
Texts in Applied Mathematics 70

Ping Yan
Gerardo Chowell

Quantitative 
Methods for 
Investigating 
Infectious Disease 
Outbreaks



Texts in Applied Mathematics

Volume 70

Editors-in-chief

C. L. Epstein, University of Pennsylvania, Philadelphia, USA
A. Goriely, University of Oxford, Oxford, UK
L. Greengard, New York University, New York, USA

Series Editors

J. Bell, Lawrence Berkeley National Lab, Berkeley, USA
R. Kohn, New York University, New York, USA
P. Newton, University of Southern California, Los Angeles, USA
C. Peskin, New York University, New York, USA
R. Pego, Carnegie Mellon University, Pittsburgh, USA
L. Ryzhik, Stanford University, Stanford, USA
A. Singer, Princeton University, Princeton, USA
A. Stevens, Universität Münster, Münster, Germany
A. Stuart, University of Warwick, Coventry, UK
T. Witelski, Duke University, Durham, USA
S. Wright, University of Wisconsin, Madison, USA

A. Bloch, University of Michigan, Public University, Ann Arbor, USA



The mathematization of all sciences, the fading of traditional scientific boundaries,
the impact of computer technology, the growing importance of computer modeling
and the necessity of scientific planning all create the need both in education and
research for books that are introductory to and abreast of these developments.
The aim of this series is to provide such textbooks in applied mathematics for
the student scientist. Books should be well illustrated and have clear exposition
and sound pedagogy. Large number of examples and exercises at varying levels
are recommended. TAM publishes textbooks suitable for advanced undergraduate
and beginning graduate courses, and complements the Applied Mathematical
Sciences (AMS) series, which focuses on advanced textbooks and research-level
monographs.

More information about this series at http://www.springer.com/series/1214

http://www.springer.com/series/1214


Ping Yan • Gerardo Chowell

Quantitative Methods
for Investigating Infectious
Disease Outbreaks

123



Ping Yan
Infectious Diseases Prevention
and Control Branch
Public Health Agency of Canada
Ottawa, ON, Canada

Department of Statistics
and Actuarial Science
Faculty of Mathematics
University of Waterloo
Waterloo, ON, Canada

Gerardo Chowell
School of Public Health
Georgia State University
Atlanta, GA, USA

ISSN 0939-2475 ISSN 2196-9949 (electronic)
Texts in Applied Mathematics
ISBN 978-3-030-21922-2 ISBN 978-3-030-21923-9 (eBook)
https://doi.org/10.1007/978-3-030-21923-9

Mathematics Subject Classification: Primary: 92D30; 92C60; 60J28; 60K20; 60K37; 62P10. Secondary:
97M6; 37N2

© Crown 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-21923-9


To Louise, Genevieve, and Veronique
To Pia and Catalina



Preface

Mathematical and statistical models and methods can play a central role in outbreak
investigations and in public health decision-making. The purpose of this book is to
provide readers with balanced perspectives between theory and practice. To provide
insight between models driven by scientific hypotheses intended to characterize
the agent-host-environment interface in complex disease transmission dynamics,
and models driven by observational data intended to capture the data-generating
process; and between the unobservable variables predicted by most disease trans-
mission dynamic models and data collected based on observed outcomes. As for
prerequisites, before embarking into Chaps. 2–4 of this book, the readers will need
an essential understanding of random variables, distribution theory, and stochastic
processes (see, for instance, the textbook by Ross (2019)).

The modeling process in this book is illustrated in the following flowchart.
Unlike most other scientific investigations, in which questions are formulated and
data arise from experiments to address those questions, data arising from outbreak
investigations are mostly observational and collected by different agencies for a
variety of purposes. In this book, we put equal emphasis on answering the right
questions and understanding the data-generating processes.

We started our collaboration in 2003 when we met at a modeling workshop
focused on social responses to bioterrorism involving infectious agents, orga-
nized by the Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS) at Rutgers University. In subsequent years, we actively participated
in and co-organized some of the workshops and summer schools on disease
modeling supported by the Mathematics of Information Technology and Complex
Systems (Canada); the Pacific Institute for the Mathematical Sciences; the Fields
Institute; the Banff International Research Station for Mathematical Innovation
and Discovery; the Simon A. Levin Mathematical, Computational, and Modeling
Science Center at Arizona State University; the Centro Internacional de Ciencias,
Cuernavaca, Mexico; and the Centre for Disease Modelling at York University,
Georgia State University, University of British Columbia, and University of Alberta,
among others.
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renowned scientists as well as young researchers and graduate students.
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Chapter 1
Introduction

Infectious diseases ranging from respiratory (influenza, common cold, tuberculosis,
the respiratory syncytial virus), vector-borne (plague, malaria, dengue, chikun-
gunya, and Zika) to sexually transmitted (the human immunodeficiency virus,
syphilis) have historically affected the human population in profound ways. For
example, the Great Plague, well known as the Black Death, was caused by the
bacterium Yersinia pestis and killed up to 200 million people in Eurasia and about

If the human civilization had known about the transmission mechanisms behind the
plague infections, the epidemic’s impact on morbidity and mortality could have been
mitigated through basic public health interventions. This is to say that knowledge of
the transmission processes and the natural history of infectious diseases in different
environments represents invaluable actionable information for thwarting the spread
of infectious diseases.

Fortunately, over the years human civilization has made great strides in increas-
ing our understanding of the transmission dynamics of emerging and re-emerging
infectious diseases. For instance, John Snow, known as the father of modern
epidemiology, mapped the location of cholera cases during the 1854 epidemic in
Soho, London, and made the link between the spatial distribution of cholera cases
and a pump that he hypothesized as the source of the disease (Fig. 1.1). Following
his observations, the pump was removed to avoid further exposures, and the number
of cases subsided.

One remarkable and definite shift to the germ theory occurred during the “golden
bacteriology” era during the second half of the nineteenth century. In fact, the 1889–
1990 influenza pandemic is arguably the first influenza pandemic that occurred in
a new and progressive state of knowledge about infectious disease transmission.
This pandemic is better known as the “Russian Flu” because the rapid global spread
of the pandemic virus can be traced back to Saint Petersburg, Russia in October
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Fig. 1.1 The number of new cholera cases during the 1854 epidemic in Soho, London

1889 (Valleron et al. 2010). Moreover, it was the first pandemic to unfold in a
world connected by rail and maritime transportation; it spread across Europe in
approximately 6 weeks, with an estimated mean speed at 394 km/week (Valleron
et al. 2010) and circulated around the world in just 4 months (Valleron et al. 2010).

Following the 1889–1990 influenza pandemic, in 1918 a novel influenza virus
struck the world and killed 20–100 million people, a figure that easily exceeds the
death toll associated with World War I (Johnson and Mueller 2002; Dahal et al.
2017; Mills et al. 2004). In the USA alone, about 675,000 people succumbed to
the 1918 pandemic virus (Fig. 1.2). However, it was not discovered until years
later that an influenza virus was responsible for this pandemic. One hundred years
after the 1918 pandemic, we not only remember this devastating historic health
disaster, it also serves as a stark reminder of the public health impact that the
influenza virus continues to exert on the global population. The 1918 “Spanish
Flu” pandemic represents one of the most important case studies for pandemic
preparedness available today. However, locating death records to reconstruct the
mortality impact of this pandemic requires the arduous task of searching for these
documents in old cemeteries, public archives, parishes, and church records (Alonso
et al. 2018; Simonsen et al. 2018).
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Fig. 1.2 Excess death rate associated with the 1918 influenza pandemic in US cities that exhibited
the highest peak excess death rates

The application of mathematical and statistical tools to investigate and forecast
evolving epidemics and pandemics has increased significantly during the last couple
of decades from ∼50 to >800 publications per year (Fig. 1.3). The worldwide
epidemic of acquired immunodeficiency syndrome (AIDS), caused by the human
immunodeficiency virus (HIV), started in the early 1980s and accelerated the
applications and developments of mathematical and statistical models. This con-
tributed to the understanding of factors that promote transmission of HIV and
of strategies for preventing transmission. While the number of studies that apply
mathematical modeling to study infectious disease dynamics has rapidly increased
over the last two decades (Fig. 1.3), the great majority of those studies are still
associated with HIV/AIDS, although this trend has declined somewhat during the
last decade, followed by tuberculosis. In addition, the number of studies associated
with emerging infectious diseases such as Ebola, dengue, chikungunya, and Zika
has been increasing during the last 5–10 years as a result of recent regional and
global epidemics (Fig. 1.3).
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Fig. 1.3 Number of publications on mathematical modeling and infectious disease (left panel) and
the fraction of those publications related to different infectious diseases (right panel) by publication
year

1.1 The Motivation

Mathematical modeling plays an important role in ordering our thoughts and
sharpening vague intuitive notions. Initial models are verbal descriptions that tend
to become insufficient as soon as the scenarios become complicated. Mathematics
provides a powerful language that forces us to be logically consistent and explicit
about assumptions.

Over the years, we have encountered very interesting, inspiring, and challenging
discussions at the end of workshops on infectious disease modeling with the
following recurrent themes:

1. While most disease transmission models predict an expected exponential growth
at the beginning of the epidemic, empirical data often exhibit sub-exponential
growth patterns (Viboud et al. 2016). How do we best characterize these non-
unique sub-exponential growth functions in the context of infectious disease
modeling?

2. Are there many, even infinitely many, mechanisms that lead to the same or very
similar sub-exponential growth functions?

3. Does a slower than expected initial growth at the beginning of the epidemic imply
a smaller value of the basic reproduction number R0, a key quantity in the field
of infectious disease epidemiology (Anderson and May 1991; Diekmann and
Heesterbeek 2000; Brauer 2006), as suggested by many transmission models?

4. What exactly does it mean when we say “deterministic models approximate
their stochastic counterparts by the law-of-large numbers”? Are we referring to
a population that is infinitely large or something else?
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5. Which features of the population-based models, in which the exponential
distribution is assumed at the individual levels, can be generalized with non-
exponential distributions?

6. Regarding effectiveness of control measures against the spread of diseases,
even if imperfect implementation in terms of coverage or compliance has been
explicitly taken into account in the models, empirical observations often leave
us with impressions that the control measure that “looks good” in theory “do
not work at all” in practice. Are there more theories that could capture this
phenomenon?

7. How do we reconcile the quantities as predicted by disease transmission models
with observed data from outbreak investigations and public health surveillance?

8. The need for precise definitions of verbal descriptions in quantitative analyses.
For instance,

• What do we mean by “a case” when data from outbreak investigations and
surveillance are presented as time-series of “number of cases”?

• Are “generation intervals” consistently defined across literature in epidemiol-
ogy and infectious disease models?

• How do we characterize and compare “variability” among random variables,
such as the infectious periods or the numbers of secondary infections trans-
mitted by a primary infector?

9. What do we mean by “non-identifiability” when fitting models to data?

Of models formulated in mathematical languages, there are different types that
are designed for different purposes.

Broadly speaking, there are mathematical models aimed at facilitating our
understanding of the medical, biological, ecological, and social interactions that
manifest the outbreaks and epidemics of infectious diseases in order to gain insight
into specific questions or to generate theories about what must or might happen;
and there are statistical models aimed at capturing the data generation process, for
detecting general patterns, predicting epidemic trajectories, managing control strate-
gies, or simply describing epidemic trends. Within both mathematical and statistical
models, there are models designed at the population level in a phenomenological
way versus models that are individual-based with which researchers aim to capture
relevant mechanistic processes.

Individual-based models start from descriptions or assumptions about the evolu-
tion of the infectiousness and the natural history of the disease progression within
an infected host. These include models for the latent periods, the infectious periods,
the incubation periods, recovery, mortality, and so on. Some of the individual-based
models also combine social contacts with the evolution of the infectiousness in terms
of infectious contacts (Dietz 1995).

Phenomenological models can be deterministic or stochastic and include trans-
mission dynamics models formulated using differential equations or stochastic
processes as well as empirical growth functions, such as the generalized logistic
growth models. Transmission dynamics models depend on tacit assumptions at the
individual level.
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The developments of many new statistical models and methods in the study of
infectious diseases were driven by the HIV epidemic (Brookmeyer and Gail 1994).
Data arising from infectious disease investigations pose unique challenges in classic
statistical theory and practice because disease outbreak data do not arise from
designed experiments. Each outbreak cannot be repeated naturally under identical
conditions, whereas the large amount and multiple sources of clinical data, outbreak
investigation data from non-conventional surveys, public health surveillance, and
observational data from prevalence and incidence cohorts are collected addressing
the same outbreak event. Before statistical methods are used to understand and
control the epidemic, statistical models are needed to address the data generation
processes, which not only include the epidemiologic and biologic processes that
give rise to the disease outbreaks, but also the processes that dictate how data are
observed and how a “case” is documented and reported.

When talking about “fitting the model to data,” we tend to think of one type
of model designed for a specific purpose. However, fitting a dynamic mathematical
model to observed outbreak data (e.g., for the purpose of estimating important trans-
mission parameters) involves all three levels of models: the population phenomeno-
logical model which depends on tacit assumptions of the individual-based model
nested within it, and the statistical model that links the disease transmission process
to the data generation process. Very often in practice, these different types of models
are considered simultaneously even without the investigators’ consciousness.

Driven by the HIV epidemic that started in the late 1970s, the outbreaks
of the severe acute respiratory syndrome (SARS) in 2003, pandemic influenza
preparedness, and preparedness for other emerging and re-emerging epidemics, the
literature on infectious disease modeling has flourished during the past 40 years.
However, most articles are confined within subdisciplines according to model
characteristics and research focus. While the field of mathematical epidemiology
has a long history (e.g., Ross 1911, 1928; Anderson and May 1991; Diekmann
and Heesterbeek 2000; Keeling and Rohani 2008; Sattenspiel 2009; Allen 2010;
Vynnycky and White 2010; Becker 2015; Andersson and Britton 2012; Manfredi
and D’Onofrio 2013; Kermack and McKendrick 1927; Brauer 2006; Brauer and
Castillo-Chávez 2001), formal efforts at connecting mathematical models with
epidemiological data with the goal of calibrating models for predictive/forecasting
purposes have only started to take hold during the last decade (Chretien et al. 2015;
Biggerstaff et al. 2016; Chowell 2017; Viboud et al. 2018).

1.2 Structure of the Book with Brief Summary

Chapter 2 provides a review of basic concepts of probability and statistical models
for the distributions of continuous lifetime data, closely related to individual-based
models that describe the evolution of infectiousness and the natural history of the
disease progression. We re-tell the story from a different angle with emphases
on the shapes of hazard functions and tail properties of the lifetime distributions
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instead of repeating the subject commonly found in a typical textbook on survival
analysis. These characteristics have profound impacts on outcomes of the trans-
mission dynamic models at the population level. We will discuss and compare two
lifetime random variables, both in terms of magnitude and variability, together with
the Laplace transform of lifetime distributions. These concepts will provide the
foundations for most of the remaining chapters.

Chapter 3 addresses the distributions of random counts and counting processes,
which are closely related to population-based phenomenological models. Sec-
tion 3.2 provides a framework that links the continuous lifetime distributions at
the individual level to the distributions of random counts at the population level. It
also provides a historical account. Contemporary discussions on “super-spreading
events” as seen in outbreak investigation data in SARS-like diseases are typically
associated with transmissions along highly heterogeneous networks characterized
by long tailed degree distributions (Lloyd-Smith et al. 2005). Similarly, in the
context of incurring accidents, publications in actuarial science journals can be
traced back to debates on proneness, contagion, or spells in the first half of the
twentieth century that gave rise to important models such as the mixed-Poisson
process and the Yule process. Section 3.3 lays the foundation for measuring
the evolution of random counts over time, which are key measurements in all
population-based models.

Chapter 4 focuses on behaviors of a disease outbreak during the initial phase,
immediately after a single (or very few) infected individual are “seeded” into a very
large susceptible population. The first part discusses extinction versus growth and
relationships among three key parameters: the basic reproduction number R0, the
initial (exponential) growth rate r , and the probability of extinction δ are made and
established. With the notion of the “prevalence cohort” (Fig. 4.8), we re-write the
classic Lotka equation (4.36) as (4.40) under the assumptions about homogeneous
mixing. It reveals that:

1. R0 only depends on the average value of the infectious periods regardless of the
variance or the exact distribution. In models without natural births and deaths
in the population, the value of R0 is not affected by the presence or absence of
latent periods.

2. The probability of extinction δ depends on the specific distribution of the
infectious periods but is not affected by the presence or absence of latent periods.

3. If the infectious disease does not become extinct during the first few generations,
the initial (exponential) growth rate r depends on specific distributions for both
the latent periods and the infectious periods.

4. Each of the mathematical relationships between R0 and δ, and between R0 and r,
as found in the literature, is under a set of strict assumptions on the social contact
process and the progression of infectiousness within infected individuals.

Therefore,

1. Given the fixed value R0 > 1 and the infectious periods distribution, the model
with latent periods has a smaller initial growth rate r than the one without.
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2. Given the fixed value R0 > 1 and the latent periods distribution, the more
variable the infectious periods, the smaller the value of r .

3. Without specifying the distributions of the latent periods and the infectious
periods, there is no order between the values of r and of R0.

4. If R0 > 1, without specifying the distribution of the number of secondary infec-
tions generated by the primary infectious individual (through the distribution of
the infectious periods), there is no order between the values of δ and of R0.

5. There is a direct relationship between r and δ, rarely mentioned in the literature,
that r = β(1 − δ), provided that there is no latent period and that the number
of infections produced by a typical infectious individual during a time interval of
length x is Poisson distributed with mean value βx. This relationship does not
depend on the distribution of the infectious period.

The second part of Chap. 4 emphasizes that the three parameters R0, δ, and r
are intrinsic in the sense that they represent the state of the system at (disease-
free) equilibrium when the initially infected individuals are seeded. Section 4.5
presents growth patterns that are most likely to happen when the system moves
away from the equilibrium condition. Many discussions are on empirically observed
slower growth patterns that largely deviate from the exponential growth assumption
(Chowell et al. 2015; Chowell 2017). We attempt to precisely define the sub-
exponential growth functions in the context of infectious disease transmission and
enlist several assumptions about the transmission dynamics that all lead to such
early growth pattern, from the depletion of the susceptible population to scaling
of epidemic growth shaped by various factors and their combination including the
level of contact clustering and reactive behavior changes (Chowell et al. 2016) and
to unobservable individual-level heterogeneity. A special sub-exponential growth
function of the form, (1 + rvt)1/v, r, t > 0, 0 < v ≤ 1, is introduced in Chap. 4
which frequently appears in later chapters (6, 8 and 9) in examples and discussions.

Chapters 5 and 6 discuss compartment models when the outbreak moves beyond
the initial phase. Much of Chap. 5 is the synthesis of previously published literature
on both stochastic and deterministic transmission dynamic models, with our added
perspectives. Our interest is to generalize some of the features of these models
beyond the assumptions based on the exponential distribution on durations of
various stages, and beyond the simple generalizations such as the Erlang distribution
(which is a subset of the gamma distribution characterized by smaller variances
compared to the exponential distribution with equal mean values). These discussions
start in Sect. 5.5.2 and continue in Sect. 6.2.1. In these discussions, Laplace trans-
forms of probability distributions are extensively used as tools to calculate transition
probabilities among compartments and average durations within compartments.
They are valid for arbitrary distributions without specific assumptions of these dis-
tributions. When these distributions are exponential, general results in Sects. 5.5.2
and 6.2.1 return to those published in the literature, such as the expression of the
reproduction number as the non-negative eigenvalue of the next generation matrix
(van den Driessche and Watmough 2008) as well as in examples in these sections.
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We also point out a transcendental relationship among (4.43), (5.66), and (6.24).
In these expressions, the Laplace transforms are tools to compare distributions
ranked by variability which lead to Propositions 27 and 28 along with discussions
in subsequent paragraphs.

Other distinct topics in Chap. 5 are empirical models to describe population-
based phenomena without “mechanically” modeling the transmission dynamics at
the level of individuals and interactions among individuals. These models are useful
for curve fitting, as used in examples later in Chap. 8.

Models in Chap. 6 are more complex and involve intervention measures during
the epidemic. Section 6.3 demonstrates a potential application of these models in
the context of preparedness for an influenza-like acute respiratory infectious disease
with numerical illustrations in hypothetical race-to-treat scenarios and with limited
treatment supply. Section 6.5 discusses the impact of unobservable heterogeneity
in treatment rates on effectiveness. This section addresses Question 6 in Sect. 1.1.
We also draw the attention of the expression (1 + φxv)−1/v in (6.31) which echoes
the sub-exponential growth function (1 + rvt)1/v in Chap. 4. This is because in
both cases, a frailty model from survival analysis is used to model the unobservable
heterogeneity among individuals.

Chapter 7 addresses Question 7, 8, and 9 in Sect. 1.1 and serves as a transition
between the theoretical topics in previous chapters and Chaps. 8 and 9. The focus
is on the data generating processes and statistical issues of fitting models to data.
As repeatedly emphasized in Chaps. 4–6, population-based models involve tacit
assumptions at the level of individuals, such as the exponential, gamma, or other
distributions of the infectious periods. These are conceptual models to address
general issues and general patterns, such as the prediction of “incidence” according
to time at infection (which is usually unobservable). On the other hand, statistical
models address the data generating processes, which include the epidemiology
aspects but also the observational schemes, including “case definition,” surveillance
and reporting, and adjustments for observational biases. In each model, choices are
made with respect to which aspects of “the real world” should be included in the
description of the model and which should be ignored. These choices not only
depend on the perceived importance of various factors, but also on the purpose
of each of these models. Frequently, fitting a mathematical model, such as a
transmission model, to data collected from surveillance and outbreak investigations
involves three types of models (assumptions) that take place at the same time. This
requires “nesting” one type of model within another. For example, the statistical
model that describes data may involve assumptions of the mean and variance, and
in some instances, the assumptions of specific distributions such as Poisson or
negative binomial. In addition, the model also handles observational biases such
as adjustment for reporting delays (Sect. 7.3). The mean of the statistical model
may be a function of time with unknown parameters. This function may involve
convolution structures, such as back-calculation (Sect. 7.4), to connect predictions
from a conceptual model to expected values of observable outcomes. The conceptual
model is thus embedded inside a statistical model. However, this will inevitably
result in statistical issues such as non-identifiability (Sect. 7.2). This section mainly
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discusses concepts, with a few examples as well as some simple methods where
applicable. This is an important field that needs more research and development.

Chapters 8 and 9 focus more heavily on applications, although some models not
covered in Chaps. 5 and 6 are presented such as metapopulation spatial models and
individual-based network models (Chap. 9). Examples presented are based on a case
study for the 2016 Zika epidemic in Antioquia, Colombia (Sect. 8.3), a case study of
the 2016 epidemic of yellow fever in two areas of Angola: Luanda (the capital) and
Huambo (Sect. 8.4), and a case study of the 2014 Ebola outbreak in Mali (Sect. 9.4).



Chapter 2
Shapes of Hazard Functions and Lifetime
Distributions

The main focus of this book is to address phenomenological questions regarding
the spread of infectious diseases at the population level. Examples of such questions
include:

1. If one or a few infected individuals are “seeded” in a large and completely
susceptible population, will it only lead to a handful of infected individuals and
the (small) outbreak burns out; or will it lead to an “explosive” (large) outbreak
that results in a significant proportion of the population infected?

(a) If the outcome is the former, what is the expected total number of infected
individuals and what is the expected time to extinction?

(b) If the outcome is the latter, how fast will it grow?

2. In a large outbreak, can we predict the peak burden of the disease and the timing
of the peak? How about the long-term outcomes? Will it simply go away after a
single wave or a few repeated waves, or will it settle down at some equilibrium
state and the epidemic becomes endemic?

3. What about the effects of control measures, such as public health interventions
including quarantine, isolation, or pharmaceutical treatments and vaccination?

These phenomenological questions will be addressed by different phenomeno-
logical models at the population level (Chap. 4 and onwards). Almost all of these
models involve tacit assumptions at the level of individuals. In most diseases
transmission models that will be discusses in Chapters 5-6 of this book, the hidden
assumptions are: (i) all individuals have equal chances to make random contacts
with each other; (ii) a typical infected individual has an infectious period that
is exponentially distributed. The simplest model is the SIR (Susceptible-Infected-
Recovered) model, associated with an infectious stage and a constant recovery rate.
This model has produced many theoretical results along the entire history of an
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epidemic, from the initial seeding of an infected individual in a very large population
until the end of the epidemic when the last infected individual recovers (e.g., Brauer
2008; Allen 2010).

Questions naturally arise, such as what would a non-exponentially distributed
infectious period, e.g., increasing or decreasing recovery rate (as a function of time
from infection), do to the predicted outcomes? Will some of the predictions be
altered and other predictions remain unchanged? If yes, which are they?

Although this chapter covers the same materials as in many classic survival
analysis textbooks (e.g., Cox and Oaks 1987; Lawless 2003; etc.), it is organized
from the perspective like that in Marshall and Olkin (2007) with more focus on the
shapes of hazard functions, the tail properties, and the comparison of variabilities.
The main purpose is to closely examine the assumptions at the level of individuals in
disease transmission models. This gives the preparation needed in later discussions
in Chaps. 4–6.

We call a continuous non-negative random variable denoted by X ≥ 0 the
“lifetime,” which is a terminology commonly used in classic textbooks such as
Lawless (2003) and Marshall and Olkin (2007).

With respect to infectious disease modelling, the lifetime X is a duration,
arising from: (i) the natural history of infectiousness of an infected individual
(e.g., latent and infectious periods); (ii) the natural history of clinical manifestation
(e.g., incubation period and duration of illness); and (iii) the reaction time of the
public health system (e.g., how long it takes to detect an infection or to isolate
an infections individual). Assumptions with respect to these durations are used to
construct probability models, which in turn give rise to the distributions of random
counts (Chap. 3) in the phenomenological models that are related to prevalences and
incidences of disease transmission.

2.1 Definitions and the Scale Parameter

2.1.1 The Hazard Function, the Distribution Functions, and
Some Commonly Used Summary Measures

For the (absolutely) continuous random variable X ≥ 0, the hazard function is
defined by

hX(x) = lim
δ→0

Pr{x < X ≤ x + δ|X > x}
δ

, (2.1)

satisfying hX(x) ≥ 0 and
∫ x

0 hX(x)dx < ∞, for some x.
As a duration, X is always associated with an initial event and a subsequent

event. The hazard function plays a central role in survival analysis and in industrial
reliability that measures the instantaneous probability of the occurrence of the
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subsequent event, given that it has not occurred by time t. It has also been called
the hazard rate function, or the failure rate function, by different authors in the
literature. It is one of the most important quantities underlying every aspect of
infectious disease models.

The probability density function (p.d.f.), the cumulative distribution function
(c.d.f.), and the survival function are defined by

fX(x) = lim
δ→0

Pr{x < X ≤ x + δ}
δ

,

FX(x) = Pr{X ≤ x} =
∫ x

0
fX(t)dt,

FX(x) = Pr{X > x} =
∫ ∞

x

fX(t)dt = 1 − FX(x)

respectively. The p.d.f. satisfies (i) fX(x) ≥ 0; and (ii)
∫∞

0 fX(x)dx = 1. The c.d.f.
FX(x) satisfies FX(0) = 0, monotonically increasing, and FX(∞) = 1. The hazard
function can be written as hX(x) = fX(x)/FX(x).

The following quantities are commonly used summary measures:

1. For X ≥ 0, the expected (mean) value of X is denoted by E[X] or μX. It is also
called the first moment of X. It has the following equivalent expressions

E[X] =
∫ ∞

0
xdFX(x) =

∫ ∞

0
xfX(x)dx =

∫ ∞

0
FX(x)dx. (2.2)

2. The qth-quantile of the distribution is defined by xq > 0, such that FX(xq) = q,

0 < q ≤ 1.When q = 0.5, we call x0.5 the median of the distribution, satisfying
FX(x0.5) = FX(x0.5) = 0.5.

3. The variance of X is defined by

var[X] = E[(X − μX)2] =
∫ ∞

0
(x − μX)2dFX(x).

Let �(x) be a Borel function. Then �(X) is a random variable, but not
necessarily non-negative. It can be also shown that the first moment of �(X) is

E[�(X)] =
∫ ∞

0
�(x)dFX(x) =

∫ ∞

0
�(x)fX(x)dx. (2.3)

The variance is a special case when �(x) = (x −μX)2. Later in this chapter and in
later chapters of this book, different classes of �(x) will be used, such as the class
of monotone functions, the class of convex or concave functions, etc.
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2.1.2 The Scale Parameter

Let X0 ≥ 0 be a standard lifetime with hazard function h0(x) and survival function
F 0(x) and p.d.f.f0(x). For the moment, we assume that these functions do not
involve any parameters. We define the lifetime X = X0

λ
, λ > 0 by transforming

the time scale. We call λ the scale parameter. The survival function for X is

FX(x; λ) = Pr{X0 > λx} = F 0(λx). (2.4)

The p.d.f. and the hazard function become

fX(x; λ) = λf0(λx), hX(x; λ) = λh0(λx).

Conversely, for any lifetime distribution with survival function FX(x; λ) satisfying
(2.4), λ is a scale parameter, and one can always re-scale the lifetime X0 = λX so
that the distribution for X0 has scale parameter 1.

The lifetime distribution may involve multiple parameters, with one scale
parameter λ and a vector of additional parameters θ. In this case, the general
expressions are

FX(x; λ, θ) = F 0(λx; θ), fX(x; λ, θ) = λf0(λx; θ), hX(x; λ, θ) = λh0(λx; θ).

Because hX(x; λ, θ) = λh0(λx; θ), the scale parameter λ does not alter the shape
of the hazard function characterized by other parameters in θ. In other words, by re-
scaling both the x-axis and the y-axis, hX(x; λ) and h0(x) are the same. Therefore,
without losing generality, we let λ = 1 and use the shape of the hazard function
h0(x; θ) to develop some commonly used parametric lifetime distributions.

2.2 The Shapes of Hazard Functions

In phenomenological models describing transmission dynamics in populations,
implicit assumptions are made on the shapes of hazard functions concerning
durations arising from the natural history of infectiousness of an infected individual
(e.g., latent and infectious periods) as well as clinical aspects. Very often these
hazard functions are called rates and are assumed to be constants.

Therefore, this chapter is organized differently from many similar chapters in
most survival analysis textbooks which define the lifetime distributions first and
then discuss the properties of the hazard functions. We would like to emphasize
how different shapes of the hazard functions define and characterize important
properties of lifetime distributions. More importantly, when these distributions are
applied to durations in stochastic and deterministic disease transmission models to
be discussed in later chapters, such as the latent and the infectious periods, we
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investigate how different shapes of the hazard functions determine the expected
outcomes predicted by these models.

The hazard function uniquely determines the p.d.f. and the survival function via
the following relationships

FX(x) = exp

(

−
∫ x

0
hX(u)du

)

, (2.5)

fX(x) = hX(x) exp

(

−
∫ x

0
hX(u)du

)

. (2.6)

To ensure that FX(x) → 0 as x → ∞, one adds another condition for the hazard
function

∫∞
0 hX(x)dx = ∞.

In other words, one can choose any non-negative continuous function satisfying
hX(x) ≥ 0,

∫ x
0 hX(x)dx < ∞ and

∫∞
0 hX(x)dx = ∞ as a hazard function to

define a continuous time distribution. The shapes of the hazard functions can be
constant, monotone, non-monotone or with very complex forms.

For example, demographers are very familiar with the bath-tub shaped hazard
functions to describe the human life span. It decreases sharply for the first few years
to reflect the infant mortality, followed by decades of a low level approximately
constant hazard rate and then rises as a convex function to reflect aging. Such
bath-tub shaped hazard functions are estimated from demographic data and used
to construct the survival function FX(x) and predict the human life expectancy.
Similar bath-tub shaped hazard functions are also seen in industrial reliability, where
the first decreasing phase characterizes the “break-in” period of a new product and
the later increasing phase characterizes the “worn-out” process. In Exercise 2.1,
we will define a bath-tub shaped hazard function and ask readers to construct the
distribution functions and calculate the expected value.

2.2.1 The Constant Hazard Function and the Exponential
Distribution

This section starts with the simplest shape, the constant hazard functions. When the
hazard function is constant, we commonly call it the hazard rate, or simply, the rate.
Without losing generality, we assume h0(x) = 1.

From (2.5), the survival function corresponding to the standard exponential
distribution is:

F 0(x) = f0(x) = e−x. (2.7)

Re-scaling the time by a scale parameter λ > 0, X = X0
λ

is distributed according to
the exponential distribution with rate λ, given by

hX(x; λ) = λ, FX(x; λ) = e−λx. (2.8)
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The mean and variance of the exponential distribution are

E[X] = 1

λ
, var[X] = 1

λ2
. (2.9)

The median for the exponential distribution is x0.5 = 1
λ
(log 2) < E[X].

Therefore,

1. the constant (hazard) rate defines the exponential distribution;
2. the rate λ is also the scale parameter of the exponential distribution;
3. the mean value of the exponential distribution is the reciprocal of the rate.

The exponential distribution has been widely used in infectious disease models,
even in models that are deterministic. For example, dynamics infectious disease
transmission models (Chap. 5) can be either modelled stochastically as a contin-
uous time Markov chain or deterministically as a system of ordinary differential
equations. The common feature in these models is the assumption of the constant
recovery rate. It implies that all infected individuals have independently and
identically distributed infectious periods following the exponential distribution, with
the mean equal to the reciprocal of the recovery rate.

Note that the statement “the mean equal the reciprocal of the rate” is implicitly
associated with the assumption of the exponential distribution.

2.2.2 Monotonic Hazard Functions Without Upper Limit

Monotonic hazard functions are natural extensions of the constant hazard rates. Take
the incubation periods for example, the natural question is whether the hazard of
developing clinical symptoms remains constant regardless of the time elapsed since
time of infection, or is it an increasing function of time since infection.

The Weibull Distribution One of the generalizations of h0(x) = 1 is a class of
monotone hazard functions defined by the power function

h0(x; ς) = ςxς−1, ς > 0. (2.10)

The parameter ς determines the shape of h0(x). When ς > 1, h0(x; ς) monotoni-
cally increases to infinity and when ς < 1, it decreases to zero, as x → ∞. When
ς = 1, h0(x; ς) = 1.We call ς the shape parameter.

From (2.5), the survival function is

F 0(x; ς) = exp
(−xς ) . (2.11)
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Re-scaling the time by a scale parameter λ > 0, X = X0
λ

is distributed according to

hX(x; λ, ς) = λς (λx)ς−1 and FX(x; λ, ς) = e−(λx)ς . (2.12)

This is a Weibull distribution with scale parameter λ and shape parameter ς > 0.
An attractive feature of the Weibull distribution is that the complementary logarithm
of the survival function is a linear function of the logarithm of time.

log
[− logFX(x; λ, ς)

] = ς log (λx) .

The Weibull distribution has mean and variance:

E[X] = 1

λ
	

(

1 + 1

ς

)

, (2.13)

var[X] = 1

λ2

[

	

(

1 + 2

ς

)

− 	
(

1 + 1

ς

)2
]

. (2.14)

The median is x0.5 = 1
λ
(log 2)

1
ς < E[X]. The exponential distribution is a special

case of the Weibull distribution with ς = 1.
Figure 2.1 illustrates the Weibull distribution according to the shape parameter

with a standardized time scale. Example 1 will show a Weibull distribution with
increasing hazard function used to model the incubation period from HIV to AIDS
based on data collected during the 1980s.

Fig. 2.1 Illustrations of the hazard and the survivor functions for the Weibull distribution by shape
parameter ς with standardized time scale
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The Gompertz Distribution As an alternative to (2.10), h0(x; ς)may be modelled
by h0(x; ς) = ςex where ς is also a shape parameter. However, it is not a
generalization of h0(x) = 1. The distribution for X = X0

λ
is called the Gompertz

distribution, with its survival function, the p.d.f., and the hazard function given by

FX(x; λ, ς) = e−ς(eλx−1), fX(x; λ, ς) = λςeλxe−ς(eλx−1),

hX(x; λ, κ) = λςeλx.

This distribution is less commonly used in applications. One of the difficulties is
that the moments cannot be written in closed form. Another difficulty is that it is
often difficult to fit such a distribution to data. However, worth pointing out the
connection of the hazard function of this distribution with the ordinary differential
equation d

dx
h(x) = λh(x), x > 0, which gives a physical rationale for describing

human mortality due to aging.

2.2.3 Hazard Functions that Converge to a Positive Constant
as x → ∞

Distributions defined by hazard functions that converge to a positive constant as
x → ∞ are said to have an exponential tail (see more discussion on tail properties
in Sect. 2.3.)

The Gamma Distribution

The most commonly used monotone hazard function with such behavior is

h0(x; κ) = xκ−1e−x

	(κ)− ∫ x0 uκ−1e−udu
, κ > 0. (2.15)

The shape parameter is κ . If κ > 1, h0(x; κ) monotonically increases and
approaches the limit limx→∞ h0(x; κ) = 1. If κ < 1, it monotonically decreases
and approaches the limit limx→∞ h0(x; κ) = 1. When κ = 1, it returns to the
constant hazard h0(x; κ) = 1. The survival function and the p.d.f. are

F 0(x; κ) = 1 − 1

	(κ)

∫ x

0
uκ−1e−udu, f0(x; κ) = xκ−1e−x

	(κ)
, κ > 0. (2.16)
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After re-scaling, X = X0
λ

is distributed according to

hX(x; λ, κ) = λ (λx)κ−1 e−λx

	(κ)− ∫ λx0 uκ−1e−udu
,

FX(x; λ, κ) = 1 − 1

	(κ)

∫ λx

0
uκ−1e−udu, (2.17)

fX(x; λ, κ) = λ (λx)κ−1

	(κ)
e−λx.

This is a two-parameter gamma distribution, which reduces to the exponential
distribution when κ = 1. Although both the hazard and the survival functions
involve the incomplete gamma function

∫ x
0 u

κ−1e−udu, the gamma distribution has
many desirable features that make it a very convenient choice in infectious disease
transmission models. Some of these features are:

1. The gamma distribution with integer valued shape parameter κ = 1, 2, . . . is
called the Erlang distribution. The Erlang distribution with mean value μ can be
obtained as the sum of κ independently and exponentially distributed lifetimes,
each with mean value μ/κ. This feature makes it a popular choice for ordinary
differential equation models to handle non-exponential distributions using the
linear chain reduction trick (Smith 2011). It is worth noticing that, for Erlang
distributions with κ ≥ 2, the variance is always smaller than the exponential
distribution with the same mean value.

2. By re-parameterizing μ = κ
λ

and κ = κ, the mean and the variance of the gamma
distribution are expressed as

E[X] = μ, var[X] = μ2

κ
.

Given a finite mean value μ, κ ranks the variance. The variance approaches zero
as κ → ∞ on the one hand, and approaches infinity as κ → 0 on the other hand.

3. Unlike the Weibull distribution, the shape parameter κ in the gamma distribution
ranks both the hazard function and the survival function according to the order
as shown in Fig. 2.2. These are important stochastic orders comparing the
magnitudes of lifetime distributions, which will be discussed in more detail in
Sect. 2.5.1.

4. The p.d.f. of the gamma distribution has a very flexible form, from a highly
skewed shape with a long tail (J-shape) when κ < 1, to the negative exponential
function as κ = 1 and towards a bell-shape when κ > 1, as shown in Fig. 2.3.

The gamma distribution has a simple explicit form of the Laplace transform which
will be discussed in detail in Sect. 2.4. It is a very useful tool in disease models
involving convolutions. It can also be used to compare variability of lifetimes. For
example, how variability of the latent period or the infectious period of the infected
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Fig. 2.2 Illustrations of the hazard and the survival functions of the gamma distribution

Fig. 2.3 Flexible shapes of the p.d.f. of the gamma distribution

individuals may affect the behavior of an epidemic at its initial growth phase; how
variability of the latent period or the infectious period of the infected individuals
may affect the effectiveness of certain public health measures aimed at controlling
the spread of an epidemic. The Laplace transform is a powerful tool in frailty
models, which is a random effect model for unobservable heterogeneity. Thus,
applications of Laplace transforms, especially those with the gamma distribution,
will be discussed in many chapters throughout this book.
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The Inverse-Gaussian Distribution: Non-monotone and Converge to a
Positive Constant as x → ∞

As an alternative to the gamma distribution, the inverse-Gaussian distribution also
has an exponential tail. Let λ be the scale parameter and κ the shape parameter, the
p.d.f. and the survival function are

fX(x; λ, κ) = λκ√
2π(λx)3

exp
(
− (λx−κ)2

2λx

)

FX(x; λ, κ) = �
(
λx−κ√
λx

)
− e2κ�

(
−λx+κ√

λx

) λ, κ > 0 (2.18)

where �(u) = 1√
2π

∫ u
−∞ e

−w2
2 dw is the standard normal distribution function.

The hazard function hX(x; λ, κ) = fX(x;λ,κ)
FX(x;λ,κ) increases from zero to a maximum

and then decreases (for certain range κ) to an asymptotic value λ
2 as shown in

Fig. 2.4.
The inverse-Gaussian distribution shares many of the features of the gamma

distribution.

1. Like the gamma distribution, the shape parameter κ ranks both the hazard
function and the survival function.

2. By re-parametrization μ = κ
λ

and κ = κ, the mean and the variance are also
expressed as

E[X] = μ, var[X] = μ2

κ
.

Fig. 2.4 Shapes of the hazard function of the inverse-Gaussian distribution



22 2 Shapes of Hazard Functions and Lifetime Distributions

Given finite mean value μ, κ ranks the variance. The variance approaches zero
as κ → ∞ on the one hand, and approaches infinity as κ → 0 on the other hand.

3. Like the gamma distribution, the inverse-Gaussian distribution also has an
explicit form of the Laplace transform, making it useful to study many important
aspects of infectious disease dynamics.

Unlike the gamma distribution, the inverse-Gaussian distribution does not
include the exponential distribution as a special case. However, at κ = 1, the
first two moments are E[X] = μ and var[X] = μ2 which are the same as those of
the exponential distribution.

2.2.4 Two Empirical Distributions for Disease Progression
Characterized by Non-monotone Hazard Functions

Empirical evidence suggests that if an individual is still in her/his latent period after
a long time since exposure, this individual is more likely to remain non-infectious.
Similarly, if after a long time since infection an individual is still symptom free,
this individual is more likely to remain symptom free. This suggests that a hazard
function may initially increase but eventually decreases to zero after reaching a
maximum value.

The Log-Normal Distribution as a Model for the Incubation Period

The incubation period is the duration from the time of infection until the time
of developing clinical symptoms within an infected individual. Sartwell (1966)
studied various infectious diseases and found that the incubation periods of acute
infectious diseases tend to follow the log-normal distribution. The validity of the
log-normal assumption for the incubation periods has been only supported by
empirical evidence. Many studies were carried out by epidemiologists in Japan
(Nishiura 2007) through testing of goodness-of-fit to acute infectious disease data.
Such empirical evidence, to the best, supports the idea that the incubation period
tends to follow a distribution that is right skewed with a long tail, as characterized
by the shape of the hazard function.

Under the convention used in this chapter, by setting the scale parameter λ =
1, the survival function and the p.d.f. of the log-normal distribution with a shape
parameter ς > 0 are

F 0(x; ς) = 1 −�(ς log x), f0(x; ς) = 1√
2π

ς

x
e−

(ς log x)2

2 (2.19)
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where �(u) = 1√
2π

∫ u
−∞ e

−w2
2 dw is the normal distribution function. The hazard

function is therefore

h0(x; ς) =
1√
2π
ς
x

exp
{
− (ς log x)2

2

}

1 −�(ς log x)
, ς > 0. (2.20)

It can be shown that for ς > 0, (i) h0(0; ς) = 0; (ii) h0(x; ς) increases to a
maximum then approaches zero monotonically as x → ∞. The turning point occurs
at x∗ such that h0(x

∗; ς) = 1
x∗
(
ς2 log (ςx∗)+ 1

)
. After re-scaling, X = X0

λ
is

distributed according to

FX(x; λ, ς) = 1 −�(ς log (λx)) , fX(x; λ, ς) = ς√
2πx

e−
(ς log(λx))2

2 . (2.21)

The log-normal distribution has mean and variance:

E[X] = 1

λ
exp

(
1

2ς2

)

, var[X] = 1

λ2 e
1
ς2

(

e
1
ς2 − 1

)

.

The log-normal distribution is linked to the normal distribution for Y = logX.
Letting μY = log λ and σ = ς−1, it can be shown that Y follows the normal
distribution N(μY , σ 2). This clearly demonstrates the advantage of fitting the log-
normal distribution to data in statistical analysis.

The Log-Logistic Distribution

The name log-logistic distribution is due to its link with the logistic distribution
for Y = logX. Where data might support the log-normal distribution, it is equally
suitable to consider the log-logistic distribution as an alternative. Setting the scale
parameter λ = 1, the hazard function is

h0(x; ς) = ςxς−1

1 + xς , ς > 0. (2.22)

It can be shown that for the shape parameter ς > 1, (i) h0(0; ς) = 0; (ii) h0(x; ς)
increases to a maximum at x∗ = (ς − 1)

1
ς then approaches zero monotonically as

x → ∞. From (2.5), the survival function is

F 0(x; ς) = 1

1 + xς . (2.23)
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After re-scaling, X = X0
λ

is distributed according to

hX(x; λ, ς) = λς (λx)ς−1

1 + (λx)ς , FX(x; λ, ς) = 1

1 + (λx)ς . (2.24)

The mean E[X] and the variance var[X] are

E[X] = 1

λ
	

(

1 + 1

ς

)

	

(

1 − 1

ς

)

, if ς > 1

var[X] = 1

λ2

[

	

(

1 + 2

ς

)

	

(

1 − 2

ς

)

− 	
(

1 + 1

ς

)2

	

(

1 − 1

ς

)2
]

, if ς > 2.

When the shape parameter ς ≤ 2, the hazard function decreases to zero very
fast and the survival function decreases to zero at a very slow speed, so that the
tails are “heavy” enough to preclude the existence of a finite mean or variance
(see more discussion in Sect. 2.3.2). When ς ≤ 2, the variance of the log-logistic
distribution does not exist. When ς ≤ 1, the mean value does not exist. If the
infectious period follows such a distribution, one of the most important parameters
in disease transmission models, the basic reproduction number, is not defined and
many fundamental theories based on the existence of an epidemic threshold will no
longer hold.

When 0 < ς < 1, the log-logistic distribution is also called the Pareto-III
distribution (Marshall and Olkin 2007) when it is regarded as an extension of the
Pareto distribution (see Sect. 2.3.2) with hazard function monotonically decreasing
to zero.

The Log-Logistic Distribution vs. the Log-Normal Distribution For both the
log-logistic and the log-normal distributions, the median is x0.5 = λ−1. The log-
logistic distribution closely approximates the log-normal distribution. Both models
may fit equally well to observed data in many applications. Suppose thatX1 follows
a log-normal distribution as defined in (2.21) with scale parameter λ1 and shape
parameter ς1. One can find a log-logistic distributed X2 with the same scale
parameter λ2 = λ1 so that these two distributions have the same median, and
then calibrate the shape parameter ς2 in the log-logistic distribution so that the
two distributions are in close agreement. For instance, one can choose a quantile
near the tail end, such as the 0.95th quantile x0.95, and calibrate ς2 so that both
distributions have the same 0.95th quantile. This can be done by solving the equation

1
1+(x0.95/λ1)

ς2 = 0.05. Figure 2.5 compares the two distributions such that both have
the same median and the same quantile x0.95.

The Log-Logistic Distribution vs. the Weibull Distribution While the similarity
of the log-logistic distribution and the log-normal distribution is empirical, the
connection between the log-logistic distribution and the Weibull distribution is
profound. It is worth noticing that the numerator of the hazard function of the



2.2 The Shapes of Hazard Functions 25

Fig. 2.5 Compare log-logistic and log-normal survival functions with median = 1 at various shape
parameters

log-logistic distribution, λς (λx)ς−1 , is the hazard function of the Weibull distribu-
tion in (2.12); and (λx)ς in the denominator of the hazard function of the log-logistic
distribution is the cumulative hazard function of the Weibull distribution. This
is not a coincidence. Later in Sect. 2.6, we shall see that the hazard function of
the log-logistic distribution can be derived as a special case of a random mixture
of heterogeneous individuals. Each of them has an individual hazard function of
the Weibull distribution. Biologically speaking, it might be natural to assume a
monotonically increasing hazard function at the individual level to model lifetimes
such as the incubation period, as well as the latent period or the infectious period.
However, due to unobservable individual heterogeneity, at a cohort level, these
lifetimes tend to behave with a “dampened” hazard function by a random effect
(Sect. 2.6).

Nishiura (2007) pointed out that, with respect to modelling incubation periods,
the log-normal distribution, which empirically mimics the log-logistic distribution,
often fits well with data from acute diseases but not as well for fitting data arising
from chronic diseases. For diseases with long incubation periods, the Weibull
distribution is often preferred in the literature. In fact, for the log-logistic distribution
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with shape parameter ς > 2, the early part of the hazard function and the
corresponding survival function are in close agreement with that of the Weibull
distribution.

Example 1 In the 1980s, results from cohort studies were used to guide the selection
of models for the incubation distribution from HIV infection to AIDS symptoms.
These studies are: (1) analysis on 458 hemophiliacs for age > 20 (Goedert
et al. 1989), (2) data from the San Francisco City Clinic Cohort of homosexual
men enrolled in hepatitis vaccine study (Hessol et al. 1989) (3) a cohort of 468
seroconverters who were injecting drug users (Italian Seroconversion Study 1992),
(4) an Italian cohort of 952 seropositive males and females (Gauvreau et al. 1994);
as well as estimation by deconvoluting the AIDS incidence data in San Francisco
using epidemiological surveys to reconstruct the distribution of incubation times
(Bacchetti and Moss 1989). The maximum follow-up time of these cohort was
only 11 years. These studies provided a general picture that the probability of
developing AIDS within the first 2 years of seroconversion is less than 3%. The
cumulative probability of developing AIDS within 7 years after seroconversion is
approximately 25% and the cumulative probability of developing AIDS within 10
years approaches 50%. These are shown by the Kaplan-Meier estimates in Fig. 2.6.
A widely used model is a Weibull distribution with scale parameter λ = 0.00211
and shape parameter ς = 2.516 (Brookmeyer and Goedert 1989). This distribution
suggests a monotonically increasing hazard function. A log-logistic model with
scale parameter λ = 0.1 and shape parameter ς = 3.08 was used by Lui et al.
(1988) to describe HIV incubation among gay men and is in close agreement with
the aforementioned Weibull distribution for the first 10 years after sero-conversion.
Due to the non-monotone hazard function of the log-logistic distribution, HIV
progression after 10 years is much slower (with a dampened hazard function) than
that suggested by the Weibull model.

Fig. 2.6 Compare the Weibull distribution and the log-logistic distribution, both with median = 10
years, as models for the incubation period from HIV to AIDS
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2.2.5 Parametric Lifetime Distributions with More than Two
Parameters

One may create distributions with more flexible shapes of the hazard functions by
introducing more parameters. For instance, (2.22) can be generalized by involving

another shape parameter κ and hence h0(x; ς, κ) = ςκxς−1

1+xς . If X0 has a distribution

given by such a hazard function, then the hazard function for X = X0
λ

has

three parameters fX(x; λ, ς, κ) = λςκ(λx)ς−1

(1+(λx)ς )κ+1 , FX(x; λ, ς, κ) = 1
(1+(λx)ς )κ , and

hX(x; λ, ς, κ) = λςκ(λx)ς−1

1+(λx)ς . This gives the Pareto IV distribution (also known as
the Burr’s distribution) which includes the log-logistic distribution (κ = 1), the
Pareto I and II distributions (ς = 1), the Weibull distribution (κ → ∞), and the
exponential distribution (κ → ∞, ς = 1). Lawless (2003) provides more detailed
accounts on this distribution.

Another three-parameter distribution is the generalized-gamma distribution

which generalizes (2.17) with p.d.f. fX(x; λ, κ) = λς(λx)ςκ−1

	(κ)
e−(λx)ς . This

distribution includes the exponential (ς = κ = 1), the gamma(ς = 1), and
the Weibull (κ = 1) distributions. The log-normal distribution is also a limiting
case as κ → ∞ (Meeker and Escobar 1998, p. 100; Kalbfleisch and Prentice 2002,
p. 37).

One may also create hazard functions with other shapes. Hazard functions with
complicated shapes can be also constructed as continuous piece-wise functions
(Exercise 2.1). The biology of the infection ultimately determines the most appro-
priate forms for the hazard functions for disease modelling. For most part of the
book, we only use parametric lifetime distributions involving no more than two
parameters.

2.3 The Residual Life Distribution and the Tail Property

2.3.1 The Residual Life Distribution as Uniquely Determined
by the Hazard Function

The residual life distribution forX is defined through a conditional survival function
denoted by the conditional probability

FX(x|τ) = FX(τ + x)
FX(τ)

= Pr{X > τ + x|X > τ }
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The residual life distribution is uniquely determined by the hazard function
hX(x), as

FX(x|τ) = exp

(

−
∫ τ+x

τ

hX(u)du

)

. (2.25)

The Shape of Hazard Functions and the Tail Property

The tail property refers to the behavior of the survival function of the residual
time.

1. If hX(x) is strictly increasing with hX(x) → ∞, then FX(x|τ) is a decreasing
function for τ, limτ→∞ FX(x|τ) = 0, for any x > 0.

2. If hX(x) → λ, the distribution has exponential tail limτ→∞ FX(x|τ) = e−λx,
for any x > 0.

3. If there exists x∗ ≥ 0 such that for x > x∗ , hX(x) is a decreasing function of x
with limx→∞ hX(x) = 0, then

lim
τ→∞FX(x|τ) = 1, for any x > 0. (2.26)

An intuitive interpretation for (2.26) is that, if X ever exceeds a large value, it
is likely to exceed any larger value. A distribution is said to be heavy tailed if
satisfying (2.26).

2.3.2 Some Highly Skewed, Heavy Tailed Distributions

In modelling disease transmission, one often encounters a situation in which the
majority of individuals are associated with very small values of X, the distribution
is highly skewed, leaving few individuals with very large values.

Of the distributions that we have covered, the exponential distribution, the
gamma distribution when κ < 1, the Weibull distribution when ς < 1 and the
log-logistic distribution when ς ≤ 1 all have a common feature that the hazard

function is non-increasing and d2

dx2 logFX(x) = − d
dx
hX(x) ≥ 0. In other words,

FX(x) is log-convex. Some of the survival functions decrease to zero at very slow
speeds, so that their tails are “heavy” enough to preclude the existence of finite mean
and variance. In fact, it needs not have finite moment in any positive order (Marshall
and Olkin 2007, Proposition 4.C.12).

The Pareto Distributions

A family of highly skewed distributions is the Pareto distributions. It has special
importance in infectious disease modelling. If the infectious period follows such
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a distribution, many fundamental theories based on the existence of an epidemic
threshold will no longer hold. The following survival functions are Pareto distribu-
tions, with terminology from Arnold (1983),

FX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + λx)−1 , λ > 0 Pareto I
(1 + λx)−κ , λ, κ > 0 Pareto II
(1 + (λx)ς )−1 , λ > 0, 0 < ς < 1 Pareto III
(1 + (λx)ς )−κ , λ, κ > 0, 0 < ς < 1 Pareto IV

. (2.27)

For the rest of the book, we use Pareto-II for the Pareto distribution, which includes
Pareto-I as a special case. Pareto-III is a subset of the log-logistic distribution.
Pareto-IV generalizes Pareto-I, II, and III.

The Pareto distributions are sometimes called the power-law distributions. In
general, power-law distributions can be defined as distributions such that for some

ς > 0, A > 0, limx→∞ FX(x)

xς+1 = A.

Sometimes one also compares the tail properties against the exponential versus
the power-law shaped tails.

1. A distribution is sub-exponential, if limx→∞ FX(x)
exp(−λx) = ∞. It has a heavier

tail (goes to zero more slowly) compared to an exponential tail. All heavy tail
distributions are sub-exponential.

2. Power-law distributions have heavy tail distributions, but not all sub-exponential
distributions are power-law.

We summarize some of the distributions that we have discussed in Table 2.1
where I (κ, x) = 1

	(κ)

∫ x
0 u

κ−1e−udu is the incomplete gamma function.

2.4 The Laplace Transform for Life Distributions

We use the notation L[φ](s) = ∫∞
−∞ e

−sxφ(x)dx for the Laplace transform with
respect to a function φ(x) provided that the integration exists. In mathematical
dynamic models, the Laplace transform is well known in its usefulness in solving
systems of linear ordinary differential equations with constant coefficients, as well
as in differential-difference equations and partial differential equations. We refer to
Bellman and Roth (1984) for detailed accounts. Another important application is in
solving the renewal-type equations of the form

u(t) = v(t)+
∫ t

0
f (x)u(t − x)dx, (2.28)

where v(t) is a uniformly bounded function. In terms of Laplace transform, this
equation can be re-written by L[u](s) = L[v](s)

1−L[f ](s) . This usefulness is significant
both in deterministic dynamic models and in stochastic processes. In deterministic
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Table 2.1 Compare survival functions, hazard functions, residual life distributions, and tail
properties for some distributions

Survival func.

FX(x)

Hazard func.

hX(x)

Tail property

FX(x|τ)
Exponential exp {− (λx)} λ Exponential

= exp {− (λx)}
Gamma 1 − I (κ, λx) → λ Exponential

→ exp {− (λx)}
as τ → ∞

Weibull

ς < 1

exp {− (λx)ς } Decreases for

all x > 0

lim
x→∞ λς (λx)

ς−1 = 0

Sub-exponential,

not power-law

→ 1 as τ → ∞
Log-logistic (1 + (λx)ς )−1 Decreases for

x > 1
λ
(ς − 1)

1
ς

lim
x→∞

λς(λx)ς−1

1+(λx)ς = 0

Sub-exponential,

not power-law

→ 1 as τ → ∞
Log-normal 1 −�(ς log (λx)) Decreases for

x > x∗ (exists)

→ 0 as x → ∞

Sub-exponential,

not power-law

→ 1 as τ → ∞
Pareto II (1 + λx)−κ Decreases for

all x > 0

lim
x→∞

λκ
1+λx = 0

Sub-exponential,

power-law

→ 1 as τ → ∞

models, if v(t) = d
dt
u(t), then (2.28) is well recognized as the Volterra integro-

differential equation in mathematical biology. The renewal-type equation (2.28)
plays an important role in stochastic models, especially those based on renewal
processes.

With respect to lifetime distributions, where f (x) is a p.d.f. of a lifetime X, the
Laplace transform L[f ](s) = ∫∞

0 e−sxf (x)dx always exists. We also simplify the
language so that L[f ](s) is sometimes referred to as the Laplace transform of the
lifetime X.

The Laplace transform will be a useful tool throughout this book. Here we
summarize some of its useful features.

2.4.1 Laplace Transform of the Sum of Two Independent
Random Variables

Suppose two non-negative random variables X1 and X2 are independent, with
p.d.f.’s f1(t) and f2(t), respectively. The p.d.f. of the sumX1+X2 is the convolution
g(t) = ∫∞

0 f1(u)f2(t − u)du, with Laplace form being the multiplication of two
separate Laplace transforms:
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L[g](s) = L[f1](s)L[f2](s) =
(∫ ∞

0
e−st f1(t)dt

)(∫ ∞

0
e−st f2(t)dt

)

.

(2.29)

2.4.2 Moment Generating Property

If all moments for X exist and denote μn = E[Xn], then

L[f ](s) =
∞∑

n=0

(−1)n
sn

n!μn. (2.30)

The nth moment is μn = (−1)n d
n

dsn
L[f ](s)|s=0. In particular, the mean μ1 =

− d
ds
L[f ](s)|s=0, and the second moment μ2 = d2

ds2L[f ](s)|s=0.

2.4.3 As a Probability Comparing X Against an Exponentially
Distributed Lifetime Y

Let X be a lifetime with p.d.f. f (x) and Y be an exponentially distributed lifetime
with a scale parameter (also the hazard rate) s such that Pr(Y > y) = e−sy, then the
probability Pr(Y > X) is the Laplace transform

Pr(Y > X) =
∫ ∞

0
e−sxf (x)dx = L[f ](s). (2.31)

2.4.4 Laplace Transform as a Survival Function

In (2.31), the survival function of the exponential distribution e−st was viewed as a
function of t with s being the scale parameter. It can be also viewed as a function
of s with t being the scale parameter. Then L[f ](s) is a monotonically decreasing
function of s satisfying L[f ](0) = 1 and approaches zero as s → ∞, a property
of a survival function. It also has a valid interpretation as a survival function (see
Sect. 2.6), with some important properties.

A function f with domain (0,∞) is said to be completely monotonic if it
possesses derivatives f (n)(x) = dn

dxn
f (x) for all n = 0, 1, 2, 3, . . . and if

(−1)nf (n)(x) ≥ 0 (2.32)
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for all x > 0. The Laplace transform L[f ](s) is completely monotonic because
(−1)n d

n

dsn
L[f ](s) = ∫∞

0 xne−sxf (x)dx ≥ 0 for all s > 0.
It has been shown a survival function is completely monotonic if and only if it has

a completely monotonic density (Marshall and Olkin 2007). As a survival function
L[f ](s), its density − d

ds
L[f ](s) = ∫∞

0 xe−sxf (x)dx is completely monotonic. A
completely monotonic function is log-convex (Marshall and Olkin 2007). Hence,
logL[f ](s) is a convex function for all s > 0.

2.5 Comparing Two Lifetimes X1 and X2

When both X1 and X2 are random, comparisons between X1 and X2 need to be
carefully defined and examined. Shaked and Shanthikumar (2007) and Marshall and
Olkin (2007) are excellent monographs with extensive definitions, propositions, and
discussions. This section will only cover two aspects: the comparison of magnitude
and the comparison of variability between two lifetimes.

2.5.1 Comparing Magnitudes

When comparing two lifetimes X1 and X2, people often use “average” as a single
summary measure. Such an ordering is defined by E[X1] ≤ E[X2] (should these
mean values exist) and is denoted by X1 ≤ave X2 to reflect that it is an ordering
“on average.” One of the most commonly used summary measures is the Life
Expectancy, whether the life expectancy in population A is longer than the life
expectancy in population B.

Using a single summary measure to compare two random variables with
large variations can be problematic and subject to mis-interpretations. Figure 2.7
illustrates two crossings survival functions, in which μ2 = ∫∞

0 F 2(x)dx is twice as
μ1 = ∫∞

0 F 1(x)dx. Therefore by definition, X1 ≤ave X2. On the other hand, if we
examine the median values, it turns out that the median for X1 is twice the value of
the median for X2. So which is larger?

Although Fig. 2.7 is artificially created, there is no shortage of real-life examples
where survival functions cross. For instance, Li et al. (2015) provide examples from
clinical trials of crossing survival curves, as reproduced in Fig. 2.8.

A natural and stronger ordering is the stochastic order.

Definition 2 X1 is smaller than X2 in stochastic order, denoted as X1 ≤st X2, the
following statements are equivalent:

1. if corresponding survival functions F 1(x) ≤ F 2(x) for all x > 0;
2. if E[�(X1)] ≤ E[�(X2)] for all increasing functions � such that the expecta-

tions exist;
3. if Pr{�(X1) > x} ≤ Pr{�(X2) > x} for all increasing functions �, for all x.
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Fig. 2.7 Illustration of two crossing survival functions: the one with twice the mean value has half
the median value of the other

Fig. 2.8 Examples of crossing survival functions. Source: Li et al. Li et al. (2015)

For the proof of equivalence in the definition statements, we refer readers to
Proposition 2.A.2. in Marshall and Olkin (2007). It follows that, by taking �(x) =
xr , if X1 ≤st X2, then E[Xr1] ≤ E[Xr2] for r ≥ 0. Hence X1 ≤st X2 ⇒ X1 ≤ave
X2.

Recall the definition of the scale parameter FX(x; λ) = Pr{X0 > λx} =
F 0(λx), then within the same distribution family, keeping other parameters fixed,
the scale parameter ranks the distribution according to stochastic order. Conse-
quently, the log-linear model known as the accelerated life time model (Lawless
2003) of the form

log λ = α + β1z1 + · · · + βmzm
compares lifetimes according to stochastic order.
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However, the stochastic ordering is still a partial ordering. The stochastic order
is not preserved under residual life distribution, that is, F 1(x) ≤ F 2(x) for all x
does not lead to F 1(x|τ) ≤ F 2(x|τ) for all x and τ. A counterexample can be given
by comparing a log-logistic distribution with a similar log-logistic distribution by
shifting the location. A stronger ordering that preserves the stochastic order under
residual life distribution is the ordering that compares the hazard functions because
of (2.25).

Stochastic and Hazard Rate Ordering of Lifetimes

Definition 3 X1 is smaller than X2 in hazard rate order, denoted as X1 ≤hr X2,

the following statements are equivalent:

1. if corresponding hazard functions h1(x) ≥ h2(x), for all x > 0;
2. if F 1(x|τ) ≤ F 2(x|τ) for all x and τ ;
3. if the ratio F 1(x)/F 2(x) is a decreasing function of x.

Example 4 Suppose thatX1 follows a log-logistic distribution with shape parameter
ς = 4 such that F 1(x) = (1 + x4)−1 and X2 = X1 + 2 so that F 2(x) = 1 if x < 2;
(
1 + (x − 2)4

)−1
if x ≥ 2. Clearly, F 1(x) ≤ F 2(x) for all x and hence X1 ≤st X2.

However, they do not follow hazard rate order. Figure 2.9 shows the case when
τ = 2 that all the three equivalent statements in Definition 3 are not met.

2.5.2 Comparing Variabilities

A General Description of Variability Is Based on “Majorization”

If X1 and X2 have equal mean values (should they exist), a general description of
variability is based on “majorization.” Let f1 and f2 be the corresponding p.d.f.s for
X1 and X2, the verbal description for X2 being more dispersed (spread out) than
X1 is reflected in Fig. 2.10 about the change of signs between f1 and f2 and their
corresponding survival functions F 1 and F 2.

The following two definitions are equivalent (Marshall and Olkin 2007). In verbal
terms:

Definition 5 X1 ≤cv X2 if and only if E[X1] = E[X2] plus the following two
statements:

1. f2(x) − f1(x) has two sign changes and the sign sequence is: +,−,+ (see
Fig. 2.10).

2. F 1(x)−F 2(x) has one sign change and the sign sequence is: +,− (see Fig. 2.10).
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Fig. 2.9 Illustration of Example 4: two lifetimes satisfying stochastic ordering but not hazard rate
ordering

Fig. 2.10 Verbal and graphic presentation for the convex order showing that X2 is more “spread
out” than X1
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Equivalently, in mathematical terms:

Definition 6 X1 ≤cv X2 if E[�(X1)] ≤ E[�(X2)] for all convex functions �(x)
for which these expectations exist.

The order X1 ≤cv X2 is called the convex order. The convex order implies the
ordering according to variance var(X) = E[(X − μ)2] because x2 is a convex
function.

Laplace Transform as an Order to Compare Variability of Lifetimes

The convex order also implies the ordering according to the Laplace transform
E[e−sX] for all s > 0, because e−sx is a convex function. Therefore, a weaker
variability order than the convex order is the Laplace transform order. It has been
proposed to compare the variability of two lifetimes (Stoyan 1983).

Let L[F ](s) = ∫∞
0 e−sxF (x)dx be the Laplace transform for the survival

function, it can be shown through integration by parts that

L[F ](s) = 1

s
[1 − L[f ](s)] .

Definition 7 X1 is smaller than X2 in Laplace transform order, denoted as X1 ≤Lt
X2, if the corresponding Laplace transforms L[f1](s) ≥ L[f2](s), or equivalently,
L[F 1](s) ≤ L[F 2](s).

Laplace Transforms of the Gamma and Inverse-Gaussian Distributions

Gamma Distribution with Mean μ and Variance μ2/κ For the gamma distribu-
tion (2.17), by re-parametrization μ = κ/λ and κ = κ, the Laplace transforms have
explicit expressions

L[f ](s) = (1 + sμ
κ

)−κ
,

L[F ](s) = 1
s

[
1 − (1 + sμ

κ

)−κ]
.

(2.33)

When κ = 1, the Gamma distribution reduces to the exponential distribution
with L[f ](s) = (1 + sμ)−1 and L[F ](s) = μ

1+sμ .
Another special case is when κ → ∞, the resulting distribution is degenerated

to a single point μ with var[X] → 0. In this case, L[f ](s) = e−sμ and L[F ](s) =
1
s

(
1 − e−sμ) .
When using the Laplace transform order to compare variability, sometimes the

Laplace transform of the gamma distribution is used as the benchmark to compare
variability of other lifetimes.
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Definition 8 A survival function FX(x) with finite mean μ = ∫∞
0 FX(x)dx is said

to belong to the Lκ -class of distributions, if

L[F ](s) ≥ 1

s

[

1 −
(

1 + μs

κ

)−κ]
, for all s > 0. (2.34)

Definition 9 The L1-class of distributions are called the L-class of distributions,
satisfying

L[F ](s) ≥ μ

1 + μs , for all s > 0. (2.35)

All L-class distributions are larger in Laplace transform order compared to the
exponential distributions with the same mean value. All gamma distributions with
shape parameter κ ≥ 1 belong to theL-class distributions. AllLκ -class distributions
are larger in Laplace transform order compared to the gamma distribution with shape
parameter κ of the same mean value.

Even for distributions of which the Laplace transform cannot be written explic-
itly, Laplace transform order comparisons still can be made. These are the cases for
the Weibull and the log-normal distributions.

Following Klar (2002), the Weibull distribution with shape parameter ς ≥ 1
belongs to the L1-class, which is larger in Laplace transform order compared to the
exponential distributions with the same mean value.

Let X1 follow a log-normal distribution and X2 follow a gamma distribution.

Both have the same mean μ, but with variances var[X1] = μ2
(

e
1
ς2 − 1

)

and

var[X2] = μ2/κ , respectively. If the shape parameter ς in the log-normal distri-

bution satisfies ς−2 ≤ log
(

1 + 1
κ

)
, from Klar (2002), the log-normal distribution

belongs to the Lκ -class. In fact,

ς−2 ≤ log

(

1 + 1

κ

)

⇐⇒ var[X1] ≤ var[X2].

The Inverse-Gaussian Distribution with Mean μ and Variance μ2/κ For the
inverse-Gaussian distribution (2.18), by re-parametrization μ = κ/λ and κ = κ, the
Laplace transforms have explicit expressions

L[f ](s) = exp

{

κ − κ
√

2μI
κ
s + 1

}

L[F ](s) = 1
s

(

1 − exp

{

κ − κ
√

2μI
κ
s + 1

}) (2.36)
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The inverse-Gaussian distribution belongs to the Lκ -class. That is, given the
same mean and variance, the Laplace transform of the inverse-Gaussian distribution
L[f ](s) is always smaller than that for the gamma distribution with the same μ
and κ.

More generally (Klar 2002), if X1 follows the inverse-Gaussian distribution and
X2 follows the gamma distribution, if κ is the shape parameter of the inverse-
Gaussian distribution and κG is the shape parameter of the gamma distribution,
when κ ≥ κG,

exp

{

κ − κ
√

2μI
κ
s + 1

}

≤
(

1 + sμI

κG

)−κG
, for all s > 0.

2.6 Mixture of Distributions and Frailty Models

Let us consider a situation that the distribution for random variable Xi associated
with individual i is specified by c.d.f. FX(x|θi), such that Xi’s are not identically
distributed. In some cases, this heterogeneity can be observed through a vector of
covariates z, say, such as gender, birth date, height, etc. A common practice in
statistics is to model θi as a function of z via a generalized linear model η(θi) =
β1z1 +β2z2 +· · ·+βqzq,where η(·) is a link function such that −∞ < η(θi) < ∞.

If the heterogeneity is not observable, one assumes that θi varies among
individuals as independently and identically distributed (i.i.d.) random variables
with c.d.f. U(θ), such that at the population level, one may model X arising from a
distribution given by

FX(x) = ∫
θ∈� FX(x|θ)dU(θ),

FX(x) = ∫
θ∈� FX(x|θ)dU(θ),

fX(x) = ∫
θ∈� fX(x|θ)dU(θ),

(2.37)

should these integrations exist. Similar presentations are not true for the hazard
function.

The distribution U(θ) is called the mixing distribution. Throughout this book,
we use the notation

P(x|θ) ∧
θ
U(θ) =

∫

θ∈�
P(x|θ)dU(θ) (2.38)

for the mixture of distributions, where P(x|θ) represents the distribution given the
fixed value of θ, which can be expressed either as FX(x|θ), FX(x|θ) or fX(x|θ) in
(2.37). This notation is widely adopted in the literature, for instance, Johnson et al.
(1993), Devroye (1992), Karlis and Xekalaki (2005), among others.
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Many of the life distributions we have introduced so far have a mixture
representation.

1. The Weibull distribution can be represented as a mixture between a uniform

distribution defined over the interval [0, θ 1
β ] and θ is distributed according to

a gamma distribution with shape parameter 2 (Walker and Stephens 1999). That

is, Unif orm[0, θ 1
ς ] ∧

θ
U(θ) where the p.d.f. u(θ) = U ′(θ) = λ2θe−λθ .

2. The gamma distribution with shape parameter κ < 1 can be represented as a
mixture of an exponential distribution (Gleser 1989), Exp(x|θ) ∧

θ
U(θ), where

the p.d.f. of the exponential distribution is θe−θx and the p.d.f. of U(θ) is

u(θ |λ, κ) =
{

λκ

θ(θ−λ)κ	(1−κ)	(κ) , θ ≥ λ
0, otherwise.

3. The Laplace transform L[f ](s) = ∫∞
0 e−sxf (x)dx with respect to p.d.f. f (x) is

a survival function arising as a mixture of the exponential distribution with f (x)
as its mixture distribution.

In fact, with the exception of the degenerate distributions (i.e., the c.d.f. takes
only the values 0 and 1), all distributions have non-trivial mixture representations,
and such representations are not unique. In applications, if there exist one or more
natural representations, it is important to recognize them and use them to help
understanding of the underlying stochastic mechanisms.

2.6.1 Frailty and Dampened Hazard Functions

The proportional hazard model h(x|θ) = θh∗(x) is used to model heterogeneity
should individuals follow different hazard functions, where h∗(x) > 0 is a baseline
hazard function and θ > 0 is the frailty parameter associated with the value θi for
individual i. It can be alternatively written in terms of survival functions F(x|θ) =
e−θH∗(t) whereH∗(x) = ∫ x0 h∗(u)du. A commonly used proportional hazard model
is the log-linear model so that

log θ = β1z1 + · · · + βmzm
provided that individual heterogeneity is observable through a vector of covariates
(z1, . . . , zm).

The frailty model is a random effect model for unobservable heterogeneity. It
assumes that θ is random with mean value E(θ) = 1 and probability density
function (p.d.f.) u(θ). If there is no heterogeneity, then u(θ) degenerates to a point
θ ≡ 1 with no variation and the survival function is F ∗(x) = e−H∗(x).
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When the population is composed of a mixture of heterogeneous individuals, the
survival function arises from a mixed distribution:

F
(mixed)

(x) =
∫ ∞

0
F(x|θ)u(θ)dθ = F(x|θ) ∧

θ
U(θ).

In this case, F(x|θ) = e−θH∗(t) and

F
(mixed)

(x) =
∫ ∞

0
e−θH∗(x)u(θ)dθ = L[u](H∗(x)), (2.39)

where L[u](s) = ∫∞
0 e−sθu(θ)dθ is the Laplace transform with respect to u(θ) and

L[u](H0(x)) is L[u](s) evaluated at s = H∗(x).
The hazard function is

h(mixed)(x) = − d

dx
logF

(mixed)
(x) = − d

dx
logL[u](H∗(x)). (2.40)

The importance of the Laplace transform in the context of frailty modelling was
pointed out in Hougaard (1984).

The cumulative hazard function H∗(x) is a monotonically increasing function
from zero to infinity and s = H∗(x) can be regarded as a transformed time. As a

result, F
(mixed)

(x) in (2.39) is log-convex with respect to transformed time H∗(x)
and h(mixed)(x) is a decreasing function with respect to transformed time H∗(x).
This leads to the phenomenon of the dampened hazard function, as previously
shown in Fig. 2.6, due to the random effect of the frailty model.

Frailty Models with Gamma Distributed u(θ)

We choose the Gamma distribution for u(θ) with E[θ ] = 1, var[θ ] = κ−1 = v.

The Laplace transform in (2.33), by letting μ = 1 and κ−1 = v, becomes

L[u](s) = (1 + vs)−1/v = κκ

(κ + s)κ (2.41)

and − d
ds

logL[u](s) = 1
1+vs = κ

κ+s .
From (2.39) and (2.40),

F
(mixed)

(x) = (1 + vH∗(x))−1/v = κκ

(κ+H∗(x))κ ,

h(mixed)(x) = h∗(x)
1+vH∗(x) = κ

κ+H∗(x)h∗(x).
(2.42)

In the second expression, h(mixed)(x) is the baseline hazard function h∗(x) damp-
ened by a factor (1 + vH∗(x))−1 .
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The Frailty Model for the Weibull Distribution with Gamma Mixture The
baseline hazard function of the Weibull distribution is h∗(x; λ, ς) = λς (λx)ς−1 .

The cumulative hazard function is H∗(x) = (λx)ς . With the gamma mixture u(θ)
with E[θ ] = 1, var[θ ] = κ−1 = v, (2.42) becomes

F
(mixed)

(x) = (1 + v (λx)ς )−1/v = κκ

(κ + (λx)ς )κ ,

h(mixed)(x) = λς (λx)ς−1

1 + v (λx)ς = κλς (λx)ς−1

κ + (λx)ς .

This distribution is the Pareto IV distribution (Dubey 1968, 1969).
When var[θ ] = 1, the mixture distribution is exponential and the baseline

distribution is Weibull,

F
(mixed)

(x) = (1 + (λx)ς )−1 and h(mixed)(x) = λς (λx)ς−1

1 + (λx)ς

which returns to the log-logistic distribution (2.24), also known as the Pareto-III
distribution.

On the other hand, if the baseline distribution is exponential and the mixture
distribution is gamma, then

F
(mixed)

(x) = (1 + v (λx))−1/v = κκ

(κ + (λx))κ ,

h(mixed)(x) = λ

1 + v (λx) = κλ

κ + (λx) . (2.43)

These are Pareto-I distribution (when κ = 1) and Pareto-II distribution.

Figure 2.11 illustrates h(mixed)(x) = κλς(λx)ς−1

κ+(λx)ς and F
(mixed)

(x) = κκ

(κ+(λx)ς )κ at

ς = 2. In this case the baseline hazard h∗(x; λ, ς) = 2λ2x is a linear function of
x. The time scale for these plots is standardized according to the scale parameter λ.
The limiting case v = κ−1 → 0 returns to the baseline distribution.

In the special case of a constant baseline hazard rate λ, F
(mixed)

(x) is log-
convex with respect to x while λ is a scale parameter. In this case, h(mixed)(x) is
monotonically decreasing starting from h(mixed)(0) = λ.

Proposition 10 (Marshall and Olkin (2007)) If FX(x|θ) = e−λθx , then

F
(mixed)

(x) = ∫
θ∈� FX(x|θ)dU(θ) is log-convex and the corresponding hazard

function hX(x) = − d
dx

logF(x) is decreasing.

