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Abstract. The problem of determining the stress state near the through-cracks
in an infinite hollow cylinder of arbitrary cross-section under oscillations of
longitudinal shear is solved. The method allows satisfying the conditions sep-
arately on the surface of cracks and on the borders of the cylinder. The solution
scheme is based on the use of discontinuous solutions of equations of motion of
elastic medium with jumps of displacements on the surface of defects. For this
displacement are represented by the sums of discontinuous solutions, built for
each defect, and an unknown characteristic function. Designed presentation
enables fulfilling separately the boundary conditions on the surface of defects
that leads to the set of systems of integral equations, which don’t depend from
the shape of the boundaries of the body. Then the unknown coefficients of
represented characteristic function are determined from the conditions on the
boundaries of the body by the collocation method.
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Crack - Stress intensity factors - The system of cracks

1 Introduction

Research of the stress state of bodies with cracks is actual for formulation the condi-
tions for the fracture of bodies and diagnoses such defects, based on information about
their influence on resonant frequency. The results obtained in this direction it is mainly
up to infinity and semi-infinite bodies with defects [1-4]. Situations where the body
occupy finite area, considered much less. This is due to the fact that when applying the
method of boundary integral equations of the initial boundary value problems are
reduced to the related systems of integral equations defined and surface defects and on
the boundary of the body [5-7]. As a result, numerical solution essentially more
complicated, especially in the case of systems defects and multiplies connected areas.
Method that allowing independently consistently satisfying the boundary conditions on

defects and on the surface of the body is proposed there.
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2 Statement of the Problem

Hollow elastic cylindrical body with axis parallel to the axis Oz of the cross section
plane xOy which is a two connected area that is bounded by arbitrary smooth curves is
considered. These curves in a polar coordinate system, the pole of which coincides with
the center of coordinates system xOy are defined by the equations:

r=ropo(@), r=rig(¢); 0< @ <2m.

The first equation defines the outside boundary of the cross-section, and the second
equation defines inside. The cylinder contains N through cracks. These cracks in cross
section plane occupied segments of 2a;, k = 1, N length with centers at points (cy, d)
that do not intersect with the boundaries of cross section and among themselves
(Fig. 1).

Fig. 1. Infinite cylindrical body with cracks.

The longitudinal shear oscillation proceeds in the cylinder as a result of the har-
monic load GP(¢)e " on the outside boundary, where G is shear module, w is the
frequency of oscillation. The multiplier e~ is everywhere on omitted. Only the
z-component of the vector of displacement is different from 0, which satisfies
the Helmholtz equation

Aw+ 13w =0; K3 = w’p/G, (1)

A-is the Laplace operator in a polar coordinate system. Due to the load on the
outside surface of the body and on the supposition about the fixity inside surface next
conditions are fulfilled on them

Tue (oo (@), @) = GP(p),w(rny, (@), @) =0, 0<p<2m. (2)

For the formulation of boundary conditions on the cracks with the center of each
the local coordinate system x;Oyx, k = 1, N is associated (Fig. 1).

Let wy(xx, y) is the z—component of the vector of displacement after the trans-
formation from polar coordinates to Cartesian x;Oyyy. Cracks are considered to be free
from stresses:
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Zyk(xk,O) =0, \xk| <ay, k= 1,—N (3)

Also displacement is discontinuous on the surfaces of the cracks with jumps

(%, 0) =0, || <a, y(+ta) =0k = 1,N 4)

Zyk

Under such conditions, the problem of determining the wave field in the body and
stress state in the vicinity of the cracks is posed.

3 Solution of the Problem

For each of the cracks in the local coordinate system x;O;y; discontinues solution of
Eq. (1) [8] with jumping (4) is built

0
Wi o) = - / 2a(nyraln = xyi)dn, (5)

where ry(n — x;,y) = — 4 (()1) <K2 (n—x)? +yl> ( ) Hankel function.

Then in a polar system displacement is represented in the form of:
(g) - (8)
w(r,0) = wi (r,0) + > wi® (r,0) (6)
=1

where w

nates, wf) >(r, @) is some unknown function which conditions (2) on the surface of the

body would be satisfied. Further, this function is represented as a linear combination of
the partial solutions of Helmholtz Equation [9]:

(g)(r @) are discontinuous solutions (5) after the transition to polar coordi-

W (r.0) = ro S (Asga(r, 0) + Beh(r. )

s=1 7
Ry 1 (ry @) = Hy—1(12r) cos(m — 1)@, hy, (r, ®) = Hy(k2r) sinme ()

n
Bom_1 (1, @) = Jp_1(k2r) cos(m — 1)@, g,,,(r, @) = Ju(i2r) sinme

After transition in (7) to the Cartesian coordinates x;Oyy; and substitution to (4)
system of integro-differential equations for functions ¢,(t) = y;(a;7)/a; is obtained.

