which
implements an explicit Dormand-Prince method of order 4.

The function g is discontinuous in u, which leads to a lack of regularity of
the solution (u, v) of (1)–(2) and consequently of the function J = J(τ, S). The
derivatives of J with respect to τ may not be well defined. Work done in [7]
showed that numerical derivatives do not converge when the increments in τ are
reduced. To avoid the computation of the sensitivities and the gradient of J with
respect to τ , we use non-differentiable optimization methods [1]. The Compass
Search method described in Algorithm1 is taken from [4]. This method can be
changed in a few ways to improve performance, but the principle behind the
method is maintained for all modified versions.

Algorithm 1 (Compass Search: CS) Given a function f , an initial guess x ∈ R
n,

an initial step-size δ > 0, a contraction factor c ∈ (0, 1) and stopping criteria, the

following is applied:

while the stopping criteria are not met

let D = {p δ ei | p = −1, +1 and ei is an element of the standard basis for R
n}

let f(x∗) = min
d∈D

f(x + d)

if f(x∗) < f(x), then

set x ← x∗

else

set δ ← c δ

The algorithm repeats the process of constructing D and moving x, if pos-
sible, as long as the stopping criteria are not met. Options for stopping criteria
include f(x) ≤ ftol for a chosen tolerance ftol on the value of the cost function,
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δ ≤ δtol for a chosen tolerance δtol on the step-size, and maximal numbers of
iterations and function evaluations.

The optimization methods used introduce a sensitivity to the initial guess
of the parameters and scaling factors. If convergence is reached but the value
of the least-square function J is not small for the final iterate, the minimum is
likely to be local only and new initial guesses must be attempted in the hope
of getting a better fit. We used our experience with the fitted model as well as
trial and error to find good initial guesses.

4 Data Acquisition

For parameterization of mathematical models, AP waves were recorded using
voltage-based optical fluorescence imaging, as described in [9]. The fluores-
cence dye (di4-ANEPPS) and uncoupler to block contraction (2, 3 BDM) were
injected into the coronary circulation of a healthy explanted swine heart per-
fused by a Langendorff system. The optical dye was excited with green light
(∼530 nm) while the emitted epicardial signals were filtered (>610 nm) and cap-
tured by a high-speed CCD camera (MICAM02, BrainVision Inc. Japan) at
256 frames/second (Fig. 1). The field of view was 184× 124 pixels (12× 10 cm),
yielding an ∼0.7 mm spatial resolution. We stimulated the heart at several fre-
quencies to study the restitution properties (see Table 1 below). The relative
change in fluorescence signal intensity (ΔF/F ) recorded at each pixel, gives
directly the AP waves. For model fitting, we used the AP waves recorded at one
pixel selected from an area in the left ventricle (LV) where tissue was homoge-
neously illuminated, and also both fluorescence signal and tissue perfusion were
homogeneous.

5 Numerical Results

5.1 Preparation of the Experimental Data

The potential measured with fluorescence imaging are recorded as signal inten-
sity, consequently these must be normalized between 0 and 1 before fitting with
the MS model. We worked directly on the raw data. In order to normalize the
data, averaged extrema must be calculated. The average values are considered,
since taking the absolute minimum or maximum of a set of noisy values would
not make sense when trying to normalize the recorded potential. The average
minimum was found by taking the average of the values during a single dias-
tolic interval. Since the data is very noisy, determining which values were to be
considered to be in the diastolic interval presented some challenges, so this was
done manually. A representative diastolic interval was identified by looking at
the graph of raw data and noting the approximate times at which the diastolic
interval starts and ends. A similar logic was used when finding the averaged
maximum. The maximum was taken manually to be approximately the value
at which each potential peaks. Once the average extrema are found, the data
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Fig. 1. (a) Snapshot of the optical experiment to record epicardial AP wave propa-
gation using a fast CCD camera (C), where the pig heart (H) was stimulated via an
electrode (E). (b) Examples of waves recorded at one pixel in the heart without the
uncoupler (top) as well as after the uncoupler (bottom) was injected. Note that the
inverse of the relative loss of fluorescence signal ΔF/F (arbitrary units) gives the AP.
The waves were displayed with BV-Ana software (BrainVision, Japan). (Color figure
online)

is normalized, by subtracting the minimum and dividing by the amplitude, to
obtain a normalized potential ũi between 0 and 1. Also, when considering the
problem of matching the MS model to the data, it is convenient for the data to
start with an upstroke, so the first part of most of the data sets is ignored (data
acquisition does not always start in sync with the stimulation, it can start mid
heartbeat). Finally, the aforementioned scaling siũ further adjusts the data so
that the peaks of the potential have the same values as the peaks in the model.
This is required since the peak trans-membrane potential u predicted by the MS
model gets smaller as BCL is reduced (the usual mechanism for restitution).

