
Chapter 8
Characterizing Outbreak Trajectories
and the Effective Reproduction Number

8.1 Introduction

Emerging and re-emerging infectious diseases pose major challenges to pub-
lic health worldwide (Fauci and Morens 2016). Fortunately mathematical and
statistical inference and simulation approaches are part of the toolkit for guid-
ing prevention and response plans. As the recent 2013–2016 Ebola epidemic
exemplified, an unfolding infectious disease outbreak often forces public health
officials to put in place control policies in the context of limited data about
the outbreak and in a changing environment where multiple factors positively or
negatively impact local disease transmission (Chowell et al. 2017). Hence, the
development of public health policies could benefit from mathematically rigorous
and computationally efficient approaches that comprehensively assimilate data
and model uncertainty in real time in order to (1) estimate transmission rates,
(2) assess the impact of control interventions (vaccination campaigns, behavior
changes), (3) test hypotheses relating to transmission mechanisms, (4) evaluate
how behavior changes affect transmission dynamics, (5) optimize the impact of
control strategies, and (6) generate forecasts to guide interventions in the short and
long terms.

Mathematical models are quantitative frameworks with which scientists can
assess hypotheses on the potential underlying mechanisms that explain patterns in
the observed data at different spatial and temporal scales (Chowell 2017). Model
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complexity can be characterized in terms of the number of variables and parameters
that characterize the dynamic states of the system, spatial-temporal resolution (e.g.,
discrete vs. continuous time), and design (e.g., deterministic or stochastic). While
agent-based models, formulated in terms of characteristics and interactions among
individual agents, have become increasingly used to model detailed processes often
occurring at multiple scales (e.g., within host vs. population level), mean-field
models based on systems of ordinary differential equations are widely used in
the biological and social sciences. These dynamic models comprise systems of
equations and their parameters that together quantify the temporal and spatial states
of the system via a set of interrelated dynamic quantities (e.g., susceptibility levels,
disease prevalence) (Banks et al. 2009, 2014).

In Sect. 7.1, phenomenological population models refer to stochastic and deter-
ministic models based on conceptual assumptions regarding the population. We used
the term phenomenological to distinguish models with respect to assumptions at the
level of individuals along the progression of the disease’s natural history. We stated
that phenomenological population models carry tacit assumptions at the level of
individuals.

Deterministic models composed by a system of ordinary differential equations
follow this general form:

x
′
1(t) = f1(x1, · · · , xh;�)

x
′
2(t) = f2(x1, · · · , xh;�)

...

x
′
h(t) = fh(x1, · · · , xh;�)

where x
′
i (t) denotes the rate of change of the system states xi, i = 1, . . . , h and

� = (θ1, . . . , θm) is the set of model parameters.
In general, the complexity of a model is a function of the parameters that are

needed to characterize the states of the system and the spectrum of the dynamics that
can be recovered from the model (e.g., number of equilibrium points, oscillations,
bifurcations, chaos). A trade-off exists between the level of model complexity and
the ability to reliably constrain a model to a specific situation.

8.2 Approximations with Simple Functions

Time-series, loosely called “epi-curves,” are widely used in epidemiologic inves-
tigation for different purposes. Some make empirical comparisons for spatial and
temporal patterns based on data from official surveillance reports. For example,
Schanzer et al. (2010) compared epidemic curves on weekly confirmed seasonal
influenza-A cases in Canada for multiple influenza seasons as well as with similar
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curves in the United States and Europe. Some associate the comparison of spatial
patterns with important scientific questions in mind, such as making inferences on
transmissibility R0 and disease impact such as mortality (e.g., Chowell et al. 2007).
Others use epidemic curves as information for action. During an infectious disease
outbreak, the question of concern is more likely about the current status of the
trend, whether it is increasing or decreasing. Sometimes various ad hoc curve fitting
techniques are employed to smooth fluctuating data points in order to make short-
term projections, forecast health care needs, guide public health decision making,
and so on.

In this section, we choose phenomenological models with explicit simple forms
such as the sub-exponential function (4.58), the logistic growth (4.59), and various
generalized logistic growth functions. As previously discussed in Chaps. 4, 5 and 7,
parameters in these models are descriptive by capturing the essence of a time-
series data based on a disease outbreak. Although they may not carry any scientific
hypotheses regarding the transmission dynamics, they provide an approach to
investigate empirical patterns in observed data (Chowell et al. 2016).

In addition, we choose these simple models because

1. most of the transmission dynamic models defined by systems of differential
equations do not have explicit solutions;

2. most of the numeric solutions of these equations can be closely approximated by
one of the generalized logistic functions;

3. for those models that do have explicit solutions, they are either logistic or
generalized logistic functions;

4. time-series data usually do not have sufficient information to identify the
“mechanical assumptions” explicitly modeling the transmission dynamics.

8.2.1 The Sub-exponential Growth Function and the
Generalized Growth Model (GGM)

This phenomenological model is useful to forecast epidemic growth pat-
terns (Viboud et al. 2016; Chowell and Viboud 2016; Shanafelt et al. 2017; Pell
et al. 2018a). In particular, previous analyses highlighted the presence of early sub-
exponential growth patterns in infectious disease data across a diversity of disease
outbreaks (Viboud et al. 2016).

The sub-exponential growth functions have been previously discussed in
Sect. 4.5.2, in which we restricted our definition (4.56) as convex functions C(t)

bounded by the linear growth from below and the exponential growth from above,
that is, i0 (1 + rt) ≤ C(t) ≤ i0e

rt . We have pointed out that the classic exponential
growth function is associated with a set of strong mathematical assumptions and
conditions when the system is at (disease-free) equilibrium, whereas during the
initial stage of an outbreak in observed data, sub-exponential growth patterns are



276 8 Characterizing Outbreak Trajectories and the Effective Reproduction Number

more common. We have previously highlighted several mechanisms that potentially
result in such growth patterns.

In particular, we consider the model C(t) = i0(1 + rvt)1/v, 0 < v ≤ 1 for the
cumulative incidence. If v → 0, this model leads to the well-known exponential
growth model, which applies both to the cumulative incidence C(t) and to the
instantaneous incidence C′(t), while v = 1, corresponds to the linear growth of
C(t) and constant incidence per unit of time. C(t) = i0(1 + rvt)1/v , 0 < v ≤ 1, are
illustrated in Fig. 4.11 in Chap. 4, as convex growth functions bounded by the linear
growth and the exponential growth.

The generalized-growth model (4.61) in Viboud et al. (2016), which is also called
the power law exponential model by Banks (1994), is defined by the differential
equation

C′(t) = rC(t)p, 0 ≤ p ≤ 1 (8.1)

which allows relaxing the assumption of exponential growth via a “deceleration of
growth” or “scaling of growth” parameter, p. C′(t) describes the incidence growth
phase over time t ; the solution C(t) describes the cumulative number of cases at
time t.

When i0 = 1 and letting p = 1 − v, the sub-exponential function C(t) =
(1 + rvt)1/v is the solution of (4.61).

In semi-logarithmic scale, exponential growth patterns are visually evident when
a straight line fits well several consecutive disease generations of epidemic growth,
whereas a downward curvature in semi-logarithmic scale indicates early sub-
exponential growth dynamics.

8.2.2 The Simple Logistic Function

In Chap. 5, we introduced many types of phenomenological models involving the
dynamics of the process of interest (e.g., population or transmission dynamics).
These types of models are often formulated in terms of a dynamic system describing
the spatial-temporal evolution of a set of variables, and they are useful to evaluate the
emergent behavior of the system across the relevant space of parameters (Chowell
et al. 2016). In particular, compartmental models are based on systems of ordinary
differential equations that focus on the dynamic progression of a population through
different epidemiological states (Bailey 1975; Anderson and May 1991; Brauer
2006; Lee et al. 2016). While these models may not be useful for testing scientific
hypotheses and formulating theory on disease transmission, they are very useful in
practice such as for curve fitting, prediction as well as formulating of some statistical
models, such as the back-calculation. One of the most memorable quotes from the
wordsmith and former New York Yankees catcher, Yogi Berra, is:

In theory, theory and practice are the same thing; in practice, they are different.
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Several models, such as the SI model, the SIS model, and the model defined by
(8.5), produce the logistic epidemiologic curves. Many other models also produce
logistic-like epidemiologic curves that can be used to explain patterns in the
observed data.

The logistic growth function (4.59) is one of the oldest growth functions with the
following equivalent forms

Clogis(t) = i0K

i0 + (K − i0) e−ρt
= K

1 + 1
v
e−ρt

= K

1 + e−ρ(t−α)
(8.2)

where v = i0
K−i0

and α = 1
ρ

log K−i0
i0

= − 1
ρ

log v. In all these representations, there
are three functionally independent parameters.

The logistic function was first proposed by Verhulst (1838). For modeling
population growth, the logistic model was used and popularized by Pearl (1925),
Pearl and Reed (1920), and Yule (1925). The expression

Clogis(t) = K

1 + e−ρ(t−α)
, − ∞ < t, α < ∞, ρ,K > 0. (8.3)

characterizes the time-series data. The parameters (ρ, α, K) are descriptive about
the general shape and are useful to fit to time-series data, of which ρ is the scale
parameter associated with the initial growth; α is a location parameter that is also
the inflexion point at which the increase of Clogis(t) turns from convex to concave;
K = limt→∞ C(t) is the upper limit, referred to as the carrying capacity.

Many infectious disease models lead to the exact logistic growth form or growth
functions very closely resembling logistic growth.

The deterministic SIS model produces the logistic function (5.14) for the number
of infectious individuals at time t, as

Id(t) = mi0(β − γ )

βi0 + (m (β − γ ) − βi0) e−(β−γ )t
. (8.4)

If β − γ > 0, Id(t) increases monotonically and approaches the value m(1 − γ /β).

