
Chapter 9
Mechanistic Models with Spatial
Structures and Reactive Behavior Change

As we have emphasized in Chaps. 4 and 5, simple homogeneous models of
transmission or growth dynamics often yield an early exponential epidemic growth
phase even when the population is stratified into different groups (e.g., age,
gender, regions). However, recent work has highlighted the presence of early
sub-exponential growth patterns in case incidence from empirical outbreak data
(Chowell et al. 2016; Viboud et al. 2016). This suggests that integrating detailed and
often unobserved heterogeneity into simple mechanistic models (Yan 2018) could
open the door to a new and exciting research area to better understand the role of
heterogeneity on key transmission parameters, epidemic size, stochastic extinction,
the effects of interventions, and disease forecasts.

The diversity of infectious disease dynamics can be shaped by multiple and often
unobservable factors including the characteristics of the contact network structure,
individual-level heterogeneity in infection risk, and behavior changes (Chowell
et al. 2016). For instance, in the simplest setting when disease spreads assuming
homogeneous mixing, it is well-known that the incidence curve grows exponen-
tially in the absence of susceptible depletion, behavior changes, and interventions
(Diekmann and Heesterbeek 2000). It is worth noting that exponential growth can
only unfold in the presence of a constant growth rate (as highlighted in Chaps. 4
and 5). By contrast, an early transmission phase characterized by slower than
exponential growth (sub-exponential) can result from spatial constraints in contact-
network structures over which disease spreads or the early onset of behavior changes
or control interventions. Therefore, predictions of final epidemic size based on
models that assume early exponential growth will tend to overestimate epidemic size
whenever the early dynamics of disease transmission are governed by mechanisms
that induce slower transmission patterns. In turn, public health authorities could get
better estimates of the effectiveness of control interventions.
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We devote this chapter to review mechanistic transmission models that incorpo-
rate spatial details or realistic population mixing structures, including metapopula-
tion models, individual-based network models as well as simple SIR-type models
that incorporate the effects of reactive behavior changes or inhomogeneous mixing
(Fenichel et al. 2011). We argue that designing mechanistic models and statistical
approaches that capture a diversity of disease dynamics could lead to enhanced
model fit, improved estimates of key transmission parameters, and more realistic
epidemic forecasts (Chowell et al. 2016).

Structured population models can be traced back to the 1940s (Wilson and
Worcester 1945) and 1950s (Rushton and Mautner 1955). The number of infectious
disease spatial modeling studies has been increasing during the last couple of
decades with a research production of less than five articles per year in 1997 to
more than 120 articles per (Chowell and Rothenberg 2018). Models of the spread
of infectious diseases can be formulated at the subpopulation (metapopulation) and
individual levels. In metapopulation models the population is divided in a set of
interacting population groups according to spatial or demographic characteristics.
On the other hand, individual-level network models rely on individual-level contact
matrix to define interactions which could be static or dynamic.

9.1 Metapopulation Spatial Models

Metapopulation formulations offer a popular mathematical framework to study the
spatial spread of human infectious diseases (Arino et al. 2005; Chowell et al.
2006; Hethcote 2000; Hadeler and Castillo-Chavez 1995; Jacquez 1996; Keeling
and Rohani 2008; Sattenspiel 2009). Metapopulation models can be represented as
networks with the subpopulations represented by nodes and the interactions among
groups represented as the weighted network links (Riley 2007). The subpopulations
being modeled using a metapopulation approach are assumed to be discrete groups
that are connected in some fashion. Usually subpopulations are considered to
be well mixed and homogeneous, while the interaction between groups may be
either explicit or implicit, leading to the development of two general classes of
spatial metapopulation models: (a) cross-coupled models and (b) mobility models
(Sattenspiel 2009). Cross-coupled models simplify the analysis by modeling the
strength of the interactions (i.e., coupling) between groups. In mobility models, the
modeler mechanistically incorporates the movement of individuals between groups.