In fact, the stronger stated is that, for any non-trivial mixture distribution with

p.d.f. u(θ) defined on (0,∞) with E[θ ] = 1, F
(mixed)

(x) = ∫∞
0 e−λθxu(θ)dθ =
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Fig. 2.11 Illustration of the mixture distribution of the Weibull distribution with gamma dis-
tributed mixture through the frailty model

L[u](λx) and the Laplace transform is completely monotonic. Since the correspond-
ing hazard function can be expressed as

h(mixed)(x) = −
d
dx
L[u](λx)
L[u](λx) .

One can easily verify that h(mixed)(x) is completely monotonic. Hesselager et al.
(1998) have put forward the following theorem: “A distribution with a completely
monotonic hazard function is a mixed exponential distribution.”

2.7 Problems and Supplements

2.1 Define the following piece-wise hazard function for the lifetime X with a bath-
tub shape

hX(x) =
⎧
⎨

⎩

1+a
1+x μ, 0 ≤ x ≤ a
μ, a < x ≤ b

μeθ(x−b), b < x < ∞
, μ > 0, θ > 0; 0 < a < b < ∞.

(a) Use (2.5) to write down the survival function F(x).
(b) Let a = 2, b = 50, μ = 0.002, and θ = 0.09, plot hX(x) and FX(x) for

0 ≤ x ≤ 100.
(c) What is the meaning of

∫∞
0 FX(x)dx? Calculate

∫∞
0 FX(x)dx given the

above parameters values.
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2.2 The residual life distribution for X is defined through a conditional survival
function

FX(x|τ) = Pr{X > τ + x|X > τ } = FX(τ + x)
FX(τ)

, x ≥ 0.

(a) Show that FX(x|τ) is uniquely determined by the hazard function hX(x),

as FX(x|τ) = exp
(
− ∫ τ+x

τ
hX(u)du

)
.

(b) Show that, given X > τ, the residual life has p.d.f. and hazard function
given by fX(x|τ) = fX(τ+x)

FX(τ)
and hX(x|τ) = hX(τ + x).

(c) The mean residual is defined as m(τ) = E[X − τ |X > τ ]. Show that if
m(τ) exists

m(τ) =
∫ ∞

0
FX(x|τ)dx =

∫∞
τ
FX(x)dx

FX(τ)
.

(d) Using the hazard function in 2.1 and the parameters values in 2.1(b),
calculate m(τ) at τ = 25, 45 and 65.

(e) For two lifetime variables X1 and X2, with hazard functions h1(x) and
h2(x), survival functions F 1(x) and F 2(x), residual life survival functions
F 1(x|τ) and F 2(x|τ), respectively, show that the following statements are
equivalent:

(i) h1(x) ≥ h2(x), for all x > 0;
(ii) F 1(x|τ) ≤ F 2(x|τ) for all x and τ ;

(iii) F 1(x)/F 2(x) is a decreasing function of x.

2.3 If two non-negative random variables X1 and X2 are independent, with p.d.f.’s
f1(x) and f2(x), respectively, show that

(a) the p.d.f. of the sum X1 + X2 is the convolution g(x) = ∫∞
0 f1(u)f2(x −

u)du;
(b) the Laplace transform of g(x) is the multiplication of two separate Laplace

transforms:

L[g](s)=L[f1](s)L[f2](s)=
(∫ ∞

0
e−sxf1(x)dx

)(∫ ∞

0
e−sxf2(x)dx

)

.

2.4 Consider a disease that has a latent period TE with hazard function hE(x),
where x is measured from the time of infection. An infected individual
is not infectious during this period. By the end of the latent period, the
infected individual starts to be infectious. Meanwhile, a public health control
measure starts immediately to isolate infected individuals. Successfully isolated
individuals do not pose a risk of transmitting the disease. The time to isolation
is denoted by Tc with hazard function hc(x). We assume that Tc and TI are
independent.
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(a) Show that the probability that an infected individual progresses to become
infectious is

Pr(Tc > TE) =
∫ ∞

0
hE(x)e

− ∫∞
0 [hc(x)+hE(x)]dxdx.

(b) If the isolation rate is constant, hc(x) = φ > 0 and the p.d.f. of TE
is fE(x), show that Pr(Tc > TE) = L[fE](φ), where L[f ](s) denotes
the Laplace transform for the p.d.f. f (x). Write down the expression for
Pr(Tc > TE) when TE is exponentially distributed with rate α > 0.

(c) Given the constant isolation rate φ, we compare the latent periods with the
same average value μE. Is it true that the more variable the latent period,
the more effective the isolation as a public health intervention?

2.5 For individuals who are infectious, we assume there is a natural infectious
period TI . By the end of the infectious period, the infected individual recovers
and is no longer infectious. Let hI (x), fI (x), and FI (x) denote the hazard
function, the p.d.f., and the survival function, respectively; and x is measured
from the start of infectiousness.

(a) Show that the mean infectious period μI = ∫∞
0 xfI (x)dx can be expressed

as μI = ∫∞
0 FI (x)dx.

(b) The isolation measure also effectively reduces disease transmission by
shortening the infectious period. Let Tc be the time from the start of infec-
tiousness to isolation, with hazard function hc(x). Let T = min(Tc, TI ) be
the effective infectious period. Show that T is smaller than TI in stochastic
order.

(c) If the isolation rate is constant, hc(x) = φ, show that the effective mean
infectious period is

μI = L[FI ](φ)

where L[F ](s) is the Laplace transform with respect to the survival
function FI (x).

(d) Show that φL[FI ](φ) = 1 −L[fI ](φ). Both L[fI ](φ) and φL[FI ](φ) are
meaningful probabilities. What probabilities do they represent?

(e) Given the constant isolation rate φ, we compare the infectious periods with
the same average value μI . Is it true that the more variable the infectious
period, the more effective the isolation as a public health intervention?

2.6 Assuming a random sample of n individuals with lifetimes X1, · · · , Xn,
independently and identically distributed lifetimes with hazard function h(x),
p.d.f. f (x), and survival function F(x). The order statistics is given by X(1) ≤
X(2) ≤ · · · ≤ X(n).
(a) Show that the p.d.f. of X(1) is nf (x)F (x)n−1 and the hazard function of

X(1) is nh(x).
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(b) We assume that at calendar time t , there are C(t) = n infected individuals
in the (infinitely large) susceptible population. All individuals are identical
and each individual has a constant rate r to infect a susceptible individual,
independently from other infected individuals. What is the instantaneous
growth rate of C(t) at time t , expressed as limh→0 Pr{C(t + h) = n +
1|C(t) = n} =?

(c) Now we assume that infected individuals are different. Infected individual i
carries an intrinsic rate zir to produce a new infection, where r is a baseline
rate and zi is a frailty variable. Individual heterogeneity is unobservable.
We assume zi as i.i.d. random variables with mean value E(z) = 1 and
p.d.f. ξ(z). At the beginning of the epidemic, we initially seed i0 infected
individuals and assume that at time t, the susceptible population is still
infinitely large. Show that the instantaneous growth rate of C(t) at time t
is a function of time limh→0 Pr{C(t + h) = n + 1|C(t) = n} = ρ(t) =
− d
dt

logL[ξ ](rt), where L[ξ ](s) is the Laplace transform of ξ(z).
(d) Let ξ(z) be the p.d.f. of the Gamma distribution withE(z) = 1 and variance

var[z] = v > 0, show that

ρ(t) = r/(1 + rvt), v > 0.

Viewing ρ(t) as a hazard function of a lifetime distribution, which distri-
bution does it correspond to?



Chapter 3
Random Counts and Counting Processes

We now turn our attention to the population level dynamics and ask phenomenolog-
ical questions. First, many important measures in the study of infectious diseases
are count variables N, taking integer values n = 0, 1, 2, . . . . For example:

1. the number of infectious contacts, defined as contacts at which a transmission of
infection takes place (Dietz 1995), made by an infected individual throughout its
entire infectious period;

2. the number of new infections in a population in a given time period;
3. the final size of an epidemic, defined as the cumulative number of infections in a

population when no more infected or susceptible individuals are left;
4. the number of infectious individuals in a specific epidemiological stage of the

disease at a given time (prevalence);
5. the count of generations (as discrete time), of which, the initial infectious case

introduced into a completely susceptible population occurs at generation zero;
those directly infected by this case make the first generation of cases, and so on;

6. the number of connections in a social network.

We consider an infectious disease epidemic in a population as a realization of a
stochastic process and these count variables are outcomes of such a process. We call
them random counts. We start this chapter by reviewing some important distribu-
tions for random counts. We relate these discrete distributions with continuous time
stochastic processes, especially counting processes, to reveal different stochastic
mechanisms that manifest these random counts.
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3.1 Some Important Distributions For Random Counts

3.1.1 The Probability Functions and Related Quantities

The distribution for the random count N is the probability mass function (p.m.f.)

fn = Pr{N = n}, n = 0, 1, 2, · · · ,

satisfying (i) fn > 0; (ii)
∑∞
N=0 fn = 1. The survivor function is defined as

Fn = Pr{N ≥ n} =
∞∑

j=n
fj

so that fn = Fn − Fn+1. The hazard function for N is defined as

hn = Pr(N = n)

Pr(N ≥ n) , n = 0, 1, 2, · · · .

The discrete hazard function is bounded by 0 ≤ hn ≤ 1, which is unlike the
continuous distributions where the hazard function satisfies 0 < h(x) < ∞. It

can be shown that 1 − hn = Fn+1

Fn
, n = 0, 1, 2, · · · , so that

Fn =
n−1∏

j=0

(1 − hj ) and fn = hn

n−1∏

j=0

(1 − hj ), n = 0, 1, 2, · · · . (3.1)

Analogous to the residual life distribution in Chap. 2, we consider the residual count
distribution by the condition probability, and it can be determined by the tail part of
the hazard function hn.

F x|n = Fn+x
F n

= Pr(N ≥ n+ x)
Pr(N ≥ n) =

n+x−1∏

j=n
(1 − hj ).

The rth moment of N is defined as E[Nr ] = ∑∞
n=0 n

rfn. It can be further shown
that the mean can be written as E[N ] = ∑∞

n=1 Fn and the mean residual time can
be written as

E(N − n|N ≥ n) =
∞∑

x=1

Fx|n =
∞∑

x=1

n+x−1∏

j=n
(1 − hj ) =

∑

k≥n

k∏

j=n
(1 − hj ). (3.2)
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The tail property is usually studied as the limits of the hazard function and the mean
residual life as n → ∞. It can be immediately shown that

1. if limn→∞ hn = 1, then limn→∞E(N − n|N ≥ n) = 0.
2. if limn→∞ hn = c < 1, then limn→∞E(N − n|N ≥ n) = (1 − c) /c.
3. if limn→∞ hn = 0, then limn→∞E(N − n|N ≥ n) = ∞.

It is convenient to study the distribution of random counts through the probability
generating function (p.g.f.). Under the assumptions thatN has finite mean and finite
variance, the p.g.f. is defined by

GN(s) = E
(
sN
)

=
∞∑

n=0

snfn. (3.3)

This power series converges absolutely for all |s| ≤ 1. If the distribution of N is not
degenerated to a point mass, that is, there is no n ≥ 0 such that Pr(N = n) = 1,
then the p.g.f. is strictly increasing for s ∈ [0, 1] and is strictly convex. It satisfies

GN(0) = Pr{N = 0}, GN(1) = 1, G′
N(s) > 0, G′′

N(s) > 0. (3.4)

If the p.m.f. fn is given, GN(s) is uniquely defined through (3.3). The probability
generating function is a tool to generate probabilities. Provided that GN(s) is a
smooth function of s with higher order of derivatives, then

fn = 1

n!G
(n)
N (0), n = 0, 1, 2, · · · , (3.5)

where G(n)N (0) = dn

dsn
GN(s)

∣
∣
∣
s=0
, so that the p.m.f. fn can be uniquely generated

through GN(s). The probability generating function can also be used to generate
moments. The mean and variance of N are

E[N ] = G′
N(1), var[N ] = G′′

N(1)+G′
N(1)−

(
G′
N(1)
)2
. (3.6)

In general, themth factorial moment isE[N(N−1) · · · (N−m+1)] = dm

dsm
GN(s)

∣
∣
∣
s=1

.

3.1.2 Two Classes of Distributions

The Power Series Distributions

A very broad class of count distributions is defined by the power series

fn = Pr{N = n} = anθ
n

A(θ)
, n = 0, 1, 2, . . . ; θ > 0, (3.7)
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where A(θ) is the normalization factor A(θ) = ∑∞
j=0 aj θ

j < ∞ and θ is the

canonical parameter. It has the recursive formulae fn+1
fn

= an+1
an
θ. The hazard

function has the form

hn = anθ
n

∑∞
j=n aj θj

, n = 0, 1, 2, . . . ; θ > 0.

For general properties of this distribution, we refer to Chap. 2 of Johnson et al.
(1993). This distribution has been applied in the study of the transmission of
infectious diseases, such as Farrington and Grant (1999), Farrington et al. (2003),
among others.

The p.g.f. corresponding to (3.7) is

GN(s) = A(sθ)

A(θ)
. (3.8)

Consequently, the mean and variance, according to (3.6) can be expressed by

E[N ] = θ
A′(θ)
A(θ)

= θ
d

dθ
logA(θ),

var[N ] = E[N ] + θ2 d
2

dθ2 logA(θ).

One of the very useful properties of the power series distribution is that, if
(N1, N2, . . . , Nm) are independent and identically distributed from the same power
series distribution, then T =∑mi=1Ni is the minimal sufficient statistic for θ.

We introduce some count distributions under this class: the Poisson distribution
with A(θ) = eθ , θ > 0; the negative binomial distribution (including the geometric
distribution as a special case) with A(θ) = (1 − θ)−κ , κ > 0 and 0 < θ < 1; and
the logarithmic distribution with A(θ) = − log(1 − θ), 0 < θ < 1.

1. The Poisson Distribution A power series distribution with A(θ) = eθ , θ > 0
leads to an = 1

n! and

fn = 1

n!θ
ne−θ , n = 0, 1, 2, . . . (3.9)

with recursive formulae fn+1
fn

= θ
n+1 , n = 0, 1, 2, . . . . The Poisson distribution is

determined by a single rate parameter θ to model the number of events occurring in
a time interval or space area so that the probability of zero event occurring in a unit
of time or space is Pr(N = 0) = e−θ .

Remark In infectious disease models, it corresponds to “homogeneous mixing” in
a very large population so that each individual has equal chance to make contacts
with everyone else at rate λ and the probability of transmission per contact between
a pair of susceptible–infectious individuals is also a constant p ∈ (0, 1]. In such
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case, the number of infectious contacts during a time interval (t, t + x] follows a
Poisson distribution with θ = λpx.

The p.g.f. of the Poisson distribution is GN(s) = e−θ(1−s). The mean and
variance are E[N ] = var[N ] = θ. Kosambi (1949) showed that among power
series distributions, E[N ] = var[N ] characterizes the Poisson distribution. The
hazard function is monotonically increasing and given by

hn = 1

n!
θn

∑∞
j=n 1

j !θj
=
(

1 + θ

n+ 1
+ θ2

(n+ 2)(n+ 1)
+ · · ·
)−1

.

Hence limn→∞ hn = 1 and limn→∞E(N − n|N ≥ n) = 0.

2. The Geometric Distribution The geometric distribution is a power series
distribution with A(θ) = (1 − θ)−1, 0 < θ < 1 with an = 1, n = 0, 1, 2, . . . .
Its p.m.f. and p.g.f. are

fn = θn(1 − θ) and GN(s) = 1 − θ
1 − sθ , n = 0, 1, 2, . . . . (3.10)

The mean and variance are

E[N ] = θ

1 − θ
var[N ] = θ

(1 − θ)2 = E[N ] + E[N ]2.

It has a constant hazard function hn = 1−θ, n = 0, 1, 2, . . . . and the mean residual
life

E(N − n|N ≥ n) =
∞∑

k=1

θk = θ

1 − θ = E[N ],

which is the memoryless property. It is the discrete analogue to the exponential
distribution for the continuous lifetime and sometimes it is re-parameterized by 1 −
θ = e−τ with p.m.f expressed by

fn = (1 − e−τ )n e−τ , n = 0, 1, 2, . . . . (3.11)

Remark In many SIS, SIR, SEIR, SEIRS models, the number of contacts per unit
of time follows a Poisson distribution, and the infectious period is exponentially
distributed. In such cases, the total number of secondary infections produced by an
initial infectious individual “seeded” into an infinitely large susceptible population
during his/her entire infectious period, denoted by N, follows a geometric distribu-
tion.
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3. The Negative Binomial Distribution The negative binomial distribution gen-
eralizes the geometric distribution as a power series distribution with A(θ) =
(1 − θ)−κ , κ > 0 and 0 < θ < 1. It leads to an = (n+κ−1

κ−1

) = 	(n+κ)
	(κ)	(n+1) ,

n = 0, 1, 2, . . . and

fn = 	 (n+ κ)
	 (κ) 	 (n+ 1)

θn(1 − θ)κ , n = 0, 1, 2, . . . (3.12)

with recursive formulae fn+1
fn

= n+κ
n+1 θ, n = 0, 1, 2, . . . . The p.g.f. is

GN(s) =
(

1 − θ
1 − sθ

)κ
, n = 0, 1, 2, . . . .

The hazard function is

hn =
( ∞∑

m=0

	 (m+ n+ κ) 	 (n+ 1)

	 (n+ κ) 	 (m+ n+ 1)
θm

)−1

=
(

1 + n+ κ
n+ 1

θ + (n+ κ + 1) (n+ κ)
(n+ 2)(n+ 1)

θ2 + · · ·
)−1

.

For finite κ < ∞ and 0 < θ < 1, 0 < limn→∞ hn = 1 − θ < 1. The limiting case
of the mean residual life is

lim
n→∞E(N − n|N ≥ n) =

∞∑

k=1

θk = θ

1 − θ .

It is regarded as the discrete analogue to the gamma distribution for the continuous
lifetime.

The mean and variance of the negative binomial distribution are

E[N ] = θ
d

dθ
logA(θ) = θκ

1 − θ
var[N ] = κθ

(1 − θ)2 = E[N ] + 1

κ
E[N ]2.

Meanwhile, Pr(N = 0) = (1 − θ)κ . When κ becomes small, it increases
both the probability of observing {N = 0} and the variance, so that Pr(N =
0) → 1 and var[N ] → ∞ as κ → 0. By removing the zero observations,
the conditional probability Pr(N = n|N > 0) gives the zero-truncated negative
binomial distribution

Pr(N = n|N > 0) = 	 (n+ κ)
	 (κ) 	 (n+ 1)

θn(1 − θ)κ
1 − (1 − θ)κ . (3.13)
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4. The Logarithmic Distribution The power series distribution with respect to
A(θ) = − log(1 − θ), 0 < θ < 1 gives an = n−1 for n = 1, 2, . . . and

fn = n−1θn

− log(1 − θ) , n = 1, 2, . . . .

It is the limiting case of (3.13) as limκ→0
	(n+κ)
n! = n−1 and limκ→0

1
	(κ)

(1−θ)κ
1−(1−θ)κ =

− 1
log(1−θ) . The recursive formulae is fn+1

fn
= n
n+1θ.

Since θ < 1, fn decreases as n increases. The p.g.f. is GN(s) = log(1−sθ)
log(1−θ) . The

mean and variance are

E[N ] = −1

log(1 − θ)
θ

1 − θ , var[N ] = − θ (θ + log (1 − θ))
(1 − θ)2 log2 (1 − θ) .

This distribution is only defined at integer values n = 1, 2, . . . . The hazard function
is

hn = θn/n
∑∞
j=n θj /j

=
(

1 + n

n+ 1
θ + n

n+ 2
θ2 + n

n+ 3
θ3 + · · ·

)−1

satisfying 0 < limn→∞ hn = 1 − θ < 1. Like the negative binomial distribution,
the limiting case of the mean residual life is

lim
n→∞E(N − n|N ≥ n) =

∞∑

k=1

θk = θ

1 − θ .

The Power-Law Distributions

A different class of count distributions is characterized by very long tails that are
very distinct compared to the distributions discussed under the power series class,
such as the Poisson, geometric, negative binomial and logarithmic distributions.
A power-law distribution is any distribution, continuous or discrete, such that

limx→∞ F(x)

xθ+1 = A for some θ > 0, A > 0. For certain parameter range of θ,
the tail can be so long such that the moments may not exist. This type of distribution
has gained much attention in infectious disease modeling.

Remark Let the random count N be the number of secondary infections produced
by an initial infectious individual “seeded” into an infinitely large susceptible
population during its entire infectious period. If the distribution ofN has a very long
tail following the power-law property, it is possible that its mean E[N ] is infinite.
In this case, one of the key parameters in disease transmission models, R0 = E[N ],
is undefined.
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1. Zipf Distribution The distribution with p.m.f. given by (3.14) was empirically
developed in the study of linguistics by Zipf (1949) and has been historically
referred to as the Zipf distribution.

fn = Pr{N = n} = n−(θ+1)

ζ(θ + 1)
, n = 1, 2, 3, . . . , (3.14)

where ζ(θ) = ∑∞
n=1

1
nθ

is the Riemann zeta function, which is finite when θ > 0.
The hazard function is

hn = Pr{N = n}
Pr{N ≥ n} = n−(θ+1)

∑
k≥n k−(θ+1)

=
( ∞∑

k=0

(
n

n+ k
)θ+1
)−1

→ 0, as n → ∞.

Therefore, limn→∞E(N − n|N ≥ n) = ∞. The rth moment can be calculated by

E[Nr ] = ζ(θ − r + 1)

ζ(θ + 1)
< ∞, r < θ.

If r ≥ θ, the rth moment is infinite. Hence, if θ ≤ 1, the mean E[N ] is infinite;
if θ ≤ 2, the variance is infinite. The Pareto-II distribution with p.d.f. f (x) =
θ (x + 1)−(θ+1) can be considered the continuous analogue to the distribution given
by (3.14). Conversely, (3.14) has sometimes been referred to as the discrete time
Pareto distribution.

Remark Liljeros et al. (2003) used this distribution to model the web of sexual
contacts in the study of sexually transmitted infections. In the literature for the study
of complex networks, the term “scale-free” was coined by physicist Barabási and
Albert (1999) referring to networks with degree distributions given by (3.14) or
tails that converge to that of (3.14).

2. Other Power-Law Distributions The Zipf distribution (3.14) has so far
remained as an empirical model with an explicit power-law expression without
a direct theoretical interpretation. The importance of the power-law is to model the
tail of a highly skewed distribution rather than for the entire distribution; the Zipf
distribution may yield a poor fit to real data, as shown by Stumpf et al. (2005).
The following alternative distributions with the power-law tail property have direct
theoretical interpretations and can be closely related and derived from stochastic
mechanisms in disease transmission dynamics.

Simon (1955) describes a class of the distribution of the form fn = AB(n, θ+1)
having the power-law property, where A and θ are constants and B(n, θ + 1) is the
Beta function

B(n, θ + 1) = 	(n)	 (θ + 1)

	 (n+ θ + 1)
, n = 1, 2, · · · .
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By the well-known property of the Gamma function, for any constant k, 	(n)
	(n+k) ∼

n−k as n → ∞. Therefore, fn = AB(n, θ+1) ∼ 	 (θ + 1) n−(θ+1). LettingA = θ,

this distribution is the Yule distribution with p.m.f.

fn = θ
	 (n+ 1) 	 (θ + 1)

	 (n+ θ + 2)
, n = 0, 1, 2, · · · . (3.15)

The mean is E[N ] = 1
θ−1 which exists only if θ > 1. The variance is var[N ] =

θ2

(θ−2)(θ−1)2
which only exists if θ > 2. These are the same property as that for

(3.14). Unlike (3.14), in which the hazard function cannot be written in a simple
form, the hazard function for the Yule distribution is

hn = θ

n+ θ + 1
.

This is analogous to the hazard function of the continuous Pareto distribution. Some
authors prefer to call the Yule distribution the discrete Pareto distribution (Xekalaki
and Panaretos 2006).

The Waring distribution extends the Yule distribution by an additional parame-
ter κ:

fn = θ
	(n+ κ)	 (θ + κ)

	(κ)	 (n+ θ + κ + 1)
, n = 0, 1, 2, · · · . (3.16)

When n is sufficiently large, the parameter κ plays little role. Using the Barnes
expansion (Johnson et al. 1993, p. 6),

	(n+ κ)
	 (n+ κ + θ + 1)

≈ 1

nθ+1

(

1 − (θ + 1)(θ + 2κ)

2n
+ · · ·
)

.

The generalized Waring distribution includes one more parameter:

fn = 	 (θ+ρ) 	(κ+θ)
	(θ)	 (ρ) 	(κ)

	(n+ κ)	(n+ρ)
	(n+ 1)	(n+ κ + θ + ρ) ≈ 	 (θ+ρ) 	(κ+θ)

	(θ)	 (ρ) 	(κ)
n−(1+θ).

These are all power-law distributions with the same tail property. They are more
closely related to different stochastic mechanisms in disease transmission dynamics.

3.2 Random Count Distributions as Generated by Stochastic
Disease Transmission Models

The discrete distributions for random counts often arise as marginal distributions of
complex stochastic processes with respect to disease transmission. They involve
the continuous lifetime distributions in the preceding chapter representing the
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natural history of disease progression as well as point processes characterizing
social contacts. Different processes may manifest the same marginal distribution
for certain random count data, but they behave very differently regarding other
characteristics of the transmission dynamic.

Simon (1962) provides a historical overview of different stochastic mechanisms
that manifest the negative binomial distribution, in terms of accident proneness
and contagion. In contemporary literature, Xekalaki (2014) gives a comprehensive
synopsis of probability models for random counts by looking at their origins,
motivation, and applications.

3.2.1 Mixture of Poisson Distributions and Processes

Greenwood and Yule (1920) developed the concept of “accident proneness,”
assuming the occurrence of accidents at individual level may be modeled as “pure
chance” according to the Poisson distribution fn = 1

n!θ
ne−θ , but individuals have

constant but unequal probabilities of having an accident. This leads to the mixed-
Poisson distribution to model such individual heterogeneity.

A mixed-Poisson distribution is constructed by f (n|θ) = θn

n! e
−θ and a mixing

distribution U(θ). Using the notation in Karlis and Xekalaki (2005), we denote the
mixed-Poisson distribution as

Poisson(θ) ∧
θ
u(θ).

It is a discrete distribution with p.m.f. and p.g.f.

fn = 1

n!
∫ ∞

0
θne−θ dU(θ), (3.17)

GN(s) =
∫ ∞

0
e−θ(1−s)dU(θ) = L[u](1 − s), (3.18)

where L[u](s) = ∫∞
0 e−sθ dU(θ) is the Laplace transform of the mixing distribu-

tion. Some of the important properties are:

1. The mean value of N is μ = E[θ ] = ∫∞
0 θdU(θ).

2. The variance is var[N ] = μ+ var[θ ] with extra-Poisson variation var[θ ].
3. The probability of observing {N = 0} is always higher in a mixed-Poisson

distribution than in a simple Poisson distribution with the same mean (Feller
1943). More generally, if f (1)n is the p.m.f. of the mixed-Poisson distribution
given by (3.17) and f (2)n is the p.m.f. of the Poisson distribution given by (3.9)
and the two distributions have the same mean, then f (1)n − f (2)n has exactly two
sign changes +, −, +. This implies a mixed-Poisson distribution gives a higher
probability for {N = 0} and has a longer right tail (Shaked 1980).
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4. Similar to the convex order to compare variability of two lifetimes with equal
means (Chap. 2 of this book), Shaked (1980) showed that for every convex
function c(x), it holds that

∑
c(n)f (1)n ≥

∑
c(n)f (2)n .

5. When the p.d.f. of the mixing distribution u(θ) exists, the shape of the p.m.f. of
a mixed-Poisson distribution exhibits a resemblance to that of u(θ) (Karlis and
Xekalaki 2005). Lynch (1988) extended the findings in Shaked (1980) and proved
that mixing carries the form of the mixing distribution over to the resulting mixed
distribution in general.

The Poisson distribution is closely related to the Poisson process.

Definition 11 Let K(t) denote the cumulative number of events occurring during
the time interval [0, t], and the event history is Ht = {K(u) : 0 ≤ u ≤ t−}. The
process {K(t) : t ≥ 0} is a time-homogeneous Poisson process of infinitesimal rate
β, if for small h > 0, all t > 0, and the following conditions hold:

1. K(0) = 0;
2. Pr{K(t)−K(t − h) = 1|Ht−h} = βh+ o(h);
3. Pr{K(t)−K(t − h) > 1|Ht−h} = o(h).

The marginal distribution of K(t) is

Pr(K(t) = k) = (βt)k

k! e−βt ∼ Poisson(βt). (3.19)

The mixed-Poisson process is thus defined by the random effect on the infinitesimal
risk β such that the marginal distribution of K(t) becomes

Poisson(βt) ∧
β
u(β).

The Negative Binomial Distribution as a Mixed-Poisson Distribution

The negative binomial distribution (3.12) has the bounded canonical parameter
θ ∈ [0, 1]. When used to model counts data, it typically arises in re-parameterized
forms reflecting different origins of the stochastic mechanisms. The logit transform
log θ

1−θ = logμ− log κ, μ > 0 leads to the expression

fn = 	 (n+ κ)
	 (κ) 	 (n+ 1)

(
μ

κ + μ
)n (

κ

κ + μ
)κ
, n = 0, 1, 2, · · · (3.20)

with mean and variance E[N ] = μ and var[N ] = μ + μ2/κ. Greenwood and
Yule (1920) show that the above expression is Poisson(θ) ∧

θ
u(θ), where u(θ)
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Fig. 3.1 Resemblance of the shape of the negative binomial distribution as a mixed-Poisson
distribution and the shape of the gamma distribution as its mixing distribution under the same
mean

is the gamma distribution with E[θ ] = μ and var[θ ] = μ2/κ. The hazard
function corresponding to (3.20) approaches a constant limn→∞ hn = κ

κ+μ and
the mean residual life approaches limn→∞E(N − n|N ≥ n) = μ/κ. These are
the memoryless properties exhibited by the exponential tail. Figure 3.1 shows the
resemblance of the p.m.f. of negative binomial distributions and the p.d.f. of the
gamma distribution when compared at the same mean value μ = 3. It also shows
the “two crossings” in Shaked (1980). The shape parameter κ ranks the variability
of both distributions according to convex order.

The Negative Binomial Distribution for the Infectious Contacts A very impor-
tant random count is the number of infectious contacts produced by a typical
infected individual during the entire infectious period, denoted by N. We examine
the following negative binomial distribution for N :

fn = 	 (n+ κ)
	 (κ) 	 (n+ 1)

(
βμI

κ + βμI
)n (

κ

κ + βμI
)κ
, n = 0, 1, 2, · · · , (3.21)

where β is the infinitesimal rate of a Poisson process, and μI is the mean value of
the infectious period. The mean and variance of N are E[N ] = βμI and var[N ] =
βμI + β2μ2

I /κ. This distribution arises from at least two different mechanisms:

1. As a mixed-Poisson distribution Poisson(βμI )∧
β
u(β). In this interpretation, we

assume that the infectious period TI = μI is not random. An infected individual
i, who became infectious at time 0, produces infectious contacts according to
a constant rate βi so that the number of infectious contacts produced during
the entire infectious period time interval [0, μI ] is Poisson(βiμI ). Infected
individuals have different infectious contact rates (i.e., proneness). If βi is gamma
distributed with mean value β and variance β2/κ, then N has the negative
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binomial distribution (3.21). The p.g.f. of N in Poisson(βμI ) ∧
β
u(β) can be

expressed by

GN(s) =
∫ ∞

0
e−βμI (1−s)u(β)dβ = L[u](μI (1 − s)), (3.22)

where L[u](s) is the Laplace transform of u(β).
2. As a stopped Poisson process. In this interpretation, individuals are homo-

geneous. Each individual produces infectious contacts according to the same
rate β. The number of infectious contacts produced during the time interval
[0, t] follows a Poisson distribution with mean value θ = βt, as long as this
individual is still infectious at time t . We assume the infectious period is a
random variable TI . It can be shown that, if TI has a gamma distribution so that
E[TI ] = μI and var[TI ] = μ2

I /κ, the number of infectious contacts produced
by a typical infected individual during the entire infectious period follows the
negative binomial distribution which is also expressed by (3.21). The p.g.f. of N
in the stopped Poisson process is expressed by

GN(s) =
∫ ∞

0
e−βx(1−s)fI (x)dx = L[fI ](β(1 − s)), (3.23)

where fI (x) is the p.d.f. of the infectious period and L[fI ](s) is the Laplace
transform of the infectious period.

The two interpretations have very different underlying assumptions. As far as the
distribution for N is concerned, data arising from a negative binomial distribution
(3.21) cannot identify whether the underlying mechanism corresponds to (3.22) or
(3.23). It will be shown later in this book that, some key features of the epidemic
are determined by the distribution N itself, regardless of the underlying stochastic
mechanisms whereas some other features of the epidemic are dependent on whether
the underlying mechanism corresponds to (3.23) or (3.22).

Other Mixed-Poisson Distributions

To obtain mixed-Poisson distributions, direct evaluation of the integrand (3.17) is
difficult with the exception of a few mixing distributions. Similarly, to obtain the
p.g.f. using (3.18), it is only feasible for the mixing distribution U(θ) of which the
Laplace transform can be written explicitly, such as the gamma distribution and the
inverse-Gaussian distribution.

Panjer and Willmot (1982) and Willmot (1993) show that, for several mixed
Poisson distributions, a recursive formula can be obtained. A large number of
Poisson mixtures have been developed. For an extensive review, see Karlis and
Xekalaki (2005), in which Table 1 provides more than 30 different mixed-Poisson
distributions along with references. Some of these distributions are more relevant in
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disease modeling, whereas others have found their applications in actuarial sciences
and social sciences.

We introduce a generalization of the mixed-Poisson distribution in the context of
the number of infectious contacts with two levels of mixing.

Let the cumulative number of infectious contacts generated by a typical infected
individual during the time interval [0, t] follow the Poisson distribution K(t) ∼
Poisson(ξ t), which is the marginal distribution of a Poisson process {K(t) :
t ≥ 0}. We assume individual heterogeneity (e.g., proneness) and consider the
mixed-Poisson process Poisson(ξ t) ∧

ξ
u(ξ) and u(ξ) follows the exponential

distribution with E[ξ ] = β. Then by time t, the marginal distribution of K(t)
arising from a mixed-Poisson process follows the geometric distribution with p.m.f.(
βt

1+βt
)n (

1
1+βt
)
, provided that at time t the individual is still infectious. We further

assume that the infectious period TI is random, and in particular, following a Pareto-
II distribution with p.d.f. βθ (βt + 1)−(θ+1) . Then the number of infectious contacts
produced by this individual during the entire infectious period is N = K(TI ) and
has p.m.f.

Pr(N = n) = βθ

∫ ∞

0

(
βt

1 + βt
)n ( 1

1 + βt
)

(βt + 1)−(θ+1) dt (3.24)

= θ

∫ ∞

0

(
x

1 + x
)n ( 1

1 + x
)

(x + 1)−(θ+1) dx

= θ
	 (n+ 1) 	 (θ + 1)

	 (n+ θ + 2)
, n = 0, 1, 2, · · ·

which is the Yule distribution (3.15). The last identity can be easily proven by

rewriting ς = 1
1+x such that dx = −ς−2dς and θ

(
1
x+1

)θ+1 = θςθ+1. In this

case,
∫ 1

0 (1 − ς)n ςθςθ−1dς = θ
	(n+1)	(θ+1)
	(n+θ+2) .

An immediate generalization is to assume that u(ξ) follows the gamma dis-
tribution with E[ξ ] = β and var[ξ ] = β2/κ so that the marginal distribution
of K(t) arising from a mixed-Poisson process follows a negative binomial distri-
bution. The infectious period TI still follows the Pareto-II distribution with p.d.f.
βθ
κ

(
1 + βt

κ

)−(θ+1)
. The resulting distribution for N = K(TI ) is

	(n+ κ)
	(n+ 1)	(κ)

∫ ∞

0

(
βt

κ + βt
)n (

κ

κ + βt
)κ
βθ

κ

(

1 + βt

κ

)−(θ+1)

dt (3.25)

= 	(n+ κ)
	(n+ 1)	(κ)

∫ 1

0
(1 − ς)n ςκθςθ−1dς

= θ
	(n+ κ)	 (θ + κ)

	(κ)	 (n+ θ + κ + 1)
, , n = 0, 1, 2, · · ·

which is (3.16).
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Therefore the Yule and the Waring distributions can be interpreted as mixed-
Poisson distributions with two levels of mixing. They belong to the family of
generalized negative binomial convolution as defined in Bondesson (1979).

3.2.2 Highly Skewed Data: Proneness, Contagion, or Spells?

Count data arising from infectious diseases tend to be over-dispersed (variance is
greater than the mean). One frequent manifestation of over-dispersed data is that the
incidence of zero counts is greater than expected for the Poisson distribution. The
negative binomial distribution is more flexible than the Poisson distribution, but it is
better for over-dispersed count data that are not necessarily heavy tailed. Figure 3.2

Fig. 3.2 Illustration of a count distribution with both a large frequency of zeros and a very heavy
tail
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shows that, out of 205 confirmed SARS cases in Singapore between February 25 and
April 30 2003, 163 cases produced zero secondary transmissions, whereas 5 cases
were likely responsible for more than half of the 205 cases. Lord and Geedipally
(2011) showed that, for data with a large frequency of zeros and a very heavy tail,
the Poisson distribution tends to underestimate the number of zeros given the mean
of the data, while the NB distributions may overestimate zeros, but underestimate
observations with a count.

Both the Waring distribution (3.16) and the Yule distribution as its special case
κ = 1 are highly skewed distributions exhibiting such a tail property. It can be
derived as a Beta mixture of the negative binomial distribution in its canonical form
	(n+κ)

	(n+1)	(κ) (1 − ς)n ςκ assuming the canonical parameter ς ∈ (0, 1) having the

Beta distribution with p.d.f. u(ς) = θςθ−1, 0 < ς < 1 so that

	(n+ κ)
	(n+ 1)	(κ)

∫ 1

0
ςκ (1 − ς)n

(
θςθ−1

)
dς = θ

	(n+ κ)	 (θ + κ)
	(κ)	 (n+ θ + κ + 1)

.

(3.26)

This formulation can be further written into two different ways:

1. The canonical parameter ς can be re-parameterized via the logit link function

log
(

1−ς
ς

)
= log β

κ
+ log t. If the infectious contact process {K(t)} has the

marginal distribution following negative binomial distribution expressed as:

Pr{K(t) = n} = 	(n+ κ)
	(n+ 1)	(κ)

(
βt

κ + βt
)n (

κ

κ + βt
)κ
, (3.27)

assuming the infectious period TI following the Pareto-II distribution with p.d.f.
βθ
κ

(
1 + βt

κ

)−(θ+1)
, then (3.25) becomes (3.26).

2. Alternatively, the canonical parameter ς can be re-parameterized via the com-
plementary logarithm link function log(− log(1 − ς)) = log β

κ
+ log t. If

the infectious contact process {K(t)} has the marginal distribution following
negative binomial distribution expressed as:

Pr{K(t) = n} = 	(n+ κ)
	(n+ 1)	(κ)

(
1 − e−βt/κ)n e−βt , (3.28)

assuming an exponentially distributed infectious period with p.d.f. fI (t) =
1
μI
e−t/μI . In this case, N = K(TI ) has the distribution given by

Pr(N = n) =
∫ ∞

0

	(n+ κ)
	(n+ 1)	(κ)

(
1 − e−βt/κ)n e−βt

(
1

μI
e−t/μI

)

dt.

(3.29)

Letting ς = e−βt/κ and θ = κ
βμI
, (3.29) also returns to (3.26).
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The marginal distribution expressed by (3.27) corresponds to the gamma mixture
of the Poisson process assuming individual heterogeneity (e.g., proneness) among
infectious contacts. It assumes that the intensity rate of producing a new infection at
individual level is independent from the past history, but individuals are heteroge-
neous due to unequal transmission rates or randomness in the infectious period. At
the population level such that the count numbers in two non-overlapping intervals
are correlated. This is the “proneness” argument.

The marginal distribution expressed by (3.28) corresponds to a completely
different stochastic process for the infectious contacts. It arises from a linear
pure birth process (Bartlett 1955; Bhattacharya and Waymire 1990; Allen 2010),
corresponding to the “contagion” argument (Irwin 1941; McKendrick 1925). It
assumes that initially all individuals have the same probability of incurring an
accident, but later this probability changes by each accident sustained. In the
infectious disease context, if an infectious individual has produced k infectious
contacts by time x, the hazard for producing the (k + 1)th contact is a linear
increasing function of k; thus, the more infectious contacts it produces, the more
likely it produces more infectious contacts. This phenomena is sometimes referred
to as preferential contacts in the literature related to modeling social contact
networks (Barabási and Albert 1999). At the population level, the count numbers
in two non-overlapping intervals are independent.

Consider a linear pure birth process (the Yule process) with

Pr{K(t + h) = n+ 1|K(t) = n} = β(n+ 1)h+ o(h), n = 0, 1, 2, · · · . (3.30)

According to (3.30), given that an infectious individual has produced n infectious
contacts by time t, the hazard for producing the (n + 1)th contact is an increasing
function of n. Starting at t = 0, corresponding to the beginning of the infectious
period for an individual, the waiting time to producing the first infectious contact is
exponentially distributed with meanE[X1] = 1

β
; conditioning on the first infectious

contact, the waiting time to the second infectious contact is exponentially distributed
with mean E[X2] = 1

2β ; · · · ; and conditioning on an infectious individual who has
produced n infectious contacts, the waiting time to producing the (n+1)th infectious
contact is exponentially distributed with mean E[Xn+1] = 1

(n+1)β . On the surface,
it looks as if the more infectious contacts it produces, the more likely it produces
more infectious contacts.

More generally, a pure birth process is defined by the transition probability

Pr{K(t + h) = n+ 1|K(t) = n} = (β1n+ β2)h+ o(h). (3.31)

Conditioning on K(t) = n, the instantaneous rate of producing the next infectious
contact during [t, t + h) can be considered as an independent competing risk
hazard: either from a global environment with constant rate β2, or from a clustered
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environment with non-constant rate β1n and β1 �= β2. The hazard of producing an
infectious contact at time t is

lim
h→0

Pr{K(t + h) = n+ 1|K(t) = n}
h

= β1n+ β2 = β (n/κ + 1) , (3.32)

where κ = β2/β1. If {K(t)} arises as a linear pure birth process given by (3.31),
from page 274 of Bhattacharya and Waymire (1990), the marginal distribution for
K(t) follows the negative binomial distribution given by (3.28).

When κ → ∞, the linear pure birth process reduces to a Poisson process with
β = β2

Pr{K(x + h) = n+ 1|K(x) = n} = βh+ o(h), n = 0, 1, 2, · · · . (3.33)

When κ = 1, the linear pure birth process reduces to the Yule process given by
(3.30) and (3.28) reduces to the geometric distribution

Pr{K(t) = n} = (1 − e−βt)n e−βt . (3.34)

On the surface, (3.28) is simply a re-parameterization of (3.27). The fundamental
difference is the underlying process that may have substantial implications on
certain features of disease transmission.

Example 12 Let’s consider the case that each infected individual has an infectious
period TI = μI which is not random. The distribution of the number of infectious
contacts produced by this individual during the entire infectious period is N =
K(TI ) and follows a negative binomial distribution, which could be either expressed
as

Pr{N = n} = 	 (n+ κ)
	 (κ) 	 (n+ 1)

(
βμI

κ + βμI
)n (

κ

κ + βμI
)κ
, n = 0, 1, 2, · · ·

(3.35)

derived from (3.27) or expressed as

Pr{N = n} = 	(n+ κ)
	(n+ 1)	(κ)

(
1 − e−βμI /κ)n e−βμI , n = 0, 1, 2, · · · (3.36)

derived from (3.28). The mean value E[N ] defines the basic reproduction number
in epidemiology, R0 = E[N ]. With respect to (3.35), the mean value R0 = βμI
is proportional to the infectious period. The parameter κ ranks the variance of the
individuals heterogeneity regarding the transmission rate but it has no effect on the
basic reproduction number. However, with respect to (3.36),
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R0 = E[N ] = κ
(
eβμI /κ − 1

)

= βμI + 1

2κ
(βμI )

2 + 1

6κ2 (βμI )
3 +O

(
(βμI )

4
)

→ βμI , as κ → ∞.

As the “contagion” factor 1/κ increases, so does the value of R0.

In addition to heterogeneity (proneness) and contagion arguments, there are other
stochastic mechanisms that manifest the same distribution. Clustering is another
possibility. Cresswell and Froggatt (1963) introduced such a model in the accident
context whereby the number of injuries by a person involved can be thought as a
random sum

M = Y1 + Y2 + · · · + YN,

where Yi are i.i.d. random numbers with mean E[Y ] = μY , variance var[Y ] =
σ 2
Y , and N follows a Poisson distribution with mean equal to its variance E[N ] =
var[N ]. As a result,

E[M] = μYE[N ]
var[M] = (μ2

Y + σ 2
Y )E[N ]

and data are over-dispersed if μ2
Y + σ 2

Y > 1. In the original work of Cresswell
and Froggatt (1963), Yi is the number of injuries from the ith accident, and each
person is liable to spells of weak performance during which the accidents occur.
When Yi follows a logarithmic distribution, the total number of injuries M follows
a negative binomial distribution. Xekalaki (1983) discusses spells model in terms
of a generalized Waring distribution. Xekalaki and Zografi (2008) developed the
generalized Waring process and show that such a process could also be interpretated
in the context of a spells model and used in modeling temporally evolving data.

Without going further into details of the spells model, we point out that it is
also highly relevant to disease modeling. Taking the number of infectious contacts
generated by a typical infected individual as example, spells may arise from spatial
clustering in external environment and only during such spell the infected individual
is exposed to a large number of susceptible individuals or arise internally in terms
of fluctuating infectiousness.

The above discussion reveals the following important points:

1. It seems to be quite common that count data from infectious diseases tend to
exhibit a highly skewed tail property and power-law, similar to the distribution in
Fig. 3.2.
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2. A highly skewed distribution that describes the number of infectious contacts
produced by a typical individual during the entire infectious period could be

(a) due to a highly skewed infectious period distribution such as the Pareto
distribution in (3.24), whereas the infectious contact process has moderate
heterogeneity in terms of the transmission rate β resulting in a geometric
distributed marginal distribution for K(t);

(b) or due to the contagion factor in the infectious contact process modeled by
a linear pure birth process, whereas the infectious period is exponentially
distributed as expressed by (3.29);

(c) or due to spells either arising externally from spatial clustering or internally
as infectiousness fluctuates;

(d) the count data themselves cannot distinguish these mechanisms.

3. The power-law distributions given by (3.14)–(3.16) involve an important param-
eter θ > 0. If θ ≤ 1, the mean E[N ] is infinite. Therefore, if the number of
infectious contacts produced by this individual during the entire infectious period
is best fitted by such distributions, there is a possibility that R0 cannot be defined.

3.3 General Formulation of a Counting Process

A counting process generates random counts. It is a stochastic process {K(t) : t ≥
0} with K(0) = 0 and K(t) < ∞, whose paths are with probability one right-
continuous, piecewise constant, and have only jump discontinuities, with jumps
of size +1. For comprehensive reading, we recommend Fleming and Harrington
(1991) and Andersen et al. (1993).

A counting process {K(t) : t ≥ 0} is adopted to the history Ht = {K(u),
0 < u ≤ t−} which contains the information generated by the process K(t) on
[0, t−). Ht may depend on the history of more than one correlated processes on
[0, t−), especially counting processes arising from the transmission of infectious
diseases. For example, in the stochastic susceptible-infectious-recovered (SIR)
model (Chap. 5), at any given time t , the numbers of susceptible, infectious, and
recovered individuals {S(t), I (t), R(t)} are all random counts. The cumulative
number of infected individuals C(t) = I (t) + R(t) and the number of recovered
individuals R(t) by time t form two counting processes {C(t) : t ≥ 0} and
{R(t) : t ≥ 0}. Both are adopted to the history Ht = {[S(u), I (u)] : 0 ≤ u ≤ t−}.
However, not all random counts are generated from counting processes. For
instance, the number of infectious individuals at time t, I (t) is a random count
but the process {I (t) : t ≥ 0} is not a counting process.

A counting process {K(t) : t ≥ 0} is jointly specified by several features.

1. The marginal distribution: The number of events during a time interval [t1, t2) is
K(t2, t1) = K(t2) − K(t1) ≥ 0 and the cumulative number of events by time t,
K(t) = K(t, 0), are random counts.
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(a) A counting process is said to have independent increments if the number of
events in disjoint intervals are independent.

(b) A counting process is said to have stationary increments if the distribution
of the number of events that occur in any time interval depends only on the
length of the time interval, that is, K(x + t, x) = K(t).

2. The intensity: The instantaneous intensity of the increments is defined as

λ(t) = 1

dt
Pr{K(t + dt)−K(t) = 1|Ht } (3.37)

= 1

dt
E[K(t + dt)−K(t)|Ht ] = d

dt
E[K(t)|Ht ].

In general, {λ(t), t ≥ 0} is a stochastic process because it is a function of
stochastic events in the past given by {Ht : t ≥ 0} . The cumulative intensity
{�(t) = ∫ t0 λ(u)du : t ≥ 0} is also a stochastic process adopted to the same
history {Ht : t ≥ 0} . {�(t) : t ≥ 0} is called the compensator of the counting
process {K(t) : t ≥ 0}. A counting process is often modeled by specifying the
intensity process.

(a) The intensity process λ(t) may be a deterministic function of time denoted
by β(t) ≥ 0 rather than a stochastic process. In this case, it is not dependent
on the past. A special case is λ(t) ≡ β, which equals stationary increment.

(b) The intensity process λ(t)may be modeled by a multiplicative model λ(t) =
β(t)ξ, where β(t) is a deterministic function of time t and ξ is a random
variable but not a stochastic process. A further special case is β(t) ≡ β. In
this case, E[λ(t)] is constant, implying a stationary increment.

(c) The intensity process λ(t)may be modeled by a multiplicative model λ(t) =
β(t)W(t), where β(t) is a deterministic function of time t and {W(t) : t ≥
0} is a stochastic process adopted to the history Ht . In later chapters with
respect to dynamic disease transmission models, we shall see models such
as λ(t) = βK(t), λ(t) = βK(t)[n − K(t)], λ(t) = β(t)K(t)[n − K(t)],
β > 0, etc.

3. Gaps between successive events: For a counting process, let us denote X1 the
time to the first event, and for k ≥ 1, Xk the time between the (k − 1)th and
the kth events. We further let Y1 = X1, Y2 = X1 + X2, · · · , Yk = X1 +
X2 + · · · + Xk to denote the times that events occur. Some of the key features
of the counting process are studied through continuous lifetime distributions for
gaps between successive events X1, X2, · · · , Xk, · · · and the timing of events
Y1, Y2, · · · , Yk, · · · .

A typical sample path of a counting process is illustrated schematically in Fig. 3.3.
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Fig. 3.3 Diagram for random variables representing time of events

3.3.1 Review of Some of the Counting Processes that Have
Been Mentioned Earlier

The Time-Homogeneous Poisson Process Given by Definition 11

The time-homogeneous Poisson process can be considered as a canonical counting
process. It has several equivalent definitions. It simultaneously satisfies:

1. The marginal distribution K(t) = K(t, 0) has the Poisson distribution

Pr(K(t) = n) = (βt)n

n! e−βt .

2. The process is Markovian because the future sample path only depends on K(t)
as given by Definition 11.

3. The process has stationary increment, i.e., the marginal distribution for K(x +
t, x) is identical to that of K(t) for any x ≥ 0.

4. The process has independent increments.
5. The gaps between successive events X1, X2, · · · , Xk, · · · are i.i.d. exponentially

distributed with mean E[X] = 1/β and hazard rate h(x) = β.

6. The waiting time to the kth event Yk has a gamma distribution with p.d.f. f (y) =
β
	(k)

(βy)k−1e−βy.
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Counting Processes with the Negative Binomial Distribution as the
Marginal Distribution for Count Numbers

Unlike the Poisson process, named after the marginal distribution of the count
numbers, the “negative binomial processes” is a collective term of several counting
processes whose marginal distributions can be expressed as a negative binomial
distribution. In previous subsections, we have seen two negative binomial presenta-
tions for K(t), given by (3.27) and (3.28), arising from two different underlying
stochastic mechanisms. There are other counting processes that give rise to the
negative binomially distributed marginal distributions.

Gamma Mixture of the Poisson Process The marginal distribution given by (3.27)
typically arises from a mixed-Poisson process in which the marginal distribution is
Poisson(βt) ∧

β
u(β), where u(β) follows a gamma distribution. One can re-write

the original Poisson process as Poisson(λt), in which, λ = βξ with β being a
constant and ξ the random effect, which is gamma distributed with mean E[ξ ] = 1
and variance var[ξ ] = 1/κ. The p.d.f. is u(ξ) = κ

	(κ)
(ξκ)κ−1 e−ξκ . The marginal

distribution is

Pr(K(t) = n) =
∫ ∞

0

(βξ t)n

n! e−βξt κ

	 (κ)
(ξκ)κ−1 e−ξκdξ (3.38)

= 	(n+ κ)
	(n+ 1)	(κ)

(
βt

κ + βt
)n (

κ

κ + βt
)κ
.

The intensity λ = βξ is a random variable with p.d.f. uλ(λ) = 1
β

κ
	(κ)

(
λ
β
κ
)κ−1

e
− λ
β
κ

and mean value E[λ] = β. However, it is dependent on {Ht : t ≥ 0} through the
value of K(t). Given K(t) = n, the conditional probability for the intensity for λ is

f (λ|K(t) = n) = Pr(K(t) = n|λ(t) = λ)uλ(λ)

Pr(K(t) = n)
(3.39)

=
(λt)n

	(n+1) e
−λt 1

β
κ
	(κ)

(
λ
β
κ
)κ−1

e
− λ
β
κ

	(n+κ)
	(n+1)	(κ)

(
βt
κ+βt
)n (

κ
κ+βt
)κ

= 1

λ	(n+κ)
(

λ
κ+βt
β

)n+κ
e
−λ κ+βt

β .

The conditional expectation is

E[λ|K(t) = n] = 1

	(n+ κ)
∫ ∞

0

(

λ
κ + βt
β

)n+κ
e
−λ κ+βt

β dλ = β(n+ κ)
κ + βt .

(3.40)
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Because it depends on {Ht : t ≥ 0} only through K(t) = n, it is still Markovian.
However, this process does not have independent increments. In fact, if (s1, t1],
(s2, t2] are two non-overlapping intervals and let x1 = t1 − s1, x2 = t2 − s2,

then cov [K(s1, t1),K(s2, t2)] = κ−1β2x1x2 (see Cook and Lawless 2007, p. 37).
With respect to the gaps between successive events X1, X2, · · · , Xk, · · · , they are
identically distributed and X1 arises from a gamma mixture of the exponential
distribution, which is a Pareto-II distribution with hazard rate h(x) = κβ

κ+βx .
Note that when κ → ∞, this process returns to the Poisson process, with
limκ→∞ β(n+κ)

κ+βt = limκ→∞ κβ
κ+βx = β. However, the gaps are not independent.

Many of the above statements are also true for mixed-Poisson processes with
arbitrary p.d.f. u(ξ) with E[ξ ] = 1 and uλ(λ) = 1

β
u(λ/β). The general expressions

for (3.38)–(3.40) become

Pr(K(t) = n) = (βt)n

	(n+ 1)

∫ ∞

0
ξne−βξtu(ξ)dξ,

f (λ|K(t) = n) = λne−λtuλ(λ)∫∞
0 λne−λtuλ(λ)dλ

,

E[λ|K(t) = n] =
∫∞

0 λn+1e−λtuλ(λ)dλ
∫∞

0 λne−λtuλ(λ)dλ
,

respectively.

1. These processes have stationary increments because at any given time t,
E[K(t)] = E[E[K(t)|ξ ]] = βt , hence d

dt
E[K(t)] = E[λ] = β.

2. These processes do not have independent increments. One only needs to show
that Pr{K(s) = n,K(s+ t)−K(s) = l} �= Pr{K(s) = n} Pr{K(s+ t)−K(s) =
l}. In fact,

Pr{K(s) = n,K(s + t)−K(s) = l}

=
∫ ∞

0
Pr{K(s) = n,K(s + t)−K(s) = l|ξ}u(ξ)dξ

=
∫ ∞

0

(ξs)n

n! e−ξs (ξ t)
l

l! e−ξ tu(ξ)dξ

�=
∫ ∞

0

(ξs)n

n! e−ξsu(ξ)dξ
∫ ∞

0

(ξ t)l

l! e−ξ tu(ξ)dξ

= Pr{K(s) = n} Pr{K(s + t)−K(s) = l}.

3. The gaps between successive events X1, X2, · · · , Xk, · · · are identically
distributed but not independent. The survival function for X1 is F(x) =∫∞

0 e−βξxu(ξ)dξ = L[u](βx), where L[u](s) = ∫∞
0 e−sξ u(ξ)dξ is the

Laplace transform with respect to u(ξ), and the hazard function is h(x) =
− d
dx

logL[u](βx) (see Chap. 2).
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The Linear Birth Process as a Negative Binomial Process The marginal distri-
bution given by (3.28) is also negative binomial. The intensity {λ(t), t ≥ 0} is a
stochastic process because it is a function of stochastic events in the past given by
{Ht : t ≥ 0} . From (3.32), λ(t) depends on the state K(t) = n at time t, and hence

λ(t) = β1K(t)+ β2 = β (K(t)/κ + 1) ,

where κ = β2/β1.

1. This process does not have stationary increments because E[K(t)] =
κ
(
eβt/κ − 1

)
and d

dt
E[K(t)] = E[λ(t)] = βe

t
κ
β .

2. This process does not have independent increment. This is directly from the
definition, Pr{K(t + h) − K(t) = 1|K(t) = n} = β(n/κ + 1)h + o(h) which
depends on K(t) = n.

3. With respect to the gaps between successive events X1, X2, · · · , Xk, · · · , they
are independent but not identically distributed. Starting at K(0) = 0, X1
is exponentially distributed with mean E[X1] = 1/β; X2 is exponentially
distributed with meanE[X2] = κ

β(κ+1) ; the gap between the nth and the (n+1)th
events Xn+1 is exponentially distributed with mean E[Xn+1] = κ

β(n+κ) ; etc.

A Linear Birth Process for Initial Exponential Growth of an Epidemic in a
Population The following counting process has been used in the literature as an
approximate model for the exponential growth in an infinitely large population
during the initial phase of an epidemic when the depletion of the susceptible
individuals is negligible. Let {C(t) : t ≥ 0} be a counting process, where C(t)
is the cumulative number of infections at time t. The conditional probabilities are
specified by

Pr{C(t + h) = n+ 1|C(t) = n} = rnh+ o(h)
Pr{C(t + h) = n|C(t) = n} = 1 − rnh+ o(h), n = 1, 2, . . . (3.41)

Pr{C(t + h) > n+ 1|C(t) = n} = o(h).

This process corresponds to β2 = 0 in (3.28) but also modified so that n ≥ 1. The
rate r > 0 is called the Malthusian number.

From page 250 of Allen (2010), given the initial condition C(0) = n0, the
marginal distribution of C(t) at time t follows the negative binomial distribution
with the exponential growth E[C(t)] = n0e

rt . The variance also grows exponen-
tially over time: var[C(t)] = n0e

2rt (1 − e−rt ).
With respect to the intensity process λ(t) = d

dt
E[C(t)|Ht ], it is Markovian,

depending on {Ht : t ≥ 0} only through the value of C(t) at time t . It can be written
as λ(t) = rC(t). Hence d

dt
E[C(t)] = rE[C(t)]. This argument corresponds to the

deterministic model C′
d(t) = rCd(t), where Cd(t) is a deterministic function for

the cumulative infections that approximates the mean value E[C(t)].
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The gap between the nth and the (n+ 1)th infection in the population, Xn+1, is
exponentially distributed with mean E[Xn+1] = 1

nr
. This model assumes that each

of the infected individuals at time t contributes a constant rate r to producing a new
infection during (t, t+h] independently. Given C(t) = n, the time to producing the
next new infection is the first of the n order statistics of independently distributed
exponential distributions with rate r, which is also exponentially distributed with
rate nr.

3.3.2 Martingales and Their Relations with Counting
Processes

This advanced topic is beyond the scope of this book. We only provide a brief note
because it is considered one of the statistical models used to fit complex disease
transmission models to time-series data. Readers may skip this section for the time
being and come back to it when referenced.

Martingale: A Very Brief Introduction

Let {M(t) : t ≥ 0} be a right-continuous stochastic process (Fig. 3.3) with left-hand
limits adopted to the filtration history Ht . We say {M(t) : t > 0} is a martingale
if (i) E |M(t)| < ∞ for all t < ∞; (ii) E {M(t + x)|Ht } = M(t), a.s. for all
x ≥ 0, t ≥ 0. If we replace (ii) above by E {M(t + x)|Ht } ≥ M(t), almost surely,
for all x ≥ 0, t ≥ 0, we call {M(t) : t > 0} a submartingale.

The Doob–Meyer decomposition theorem states that, for any submartingale
{K(t) : t ≥ 0}, there exists a unique predictable increasing process {�(t) : t ≥ 0},
called a compensator, such that �(0) = 0, a.s., E[�(t)] < ∞ for any t, and
{M(t) = K(t)−�(t) : t > 0} is a martingale. The proof of this theorem is beyond
the scope of this book.

The trend of a submartingale tends to increase over time. The trend of a
martingale tends to be constant over time. A consequence is E {M(t)|H0} = M(0),
a.s. for all t ≥ 0. When M(0) ≡ 0, we have E {M(t)} = 0, a.s. for every t. In this
case, we call {M(t) : t ≥ 0} a zero-mean martingale.

Variance and Covariance Processes for Zero-Mean Martingales

For a zero-mean martingale {M(t) : t ≥ 0}, the variation process is a stochastic pro-
cess {〈M〉 (t) : t ≥ 0} which makes

{
M2(t)− 〈M〉 (t)} a zero-mean martingale. For

two zero-mean martingales {M1(t)} and {M2(t)}, the covariate process is a stochas-
tic process {〈M1,M2〉 (t) : t ≥ 0} which makes {M1(t)M2(t)− 〈M1,M2〉 (t)(t)} a
zero-mean martingale.
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The
∫

HdM Martingale Transform

The
∫
HdM martingale transform is a useful tool. We refer the readers to Fleming

and Harrington (1991) and Andersen et al. (1993) for the theory. Without presenting
the proof, for a martingale of the form {M(t) = K(t)−�(t) : t ≥ 0} satisfying
E[K(t)] < ∞ for all t < ∞, let {H(t) : t ≥ 0} be a bounded predictable process,
then the process given by

∫ t
0 H(x)dM(x) is a martingale. Here the integral

∫ t
s
f dM

represents the Stieltjes integration of the sum of the values of f at jump times of
M(x) in the interval [s, t). We shall review this later in Chap. 7.

3.4 Problems and Supplements

3.1 We assume a very large population setting so that each individual has equal
chance to make contacts with everyone else. The contact rate is λ, that is,
from the perspective of an individual, the time to the next contact with another
individual is exponentially distributed with rate λ.

(a) Let (t, t + x] be a time interval of length x. Let N(t, t + x) be the
total number of contacts made by a typical individual. Show that the
distribution of N(t, t + x) only depends on the length x and is identical to
the distribution of N(0, x) ≡ N(x); and show that N(x) follows a Poisson
distribution given by (3.9) with rate θ = λx.

(b) Let p ∈ (0, 1] be the probability that the contact is between a pair of
susceptible–infectious individuals and during the contact, a transmission
occurs. Such a contact is called an infectious contact. Show that, the total
number of infectious contacts produced by a typical infected individual
during (t, t+x] also follows a Poisson distribution (3.9) with rate θ = λpx.

3.2 The set of conditions given in 3.1 is called “homogeneous mixing.” Assuming
that an infected individual is seeded into an infinitely large susceptible popula-
tion at time zero. This individual is associated with a random infectious period
TI . Under homogeneous mixing, the number of infectious contacts produced
by this individual during the time interval (0, t], denoted by K(t), follows a
Poisson distribution with rate θ = λpt, provided that t < TI . The number of
infectious contacts produced by this individual during the time interval (0, t] in
general is denoted by N(t) such that

N(t) =
{
K(t), 0 < t < TI
K(TI ), TI ≤ t. (3.42)

We let N = N(∞) be the cumulative number infectious contacts generated by
this infectious individual throughout the entire infectious period.
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(a) Show that, p.g.f. of N, GN(s), is given by (3.23), where fI (x) is the p.d.f.
of the infectious period.

(b) Let μI = E[TI ] be the mean infectious period, show that E[N ] = λpμI ,
regardless of the exact distribution of the infectious period as long as μI
exists.

(c) If TI is exponentially distributed with hazard rate γ, show that N follows a
geometric distribution

Pr(N = n) =
(

λp

λp + γ
)n

γ

λp + γ .

(d) If TI is gamma distributed with E[TI ] = μI and var[TI ] = μ2
I /κ, what is

the distribution of N? Write down its variance.

3.3 Consider the probability generating functions defined by (3.3).

(a) Cross validate that, if the distribution of N is not degenerated to a point
mass, that is, there is no n ≥ 0 such that Pr(N = n) = 1, then the p.g.f. is
strictly increasing for s ∈ [0, 1] and is strictly convex, satisfying (3.4).

(b) Cross validate that the mean and the variance of N, if exist, can be
expressed by (3.6).

(c) Express the p.g.f. of the negative binomial distribution as a function of μ
and κ, where μ = E[N ] corresponds to (3.20) as well as the p.g.f. when
κ → ∞. Assuming μ = 3, plot the p.d.f. with κ = 0.5, 1, 2, and the
limiting case κ → ∞.

(d) Keeping μ fixed, comment on how κ ranks the variance, the p.g.f., and the
probability f0 = Pr(N = 0).

3.4 Using the convex order to compare variability in Chap. 2 also applies to random
counts. Keeping μ = E[N ] fixed, the variability of N can be ranked according
to the convex order. We say N2 is more dispersed than N1 if E[N1] = E[N2]
and E[�(N1)] ≤ E[�(N2)] for all convex functions �(x) for which these
expectations exist.

(a) How does this variability order with respect to N rank the p.d.f. GN(s) for
s ∈ [0, 1]?

(b) Consider the p.g.f. given by (3.23), how does the variability of the
infectious period TI , according to convex order, rank the p.d.f. GN(s) for
s ∈ [0, 1]?

3.5 (The order statistics structure of a counting process) Let us consider a counting
process {K(t)}∞t=0 so that conditioning on {K(t) = k}, the k arrival times
y1, . . . , yk are distributed like order statistics of independent samples arising
from an identical distribution G(y|t). Such a counting process is said to have
an order statistics structure. It generates new events independently and with
identical distribution for the time to events.
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(a) Show that the time-homogeneous Poisson process in Definition 11 has an
order statistics structure with the joint p.d.f. as

f (y1, y2, · · · yk|K(t) = k) = k!
k∏

i=1

g(yi |t)

= k!
tk
, 0 < y1 < y2 < · · · < yk ≤ t,

where g(yi |t) = t−1. In other words, given that K(t) = k, the k
arrival times of the events have the same distribution as the order statistics
corresponding to k independent random variables uniformly distributed on
the time interval (0, t).

(b) (The non-homogeneous Poisson process) The process {K(t) : t ≥ 0} is a
non-homogeneous Poisson process of intensity β(t), if for small h > 0, all
t > 0, and , the following conditions hold:

(i) K(0) = 0;
(ii) Pr{K(t)−K(t − h) = 1|Ht−h} = β(t)h+ o(h); (Markov property)

(iii) Pr{K(t)−K(t − h) > 1|Ht−h} = o(h).

(c) Show that the cumulative number of events in the time interval (s, s + t]
follows the Poisson distribution

Pr{K(s, s + t] = k} =
(∫ s+t
s

β(u)du
)k

k! e
−
s+t∫
s

β(u)du

.

(d) Show that the non-homogeneous Poisson process also have order statistics
structure.

f (y1, y2, · · · yk|K(t) = k) = k!
k∏

i=1

β(yi)

B(t)
, 0 < y1 < · · · < yk ≤ τ,

where B(t) = ∫ t0 β(u)du. This is the distribution of the order statistic in a

sample of size k from the density g(y|t) = β(y)
B(t)
, y ≤ τ.

(e) If a process has the order statistic structure, such a process must be
a Markov chain (Crump 1975). Now consider the counting process
{N(t)}∞t=0, where N(t) is given in (3.42) in Problem 3.2. Let tm < s

be the time when the mth infection took place and no infection in (tm, s),
what factors does the probability that, this infected individual is able to
infect others at time s, depend on? Is the process {N(t)}∞t=0 a Markov
chain?
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(f) For a typical infected individual, if the numbers of infectious contacts
{K(t)}∞t=0 follow a Poisson process (homogeneous mixing), but there is
also a random infectious period TI acting as a stopping time that gives rise
to (3.42), is it appropriate to consider that the times to transmission of the
pathogen to its infectees as an i.i.d. sample of a lifetime distribution?

3.6 (Incidence, prevalence, and convolutions) Recall the intensity process (3.37)
associated with a counting process {C(t) : t ≥ 0}. When C(t) represents the
cumulative number of infections in the population by time t, we call λ(t) as the
incidence intensity. If λ(t) is a deterministic function,

∫ t
s
λ(u)du represents the

expected number of new infectious in the population during the time interval
(s, t]. We assume that there is a random duration X, with p.d.f. fX(x) and
survival function FX(x), and each infected individual must go through such a
duration that leads to a subsequent event (e.g., diagnosis, becoming infectious,
death, etc.). The following two convolutions are valid:

a(t) =
∫ t

0
λ(u)fX(t − u)du,

�(t) =
∫ t

0
λ(u)FX(t − u)du.

(a) Give the meanings for a(t) and �(t) in the following situations:

(i) the subsequent event is the onset of symptoms;
(ii) the subsequent event is the diagnosis of the infection;

(iii) the subsequent event is that the infected individual becomes infec-
tious;

(iv) the subsequent event is death.

(b) Let μ = E[X] = ∫∞
0 FX(t)dt, under what conditions that �(t) is

constant and proportional to μ? (and comment on the statement in many
introductory epidemiology textbooks that “prevalence = incidence ×
duration.”)

(c) Assume λ(t) is a deterministic function and for practical purposes, we
consider discrete time points t = 1, 2, . . . and i(t) = ∫ t

t−1 λ(u)du is the
expected number of new infections in the time interval (t − 1, t]. The
duration X is the incubation period, defined as the time from infection
to clinical onset. Let fX(x) = FX(x − 1) − FX(x), x = 1, 2, . . . and
we approximate a(t) = ∫ t0 λ(u)fX(t − u)du by a discrete time model
a(t) =∑tu=0 i(u)fX(t − u).

(i) What is the meaning of a(t) in this convolution?
(ii) Let Yt be the number of clinical onsets during the time interval (t −

1, t] and follows a Poisson distribution. Write probability Pr(Yt = yt ).
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(iii) Assume that λ(t) is specified through an unknown parameter θ so
that i(t) is expressed as i(t; θ), whereas fX(x) does not involve any
unknown parameters. We assume that (Yt , t = 1, 2, . . . , l) are inde-
pendently distributed and data are observed as (yt , t = 1, 2, . . . , l).
Write the log-likelihood function of θ based on the observations.

(d) In some infectious disease models, λ(t) is a stochastic process given by
λ(t) = β(t)I (t), where β(t) is a deterministic function of time t and
I (t) is the (stochastic) number of individuals who are infectious at time t;
meanwhile,X is the infectious period. Examine if the following expression
is true:

E[I (t)] =
∫ t

0
β(t − x)E[I (t − x)]FX(x)dx.



Chapter 4
Behaviors of a Disease Outbreak During
the Initial Phase and the Branching
Process Approximation

We consider that at the beginning, t = 0, there is no disease. We call the system at
this condition the disease-free equilibrium. We assume that the entire population is
susceptible. The size of the susceptible population is denoted by m.

We then seed an initial number of i0 infectious individuals into this population.
When transmission starts, we say that the system is moving away from the
equilibrium condition.

We assume that there exists a period of time during which the depletion of the
number of susceptible individuals in the population is negligible. We call this period
the initial phase of an outbreak. This assumption requires m to be very large and i0
to be very small. For mathematical convenience, the susceptible population size is
approximated by m → ∞.

This chapter studies the behaviors of a disease outbreak during the initial phase.
The first part of the chapter shows that regardless of how contagious the disease
is, there is always a positive probability δ that the outbreak becomes extinct in a
few generations and the system returns to disease-free equilibrium. The expected
final number of infected individuals is independent of the population size m. The
second part focuses on the condition that, if 1 − δ > 0, the expected number
of cumulatively infected individuals grows very large, scaled by the size of the
susceptible populationm. Should that happen, we discuss the properties of the initial
growth of the epidemic over generations and in real time during the initial phase.

4.1 The Branching Process Approximation

Discrete and continuous time branching processes are used in infectious disease
epidemiology to characterize the initial stage of an outbreak.
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4.1.1 The Galton-Watson Branching Process

In an outbreak investigation, data from contact tracing give a branching process
representation. The basic reproduction number, R0, is a key quantity in the field
of infectious disease epidemiology (Anderson and May 1991; Diekmann and
Heesterbeek 2000; Brauer 2006; Castillo-Chavez et al. 2002). It characterizes the
early spread of an outbreak in terms of the average number of secondary infections
produced by a typical infected individual during the initial phase. Figure 4.1 displays
transmission trees for historic outbreaks of smallpox, Ebola, SARS, and MERS
and at the same time highlights the role of confined settings (e.g., hospitals) in
the spread of infectious diseases. Because it is often difficult to reconstruct the
transmission chains of infectious epidemics, we draw connections between the
branching process that dictates the generation of secondary cases (Nishiura et al.
2012) and the continuous time models of epidemic growth with a particular attention
at non-exponential growth processes and models that support them.

The Galton-Watson branching process is a discrete time branching process.
Consider a population consisting of individuals that are able to produce offsprings.
Let X0 be the number of individuals initially present and form Generation Zero. A
typical individual i produces a random number Ni of new offsprings. We assume
that Ni are independently and identically distributed as N with mean value R0 =
E[N ].

The assumption of independency allows us to simplify the assumption that i0 =
X0 = 1 without losing generality.

Fig. 4.1 Transmission trees for four infectious disease outbreaks: (a) Smallpox in a hospital in
Kuwait in 1967 (Arita et al. 1970), (b) Ebola outbreak in Nigeria, 2014, (c) SARS in Toronto,
2003 (Varia et al. 2003; Chowell et al. 2015), and (d) MERS in Al-Hasa, Saudi Arabia, 2013
(Assiri et al. 2013)
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All offsprings of Generation Zero constitute the first generation and their number
is denoted byX1. LetXg denote the size of the gth generation. Suppose thatX0 = 1,
we can calculate

Xg =
Xg−1∑

i=0

Ni. (4.1)

We say a branching process becomes extinct at generation g, if Xg−1 > 0 but
Xg = 0. The final size of the branching process upon extinction is

∑
g Xg .

When used to approximate the behavior of an outbreak at its initial phase, it is not
only assumed that Ni are i.i.d. but also that the distribution of N does not change
over generations. Under such assumptions, a typical infected individual produces
on average R0 = E[N ] new infections to make its next generation. The parameter
R0, defined at Generation Zero when the system is at (disease-free) equilibrium, is
called the basic reproduction number. It is applied to the first few generations during
the initial phase.

This process {Xg : g = 0, 1, 2, · · · } has the Markov property, that is, the
distribution of Xg only depends on Xg−1. All the variables in this process are
random counts. Using terminology regarding disease transmission, they are:

1. N : the number of secondary infections produced by a typical infected individual
during the initial phase.

2. Mg : the number of generations until extinction.
3. Xg : the size of infected individuals of the gth generation.
4. Zs : the final size of an outbreak upon extinction.

The Probability Generation Function for N

The probability generating function for N, denoted by GN(s) = E[sN ] =∑∞
j=0 s

j Pr{N = j}, will be used extensively in the study of the distributions for
the random counts 1.–4. listed above. This is largely due to the fact that most of the
random counts represented by the Galton-Watson branching process are random
sums so that recursive formulas can be easily established based on GN(s). For
instance, it is well known in probability theory (Exercise 4.1) that, for i.i.d. random
counts Ni with p.g.f. GN(s), the p.g.f. of the random sum N1 + N2 + · · · + NX is
GX(GN(s)),whereGX(s) is the p.g.f. of the random integer X. Therefore the p.g.f.
for the random sum given by (4.1) is GXg(s) = GXg−1(GN(s)).

By definition, GN(0) = Pr{N = 0}, GN(1) = ∑∞
j=0 Pr{N = j} = 1. In

general, if the offspring distribution is not a point mass, GN(s) is an increasing and
strictly convex function in s ∈ [0, 1]. When the first moment of N exists, the basic
reproduction number R0 is the expected value

R0 = E[N ] = G′
N(1). (4.2)
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We assume that the second moment exists, and call var[N ] the basic reproduction
variance (Haccou et al. 2005). It can be expressed as

var[N ] = G′′
N(1)+G′

N(1)−
(
G′
N(1)
)2
.

4.1.2 Embedding the Galton-Watson Branching Process
into a Continuous Time Framework

In the continuous time framework, a counting process {K(x) : x ≥ 0} is defined
to track the cumulative number of new infections of a typical infected individual
where x = 0 is the time at infection. Each individual is associated with an infectious
period TI > 0, which is a continuous random variable. Infections produced by such
an individual only occur during TI . The number of infectious contacts produced by
this individual during the entire infectious period is N = K(TI ).

The Galton-Watson process is a discrete time branching process characterized
by the marginal distribution of N, along with the distributions of other random
counts such asMg, Xg , and Zs , without any attention on the stochastic mechanisms
regarding the counting process {K(x) : x ≥ 0} and the distributions of the
latent period (during which the infected individual is not able to transmit to other
susceptible individuals through contact) and the infectious period. All branching
processes in the continuous framework have an embedded Galton-Watson branching
process defined by the marginal distributions of the random counts to track the
generations. This chapter will demonstrate that some behaviors of the early phase
of the outbreak are determined by the properties of these marginal random count
distributions, whereas other behaviors will be dependent on the properties of the
counting process {K(x) : x ≥ 0} and the distributions of the latent and the infectious
periods.

The Crump-Mode-Jagers (CMJ) Branching Process

The Crump-Mode-Jagers (CMJ) branching process has been used to approximate
the early phase of the SIR models (Barttlet 1961; Mode and Sleeman 2000). It
assumes that each infected individual is immediately infectious upon infection (i.e.,
without latent period). It also assumes that {K(x) : x ≥ 0} and the infectious TI
are independent, and that infected individuals have i.i.d. TI specified by an arbitrary
distribution.

A special case of the CMJ branching process used to approximate the early phase
of the epidemic is the assumption that {K(x) : x ≥ 0} is a stationary Poisson process
with intensity β for the infectious contact process. The infectious period TI > 0 is
a continuous random variable serving as a stopping time of the counting process. In
many simple disease transmission models, TI is often assumed to be exponentially
distributed.
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The Probability Generation Function for N in a CMJ Process

We considered the CMJ branching process in which {K(x) : x ≥ 0} is a stationary
Poisson process with intensity β for the infectious contact process. During any time

interval of length x within the infectious period, Pr{K(x) = k} = (βx)k

k! e
−βx with

p.g.f.

GK(s; x) = e−βx(1−s). (4.3)

It has been shown (Mode and Sleeman 2000) that the p.g.f. for N can be expressed
by

GN(s) =
∫ ∞

0
GK(s, x)dFI (x) =

∫ ∞

0
e−βx(1−s)dFI (x) = L[fI ](β(1 − s)),

(4.4)

where FI (x) is the cumulative distribution of the infectious period and L[fI ] is the
Laplace transform of the infectious period TI .

