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Preface

This volume contains 50 six-page papers and 16 two-page abstracts presented at the
“Second International Conference on Theoretical, Applied and Experimental
Mechanics” (ICTAEM_2) held in Corfu, Greece, June 23–26, 2019. The
papers/abstracts are arranged in three topics and one special symposium with 35
and 31 papers/abstracts, respectively. The papers of the tracks have been con-
tributed from open call, while the papers of the symposium have been solicited by
Prof. Roman Kushnir to who I am greatly indebted.

ICTAEM_2 will focus in all aspects of theoretical, applied, and experimental
mechanics including biomechanics, composite materials, computational mechanics,
constitutive modeling of materials, dynamics, elasticity, experimental mechanics,
fracture, mechanical properties of materials, micromechanics, nanomechanics,
plasticity, stress analysis, structures, and wave propagation.

The attendees of ICTAEM_2 will have the opportunity to interact with the most
outstanding world leaders and get acquainted with the latest developments in the
area of mechanics. ICTAEM_2 will be a forum of university, industry, and gov-
ernment interaction and exchange of ideas in an area of utmost scientific and
technological importance.

I am sure that besides the superb technical program, the attendees of ICTAEM_2
will enjoy the majestic town of Corfu with its unique beaches and scenic beauty,
many areas of historical interest and archeological importance, the delicious local
cuisine, and the traditional Greek hospitality.

More than a hundred participants attended ICTAEM_2. The participants of
ICTAEM_2 came from 18 countries. Roughly speaking 18% came from Europe,
17% from the Far East, 5% from the Americas, and 60% from other countries. I am
happy and proud to have welcomed in Corfu well-known experts who came to
discuss problems related to the analysis and prevention of failure in structures. The
tranquility and peacefulness of this small town provided an ideal environment for a
group of scientists and engineers to gather and interact on a personal basis.
Presentation of technical papers alone is not enough for effective scientific com-
munication. It is the healthy exchange of ideas and scientific knowledge, formal and
informal discussions, together with the plenary and contributed papers that make a
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fruitful and successful meeting. Informal discussions, personal acquaintance, and
friendship play an important role.

I am proud to have hosted ICTAEM_2 in the beautiful town of Corfu and I am
pleased to have welcomed colleagues, friends, old and new acquaintances.

I very sincerely thank the authors who have contributed to this volume, the
symposium/sessions organizers for their hard work and dedication, and the referees
who reviewed the quality of the submitted contributions. The tireless effort of the
members of the Organizing Committee as well as of other numerous individuals,
and people behind the scenes is appreciated. I am deeply indebted to Dr. Stavros
Shiaeles for his hard work and dedication in the organization of the conference.
Finally, a special word of thanks goes to Dr. Maria Shiaeles for her continuous
collaboration and support.

Athens, Greece Emmanuel E. Gdoutos
March 2019
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Role of Compactness on Hardness
and Reduced Modulus of Vaterite Determined

with Nanoindentation

Radek Ševčík1(&) and Vladimír Hrbek2

1 Institute of Theoretical and Applied Mechanics of the Czech Academy of
Sciences, Prosecká 76, 190 00 Praha 9, Czech Republic

sevcik@itam.cas.cz
2 Faculty of Civil Engineering, Czech Technical University in Prague,

Thakurova 7/2077, 160 00 Praha 6, Czech Republic

Abstract. The influence of compaction degree of synthetic vaterite, the meta-
stable polymorph of calcium carbonate, on determined mechanical properties
was investigated using nanoindentation instrument. Specimens for measure-
ments were prepared as pressed pellets with the application of three different
forces—40, 60 and 80 kN. The highest values of reduced modulus and hardness
were detected for vateritic pellet pressed at 60 kN. For this specimen, reduced
modulus and hardness were found to be in ranges 74–10 and 5.2–0.3 GPa,
respectively. Observation with scanning electron microscope showed increase
compactness of pellet’s microstructure and an increase in density and length of
microcracks within vateritic pellets when higher pressing force was applied.