Cross-coupled metapopulation models (early examples include Wilson and
Worcester 1945; Rushton and Mautner 1955; Murray and Cliff 1977) only model
the influence of one group over the others via a contact matrix that represents the
strength or sum total of those contacts only. The elements of this matrix capture the
strength of the interactions between any two subpopulations, which modulates the
transmission risk. A simple SIR deterministic cross-coupled epidemic model can be
written as follows:



9.1 Metapopulation Spatial Models 319

dSi

dt
= μNi − μSi − Si

n∑

j=1

φij Ij

Ni

dIi

dt
= Si

n∑

j=1

φij Ij

Ni

− (μ + γ )Ii (9.1)

dRi

dt
= γ Ii − μRi,

where Si , Ii , and Ri are the numbers of susceptible, infectious, and recovered
individuals, respectively, Ni is the total population size in subpopulation i, γ is
the recovery rate, and μ is the rate of birth (and death) under the assumption of
a non-growing population (total births = total deaths). φij is the rate of effective
contact between subpopulation i and subpopulation j ; the set of φij characterizes
the WAIFW matrix. The φij implicitly include both the rate of contact and the
probability of transmission.

For illustration, Fig. 9.1 displays the impact of increasing transmission rates
of the 4-nearest neighbors on local epidemic simulations using a cross-coupled
metapopulation model where 100 local populations each of size 100,000 are
spatially arranged in a 10 × 10 square lattice structure. Perhaps not surprisingly,
one can observe how the early local epidemic growth dynamics during the first
few generation intervals corresponds well to the epidemic growth derived from a
simple SEIR transmission model in a homogenously mixed population. Temporal
snapshots of the spatial distribution of disease prevalence using contour plots are
shown in Fig. 9.2.

The gravity contact matrix assumes that the rate of contact between two groups
is directly proportional to their population size and inversely proportional to their
geographic distance (Xia et al. 2004; Viboud et al. 2006; Weinberger et al. 2012). A
generalized gravity model takes the form

mjk = Na
j Nb

k

dc
jk

,

where mjk represents the contact between groups j and k, Nj and Nk are the
population sizes of the groups, djk is the distance between the two groups, and a, b,
and c are parameters typically estimated from data relating the interactions between
the groups.

Recently, Simini et al. (2012) proposed a radiation mobility model. Their model
is intended to represent commuting behavior, and they assume that the destinations
are determined only by job selection, which is a decision that depends on the size
of the location of a specific job opportunity as well as the benefits (e.g., income,
working hours, conditions, and other characteristics) of the potential opportunity.
Individuals choose the closest job to their home region that has higher benefits than
those within the home region. The assigned work locations of all members of a
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Fig. 9.1 Local epidemics generated using a cross-coupled metapopulation model where 100 local
populations are spatially arranged in a 10 × 10 square lattice with periodic boundary conditions.
The local dynamics across all patches follow a simple SEIR (susceptible–exposed–infectious–
removed) transmission model with a mean latent period of 2 days, a mean infectious period of
3 days, a local basic reproduction number, R0 at 1.5, and a local population size in each patch
of 100,000 individuals. A constant transmission between the 4-nearest neighbors is modeled as a
fraction of the local transmission rate, which takes values of (a) 0.1%, (b) 0.5%, (c) 1%, and (d)
5%. For reference, the red dotted line corresponds to the curve of total incidence, while the dashed
black line corresponds to the solution of the homogenous-mixing SEIR model considering the total
homogenously mixed population in a single patch

region determine the daily commuter fluxes. The average flux, Tij , from region i to
region j at a distance rij apart is given by

〈
Tij

〉 = Ti

NiNj(
Ni + sij

) (
Ni + Nj + sij

) ,

where Ni and Nj are the population sizes of regions i and j , respectively, and sij
is the total population in a circle of radius rij centered on region i but excluding
both the source and destination populations. Ti = ∑

j �=i Tij is the total number of
commuters who begin their commute in region i. Population distribution is the only
required input for this model.