Extensions of the CMJ Branching Process

The CMJ branching process can be extended in several ways. For instance, one way
is illustrated in (b) of Fig. 4.2 in which a random latent period TE is added to the
CMJ process. The usual assumption is that the latent period TE is independent from
the infectious period TI and both distributions can be arbitrary but specified.

Fig. 4.2 Illustration of the Galton-Watson branching process and the continuous time branching
process starting with a single individual. (a) The embedded Galton-Watson process in three
generations. (b) The continuous time branching process in one generation
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Another extension is to allow {K(x) : x ≥ 0} to arise from a counting process
other than the Poisson process. For example, infected individuals may have different
infectious contact rates. As a result, at the cohort level, the infectious contact process
arises as a mixed-Poisson process with marginal distributions given by the mixed-
Poisson distribution

Poisson(βμI ) ∧
β
u(β).

Alternatively, {K(x) : x ≥ 0} may arise as a linear pure birth process (Bartlett 1955;
Bhattacharya and Waymire 1990; Allen 2010).

The counting process may be replaced by dynamic social contact networks. In
infectious disease models, individuals are represented by vertices, and contacts are
represented by edges. Social contacts made over a fixed period of time may be
modeled by a random graph. As a function of time, social contacts can be regarded
as a random graph process. An infectious contact is a contact at which a transmission
of infection takes place (Dietz 1995). All infectious contacts during the same period
make a subgraph. The geometry of this subgraph is different from the graph that
represents social contacts. If three individuals {a, b, c} are friends forming a triangle
relationship and if individual a infects both individuals {b, c} , then b and c do not
infect each other. This description determines that the subgraph is directional, grows
along a tree that resembles a realization of an embedded Galton-Watson branching
process.

4.2 Extinction and the Invasion Probability

Starting from i0 = X0 = 1, except for the degenerated distribution Pr{N = 1} = 1,
the invasion probability is 1 − δ and can be calculated such that δ is the smallest
root of the fixed point equation GN(s) = s in s ∈ (0, 1]. This is a well-established
result in probability theory. For a rigorous proof, we refer to classic textbooks such
as Chap. 8 of Karlin and Taylor (1975), Jagers (1975), Haccou et al. (2005) among
others. Instead, we jointly describe the probability distribution of generations to
extinction and the invasion probability as illustrated in Fig. 4.3.

The generations to extinction Mg is defined by the event {Mg = g}, referring to
{no infected case at generation g + 1 and at least one infected case at generation
g}. We refer to the initially seeded infectious individuals as generation zero. Mg
takes values g = 0, 1, 2, . . . . The number of initially seeded infectious individuals
is i0. Given i0, the distribution of Mg is determined by the distribution of N, the
number of secondary infections produced by a typical infected individual, under
the assumption that the distribution of N does not change over generations and that
infected individuals produce secondary infections independently. For mathematical
convenience, we assume i0 = 1.
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Fig. 4.3 Graphic illustration of the recursive formulae (4.5)

First, Pr{Mg = 0} = Pr{N = 0} = GN(0). This is the case when there is no
secondary transmission. Assuming that the seeded individual in Generation Zero
gives j = 1, 2, · · · new infected individuals for the first generation, and these
individuals produce infections independently, then the event {Mg ≤ 1} takes place
only if none of the individuals in the first generation produces new infections to form
another generation. The probability is [GN(0)]j Pr{N = j} which is the j th term of
GN(GN(0)). Therefore Pr{Mg ≤ 1} = GN(GN(0)). Continuing by induction, we
arrive at a recursive formula for the event {Mg ≤ g} given by

Pr{Mg ≤ g} = G
g
N(0)

def.= GN(GN(· · ·GN︸ ︷︷ ︸
g+1 times

(0) · · ·︸︷︷︸)
g+1 times

, g = 0, 1, 2, . . . (4.5)

Because GN(s) is a convex function in s ∈ (0, 1] (Fig. 4.3), it is clear that the jump

Pr{Mg = 1} = GN(GN(0))−GN(0) < Pr{Mg = 0}.

Once more by induction, the sequence Pr{Mg = g}, g = 0, 1, 2, . . . is decreasing
and approaching zero. However, these probabilities may not properly define a
distribution. The cumulative probability Pr{Mg ≤ g} is a non-decreasing function
of g. Starting from Pr{Mg = 1} = GN(0), Pr{Mg ≤ g} has the limit

lim
g→∞ Pr{Mg ≤ g} = δ ≤ 1,

where δ is the smallest root of the fixed point equation GN(s) = s in s ∈ (0, 1]
(Fig. 4.3).
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4.2.1 The Effects of Variability of N on the Invasion
Probability 1 − δ and Generations Toward Extinction

The description of dispersion of two lifetime X1 and X2 with equal mean value
(should they exist), as shown in Fig. 2.10 in Chap. 2, also applies to random counts
to rank their variability. Let f and g be the p.m.f. forN1 and N2 with corresponding
survival functions Fn and Gn, and E[N1] = E[N2]. We say that N2 is more
dispersed (spread out) than N1 if

1. gn − fn has two sign changes and the sign sequence is: +,−,+.
2. Fn −Gn has one sign change and the sign sequence is: +,−.

These two statements are equivalent to say that N2 is more dispersed than N1
if E[N1] = E[N2] and E[�(N1)] ≤ E[�(N2)] for all convex functions �(x)
for which these expectations exist. Applying to the number of secondary infections
produced by a typical infected individual, keeping the mean value R0 = E[N ]
fixed, the convex order gives order for the probability generating functionGN(s) =
E[sN ] since sN is a convex function of N. It also implies the ordering according to
variance var(N) = E[(N − R0)

2] because x2 is a convex function. Therefore, the
more dispersed the N, the larger the variance var[N ] and also larger the value of
GN(s) for any s ∈ [0, 1]. Figure 4.4 illustrates that, among the distributions with
equal mean R0 = 3, the geometric distribution (κ = 1) is more dispersed than the
Poisson distribution (κ → ∞) and the shape parameter κ of the negative binomial
distribution κ ranks the probability generating function. The shape parameter κ also
ranks the variance: var[N ] = R0 + R2

0/κ. The left panel in Fig. 4.4 shows the
two sign changes of the p.m.f. fn, and the right panel shows the ranks of the p.g.f.
GN(s).

Fig. 4.4 Illustration of the dispersion of the negative binomial distribution given R0 = 3 by
comparing the probability mass function and GN(s)
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Summary Statements on Invasion Probability and Generations to
Extinction

The threshold condition is R0 = 1.

1. When R0 = G′
N(1) ≤ 1, the smallest root is δ = 1 and the invasion probability

is 1 − δ = 0. Pr{Mg ≤ g} is a properly defined probability distribution. The
mode of the distribution Pr{Mg = g} is g = 0. Since convex order gives
order for the probability generating function GN(s),the more dispersed the
distribution, the larger that value Pr{Mg = 0} = GN(0). Figure 4.5 implies
that the more dispersed N, the more likely extinction will happen quickly within
fewer generations.

2. When R0 < 1, the distribution forMg has an exponentially decaying tail, that is,
there exists a positive number C such that

Pr{Mg > g} = 1 −GgN(0) ∼ CR
g

0 , as g → ∞,

Fig. 4.5 Illustration of
G′
N(δ) < 1 when

R0 = G′
N(1) > 1
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where GgN(0) is defined by (4.5) and the expectation E[Mg] is finite. Regarding
the precise properties of this distribution, there has been little attention in the
literature. Some approximate but useful results are available. If the number of
initial seeded infectious individuals i0 is large, the expected generation number
to extinction can be approximated by Haccou et al. (2005)

E[Mg] ∼ log i0
| logR0| , i0 → ∞.

3. If R0 = 1, Pr{Mg ≤ g} is a properly defined distribution. However,

Pr{Mg > g} ∼ 2

σ 2g
, as g → ∞,

where σ 2 = var[N ], assuming var[N ] < ∞. In this case,Mg has infinite mean.
4. When R0 = G′

N(1) > 1, there is a unique solution δ in the open interval
(0, 1) and the invasion probability is 1 − δ > 0. In this case, Pr{Mg ≤ g}
is not a properly defined distribution. However, the normalized distribution
Pr{M̃g ≤ g} = 1

δ
G
g
N(0) is meaningful. We denote Ñ as the random variable that

is distributed according to the conditional distribution of N, given the outcome
is not a large outbreak (with probability δ > 0). Waugh (1958) shows that the
probability generating function of Ñ is given by

GÑ(s) = 1

δ
GN(δs). (4.6)

It turns out that E[Ñ ] = G′
N(δ), var[Ñ ] = δG′′

N(δ) + G′
N(δ) − G′

N(δ)
2. It is

always true that R̃0 = G′̃
N
(1) = G′

N(δ) < 1 (see Fig. 4.5). The notation M̃g
corresponds to the time to extinction, conditioning on the outcome being a small
outbreak. The probability M̃g > g is

1 − 1

δ
G
g
N(0) = δ −GgN(0)

δ
.

It can be shown that for a suitable positive constant C,

δ −GgN(0) ∼ C
[
G′
N(δ)
]g , as g → ∞.

and 0 < G′
N(δ) < 1. M̃g also has an exponentially decaying tail.
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4.2.2 When N Follows the Power Series Distributions

The power series distributions given by (3.7) in Chap. 3 have p.g.f. with the form
GN(s) = A(sθ)/A(θ) where θ is the canonical parameter. These distributions
include the Poisson distribution with A(θ) = eθ , θ > 0; the geometric distribution
with A(θ) = (1 − θ)−1, 0 < θ < 1; the negative binomial distribution with
A(θ) = (1 − θ)−κ , κ > 0 and 0 < θ < 1; the logarithmic distribution with
A(θ) = − log(1 − θ), 0 < θ < 1. The fixed point equation GN(δ) = δ becomes

A(δθ) = δA(θ). (4.7)

Conditioning on the final outcome not being a large outbreak, data arise from the
distribution of Ñ with p.g.f.

GÑ(s) = GN(δs)/δ = A(δsθ)/δA(θ) = A(sθ∗)
A(θ∗)

(4.8)

where θ∗ = δθ. This result directly follows (4.6), GN(s) = A(sθ)/A(θ) and (4.7).
It implies that Ñ and N belong to the same class of distributions within the power
series distribution family with a re-scaled canonical parameter θ∗.

The Geometric Distribution for N

The geometric distribution has a very distinct role in infectious disease models.
Many compartmental models associated with exponentially distributed infectious
period give rise to a geometrically distributed random number N representing the
number of secondary infections produced by a typical infected individual withR0 =
E[N ]. This distribution is a member of the power series distribution family with
A(θ) = (1 − θ)−1. The p.g.f. is GGeo

N (s) = 1−θ
1−sθ and R0 = θ

1−θ . The variance

of the geometric distribution is var[N ] = R0 + R2
0 . The p.g.f. can be alternatively

written as

GGeo
N (s) = 1

1 + R0(1 − s) . (4.9)

The smallest root of the fixed-point equation GGeo
N (s) = s for s ∈ (0, 1] is δ =

min {1, 1/R0} . IfR0 > 1, the conditional distribution ofN given the outcome being
a small outbreak is also a geometric distribution with mean value R̃0 = G′

N(δ) =
1/R0 and variance var[Ñ ] = R̃0 + R̃2

0 = (R0 + 1)/R2
0 along with p.g.f.

GGeo
Ñ
(s) = R0

R0 + 1 − s ,
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which could be either viewed as 1

1+R̃0 (1−s)
or as 1

δ[1+R0(1−δs)] .With respect toMg,

it can be shown that Pr{Mg = 0} = Pr{N = 0} = (1 + R0)
−1

Pr{Mg ≤ g} = R
g+1
0 − 1

R
g+2
0 − 1

→
{

1, R0 < 1
δ = 1

R0
, R0 > 1

, as g → ∞. (4.10)

In the case R0 > 1,

Pr{M̃g ≤ g} = 1

δ
Pr{Mg ≤ g} = R0(R

g+1
0 − 1)

R
g+2
0 − 1

(4.11)

= R̃
g+1
0 − 1

R̃
g+2
0 − 1

→ 1, as g → ∞.

Therefore, in an observed small outbreak, the distribution of the time-to-extinction
M̃g follows the form (μg+1−1)/(μg+2−1)withμ < 1. In the absence of additional
information, one cannot distinguish R0 = μ from R0 = μ−1.

The Poisson Distribution for N

The Poisson distribution is a member of the power series distribution family with
A(θ) = eθ . The number of secondary infections produced by a typical infected
individual N may arise from a Poisson distribution when the infectious contact
process is a Poisson process and there is no variation in the infectious period. The
probability generating function is GPois

N (s) = exp {−θ(1 − s)} and mean R0 = θ.

Therefore it is commonly written as

GPois
N (s) = exp(−R0(1 − s)). (4.12)

Unlike the geometric distribution, there is no analytic close form for the smallest
root of the fixed-point equation GPois

N (s) = s for s ∈ (0, 1] when R0 > 1.
In fact, δ can be expressed as δ = −R−1

0 LambertW
(−R0e

−R0
)
, where the

Lambert W function is a special function (Corless et al. 1996) defined as the
inverse function of zez, satisfying W(z) = ze−W(z). Letting z = −R0e

−R0 ,
LambertW

(−R0e
−R0
)

is defined for R0 ≥ 1. It is an increasing function of R0,

starts from LambertW
(−e−1

) = −1 and converges to zero as R0 → ∞. Numerical
computation for W(z) can be done through many commercially available software,
such as Maple. It can be shown that δ < 1/R0 because

exp(−R0(1 − s)) < 1

1 + R0(1 − s) , 0 < s < 1.
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From (4.8), it follows that

GPois
Ñ
(s) = exp

{−θ∗(1 − s)} = exp(−δR0(1 − s))

and hence if R0 > 1, the conditional distribution of N given the outcome being a
small outbreak is also a Poisson distribution with mean value

R̃0 = δR0 = − LambertW
(
−R0e

−R0
)
< 1.

With respect toMg, we get the following recursive calculation:

Pr{Mg = 0} = Pr{N = 0} = e−R0 ,

Pr{Mg ≤ 1} = e−R0eR0e
−R0
.

Pr{Mg ≤ 2} = e−R0
(
eR0e

−R0
)eR0e

−R0

,

Pr{Mg ≤ 3} = e−R0
(
eR0e

−R0
)
(
eR0e

−R0
)eR0e

−R0

,

...

Pr{Mg ≤ g} = e−R0�g(e
R0e

−R0
) (4.13)

where �g(x) denotes the iterated exponential function with �1(x) = x and

�n(x) = xx
···x

for n times. When R0 < 1, (4.13) gives a properly defined
distribution with limg→∞ Pr{Mg ≤ g} = 1. If R0 > 1, we need to numerically
calculate δ and replace R0 in (4.13) by R̃0 = δR0 to calculate the conditional
distribution Pr{M̃g ≤ g} for the number of generations at extinction, conditioning
on the outcome being a small outbreak.

The Negative Binomial Distribution for N

There are many stochastic mechanisms that may result in the phenomenon that
the number of secondary infections produced by a typical infected individual N
arises from a negative binomial distribution (Chap. 3). This distribution includes the
geometric distribution as a special case and the Poisson distribution as a limiting
case, and belongs to the power series distribution family with A(θ) = (1 − θ)−κ ,
κ > 0. The probability generating function is

GNB
N (s) =

(
1 − sθ
1 − θ

)−κ
=
(

1 + R0(1 − s)
κ

)−κ
(4.14)
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where R0 = E[N ] = G′
N(1) = θκ

1−θ . The variance is var[N ] = θκ

(1−θ)2 =
R0 + R2

0/κ, a decreasing function of κ. The parameter κ is commonly called the
shape parameter. The geometric distribution corresponds to κ = 1. The Poisson
distribution corresponds to κ → ∞. GNB

N (s) is ranked separately by (κ, R0). If
κ is fixed, the larger the mean value R0, the smaller is GNB

N (s) and hence δ is a
decreasing function of R0. On the other hand, if R0 is fixed, the larger the κ, the
smaller is GNB

N (s) and hence δ is a decreasing function of κ and the smallest value
of δ when R0 > 1 is δ = −R−1

0 LambertW
(−R0e

−R0
)

as κ → ∞. Using (4.8),
one needs to write δ = δ∗(κ) as a decreasing function of κ so that

GNB
Ñ
(s) =
(

1 − sδ∗(κ)θ
1 − δ∗(κ)θ

)−κ
=
(
κ + R0 − sδ∗(κ)R0

κ + R0 − δ∗(κ)R0

)−κ
,

and

R̃0 = R0κδ
∗(κ)

κ + (1 − δ∗(κ)) R0
. (4.15)

In these expressions, δ∗(κ) is the smallest root of GNB
N (s) = s in s ∈ (0, 1] for a

given κ.
The distribution of the time to extinction Mg can be calculated in the following

manner: the probability that the initially seeded individual does not infect anyone,

Pr{Mg = 0} = Pr{N = 0} =
(

1 + R0
κ

)−κ
is a decreasing function of κ. Starting

from this point, we get the following recursive calculation:

Pr{Mg ≤ g} =
(

1 + R0

κ

(
1 − Pr{Mg ≤ g − 1})

)−κ
.

If R0 ≤ 1, this is a properly defined cumulative distribution. If R0 > 1,
Conditioning on the final outcome being a small outbreak, then M̃g has the
following distribution

Pr{M̃g ≤ g} = 1

δ
Pr{Mg ≤ g}

=
(

1 + R̃0

κ

(
1 − Pr{M̃g ≤ g − 1})

)−κ
,

where R̃0 is given by (4.15).

4.2.3 Final Size Distributions for Small Outbreaks

Diekmann and Heesterbeek (2000) provide a distinction between a small outbreak
from a large outbreak. The cumulative number of infected individuals at time t
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is denoted by C(t) and let C(∞) = limt→∞ C(t). C(∞) is a random count and
E[C(∞)] is the expected final size of the outbreak.

Small outbreak: Asm → ∞, the outbreak becomes extinct after a handful cases
such that the expected number E[C(∞)] is finite. The expected outbreak size as
a proportion, E[C(∞)]/m, is concentrated at zero.

Large outbreak: As m → ∞, E[C(∞)] → ∞ but E[C(∞)]/m → η where
η is a positive quantity, 0 < η < 1. The expected final outbreak size number
scales linearly with the size of the susceptible population. In this case, it may be
suitable to write E[C(∞)] = mη as proportional to the population size for some
0 < η < 1 so that the final size scales linearly with m.

The original concept of small vs. large outbreaks was described in Kendall
(1956), where the author considered the shape of the continuous random variable
Ym = C(∞)/m defined on [0, 1] as having one of the two shapes: the J-shape
and the U-shape. The term J-shape refers to a distribution that is monotonically
decreasing so that it has a mode at zero. The distribution is said to have U-shape if
it is bimodal.

Nåsell (1995) defines the invasion threshold as a value at which the distribution of
Ym makes a transition from J-shape to U-shape. When the transmission parameter is
smaller than this threshold, then the distribution of Ym has a J-shape with certainty.
When it is larger than the threshold, then there exists a value 0 < δ < 1 such
that, with probability 1−δ, the distribution takes the bell-shaped distribution. In the
latter case, by the end of the outbreak, a positive proportion η of the population will
be eventually infected. In the previous sub-section, we have seen that the threshold
condition is R0 = 1 and the probability δ is the smallest root of GN(s) = s in
s ∈ (0, 1].

A U-shaped distribution can be thought as a binary mixture of a J-shaped
distribution and a uni-modal bell-shaped distribution with a probability δ assigned
to the J-shaped distribution. Figure 4.6 shows frequencies of the final sizes in
various population sizes using a stochastic SIR model corresponding to R0 = 1.8
and an exponentially distributed infectious period. The number of initially seeded
infectious individuals is i0 = 1. This model gives (in theory) geometric distribution
for N and calculated δ = 1/1.8 = 0.55556. Each simulation is repeated 500 times
by initially seeding one infected individual. Results give the frequency of the final
sizes with two modes, with one mode at zero and another mode around η = 0.73
of the size of the susceptible population. In four simulations with populations sizes
n = 50, 200, 1000, and 10,000, empirically observed δ lies between 0.55 and 0.60.

The condition R0 ≤ 1 leads to the probability δ = 1, which gives a J-
shaped distribution of Ym. However, it does not always imply that the final outcome
will be a small outbreak defined by E[C(∞)] < ∞. A small outbreak leads to
E[Y∞] = limm→∞ E[C(∞)]/m = 0, but E[Y∞] = 0 does not necessarily lead to
E[C(∞)] <∞. This is the case when R0 ≤ 1 but lies within the vicinity of 1 of the
order ofO(m−1/3). Rather than scaling C(∞) by the population sizem, Martin-Löf
(1988) studied the asymptotic distribution of Y ∗

n = C(∞)/m2/3 and showed that it
has a limit distribution as m → ∞ which may have different shapes, from J-shape
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Fig. 4.6 U-shaped distributions generated by simulations by repeatedly seeding i0 = 1 initially
infectious individuals 500 times at identical initial conditions (with R0 = 1.8) from susceptible
population sizes n = 50, 20, 1000 and 10,000

to a bimodal U-shape, to uni-modal with mode not at zero, or with a shape that is
rather flat. This makes the final size unpredictable.

Since a small outbreak is defined by E[C(∞)] <∞, we used the random counts
use Zs = 0, 1, . . . , for the final size, and its distribution is not dependent on the
population size.

Let GZ(s) = ∑∞
z=1 s

z Pr{Zs = z}. It has been shown (ref. Mode and Sleeman
2000, page 193) that

GZ(s) = s ·GN(GZ(s)). (4.16)

Thus GZ(1) = δ ≤ 1 which satisfies δ = GN(δ), hence

δ =
∞∑

z=1

Pr{Zs = z} =
{= 1, if R0 ≤ 1
< 1, if R0 > 1

.

If R0 > 1, Pr{Zs = z} does not define the complete probability distribution. When
R0 ≤ 1, GZ(s) is the p.g.f. for Zs . Large variability of N gives large values of
GN(s) for any s ∈ [0, 1] and hence large values of GZ(s).
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Mean and Variances for Zs

The first two derivatives with respect to s are

G′
Z(s) = GN(GZ(s))+ sG′

N(GZ(s))G
′
Z(s), (4.17)

G′′
Z(s) = 2G′

N(GZ(s))G
′
Z(s)+ sG′′

N(GZ(s))
(
G′
Z(s)
)2 (4.18)

+ sG′
N(GZ(s))G

′′
Z(s).

When R0 < 1, δ = 1, Pr{Zs = z}, z = 0, 1, . . . , is a complete probability
distribution. In addition, GN(1) = GZ(1) = 1. Since G′

N(1) = R0 < 1, let s = 1
in (4.17), one gets G′

Z(1) = 1 + R0G
′
Z(1). Hence

E[Zs] = G′
Z(1) = 1

1 −G′
N(1)

= 1

1 − R0
. (4.19)

Similarly, let s = 1 in (4.18) and use var[Zs] = G′′
Z(1)+G′

Z(1)−
(
G′
Z(1)
)2
, one

gets

var[Zs] = G′′
N(1)+G′

N(1)−G′
N(1)

2

(
1 −G′

N(1)
)3 = var[N ]

(1 − R0)
3 . (4.20)

Both the mean final size E[Zs] and its variance var[Zs] increase with R0 towards
infinity as R0 ↑ 1. Therefore when R0 is in the vicinity of 1, the final size is
unpredictable. Limiting the discussion for the distribution of N given fixed R0 < 1,
the more heterogeneous is N , the larger is var[N ] and the larger is var[Zs].

When R0 > 1, conditioning of the outcome being a small outbreak, the observed
phenomenon arises from the distribution of Ñ with the p.g.f. (4.6). Thus,

E[Zs] = 1

1 − R̃0
, where R̃0 = G′

N(δ) < 1; (4.21)

var[Zs] = δG′′
N(δ)+G′

N(δ)−G′
N(δ)

2

(
1 −G′

N(δ)
)3 = var[Ñ ]

(
1 − R̃0

)3 . (4.22)

These are extensions of (4.19) and (4.20) in the sense that they are valid for both
R0 > 1 and R0 < 1. For the latter, δ = 1 and G′

N(δ) = R0.

The Distribution of Zs

SinceGZ(s) as given by (4.16) is only a properly defined p.g.f. forZs whenR0 ≤ 1,
we extend (4.16) as

GZ(s) = s ·GÑ(GZ(s)) (4.23)
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where Ñ is uniquely defined by the p.g.f. GÑ(s) = 1
δ
GN(δs). In this case Ñ is

identically distributed as N if R0 ≤ 1.
We first define

Pr{Zs = z} = 1

z!G
(z)
Z (0) (4.24)

where G(z)Z (0) = dz

dsz
GZ(s)

∣
∣
∣
s=0

satisfying
∑∞
z=1 Pr{Zs = z} = δ ≤ 1. When

GZ(s) is defined by (4.23), (4.24) always gives a properly defined probability
distribution for Zs .

For any given p.g.f. GÑ(·), a close analytic form of GZ(s) may not always exist

by solving GZ(s) = sGÑ (GZ(s)). However, G(z)Z (0) can be sometimes solved
recursively starting from Pr{Zs = 1} = G′

Z(0).We use the convention that

Pr{Zs = 1} = G′
Z(0) = GÑ(0) = Pr{Ñ = 0}.

The event {Zs = 1} corresponds to the case that there is no secondary transmission
in the population and the final size is the number of initially seeded individuals.
There is also a convention that GZ(0) = Pr{Zs = 0} = 0 as there must be at least
one infective individual to start an outbreak.

The recursive procedure can be demonstrated for Pr{Zs = 2} and Pr{Zs = 3}.
From (4.18), G′′

Z(0) = 2G′̃
N
(GZ(0))G′

Z(0) = 2G′̃
N
(0)GÑ (0), which gives

Pr{Zs = 2} = 1

2
G′′
Z(0) = Pr{Ñ = 1} Pr{Ñ = 0}.

It is the probability that the index case can transmit to one individual with probability
Pr{Ñ = 1}, and the second individual does not transmit with probability Pr{Ñ = 0}.

With a bit more calculus, G(3)Z (0) = 3G′′̃
N
(0)
[
GÑ(0)

]2 + 6
[
G′̃
N
(0)
]2
GÑ(0) so

that Pr{Zs = 3} = 1
3!G

(3)
Z (0) can be expressed as

Pr{Zs = 3} = 1

2
G′′̃
N
(0)
[
GÑ(0)

]2 +
[
G′̃
N
(0)
]2
GÑ(0)

= Pr{Ñ = 2} (Pr{Ñ = 0})2 + (Pr{Ñ = 1})2 Pr{Ñ = 0}.

It implies that either the index case produces two secondary cases with probability
Pr{Ñ = 2} and neither of the secondary cases produces further transmission with

probability
(
Pr{Ñ = 0})2 ; or the index case produces one transmission and the

secondary case produces one transmission with joint probability
(
Pr{Ñ = 1})2, and

the third case does not transmit with probability Pr{Ñ = 0}.
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Some Special Cases when N is Distributed Within the Negative Binomial
Family

The Negative Binomial Distribution We assume that R0 �= 1 and N follows the
negative binomial distribution with R0 = E[N ] and variance var[N ] = R0 +
R2

0/κ. Given the outcome being a small outbreak, the observation arises from Ñ .

If R0 < 1, Ñ is identical to N. If R0 > 1, Ñ also follows a negative binomial
distribution by replacing R0 with R̃0 < 1 which is defined by (4.15). The p.g.f. of
the negative binomial distribution is GÑ(s) = (1 + R̃0(1 − s)/κ)−κ and (4.23) can
be written as:

GZ(s) = s

(

1 + R̃0(1 −GZ(s))
κ

)−κ
.

First, Pr{Zs = 1} = G′
Z(0) = GÑ(0) = (1 + R̃0/κ

)−κ
. For z ≥ 2, we calculate

recursively G(z)Z (0) =
z−2∏

j=0

(
j
κ

+ z
)
R̃z−1

0

(
1 + R̃0

κ

)1−z(κ+1)
. From (4.24),

Pr{Zs = z} = 1

z!
z−2∏

j=0

(
j

κ
+ z
)

R̃z−1
0

(

1 + R̃0

κ

)1−z(κ+1)

(4.25)

= 	(zκ + z− 1)

	(zκ)	(z− 1)

(
R̃z−1

0 (1 + R̃0)
1−2z

κ

)z−1

, z = 2, 3, . . . .

The mean and variance are

E[Zs] = 1

1 − R̃0
, var[Zs] = R̃0 + R̃2

0/κ

(1 − R̃0)3
.

The Geometric Distribution κ = 1 As a special case, Pr{Zs = 1} = (1 + R̃0
)−1

and for z ≥ 2

Pr{Zs = z} = 1

z!
z−2∏

j=0

(j + z)R̃z−1
0

(
1 + R̃0

)1−2z
(4.26)

= 	(2z− 1)

	(z)	(z− 1)

(
R̃z−1

0 (1 + R̃0)
1−2z
)z−1

, z = 2, 3, . . . ..

When R0 < 1, this gives the probability for z ≥ 2 :with mean value

E[Zs] = 1

1 − R0
, var[Zs] = R0(R0 + 1)

(1 − R0)3
. (4.27)
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When R0 > 1, if the outcome happens to be a small outbreak, then R̃0 = R−1
0

and

E[Zs] = R0

R0 − 1
, var[Zs] = R0 (R0 + 1)

(R0 − 1)3
. (4.28)

The Poisson Distribution κ → ∞ The limiting case of (4.25) is

Pr{Zs = z} = (R̃0z)
z−1

z! e−R̃0z, z = 1, 2, 3, . . . (4.29)

where R̃0 = R0 if R0 < 1 and R̃0 = − LambertW
(−R0e

−R0
)
< 1 if R0 > 1.

This distribution is the Borel-Tanner distribution first discovered by Borel (1942).
Its mean and variance are

E[Zs] = 1

1 − R̃0
, var[Zs] = R̃0

(1 − R̃0)3
.

4.2.4 Examples

We compare results in two examples. In Example 13, R0 < 1 and extinction
is certain. Regarding the three distributions (Poisson, geometric, and negative
binomial) examined, the probability distributions for Mg and Zs are calculated
based on R0 = 0.5.

Example 13 Suppose that we conduct a virtual experiment by repeatedly seeding
i0 = 1 infected individual in an infinitely large susceptible population. We assume
that this individual produces new infections according to a negative binomial
distribution with a shape parameter κ > 0 and on average this individual produces
R0 = 0.5 new infections. Each new infection produces new infections in their next
generation independently and the number of new infections also follows the same
distribution. Given R0, κ ranks both the p.g.f. GNB

N (s) and var[N ] = R0 + R2
0/κ .

The parameter κ gives a ranking of variability: the smaller the value of κ, the
larger the variability. It also ranks the probabilities Pr{N = 0} = Pr{Mg = 0} =
Pr{Zs = 1}. In the case of the Poisson distribution (κ → ∞), Pr{Mg = 0} =
Pr{Zs = 1} = 0.6065; the probability of extinction within three generations is
Pr{Mg ≤ 3} = 0.9582 and the probability of more than two total individuals
infected (including the originally seeded individual) is Pr{Zs > 2} = 0.21. If the
variability of N is larger than that of the Poisson distribution (i.e., as κ decreases),
the probability Pr{Mg = 0} = Pr{Zs = 1} increases and it takes fewer generations
to extinction. At κ = 0.25, Pr{Mg = 0} = Pr{Zs = 1} = 0.7598; the probability of
extinction within three generations is Pr{Mg ≤ 3} = 0.9801 and the probability of
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more than two total individuals infected (including the originally seeded individual)
is Pr{Zs > 2} = 0.09.

When R0 > 1, extinction is uncertain. For the same three distributions examined
in Example 13, the probabilities of extinction are calculated along with a different
value R̃0 < 1. In this case, the parameter κ does not rank the probability Pr{M̃g =
0} = Pr{Zs = 1}. This is shown in the following example.

Example 14 Suppose that we conduct the same experiment as in Example 13 but
setting R0 = 3. Given R0, κ ranks both the p.g.f.GNB

N (s) and var[N ] = R0 +R2
0/κ

as well as the probability of extinction δ and the value of R̃0. Conditioning on the
event of extinction, the distribution of generations to extinction and the final size of
the small outbreak are calculated based on different values of R̃0.

1. The Poisson distribution (κ → ∞) gives the smallest value δ ≈ 0.06. It
is expected that in 6% of the repeated experiments the transmission will not
sustain and data arise as if manifested from a different Poisson distribution
with R̃0 = − LambertW

(−3e−3
) = 0.17856. With respect to generations to

extinction, from 4.13, we get Pr{M̃g = 0} = 0.8365, Pr{M̃g ≤ 1} = 0.9712,
Pr{M̃g ≤ 2} = 0.9949, Pr{M̃g ≤ 3} = 0.9991, Pr{M̃g ≤ 4} = 0.9998,
· · · . The average number of total individuals infected (including the originally
seeded individual) is 1.217, and the probability of more than two total individuals
infected is Pr{Zs > 2} = 0.0386.

2. The geometric distribution (κ = 1), yields δ = 1/3. It is expected that about
in one third of the experiments transmission will not sustain. In this case, data
follow a geometric distribution but cannot inform us whether they arise from
a conditional distribution of the geometric distribution with mean value R0 =
3, conditioning on extinction; or they arise from an unconditional geometric
distribution, the mean value R̃0 = 1/3. From 4.10, we get Pr{M̃g = 0} = 0.75,
Pr{M̃g ≤ 1} = 0.923, Pr{M̃g ≤ 2} = 0.975, Pr{M̃g ≤ 3} = 0.992,
Pr{M̃g ≤ 4} = 0.997, · · · . The average number of total individuals infected
(including the originally seeded individual) is 1.5 and the probability of more
than two total individuals infected is Pr{Zs > 2} = 0.109.

3. The negative binomial distribution with κ = 0.25 yields δ = 0.67, which is

the smallest root of the equation
(

1 + 3(1−s)
0.25

)−0.25 = s for s ∈ (0, 1]. In this

case, it is expected that about in two thirds of the experiments the transmission
will not sustain. Meanwhile, R̃0 = 0.40546 calculated from (4.15). With respect
to generations to extinction, we get Pr{M̃g = 0} = 0.785, Pr{M̃g ≤ 1} =
0.9282, Pr{M̃g ≤ 2} = 0.9728, Pr{M̃g ≤ 3} = 0.9893, Pr{M̃g ≤ 4} = 0.996,
· · · . The average of total number of infected individuals (including the originally
seeded individual) is 1.682 and the probability of more than two total individuals
infected is Pr{Zs > 2} = 0.068.
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4.2.5 Estimation for R0 Based on the Galton-Watson
Branching Process

Given the roles of R0 = E[N ] in the properties of the branching process, it is
important to estimate this parameter based on observations of (X0, X1, . . . , XG)

for the first G generations, assuming that Ni are independently and identically
distributed for all individuals.

From the definition (4.1),Xg/Xg−1 is an unbiased estimator for R0 for each g =
1, . . . ,G,without specifying the family of distributions forN. These estimators can
be pooled to provide a single, more efficient estimator. One way of doing this is to
take the weighted average so that

R̃0 =
G∑

g=1

wg
(
Xg/Xg−1

)
, w1 + w2 + · · · + wg = 1.

Harris (1948) introduced the weight

wg = Xg−1
∑G
g=1Xg−1

because the conditional variance var
[
Xg
Xg−1

|Xg−1

]
= var[N ]

Xg−1
and it is appropriate to

choose the weight wg inversely proportional to the conditional variance. This leads
to the Harris estimator

R̂0 =
∑G
g=1Xg

∑G
g=1Xg−1

. (4.30)

The standard error estimation for R̂0 is (Becker 1989)

s.e.(R̂0) =
(

̂var[N ]
∑G
g=1Xg−1

)1/2

(4.31)

where the basic reproduction variance var[N ] needs to be estimated separately.
One may make assumptions on the distributions of N. For example, if N follows a
Poisson distribution, then one can use ̂var[N ] = R̂0 in (4.31) to get

s.e.(R̂0) =
(∑G

g=1Xg

)1/2

∑G
g=1Xg−1

.
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On the other hand, Heyde (1974) and Dion (1975) independently proposed the
following general maximum likelihood estimate

̂var[N ] = 1

G

G∑

g=1

Xg−1

(
Xg

Xg−1
− R̂0

)2

(4.32)

based on the central limit result from martingale theory. However, as pointed out by
Becker (1989), because G will be generally small in practice, it casts doubts on the
precision of the estimator ̂var[N ] in (4.32).

Modified Harris Estimator Based on Surveillance Data

Data like (X0, X1, . . . , XG) track infections through generations and require
detailed information of the transmission tree, in terms of who infects whom. Such
data are rarely available in practice. Most disease surveillance data are collected
at chronological time t = 0, 1, 2, . . . , C, denoted by (Y0, Y1, . . . , YC), where Yt
may represent the number of observed events at time t , such as the onset of clinical
symptoms.

The data (Y0, Y1, . . . , YC) nevertheless correspond to an embedded Galton-
Watson branching process. However, generations overlap over time. All that we
need is a book keeping device to assign data Yt to correct generations.

A (clinical) serial interval is defined by Hope Simpson (1948) as the period from
the observation of symptoms in one case to the observation of symptoms in a second
case directly infected from the first case.

White and Pagano (2008) suggested that, as long as the observation of symptoms
associated with the serial interval is in agreement with the case definition of the
surveillance system that generates data (Y0, Y1, . . . , YC), the distribution of the
serial interval can be a good book keeping device.

We assume that the serial interval distribution, represented in discrete time scale,
is {pj , j = 1, 2, . . . , k} such that

∑k
j=1 pj = 1. The expected value E[Yt ] can be

expressed by the convolution (a special case of Exercise 3.4 (c)):

E[Yt ] = R0

min(k,t)∑

j=1

pjYt−j .

White and Pagano (2008) showed that, if (Y0, Y1, . . . , YC) arise as independent
Poisson distributed random counts with E[Yt ] given by the above convolution, the
maximum likelihood estimate for R0 is

R̂0 =
∑C
t=1 Yt

∑C
t=1
∑min(k,t)
j=1 pjYt−j

. (4.33)



102 4 Behaviors of a Disease Outbreak During the Initial Phase and the Branching. . .

The Harris estimator (4.30) is a special case when the serial interval distribution
degenerates to a single point.

There are several limitations to apply (4.33).

1. To use the serial interval distribution as a device to estimate R0 , it is important
that the measurements for the serial interval must be based on the same case
definition as that for surveillance that generates the time-series. This principle
may not always be easy to adhere in practice.

2. The clinical serial intervals may be difficult to observe accurately. We shall
discuss this further in Chap. 7.

3. The estimator (4.33) is sensitive to the serial interval distribution which needs to
be estimated from additional data.

From Theory to Practice

In addition to the assumptions of independency (that Ni are i.i.d.) and stationarity
of the distribution of N over generations, the branching process approximation for
the outbreak at its initial phase also carries implicit assumptions that the susceptible
population is infinitely large and homogeneous mixing. With these assumptions, the
branching process serves as a function of the idealization of the world that provides
conceptual clarity. On the other hand, none of the transmission trees presented in
Fig. 4.1 meets the assumptions of the branching process approximation.

Building a transmission tree in an outbreak in a large community or in the
general population is extremely difficult, even in the very initial phase of an outbreak
investigation. The illustrations in Fig. 4.1 are all based on data in special settings.

In many of the outbreaks occurring in the twentieth century, the roles of
hospitals have been particularly significant in amplifying outbreaks of importation
or emerging infections, for undiagnosed or misdiagnosed patients are often admitted
into general wards. Most of the infected people during such outbreaks are found
among persons associated with hospitals, either occupationally or as patients or
visitors.

Fenner et al. (1988) give many examples for imported smallpox outbreaks in
hospitals around the world from 1950 to 1974, with further references. Figure 4.1a
is taken from the 1967 smallpox outbreak in Kuwait in which two hospitals were the
principal foci of the infection. It started with a misdiagnosis as chickenpox in the
Fever Hospital and the transmission continued for four generations in this hospital.
Then one of the patients in the third generation, unrecognized, was transferred to a
different hospital where a few more individuals were infected (Arita et al. 1970).

The Morbidity and Mortality Weekly Report (MMWR) published by Centers
for Disease Control and Prevention (2003) reported detailed case histories of the
5 “super-spreading events” of the SARS outbreak in Singapore. Goh et al. (2006)
published the transmission tree, reproduced here as Fig. 4.7.
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Fig. 4.7 The transmission tree of the 2003 SARS outbreak in Singapore showing strong clustering,
adopted from Goh et al. (2006)

1. Index A was believed to be infected in Hong Kong and returned to Singapore
with symptoms. This patient entered Ward 5A of the Tan Tock Seng Hospital
(TTSH) on March 1, 2003 and was transferred to Ward 8A across the corridor.
Epidemiologic investigation suggested that she directly infected 22 people,
including 10 health care workers, 7 visitors, 3 family members, and 2 patients.

2. Index B was a nurse who attended Index A in Ward 5A. She became symptomatic
on March 7 and was admitted to Ward 8A (and isolated on March 13), was
believed to have infected 21 other people.

3. Index C was a patient admitted on March 10 at TTSH, stayed in the same 6-bed
Ward 8A with Index B and became symptomatic for SARS on March 12 and was
isolated on March 20. This patient was believed to have directly infected 26 other
people, including 21 health care workers and 5 family members.

4. Index D was a patient who stayed in Ward 5A of TTSH between March 5
and March 20 for chronic kidney disease. She was transferred to Singapore
General Hospital (SGH) Ward 57 to be treated for gastro-intestinal bleeding.
She developed high fever on March 29 and transferred to Ward 57 of SGH and
isolated on April 4 after confirmation of pneumonia. This patient was believed to
be the index case of a cluster of 40 probable SARS cases at SGH.
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5. Index E was a sibling of Index D. He visited SGH on March 31, became
symptomatic on April 5, and was admitted to National University Hospital
(NUH) Ward 64. He was confirmed with SARS and then transferred to TTSH on
April 9. A total of 15 SARS cases were epidemiologically linked to this patient.

6. In addition to the above five super-spreading events, there are some additional
smaller clusters, including Index F and Index G.

In Fig. 4.7, the distribution of N tends to have a large frequency of zeros and
meanwhile a very heavy tail. For example, 15 out of the X1 = 22 individuals in the
first generation from Index A produced zero transmission whereas one individual
(Index B) produced 21 transmissions; 28 out of the X2 = 36 individuals in the
second generation from Index A produced zero transmission whereas one individual
(Index C) produced 26 transmissions; 29 out of the X3 = 37 individuals in the
second generation from Index A produced zero transmission whereas one individual
(Index D) produced 40 transmissions. Of the 196 individuals shown in Fig. 4.7, 152
had zero transmission whereas five individuals had more than 15 transmissions.

In addition, Goh et al. (2006) also documented that Indices A–D mainly
transmitted SARS in hospitals, up to the fourth generation from Index A, whereas
Indices E and G corresponded to community transmission settings.

The estimates Xg/Xg−1 and (4.30) are still relevant to outbreak investigation,
with careful interpretations of their meanings. There is strong clustering and at the
same time, public health intervention such as isolation started as early as March 13
during the first generation. The estimateXg/Xg−1 keeps track the temporal effective
reproduction number between two successive generations, whereas the Harris
estimate (4.30) calculated the weighted average, as the “controlled” reproduction
number from Generation Zero to Generation G. Table 4.1 tabulates these crude
estimates for the entire transmission tree (except for the cluster from Index F) by
generations, the crude estimates for the transmission tree from hospital transmission,
as well as for two small community transmission clusters (Indices E and G).

The first four generations from Index A are all attributed to transmissions in
hospital settings. The Harris estimate (4.30) is R̂ = 1.5, which is the weighted
average of Xg/Xg−1 up to g = 4 as the estimate for the mean value E[N ].
It is interpreted as the controlled reproduction number, taking into consideration
the effects of public health interventions. The variance var[N ], interpreted as
the controlled reproduction variance, estimated by g = 4 according to (4.32), is
̂var[N ] = 7.6.

These are very crude estimates. We shall dedicate Chap. 9 of this book to address
spatial structures and behavior change.
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Table 4.1 Calculations of Xg/ Xg−1 and the Harris estimate (4.30) by transmission clusters

All transmissions from Index A Hospital transmissions

Xg Xg/Xg−1

∑g
j=1 Xj∑g
j=1 Xj−1

Xg Xg/Xg−1

∑g
j=1 Xj∑g
j=1 Xj−1

g = 0 1 1

g = 1 22 22 22 22

g = 2 36 1.64 2.52 36 1.64 2.52

g = 3 37 1.03 1.61 37 1.03 1.61

g = 4 50 1.35 1.51 50 1.35 1.51

g = 5 26 0.52 1.17 17 0.34 1.11

g = 6 12 0.46 1.06 3 0.18 1.01

g = 7 3 0.25 1.01 0 0 0.99

g = 8 1 0.33 1.00

g = 9 0 0 0.99

Community transmission Index E Community transmission Index G

Xg Xg/Xg−1

∑g
j=1 Xj∑g
j=1 Xj−1

Xg Xg/Xg−1

∑g
j=1 Xj∑g
j=1 Xj−1

g = 0 1 1

g = 1 7 7 2 2

g = 2 7 1 1.75 2 1 1.33

g = 3 0 0 0.93 3 1.5 1.4

g = 4 1 0.33 1

g = 4 0 0 0.89

4.3 The Initial Growth Given Non-extinction

Non-extinction (invasion) is only possible when R0 > 1. Should it occur, the
outbreak will evolve into complex dynamic processes which may also depend on
environmental and demographic changes. In the long run, the outbreak may end
with a substantial proportion of the population infected (i.e., large outbreak) or may
reach an endemic steady state with sustained on-going transmission persisting for a
very long period of time. These issues are investigated in Chap. 5.

In this section, we continue to focus on the initial transmission stage, in which
the depletion of the susceptible population is negligible, and the branching process
approximation is adequate. Hence, it is reasonable to assume the size of the
susceptible population m → ∞.

4.3.1 The Exponential Growth by Generation

In the Galton-Watson branching process, Xg denotes the size of the gth generation
and can be represented by the random sum given by (4.1), where the p.g.f. for Xg
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is GXg(s) = GXg−1(GN(s)). When R0 > 1, given X0 = 1 and non-extinction, the
expected value and variance are (ref: Theorem 5.1 of Harris 1963):

E[Xg] = R
g

0 , var[Xg] = R
g

0 (R
g

0 − 1)

R
g

0 − R0
var[N ] (4.34)

where g = 0, 1, 2, . . .. Thus, the first moment R0 = E[N ] determine the
exponential growth of the first moment: E[Xg] = eg logR0 with growth rate being
r = logR0; the first two moments of N determines the first two moments E[Xg]
and var[Xg]. If the entire distribution of N is given, then GN(s) is fully specified
and in theory, the distribution for each X0 can be calculated.

However, one needs to keep in mind that the exponential growth given by
(4.34) is only an approximation for the very few generations under the strong
assumption thatR0 for all individuals in these generations is the same asR0 = E[N ]
corresponding to the initially seeded individuals at Generation Zero.

The distribution of Xg , and the results such as the probability of extinction, the
generation to extinction and final outbreak sizes given extinction are properties of
the Galton-Watson branching process and are determined by the distribution of N,
regardless of the continuous time branching processes in which the Galton-Watson
process is embedded.

4.3.2 Growth in Real (Continuous) Time

As the outbreak grows, it becomes increasingly difficult to track who infects
whom and keep track of the generation number. The growth in continuous time
during the initial phase of an outbreak depends on the properties of the counting
process {K(x) : x ≥ 0}, and the distributions of the latent and infectious periods
in a continuous time framework where the Galton-Watson branching process is
embedded within, such as the CMJ process and its extensions introduced earlier
in this chapter.

The Exponential Growth Derived as the Expected Value of a Linear Pure
Birth Markov Process

In parallel to the assumption in (4.34) that R0 does not change over the generations
during the initial phase, the underlying assumption in the continuous time is that,
when an individual is initially seeded into the large susceptible population, it carries
an intrinsic rate r . During the initial phase, all infected individuals carry the same
intrinsic rate and r is independent of time. Therefore, the cumulatively infected
individuals C(t) at time t conforms homogeneity. Given C(t) = n, the time
to produce a new infection in the population is exponentially distributed at rate
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nr according to an independent competing risk framework. The parameter r has
many names: the exponential growth rate, the intrinsic growth rate, as well as the
Malthusian number.

This leads to the model introduced in Chap. 3 as (3.41). The cumulative number
of infections in the population forms a counting process {C(t) : t ≥ 0}. An
instantaneous transmission is specified by the conditional probability Pr{C(t+h) =
n+ 1|C(t) = n} = nrh+ o(h). The marginal distribution of C(t) at time t follows
a negative binomial distribution, with mean value satisfying the exponential growth
E[C(t)] = i0e

rt . The variance also grows exponentially over time: var[C(t)] =
i0e

2rt (1 − e−rt ).
This model has a deterministic counterpart: C′

d(t) = rCd(t), where Cd(t) is a
non-random function of time.

The Euler-Lotka Equations

The initial growth rate r and the basic reproduction number R0 are defined in a
parallel manner. Both are defined at t = 0 when the system is at (disease-free)
equilibrium. In both definitions, it is assumed that if the number of initially seeded
infected individuals i0 > 1, then these individuals act independently and identically
with the same intrinsic parameters. It is further assumed that infected individuals
carry the same intrinsic parameters during the initial transmission phase.

Because of these parallel definitions and assumptions, it is natural to investigate
their relationship. This is done through embedding the Galton-Watson branching
process into a continuous time framework, such as the CMJ process and its
extensions, by focusing on the infectious contact processes {K(x) : x ≥ 0} from
the perspective of infected individuals along with the assumed distributions of the
latent and infectious periods, where the time x = 0 refers to the time at infection
of a typical infected individual. This infectious contact process is modeled through
an instantaneous intensity β(x) which may be a function of time as defined in the
general formulation of a counting process in Sect. 3.3.

An infected individual may have a random latent period TE during which it
is not possible to transmit the infection to another individual through contact
and a random infectious period TI . We assume that during the infectious period,
the infected individual remains infectious at a constant level of infectivity. The
infectious period TI serves as a stopping time of the infectious contact process given
by {K(x) : x ≥ 0}. A new counting process {N(x) : x ≥ 0} is defined such that
N(x) = 0 if 0 < x ≤ TE; N(x) = K(x − TE), if TE < x ≤ TE + TI ; and
N(x) = K(TE + TI ), if x ≥ TE + TI . We define a binary stochastic process
{X(x) : x ≥ 0} such that X(x) = 1 if the infected individual is infectious at time
x (i.e., TE < x ≤ TE + TI ) and X(x) = 0 otherwise. Let B(x) = β(x)X(x).

{B(x) : x ≥ 0} is a stochastic intensity process of the counting process {N(x) :
x ≥ 0}. The expected instantaneous rate of producing an infectious contact is
E[B(x)] = β(x)Pr(X(x) = 1).We denote A(x) = Pr(X(x) = 1).



108 4 Behaviors of a Disease Outbreak During the Initial Phase and the Branching. . .

Starting with a single infected individual infected at t = 0 which become the
index case, at time t > 0, the expected number of cumulatively infected individuals
in the population includes the original individual plus all the expected cumulatively
infected individuals evolving from this individual during [0, t). If an infectious
contact is made at time x ∈ [0, t), the expected cumulative infected individuals
at time t evolving from this contact is E[C(t − x)] and the mean number of such
infectious contacts in a small time interval containing x is β(x)A(x). Thus we obtain
the following equation

E[C(t)] = 1 +
∫ t

0
β(x)A(x)E[C(t − x)]dx. (4.35)

We call (4.35) a renewal-type equation because the classic renewal equation u(t) =
v(t)+∫ t0 f (x)u(t−x)dx requires

∫∞
0 f (x)dx = 1. In the classic renewal equation,

assuming
∫∞

0 xf (x)dx < ∞, there is the following asymptotic result (see Feller
(1966) or later editions) from renewal theory,

u(t)→
∫∞

0 v(x)dx
∫∞

0 xf (x)dx
as t → ∞.

It can be proven that R0 = ∫∞
0 β(x)A(x)dx. When R0 > 1, there exists a unique

real value r > 0 such that
∫∞

0 e−rxβ(x)A(x)dx = 1. Multiplying both sides of
(4.35) by e−rt , then

e−rtE[C(t)] = e−rt +
∫ t

0
e−rxβ(x)A(x)e−r(t−x)E[C(t − x)]dx

becomes a classic renewal equation by letting u(t) = e−rtE[C(t)], v(t) = e−rt and
f (x) = e−rxβ(x)A(x). Assuming that

∫∞
0 xe−rtβ(x)A(x)dx < ∞,

e−rtE[C(t)] →
∫∞

0 e−rxdx
∫∞

0 xe−rtβ(x)A(x)dx
= constant, as t → ∞.

Therefore, when β(x)A(x) is a constant r , (4.35) gives the exponential growth
d
dt
E[C(t)] = rE[C(t)]; when β(x)A(x) is not constant, (4.35) corresponds to

asymptotic exponential growth E[C(t)] ∝ ert (as t → ∞).
The general linkage between r and R0 is given by a pair of equations

∫ ∞

0
β(t)A(t)dt = R0,
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and
∫ ∞

0
e−rtβ(t)A(t)dt = 1. (4.36)

The latter is commonly referred to as the Euler-Lotka equation.

4.3.3 The Euler-Lotka Equations Under Models with SEI
Structure

In many infectious disease transmission models, it is often assumed:

1. Homogeneous mixing: The (social) contact network is homogeneous as a random
graph so that each individual has equal chance to make contact with any other
individual in the network which is infinitely large.

2. Homogeneous individuals: All individuals are of the same type. If un-infected,
they are equally susceptible. If infected, they are equally infectious.

3. The infectiousness within an infected individual does not change throughout the
rest of its lifetime.

Under these assumptions, the infectious contact process {K(x) : x ≥ 0}
is a homogeneous Poisson process (Chap. 3 Definition 11) which has stationary
increments (Sect. 3.3) β(x) = β. The Euler-Lotka equation becomes

β

∫ ∞

0
e−rtA(t)dt = βL[A](r) = 1 (4.37)

where L[A](s) = ∫∞
0 e−stA(t)dt, s > 0 is the Laplace transform of the function

A(t).
The function A(x) = Pr(X(x) = 1) is formulated through the Susceptible-

Exposed-Infectious (SEI) structure, corresponding to many compartment transmis-
sion models that involve a random latent period TE and a random infectious period
TI in sequence, including SIR, SEIR, SIS, SEIS, SEIRS, among many others.

Since A(x) = Pr(X(x) = 1) = Pr(the infected individual is infectious at time x
since infection), it can be shown that

∫∞
0 A(x)dx = μI , the mean infectious period.

Therefore, R0 = βμI . When the infectious contact process {K(x) : x ≥ 0} has
stationary increments, the presence of a latent period has no effect on R0 but does
have a strong effect on the initial growth rate r .

When There Is No Latent Period

When there is no latent period, A(x) = FI (x) = Pr(TI > x), (4.37) becomes

β

∫ ∞

0
e−rtF I (t)dt = βL[FI ](r) = 1. (4.38)
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Integration by parts, L[FI ](r) = 1
r
(1 − L[fI ](r)) and (4.38) becomes

r = β

(

1 −
∫ ∞

0
e−rt fI (t)dt

)

= β (1 − L[fI ](r)) . (4.39)

1. Given cumulatively infected C(t) individuals by time t, each of them carries an
infectious contact rate β but only a proportion of them is infectious at time t .
The potential transmission rate r is thus β scaled by the proportion of infected
individuals who are infectious at time t , represented by 1 − L[fI ](r). Let Y be
a “dummy” exponentially distributed random variable with rate r. Assuming Y
and TI are independent, then 1−L[fI ](r) = Pr(Y ≤ TI ) and r = β Pr(Y ≤ TI ).
Therefore, r ≤ β.

2. The factor 1 − L[fI ](r) can be interpreted as a sampling probability. Let us
consider a snapshot sample is taken at time t . We introduce a binary indicator
�i(t) such that Pr(�i(t) = 1) if an individual i, infected before t, is infectious
at time t and 0 otherwise. Thus 1 − L[fI ](r) = Pr(Y ≤ TI ) = Pr(�i(t) = 1) as

r = β Pr(�i(t) = 1). (4.40)

The C(t) individuals satisfying �i(t) = 1 form a “prevalence cohort” (see
Fig. 4.8). Because r is constant, it implies that Pr(�i(t) = 1) does not depend on
the sampling time. This involves equilibrium conditions to be further discussed
in Sect. 4.4.

3. Assuming that the outbreak starts with a single initially seeded infectious
individual and the infectious contact process {K(x) : x ≥ 0} is a homogeneous

Fig. 4.8 Among the 7 individuals in the figure, 6 individuals are infected by time t (i.e. C(t) = 6)
and 4 individuals are infectious at time t . These 4 individuals form the prevalence cohort. Wt is
the time from infection to the sampling time t for individuals in the prevalence cohort andWt may
depend on t unless suitable equilibrium conditions are met
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Poisson process, the probability of extinction δ during the initial phase satisfies
the equation GN(δ) = L[fI ](β(1 − δ)) = δ. When R0 > 1, δ < 1 and (4.39)
gives

r = β (1 − δ) (4.41)

under suitable equilibrium conditions. In this case, the invasion probability 1 −
δ = Pr(�i(t) = 1).

We have seen that the marginal distribution of N , which is the number of
infectious contacts produced by a typical infected individual during its entire
infectious period, uniquely defines R0 and determines the invasion probability 1−δ.
However, different stochastic mechanisms may yield the same marginal distribution
N but different initial growth rate r , as shown in the following example.

Example 15 The marginal distribution for N follows a geometric distribution with
mean value R0.We have seen that δ = 1/R0; the distribution of generation numbers
to extinction is given by (4.11); the distribution of final size of the small outbreak
Zs given by (4.26), along the associated mean and variance. All these results are
uniquely determined by the p.g.f. of the geometric distribution (4.9). The same
marginal distribution can arise from

1. an infectious contact process {K(x) : x ≥ 0} as a homogeneous Poisson process
with stationary increment β, combined with exponentially distributed infectious
periods with mean value μI , such that (4.41) is true and r = (R0 − 1)/μI ;

2. a mixed Poisson process for {K(x) : x ≥ 0} arising from (3.22) in which u(β) is
exponentially distributed, combined with a constant infectious period TI = μI .
In this case (4.41) does not hold. However, it can be derived from (4.39) that r
and R0 are related through rμI = R0(1 − e−rμI ).
Since R0 = β

∫∞
0 FI (t)dt = βμI , another way of re-writing (4.38) is to

multiply both sides of
∫∞

0 e−rtF I (t)dt = 1/β by μ−1
I (assuming 0 < μI < ∞) so

that

L[fW ](r) =
∫ ∞

0
e−rt fW (t)dt = 1/R0. (4.42)

This equation gives a direct link between r and R0, in which fW(t) = FI (t)/μI is a
p.d.f. recognized as the equilibrium distribution of the infectious period. The random
variable W > 0 is called the backward recurrence time in the theory of renewal
processes. In the current context, it is the duration between the time of infection
of a typical infected individual in the prevalence cohort and time t . Naturally this
duration should depend on time t, denoted as Wt in Fig. 4.8. Only under suitable
equilibrium conditions W is independent of t with p.d.f. fW(t) = FI (t)/μI .
Assuming Y and W are independent (implied by the assumption that Y and TI are
independent), (4.42) gives L[fW ](r) = Pr(Y > W) = 1/R0. It may be understood
in the following ways.
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1. If a typical infected individual in the prevalence cohort at time t produces, on
average, R0 > 1 secondary infections, it is expected that a proportion 1 − 1/R0
occurred before time t.

2. If the infectious period distribution is completely known and if the system is
under equilibrium, then fW(t) is completely specified. IF, big IF, the parameter r
can be estimated, then (4.42) is useful to estimate the basic reproduction number
R0.

Variability of the Infectious Period on the Growth Rate r and on the Invasion
Probability 1 − δ Among infectious period distributions with the same mean μI ,
variability among TI as defined by the convex order (Chap. 2 Definition 6) gives
the order of the Laplace transform. From Chap. 2, Definition 7, among infectious
periods with equal mean value μI , the more variable the infectious period (by
convex order), the larger the L[fI ](s), for all s > 0 and the smaller the value

L[fW ](s) = 1

μI
L[FI ](s) = 1

sμI
(1 − L[fI ](s)) , for all s > 0.

Recall (Chap. 2) that L[fW ](s) is a log-convex, monotonically decreasing function
of s satisfying L[f ](0) = 1 and approaches zero as s → ∞, keeping the basic
reproduction number R0 fixed, the more variable the infectious period, the smaller
the value of the intrinsic growth rate r . This is an immediate result from (4.42). With
respect to the invasion probability, (4.41) is valid if the infectious contact process
{K(x) : x ≥ 0} is a homogeneous Poisson process. In that case, keeping the basic
reproduction number R0 fixed, the more variable the infectious period, the smaller
the invasion probability 1 − δ.

In the Presence of a Latent Period

We assume that TE and TI are sequential and mutually independent. The sample
path of the binary process {X(x) : x ≥ 0} is defined such that X(0) = 0 with a
sojourn time according to the latent period distribution before making a jump to
state 1; then it stays in state 1 according to the infectious period distribution; by the
end of the infectious period, it jumps to state 0 and remains in state 0 as t → ∞.
Under suitable equilibrium conditions,

A(x) = Pr(X(x) = 1) = Pr({TE ≤ x}∩ {TI > x−TE}) =
∫ x

0
FI (x−u)fE(u)du

and as shown in Yan (2008a,b), (4.38) is extended to

β

(∫ ∞

0
e−rt fE(t)dt

)(∫ ∞

0
e−rtF I (t)dt

)

= βL[fE](r)L[FI ](r) = 1.

(4.43)
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Because L[FI ](r) = 1
r
(1 − L[fI ](r)) , (4.43) can be re-written as

r = βL[fE](r) (1 − L[fI ](r)) (4.44)

which is the extension of (4.39).

1. The factor L[fE](r) (1 − L[fI ](r)) in (4.44) is still interpreted as the sampling
probability. Given cumulatively infected C(t) individuals by time t, each of them
carries an infectious contact rate β but only a proportion of them is infectious at
time t . The potential transmission rate r is thus β scaled by the proportion of
infected individuals who are infectious at a snapshot sample at time t . Let Y be a
“dummy” exponentially distributed random variable with rate r. Assuming Y is
independent from both TE and TI , L[fE](r) = Pr(Y > TE) and 1 −L[fI ](r) =
Pr(Y ≤ TI ). Because the distribution of Y is memoryless, Pr(TE < Y ≤ TE +
TI |Y > TE) = Pr(Y ≤ TI ). Therefore L[fE](r) (1 − L[fI ](r)) = Pr(TE <
Y ≤ TE + TI ) and

r = β Pr(TE < Y ≤ TE + TI ). (4.45)

Therefore, r ≤ β and Pr(TE < Y ≤ TE + TI ) is the proportion of infected
individuals who are infectious at time t .

2. Adding a latent period, Eq. (4.41) is no longer valid, because r depends on both
the distribution of the latent period and the infectious period whereas δ depends
on the infectious period distribution only. In fact, r < β (1 − δ) .
The extension of (4.42) is

L[fE](r)L[fW ](r) = 1/R0, (4.46)

where R0 = βμI > 1. Since the Laplace transform of the sum of two independent
random variables equals the product of the two Laplace transforms, we define

TG = TE +W

where W has p.d.f. fW (t) = FI (t)/μI and TG has p.d.f. fG(t) calculated as the
convolution between fE(t) and fW (t). Therefore (4.46) can be further written as

L[fG](r) = 1/R0 (4.47)

where L[fG](s) = ∫∞
0 e−st fG(t)dt, s > 0 is the Laplace transform of fG(t).

Remark Denote μG = E(TG) and μE = E(TE), the expected value E(TG) =
E(TE)+ E(W) gives

μG = μE + 1

2
(1 + φ2)μI = μE + μI

2
+ var[TI ]

2μ
(4.48)
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where E(W) = 1
2 (1 + φ2)μI and φ is the coefficient of variation of the infectious

period TI defined as the ratio of the standard deviation to the mean. TG = TE +W
and μG is defined with infected individuals along its progression of infectiousness,
without involving contacts with other individuals. Many authors in the literature
have called μG the average generation time. For example:

• Page 17 of Daley and Gani (1999) defined the average generation time as
μG = μE + μI/2. This expression also appears in Section 2.1 of Roberts and
Heesterbeek (2007). This is the case when φ = 0 in (4.48) in which the infectious
period is not random.

• Page 14 of Anderson and May (1991) defined the average generation time as
μG = μE+μI . It also appears in Section 2.4 of Roberts and Heesterbeek (2007).
This is the case when φ = 1 in (4.48). This is, but not limited to, the case when
the infectious period is exponentially distributed.

• Some models assume that the infectious period follows an Erlang distribution,
that can be expressed as a sum of n independently and identically distributed
segments following exponential distribution with mean μI/n, then φ2 = 1/n
and μG = μE + n+1

2n μ. This expression can be found in Section 2.3 of Roberts
and Heesterbeek (2007).

Variability of the Latent Period on the Growth Rate r We assume that R0 =
βμI and the distribution of the infectious periods TI is all fixed. Among latent
periods with the same mean value μE, the more variable the latent period TE (by
convex order), the larger the L[fE](s), for all s > 0; therefore, the larger the value
of r. However, the distribution of the latent period has no influence on 1 − δ.

Relationships Between r and R0 for Gamma Distributed TE and TI

Re-writing (4.44) and (4.46), we have

R0 = 1

L[fG](r) = rμI

L[fE](r) (1 − L[fI ](r)) . (4.49)

This leads to some specific expressions when the distributions for TE and TI have
explicit analytical Laplace transforms. If both the latent period and the infectious
period are gamma distributed, with var(TE) = μ2

E/κE and var(TI ) = μ2
I /κI ,

using the corresponding Laplace transforms given by (2.33) in Chap. 2, (4.49)
becomes

R0 = rμI (1 + rμE/κE)κE[
1 − (1 + rμI /κI )−κI

] (4.50)
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which was originally given by Anderson and Watson (1980). When both the latent
and the infectious periods are exponentially distributed, with μE = 1/α and
μI = 1/γ, then

R0 = (1 + rμE) (1 + rμI ) = (r + α) (r + γ )
αγ

. (4.51)

When There Is No Latent Period In this case, (4.50) becomes

R0 = rμI

1 − (1 + rμI /κI )−κI .

Its special cases include

• R0 = rμI /[1 − exp(−rμI )], if the infectious period is constant TI = μI ;
• R0 = 1 + rμI , if the infectious period is exponentially distributed.

The variance of the gamma distributed infectious period is var[TI ] = μ2
I /κI

and the shape parameter κI ranks both the variance and the Laplace transform of
the infectious period. The following example shows how κI ranks the exponential
growth rate r given the same value of R0.

Example 16 Assuming gamma distributed infectious periods with mean value
μI = 10 and variance var[TI ] = 100/κI . The basic reproduction number is
R0 = 3. When κI = 1, r = (R0 − 1)/μI = 0.2. When κI → ∞, the infectious
period approaches a constant value TI = μI and r can be numerically solved as
r = 0.28214. If the infectious period is variable with variance smaller than that
of the exponential distribution, then 0.2 < r < 0.28214. If var[TI ] is larger than
that of the exponential distribution, then r < 0.2, for instance, r = 0.084452 when
κI = 0.2. These exponential growth curves are illustrated in Fig. 4.9.

Special Cases with a Latent Period

• If both the latent period and the infectious period are exponentially distributed,
L[fE](r) = (1 + rμE)

−1 and L[fI ](r) = (1 + rμI )
−1. In this case, R0 =

(1 + rμE) (1 + rμI ).
• If both the latent period and the infectious period are not random, then
L[fE](r) = e−rμE , L[fI ](r) = e−rμ and R0 = rμI /[exp(−rμE)(1 − exp
(−rμI ))].
The shape parameter κE ranks both the variance and the Laplace transform of the

latent period. The following example shows how κE ranks the exponential growth
rate r, given the same value ofR0 and a fully specified infectious period distribution.

Example 17 The basic reproduction number is R0 = 3. The infectious period has
mean value μI = 1 and variance var[TI ] = 1, exponentially distributed. The latent
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Fig. 4.9 Exponential growth curves when R0 = 3 with gamma distributed infectious periods
without latent periods. Special cases are: κI → ∞ (constant infectious period) and κI = 1
(exponentially distributed infectious period)

period has mean μE = 7, gamma distributed with var[TE] = 49/κE . The Euler-
Lotka equation has the special form

3

1 + r
(

1 + 7r

κE

)−κE
= 1.

We show that, as κE increases, the less variable is the latent period TE . Con-
sequently, the value of r is smaller. When κE = 1 (exponential latent period),
var[TE] = 49, r = 0.211 and e0.211t is illustrated as line 1 in Fig. 4.10. When
κE = 2, r = 0.1715 shown as line w in Fig. 4.10. When κE = 5, r = 0.1509
shown as line 3 in Fig. 4.10. When κE → ∞, r approaches the limit r = 0.13842
which is the solution of 3e−7r = 1 + r . Note that this is very close to the value
1
8 log(3) = 0.13733 corresponding to a discrete function given by

E[C(t)] =
{
e0.13733t , if t = 8g, g = 1, 2, . . .
0, otherwise

, (4.52)

in which the factor 8 in t = 8g, g = 1, 2, . . . equals μE + μI . Thus E[C(t)] in
(4.52) is the exponential growth E[Xg] = R

g

0 at R0 = 3 in real time separated by
the generation time μE + μI in the sense of Anderson and May (1991), illustrated
by bars in Fig. 4.10.
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Fig. 4.10 A schematic illustration of the initial growth by generation and in continuous time after
seeding i0 = 1 infected individual assuming R0 = 3

Relationships Between r and R0 When the Exact Distributions for TE

and TI Are Unknown

Assuming that TG = TE +W can be specified to its first and the second moments,
by expanding R0 = 1/L[fG](r), the following approximation is valid

R0 ≈ 1 + rμG + 1

2
r2
(
μ2
G − var (TG)

)
. (4.53)

If both the latent and the infectious periods are exponentially distributed, the
above expression is no longer an approximation but an exact result. In this case,
W is identically distributed as TI and TG is the convolution of two exponentially
distributed random variables TE + TI . The mean value is μG = μE + μI and
var (TG) = μ2

E + μ2
I . Then (4.53) gives R0 = 1 + r (μE + μI ) + r2μIμE =

(1 + rμE) (1 + rμI ).
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If the latent period is gamma distributed with mean μE and variance μ2
E/κE

and the infectious period is gamma distributed with mean μI and variance μ2
I /κI ,

TG = TE+W has the mean μG = μE+ κI+1
2κI
μI and variance var (TG) = μ2

E/κE+
κ2
I+6κI+5

12κ2
I

μ2
I . The approximation (4.53) gives

R0 ≈ 1 + r
(

μE + κI + 1

2κI
μI

)

+ 1

2
r2

((
κ2
I − 1
)

6κ2
I

μ2
I + μE

(
κE − 1

κE
μE + κI + 1

κI
μI

))

which corresponds to the first two terms of the series expansion given by Anderson
and Watson (1980).

4.4 On Assumptions and Conditions

The behavior of an outbreak during its initial phase is an approximation based
on a list of assumptions and conditions. In the following, we examine some of
the important assumptions and conditions. While these assumptions and conditions
have provided useful theoretical insights, most of them are questionable in real-life
applications.

It is not uncommon in data collected during outbreak investigations that the
outbreaks grow with periodic waves along a predominant trend. There are numerous
examples in the literature including smallpox outbreaks, SARS in 2003, H1N1 in
2009, and more recently, Ebola outbreaks in West Africa. Numerous historic and
contemporary outbreaks have displayed sub-exponential growth patterns in the early
ascending phase of infectious disease outbreaks (Viboud et al. 2006; Chowell et al.
2016).

4.4.1 The Initial Phase

The initial phase is based on the premises that the population is extremely large
(m → ∞) and during which the depletion of the susceptible population is
negligible. It assumes that there exists such an initial phase during which a typical
infected individual produces the next generation of secondary infections according
to the distribution of N which does not change over generations. Hence, the basic
reproduction number R0 remains the same for the first few generations. Meanwhile,
it is assumed that the initial growth rate r is applicable to all infected individuals
during the initial phase.
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It is understood that both the discrete time and continuous time branching pro-
cesses are models for the initial phase by approximation. The essential parameters
such as R0 and r , along with equations developed under suitable equilibrium
conditions, are used to approximately characterize the early features of the outbreak
when the system is moving away from equilibrium in order to obtain important
theoretical insight. They may not agree with observed data in practice.

Independency and Homogeneity

A central assumption in all the models discussed in this chapter so far is that
infected individuals produce new infections independently. For the Galton-Watson
branching process approximation, most of the results are based on a single seeded
infected individual i0 = X0 = 1. The results such as the invasion probability;
the distribution of generation numbers to extinction and the distribution of final
size if it is a small outbreak can be straightforwardly generalized for i0 > 1 by
viewing them as i0 separate independent branching processes with each starting
with a single infected individual. For example, let δ be the smallest root of the fixed
point equation GN(s) = s in s ∈ (0, 1], the probability of extinction is δi0 and the
invasion probability is 1 − δi0 .

With respect to the linear pure birth process (3.41), all the C(t) = n infected
individuals are homogeneous in the sense that they carry the same intrinsic rate r to
produce a new infection independently from the other n − 1 individuals. The time
to increase the number of infected individuals from n to n + 1 in the population is
the first of the n order statistics of the exponential distribution with rate r and the
instantaneous rate of the increase is nr . This yields the exponential growth in the
expected number E[C(t)].

The Euler-Lotka equation in its general form (4.36) is derived from the
renewal-type equation (4.35) which assumes independency. The second term∫ t

0 β(x)A(x)E[C(t − x)]dx involves the expected number of infected individuals
E[C(t − x)] at time x ∈ [0, t) and each of them independently produces new
infections with instantaneous infection rate β(x)A(x).

The Euler-Lotka equation (4.37) and its variations (4.38)–(4.46) involve assump-
tions of the infectious contact process {K(x) : x ≥ 0} at the individual level. It
is often assumed that {K(x) : x ≥ 0} is a Poisson process which also involves
homogeneity among individuals.

The Constant Growth Rate and Asymptotics

The assumption of a constant growth rate r leads to the continuous time exponential
growth d

dt
E[C(t)] = rE[C(t)] given by the pure birth process (3.41). The

exponential growth can be also derived from a renewal-type equation E[C(t)] =
1+ r ∫ t0 E[C(t−x)]dx. However, the renewal-type equation (4.35) does not lead to
exponential growth unless β(x)A(x) = r , which may be too strong an assumption.
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A milder assumption is β(x) = β, that is, the infectious contact process {K(x) :
x ≥ 0} has stationary increments.

The Euler-Lotka equations (4.36) and (4.37) are formulated under the premises
that the initial growth is exponential and useful to establish asymptotic (as t → ∞)
linkages between the growth rate r and the stochastic mechanisms involving the
infectious contact rate β(x) and the distributions of the latent and the infectious
periods. Especially, (4.37) gives the asymptotic relationships in the form of

r = β × sampling probability of being infectious at t (4.54)

with various expressions (4.39)–(4.41) and (4.44)–(4.46).

Equilibrium Conditions

In infectious disease models, the equilibrium condition can be only approximated
in several special occasions during an epidemic: (1) at the very beginning when
an infected individual is seeded but the system is at disease-free equilibrium;
(2) at the end of an outbreak when there is no infectious individual left in the
population so that the system returns to disease-free equilibrium; (3) the endemic
equilibrium, arising in situations where the depletion of the susceptible population
can be replaced by the loss of immunity of individuals who have recovered from
infection as described by compartment models SIS, SIRS, SEIRS, etc., or replaced
by demography for diseases that are also chronic; or (4) at some transient time when
the effective reproduction number is approximately unity.

The distribution of N such that R0 = E[N ] applies to Generation Zero. The
initial growth rate r applies to t = 0. Both parameters are intrinsic in the initially
seeded individuals when the system is at disease-free equilibrium, but are applied to
all infected individuals during the initial phase.

According to the asymptotic relationship (4.54), the sampling proportion of those
who are “currently” infectious out of all previously infected individuals must be
independent of time t . All infected individuals have the same probability of being
infectious at any snapshot of time t . Thus, all the C(t) = n infected individuals
are homogeneous, carrying the same intrinsic rate r . Consequently, this leads to
exponential growth d

dt
E[C(t)] = rE[C(t)].

This is the same equilibrium condition required in the Euler-Lotka equations
corresponding to β(x) = β derived from (4.37), as discussed with respect to (4.38)–
(4.40), as well as reflected by the equilibrium distribution fW(x) = FI (x)/μI ,
assuming that the backward recurrence timeWt as illustrated in Fig. 4.8 corresponds
to the same random variable W . With respect to fW(x), it only requires constant
incidence whereas the value of the incidence number (or rate) does not play any
role.

The equilibrium conditions also play a central theme in mathematical epidemi-
ology beyond the initial phase. In later chapters in this book, we shall see important
transcendental relationships in compartment models that connect R0, defined at
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t = 0, with parameters in these models through explicit functional forms by setting
the system “at equilibrium.” We shall also encounter the “final size equation” for
large outbreaks which shows that R0, defined at the disease-free equilibrium at the
beginning, transcends to the final proportion of individuals who have “escaped”
from infection at the disease-free equilibrium when the outbreak ends. A similar
transcendental relationship exists between R0 and the proportion of susceptible
individuals in the population when the system is at endemic equilibrium for diseases
in which the depletion of the susceptible population can be replaced by the loss of
immunity of individuals who have recovered, or for diseases that are also chronic
such that the susceptible population can be replaced by demography.

Between Theory and Practice

Theories are fundamental in scientific understanding. For example, a transcendental
relationship between R0 and 0 < η < 1 in E[C(∞)] = mη, as described in
Sect. 4.2.3, has been proven in many types of disease transmission models, should
a large outbreak end, where η is the final proportion of the population eventually
infected. This final size equation will be further discussed in Chap. 5 together with
its usage in planning and evaluating effectiveness of public health control measures.

On the other hand, all the assumptions and conditions will be challenged in real
life. The basic reproduction numberR0 and the initial phase are theoretical concepts.
In practice, for any finite susceptible population, it is not appropriate to assume that
the depletion of the susceptible population is negligible. Individuals are more likely
made of different types and carry different intrinsic characteristics. The environment
in which the transmission occurs is more likely to be highly heterogeneous. The
initial exponential growth and its relation to R0 are established under equilibrium
conditions that require constant incidence. Applying the quantities and equations
established under such conditions to study the ascending phase of an epidemic
seems to be paradoxical. It remains a challenge in developing early assessment tools
on key epidemic parameters based on early data, as well as assessment of biases in
existing estimation methods in the literature.

4.5 Alternative Initial Growth Curves

4.5.1 Periodic Resonance Around a Predominant Exponential
Growth

Under the premises that the initial growth is exponential, the intrinsic growth rate r
is connected to the underlying stochastic mechanisms β(x)A(x) through (4.36) as
the unique real value such that

∫∞
0 e−rxβ(x)A(x)dx = 1.
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Figure 4.10 (line 4 and line 5) shows the phenomena of periodic resonance
around a predominant exponential growth. They are created under the assumptions
in Example 17, in which β(x) = β = 3 but A(x) is periodic over time, by
assuming a long latent period TE with μE = 7 and a short infectious period TI
with μI = 1. Since the infectious period is assumed to be exponentially distributed,
then μG = μE + μI = 8 is the generation time (Anderson and May 1991).