It is the same as logistic function (4.59) via re-parametrization K = m(1 − γ /β)

and ρ = β − γ. Although in (8.4), the parameters (m, i0, β, γ ) are associated
with hypotheses about the transmission dynamic, from the perspective of fitting the
model to data, Id(t) only has three independent parameters. In fact, the time-series
data that fit well with the logistic function do not have the information to test the
hypothesis H0: γ = 0 in the SIS model.

The logistic function can also arise from other deterministic transmission models.
Tan (2000) considered the following compartment model

⎧
⎪⎨

⎪⎩

d
dt

Sd(t) = −β
Sd(t)Id (t)

Sd (t)+Id (t)
d
dt

Id(t) = β
Sd(t)Id (t)

Sd (t)+Id (t)
− γ Id(t)

d
dt

Zd(t) = γ Id(t) − δZd(t)

, (8.5)
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where Sd(t) and Id(t), as in the SIS and SIR models, represent the numbers of
susceptible and infected individuals in the population. The main difference from the
deterministic models discussed before is that, in this model, all infectious individu-
als will progress to Compartment Z. Once individuals enter Compartment Z, they
no longer make contacts with susceptible individuals. For instance, Compartment Z

may represent advanced illness or being isolated. Thus the instantaneous infection
function is modified as β

Sd(t)Id (t)
Sd (t)+Id (t)

.

Let ψ(t) = Id (t)
Sd (t)+Id (t)

be the proportion of infected individuals before entering
Compartment Z, we have

d

dt
[Sd(t) + Id(t)] = −γ Id(t) = −γψ(t) [Sd(t) + Id(t)] ,

1

Sd(t) + Id(t)

d

dt
Id(t) = ψ(t) {[1 − ψ(t)] β − γ } .

It follows that

d

dt
ψ(t) = [Sd(t) + Id(t)] d

dt
Id(t) − Id(t) d

dt
[Sd(t) + Id(t)]

[Sd(t) + Id(t)]2

= 1

Sd(t) + Id(t)

{
d

dt
Id(t) − ψ(t)

d

dt
[Sd(t) + Id(t)]

}

= ρψ(t) [1 − ψ(t)] ,

where ρ = β − γ. Clearly, ψ(t) follows the logistic growth given by

ψ(t) = ψ(0)

ψ(0) + [1 − ψ(0)] e−ρt

and ψ(t) → 1 as t → ∞.

8.2.3 Generalized Logistic Functions

The logistic differential equation

d

dt
C(t) = ρK

(
C(t)
K

) (
1 − C(t)

K

)

assumes that the per capita growth rate decreases linearly with population size or
density. Its solution is the logistic function Clogis(t) = i0K

i0+(K−i0)e
−ρt which can be

also expressed as
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Clogis(t; ρ, α,K) = K

1 + e−ρ(t−α)
, (8.6)

= K

(

1 − 1

1 + eρ(t−α)

)

, (8.7)

where −∞ < t < ∞ with three parameters (ρ, K, α): ρ > 0 is the scale parameter,
−∞ < α < ∞ is a location parameter and K = limt→∞ C(t) > 0 is the carrying
capacity. It is symmetric in the sense that α is also the inflexion point at which
Clogis(α) = K/2. Given K and the initial value i0 = Clogis(0), α = 1

ρ
log K−i0

i0
.

The first derivative d
dt

Clogis(t) is

Ilogis(t) = d

dt
Clogis(t) = ke−ρ(t−α)

(
1 + e−ρ(t−α)

)2 ,

where k = ρK. It reaches the maximum value at t = α such that Ilogis(α) = k
4 .

Meanwhile, limt→∞ Ilogis(t) = 0.

The logistic function may be generalized in two directions: (1) asymmetric
function for I (t) by adding a shape parameter θ > 0; (2) limt→∞ I (t) = c > 0,

where I (t) = d
dt

C(t). A further generalization is to combine (1) and (2) to obtain
more flexible forms in order to fit empirical data, especially for diseases with
apparent endemic equilibrium. These will be discussed below.

Generalization Towards Asymmetry: The Richards Model and Its
Variations

The symmetric shape of the logistic function makes it inflexible to fit data suggesting
asymmetry. There are different ways to create asymmetric generalized logistic
forms, such as

IGlogis(t) = 1

1 + e−ρ(t−α)

ke−η(t−α)

1 + e−η(t−α)

where η > 0 may be different from the initial growth rate ρ. In this generalization,
both parameters η and ρ act as scale parameters of time. It is inconvenient to
interpret a model representing a time-series with two different scale parameters.
In addition, it does not correspond to the generalization of the logistic differential
equation.

The Richards growth curve (Richards 1959) is one of the best known generalized
logistic functions. It adds a shape parameter θ > 0 to scale the proportion C(t)/K

in the logistic differential equation. The result is the theta-logistic equation

d

dt
C(t) = rK

(
C(t)
K

)(

1 −
[

C(t)
K

]θ
)

, θ > 0. (8.8)
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Causton and Venus (1981) show that, when r > 0 and θ > 0, given C(0) = i0,

CRichards(t) = K
(
1 + Qe−rθt

)1/θ
, (8.9)

where Q =
(

K
i0

)θ − 1. If we re-parameterize the scale parameter ρ = rθ and let

Q = eρα , (8.9) becomes the following generalized logistic growth function

CRichards(t; ρ, α, θ,K) = K
[
1 + e−ρ(t−α)

]1/θ
, (8.10)

which is directly adding the shape parameter into (8.6). In (8.10), ρ, θ,K > 0 and
−∞ < α < ∞.

The first derivative d
dt

CRichards(t) is

IRichards(t) = ke−ρ(t−α)

[
1 + e−ρ(t−α)

] θ+1
θ

(8.11)

where k = ρ
θ
K.

The inflexion point for CRichards(t) is

t∗ = 1

rθ

(

ln
Q

θ

)

= α − 1

ρ
log θ.

At the inflexion point, CRichards(t
∗) = K

(1+θ)1/θ . When θ < 1, CRichards(t
∗) < K/2;

when θ = 1, CRichards(t
∗) = K/2 and when θ > 1, CRichards(t

∗) > K/2. At the
inflexion point, IRichards(t) arrives at the peak value IRichards(t

∗) = ρK

(1+θ)
θ+1
θ

.

The Richards model has been fitted to a range of epidemic curves that exhibit
sigmoid cumulative growth patterns (Turner et al. 1976; Ma et al. 2014; Wang et al.
2012; Hsieh and Cheng 2006; Dinh et al. 2016).

A Variation of the Richards Model Instead of adding the shape parameter θ into
(8.6), we add it into (8.7) and we get the generalized logistic growth function

CRichards2(t;K, ρ, α, θ) = K

(

1 − 1
[
1 + eρ(t−α)

]1/θ

)

, K, ρ, α, θ > 0.

(8.12)

Both generalized logistic functions are related through

CRichards2(t;K, ρ, α, θ) = K − CRichards(−t;K, ρ,−α, θ).
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It can be easily shown that (8.12) is the solution of the theta-logistic equation

d

dt
C(t) = rK

(

1 −
[

1 − C(t)

K

]θ
)(

1 − C(t)

K

)

, θ > 0 (8.13)

with

CRichards2(t) = K

(

1 − 1
[
1 + Q2erθt

]1/θ

)

(8.14)

where Q2 =
(

K
K−i0

)θ − 1. Clearly, CRichards2(t) in (8.14) and in (8.12) is the same,

via re-parametrization ρ = rθ and Q2 = e−ρα.

The first derivative d
dt

CRichards2(t) is

IRichards2(t) = keρ(t−α2)

[
1 + eρ(t−α2)

] θ+1
θ

(8.15)

where k = ρ
θ
K.

If the initial value i0, the scale parameter ρ, the shape parameter θ , and the
carrying capacity K are all the same in both (8.10) and (8.12), the location parameter
α in the corresponding solutions (8.10) and (8.12) is different. We denote them
separately as α1 and α2, respectively. They are

α1 = 1
ρ

log

[(
K
i0

)θ − 1

]

, with respect to (8.9)

α2 = − 1
ρ

log

[(
K

K−i0

)θ − 1

]

, with respect to (8.14).

The inflexion point for CRichards2(t) is t∗2 = α2 + 1
ρ

log θ and CRichards2(t
∗
2 ) =

K
(

1 − 1
(1+θ)1/θ

)
. At the inflexion point, IRichards2(t) reaches the peak value

IRichards2(t
∗
2 ) = ρK

(1+θ)
θ+1
θ

which is the same as the peak value of IRichards(t).

Figure 8.1 compares CRichards(t) vs. CRichards2(t), and IRichards(t) vs. IRichards2(t),
given K = 1000, i0 = 1 and θ = 0.4. Since ρ is a scale parameter with respect to
time, without losing generality, we let ρ = 1. We have

α1 = 2.6979, t∗1 = 2.6979 − log 0.4 = 3.6142

α2 = 7.8233, t∗2 = 7.8233 + log 0.4 = 6. 907

and IGlogis1(t
∗
1 ) = IGlogis2(t

∗
2 ) = 308.
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Fig. 8.1 Plots of CRichards(t), IRichards(t), CRichards2(t), and IRichards2(t) given K = 1000, i0 = 1,

θ = 0.4. The time scale is standardized according to the scale parameter ρ. The maximum values

for IRichards(t) and IRichards2(t) are equal: ρK (1 + θ)−
θ+1
θ = 308 at set parameters

The variation of the Richards model (8.12) is closely related to disease transmis-
sion model (8.5). In (8.5), ψ(t) = Id (t)

Sd (t)+Id (t)
is a simple logistic growth function.