Mobility metapopulation models mechanistically aim to describe the actual
movement of individuals across subpopulations (e.g., Arino et al. 2007; Belik et al.
2011; Kenah et al. 2011; Vincenot and Moriya 2011; Xiao et al. 2011; Tizzoni et al.
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Fig. 9.2 Spatial spread of SEIR metapopulation model in a 10 × 10 lattice

2012; Appoloni et al. 2013; Apolloni et al. 2014; Marguta and Parisi 2015). Hence,
transmission of the pathogen occurs within subpopulations considering the local
and visitor populations. This process can also be modeled by considering first the
rates at which individuals leave groups to visit other locations and then the possible
destinations and average durations of those trips (Sattenspiel and Dietz 1995). An
example of a deterministic SIR mobility metapopulation model is the following set
of equations:

dSi

dt
= μNi − βiSiIi

Ni

− μSi +
n∑

j=1

θij Sj

dIi

dt
= βiSiIi

Ni

− (μ + γ )Ii +
n∑

j=1

θij Ij (9.2)
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= γ Ii − μRi +

n∑

j=1

θijRj ,

where Si , Ii , and Ri are the numbers of susceptible, infectious, and recovered
individuals, respectively, and Ni is the total population size of subpopulation i, μ is
the rate of birth (and death) where total births = total deaths, βi is the transmission
parameter in subpopulation i, and θij is the rate of movement to subpopulation i
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from subpopulation j . Moreover, rates of movement are assumed to be the same for
all disease states in this simple model.

9.2 Individual-Based Network Models

Individual-level network models are being increasingly used to study infectious
disease dynamics where contacts (links) can be either static or dynamic (reviewed
in Halloran et al. 2002; Keeling and Eames 2005; Bansal et al. 2007; Capaldi
et al. 2012; Danon et al. 2011). A contact-network model explicitly represents host
interactions that dictate disease transmission. A node in a contact network represents
an individual host, and an edge between two nodes represents an interaction through
which infection is possible. Network-based models are then useful for investigating
the impact of individual-level characteristics and their disease-relevant interactions
on the transmission dynamics observed at the population level. A number of network
models have been proposed in the literature ranging from random, small-world, to
scale-free networks (Watts and Strogatz 1998; Barabási and Albert 1999; Albert and
Barabasi 2002). One of the most popular and parsimonious contact-network models
is the “small-world” network model as it allows for tuning the average degree of
the nodes, the average connectivity (path length), and the clustering that quantifies
the extent to which contacts of a node are also contacts of each other (Watts and
Strogatz 1998).

Figure 9.3 shows two small-world networks with two different rewiring prob-
abilities. While the original Watts–Strogatz model starts from a ring network
structure, the idea can be extended to other regular networks. For instance, Fig. 9.4
displays examples of small world networks based on two dimensional lattices where

Fig. 9.3 Small-world networks with two rewiring probabilities
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Fig. 9.4 Schematic representation of 2D square lattices where each node is connected to its 4-
nearest neighbors with periodic boundary conditions and with the addition of a few random long-
range links

each node is connected to its 4 nearest neighbors, and the small-world feature is
incorporated by adding a fixed number of random links.

For illustration, we simulated SIR (susceptible–infectious–removed) dynamics
on small-world networks using networks of size N = 90,000 and node connectivity
to the 4 nearest neighbors, and we increased the edge rewiring probability parameter
(psw) from 0.001 to 0.01 of the small-world network model of Watts and Strogatz
(1998). For each value of psw, we analyzed the early epidemic growth profile
comprising 35 days of disease transmission from 200 stochastic realizations. The
transmission rate per contact per unit of time was set at 2 and the infectious period
was assumed to be exponentially distributed with mean 1/γ which is set at 3 days.
Each simulation started with one infectious individual selected at random from
the network. For reference, the baseline SIR transmission dynamics on the regular
network with node connectivity to the 4 nearest neighbors and without long-range
links correspond to a wave of steady case incidence at about 4 cases per day.
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9.2.1 An Individual-Level Network Model with
Household-Community Structure

One of the putative mechanisms leading to early polynomial growth dynamics of
transmission is clustering (Szendroi and Csányi 2004; Chowell et al. 2015; Merler
et al. 2015; Viboud et al. 2016; Chowell et al. 2017), a network property that
quantifies the extent to which the contacts of one individual are also contacts of each
other (Watts and Strogatz 1998). Social contact networks are particularly useful to
explore the impact of clustering and play an important role in the dissemination of
infectious diseases at the community level.