Bacaër and Abdurahman (2008) carefully studied the complex roots of the Euler–
Lotka equation in its general form (4.36). They found that (4.36) often has a unique
positive real root r > 0 plus pairs of conjugate complex roots. They postulated
that when there is no complex root, or when the real parts of the complex roots are
all negative, then the outbreak growth is exponential. If there exist m ≥ 1 pairs
of conjugate complex roots aj ± bj i with aj > 0, the growth curve should be
represented as

ert +
m∑

j=1

eaj t cos(bj t), (4.55)

which gives periodic resonance around a predominant exponential growth ert . The
resonance is driven by a pair of conjugate complex roots with the largest real
part value a and the resonance becomes more pronounced when a is close to the
Malthusian number r .

In Example 17, there is no conjugate complex roots with positive real parts when
κE < 19. At κE = 19, there is a positive real root r = 0.1416 and a pair of
conjugate complex roots 5.2437 × 10−4 ± 0.82332i. In this case, the resonance
is invisible. However, as κE increases, the value a for the pair of the conjugate
complex roots with the largest real part value a±bi also increases and the resonance
becomes visible (e.g., line 4 of Fig. 4.10). When κE becomes very large, the variance
of the latent period becomes very small. For instance, when κE = 200, var[TE] =
72/200 = 0.245. In this case, r = 0.13872 which is very close to the limit 0.13842,
meanwhile, there are two pairs of conjugate complex roots with real positive parts:
0.10107 ± 0.81i and 0.01472 ± 1.6522i. The one with the largest real part has
a = 0.10107 which is close to r, meanwhile b = 0.81 is close to 2π/μG = 0.7854.
The resonance becomes very pronounced as indicated by line 5 in Fig. 4.10.

Example 17 has created scenarios that A(x) is periodic due to the relatively long
and concentrated (i.e., small variation) latent period under the assumption β(x) = β.

The resonance is spaced by the mean generation time. When the latent period has
larger variance, the generation spacing is lost, and the growth curve is smooth and
tends to rise more rapidly.

Although Example 17 is very artificial, the periodic resonance during the
initial growth is quite common in empirical data. Bacaër and Abdurahman
(2008) further examined the Euler–Lotka equation in a more general form∫∞

0 e−ρxβ(x, t)A(x)dx = 1. In this expression, β(x, t) is the intensity function of
the infectious contact process that may depend on a fluctuating environment where
transmission occurs. There are two time scales: x is the time from infection within
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a typical infected individual and t is the calendar time from the initial seeding of an
infected individual. The authors provided an extensive list along with references,
such as periodic contact rates due to periodic demography, periodic contact patterns
(weekdays and weekends) in school and workplace environments, periodic vector
or reservoir, just to name a few. These could be amplified by periodic control
measures such as pulse vaccination, periodic antiviral treatment, and so on. The
authors studied a specific periodic model for β(x, t) = β0(x)(1 + ε cosωt). They
found that resonance of the growth rate occurs when the Euler–Lotka equation has
a complex root with an imaginary part close to ω of the contact rate and a real part
not too far from the Malthusian parameter r. They further studied the SEIR and SIR
structured models with the modeled β(x, t).

Bacaër and Abdurahman (2008) pointed out that (1) For an SIR model with
exponentially distributed infectious period, resonance of the initial growth rate is
impossible. They emphasized that this model is exceptional in the sense that the
initial growth rate is even completely independent of the frequency of the periodic
factor. (2) For an SEIR model with exponentially distributed latent and infectious
periods, resonance is impossible but the growth rate depends on the periodic
factor. We recommend this paper, and emphasize the separate roles of the contact
rates β(x, t), the latent period distribution and the infectious period distribution in
shaping the initial growth of an infection curve.

4.5.2 The Sub-exponential Growth

Although we address the initial growth with respect to the expected value of the
cumulative counts E[C(t)], we use the notation Cd(t) for the deterministic function
that dominates the underlying trend.

The exponential growth C′
d(t) = rCd(t) corresponds to the pure birth process

given by the conditional probability Pr{C(t + h) = n+ 1|C(t) = n} = nrh+ o(h).
The underlying assumption is that given C(t) = n, the instantaneous rate of the next
infection arises as the first of the order statistics of i.i.d. exponentially distributed
lifetimes of sample size n with constant rate r .

In general, given C(t) = n, the instantaneous rate of the next infection arises as
the first of the order statistics of i.i.d. lifetimes of sample size nwith hazard function
ρ(t). The pure birth process is now specified by Pr{C(t + h) = n|C(t) = n} = 1 −
ρ(t)nh+ o(h), ρ(t) > 0 and its deterministic counterpart is d

dt
Cd(t) = ρ(t)Cd(t),

or equivalently, ρ(t) = d
dt

logCd(t). Conversely, Cd(t) = i0e
∫ t

0 ρ(x)dx . We call ρ(t)
the instantaneous growth rate function.

There are different notions of sub-exponential growth in various disciplines of
mathematics, such as growth functions that are bounded by exponential functions
above it and polynomial functions below it. Supported by a diversity of epidemic
growth profiles from empirical data of historic and contemporary outbreaks (Viboud
et al. 2016; Chowell et al. 2016), the early ascending phase of infectious disease
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outbreaks has shown sub-exponential growth patterns, bounded by the exponential
growth and the linear growth.

Definition 18 The sub-exponential growth function Cd(t) is a convex function
bounded by the linear growth and the exponential growth, that is, given Cd(0) = i0,

i0 (1 + rt) ≤ Cd(t) ≤ i0ert . (4.56)

If Cd(t) is a sub-exponential growth function satisfying (4.56), ρ(t) belongs to
a class of completely monotonic functions that are bounded by r

1+rt from below,
satisfying

r

1 + rt ≤ ρ(t) = d

dt
logCd(t) ≤ r, for all t ≥ 0. (4.57)

The lower bound r
1+rt is the hazard function of the Pareto-I distribution, which is

completely monotonic as defined by (2.32) and log-convex. This class includes, but
is not limited to, the following completely monotonic functions:

1. ρ(t) = r
1+rvt , r > 0, 0 < v ≤ 1 that gives

Cd(t) = i0(1 + rvt) 1
v , r > 0 and 0 < v ≤ 1. (4.58)

2. ρ(t) = r√
1+2rvt

, r > 0, 0 < v ≤ 1 that gives

Cd(t) = i0e
(√

1+2vrt−1
)
/v, r > 0 and 0 < v ≤ 1.

In these expressions, r plays a role as a scale parameter for time t. Figure 4.11
illustrates some of these sub-exponential rate and growth functions assuming i0 = 1.

The Sub-exponential Growth as Approximation for the Convex Increasing
Part of the Logistic Growth

The logistic growth function will be discussed in more detail in Chap. 5, which
will also show that many dynamic transmission models lead to the logistic growth
function. The logistic function has played an important role as a population growth
model and applied in epidemiology. It is defined by

Clogis(t) = K
i0

i0 + (K − i0) e−ρt = K

1 + 1
v
e−ρt

, (4.59)

which is a monotonically increasing function of t when i0 < K and
limt→∞ Clogis(t) = K. It is the solution of the logistic differential equation
d
dt
Clogis(t) = ρClogis(t)

[
1 − Clogis(t)/K

]
with the initial condition Clogis(0) = i0
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Fig. 4.11 Presentations of ρ(t) andCd(t) for the sub-exponential growth with i0 = 1 and different
values of v: solid lines represent ρ(t) = r/(1 + rvt) and Cd(t) = (1 + rvt)1/v; dashed lines
represent ρ(t) = r/

√
(1 + 2rvt) and Cd(t) = e(

√
(1+2rvt)−1)/v

and ρ > 0 characterizing the initial growth. It may be re-parameterized via

v = i0
K−i0 . We re-scale the initial growth as r = ρ

(
1 − i0

K

)
= ρ

v+1 . The logistic

function can be written as

Clogis(t) = i0 (v + 1)

v + e−(v+1)rt
. (4.60)

When i0 < K/2, we have v < 1 and Clogis(t) increases as a convex function of
t until the inflexion point t∗ = − 1

(1+v)r log v and Clogis(t
∗) = K/2. During the

convex increasing phase, Clogis(t) satisfies the following inequalities:

i0 (1 + rt) < Clogis(t) < i0(1 + rvt) 1
v < i0e

rt , for t > 0.

By Definition (4.56), the convex increasing phase of the logistic function is sub-

exponential, so is the function i0(1 + rvt)
1
v with 0 < v < 1. Both are convex

functions bounded by a linear function from below and an exponential function
from above. Series expansion to the third order of t of these functions reveal that

Clogis(t) = i0

[

1 + rt + 1

2
(1 − v) r2t2 + 1

6

(
v2 − 4v + 1

)
r3t3 +O

(
t4
)]

,

i0(1 + rvt) 1
v = i0

[

1 + rt + 1

2
(1 − v) r2t2 + 1

6

(
2v2 − 3v + 1

)
r3t3 +O

(
t4
)]

,

i0 exp (rt) = i0

[

1 + rt + 1

2
r2t2 + 1

6
r3t3 +O

(
t4
)]

.
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The intrinsic exponential growth with respect to the branching process approx-
imation is under the assumption of an infinitely large population corresponding to
the case v = 0, and in this case, Id(t) = i0 exp (rt) and r = ρ.

In finite populations, the exponential growth i0 exp (rt) can also be used to
approximate the initial growth of the logistic function, but with a discounted growth

rate: r = ρ
v+1 = ρ

(
1 − i0

K

)
.

A closer approximation is (4.58)

Csub-exp(t) = i0(1 + rvt) 1
v

which grows slower than the exponential function i0 exp (rt) and is sub-exponential.
The instantaneous growth rate ρ(t) = d

dt
logCd(t) corresponding to Clogis(t)

and Csub-exp(t) are

ρlogis(t) = d

dt
logClogis(t) = r

1 + v
1 + ve(1+v)rt ,

ρsub-exp(t) = d

dt
logCsub-exp(t) = r

1

1 + rvt .

In both cases, r = ρlogis(0) = ρsub-exp(0) takes into account the population size
and the initial condition since r = K−i0

K
ρ. The decreasing function ρlogis(t), in the

context of the SI and SIS models, takes into account the depletion of the susceptible
population. The decreasing function ρsub-exp(t) is the close approximation.

Figure 4.12 comparesClogis(t),Csub-exp(t), and the exponential growth i0ert with

K = 100, where r = ρ
(

1 − i0
K

)
and v = i0

K−i0 . Three panels correspond to i0 = 1,

Fig. 4.12 The logistic growth Clogis(t) given by (4.60), plotted up to the infexion point t∗ =
− log v, is compared with the sub-exponential growth Csub-exp(t) and the exponential growth i0ert ,
where r = (1 − i0/K) , in a population of size K = 100 and initial conditions i0 = 1, 10 and
i0 = 20
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10, and 20. Since ρ is a scale parameter of time, we set ρ = 1. Each panel is plotted
for the convex increasing phase of Clogis(t) that ends at the time of the inflexion
point t∗ = log K−i0

i0
= − log v. Figure 4.12 shows that, when i0/K is very small,

the sub-exponential growth Csub-exp(t) resembles the property of the exponential
growth. When i0/K approaches 1/2, Csub-exp(t) approaches linear growth.

An Alternative Formulation for the Sub-exponential Growth Function

Viboud et al. (2016) and Chowell et al. (2016) considered a 2-parameter
generalized-growth model (GGM) given by

d

dt
Cd(t) = rCd(t)

1−v, 0 < v ≤ 1. (4.61)

This equation is also called the “power law exponential” equation by Banks (1994).
This generalized-growth model creates a sub-exponential growth via a “decelera-

tion of growth” parameter, p = 1−v. The authors related this model to the effective
reproduction over time t . Instead of tracking the depletion of the susceptible
population, the authors assume that given cumulatively infected individuals by time
t , only a proportion 1 − v of logCd(t) of them are responsible to produce the next
infection. Each of these individuals carries a constant infection rate r.

The sub-exponential function Csub-exp(t) = (1 + rvt) 1
v is the solution of (4.61)

given the initial condition Cd(0) = i0 = 1. However, for Cd(0) = i0 > 1, it gives
the solution

Cd(t) = (iv0 + rvt) 1
v , 0 < v ≤ 1. (4.62)

with

ρ(t) = d

dt
logCd(t) = r

iv0 + rtv ,

Unlike that described in (4.57), ρ(t) depends on i0 and ρ(0) = r/iv0 .

Frailty Interpretation

Section 4.4 pointed out assumptions of independency and homogeneity in the
exponential growth model C′

d(t) = rCd(t). If there are i0 infected individuals
initially seeded at t = 0, the rate of an instantaneous increase in the number of
infections in the population to i0+1 is i0r , arising as the first of the i0 order statistics
of the identical and independent exponential distribution with rate r . There is also
an assumption about time-stationarity during the initial phase that the rate of an
instantaneous increase in the number of infections in the population given C(t) = n
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infected individuals at any time t is nr, arising from the first of the n order statistics
of the identical and independent exponential distribution with rate r and survival
function G(t) = e−rt .We have the identity r = − d

dt
logG(t) = d

dt
logCd(t).

This can be generalized to the growth function in terms of d
dt
Cd(t) = ρ(t)Cd(t),

so that given Cd(t) = n, the time to the next new infection is the first of the n
order statistics of independently distributed Y with hazard function given by ρ(t)
and survival function G(t) = Pr(Y > t). We propose the following identity

ρ(t) = − d

dt
logG(t) = d

dt
logCd(t) (4.63)

which gives Cd(t) = G(t)−1.

The frailty model, introduced in Sect. 2.6, addresses heterogeneity and yields
a class of monotonically decreasing functions for ρ(t) that give rise to sub-
exponential growth. There are many sources of heterogeneity:

1. Intrinsic: Individuals are not made of the same type and they carry different
rates.

2. Environmental: The same index case may have different transmission rates
depending on where and when it is seeded in a heterogeneous and dynamic
complex social network.

3. “Sampling biases”: Even if infected individuals are made of the type and the
environment in which the disease transmission is homogeneous, during the rapid
ascending phase of the epidemic, the probability of being infectious at time t ,
Pr(�i(t) = 1), differs from individual to individual. When the system is not
at equilibrium, Wt as illustrated in Fig. 4.8 are not identically distributed as W
(with p.d.f. fW(x) = FI (x)/μI ). Instead, given time t , each of the C(t) = n

individuals has its own distributionWt depending on its time at infection. This is
another source of heterogeneity among infected individuals.

When individual heterogeneity is concerned, we may assume that each infected
individual i carries an intrinsic rate zir to produce a new infection, where r is a
baseline rate and zi is a frailty variable. If the sources of heterogeneity can be
determined and are observable, zi can be modeled through covariates, such as
the proportional hazard regression model. This requires extensive knowledge and
understanding of the individuals, the environment, and the disease dynamics.

When the heterogeneity is not observable, a common approach is to consider a
frailty model as introduced in Sect. 2.6 by assuming zi as random variables, i.i.d.
with mean value E(z) = 1 and probability density function (p.d.f.) ξ(z). If there is
no heterogeneity, then ξ(z) degenerates to a point z ≡ 1 with no variation.

At the individual level, the survival function given zi = z is G(t |z) = e−rzt .
When the population is composed of a mixture of heterogeneous individuals, the
survival function arises from a mixed distribution:

G
(mixed)

(t) =
∫ ∞

0
e−zrt ξ(z)dz = L[ξ ](rt)
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where L[ξ ](s) = ∫∞
0 e−zsξ(z)dz is the Laplace transform with respect to ξ(z). The

hazard function becomes

ρ(mixed)(t) = − d

dt
logG

(mixed)
(t) = − d

dt
logL[ξ ](rt).

It can be shown that, for any non-degenerated p.d.f. ξ(z), L[ξ ](rt) =∫∞
0 e−zrt ξ(z)dz ≥ e−rt .

As in the exponential growth model, we assume time-stationary over very short
periods of time so that it is approximately true that d

dt
Cd(t) = ρ(mixed)(t)Cd(t) for

the initial phase of the outbreak, that is, ρ(mixed)(t) = d
dt

logCd(t). This leads to
the sub-exponential growth for any mixture distribution ξ(z) given by

Cd(t) = [L[ξ ](rt)]−1 ≤ 1

e−rt
= ert for all t > 0. (4.64)

1. L[ξ ](rt) is log-convex and ρ(mixed)(t) = − d
dt

logL[ξ ](rt) is monotonically
decreasing starting from ρ(mixed)(0) = r. This has been proven in Marshall and
Olkin (2007) and reiterated in Sect. 2.6.1.

2. Chapter 2 also concluded with statements that both L[ξ ](rt) and ρ(mixed)(t) are
completely monotonic functions.

The Gamma Mixture Let ξ(z) is the p.d.f. of the Gamma distribution withE(z) =
1 and variance var[z] = v > 0, then

ρ(mixed)(t) = r/(1 + rvt), v > 0

has the form of the hazard function of the Pareto-I distribution, as given by (2.43)
in Chap. 2 (replacing λ with r and κ = ν−1). A sub-exponential growth function is
defined by

d

dt
Cd(t) = r

1 + rvt Cd(t), 0 < v ≤ 1 (4.65)

with the solution (initial condition Cd(0) = i0)

Cd(t) = i0(1 + rvt) 1
v , 0 < v ≤ 1. (4.66)

The condition v ≤ 1 is imposed so that (4.57) holds. The limiting case limv→0 i0(1+
rvt)

1
v = i0e

rt corresponds to the exponential growth. When v = 1, Cd(t) = i0(1 +
rt) yields the linear growth.
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The Inverse-Gaussian Mixture If ξ(z) be the p.d.f. of an inverse-Gaussian
distribution with E(z) = 1 and variance var[z] = v, the Laplace transform is
L[ξ ](s) = e

(
1−√

1+2vs
)
/v. Letting Cd(0) = i0, the expression (4.64) becomes

Cd(t) = [L[ξ ](rt)]−1 = i0e
(√

1+2vrt−1
)
/v, 0 < v ≤ 1 (4.67)

It is also sub-exponential and the limiting case is limv→0 i0e
(√

1+2vrt−1
)
/v =

i0e
rt . It can be shown that e

(√
1+2vrt−1

)
/v ≥ (1 + vrt)1/v for all s > 0. However,

the difference between Cd(t) given in (4.67) and Cd(t) given in (4.66) is small:

e
(√

1+2vrt−1
)
/v − (1 + vrt)1/v = 1

6
v2r3t3 +O

(
t4
)
.

When v = 1, e
√

1+2rt−1 = 1 + rt + 1
6 r

3t3 + O
(
t4
)
, slightly above the linear

growth. Meanwhile,

ρ(mixed)(t) = r√
1 + 2rvt

, 0 < v ≤ 1.

Discussion on the Sub-exponential Growth Cd(t) = i0(1 + rvt)
1
v , 0 < v ≤ 1

We have seen that the sub-exponential growth Cd(t) = i0(1 + rvt) 1
v , 0 < v ≤ 1

may arise as a simple function in a variety of settings. It may be used to approximate
the initial growth of an observable process following an initially exponential growth
of the number of new infections in the population, with an exponentially distributed
delay; or to approximate the initial part of a logistic growth function that typically
incorporates the depletion of the susceptible individuals in a finite population, or
as a gamma mixture for the exponential growth in the frailty model that addresses
individual and environmental heterogeneity. We do not rule out other mechanisms
that may also produce sub-exponential phenomena that may be modeled with this
simple form.

We also point out that the usefulness of a sub-exponential growth function is
that it is able to describe a broad range of phenomena with only two parameters
that leads to significant improvements in goodness of fit and short-term forecasting
performance when models incorporate the possibility of such early sub-exponential
growth, as pointed out by recent studies (e.g., Smirnova et al. 2017) as well as in
example in Chap. 8 of this book.
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4.6 Problems and Supplements

4.1 Let Ni be i.i.d. random count numbers with p.g.f. GN(s) and X be a random
count number with p.g.f. GX(s). Show that the p.g.f. of the random sum N1 +
N2 + · · · +NX is GX(GN(s)).

4.2 We used p.g.f. GXg(s) = GXg−1(GN(s)) in (4.34) as a tool to calculate
E[Xg] = R

g

0 and var[Xg] for g = 1, 2, . . . . The goal of this exercise is
to develop an alternative approach. Consider the Galton-Watson branching
process defined by (4.1) with X0 = 1, and Ni are i.i.d. and its distribution
does not change over generations.

(a) Show that given Xg−1, E[Xg|Xg−1] = R0Xg−1, g = 1, 2, . . . .
(b) Since E[X0] = 1, using E[Xg] = E[E[Xg|Xg−1]] recursively to calculate

the unconditional expectation E[Xg].
(c) Using the conditional variance formulae

var[Xg] = E[var[Xg|Xg−1]] + var[E[Xg|Xg−1]]

to show that, when R0 �= 1,the variance

var[Xg] = R
g−1
0

(
R
g

0 − 1

R0 − 1

)

var[N ], g = 1, 2, . . .

where var[N ] < ∞.
(d) If R0 < 1, what happens to both E[Xg] and var[Xg] as g → ∞?
(e) Show the following inequality: E[Xg] ≥ Pr(Xg ≥ 1). Hence if R0 < 1,

Pr(Xg = 0) → 1, as g → ∞.
(f) Define δ = limg→∞ Pr(Xg = 0|X0 = 1) = Pr(the branching process dies

out) and show that

δ =
∞∑

j=0

Pr(the branching process dies out |X1 = j)Pr{N = j}

(g) Further argue that, Pr(the branching process dies out |X1 = j) = δj , and
hence δ =∑∞

j=0 δ
j Pr{N = j}.

(h) Show that, when R0 > 1, δ is the smallest root of s = GN(s) in s ∈ (0, 1].
(i) Show that, if N follows the geometric distribution, δ = 1/R0.

(j) If we use the Galton-Watson branching process to approximate the initial
phase of an outbreak, comment on how variabilities (according to convex
order) inN and in the infectious periods TI affect the probability of a small
outbreak, which is δ.
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4.3 Define Zg = ∑gj=0Xj to the total size of the population in the branching

process by generation g. The p.d.f. is GZg(s) = E[sZg ].
(a) Since Z1 = 1 + X1, show that the p.g.f. for Z1 is GZ1(s) = sGN(s), for

s ∈ [0, 1].
(b) Let {Zgk, k = 1, 2, . . . , X1} be i.i.d. copies of Zg and X1 > 0. Show that

for g ≥ 1

Zg+1 = 1 +
X1∑

k=1

Zgk.

(c) Show that GZg+1(s) = E[sZg+1 ] = sGN(GZg (s)), g ≥ 1.
(d) Define the final size Z = ∑∞

g=0Xg so that Zg ↑ Z, with p.g.f. given by

GZ(s) = E[sZ], show that

GZ(s) = sGN(GZ(s)).

(e) Show that GZ(1) = δ ≤ 1 where δ = GN(δ). Hence if R0 > 1, GZ(1) =∑∞
z=1 Pr{Z = z} = δ < 1.

4.4 Figure 4.1 illustrated four transmission trees with references in the caption.
Select one or more of these transmission trees, write down the numbers Xg,
g = 0, 1, 2, . . ., and study the original papers in the references to build the
transmission stories as complete as possible for each generation. Calculate the
Harris estimate (4.30) for the reproduction number for the first (some chosen)
G generations as well as the estimated reproduction variance ̂var[N ] using
(4.32). Discuss how these estimates might be interpreted, in a similar fashion
as the analysis in Sect. 4.2.5, summarized in Table 4.1.

4.5 Let F(x) and f (x) be the survival function and the p.d.f. for the lifetime X;
L[F ](s) = ∫∞

0 e−sxF (x)dx and L[f ](s) = ∫∞
0 e−sxf (x)dx are the corre-

sponding Laplace transform functions, show that L[F ](s) = 1
s
(1 − L[f ](s)) .

4.6 Consider a disease with random infectious periods, corresponding to the p.d.f.
fI (x). Assuming that the outbreak starts with a single initially seeded infectious
individual under homogeneous mixing, that is, the infectious contact process
{K(x) : x ≥ 0} is a homogeneous Poisson process with infectious contact
rate β,

(a) show that the probability of extinction δ during the initial phase satisfies
the equation L[fI ](β(1 − δ)) = δ;

(b) if the infectious period starts immediately upon infection, show that
r = β (1 − δ) , where r is the intrinsic growth rate satisfying
β
∫∞

0 e−rxF I (x)dx = 1;
(c) if the infectious period starts after a random latent period since infection,

show that r < β (1 − δ) .
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(d) In the literature, we frequently see the linear relationship R0 = 1 + rμI
where μI is the mean infectious period. Give at least two examples to show
that a smaller value of r (i.e., slower initial growth) may correspond to a
larger value of R0, with at least one example assuming that the infectious
periods start immediately upon infection and one example assuming that a
latent period exists.



Chapter 5
Beyond the Initial Phase: Compartment
Models for Disease Transmission

We start with simple models that describe the dynamics of disease transmission over
time t in a constant population of size m and investigate the long-term epidemic
dynamics as t → ∞. In these simple models, we assume there is no replacement
of susceptible individuals due to demographic input of susceptible newborns.
The population is partitioned into compartments, with at least one compartment
representing the prevalence of individuals who are susceptible to infection and at
least one compartment representing the prevalence of individuals who are infectious
(at time t).

5.1 The Agent–Host–Environment Relationship and Some
Homogeneity Assumptions

We first discuss a key assumption used throughout this chapter with respect to the
agent–host–environment relationship for the disease transmission dynamics.

With respect to the infectious agent, such as the virus in viral infections, it is
assumed that it is not subject to mutations that lead to increased or decreased
infectiousness during the study period, so that individuals who have acquired
infections at different times possess the same infectiousness as at the time of
infection.

With respect to hosts, it is assumed that

1. all susceptible individuals are equally susceptible;
2. a typical infected individual remains equally infectious throughout its infectious

period;
3. all infectious individuals are equally infectious.
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With respect to the environment in terms of the social contact network, we
assume homogeneous mixing in the sense that an individual makes contacts with
all other individuals in the population with equal probability. If the population
size is large (n → ∞), the social network can be approximated by a Bernoulli
random graph (Erdös and Rényi 1961). The numbers of vertices adjacent to vertex
vi (the degree of vertex vi) are identically and independently distributed according
to a Poisson distribution. From the perspective of stochastic processes, the social
contact network grows in such a way that the number of contacts made by a typical
individual in this network follows a stationary Poisson process.

With these assumptions, at any snapshot in time during the epidemic, all
infectious individuals are equally infectious regardless of when each individual
is infected and how long it has been infected. Each contact between a pair of
susceptible-infectious individuals is associated with the same probability that a
transmission may occur.

• Denoting the number of individuals who are infectious at time t by I (t), the
force of infection onto a typical susceptible individual at any given time t is
proportional to the proportion of infectious individuals I (t)/m by a factor β1.

• Denoting the number of individuals who are susceptible at time t by S(t), the
instantaneous transmission rate of a typical infectious individual at any given
time t is proportional to the proportion of susceptible individuals S(t)/m by a
factor β2.

• The homogeneity assumptions in the agent–host–environment relationship lead
to β1 = β2 = β, which defines the probability of an instantaneous new infection
in the population as β S(t)I (t)

m
dt .

5.2 Susceptible-Infectious-Susceptible Models

5.2.1 The Birth–Death Markov Process as a Model
for the Simple Epidemic and the SIS Epidemic

In this model, the population is partitioned into two classes of individuals so that
at any time t, an individual is either susceptible or infected (and infectious), a
birth–death process is used as a model for {I (t)}∞0 . The transition probabilities are
modeled by

Pr {I (t + dt) = i + 1|I (t) = i} = β
(
1 − i

m

)
idt,

Pr {I (t + dt) = i − 1|I (t) = i} = γ idt.
(5.1)

If γ > 0, such a model is a stochastic susceptible-infectious-susceptible (SIS)
model. This process has finite state space S = {0, 1, 2, . . . , m} with the state {0}
being an absorbing state and {1, 2, . . . , m} being transient states.
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The instantaneous rate qi,i+1 = β
(
1 − i

m

)
i is a logistic birth rate based on the

assumption of homogeneous transmission in the environment that gives β S(t)I (t)
m

dt,

where S(t) = m − I (t). The instantaneous rate qi,i−1 = γ i is linear following
an additional assumption that an infected individual spends an exponentially
distributed infectious period with mean γ−1 and immediately recovers with no
conferred immunity.

A value of γ = 0 implies that the mean infectious period is infinite. The process
defined by (5.1) becomes a pure birth process. In the literature, this process is called
the simple epidemic (Bailey 1975) or an SI model.

The Duration of a Simple Epidemic

A simple epidemic ends when all individuals are infected. The states {0, 1, 2, . . . ,
m− 1} are transient states and the state {m} is an absorbing state. The most relevant
public health question is the duration of the epidemic, denoted by Tm,i0 , as the time
to reaching the absorbing state {m} given the initial condition I (0) = i0.

According to the model, the sojourn time in state i ≤ m − 1 before moving to
state i + 1 is exponentially distributed with mean value q−1

i,i+1.The sojourn times in
different states are independent. Therefore, given the initial condition I (0) = i0,

the distribution of Tm,i0 arises as a convolution of m− i0 independently distributed
random variables. Without losing generality, we assume i0 = 1.

The mean value of Tm,1 is the sum

E[Tm,1] =
m−1∑

i=1

q−1
i,i+1 = 1

β

m−1∑

i=1

m

(m− i) i

= 1

β

m−1∑

i=1

(
1

i
+ 1

n− i
)

= 2

β

m−1∑

i=1

1

i
.

Because
∑k
i=1

1
i

=Euler constant + log k + εk where Euler constant ≈ 0.5772 and
εk → 0 as k → ∞, we have

E[Tm,1] ≈ 2

β

[
0.5772 + log(m− 1)

]
(5.2)

when m is sufficiently large. The expected duration of the epidemic grows with the
population size, approximately proportional to log(m).

The variance for Tm,1 is the sum

V ar[Tm,1] =
m−1∑

i=1

q−2
i,i+1 = 1

β2

m−1∑

i=1

m2

(m− i)2 i2 .
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Using a partial fraction decomposition m2

(m−i)2i2 = 2
mi

+ 1
i2

+ 2
m(m−i)+ 1

(m−i)2 (Allen

2010) and
∑∞
i=1

1
i2

= π2

6 , one gets the approximation

V ar[Tm,1] ≈ 1

β2

{
4

m

[
0.5772 + log(m− 1)

]+ π2

3

}

≈ π2

3β2
(5.3)

when m is sufficiently large. Unlike (5.2), as m becomes large, the variance of the
duration converges to a constant.

For higher moments of Tm,1, the sojourn time in state i ≤ m−1 before moving to
state i+ 1 is exponentially distributed with the moment generating function (m.g.f.)

M(s) =
(

1 − ms
β(m−i)i

)−1
. The m.g.f. for MTm,1(s) can be easily derived as the

multiplication

MTm,1(s) =
m−1∏

i=1

(

1 − ms

β (m− i) i
)−1

.

The Duration of the SIS Model

If γ > 0, the model is defined by (5.1) and is an SIS model. The states {1, 2, . . . , m}
are transient and {0} is an absorbing state. The epidemic ends when there are no
prevalent infectious individuals in the population.

Based on theories of general birth–death process satisfying q0,1 = 0 and
qi,i+1> 0 for i = 1, . . . , m − 1; qi,i−1 > 0 for i = 1, . . . , m, it can be shown that
the expected time until extinction (Karlin and Taylor 1975; Ross 1996; Allen 2010;
among others), given the current state i, is:

E[T0,1] = 1
q1,0

+∑mj=2
q1,2q2,3···qj−1,j
q1,0q2,1···qj,j−1

, if i= 1,

E[T0,i] =E[T0,1] +∑i−1
s=1

[
q1,0q2,1···qs,s−1
q1,2q2,3···qs,s+1

∑m
j=s+1

q1,2q2,3···qj−1,j
q1,0q2,1···qj,j−1

]
, if i= 2, 3, . . . , m.

For the SIS model with qi,i+1 = β
(
1 − i

n

)
i, qi,i−1 = γ i, E[T0,1] becomes

γE[T0,1] = 1 +
m∑

j=2

(β/γ )j−1

j

j−1∏

l=1

(1 − l

m
) (5.4)

and

γE[T0,i] = γE[T0,1] +
i−1∑

s=1

⎡

⎢
⎢
⎢
⎣

∑n
j=s+1

(β/γ )j−1

j

j−1∏

l=1
(1 − l

n
)

(β/γ )s
s∏

l=1
(1 − l

n
)

⎤

⎥
⎥
⎥
⎦
. (5.5)



5.2 Susceptible-Infectious-Susceptible Models 139

By re-scaling time by recovery rate γ , the expected time until extinction γE[T0,1]
and γE[T0,i] only depend on the ratio β/γ .

Recall that in the SIS model, the infectious period is exponentially distributed
with mean value μI = γ−1. The ratio β/γ is the basic reproduction number R0 =
βμI (4.2) defined at t = 0 when the system is at disease-free equilibrium.

If R0 < 1, given the current state I (t) = 1, the expected time to the end of
the epidemic γE[T0,1] < 1

R0
log 1

1−R0
. In fact, R−1

0 log 1
1−R0

is the limiting case as
m → ∞ so that

γE[T0,1] → 1 +
∞∑

j=2

1

j

(
β

γ

)j−1

= R−1
0 log

1

1 − R0
< ∞. (5.6)

Numerically computed γE[T0,1] values given by (5.4) are presented in Table 5.1.
For R0 < 1, the epidemic ends very quickly. This is the feature of a small outbreak
as discussed in Chap. 4. It also echoes (4.10) which gives the cumulative probability
to extinction by generation g.

If R0 = 1, given the current state I (t) = 1,

γE[T0,1] = 1 +
m∑

j=2

1

j

j−1∏

l=1

(1 − l

m
) ≈ 1

2
logm+ o(logm). (5.7)

Although γE[T0,1] → ∞ as m → ∞, γE[T0,1] takes very small values even in
very large finite populations. For example, even when m = 105, γE[T0,1] = 6.393.

If R0 > 1, γE[T0,1] → ∞ as m → ∞. By directly calculating from (5.4) for
given m, there exists an εm such that when R0 > 1 + εm, γE[T0,1] → ∞ very
quickly. However, in the range 1 < R0 ≤ εm, as shown in Table 5.1, γE[T0,1]
remains very small. For example, when R0 = 1.02, γE[T0,1] = 14.95 at m = 104.

Table 5.1 γE[T0,1] as calculated using (5.4) for finite m

m

102 103 104 ≈ → ∞
R0 2.3 8.3 × 1010 1.1 × 10115 7.2 × 101160 ∞

1.4 114.8 2.2 × 1021 1.7 × 10219 ∞
1.135 5.372 1.4 × 103 4.7 × 1032 ∞
1.05 3.545 8.550 6 × 104 ∞
1.02 3.179 5.043 14.95 ∞
1.0 2.979 4.102 5.245 1

2 logm+ o(logm) ∞
0.98 2.807 3.540 3.897 R−1

0 log 1
1−R0

3.992

0.95 2.591 3.019 3.135 3.153

0.85 2.098 2.214 2.230 2.232

0.5 1.377 1.385 1.386 1.386

0.2 1.114 1.116 1.116 1.116
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Andersson and Djehiche (1998, Theorem 1) provided asymptotic properties of
the distribution for the time to extinction of the SIS model as m → ∞, considering
an initial condition in which I (0) goes to infinity with m. The time to extinction,
denoted by T0, is asymptotically exponentially distributed with a mean that grows
exponentially with m if R0 > 1, given by

E[T0] ∼
√

2π

m

R0

(R0 − 1)2
em(logR0−1+1/R0). (5.8)

There is rich literature in recent years on the distribution for time to extinction of
the SIS model, and the above results have been generalized to homogeneous mixing
with arbitrarily distributed infectious periods as well as in heterogenous mixing with
household structures (Hernádez-Suárez and Castillo-Chavez 1999; Ball et al. 2016).
Specifically, (5.6)–(5.8) correspond to the three results in Lemma 3.2 of Ball et al.
(2016). For general results of time to extinction for SIS infections in heterogeneous
populations, we refer to Clancy (2018).

The Sample Paths of {I (t)}∞0
The sample paths of {I (t)}∞0 in (5.1) can be studied through the Kolmogorov
differential equations. Given I (0) = i0, let Pi(t) = Pr{I (t) = i|I (0) = i0}, the
forward Kolmogorov differential equations are

P ′
i (t) = β

(
1 − i−1

m

)
(i − 1)Pi−1(t)+ γ (i + 1)Pi+1(t)

− {β (1 − i
m

)+ γ } iPi(t)
(5.9)

for i = 1, . . . m−1, and P ′
0(t) = γP1(t), P

′
m(t) = β

(
1 − m−1

n

)
(m−1)Pm−1(t)−

γmPm(t). In (5.9), the first two terms with positive signs represent the in-flows to
state i.

i − 1 → i : qi−1,i = β
(

1 − i−1
m

)
(i − 1)

i + 1 → i : qi+1,i = γ (i + 1).

The third term, with negative sign, represents the outflows from state i to state i+ 1
and to state i − 1, with instantaneous rates β

(
1 − i

m

)
and γ i, respectively.

Multiplying both sides of (5.9) by eui and summing over i ∈ S, one gets

∂M(u,t)
∂t

= (β (eu − 1
)+ γ (e−u − 1

))
∂M(u,t)
∂u

− β (eu − 1)

m

∂2M(u,t)

∂u2 (5.10)

where M(u, t) = E[euI (t)] =∑i∈S euiPi(t) is the m.g.f. for I (t) at time t .
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Proof The left-hand side of (5.10) is ∂M(u,t)
∂t

= ∑i∈S euiP ′
i (t). The right-hand

side of (5.10) is

βeu
n∑

i=1

(
1 − i−1

n

)
(i − 1)eu(i−1)Pi−1(t)+ γ e−u

n−1∑

i=0

(i + 1)eu(i+1)Pi+1(t)

− β
n∑

i=0

(
1 − i

n

)
ieuiPi(t)− γ

n∑

i=0

ieuiPi(t)

= βeu
∑

i∈S

(
1 − i

n

)
ieuiPi(t)+ γ e−u

∑

i∈S
ieuiPi(t)

− β
∑

i∈S

(
1 − i

n

)
ieuiPi(t)− γ

∑

i∈S
ieuiPi(t)

= β
(
eu − 1

)
(
∑

i∈S
ieuiPi(t)− 1

n

∑

i∈S
i2euiPi(t)

)

+ γ (e−u − 1
)∑

i∈S
ieuiPi(t),

of which
∑
i∈S ieiuPi(t) = ∂M(u,t)

∂u
and
∑
i∈S i2eiuPi(t) = ∂2M(u,t)

∂u2 . �
Given the initial condition I (0) = i0, the conditional r-th moment for I (t) is

E[I r (t)|I (0) = i0] = ∂M(u,t)
∂u

∣
∣
∣
u=0

=
∑

i∈S
irPi(t).

For simplicity of notation, we write E[I r (t)|I (0) = i0] � E[I r (t)]. Differentiating
(5.10) repeatedly with respect to u and setting u = 0, we get a system of ordinary
differential equations showing that the rate of change of the r-th moment depends
on the (r + 1)-th moment, and an infinite set of coupled differential equations is
generated.

d

dt
E[I (t)] = (β − γ )E[I (t)] − β

m
E[I 2(t)] (5.11)

d

dt
E[I 2(t)] = (β + γ )E[I (t)] +

(

2 (β − γ )− β

m

)

E[I 2(t)] − 2β

m
E[I 3(t)]

d

dt
E[I 3(t)] = (β − γ )E[I (t)] + 3 (β + γ )E[I 2(t)]

+
(

3 (β − γ )− β

m

)

E[I 3(t)] − 3β

m
E[I 4(t)]

...
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As commonly seen in all nonlinear stochastic processes, moment closure is
required. To close the dynamic system, the next moment in the hierarchy must, at
some stage, be replaced with an expression containing only lower-order moments.
There is rich literature regarding moment closure methods applied to the SIS
models. We recommend readers to consult Nåsell (2003), Krishnarajah et al. (2005),
Pinto et al. (2009), Clancy and Mendy (2011), among many others.

5.2.2 The Deterministic SIS Model Represented
by an Ordinary Differential Equation

The first equation of (5.11) can be re-written as

d

dt
E[I (t)] = β

(
1 − E[I (t)]

m

)
E[I (t)] − γE[I (t)] − βvar[I (t)]

m
. (5.12)

One of the moment closure procedures is to put assumptions on var[I (t)] to study
the dynamics of the expected number of I (t) over time. The term deterministic
means var[I (t)] = 0 for all t > 0 and {I (t)}∞0 is modeled as a non-random,
continuous, and differentiable function of t, denoted by Id(t). The deterministic
SIS model is an extreme case of moment closure.

In the deterministic SIS model, we replace E[I (t)] in (5.12) with Id(t) and get
the ordinary differential equation

d

dt
Id(t) = β

(
1 − Id (t)

m

)
Id(t)− γ Id(t). (5.13)

Viewing (5.13) as deterministic through moment closure, other stochastic assump-
tions in the original model (5.1) are carried over. The constant recovery rate γ > 0
implies that the duration of the infectious period is exponentially distributed with

mean value γ−1. The first term of (5.13), β
(

1 − Id (t)
m

)
Id(t), arises from the

homogeneity assumptions in the agent–host–environment relationship, of which
it is assumed that an individual makes contacts with all other individuals in the
population with equal probability. Therefore, there is an embedded stochastic
process governing the social contact network.

The differential equation (5.13) yields the explicit expression for Id(t) of a
logistic function form

Id(t) = mi0 (R0 − 1)

i0R0 + (m (R0 − 1)− i0R0) e−(R0−1)γ t
. (5.14)

It can be re-written as where R0 = β/γ . It has three parameters (R0, γ,m) and the
initial condition Id(0) = i0. R0 is the threshold parameter.
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• If R0 ≤ 1, for any i0> 0, Id(t) decreases monotonically with limt→∞ Id(t)= 0;
• if R0 > 1 and i0 > m(1 − 1/R0) , then Id(t) decreases monotonically with

limt→∞ Id(t) = m(1 − 1/R0) ;
• if R0 > 1 and i0 < m(1 − 1/R0) , then Id(t) increases monotonically with

limt→∞ Id(t) = m(1 − 1/R0) ;
• ifR0 > 1 and i0 = m(1 − 1/R0) , then Id(t) is constant: Id(t) = m(1 − 1/R0) .

Later in this chapter we shall see that (5.14) can be re-parameterized as the
logistic function (4.59) in Chap. 4 with one less parameter.

According to Nåsell (2002), a parameter is called innocent if it can be eliminated
from the model by re-scaling either the state variable or the time. Otherwise, the
parameter is called essential. In the deterministic SIS model, the essential parameter
is R0 whereas both γ and m are innocent. This is because Id(t) depends on t only
through γ t , γ is a scale parameter and can be eliminated by re-scaling of time
τ = γ t . The population size m can also be eliminated from the model by re-scaling
y(t) = Id (t)

m
. The model (5.13) becomes

d
dt
y(τ ) = −y(τ)2 if R0 = 1

d
dτ
y(τ ) = (R0 − 1)

[
1 − R0

R0−1y(τ)
]
y(τ) if R0 �= 1

(5.15)

which describes the change of the proportion y(τ) of infectious individuals in a
population at time τ (according to a standardized scale γ = 1) regardless of the
population size m.

The standardized form of Id(t) is

y(τ) = y0(1 − R−1
0 )

y0 +
((

1 − R−1
0

)
− y0

)
e−(R0−1)τ

. (5.16)

With initial value y0 = i0/m > 0, if R0 ≤ 1, y(τ ) decreases monotonically
with limτ→∞ y(τ) = 0; if R0 > 1, y(τ ) approaches limτ→∞ y(τ) = 1 − R−1

0 ,

either monotonically decreasing if y0 > 1 − R−1
0 or monotonically increasing

if y0 < 1 − R−1
0 . In the latter case, y(τ) increases as a convex function of τ if

τ < − 1
(R0−1) log R0y0

(R0−1)−R0y0
and as a concave function of τ afterwards.

5.2.3 Comparing the Stochastic and the Deterministic
SIS Models

We compare the dynamics of E[I (t)] given by (5.12) with its deterministic
counterpart Id(t) given by (5.13).

First, given the same initial condition I (0) = Id(0) = i0, the mean of the
stochastic process as the solution for E[I (t)] in (5.12) is less than the solution for
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Id(t) in (5.13), that is, E[I (t)] ≤ Id(t), for t ∈ [0,∞). This is a special case of
a general theorem (page 296 of Allen 2010). The difference is due to the variance
term in (5.12), in which the dynamic change of var[I (t)] depends both on the first
moment E[I (t)] and the third moment E[I 3(t)]

d

dt
var[I (t)] =

(

2 (β − γ )− β

m
+ 2β

m
E[I (t)]

)

var[I (t)]

+ (β + γ )E[I (t)] − β

m
E[I (t)]2 + 2β

m
E[I (t)]3

− 2β

m
E[I 3(t)].

On the other hand, the deterministic model assumes that var[Id(t)] = 0 for all
t > 0.

Second, in the stochastic SIS model, {0} is the only absorbing state. When
t → ∞, the epidemic will end with certainty. However, the expected time to the end,
γE[T0,1], approaches infinity when R0 > 1+ε, for some ε. In the deterministic SIS
model, the epidemic arrives at endemic equilibrium limt→∞ Id(t) = m(1 − 1/R0) .

Third, the stochastic SIS model is qualitatively different from its deterministic
counterpart. In the stochastic SIS model, by re-scaling time τ = γ t, the transition
probabilities can be written as

Pr {I (τ + dτ) = i + 1|I (τ ) = i} = β
γ

(
1 − i

m

)
idτ,

Pr {I (τ + dτ) = i − 1|I (τ ) = i} = idτ.

Therefore, γ is an innocent parameter for both the deterministic and the stochastic
SIS models. The population size m plays an important role in the stochastic model.
It defines the state space S. Therefore it is essential in the stochastic model but
innocent in the deterministic model. The parameter R0 = β/γ is essential for both
models.

At first glance, it seems that the deterministic model gives the mean behavior of
the corresponding stochastic system asymptotically with m → ∞, in which case,
βvar[I (t)]

m
→ 0. Thus for large populations, there is little to be gained from using

a stochastic model, which will generally be more difficult to analyze. However,
as pointed out in Isham (2005), even in large populations, chance fluctuations do
not always average out to have little overall effect. Even when they do, it may be
important to take the variability of individual realizations into account, for example
in predicting the course of an individual outbreak.

More importantly, the deterministic model as an approximation of the mean
behavior of E[I (t)] is in the sense of viewing the occurrence of an epidemic
outbreak as a realization of a random event, assuming it can be repeated under
identical initial conditions. Each realization has its own sample path. The large
population size, approximated by m → ∞, only removes the oscillation within
a single sample path, that is, a smooth curve. Since the occurrence of an epidemic
outbreak does not arise from a designed experiment and is a single realization of
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a stochastic event which cannot be repeated under identical initial conditions, this
aspect is better illustrated through stochastic simulation.

5.2.4 Stochastic Simulation of SIS Outbreaks

Simulation provides a virtual experiment assuming that the outbreak can be repeated
under identical initial conditions (Allen 2017). The simulation algorithm can be
done in two parts:

1. We first simulate the sample paths of the embedded discrete time Markov chain
{i0, i1, i2, . . . iL} in L steps. We start with an initial state I (0) = i0, 1 ≤ i0 ≤
m − 1. Then we generate a uniformly distributed random number U between 0
and 1 and assign

i1 =
{
i0 + 1, if U ≤ β(m−i0)

β(m−i0)+mγ
i0 − 1, if U > β(m−i0)

β(m−i0)+mγ
. (5.17)

If i1 = 0, then the process reaches the absorbing state and we assign i2 = i3 =
· · · = 0. Otherwise if 1 ≤ i1 ≤ m− 1, we calculate i2 using (5.17) by replacing
i0 with i1 and replacing i1 with i2 in (5.17). If i1 = m, we assign i2 = m− 1. We
repeat this algorithm by steps (up to step L) and get discrete sample paths of the
embedded Markov chain {i0, i1, i2, . . . iL}.

2. We then simulate the sojourn time in each state in order to determine the time at
which each jump occurs. We first generate q random numbers from the standard
exponential distribution with p.d.f.X0 ∼ e−x. For j = 0, . . . , L−1, the sojourn
time of state ij is distributed according to an exponential distribution with rate

β
(

1 − ij
m

)
ij + γ ij , which can be simulated by X0

/[
β
(

1 − ij
n

)
ij + γ ij

]
.

Such a simulation algorithm can be easily implemented by many commonly
available mathematical or statistical computing languages, such as MATLAB or R
by R Development Core Team (http://www.R-project.org).

Stochastic simulation shows that, when t is sufficiently large, both the mean value
E[I (t)] and the variance var[I (t)] appear to be no longer depending on time t.
We assume that, at this phase, the marginal distribution Pr{I (t) = i} is stationary.
We call this distribution the quasi-equilibrium distribution and denote it by qi =
Pr{I (t) = i|I (t) > 0}, i = 1, . . . , m with

∑m
i=1 qi = 1.

Figure 5.1 demonstrates two of such simulations with population sizes m = 100
and m = 1000. In both simulations, we choose β = 1.5, γ = 1, and the initial
value i0 = 2. We repeat each simulation 500 times to generate 500 sample paths.
Some typical sample paths are highlighted in color. The deterministic functions
Id(t), given by (5.14), are also plotted against the simulated sample paths in
both simulations. Alongside the simulated sample paths in the two populations,
normalized histograms for summary statistics of {qi : i = 1, . . . , m} are also
plotted.

http://www.R-project.org
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Fig. 5.1 Deterministic functions, Id (t), given by (5.14) are plotted (solid black lines) against the
simulated sample paths in two population sizes (m = 100 and 1,000) at β = 1.5, γ = 1, and
i0 = 2. The histograms are distributions for I (t) at equilibrium and summary statistics of {qi : i =
1, . . . , n}

We summarize the following observations from these simulations.

1. In the stochastic simulations, some realizations of the sample paths become
extinct at the very beginning. About 49% of the simulated sample paths had early
extinction when m = 100, and about 47% of the simulated sample paths had
early extinction when m = 1000. Comparing with the branching process model
in Chap. 4, if the infectious period is exponentially distributed, the probability of

such early extinction is δ = min
{

1, R−i0
0

}
asm → ∞. In the case R0 = 1.5 and

i0 = 2, δ = 44.4%.

2. The deterministic model suggests limt→∞ Id(t) = m
(

1 − R−1
0

)
> 0 if R0 > 1,

which is an endemic equilibrium value. This value can be used to compare with
the mean value of the quasi-equilibrium distribution. Figure 5.1 shows that the
empirical mean of the quasi-equilibrium distribution {qi : i = 1, . . . , m} at m =
100 is 33.21 and at m = 1000 is 332.6. The deterministic endemic equilibrium
values are 33.33 at m = 100 and 333.33 at m = 100, respectively.
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3. We have shown theoretically that the stochastic mean E[I (t)] is not necessarily
equal to Id(t) because var[I (t)] > 0 in (5.12). In fact, E[I (t)] ≤ Id(t), for
t ∈ [0,∞). Figure 5.1 seems to confirm this observation, especially taking into
consideration that more than 45% of the simulated sample paths have I (t) = 0
for some t > t0.

4. Given R0 > 1, large population size m reduces the variance of the quasi-
equilibrium distribution {qi : i = 1, . . . , n} as well as the variation (fluctuation)
within a single realization of the sample path. However, it does not reduce the
variation among sample paths, especially before the quasi-equilibrium phase has
been reached.

5. Under identical initial conditions, a single realization of an epidemic in the
stochastic model can be dramatically different from that predicted by its deter-
ministic counterpart. Most of the observational data collected during an outbreak
arise from a single realization of such a stochastic event. This leads to a
cautionary note about the danger of fitting such data to a deterministic model
in order to estimate important parameters.

5.3 Susceptible-Infectious-Recovered Models

In Susceptible-Infectious-Recovered (SIR) models, the population is partitioned
into three classes of individuals with S(t), I (t) and R(t), representing the number
of susceptible, infectious, and recovered individuals at time t .

(F1) Constant population size: S(t)+I (t)+R(t) = mwith no death or emigration,
and no birth or immigration.

(F2) There is no replacement of susceptible individuals due to loss of immunity of
recovered individuals.

(F3) Individuals immediately become infectious after being infected, without a
latent period.

(F4) The infectious period TI is exponentially distributed with hazard function γ
and mean value μI = γ−1.

(F5) Assume homogeneous transmission in the environment in the sense that:

(a) the force of infection onto a typical susceptible individual at any given
time t is proportional to the proportion of infectious individuals, i.e.
β1
I (t)
n

;
(b) the instantaneous transmission rate of a typical infectious individual at any

given time t is proportional to the proportion of susceptible individuals,
i.e. β2

S(t)
n

;
(c) bilinearity β = β1 = β2 that defines the probability of an instantaneous

new infection in the population is given by β S(t)I (t)
n

dt .
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5.3.1 Representation of the SIR Model as a Bivariate
Markov Process

Markov processes can be multivariate, defined in a multidimensional state space. In
the study of infectious diseases, very often a population of size m is partitioned into
k compartments, and a state is defined by a vector i = (i1, i2, . . . , ik) subject to
i1 + i2 + · · · + ik = m. Each element in i takes values {0, 1, 2, . . . m}. As a result,
the state space S contains

|S| =
(
m+ k − 1

k − 1

)

states. A Markov process defined on this space is a multivariate Markov process
with k − 1 independent response variables.

The birth–death process given by (5.1) corresponds to k = 2, where the
population is partitioned into an infected class modeled by {I (t)} and a susceptible
class modeled by {S(t)} subject to S(t) = m − I (t). In this case, the birth–death
process has one independent response variable I (t).

In the SIR model, the population is partitioned into k = 3 compartments.
Transitions can only occur as

(s, i, r)→ (s − 1, i + 1, r) a new infection
(s, i, r)→ (s, i − 1, r + 1) a recovery

.

Because R(t) = m−S(t)− I (t), the SIR model is a bivariate Markov process. The
transition probabilities are often modeled by

Pr

{(
S(t + dt) = s − 1
I (t + dt) = i + 1

) ∣∣
∣
∣

(
S(t) = s

I (t) = i

)}

= β si
m
dt,

Pr

{(
S(t + dt) = s

I (t + dt) = i − 1

) ∣∣
∣
∣

(
S(t) = s

I (t) = i

)}

= γ idt.

(5.18)

This bivariate Markov model is time-stationary. One can define the transition
probability

psi(t) = Pr

{(
S(t) = s

I (t) = i

) ∣∣
∣
∣

(
S(0) = s0

I (0) = i0

)}

, s0 + i0 = m. (5.19)

As before, the initial condition (S(0), I (0)) = (s0, i0) is omitted in the notation
Psi(t) for simplicity. The Kolmogorov forward equations are written as d

dt
Ps0i0(t) =

−i0
(
βs0
m

+ γ
)
Ps0i0(t) and

d
dt
Psi(t) = β(s+1)(i−1)

m
Ps+1,i−1(t)+ γ (i + 1)Ps,i+1(t)

−
(
βs
m

+ γ
)
iPsi(t)

(5.20)
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where 0 ≤ s + i ≤ n, 0 ≤ s ≤ s0, 0 ≤ i ≤ n. Similar to the interpretation of (5.9),
the first two terms of (5.20) with positive signs represent the in-flows

(s + 1, i − 1) → (s, i) : with rate β(s+1)(i−1)
m

(s, i + 1) → (s, i) : with rate γ (i + 1)

and the third term, with negative sign, represents the outflows (s, i) → (s−1, i+1)
and (s, i) → (s, i − 1), with instantaneous rates βsi

m
and γ i, respectively.

We write the bivariate moment generating function as M(u, v|t) =
E
[
euS(t)+vI (t)

]
. Multiplying both sides of (5.20) by eus+vi and summing over

(s, i) ∈ S, the correspondence to (5.10) is (Isham 1991)

∂M(u,v|t)
∂t

= γ (e−v − 1) ∂M(u,v|t)
∂v

+ β

n

(
ev−u − 1

)
∂2M(u,v|t)
∂u∂v

. (5.21)

Using the facts that

E[S(t)] = ∂M(u,v|t)
∂u

|u=v=0 E[I (t)] = ∂M(u,v|t)
∂v

|u=v=0

E[S2(t)] = ∂2M(u,v|t)
∂u2 |u=v=0 E[I 2(t)] = ∂2M(u,v|t)

∂v2 |u=v=0,

E[S(t)I (t)] = ∂2M(u,v|t)
∂u∂v

|u=v=0

E[S2(t)I (t)] = ∂3M(u,v|t)
∂u2∂v

|u=v=0 E[S(t)I 2(t)] = ∂3M(u,v|t)
∂u∂v2 |u=v=0,

further differentiating (5.21) repeatedly with respect to u or v and letting u = v = 0,
one gets the equations describing the rate of change of the first moments

{
d
dt
E[S(t)] = −β E[S(t)I (t)]

m
d
dt
E[I (t)] = β

E[S(t)I (t)]
m

− γE[I (t)] . (5.22)

The rate of change of the first moments E[S(t)] and E[I (t)] over time depend
on the second order cross moment between S(t) and I (t) given by E[S(t)I (t)].
Continuing, one gets

d

dt
E[S2(t)] = β

E[S(t)I (t)]
m

− 2β E[S2(t)I (t)]
m

d

dt
E[S(t)I (t)] = −

(
β
m

+ γ
)
E[S(t)I (t)] + β

m

(
E[S2(t)I (t)] − E[S(t)I 2(t)]

)

d

dt
E[I 2(t)] = γE[I (t)] − 2γE[I 2(t)] + β

m

(
E[S(t)I (t)] + 2E[S(t)I 2(t)]

)

...



150 5 Beyond the Initial Phase: Compartment Models for Disease Transmission

The equations describing the rate of change of the r-th moments depend on the
(r + 1)-th moments. For moment closure, Isham (1991) assumes that at each time
t, {S(t), I (t)} follow a bivariate normal distribution so that all the higher order
moments can be expressed as functions of the mean and elements in the variance–
covariance matrix of the bivariate normal distribution.

Using the covariance expression cov(X, Y ) = E[XY ] − E[X]E[Y ], the change
of the first moments for S(t) and I (t) in (5.22) can be re-written as

{
d
dt
E[S(t)] = −βE[S(t)]E[I (t)]

m
− β
m
cov {S(t), I (t)}

d
dt
E[I (t)] = βE[S(t)]E[I (t)]

m
− γE [I (t)] + β

m
cov {S(t), I (t)} . (5.23)

The term involving cov {S(t), I (t)} becomes negligible as m → ∞.

5.3.2 The Kermack and McKendrick Deterministic SIR Model

Like the discussion for the deterministic SIS model, let Sd(t), Id(t), and Rd(t)
be deterministic (non-random), continuous, and differentiable functions of t , repre-
senting the number of susceptible, infectious, and recovered (removed) individuals
subject to Sd(t) + Id(t) + Rd(t) = m for all t > 0, the deterministic SIR model
(Kermack and McKendrick 1927) is then given by a system of ordinary differential
equations by replacing E[S(t)] and E [I (t)] in (5.23) with Sd(t) and Id(t) and
setting cov {S(t), I (t)} = 0 as moment closure. The model is given by:

{
d
dt
Sd(t) = −β Sd(t)Id (t)

m
d
dt
Id(t) = β

Sd(t)Id (t)
m

− γ Id(t) . (5.24)

It implies d
dt
Rd(t) = γ Id(t).

Compare Simulated Stochastic SIR Outbreaks with the Deterministic
Model

Similar to the comparison between stochastically simulated paths of SIS outbreaks
and Id(t) determined by the ordinary differential equation (5.13), an algorithm can
be also implemented in MATLAB or R in two steps: (1) simulate the sample paths of
the embedded bivariate discrete time Markov chain; (2) simulate the sojourn times.

Without going into details of the algorithm, we compare results in Fig. 5.2.

1. The deterministic model, given the initial conditions, says “what must happen”
as determined by the function Id(t), such as the precise peak time and magnitude.
Under the same initial condition, the stochastic model tells “what might happen.”
In fact, in both simulations with m = 1000 and m = 10,000, approximately 1/3
of the times the outbreak did not take place (as the straight line near I (t) ≈ 0).
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Fig. 5.2 A comparison of stochastically simulated sample paths for I (t) in the SIR model (5.18)
against Id (t) (solid black lines) in the model (5.24) in two population sizes (m = 1,000 and
m = 10,000) at: β = 1.5, γ = 1

2. Large population size m reduces temporal variations within sample paths so that
they converge to smooth (random) functions as m → ∞, but not identical to
Id(t).

3. The deterministic model, as approximation to the mean of its stochastic coun-
terpart, should be understood as the average of sample paths assuming a large
number of repetitions of outbreaks in the identical population with identical
initial conditions, which can only happen in theory or in simulated scenarios.

Important Relationships and Quantities from the Deterministic SIR Model

There is a fundamental difference between the stochastic and the deterministic
SIR models. In (5.18), m is an essential parameter that determines the numbers
of absorbing and transient states in the model. The state space S contains triplets
(s, i, r) with

|S| = (m+ 1)(m+ 2)

2

states. There are m + 1 absorbing states: S1 = {(s, 0,m − s) : s = 0, 1, . . . , m}.
The rest of transient states are in S2 with |S2| = m(m+1)

2 . Table 5.2 illustrates the
dimension of the state space for a small population less than or equal to 500.

On the other hand, in (5.24), both γ and m are innocent parameters. Letting
x(t) = Sd(t)

m
, y(t) = Id (t)

m
and z(t) = Rd(t)

m
subject to x(t) + y(t) + z(t) = 1, and

re-scaling time τ = γ t, (5.24) becomes

{
d
dτ
x(τ ) = − β

γ
x(τ )y(τ ),

d
dτ
y(τ ) = β

γ
x(τ )y(τ )− y(τ) . (5.25)
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Table 5.2 Tabulation of the number of states in the stochastic SIR model with populations sizes
up to 500

Pop. size m 10 20 50 100 200 500

Absorbing states |S1| 11 21 51 101 201 501

Transient states |S2| 55 210 1275 5050 20,100 125,250

Total states |S| 66 231 1326 5151 20,301 125,751

It implies dz(τ)
dτ

= y(τ). The only essential parameter is R0 = β/γ . The
deterministic model is simple to analyze. For the preparation of a list of key results,
we put forward the following preserved relationship

Sd(t)+ Id(t)− m

R0
log Sd(t) = Sd(0)+ Id(0)− m

R0
log Sd(0). (5.26)

It is derived from (5.24) using the relationship dId
dSd

= −1 + γm
βSd(t)

, which
implies Id(t) = −Sd(t) + m

R0
log Sd(t) + c, where c is an arbitrary constant.

Therefore, Sd(t) + Id(t) − m
R0

log Sd(t) defines an orbit for some choice of c,
which is determined by the initial values Sd(0) and Id(0) of Sd(t) and Id(t). Since
Sd(t)+ Id(t)+ Rd(t) = Sd(0)+ Id(0) = m, (5.26) can also be written as

Sd(t) = Sd(0) exp

(

−R0

m
Rd(t)

)

. (5.27)

With respect to (5.25), (5.26) becomes

1 − x(t)− y(t)+ 1

R0
log

x(t)

x0
= 0 (5.28)

where x0 = Sd(0)
m
, and (5.27) can be re-written as x(t) = x0 exp (−R0z(t)).

Furthermore, with respect to time τ = γ t,

dz(τ )

dτ
= y(τ) = 1 − z(τ )− x(τ)
= 1 − z(τ )− x0 exp (−R0z(τ ))

which yields, as originally given in (Deakin 1975),

τ =
∫ z(τ )

0

1

1 − x − x0e−R0x
dx. (5.29)

The essential parameterR0 = β/γ determines the following important quantities
through these preserved relationships.
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The Final Size A more important transcendental relationship is the one that links
the threshold parameter R0 defined by (4.2) at the very beginning of an epidemic
with the outcome at the very end of an epidemic. They are expressed as the final
size equation given by (5.32) below and illustrated in Fig. 6.1 in Chap. 6.

In the deterministic SIR model, given the initial condition Sd(0) + Id(0) = m,

the relationship (5.26) leads to

m− Sd(∞)+ m

R0
log

(
Sd(∞)
Sd(0)

)

= 0, (5.30)

where Sd(∞) is the quantity of interest representing the number of susceptible
individuals who eventually escape from infection by the end of the outbreak and
Cd(∞) = m− Sd(∞) is the final size. Because d

dt
(Sd(t)+ Id(t)) = −γ Id(t) and

Sd(t)+ Id(t)+ Rd(t) = m, one also gets

γ

∫ ∞

0
Id(t)dt = Cd(∞). (5.31)

The total area
∫∞

0 Id(t)dt = γ−1Cd(∞) is sometimes called the value of the
epidemic because it is the total infectious person time of the epidemic.

Re-writing the initial condition as x0 = Sd(0)/m, the final size equation, using
(5.28), can be written as 1 − x(∞) = − 1

R0
log x(∞)

x0
0. The left side, denoted by

η = 1 − x(∞), is the proportion of the population that will be eventually infected
by the end of the epidemic, corresponding to the large outbreak in Sect. 4.2.3 with
the notation Cd(∞)/m. Then (5.30) can be written as

1 − η = x0e
−R0η. (5.32)

This is the nonlinear monotone relationship (assuming x0 ≈ 1) between η and R0
as shown in Fig. 6.1.

The Peak Prevalence The maximum value of Id(t), denoted by Imax
d , is the peak

prevalence and represents the maximum disease burden at a given time. It is attained
when Sd(t)

m
= x(t) = 1

R0
, at which d

dt
Id(t) = 0. Given the initial condition x0 =

Sd(0)
m
, Imax
d is derived from (5.26):

Imax
d = m

(

1 − 1

R0

[
1 + log (R0x0)

]
)

. (5.33)

Define the Incidence Quantiles Similar to the definition quantile for the cumu-
lative distribution in probability theory, we defined the incidence quantile. The
qth-quantile for the cumulative incidence Cd(t) = m− Sd(t) is tq , satisfying

Cd(tq)

m
= q

Cd(∞)
m

= qη,
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where 1−x0
η

≤ q < 1, x0 = Sd(0)
m

and η satisfies (5.32). For instance, if q = 0.25,
t0.25 is the time from the beginning of the epidemic until it reaches 25% of the final
size.

Proposition 19 (Kendall 1956; Deakin 1975) For the SIR model specified by
(5.24), the time when the cumulative incidence Cd(t) reaches Cd(t)/m = qη can
be calculated by

τq = γ tq =
∫ 1

R0
log

x0
1−ηq

0

1

1 − x − x0e−R0x
dx. (5.34)

Proof From (5.28), z(τ ) = 1
R0

log x0
x(τ)
. The time τq = γ tq when Cd(tq )

m
= 1 −

x(tq) = qη. Hence z(τq) = 1
R0

log x0
x(τq )

= 1
R0

log x0
1+ηq . Letting the left-hand side

of (5.29) be τq, one immediately gets (5.34). �

We notice that (5.32) can be written as 1
R0

log x0
1−η = η. Thus

lim
q→1

1

R0
log

x0

1 − ηq = η.

Meanwhile, the denominator of the integrand approaches zero as x → η.When q =
100%, the integration diverges. In other words, the expected duration, according to
the deterministic SIR model, is infinity.

The Timing of the Peak Prevalence and the Peak Incidence The timing of the

peak prevalence can be calculated by setting q = 1
η

(
1 − γ

β

)
in (5.34) so that

x(tmax .I) = 1
R0
. One gets

γ tmax .I =
∫ 1

R0
logR0x0

0

1

1 − x − x0 exp(−R0x)
dx. (5.35)

The peak incidence for id(t) = β
Sd(t)Id (t)

m
is attained when Sd(t)

m
− Id (t)

m
= x(t)−

y(t) = 1
R0

. From (5.28), y(t) = 1 − x(t)+ 1
R0

log x(t)
x0
. If id(t) arrives at its peak at

time tmax.i, then 2x(tmax.i) − 1
R0

log x(tmax.i)
x0

= 1 + 1
R0
, where x(tmax.i) = Sd(tmax.i)

m
.

Let u(tmax.i) = 1 − x(tmax.i) = C(tmax.i)
m

, then u(tmax.i) can be solved as the root u of
the equation 2(1 − u)− 1

R0
log 1−u

x0
= 1 + 1

R0
, or equivalently

2u− 1

R0
log

x0

1 − u = 1 − 1

R0
. (5.36)
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To determine tmax .i, we first solve (5.36) for u to obtain u(tmax.i) and then let q =
u(tmax.i)
η

in (5.34) to get

γ tmax.i =
∫ 1

R0
log

x0
1−u(tmax.i)

0

1

1 − x − x0 exp(−R0x)
dx. (5.37)

Meanwhile, the peak incidence value is imax
d = β

Sd(tmax.i)Id (tmax.i)
m

with Sd(tmax.i)
m

=
1 − u(tmax.i) and Id(tmax.i) = my(tmax.i), so that

imax
d = βm (1 − u(tmax.i))

(

u(tmax.i)− 1

R0
log

x0

1 − u(tmax.i)

)

. (5.38)

Since u(tmax.i) satisfies (5.36) and β = R0/γ , we have

γ

m
imax
d = R0 (1 − u(tmax.i))

(

1 − u(tmax.i)− 1

R0

)

. (5.39)

Thus, given the population size m, imax
d is also scaled by γ.

The dynamics of the incidence i(t), the cumulative incidence C(t), the preva-
lence I (t) and the depletion of the susceptible population S(t) from the determinis-
tic SIR model are schematically illustrated in Fig. 5.3.

Fig. 5.3 A schematic illustration of all the quantities of the deterministic SIR model at standard-
ized time τ = γ t
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Summary

1. The final size Cd(∞) and the peak prevalence Imax
d are scaled by the population

size m, independent of the time scale γ.
2. The incidence quantile tq , the timing of the peak prevalence tmax .I, and the peak

incidence tmax.i are scaled by γ , independent of the population size m.
3. The value of the epidemic

∫∞
0 Id(t)dt = γ−1Cd(∞) = mη/γ and the value of

the peak incidence imax
d are scaled by the ratio m/γ .

Example 20 As a numerical example, we consider a fairly large population m =
10,000 with a single initially infected individual, so that Sd(0) = 9999. We fix
the value of the basic reproduction number R0 = β/γ = 2. We compare two
scenarios: (a) β = 1 and γ = 1/2; (b) β = 0.5 and γ = 1/4. In both scenarios,
Sd(∞) = 2031.5, the final size Cd(∞) = 7968.5, and the peak prevalence Imax

d =
1534.8. The quantile tq for scenario (a) is half of that for scenario (b). Therefore,
the timing of peak prevalences, tmax .I = 18.144 in scenario (a) and tmax .I = 36.287
in scenario (b); the timing of peak incidences, tmax.i = 16.503 in scenario (a) and
tmax.i = 33.007 in scenario (b). These are all because the average infectious period
in scenario (b) is twice as long as that for scenario (a). Meanwhile, the value of
the epidemic

∫∞
0 Id(t)dt in scenario (a) is half of that in scenario (b), and the peak

incidence imax
d in scenario (a) is twice the value of that in scenario (b), 876.24 vs.

439.12, respectively. There are two quantities that do not depend onm or γ . They are
η = 0.7968 by solving (5.32) and u(tmax.i) = 0.36254 by solving (5.36) (Fig. 5.4).

Fig. 5.4 Illustration of the quantities in Example 20
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5.3.3 The Deterministic SIR Model with Non-exponentially
Distributed Infectious Periods

Sir David Cox (2006) wrote:

It is important to distinguish the primary features from the secondary features of the model.
If a primary feature is changed, the research questions of interest are either changed or
at least formulated in an importantly different way. If a secondary feature is changed, the
research questions are essentially unaltered. Their influence is typically on the method, e.g.
simplified, feasible ways to analyze the model or improving the precision of parameter
estimates.

We extend the distribution of the infectious period TI from the exponential
distribution to non-exponential distributions. Since the deterministic SIR model
(5.24) has yielded a list of important relationships and results, from (5.26) to (5.39),
we discuss which of them are generalizable to other infectious period distributions
and which depend on the exponential distribution as a primary feature.

Relationships and Quantities Derived from (5.24)–(5.25) in Which the
Exponential Distribution of the Infectious Periods Is a Secondary Feature

The Formulation R0 = βμI The essential parameter R0 = β/γ in (5.25) is
R0 = βμI where μI = γ−1. The general expression is R0 = βμI in models
with SEI structures for arbitrarily distributed infectious periods, as long as μI
exists. R0 is the basic reproduction number. In the case without latent periods,
the probability generating function (4.4) for N such that R0 = E[N ] is GN(s) =∫∞

0 e−βx(1−s)dFI (x). Thus,

R0 = G
′
N(1) = β

∫ ∞

0
xdFI (x) = βμI .

The Final Size Equation (5.32) The exponential distribution of the infectious
periods is a secondary feature with respect to the final size equation. From a
stochastic perspective, we first present the following ad hoc arguments under the
assumptions that

1. All infectious individuals are equally infectious, regardless when each individual
is infected and how long it has been infected. Then the force of infection onto a
specific susceptible individual νs , h(t |νs), may depend on its susceptibility.

2. All susceptible individuals are also made of the same type, with equal suscepti-
bility, then h(t |νs) = h(t). In this case, the force of infection is h(t) = β

E[I (t)]
m

and the parameter β captures the hazard of becoming infected.
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The cumulative force of infection of a typical susceptible individual through
its lifetime is

∫∞
0 h(t)dt = β

m

∫∞
0 E[I (t)]dt . Holding m = S(t) + I (t) + R(t)

constant, the probability that a susceptible individual ever gets infected throughout
the epidemic is

η = 1 − exp

{

−
∫ ∞

0
h(t)dt

}

= 1 − exp

{

− β
m

∫ ∞

0
E[I (t)]dt

}

. (5.40)

where
∫∞

0 E[I (t)]dt is the expected total infectious person time and μI = E[TI ] is
the average time spent infectious per infection. Thus, 1

m

∫∞
0 E[I (t)]dt = ημI and

η = 1 − exp {−ηβμI } = 1 − exp {−R0η} .

Note that in the deterministic framework, we approximate E[I (t)] as Id(t) and∫∞
0 Id(t)dt = mημI = μICd(∞).

A formal theory is given by the Proposition 21 below.

Proposition 21 C(∞)−mη√
m

has Gaussian limit distribution N(0, σ 2) of which the

asymptotic variance is

σ 2 = η (1 − η)
(1 − R2

0η)
+ η2 (var[N ] − R0) (1 − η + ε)

(1 − R0η)2
. (5.41)

where η is the root of the final size equation 1 − η = exp (−R0 (η + ε)) , and N is
the random variable corresponding to R0 = E[N ].

This central limit tendency has been studied and proven by many authors under
different assumptions regarding disease transmission. We refer readers to von Bahr
and Martin-Löf (1980), Ludwig (1975), Scalia-Tomba (1985), Martin-Löf (1988)
and Lefèvre and Picard (1995), among many others, for the suitable conditions and
proofs.

In Proposition 21, the cumulative number of infections C(∞) is a discrete
random variable taking integer values. When R0 > 1, conditioning on a large
outbreak and I (0)

m
= 1 − x0, as m becomes large, the random variable C(∞)

m

converges in distribution to a point mass at η. The fluctuations around the limit
are Gaussian of order 1√

m
, which become large if the variance var[N ] is large.

According to this proposition, the exponential distribution of the infectious period
is a secondary feature for the mean final size η but is a primary feature for the
asymptotic variance of the final size. In this special case, var[N ] = R0 + R2

0.

The Relationship (5.31) The relationship
∫∞

0 Id(t)dt = μICd(∞) = mημI is
general for arbitrarily distributed infectious periods, as long as μI exists, and (5.31)
is the special case with μI = γ−1.



5.3 Susceptible-Infectious-Recovered Models 159

Relationships and Quantities Derived from (5.24)–(5.25) in Which the
Exponential Distribution of the Infectious Periods Is a Primary Feature

The Peak Prevalence Is Attained When Sd(t)
m

= x(t) = R−1
0 This relationship

only holds when the recovery rate γ is constant. The exponential distribution of
the infectious periods is a primary feature. If the recovery rate is a function of time
γc(t), it leads to a nonautonomous differential equation

d

dt
Id(t) = β

Sd(t)Id(t)

m
− γc(t)Id(t). (5.42)

The threshold condition for d
dt
Id(t) = 0 is β x(t)

γc(t)
= 1. In other words, the peak

prevalence is attained when

x(t) = γc(t)/β.

This condition does not transcend to R0 through the depletion of susceptible
individuals x(t) without an explicit model for γc(t). Very soon we shall see that,
in the case of non-exponentially distributed infectious periods, the recovery rate is
an implicit function of time γc(t), depending on the historical incidence id(s) =
β
Sd(s)Id (s)

m
, s ≤ t and the specific distribution of the infectious period.

The Preserved Relationships and Some of Their Derived Quantities In the
deterministic SIR model, we have an important preserved relationship (5.26),
alternatively expressed as (5.27). With respect to (5.25), (5.26) becomes (5.28),
or equivalently, x(t) = x0 exp (−R0z(t)). The latter leads to the important
relationship (5.29). All these relationships are derived from dId

dSd
= −1 + γm

βSd(t)

and dRd
dSd

= − γm
βSd(t)

, where γ is constant. Therefore, the exponential distribution of
the infectious periods is a primary feature.

One of the quantities is tq given by (5.34), derived from (5.29). It further derives
quantities such as the timing of the peak prevalence (5.35) and the timing of the peak
incidence (5.37). All these results depend on the assumption of an exponentially
distributed infectious period. For generally distributed infectious period, Fig. 5.5
illustrates that, for the same R0, the infectious period distribution has a profound
effect on the transmission dynamic over time.

The exponential distribution assumption for the infectious period is also a
primary feature for the peak incidence. For the peak incidence (5.38)–(5.39), the
quantity u(tmax.i) is the root of u of Eq. (5.36), which is derived from (5.28).

The Erlang Distributed Infectious Periods

Of the SIR models with non-exponentially distributed infectious periods, the one
corresponding to the Erlang distributed infectious periods can be written as a system
of ordinary differential equations.
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The Erlang distribution is a subset of the gamma distribution with integer-valued
shape parameter κ = 1, 2, . . . including the exponential distribution as a special case
κ = 1. Using the Erlang distribution to model the latent and the infectious periods
has been seen in the literature in both deterministic and stochastic frameworks, such
as Anderson and Watson (1980), Wearing et al. (2005), Feng et al. (2007), and many
others.

For the SIR model, we use μI for the mean infectious periods and κI for the
corresponding shape parameter. The model (5.24) corresponds to κI = 1. When
κI = 2, 3, . . . the equation d

dt
Id(t) = β

Sd(t)Id (t)
m

−γ Id(t) in (5.24) is expanded into
κI separate equations

d

dt
Id1(t) = β

Sd(t)Id(t)

m
− κI

μI
Id1(t),

d

dt
Id j (t) = κI

μI
Idj−1(t)− κI

μI
Idj (t), j = 2, 3, · · · , κI . (5.43)

With these ordinary differential equations, one can numerically calculate the
expected cumulative infections Cd(t) = n−Sd(t), the expected prevalence Id(t) =∑κI
j=1 Idj (t), and other derived quantities. In this model, the infectious period is

composed as the sum of κI independently and identically distributed periods, with
mean durations equal to μI/κI .