Keywords: Vaterite � CaCO3 � Nanoindentation

1 Introduction

Calcium carbonate (CaCO3) is widely present on Earth and play crucial role in many
industrial sectors and natural processes [1, 2]. Different modifications of CaCO3 are
known: it can exist as anhydrous polymoprhs (vaterite, aragonite and calcite) or as
hydrous phases (monohydrate, ikaite and amorphous calcium carbonate) [3] with
different morphologies and variety of physico-chemical properties [1–3]. Due to their
high importance, CaCO3 formation and characterization are intensively studied,
however, only limited information can be found about mechanical properties of syn-
thetic products. Mainly only calcite, most abundant and thermodynamically stable
CaCO3 polymorph under Earth’s surface conditions, was tested with nanoindentation
[4–6]. In case of vaterite, data are available only for samples originated from biogenic
[7–9] or biomimetic [10] processes. Some of our results of nanoindentation of synthetic
vaterite were already published [5, 6].

In this article, we have investigated the influence of compactness’s degree of
powder synthetic vaterite on hardness and reduced modulus. Specimens were prepared
as pressed pellets with applications of different forces. Mechanical properties were

© Springer Nature Switzerland AG 2019
E. E. Gdoutos (Ed.): ICTAEM 2019, 8, pp. 3–8, 2019.
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determined using nanoindentation instrument and microstructure of prepared pellets
were observed under scanning electron microscopy.

2 Experimental Part

2.1 Sample Preparation

Vaterite was synthesized as previously described without use of additives [11]. The
composition of obtained powders was examined using quantitative phase analysis with
the Rietveld method from collected X-ray diffraction patterns, confirming its purity
99 wt.% [11]. Testing specimens were prepared as pressed pellets made from 0.250 g
of vaterite. Pellets were pressed for 30 s with force 40 kN, subsequently, for 30 s again
with forces 40, 60 or 80 kN using hydraulic press (Trystom). No phase transformation
was detected after pressing.

2.2 Nanoindentation Measurements

For mechanical testing of prepared specimens, nanoindentor TI 750 L Ubi (Hysitron)
with three sided pyramidal diamond Berkovich indenter, was used. Indention was done
on area of 190 � 190 µm with the grid consists of 20 � 20 indents with 10 µm
spacing between them. Quasi-static indentation was performed in load-controlled mode
with maximum applied force was set to 500 µN. The loading/unloading time was set to
2 s with a 5 s peak hold time.

2.3 Scanning Electron Microscopy

High-resolution field emission scanning electron microscope (SEM) Quanta 450 FEG
(FEI) using a secondary electron detector was used to observe surfaces of testing
specimens. Analyses were performed at 20 kV of accelerating voltage.

3 Results and Discussion

The mean load-displacement (P-h) curves for the vateritic pellets pressed with different
forces are displayed on Fig. 1. Pellet pressed at lowest force (40 kN) showed maximum
load (P) at highest displacement (h). Interestingly, the pellet pressed at 60 kN had
maximum P at lowest h and the pellet pressed with 80 kN force exhibited maximum
P between P-h curves for pellets pressed at 40 and 60 kN. Such behavior could be
ascribed to the partial alteration of pellet’s microstructure on testing specimen’s sur-
faces of due to applied pressure and it will be further discussed in section dedicated to
the SEM observations. On Fig. 1, results are compared with those obtained from
specimen prepared also with grinding method, reported in [6]. It is clearly showed that
mean P-h curve is significantly shifted to the higher values of h. Whereas, the maxi-
mum P of pressed pellets is located in the range of 80–130 nm, the maximum P of
vaterite specimen prepared with grinding method is up to 240 nm. The mean values of
determined elastic modulus (Er) and hardness (H) are summarized in Table 1 and they
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seem to be comparable without relevant difference for all specimens pressed as pressed
pellets due to high confident intervals as a consequence of considerable decreased of Er

and H values with increased contact depths. If the values are reported in ranges, the
influence of degree of compactness become more evident. Er values of vateritic pellets
pressed at 40, 60 and 80 kN were determined to be in the ranges of 60–15, 74–10 and
61–16 GPa, respectively. H values of vateritic pellets pressed at 40, 60 and 80 kN were
determined to be in the ranges of 4.5–0.4, 5.2–0.3 and 4.2–0.3 GPa, respectively. So,
Er and H were found to increase with higher force of compactness, until 60 kN. At
80 kN force, Er and H were detected to be more similar with pellets pressed at 40 kN
instead of pellets pressed at 60 kN.