Several authors have put forward relatively simple mathematical models that
incorporate household and other social structures such as schools and workplaces
(Longini and Koopman 1982; Longini et al. 2007; Ball et al. 2009, 2015; Fraser
2007; Goldstein et al. 2009; Pellis et al. 2009, 2012, 2015; Blythe and Castillo-
Chavez 1989). For instance, a network-based transmission model with household
structure embedded in a structure of overlapping communities has been previously
applied to study the transmission dynamics of Ebola (Kiskowski 2014; Kiskowski
and Chowell 2015). In this model, individuals are organized within households of
size H (each household contains H individuals) and households are organized within
communities of size C households (each community contains × H individuals) (see
Fig. 9.5). Network connectivity is identical for every individual. The transmission
potential is characterized by the household reproduction number and the community
reproduction number. For a given household size H , prior studies have investigated

Fig. 9.5 Schematic representation of the household-community mixing structure with overlapping
communities. In this model, individuals are organized within households of size H (each household
contains H individuals) and households are organized within communities of size C households
(each community contains ×H individuals) (panel (a)). Network connectivity is identical for every
individual. The transmission potential is characterized by the household reproduction number and
the community reproduction number. The matrix-level representation of the model is shown in
panel (b)
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Fig. 9.6 Stochastic SEIR simulations (cyan lines) of the household-community model with H =
6, C = 165, and R0H = 1.5 and R0H = 0.5. The mean of the ensemble of stochastic realizations is
the red solid line. The corresponding solution of the deterministic SEIR model under homogenous
mixing with R0 = 2 corresponds to the solid black line. Baseline epidemiological parameters
were set according to the epidemiology of Ebola (i.e., incubation period of 5 days (Eichner et al.
2011; The World Health Organization Emergency Response Team 2014) and infectious period of
7 days (Chowell et al. 2004; The World Health Organization Emergency Response Team 2014)).
The population size at 10,000

the impact of varying the community size parameter C on the early transmission
phase. As the community size increases, the scaling of epidemic growth approaches
the exponential growth regime (Kiskowski and Chowell 2015; Chowell et al. 2016).
Figure 9.6 contrasts simulations derived from the household-community model
with the deterministic solution of the SEIR model under homogenous mixing with
the same R0. In particular, outbreaks not only spread more slowly in the spatial
household-community model, but the size of those epidemics is smaller compared
to the homogenous mixing SEIR model using baseline epidemiological parameters
(mean latent and infectious periods) in line with the epidemiology of Ebola.

9.3 Capture Dynamic Reactive Behavior Changes Through a
Generalized-Growth SEIR Model

The generalized-growth SEIR model (GG-SEIR) is a novel modeling framework
(Chowell et al. 2016) that builds on the well-known SEIR (susceptible–exposed–
infectious–recovered) transmission model (Anderson and May 1991) by incorpo-
rating flexible early epidemic growth profiles, e.g., sub-exponential and exponential
growth dynamics. This is achieved by allowing a dynamic nature of the effective
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reproduction number Rt in the context of early sub-exponential (e.g., polynomial)
growth dynamics.

The standard deterministic SEIR epidemic model represents the simplest and
most popular mechanistic compartmental model for describing the spread of an
infectious agent in a well-mixed population. As explained before, the force of
infection per unit of time is simply given by the product of three quantities:
a constant transmission rate (β), the number of susceptible individuals in the
population (S(t)), and the probability that a susceptible individual encounters an
infectious individual (I (t)/m). Moreover, infected individuals experience a mean
latent and a mean infectious period given by α−1 and γ −1, respectively. The
model is based on a system of ordinary differential equations that keep track of
the temporal progression in the number of susceptible, exposed, infectious, and
removed individuals (see Eq. (5.53)).