Given the same mean value of infectious period μI , the Erlang distribution is
more homogeneous than the exponential distribution, both in terms of the variance
var[TI ] = μ2

I /κI and the Laplace transform L[fI ](s) = (1 + sμI /κI )−κI . The
Erlang distribution is a subset of the gamma distribution only for κ ≥ 1. Therefore,
using the ordinary differential equations given by (5.43) is only suitable for diseases
with clear evidence that their infectious periods are less variable than those modeled
using the exponential distribution with equal mean values.

Example 22 We compare two deterministic SIR models, both with the mean
infectious period μI = 4 and R0 = 2 (implying β = 0.5). The infectious
period in Model 1, corresponding to S(1)d (t) and I (1)d (t), is exponentially distributed.

The infectious period in Model 2, corresponding to S(2)d (t) and I (2)d (t), is Erlang
distributed with shape parameter κI = 7. For numerical illustration, we choose a
population size m = 104 with Id(0) = 1. Figure 5.5 illustrates that

1. S(1)d (∞) = S
(2)
d (∞) = 2031.5, satisfying the final size equation 10,000 − x +

10,000
2 log

(
x

9999

) = 0.

2. I (1)d (t) arrives at maximum value I (1)d max at time t (1)max .I and S(1)d (t
(1)
max .I) = m

R0
=

5000. On the other hand, I (2)d (t) arrives at maximum value I (2)d max at time t (2)max .I

and S(2)d (t
(2)
max .I) <

m
R0

= 5000.
3. The final sizes in both models are equal: Cd(∞) = 7968.5. Thus,∫∞

0 I
(1)
d (t)dt = ∫∞

0 I
(2)
d (t)dt = μICd(∞) = 31,874. Because t (2)max .I < t

(1)
max .I,

so I (2)d max > I
(1)
d max.
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Fig. 5.5 Illustrations corresponding to Example 22

Generally Distributed Infectious Periods

The ordinary differential equations (5.24) correspond to the fI (x) = γ e−γ x , where
γ is a hazard rate. Generalization to an arbitrarily distributed infectious period can
be achieved with the p.d.f. and survivor function, fI (x) and FI (x) respectively. The
hazard function is time-dependent hI (x) = fI (x)/F I (x), in which x is measured
from the time at infection of a typical infected individual. With this generalization,
(5.24) becomes a system of integro-differential equations

⎧
⎨

⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

m
d
dt
Id(t) = id(t)−

∫ t
0 id(s)fI (t − s)ds,

d
dt
Rd(t) = ∫ t0 id(s)fI (t − s)ds.

(5.44)

where id(t) = β
Sd(t)Id (t)

m
. It returns to (5.24) when fI (x) = γ e−γ x because

∫ t

0
id(s)fI (t − s)ds = γ

∫ t

0
id(s)e

−γ (t−s)ds = γ Id(t).

The second equation Id(t) = ∫ t0 id (s)e−γ (t−s)ds is due to the fact that e−γ (t−s) is
the conditional probability that an individual is still infectious at time t , given the
time at infection s < t .

When the distribution of TI is not exponential, not only does the recovery rate
depend on time since infection x according to the hazard function hI (x) from an
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individual perspective, but also it depends on chronological time t from the system
perspective. The latter is the cohort recovery/removal rate γc(t) satisfying

γc(t) =
∫ t

0 id(s)fI (t − s)ds∫ t
0 id(s)F I (t − s)ds

. (5.45)

If the mean infectious period μI <∞, the basic reproduction number is R0 = βμI .
The expression of the effective reproduction number at time t , as modeled by the
depletion of the susceptible population over time, is

Rt = R0
x(t)

μI γc(t)
.

It reduces to Rt = R0x(t) when γc(t) = γ = μ−1
I . The peak prevalence is attained

when x(t) depletes to the level μIγc(t)R
−1
0 , where γc(t) is implicitly given by

(5.45).

5.3.4 Depletion of Population by Disease Induced Deaths
in a Deterministic SIR Model

For conceptual clarity and simplicity, we restrict our discussions in the SIR models
within the deterministic framework to examine the effect of disease induced deaths.
We consider a closed population without births or immigration from outside
populations.

The initial population size is m(0) = S(0) + I (0). For a disease that induces
deaths among those infected, the probability of an infected individual remaining
infectious by time x since infection arises from a competing risk framework.

Applying it to the SIR models, the resulting compartment model is shown in
Fig. 5.6, where γ1(x) and γ2(x) are the type specific hazard functions, corresponding
to “Recovery” and “Death,” respectively. We also restrict the discussions to γ1(x) =

Fig. 5.6 An SIR model with
disease induced deaths
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γ1 and γ2(x) = γ2, so that the infectious period is exponentially distributed with
hazard function γ = γ1 + γ2, and the mean infectious period μI = (γ1 + γ2)

−1 .

This model introduces a parameter ϕ = γ1
γ1+γ2

, which is the proportion of
infected individuals who survive and recover from the disease. The determinis-
tic model (5.24) is now extended to the following set of ordinary differential
equations

⎧
⎪⎨

⎪⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

md(t)
d
dt
Id(t) = β

Sd(t)Id (t)
md(t)

− γ Id(t)
d
dt
md(t) = −(1 − ϕ)γ Id(t)

(5.46)

where γ = γ1 + γ2, ϕ = γ1
γ1+γ2

and md(t) = Sd(t) + Id(t) + Rd(t). The
expected number of cumulative infections isCd(t) = m(0)−Sd(t), and the expected
cumulative number of disease induced deaths is Dd(t) = m(0)−md(t).

Quantities and Relationships Derived from (5.24) That Are Affected
By the Depletion of the Population Size

Key relationships derived from (5.26) and (5.29), such as (5.33), (5.34), (5.30) and
(5.32), are all affected by the diminishing population sizemd(t), except for the case
ϕ = 1.

When ϕ = 1, given the initial condition, the basic reproduction number R0
determines the expected peak prevalence Imax

d and the expected final size η =
Cd(∞)/m. With additional knowledge of γ, R0 also determines tq in (5.34) along
with quantities such as tmax .I in (5.35) and tmax .i in (5.37). When ϕ < 1, these
quantities are not only dependent on R0, but also on ϕ.

Example 23 Consider a population with initial size m(0) = 10,000, along with the
initial condition I (0) = 1. Let x0 = Sd(0)

m(0) = 0.9999. We choose β = 1.0 and
γ = 1/3. This gives R0 = 3. We numerically calculate and compare Id(t) and
Cd(t) at ϕ = 0, 0.25, 0.5, 0.75, and 1.0. Figure 5.7 shows that, holding β constant
over time in model (5.46), depletion of md(t) increases the expected instantaneous
infection intensity β Sd(t)Id (t)

md(t)
. The case when ϕ = 1 corresponds to the simple SIR

model with constant m = m(0), which gives the smallest peak incidence (5.33) and
the expected final size.

Expressions and Relationships in the Simple SIR Model That Are Not
Affected

The expression R0 = β/γ is unaltered by recognizing that γ = γ1 + γ2 in (5.46).
The parameter ϕ = γ1

γ1+γ2
has no effect.
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Fig. 5.7 Comparison of Id (t) and Cd(t) corresponding to Example 23

The relationship (5.31) is also unaltered. However, the parameter ϕ introduces
an additional relationship that

∫∞
0 Id(u)du is also proportional to Dd(∞) =

limt→∞Dd(t), the final number of deaths caused by the disease. Together, there
is a pair of expressions

Cd(∞) = γ

∫ ∞

0
Id(u)du, (5.47)

Dd(∞) = (1 − ϕ)γ
∫ ∞

0
Id(u)du. (5.48)

These can be shown by re-writing (5.46) as

{
d
dt
(Sd(t)+ Id(t)) = −γ Id(t)
d
dt
md(t) = −(1 − ϕ)γ Id(t) ,

and m(0) = S(0)+ I (0).We refer to Chap. 2 in Brauer et al. (2008) and Diekmann
and Heesterbeek (2000) for further readings.
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Equations (5.47)–(5.48) with Arbitrary γ1(x) and γ2(x)

Equations (5.47)–(5.48) are generalizable when γ1(x) and γ2(x) in Fig. 5.6 are not
constants. Viewing γ1(x) and γ2(x) as type-specific hazard functions with respect
to arbitrary distributions, the mean infectious period is

μI =
∫ ∞

0

(
e−
∫ x

0 (γ1(u)+γ2(u))du
)
dx.

Meanwhile, from probability theory associated with independent competing risks,
the proportion of infected individuals who survive and recover from the disease ϕ
can be calculated by

ϕ =
∫ ∞

0
γ1(x)e

− ∫ x0 (γ1(u)+γ2(u))dudx.

The expected total infectious person-time is
∫∞

0 Id(u)du. Equations (5.47) and
(5.48) are now written as

∫ ∞

0
Id(u)du = μICd(∞) = μI

1 − ϕDd(∞). (5.49)

The Final Size Equation Derived from the Deterministic Model (5.46)

The final size equations (5.30) and (5.32) can be extended to incorporate the
parameter ϕ. The expected total infectious person time

∫∞
0 I (u)du is proportional

to both the final number of infected individuals Cd(∞) and the final number of
deaths caused by the disease Dd(∞), so that Dd(∞) = (1 − ϕ)Cd(∞), as shown
by the pair of relationships (5.47)–(5.48). This can be re-written as

log

(
md(∞)
m(0)

)

= log

(

ϕ + (1 − ϕ) Sd(∞)
m(0)

)

. (5.50)

On the other hand, the model (5.46) implies

dSd(t)

dmd(t)
= βSd(t)

(1 − ϕ)γmd(t) = R0

1 − ϕ
Sd(t)

md(t)

which gives
∫∞

0
dSd (u)
Sd (u)

du = R0
1−ϕ
∫∞

0
dmd(u)
md(u)

du. Therefore

log

(
Sd(∞)
S(0)

)

= R0

1 − ϕ log

(
md(∞)
m(0)

)

.
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The initial condition is x0 = Sd(0)
m(0) , and we get

log

(
md(∞)
m(0)

)

= 1 − ϕ
R0

log

(
1

x0

Sd(∞)
m(0)

)

. (5.51)

Jointly, (5.50) and (5.51) yield a single equation

log

(
1

x0

Sd(∞)
m(0)

)

= R0

1 − ϕ log

(

ϕ + (1 − ϕ) Sd(∞)
m(0)

)

.

Letting η = Cd(∞)
m(0) so that Sd(∞)

m(0) = 1 − η, the above equation becomes

log

(
1 − η
x0

)

= R0

1 − ϕ log (ϕ + (1 − ϕ) (1 − η)) (5.52)

This is the generalization of (5.32), of which the expected final size η not only
depends on R0 but also depends on ϕ. By noticing that

lim
ϕ→1

R0

1 − ϕ log (ϕ + (1 − ϕ) (1 − η)) = −R0η,

it implies that when there is no disease induced mortality, (5.52) returns to (5.32),
which is 1 − η = x0e

−R0η.

We further claim that (5.52) is invariant if we relax the conditions γ1(x) = γ1
and γ2(x) = γ2 in Fig. 5.6. First of all, (5.50) still holds because of (5.49). We leave
to the reader to prove (5.51) that leads to the rest of the results.

5.4 The SEIR Models By Adding a Latent Period to the SIR
Structure

We restrict our discussion in a closed population without disease induced deaths.
The letter E in SEIR stands for “Exposed.” Individuals in Compartment E are not
only exposed but also infected. However, they are not able to transmit the infection
to other susceptible individuals through contacts. It is associated with a duration
called the latent period, denoted by TE .

The stochastic SEIR model as a multivariate Markov process involves k = 4
states and 3 independent variables. The size of the state space S is |S| =
(m+3)(m+2)(m+1)

6 which increases dramatically with the population size m. For
instance, when m = 10, |S| = 286; when m = 50, |S| = 23,426; and when
m = 100, |S| = 176,850. This makes direct analysis of the stochastic SEIR
model intractable. For simplicity, we only discuss the deterministic model. We
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denote the hazard functions for the latent period TE and the infectious period TI
as hE(x) = fE(x)

FE(x)
and hI (x) = fI (x)

F I (x)
, respectively.

5.4.1 Deterministic SEIR Model with Exponentially
Distributed Latent and Infectious Periods

The deterministic model (5.24) is extended to

⎧
⎨

⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

m
d
dt
Ed(t) = β

Sd(t)Id (t)
m

− αEd(t)
d
dt
Id(t) = αEd(t)− γ Id(t)

(5.53)

which implies d
dt
Rd(t) = γ Id(t). Like in (5.24), m is an innocent parameter and all

the state variables can be scaled by m and expressed as proportions: x(t) = Sd(t)
m
,

ε(t) = Ed(t)
m
, y(t) = Id (t)

m
and z(t) = 1−x(t)−ε(t)−y(t). Letω(t) = ε(t)+y(t) =

Pd(t)
m

. We can also re-scale the time τ = γ t so that

⎧
⎪⎨

⎪⎩

d
dτ
x(τ ) = − β

γ
x(τ )y(τ ),

d
dτ
ε(τ ) = β

γ
x(τ )y(τ )− α

γ
ε(τ )

d
dτ
y(τ ) = α

γ
ε(τ )− y(τ)

. (5.54)

It implies d
dτ
z(τ ) = y(τ). The essential parameters are R0 = β/γ and α/γ . Since

d
dt
Pd(t) = d

dt
Ed(t)+ d

dt
Id(t) = β

Sd(t)Id (t)
m

− γ Id(t), it immediately turns out that

Sd(t)+ Pd(t)− m

R0
log Sd(t) = Sd(0)+ Pd(0)− m

R0
log Sd(0). (5.55)

Given the initial condition Sd(0)+ Pd(0) = m, it can be written as

1 − x(t)− ε(t)− y(t)+ 1

R0
log

x(t)

x0
= 0. (5.56)

These preserved relationships are almost the same as (5.26) and (5.28) except for
Pd(t) = Ed(t)+ Id(t).

The relationships (5.55)–(5.56) also lead to the final size equations (5.30) and
(5.32). The final size isCd(∞)=m−Sd(∞). Because d

dt
(Sd(t)+ Ed(t)+ Id(t)) =

−γ Id(t) and Sd(t) + Ed(t) + Id(t) + Rd(t) = m, one also gets γ
∫∞

0 Id(t)dt =
Cd(∞). The final size equations and the relationship between the final size and the
value of the epidemic

∫∞
0 Id(t)dt given by (5.31) are not affected by the added

latent period.
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The peak value Pd(t), the peak prevalence, is attained at tmax.P such that
x(tmax.P) = Sd(tmax.P)

m
= 1
R0
. From (5.55)

ω(tmax.P) = Pmax
d

m
= 1 − 1

R0

[
1 + log (R0x0)

]
. (5.57)

It implies that the number of recovered individuals at the time when Pmax
d is attained

is z(tmax.P) = Rd(tmax.P)
m

= 1
R0

log (R0x0). Note that (5.57) is identical to (5.33)
provided that Pd(t) includes those infected but still in their latent periods. It implies
that, comparing the SIR model (5.24) and the SEIR model (5.53) with the same
initial condition x0 = Sd(0)

m
and the same R0, the peak prevalence value remains the

same.
Let τ = γ t . Since z(τ ) = 1 − x(τ)− ε(τ )− y(τ), (5.56) can be still written as

x(τ) = x0 exp (−R0z(τ )). However, in the SEIR model,

dz(τ)

dτ
= y(τ) = 1 − z(τ )− x(τ)− ε(τ )
= 1 − z(τ )− x0 exp (−R0z(τ ))− ε(τ )
< 1 − z(τ )− x0 exp (−R0z(τ )) (5.58)

where the additional term ε(t) makes it difficult to make a simple extension of
(5.29). Consequently, for the SEIR model, there is no explicit formula (except
for numerical illustration) for quantities such as the time at the peak prevalence.
However, the inequality (5.58) implies that, with an added latent period, z(τ )
grows slower than that in the SIR model and takes longer to reach z(τmax.P) =
1
R0

log (R0x0), under the same R0 and initial condition x0. In other words, τSEIR
max.P >

τSIR
max.I, where τSIR

max.I = γ tSIR
max.I is given by (5.35), representing the time when Id(t)

in (5.24) reaches the maximum value.

Example 24 Consider a population with m = 10,000, x0 = 0.9999, β = 0.75,
and γ = 1/3. Thus R0 = 2.25. Figure 5.8 compares the SIR model with the
above parameters with an SEIR model with an added exponentially distributed latent
period with mean value α−1 = 3. Starting with the initial conditions Id(0) = 1
and Sd(0) = 9999 in both models, the number of susceptible individuals in the
SEIR model, SSEIRd (t), decreases more slowly than SSIRd (t), corresponding to
the SIR model. Consequently, SSEIRd (t) arrives at m/R0 = 4444.4 later than
SSIRd (t). This implies that the times of the peak prevalence for the two models
satisfy tSEIR

max.P > t
SIR
max.P. However, the following quantities remain the same in both

models:

1. the final size Cd(∞) = Rd(∞) = 8534 and Sd(∞) = 1466, corresponding to
the final size equation 1 − η = 0.9999e−2.25η in (0, 1] which gives η = 0.8534;

2. the relationship between the number of susceptible individuals and recovered
individuals: Sd(t) = 9999e−0.000225Rd(t);

3. the value of the peak prevalence: 1951.9.
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Fig. 5.8 Compare an SIR model and an SEIR model with the same β, γ and initial conditions

5.4.2 Deterministic SEIR Model with Erlang Distributed
Latent and Infectious Periods

For the SEIR model, we use μE and μI for the mean latent and the mean infectious
periods and κE and κI for the corresponding shape parameters. We include an Erlang
distributed latent period into (5.43). The model (5.53) corresponds to κE = κI = 1.
When κE = 2, 3, . . . the equation d

dt
Ed(t) = β

Sd(t)Id (t)
n

− αEd(t) in (5.53) is
expanded into κE separate equations

d

dt
Ed1(t) = β

Sd(t)Id(t)

m
− κE

μE
Ed1(t),

d

dt
Edj (t) = κE

μE
Edj−1(t)− κE

μE
Edj (t), j = 2, 3, · · · , κE. (5.59)

Similarly, when κI = 2, 3, . . . the equation d
dt
Id(t) = αEd(t)− γ Id(t) in (5.53) is

expanded into κI separate equations

d

dt
Id1(t) = κE

μE
EdκE (t)−

κI

μI
Id1(t),

d

dt
Id j (t) = κI

μI
Idj−1(t)− κI

μI
Idj (t), j = 2, 3, · · · , κI . (5.60)

With these ordinary differential equations, one can numerically calculate the
expected cumulative infections Cd(t) = n − Sd(t), the expected prevalence
Prev(t) =∑κEj=1 Edj (t)+

∑κI
j=1 Idj (t) and other derived quantities.
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5.4.3 Generally Distributed Latent and Infectious Periods

For generally distributed latent and infectious periods, let fE(x) and hE(x)

represent the p.d.f. and the hazard function of the latent periods; and fI (x) and
hI (x) represent the p.d.f. and the hazard function of the infectious periods, the
deterministic SEIR model for non-exponentially distributed latent and infectious
periods is a system of integro-differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

m
d
dt
Ed(t) = id(t)−

∫ t
0 id(s)fE(t − s)ds

= id(t)−
∫ t

0 id(s)hE(t − s)FE(t − s)ds
d
dt
Id(t) = id1(t)−

∫ t
0 id1(s)fI (t − s)ds

= id1(t)−
∫ t

0 id1(s)hI (t − s)F I (t − s)ds

, (5.61)

where id(t) = β
Sd(t)Id (t)

n
; id1(t) = ∫ t0 id(s)fE(t − s)ds is the expected (instan-

taneous) number of individuals making a transition from being latent to being
infectious; and

∫ t
0 id1(s)fI (t − s)ds is the expected (instantaneous) number of

infectious individuals being removed, at time t. This is the extension of (5.44).
Under the condition Sd(t)+ Ed(t)+ Id(t)+ Rd(t) = m, we also have

d

dt
Rd(t) =

∫ t

0
id1(s)fI (t − s)ds =

∫ t

0
id1(s)hI (t − s)F I (t − s)ds.

5.5 Endemic Equilibrium When There Is Replacement
of the Susceptible Population

One of the mechanisms of susceptible replacement is through the loss of immunity,
either immediately after recovery or after a duration of immunity, while the
population itself is closed. Adding this to the SEIR model leads to the SEIRS
model, with the SIS, SIRS, SEIS models as special cases. Another mechanism is
the replacement of the population, where individuals enter and leave the population,
and the replacement of the susceptible population is through such a mechanism.
These two mechanisms may be combined such that the susceptible population is
replaced through both the loss of immunity of recovered individuals and the in-flow
of susceptible individuals from outside the population.

We consider a constant population so that the in-flow and the out-flow of the
population is balanced. For mathematical simplicity, we assume that all individuals
coming into the population are susceptible, i.e. no importation of infected individu-
als. Natural births and deaths are typical scenarios for such population replacement.
In this section, we take a broader perspective so that the in-flow and the out-flow of
the population are not limited to natural births and deaths.
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Hethcote and van den Driessche (1991) and Li et al. (1999) considered deter-
ministic models of the SEIRS type including natural deaths and showed that, when
there is replacement of the susceptible population with both the loss of immunity
and through births, under the condition that the overall population remains constant,
stability analyses of the dynamic system show that when R0 > 1, there exists an
endemic equilibria, in addition to the disease-free equilibria.

There is a rich library of literature regarding such analyses. Chapters 5 and 6 of
Brauer (2008) and the collection of papers in Castillo-Chávez et al. (2000) provide
nice coverage of these topics, along with many mathematical expressions that will
appear in this section.

This section takes a more intuitive approach. Instead of stability analyses of
specific dynamic systems, we adopt an independent competing risk approach and
use Laplace transforms to present the prevalence of individuals in each class of
the SEIRS model, in which the population is constant and the rate of exiting
population via movement or natural mortality is constant. The focus is on the
asymptotic endemic equilibrium levels for diseases with generally distributed
latent and infectious periods and generally distributed durations of immunity after
recovery, provided that the system is at endemic equilibrium.

5.5.1 SEIRS Models Without Deaths

We use the term prevalence defined by the proportion of individuals in each class of
the SEIRS model, denoted by �(t) = (x(t), ε(t), y(t), z(t)), using the notations
in (5.54), where ε(t) is the proportion of individuals who are infected but not
yet infectious (latent); y(t) is the proportion of individuals who are infectious;
z(t) is the proportion of individuals who are recovered and immune; x(t) =
1 − ε(t)− y(t)− z(t) is the proportion who are susceptible. We consider the limits
�(∞) = (x(∞), ε(∞), y(∞), z(∞)) as t → ∞. The endemic equilibria is�(∞)
and y(∞) > 0.

We have seen that, in the deterministic SIS model, if R0 > 1, x(∞) =
limt→∞ Sd(t)/m = 1/R0 and y(∞) = limt→∞ Id(t)/m = 1 − 1/R0. The
population size m is an innocent parameter that can be eliminated by re-scaling.

Well-recognized in epidemiology, a linear relationship exists between the preva-
lence and the incidence when the system is under equilibrium:

prevalence = incidence × average duration. (5.62)

Incidences are instantaneous rates of event occurrences. Suppose that there are two
events, an initial event with an incidence function λ(t) and a subsequent event with
an incidence function a(t). All initial events lead to subsequent events through a
random duration X with p.d.f. f (x) and survival function F(x). The following pair
of convolutions holds
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a(t) =
∫ t

0
λ(s)f (t − s)ds,

A(t) =
∫ t

0
λ(s)F (t − s)ds

where A(t) is the prevalence of individuals who have experienced the initial event
but not yet the subsequent event. If limt→∞ λ(t) = λ∞ = constant, then a(∞) =
λ∞
∫∞

0 f (x)dx = λ∞. Meanwhile, A(∞) = λ∞
∫∞

0 F(x)dx = λ∞E[X], which
is (5.62).

In the current context, the incidence of new infections is modeled by a bilinear
relationship λ(t) = βx(t)y(t). Assuming there is no change in the environment or
behavior and there is no control measure throughout the epidemic, under endemic
equilibrium, λ(t) → λ∞ = βx(∞)y(∞) > 0. In a closed population without
individuals entering or leaving, all infected individuals enter the E-compartment
through a latent period and progress to the I-compartment, and then progress to the
R-compartment. Therefore the incidences of entering each of these compartments,
at equilibrium, equal λ∞. Meanwhile, ε(∞), y(∞), and z(∞) are prevalences of
individuals in each of the compartments, and the average durations for staying in
each of these compartments are denoted by μE,μI , and μR , respectively.

Applying (5.62), one gets a system of equations

⎧
⎪⎪⎨

⎪⎪⎩

x(∞) = 1 − ε(∞)− y(∞)− z(∞)
ε(∞) = λ∞μE
y(∞) = λ∞μI
z(∞) = λ∞μR

(5.63)

with two sets of solutions: the disease-free equilibrium [x(∞) = 1, ε(∞) =
y(∞) = z(∞) = 0] and the endemic equilibrium (when R0 = βμI > 1)

x(∞) = 1

βμI
= 1

R0
,

ε(∞) = μE

μE + μI + μR [1 − x(∞)] ,

y(∞) = μI

μE + μI + μR [1 − x(∞)] , (5.64)

z(∞) = μR

μE + μI + μR [1 − x(∞)] .

These are valid for arbitrarily distributed latent period, infectious period, and
duration of temporary immunity, with mean values μE , μI , and μR , respectively.

The SIS model corresponds to μE = μR = 0. In this case, y(∞) = 1 − 1/R0
which is the limit of the (5.16) as τ → ∞.

The SIRS model corresponds to μE = 0. The SEIS model corresponds to μR =
0. Note that x(∞) is invariant with respect to the model structure, whereas λ∞ =
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βx(∞)y(∞) depends on model structure. The SIS model gives the largest incidence
at endemic equilibrium.

The Special Cases Represented By the Ordinary Differential Equations

When the durations in each of the compartments, E, I, and R are exponentially
distributed, the SEIRS model is represented by the system of differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

m
+ δRd(t)

d
dt
Ed(t) = β

Sd(t)Id (t)
m

− αEd(t)
d
dt
Id(t) = αEd(t)− γ Id(t)

d
dt
Rd(t) = γ Id(t)− δRd(t)

where α = μ−1
E , γ = μ−1

I and δ = μ−1
R . Letting x(∞) = limt→∞ Sd(t)/m,

ε(∞) = limt→∞Ed(t)/m, y(∞) = limt→∞ Id(t)/m and z(∞) =
limt→∞ Rd(t)/m, (5.64) becomes

x(∞) = γ

β
,

y(∞) = αδ (β − γ )
β (αγ + αδ + γ δ) , (5.65)

ε(∞) = γ

α
y(∞), z(∞) = γ

δ
y(∞).

The SEIS model corresponds to the case δ → ∞ and

x(∞) = γ

β
, y(∞) = α (β − γ )

β (α + γ ) , ε(∞) = γ

α
y(∞).

The SIRS model corresponds to the case α → ∞ and

x(∞) = γ

β
, y(∞) = δ (β − γ )

β (γ + δ) , z(∞) = γ

δ
y(∞).

The SIS model corresponds to the case α → ∞ and δ → ∞, thus x(∞) = γ /β

and y(∞) = 1 − γ /β.

5.5.2 SEIRS Models in a Constant Population Where the
In-Flow and Out-Flow of Individuals Are Balanced

Using the same notations as in (5.61), the latent periods are generally distributed
with p.d.f. fE(x), survival function FE(x), the hazard function hE(x), and mean
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value μE = ∫∞
0 FE(x)dx; the infectious period is generally distributed with p.d.f.

fI (x), survival function FI (x), the hazard function hI (x), and mean value μI =∫∞
0 FI (x)dx.

We assume that there is an out-flow of individuals from all the compartments
with constant rate ω > 0.

When ω > 0, only a fraction of exposed individuals will progress into the
infectious stage. This fraction is calculated by the Laplace transform

ϕ1 =
∫ ∞

0
e−ωxfE(x)dx = L[fE](ω).

The “effective” mean latent period (among those who progress to the infectious
stage) is

μ∗
E =
∫ ∞

0
e−ωxFE(x)dx = L[FE](ω).

Both of the above expressions are made under the assumption that each individual
in the latent period (the E compartment) either leave the population or progress
to the next compartment through an independent competing risk framework. At
equilibrium, the incidence rate of new infections is λ∞ = βx(∞)y(∞) and the
incidence rate of onset of infectiousness is ϕ1λ∞. If there is no latent period, we
assume that the latent period is degenerated to a single point: TE = 0. In such case,
L[fE](ω) = 1 and L[FE](ω) = 0.

Continuing, only a fraction of infectious individuals will recover. This fraction is
calculated by the Laplace transform

ϕ2 =
∫ ∞

0
e−ωxfI (x)dx = L[fI ](ω).

The “effective” mean latent period (among those who recover) is

μ∗
I =
∫ ∞

0
e−ωxF I (x)dx = L[FI ](ω).

At equilibrium, the incidence rate of onset of infectiousness is ϕ1λ∞, and the
incidence rate of recovery is ϕ2ϕ1λ∞.

Assuming there is no change of environment, no change of behavior and
no intervention throughout the epidemic, the basic reproduction number can be
recovered from the equilibrium state and expressed by

R0 = β∗μ∗
I = βL[fE](ω)L[FI ](ω) (5.66)

where β∗ = βϕ1 = βL[fE](ω).
We further assume that there is a random duration among recovered individuals

to lose immunity and become susceptible again. This duration has p.d.f. fR(x),
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survival function FR(x), the hazard function hR(x), and mean value μR =∫∞
0 FR(x)dx. Therefore, the fraction of recovered individuals who will become

susceptible again (before leaving the population) is

ϕ3 =
∫ ∞

0
e−ωxfR(x)dx = L[fR](ω).

The “effective” mean duration of immunity (among those who become susceptible
again) is

μ∗
R =
∫ ∞

0
e−ωxFR(x)dx = L[FR](ω).

In models where recovered individuals become susceptible immediately,
L[FR](ω) = 0. On the other hand, in models where recovered individuals will
remain immune indefinitely, L[fR](ω) = 1 − ωL[FR](ω) = 0, which gives,
L[FR](ω) = 1/ω.

Equations (5.63) are revised as

⎧
⎪⎪⎨

⎪⎪⎩

x(∞) = 1 − ε(∞)− y(∞)− z(∞)
ε(∞) = λ∞μ∗

E = βx(∞)y(∞)L[FE](ω)
y(∞) = ϕ1λ∞μ∗

I = βx(∞)y(∞)L[fE](ω)L[FI ](ω)
z(∞) = ϕ2ϕ1λ∞μR = βx(∞)y(∞)L[fI ](ω)L[fE](ω)L[FR](ω)

, (5.67)

which give

ε(∞) = L[FE](ω)
L[fE](ω)L[FI ](ω)

y(∞) = μ∗
E

ϕ1μ
∗
I

y(∞) (5.68)

z(∞) = L[fI ](ω)L[FR](ω)
L[FI ](ω)

y(∞) = ϕ2μ
∗
R

μ∗
I

y(∞).

The following relationships also hold:L[fE](ω) = 1−ωL[FE](ω) andL[fI ](ω) =
1 − ωL[FI ](ω). The equations (5.67) have a disease-free equilibrium

[x(∞) = 1, ε(∞) = y(∞) = z(∞) = 0] .

When R0 = βL[fE](ω)L[FI ](ω) > 1, there is also an endemic equilibrium
solution

x(∞) = 1

βL[fE](ω)L[FI ](ω)
= 1

βϕ1μ
∗
I

,

y(∞) = L[fE](ω)L[FI ](ω)
L[FE](ω)+ L[fE](ω) [L[FI ](ω)+ L[fI ](ω)L[FR](ω)] [1 − x(∞)]
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= ϕ1μ
∗
I

μ∗
E + ϕ1

(
μ∗
I + ϕ2μ

∗
R

) [1 − x(∞)]

= βϕ1μ
∗
I − 1

β
[
μ∗
E + ϕ1

(
μ∗
I + ϕ2μ

∗
R

)] ,

and ε(∞), z(∞) are calculated through (5.68). The following prevalence gives the
disease burden at endemic equilibrium scaled by the population size,

ε(∞)+ y(∞) = μ∗
E + ϕ1μ

∗
I

μ∗
E + ϕ1μ

∗
I + ϕ1ϕ2μ

∗
R

[1 − x(∞)] .

Special Cases with Discussions

Only with Loss of Immunity in a Closed Population Without In-Flow and Out-
Flow Letting ω = 0, L[FE](0) = μE, L[FI ](0) = μI and L[FR](0) = μR while
L[fE](0) = L[fI ](0) = 1, then

x(∞) = 1

βμI
, y(∞) = μI

μE + μI + μR [1 − x(∞)] ,

ε(∞) = μE

μI
y(∞), z(∞) = μR

μI
y(∞).

which return to (5.64). The values ε(∞), y(∞), and z(∞) are proportions of
[1 − x(∞)]. These proportions are the relative average time of individuals spent in
each compartment, out of the total time μE+μI+μR . Without natural deaths, these
values are determined only by the average durations μE, μI , and μR, regardless of
the distributions of these durations.

Only with In-Flow and Out-Flow in a Constant Population Without Loss of
Immunity When ω > 0, the distributions of the latent periods, the infectious peri-
ods, and the durations of immunity after recovery, all play significant roles. We first
consider the case without loss of immunity and examine the roles of the distributions
of the latent and the infectious periods. First of all, R0 = βL[fE](ω)L[FI ](ω).
We recall the discussion on variability according to the convex order, Definition 6
in Chap. 2. Holding the mean latent period μE and the mean infectious period μI
constant, at any given ω > 0, the more variable the latent period, the larger the value
of ϕ1 = L[fE](ω). In other words, large variability of the latent period increases
the probability of individuals progressing to the infectious stage before they leave
the population and increases the value of R0 when β and L[FI ](ω) remain the
same. On the other hand, since L[FI ](ω)= 1

ω
[1 − L[fI ](ω)], the more variable

the infectious periods, the smaller the value of μ∗
I = L[FI ](ω). Therefore, large

variability of the infectious periods decreases the effective duration of the infection
period and decreases the value of R0 when beta and L[fE](ω) remain the same.
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When recovered individuals remain immune indefinitely, ϕ3 = L[fR](ω) = 0.
This gives μ∗

R = L[FR](ω) = 1/ω, that is, the average duration of staying in the
population. Since L[fE](ω) = 1 − ωL[FE](ω) and L[fI ](ω) = 1 − ωL[FI ](ω),
we get

x(∞) = 1

βL[fE](ω)L[FI ](ω)
= 1

βϕ1μ
∗
I

,

y(∞) = L[fE](ω) [1 − L[fI ](ω)] [1 − x(∞)]
= ϕ1(1 − ϕ2) [1 − x(∞)] ,

ε(∞) = (1 − ϕ1) [1 − x(∞)] ,
z(∞) = ϕ1ϕ2 [1 − x(∞)] .

It implies that variabilities of the latent periods and the infectious periods affect the
value of 1 − x(∞). Given the value of 1 − x(∞), larger variability of the latent
periods assigns larger value of ϕ1 and hence larger proportion of 1 − x(∞) into
y(∞); whereas, larger variability of the infectious periods assigns larger value of
ϕ2 and hence smaller proportion of 1−x(∞) into y(∞). If there is no latent period,
L[fE](ω) = 1 and L[FE](ω) = 0, the above expressions are reduced to

x(∞) = 1

βL[FI ](ω)
= 1

βμ∗
I

,

y(∞) = (1 − ϕ2) [1 − x(∞)] .

Larger variability of the infectious period assigns smaller proportions of 1 − x(∞)
into y(∞).
SIRS with ω > 0 The absence of the latent period is represented by the Laplace
transforms L[fE](ω) = 1 and L[FE](ω) = 0. This gives

x(∞) = 1

βL[FI ](ω)
= 1

βμ∗
I

,

y(∞) = L[FI ](ω)
L[FI ](ω)+ L[fI ](ω)L[FR](ω) [1 − x(∞)] = μ∗

I

μ∗
I + ϕ2μ

∗
R

[1 − x(∞)] ,

z(∞) = ϕ2μ
∗
R

μ∗
I + ϕ2μ

∗
R

[1 − x(∞)] = ϕ2μ
∗
R

μ∗
I

y(∞).

SEIS with ω > 0 If recovered individuals become susceptible immediately,
L[FR](ω) = 0.
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x(∞) = 1

βL[fE](ω)L[FI ](ω)
= 1

βϕ1μ
∗
I

,

y(∞) = L[fE](ω)L[FI ](ω)
L[FE](ω)+ L[fE](ω)L[FI ](ω)

[1 − x(∞)]

= ϕ1μ
∗
I

μ∗
E + ϕ1μ

∗
I

[1 − x(∞)] ,

ε(∞) = μ∗
E

μ∗
E + ϕ1μ

∗
I

[1 − x(∞)] = μ∗
E

ϕ1μ
∗
I

y(∞).

SIS with ω > 0 Letting the Laplace transforms L[fE](ω) = 1, L[FE](ω) = 0
and L[FR](ω) = 0,

x(∞) = 1

βL[FI ](ω)
= 1

βμ∗
I

, y(∞) = 1 − 1

βμ∗
I

.

Exponentially Distributed Durations Corresponding to Ordinary Differential
Equations The ordinary differential equations for the SEIRS model are

⎧
⎪⎪⎨

⎪⎪⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

m
+ ω [m− Sd(t)] + δRd(t)

d
dt
Ed(t) = β

Sd(t)Id (t)
m

− (α + ω)Ed(t)
d
dt
Id(t) = αEd(t)− (γ + ω) Id(t)

d
dt
Rd(t) = γ Id(t)− (δ + ω)Rd(t)

, (5.69)

as expressed in various papers in the literature, such as Hethcote and van den
Driessche (1991), Li et al. (1999), among others. The constant rates (α, γ, δ)
correspond to exponentially distributed latent periods, infectious periods, and
durations of recovered individuals who remain immune. The Laplace transforms
as represented in (5.67) are:

ϕ1 = L[fE](ω) = α

α + ω, μ
∗
E = L[FE](ω) = 1

α + ω,

ϕ2 = L[fI ](ω) = γ

γ + ω, μ
∗
I = L[FI ](ω) = 1

γ + ω,

μ∗
R = L[FR](ω) = 1

δ + ω .

The representation of R0 is

R0 = βL[fE](ω)L[FI ](ω) = βα

(α + ω) (γ + ω) . (5.70)
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The prevalences at endemic equilibrium are

x(∞) = (α + ω) (γ + ω)
βα

,

y(∞) = α (δ + ω)
(γ + ω) (δ + ω)+ α (γ + δ + ω) [1 − x(∞)] (5.71)

= (δ + ω)
β

α (β − γ − ω)− ω (γ + ω)
α (γ + δ + ω)+ (δ + ω) (γ + ω),

ε(∞) = γ + ω
α

y(∞), z(∞) = γ

δ + ωy(∞).

1. SEIRS in a closed population (ω = 0): the above expressions return to (5.65).
2. SEIR with ω > 0 but recovered individuals have permanent immunity δ = 0 :

x(∞) = (α + ω) (γ + ω)
βα

,

y(∞) = αω

(γ + ω) (α + ω) [1 − x(∞)]

= αω

(γ + ω) (α + ω) − ω

β
,

ε(∞) = γ + ω
α

y(∞), z(∞) = γ

ω
y(∞).

This result has been shown in the literature, as a special case of the results on
page 175 of Brauer (2008).

3. SIRS with ω > 0, δ > 0 and α → ∞ :

x(∞) = γ + ω
β

,

y(∞) = δ + ω
γ + δ + ω [1 − x(∞)] = (δ + ω) (β − γ − ω)

β (γ + δ + ω) ,

z(∞) = γ

δ + ωy(∞).

4. SIR with ω > 0, δ = 0 and α → ∞ :

x(∞) = γ + ω
β

,

y(∞) = ω

γ + ω [1 − x(∞)] = ω

γ + ω − ω

β
,

z(∞) = γ

ω
y(∞).
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Fig. 5.9 Plots of Sd(t), Id (t),Ed(t), Rd(t) determined by (5.69) at β = 0.4, α = 0.15, γ = 0.25,
δ = 0.01 and ω = 0.001. The time-scale is measured in days

Example 25 We consider a disease with an average latent period 6.7 days, average
infectious period 4 days, and an average duration of immunity after recovery of 100
days. Assuming these durations are all exponentially distributed, they correspond
to α = 0.15, γ = 0.25, δ = 0.01. We assume a constant population, and
individuals stay in this population on average 1000 days (2.7 years). There is no
importation of infected individuals. This gives ω = 0.001. Let β = 0.4, we
calculate R0 = 1.5831 according to (5.70). We also calculate, using (5.71), x(∞) =
0.63168, y(∞) = 0.0145, ε(∞) = 0.024263, and z(∞) = 0.32955. Consider a
population with m = 100,000, the expected prevalence numbers at equilibrium are
Sd(∞) = 63,168, Id(∞) = 1450, Ed(∞) = 2426.3, and Rd(∞) = 32,955.
In a deterministic framework, solving the system of the differential equations (5.69)
given the initial values Id(0) = 1 and Sd(0) = 99,999 yields numerically calculated
[Sd(t), Id(t), Ed(t), Rd(t)] which show epidemic waves in the form of damped
oscillations about the steady states [Sd(∞), Id(∞), Ed(∞), Rd(∞)]. They are
presented in Fig. 5.9. Numerical computation in this example is carried out using
Maple-2017 (Maplesoft: Waterloo Maple Inc.)

5.6 Problems and Supplements

5.1 Examine the differential equations given by (5.12) and (5.23). The transmission
dynamics of the SIS and SIR models with respect to the mean values E[I (t)]
and E[S(t)] also depend on the population size m and the second moments,
var[I (t)] in the SIS model and cov {S(t), I (t)} in the SIR model. There are
two different ways to make them in agreement with the deterministic SIS and
SIR models given by (5.13) and (5.24): one is assuming m → ∞ in the second
terms in (5.12) and (5.23); the other one is assuming var[I (t)] = 0 in (5.12)
and assuming cov {S(t), I (t)} = 0 in (5.23).
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(a) Which of the above assumptions are true to the meaning of deterministic?
(b) In the literature, it is often said that the deterministic models (5.13) and

(5.24) are approximations of the mean field of the corresponding stochastic
models. Does it mean that these approximations are in the sense of a very
large population? Use Figs. 5.1 and 5.2 to facilitate this discussion.

(c) In the SIS and SIR models, stochastic and deterministic alike, the ratio
β/γ is the basic reproduction number R0. From the deterministic point of
view, if R0 < 1, there is no epidemic whereas when R0 > 1, there is
an epidemic with its course deterministically predicted by the differential
equations. What do their stochastic counterparts say?

5.2 Consider the deterministic SIS and SIR models (5.13) and (5.24). The early
growth of the epidemic is under the assumption that the depletion of the
susceptible population is negligible, that is, Sd(t)/m = 1.

(a) Show that Id(t) has the exponential growth, proportional to ert , where r =
(R0 − 1) γ and R0 = β/γ . Hence, r = β − γ.

(b) When Id(t) has the exponential growth with rate r , it implies that the
duration Y to the next new infection is exponentially distributed with p.d.f.
re−ry and this duration competes with the infection period TI with p.d.f.
fI (x) = γ e−γ x. Show that

Pr(Y ≤ TI ) = r

r + γ .

(c) Verify that when β > γ, r = β − γ and is the solution of the equation
r = β Pr(Y ≤ TI ) = β (1 − L[fI ](r)) .

5.3 According to a deterministic SIR model (5.24), we assume a population of
10,000 individuals, the initial condition Id(0) = 1 and the average infectious
periods = 3 days.

(a) What are the values for the transmission rate β when R0 = 1.2 and 2.0?
(b) Generate a graph of the final size Cd(∞), the total number of infected

individuals at the end of the outbreak, against the values of β in the range
0.03 ≤ β ≤ 1.

(c) Assuming R0 = 1.8, calculate the following quantities:

(i) the initial growth rate r assuming S(t)/m = 1.
(ii) the peak prevalence value Imax

d and the time when the peak prevalence
is reached;

(iii) the peak incidence value imax
d and the time when the peak incidence is

reached;
(iv) the final size Cd(∞) and the value of the epidemic

∫∞
0 Id(t)dt.
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5.4 Consider the following SIR model, in which d
dt
S(t) = −β S(t)I (t)

m
but the rate

of recovery (from the I-compartment to the R-compartment) depends on the

time x since infection, expressed by the hazard function hX(x; γ ) = 4xγ 2

2xγ+1 .

(a) Plot hX(x; γ ) in the range 0 < x < 10 at γ = 1/3
(b) Show that the p.d.f. of the infectious period TI is fI (x; γ ) = 4xγ 2e−2γ x.

Calculate its mean and compare with the mean of the exponential distribu-
tion with p.d.f. γ e−γ x.What is the expression of R0?

(c) Calculate the variance of TI and write down the expression of the Laplace
transform L[fI ](s). Compare the variance with the variance of the expo-
nential distribution with p.d.f. γ e−γ x and compare the Laplace transform
function with that corresponding to the exponential distribution.

(d) Write the relationship between R0 and the initial growth rate r for this
model. Given the same R0, is r larger or smaller than r = (R0 − 1) γ as
predicted by (5.24)? Make further comments on this finding by referencing
Exercise 4.6.

(e) Show that the distribution of TI can be obtained as the distribution of the
sum of two independently distributed random variables TI = T1 + T2,

where T1 and T2 are identically distributed according to the exponential
distribution with rate 2γ.

(f) Write a deterministic SIR model expressed by a system of ordinary
differential equations with recovery hazard function given by hX(x; γ ) =

4xγ 2

2xγ+1 .

(g) Consider a population of 10,000 individuals, the initial condition Id(0) = 1
and the average infectious periods = 3 days. AssumingR0 = 1.8, calculate
the initial growth rate r, the final size Cd(∞), and the value of the epidemic∫∞

0 Id(t)dt.

(h) Based on the values given in (g), use numeric differential equation solvers
available in commercially available software (e.g., Matlab, Maple, etc.) to
produce comparative illustrations for S(t) and I (t) based on the ordinary
differential equations developed in (f) against those based on the ordinary
differential equations given by (5.24). What do they have in common, and
what are the differences?

5.5 For a population of 10,000 individuals, consider the SEIR model (5.53) with an
average latent periods = 10 days and an average infectious periods = 3 days.
Assuming R0 = 1.8.

(a) Calculate the final size Cd(∞) = m − Sd(∞). Does it depend on the
presence of latent periods?

(b) Define the peak prevalence as P(t) = Ed(t)+Id(t) for the SEIR model and
calculate the value of the peak prevalence Pmax. Does the peak prevalence
value depend on the presence of latent periods?

(c) Produce a similar figure as Fig. 5.8 that compares the SEIR model with the
SIR model and comment what the two models share in common, and what
are the differences.



Chapter 6
More Complex Models and Control
Measures

We have seen that, under suitable assumptions such as homogeneous mixing, the
basic reproduction number R0, defined at the start of the epidemic and given by
(4.2) in Chap. 4, transcends to the asymptotic equilibrium (t → ∞) outcomes
such as the final size (5.32) in a closed population or the endemic equilibrium
x(∞) = limt→∞ Sd(t)/m → R−1

0 in a constant population. Meanwhile, we have
also seen that, in compartment transmission models of the SEIRS type (in Chap. 5)
with exponentially distributed durations,R0 is expressed as a function of parameters
representing rates in these models, such as R0 = β/γ in SEIRS models without
mortality or other in-flow and out-flow of the population, or (5.70) in SEIRS models
with mortality or other in-flow and out-flow of the population.

The SEIRS models in Chap. 5 are building blocks towards models with more
complex structures with specific public health questions in mind. Very often these
models are designed to evaluate public health measures and treatments.

Before going into these topics, we quickly review the generalizability of the
final size equation and expressions of the reproduction number as functions of rate
parameters in complex compartment models.

6.1 The Final Size Equation and the Reproduction Number

Proposition 5.32 provides a central limit theorem in a stochastic framework for
the distribution of the cumulative number of infections C(∞) in an infinitely large
population. This central limit tendency has been studied and proven by many authors
under different assumptions regarding disease transmission. We refer readers to
von Bahr and Martin-Löf (1980), Ludwig (1975), Scalia-Tomba (1985), Martin-Löf
(1988), and Lefèvre and Picard (1995), among others, for the suitable conditions
and proofs.
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In a deterministic framework, Ma and Earn (2006) show that, in a closed
population with homogeneous mixing, if the depletion of the total population by
deaths is negligible, the monotonic relationship between R0 and the final size
equation (5.32) is invariant. This includes the existence of latent periods, arbitrarily
distributed infectious periods, and any number of distinct infectious stages.

This is an important mathematical relationship. It implies that, in a large
outbreak, the essential parameter R0 > 1, which is defined at the very beginning
when the system is at disease-free equilibrium, transcends to the final size 0 < η <
1, which is defined at the end when the system is at disease-free equilibrium with
no infected individuals left in the population. Figures 5.4, 5.5, 5.6, 5.7, and 5.8 have
demonstrated that, under the same initial conditions and R0, the average lengths and
distributions of the infectious periods and the presence of the latent periods affect
the time course of the epidemics, but in the long run, the final sizes Cd(∞), Rd(∞),
and Sd(∞) do not change. All roads lead to Rome.

There is a hidden assumption, however, that no change of contact behavior
and no public health intervention, such as isolation, quarantine, vaccination, and
other pharmaceutical intervention, ever take place throughout the course of the
outbreak. This is unrealistic, as there are always behavior changes and public health
interventions during the course of the epidemic (Funk et al. 2009, 2010; Perra et al.
2011). The actual final size, through the final size equation, is conceptually related
to a smaller reproduction number Rc ≤ R0, as if the epidemic started with Rc at the
very beginning of the epidemic.

Figure 6.1 shows the monotonic but nonlinear relationship of the final size
equation (5.32) that, given the same resource and effort, the intervention is more

Fig. 6.1 Implicit plot of the final size equation (5.32) and effect of a proportionate reduction of
R0 on the final size
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effective when the reproduction number is less than 2 compared to the scenario
where the reproduction number is greater than 2.5. This specific insight leads to the
critical vaccine coverage needed in order to produce herd immunity (Halloran et al.
2009).

6.2 The Reproduction Number as the Non-negative
Eigenvalue of the Next Generation Matrix in
Compartmental Disease Transmission Models

Using the notations and framework in pages 160–162 of van den Driessche and
Watmough (2008), a general form of compartmental disease transmission models
may consist of k disease compartments. A compartment is called a disease com-
partment if the individuals therein are infected, including both asymptomatic and
symptomatic stages of the disease. Let y ∈ R

k be the subpopulations in each of these
compartments. The linearized infection subsystem can be written in the form of

y′ = (F − V ) y, (6.1)

where F and V are k × k matrices. The matrix F corresponds to transmissions. All
epidemiological events that lead to new infections are incorporated in the model
through F . The element Fij of matrix F is the rate at which infected individuals
in the ith disease compartment produce secondary infected individuals in the j th

disease compartment. The matrix V corresponds to transitions. The element Vij has
the interpretation of the rate of transition from compartment i to compartment j . All
these parameters are based on setting the model at disease-free equilibrium. We refer
to page 161 of van den Driessche and Watmough (2008) for detailed descriptions.
Continuing, the next generation matrix is defined by FV −1 and R0 = ρ(FV −1) is
the non-negative eigenvalue of FV −1, see pages 163, 173–175 of van den Driessche
and Watmough (2008).

For intuitive understanding of (6.1) and R0 = ρ(FV −1), we notice that y′ =
(F − V ) y is analogous to y′ = (βS − γ ) y in the SIS and SIR models and R0 =
ρ(FV −1) is analogous to R0 = β/γ .

In the deterministic SEIRS model given by (5.69), when ω = 0, the presence of
a latent period has no effect on the basic reproduction number, which is R0 = β/γ ;
when ω = 0, R0 is expressed as (5.70). The linearized infection subsystem is a
system of ordinary differential equations of the matrix form

(
E′
I ′
)

= (F − V )
(
E

I

)

,

where

F =
(

0 β
0 0

)

, V =
(
α + ω 0
−α γ + ω

)

and FV −1 =
(

βα
(α+ω)(γ+ω)

β
α+ω

0 0

)

.
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Fig. 6.2 A conceptual expansion of an SEIR model with different infectious stages and interven-
tion parameters

This returns to (5.70):

R0 = ρ(FV −1) = βα

(α + ω) (γ + ω) .

Complex compartment models are often used to explicitly model these interven-
tions and evaluate their effectiveness by expanding simple structures. For instance,
in the model illustrated in Fig. 6.2, individuals in Compartment E may have a
probabilityψ = α1

α1+α2
to receive public health intervention. When these individuals

move into their infectious stages, I1, their infectious contact rates are reduced to σβ
(assuming the intervention may not be perfectly adhered). For those not receiving
the intervention, their infectious periods may be staged into I2 −→ I3, where stage
I2 may be more or less infectious than stage I3. Hence, β2 = εβ and β3 = β.
Individuals in Compartment I3 may receive treatments, with probability φ =
γ32

γ31+γ32
. Treated individuals (I42) may have reduced infectious contact rates: β42 =

ϕβ. Assigning these parameters into the model given by (6.2), the reproduction
number ρ(FV −1) given by (6.3) is explicitly expressed as a function of parameters
representing public health interventions, along with other epidemiologic parameters
with respect to infectious periods distributions.

We consider a structured model to illustrate (6.1) and Rc = ρ(FV −1). We
use the notation Rc because the model includes control parameters; and it should
be interpreted as the controlled reproduction number Rc rather than the basic
reproduction number R0. The model in Fig. 6.2 includes six disease compartments.
Compartment E stands for individuals who are infected but not infectious (i.e.,
β = 0). Other disease compartments are all infectious, but with different infectious
contact rates, with scale parameters against the baseline parameter β. The rates from
E to I1 and I2 are denoted by α1 and α2, respectively. Other transition parameters
are represented by γ with index denoting the current infectious state from which
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an infected individual is leaving. The linearized infection subsystem is a system of
ordinary differential equations of the matrix form (6.1) as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E′
I ′

1
I ′

2
I ′

3
I ′

41
I ′

42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (F − V )

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E

I1

I2

I3

I41

I42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.2)

where the transmission matrix

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 βσS0 βεS0 βS0 βS0 βϕS0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and S0 = S(0) denotes the number of susceptible individuals at disease-free
equilibrium. The transition matrix is

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1 + α2 0 0 0 0 0
−α1 γ1 0 0 0 0
−α2 0 γ2 0 0 0

0 0 −γ2 γ31 + γ32 0 0
0 0 0 −γ31 γ41 0
0 0 0 −γ32 0 γ42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

V −1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
α1+α2

0 0 0 0 0
α1

α1+α2

1
γ1

1
γ1

0 0 0 0
α2

α1+α2

1
γ2

0 1
γ2

0 0 0
α2

α1+α2

1
γ31+γ32

0 1
γ31+γ32

1
γ31+γ32

0 0
α2

α1+α2

γ31
γ31+γ32

1
γ41

0 γ31
γ31+γ32

1
γ41

γ31
γ31+γ32

1
γ41

1
γ41

0
α2

α1+α2

γ32
γ31+γ32

1
γ42

0 γ32
γ31+γ32

1
γ42

γ32
γ31+γ32

1
γ42

0 1
γ42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The non-negative eigenvalue of FV −1 is Rc = ρ(FV −1), expressed as

βS0

{
α1

α1 + α2

σ

γ1

+ α2

α1 + α2

[
ε

γ2
+ 1

γ31 + γ32
+ γ31

(γ31 + γ32) γ41
+ γ32ϕ

(γ31 + γ32) γ42

]}

= βS0

{
α1

α1 + α2

σ

γ1
+ α2

α1 + α2

[
ε

γ2
+ γ31γ42 + γ41γ42 + ϕγ32γ41

γ41γ42 (γ31 + γ32)

]}

. (6.3)

6.2.1 An Intuitive Recipe to Express Rc in Complex
Compartment Models with Non-exponentially Distributed
Sojourn Times in Disease Compartments

We have noticed that (5.70) is expressed as R0 = βL[fE](ω)L[FI ](ω) rather than
R0 = ρ(FV −1). The former is also suitable for non-exponentially distributed latent
and infectious periods using the independent competing risk approach and Laplace
transforms. On the other hand, the linearized infection subsystem as a system of
ordinary differential equations (6.1) assumes constant transition rates in matrix V .
It implies the sojourn times an infected individual spent in each of the disease
compartments is exponentially distributed.

In a similar manner, we use the independent competing risk framework to
develop a recipe to generalize R0 = ρ(FV −1) in situations where the sojourn times
are distributed according to some arbitrary distributions.

We recall that, in a closed population under homogeneous mixing, the infectious
contact process {K(x) : x ≥ 0} possesses the stationary increment property
d
dt
E[K(t)|Ht ] = β (Sect. 3.3), R0 = βμI . This expression is valid for arbitrarily

distributed infectious periods as long as the first moment μI < ∞. We extend this
relationship in the following manner:

1. The stationary increment property can be generalized by staging the infectious
period (shown as structure (a)) in Fig. 6.3), so that β(x) is piecewise constant
defined on different stages. In this serial arrangement, each infected individual
passes through a series of k infectious stages I (1) → I (2) → · · · → I (k). Each

stage is random with duration T (j)I associated with survival function F
(j)

I (x) and
mean μj , such that μI =∑kj=1 μj . If β(x) = βj , for x ∈ I (j), it can be shown
that (Mode and Sleeman 2000)

Rc =
k∑

j=1

∫ ∞

0
β(x)F

(j)

I (x)dx =
k∑

j=1

βjμj .
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Fig. 6.3 An illustration of (a) serial, (b) parallel, (c) splitting, and (d) combined structures of the
infectious period

2. Infected individuals are composed of different types. Each type is associated
with an infectious period with average duration μj and infectious contact rate
βj , = 1, . . . , l. A typical susceptible individual has a probability ψj to be in
contact with infected individuals of type j . In this parallel arrangement, shown
as structure (b) in Fig. 6.3, Rc = ∑lj=1 ψjβjμj , which can be proven using

R0 = G
′
N(1), in which GN(s) arises from a mixed distribution with finite

mixture
∑l
j=1 ψj = 1.

3. Individuals in the infected stage I , with infectious contact rate β, exit to k
competing directions in an independent competing risk framework, shown as
structure (c) in Fig. 6.3. The average duration of an individual staying in this

stage is μ∗
I = ∫∞

0 exp
(
− ∫ t0
∑k
j=1 hj (x)dx

)
dt . In particular, if hj (x) = γj for

all j , μ∗
I =
(∑k

j=1 γj

)−1
. We have Rc = βμ∗

I .

4. We combine 1. and 2. to make more complex structures involving both serial and
parallel structures such as structure (d) in Fig. 6.3.

Figure 6.3 structure (d) is a sub-structure of Fig. 6.2, illustrating a situation where
a typical susceptible individual has a probability ψ of coming into contact with
infected individuals I1 with mean infectious period μ1 and infectious contact rate
β1. It also has a probability 1 − ψ of coming into contact with infected individuals
whose infectious periods are staged into series I2 and I3. After I3, these infected
individuals may also split, with probability φ, into two parallel categories of the
infectious periods: I41 and I42, respectively. Their corresponding mean durations
and infectious contact rates while in contact with a susceptible individuals are
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labeled as μ2, μ3, μ41, μ42, and β2, β3, β41, β42, respectively. In this case, one
can write

Rc = ψβ1μ1 + (1 − ψ) [β2μ2 + β3μ
∗
3 + φβ41μ41 + (1 − φ) β42μ42

]
. (6.4)

The expression (6.4) not only generalizes R0 = βμI into a model with complex
structure with possible intervention parameters, but also allows the durations in each
stage to be arbitrarily distributed, as long as the mean values μ1, μ2, μ∗

3, μ41, and
μ42 are all finite.

In Fig. 6.2, all parameters are expressed by rates. Individuals in Compartment
E have probability ψ = α1

α1+α2
of making a transition to Compartment I1 and

probability 1 − ψ = α2
α1+α2

of making a transition to Compartment I2. Similarly,
individuals in Compartment I3 have probability φ = γ31

γ31+γ32
of making a transition

to Compartment I41 and probability 1 − φ = γ32
γ31+γ32

of making a transition to

Compartment I42. The average sojourn time in I3 is μ∗
3 = 1

γ31+γ32
. Let β1 = σβ,

β2 = εβ, β3 = β41 = β, and β42 = ϕβ, (6.4) returns to (6.3).

6.3 A Hypothetical Case Study for Preparedness of an Acute
Respiratory Infectious Disease

We consider a local outbreak of a typical acute respiratory infectious disease so that
the population is approximately constant and closed. The transmission structure
is illustrated in Fig. 6.4, which is very similar to Fig. 6.2. There is a proportion
of infected individuals who do not progress to symptomatic stages and remain
asymptomatic until recovery. We denote the hazard function from Stage L to Stage
0 as hL0(x) and the hazard function from Stage L to Stage A as hLA(x), where x
stands for the sojourn time in stage L, then

θ =
∫ ∞

0
hL0(x)e

− ∫ x0 (hLA(u)+hL0(u))dudx = Pr{ clinically ill | infection }.

In particular, if hLA(x) = αLA and hL0(x) = αL0, then θ = αL0
αLA+αL0

. This
parameter is called pathogenicity in infectious disease literature, which is the ability
of a microbial agent to induce disease (Nelson et al. 2001).

We assume a treatment is applied to individuals in Phase-I of the symptomatic
stage. The time-to-treatment TX follows a hazard function h1T (x), where x is
measured from the symptomatic onset; and the time to progression to Phase-II since
symptomatic onset, TX, follows a hazard function h12(x). Assuming independency
between TX and T12, we define

� =
∫ ∞

0
h1T (x)e

− ∫ x0 (h12(u)+h1T (u))dudx = Pr{TX ≤ T12}, (6.5)
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Fig. 6.4 A diagram of the structure of a hypothetical acute respiratory infection

which is the probability of a clinically ill patient being effectively treated, and
Pr{TX ≤ T12} symbolizes “race-to-treat.”

6.3.1 The Baseline: Without Treatment

Without treatment, the final size is η, corresponding to the final size equation (5.32)
and shown in Fig. 6.1. We scale η by pathogenicity to define the clinical attack rate,

A0 = θη.

In the literature, η is also called the serologic attack rate (as used in Gani et al.
2005) or the infection attack rate (as used in Ferguson et al. 2005). A0 is linked to
the basic reproduction number R0 via (5.32) and θ . The baseline scenario is without
treatment. An explicit expression for R0 can be obtained using the recipe provided
in the proceeding section:

R0 = (1 − θ)βAμA + θ [β0μ0 + β1μ1 + β2μ2] , (6.6)

where μ with subscripts are average duration of individuals staying in each stage
according to the numbering in Fig. 6.4.
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In the special case when all the transition rates are constants, hLA(u) = αLA,
hL0(u) = αL0, μA = γ−1

A , μ0 = γ−1
01 , μ2 = γ−1

12 , and μ2 = γ−1
2 , we can write a

system of ordinary differential equations as a deterministic transmission model

S′ = −S (βAA+ β0I0 + β1I1 + β2I2) /m

L′ = S (βAA+ β0I0 + β1I1 + β2I2) /m− (αLA + αL0) L

A′ = αLAL− γAA
I ′

0 = αL0L− γ01I0

I ′
1 = γ01I0 − γ12I1

I ′
2 = γ12I1 − γ2I2

R′ = γAA+ γ2I2

,

where {S,L,A, I0, I1, I2} are states as displayed in Fig. 6.4 satisfying

S(t)+ L(t)+ A(t)+ I0(t)+ I1(t)+ I2(t)+ R(t) = m.

R0 can be obtained using the second generation matrix method

R0 = αLA

αLA + αL0
βA/γA + αL0

αLA + αL0
[β0/γ01 + β1/γ12 + β2/γ2]

which is a special case of (6.6).

6.3.2 With Treatment

The Reproduction Number Reduction

We imagine a treatment, such as an antiviral drug, which is effective both in the
reduction of transmissibility (if treated immediately after onset of symptoms) and
in the reduction of severe clinical outcomes. Using the recipe provided in the
proceeding section,

Rc = (1 − θ)βAμA + θ [β0μ0 + β1μ
∗
1 +�βT μT + (1 −�)β2μ2

]
, (6.7)

where μ with subscripts are average duration of individuals staying in each stage
according to the numbering in Fig. 6.4 with the exception

μ∗
1 =
∫ ∞

0
e−
∫ x

0 (h12(u)+h1T (u))dudx.

If h1T (u) = 0, then μ∗
1 = ∫∞

0 e−
∫ x

0 h12(u)dudx = μ1.
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We assume that for an effectively treated individual, the mean duration of
infectiousness is a reduction of μ2, so that μT = ϕμ2, ϕ < 1. Meanwhile, the
reduction of infectiousness is βT = κβ2, κ < 1. Then

R0 − Rc
θ

= β1
(
μ1 − μ∗

1

)+�(1 − κϕ) β2μ2.

If, without treatment, the natural duration of Phase-I is generally distributed
with survival function F 12, and the race-to-treat in Phase-I follows a constant rate
h1T (x) = γ1T , then

μ∗
1 =
∫ ∞

0
e−xγ1T e−

∫ x
0 h12(u)dudx = L[F 12](γ1T ),

μ1 =
∫ ∞

0
e−
∫ x

0 h12(u)dudx = L[F 12](0),

� = γ1T

∫ ∞

0
e−xγ1T e−

∫ x
0 h12(u)dudx = γ1T L[F 12](γ1T ) = γ1T μ

∗
1.

The controlled reproduction number is a function of treatment rate γ1T , such that

R0 − Rc
θ

= β1
(
L[F 12](0)− L[F 12](γ1T )

)+ γ1T L[F 12](γ1T ) (1 − κϕ) β2μ2.

A further special case is when the natural duration of Phase-I is exponentially
distributed with mean value μ1 = γ−1

12 . In this case,

μ∗
1 = L[F 12](γT ) = 1

γ12 + γ1T
and � = γ1T

γ12 + γ1T
.

Thus

� = γ1T

γ12 + γ1T
= R0 − Rc
θ (β1/γ12 + (1 − κϕ) β2μ2)

. (6.8)

It shows that pathogenicity θ plays a very important role. Because the treatment is
applied to symptomatic individuals only, if θ is small and there is a large number of
asymptomatic infected individuals who also transmit the infection, it becomes more
difficult to use an antiviral type treatment alone to achieve the same reduction of the
reproduction number.

We write

c = θ (β1/γ12 + (1 − κϕ) β2μ2)

(1 − θ)βAμA + θ [β0μ0 + β1/γ12 + β2μ2]
(6.9)
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which involves all the parameters about pathogenicity, transmission rates, and
average durations without treatment, as well as κϕ for the treatment. These
parameters are pre-assumed. Re-writing (6.8), we get the linear reduction

Rc = R0 (1 − c�) . (6.10)

The “Controlled” Clinical Attack Rate and the Calculation for the
Maximum Amount of Treatment

The objective is to reduce the clinical attack rate and increase

# clinical cases averted = (A0 − Ac)× population size, (6.11)

where Ac is the “controlled” clinical attack rate. Ac is linked to the controlled
reproduction number Rc.

Assuming the natural duration of Phase-I is exponentially distributed so that
(6.10) holds, we write the controlled clinic attack rate Ac(�) as a function of �.
The final size equation can be expressed as

1 − Ac(�)/θ = exp (−RcAc(�)/θ) , Rc > 1.

It can be rewritten as

− log (1 − Ac(�)/θ) = R0 (1 − c�)Ac(�)/θ. (6.12)

We define treatment usage as  (�) = � ∗ Ac(�), which can be expressed by

 (�) = θ

c

[

Ac(�)/θ + 1

R0
log (1 − Ac(�)/θ)

]

. (6.13)

The total number of effectively treated individuals ism× (�). This is an important
quantity to calculate the amount of treatment by multiplying the appropriate unit of
treatment per treated individuals, such as courses, doses, or any other measures.

Both Ac(�) and  (�) are functions of � and will be plotted in Fig. 6.5 under
specific values of R0, θ , and c.

To find the maximum treatment usage,

 ′(�) = θ

c

[

1 − 1

R0

1

1 − Ac(�)/θ
]

A′
c(�)/θ.

We find ′(�) = 0 ifAc(�)/θ = 1− 1
R0

. Therefore, the maximum value is max =
θ
c

(
1 − 1

R0
− 1
R0

logR0

)
. This gives the following statement.
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Fig. 6.5 Illustration of (6.12) and (6.13) at R0 = 1.386, θ = 0.8, and c = 0.68278

Proposition 26

• If c > 1 − logR0
R0−1 and R0 > 1, the maximum value of  (�) is

 max = θ

c

(

1 − 1

R0
− 1

R0
logR0

)

. (6.14)

This is when� = 1
c

(
1 − logR0

R0−1

)
. At this value, the controlled clinical attack rate

is

Ac(�) = θ

(

1 − 1

R0

)

.

When � < 1
c

(
1 − logR0

R0−1

)
, an increase of � implies more treatment amount

 (�). When � > 1
c

(
1 − logR0

R0−1

)
, an increase of � implies less treatment

amount  (�).
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• If c ≤ 1 − logR0
R0−1 , the maximum value of  (�) is achieved when 100% of clinic

patients are effectively treated (� = 1).
• In particular, if c = 0, Ac(�) = A0 and the maximum value of (�) is the gross

attack rate A0.

6.3.3 The Deterministic Model

If all the transition rates in Fig. 6.4 are constants, we expand the system of ordinary
equations to

S′ = −S (βAA+ β0I0 + β1I1 + βT IT + β2I2) /m

L′ = S (βAA+ β0I0 + β1I1 + βT IT + β2I2) /m− (αLA + αL0) L

A′ = αLAL− γAA
I ′

0 = αL0L− γ01I0

I ′
1 = γ01I0 − (γ12 + γ1T ) I1

I ′
2 = γ12I1 − γ2I2

I ′
T = γ1T I1 − γT IT
R′ = γAA+ γ2I2 + γT IT

, (6.15)

where {S,L,A, I0, I1, I2, IT } are states as displayed in Fig. 6.4 satisfying

S(t)+ L(t)+ A(t)+ I0(t)+ I1(t)+ I2(t)+ IT (t)+ R(t) = m.

Rc can be obtained using the second generation matrix method

Rc = αLA

αLA + αL0

βA

γA
+ αL0

αLA + αL0

(
β0

γ01
+ β1

γ12 + γ1T
+ β2 (γ12 + γ1T κϕ)

γ2 (γ12 + γ1T )

)

which is a special case of (6.7).

6.3.4 A Numerical Demonstration

Consider an influenza-like disease, in which we assume an average latent period 2
days and average infectious period 5.25 days. The infectious period consists of a
short pre-symptomatic period with average 0.25 days; a highly contagious Phase-I
of the symptomatic stage, with average 1 day, during which an antiviral treatment
is effective. Although the average of Phase-I of the symptomatic stage is assumed
1 day, if it is exponentially distributed, there is still 0.95 probability that treatment
is still effective 3 days after symptom onset. Without treatment, Phase-I is followed
by a lesser contagious Phase-II of the symptomatic stage with average 4 days. We
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Table 6.1 Assumed
parameters without treatment

Infection rates Average durations (days)

Latent βL = 0 μL = 2

Asymptomatic βA = β2/2 μA = 5.25

Pre-symptomatic β0 = 2β2 μ0 = 0.25

Symptomatic-I β1 = 7β2 μ1 = 1

Symptomatic-II β2 μ2 = 4

Pathogenicity θ = 0.8

assume that the pathogenicity parameter θ = 0.8. Of the 20% infected individuals
who remain asymptotic, we assume that the average duration of infectiousness is
the same as symptomatic individuals, hence, 5.25 days. We denote the infectious
contact rate parameter for Phase-II by β2 and the infectious contact rate in other
infectious stages is proportional to β2.

Assumptions and parameter values are summarized in Table 6.1. Inserting these
into (6.6), we get R0 = 9.725β2.

For planning purposes, a baseline clinical attack rate A0 is often assumed to lie
in a range before implementing any public health control measures, such as between
15% and 35% or between 10% and 50%.

For treatment, we assume that the treatment reduces μ2 by 1 day, that is, μT =
ϕμ2 = 3 days and ϕ = 0.75; also reduces β2 such that βT = κβ2 = 0.9β2.

We assume that the sojourn time in Phase-I of the symptomatic stage without
race-to-treat follows an exponential distribution. From Table 6.1, μ1 = 1 gives
γ12 = 1. Given the treatment rate γ1T , the proportion of symptomatic individuals
effectively treated is � = γ1T

1+γ1T
.

Inserting the parameter values from Table 6.1 plus the above additional assump-
tions into (6.9), we get c = 0.68278, which depends on the relative transmission
rates βA/β2, β0/β2, β1/β2, but not the value of β2. Thus,

Rc = R0 (1 − 0.68278�) = R0

(

1 − 0.68278γ1T

1 + γ1T

)

.

We now assume, for planning purposes, a baseline clinical attack rateA0 = 40%.
At θ = 0.8 from Table 6.1, it corresponds to R0 = 1.386. The maximum treatment
usage is reached when

� = γ1T

1 + γ1T
= 1

c

(

1 − logR0

R0 − 1

)

= 0.22611.

Equivalently, γ1T = 0.29217. In other words, if symptomatic individuals are treated
on average 3.4227 days since the time of onset, the treatment usage is at the
maximum, at  max ≈ 0.05. At this rate, one expects to achieve the reduction of
clinic attack rate from A0 = 40% to

Ac(�) = θ

(

1 − 1

R0

)

= 0.2229 = 22.3%.
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The amount of treatment is  max multiplying the population size, and multiplying
the appropriate unit of treatment. For example, if treatment usage per individual
involves ten doses, then one needs to prepare a minimum stockpile in terms of the
number of doses covering half of the population.

If the treatment is more timely, faster than on average 3.4227 days since the time
of onset, it will require much less treatment at the population level because as �
increases, Ac(�) decreases in a dramatic fashion and is nonlinear, as demonstrated
in Fig. 6.1.

In order to visualize how treatment affects the transmission dynamics over
time, we numerically solve the system of ordinary differential equations (6.15).
Assuming all the sojourn times in each compartment are exponentially distributed,
the parameters in (6.15) are assigned in agreement with those in Table 6.1.

• αLA = 0.1 and αL0 = 0.4, so that μL = (αLA + αL0)
−1 = 2 and θ =

αL0/(αLA + αL0) = 0.8;
• γA = 1/5.25 so that μA = 5.25;
• γ01 = 1/0.25 so that μ0 = 0.25;
• γ12 = μ1 = 1 and γ2 = 1/μ2 = 0.25;
• γT = 1

ϕ
γ2 = 1/3, i.e., ϕ = 0.75;

• βT = 0.9β2, i.e., κ = 0.9;
• β2 = 0.14253, so that R0 = 9.725β2 = 1.3861 which gives the baseline clinic

attack rate A0 = 40%.

The results are shown in Fig. 6.6. The treatment does not only reduce the
serologic attack rate (the final size) and the clinic attack rate, but also reduces delays
to peak time of the prevalent numbers in all infected compartments and reduces
the peak values of these prevalent numbers (i.e., the maximum case load). What is
omitted in Fig. 6.6 is the case with race-to-treat more rapidly than on average 3.4227
days. In that scenario, one achieves more reductions of the maximum case load and
the clinic attack rate with much less treatment usage.

6.3.5 Potential Extensions

All the discussions and demonstrations in the section are under the assumption that
treatment is applied effectively on each treated individual. There are many different
situations where this is not the case. We list some of these situations and point out
directions of further developments.

Adjustment for Belated Treatment

In practice, treatment is not given to individuals in Phase-I of the symptomatic
stage because the transition to Phase-II is not an observable event and the duration
of Phase-I is random. Instead, public health organizations may issue a treatment
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Fig. 6.6 Numeric solutions of (6.15) assuming m = 100,000, S(0) = 99,999, and I1(0) = 1
at the baseline and with treatment at a rate corresponding to the maximum usage. (a) Baseline:
no treatment. (b) Race-to-treat average 3.4227 days since the time of onset (maximum treatment
usage)

guideline, such as a cut-off time C (e.g., 48 h since symptom onset), so that the
treatment is no longer administered.

We have defined � as � = Pr{TX ≤ T12}, where T12 is the time from onset of
symptoms to the end of Phase-I (when the window of treatment opportunity expires)
and TX is the time from onset of symptoms to receiving treatment. There will always
be a non-zero probability

Pr{TX ≤ C|TX > T12} = Pr{T12 < TX ≤ C}
Pr{TX > T12} . (6.16)

This is the probability that although the individual is no longer responsive to
treatment, the treatment is administered regardless, following the guideline. The
denominator of (6.16) is Pr{TX > T12} = 1 − �. We write the numerator
Pr{T12 < TX ≤ C} as Pr{T12 < TX ≤ C;�} to emphasize that this probability
depends on the parameter �. If every clinical case with time-to-treatment TX ≤ C

receives treatment according to the guideline, one can calculate the “wasted usage”
formula

Ac(�)× Pr{T12 < TX ≤ C;�}. (6.17)
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After adjustment for the belated treatment, the total treatment usage as a pro-
portion of the population is A� ∗ (�+ Pr{T12 < Tx ≤ C;�}) and better expressed
by

 (�) = � ∗ Ac(�) ∗
[

1 + Pr{T12 < TX ≤ C;�}
�

]

(6.18)

= � ∗ Ac(�) ∗
[

1 + Pr{T12 < TX ≤ C}
Pr{TX ≤ T12}

]

,

where Pr{T12<Tx≤C}
Pr{Tx≤T12} is the odds between those treated within the cut-off time C

with an ineffective drug and those treated with an effective drug. These odds are
determined by the distributions of T12 and TX. As long as T12 and TX are random,
for any cut-off time C, Pr{T12 < TX ≤ C;�} > 0. Therefore, there will always be
clinical cases treated within the cut-off time but with an ineffective drug.

We assume that both T12 and TX are exponentially distributed with rates γ12
and γT , respectively. Under the assumption that T12 and TX are independent, � =
γ1T

γ12+γ1T
, 1 − � = γ12

ρ+α . Provided � < 1, we have γ1T = �
1−�γ12, γ12 + γ1T =

1
1−�γ12, and γ1T

γ12
= �

1−� . It can be shown that the proportion of clinical cases treated
within TX ≤ C but not effective is the joint probability

Pr{T12 < TX ≤ C} = 1 − e− �
1−�γ12C −�

(
1 − e− 1

1−�γ12C
)

which is an increasing function of C with Pr{T12 < TX ≤ C} → 1 −� as C → ∞.

 (�) = � ∗ Ac(�) ∗
[

1 + Pr{T12 < TX ≤ C;�}
�

]

= � ∗ Ac(�) ∗
[

1

�

(
1 − e− �

1−�γ12C
)

+ e− 1
1−�γ12C

]

. (6.19)

Adjustment for False Positive Diagnoses

Suppose that a treatment is effective for a specific acute respiratory infectious
diseases with influenza-like clinical symptoms. During such an outbreak, indi-
viduals may present influenza-like symptoms within the previous few hours and
seek treatments. There is a probability that some individuals are not infected with
the specific virus. This leads to the probability that some individuals are falsely
diagnosed. For these individuals, the treatment is not effective.

We denote σ as the specificity of the clinic diagnosis, defined as

σ = Pr{negative diagnosis | not infected with the specific virus}.
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The probability of false positive diagnosis is 1 − σ . If one has knowledge of the
specificity σ , given the background information of the incidence of non-influenza
influenza-like illnesses, one will be able to adjust for the calculation of the usage.
We assume that the probability of false negative diagnosis is negligible.