However, Id(t) in (8.5) is an asymmetric bell-shaped curve

Id(t) = M(0)
ψ(0)eρt

{[1 − ψ(0)] + ψ(0)eρt }1+γ /ρ
, (8.16)

where M(0) = Sd(0) + Id(0). If we re-parameterize θ = ρ/γ and ψ(0) =
(

K
K−i0

)θ − 1 ≡ Q2, then (8.16) becomes

Id(t) = M(0)
Q2e

ρt

{(
K

K−i0

)θ + Q2eρt

} θ+1
θ

.

On the other hand, (8.15) with re-parametrization is

IRichards2(t) = k
Q2e

ρt

{1 + Q2eρt } θ+1
θ

.
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Thus IRichards2(t) approximates Id(t) in (8.16) well when K is large and i0 is small.
The model given by (8.15) is descriptive and captures the essence of time-series

data based on a disease outbreak without any scientific hypothesis regarding the
transmission dynamics. It has been used as approximations for some simple com-
partment models for HIV/AIDS, as discussed in detail in Chap. 9 of Brookmeyer
and Gail (1994) and Chap. 1 of Tan (2000).

The following example illustrates the generalized logistic functions (8.12) and
(8.15) as good approximations to two different SIR-type models and an SEIR model.

Example 33 In this example, we set K = 9009, α = 53.46, ϕ = 0.72, ρ =
0.155 in (8.15). The parameter ϕ = 0.72 < 1 gives a slightly skewed incidence
function Id(t) with peak time t∗ = 55.579. According to this model, the final size is
C(∞) = 9009. Both (8.12) and (8.15) approximate very well with the incidence and
cumulative incidence functions, which are implicitly determined by the following
selected deterministic models (Fig. 8.2):

1. the SIR model given by (5.24) with m = S(0) + I (0) = 14,300, β = 0.395,
γ = 1/4, corresponding to R0 = 1.58 and final size 9025;

2. the SEIR model given by (5.53) with m = S(0) + I (0) = 10,150, β = 0.6,

α = 1/3.4, γ = 1/4, corresponding to R0 = 2.4 and final size 8918;
3. an SIR model governed by the integro-differential equations

⎧
⎨

⎩

d
dt

S(t) = −β
S(t)I (t)

n
d
dt

I (t) = i(t) − ∫ t

0 i(s)fI (t − s)ds, where i(t) = β
S(t)I (t)

n
d
dt

R(t) = ∫ t

0 i1(s)fI (t − s)ds.

Fig. 8.2 Illustration of generalized logistic models Cd(t) and id (t) with comparison from three
different transmission models in Example 33
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with gamma distributed infectious period fI (x) with mean value μI = 4 and
shape parameter κ = 3, along with m = S(0) + I (0) = 17,500, β = 0.35,

corresponding to R0 = 1.4 and final size 8945.

Other Variations and Generalizations An alternative to (8.13) is

d

dt
C(t) = rK

[
C(t)

K

]θ (

1 − C(t)

K

)

, (8.17)

Although it looks much simpler than (8.13), there is no explicit solution, but C(t)

can be solved numerically. It is also a sigmoid growth function with an inflexion
point t∗ at which C(t∗) = p

p+1K.

Other variations include

d

dt
C(t) = r [C(t)]θ

(

1 − C(t)

K

)

, (8.18)

or the generalized Richards model (Turner et al. 1976) with two shape parameters
θ1, θ2 > 0:

d

dt
C(t) = r [C(t)]θ1

(

1 −
[
C(t)

K

]θ2
)

. (8.19)

The model (8.19) with 0 < θ1 ≤ 1 was used to account for initial sub-exponential
growth dynamics (Viboud et al. 2016). In this case, θ1 is called the “deceleration of
growth” parameter. This model has been useful to generate post-peak forecasts of
Zika and Ebola epidemics (Pell et al. 2018a; Chowell et al. 2016).

Generalizations of the Logistic and Richards Functions So That
limt→∞ I (t) = c > 0

It is straightforward to generalize Ilogis(t) into

Ilogis-c(t) = 1

1 + e−ρ(t−α)

(
ke−ρ(t−α)

1 + e−ρ(t−α)
+ c

)

. (8.20)

It returns to the logistic model when c = 0. However, Ilogis-c(α) is not the maximum
value unless c = 0 because I ′

logis-c(α) = 1
4cρ ≥ 0. The maximum value is achieved

when t = t∗ = α − 1
ρ

log k−c
k+c

and the maximum value is Ilogis-c(t
∗) = 1

4k
(k + c)2 .

Similarly, one can generalize the Richards function (8.11) as

IRichards-c(t) = 1

1 + e−ρ(t−α)

⎛

⎝
ke−ρ(t−α)

[
1 + e−ρ(t−α)

] 1
θ

+ c

⎞

⎠ (8.21)
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that includes five parameters. It returns to the Richards model (8.11) when c = 0;
returns to (8.20) when θ = 1 and returns to the logistic model when c = 0 and
θ = 1. It satisfies IRichards-c(−∞) = 0 and IRichards-c(∞) = c ≥ 0. It reaches the
peak value when t = t∗ that satisfies

ke−ρ(t−α) + cθ
(
e−ρ(t−α) + 1

) 1
θ = kθ.

For the special cases, t∗ = α when c = 0 and θ = 1; t∗ = α − 1
ρ

log θ when c = 0

and t∗ = α − 1
ρ

log k−c
k+c

when θ = 1.

A different generalization of (8.20) is

Ilogis-c-2(t) = 1

1 + e−ρ(t−α)

[
ke−η(t−α)

1 + e−η(t−α)
+ c

]

(8.22)

where
ρ = rate of increase at the beginning,
η = rate of convergence to the asymptote.
a = a suitable location parameter,
c = limt→∞ Ilogis-c-2(t) = asymptote.
The generalized logistic function given by (8.22) has been adopted as one of

the parametric models for the incidence of new HIV infections in a computer
package, Spectrum (Avenir Health), which is endorsed by the Joint United Nations
Programme on HIV/AIDS (UNAIDS) to compile estimates of HIV prevalence in
different countries around the world.

Both (8.21) and (8.22) have five parameters. They may be used to approximate
SEIRS models in a constant population with demography turn-over. A comparison
is shown in Fig. 8.3. However, it is inconvenient to interpret the model (8.22)
representing a time-series with two different scale parameters, η and ρ.

These generalized logistic functions can be used to capture the essence of time-
series data for prediction purposes. By adding more parameters, one can create
models that can capture a broad variety of epidemic curves. For example, the
following 6-parameter function

Itwin−peak−c(t) = k1e
−ρ(t−α1)

(1 + e−ρ(t−α1))2
+ 1

1 + e−ρ(t−α2)

[
k2e

−ρ(t−α2)

1 + e−ρ(t−α2)
+ c

]

is capable of creating a twin peaked curve that approaches an asymptote c > 0.
However, the time-series data, especially data from a single source, do not have
enough information to test hypotheses or make statistical inferences on param-
eters with specific biological and epidemiological interpretations in transmission
models.
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Fig. 8.3 Compare the functions (8.21) and (8.22) with selected parameters against the numbers of
infectious individuals over time in an SEIRS model using parameters in Example 25 (dashed line)

8.3 A Comprehensive Demonstration of Curve Fitting Using
Nonlinear Phenomenological Models to Outbreak Data
from the 2016 Zika Epidemic in Antioquia, Colombia

In the Western Hemisphere, active circulation of ZIKV was first reported in Brazil
in May 2015, and the WHO declared the epidemic a Public Health Emergency of
International Concern on February 1, 2016. Phylogenetic analyses indicate that the
epidemic in the Americas was triggered by an imported case sometime between
May and December 2013, a period that coincides with an increase in air travel from
ZIKV affected areas in the Pacific to Brazil (Faria et al. 2016).

We analyzed daily counts of Zika cases by date of symptoms onset reported to the
Secretary of Health of Antioquia (the time series is available online as an EXTRA
MATERIAL). Antioquia is the second largest department in Colombia (with a
population size of ~6.3 million people), located in the central northwestern part of
the country (Chowell et al. 2016). Because there is still substantial uncertainty on
the epidemiology of ZIKV, including the contribution of different modes of trans-
mission (mosquito bites vs. sexual transmission), simple phenomenological models
are useful for forecasting epidemic trajectories whereas mechanistic mosquito-borne
disease transmission models require more data to appropriately calibrate mosquito
reproduction, development, survival, and transmission capacity which are strongly
modulated by temperature as well as the transmission rates that dictates the transfer
of the virus from mosquitoes to humans and vice versa (e.g., Ross 1911; Focks et al.
1995; Chowell et al. 2007; Gao et al. 2016; Towers et al. 2016; Zhang et al. 2017;
Huber et al. 2018).
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8.3.1 Fitting Models to Data

The time-series data y = (y0, y1, . . . , yT ) represent daily incidence according to the
onset of clinical symptoms. The date of the earliest recorded case by date of onset is
called Day 0. We model the cumulative number of clinical cases by time t according
to a counting process. The random component of the model is the marginal
distribution of C(t) grouped into time intervals so that Yt = C(t) − C(t − 1),

−∞ < t < ∞ is the number of clinical onsets during the time interval (t − 1, t].
The systematic component of the model is a deterministic growth curve function
Cd(t), chosen as one of the growth curve functions introduced in the preceding
section, such that the expected value is E[C(t)] = Cd(t), specified by a set of
parameters � = (θ1, . . . , θm).

Since we are fitting the model to daily incidence data yt , we write the systematic
component as

μ(t;�) = Cd(t) − Cd(t − 1).