In a completely susceptible population, e.g., S(0) = m, the average number of
secondary cases generated per primary case, R0 = β/γ. However, as the number
of susceptible individuals in the population declines due to a growing number of
infections, the effective reproduction number over time, Rt , is given by the product
of and the proportion of susceptible individuals in the population:

Rt = β

γ

S(t)

m
. (9.3)

During the first few generations of disease transmission when S(t) ≈ m, in
the absence of control interventions or reactive population behavior changes, the
standard SEIR model supports a reproduction number that is essentially invariant,
i.e., Rt ≈ R0. By contrast, in the context of epidemics characterized by early sub-
exponential growth dynamics, we have shown that the reproduction number is a
dynamic quantity that declines over disease generations towards 1.0 (Chowell et al.
2016). Here we introduce the generalized-growth modeling framework based on
the well-known SEIR model (GGM-SEIR) that incorporates the possibility of early
sub-exponential growth dynamics by explicitly modeling the dynamic behavior of
the effective reproduction number via a time-dependent transmission rate β(t) such
that the force of infection becomes: β(t)S(t)I (t)/m. Specifically, we consider a
transmission rate function β(t) of the form:

β(t) = β0 [(1 − φ) f (t;�) + φ] ,

where f (t;�) is a function that declines over time from 1 towards zero so that the
transmission rate β(t) declines from an initial value β0 towards φβ0. The quantity
(1 − φ) models the proportionate reduction in β0 that is needed to reach an effective
stationary reproduction number at 1.0, in line with early sub-exponential growth
dynamics (Chowell et al. 2016). For the standard SEIR model, φ can be simply
estimated as γ /β0 since R0 = β/γ during the early growth phase when S(t) ≈ m.
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Here we employ an exponential decline function for the transmission rate, which is
given by

β(t) = β0
[
(1 − φ) e−qt + φ

]
, 0 < q ≤ 1 and φ > 1.

Alternatively, harmonic and hyperbolic functions could be used to model the decline
in the transmission rate as follows:

β(t) = β0

[
(1 − φ) (1 + qvt)−1 + φ

]
,

β(t) = β0

[
(1 − φ) (1 + qvt)−1/v + φ

]
.

This modeling framework allows to capture early sub-exponential growth dynamics
whenever R0 > 1 and q > 0. If q = 0, the transmission rate β(t) = β0 remains
at the baseline value, and we recover the classic SEIR transmission model with
exponential growth dynamics and R0 = β/γ . In general, the higher the value of
q, the faster the decline of the reproduction number from R0 > 1 to a stationary
reproduction number at 1.0. We can interpret the parameters q and v through the half
time value or the average time elapsed to achieve a transmission rate 1

2β0 (1 − φ).
The half time value is given by: log(2)/q.

Importantly, in the context of early sub-exponential (e.g., polynomial) epidemic
growth for which q > 0, the basic reproduction number is no longer the product
of the initial transmission rate β0 and the mean infectious period γ −1 because the
transmission rate β(t) is no longer constant, but declines during the duration of the
infectious period of primary cases at the onset of the epidemic, yielding a lower
R0. For this situation, R0 can be estimated numerically using the following integral
equation (Bacaër and Ait Dads el 2011):

R0 =
∫ ∞

0
β(t)e−γ τ dτ =

∫ ∞

0
β0

[
(1 − φ) e−qτ + φ

]
e−γ τ dτ.

For a given value of β0 and γ , the basic reproduction number is R0 expected to
decline from β/γ as parameter q increases above 0. More generally, the effective
reproduction number, Rt , during the early epidemic growth phase comprising the
first few disease generations of transmission when S(t) ≈ m can be numerically
computed as follows:

Rt =
∫ ∞

t

β(t)e−γ (τ−t)dτ =
∫ ∞

t

β0
[
(1 − φ) e−qτ + φ

]
e−γ (τ−t)dτ.

For illustration, Fig. 9.7 displays temporal profiles of the transmission rate, the
effective reproduction number, and the corresponding simulations of the early
epidemic growth phase.
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Fig. 9.7 Representative profiles of the transmission rate β(t), the effective reproduction num-
ber Rt , and corresponding simulations of the early epidemic growth phase derived from the
generalized-growth SEIR model (GG-SEIR) for different values of the decline rate parameter q

and β0 = 0.4,α = 1/5, and γ = 1/6 in a large population size (N = 10,000,000). The epidemic
simulations start with one infectious individual. In semi-logarithmic scale, exponential growth is
evident if a straight line fits well several consecutive disease generations of the epidemic curve,
whereas a strong downward curvature in semi-logarithmic scale is indicative of sub-exponential
growth. Our simulations show that case incidence curves display early sub-exponential growth
dynamics even for very low values of q