Previously, we used Ac(�) to denote the clinic attack rate for the “true
infections” if a proportion � of symptomatic individuals is treated. We write it as a
probability

Ac(�) = Pr{true infection|�}.

Denote:

A(D)(�) = Pr{positive diagnosis |�}

which is the “inflated” clinic attack rate due to the presence of false positive
diagnoses. Therefore,

A(D)(�) = Ac(�)

+ (1 − Ac(�))× Pr{positive diagnosis | not infected with the virus}

= Ac(�) ∗
[

1 + 1 − Ac(�)
Ac(�)

(1 − σ)
]

. (6.20)

The treatment usage is adjusted as

 (�) = �× A(D)� = � ∗ Ac(�) ∗
[

1 + 1 − Ac(�)
Ac(�)

(1 − σ)
]

. (6.21)

If the diagnosis is 100% specific, then  (�) = �Ac(�). The other extreme is
σ → 0, that is, all diagnoses are false, then  (�) = �.

We assume γ12 = 1 and C = 2 (days) and combine (6.19) and (6.21) to update
 (�) Fig. 6.1. The results are displayed in Fig. 6.7.

Extending � as a Function of Time

We assume σ = 100% and for every treated individual, the treatment is effective.
The time-to-treatment TX may improve or degenerate due to supply or other

logistic issues in the health-care system. For a patient with symptoms at time t , one
may extend the definition (6.5) as a function of t by a step-function:

�(t) =
{
�, if drug available at time t ;
0, if drug unavailable at time t .

(6.22)
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Fig. 6.7 Adjusted treatment usage in consideration of ineffective treatments for those treated
within C = 2 days since onset and false diagnosis rate 1 − σ = 0.15

1. If all patients are equally accessible to treatment and every patient accesses
treatment following the same distribution for TX at any given time t and the
supply is sufficient to cover the entire duration of the outbreak, then � is the
proportion of effectively treated patients among all patients. In this case, Ac(�)
is an implicit function of � through (6.12).

2. If the supply is insufficient to cover the entire duration of the outbreak, � is the
proportion of patients who receive treatment when the supply is available and
are effectively treated. If the supply runs out at time t1, before the end of an
outbreak, then �(t) = � if t ≤ t1. Let A1 be the proportion of the population
that becomes symptomatic by t1, and a proportion � of them are treated. Let A∗
be the proportion of the population that eventually becomes clinically ill. Then
�∗ = A1

A∗� < � is the proportion of patients who are effectively treated during
the entire outbreak.

For saving the volume of this book, we do not present detailed analyses for this
situation, but to point out that (Exercise)

�A1 = �∗A∗ = constant (6.23)

= effectively treated patients as proportion of population

= supply limit of treatment.
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Fig. 6.8 An illustration of treatment supply depletion scenarios and how they affect the time
course of the transmission dynamics

Figure 6.8, with slightly different parameter values from that used before,
illustrates such a situation that if within the range 0.2423 ≤ � < 0.78, the supply
runs out. Using the ordinary differential equations (6.15), � = γ1T

γ12+γ1T
. It implies

that, if the race-to-treatment rate γ1T falls in the range 0.31978γ12 ≤ γ1T <

3.5455γ12, the supply runs out at certain point of time. At the population level,
the treatment delays the peak of the incidence number of new clinical cases and
reduces the peak value. However, at the time when the supply runs out, there is a
rebound of the incidence numbers. Figure 6.9 shows that the cumulative number
by the end of the outbreak A∗ remains the same when 0.2423 ≤ � < 0.78, and
A∗ = Ac(�) = 0.21 when � = 0.2423. However, in a race-to-treat scenario that
achieves Φ >= 0.78 . . ., not only the supply does not run out, but also the clinic
attack rate significantly reduces to Ac(�) = 0.06.
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Fig. 6.9 An illustration of treatment supply running out scenarios and how they affect the
cumulative number of clinical cases

6.4 Effects of the Variability of the Latent and Infectious
Periods on Certain Control Measures

In a simpler structure than the model in Fig. 6.2, we assume that individuals in
CompartmentE receive a “treatment” with rateψ . If treated, they are not infectious.
A typical treatment is to isolate exposed individuals during their latent periods.
Individuals in Compartment I receive a “treatment” with rate φ. If treated, they are
not infectious. Such a treatment may be pharmaceutical or non-pharmaceutical. One
of the treatments is to isolate infected individuals during their infectious periods. On
the other hand, we also generalize the model assuming that the latent periods follow
a distribution with p.d.f. fE(x) and hazard function hE(x); the infectious periods
follow a distribution with p.d.f. fI (x) and hazard function hI (x). This model is
illustrated in Fig. 6.10.

When ψ = φ = 0, this model is an SEIR model represented by the
integro-differential equations (5.61). In that case, the basic reproduction number
is R0 = βμI and an instantaneous transmission in the population is βSI (scaled by
population size).

When ψ > 0, the instantaneous rate of an individual in Compartment E
either becoming infectious or being isolated is ψ + hE(x). The survival function
for individuals staying in the E-compartment is exp

{− ∫ x0 [ψ + hE(x)] dt
}
. The

corresponding p.d.f. is

f (x|ψ) = [ψ + hE(x)] exp

{

−
∫ x

0
[ψ + hE(x)] dt

}

= ψe−ψxFE(x)+ e−ψxfE(x),
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Fig. 6.10 Illustration of isolation of infected but not yet infectious individuals with rate ψ , and
isolation of individuals who are infectious with rate φ

where FE(x) = exp
{− ∫ x0 hE(x)dt

}
is the survival function of the latent period.

Therefore,

∫ ∞

0
f (x|ψ)dx = ψ

∫ ∞

0
e−ψxFE(x)dx +

∫ ∞

0
e−ψxfE(x)dx

= ψL[FE](ψ)+ L[fE](ψ) = 1.

The second term L[fE](ψ) is the proportion of latent individuals that eventually
escape from being isolated. These individuals will proceed to Compartment I.
Therefore, the instantaneous transmission rate in the population is modified to βSI ,
where β = βL[fE](ψ) < β.

The mean infectious period is μI = ∫∞
0 FI (x)dx. When φ > 0, the rate of

exiting Compartment I is accelerated to φ + hI (x). The survival function of an
individual remaining in the infectious stage becomes

e−φxF I (x) = exp

{

−
∫ x

0
[φ + hI (x)] dt

}

< FI (x).

Then L[FI ](φ) = ∫∞
0 e−φxF I (x)dx has the same meaning as the average sojourn

time in Compartment I corresponding to the survival function e−φxF I (x). In other
words, the average sojourn time in Compartment I has been shortened from μI to
μI = L[FI ](φ) by isolation.

Together, we write the controlled reproduction number as

Rc(ψ, φ) = βμI

= βL[fE](ψ)L[FI ](φ). (6.24)
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In the special case when both the latent and infectious periods are exponentially
distributed with hE(x) = α = μ−1

E , hI (x) = γ = μ−1
I , the Laplace transforms

L[fE](ψ) and L[FI ](φ) are explicit. The above can be written as

Rc(ψ, φ) = βα

(α + ψ) (γ + φ) (6.25)

= βμI

(1 + ψμE) (1 + φμI ) = 1

(1 + ψμE) (1 + φμI )R0.

The expression (6.25) is in agreement with the non-negative eigenvalue of the next

generation matrix ρ(FV −1), in which,

F =
(

0 β
0 0

)

, V =
(
α + ψ 0
−α γ + φ

)

and FV −1 =
(

βα
(α+ψ)(γ+φ)

β
α+ψ

0 0

)

.

As for generally distributed latent and infectious periods, the formulation of
Rc(ψ, φ) given by (6.24), using the arguments presented in Sect. 2.5.2, we arrive
at the following two statements.

Proposition 27 Given the mean latent period μE and the treatment (e.g., quaran-
tine) rate ψ > 0, the less variable the latent period according to the convex order,
the more effective the treatment.

Proposition 28 Given the mean infectious period μI and the treatment rate φ, the
less variable the infectious period according to the convex order, the less effective
the treatment.

We further draw parallels with discussions in Sect. 4.3.3, where the variabil-
ities of the latent and infectious periods, characterized by Laplace transforms,
are related to the intrinsic (exponential) growth rate r , expressed by (4.43) as
βL[fE](r)L[FI ](r) = 1.

Thus, given the same mean latent period μE , small variability of the latent
periods is preferable in the sense of a slower initial growth and a more effective
treatment measure, such as quarantine to be implemented during the latent period.

On the other hand, given the same mean latent period μI , large variability of the
infectious periods is preferable in the sense of a slower initial growth and a more
effective treatment measure to be implemented during the infectious period.

6.5 Unobservable Heterogeneity in Treatment Rates
on Effectiveness

In (6.24), it is assumed that the treatments are 100% effective. Treated individuals
are no longer infectious. Yan and Feng (2010) provided some extensions for imper-
fect quarantine and imperfect isolation. The model in Fig. 6.2 can be also used for
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imperfect treatments by modeling the reduction of the infectious contact parameter
as σβ and ϕβ. These extended models may be used to “mechanically” evaluate how
“leakages” of these control measures affect the controlled reproduction number in a
quantitative way.

In this section, we discuss unobservable (even un-quantifiable) nonadherence
of these treatment measures among individuals and how frailty in treatment rates
affects the controlled reproduction number and the final size in a qualitative way.
Unobservable (and even un-quantifiable) heterogeneity in treatment could arise
in many situations, such as nonadherence (e.g., condom use), “leakage” (e.g.,
imperfect quarantine or isolation), or, in a prophylactic intervention, individuals may
not take the prescribed dose of the medication provided.

We simplify the discussion using a single parameter ψ = φ so that (6.24) is
Rc(φ) = βL[fE](φ)L[FI ](φ). We define the p.d.f. for the equilibrium distribution
fW(x) = FI (x)/μI as previously discussed in Sect. 4.3.3, corresponding to a
random variable W > 0. Assuming independency, the p.d.f. for G = TE + W ,
fG(x), is defined by the convolution between fE(x) and fW (x). Its Laplace
transform is the product L[fG](s) = L[fE](s)L[fW ](s), s > 0, where L[fW ](s) =
1
μI
L[FI ](s). Thus

Rc(φ) = R0

∫ ∞

0
e−φxfG(x)dx = R0L[fG](φ). (6.26)

In Sect. 2.6.1, the frailty model was introduced for unobservable heterogeneity.
In the current context, the intervention is associated with a rate φ > 0 under

the idealized situation. We associate this rate with a baseline hazard function
h0(x) = φ, H0(x) = φx, and F 0(x) = e−φx , corresponding to time x at
intervention. In the idealized situation, Rc is a fraction of R0 and this fraction is
L[fG](φ) = ∫∞

0 e−φxfG(x)dx. The threshold condition with respect to (6.26) is

R0L[fG](ρ) = 1, (6.27)

so that Rc(φ) ≤ 1 when φ ≥ ρ.

6.5.1 The Controlled Reproduction Number in the Presence
of Frailty

In the presence of frailty, that is unobservable heterogeneity in implementation and
adherence of the treatment measures, we consider the frailty model h(x|z) = zφ,
z > 0. In this case, z is the frailty parameter and is assumed to be random with
mean value E(z) = 1 and p.d.f. ξ(z). From (2.39) in Chap. 2, we obtain

F
(f railty)

(x) =
∫ ∞

0
e−zφxξ(z)dz = L[ξ ](φx).
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The controlled reproduction number is with a non-degenerated p.d.f. ξ(z), replacing
e−φx with L[ξ ](φx) > e−φx , the following inequality is established:

R0
∫∞

0 e−φxfG(x)dx < R0
∫∞

0 L[ξ ](φx)fG(x)dx < R0

‖ ‖
Rc(φ) Rv(φ)

, (6.28)

where Rc(φ) reflects the efficacy in the idealized situation and Rv(φ) reflects the
effectiveness in the presence of frailty when the intervention is applied in a large
population.

The following identity, first proven in Goldstein (1932) is useful:

∫ ∞

0
L[ξ ](φx)fG(x)dx =

∫ ∞

0

∫ ∞

0
e−φxzξ(z)fG(x)dzdx

=
∫ ∞

0
L[fG](φz)ξ(z)dz.

It leads to

Rv(φ) = R0

∫ ∞

0
L[ξ ](φx)fG(x)dx = R0

∫ ∞

0
L[fG](φz)ξ(z)dz. (6.29)

Empirical wisdom has told us that the control measure is most effective if applied
homogeneously across all individuals. This is mathematically expressed by (6.28). It
has also vaguely and intuitively led to the belief that the more variable the adherence,
the less effective the control measure. It can be shown that L[fG](z) is log-convex
with respect to z. Using the convex ordering in Sect. 2.5.2, the more variable the
frailty z is according to convex order, the larger the value of Rv(φ). This insight
sharpens the vague intuitive notion.

One of the most illustrative models is the Gamma distribution for ξ(z) with
E[z] = 1, var[z] = v. The p.d.f. is

ξ(z; v) = 1/v

	(1/v)
(z/v)1/v−1 e−z/v. (6.30)

The Laplace transform, from (2.41), is L[ξ ](s) = (1 + sv)−1/v . Thus,

F
(f railty)

(x) = (1 + φxv)−1/v . For any x, F
(f railty)

(x) is an increasing function
of v. The variance v ranks the frailty variable z according to stochastic order. The
limiting cases are limv→0 (1 + φxv)−1/v = e−φx and limv→∞ (1 + φxv)−1/v = 1.

Figure 6.11 illustrates the shapes of ξ(z; v) and F
(f railty)

(x). The shape of
ξ(z; v) changes dramatically at v = 1. When 0 < v < 1, z is “more or less”
concentrated at E[z] = 1. One may loosely call this “almost homogeneous”
in the control measure with some mild variability. When v > 1, it is “highly
heterogeneous.” According to (6.28),
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Fig. 6.11 Shapes of ξ(z) and F
(f railty)

(x) = (1 + φxv)−1/v

Rv(φ) = R0

∫ ∞

0
(1 + φxv)−1/v fG(x)dx. (6.31)

In this case, limv→0 Rv(φ) = Rc(φ) and limv→∞ Rv(φ) = R0. Given the control
parameter φ, the variance parameter v ranks the values of Rv(φ) so that the more
variable the adherence of the control measure, the less effective it is.

6.5.2 Invariance to the Time Scale of the Natural History
and Robustness to Assumptions in fG(x)

Assumptions in the p.d.f. fG(x) include whether there is a latent period, as well as
the distributions of the latent and the infectious periods. It usually involves a scale
parameter of the time λ > 0. Since the control parameter φ is a rate, it is also scaled
by the same parameter λ. We show that the value Rv(φ) is invariant with respect
to λ.

Let y = λx and fG(x) be represented as fG(x; λ), then f ∗
G(y) = fG(y; 1) =

fG(x; λ)/λ is the standardized p.d.f at λ = 1. Meanwhile, the Laplace transform of
the p.d.f. of a non-negative random variable is a survival function, arising from the
mixture of an exponential survival function with the p.d.f. as the mixing distribution
(Marshall and Olkin 2007), then L[ξ ](x) is a survival function satisfying L[ξ ](y) =
L[ξ ](λx). Therefore,

Rv(φ) = R0

∫ ∞

0
L[ξ ](φy)f ∗

G(y)dy = R0

∫ ∞

0
L[ξ ](λφx)fG(x; λ)dx, (6.32)

Rc(φ) = R0

∫ ∞

0
e−φyf ∗

G(y)dy = R0

∫ ∞

0
e−λφxfG(x; λ)dx. (6.33)
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Fig. 6.12 Schematic presentation of Rv(φ)/R0 and Rc(φ)/R0 as two survival functions standard-
ized by the scale parameter λ

These values are invariant to the scale parameter λ. Both Rv(φ) and Rc(φ), divided
by R0, are plotted in Fig. 6.12, with time scaled by λ.

Let ρ be the control threshold under the idealized condition satisfying (6.27)
R0L[fG](ρ) = 1. Then Rv(φ) calculated at φ = ρ is

Rv(ρ) = R0

∫ ∞

0
L[ξ ](ρy)f ∗

G(y)dy = R0

∫ ∞

0
L[f ∗

G](ρz)ξ(z)dz,

where the second equation is from (6.29). The Laplace transform L[f ∗
G](s) can be

also regarded as a survival function. The threshold condition is R0L[f ∗
G](ρ) = 1.

It is equivalent to say that ρ is the
(

1 − R−1
0

)th
percentile corresponding to the

survival function L[f ∗
G](s). Together we have

Rv(ρ) =
∫ ∞

0

L[f ∗
G](ρz)

L[f ∗
G](ρ) ξ(z)dz, (6.34)

where L[f ∗
G](ρz) is L[f ∗

G](z) scaled by ρ. The ratio L[f ∗
G](ρz)/L[f ∗

G](ρ) is
independent of λ. This finding is important. Given the threshold ρ under the
idealized situation, the value of Rv(ρ) > 1 is invariant with respect to the time scale
of disease progression, regardless of whether the disease is acute (e.g., measured
in days like influenza) or chronic (e.g., HIV, viral hepatitis). Given the model for
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frailty, Rv(ρ) only depends on R0 and fG. The latter includes assumptions on the
existence of the latent period and the distributions of the latent and the infectious
periods.

Yan (2018) further shows, the ratio L[f ∗
G](ρz)/L[f ∗

G](ρ) is quite robust with
respect to the assumed distributions for f ∗

G and can be approximated by a log-
convex function of z with a simple Pareto form R0/ [1 + (R0 − 1) z] that only
depends on R0. This robustness is examined by numerical calculations under the
frailty model ξ(z; v) given by (6.30). There are 16 distribution models for fG.
The first four models assume Gamma distributed infectious periods (including
exponentially distributed infectious periods and constant infectious periods as
special cases) without a latent period. The next 12 models include latent periods.
The mean latent period is parameterized as μE = lμI , l ≥ 0 and μI is the
mean infectious period with the relative length of the average latent periods to the
average length of the infectious periods l = 0.5, 1, and 2. These are combined with
four models for the latent periods and infectious periods convolutions: (1) constant
latent period + constant infectious period, (2) exponentially distributed latent
period + exponentially distributed infectious period, (3) constant latent period +
exponentially distributed infectious period, and (4) exponentially distributed latent
period + constant infectious period. Furthermore, numerical calculations are under
two levels of R0. Thus, there are a total of 32 different results.

Without going through the details, we summarize the numeric results in Yan
(2018) as Fig. 6.13. In each of these computations, ρ is the threshold control
parameter and is a function of (R0, fG) and depends on λ. It is calculated separately.
Then Rv(ρ) is evaluated at φ = ρ.

In the left panel, Rv(ρ) is calculated at v in the range from 0 to 4 by increments
of 0.25. For each v, there are 16 points (in black) corresponding to R0 = 3
and 16 points (in blue) corresponding to R0 = 2. The trends representing Rv(ρ)
as functions of v are calculated as average and plotted as lines. It shows that

Fig. 6.13 The left panel shows Rv(ρ) and the right panel shows the corresponding final sizes. At
each level of R0, there are 16 points, plotted at each v
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assumptions on the structure (e.g., with or without latent period), on the types of
distributions of these periods as well as the relative lengths between the latent and
the infectious periods have little influence on Rv(ρ). The predominant parameters
are R0 and v. For example: If R0 = 3, a control measure at intervention rate ρ
that in theory could have controlled the epidemic (i.e., Rc(ρ) = 1) may result in an
outbreak as if manifested by a reproduction number Rv ≈ 1.4.

The right panel of Fig. 6.13 is analogous to the left panel, representing the final
size η through the approximate final size equation 1 − η = exp(−Rvη). The
final size, as a measure, is only applicable in certain epidemics, typically without
replacement of the susceptible population and recovered individuals have immunity.
However, unlike Rv(ρ), which is mainly a theoretical parameter, the final size
(where applicable) is also an observable quantity, also known as the infection attack
rate. Once again, assumptions on the structure (e.g., with or without latent period),
on the types of distributions of these periods as well as the relative lengths between
the latent and the infectious periods have little influence on η.

Remark It is well known that univariate frailty models are not identifiable from the
survival information alone. In the current context, the basic reproduction number
R0 is a theoretical value. The observed (or estimated) parameters during or after the
outbreak, such as Rv or η, cannot identify R0, φ, and v. Figure 6.13 shows that, if
a control measure with rate at a threshold φ = ρ has been proven (in theory) to get
the epidemic under control, one may still observe an outbreak that ends with final
size about 35% of the population. It could arise from an outbreak with R0 = 3 and
the control measure is implemented imperfectly but good adherence at v = 0.5,
or from an outbreak with R0 = 2 and the control measure implemented with poor
adherence at v = 1.25, or from an outbreak with R0 = 1.23 with no intervention at
all. An outbreak with infection attack rate 35% is nonetheless a large outbreak. In
the absence of knowledge ofR0 along with unobservable frailty, it leaves impression
as if the control measure that looks good on paper “does not work at all” in practice.

The non-identifiability problem poses challenges in the design of intervention
studies at the population level (Cobelli and Romanin-Jacur 1976). There are
confounding factors that hinder the ability to distinguish the “pure” impact of the
intervention without the distorting influence of compliance on the effectiveness,
since some level of non-compliance is likely. Both the pure impact (efficacy) and
population level effectiveness are important objectives in intervention studies.

6.6 Problems and Supplements

6.1 Prove the expressions of the reproduction numbers in structures (a)–(c) of
Fig. 6.3:

(a) Show that, if the infectious period is staged in a serial manner I (1) →
I (2) → · · · → I (k) and the intensity function β(x) of the infectious contact
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process {K(x) : x ≥ 0} is defined as piecewise constants β(x) = βj , for
x ∈ I (j), then the expected total number of secondary infections produced
by a typical infected individual during its entire infectious period is the sum∑k
j=1 βjμj , where μj is the average duration in stage I (j).

(b) We assume that there is a single infected stage I with a constant infectious
contact rate β, an infected individual may exit the infectious stage in
k competing events (e.g., isolation, deaths, recovery, etc.) with hj (x)
being the hazard function of the exiting event of type j , j = 1, . . . , k.
We assume that these exiting events are independent from each other.
Show that, the expected total number of secondary infections produced
by a typical infected individual during its entire infectious period is

β
∫∞

0 exp
(
− ∫ t0
∑k
j=1 hj (x)dx

)
dt . In particular, if hj (x) = γj , the

expected total number of secondary infections is β
(∑k

j=1 γj

)−1
.

(c) Infected individuals are composed of different types. Each type is asso-
ciated with an infectious period with average duration μj and infectious
contact rate βj , = 1, . . . , k. A typical susceptible individual has a proba-
bility ψj to be in contact with infected individuals of type j . Show that,
given a typical infected individual (without knowing its type), the expected
total number of secondary infections during its entire infectious period is
the weighted average

∑k
j=1 ψjβjμj .

6.2 You are tasked to design and parameterize the following two models of
infectious disease transmission:

(a) Model 1. Starting from the simple SEIR model, incorporate a class of
infected individuals that are mildly symptomatic and infectious (Compart-
ment M) before they progress to a fully symptomatic and infectious class.
In this model, all latent individuals progress to the M-compartment before
they progress to the I-compartment. Mildly symptomatic and infectious
individuals have a reduced infectiousness relative to the fully infectious
and symptomatic I-individuals. The average time of infected individuals in
M-compartment is not necessarily the same as that of infected individuals
in the I-compartment.

(i) Draw the diagram of the compartmental model including the rates of
the flows.

(ii) Provide a table that includes the model parameter symbols, their
definition, and units.

(iii) Provide the expression for the basic reproduction number R0 for this
model.

(iv) Generate and explain a few epidemic simulations (temporal progres-
sion of M- and I-individuals) as you vary key parameters governing
the contribution of M-individuals.

(v) How does the value of R0 change as the infectiousness of M-
individuals increases? Illustrate with an example.
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(b) Model 2. Starting from the simple SEIR model, incorporate a class of
hospitalized and infectious individuals (Compartment H). In this model, all
latent individuals progress to the symptomatic and infectious Compartment
I. I-compartment individuals are either hospitalized or recover without
being hospitalized. Hospitalized and infectious individuals recover at a dif-
ferent rate than that of I-individuals. Hospitalized infected individuals have
a reduced infectiousness relative to the fully infectious and symptomatic
I-individuals because of infection control measures in hospitals.

(i) Draw the diagram of the compartmental model including the rates of
the flows.

(ii) Provide a table that includes the model parameter symbols, their
definition, and units.

(iii) Because of infection control measures in hospitals, we denote the
reproduction number as Rc. Provide the expression for the basic
reproduction number Rc for this model.

(iv) Generate and explain a few epidemic simulations (temporal progres-
sion of I- and H-individuals) as you vary key parameters governing
the contribution of H-individuals.

(v) How does the value of Rc change as the infectiousness of H-
individuals decreases? Illustrate with an example.

6.3 Design and parameterize the following model of infectious disease transmis-
sion. Starting from the simple SEIR model, incorporate a class of hospitalized
and infectious individuals (Compartment H). In this model, all latent individu-
als progress to the symptomatic and infectious Compartment I. I-compartment
individuals are either hospitalized or recover without being hospitalized.
Hospitalized and infectious individuals recover at a different rate than that of
I-individuals. Hospitalized infected individuals have a reduced infectiousness
relative to the fully infectious and symptomatic I-individuals because of
infection control measures in hospitals.

(a) Draw the diagram of the compartmental model including the rates of the
flows.

(b) Provide a table that includes the model parameter symbols, their definition,
and units.

(c) Provide the expression for the reproduction number Rc for this model.
(d) Generate and explain a few epidemic simulations (temporal progression of

I- and H-individuals) as you vary key parameters governing the contribution
of H-individuals.

(e) How does the value of Rc change as the infectiousness of H-individuals
decreases? Illustrate with an example.
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6.4 In models with SEI structure where the latent periods are exponentially dis-
tributed with rate α and the infectious periods are exponentially distributed with
rate γ , (4.51) in Chap. 4 gives the expression R0 = (r+α)(r+γ )

αγ
, where r > 0 is

the initial growth rate; (5.70) in Chap. 5 gives the expression R0 = βα
(α+ω)(γ+ω) ,

where ω > 0 is the rate of outflow of individuals in the E-compartment and the
I-compartment (while holding the total population size constant); and (6.25)
gives the controlled reproduction number Rc(ψ, φ) = βα

(α+ψ)(γ+φ) , where
ψ, φ > 0 are the rate of isolation of individuals in the E-compartment and
the I-compartment, respectively.

(a) Discuss these similarities and their relationships (if there is any).
(b) Compare these expressions when the latent periods and the infectious

periods are not exponentially distributed.

6.5 Compare F
(f railty)

(x) = (1 + φxv)−1/v in Fig. 6.11 with the sub-exponential

growth function Cd(t) = i0(1 + rvt) 1
v given by (4.66) in Chap. 4. Discuss their

relationships (if there is any) and connect with the discussions in Problem 6.4.



Chapter 7
Some Statistical Issues

7.1 Models and Parameters

All the models presented in the previous chapters are parametric. They belong to
different types and serve different purposes.

Probabilistic models are introduced and discussed in Chaps. 2 and 3. Part of
their role in the study of infectious diseases is to formulate assumptions regarding
disease progression within an infected host. Examples include the parametric life
distribution models characterized by shapes of hazard functions in Chap. 2, as well
as the process of infectious contacts from the viewpoint of an infected individual
through counting processes in Chap. 3. These probabilistic models, especially the
distribution models for random counts and counting processes, are also statistical
models that take into account the data-generating process that will be further
discussed in this chapter.

Phenomenological population models, both in stochastic and in deterministic
frameworks, are the main focus in Chaps. 4–6. They are based on conceptual
assumptions regarding the population and the interface among the agent, the host,
and the environment. Section 4.4 has provided some detailed discussions regarding
these assumptions applied to the initial phase of an outbreak. However, phenomeno-
logical population models often carry tacit assumptions at the individual level. For
example, deterministic transmission models that can be represented by systems of
ordinary differential equations implicitly assume that infected individuals pass each
stage of the natural history with exponentially distributed durations. The stochastic
models with a Markov structure make the same assumptions.

Hidden assumptions at the level of individuals determine certain crucial epi-
demiological characteristics as well as the effectiveness of certain disease control
measures in a phenomenological way. For example, the relationship between the
distributions of the infectious periods and the probabilities of invasion and extinction
(Sect. 4.2); the relationship between the distributions of the infectious periods (as
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well as the latent periods) and the initial growth (4.43); the assumption of the
exponentially distributed infectious periods in the SIR model as a primary feature
with respect to the peak prevalence of infected individuals and some important
preserved quantities (Sect. 5.3.3); the prevalence of individuals in each class of
the SEIRS model (5.67) with expressions of [x(∞), ε(∞), y(∞), z(∞)] under
endemic equilibrium and their special cases such as (5.71) in Sect. 5.5.2; the
expression of the controlled reproduction number Rc (6.4) in Sect. 6.2.1; and the
effects of the distributions of the latent and infectious periods on certain control
measures (Sect. 6.4).

There is also a different kind of phenomenological population models with
relatively simple forms and without assumptions regarding the agent, the host,
the environment, and their interactions in the population. They describe data in a
phenomenological way and are often useful to answer some key public health ques-
tions during an outbreak investigation. These are the growth curve models. Later in
Chap. 8, we shall see some applications of these models to real outbreak data.

The most important function of models are to order our thoughts and to
sharpen vague intuitive notions. Whatever their types are, they are connected to the
formulation of the research questions and objectives of the subject matter. Different
questions and objectives require differently formulated models.

Even the same model can be parameterized differently for different research
questions. For example, a simple logistic function has many different expressions
such as (4.59) and (5.14). The logistic function may be written as

F(t) = K

1 + e−ρ(t−α) .

This function can be considered as a descriptive model to fit disease incidence
data, either cumulatively, or incidence numbers of new occurrences (e.g., daily,
weekly, etc.) The three parameters (ρ, α,K) are directly and indirectly connected to
important public health questions during a disease outbreak, such as: “when do we
expect the outbreak to peak?”, “how long do we expect the outbreak to last?” and
“how big is the outbreak going to be?” This is because the parameter ρ represents
the initial growth of a sigmoid growth function; α represents the inflexion point at
which F ′(t) arrives at the maximum value as well as when the outbreak is at its
midpoint F(α) = K/2; and K represents the asymptotic limit K = limt→∞ F(t).
However, this model provides little understanding of the process such as the disease
transmission process.

On the other hand, the logistic function expressed as

F(t) = mi0 (R0 − 1)

i0R0 + (m (R0 − 1)− i0R0) e−(R0−1)γ t

in (5.14) has four parameters: (R0, γ,m) and the initial condition i0 = F(0). In fact,
it is a mechanistic model because all these parameters are associated with scientific
hypotheses about the transmission dynamics with the SIS structure, such as the
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basic reproduction number R0, the mean duration of the (exponentially distributed)
infectious period γ−1, and the population sizem. This expression is used to describe
the prevalence of the number of individuals who are “currently” infectious at time
t . Statistically speaking, only three out of the four parameters are identifiable from
data, because ρ = (R0 − 1)γ can be regarded as a single scale parameter of time
t as the initial growth rate and K = m(1 − 1/R0) is the asymptotic limit. The
identifiable parameters are (ρ, i0,K).

7.1.1 Statistical Models

In their book Generalized Linear Models, McCullagh and Nelder (1983) partitioned
the model into three components: (1) the random component, (2) the systematic
component, and (3) the link function. We adopt the same terminology when
combining statistical models with disease transmission models for analyses of
outbreak investigation data.

The random component models the data-generating process through probability
distributions, denoted here as f (y; θ). They are the foundation of statistical infer-
ence for estimation and testing hypotheses. The discrete distributions and counting
processes in Chap. 3 are important statistical models to represent the data-generating
process of random counts as realizations of the underlying stochastic processes
that generate disease outbreak data that form time-series composed of non-negative
integers. The continuous lifetime distributions in Sect. 2.2 are statistical models if
the questions under investigation are regarding estimation and testing hypothesis
of time-to-event, such as the incubation period defined as the time elapsed from
infection to the onset of clinical symptoms, time to recovery, time to death,
etc., based on longitudinally observed or retrospectively assessed data. (Under a
different context, these continuous lifetime distributions are implicitly built into the
phenomenological population models, such as the exponential distribution of the
infectious periods.)

The systematic component describes the systematic effects of interest, within the
data-generating mechanism. In classic linear regression analysis, this component is
formulated through a set of covariates x = (x1, . . . , xp

)
in a linear form β0+β1x1+

· · · + βpxp. When we say a model is linear, we mean linearity in parameters β, not
the covariates x.

If a random sample (y1, . . . , yn) arises from independent observations yi ∼
f (yi; θi), i = 1, . . . , n, the reduction of dimension of the parameter space where
p � n is a mapping

(θi : i = 1, . . . , n) �→ (βj : j = 1, . . . , p
)

through the covariates x by the linear function through the link function h(θ) so that

h(θ) = β0 + β1x1 + · · · + βpxp. (7.1)
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Such a model is a generalized linear model (McCullagh and Nelder 1983). Data
arising from random counts are often fitted to one of the discrete distributions in
Chap. 3 associated with a positive parameter θ > 0 and a logarithm link function
h(θ) = log θ. The corresponding generalized linear models are the log-linear
models. Binary data are often fitted to the binomial, geometric, or negative-binomial
distributions. These distributions are often associated with a proportion parameter
0 < θ < 1. A logit link function h(θ) = log θ

1−θ is often chosen, which gives rise
to the logistic regression models. Continuous lifetime data are often fitted with the
lifetime distributions in Chap. 2 that may be associated with a log-linear model or
a proportional hazard model. The latter, in a broader sense, can also be viewed as a
generalized linear model.

The systematic components in models for infectious disease outbreak investi-
gations are typically nonlinear functions with respect to their parameters. These
are phenomenological population models. Some of them have explicit analytic
forms. We shall see many examples in Chap. 8. Others are implicit, including
the transmission dynamic models expressed as a system of differential equations
discussed in the proceeding chapters. These nonlinear models create additional
challenges in computation algorithms, such as the optimization algorithms in the
search for the maximum likelihood estimates or the least square estimation. They
are highly sensitive to the initial parameter estimates in those algorithms. In the
special case of the generalized linear models, initial estimates are not necessary.
Therefore, it is important to carefully evaluate the values of the log-likelihood or
the sum of square errors (SSE) upon convergence over a wide range of possible
initial estimates.

It is important to recognize that disease transmission is only part of the data
generating process, and many of the disease transmission models do not directly
predict observable events as reflected by data. Other data generating mechanisms,
such as case-definition, how data are organized and reported, length-biasedness,
retrospective ascertainment of time of events, reporting delays, among many other
issues, also need to be described using statistical models. The link function connects
these two components and links them to the distribution of the data.

Lindsey (2001) provides comprehensive discussions on nonlinear models in
medical statistics.

7.1.2 Fitting Models to Data and Model Criticism

In fitting a statistical model to data, the information in the data is split into two
parts, one to assess the unknown parameters, and the other for model criticism.
Both assessment of parameters and model criticism are equally important aspects in
statistical inference.

Sprott (2000) points out that the sample information is divided into “Likelihood
θ” and “Model f ” through the factorization of a likelihood function according to
the minimal sufficient division or the maximal ancillary division. A classic example
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is the factorization of the Poisson likelihood. Consider an i.i.d. random sample
(y1, . . . , yn) from the Poisson distribution with mean value μ, then t = ∑ni=1 yi
is Poisson distributed with mean nμ. The joint distribution is

f (y1, . . . , yn;μ) =
n∏

i=1

μyi e−μ

yi ! = f (t;μ)f (y1, . . . , yn|t),

where the first factor

f (t;μ) = e−nμ (nμ)t

t !
is the likelihood function of μ as represented by the minimal sufficient statistics
t = ∑ni=1 yi, with one degree of freedom, for the assessment of the parameter μ.
The second factor

f (y1, . . . , yn|t) = t !
n∏

i=1
yi !

n∏

i=1

(
1

n

)yi

is a multinomial distribution for the residual, with n− 1 degrees of freedom. If data
cast doubt on this multinomial distribution, they equally cast doubt on the assumed
Poisson model.

Residuals are often associated with regression models. If a regression model such
as (7.1) involves p unknown parameters, fitting such a model to data of sample
size n � p yields a residual consisting of n − p degrees of freedom. Residual
analyses in the form of goodness-of-fit play a crucial role for model criticism on
three levels. At the first level, large residual values indicate a lack of fit. This is
often used in conjunction with the testing of hypothesisH0 : βj = 0, j = 1, . . . , p.
It is the criticism of a sub-model within a larger model to single out important
covariates xj that are statistically significant. The second level is the testing
against some fundamental assumptions in these models. For example, the logistic
regression models are often associated with the assumption of proportional odds
ratios and the proportional hazard model assumes proportional hazard functions.
In good statistical practice, one always needs to take due diligence to test against
these assumptions whenever these models are applied. Various testing statistics are
available in the literature, such as the Z statistics to test against the proportional
hazard assumption in almost every survival analysis textbook. The third level is
the testing against the probability distributions, for instance, if data used in a
logistic regression model arise from a binomial distribution or if data used in a
proportional hazard model arise from a Weibull distribution. This may be optional
if the primary interest is in the parameters βj , j = 1, . . . , p while treating the
underlying distribution as a nuisance parameter problem.
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7.1.3 Fitting Phenomenological Population Models to
Time-Series Data

Fitting phenomenological population models to time-series data collected during
an epidemic, often called curve-fitting, is commonly practiced for the purposes
of parameter estimation and prediction (Smirnova and Chowell 2017). These
models can be mechanical disease transmission models with strong assumptions
on the transmission process, or other forms of simpler, but nonetheless highly
nonlinear descriptive models for the data generating processes. We may regard
fitting phenomenological population models to disease outbreak investigation data
as nesting a phenomenological population model inside the systematic component
of a statistical model in the form of generalized nonlinear regression.

In general, we denote the time series of T longitudinal observations by

y = (y1, y2, . . . , yT )

where t = 1, 2, . . . , T are discrete or time units, such as daily, weekly, etc., typical
in disease outbreak investigations. We regard these data as realizations of random
counts Y (t) manifested through a dynamic system, such as in the SEIR system as
discussed in Sect. 5.4, appropriately grouped into discrete time units as Yt .

The systematic component of the model is denoted by μ(t;�), which is a
nonlinear function specified by a set of parameters� = (θ1, . . . , θm). The marginal
distribution for Yt may be only specified to its first moment E[Yt ] = μ(t;�), or
the first two moments, both as functions of�, or fully specified such as the Poisson
distribution Poisson(μ(t;�)).

Parameter Estimation

We consider the quasi-likelihood estimating equations for the generalized linear
models (McCullagh and Nelder 1983)

T∑

t=1

∂μ(μ;�)
∂θj

yt − μ(t;�)
V [Yt ;�] = 0, j = 1, . . . , m (7.2)

are still valid, where V [Yt ;�] is the variance of Yt . More generally, the denominator
V [Yt ;�] may also involve a correlation matrix, which relaxes the independency
assumption among Yt , t = 1, 2, . . . , T , which are called the generalized estimating
equations (Liang and Zeger 1986). The generalized estimating equations can be also
applied to zero-mean martingales in Sect. 3.3.2 (Godambe and Heyde 1987).

One of the common choices is assuming V [Yt ;�] = αμ(t;�),where α > 0 is a
scalar parameter. This variance form may well approximate variance structures such
as V ar[Yt ] = E[Yt ] + E[Yt ]2/κ when E[Yti ]2/κ do not vary greatly with t . The
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variance structure of the negative binomial distribution (3.20) follows this form, as
well as the mixed Poisson distribution in which the mixing distribution is inverse-
Gaussian (see Chap. 3). In this case,

T∑

t=1

∂μ(μ;�)
∂θj

yt − μ(t;�)
αμ(t;�) = 0, j = 1, . . . , m

which may be useful to handle data with overdispersion (α > 1).
The estimating equations given by (7.2) take the form of the score functions of

the likelihood functions of many well-known distributions, such as the Gaussian,
Poisson, binomial, among many others, provided that the distributions are cor-
rectly specified. Without specifying the distribution, they are unbiased estimating
equations that lead to asymptotically unbiased point estimates regardless of any
misspecification of the variance–covariance structure. If the variance–covariance
structure is correctly specified, they lead to the variance estimation of the parameter
estimates. However, the estimated variances of the parameter estimates will be in
error with misspecification of the variance–covariance structure.

These estimating equations are usually associated with generalized linear mod-
els. In contrast, phenomenological models are nonlinear, and in some cases,
are implicitly defined through differential equations without analytic solutions.
This poses computational challenges because ∂μ(μ;�)

∂θj
is either complicated or

prohibitive.
In the following two special cases, optimization algorithms can be employed

without the evaluation of ∂μ(μ;�)
∂θj

.

One is the EE given by

T∑

t=1

∂μ(μ;�)
∂θj

yt − μ(t;�)
μ(t;�) = 0, j = 1, . . . , m. (7.3)

It assumes that V ar[Yt ] = E[Yt ] = μ(t;�). As mentioned in Chap. 3, among
power series distributions used for random counts, V ar[Yt ] = E[Yt ] characterizes
the Poisson distribution (Kosambi 1949). In fact, (7.3) is the score function of
the likelihood function assuming that y = (y1, y2, . . . , yT ) are realizations of
independent Poisson random counts. The log-likelihood function is

l(�) =
T∑

t=1

[
yt logμ(t;�)− μ(t;�)] . (7.4)

Therefore, solving (7.3) is equivalent to maximizing (7.4). The maximum likelihood
estimate can be expressed as

�̂ = arg max
T∑

t=1

[
yt logμ(t;�)− μ(t;�)] . (7.5)
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One can use numerical optimization methods in MatLab or R (R Core Team). In
R, a general-purpose optimization method based on the downhill simplex method
(Nelder-Mead) or the quasi-Newton algorithms are readily available. However, for
a nonlinear function μ(t;�), the optimization algorithms to maximize the log-
likelihood are highly sensitive to the initial parameter estimates, which may lead to
local maxima. It is important to carefully evaluate the values of the log-likelihood
upon convergence over a wide range of possible initial estimates.

An alternative method is the least square estimate, achieved by searching for
the set of parameters �̂ = (θ̂1, . . . , θ̂m) that minimizes the sum of squared
differences between the observed data and the corresponding model solution
denoted byμ(t;�), t = 1, 2, . . . , T . That is, the objective function is given by

�̂ = arg min
T∑

t=1

[yt − μ(t;�)]2 . (7.6)

This is equivalent to solving the EE

T∑

t=1

∂μ(μ;�)
∂θj

[yt − μ(t;�)] = 0, j = 1, . . . , m (7.7)

assuming that V ar[Yt ] is independent of the mean and does not involve the set of
parameters�.Although this method does not assume any specific distribution for Yt
except for its first moment E[Yt ] = μ(t;�), the least square method is equivalent
to the maximum likelihood estimation if data Yt are Gaussian distributed. If the
random counts are highly skewed, the least square method may not perform well. In
Matlab (The Mathworks, Inc.), two numerical optimization methods are available to
solve the nonlinear least squares problem: The trust-region reflective algorithm and
the Levenberg-Marquardt algorithm. As with the maximum likelihood estimates,
the optimization algorithms to minimize the sum of square errors (SSE) are highly
sensitive to the initial parameter estimates, which may lead to local minima. It is
important to carefully evaluate the values of the SSE upon convergence over a wide
range of possible initial estimates.

Uncertainty in Estimated Parameters

The Likelihood Surface and the Likelihood Ratio Statistics The relative likeli-
hood, R(�; y), is defined by

0 < R(�; y) = L(�; y)
sup� L(�; y) = L(�; y)

L(�̂; y) ≤ 1
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where L(�; y) is the likelihood function of � given data y. It ranks the parameters
� over the scale from 0 to 1, and the maximum likelihood estimate �̂ is the most
plausible value of � in that it makes the observed data y most probable (Sprott
2000; Kalbfleisch 1985). One could also define the likelihood region such that
R(�; y) ≥ ς where 0 < ς < 1 as plausible parameter values. By varying
the threshold ς, one can define such things as “very plausible,” “plausible,” or
“implausible.” These concepts give rise to the likelihood ratio statistics that can
be used to construct confidence intervals and test hypotheses. More importantly,
visualization of the contour of the likelihood surface in the neighborhood reveals
the amount of information the data contain with respect to each parameter. This is
feasible when the number of parameters in � is less than or equal to 2.

It is more convenient to work on the logarithmic scale. The relative log-likelihood
is defined by

−∞ < r(�) = l(�)− l(�̂) ≤ 0

where l(�) = logL(�; y).
A likelihood region is defined on the parameter space such that R(�; y) ≥ ς for

a selected value 0 < ς < 1. Calculating the 100(1 − p)% confidence regions based
on the likelihood ratio can be done directly by selecting the value for the likelihood
region , that is r(�) = l(�)− l(�̂) ≥ log ς , so that the coverage probability

CP ≈ Pr(χ2
df ≤ −2 log ς) = 1 − p.

The 95% confidence interval for a single parameter θ can be derived by choosing
ς = 0.147 such that

CP ≈ Pr(χ2
(1) ≤ −2 log 0.147) = 0.95. (7.8)

The left panel of Fig. 7.1 shows the 95% confidence interval for the mean value μ
of the Poisson distribution a small sample of random count data based on (7.8). The
most plausible value is μ̂ = 2.2 and the plausible range is 1.4046 ≤ μ ≤ 3.2505
such that r(μ) = l(μ)− l(μ̂) ≥ log 0.147 = −1.9173.

The 95% confidence region for two parameters (α, β) is the contour of r(α, β)
by choosing ς = 0.05 such that

CP ≈ Pr(χ2
(2) ≤ −2 log 0.05) = 0.95. (7.9)

The right panel of Fig. 7.1 shows the 95% joint confidence region of two parameters:
the median parameter λ−1 and the 95th percentile t95 of the log-logistic distribution
for the incubation period fitted to a small sample of data collected on people with
SARS symptoms, using (7.9).

In nonlinear models, parameters are often inter-related in complex ways. In
a two-parameter setting, it is more likely to encounter “banana” log-likelihood
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Fig. 7.1 Left: the relative log-likelihood of the Poisson distribution from the sample of random
counts: {0, 5, 2, 3, 2, 3, 1, 0, 2, 4} with m.l.e. μ̂ = 2.2 (1.4, 3.25); Right: the joint of likelihood
region for the median and the 95th percentile of the log-logistic distribution for the incubation
distribution based on a small sample of SARS patients

Fig. 7.2 A banana shaped log-likelihood contour showing the correlation of two parameters θ1
and θ2 as suggested by data, where θ̂1 and θ̂2 are the maximum likelihood estimates. The outmost
contour line corresponds to the likelihood region with 95% coverage probability

contours as schematically illustrated in Fig. 7.2. The 95% joint likelihood region
is the outmost contour, which given the marginal 95% confidence limits for θ1
between 0.65 and 2.0, and the marginal 95% confidence limits for θ2 between
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0.38 and 0.65. However, it is equally plausible to have these two combinations:
(θ1 = 0.7, θ2 = 0.65) or (θ1 = 2.0, θ2 = 0.38). These two pairs may represent
very different epidemic scenarios, but they are equally accepted by data. This poses
an identifiability problem. On the other hand, the likelihood contour also rules out
implausible scenarios, such as (θ1 = 1.6, θ2 = 0.6), even though both values are
well within their 95% confidence limits.

In the case of more than two parameters, it is still worthwhile to visualize the
likelihood surface either as a 3-D function or cross-sectional log-likelihood con-
tours. These will provide more reliable precision intervals than marginal confidence
intervals for each parameter, reveal correlation among parameters, and provide
better ways to communicate uncertainty. However, these are very time-consuming.

With respect to the testing of the hypothesis H0 : � = �0, the likelihood ratio
statistics is given by

D = −2r(�0) = −2
[
l(�0)− l(�̂)

]
.

The significant level is

SL = Pr(D ≥ Dobs|H0 is true) ≈ Pr(χ2
df ≥ Dobs) (7.10)

where the degree of freedom, df, is equal to the number of functionally independent
parameters in the model. In testing a null hypothesis for a single parameterH0 : θ =
θ0, the degree of freedom is df = 1. In testing a null hypothesis for two parameters
H0 : α = α0 and β = β0, df = 2.

The marginal 95% confidence interval for a single parameter in the presence of
many other parameters can be also derived by numerically inverting the testing of
null hypothesis H0 : θ = θ0 and calculate the significance level at different θ0 using
the χ2

(1) approximation in (7.10), until SL = 0.05. In the case of m parameters in
�, it involves two steps:

1. under the null hypothesis, fixing θ = θ0, and conduct a maximum likelihood
estimation for the remaining m− 1 parameters, denoted by �∗, and evaluate the
value of the log-likelihood l(�̂∗|θ = θ0);

2. under the alternative hypothesis, conduct a maximum likelihood estimation of all
the parameters in �.

The likelihood ratio statistics is

D = −2
[
l(�̂∗|θ = θ0)− l(�̂)

]
(7.11)

approximated by the χ2
(1) distribution.

Assessing Uncertainty in the Estimated Parameters Through Bootstrapping
The likelihood approach applies only when the joint distribution of Y =
(Yt , Yt, . . . , YT ) is completely and correctly specified. Other approaches based on
the asymptotic properties of the generalized estimating equations are not practical
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because of the nonlinear functions employed in μ(μ;�) that make the calculations
for ∂μ(μ;�)/∂θj prohibitive.

The general bootstrap method (Efron and Tibshirani 1994) based on assumed
variance structures to assess uncertainty in the estimated parameters is useful. It
is widely applied in quantifying parameter uncertainty and constructing confidence
intervals in mathematical modeling studies (see, e.g., Chowell et al. 2006a,b). In this
method, multiple observations are repeatedly sampled from the best-fit model by
assuming that each point of the time series follows a specific distribution, typically
a Poisson or a negative binomial distribution, centered on the estimated mean at that
time point. The step-by-step algorithm to quantify parameter uncertainty follows:

1. Derive the parameter estimates �̂ = (θ̂1, . . . , θ̂m) by fitting the model to the
time series data y = (y1, y2, . . . , yT ) to obtain the best-fitted model μ(t; �̂),
t = 1, . . . , T .

2. Generate replicated simulated datasets through re-sampling. To do so, we first
use the best-fit model μ(t; �̂) to calculate the expected values of the time-series.

3. Each simulated data set is generated by random numbers assuming Poisson or
negative binomial error structures based on the expected values. Specifically,
for time t , a random number y∗

t with mean value μ(t; �̂) is drawn from a
Poisson or a negative binomial distribution. This forms a simulated time series
y∗ = (y∗

1 , y
∗
2 . . . , y

∗
T ). Repeating this simulation s times, we obtain s replicated

simulated datasets, denoted by y∗
(1)
, y∗
(2)
, . . . , y∗

(s)
.

4. Re-estimate parameters for each of the s simulated realizations. Estimated
parameter sets given by �̂i, i = 1, . . . , s.

5. Using the set of re-estimated parameters �̂i, i = 1, . . . , s, it is possible to
characterize their empirical distributions, correlations, and construct confidence
intervals.

In addition, since infectious disease outbreaks are not repeatable under identical
conditions (in the sense of a designed random experiment), the computer-based
re-sampling provides a virtual experiment with the resulting uncertainty around
the model fit given by μ(t; �̂1), μ(t; �̂2), . . . , μ(t; �̂s). This is very useful for
assessing uncertainty of key disease transmission parameters such as the basic
reproduction number (Anderson and May 1991; Diekmann et al. 1990; van den
Driessche and Watmough 2002). This parameter is a function of several parameters
that characterize the transmission and control process, e.g., transmission rates and
infectious periods of the epidemiological classes that contribute to new infections.
Uncertainty around this key parameter, estimated through re-sampling, can be
viewed through such a perspective.

Residual Analysis

While residuals (differences between model fit and observations), rt = yt−μ(t; �̂),
can inform systematic deviations of the model fit to the data, it is also possible to
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quantify the error of the model fit to the data using performance metrics (Kuhn and
Johnson 2013). These metrics are also useful to quantify the error associated with
forecasts. A widely used performance metric is the mean square error (MSE), which
is given by

MSE = 1

T

T∑

t=1

[
yt − μ(t; �̂)

]2
. (7.12)

Another commonly used residual is the Pearson residual, defined as

r
(P )
t = yt − μ(t; �̂)

V̂
1/2
t

where μ(t; �̂) is the expected value of Yt and V̂t is the estimated variance V ar(Yt ).
In particular, if the variance structure corresponds to (7.3), then

r
(P )
t = yt − μ(t; �̂)√

μ(t; �̂)
.

The performance metric is the weighted mean square error (WMSE)

WMSE =
T∑

t=1

[
yti − μ(t; �̂)]2
μ(t; �̂) =

T∑

t=1

(O − E)2
E

(7.13)

where O stands for “Observed” and E stands for “Expected.” Although (7.13)
assumes the Poisson variance structure, minimizing the weighted sum of squares
∑T
t=1

[
yti−μ(t;�̂)

]2

μ(t;�̂) does not correspond to the unbiased estimating equation (7.3)
and hence it does not correspond to the maximum likelihood estimation by
maximizing (7.4). In fact, the weighted least square estimation by minimizing
∑T
t=1

[
yti−μ(t;�̂)

]2

μ(t;�̂) would have yielded the equation

T∑

t=1

∂μ(μ;�)
∂θj

yt − μ(t;�)
μ(t;�) + 1

2

T∑

t=1

∂μ(μ;�)
∂θj

[
yt − μ(t;�)
μ(t;�)

]2
= 0

of which the first term is the left hand of (7.3). The weighted least square estimates
are asymptotically biased because (7.3) gives the asymptotically unbiased estimates.
In addition to the above arguments, the distributions of the residuals defined by
r
(P )
t are skewed for non-Gaussian distributions. Consequently, using WMSE as the

performance measure for Poisson distributed random counts may not be the best
choice.
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An improved version of (7.13) is based on the Anscombe residuals (Anscombe
1953). Descriptions for this residual measure can be found in the book by McCul-
lagh and Nelder (1983). For Poisson distributed random counts, the residuals are
defined as

r
(A)
t =

3
2

[
y

2/3
t − μ(t;�)2/3

]

μ(t;�)1/6 ,

and the performance metric is

ANSCOMBE =
T∑

t=1

⎛

⎝
3
2

[
y

2/3
t − μ(t;�)2/3

]

μ(t;�)1/6

⎞

⎠

2

. (7.14)

The Anscombe residuals r(A)t are approximately Gaussian distributed.

Model Criticism

In fitting models to time-series data, one step is to choose an appropriate model
for the systematic component. For example, if the time-series exhibits a trend that
resembles a sigmoid curve, one may consider a simple growth function, such as a
logistic function, and conduct residual analyses and hypothesis tests against some
versions of generalized logistic models to examine whether the model captures the
general characteristics of the observed time series.

On the other hand, depending on the data fitting methods, there are subtle
assumptions on the random component. If the data fitting method is based on a
likelihood function, the full specification of the distribution of data must be given.
Model criticism will be something like: do observed random counts as a finite
time-series arise as an independent sample of, say, a negative-binomial distribution,
with its mean values further modelled by a deterministic function of t? Even with
empirical curve-fitting, such as the least square method, statistical assumptions such
as independency among data points, the relationship between the variance and the
mean are still made. These are all subject to criticism in the light of data.

Data usually admit more than one model. Even when a specific model is
preferred, for scientific or practical reasons, alternative models also need to be taken
into consideration.

In modelling disease outbreak data, it is very common that the available data
cannot identify all the parameters involved. What we mean by “not identifiable”
is that, in a multiple parameter setting, more than one set of combinations of
parameters manifest the same expected value that fits well to data. Since the model
is split into random, systematic, and link components, the problem of identifiability
carries over to the identifiability of these components. This makes model criticism
more complex.
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7.2 Data

7.2.1 Some Features of Infectious Disease Outbreak Data

A striking feature of data collected during an infectious disease outbreak is that they
do not arise from designed experiments, which are either impossible or unethical in
the context of epidemics among humans.

Data are not repeatable. Outbreaks of the same disease do not start with identical
conditions. Moreover, environmental and behavioral changes occur, and pathogens
mutate. Even with data collected as a long sequence of time-series, or data collected
from multiple data sources, or even Big Data, one may view them as high-
dimensional data based on a single realization of a random event.

Furthermore, outcomes are not independent over disjoint time intervals and
between individuals. One example is the phenomenon of herd immunity where
individuals that are vaccinated indirectly protect those who are not vaccinated.

These data features determine the statistical models and methods that are
different from those based on designed experiments with i.i.d. samples.

7.2.2 What Do We Mean by “Large Number”?

In the classic statistics textbooks, “large number” is associated with the law of large
numbers, the central limit theory, the asymptotic confidence intervals, and asymp-
totically unbiased estimates, such as the estimates based on unbiased estimating
equations. In such context, it is called the sample size, which is understood as the
number of repeated independent random experiments under identical conditions. An
infectious disease outbreak dataset, no matter how many observations, is considered
a small sample.

In a different context, when we say that deterministic models are approximations
of the mean field of the corresponding stochastic processes, we do not mean large
populations, but large repeated realizations of the same outbreak under identical
conditions. To a certain extent, when the population size m in disease transmission
models becomes large, the stochastic effects of correlations among the numbers
of individuals in different compartments are reduced, even negligible, such as
β
m
cov {S(t), I (t)} in (5.23). This may lead to a smooth realized epidemic curve that

resembles that predicted by a deterministic model. However, it is not the average of
all possible epidemic curves in large numbers of repetitions of the epidemic under
identical conditions. This distinction was illustrated in Figs. 5.1 and 5.2 in Chap. 5.
The deterministic models can be viewed as approximations of the mean field of the
corresponding stochastic processes in the context of a large number of repetitions
of the epidemic under identical conditions. The population size is not equivalent to
the sample size.
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In fitting models to time-series data, increasing the number of observations means
more accumulation of data over time to achieve longer time-series. A single time-
series is still regarded as sample size = 1. Longer time series also improves the
precision of the estimates, but only to a certain extent, and is not equivalent to having
a large sample. Increasing observations over time often forces us to change to more
complex models whereas increasing the sample size does not.

7.2.3 Lack of Information or Not Identifiable?

In a single parameter setting, the lack of information from data simply means very
imprecise estimation. The confidence interval is extremely wide, or one-sided, or
unable to yield the point estimate (e.g., the likelihood function is maximized at the
boundary of the parameter space). It is often characterized by a very flat likelihood
function over the parameter space (Raue et al. 2009; Roosa and Chowell 2019).

In multiple parameter settings data cannot provide accurate estimates for some
of the parameters or cannot test against certain hypotheses when fitting the model
to a single data source (i.e., single time-series) especially in models that involve
sub-models for the random, systematic, and link components. People often say,
ambiguously, that data do not have enough information or are not able to identify
certain parameters. We would like to point out some subtle differences.

Shared Information in a Multiple Parameter Setting

We start with the classic statistical problem of the i.i.d. sample
(
x1, · · · , xn

)
arising

from the Gaussian distribution N(μ, σ 2) with the parameter of interest being the
variance σ 2. It is well known that the maximum likelihood estimate of σ 2 is

σ̂ 2 =
{ 1
n

∑n
i=1 (xi − μ)2 , if μ is known;

1
n

∑n
i=1 (xi − x)2 , if μ is unknown and μ̂ = x

.

It is also well known that when μ is known, σ̂ 2 is an unbiased estimator, whereas
if μ is unknown σ̂ 2 is only asymptotically unbiased for σ 2, but biased in any
finite population. It is unbiased for n−1

n
σ 2. The unbiased estimator for σ 2 is s2 =

1
n−1

∑n
i=1 (xi − x)2. This is because the information for σ 2 in the data is shared

with the parameter μ and the minimum sufficient statistics for μ is x = 1
n

∑n
i=1 xi.

Data can be re-arranged through one-to-one mapping:

(
x1, · · · , xn

) �→ (x1 − x, · · · , xn−1 − x, x)

in which x contains all the information in the data forμ and (x1 − x, · · · , xn−1 − x)
are the residuals with n − 1 degrees of freedom left for the estimation of σ 2.
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This argument is formalized in the Fisher-Neyman factorization of the likelihood
function

f
(
x1, · · · , xn

) = 1
(√

2πσ
)n e

− 1
2σ2

∑n
i=1(xi−μ)2 = 1

(√
2πσ
)n e

− n

2σ2 (x−μ)2e−
n−1
2σ2 s

2
,

where s2 = 1
n−1

∑n
i=1 (xi − x)2 . The pair (x, s2) is the minimal sufficient statistics

for (μ, σ 2). In other words, data are reduced to the pair (x, s2) and the information
for variance is summarized as the mean of the square errors (xi − x)2 from n − 1
out of the data of sample size n.

A more revealing example is the Neyman-Scott paradox (Neyman and Scott
1948). Consider 2n independent measures

(
x1, · · · , xn

)
and
(
y1, · · · , yn

)
, where

Xi ∼ N(μi, σ
2), Yi ∼ N(μi, σ

2), i = 1, . . . , n. There are n + 1 unknown
parameters (μ1, · · · , μn, σ 2). If we use the likelihood function given by the joint
distribution

f
(
x1, · · · , xn, y1, · · · , yn

) = 1
(√

2πσ
)2n e

− 1
2σ2

(∑n
i=1(xi−μi)2+

∑n
i=1(yi−μi)2

)

,

the maximum likelihood estimates are

μ̂i = 1

2
(xi + yi) , i = 1, . . . , n

σ̂ 2 = 1

4n
(xi − yi)2 .

In this case, it can be shown that σ̂ 2 is not only biased, but also asymptotically
biased:

E
[
σ̂ 2
]

→ σ 2

2
, as n → ∞.

This analysis under-estimates σ 2 by 50% because half of the information in data
about σ 2 is lost in estimating (μ1, · · · , μn).

Later in Chap. 8, we shall see an example with discussions, where the model
evolves from relatively simple to more complex by adding a shape parameter,
adapted to an increasing number of observations of a time-series during a Zika
outbreak investigation. In the simpler form, all three parameters directly address
three public health questions of interest. Data collected in the early period have little
information on these parameters in terms of very wide confidence limits. As data
accumulate, the estimation for these parameters becomes more and more precise.
Meanwhile, data start to force us to add a shape parameter to the model, which
does not directly address any of the questions of public health interest. It does,
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however, improve the model’s goodness of fit and also correct potential biases in
the estimated parameters of interest, which is increasingly apparent as suggested
by data. This added parameter needs to be estimated using the information from
data at a cost of the precision in the estimation of parameters of interest. Therefore,
at some midpoint in the outbreak, discussions are needed to address the pros and
cons of expanding the model at that moment when the time-series might not be long
enough to accommodate another parameter. It is only after another month of data
accumulates that it becomes obvious that the more complex model is necessary and
meanwhile the estimation of parameters of interest becomes more precise.

In a different example, Lagakos et al. (1988) presented data based on 258 adults
with transfusion-associated AIDS. Data were fitted to a Weibull distribution (2.12)
with scale parameter λ and shape parameter ς > 0. The purpose is to estimate
the incubation period from the time of transfusion and the onset of AIDS illnesses.
Data are not i.i.d. in the sense of a random sample from an experiment, but from a
different type of observational scheme (to be discussed later). Figure 7.3 illustrates
the contours of the surface of the log-likelihood. It shows that data do not have
enough information for the scale parameter λ except for λ ≤ 0.128, and the m.l.e.
does not exist. Together with estimated ς̂ ≈ 2.1, at best the data tell us that
the incubation period is very long, with the lower bound of the estimated median
incubation period ≥ 6.6 years. On the other hand, data are informative about ς , with
1.85 ≤ ς ≤ 2.38 based on the approximate 95% confidence limits based on the like-
lihood ratio statistics. It implies an approximately linear increasing hazard function.

The take home message from the above discussions includes:

1. when there are multiple unknown parameters in the model, information in the
data are shared among the parameters;

Fig. 7.3 Contours of the surface of the log-likelihood l(λ, ς) of the Weibull distribution along
with the 95% confidence region using the likelihood ratio statistics for the two parameters based
on data from Lagakos et al. (1988)
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2. in the presence of nuisance parameters, without additional statistical modelling
to handle the nuisance parameters, data may not have enough information to
estimate the parameter of interest, in the sense of precision as well as potential
biases;

3. the amount of information in data with respect to the parameters of interest is
also affected by how the data are collected.

Identifiability Among Parameters and Components of Models

For two parameters (α, β), if different combinations (α1, β1), (α2, β2), . . . produce
the same expected value of the model that gives equally good fit to data, we say that
data are not able to identify them. This problem can arise for different reasons.

One of the sources that can cause the identifiability problem is due to high
correlation among parameters in a nonlinear function. The banana shaped likelihood
contour in Fig. 7.2 illustrates such a correlation. In Chap. 8, we shall see many
banana shaped likelihood contours. In some applications, the paired combination
(α, β) corresponds to a specific scenario of scientific or epidemiologic interest. For
example, one parameter may represent the number of infected individuals at the
beginning of the epidemic and another parameter may represent the rate of growth
of the epidemic. Data may not be able to identify whether the observed phenomenon
is due to a small number of initially infected individuals combined with a fast growth
rate, or a large number of initially infected individuals combined with a slow growth
rate. On the one hand, lack of parameter identifiability is not the same concept as the
lack of information because, through the contours of the likelihood function, data
do provide a great deal of information on how the parameters are correlated and are
able to estimate these parameters. On the other hand, as the number of observations
increases, more precise estimates can be obtained, which in many cases solves the
identifiability problem.

Another source of identifiability issues is the redundancy of parameters. For
example, the logistic growth function (5.14), parameterized as

mi0(β − γ )
βi0 + (m (β − γ )− βi0) e−(β−γ )t

has a shape of a sigmoid curve. Data may allow rather precise estimation of the
initial growth ρ = β − γ , but cannot identify β or γ separately unless one of them
is known. All these parameters have specific scientific interpretations. In the context
of the SIS compartment model, the hypothesisH0 : γ = 0 distinguishes whether the
model is SI or SIS. In this sense, the parameters are not redundant. However, from
the data point of view, only three of the four parameters can be estimated. When data
admit a logistic functional form, they cannot identify the SIS model. In this case,
increasing the number of observations will not solve the identifiability problem of
parameters. Re-parameterization of the logistic function will, though it cannot solve
the problem of identifying underlying model structures.
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The identifiability problem often arises in models that involve sub-models. For
instance, it is well known that univariate frailty models (Sect. 2.6) through mixture
of distributions are not identifiable from the survival information alone. Similarly,
in a model that has random, systematic, and link components, some parameters
are specific to the disease transmission process and other parameters are specific
to another aspect of the data-generating process beyond disease transmission. A
single time-series data usually cannot identify some of the embedded processes or
components, especially if two components are linked through convolution.

Now we move on to the link component of the model (which has been less
discussed so far).

A typical example is back-calculation, in which the disease transmission process
is modelled through an intensity function i(t; θ), which describes the incidence of
new infections over time, where new infections are not directly observable. Data y
are generated based on the occurrence of the subsequent observable events, such as
the onset of clinical symptoms as a consequence of infection. A statistical model
may assume the observable events arise from a counting process with the intensity
function μ(t; θ, ψ), which is further modelled as a convolution

μ(t; θ, ψ) =
∫ t

0
i(u; θ)f (t − u|u;ψ)du (7.15)

or μ(t; θ, ψ) = ∑tu=0 i(u; θ)f (t − u|u;ψ), depending on whether one takes a
continuous time or a discrete time framework. The quasi-likelihood generalized
estimating equation (7.2) becomes

T∑

t=1

∂μ(t; θ, ψ)
∂θj

yt − μ(t; θ, ψ)
V [Yt ; θ, ψ] = 0, j = 1, . . . , m. (7.16)

In this model, the convolution (7.15) serves the same role as (7.1) in the generalized
linear model.

The systematic component is i(t; θ) which captures the data-generating process
due to disease transmission specified by a vector of parameters θ. It may be stochas-
tic or deterministic transmission models that are explicitly linked to the underlying
scientific hypotheses regarding the agent–host–environment interface. The number
of unknown parameters in θ depends on the complexity of the model. Donnelly
and Ferguson (1999) formulated dynamic models for the population biology of the
bovine spongiform encephalopathy (BSE) and then embedded this model into a
back-calculation framework along with the maximum likelihood estimation. This
approach gave estimated annual incidence of animals infected with BSE in Great
Britain. In most other cases, it is convenient to adopt some flexible empirical
parametric functions for i(t; θ) with relatively few parameters such as a generalized
logistic function. There are also the flexible step-function models such as

i(t; θ) = θj , j = 1, · · · , q (7.17)
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involving q steps. Each step θj is a parameter. The longer the steps, the fewer the
number of parameters.

The component f (t − u|u;ψ) is a model that captures the details of all other
data-generating processes since infection, as the conditional probability of being
captured in the data at time t after an amount of time x = t − u, given infection at
time u < t, specified by a vector of parameters ψ . It may include aspects such as
the factors that determine diagnoses of infections like the onset of clinical symptoms
or external influences such as public health campaigns and screening. It may also
include the process of reporting diagnosed infections to a central registry, delays in
reporting, whether data are collected prospectively or retrospectively, and so on.

The estimating equation (7.16) incorporates the random components by specify-
ing that E[Yt ] = μ(t; θ, ψ) and appropriate variance structure V [Yt ; θ, ψ].

The parameter of interest is the vector θ because the objective is to estimate
the incidence of new infections over time. However, data can only identify the
convolution μ(t; θ, ψ) as a whole, but not the systematic component i(t; θ) and
the link component f (t − u|u;ψ) separately.

7.2.4 Observable Data and Unobservable Events

At the Population Level

The ideal sequence of a scientific investigation is: formulation of research
questions—obtaining appropriate data—analysis of data—interpretation of results.
However, the investigation based on observational data collected during an
infectious disease outbreak is an extreme departure from the ideal sequence, and
most of the data are collected for other purposes unrelated to the question under
investigation.

For example, a research question may be addressed using an SIR model in
Sect. 5.3 with two parameters (β, γ ). Using martingales (briefly introduced in
Sect. 3.3.2), Becker (1989), Rida (1991), Becker and Hasofer (1997), Becker and
Britton (2001), Hohle and Jørgensen (2003), and others have developed estimating
equations that yield asymptotically unbiased estimates

β̂ = C(tN)
∫ tN

0
S(x)I (x)
m

dx
, γ̂ = C(tN)

∫ tN
0 I (x)dx

,

with standard error estimates

s.e.
(
β̂
) = β̂√

C(tN)
, s.e.
(
γ̂−1
)

= γ̂−1

√
C(tN)

,

where tN is the time of the observed end of the epidemic, and C(t) = m − S(t) is
the cumulatively infected individuals at time t , and m is the population size. Data
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are assumed to arise as continuous and complete observation for {[S(t), I (t)] : 0 ≤
t ≤ tN }. However, such data do not exist in reality, simply because a transmission
from an infected individual to a susceptible individual is an unobservable event.

Most data at the population level are random counts based on observable events
aggregated into time intervals. They may arise from multiple sources involving
multiple agencies regarding the same outbreak. For example, a central public
health agency of a country may compile a registry of reported “cases” of a certain
reportable disease, which are forwarded from similar disease registry systems in
state, provincial, territorial, or local authorities. Meanwhile, a different agency, or
institute, or a collaborative sentinel hospital may have a database with variable
population coverage regarding hospitalizations, discharges, and other events on
the severe end of the same disease. In recent years, syndromic surveillance
based on early warning indicators, such as emergency department attendances
or emergency telephone calls, have gained much attention for their potential use
to detect outbreaks at early stages. In the era of Big Data, the computer algorithm
Google Trends aggregates Google Search queries by monitoring millions of users’
health tracking behavior online.

The increasing number of data sources comes with pros and cons. On the pros
side, multiple data sources, at least conceptually, help to identify high dimensional
parameters in a complex model. On the cons side, it becomes increasingly difficult
to sort out the data-generating process for each data source and increasingly difficult
to develop the corresponding statistical models, not to mention model criticism.

What Is a “Case”?

In workshops on mathematical epidemiology, we have encountered questions from
mathematicians such as:

How do we reconcile differences between the incidence of new infections predicted by our
models and the incidence of new cases in surveillance data we try to fit?

In the preceding paragraphs, we have illustrated the gap between the unobserv-
able events predicted by mathematical models and data that are collected at the
population level. Here we would like to highlight part of the data collection process,
which is the preciseness in definitions and terminologies.

A “case” is one of the most commonly used terms in epidemiology and public
health surveillance. A system based on reporting diagnosed diseases to a central
registry is often called “case-reporting-surveillance.” For each surveillance system,
there is a case-definition (which may evolve and change over time).

We would say that a case is a file associated with an individual diagnosed with
some “case-defining” illnesses, and this case must exist in some central registry
in the system. Inside the “case” (more precisely, in the file), there are multiple
observable events associated with different time points. Some events are relevant
to the underlying epidemiology, such as the onset of clinical symptoms (but only
among those according to the “case-definition”), the diagnosis of such symptoms
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Fig. 7.4 Left: Illustration of two presentations of the “number of cases” per episode for Disease X
from the same dataset; Right: Illustration of “number of new diagnoses” per episode being modified
as new reports come in, due to reporting delays

(sometime later by a medical doctor among individuals who seek medical attention),
and some subsequent clinical events during the follow-up such as morbidity,
mortality or recovery. Other events are not directly relevant to epidemiology, but
are equally important, not only for bookkeeping of the surveillance system but also
serve as a bridge between the unobservable events and the observable data. These
events may include the creation of this case (file) with the date, the arrival of the
file to a local or a central registry with dates, the entry of the case into the database
with date. However, the most important event, the infection and the associated time
at infection, is not observable and is not documented in the case.

It is not uncommon in published reports and public health literature that disease
trends are presented as “number of cases” over time when the meaning of a “case”
is ambiguous. In Fig. 7.4 (for illustration purposes only), the actual disease, the time
episodes, the population and the organizations involved are anonymized. The left
panel shows two completely different trends about the same disease from the same
data disseminated by two organizations and both use the word “case” ambiguously.
Upon careful inspection, it turns out that each case-file has two dates associated
with two different events: one is the date of a new diagnosis signed by a doctor and
the other is the date on the stamp (which could be a computer digital signature)
by the system when the file is entered into the registry. Organization 1 presents
the trend of “new diagnoses” over time according to the most recent data; whereas,
Organization 2 presents the trend of “new reports received by the system” over time.
Both organizations call them “numbers of new cases.”

The gap between the time of diagnosis and the time when this individual case is
reported and entered into the database of a public health registry is called reporting
delay. If this gap is ignorable (close to zero), then the two trend curves in the left
panel of Fig. 7.4 should be nearly identical. If the gap is large but there is little
variation from individual to individual, then the two curves should look alike, with
a shift of fixed number of periods. If the gap has random variations, then the two
curves will not look alike.
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When there are substantial reporting delays, Organization 1 would argue that it
is the new diagnosis, not the new entry to the system, that is relevant to the trend of
the epidemic. However, the numbers of new diagnoses per episode will be modified
as newly reported cases come in, especially for the recent episodes, as shown in the
right panel of Fig. 7.4. Furthermore, there is usually a declining trend near the end,
as cases with most recent time of diagnoses are still not yet reported. Therefore, the
trend based on time of diagnoses must be statistically adjusted, especially for the
recent past.

Organization 2 would argue that the number of new “cases” defined as new
entries of the disease per episode is a static number. By the end of every episode,
a new number is added to the database regardless of time at diagnoses and the
reporting delay is irrelevant. After all, it presents useful trend information on the
case-load seen by the registry. In our opinion, this could be misleading, especially
when reporting delays are long and variable (Tariq et al. 2019).

While trends of specific events over time are meaningful, presenting trends of
“cases” may not be. A good book-keeping practice in the registration system is to
line-list all the events longitudinally for each reported individual whether the event
is clinically relevant or not. All the documented events may serve some purposes.
The researcher will decide which key event is the most relevant event to the question,
but will also use some events and corresponding time lines to adjust biases such as
reporting delay. The latter is part of statistical modelling. Naturally this will demand
more resources and due diligence both on the system and the researcher.

In analyses involving diverse data sources, many agencies may contribute data
originally collected for other purposes with more ambiguity in terminology. It will
be more challenging for a researcher to get into the depth of each data source and
statistically model the data-generating process. In the era of Big Data, will artificial
intelligence be able to model all the data-generating processes and conduct model
criticism? Quoting from Cox and Donnelly (2011):

A large amount of data is in no way synonymous with a large amount of information. In
some settings at least, if a modest amount of poor quality data is likely to be modestly
misleading, an extremely large amount of poor quality data may be extremely misleading.

At Individual Levels

Phenomenological population models, especially those that mechanically model
disease transmission dynamics, carry tacit assumptions at the level of individuals,
such as the distributions of the latent periods and the infectious periods, as well as
the infectious contact process. All events associated with these assumptions are not
observable. One cannot pinpoint the time that an infection, which is the transfer of
the infectious agent from an infected individual to a susceptible individual, occurs;
nor can one ascertain the time when an infected individual is no longer latent and
starts to be infectious. Therefore, there is no ideal data that can be directly used to
validate these models.
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In many diseases, the onset of clinical symptoms can be ascertained either
precisely or within a narrow time interval. If the time of infection can also be
ascertained within an acceptable range, for instance, through contact-tracing, then
the incubation period is defined as the duration from the infection to the onset of
symptoms and can be measured with some acceptable uncertainty. In some diseases,
symptom onset may be used as a proxy for the beginning of the infectiousness and
the incubation period may be a proxy for the latent period. However, there are
diseases where a proportion of infected individuals may remain asymptomatic and
are still able to transmit the infection.

The diagnosis of an infection, either due to onset of clinical symptoms or other
screening/testing mechanisms, is always observable and ascertained to a specific
point in time. This is also the event that generates most of the data. However, this
event involves two mechanisms. One is driven by the progression of the disease
natural history. The other is influenced by external factors. With respect to Fig. 7.4,
Organization 1 is only partially right by saying that the new diagnoses are relevant
to the trend of the epidemic. Before the time-series, represented as numbers of new
diagnosis over time, become fully informative about the disease spread, statistical
models are required to capture the entire data-generating process, incorporating the
disease progression, the external factors such as how long since symptom onset and
reasons for seeking diagnosis, as well as duration from the initial diagnosis to the
entry of the case to the data registry.

For diseases with disease induced mortality, death caused by the disease is an
observable event.

For models involving intervention, such as vaccination, treatment, isolation, etc.,
all of these are also observable.

Serial Interval, Generation Interval, Generation Time, and So On

In recent literature, these “intervals” have been widely cited, measured, and applied
to outbreak investigations, especially during the early transmission phase. However,
there is a lot of ambiguity. For instance, there are occasions that the same
terminology is associated with two different definitions, whereas there are other
occasions that the same definition is assigned to different terminologies by different
researchers.

To our knowledge, the earliest definition of serial interval dates back to Hope
Simpson (1948):

The period from the observation of symptoms in one case to the observation of symptoms
in a second case directly infected from the first is the (clinical) serial interval. It is an
observable epidemiological unit.

Bailey (1975) wrote that:

The period from the observation of symptoms in one case to the observation of symptoms
in a second case directly infected from the first is the serial interval. Thus the serial interval
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Fig. 7.5 A schematic presentation of three serial intervals produced by the same infector with 3
infectees

is the observable epidemiological unit, and it reflects to some extent the life cycle of the
infectious organism. Nevertheless, it can not be readily related to the mechanism of transfer.