Most of the growth functions are defined over −∞ < t < ∞. Therefore the
expected number of new cases by date of symptoms on Day 0 is E[Y0] = μ(0;�) =
Cd(0) − Cd(−1). In the observed data, y0 = 1.

We use the methods presented and discussed in Sect. 7.1.3 in the following
analyses.

8.3.2 Data During the First 20 Days

Exploratory Analysis

Starting from the earliest recorded case by date of onset, denoted as Day 0, the
cumulative number of confirmed individuals with clinical symptoms was 183 by
Day 20. During the first 2 weeks, daily incidence numbers by symptoms onset were
rather sporadic, less than 10 cases per day except for Day 9 and Day 14. From Day
15 to Day 20, the daily incidence numbers were fluctuating between 12 and 20 cases
per day.

Exploratory plots of the logarithm of daily incidence data (yt , t = 0, . . . , 20)

against time t and against the logarithm of the cumulative incidence ct = ∑t
i=0 yi,

t = 0, . . . , 20 (Fig. 8.4) show distinctive sub-exponential growth patterns. In
particular, the strong linear relationship between the logarithm of daily incidence
data and the logarithm of the cumulative incidence is given by

log yt = −0.06008 + 0.55466 log
t∑

i=0

yi,

which empirically agrees with the relationship C′(t) = rC(t)p, in which, C′(t) is
approximated by the daily incidence yt , t = 1, . . . , 20 and y0 = 1 and C(t) is
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Fig. 8.4 Exploratory plots of the logarithm of daily incidence data log yt against time t and against
the cumulative incidence ct = ∑t

i=0 yi , t = 0, .., 20

approximated by the cumulative incidence ct = ∑t
i=0 yi. This relationship gives

the crude estimates

r̃ = e−0.06008 = 0.94169, p̃ = 0.55466.

Likelihood Analysis, Estimation and Predictions for the Sub-exponential
Model

For formal analysis, we start fitting to daily incidence data using (7.3), assuming
that y = (y0 , y1, . . . , y20) are realizations of independent Poisson random counts.
The likelihood based approach based on (7.4) is applied with f (0;�) = i0 and

f (t;�) = C(t) − C(t − 1), t = 1, . . . , 20, where C(t) = i0(1 + r(1 − p)t)
1

1−p ,

0 ≤ p < 1.

We first conduct the likelihood ratio test against the hypothesis H0 : i0 = 1,
which yields a significant level (p-value) of 0.48. There is no evidence from data to
reject H0.

We consider the reduced model C(t) = (1 + r(1 − p)t)
1

1−p , which is the exact
solution of C′(t) = rC(t)p given the initial condition C(0) = 1. The parameters
are � = (r, p). The maximum likelihood estimates are

r̂ = 1.172 (0.8173, 1.777)

p̂ = 0.5189 (0.4231, 0.6186)

where numbers in brackets are 95% confidence limits calculated using likelihood
ratio statistics.
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Fig. 8.5 Left: the contours of the relative log-likelihood function for (r, p) in the neighborhood
of (̂r, p̂). Right: five predicted trajectories of daily incidence of onset of symptoms to Day 45. Red
dots represent data from the first 20 days and circles are data from Day 21 to Day 45

One of the advantages of using the likelihood based approach is that the likeli-
hood function reveals how much information data contain with respect to each of
the parameters as well as correlations among parameters. Figure 8.5 (left) displays
the contours of the relative log-likelihood function for (r, p) in the neighborhood
of the maximum likelihood estimates. It shows substantial correlation due to the
“banana” shape of the log-likelihood contour. Although the 95% confidence interval
for each parameter has been calculated marginally for each parameter, not all the
combinations of the two parameters within their ranges are plausible. For example,
it is very implausible to have the combination (rL = 0.8173, pL = 0.4231). This
leads to the concept of the “profile likelihood,” which is to fix one of the parameters
at a given value and conduct a likelihood analysis on the rest of the parameters.

• Keeping r fixed at its lower bound at rL = 0.8173, the profile likelihood for p is
maximized at p̂(r = 0.8173) = 0.6167.

• Keeping r fixed at its upper bound at rU = 1.777, the profile likelihood for p is
maximized at p̂(r = 1.777) = 0.411.

• Keeping p fixed at its lower bound at pL = 0.4231, the profile likelihood for r

is maximized at r̂(p = 0.4231) = 1.6693.

• Keeping p fixed at its upper bound at pU = 0.6186, the profile likelihood for r

is maximized at r̂(p = 0.6186) = 0.8222.

Short term predictions may be conducted in ad hoc manner by simple extrap-
olation based on the model f (t;�) and the range of uncertainties in estimated
parameters. Figure 8.5 (right) displays five predicted trajectories of daily incidence
of onset of symptoms to Day 45 based on observed data up to Day 20. The center red
line is the predicted trajectory based on the m.l.e. (̂r = 1.172, p̂ = 0.5189). The four
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thin dark lines are predicted trajectories based on the combinations: r = 0.8173 and
p = 0.6167; r = 1.777 and p = 0.411; r = 1.6693 and p = 0.4231; r = 0.8222
and p = 0.6186.

A word of caution is in place. Prediction of future trajectories based on historical
data involves two sources of uncertainty: the uncertainty about the parameters and
the uncertainty of future data due to randomness for any fixed parameter values
in the probability distribution. The predictions in Fig. 8.5 (right) partially take into
account the first source uncertainty but fail to take into account the second source.
This issue is deeply rooted in the foundations of statistical inferences, and there
is a scarcity of literature on “predictive likelihood” that is applicable to predicting
trajectories of disease outbreaks.

Least Square Estimation and Predictions for the Sub-exponential Model

The least square method by minimizing (7.6) provides similar estimates

r̃ = 1.2023 (0.76, 1.9)

p̃ = 0.5119 (0.39, 0.64)

where numbers in brackets are 95% confidence limits based on 500 bootstrap
samples, which are slightly wider than, but comparable to, those based on the
likelihood ratio statistics.

Both the maximum likelihood estimates based on the Poisson distribution and
the least square estimates are based on unbiased estimating equations. They are
asymptotically unbiased point estimates regardless of any mis-specification of the
variance–covariance structure. The word “asymptotic” is used in the sense of a large
number of realizations of the same epidemic assuming the outbreak can be repeated
under identical conditions. However, the point estimates in both methods are based
on a single realization and are subject to biases.

For assessment of uncertainties, both methods are prone to mis-specification of
the variance–covariance structure. In order to compare with the variance estimates
based on the likelihood approach, 500 bootstrap replicates are generated for the
least square estimation assuming a Poisson variance structure. Prediction intervals
are also generated using bootstrapping to predict the distribution of individual future
points.

The 95% confidence intervals for p based on both methods show strong
significance against the hypothesis of the exponential growth function: p → 1.

With respect to prediction of future trajectories, the bootstrapping method
takes into account both sources of uncertainty. The cyan curves in Fig. 8.6 (right)
correspond to 500 bootstrap replicates of the epidemic curve assuming a Poisson
variance structure. These are predicted random numbers. The uncertainty in pre-
dicted trajectories is much larger than that in Fig. 8.5 (right). However, there are
several issues worth discussing.
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Fig. 8.6 Left: empirical distributions of the estimated parameters based on 500 bootstrap repli-
cates. Right: 15-day forecast when the model is calibrated to the first 20 days. The black circles are
the daily incidence data. The cyan curves correspond to 500 bootstrap replicates of the epidemic
curve assuming a Poisson error structure. The red solid line corresponds to the asymptotic mean
value of these replicates. The gray lines correspond to the fits of the model to each of the 500
bootstrap replicates from which 95% confidence intervals for the mean model fit can be derived
(red dotted lines). The vertical line separates the calibration and forecasting periods

First, we note that the marginal distributions of the parameters (r, p) alone do
not provide the insight as some of the combination of parameters (r, p) while
r ∈ (0.76, 1.9) and p ∈ (0.39, 0.64) are highly implausible. Therefore, running
simulations in these parameter ranges may produce larger than expected uncertainty.
However, one could make use of the raw empirical distributions of the parameters
including their correlations which were derived from the bootstrap approach in order
to avoid selecting implausible parameter combinations.

Second, the vertical line separates the calibration and forecasting periods in
Fig. 8.6 (right). The cyan curves correspond to 500 bootstrap replicates of the
epidemic curve assuming a Poisson variance structure. They show large uncertainty
in data that have already occurred. This is due to the virtual experiment conducted
by the computer simulation assuming the outbreak can be repeated in identical
conditions and the uncertainty in data reflects such randomness. However, the
disease outbreak only occurs once and data in the past 20 days are given. Given
past data, conditional prediction for the future is desirable whereas extrapolating
“predictions” made for the past that include large uncertainty into the future is not
desirable.
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Fitting the Logistic Growth Model to the First 20 Epidemic Days of Data

Choosing the appropriate models and how to parameterize the models depends
on what public health questions need to be addressed. For instance, public health
officials may be less interested in short term predictions but more interested in
questions such as

• Are the daily incidence numbers approaching the peak value?
• If this outbreak is going to be a single wave, how long is this wave expected to

last?
• How many cumulative infections do we expect by the end of this wave?

Although sub-exponential growth (8.1) describes the growth pattern for the first
20 days of data and makes short-term predictions, it is unable to answer these ques-
tions. The logistic growth function characterizes such single wave phenomenon. The
expression

C(t) = K

1 + e−ρ(t−α)

corresponds to the three questions, where the peak time is the location parameter α;
the peak value of daily incidence is C′(α) = ρK/4 and by the end of the outbreak,
the cumulative number of infected individuals is K. In addition, the logistic model
is symmetric such that, at the peak time α, the cumulative incidence C(α) = K/2.