9.4 Case Study: Modeling the Effectiveness of Contact
Tracing During Ebola Epidemics

In Mali, two Ebola cases were imported from neighboring Guinea in two different
instances, the first resulting in one death and no local secondary cases, and the
second resulting in two generations of transmission with a total of eight cases
and six deaths in the capital city of Bamako (Breakwell et al. 2016). Both Ebola
importations occurred in the fall of 2014 as the epidemic was still unabated in
Guinea (2015, 2016), about a month after an Ebola case was imported to Senegal
from Guinea, and 4 months after an Ebola case was imported to Nigeria from Liberia
(Abdoulaye et al. 2014; The World Health Organization 2014). No further Ebola
importations were reported from highly affected countries to neighboring, high-risk
countries during the 2014–2016 West Africa Ebola epidemic.

The second Ebola importation in Mali occurred in a grand Imam who traveled
from Guinea to Mali and sought care at a private clinic on October 25, 2014,
in Bamako where he was treated for kidney failure and was not suspected with
Ebola. He died on October 27th and had an unsecured burial on October 28th.
Control measures in Mali, including contact tracing, began on November 8th 2014
(Breakwell et al. 2016).
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Contact tracing was the primary intervention in response to the second Ebola
importation into Mali. Briefly, contact tracing is a method used to prevent further
cases of an infectious disease that involves contacting and routinely following up
with individuals who have been identified as being exposed to a patient or other
vector of a disease for the duration of the maximum observed incubation period of
the disease (21 days for Ebola (Shrivastava et al. 2014)). Through effective contact
tracing, secondary cases are quickly isolated to prevent further transmission (Eames
and Keeling 2003). Although contact tracing is a critical piece of a response to
Ebola outbreaks, it was implemented with varying levels of effectiveness across all
three of the most affected countries in West Africa (Pandey et al. 2014; Martín et al.
2016; Olu et al. 2016). The success of contact tracing is tightly linked to behavioral
interventions, training in infection prevention and control practices in healthcare
settings, and initiation of surveillance protocols (Breakwell et al. 2016).

In this case study, we analyze the relation between contact tracing activities
and the decline in disease transmission during the Ebola epidemic in Mali. For
this purpose, we carried out a comprehensive analysis of contact tracing trees and
modeled the relationship between the time-dependent effects of contact tracing and
the trajectory of the Ebola outbreak in Bamako assuming two different population
structures: (1) a standard homogenous mixing model and (2) a spatially structured
model. We illustrate the effect of the rapid and effective implementation of contact
tracing activities on outbreak trajectory and size using stochastic simulations.

9.4.1 Model 1: Homogenous-Mixing SEIR Transmission
Model

The main features of this model have been described in previous chapters (see
Sect. 5.4). A similar model has been previously used to model transmission
and control of the Ebola outbreak in Nigeria in 2014 (Chowell et al. 2004;
Fasina et al. 2014). For the sake of simplicity, we only model a single infectious
compartment while adjusting the time-specific transmission rate according to data
of the time-dependent effectiveness in contact tracing activities conducted during
the Ebola outbreak in Bamako. Hence, the modeled population was divided into
five categories: susceptible individuals (S); exposed individuals (E); infectious and
symptomatic individuals (I); and recovered or dead individuals (R). Susceptible
individuals infected through contact with infectious individuals enter the latent
stage at mean rate βf (t)I (t)/N(t), where β is the baseline mean human-to-human
transmission rate per day in the absence of interventions, f (t) quantifies the time-
dependent effectiveness of contact tracing activities, and N(t) is the total population
size at time t. Thus, f (t) ranges from 0 (fully complete contact tracing activities are
in place) to 1 (contact tracing efforts are yet to start) to quantify the effectiveness
of the isolation of infectious individuals that decrease Ebola transmission through
contact tracing efforts. Values of f (t) close to 0 illustrate “near-perfect” contact
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tracing, while values closer to 1 illustrate “imperfect” contact tracing efforts.
Symptomatic infectious individuals I (t) recover at the mean rate γ . Individuals
in the “removed” category do not contribute to the transmission process. Thus, the
time-dependent contact tracing effectiveness, f (t), remains at 1.0 before the start of
contact tracing activities. Baseline epidemiological parameters were set according
to the epidemiology of Ebola (i.e., incubation period of 5 days (Eichner et al. 2011;
The World Health Organization 2014) and infectious period of 7 days (Chowell et al.
2004; The World Health Organization 2014)). We set the effective population size at
2,400,000 based on the population size of Bamako. For this model, R0 is given by
the product of the transmission rate β and the mean infectious period 1/γ . Hence,
specific values of R0 (range: 1.6–2.0 based on estimates of the Western African
outbreak (Althaus 2014; Nishiura and Chowell 2014)) were calibrated by tuning
β. Once interventions are put in place, the effective reproduction number declines
according to the formula