Decades later, Lipsitch et al. (2003) defined serial interval in the same way as
that in Hope Simpson (1948) and Bailey (1975) but also specified that it is defined
as the average between the two observed onset of symptoms. Lipsitch et al. (2003)
applied such a measure during the outbreak investigation of the transmission of the
severe acute respiratory syndrome (SARS) to estimate the basic reproduction R0.

The features in the above definition of the serial interval include:

1. involving a pair of infected individuals, an infector, and an infectee;
2. observable;
3. book keeping device to track generations, White and Pagano (2008);
4. depending on the latent period and the infectious period (of the infector) as well

as the incubation period (of the infectee).

For example, Infectees 1 and 3 in Fig. 7.5 are both infected before the symptom
onset of the infector, with Infectee 1 following the natural sequence that its own
clinical onset takes place after its infector’s onset; whereas Infectee 3 has the
reversed sequence, with its own clinical onset taking place before its infector’s onset.
This can happen in theory, if both the infectious periods and the incubation periods
are highly variable.

There has been some confusion in the literature, as various terms have been used
to refer to the same concepts. Before Hope Simpson, Pickles (1939) used the term
transmission interval for what was later defined as serial interval with reference
to empirical observations of a hepatitis epidemic in the United Kingdom (Nishiura
2010).
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A different measure is the interval between the time of infection and time
of transmission by linking two individuals, the infector and the infectee. This is
formally named as the transmission interval in Fine (2003). Fine (2003) made
it clear that (1) the transmission interval (i.e., the interval between successive
infections) and (2) the clinical onset serial interval (i.e., the interval between
successive clinical onsets) are different both conceptually and quantitatively. This
distinction was also made clear in Svensson (2007).

A different name was given to the transmission interval as the generation interval
in Wallinga and Lipsitch (2007), Roberts and Heesterbeek (2007), described as the
duration between “the time of infection of an individual to the time of infection
of a secondary case by that individual.” Svensson (2007), Nishiura (2010), Kenah
et al. (2008), and many others called it the generation time. Minor differences
in the definitions among these authors are whether this interval is defined as a
random variable, or is defined according to its mean value. Svensson (2007), from a
sampling point of view, further points out the difference in distribution between the
primary generation time as measured prospectively from the time of the infection of
the infector to the transmission to the infectee, and the secondary generation time
as measured retrospectively from the time of the transmission to the infectee to the
infection of the infector.

The features in the above definition are that

1. involving a pair of infected individuals, an infector and an infectee;
2. both the infection of the infector and the passing of infection to an infectee are

unobservable;
3. depending on the latent period and the infectious period.

The generation intervals (or generation times, transmission intervals) are dis-
tinguished from the serial intervals by definitions, but sometimes the two are
used interchangeably in the literature. Figure 7.6 compares different time periods
between the first patient and the second patient, adopted from the Field Epidemiol-
ogy Manual published by the European Centre for Disease Prevention and Control
(ECDC). In this diagram, generation time is synonymous to serial interval, both
refer to the interval between successive clinical symptoms.

Anderson and May (1991) defined the generation time as the sum of the latent
period and the infectious period: TE+TI . Daley and Gani (1999) defined the average
generation time as μE + μI/2 where μE = E[TE] and μI = E[TI ]. According
to strict arguments by Fine (2003), the sum of the latent and (part of) the infectious
periods is concerned with the course of a single infection and is different from the
interval between successive infections.

In a recent article, Champredon and Dushoff (2015) defined the intrinsic
generation interval with its distribution defined by the p.d.f.

g(x) = β(x)A(x)

R0
, x > 0 (7.18)
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Fig. 7.6 Relationships between time periods

where R0 = ∫∞
0 β(x)A(x)dx is the basic reproduction number as formulated in

Chap. 4 following the renewal-type equation (4.35). This concept is behind the
developments of the theories in Wallinga and Lipsitch (2007) and Roberts and
Heesterbeek (2007) that link the distribution of the generation intervals given by
(7.18) to the estimation ofR0 with implicit assumptions that the generation intervals,
according to their respective definitions, follow such a distribution. The intrinsic
generation interval is defined along the course of a single infection. In particular, if
β(x) = β, then g(x) = A(x)/μI , x > 0. In structured models that involve latent
periods TE followed by infectious periods TI , assuming independency, A(x) =∫ x

0 FI (x − u)fE(u)du, that gives

g(x) =
∫ x

0
fE(u)

F I (x − u)
μI

du. (7.19)

The mean value is

μG = μE + 1

2
(1 + φ2)μI = μE + μI

2
+ var[TI ]

2μ

as previously given as (4.48), where μE = E(TE) and φ is the coefficient of
variation of the infectious period TI defined as the ratio of standard deviation to
the mean. If the infectious periods are exponentially distributed with mean μI , then
μG = μE +μI which is the mean generation time according to Anderson and May
(1991). If the infectious periods are the same constant μI , then μG = μE + μI/2
which is the mean generation time according to Daley and Gani (1999). If the
infectious periods can be expressed as the sum of n independently and identically
distributed exponential distributions with mean μI/n, then φ2 = 1/n and μG =
μE + n+1

2n μI . This expression can be found in Roberts and Heesterbeek (2007).
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Champredon and Dushoff (2015) further discussed forward generation interval
from the perspective of an infector and backward generation interval from the
perspective of infectee. We have discussed in Chap. 4 that the distribution given
by (7.19) also has a sampling perspective. It coincides with that based on the
convolution of the latent period TE and the equilibrium distribution given by p.d.f.
fW(x) = FI (x)/μI , under suitable assumptions concerning equilibrium conditions
of the epidemic at the population level. In this case, it is appropriate to define the
(intrinsic) generation time as

TG = TE +W.

It has the sampling property that an arbitrary observer makes a snapshot sample at
an arbitrary time. All individuals who are “currently infectious” form a prevalence
cohort. The observer looks backward to the time of infection and measures the time
from infection to the observation time. The distribution has the p.d.f. given by (7.19).

In summary,

1. Serial intervals are between observable events, subject to observation errors and
time-length bias (to be discussed next), but cannot be readily related to the
mechanism of transmission. Their distributions, even correctly estimated by data,
may not be used to approximate the distributions of the transmission intervals or
the intrinsic generation times.

2. Transmission intervals (also known as generation intervals, generation times) are
not directly observable. They are further distinguished by forward measuring
from the time of an infector to the time of transmission to an infectee, versus
backward measuring from the time of infection of an infectee to the time of
infection of its infector. These two measurements follow different distributions
(Svensson 2007).

3. The intrinsic generation interval includes the definitions given by Anderson
and May (1991) and Daley and Gani (1999) as special cases. By definition, it
is related to the basic reproduction number R0 that carries information about
disease transmission. This relation is established under equilibrium conditions
(implicitly assumed) as R0 itself is also defined under such conditions. This is
more apparent in a structured model with latent and infectious periods, where
the intrinsic generation time can be written explicitly as TG = TE+W , whereW
corresponds to the equilibrium distribution of the infectious periods. The intrinsic
generation intervals do not involve pairs of infectors and infectees and are not
observable.

7.3 Time-Length Bias

The time-length bias discussed here is in the same nature of the famous “survivor-
ship bias.” During World War II, researchers from the Centre for Naval Analyses
conducted a study of the damage made to planes that had returned from missions.
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The statistician A. Wald noticed that the study only considered the planes that
had survived their missions. Those that had been shot down were not present for
the damage assessment. The holes in the returning aircraft represents areas where
the aircraft could take damage and return home safely. Wald (1943) proposed
that the Navy reinforce areas where the returning planes were unscratched, since
those areas, if hit, would cause the plane to be lost. The same type of bias also
applies in observational data in the study of disease outbreaks.

Observational data during an infectious disease outbreak are often length-biased
with respect to key epidemiological durations, such as the latent periods, infectious
periods, incubation periods, generation times, etc. In some cases, individuals
associated with longer durations are more likely to be included in the data. In other
cases, individuals associated with shorter durations are more likely to be included
in the data. At the population level, length biases at individual levels further lead
to mis-interpretation of the disease trends. Figure 7.4 has an illustration of disease
trends by date of onset, affected by reporting delays.

For a comprehensive review on length-biased sampling and length-biased distri-
bution, we recommend Chapter 1 of Qin (2017).

Disease progression within an infected host involves sequences of events. Each
pair of successive events is composed of an initiating event that leads to a subsequent
event over a random duration X ≥ 0. An individual is denoted by the index i. We
used T (1)i for the time of onset of the initiating event and T (2)i for the time of onset

of the subsequent event. The duration of interest is Xi = T
(2)
i − T (1)i .

7.3.1 Prevalence Cohorts and Left-Truncation

The prevalence cohort as illustrated in Fig. 4.8 leads to length-bias that sys-
tematically includes individuals with longer durations. Assuming that Xi among
individuals are (in theory) i.i.d. with p.d.f. fX(x), the distribution of Xi as observed
in the prevalence cohort is length biased because the arbitrary sampling time t must
satisfy T (1)i < t ≤ T

(2)
i . The length biased duration is denoted by X(B)i . We also

write X(B)i = Wi + Vi, whereWi = t − T (1)i and Vi = T
(2)
i − t.

We further assume that

1. The occurrence of the initiating events, which is a stochastic process, follows
constant incidence rate (i.e., the equilibrium condition).

2. Xi is independent of the occurrence of the initiating event.

Under these conditions, X(B)i , Wi , and Vi have the following equilibrium
distributions (Wang 2005) with p.d.f.s

X
(B)
i ∼ xfX(x)

μ
, andWi ∼ Vi ∼ FX(x)

μ
(7.20)

where μ = E[X] = ∫∞
0 xfX(x)dx = ∫∞

0 FX(x)dx.
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Fig. 7.7 Illustration of a repeated testing scheme on an infectious disease

Fig. 7.8 Illustration of the observation scheme with left-truncation. The individual with short
duration (dotted line) is not included at the time of enrollment

The same problem is formulated differently as illustrated in Fig. 7.7. Consider a
repeat testing scheme for an infectious disease such as HIV. Individuals get tested
repeatedly with i.i.d. inter-testing intervals X with p.d.f. fX(x). Denote X(B) the
special interval between the last negative and the first positive tests. Assuming that
the epidemic in the population is at equilibrium so that the occurrence time t of the
“sero-conversion event” is distributed uniformly between the two tests. This interval
is length-biased with equilibrium distributions given by (7.20). These distributions
are applied for designing better repeated testing algorithms to reduce the prevalence
of not yet diagnosed HIV infections (Yan and Zhang 2018).

A more general setting is the left-truncation in survival analysis. The initial
events occur over time t following a random process with intensity λ(t). For each
individual i, the subsequent event occurs following the initial event after a random
duration Xi . Assuming X′

i s are i.i.d. as the random variable X, and the objective is
to estimate this distribution. However, data are collected by enrollment. The time at
enrollmentEi for individual i must satisfy that the initial event has taken place while
the subsequent event has not. Thus individuals with longer Xi have more chance to
be enrolled. Observed data are length-biased following the distribution X(B). Each
individual X(B)i arises from the conditional distribution of X given X ≥ Wi . An
illustration is given in Fig. 7.8.

The observed part from enrollment until the end point is Vi which has conditional
the survival function and the conditional p.d.f.

F(vi |wi) = F(wi + vi)
F (wi)

= F(t
(2)
i − t (1)i )

F (Ei − t (1)i )
,

f (vi |wi) = f (wi + vi)
F (wi)

= f (t
(2)
i − t (1)i )

F (Ei − t (1)i )
.
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This is the residual life distribution discussed in Sect. 2.3 in Chap. 2. If the time of
initial event t (1)i cannot be ascertained but follows a random process with intensity
λ(t) until enrollment, then the p.d.f. of Vi is

f (vi |wi) =
∫ Ei
−∞ λ(t)f (t

(2)
i − t)dt

∫ Ei
−∞ λ(t)F (Ei − t)dt

.

If λ(t) = λ is constant, then the above becomes

f (vi |wi) =
∫ Ei
−∞ f (t

(2)
i − t)dt

∫ Ei
−∞ F(Ei − t)dt

=
∫∞
vi
f (x)dx

∫∞
0 F(x)dx

= F(vi)

μ
= fV (vi),

where vi = t
(2)
i − Ei and μ = ∫∞

0 F(x)dx. In this case, we have recovered the
equilibrium distribution. Data arising from left-truncated data under equilibrium can
be used to estimate the distribution FX(x) because the distribution of the observed
part vi = t

(2)
i − Ei contains all the information, independent of the truncation time

wi = Ei − t (1)i .

If λ(t) is constant but the time t (1)i can be all ascertained (retrospectively) upon

enrollment, then wi = Ei − t (1)i is observable and data consist of a pair (xi, wi) for

each individual where xi = t
(2)
i − t (1)i . Do data have enough information to estimate

the distribution of X without modelling λ(t)?
The good news is that the hazard function under left-truncation is invariant for

x > w. For each individual, conditioning on X > w, the hazard function calculated
from the conditional distribution is

hleft-truncation(x|w) = f (x)/F (w)

F(x)/F (w)
= f (x)

F (x)
= h(x), x > w.

All the survival analysis models and methods focusing on hazard rate estimation and
comparison (e.g., proportional hazard regression model, other hazard based models,
etc.) apply to data with left-truncation. Existing software may be directly applied
with minimum modification (e.g., SAS, S-plus, R, etc.). However, the identifiable
part of the survival function is the residual survival function

F(x|w) = exp

(

−
∫ x

w

h(u)du

)

, x > w, (7.21)

not the entire distribution F(x) = exp
(− ∫ x0 h(u)du

)
.
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Fig. 7.9 Non-parametrically, left-truncated data are unable to identify the entire survival function.
It is only possible to estimate the residual survival function conditioning on X > τ

The above argument can be demonstrated by non-parametric methods. The
Kaplan-Meier estimation in survival analysis is based on the empirical estimation
of the hazard function at discrete time points. If there is no left-truncation in data,
the discrete hazard function yields the empirical survival function as a decreasing

step function starting F
KM
(0) = 1. For left-truncated data in pairs (xi, wi) and

let τ = min(wi), because the hazard function is invariant under left-truncation,
the Kaplan-Meier estimation can be still applied (as built into various statistical
software packages). The decreasing step function is now understood as the non-
parametric estimation for the residual survival function

F(x|τ) = F(x)

F (τ)
, x ≥ τ = min(wi),

starting at F
KM
(τ |τ) = 1. The non-identifiable part is F(τ) ≤ 1. This is illustrated

in Fig. 7.9.
There is a rich literature concerning lifetime and life history data with left-

truncation. We recommend the books: Lawless (2003) and Cook and Lawless (2007,
2018).

7.3.2 Retrospective Ascertainment and Right-Truncation

As illustrated in Fig. 7.8, in left-truncated data, the inclusion criteria is that, at time
of enrollment, the initiating event has occurred but the subsequent event has not.
This observation scheme produces time-length bias in favor of longer duration.
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Fig. 7.10 Illustration of the observation scheme with right-truncation. The individual with long
duration (dotted line) is not included by time C

The opposite observation scheme is illustrated in Fig. 7.10. The inclusion criteria
is based on the occurrence of the subsequent event. Individuals whose initiating
events have occurred, but the subsequent events have not, are not included by the
time of data analysis. This observation scheme produces time-length bias in favor
of shorter duration.

Data arise from the conditional distribution

F ∗(x|τ) = FX(x)

FX(τ)
, 0 ≤ x ≤ τ = max

i

{
C − t (1)i

}
. (7.22)

The probability of inclusion is the cumulative probability FX(τ) = Pr{X ≤ τ },
which itself is the object of the estimation. If τ is sufficiently large, F ∗ will be a
good approximation to FX. However, sufficiently large τ implies that C is large
and one needs to wait for much longer time before starting the analysis. This is not
desirable for an emerging infectious disease where one needs information quickly.

Assessment of the Incubation Period Distribution

The incubation period is defined as the duration from the time at infection to the
time of onset of clinical symptoms. For acute infectious diseases such as the severe
acute respiratory syndrome (SARS) in 2003, knowledge of the incubation period
distribution must be generated quickly at the very early stage of the epidemic for
guidance to determine the length of quarantine of individuals exposed to infection
sources. If a potentially exposed individual has not shown symptoms of the disease
after x days of quarantine, the risk of releasing this individual into the susceptible
population who subsequently becomes symptomatic (and infectious) is the survivor
function of the incubation period. For other infectious diseases that are also chronic,
such as HIV/AIDS, the incubation period distribution is the crucial link between an
observable event based on clinical presentation such as the diagnosis of AIDS and
the unobservable event based on disease transmission such as the infection of HIV.

The incubation period distribution can be estimated using standard survival
analysis techniques by following selected cohorts of infected individuals whose
dates of exposure to the infection sources are known. However, in emerging new
infectious diseases, such as AIDS in the 1980s, SARS in 2003, the pandemic
H1N1 (pH1N1) influenza in 2009, knowledge of this distribution must be generated
quickly before any formal cohort follow-up studies become feasible.
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Fig. 7.11 Schematic illustration of retrospectively ascertained incubation periods analyzed dur-
ing, immediately after and long after a disease outbreak

Early data often arise from selected individuals diagnosed with symptoms with
retrospectively ascertained dates of exposure to the infection sources. These early
assessments tend to be shorter than assessments made at some later time during
the epidemic, which may still be shorter than the actual distribution. This is
schematically illustrated in Fig. 7.11. This phenomenon is often misinterpreted by
the media and the public to make hypotheses about the mutation of the pathogen,
rather than time-length bias in data.

Example 29 This example is well cited in the literature, such as Examples 3.5.3
and 4.3.3 in Lawless (2003). For the incubation period from HIV infection to
the development of AIDS illnesses, early studies were based on retrospectively
ascertained data for blood transfusion-associated cases, assembled by the U.S.
Centers for Disease Control, with transfusion as the only known risk factor. The
data were studied by Lui et al. (1986), Medley et al. (1987), Lagakos et al.
(1988), Kalbfleisch and Lawless (1989), among many others. A comprehensive
survey of various statistical methods of these studies was included in Chap. 4 of
Brookmeyer and Gail (1994). Lui et al. (1986) published the earliest results based
on data available as of April 1985. The authors acknowledged the bias due to right-
truncation and illustrated that the sample average was only 2.6 years based on the
naïve approach, whereas based on the conditional distribution (7.22) along with a
Weibull distribution model, the estimated mean incubation period was 4.5 years.
Kalbfleisch and Lawless (1989) analyzed the data as reported by July 1986 with
median estimation approximately 8.5 years.

For right-truncated data regarding the incubation period, uncertainty with respect
to the time of infection, T (1)i , is a common problem. Tuite et al. (2010) analyzed
3152 laboratory confirmed pH1N1 cases in Ontario with symptom onset between
April 13 and June 20, 2009. A subset of 316 cases containing sufficient information
on exposure date and disease onset were used to estimate the incubation period
distribution. The dates of exposure were imputed as the midpoint between the
earliest and the most recent dates of exposure. Farewell et al. (2005) studied a
subset of 128 cases out of a total of 1755 reported cases in a Hong Kong Hospital
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Authority database during the 2003 SARS outbreak. The data consist of the date of
the appearance of the symptoms of SARS, but the dates of exposure can be only
ascertained to an earliest and latest possible date of exposure. The authors explored
statistical methodology for retrospective data with the timing of the initiating event
being uncertain, except for lying in a given time interval, and what might reasonably
be inferred about such a maximum incubation time based on the moderately sized
samples that would typically be available in the early course of an epidemic.

Assessment of the Reporting Delay and Estimation of the Number of
Occurred But Not Yet Reported Events

In most public health disease surveillance systems, data are compiled upon the
reporting of the diagnosis of the disease. Official reports often present aggregated
counts based on the number of new diagnoses or the disease onset per unit of time.
It is thought that these “epicurves” represent, to some degree, the epidemiology of
the disease transmission. However, there is a time-length bias in under-reporting:
the more recent the diagnosis (or onset), the more severe is the under-reporting.
This is reflected by an artificial decline of trend near the end of the time-series. This
time-length bias is more profound when data are compiled and analyzed when the
outbreak is still ongoing, but it is also more important to present real time trends
during the outbreak investigation.

Figure 7.12 illustrates the epicurves of the severe acute respiratory syndrome
(SARS) during the spring of 2003 in Canada, Singapore, and Hong Kong, compiled
from publicly available information from respective government websites by dates
of onset. We immediately see the same phenomenon as illustrated in the right
panel of Fig. 7.4. Figure 7.13 illustrates the phenomenon again using epicurves
presented by the Ministry of Health of Mexico, by compiling the numbers of onset
of symptoms of the H1N1 influenza outbreak in Mexico from April to December of
2009, as officially released by different dates.

Fig. 7.12 Illustration of SARS Epicurves by dates of onset as reported on different dates during
the 2003 SARS outbreak. (Sources: Health Canada; Singapore Ministry of Health; Department of
Health, Hong Kong, China)
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Fig. 7.13 Illustration of the H1N1 influenza outbreak by dates of onset in Mexico as reported
on different dates during the 2009 outbreak. (Source: Ministry of Health of Mexico, http://portal.
salud.gob.mx/contenidos/noticias/influenza/estatisticas.html)

Such a phenomenon is caused by the reporting delay. Reporting delays are
measured at individual levels as the gap between the time of disease onset (or
diagnosis) and the time when this individual case is reported and entered into the
database of a public health registry.

Let C be the most current time when data are analyzed. We use a generic term
“event” for the initiating event, such as disease onset (or diagnosis). The aggregated
counts are denoted by

N(t;C) = #{events occurred at time t as reported by time C},
N(t) = N(t;∞) = #{events occurred at time t}.

N(t;C) is always a proportion of N(t) and the adjustment for reporting delay
reduces to the problem of estimating this proportion.

For simplicity, let us assume (for the time being) that the reporting delay can
be represented by a random variable X, which is i.i.d. among all individuals. The
cumulative distribution is F(x) = Pr(X ≤ x). Then

F(C − t) = Pr(X ≤ C − t)

http://portal.salud.gob.mx/contenidos/noticias/influenza/estatisticas.html
http://portal.salud.gob.mx/contenidos/noticias/influenza/estatisticas.html
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has the same meaning as the probability of events that happened at time t ≤ C have
been reported by C. Therefore,

N(t) = N(t;C)
F(C − t)

and the reporting delay adjustment becomes the problem of estimating F(x).
Data on reporting delay is always right-truncated, because only upon reporting

can one retrospectively measure the delay (see Fig. 7.10).
There are two levels of time-length biasness involved. Reporting delays produce

the time-length bias in aggregated counts over time at the population level with
an artificial declining trend near the end of the time-series. The observed reporting
delays are also length-biased due to right-truncation. Individuals associated with
shorter delays are over-represented in data.

The right-truncation bias in reporting delays is much less recognized than the
reporting delay phenomenon at the population level, because frontline workers
who make diagnoses, reports, and analyses do not see long delays, even after
using naive statistical analyses such as summary statistics directly on observations.
Results from formal statistical analysis taking into account right-truncation are
often counter-intuitive.

When the first reporting delay adjusted trend of the diagnoses of AIDS in Canada
was published in 1993 (Fig. 7.14), it was met with much criticism because it implied
a much longer delay most public health workers in the field than felt. It was also
dramatically different from a naive analysis based on summary statistics directly
calculated from measured delays: median around 1.6 months and only 3% of all
individuals were reported after 14 months since diagnoses. The reporting delay

Fig. 7.14 Reporting delay adjusted trends of number of AIDS diagnoses by year from AIDS in
Canada, AIDS Surveillance Report (Health Canada) in selected years
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adjusted trend in Fig. 7.14 based on diagnoses to the end of 1992 suggested a delay
with a median of at least 9 months. Despite the doubts and criticisms, history (e.g.,
reported AIDS incidence by year of diagnosis by the end of 1999) showed that the
counter-intuitive delay-adjusted trend was more realistic.

A Simple Method to Estimate Reporting Delay Adjusted Incidence Trends We
take a discrete time framework. Let C denote the “current time” which is the time
when data are used for analysis. Let t = 0, 1, 2, · · · , C denote the time of the
occurrence of the events under the study where t = 0 is the earliest possible time
when the events could happen in the population. Let x = 0, 1, 2, · · · , C denote the
report delay and x = 0 means that the event is reported within the same time unit.
In this setting, data can be grouped into counts

ntx = #{events occurred at time t and reported at time t + x}, x ≤ C − t.

These counts are then arranged into a 2-way contingency table of which the lower
triangle remains empty due to right-truncation, as represented in Table 7.1. The row
totals are

N(t;C) =
C−t∑

x=0

ntx, t = 0, 1, · · · , C.

Clearly, as t is getting closer to the current time C, the more likely that N(t;C)
under counts the true number of events. The column totals are

n+x =
C−x∑

t=0

ntx =
∑

i

I (xi = x).

Table 7.1 The upper-triangle table for {ntx} with column totals represent the number of events
with X = x and row totals represent the number of events over time as reported by C
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representing the total number of events with delay X = x as observed in the data.
Let’s also denote N+x as the total number of cases with delay X ≤ x, among
events during times t = 0, 1, · · · , C − x, which is the sum of numbers in the 2-
way contingency table inside the rectangle area defined by t = 0, · · · , C − x and
X = 0, · · · x :

N+x =
C−x∑

t=0

x∑

j=0

ntj =
∑

i

I (xi ≤ x ≤ τi).

The ratio

g(x) = n+x
N+x

, x = 1, · · · , C

gives an estimate for the proportion of events with delay X = x out of those with
delay X ≤ x. Therefore, 1 − g(x) gives the estimate for

#{X ≤ x} − #{X = x}
#{X ≤ x} = #{X ≤ x − 1}

#{X ≤ x}
which is the proportion of events with delay X ≤ x − 1 out of those with delay
X ≤ x. Rewriting x = C − t + 1, 1 − g(C − t + 1) gives an estimate for

#{X ≤ C − t}
#{X ≤ [C + 1] − t}

which is the proportion of events at time t and reported by time C (current), out
of those at time t and reported by C + 1. This is the estimate for the conditional
probability

Pr{X ≤ C − t |X ≤ C + 1 − t} = F(C − t)
F ([C + 1] − t) , 1 ≤ t ≤ C.

and hence

N(t;C) = N(t;C + 1)× F(C − t)
F ([C + 1] − t) = N(t;C + 1)× [1 − g(C − t + 1)].

Therefore, a one-step prediction for the number of events that occurred at time t as
seen in by time C + 1, based on current observation N(t;C) is established as

N̂(t;C + 1) = N(t;C)
1 − g(C − t + 1)

= N(t;C) N+,C−t+1

N+,C−t+1 − n+,C−t+1
, 1 ≤ t ≤ C.
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This also predicts the off-diagonal elements of {ntx} in Table 7.1 as

n̂t,C−t+1 = N(t;C) n+,C−t+1

N+,C−t+1 − n+,C−t+1
, 1 ≤ t ≤ C.

In particular, n̂1C = N(1;C) n+C
N+C−n+C and n̂C1 = N(C;C) n+1

N+1−n+1
.

Similarly, it can be shown that

N̂(t;C + 2) = N(t;C)
[1 − g(C − t + 1)][1 − g(C − t + 2)] , 2 ≤ t ≤ C.

gives a 2-step prediction for the number of events that occurred at time t as seen
by time C + 2, where the denominator is the estimate for Pr{X ≤ C − t |X ≤
C + 2 − t} = F(C−t)

F ([C+2]−t) . It further predicts the elements in the lower triangle of
Table 7.1 as

n̂t,C−t+2 = N̂(t;C + 1)
n+,C−t+2

N+,C−t+2 − n+,C−t+2
, 2 ≤ t ≤ C.

In particular, n̂2C = N̂(2;C + 1) n+C
N+C−n+C and n̂C2 = N̂(C;C + 1) n+2

N+2−n+2
.

Continuing, the maximum is to predict C steps for t = C; C − 1 steps for
t = C − 1; and so on, until all the empty elements in the lower triangle of Table 7.1
are filled by predicted values according to the iterative formulae

n̂t,C−t+k = N̂(t;C + k − 1)
n+,C−t+k

N+,C−t+k − n+,C−t+k
, k ≤ t ≤ C

and k = 1, . . . , C. Therefore,

N(t;C)
[1 − g(C − t + 1)][1 − g(C − t + 2)] · · · [1 − g(C)] , 1 ≤ t ≤ C

gives the farthest prediction for the number of events that occurred at time t ≤
C based on current data as seen in the future as data allow, because the longest
observable reporting delay is C. The denominator is the estimate for Pr{X ≤ C −
t |X ≤ C} = F(C−t)

F (C)
. If it is appropriate to assume F(C) ≈ 1, the reporting delay

adjustment can be written as

N̂(t) = N(t;C)
∏C
x=C−t+1[1 − g(x)] ≈ N(t;C)

F̂ (C − t) . (7.23)

Brookmeyer and Gail (1994) contain a detailed chapter on reporting delays in
AIDS surveillance systems. We adopt their example below for illustration of the
algorithm.
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Table 7.2 The upper-triangle table Table 7.1 filled by numbers from Brookmeyer and Gail (1994)
with C = 4

Example 30 In Table 7.2, the column totals give n+x =∑C−x
t=0 ntx :

n+1 = 308, n+2 = 75, n+3 = 18, n+4 = 2.

Numbers in brackets are N+x =∑C−x
t=0
∑x
j=0 ntj :

N+1 = 836, N+2 = 586, N+3 = 273, N+4 = 88.

These quantities yield:

g(x) =
(

308

836
,

75

586
,

18

273
,

2

88

)

.

The reported number diagnoses at the most recent time t = 4 = C isN(4; 4) = 220.
The probability of being reported by time C = 4 is

[1 − g(1)] [1 − g(2)] [1 − g(3)] [1 − g(4)] = 0.503.

According to (7.23), we adjust this number as N̂(4) = 220/0.503 = 437. Similarly,
we get

N̂(1) = N(1; 4)

1 − g(4) = 187

0.977
= 191

N̂(2) = N(2; 4)

[1 − g(3)] [1 − g(4)] = 331

0.913
= 363

N̂(3) = N(3; 4)

[1 − g(2)] [1 − g(3)] [1 − g(4)] = 325

0.796
= 408

N̂(4) = N(4; 4)

[1 − g(1)] [1 − g(2)] [1 − g(3)] [1 − g(4)] = 220

0.503
= 437.
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Caveats This simple method has a few caveats.

1. It only provides partial reporting delay adjustment if F(C) < 1. The assumption
F(C) ≈ 1 may be suitable for sufficiently large C so that the system can capture
very long delays.

2. It assumes that the reporting delays Xi are i.i.d. among all individuals. This is
debatable. It also assumes that the distribution is F(x) is stationary, that is, it
does not depend on the time t when the events occur. The latter is mostly untrue
in practice because the system can improve, deteriorate, or fluctuate over time.
The distribution is most likely to be non-stationary, as F(x|t). There is a rich
literature on reporting delay adjustments applied to different disease reporting
systems, with statistical models designed to handle non-stationary reporting
delays distributions. For example, Kalbfleisch and Lawless (1991) and Lawless
(1994).

Likelihood Based Approaches for Analyzing Right-Truncated Data

Here we present formal likelihood based approaches for statistical inferences of the
distribution F(x) = Pr(X ≤ x) when X is right-truncated.

The reverse hazard function is defined by

hrX(x) = fX(x)

FX(x)
, (7.24)

where fX(x) = Pr{X = x} when X is discrete and fX(x) is the p.d.f. of X when X
is continuous. The cumulative distribution function F(x) is uniquely determined by
hrX(x) through

FX(x) =
{∏∞

l=x+1{1 − hrX(l)}, X discrete
exp
{− ∫∞

x
hrX(u)du

}
, X continuous

, x > 0.

These are analogous to the relationships between the survival function and the

hazard function, such as Fn =
n−1∏

j=0
(1 − hj ) (3.1) in discrete case, and FX(x) =

exp
(− ∫ x0 hX(u)du

)
(2.5) in continuous case.

Lagakos et al. (1988) proposed to use (7.24) as the key quantity for statistical
inference for right-truncated data. If hrX(x) is identifiable for 0 ≤ x ≤ τ, then the
conditional distribution (7.22) is identifiable through

FX(x)

FX(τ)
=
{∏τ

l=x+1{1 − hrX(l)}, X discrete
exp
{− ∫ τ

x
hrX(u)du

}
, X continuous

, 0 ≤ x ≤ τ.
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Suppose that a sample of right-truncated data is represented by (xi, τi), i =
1, . . . , n subject to the condition xi ≤ τi is observed, in which τi is the right-
truncation time for individual i. This corresponds to Fig. 7.10, τi = C − ti .

If X is continuous, assuming X follows the distribution F(x; θ) which is fully
specified by a vector of parameters θ , one may consider to model the reverse
hazard function parametrically as hrX(x; θ). One may consider maximizing the
(conditional) likelihood given by

L(θ) ∝
n∏

i=1

f (xi; θ)
F (τi; θ) =

n∏

i=1

hrX(xi; θ) exp

{

−
∫ τi

xi

hrX(u; θ)du
}

. (7.25)

In the discrete time framework, one may consider the likelihood function

L ∝
n∏

i=1

f (xi)

F (τi)
=

n∏

i=1

hrX(xi)

τi∏

l=xi+1

{1 − hrX(l)} (7.26)

and treat each value hrX(x) for x = 0, . . . , τ = max(τi) as a “parameter.”
In this case, nonparametric method can be only used to estimate F (x|τ) =
FX(x)/FX(τ) = ∏τl=x+1{1 − hrX(l)}, 0 ≤ x ≤ τ, because hrX(x) is only defined
up to τ.

The Non-parametric Maximum Likelihood Estimation Lawless (1994) re-
wrote (7.26) as

n∏

i=1

hrX(xi)

τi∏

l=xi+1

{1 − hrX(l)} =
τ∏

x=1

[
hrX(x)

n+x {1 − hrX(x)}N+x−n+x
]
. (7.27)

The maximum likelihood estimate is

ĥrX(x) = n+x
N+x

=
∑
i I (xi = x)

∑
i I (xi ≤ x ≤ τi) , x = 0, 1, · · · , τ = max(τi). (7.28)

which has been written as g(x) = n+x
N+x previously in the simple reporting

delay adjustment algorithm. Standard multinomial large sample theory provides an
estimate of the asymptotic covariance matrix

diag

(
ĥrX(x){1 − ĥrX(x)}

N+x

)

.
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Fig. 7.15 Non-parametrically, right-truncated data are unable to identify the entire cumulative
distribution. It is only possible to estimate the conditional distribution conditioning on X ≤ τ

These yield the estimation for the conditional probability:

F̂ ∗(x|τ) = F̂X(x)
FX(τ)

=∏τl=x+1{1 − ĥrX(l)} =∏τl=x+1

(
1 − n+l

N+l

)
,

1 ≤ x ≤ τ = max(τi).
(7.29)

The asymptotic variance estimate (Lawless 1994, 2003) is

v̂ar
{
F̂ ∗(x|τ)} = {F̂ ∗(x|τ)}2

τ∑

x=1

ĥrX(x)

N+x{1 − ĥrX(x)}
. (7.30)

For nonparametric estimation, the identifiable part of FX(x) is {hrX(x) : 1 ≤ x ≤ τ }.
Data do not have information for {hrX(x) : x = τ + 1, · · · ,∞}. Therefore,
nonparametrically, one cannot fully identify the distribution FX(x). The best one
can achieve is to estimate F ∗(x|τ), x ≤ τ. Analogous to Fig. 7.9, the non-
parametric estimation for F̂ ∗(x|τ) is plotted in Fig. 7.15.

Will a Fully Parametric Model f (x; θ) Be Able to Identify the Distribution
from Right-Truncated Data? To study this question, we consider a family of the
scale-shape distributions where the c.d.f. is defined by F(x; λ, ς) = F0 ((λx)

ς ),
where F0(x) is a standard distribution not involving unknown parameters with
F0(0) = 0 and F0(∞) = 1, subject to the condition lim

θ→0

F0(θx
ς )

F0(θ)
= xς (where

θ = λς ). Given the shape parameter ς, if the scale parameter λ is very small, it



262 7 Some Statistical Issues

approaches a simple power function. In other words, for long underlying durations
X, the beginning part of the c.d.f. when x ∈ (0, 1] behaves like the power function
xς . This family includes the Weibull and the log-logistic distributions.

Now consider a pair of observations (x, τ ) subject to x ≤ τ. The condition
lim
θ→0

F0(θx
ς )

F0(θ)
= xς becomes

F(x; λ, ς)
F (τ ; λ, ς) = F0 (λ

ςxς )

F0 ((λτ)
ς )

= F0 (θ (x/τ)
ς )

F0 (θ)
→ (x/τ)ς , as θ = (λτ)ς → 0.

Weibull distribution: F0(x) = 1 − e−x.

F0 ((λx)
ς )

F0 ((λτ)
ς )

= 1 − e−θ(x/τ)ς
1 − e−θ =

(x

τ

)ς ×
[

1 + θ

2

(
1 −
(x

τ

)ς)+ θ2

12

(
1 −
(x

τ

)ς) (
1 − 2
(x

τ

)ς)+O
(
θ3
)]

Log-logistic distribution: F0(x) = x
1+x

F0 ((λx)
ς )

F0 ((λτ)
ς )

=
(x

τ

)ς 1 + θ
1 + θ (x/τ)ς

=
(x

τ

)ς [
1 + θ
(

1 −
(x

τ

)ς)+ θ2
(x

τ

)ς (
1 −
(x

τ

)ς)+O
(
θ3
)]

In these cases, if ς > 1, θ = (λτ)ς → 0 implies that for any ε > 0, λτ must be
sufficiently small such that λτ < ε1/ς . Translating to plain language, it implies that
if the truncation time τ is short whereas the underlying distribution ofX is long (i.e.,
small value of the scale parameter λ), the conditional distribution F0((λx)

ς )
F0((λτ)

ς )
≈ ( x

τ

)ς

does not contain λ.
Now we consider a sample of right-truncated data that is represented by (xi, τi),

i = 1, . . . , n subject to the condition xi ≤ τi and let τ = max(τi). The above
discussion intuitively leads to

1. If the maximum observation window τ = max(τi) is relatively short and
the underlying distribution for X is long, such that λτ � 1, for the above
distributions with ς > 1, data do not contain enough information about the scale
parameter λ.

2. The second and higher order terms of the series expansion of the Weibull and
the log-logistic distributions contain the factor 1 − ( x

τ

)ς . This implies that only
a subset of the data such that xi are neither too close to zero nor too close to
max (τi), but close to 2−1/ς max (τi), may contain some information for λ. This
also requires that max (τi) to be sufficiently large, as well as the specific shape
of the underlying distribution.
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We demonstrate this through two examples, both related to the estimation of the
incubation period based on right truncated data.

Example 31 (Example 29 Continued) Using the subset of 258 adult transfusion
associated AIDS by C =June 30, 1986 (Lagakos et al. 1988, Table 1) with
τ = max (τi) = 8 years for the incubation period from HIV infection to the onset
of AIDS, data are fitted to a Weibull distribution based on the conditional likelihood
(7.25). The estimated shape parameter is ς̂ ≈ 2.1 with the 95% confidence limits
1.85 ≤ ς ≤ 2.38. It implies that the incubation distribution during the first 8 years
since infection increases approximately linearly. With respect to λ, data could only
provide a one-sided 95% confidence limit λ ≤ 0.128. Together with estimated
ς̂ ≈ 2.1, this gives estimated median incubation ≥ 6.6 years. The contour of the
likelihood surface is very flat, which has been shown in earlier discussions (see
Fig. 7.3). The upper limit λup = 0.128 gives λupτ ≤ 0.128 ∗ 8 ≈ 1, and hence
λτ < 1.

Example 32 This example shows a case λτ is rather large and both λ and ς are
precisely estimated. Dr. Ian Johnson at University of Toronto (personal commu-
nication) kindly provided 42 probable SARS cases on April 11, 2003 to assess
the incubation distribution. They had been retrospectively ascertained to single
exposure dates, ranging from March 6 to March 29, 2003. The longest observable
window was τ = max (τi) = 36 days, from the earliest exposure date March 6
to the time when data are compiled April 11. The maximum observed incubation
period in the data was max

i
{xi} = 10 days. A log-logistic distribution was used

in the conditional likelihood (7.25) which gives the maximum likelihood estimate
λ̂ = 0.2395 and ς̂ = 3.413. In this case, λ̂τ = 8.622. We reparameterize the log-
logistic distribution in terms of the median λ−1 and the 95th quantile. The median
was estimated as λ̂−1 = 4.175 (days) with 95% confidence limits 3.453–5.139 days.
The 95th quantile is defined as t95 such that Pr{X ≤ t95} = 0.95. It was estimated as
t̂95 = 9.9 (days) with 95% confidence limits 6.569–17.211 days. For the goodness-
of-fit of the log-logistic model, we compare the cumulative distributions over the
parameters ranges of the log-logistic distribution (smooth lines) as well as the non-
parametric estimate based on (7.29) as what data suggest. Figure 7.16 illustrates
these estimates.

7.4 Some More Discussions About Back-Calculation

Back-calculation has been briefly mentioned twice in this chapter. Once was for
the demonstration of the convolution of the systematic component and the link
component in a generalized nonlinear model. Another time was for the discussion
of the non-identifiability problem.
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Fig. 7.16 Illustration of fitting the log-logistic distribution to right-truncated incubation times
based on a small sample during the 2003 SARS outbreak and comparison with the non-parametric
estimate

The convolution, given by

μ(t; θ, ψ) =
{ ∫ t

0 i(u; θ)f (t − u|u;ψ)du, continuous time model
∑t
u=0 i(u; θ)f (t − u|u;ψ), discrete time model

.

is to link the data based on the occurrence of the subsequent observable events from
a counting process with mean functionμ(t; θ, ψ) in order to estimate the parameters
in the systematic part of the model i(u; θ), which is the incidence intensity of
the non-observable initial events. The observable events could be onset of clinical
symptoms, and the initiating events could be the infection of an agent which then
leads to clinical symptoms modelled according to an incubation distribution.

For discussion purposes, let us suppose an ideal situation where for every
individual in the data, the time of the initiating event can be back-dated. In this
case, the upper triangle matrix as shown in Table 7.1 can be established, in which

ntx = # {initiating event at time t, subsequent event at time t + x} .

where t = 0, 1, 2, · · · , C denote the time of the initiating event and x =
0, 1, · · · , C− t . In this way, the back-calculation problem is essentially the same as
the right-truncation problem as applied in the reporting delay analysis.

The expected values are

E[ntx] = μ(t, x) = i(t)f (x).
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Fig. 7.17 Schematic illustration of the expected counts of the marginal totals i1(t |C), i2(t) and
the theoretical incidence of the initial events i1(t) at C = 41.

The expected values of the row totals are E[N(t |C)] � i(t |C), which might be
called the right-truncated incidence of the initial events,

i(t |C) = i(t)

C−t∑

x=0

f (x) = i(t)F (C − t), t = 0, 1, · · · , C. (7.31)

The expected values of the column totals are

μ(t) =
t∑

s=0

E[ns,t−s] =
t∑

s=0

i(s)f (t − s). (7.32)

We notice that (7.31) is the model in reporting delay analysis, provided that F(C−t)
can be estimated; (7.32) is the model in back-calculation provided that f (t − s) is
fully specified. Figure 7.17 conceptually illustrates (7.31), (7.32) and i(t) on the
same graph.

Even though one cannot completely identify i(t) from f (x), retrospectively
ascertained data still contain some information that one may assess either the trend
of the initiating event or the duration distribution with caution.
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SinceE[ntx] = μ(t, x) = [i(t) F (C − t)]×
[
f (x)
F (C−t)

]
, data (ti , xi) are sufficient

for the first factor i(t) F (C− t). It can be shown that the minimal sufficient statistics
for i(t)F (C − t) are the row totals N(t |C) = ∑C−t

x=0 ntx . Conditioning on the row
totals, the likelihood function becomes

L ∝
n∏

i=1

f (xi)

F (C − ti ) =
n∏

i=1

f (xi)

F (τi)

Therefore the likelihood function (7.26) for analyzing right-truncated data is the
conditional likelihood by treating i(t) as the nuisance parameter. As discussed
previously, data may not be able to fully identify the distribution F(x) but only
up to τ = max(τi) as a conditional distribution.

On the other hand, if F(x) is fully specified, then F(C − t) is precisely known.
i(t) is estimated through the marginal totals N(t |C) as

î(t) = N(t |C)
F(C − t) (7.33)

in the same logic as the reporting delay adjustment.
In general, back-calculation methods are developed assuming that each individ-

ual in the data only has information on the onset of the subsequent event. Therefore
{ntx} are not observable and N(t |C) are not observable. The only observable data
are the column totals with mean value (7.32).

There is plenty of literature on different back-calculation methods and algo-
rithms, based on continuous time or discrete time models, applied to the studies
of HIV/AIDS, viral hepatitis, and many other infectious diseases. We do not intend
to write this section about these methods and algorithms, except for the following
brief mentioning.

Since the distribution f (x) is fully specified, had the incidence function i(t)
been fully specified with all the parameters known, it would have been possible
to compute the expected values E[ntx] in each cell of the upper triangle matrix
in Table 7.1 based on the observed column totals using a multinomial distribution
(Becker et al. 1991). On the other hand, had {ntx} been observed, then the back-
calculation would have been reduced to a simple algorithm based on (7.33). This
is the core of the Expectation-Maximization-Smoothing (EMS) algorithm (Becker
et al. 1991) widely used in many back-calculation applications. A generalization of
the EMS algorithm based on more than one source of data is given by Yan et al.
(2011).
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7.5 Problems and Supplements

7.1 Incidence data of the confirmed and probable cases of the Ebola outbreak in
the Democratic Republic of Congo (DRC, August 2018–January 2019) are
publicly available in the World Health Organization website. Data are manually
extracted using WebPlotDigitizer (Rohatgi 2018). In this exercise, data are
aggregated as weekly counts and we consider a subset of data with dates of
symptom onset starting from August 20, 2018 onwards. We define Week Zero
as the week August 20–26, 2018. By the end of Week 9 (i.e., October 28, 2018),
there were a total 144 reported cases starting with week of onset at Week Zero.
They are cross-tabulated by week of onset and week of report.

Week of Week of report

onset 0 1 2 3 4 5 6 7 8 9

0 1 3 2 0 0 0 2 0 0 0

1 3 9 0 0 0 0 0 0 0

2 0 6 0 0 0 0 0 0

3 2 4 1 0 1 0 0

4 0 9 2 0 0 0

5 3 12 2 3 0

6 7 6 13 0

7 0 12 4

8 7 26

9 4

(a) Plot the row totals and the column totals on the same graph and comment
on the meaning of these marginal totals.

(b) Reporting delays x = 0, 1, . . . are calculated by weeks. Diseases that are
reported during the same week of the symptoms onset are assigned with
x = 0. Calculate the frequency of cases with x = 0, 1, 2, . . . , 9 (defined as
the numbers of cases with x = 0, 1, 2, . . . , 9 divided by 144) and calculate
the cumulative frequency by Week 3. Do you think the reporting delay is
that short?

(c) Moving forward, by the end of Week 14 (ending on December 2, 2018)
there were a total of 330 reported cases starting with week of onset at
Week Zero. The cross-tabulation table is updated. Plot the row totals of
the updated table and the row totals of the table ending on Week 9 on the
same graph.

(d) Calculate the frequency cases with x = 0, 1, 2, . . . , 14 (defined as the
numbers of cases with x = 0, 1, 2, . . . , 14 divided by 330) and calculate the
cumulative frequency by Week 7. Do you think it is because the reporting
delay is getting longer or something else?
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Wk.of Week of report
onset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 3 2 0 0 0 2 0 0 0 0 1 0 1 0
1 3 9 0 0 0 0 0 0 0 0 1 2 0 0
2 0 6 0 0 0 0 0 0 0 0 0 0 0
3 2 4 1 0 1 0 0 0 5 0 0 0
4 0 9 2 0 0 0 0 0 0 0 0
5 3 12 2 3 0 0 6 0 0 0
6 7 6 13 0 0 0 0 0 0
7 0 12 4 2 7 0 0 0
8 7 26 1 2 1 2 0
9 4 12 9 3 2 0
10 7 21 3 4 0
11 9 8 7 0
12 22 17 0
13 12 8
14 11

(e) The following table converts the table above to represent ntx as defined in
Table 7.1. The column totals represent n+x =∑C−x

t=0 ntx =∑i I (xi = x).

Use the method in Brookmeyer and Gail (1994) as illustrated in Fig. 7.14
to estimate the weekly number by symptom onset up to the end of Week 9,
including cases that were not yet reported.

Week of Reporting delay x

onset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 3 2 0 0 0 2 0 0 0 0 1 0 1 0

1 3 9 0 0 0 0 0 0 0 1 2 0 0 0

2 0 6 0 0 0 0 0 0 0 0 0 0 0

3 2 4 1 0 1 0 0 0 0 0 0 0

4 0 9 2 0 0 0 0 0 0 0 0

5 3 12 2 3 0 0 6 0 0 0

6 7 6 13 0 0 0 0 0 0

7 0 12 4 2 7 0 0 0

8 7 26 1 2 1 2 0

9 4 12 9 3 2 0

10 7 21 3 4 0

11 9 8 7 0

12 22 17 0

13 12 8

14 11

n+x 88 153 44 14 11 2 8 0 5 1 2 1 0 1 0

N+x =∑C−x
t=0
∑x
j=0 ntj

N+x 88 230 254 229 216 183 161 122 102 77 53 43 30 25 10
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(f) The following figure displays Ebola cases in DRC by week of onset.
The bars represent data as reported by Week 9, Week 14, and Week
22. Reporting delays were adjusted using data by the end of Week 14,
with point estimates as well as lower and upper 95% confidence limits
represented by lines, using the method in Lawless (1994). Consult the
original paper and examine the assumptions in the algorithm. Comment
on the performance of this method as applied to the Ebola data and discuss
potential violations of the assumptions.

7.2 The following figure compares the trends of the 2003 SARS outbreak in Canada
based on probable cases reported to Health Canada on April 22, 2003. The dark
bars represent the numbers by date of symptom onset whereas the pink bars
represent the numbers by date of report. There are several important dates to
remember:

• March 13: WHO started worldwide surveillance on atypical pneumonia
(later renamed as SARS);

• March 25: SARS became reportable in Canada and surveillance was inten-
sified;

• April 15: health officials made a news release about a new cluster of SARS
cases in Toronto related to a religious group;

• April 19–20: Easter long weekend.
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All these events affected the trend based on date of report. Comment on the
differences of the trend based on date of onset and date of report. Do you think
the trend by date of onset after April 12 was declining? Do you think that the
epidemic peaked around April 16? Do you think the simple reporting delay
method in Problem 7.5 is suitable?

7.3 A case reporting surveillance system is able to document the year of birth as
well as the number of new diagnoses of the disease by year with respect to
a chronic viral infectious disease. Because the disease natural history is very
long (years or decades), the trend of new diagnoses of the disease does not
reflect the trend of new infections. There is not much information with respect
to the distribution from the time at infection to the time at diagnosis. Empirical
evidence has suggested that a log-logistic distribution given by (2.24) is suitable
to capture the general shape of such a distribution, with median λ−1 and shape
parameter ς.

(a) The following figure summarizes some results for a specific birth-cohort.
For simplicity, we take year zero to correspond the year of birth and the
x-axes in the figure is labelled as age. Surveillance data are shown as
circles, starting from age 34 years with peak age in the early 40s. However,
auxiliary epidemiologic evidence has shown that the peak of new infections
is likely to be in the range between 25 and 34 years of age. The figure
shows differently assigned values for λ−1 and ς yield differently estimated
number of new infections by age/year, but they all provide equally good fit
to data. Comment on: in spite of the very different incidence curves (i.e.
estimated number of new infections by age/year), is there any feature that
is relatively robust with respect to the values of λ−1 and ς?
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(b) Which of the three incidence curves (labelled as 1, 2 and 3) correspond to
which of the following assumptions?

1. a log-logistic distribution with median λ−1 = 12 years and shape
parameter ς = 3.8;

2. a log-logistic distribution with median λ−1 = 12 years and shape
parameter ς = 10.0;

3. a log-logistic distribution with median λ−1 = 14 years and shape
parameter ς = 12.0.



Chapter 8
Characterizing Outbreak Trajectories
and the Effective Reproduction Number

8.1 Introduction

Emerging and re-emerging infectious diseases pose major challenges to pub-
lic health worldwide (Fauci and Morens 2016). Fortunately mathematical and
statistical inference and simulation approaches are part of the toolkit for guid-
ing prevention and response plans. As the recent 2013–2016 Ebola epidemic
exemplified, an unfolding infectious disease outbreak often forces public health
officials to put in place control policies in the context of limited data about
the outbreak and in a changing environment where multiple factors positively or
negatively impact local disease transmission (Chowell et al. 2017). Hence, the
development of public health policies could benefit from mathematically rigorous
and computationally efficient approaches that comprehensively assimilate data
and model uncertainty in real time in order to (1) estimate transmission rates,
(2) assess the impact of control interventions (vaccination campaigns, behavior
changes), (3) test hypotheses relating to transmission mechanisms, (4) evaluate
how behavior changes affect transmission dynamics, (5) optimize the impact of
control strategies, and (6) generate forecasts to guide interventions in the short and
long terms.

Mathematical models are quantitative frameworks with which scientists can
assess hypotheses on the potential underlying mechanisms that explain patterns in
the observed data at different spatial and temporal scales (Chowell 2017). Model
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complexity can be characterized in terms of the number of variables and parameters
that characterize the dynamic states of the system, spatial-temporal resolution (e.g.,
discrete vs. continuous time), and design (e.g., deterministic or stochastic). While
agent-based models, formulated in terms of characteristics and interactions among
individual agents, have become increasingly used to model detailed processes often
occurring at multiple scales (e.g., within host vs. population level), mean-field
models based on systems of ordinary differential equations are widely used in
the biological and social sciences. These dynamic models comprise systems of
equations and their parameters that together quantify the temporal and spatial states
of the system via a set of interrelated dynamic quantities (e.g., susceptibility levels,
disease prevalence) (Banks et al. 2009, 2014).

In Sect. 7.1, phenomenological population models refer to stochastic and deter-
ministic models based on conceptual assumptions regarding the population. We used
the term phenomenological to distinguish models with respect to assumptions at the
level of individuals along the progression of the disease’s natural history. We stated
that phenomenological population models carry tacit assumptions at the level of
individuals.

Deterministic models composed by a system of ordinary differential equations
follow this general form:

x
′
1(t) = f1(x1, · · · , xh;�)
x

′
2(t) = f2(x1, · · · , xh;�)
...

x
′
h(t) = fh(x1, · · · , xh;�)

where x
′
i (t) denotes the rate of change of the system states xi, i = 1, . . . , h and

� = (θ1, . . . , θm) is the set of model parameters.
In general, the complexity of a model is a function of the parameters that are

needed to characterize the states of the system and the spectrum of the dynamics that
can be recovered from the model (e.g., number of equilibrium points, oscillations,
bifurcations, chaos). A trade-off exists between the level of model complexity and
the ability to reliably constrain a model to a specific situation.

8.2 Approximations with Simple Functions

Time-series, loosely called “epi-curves,” are widely used in epidemiologic inves-
tigation for different purposes. Some make empirical comparisons for spatial and
temporal patterns based on data from official surveillance reports. For example,
Schanzer et al. (2010) compared epidemic curves on weekly confirmed seasonal
influenza-A cases in Canada for multiple influenza seasons as well as with similar
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curves in the United States and Europe. Some associate the comparison of spatial
patterns with important scientific questions in mind, such as making inferences on
transmissibility R0 and disease impact such as mortality (e.g., Chowell et al. 2007).
Others use epidemic curves as information for action. During an infectious disease
outbreak, the question of concern is more likely about the current status of the
trend, whether it is increasing or decreasing. Sometimes various ad hoc curve fitting
techniques are employed to smooth fluctuating data points in order to make short-
term projections, forecast health care needs, guide public health decision making,
and so on.

In this section, we choose phenomenological models with explicit simple forms
such as the sub-exponential function (4.58), the logistic growth (4.59), and various
generalized logistic growth functions. As previously discussed in Chaps. 4, 5 and 7,
parameters in these models are descriptive by capturing the essence of a time-
series data based on a disease outbreak. Although they may not carry any scientific
hypotheses regarding the transmission dynamics, they provide an approach to
investigate empirical patterns in observed data (Chowell et al. 2016).

In addition, we choose these simple models because

1. most of the transmission dynamic models defined by systems of differential
equations do not have explicit solutions;

2. most of the numeric solutions of these equations can be closely approximated by
one of the generalized logistic functions;

3. for those models that do have explicit solutions, they are either logistic or
generalized logistic functions;

4. time-series data usually do not have sufficient information to identify the
“mechanical assumptions” explicitly modeling the transmission dynamics.

8.2.1 The Sub-exponential Growth Function and the
Generalized Growth Model (GGM)

This phenomenological model is useful to forecast epidemic growth pat-
terns (Viboud et al. 2016; Chowell and Viboud 2016; Shanafelt et al. 2017; Pell
et al. 2018a). In particular, previous analyses highlighted the presence of early sub-
exponential growth patterns in infectious disease data across a diversity of disease
outbreaks (Viboud et al. 2016).

The sub-exponential growth functions have been previously discussed in
Sect. 4.5.2, in which we restricted our definition (4.56) as convex functions C(t)
bounded by the linear growth from below and the exponential growth from above,
that is, i0 (1 + rt) ≤ C(t) ≤ i0ert .We have pointed out that the classic exponential
growth function is associated with a set of strong mathematical assumptions and
conditions when the system is at (disease-free) equilibrium, whereas during the
initial stage of an outbreak in observed data, sub-exponential growth patterns are
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more common. We have previously highlighted several mechanisms that potentially
result in such growth patterns.

In particular, we consider the model C(t) = i0(1 + rvt)1/v, 0 < v ≤ 1 for the
cumulative incidence. If v → 0, this model leads to the well-known exponential
growth model, which applies both to the cumulative incidence C(t) and to the
instantaneous incidence C′(t), while v = 1, corresponds to the linear growth of
C(t) and constant incidence per unit of time. C(t) = i0(1 + rvt)1/v , 0 < v ≤ 1, are
illustrated in Fig. 4.11 in Chap. 4, as convex growth functions bounded by the linear
growth and the exponential growth.

The generalized-growth model (4.61) in Viboud et al. (2016), which is also called
the power law exponential model by Banks (1994), is defined by the differential
equation

C′(t) = rC(t)p, 0 ≤ p ≤ 1 (8.1)

which allows relaxing the assumption of exponential growth via a “deceleration of
growth” or “scaling of growth” parameter, p. C′(t) describes the incidence growth
phase over time t ; the solution C(t) describes the cumulative number of cases at
time t.

When i0 = 1 and letting p = 1 − v, the sub-exponential function C(t) =
(1 + rvt)1/v is the solution of (4.61).

In semi-logarithmic scale, exponential growth patterns are visually evident when
a straight line fits well several consecutive disease generations of epidemic growth,
whereas a downward curvature in semi-logarithmic scale indicates early sub-
exponential growth dynamics.

8.2.2 The Simple Logistic Function

In Chap. 5, we introduced many types of phenomenological models involving the
dynamics of the process of interest (e.g., population or transmission dynamics).
These types of models are often formulated in terms of a dynamic system describing
the spatial-temporal evolution of a set of variables, and they are useful to evaluate the
emergent behavior of the system across the relevant space of parameters (Chowell
et al. 2016). In particular, compartmental models are based on systems of ordinary
differential equations that focus on the dynamic progression of a population through
different epidemiological states (Bailey 1975; Anderson and May 1991; Brauer
2006; Lee et al. 2016). While these models may not be useful for testing scientific
hypotheses and formulating theory on disease transmission, they are very useful in
practice such as for curve fitting, prediction as well as formulating of some statistical
models, such as the back-calculation. One of the most memorable quotes from the
wordsmith and former New York Yankees catcher, Yogi Berra, is:

In theory, theory and practice are the same thing; in practice, they are different.
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Several models, such as the SI model, the SIS model, and the model defined by
(8.5), produce the logistic epidemiologic curves. Many other models also produce
logistic-like epidemiologic curves that can be used to explain patterns in the
observed data.

The logistic growth function (4.59) is one of the oldest growth functions with the
following equivalent forms

Clogis(t) = i0K

i0 + (K − i0) e−ρt = K

1 + 1
v
e−ρt

= K

1 + e−ρ(t−α) (8.2)

where v = i0
K−i0 and α = 1

ρ
log K−i0

i0
= − 1

ρ
log v. In all these representations, there

are three functionally independent parameters.
The logistic function was first proposed by Verhulst (1838). For modeling

population growth, the logistic model was used and popularized by Pearl (1925),
Pearl and Reed (1920), and Yule (1925). The expression

Clogis(t) = K

1 + e−ρ(t−α) , − ∞ < t, α < ∞, ρ,K > 0. (8.3)

characterizes the time-series data. The parameters (ρ, α, K) are descriptive about
the general shape and are useful to fit to time-series data, of which ρ is the scale
parameter associated with the initial growth; α is a location parameter that is also
the inflexion point at which the increase of Clogis(t) turns from convex to concave;
K = limt→∞ C(t) is the upper limit, referred to as the carrying capacity.

Many infectious disease models lead to the exact logistic growth form or growth
functions very closely resembling logistic growth.

The deterministic SIS model produces the logistic function (5.14) for the number
of infectious individuals at time t, as

Id(t) = mi0(β − γ )
βi0 + (m (β − γ )− βi0) e−(β−γ )t . (8.4)

If β − γ > 0, Id(t) increases monotonically and approaches the value m(1 − γ /β).
It is the same as logistic function (4.59) via re-parametrization K = m(1 − γ /β)
and ρ = β − γ. Although in (8.4), the parameters (m, i0, β, γ ) are associated
with hypotheses about the transmission dynamic, from the perspective of fitting the
model to data, Id(t) only has three independent parameters. In fact, the time-series
data that fit well with the logistic function do not have the information to test the
hypothesis H0: γ = 0 in the SIS model.

The logistic function can also arise from other deterministic transmission models.
Tan (2000) considered the following compartment model

⎧
⎪⎨

⎪⎩

d
dt
Sd(t) = −β Sd(t)Id (t)

Sd (t)+Id (t)
d
dt
Id(t) = β

Sd(t)Id (t)
Sd (t)+Id (t) − γ Id(t)

d
dt
Zd(t) = γ Id(t)− δZd(t)

, (8.5)
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where Sd(t) and Id(t), as in the SIS and SIR models, represent the numbers of
susceptible and infected individuals in the population. The main difference from the
deterministic models discussed before is that, in this model, all infectious individu-
als will progress to Compartment Z. Once individuals enter Compartment Z, they
no longer make contacts with susceptible individuals. For instance, Compartment Z
may represent advanced illness or being isolated. Thus the instantaneous infection
function is modified as β Sd(t)Id (t)

Sd (t)+Id (t) .
Let ψ(t) = Id (t)

Sd (t)+Id (t) be the proportion of infected individuals before entering
Compartment Z, we have

d

dt
[Sd(t)+ Id(t)] = −γ Id(t) = −γψ(t) [Sd(t)+ Id(t)] ,
1

Sd(t)+ Id(t)
d

dt
Id(t) = ψ(t) {[1 − ψ(t)]β − γ } .

It follows that

d

dt
ψ(t) = [Sd(t)+ Id(t)] ddt Id(t)− Id(t) ddt [Sd(t)+ Id(t)]

[Sd(t)+ Id(t)]2

= 1

Sd(t)+ Id(t)
{
d

dt
Id(t)− ψ(t) d

dt
[Sd(t)+ Id(t)]

}

= ρψ(t) [1 − ψ(t)] ,

where ρ = β − γ. Clearly, ψ(t) follows the logistic growth given by

ψ(t) = ψ(0)

ψ(0)+ [1 − ψ(0)] e−ρt

and ψ(t)→ 1 as t → ∞.

8.2.3 Generalized Logistic Functions

The logistic differential equation

d

dt
C(t) = ρK

(
C(t)
K

) (
1 − C(t)

K

)

assumes that the per capita growth rate decreases linearly with population size or
density. Its solution is the logistic function Clogis(t) = i0K

i0+(K−i0)e−ρt which can be
also expressed as
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Clogis(t; ρ, α,K) = K

1 + e−ρ(t−α) , (8.6)

= K

(

1 − 1

1 + eρ(t−α)
)

, (8.7)

where −∞ < t < ∞ with three parameters (ρ, K, α): ρ > 0 is the scale parameter,
−∞ < α < ∞ is a location parameter and K = limt→∞ C(t) > 0 is the carrying
capacity. It is symmetric in the sense that α is also the inflexion point at which
Clogis(α) = K/2. Given K and the initial value i0 = Clogis(0), α = 1

ρ
log K−i0

i0
.

The first derivative d
dt
Clogis(t) is

Ilogis(t) = d

dt
Clogis(t) = ke−ρ(t−α)

(
1 + e−ρ(t−α))2

,

where k = ρK. It reaches the maximum value at t = α such that Ilogis(α) = k
4 .

Meanwhile, limt→∞ Ilogis(t) = 0.
The logistic function may be generalized in two directions: (1) asymmetric

function for I (t) by adding a shape parameter θ > 0; (2) limt→∞ I (t) = c > 0,
where I (t) = d

dt
C(t). A further generalization is to combine (1) and (2) to obtain

more flexible forms in order to fit empirical data, especially for diseases with
apparent endemic equilibrium. These will be discussed below.

Generalization Towards Asymmetry: The Richards Model and Its
Variations

The symmetric shape of the logistic function makes it inflexible to fit data suggesting
asymmetry. There are different ways to create asymmetric generalized logistic
forms, such as

IGlogis(t) = 1

1 + e−ρ(t−α)
ke−η(t−α)

1 + e−η(t−α)

where η > 0 may be different from the initial growth rate ρ. In this generalization,
both parameters η and ρ act as scale parameters of time. It is inconvenient to
interpret a model representing a time-series with two different scale parameters.
In addition, it does not correspond to the generalization of the logistic differential
equation.

The Richards growth curve (Richards 1959) is one of the best known generalized
logistic functions. It adds a shape parameter θ > 0 to scale the proportion C(t)/K
in the logistic differential equation. The result is the theta-logistic equation

d

dt
C(t) = rK

(
C(t)
K

)(

1 −
[
C(t)
K

]θ)

, θ > 0. (8.8)
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Causton and Venus (1981) show that, when r > 0 and θ > 0, given C(0) = i0,

CRichards(t) = K
(
1 +Qe−rθt)1/θ

, (8.9)

where Q =
(
K
i0

)θ − 1. If we re-parameterize the scale parameter ρ = rθ and let

Q = eρα , (8.9) becomes the following generalized logistic growth function

CRichards(t; ρ, α, θ,K) = K
[
1 + e−ρ(t−α)]1/θ

, (8.10)

which is directly adding the shape parameter into (8.6). In (8.10), ρ, θ,K > 0 and
−∞ < α < ∞.

The first derivative d
dt
CRichards(t) is

IRichards(t) = ke−ρ(t−α)
[
1 + e−ρ(t−α)] θ+1

θ

(8.11)

where k = ρ
θ
K.

The inflexion point for CRichards(t) is

t∗ = 1

rθ

(

ln
Q

θ

)

= α − 1

ρ
log θ.

At the inflexion point, CRichards(t
∗) = K

(1+θ)1/θ . When θ < 1, CRichards(t
∗) < K/2;

when θ = 1, CRichards(t
∗) = K/2 and when θ > 1, CRichards(t

∗) > K/2. At the
inflexion point, IRichards(t) arrives at the peak value IRichards(t

∗) = ρK

(1+θ) θ+1
θ

.

The Richards model has been fitted to a range of epidemic curves that exhibit
sigmoid cumulative growth patterns (Turner et al. 1976; Ma et al. 2014; Wang et al.
2012; Hsieh and Cheng 2006; Dinh et al. 2016).

A Variation of the Richards Model Instead of adding the shape parameter θ into
(8.6), we add it into (8.7) and we get the generalized logistic growth function

CRichards2(t;K, ρ, α, θ) = K

(

1 − 1
[
1 + eρ(t−α)]1/θ

)

, K, ρ, α, θ > 0.

(8.12)

Both generalized logistic functions are related through

CRichards2(t;K, ρ, α, θ) = K − CRichards(−t;K, ρ,−α, θ).
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It can be easily shown that (8.12) is the solution of the theta-logistic equation

d

dt
C(t) = rK

(

1 −
[

1 − C(t)

K

]θ)(

1 − C(t)

K

)

, θ > 0 (8.13)

with

CRichards2(t) = K

(

1 − 1
[
1 +Q2erθt

]1/θ

)

(8.14)

whereQ2 =
(

K
K−i0
)θ − 1. Clearly, CRichards2(t) in (8.14) and in (8.12) is the same,

via re-parametrization ρ = rθ andQ2 = e−ρα.
The first derivative d

dt
CRichards2(t) is

IRichards2(t) = keρ(t−α2)

[
1 + eρ(t−α2)

] θ+1
θ

(8.15)

where k = ρ
θ
K.

If the initial value i0, the scale parameter ρ, the shape parameter θ , and the
carrying capacityK are all the same in both (8.10) and (8.12), the location parameter
α in the corresponding solutions (8.10) and (8.12) is different. We denote them
separately as α1 and α2, respectively. They are

α1 = 1
ρ

log

[(
K
i0

)θ − 1

]

, with respect to (8.9)

α2 = − 1
ρ

log

[(
K
K−i0
)θ − 1

]

, with respect to (8.14).

The inflexion point for CRichards2(t) is t∗2 = α2 + 1
ρ

log θ and CRichards2(t
∗
2 ) =

K
(

1 − 1
(1+θ)1/θ

)
. At the inflexion point, IRichards2(t) reaches the peak value

IRichards2(t
∗
2 ) = ρK

(1+θ) θ+1
θ

which is the same as the peak value of IRichards(t).

Figure 8.1 comparesCRichards(t) vs.CRichards2(t), and IRichards(t) vs. IRichards2(t),
given K = 1000, i0 = 1 and θ = 0.4. Since ρ is a scale parameter with respect to
time, without losing generality, we let ρ = 1.We have

α1 = 2.6979, t∗1 = 2.6979 − log 0.4 = 3.6142

α2 = 7.8233, t∗2 = 7.8233 + log 0.4 = 6. 907

and IGlogis1(t
∗
1 ) = IGlogis2(t

∗
2 ) = 308.
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Fig. 8.1 Plots of CRichards(t), IRichards(t), CRichards2(t), and IRichards2(t) given K = 1000, i0 = 1,
θ = 0.4. The time scale is standardized according to the scale parameter ρ. The maximum values

for IRichards(t) and IRichards2(t) are equal: ρK (1 + θ)− θ+1
θ = 308 at set parameters

The variation of the Richards model (8.12) is closely related to disease transmis-
sion model (8.5). In (8.5), ψ(t) = Id (t)

Sd (t)+Id (t) is a simple logistic growth function.
However, Id(t) in (8.5) is an asymmetric bell-shaped curve

Id(t) = M(0)
ψ(0)eρt

{[1 − ψ(0)] + ψ(0)eρt }1+γ /ρ , (8.16)

where M(0) = Sd(0) + Id(0). If we re-parameterize θ = ρ/γ and ψ(0) =
(

K
K−i0
)θ − 1 ≡ Q2, then (8.16) becomes

Id(t) = M(0)
Q2e

ρt

{(
K
K−i0
)θ +Q2eρt

} θ+1
θ

.

On the other hand, (8.15) with re-parametrization is

IRichards2(t) = k
Q2e

ρt

{1 +Q2eρt } θ+1
θ

.



8.2 Approximations with Simple Functions 283

Thus IRichards2(t) approximates Id(t) in (8.16) well when K is large and i0 is small.
The model given by (8.15) is descriptive and captures the essence of time-series

data based on a disease outbreak without any scientific hypothesis regarding the
transmission dynamics. It has been used as approximations for some simple com-
partment models for HIV/AIDS, as discussed in detail in Chap. 9 of Brookmeyer
and Gail (1994) and Chap. 1 of Tan (2000).

The following example illustrates the generalized logistic functions (8.12) and
(8.15) as good approximations to two different SIR-type models and an SEIR model.

Example 33 In this example, we set K = 9009, α = 53.46, ϕ = 0.72, ρ =
0.155 in (8.15). The parameter ϕ = 0.72 < 1 gives a slightly skewed incidence
function Id(t) with peak time t∗ = 55.579. According to this model, the final size is
C(∞) = 9009. Both (8.12) and (8.15) approximate very well with the incidence and
cumulative incidence functions, which are implicitly determined by the following
selected deterministic models (Fig. 8.2):

1. the SIR model given by (5.24) with m = S(0) + I (0) = 14,300, β = 0.395,
γ = 1/4, corresponding to R0 = 1.58 and final size 9025;

2. the SEIR model given by (5.53) with m = S(0) + I (0) = 10,150, β = 0.6,
α = 1/3.4, γ = 1/4, corresponding to R0 = 2.4 and final size 8918;

3. an SIR model governed by the integro-differential equations

⎧
⎨

⎩

d
dt
S(t) = −β S(t)I (t)

n
d
dt
I (t) = i(t)− ∫ t0 i(s)fI (t − s)ds, where i(t) = β

S(t)I (t)
n

d
dt
R(t) = ∫ t0 i1(s)fI (t − s)ds.

Fig. 8.2 Illustration of generalized logistic models Cd(t) and id (t) with comparison from three
different transmission models in Example 33
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with gamma distributed infectious period fI (x) with mean value μI = 4 and
shape parameter κ = 3, along with m = S(0) + I (0) = 17,500, β = 0.35,
corresponding to R0 = 1.4 and final size 8945.

Other Variations and Generalizations An alternative to (8.13) is

d

dt
C(t) = rK

[
C(t)

K

]θ (

1 − C(t)

K

)

, (8.17)

Although it looks much simpler than (8.13), there is no explicit solution, but C(t)
can be solved numerically. It is also a sigmoid growth function with an inflexion
point t∗ at which C(t∗) = p

p+1K.

Other variations include

d

dt
C(t) = r [C(t)]θ

(

1 − C(t)

K

)

, (8.18)

or the generalized Richards model (Turner et al. 1976) with two shape parameters
θ1, θ2 > 0:

d

dt
C(t) = r [C(t)]θ1

(

1 −
[
C(t)

K

]θ2
)

. (8.19)

The model (8.19) with 0 < θ1 ≤ 1 was used to account for initial sub-exponential
growth dynamics (Viboud et al. 2016). In this case, θ1 is called the “deceleration of
growth” parameter. This model has been useful to generate post-peak forecasts of
Zika and Ebola epidemics (Pell et al. 2018a; Chowell et al. 2016).

Generalizations of the Logistic and Richards Functions So That
limt→∞ I (t) = c > 0

It is straightforward to generalize Ilogis(t) into

Ilogis-c(t) = 1

1 + e−ρ(t−α)
(
ke−ρ(t−α)

1 + e−ρ(t−α) + c
)

. (8.20)

It returns to the logistic model when c = 0.However, Ilogis-c(α) is not the maximum
value unless c = 0 because I ′

logis-c(α) = 1
4cρ ≥ 0. The maximum value is achieved

when t = t∗ = α− 1
ρ

log k−c
k+c and the maximum value is Ilogis-c(t

∗) = 1
4k (k + c)2 .

Similarly, one can generalize the Richards function (8.11) as

IRichards-c(t) = 1

1 + e−ρ(t−α)

⎛

⎝ ke−ρ(t−α)
[
1 + e−ρ(t−α)] 1

θ

+ c
⎞

⎠ (8.21)
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that includes five parameters. It returns to the Richards model (8.11) when c = 0;
returns to (8.20) when θ = 1 and returns to the logistic model when c = 0 and
θ = 1. It satisfies IRichards-c(−∞) = 0 and IRichards-c(∞) = c ≥ 0. It reaches the
peak value when t = t∗ that satisfies

ke−ρ(t−α) + cθ
(
e−ρ(t−α) + 1

) 1
θ = kθ.

For the special cases, t∗ = α when c = 0 and θ = 1; t∗ = α − 1
ρ

log θ when c = 0

and t∗ = α − 1
ρ

log k−c
k+c when θ = 1.

A different generalization of (8.20) is

Ilogis-c-2(t) = 1

1 + e−ρ(t−α)
[
ke−η(t−α)

1 + e−η(t−α) + c
]

(8.22)

where
ρ = rate of increase at the beginning,
η = rate of convergence to the asymptote.
a = a suitable location parameter,
c = limt→∞ Ilogis-c-2(t) = asymptote.
The generalized logistic function given by (8.22) has been adopted as one of

the parametric models for the incidence of new HIV infections in a computer
package, Spectrum (Avenir Health), which is endorsed by the Joint United Nations
Programme on HIV/AIDS (UNAIDS) to compile estimates of HIV prevalence in
different countries around the world.

Both (8.21) and (8.22) have five parameters. They may be used to approximate
SEIRS models in a constant population with demography turn-over. A comparison
is shown in Fig. 8.3. However, it is inconvenient to interpret the model (8.22)
representing a time-series with two different scale parameters, η and ρ.

These generalized logistic functions can be used to capture the essence of time-
series data for prediction purposes. By adding more parameters, one can create
models that can capture a broad variety of epidemic curves. For example, the
following 6-parameter function

Itwin−peak−c(t) = k1e
−ρ(t−α1)

(1 + e−ρ(t−α1))2
+ 1

1 + e−ρ(t−α2)

[
k2e

−ρ(t−α2)

1 + e−ρ(t−α2)
+ c
]

is capable of creating a twin peaked curve that approaches an asymptote c > 0.
However, the time-series data, especially data from a single source, do not have
enough information to test hypotheses or make statistical inferences on param-
eters with specific biological and epidemiological interpretations in transmission
models.
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Fig. 8.3 Compare the functions (8.21) and (8.22) with selected parameters against the numbers of
infectious individuals over time in an SEIRS model using parameters in Example 25 (dashed line)

8.3 A Comprehensive Demonstration of Curve Fitting Using
Nonlinear Phenomenological Models to Outbreak Data
from the 2016 Zika Epidemic in Antioquia, Colombia

In the Western Hemisphere, active circulation of ZIKV was first reported in Brazil
in May 2015, and the WHO declared the epidemic a Public Health Emergency of
International Concern on February 1, 2016. Phylogenetic analyses indicate that the
epidemic in the Americas was triggered by an imported case sometime between
May and December 2013, a period that coincides with an increase in air travel from
ZIKV affected areas in the Pacific to Brazil (Faria et al. 2016).

We analyzed daily counts of Zika cases by date of symptoms onset reported to the
Secretary of Health of Antioquia (the time series is available online as an EXTRA
MATERIAL). Antioquia is the second largest department in Colombia (with a
population size of ~6.3 million people), located in the central northwestern part of
the country (Chowell et al. 2016). Because there is still substantial uncertainty on
the epidemiology of ZIKV, including the contribution of different modes of trans-
mission (mosquito bites vs. sexual transmission), simple phenomenological models
are useful for forecasting epidemic trajectories whereas mechanistic mosquito-borne
disease transmission models require more data to appropriately calibrate mosquito
reproduction, development, survival, and transmission capacity which are strongly
modulated by temperature as well as the transmission rates that dictates the transfer
of the virus from mosquitoes to humans and vice versa (e.g., Ross 1911; Focks et al.
1995; Chowell et al. 2007; Gao et al. 2016; Towers et al. 2016; Zhang et al. 2017;
Huber et al. 2018).
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8.3.1 Fitting Models to Data

The time-series data y = (y0, y1, . . . , yT ) represent daily incidence according to the
onset of clinical symptoms. The date of the earliest recorded case by date of onset is
called Day 0. We model the cumulative number of clinical cases by time t according
to a counting process. The random component of the model is the marginal
distribution of C(t) grouped into time intervals so that Yt = C(t) − C(t − 1),
−∞ < t < ∞ is the number of clinical onsets during the time interval (t − 1, t].
The systematic component of the model is a deterministic growth curve function
Cd(t), chosen as one of the growth curve functions introduced in the preceding
section, such that the expected value is E[C(t)] = Cd(t), specified by a set of
parameters � = (θ1, . . . , θm).