For data y = (y0 , y1, . . . , y20), we specify the mean value E[Yt ] = f (t;�)

where f (t;�) = C(t) − C(t − 1) is the difference of the two adjacent cumulative
values. Since the logistic model is defined for −∞ < t < ∞, f (0;�) = C(0) −
C(−1) which is the expected value for Y0 .

The Likelihood Analysis The maximum likelihood estimates, assuming Poisson
distribution for Yt , are

ρ̂ = 0.171 (0.092, 0.238)

α̂ = 19.71 (15.5, 45.8)

K̂ = 377.898 (246, 4250)

where numbers in brackets are 95% confidence limits based on the likelihood ratio
statistics. The very wide confidence limits show that data have little information
about the key parameters of interest. The peak time could be anywhere from Day
15 to Day 46, and the total number of infections by the end of the wave could be
anywhere between 246 and 4250.

Figure 8.7 illustrates cross-sectional contour plots for (α,K) according to
selected growth rate values of ρ. Figure 8.7 shows that at a slow growth rate
ρL = 0.092, the likelihood function suggests that the most plausible peak time
occurs around Day 46, and by the end of the outbreak, the total number of infections
would most likely be around 2500. However, there is a great deal of uncertainty
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Fig. 8.7 Cross-sectional plots of the contours of the log-likelihood surface for (α,K) at ρ =
0.092, 0.171, and 0.238

suggesting that K could be as large as >5000. On the other hand, at a fast growth
rate ρH = 0.238, the most plausible peak time occurs around Day 16, and the
likelihood function predicts a small outbreak with the most plausible K = 262.

The logistic function can be also parameterized as

C(t) = K

1 + e−ρ(t−α)
= i0(v + 1)

v + e−ρt

where i0 = C(0) is the cumulative number of clinical cases at time t = 0 and
v = e−ρα = i0

K−i0
. The maximum likelihood estimates are

ρ̂ = 0.171 (0.092, 0.238)

v̂ = 0.034 (0.00001, 0.061)

î0 = 12.5 (5.25, 39),

where numbers in brackets are 95% confidence limits based on the likelihood
ratio statistics. Since data have little information about K , they equally have little
information about v.



294 8 Characterizing Outbreak Trajectories and the Effective Reproduction Number

Fig. 8.8 Cross-sectional plots of the contours of the log-likelihood surface for (ρ, i0) at v =
0.00001, 0.034, and 0.061

The logistic model suggests that on Day 0, the cumulative number i0 = C(0) was
likely between 5 and 39, suggesting the outbreak might have started earlier. This
estimated range, combined with the uncertainty estimates of the other parameters,
suggests that the range of daily incidence on Day 0 might be in the range (1.1, 3.4).

This is because the expected value for Y0 is f (0) = C(0) − C(−1). In the data,
y0 = 1.

Based on the contours of the log-likelihood (Fig. 8.8), the growth rate ρ is
correlated with the initial cumulative number i0 = C(0). Although there was little
information in the early data, we may tentatively make the following statements
regarding the following three scenarios:

1. High cumulative numbers i0 in the range between 30 and 40 (approximately
three new clinical cases on Day 0) combined with slow growth ρ < 0.1. Under
this scenario, it is likely that the peak time will be rather late, after Day 40.
Consequently, the cumulative number by the end of the wave (assuming a single
wave) might be above 2000, or even above 4000.

2. A plausible cumulative numbers i0 around 12 (approximately two new clinical
cases on Day 0) combined with a growth rate around 0.171. Although this
scenario corresponds to the maximum likelihood, it is also likely to be biased, as
it puts the estimated peak time at α̂ = 19.71 corresponding to the last data point
(t = 20). There is no indication in data that the daily incidence is reaching its
peak. If this were true, then the cumulative number by the end of the wave would
be approximately twice the cumulative number at Day 20, which is 377.898.

3. Low cumulative numbers i0 around 5 (approximately one new clinical case on
Day 0) combined with a fast growth ρ > 0.23. This scenario may fit better for
the very early part of the data, for instance, t = 0, . . . , 5. However, there is no
indication in data suggesting that the peak time has taken place before Day 20.
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Fig. 8.9 Three predicted trajectories: (1) slow growth at r = 0.092, α = 45.6 and K = 2500; (2)
moderate growth at r = 0.171, α = 19.7 and K = 370; (3) fast growth at r = 0.238, α = 16 and
K = 262

Figure 8.9 shows predictions to Day 60, with parameters chosen from the slow
growth (with high i0), moderate and fast growth patterns (with lower i0). Data from
the first 20 days cannot distinguish these scenarios.

We remark that the likelihood surfaces are highly asymmetric with respect to
the parameters of interest. For example, the m.l.e. K̂ = 377.898 is close to its
lower bound 246 but away from its upper bound 4250. The likelihood function
suggests equal likelihood between K = 246 and K = 4250. Therefore it is more
plausible that the true value of K lies in the region (378, 4250) than in the region
(246, 378]. Similarly, the m.l.e. for the peak time α̂ = 19.71 is also associated with
an asymmetric likelihood based confidence interval between α = 15.5 and 45.8.
Together, they provide asymmetric scenarios in the predicted trajectories in Fig. 8.9.
Although these predictions are very imprecise and not very useful, the asymmetric
feature may also suggest that it is more plausible that the outbreak has not yet peaked
and the final cumulative number could be in thousands. Only future data can tell.
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8.3.3 Data During the First 45 Days

The Logistic Model: Likelihood Based Analyses

We re-fit the three-parameter logistic model to daily incidence data yt , t =
0, . . . , 45. The maximum likelihood estimates for the logistic function are

ρ̂ = 0.0917 (0.0787, 0.105)

α̂ = 41.29 (41.21, 43.97)

K̂ = 1689.992 (1422, 2088) (8.23)

where numbers in brackets are 95% confidence limits calculated using likelihood
ratio statistics. When parameterized as

C(t) = i0K

i0 + (K − i0) e−ρt

the parameter i0 = C(0) = K
1+eρα has the epidemiologic meaning as the cumulative

number of clinical cases by Day 0. Treating i0 as a parameter, the maximum
likelihood estimate is

î0 = 37.5 (31.95, 43.2).

The expected daily incidence on Day 0 is Ĉ(0) − Ĉ(−1) = 3.2, as opposed to a
single case on Day 0 as in the reported data.

Compared to the maximum likelihood estimates based on the first 20-day data,
the extra information from Day 21 to Day 45 has resulted in remarkably improved
precision for all the parameters.

The revised likelihood analysis suggests that Scenario 1 from analyses using the
first 20 data points has turned out to be the most likely scenario. It is implausible
that the outbreak could have peaked before Day 41. There is also evidence, at
significance level 0.05, that the outbreak has peaked by Day 44. Updated data
suggest a much narrower range for the uncertainty of K .

The logistic model suggests that the outbreak started approximately 30 days prior
to Day 0. Since the logistic model gives a symmetric daily incidence curve, it further
suggests that the outbreak will probably end around Day 115.

We update Fig. 8.9 as Fig. 8.10. The three scenarios are: (1) early peak at αL =
41.21, with ρ = 0.0898, K = 1799; (2) at the maximum likelihood estimates:
ρ̂ = 0.0917, α̂ = 41.29 and K̂ = 1689.992; (3) late peak at αU = 43.97, with
most plausible values ρ = 0.08626, K = 1799.
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Fig. 8.10 Predictions with information from the first 45 days of data

The Logistic Model: Least Square Analysis

Least square estimates are performed based on the logistic function parameterized
as C(t) = i0K

i0+(K−i0)e
−ρt . The estimated parameter values are

ρ̃ = 0.08922, ĩ0 = 43.137, K̃ = 1804.4.

The least square method suggests that the cumulative number of infections by Day
0 was C̃(0) = ĩ0 = 43.137 and the daily incidence on Day 0 was 3.5. The estimated

peak incidence time is α̃ = 1
ρ̃

log K̃−̃i0
ĩ0

= 41.576. All these estimates are in close
agreement with the maximum likelihood estimates.

We compare predicted daily incidence by symptom onset based on the maximum
likelihood estimation and the least square estimation from the logistic model against
the observed daily incidence data as circles in Fig. 8.11. Each curve in Fig. 8.11
represents the expected values f (t; �̂), t = 0, . . . , 45. These values, together with
data (yt , t = 0, . . . , 45), are used to compute the summary measures MSE, WMSE,
and Anscombe in (7.12), (7.13) and (7.14), respectively.

Residual analyses in Table 8.1 show that the least square estimates give the
smaller mean square errors (MSE) by default and also slightly outperform the
maximum likelihood estimates based on the sum of the squares of the Pearson
residuals (WMSE). The maximum likelihood estimates perform slightly better
based on the sum of the squares of the Anscombe residuals.
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Fig. 8.11 Observed daily incidence for the first 45 days (circles) and two expected daily incidence
curves as predicted by the logistic model, using the least square method (black) and the maximum
likelihood method (blue)

Table 8.1 Summary residual
measures (7.12)–(7.14)
comparing the maximum
likelihood and the least
square estimates

Maximum likelihood Least square

MSE 32.37 32.17

WMSE 63.84 63.44

Anscombe 69.6 70.15

It is more informative to plot the residuals

rt = yt − f (t; �̂),

r
(P )
t = yt − f (t; �̂)

√
f (t; �̂)

, t = 0, . . . , 45

r
(A)
t =

3
2

[
y

2/3
t − f (t; �̂)2/3

]

f (t; �̂)1/6
.

rather than their sum-of-squares. These residuals are plotted in Fig. 8.12. The plotted
Anscombe residuals r

(A)
t are approximately Gaussian distributed. Therefore the

standard error lines ±1.96 are also plotted in Fig. 8.12. The Anscombe residual plots
in Fig. 8.12 detect two significant outliers for the maximum likelihood estimates.
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Fig. 8.12 Compare residuals between the least square estimates and the maximum likelihood
estimates based on the first 45 epidemic days

Fitting Generalized Logistic Models to the First 45-Day Data with
Discussions on Over-parameterization

One of the reasons to fit a generalized logistic model is to test the goodness-of-fit of
the logistic model. For example, the Richards model

C(t) = K
(

1 +
[(

K
i0

)θ − 1

]

e−ρt

)1/θ
(8.24)
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is the generalization of the logistic model C(t) = i0K
i0+(K−i0)e

−rt when θ = 1.