Rt = R0
S(t)

m
f (t),

where S(t)/m quantifies the proportion of susceptible individuals at time t .

9.4.2 Model 2: Spatially Structured Ebola Transmission Model

One of the putative mechanisms leading to early polynomial growth dynamics of
Ebola transmission is clustering (Szendroi and Csányi 2004; Chowell et al. 2015;
Merler et al. 2015; Viboud et al. 2016; Chowell et al. 2017), a network property
that quantifies the extent to which the contacts of one individual are also contacts of
each other (Watts and Strogatz 1998). Social contact networks are particularly useful
to explore the impact of clustering and play an important in the dissemination of
Ebola at the community level. We employ a network-based transmission model with
household-community structure, which has been previously applied to study the
transmission dynamics of Ebola (Kiskowski 2014; Kiskowski and Chowell 2015).

In this model, individuals are organized within households of size H (each
household contains H individuals) and households are organized within commu-
nities of size C households (each community contains C ×H individuals). Network
connectivity is identical for every individual. The household reproduction number
R0H was varied between 1.6 and 2.0 and the community reproduction number R0C

was set at 0.7 based on previous study (Kiskowski and Chowell 2015). For a fixed
household size at H = 6, which is in line with the average household size for
Bamako in 2014 and various values of the community size parameter (range: 25–65
households per community), we analyze the resulting outbreak size distribution.
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9.4.3 Modeling the Time-Dependent Effectiveness of Contact
Tracing Efforts in Bamako, Mali

After the start of the interventions at time t0, the function f (t) modulates a decline in
transmission rate according to the time-dependent completeness of contact tracing
efforts. The functional form for f (t) was assumed to follow an exponential decline
after the start of contact tracing activities. That is,

f (t) =
{

1, 0 < t < t0

1 − (1 − e−q(t−t0)), t ≥ t0
.

Parameters q and t0 could be estimated by fitting f (t) to the daily contact
tracing completeness calculated as the daily proportion of contact persons that
were monitored out of the total number of registered contact persons at risk.
For illustration purposes, we set q = 0.14 while the start of contact tracing
efforts is fixed at t0 = 21, which is in line with the outbreak response in Mali.
The corresponding estimates of the effective reproduction number are shown in
Fig. 9.9b.

Stochastic Simulations

To assess the temporal and size distribution of outbreaks, we generated 200
stochastic epidemic simulations that start with the introduction of the index case
(i.e., I (0) = 1). Simulation code in Matlab is available upon request from the
authors.

In the absence of interventions, the spatial and non-spatial models exhibit
strikingly different epidemic trajectories as shown in Fig. 9.8.

The resulting curves of the effective reproduction number, Rt , capturing the
time-dependent effects of contact tracing efforts for three different values of R0
are shown in Fig. 9.9 based on the homogeneous mixing model. Rt declined below
the epidemic threshold of 1.0 between November 10th and November 13th, 2014.
The illustrated effect of control interventions on the transmission of Ebola in
Mali is shown with an ensemble of stochastic epidemic realizations in Fig. 9.9a,
which shows the relative reduction in the transmission rate as a function of the
time-dependent effectiveness of contact tracing activities. After the start of the
interventions, the function modulates a decline in transmission rate according to
the time-dependent effectiveness of contact tracing efforts as explained in the text.
This time-dependent function was assumed to follow an exponential decline after
the start of contact tracing activities. Figure 9.9b shows the effective reproduction
number over time reflecting the impact of contact tracing activities for three different
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Fig. 9.8 The mean epidemic trajectories derived from the spatial and non-spatial models during
the first 100 days of the Ebola epidemic in the absence of interventions