Since we are fitting the model to daily incidence data yt , we write the systematic
component as

μ(t;�) = Cd(t)− Cd(t − 1).

Most of the growth functions are defined over −∞ < t < ∞. Therefore the
expected number of new cases by date of symptoms on Day 0 isE[Y0] = μ(0;�) =
Cd(0)− Cd(−1). In the observed data, y0 = 1.

We use the methods presented and discussed in Sect. 7.1.3 in the following
analyses.

8.3.2 Data During the First 20 Days

Exploratory Analysis

Starting from the earliest recorded case by date of onset, denoted as Day 0, the
cumulative number of confirmed individuals with clinical symptoms was 183 by
Day 20. During the first 2 weeks, daily incidence numbers by symptoms onset were
rather sporadic, less than 10 cases per day except for Day 9 and Day 14. From Day
15 to Day 20, the daily incidence numbers were fluctuating between 12 and 20 cases
per day.

Exploratory plots of the logarithm of daily incidence data (yt , t = 0, . . . , 20)
against time t and against the logarithm of the cumulative incidence ct =∑ti=0 yi,

t = 0, . . . , 20 (Fig. 8.4) show distinctive sub-exponential growth patterns. In
particular, the strong linear relationship between the logarithm of daily incidence
data and the logarithm of the cumulative incidence is given by

log yt = −0.06008 + 0.55466 log
t∑

i=0

yi,

which empirically agrees with the relationship C′(t) = rC(t)p, in which, C′(t) is
approximated by the daily incidence yt , t = 1, . . . , 20 and y0 = 1 and C(t) is
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Fig. 8.4 Exploratory plots of the logarithm of daily incidence data log yt against time t and against
the cumulative incidence ct =∑ti=0 yi , t = 0, .., 20

approximated by the cumulative incidence ct = ∑ti=0 yi. This relationship gives
the crude estimates

r̃ = e−0.06008 = 0.94169, p̃ = 0.55466.

Likelihood Analysis, Estimation and Predictions for the Sub-exponential
Model

For formal analysis, we start fitting to daily incidence data using (7.3), assuming
that y = (y0 , y1, . . . , y20) are realizations of independent Poisson random counts.
The likelihood based approach based on (7.4) is applied with f (0;�) = i0 and

f (t;�) = C(t) − C(t − 1), t = 1, . . . , 20, where C(t) = i0(1 + r(1 − p)t) 1
1−p ,

0 ≤ p < 1.
We first conduct the likelihood ratio test against the hypothesis H0 : i0 = 1,

which yields a significant level (p-value) of 0.48. There is no evidence from data to
reject H0.

We consider the reduced model C(t) = (1 + r(1 − p)t) 1
1−p , which is the exact

solution of C′(t) = rC(t)p given the initial condition C(0) = 1. The parameters
are � = (r, p). The maximum likelihood estimates are

r̂ = 1.172 (0.8173, 1.777)

p̂ = 0.5189 (0.4231, 0.6186)

where numbers in brackets are 95% confidence limits calculated using likelihood
ratio statistics.
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Fig. 8.5 Left: the contours of the relative log-likelihood function for (r, p) in the neighborhood
of (̂r, p̂). Right: five predicted trajectories of daily incidence of onset of symptoms to Day 45. Red
dots represent data from the first 20 days and circles are data from Day 21 to Day 45

One of the advantages of using the likelihood based approach is that the likeli-
hood function reveals how much information data contain with respect to each of
the parameters as well as correlations among parameters. Figure 8.5 (left) displays
the contours of the relative log-likelihood function for (r, p) in the neighborhood
of the maximum likelihood estimates. It shows substantial correlation due to the
“banana” shape of the log-likelihood contour. Although the 95% confidence interval
for each parameter has been calculated marginally for each parameter, not all the
combinations of the two parameters within their ranges are plausible. For example,
it is very implausible to have the combination (rL = 0.8173, pL = 0.4231). This
leads to the concept of the “profile likelihood,” which is to fix one of the parameters
at a given value and conduct a likelihood analysis on the rest of the parameters.

• Keeping r fixed at its lower bound at rL = 0.8173, the profile likelihood for p is
maximized at p̂(r = 0.8173) = 0.6167.

• Keeping r fixed at its upper bound at rU = 1.777, the profile likelihood for p is
maximized at p̂(r = 1.777) = 0.411.

• Keeping p fixed at its lower bound at pL = 0.4231, the profile likelihood for r
is maximized at r̂(p = 0.4231) = 1.6693.

• Keeping p fixed at its upper bound at pU = 0.6186, the profile likelihood for r
is maximized at r̂(p = 0.6186) = 0.8222.

Short term predictions may be conducted in ad hoc manner by simple extrap-
olation based on the model f (t;�) and the range of uncertainties in estimated
parameters. Figure 8.5 (right) displays five predicted trajectories of daily incidence
of onset of symptoms to Day 45 based on observed data up to Day 20. The center red
line is the predicted trajectory based on the m.l.e. (̂r = 1.172, p̂ = 0.5189). The four
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thin dark lines are predicted trajectories based on the combinations: r = 0.8173 and
p = 0.6167; r = 1.777 and p = 0.411; r = 1.6693 and p = 0.4231; r = 0.8222
and p = 0.6186.

A word of caution is in place. Prediction of future trajectories based on historical
data involves two sources of uncertainty: the uncertainty about the parameters and
the uncertainty of future data due to randomness for any fixed parameter values
in the probability distribution. The predictions in Fig. 8.5 (right) partially take into
account the first source uncertainty but fail to take into account the second source.
This issue is deeply rooted in the foundations of statistical inferences, and there
is a scarcity of literature on “predictive likelihood” that is applicable to predicting
trajectories of disease outbreaks.

Least Square Estimation and Predictions for the Sub-exponential Model

The least square method by minimizing (7.6) provides similar estimates

r̃ = 1.2023 (0.76, 1.9)

p̃ = 0.5119 (0.39, 0.64)

where numbers in brackets are 95% confidence limits based on 500 bootstrap
samples, which are slightly wider than, but comparable to, those based on the
likelihood ratio statistics.

Both the maximum likelihood estimates based on the Poisson distribution and
the least square estimates are based on unbiased estimating equations. They are
asymptotically unbiased point estimates regardless of any mis-specification of the
variance–covariance structure. The word “asymptotic” is used in the sense of a large
number of realizations of the same epidemic assuming the outbreak can be repeated
under identical conditions. However, the point estimates in both methods are based
on a single realization and are subject to biases.

For assessment of uncertainties, both methods are prone to mis-specification of
the variance–covariance structure. In order to compare with the variance estimates
based on the likelihood approach, 500 bootstrap replicates are generated for the
least square estimation assuming a Poisson variance structure. Prediction intervals
are also generated using bootstrapping to predict the distribution of individual future
points.

The 95% confidence intervals for p based on both methods show strong
significance against the hypothesis of the exponential growth function: p → 1.

With respect to prediction of future trajectories, the bootstrapping method
takes into account both sources of uncertainty. The cyan curves in Fig. 8.6 (right)
correspond to 500 bootstrap replicates of the epidemic curve assuming a Poisson
variance structure. These are predicted random numbers. The uncertainty in pre-
dicted trajectories is much larger than that in Fig. 8.5 (right). However, there are
several issues worth discussing.
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Fig. 8.6 Left: empirical distributions of the estimated parameters based on 500 bootstrap repli-
cates. Right: 15-day forecast when the model is calibrated to the first 20 days. The black circles are
the daily incidence data. The cyan curves correspond to 500 bootstrap replicates of the epidemic
curve assuming a Poisson error structure. The red solid line corresponds to the asymptotic mean
value of these replicates. The gray lines correspond to the fits of the model to each of the 500
bootstrap replicates from which 95% confidence intervals for the mean model fit can be derived
(red dotted lines). The vertical line separates the calibration and forecasting periods

First, we note that the marginal distributions of the parameters (r, p) alone do
not provide the insight as some of the combination of parameters (r, p) while
r ∈ (0.76, 1.9) and p ∈ (0.39, 0.64) are highly implausible. Therefore, running
simulations in these parameter ranges may produce larger than expected uncertainty.
However, one could make use of the raw empirical distributions of the parameters
including their correlations which were derived from the bootstrap approach in order
to avoid selecting implausible parameter combinations.

Second, the vertical line separates the calibration and forecasting periods in
Fig. 8.6 (right). The cyan curves correspond to 500 bootstrap replicates of the
epidemic curve assuming a Poisson variance structure. They show large uncertainty
in data that have already occurred. This is due to the virtual experiment conducted
by the computer simulation assuming the outbreak can be repeated in identical
conditions and the uncertainty in data reflects such randomness. However, the
disease outbreak only occurs once and data in the past 20 days are given. Given
past data, conditional prediction for the future is desirable whereas extrapolating
“predictions” made for the past that include large uncertainty into the future is not
desirable.



292 8 Characterizing Outbreak Trajectories and the Effective Reproduction Number

Fitting the Logistic Growth Model to the First 20 Epidemic Days of Data

Choosing the appropriate models and how to parameterize the models depends
on what public health questions need to be addressed. For instance, public health
officials may be less interested in short term predictions but more interested in
questions such as

• Are the daily incidence numbers approaching the peak value?
• If this outbreak is going to be a single wave, how long is this wave expected to

last?
• How many cumulative infections do we expect by the end of this wave?

Although sub-exponential growth (8.1) describes the growth pattern for the first
20 days of data and makes short-term predictions, it is unable to answer these ques-
tions. The logistic growth function characterizes such single wave phenomenon. The
expression

C(t) = K

1 + e−ρ(t−α)

corresponds to the three questions, where the peak time is the location parameter α;
the peak value of daily incidence is C′(α) = ρK/4 and by the end of the outbreak,
the cumulative number of infected individuals is K. In addition, the logistic model
is symmetric such that, at the peak time α, the cumulative incidence C(α) = K/2.

For data y = (y0 , y1, . . . , y20), we specify the mean value E[Yt ] = f (t;�)
where f (t;�) = C(t)− C(t − 1) is the difference of the two adjacent cumulative
values. Since the logistic model is defined for −∞ < t < ∞, f (0;�) = C(0) −
C(−1) which is the expected value for Y0 .

The Likelihood Analysis The maximum likelihood estimates, assuming Poisson
distribution for Yt , are

ρ̂ = 0.171 (0.092, 0.238)

α̂ = 19.71 (15.5, 45.8)

K̂ = 377.898 (246, 4250)

where numbers in brackets are 95% confidence limits based on the likelihood ratio
statistics. The very wide confidence limits show that data have little information
about the key parameters of interest. The peak time could be anywhere from Day
15 to Day 46, and the total number of infections by the end of the wave could be
anywhere between 246 and 4250.

Figure 8.7 illustrates cross-sectional contour plots for (α,K) according to
selected growth rate values of ρ. Figure 8.7 shows that at a slow growth rate
ρL = 0.092, the likelihood function suggests that the most plausible peak time
occurs around Day 46, and by the end of the outbreak, the total number of infections
would most likely be around 2500. However, there is a great deal of uncertainty
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Fig. 8.7 Cross-sectional plots of the contours of the log-likelihood surface for (α,K) at ρ =
0.092, 0.171, and 0.238

suggesting that K could be as large as >5000. On the other hand, at a fast growth
rate ρH = 0.238, the most plausible peak time occurs around Day 16, and the
likelihood function predicts a small outbreak with the most plausible K = 262.

The logistic function can be also parameterized as

C(t) = K

1 + e−ρ(t−α) = i0(v + 1)

v + e−ρt

where i0 = C(0) is the cumulative number of clinical cases at time t = 0 and
v = e−ρα = i0

K−i0 . The maximum likelihood estimates are

ρ̂ = 0.171 (0.092, 0.238)

v̂ = 0.034 (0.00001, 0.061)

î0 = 12.5 (5.25, 39),

where numbers in brackets are 95% confidence limits based on the likelihood
ratio statistics. Since data have little information about K , they equally have little
information about v.
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Fig. 8.8 Cross-sectional plots of the contours of the log-likelihood surface for (ρ, i0) at v =
0.00001, 0.034, and 0.061

The logistic model suggests that on Day 0, the cumulative number i0 = C(0)was
likely between 5 and 39, suggesting the outbreak might have started earlier. This
estimated range, combined with the uncertainty estimates of the other parameters,
suggests that the range of daily incidence on Day 0 might be in the range (1.1, 3.4).
This is because the expected value for Y0 is f (0) = C(0) − C(−1). In the data,
y0 = 1.

Based on the contours of the log-likelihood (Fig. 8.8), the growth rate ρ is
correlated with the initial cumulative number i0 = C(0). Although there was little
information in the early data, we may tentatively make the following statements
regarding the following three scenarios:

1. High cumulative numbers i0 in the range between 30 and 40 (approximately
three new clinical cases on Day 0) combined with slow growth ρ < 0.1. Under
this scenario, it is likely that the peak time will be rather late, after Day 40.
Consequently, the cumulative number by the end of the wave (assuming a single
wave) might be above 2000, or even above 4000.

2. A plausible cumulative numbers i0 around 12 (approximately two new clinical
cases on Day 0) combined with a growth rate around 0.171. Although this
scenario corresponds to the maximum likelihood, it is also likely to be biased, as
it puts the estimated peak time at α̂ = 19.71 corresponding to the last data point
(t = 20). There is no indication in data that the daily incidence is reaching its
peak. If this were true, then the cumulative number by the end of the wave would
be approximately twice the cumulative number at Day 20, which is 377.898.

3. Low cumulative numbers i0 around 5 (approximately one new clinical case on
Day 0) combined with a fast growth ρ > 0.23. This scenario may fit better for
the very early part of the data, for instance, t = 0, . . . , 5. However, there is no
indication in data suggesting that the peak time has taken place before Day 20.
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Fig. 8.9 Three predicted trajectories: (1) slow growth at r = 0.092, α = 45.6 and K = 2500; (2)
moderate growth at r = 0.171, α = 19.7 and K = 370; (3) fast growth at r = 0.238, α = 16 and
K = 262

Figure 8.9 shows predictions to Day 60, with parameters chosen from the slow
growth (with high i0), moderate and fast growth patterns (with lower i0). Data from
the first 20 days cannot distinguish these scenarios.

We remark that the likelihood surfaces are highly asymmetric with respect to
the parameters of interest. For example, the m.l.e. K̂ = 377.898 is close to its
lower bound 246 but away from its upper bound 4250. The likelihood function
suggests equal likelihood between K = 246 and K = 4250. Therefore it is more
plausible that the true value of K lies in the region (378, 4250) than in the region
(246, 378]. Similarly, the m.l.e. for the peak time α̂ = 19.71 is also associated with
an asymmetric likelihood based confidence interval between α = 15.5 and 45.8.
Together, they provide asymmetric scenarios in the predicted trajectories in Fig. 8.9.
Although these predictions are very imprecise and not very useful, the asymmetric
feature may also suggest that it is more plausible that the outbreak has not yet peaked
and the final cumulative number could be in thousands. Only future data can tell.
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8.3.3 Data During the First 45 Days

The Logistic Model: Likelihood Based Analyses

We re-fit the three-parameter logistic model to daily incidence data yt , t =
0, . . . , 45. The maximum likelihood estimates for the logistic function are

ρ̂ = 0.0917 (0.0787, 0.105)

α̂ = 41.29 (41.21, 43.97)

K̂ = 1689.992 (1422, 2088) (8.23)

where numbers in brackets are 95% confidence limits calculated using likelihood
ratio statistics. When parameterized as

C(t) = i0K

i0 + (K − i0) e−ρt

the parameter i0 = C(0) = K
1+eρα has the epidemiologic meaning as the cumulative

number of clinical cases by Day 0. Treating i0 as a parameter, the maximum
likelihood estimate is

î0 = 37.5 (31.95, 43.2).

The expected daily incidence on Day 0 is Ĉ(0) − Ĉ(−1) = 3.2, as opposed to a
single case on Day 0 as in the reported data.

Compared to the maximum likelihood estimates based on the first 20-day data,
the extra information from Day 21 to Day 45 has resulted in remarkably improved
precision for all the parameters.

The revised likelihood analysis suggests that Scenario 1 from analyses using the
first 20 data points has turned out to be the most likely scenario. It is implausible
that the outbreak could have peaked before Day 41. There is also evidence, at
significance level 0.05, that the outbreak has peaked by Day 44. Updated data
suggest a much narrower range for the uncertainty of K .

The logistic model suggests that the outbreak started approximately 30 days prior
to Day 0. Since the logistic model gives a symmetric daily incidence curve, it further
suggests that the outbreak will probably end around Day 115.

We update Fig. 8.9 as Fig. 8.10. The three scenarios are: (1) early peak at αL =
41.21, with ρ = 0.0898, K = 1799; (2) at the maximum likelihood estimates:
ρ̂ = 0.0917, α̂ = 41.29 and K̂ = 1689.992; (3) late peak at αU = 43.97, with
most plausible values ρ = 0.08626, K = 1799.
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Fig. 8.10 Predictions with information from the first 45 days of data

The Logistic Model: Least Square Analysis

Least square estimates are performed based on the logistic function parameterized
as C(t) = i0K

i0+(K−i0)e−ρt . The estimated parameter values are

ρ̃ = 0.08922, ĩ0 = 43.137, K̃ = 1804.4.

The least square method suggests that the cumulative number of infections by Day
0 was C̃(0) = ĩ0 = 43.137 and the daily incidence on Day 0 was 3.5. The estimated

peak incidence time is α̃ = 1
ρ̃

log K̃−̃i0
ĩ0

= 41.576. All these estimates are in close
agreement with the maximum likelihood estimates.

We compare predicted daily incidence by symptom onset based on the maximum
likelihood estimation and the least square estimation from the logistic model against
the observed daily incidence data as circles in Fig. 8.11. Each curve in Fig. 8.11
represents the expected values f (t; �̂), t = 0, . . . , 45. These values, together with
data (yt , t = 0, . . . , 45), are used to compute the summary measures MSE, WMSE,
and Anscombe in (7.12), (7.13) and (7.14), respectively.

Residual analyses in Table 8.1 show that the least square estimates give the
smaller mean square errors (MSE) by default and also slightly outperform the
maximum likelihood estimates based on the sum of the squares of the Pearson
residuals (WMSE). The maximum likelihood estimates perform slightly better
based on the sum of the squares of the Anscombe residuals.
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Fig. 8.11 Observed daily incidence for the first 45 days (circles) and two expected daily incidence
curves as predicted by the logistic model, using the least square method (black) and the maximum
likelihood method (blue)

Table 8.1 Summary residual
measures (7.12)–(7.14)
comparing the maximum
likelihood and the least
square estimates

Maximum likelihood Least square

MSE 32.37 32.17

WMSE 63.84 63.44

Anscombe 69.6 70.15

It is more informative to plot the residuals

rt = yt − f (t; �̂),

r
(P )
t = yt − f (t; �̂)√

f (t; �̂) , t = 0, . . . , 45

r
(A)
t =

3
2

[
y

2/3
t − f (t; �̂)2/3

]

f (t; �̂)1/6 .

rather than their sum-of-squares. These residuals are plotted in Fig. 8.12. The plotted
Anscombe residuals r(A)t are approximately Gaussian distributed. Therefore the
standard error lines ±1.96 are also plotted in Fig. 8.12. The Anscombe residual plots
in Fig. 8.12 detect two significant outliers for the maximum likelihood estimates.
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Fig. 8.12 Compare residuals between the least square estimates and the maximum likelihood
estimates based on the first 45 epidemic days

Fitting Generalized Logistic Models to the First 45-Day Data with
Discussions on Over-parameterization

One of the reasons to fit a generalized logistic model is to test the goodness-of-fit of
the logistic model. For example, the Richards model

C(t) = K
(

1 +
[(

K
i0

)θ − 1

]

e−ρt
)1/θ (8.24)
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is the generalization of the logistic model C(t) = i0K
i0+(K−i0)e−rt when θ = 1.

In differential equation forms, the Richard model (as parameterized above) is the
solution of

d

dt
C(t) = ρ

θ
C(t)

(

1 −
[
C(t)
K

]θ)

, θ > 0 (8.25)

whereas the logistic model is the solution of d
dt
C(t) = rC(t)

(
1 − C(t)

K

)
, where

r = ρ/θ.

To test against the null hypothesis H0 : θ = 1, we conduct the likelihood ratio
test based on (7.11). The value of the test statistics is

D = −2
[
l(ρ̂, î0, K̂ |H0)− l(ρ̂, î0, K̂, θ̂ )

] = 1.532 (8.26)

where l(ρ̂, î0, K̂ |H0) is the value of the log-likelihood at ρ̂ = 0.0917, î0 = 37.5
and K̂ = 1689.992 assuming θ = 1; and l(ρ̂, θ̂ , î0, K̂) is the value of the log-
likelihood of the Richards model where the maximum likelihood estimates are

ρ̂ = 0.0637 (0.0274, 0.086)

î0 = 23.9 (8.7, 51.8)

K̂ = 1999.76 (1502.5, 6300) (8.27)

θ̂ = 0.476 (0.132, 1.05)

Numbers in brackets are 95% confidence limits calculated using likelihood ratio
statistics. The significance level for H0 : θ = 1 based on the likelihood ratio test is

SL = Pr(χ2
(1) ≥ 1.532) = 0.2155. (8.28)

Discussion Although there is no evidence to reject the logistic model, the question
remains whether we should discard the four-parameter Richards model which treats
the additional parameter θ as a nuisance parameter, or adopt the Richards model as
it may provide more valuable knowledge of public health importance.

From the point of view in favor of treating θ as a nuisance parameter, the focus
is on the enormous uncertainty for the parameter of interest, such as 1502 < K <

6300, compared to the “more precise” estimate 1422 < K < 2088 by assuming
θ = 1. The argument is that information in the limited data from the first 45-
days is “wasted” in the estimation of θ , which does not have direct public health
interpretations as other parameters do (e.g., growth rate, initially infected number,
peak time, final size). The very large uncertainty in the estimation of K, due to the
inclusion of θ as a free parameter to be estimated, is not useful for public health
decision makers. With this argument, the Richards model is “over-parameterized.”
In fact, the Richards model can be re-written in a logistic form such that C(t)θ is a
logistic function
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C(t)θ = iθ0K
θ

iθ0 + (Kθ − iθ0
)
e−ρt

.

Limited data are not informative in separating θ from K in the combined form Kθ .
After all, the estimated θ is also associated with large uncertainty. As there is no
statistical significance to reject the logistic model based on (8.28), we should discard
the four-parameter Richards model.

The opposite point of view is that the significance level based on (8.28) implies
that both the logistic and the Richards model fit data equally well up to Day 45 (see
Fig. 8.13). It is only about the goodness-of-fit of models with respect to early part of
the data, not about the important questions relating to the entire outbreak. Hence the
“overly confident” estimates based on the logistic model may fail to acknowledge
large uncertainties beyond Day 45. As shown in Fig. 8.13, when θ < 1, the Richards
model gives an asymmetric daily incidence curve with a longer tail, which is not
only more realistic in most settings, but also suggests that the logistic model might
have under estimated K. In fact, comparing (8.23) and (8.27), the logistic model
might have under predicted approximately 300 clinical cases by the end of the
outbreak. Meanwhile, the wide confidence intervals in (8.27) should be appreciated
and emphasized.

At this moment in time (assuming we were on Day 45), we take notes on both
arguments and move to the next phase when more data are available.

Fig. 8.13 Compare model predicted daily incidence by symptom onset based on the logistic and
the Richards models, when their parameters are set at the maximum likelihood estimates. Red dots
are observed data by Day 45
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8.3.4 Data by Day 75

The maximum likelihood estimates for the parameters in the logistic and the
Richards models are shown below:

Logistic Richards
ρ̂ = 0.082 (0.0766, 0.0875) ρ̂ = 0.0617 (0.0574, 0.0733)
î0 = 51.9 (41.75, 63.75) î0 = 17.36 (7.5, 34.8)
K̂ = 1805 (1713, 1902) K̂ = 1852 (1750, 1967)
H0 : θ = 1 θ̂ = 0.355 (0.152, 0.645)

(8.29)

where numbers in brackets are 95% confidence limits based on the likelihood ratio
statistics. The extra 30-day data, from Day 45 to Day 75, have yielded more precise
estimates for all three parameters in the Richards model.

The Richards model can be also parameterized as

C(t) = K
(
1 + θe−ρ(t−α))1/θ

where α = 1
ρ

log

(
K
i0

)θ−1

θ
is the inflexion point at which C′(t) is maximized. The

maximum likelihood estimate for the inflexion point is

α̂ = 40.227 days (38.36, 42.1).

The logistic model under H0 : θ = 1 gives α̂ = 42.95 days (41.8, 44.1).
Except for the estimation of K , there are significant differences in the estimation

of the initial cumulative numbers i0 = C(0) and the peak time for the daily
incidence α. The logistic model over predicts i0 = C(0), which also implies
approximately 4 individuals developed onset on Day 0 and an earlier start of the
outbreak approximately around Day-20, whereas the Richards model suggests a
much smaller value for C(0), approximately two individuals developed onset on
Day 0 and the start of the outbreak approximately around Day-15. These are shown
in Fig. 8.14, between the blue solid line and the red broken line.

By Day 75, data have shown statistical significance to reject the logistic model,
corresponding to the hypothesis H0 : θ = 1. The value of the likelihood ratio
statistic in (8.26) has been updated to D = 12.902 and SL = Pr(χ2

(1) ≥ 12.91) =
0.0003.

It is not appropriate to directly compare ρ̂ in the two models given by (8.29),
because according to (8.25), the initial growth rate in the Richards model as
parameterized above is the ratio r̂ = ρ̂/θ̂ = 0.1738, in par with the m.l.e. for ρ
based on the logistic model using the initial data by Day 20. This is also shown in
Fig. 8.14, comparing the expected numbers of daily incidence based on the Richards
model fitted to data by Day 75 with that based on the logistic model fitted to data
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Fig. 8.14 Fitted Richards models to daily incidence counts during the first 75 days (blue dots)
with comparisons with the fitted logistic model

by Day 20 (the black broken line). This is due to the asymmetry supported by the
Richards model that allows for better fits on both extremes of the time-series data,
whereas the logistic model is limited by its symmetric shape.

The Richards model requires a relatively large number of data points. It is not
suitable as the initial model during the early phase, definitely not for data collected
during the first 20 days and questionable for data collected during the first 45 days.
However, as the number of data points increases, simpler models will start to mis-
represent data. This will force us to adopt more complex models, not only for better
prediction purposes, but also for capturing the data generating process.

We also compare the maximum likelihood estimates with the least-square
estimates for the Richards model. The least square estimation yields very similar
results:

ρ̃ = 0.0695 (0.062, 0.083)

ĩ0 = 22.3 (13, 31)

K̃ = 1801.9 (1700, 1900)

θ̃ = 0.52 (0.38, 0.83)

where numbers in brackets are estimated 95% confidence limits based on 500
bootstrap samples.
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Table 8.2 Summary residual
measures (7.12)–(7.14)
comparing the maximum
likelihood and the least
square estimates

Maximum likelihood Least square

MSE 34.08 33.6

WMSE 106.6 108.9

Anscombe 108.3 110.4

Fig. 8.15 Plots of the Ancombe residuals r(A)t =
3
2

[
y

2/3
t −f (t;�̂)2/3

]

f (t;�̂)1/6 for both the least square and

the maximum likelihood estimates. The standard error lines ±1.96 are based on the approximate
Gaussian distribution of the Anscombe residuals

Residual analyses in Table 8.2 show that, although the least square estimates give
the smaller mean square errors (MSE) by default, the maximum likelihood estimates
perform slightly better based on the two other measures: the weighted mean square
errors (WMSE) based on the sum of the squares of the Pearson residuals and the
sum of the squares of the Anscombe residuals.

Plots of the Anscombe residuals, Fig. 8.15, reveals that both estimation methods
fit data equally well. There are a few outliers in data, noticeably, on t = 1,
32, 33, 35, 46, 64 (days), that are either due to the inadequacy of the assumed
Poisson model (i.e., over-dispersion) or the assumed Richards model. The standard
errors ±1.96 in Fig. 8.15 are based on the approximate Gaussian distribution of the
Anscombe residuals.

Figure 8.16 is based on 500 bootstrap replicates of the epidemic curve based
on the least square estimates, assuming the outbreak were repeated under identical
conditions with Poisson error structure. The outliers on t = 1, 32, 33, 35, 46, 64
(days) are shown as points outside the dashed red lines indicating the 95% prediction
intervals.



8.3 A Comprehensive Demonstration of Curve Fitting Using Nonlinear. . . 305

Fig. 8.16 The cyan lines correspond to 500 bootstrap replicates of the epidemic curve assuming
a Poisson error structure based on the least square estimates. The solid red line corresponds to the
mean, while the dashed red lines indicate the 95% prediction intervals

An additional technical note is that the least square method has been used in two
different ways:

1. fitting directly to the explicit expression of the Richards model (8.24) with the
four parameters (ρ, i0,K, θ );

2. fitting the numerical solution of the differential equation (8.25) with three explicit
parameters (ρ,K, θ ) plus the 4th parameter i0 = C(0) as the initial condition that
is also estimated.

We report back that, after careful sensitivity analyses of parameter estimates
(Arriola and Hyman 2009), with respect to the initial values of the parameters in
the search algorithms, and careful evaluation of the calculated values of the sum
of square errors (SSE), the two fitting methods yield nearly identical numerical
estimates. This comparison gives us more confidence in the least square estimates
obtained directly from the numerical solution of the differential equations for other
generalized logistic models in which explicit solutions do not exist.

Least Square Estimates for Other Generalized Logistic Models

We consider fitting variations of the generalized Richards model (Turner et al. 1976)
with two shape parameters θ1, θ2 > 0:

d

dt
C(t) = rC(t)θ1

(

1 −
[
C(t)

K

]θ2
)

. (8.30)

Except for the sub-exponential model (θ1 = p, θ2 → ∞), the logistic model (θ1 =
θ2 = 1), and the Richards model (θ1 = 1, θ2 > 0), explicit solutions do not exist in
general.
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Letting θ2 = 1 and θ1 = p, we get the model defined by

d

dt
C(t) = rC(t)p

(

1 − C(t)

K

)

, (8.31)

which also includes a hidden parameter i0 = C(0). The least square estimation for
the parameters are

r̃ = 0.28 (0.21, 0.36), p̃ = 0.82 (0.78, 0.87),

ĩ0 = 12 (7.2, 17), K̃ = 1800 (1700, 1900).

The confidence limits of the estimated parameters and the goodness-of-fit of the
model are illustrated in Fig. 8.17.

Alternatively, we modify the above so that the scaling parameter p is applied to
the proportion C(t)/K, which is more in line with the Richards model,

d

dt
C(t) = rK

[
C(t)

K

]p (

1 − C(t)

K

)

.

Fig. 8.17 The histograms display the empirical distributions of the parameter estimates using 500
bootstrap replicates generated assuming a Poisson error structure. The horizontal red dashed lines
indicate the 95% confidence intervals of the parameter estimates. The bottom panel shows the fit
of the model to the data. The blue circles are the daily incidence data. The cyan lines correspond
to 500 bootstrap replicates of the epidemic curve assuming a Poisson error structure. The solid red
line corresponds to mean values of the simulated sample while the red dashed lines indicate the
95% prediction intervals
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Table 8.3 Summary residual measures (7.12)–(7.14) comparing three generalized logistic mod-
els with equal number of parameters

Richards Gen logistic 1 Gen logistic 2

C′ = rC
(

1 − [ C
K

]θ)
C′ = rCp

(
1 − C

K

)
C′ = rK

(
C
K

)p (
1 − C

K

)

MSE 33.6 34.5 33.9

WMSE 108.9 112.3 109.4

Anscombe 110.4 112.5 110.7

The least square estimates for the parameters are

r̃ = 0.073 (0.065, 0.083), p̃ = 0.83 (0.77, 0.9),

ĩ0 = 13 (6.4, 21), K̃ = 1800 (1700, 1900).

These two generalized logistic models have the same number of parameters as
the Richards model with very similar estimated key parameters of epidemiologic
interest, i0 and K and almost equally good fit to data (Table 8.3). They do not offer
more insight than the Richards model at least for this outbreak.

We also conducted the LS estimation with respect to the generalized Richards
model (8.30) with parameter estimates.

r̃ = 0.22 (0.18, 0.26), θ̃1 = 0.86 (0.83, 0.89), θ̃2 = 0.95 (0.73, 1.12),

ĩ0 = 18 (12, 27), K̃ = 1800 (1700, 1900),

where numbers in brackets are estimated 95% confidence limits based on 500
bootstrap samples. These estimates are very close to those based on the model
(8.31) because θ̃2 = 0.95 (0.73, 0.12). Therefore, based on data by Day 75, it is
not advisable to recommend more complex models with five parameters.

We stop this analysis at this point. In hindsight, the outbreak stopped on Day
104. The cumulative number was K = 1852, consistent with the m.l.e. using the
Richards model fitted to data of the first 75 days. However, the Richards model
could not forecast a small cluster or “a second wave” as shown in Fig. 8.14. The
recorded first case remains as a single case on Day 0, which could not be captured
by the models considered here.

8.3.5 Lessons Learned

1. When a new infectious disease emerges, exploratory analyses and simple
phenomenological models are useful for forecasting epidemic trajectories.

2. When the number of observations is less, the initial model should be simple
enough with as few parameters as possible. Over- parameterization results in
undesirable large uncertainties in key parameters of interest. Among highly
correlated parameters, it also leads to identifiability problems among parameters.
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That is, two or more sets of parameter values yield the same expected values
for data. For example, in Fig. 8.8 when v = 0.034, the first 20-day data equally
admit the pairs of parameters: i0 = 40 and ρ = 0.1; as well as i0 = 10 and
ρ = 0.2, corresponding to two distinct scenarios: high initial numbers with slow
growth rate versus low initial numbers with fast growth rate.

3. Increasing the number of observations will, to some extent, improve the precision
and identifiability among parameters in the simple model. However, beyond a
certain limit, this gain will be diminished and off-set by biased estimates and
lack-of-fit to data. This will force us to shift to a more complex model and closer
to the data generating process. We have demonstrated this adaptive approach in
the discussions while fitting models to data accumulated by Days 20, 45, and 75.

4. Even though the parameters in the simple growth curve models do not have any
physical meaning (unlike those in transmission dynamic models), these simple
models still need to be carefully selected and parameterized, so they can be useful
in addressing key public health questions.

5. The curve models that we have employed here are highly nonlinear. The
optimization algorithms to maximize the log-likelihood or to minimize the sum
of square errors (SSE) are highly sensitive to the initial parameter estimates,
which may lead to a local maximum or minimum. It is important to carefully
evaluate the values of the log-likelihood or SSE upon convergence over a wide
range of possible initial estimates.

6. Transformation of parameters does not affect assumptions of a model, but it
may make interpretations more or less easy. Different ways of parametrizing
the same growth function should be explored. One of the reasons is to have
the parameters interpretable and aligned with public health questions. Another
reason may be associated with the parameter searching algorithms. For example,
parameter transformations to make the log-likelihood contours more like sym-
metric ellipsoids will generally facilitate numerical optimization.

7. Correlation among parameters: The “banana shaped” log-likelihood contours are
typical signatures of correlation among parameters. The cross-sectional bivariate
log-likelihood contour plots (e.g., Figs. 8.5 and 8.8) yield important information
about correlations between pairs of important parameters.

8. When possible, graphical presentation of the likelihood surface is worthwhile,
either as a 3-D function or cross-sectional log-likelihood contours. These will
provide more reliable precision intervals than marginal confidence intervals for
each parameter, reveal correlation among parameters, and provide better ways to
communicate uncertainty. However, these are very time-consuming.

9. Approximate confidence intervals based on the likelihood ratio statistics are in
agreement with the contours of the likelihood surface, as opposed to those based
on standard errors which rely on a quadratic approximation. A very common
feature is that these confidence intervals are highly asymmetric around their
point estimates. When extremely asymmetric, the emphasis should be on the
plausibility range towards the wider side of the interval rather than the point
estimate. This is very important in communicating uncertainty. We demonstrated
this while analyzing the Zika data during the first 20 days, with a very wide
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plausibility region in favor of the slow growth pattern. This was confirmed when
more data were collected by Day 45.

8.4 The Effective Reproduction Number, Rt , with Quantified
Uncertainty

The basic reproduction number, commonly denoted by R0, quantifies transmission
potential in a fully susceptible population during the early epidemic take off
(Anderson and May 1982). According to the classical theory of epidemics, largely
based on compartmental modeling (e.g., Anderson and May 1991; Diekmann and
Heesterbeek 2000; van den Driessche 2017; van den Driessche and Watmough 2002;
Diekmann et al. 2010), R0 is expected to remain invariant during the early phase of
an epidemic that grows exponentially and as long as susceptible depletion remains
negligible (Diekmann and Heesterbeek 2000).

In Chap. 4, Eq. (4.47): L[g](r) = ∫∞
0 e−rxg(x)dx = R−1

0 can be re-written in
the renewal form

i(t) = R0

∫ ∞

0
g(x)i(t − x)dx (8.32)

where i(t) ≈ ert is the instantaneous density of infected individuals at the
very beginning of the outbreak approximated by exponential growth, and g(x) is
the probability density function of the (intrinsic) generation time TG associated
with the Lotka equations in Sect. 4.3.3, formally defined and further discussed
as (7.18) in Chap. 7. This approximation is suitable when t is extremely small,
near the disease-free equilibrium. Wallinga and Lipsitch (2007) suggested ways of
estimating the basic reproduction number based on the initial growth rate r through
fitting the exponential growth to early outbreak data, provided that the generation
time distribution g(x) is fully specified so that

R̂0 = L[g](̂r)−1

where r̂ is the fitted initial growth rate to data.
In contrast, the effective reproduction number Rt captures changes in trans-

mission potential over time when the system starts to move away from the
equilibrium condition (Chowell et al. 2016; Nishiura and Chowell 2009). The
effective reproduction number Rt is given by

Rt = S(t)

S(0)
R0

where S(t) is the expected number of susceptible individuals in the population at
time t. It is understood as the expected number of secondary infections transmitted
by a typical infectious individual at calendar time t.
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Nishiura and Chowell (2009) generalized the above renewal type equation
through analysis of an infection-age structure model, The term “infection-age”
refers to the time elapsed since infection. Define A(t, x) as the rate at which an
infectious individual at calendar time t and infection age τ produces secondary
infections so that

i(t) =
∫ ∞

0
A(t, x)i(t − x)dx,

under the assumption that the relative infectiousness to infection-age is independent
of calendar time (Fraser 2007), Nishiura and Chowell (2009) argue that A(t, x)
can be decomposed as A(t, x) = Rtg(x), where g(x) is the same generating time
distribution as in (8.32). This leads to

i(t) = Rt

∫ ∞

0
g(x)i(t − x)dx.

To fit to data observed in discrete (grouped) time units over a finite period t =
0, . . . , T , the following approximation

i(t) = Rt

T∑

x=0

g(x)i(t − x), t = 0, . . . ,

has been considered (The World Health Organization Emergency Response Team
2014, Supplementary Appendix 1; Chowell et al. 2016), where i(t) is the expected
number for the incidence data during the time unit t, such as daily incidence Yt so
that E[Yt ] = i(t).

Assuming that the incidence up to time t − 1 is Poisson distributed, the daily
incidence Yt is

Yt ∼ Poisson

(

Rt

T∑

x=0

g(x)i(t − x)
)

,

Then, given the incidence data as a longitudinal series denoted by y =
(y1, y2, . . . , yT ), the maximum likelihood estimate for Rt is

R̂t = i(t; �̂)
∑T
x=0 g(x)i(t − x; �̂)

, t = 0, . . . , T , (8.33)

where i(t;�) is a suitable phenomenological model to describe the data generating
process y = (y1, y2, . . . , yT ), and i(t; �̂) is the fitted incidence, provided that the
generation time distribution g(x) is fully specified.

Although uncertainties in parameter estimates �̂ can be derived using the
likelihood ratio statistics, establishing variance estimation for R̂t is more complex.
Therefore, computer based re-sampling methods, such as bootstrapping, are pre-
ferred.
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Next, we assume the sub-exponential model i′(t) = r [i(t)]p starting with a
single individual, with the explicit form

i(t) = (1 + r(1 − p)t) 1
1−p .

This model can reproduce a range of growth dynamics from constant incidence
(p = 0) to exponential growth (p = 1) (Viboud et al. 2016).

We denote (̂r(i), p̂(i)) as the estimated parameters based on the ith bootstrap
sample in a re-sampling regime. Then (8.33) gives

R̂
(i)
t = i(t; r̂ (i), p̂(i))
∑T
x=0 g(x)i(t − x; r̂ (i), p̂(i))

, t = 0, . . . , T .

Based on the maximum likelihood estimate (8.33) from the incidence data, a large
number of bootstrap realizations create a virtual experiment with repetitions of the
outbreak under identical conditions, which produce the average of R̂(i)t as well as
the plausible ranges for uncertainty.

8.4.1 Example Based on the 2016 Epidemic of Yellow Fever in
Two Areas of Angola: Luanda and Huambo

For illustration, we estimated the effective reproduction number during the early
phase of a yellow fever epidemic. The epidemic spread between December 2015
and August 2016 in Angola, mostly affecting the provinces of Luanda (the capital)
and Huambo. Numbers of confirmed and probable reported cases are grouped
into discrete time intervals on a weekly basis and assembled by the World Health
Organization (The World Health Organization 2016). The corresponding time series
data are available online as EXTRA MATERIALS.

For the goal of estimating Rt , we assumed a gamma distribution for the
generation interval of yellow fever with a mean of 15 days (2.143 weeks) and
variance of 36 days (5.143 weeks). We fitted the generalized growth model (4.61)
to the growth phase of the epidemics.

The yellow fever epidemic in Luanda followed an initial growth phase consistent
with exponential growth dynamics (Fig. 8.18) with the scaling of growth parameter
p very close to 1.0 and our most recent estimate of the effective reproduction
number at 3.3 (95%CI: 2.6, 3.6). The corresponding curves of the effective repro-
duction number are shown in the bottom panel of Fig. 8.18. In contrast, for
Huambo, the effective reproduction number was most recently estimated at 1.2,
95% CI: 1.1, 1.4) with a relatively low scaling of growth parameter (0.36, 95% CI:
0.17, 0.55) as shown in Fig. 8.19. The curves of the effective reproduction number
are shown in the bottom panel of Fig. 8.19.



Fig. 8.18 Top panels display the empirical distributions of the growth rate, the scaling parameter,
and the effective reproduction number based on fitting (4.61) to the yellow fever epidemic in
Luanda, Angola. The middle panel shows the fit to the epidemic growth phase. Circles correspond
to the data while the solid red line corresponds to the best fit obtained using the generalized-growth
model. The blue lines correspond to the uncertainty around the model fit. The bottom panel is the
weekly effective reproduction number estimated during the epidemic growth phase assuming a
gamma distribution for the generation interval of yellow fever with a mean of 15 days and variance
of 36
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Fig. 8.19 Top panels display the empirical distributions of the growth rate, the scaling parameter,
and the effective reproduction number based on fitting (4.61) to the yellow fever epidemic in
Huambo, Angola. The middle panel shows the fit to the epidemic growth phase. Circles correspond
to the data while the solid red line corresponds to the best fit obtained using the generalized-growth
model. The blue lines correspond to the uncertainty around the model fit. The bottom panel is the
weekly effective reproduction number estimated during the epidemic growth phase assuming a
gamma distribution for the generation interval of yellow fever with a mean of 15 days and variance
of 36
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In conclusion, in this final section we have demonstrated how phenomenological
models, such as the generalized-growth model, along with parameter uncertainty
derived from the parametric bootstrap least-square fitting approach can be exploited
to characterize transmission dynamics and their uncertainty such as the effective
reproduction number through the renewal equation. Indeed, with additional data of
the outbreak trajectory, we could have considered other phenomenological models
such as logistic-type models and/or more elaborate error structures of the random
component to account for observation correlations or data overdispersion.

8.5 Problems and Supplements

8.1 In this exercise, the reader will use phenomenological models (e.g., GGM
and Richards models) to analyze the trajectory of the 2001 foot-and-mouth
disease epidemic in the UK using the daily curve of the number of new infected
premises. The daily number of new, real-time notifications of infected premises
during the 2001 foot-and-mouth disease epidemic in the UK was obtained from
the Department of Environmental and Rural Affairs (DEFRA) and is available
online as an EXTRA MATERIAL. Answer the following questions:

(a) Using the GGM, what are your estimates of the growth rate (r) and the
deceleration of growth parameter (p) using the first 20 epidemic days? Use
maximum-likelihood estimation with a Poisson error structure.

(b) Based on your analysis in (a), assess the Anscombe residuals and compute
the value of the Anscombe performance metric

(c) Based on your analysis in (a), what can you conclude from your estimate
of the deceleration of growth parameter (p)?

(d) How do your parameter estimates in (a) compare with those obtained using
the least-square fitting approach with a parametric bootstrap Poisson error
structure?

(e) Based on your analysis in (d), assess the 95% prediction intervals around
the model fit.

(f) Calibrate the Richards model to the first 10, 20, 30, or 40 epidemic days.
Discuss parameter identifiability and lack of information when the model
is fitted to an increasing number of observations.

(g) Using 30 and 40 epidemic days, what are the point estimates of the
epidemic size? and how do these estimates compare with the actual
epidemic size? What are the corresponding estimates of the epidemic peak
and duration?
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8.2 In this exercise, you will generate estimates of transmission potential of the
1918 influenza pandemic in San Francisco, California. The daily number of
reported cases is available online as an EXTRA MATERIAL. Answer the
following questions:

(a) Using the simple SEIR model without demographic factors and assuming
a mean latent period of 2 days, a mean infectious period of 4 days and a
population size of 550,000 provide the mean estimate and 95% confidence
intervals of the basic reproduction number R0 using 16, 18, and 20 days of
the initial growth phase. For parameter estimation you can use the least
square fitting approach with the Poisson parametric bootstrap which is
described in Chap. 7 and illustrated with examples in Chap. 8. Note that
you only need to estimate the transmission rate using your favorite tech-
nical computing language while keeping the initial number of infectious
individuals I (0) fixed according to the first data point. Are the R0 estimates
relatively stable during the study period?

(b) What are the corresponding values of the RMSE from your analysis in (a)?
(c) Assess the residuals and the 95% prediction intervals around the model fit

and discuss your observations.
(d) Using the GGM, what are your estimates of the growth rate (r) and the

deceleration of growth parameter (p) when the model is fitted to the study
periods in (a)?

(e) What can you conclude from your estimate of the deceleration of growth
parameter (p)? Is this parameter stable as you use 16, 18, and 20 epidemics
days of data?

(f) Using your calibrated GGM based on your analysis in (d) and the approach
described in Sect. 8.4, estimate the effective reproduction numberRt during
the first 20 epidemic days. Compare your estimates ofR0 derived in (a) with
your estimates of Rt .

8.3 Using the generalized-growth model, characterize the early ascending phase of
the HIV/AIDS epidemic using monthly or annual case incidence data from any
area, region, or country of the world. Answer the following questions:

(a) Using the GGM, what are your estimates of the growth rate (r) and the
deceleration of growth parameter (p) when the model is fitted to the first
10 years of the epidemic?

(b) What can you conclude from your estimate of the deceleration of growth
parameter (p)?

(c) Document in detail the source of your data (e.g., publication reference,
website, etc.).



Chapter 9
Mechanistic Models with Spatial
Structures and Reactive Behavior Change

As we have emphasized in Chaps. 4 and 5, simple homogeneous models of
transmission or growth dynamics often yield an early exponential epidemic growth
phase even when the population is stratified into different groups (e.g., age,
gender, regions). However, recent work has highlighted the presence of early
sub-exponential growth patterns in case incidence from empirical outbreak data
(Chowell et al. 2016; Viboud et al. 2016). This suggests that integrating detailed and
often unobserved heterogeneity into simple mechanistic models (Yan 2018) could
open the door to a new and exciting research area to better understand the role of
heterogeneity on key transmission parameters, epidemic size, stochastic extinction,
the effects of interventions, and disease forecasts.

The diversity of infectious disease dynamics can be shaped by multiple and often
unobservable factors including the characteristics of the contact network structure,
individual-level heterogeneity in infection risk, and behavior changes (Chowell
et al. 2016). For instance, in the simplest setting when disease spreads assuming
homogeneous mixing, it is well-known that the incidence curve grows exponen-
tially in the absence of susceptible depletion, behavior changes, and interventions
(Diekmann and Heesterbeek 2000). It is worth noting that exponential growth can
only unfold in the presence of a constant growth rate (as highlighted in Chaps. 4
and 5). By contrast, an early transmission phase characterized by slower than
exponential growth (sub-exponential) can result from spatial constraints in contact-
network structures over which disease spreads or the early onset of behavior changes
or control interventions. Therefore, predictions of final epidemic size based on
models that assume early exponential growth will tend to overestimate epidemic size
whenever the early dynamics of disease transmission are governed by mechanisms
that induce slower transmission patterns. In turn, public health authorities could get
better estimates of the effectiveness of control interventions.
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We devote this chapter to review mechanistic transmission models that incorpo-
rate spatial details or realistic population mixing structures, including metapopula-
tion models, individual-based network models as well as simple SIR-type models
that incorporate the effects of reactive behavior changes or inhomogeneous mixing
(Fenichel et al. 2011). We argue that designing mechanistic models and statistical
approaches that capture a diversity of disease dynamics could lead to enhanced
model fit, improved estimates of key transmission parameters, and more realistic
epidemic forecasts (Chowell et al. 2016).

Structured population models can be traced back to the 1940s (Wilson and
Worcester 1945) and 1950s (Rushton and Mautner 1955). The number of infectious
disease spatial modeling studies has been increasing during the last couple of
decades with a research production of less than five articles per year in 1997 to
more than 120 articles per (Chowell and Rothenberg 2018). Models of the spread
of infectious diseases can be formulated at the subpopulation (metapopulation) and
individual levels. In metapopulation models the population is divided in a set of
interacting population groups according to spatial or demographic characteristics.
On the other hand, individual-level network models rely on individual-level contact
matrix to define interactions which could be static or dynamic.

9.1 Metapopulation Spatial Models

Metapopulation formulations offer a popular mathematical framework to study the
spatial spread of human infectious diseases (Arino et al. 2005; Chowell et al.
2006; Hethcote 2000; Hadeler and Castillo-Chavez 1995; Jacquez 1996; Keeling
and Rohani 2008; Sattenspiel 2009). Metapopulation models can be represented as
networks with the subpopulations represented by nodes and the interactions among
groups represented as the weighted network links (Riley 2007). The subpopulations
being modeled using a metapopulation approach are assumed to be discrete groups
that are connected in some fashion. Usually subpopulations are considered to
be well mixed and homogeneous, while the interaction between groups may be
either explicit or implicit, leading to the development of two general classes of
spatial metapopulation models: (a) cross-coupled models and (b) mobility models
(Sattenspiel 2009). Cross-coupled models simplify the analysis by modeling the
strength of the interactions (i.e., coupling) between groups. In mobility models, the
modeler mechanistically incorporates the movement of individuals between groups.

Cross-coupled metapopulation models (early examples include Wilson and
Worcester 1945; Rushton and Mautner 1955; Murray and Cliff 1977) only model
the influence of one group over the others via a contact matrix that represents the
strength or sum total of those contacts only. The elements of this matrix capture the
strength of the interactions between any two subpopulations, which modulates the
transmission risk. A simple SIR deterministic cross-coupled epidemic model can be
written as follows:
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dSi

dt
= μNi − μSi − Si

n∑

j=1

φij Ij

Ni

dIi

dt
= Si

n∑

j=1

φij Ij

Ni
− (μ+ γ )Ii (9.1)

dRi

dt
= γ Ii − μRi,

where Si , Ii , and Ri are the numbers of susceptible, infectious, and recovered
individuals, respectively, Ni is the total population size in subpopulation i, γ is
the recovery rate, and μ is the rate of birth (and death) under the assumption of
a non-growing population (total births = total deaths). φij is the rate of effective
contact between subpopulation i and subpopulation j ; the set of φij characterizes
the WAIFW matrix. The φij implicitly include both the rate of contact and the
probability of transmission.

For illustration, Fig. 9.1 displays the impact of increasing transmission rates
of the 4-nearest neighbors on local epidemic simulations using a cross-coupled
metapopulation model where 100 local populations each of size 100,000 are
spatially arranged in a 10 × 10 square lattice structure. Perhaps not surprisingly,
one can observe how the early local epidemic growth dynamics during the first
few generation intervals corresponds well to the epidemic growth derived from a
simple SEIR transmission model in a homogenously mixed population. Temporal
snapshots of the spatial distribution of disease prevalence using contour plots are
shown in Fig. 9.2.

The gravity contact matrix assumes that the rate of contact between two groups
is directly proportional to their population size and inversely proportional to their
geographic distance (Xia et al. 2004; Viboud et al. 2006; Weinberger et al. 2012). A
generalized gravity model takes the form

mjk = Naj N
b
k

dcjk
,

where mjk represents the contact between groups j and k, Nj and Nk are the
population sizes of the groups, djk is the distance between the two groups, and a, b,
and c are parameters typically estimated from data relating the interactions between
the groups.

Recently, Simini et al. (2012) proposed a radiation mobility model. Their model
is intended to represent commuting behavior, and they assume that the destinations
are determined only by job selection, which is a decision that depends on the size
of the location of a specific job opportunity as well as the benefits (e.g., income,
working hours, conditions, and other characteristics) of the potential opportunity.
Individuals choose the closest job to their home region that has higher benefits than
those within the home region. The assigned work locations of all members of a
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Fig. 9.1 Local epidemics generated using a cross-coupled metapopulation model where 100 local
populations are spatially arranged in a 10 × 10 square lattice with periodic boundary conditions.
The local dynamics across all patches follow a simple SEIR (susceptible–exposed–infectious–
removed) transmission model with a mean latent period of 2 days, a mean infectious period of
3 days, a local basic reproduction number, R0 at 1.5, and a local population size in each patch
of 100,000 individuals. A constant transmission between the 4-nearest neighbors is modeled as a
fraction of the local transmission rate, which takes values of (a) 0.1%, (b) 0.5%, (c) 1%, and (d)
5%. For reference, the red dotted line corresponds to the curve of total incidence, while the dashed
black line corresponds to the solution of the homogenous-mixing SEIR model considering the total
homogenously mixed population in a single patch

region determine the daily commuter fluxes. The average flux, Tij , from region i to
region j at a distance rij apart is given by

〈
Tij
〉 = Ti

NiNj(
Ni + sij

) (
Ni +Nj + sij

) ,

where Ni and Nj are the population sizes of regions i and j , respectively, and sij
is the total population in a circle of radius rij centered on region i but excluding
both the source and destination populations. Ti = ∑j �=i Tij is the total number of
commuters who begin their commute in region i. Population distribution is the only
required input for this model.

Mobility metapopulation models mechanistically aim to describe the actual
movement of individuals across subpopulations (e.g., Arino et al. 2007; Belik et al.
2011; Kenah et al. 2011; Vincenot and Moriya 2011; Xiao et al. 2011; Tizzoni et al.
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Fig. 9.2 Spatial spread of SEIR metapopulation model in a 10 × 10 lattice

2012; Appoloni et al. 2013; Apolloni et al. 2014; Marguta and Parisi 2015). Hence,
transmission of the pathogen occurs within subpopulations considering the local
and visitor populations. This process can also be modeled by considering first the
rates at which individuals leave groups to visit other locations and then the possible
destinations and average durations of those trips (Sattenspiel and Dietz 1995). An
example of a deterministic SIR mobility metapopulation model is the following set
of equations:

dSi

dt
= μNi − βiSiIi

Ni
− μSi +

n∑

j=1

θij Sj

dIi

dt
= βiSiIi

Ni
− (μ+ γ )Ii +

n∑

j=1

θij Ij (9.2)

dRi

dt
= γ Ii − μRi +

n∑

j=1

θijRj ,

where Si , Ii , and Ri are the numbers of susceptible, infectious, and recovered
individuals, respectively, and Ni is the total population size of subpopulation i, μ is
the rate of birth (and death) where total births = total deaths, βi is the transmission
parameter in subpopulation i, and θij is the rate of movement to subpopulation i



322 9 Mechanistic Models with Spatial Structures and Reactive Behavior Change

from subpopulation j . Moreover, rates of movement are assumed to be the same for
all disease states in this simple model.

9.2 Individual-Based Network Models

Individual-level network models are being increasingly used to study infectious
disease dynamics where contacts (links) can be either static or dynamic (reviewed
in Halloran et al. 2002; Keeling and Eames 2005; Bansal et al. 2007; Capaldi
et al. 2012; Danon et al. 2011). A contact-network model explicitly represents host
interactions that dictate disease transmission. A node in a contact network represents
an individual host, and an edge between two nodes represents an interaction through
which infection is possible. Network-based models are then useful for investigating
the impact of individual-level characteristics and their disease-relevant interactions
on the transmission dynamics observed at the population level. A number of network
models have been proposed in the literature ranging from random, small-world, to
scale-free networks (Watts and Strogatz 1998; Barabási and Albert 1999; Albert and
Barabasi 2002). One of the most popular and parsimonious contact-network models
is the “small-world” network model as it allows for tuning the average degree of
the nodes, the average connectivity (path length), and the clustering that quantifies
the extent to which contacts of a node are also contacts of each other (Watts and
Strogatz 1998).

Figure 9.3 shows two small-world networks with two different rewiring prob-
abilities. While the original Watts–Strogatz model starts from a ring network
structure, the idea can be extended to other regular networks. For instance, Fig. 9.4
displays examples of small world networks based on two dimensional lattices where

Fig. 9.3 Small-world networks with two rewiring probabilities
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Fig. 9.4 Schematic representation of 2D square lattices where each node is connected to its 4-
nearest neighbors with periodic boundary conditions and with the addition of a few random long-
range links

each node is connected to its 4 nearest neighbors, and the small-world feature is
incorporated by adding a fixed number of random links.

For illustration, we simulated SIR (susceptible–infectious–removed) dynamics
on small-world networks using networks of size N = 90,000 and node connectivity
to the 4 nearest neighbors, and we increased the edge rewiring probability parameter
(psw) from 0.001 to 0.01 of the small-world network model of Watts and Strogatz
(1998). For each value of psw, we analyzed the early epidemic growth profile
comprising 35 days of disease transmission from 200 stochastic realizations. The
transmission rate per contact per unit of time was set at 2 and the infectious period
was assumed to be exponentially distributed with mean 1/γ which is set at 3 days.
Each simulation started with one infectious individual selected at random from
the network. For reference, the baseline SIR transmission dynamics on the regular
network with node connectivity to the 4 nearest neighbors and without long-range
links correspond to a wave of steady case incidence at about 4 cases per day.
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9.2.1 An Individual-Level Network Model with
Household-Community Structure

One of the putative mechanisms leading to early polynomial growth dynamics of
transmission is clustering (Szendroi and Csányi 2004; Chowell et al. 2015; Merler
et al. 2015; Viboud et al. 2016; Chowell et al. 2017), a network property that
quantifies the extent to which the contacts of one individual are also contacts of each
other (Watts and Strogatz 1998). Social contact networks are particularly useful to
explore the impact of clustering and play an important role in the dissemination of
infectious diseases at the community level.

Several authors have put forward relatively simple mathematical models that
incorporate household and other social structures such as schools and workplaces
(Longini and Koopman 1982; Longini et al. 2007; Ball et al. 2009, 2015; Fraser
2007; Goldstein et al. 2009; Pellis et al. 2009, 2012, 2015; Blythe and Castillo-
Chavez 1989). For instance, a network-based transmission model with household
structure embedded in a structure of overlapping communities has been previously
applied to study the transmission dynamics of Ebola (Kiskowski 2014; Kiskowski
and Chowell 2015). In this model, individuals are organized within households of
sizeH (each household contains H individuals) and households are organized within
communities of size C households (each community contains ×H individuals) (see
Fig. 9.5). Network connectivity is identical for every individual. The transmission
potential is characterized by the household reproduction number and the community
reproduction number. For a given household size H , prior studies have investigated

Fig. 9.5 Schematic representation of the household-community mixing structure with overlapping
communities. In this model, individuals are organized within households of sizeH (each household
contains H individuals) and households are organized within communities of size C households
(each community contains ×H individuals) (panel (a)). Network connectivity is identical for every
individual. The transmission potential is characterized by the household reproduction number and
the community reproduction number. The matrix-level representation of the model is shown in
panel (b)
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Fig. 9.6 Stochastic SEIR simulations (cyan lines) of the household-community model with H =
6, C = 165, and R0H = 1.5 and R0H = 0.5. The mean of the ensemble of stochastic realizations is
the red solid line. The corresponding solution of the deterministic SEIR model under homogenous
mixing with R0 = 2 corresponds to the solid black line. Baseline epidemiological parameters
were set according to the epidemiology of Ebola (i.e., incubation period of 5 days (Eichner et al.
2011; The World Health Organization Emergency Response Team 2014) and infectious period of
7 days (Chowell et al. 2004; The World Health Organization Emergency Response Team 2014)).
The population size at 10,000

the impact of varying the community size parameter C on the early transmission
phase. As the community size increases, the scaling of epidemic growth approaches
the exponential growth regime (Kiskowski and Chowell 2015; Chowell et al. 2016).
Figure 9.6 contrasts simulations derived from the household-community model
with the deterministic solution of the SEIR model under homogenous mixing with
the same R0. In particular, outbreaks not only spread more slowly in the spatial
household-community model, but the size of those epidemics is smaller compared
to the homogenous mixing SEIR model using baseline epidemiological parameters
(mean latent and infectious periods) in line with the epidemiology of Ebola.

9.3 Capture Dynamic Reactive Behavior Changes Through a
Generalized-Growth SEIR Model

The generalized-growth SEIR model (GG-SEIR) is a novel modeling framework
(Chowell et al. 2016) that builds on the well-known SEIR (susceptible–exposed–
infectious–recovered) transmission model (Anderson and May 1991) by incorpo-
rating flexible early epidemic growth profiles, e.g., sub-exponential and exponential
growth dynamics. This is achieved by allowing a dynamic nature of the effective
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reproduction number Rt in the context of early sub-exponential (e.g., polynomial)
growth dynamics.

The standard deterministic SEIR epidemic model represents the simplest and
most popular mechanistic compartmental model for describing the spread of an
infectious agent in a well-mixed population. As explained before, the force of
infection per unit of time is simply given by the product of three quantities:
a constant transmission rate (β), the number of susceptible individuals in the
population (S(t)), and the probability that a susceptible individual encounters an
infectious individual (I (t)/m). Moreover, infected individuals experience a mean
latent and a mean infectious period given by α−1 and γ−1, respectively. The
model is based on a system of ordinary differential equations that keep track of
the temporal progression in the number of susceptible, exposed, infectious, and
removed individuals (see Eq. (5.53)).

In a completely susceptible population, e.g., S(0) = m, the average number of
secondary cases generated per primary case, R0 = β/γ. However, as the number
of susceptible individuals in the population declines due to a growing number of
infections, the effective reproduction number over time, Rt , is given by the product
of and the proportion of susceptible individuals in the population:

Rt = β

γ

S(t)

m
. (9.3)

During the first few generations of disease transmission when S(t) ≈ m, in
the absence of control interventions or reactive population behavior changes, the
standard SEIR model supports a reproduction number that is essentially invariant,
i.e., Rt ≈ R0. By contrast, in the context of epidemics characterized by early sub-
exponential growth dynamics, we have shown that the reproduction number is a
dynamic quantity that declines over disease generations towards 1.0 (Chowell et al.
2016). Here we introduce the generalized-growth modeling framework based on
the well-known SEIR model (GGM-SEIR) that incorporates the possibility of early
sub-exponential growth dynamics by explicitly modeling the dynamic behavior of
the effective reproduction number via a time-dependent transmission rate β(t) such
that the force of infection becomes: β(t)S(t)I (t)/m. Specifically, we consider a
transmission rate function β(t) of the form:

β(t) = β0 [(1 − φ) f (t;�)+ φ] ,

where f (t;�) is a function that declines over time from 1 towards zero so that the
transmission rate β(t) declines from an initial value β0 towards φβ0. The quantity
(1 − φ)models the proportionate reduction in β0 that is needed to reach an effective
stationary reproduction number at 1.0, in line with early sub-exponential growth
dynamics (Chowell et al. 2016). For the standard SEIR model, φ can be simply
estimated as γ /β0 since R0 = β/γ during the early growth phase when S(t) ≈ m.
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Here we employ an exponential decline function for the transmission rate, which is
given by

β(t) = β0
[
(1 − φ) e−qt + φ] , 0 < q ≤ 1 and φ > 1.

Alternatively, harmonic and hyperbolic functions could be used to model the decline
in the transmission rate as follows:

β(t) = β0

[
(1 − φ) (1 + qvt)−1 + φ

]
,

β(t) = β0

[
(1 − φ) (1 + qvt)−1/v + φ

]
.

This modeling framework allows to capture early sub-exponential growth dynamics
whenever R0 > 1 and q > 0. If q = 0, the transmission rate β(t) = β0 remains
at the baseline value, and we recover the classic SEIR transmission model with
exponential growth dynamics and R0 = β/γ . In general, the higher the value of
q, the faster the decline of the reproduction number from R0 > 1 to a stationary
reproduction number at 1.0. We can interpret the parameters q and v through the half
time value or the average time elapsed to achieve a transmission rate 1

2β0 (1 − φ).
The half time value is given by: log(2)/q.

Importantly, in the context of early sub-exponential (e.g., polynomial) epidemic
growth for which q > 0, the basic reproduction number is no longer the product
of the initial transmission rate β0 and the mean infectious period γ−1 because the
transmission rate β(t) is no longer constant, but declines during the duration of the
infectious period of primary cases at the onset of the epidemic, yielding a lower
R0. For this situation, R0 can be estimated numerically using the following integral
equation (Bacaër and Ait Dads el 2011):

R0 =
∫ ∞

0
β(t)e−γ τ dτ =

∫ ∞

0
β0
[
(1 − φ) e−qτ + φ] e−γ τ dτ.

For a given value of β0 and γ , the basic reproduction number is R0 expected to
decline from β/γ as parameter q increases above 0. More generally, the effective
reproduction number, Rt , during the early epidemic growth phase comprising the
first few disease generations of transmission when S(t) ≈ m can be numerically
computed as follows:

Rt =
∫ ∞

t

β(t)e−γ (τ−t)dτ =
∫ ∞

t

β0
[
(1 − φ) e−qτ + φ] e−γ (τ−t)dτ.

For illustration, Fig. 9.7 displays temporal profiles of the transmission rate, the
effective reproduction number, and the corresponding simulations of the early
epidemic growth phase.
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Fig. 9.7 Representative profiles of the transmission rate β(t), the effective reproduction num-
ber Rt , and corresponding simulations of the early epidemic growth phase derived from the
generalized-growth SEIR model (GG-SEIR) for different values of the decline rate parameter q
and β0 = 0.4,α = 1/5, and γ = 1/6 in a large population size (N = 10,000,000). The epidemic
simulations start with one infectious individual. In semi-logarithmic scale, exponential growth is
evident if a straight line fits well several consecutive disease generations of the epidemic curve,
whereas a strong downward curvature in semi-logarithmic scale is indicative of sub-exponential
growth. Our simulations show that case incidence curves display early sub-exponential growth
dynamics even for very low values of q

9.4 Case Study: Modeling the Effectiveness of Contact
Tracing During Ebola Epidemics

In Mali, two Ebola cases were imported from neighboring Guinea in two different
instances, the first resulting in one death and no local secondary cases, and the
second resulting in two generations of transmission with a total of eight cases
and six deaths in the capital city of Bamako (Breakwell et al. 2016). Both Ebola
importations occurred in the fall of 2014 as the epidemic was still unabated in
Guinea (2015, 2016), about a month after an Ebola case was imported to Senegal
from Guinea, and 4 months after an Ebola case was imported to Nigeria from Liberia
(Abdoulaye et al. 2014; The World Health Organization 2014). No further Ebola
importations were reported from highly affected countries to neighboring, high-risk
countries during the 2014–2016 West Africa Ebola epidemic.

The second Ebola importation in Mali occurred in a grand Imam who traveled
from Guinea to Mali and sought care at a private clinic on October 25, 2014,
in Bamako where he was treated for kidney failure and was not suspected with
Ebola. He died on October 27th and had an unsecured burial on October 28th.
Control measures in Mali, including contact tracing, began on November 8th 2014
(Breakwell et al. 2016).
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Contact tracing was the primary intervention in response to the second Ebola
importation into Mali. Briefly, contact tracing is a method used to prevent further
cases of an infectious disease that involves contacting and routinely following up
with individuals who have been identified as being exposed to a patient or other
vector of a disease for the duration of the maximum observed incubation period of
the disease (21 days for Ebola (Shrivastava et al. 2014)). Through effective contact
tracing, secondary cases are quickly isolated to prevent further transmission (Eames
and Keeling 2003). Although contact tracing is a critical piece of a response to
Ebola outbreaks, it was implemented with varying levels of effectiveness across all
three of the most affected countries in West Africa (Pandey et al. 2014; Martín et al.
2016; Olu et al. 2016). The success of contact tracing is tightly linked to behavioral
interventions, training in infection prevention and control practices in healthcare
settings, and initiation of surveillance protocols (Breakwell et al. 2016).

In this case study, we analyze the relation between contact tracing activities
and the decline in disease transmission during the Ebola epidemic in Mali. For
this purpose, we carried out a comprehensive analysis of contact tracing trees and
modeled the relationship between the time-dependent effects of contact tracing and
the trajectory of the Ebola outbreak in Bamako assuming two different population
structures: (1) a standard homogenous mixing model and (2) a spatially structured
model. We illustrate the effect of the rapid and effective implementation of contact
tracing activities on outbreak trajectory and size using stochastic simulations.

9.4.1 Model 1: Homogenous-Mixing SEIR Transmission
Model

The main features of this model have been described in previous chapters (see
Sect. 5.4). A similar model has been previously used to model transmission
and control of the Ebola outbreak in Nigeria in 2014 (Chowell et al. 2004;
Fasina et al. 2014). For the sake of simplicity, we only model a single infectious
compartment while adjusting the time-specific transmission rate according to data
of the time-dependent effectiveness in contact tracing activities conducted during
the Ebola outbreak in Bamako. Hence, the modeled population was divided into
five categories: susceptible individuals (S); exposed individuals (E); infectious and
symptomatic individuals (I); and recovered or dead individuals (R). Susceptible
individuals infected through contact with infectious individuals enter the latent
stage at mean rate βf (t)I (t)/N(t), where β is the baseline mean human-to-human
transmission rate per day in the absence of interventions, f (t) quantifies the time-
dependent effectiveness of contact tracing activities, andN(t) is the total population
size at time t. Thus, f (t) ranges from 0 (fully complete contact tracing activities are
in place) to 1 (contact tracing efforts are yet to start) to quantify the effectiveness
of the isolation of infectious individuals that decrease Ebola transmission through
contact tracing efforts. Values of f (t) close to 0 illustrate “near-perfect” contact
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tracing, while values closer to 1 illustrate “imperfect” contact tracing efforts.
Symptomatic infectious individuals I (t) recover at the mean rate γ . Individuals
in the “removed” category do not contribute to the transmission process. Thus, the
time-dependent contact tracing effectiveness, f (t), remains at 1.0 before the start of
contact tracing activities. Baseline epidemiological parameters were set according
to the epidemiology of Ebola (i.e., incubation period of 5 days (Eichner et al. 2011;
The World Health Organization 2014) and infectious period of 7 days (Chowell et al.
2004; The World Health Organization 2014)). We set the effective population size at
2,400,000 based on the population size of Bamako. For this model, R0 is given by
the product of the transmission rate β and the mean infectious period 1/γ . Hence,
specific values of R0 (range: 1.6–2.0 based on estimates of the Western African
outbreak (Althaus 2014; Nishiura and Chowell 2014)) were calibrated by tuning
β. Once interventions are put in place, the effective reproduction number declines
according to the formula

Rt = R0
S(t)

m
f (t),

where S(t)/m quantifies the proportion of susceptible individuals at time t .

9.4.2 Model 2: Spatially Structured Ebola Transmission Model

One of the putative mechanisms leading to early polynomial growth dynamics of
Ebola transmission is clustering (Szendroi and Csányi 2004; Chowell et al. 2015;
Merler et al. 2015; Viboud et al. 2016; Chowell et al. 2017), a network property
that quantifies the extent to which the contacts of one individual are also contacts of
each other (Watts and Strogatz 1998). Social contact networks are particularly useful
to explore the impact of clustering and play an important in the dissemination of
Ebola at the community level. We employ a network-based transmission model with
household-community structure, which has been previously applied to study the
transmission dynamics of Ebola (Kiskowski 2014; Kiskowski and Chowell 2015).

In this model, individuals are organized within households of size H (each
household contains H individuals) and households are organized within commu-
nities of size C households (each community contains C×H individuals). Network
connectivity is identical for every individual. The household reproduction number
R0H was varied between 1.6 and 2.0 and the community reproduction number R0C
was set at 0.7 based on previous study (Kiskowski and Chowell 2015). For a fixed
household size at H = 6, which is in line with the average household size for
Bamako in 2014 and various values of the community size parameter (range: 25–65
households per community), we analyze the resulting outbreak size distribution.
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9.4.3 Modeling the Time-Dependent Effectiveness of Contact
Tracing Efforts in Bamako, Mali

After the start of the interventions at time t0, the function f (t)modulates a decline in
transmission rate according to the time-dependent completeness of contact tracing
efforts. The functional form for f (t) was assumed to follow an exponential decline
after the start of contact tracing activities. That is,

f (t) =
{

1, 0 < t < t0
1 − (1 − e−q(t−t0)), t ≥ t0 .

Parameters q and t0 could be estimated by fitting f (t) to the daily contact
tracing completeness calculated as the daily proportion of contact persons that
were monitored out of the total number of registered contact persons at risk.
For illustration purposes, we set q = 0.14 while the start of contact tracing
efforts is fixed at t0 = 21, which is in line with the outbreak response in Mali.
The corresponding estimates of the effective reproduction number are shown in
Fig. 9.9b.

Stochastic Simulations

To assess the temporal and size distribution of outbreaks, we generated 200
stochastic epidemic simulations that start with the introduction of the index case
(i.e., I (0) = 1). Simulation code in Matlab is available upon request from the
authors.

In the absence of interventions, the spatial and non-spatial models exhibit
strikingly different epidemic trajectories as shown in Fig. 9.8.

The resulting curves of the effective reproduction number, Rt , capturing the
time-dependent effects of contact tracing efforts for three different values of R0
are shown in Fig. 9.9 based on the homogeneous mixing model. Rt declined below
the epidemic threshold of 1.0 between November 10th and November 13th, 2014.
The illustrated effect of control interventions on the transmission of Ebola in
Mali is shown with an ensemble of stochastic epidemic realizations in Fig. 9.9a,
which shows the relative reduction in the transmission rate as a function of the
time-dependent effectiveness of contact tracing activities. After the start of the
interventions, the function modulates a decline in transmission rate according to
the time-dependent effectiveness of contact tracing efforts as explained in the text.
This time-dependent function was assumed to follow an exponential decline after
the start of contact tracing activities. Figure 9.9b shows the effective reproduction
number over time reflecting the impact of contact tracing activities for three different
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Fig. 9.8 The mean epidemic trajectories derived from the spatial and non-spatial models during
the first 100 days of the Ebola epidemic in the absence of interventions

Fig. 9.9 (a) The relative reduction in the transmission rate as a function of the time-dependent
effectiveness of contact tracing activities. (b) The effective reproduction number over time
reflecting the impact of contact tracing. (c) Stochastic epidemic realizations using the homogenous-
mixing SEIR model (Model 1) at R0 = 1.6. The red circles correspond to the actual outbreak
trajectory and the cyan blue lines correspond to 200 stochastic realizations. (d) The corresponding
distribution of outbreak sizes using the homogenous-mixing SEIR model (Model 1) with an R0 set
at 1.6. The vertical dashed line indicates the actual Ebola outbreak size in Mali
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Fig. 9.10 Stochastic epidemic realizations using the household-community SEIR model (Model
2) with a community size of 25 households and household size of 6 which is in line with the
average household size for Bamako in 2014

values of R0 in the range 1.6–2.0. Figure 9.9c illustrates stochastic epidemic
realizations using the homogenous-mixing SEIR model (Model 1) with an R0
set at 1.6. Figure 9.9d shows the corresponding distribution of outbreak sizes
using the homogenous-mixing SEIR model (Model 1) with an R0 set at 1.6. The
corresponding results based on the spatially structured model are shown in Fig. 9.10
assuming a community size C = 25.

Our modeling analysis demonstrates that the decline in transmission and subse-
quent halting of the Ebola outbreak in Mali coincided with the implementation of
contact tracing activities that improved over the course of the outbreak. The results
suggest that contact tracing done completely during an outbreak could minimize the
size of future outbreaks. While the spatial and non-spatial models yield significantly
different epidemic trajectories in the absence of interventions (Fig. 9.8), it is perhaps
not surprising that the spatial and non-spatial transmission models yielded similar
outbreak size distributions because the virus was contained before it could spread
beyond a few generations of disease transmission. In the absence of comprehensive
contact tracing efforts, person-to-person transmission of Ebola could have increased
rapidly, ensuing in a sizable urban epidemic.
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9.5 Problems and Supplements

9.1 Consider a simple SIR model with an R0 = 1.8, a mean infectious period of
3 days and a population size of 100,000 people that incorporates the effects of
behavior changes that mitigate the transmission rate as follows: After the first
30 days of the epidemic, the transmission rate decreases exponentially fast with
a half-life of 10 days. Answer the following questions:

(a) Compare the size of the epidemics obtained with and without the effects of
behavior changes.

(b) Explore how the epidemic size changes as you vary the timing of the start
of the behavior change and the half-life of the transmission rate decay
associated with the behavior change.

9.2 Consider a simple two-patch SEIR model with local R0 = 1.5, mean latent
period of 7 days, mean infectious period of 4 days, and a population size of
10,000 people in each patch. Further, transmission can occur in two different
ways: (1) local transmission within each patch and (2) directed transmission
from the first patch to the second patch (but not from the second to the first
patch) where this patch-to-patch transmission rate is a fraction ρ relative to the
local transmission rate. Answer the following questions:

(a) Using the simple SEIR model without demographic factors and assuming
a mean latent period of 2 days, a mean infectious period of 4 days,
and a population size of 550,000, provide the mean estimate and 95%
confidence intervals of the basic reproduction number R0 using 16, 18,
and 20 days of the initial growth phase. For parameter estimation you can
use the least square fitting approach with the Poisson parametric bootstrap
which is described in Chap. 7 and illustrated with examples in Chap. 8.
Note that you only need to estimate the transmission rate using your
favorite technical computing language while keeping the initial number of
infectious individuals I (0) fixed according to the first data point. Are the
R0 estimates relatively stable during the study period?

(b) Describe the dynamics of the epidemics as the parameter rho is increased
from 0.00001 to 0.01. In particular, how many peaks do the total incidence
curve exhibit as this parameter is varied?

(c) Describe the epidemic duration and size that result from (a).
(d) Repeat the analyses in (a) using a system of 4 patches connected in a

linear fashion where patch-to-patch transmission only occurs from patch
j to patch j + 1.
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