In differential equation forms, the Richard model (as parameterized above) is the
solution of

d

dt
C(t) = ρ

θ
C(t)

(

1 −
[

C(t)
K

]θ
)

, θ > 0 (8.25)

whereas the logistic model is the solution of d
dt

C(t) = rC(t)
(

1 − C(t)
K

)
, where

r = ρ/θ.

To test against the null hypothesis H0 : θ = 1, we conduct the likelihood ratio
test based on (7.11). The value of the test statistics is

D = −2
[
l(ρ̂, î0, K̂ |H0) − l(ρ̂, î0, K̂, θ̂ )

] = 1.532 (8.26)

where l(ρ̂, î0, K̂ |H0) is the value of the log-likelihood at ρ̂ = 0.0917, î0 = 37.5
and K̂ = 1689.992 assuming θ = 1; and l(ρ̂, θ̂ , î0, K̂) is the value of the log-
likelihood of the Richards model where the maximum likelihood estimates are

ρ̂ = 0.0637 (0.0274, 0.086)

î0 = 23.9 (8.7, 51.8)

K̂ = 1999.76 (1502.5, 6300) (8.27)

θ̂ = 0.476 (0.132, 1.05)

Numbers in brackets are 95% confidence limits calculated using likelihood ratio
statistics. The significance level for H0 : θ = 1 based on the likelihood ratio test is

SL = Pr(χ2
(1) ≥ 1.532) = 0.2155. (8.28)

Discussion Although there is no evidence to reject the logistic model, the question
remains whether we should discard the four-parameter Richards model which treats
the additional parameter θ as a nuisance parameter, or adopt the Richards model as
it may provide more valuable knowledge of public health importance.

From the point of view in favor of treating θ as a nuisance parameter, the focus
is on the enormous uncertainty for the parameter of interest, such as 1502 < K <

6300, compared to the “more precise” estimate 1422 < K < 2088 by assuming
θ = 1. The argument is that information in the limited data from the first 45-
days is “wasted” in the estimation of θ , which does not have direct public health
interpretations as other parameters do (e.g., growth rate, initially infected number,
peak time, final size). The very large uncertainty in the estimation of K, due to the
inclusion of θ as a free parameter to be estimated, is not useful for public health
decision makers. With this argument, the Richards model is “over-parameterized.”
In fact, the Richards model can be re-written in a logistic form such that C(t)θ is a
logistic function
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C(t)θ = iθ0 Kθ

iθ0 + (Kθ − iθ0

)
e−ρt

.

Limited data are not informative in separating θ from K in the combined form Kθ .

After all, the estimated θ is also associated with large uncertainty. As there is no
statistical significance to reject the logistic model based on (8.28), we should discard
the four-parameter Richards model.

The opposite point of view is that the significance level based on (8.28) implies
that both the logistic and the Richards model fit data equally well up to Day 45 (see
Fig. 8.13). It is only about the goodness-of-fit of models with respect to early part of
the data, not about the important questions relating to the entire outbreak. Hence the
“overly confident” estimates based on the logistic model may fail to acknowledge
large uncertainties beyond Day 45. As shown in Fig. 8.13, when θ < 1, the Richards
model gives an asymmetric daily incidence curve with a longer tail, which is not
only more realistic in most settings, but also suggests that the logistic model might
have under estimated K. In fact, comparing (8.23) and (8.27), the logistic model
might have under predicted approximately 300 clinical cases by the end of the
outbreak. Meanwhile, the wide confidence intervals in (8.27) should be appreciated
and emphasized.

At this moment in time (assuming we were on Day 45), we take notes on both
arguments and move to the next phase when more data are available.

Fig. 8.13 Compare model predicted daily incidence by symptom onset based on the logistic and
the Richards models, when their parameters are set at the maximum likelihood estimates. Red dots
are observed data by Day 45
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8.3.4 Data by Day 75

The maximum likelihood estimates for the parameters in the logistic and the
Richards models are shown below:

Logistic Richards
ρ̂ = 0.082 (0.0766, 0.0875) ρ̂ = 0.0617 (0.0574, 0.0733)

î0 = 51.9 (41.75, 63.75) î0 = 17.36 (7.5, 34.8)

K̂ = 1805 (1713, 1902) K̂ = 1852 (1750, 1967)

H0 : θ = 1 θ̂ = 0.355 (0.152, 0.645)

(8.29)

where numbers in brackets are 95% confidence limits based on the likelihood ratio
statistics. The extra 30-day data, from Day 45 to Day 75, have yielded more precise
estimates for all three parameters in the Richards model.

The Richards model can be also parameterized as

C(t) = K
(
1 + θe−ρ(t−α)

)1/θ

where α = 1
ρ

log

(
K
i0

)θ−1

θ
is the inflexion point at which C′(t) is maximized. The

maximum likelihood estimate for the inflexion point is

α̂ = 40.227 days (38.36, 42.1).

The logistic model under H0 : θ = 1 gives α̂ = 42.95 days (41.8, 44.1).
Except for the estimation of K , there are significant differences in the estimation

of the initial cumulative numbers i0 = C(0) and the peak time for the daily
incidence α. The logistic model over predicts i0 = C(0), which also implies
approximately 4 individuals developed onset on Day 0 and an earlier start of the
outbreak approximately around Day-20, whereas the Richards model suggests a
much smaller value for C(0), approximately two individuals developed onset on
Day 0 and the start of the outbreak approximately around Day-15. These are shown
in Fig. 8.14, between the blue solid line and the red broken line.

By Day 75, data have shown statistical significance to reject the logistic model,
corresponding to the hypothesis H0 : θ = 1. The value of the likelihood ratio
statistic in (8.26) has been updated to D = 12.902 and SL = Pr(χ2

(1) ≥ 12.91) =
0.0003.

It is not appropriate to directly compare ρ̂ in the two models given by (8.29),
because according to (8.25), the initial growth rate in the Richards model as
parameterized above is the ratio r̂ = ρ̂/θ̂ = 0.1738, in par with the m.l.e. for ρ

based on the logistic model using the initial data by Day 20. This is also shown in
Fig. 8.14, comparing the expected numbers of daily incidence based on the Richards
model fitted to data by Day 75 with that based on the logistic model fitted to data
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Fig. 8.14 Fitted Richards models to daily incidence counts during the first 75 days (blue dots)
with comparisons with the fitted logistic model

by Day 20 (the black broken line). This is due to the asymmetry supported by the
Richards model that allows for better fits on both extremes of the time-series data,
whereas the logistic model is limited by its symmetric shape.

The Richards model requires a relatively large number of data points. It is not
suitable as the initial model during the early phase, definitely not for data collected
during the first 20 days and questionable for data collected during the first 45 days.
However, as the number of data points increases, simpler models will start to mis-
represent data. This will force us to adopt more complex models, not only for better
prediction purposes, but also for capturing the data generating process.

We also compare the maximum likelihood estimates with the least-square
estimates for the Richards model. The least square estimation yields very similar
results:

ρ̃ = 0.0695 (0.062, 0.083)

ĩ0 = 22.3 (13, 31)

K̃ = 1801.9 (1700, 1900)

θ̃ = 0.52 (0.38, 0.83)

where numbers in brackets are estimated 95% confidence limits based on 500
bootstrap samples.
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Table 8.2 Summary residual
measures (7.12)–(7.14)
comparing the maximum
likelihood and the least
square estimates

Maximum likelihood Least square

MSE 34.08 33.6

WMSE 106.6 108.9

Anscombe 108.3 110.4

Fig. 8.15 Plots of the Ancombe residuals r
(A)
t =

3
2

[
y

2/3
t −f (t;�̂)2/3

]

f (t;�̂)1/6 for both the least square and

the maximum likelihood estimates. The standard error lines ±1.96 are based on the approximate
Gaussian distribution of the Anscombe residuals

Residual analyses in Table 8.2 show that, although the least square estimates give
the smaller mean square errors (MSE) by default, the maximum likelihood estimates
perform slightly better based on the two other measures: the weighted mean square
errors (WMSE) based on the sum of the squares of the Pearson residuals and the
sum of the squares of the Anscombe residuals.

Plots of the Anscombe residuals, Fig. 8.15, reveals that both estimation methods
fit data equally well. There are a few outliers in data, noticeably, on t = 1,

32, 33, 35, 46, 64 (days), that are either due to the inadequacy of the assumed
Poisson model (i.e., over-dispersion) or the assumed Richards model. The standard
errors ±1.96 in Fig. 8.15 are based on the approximate Gaussian distribution of the
Anscombe residuals.