5.2 Single Pacing Frequency

To validate our approach, we verify that our method is efficient at fitting
data sets individually (i.e N = 1 in (5)). For each of the cases given in Table 1
(presented in order of increasing frequencies), we pace the MS model according to
(3)–(4) with (u0, v0) = (0, 1), Δt = 2 ms, β = 0.25 and BCL calculated from col-
umn 2 of Table 1. Figure 2 shows the measured potential and the trans-membrane
potential from the fitted MS model for dataset 5. The potential predicted by the
model matches the noisy data very well, which is confirmed by the small value
of the least-square function J in Table 1. The fit is good for all datasets, with
datasets 3 and 4 showing a slightly larger deviation. This shows that the param-
eter identification method is capable of identifying parameters τ simultaneously
with a scaling factor.
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Table 1. Statistics of single dataset fitting

Dataset HR (bpm/Hz) Final τ Scaling factor s J value

2 59.17/0.99 [0.358, 9.24, 153.98, 177.95] 0.96779 8.62e−3

1 62.37/1.04 [0.595, 10.83, 211.39, 198.44] 0.91763 8.06e−3

3 72.29/1.20 [0.632, 6.51, 287.48, 325.83] 0.85545 1.20e−2

4 74.81/1.25 [0.448, 5.31, 207.84, 202.22] 0.87435 2.05e−2

5 104.35/1.74 [0.584, 8.86, 81.41, 168.39] 0.91417 6.52e−3

6 145.63/2.43 [0.700, 7.61, 48.16, 207.68] 0.86944 8.65e−3

Fig. 2. Result of fitting dataset 5 individually

Table 2. Statistics of multiple datasets fitting

Datasets Final τ Scaling factors S J value

2 − 1 − 3 [0.500, 9.36, 538.54, 244.59] [0.890, 0.913, 0.923] 5.23e−2

4 − 5 − 6 [0.651, 6.32, 53.66, 245.33] [0.877, 0.857, 0.872] 6.09e−2

2 − 4 − 5 [0.405, 8.04, 612.26, 239.70] [0.889, 1.06, 0.834] 1.68e−1

2 − 1 − 6 [0.535, 9.06, 251.15, 224.97] [0.906, 0.936, 0.822] 7.02e−2

1 − 3 − 6 [0.621, 9.04, 183.05, 219.20] [0.884, 0.927, 0.827] 7.72e−2

5.3 Multiple Pacing Frequency

We next illustrate how problem (5) is capable of adjusting parameters for resti-
tution properties. We use different combinations of three datasets among six, as
given in Table 2. The stimulation current and initial conditions for the MS model
are set as in Sect. 5.2. Figure 3 shows the experimental and fitted potentials for
combinations that give the best and an average-quality fit, respectively. This is
confirmed by the values of J in Table 2. We note that a comparison of single and
multiple dataset fitting can be made by dividing the values of J by the number
N of datasets used. As expected, multiple dataset fitting is more difficult.

The value v∗ of the gating variable at pacing time and the maximal poten-
tial reached for each AP predicted by the MS model decrease with increasing
frequency. This is easily seen for case 6, which has the largest frequency, by com-
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(a) Fitting of datasets 2-1-3 (b) Fitting of datasets 2-1-6

Fig. 3. Best (left) and average-quality (right) fitting of multiple datasets

paring the amplitude of the potential with the other cases on Fig. 3. Restitution
is thus well represented by the model, at least qualitatively and to some extent
quantitatively. When the quality of fit deteriorates, the MS model still predicts
decreasing v∗ and maximal potential, only with a small mismatch of the APD
for either low or high frequencies. We should recall that the optical measure-
ments are taken at a specific location on a heart, not on an isolated cell. This
may explain the difficulties at matching a cell ionic model uniformly across all
frequencies.

6 Conclusions and Perspectives

We provided a new framework for fitting electrophysiology model parameters
based on control theory in order to adjust the dynamic response of the model.
The only required data is indirect measurement of the potential (e.g. obtained
through fluorescence imaging) for N pacing frequencies. As opposed to direct
measures (e.g. obtained through clamping), the scale of our data had to be
fitted simultaneously with the model parameters. The control problem is solved
by a non-differentiable optimization method, hence differentiability of the ionic
model is not required and complex dynamic response functions can be included
in the cost function (e.g. restitution curve). The compass search method used is a
simple alternative to genetic methods, requiring a reasonable number of function
evaluations (200 to 500) as opposed to 104 for genetic methods [13]. The least-
square function (5) gave a good fit of the trans-membrane potential predicted
by the model to the potential recorded over time for N frequencies. However,
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the fit for this latter is as good as a given ionic model can represent the data.
The applicability to more complex models will have to be investigated. We know
from previous work [7] that models with 8–10 parameters can be identified for
non-dynamic response (e.g. phase durations of a single AP). We are convinced
that such models will be identifiable in the dynamic case with our new method.
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