Fig. 9.9 (a) The relative reduction in the transmission rate as a function of the time-dependent
effectiveness of contact tracing activities. (b) The effective reproduction number over time
reflecting the impact of contact tracing. (c) Stochastic epidemic realizations using the homogenous-
mixing SEIR model (Model 1) at R0 = 1.6. The red circles correspond to the actual outbreak
trajectory and the cyan blue lines correspond to 200 stochastic realizations. (d) The corresponding
distribution of outbreak sizes using the homogenous-mixing SEIR model (Model 1) with an R0 set
at 1.6. The vertical dashed line indicates the actual Ebola outbreak size in Mali
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Fig. 9.10 Stochastic epidemic realizations using the household-community SEIR model (Model
2) with a community size of 25 households and household size of 6 which is in line with the
average household size for Bamako in 2014

values of R0 in the range 1.6–2.0. Figure 9.9c illustrates stochastic epidemic
realizations using the homogenous-mixing SEIR model (Model 1) with an R0
set at 1.6. Figure 9.9d shows the corresponding distribution of outbreak sizes
using the homogenous-mixing SEIR model (Model 1) with an R0 set at 1.6. The
corresponding results based on the spatially structured model are shown in Fig. 9.10
assuming a community size C = 25.

Our modeling analysis demonstrates that the decline in transmission and subse-
quent halting of the Ebola outbreak in Mali coincided with the implementation of
contact tracing activities that improved over the course of the outbreak. The results
suggest that contact tracing done completely during an outbreak could minimize the
size of future outbreaks. While the spatial and non-spatial models yield significantly
different epidemic trajectories in the absence of interventions (Fig. 9.8), it is perhaps
not surprising that the spatial and non-spatial transmission models yielded similar
outbreak size distributions because the virus was contained before it could spread
beyond a few generations of disease transmission. In the absence of comprehensive
contact tracing efforts, person-to-person transmission of Ebola could have increased
rapidly, ensuing in a sizable urban epidemic.
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9.5 Problems and Supplements

9.1 Consider a simple SIR model with an R0 = 1.8, a mean infectious period of
3 days and a population size of 100,000 people that incorporates the effects of
behavior changes that mitigate the transmission rate as follows: After the first
30 days of the epidemic, the transmission rate decreases exponentially fast with
a half-life of 10 days. Answer the following questions:

(a) Compare the size of the epidemics obtained with and without the effects of
behavior changes.

(b) Explore how the epidemic size changes as you vary the timing of the start
of the behavior change and the half-life of the transmission rate decay
associated with the behavior change.

9.2 Consider a simple two-patch SEIR model with local R0 = 1.5, mean latent
period of 7 days, mean infectious period of 4 days, and a population size of
10,000 people in each patch. Further, transmission can occur in two different
ways: (1) local transmission within each patch and (2) directed transmission
from the first patch to the second patch (but not from the second to the first
patch) where this patch-to-patch transmission rate is a fraction ρ relative to the
local transmission rate. Answer the following questions:

(a) Using the simple SEIR model without demographic factors and assuming
a mean latent period of 2 days, a mean infectious period of 4 days,
and a population size of 550,000, provide the mean estimate and 95%
confidence intervals of the basic reproduction number R0 using 16, 18,
and 20 days of the initial growth phase. For parameter estimation you can
use the least square fitting approach with the Poisson parametric bootstrap
which is described in Chap. 7 and illustrated with examples in Chap. 8.
Note that you only need to estimate the transmission rate using your
favorite technical computing language while keeping the initial number of
infectious individuals I (0) fixed according to the first data point. Are the
R0 estimates relatively stable during the study period?

(b) Describe the dynamics of the epidemics as the parameter rho is increased
from 0.00001 to 0.01. In particular, how many peaks do the total incidence
curve exhibit as this parameter is varied?

(c) Describe the epidemic duration and size that result from (a).
(d) Repeat the analyses in (a) using a system of 4 patches connected in a

linear fashion where patch-to-patch transmission only occurs from patch
j to patch j + 1.
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