Figure 8.16 is based on 500 bootstrap replicates of the epidemic curve based
on the least square estimates, assuming the outbreak were repeated under identical
conditions with Poisson error structure. The outliers on t = 1, 32, 33, 35, 46, 64
(days) are shown as points outside the dashed red lines indicating the 95% prediction
intervals.
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Fig. 8.16 The cyan lines correspond to 500 bootstrap replicates of the epidemic curve assuming
a Poisson error structure based on the least square estimates. The solid red line corresponds to the
mean, while the dashed red lines indicate the 95% prediction intervals

An additional technical note is that the least square method has been used in two
different ways:

1. fitting directly to the explicit expression of the Richards model (8.24) with the
four parameters (ρ, i0,K, θ );

2. fitting the numerical solution of the differential equation (8.25) with three explicit
parameters (ρ,K, θ ) plus the 4th parameter i0 = C(0) as the initial condition that
is also estimated.

We report back that, after careful sensitivity analyses of parameter estimates
(Arriola and Hyman 2009), with respect to the initial values of the parameters in
the search algorithms, and careful evaluation of the calculated values of the sum
of square errors (SSE), the two fitting methods yield nearly identical numerical
estimates. This comparison gives us more confidence in the least square estimates
obtained directly from the numerical solution of the differential equations for other
generalized logistic models in which explicit solutions do not exist.

Least Square Estimates for Other Generalized Logistic Models

We consider fitting variations of the generalized Richards model (Turner et al. 1976)
with two shape parameters θ1, θ2 > 0:

d

dt
C(t) = rC(t)θ1

(

1 −
[
C(t)

K

]θ2
)

. (8.30)

Except for the sub-exponential model (θ1 = p, θ2 → ∞), the logistic model (θ1 =
θ2 = 1), and the Richards model (θ1 = 1, θ2 > 0), explicit solutions do not exist in
general.
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Letting θ2 = 1 and θ1 = p, we get the model defined by

d

dt
C(t) = rC(t)p

(

1 − C(t)

K

)

, (8.31)

which also includes a hidden parameter i0 = C(0). The least square estimation for
the parameters are

r̃ = 0.28 (0.21, 0.36), p̃ = 0.82 (0.78, 0.87),

ĩ0 = 12 (7.2, 17), K̃ = 1800 (1700, 1900).

The confidence limits of the estimated parameters and the goodness-of-fit of the
model are illustrated in Fig. 8.17.

Alternatively, we modify the above so that the scaling parameter p is applied to
the proportion C(t)/K, which is more in line with the Richards model,

d

dt
C(t) = rK

[
C(t)

K

]p (

1 − C(t)

K

)

.

Fig. 8.17 The histograms display the empirical distributions of the parameter estimates using 500
bootstrap replicates generated assuming a Poisson error structure. The horizontal red dashed lines
indicate the 95% confidence intervals of the parameter estimates. The bottom panel shows the fit
of the model to the data. The blue circles are the daily incidence data. The cyan lines correspond
to 500 bootstrap replicates of the epidemic curve assuming a Poisson error structure. The solid red
line corresponds to mean values of the simulated sample while the red dashed lines indicate the
95% prediction intervals
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Table 8.3 Summary residual measures (7.12)–(7.14) comparing three generalized logistic mod-
els with equal number of parameters

Richards Gen logistic 1 Gen logistic 2

C′ = rC
(

1 − [ C
K

]θ
)

C′ = rCp
(
1 − C

K

)
C′ = rK

(
C
K

)p (
1 − C

K

)

MSE 33.6 34.5 33.9

WMSE 108.9 112.3 109.4

Anscombe 110.4 112.5 110.7

The least square estimates for the parameters are

r̃ = 0.073 (0.065, 0.083), p̃ = 0.83 (0.77, 0.9),

ĩ0 = 13 (6.4, 21), K̃ = 1800 (1700, 1900).

These two generalized logistic models have the same number of parameters as
the Richards model with very similar estimated key parameters of epidemiologic
interest, i0 and K and almost equally good fit to data (Table 8.3). They do not offer
more insight than the Richards model at least for this outbreak.

We also conducted the LS estimation with respect to the generalized Richards
model (8.30) with parameter estimates.

r̃ = 0.22 (0.18, 0.26), θ̃1 = 0.86 (0.83, 0.89), θ̃2 = 0.95 (0.73, 1.12),

ĩ0 = 18 (12, 27), K̃ = 1800 (1700, 1900),

where numbers in brackets are estimated 95% confidence limits based on 500
bootstrap samples. These estimates are very close to those based on the model
(8.31) because θ̃2 = 0.95 (0.73, 0.12). Therefore, based on data by Day 75, it is
not advisable to recommend more complex models with five parameters.

We stop this analysis at this point. In hindsight, the outbreak stopped on Day
104. The cumulative number was K = 1852, consistent with the m.l.e. using the
Richards model fitted to data of the first 75 days. However, the Richards model
could not forecast a small cluster or “a second wave” as shown in Fig. 8.14. The
recorded first case remains as a single case on Day 0, which could not be captured
by the models considered here.

8.3.5 Lessons Learned

1. When a new infectious disease emerges, exploratory analyses and simple
phenomenological models are useful for forecasting epidemic trajectories.

2. When the number of observations is less, the initial model should be simple
enough with as few parameters as possible. Over- parameterization results in
undesirable large uncertainties in key parameters of interest. Among highly
correlated parameters, it also leads to identifiability problems among parameters.
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That is, two or more sets of parameter values yield the same expected values
for data. For example, in Fig. 8.8 when v = 0.034, the first 20-day data equally
admit the pairs of parameters: i0 = 40 and ρ = 0.1; as well as i0 = 10 and
ρ = 0.2, corresponding to two distinct scenarios: high initial numbers with slow
growth rate versus low initial numbers with fast growth rate.

3. Increasing the number of observations will, to some extent, improve the precision
and identifiability among parameters in the simple model. However, beyond a
certain limit, this gain will be diminished and off-set by biased estimates and
lack-of-fit to data. This will force us to shift to a more complex model and closer
to the data generating process. We have demonstrated this adaptive approach in
the discussions while fitting models to data accumulated by Days 20, 45, and 75.

4. Even though the parameters in the simple growth curve models do not have any
physical meaning (unlike those in transmission dynamic models), these simple
models still need to be carefully selected and parameterized, so they can be useful
in addressing key public health questions.

5. The curve models that we have employed here are highly nonlinear. The
optimization algorithms to maximize the log-likelihood or to minimize the sum
of square errors (SSE) are highly sensitive to the initial parameter estimates,
which may lead to a local maximum or minimum. It is important to carefully
evaluate the values of the log-likelihood or SSE upon convergence over a wide
range of possible initial estimates.

6. Transformation of parameters does not affect assumptions of a model, but it
may make interpretations more or less easy. Different ways of parametrizing
the same growth function should be explored. One of the reasons is to have
the parameters interpretable and aligned with public health questions. Another
reason may be associated with the parameter searching algorithms. For example,
parameter transformations to make the log-likelihood contours more like sym-
metric ellipsoids will generally facilitate numerical optimization.

7. Correlation among parameters: The “banana shaped” log-likelihood contours are
typical signatures of correlation among parameters. The cross-sectional bivariate
log-likelihood contour plots (e.g., Figs. 8.5 and 8.8) yield important information
about correlations between pairs of important parameters.

8. When possible, graphical presentation of the likelihood surface is worthwhile,
either as a 3-D function or cross-sectional log-likelihood contours. These will
provide more reliable precision intervals than marginal confidence intervals for
each parameter, reveal correlation among parameters, and provide better ways to
communicate uncertainty. However, these are very time-consuming.

9. Approximate confidence intervals based on the likelihood ratio statistics are in
agreement with the contours of the likelihood surface, as opposed to those based
on standard errors which rely on a quadratic approximation. A very common
feature is that these confidence intervals are highly asymmetric around their
point estimates. When extremely asymmetric, the emphasis should be on the
plausibility range towards the wider side of the interval rather than the point
estimate. This is very important in communicating uncertainty. We demonstrated
this while analyzing the Zika data during the first 20 days, with a very wide
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plausibility region in favor of the slow growth pattern. This was confirmed when
more data were collected by Day 45.

8.4 The Effective Reproduction Number, Rt , with Quantified
Uncertainty

The basic reproduction number, commonly denoted by R0, quantifies transmission
potential in a fully susceptible population during the early epidemic take off
(Anderson and May 1982). According to the classical theory of epidemics, largely
based on compartmental modeling (e.g., Anderson and May 1991; Diekmann and
Heesterbeek 2000; van den Driessche 2017; van den Driessche and Watmough 2002;
Diekmann et al. 2010), R0 is expected to remain invariant during the early phase of
an epidemic that grows exponentially and as long as susceptible depletion remains
negligible (Diekmann and Heesterbeek 2000).

In Chap. 4, Eq. (4.47): L[g](r) = ∫∞
0 e−rxg(x)dx = R−1

0 can be re-written in
the renewal form

i(t) = R0

∫ ∞

0
g(x)i(t − x)dx (8.32)

where i(t) ≈ ert is the instantaneous density of infected individuals at the
very beginning of the outbreak approximated by exponential growth, and g(x) is
the probability density function of the (intrinsic) generation time TG associated
with the Lotka equations in Sect. 4.3.3, formally defined and further discussed
as (7.18) in Chap. 7. This approximation is suitable when t is extremely small,
near the disease-free equilibrium. Wallinga and Lipsitch (2007) suggested ways of
estimating the basic reproduction number based on the initial growth rate r through
fitting the exponential growth to early outbreak data, provided that the generation
time distribution g(x) is fully specified so that

R̂0 = L[g](̂r)−1

where r̂ is the fitted initial growth rate to data.
In contrast, the effective reproduction number Rt captures changes in trans-

mission potential over time when the system starts to move away from the
equilibrium condition (Chowell et al. 2016; Nishiura and Chowell 2009). The
effective reproduction number Rt is given by

Rt = S(t)

S(0)
R0

where S(t) is the expected number of susceptible individuals in the population at
time t. It is understood as the expected number of secondary infections transmitted
by a typical infectious individual at calendar time t.
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Nishiura and Chowell (2009) generalized the above renewal type equation
through analysis of an infection-age structure model, The term “infection-age”
refers to the time elapsed since infection. Define A(t, x) as the rate at which an
infectious individual at calendar time t and infection age τ produces secondary
infections so that

i(t) =
∫ ∞

0
A(t, x)i(t − x)dx,

under the assumption that the relative infectiousness to infection-age is independent
of calendar time (Fraser 2007), Nishiura and Chowell (2009) argue that A(t, x)

can be decomposed as A(t, x) = Rtg(x), where g(x) is the same generating time
distribution as in (8.32). This leads to

i(t) = Rt

∫ ∞

0
g(x)i(t − x)dx.