Formulas (7) and the linearity of this system allow to represent the unknown
function in form:

_a,Z(«pv, (7) + Byl (=) ): 0 XM:( Aol @) +8(of@)).

s=1
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As a result of these actions the set of systems of integral equations for (pg)(‘c) are

obtained finally

1 1

= (ka )I - U(r—g)]dr—‘—z—lnf(pfg( )[ ,LKOIn\r—J—O—R ( )]dr
et el
N 1 1 .
} Z #f((p )duszw (t.0)de f.s-(kX)(;>' (8)
=1 -1 -1
14k

M, Os(as0) @)
Tk &= vy e

s k=1,..,N; s=1,..M; i=12.

Ohs (agc.0
(:):7“)_‘(()"];( )

Solution of systems (8) is based on the representation of derivatives of unknown
functions in the form [10]:

. / (@)
(wgﬁf(f)):%, k=1,2,...,N 9)

Then the mechanical quadrature method with (8) the set of systems of linear

algebraic equations for the knots values of unknown function (W; ) %k () ar

obtained with (8). Where T,(t) is Chebyshev’s polynomial,t,, is its roots. Unknown
coefficients Ay, By in (7) are determined by condition (2) in the boundaries of the body.
After the its realization and applying of the collocation method systems of linear
algebraic equations for these coefficients are obtained

M
ZAS(Z a’"l//vm ZDImG(ZU 0") +F1 (Ur)>

=1 m=1

M
E (Z alem ZDlm Zl76r)+F3(0'r)) = P(G,)7

©

m=1
M n n
> m(z1 bl 3D (zl,a,>+gs(a,>) + ZIBS(ZI amwﬁ?IZID,mE(zz,a,Hhs(ar)) 0,
5= m s= m= —
oy =%7 r=1,..,.M
(10)

Values that define the possibility of developing cracks, there are stress intensity
factors (SIF) K,i near its edges x; = +a;, After the solution (8) and (10) its dimen-
sionless value are founded

et = K ot A, ll) L B - my (D) (ot In) E1
Fodl= z S (=1 (eg)  + B Y (~1)" D (gl ),
m=1 s=1 m=1
N — m(2m-=1)
Ym = 2n
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4 The Results of Numerical Analyses

As an example, the cylindrical body with cross-section bounded of two ellipses (Fig. 2)
was considered when the next load surface P(¢) = sin2¢.

Fig. 2. The cross section of cylindrical body with crack.

Eccentricities of internal and external ellipses are same and equal ¢ = 0, 5, the ratio
of axes of the ellipses is r;/rp = 0, 5. The dependence of the absolute values of the SIF
on dimensionless wave numbers ko = K1y was studied for different angles of incli-
nation of the cracks to the axis of the ellipse. Figure 3 corresponds to the case of a
crack with a length equal to one third of the distance AB between the vertexes of
ellipses, and centered on the axis of the cross section. Curves 1-5 are illustrating the
change of SIF |k*| with increase of the wave number for the following angles,
0°,30°,45°,60°,90° respectively. We can see that until reach the first resonance fre-
quency absolute value of SIF decreases with increase factor of crack inclination angle.
Crack inclination angle also substantially affects the number and value of resonant
frequencies. So, for the angles of inclination & = 0° and oo = 90° there is no resonance
for xp =~ 2,6, which is observed for the other angles. However, all the cases revived are
characterized by resonant behavior of SIF for x ~ 3, 8.

N

Fig. 3. Dependence of SIF on wave number when changing cracks inclination angle.

5 Conclusions

Effective analytical-numerical method for determining the dynamic stresses in hollow
cylindrical body with arbitrary cross-section with through cracks for longitudinal shear
strain conditions was proposed. This method allows solving separate integral equations
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on defects and satisfying the conditions on the boundary of body, which facilitates
numerical realization. The method can be generalized to the case of the plane defor-
mation state and more difficult problems. Some difficulties in applying this method
arise when approaching the defect to the crack and unsmooth the boundaries of the
body. But in general, the proposed method allows the approximate calculation of SIF
and study the impact on their value of geometrical parameters of the cracks and the
body in a wide frequency area. It is shown that the presence of cracks in an elastic
hollow cylinder for harmonic load is accompanied by both the intensity of the dynamic
stresses in the vicinity of defects, and the resonant nature of their changes. In the
considered frequency area opportunities of achievement one or two resonances
depending on the position of the cracks in the body are revealed.
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