To fit to data observed in discrete (grouped) time units over a finite period t =
0, . . . , T , the following approximation

i(t) = Rt

T∑

x=0

g(x)i(t − x), t = 0, . . . ,

has been considered (The World Health Organization Emergency Response Team
2014, Supplementary Appendix 1; Chowell et al. 2016), where i(t) is the expected
number for the incidence data during the time unit t, such as daily incidence Yt so
that E[Yt ] = i(t).

Assuming that the incidence up to time t − 1 is Poisson distributed, the daily
incidence Yt is

Yt ∼ Poisson

(

Rt

T∑

x=0

g(x)i(t − x)

)

,

Then, given the incidence data as a longitudinal series denoted by y =
(y1, y2, . . . , yT ), the maximum likelihood estimate for Rt is

R̂t = i(t; �̂)
∑T

x=0 g(x)i(t − x; �̂)
, t = 0, . . . , T , (8.33)

where i(t;�) is a suitable phenomenological model to describe the data generating
process y = (y1, y2, . . . , yT ), and i(t; �̂) is the fitted incidence, provided that the
generation time distribution g(x) is fully specified.

Although uncertainties in parameter estimates �̂ can be derived using the
likelihood ratio statistics, establishing variance estimation for R̂t is more complex.
Therefore, computer based re-sampling methods, such as bootstrapping, are pre-
ferred.
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Next, we assume the sub-exponential model i′(t) = r [i(t)]p starting with a
single individual, with the explicit form

i(t) = (1 + r(1 − p)t)
1

1−p .

This model can reproduce a range of growth dynamics from constant incidence
(p = 0) to exponential growth (p = 1) (Viboud et al. 2016).

We denote (̂r(i), p̂(i)) as the estimated parameters based on the ith bootstrap
sample in a re-sampling regime. Then (8.33) gives

R̂
(i)
t = i(t; r̂ (i), p̂(i))

∑T
x=0 g(x)i(t − x; r̂ (i), p̂(i))

, t = 0, . . . , T .

Based on the maximum likelihood estimate (8.33) from the incidence data, a large
number of bootstrap realizations create a virtual experiment with repetitions of the
outbreak under identical conditions, which produce the average of R̂

(i)
t as well as

the plausible ranges for uncertainty.

8.4.1 Example Based on the 2016 Epidemic of Yellow Fever in
Two Areas of Angola: Luanda and Huambo

For illustration, we estimated the effective reproduction number during the early
phase of a yellow fever epidemic. The epidemic spread between December 2015
and August 2016 in Angola, mostly affecting the provinces of Luanda (the capital)
and Huambo. Numbers of confirmed and probable reported cases are grouped
into discrete time intervals on a weekly basis and assembled by the World Health
Organization (The World Health Organization 2016). The corresponding time series
data are available online as EXTRA MATERIALS.

For the goal of estimating Rt , we assumed a gamma distribution for the
generation interval of yellow fever with a mean of 15 days (2.143 weeks) and
variance of 36 days (5.143 weeks). We fitted the generalized growth model (4.61)
to the growth phase of the epidemics.

The yellow fever epidemic in Luanda followed an initial growth phase consistent
with exponential growth dynamics (Fig. 8.18) with the scaling of growth parameter
p very close to 1.0 and our most recent estimate of the effective reproduction
number at 3.3 (95%CI: 2.6, 3.6). The corresponding curves of the effective repro-
duction number are shown in the bottom panel of Fig. 8.18. In contrast, for
Huambo, the effective reproduction number was most recently estimated at 1.2,
95% CI: 1.1, 1.4) with a relatively low scaling of growth parameter (0.36, 95% CI:
0.17, 0.55) as shown in Fig. 8.19. The curves of the effective reproduction number
are shown in the bottom panel of Fig. 8.19.



Fig. 8.18 Top panels display the empirical distributions of the growth rate, the scaling parameter,
and the effective reproduction number based on fitting (4.61) to the yellow fever epidemic in
Luanda, Angola. The middle panel shows the fit to the epidemic growth phase. Circles correspond
to the data while the solid red line corresponds to the best fit obtained using the generalized-growth
model. The blue lines correspond to the uncertainty around the model fit. The bottom panel is the
weekly effective reproduction number estimated during the epidemic growth phase assuming a
gamma distribution for the generation interval of yellow fever with a mean of 15 days and variance
of 36
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Fig. 8.19 Top panels display the empirical distributions of the growth rate, the scaling parameter,
and the effective reproduction number based on fitting (4.61) to the yellow fever epidemic in
Huambo, Angola. The middle panel shows the fit to the epidemic growth phase. Circles correspond
to the data while the solid red line corresponds to the best fit obtained using the generalized-growth
model. The blue lines correspond to the uncertainty around the model fit. The bottom panel is the
weekly effective reproduction number estimated during the epidemic growth phase assuming a
gamma distribution for the generation interval of yellow fever with a mean of 15 days and variance
of 36
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In conclusion, in this final section we have demonstrated how phenomenological
models, such as the generalized-growth model, along with parameter uncertainty
derived from the parametric bootstrap least-square fitting approach can be exploited
to characterize transmission dynamics and their uncertainty such as the effective
reproduction number through the renewal equation. Indeed, with additional data of
the outbreak trajectory, we could have considered other phenomenological models
such as logistic-type models and/or more elaborate error structures of the random
component to account for observation correlations or data overdispersion.

8.5 Problems and Supplements

8.1 In this exercise, the reader will use phenomenological models (e.g., GGM
and Richards models) to analyze the trajectory of the 2001 foot-and-mouth
disease epidemic in the UK using the daily curve of the number of new infected
premises. The daily number of new, real-time notifications of infected premises
during the 2001 foot-and-mouth disease epidemic in the UK was obtained from
the Department of Environmental and Rural Affairs (DEFRA) and is available
online as an EXTRA MATERIAL. Answer the following questions:

(a) Using the GGM, what are your estimates of the growth rate (r) and the
deceleration of growth parameter (p) using the first 20 epidemic days? Use
maximum-likelihood estimation with a Poisson error structure.

(b) Based on your analysis in (a), assess the Anscombe residuals and compute
the value of the Anscombe performance metric

(c) Based on your analysis in (a), what can you conclude from your estimate
of the deceleration of growth parameter (p)?

(d) How do your parameter estimates in (a) compare with those obtained using
the least-square fitting approach with a parametric bootstrap Poisson error
structure?

(e) Based on your analysis in (d), assess the 95% prediction intervals around
the model fit.

(f) Calibrate the Richards model to the first 10, 20, 30, or 40 epidemic days.
Discuss parameter identifiability and lack of information when the model
is fitted to an increasing number of observations.

(g) Using 30 and 40 epidemic days, what are the point estimates of the
epidemic size? and how do these estimates compare with the actual
epidemic size? What are the corresponding estimates of the epidemic peak
and duration?
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8.2 In this exercise, you will generate estimates of transmission potential of the
1918 influenza pandemic in San Francisco, California. The daily number of
reported cases is available online as an EXTRA MATERIAL. Answer the
following questions:

(a) Using the simple SEIR model without demographic factors and assuming
a mean latent period of 2 days, a mean infectious period of 4 days and a
population size of 550,000 provide the mean estimate and 95% confidence
intervals of the basic reproduction number R0 using 16, 18, and 20 days of
the initial growth phase. For parameter estimation you can use the least
square fitting approach with the Poisson parametric bootstrap which is
described in Chap. 7 and illustrated with examples in Chap. 8. Note that
you only need to estimate the transmission rate using your favorite tech-
nical computing language while keeping the initial number of infectious
individuals I (0) fixed according to the first data point. Are the R0 estimates
relatively stable during the study period?

(b) What are the corresponding values of the RMSE from your analysis in (a)?
(c) Assess the residuals and the 95% prediction intervals around the model fit

and discuss your observations.
(d) Using the GGM, what are your estimates of the growth rate (r) and the

deceleration of growth parameter (p) when the model is fitted to the study
periods in (a)?

(e) What can you conclude from your estimate of the deceleration of growth
parameter (p)? Is this parameter stable as you use 16, 18, and 20 epidemics
days of data?

(f) Using your calibrated GGM based on your analysis in (d) and the approach
described in Sect. 8.4, estimate the effective reproduction number Rt during
the first 20 epidemic days. Compare your estimates of R0 derived in (a) with
your estimates of Rt .

8.3 Using the generalized-growth model, characterize the early ascending phase of
the HIV/AIDS epidemic using monthly or annual case incidence data from any
area, region, or country of the world. Answer the following questions:

(a) Using the GGM, what are your estimates of the growth rate (r) and the
deceleration of growth parameter (p) when the model is fitted to the first
10 years of the epidemic?

(b) What can you conclude from your estimate of the deceleration of growth
parameter (p)?

(c) Document in detail the source of your data (e.g., publication reference,
website, etc.).
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