Fig. 1. Comparison of mean load-displacement (P-h) curves for pellets prepared from vaterite
and pressed applying different forces (40–80 kN). The green curve represented P-h curve for
vaterite specimen prepared using grinding method (from [6]).

Table 1. Summary of mechanical testing results from nanoindentation. Mean values of reduced
modulus (Er) and hardness (H) for vaterite specimens prepared with pressing method (press) and
grinding method (grind) are presented.

Sample Er [GPa] H [GPa]

Vaterite 40 kN (press) 27 ± 9 1.2 ± 0.8
Vaterite 60 kN (press) 34 ± 12 1.6 ± 0.9
Vaterite 80 kN (press) [5] 31 ± 8 0.9 ± 0.6
Vaterite (grind) [6] 10 ± 5 0.3 ± 0.2
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Such behavior may be explained observing of pellets microstructures under SEM.
On Fig. 2a–c, the surfaces of samples are illustrated. It can be noticed that the degree of
compactness is higher when the applied pressing force was higher.

At the same time, larger bodies of vaterite particles were formed with increasing
pressure. Together with higher degree of compactness, formation of microcracks was
initiated (Fig. 2d–f, microcracks are indicated by arrows in Fig. 2d–f). Such microc-
racks were observe only in limited amount in case of pellet pressed at 40 kN. For pellet
pressed at 60 kN, microcracks were present still only occasionally close to the surface.
However, in pellet pressed at 80 kN, the density of microcracks resulted in much
higher quantities. Interestingly, they were more pervasive not only on surfaces, but

Fig. 2. Surfaces of prepared vateritic specimens at low magnifications (a, b, c—10,000�) and at
high magnifications (d, e, f—80,000�). The formation of microcracks is highlighted with
inserted arrows. Testing specimens were prepared with different applied forces: a, d—40 kN, b,
e—60 kN, c, f—80 kN.
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penetrated in depth inside vaterite crystals (Fig. 2f). Thus, formation of these cracks
may be the explanation of detected lower Er and H values for pellet pressed at 80 kN
compared to those pressed at 60 kN.

The comparison with literature data is limited to the few works dealing with the
nanoindentation testing of vaterite. For samples of metastable polymorphs (vaterite and
aragonite) embedded in epoxy resin and prepared using grinding method, Er and
H values were found to be almost three times lower [6]. Nonetheless, it is known that
presence of epoxy resin may interfere with measurements [12]. For biogenic vaterite
from fresh water carp astericus, Er and H were found to be 57 and 3.2 GPa, respec-
tively [8]. For biomimetic prismatic-type vateritic thin film, Er a H were found to be
32.5 ± 2.4 and 2.2 ± 0.2 GPa, respectively [10]. Such values are higher as conse-
quence of highly-organized structure present in biogenic and biomimetic materials [2,
3, 10]. Recently, vaterite coating on eggs were analyzed and Er and H were found to be
in ranges 1.8–5.8 GPa and 30–240 MPa depending on different female of the Greater
Ani Crotophaga major [9]. Authors suggested that layers of vaterite may act as a shock
absorber [9].

The preparation of samples for nanoindentation measurements as pressed pellets
benefits from its timelessness, however, it was shown that degree of compaction played
an important role in determined values of nanomechanical properties. In general, this
method could be used for comparison of different powder samples using nanoinden-
tation instrument.

4 Conclusion

In this paper, influence of degree of compactness on reduced modulus and hardness of
synthetic vaterite was investigated using nanoindentation instrument. The testing
vateritic specimens were produced as pressed pellets applying forces from 40 to 80 kN.
The highest values of reduced modulus and hardness were detected for vateritic pellet
pressed at 60 kN with reduced modulus and hardness found to be in ranges 74–10 and
5.2–0.3 GPa, respectively. With increasing pressure during production of pellets, the
degree of compactness was higher, however, also the formation of microcracks was
increased as confirmed by observations with scanning electron microscope. For pellet
pressed at 80 kN, the microcracks were observe also within crystals of vaterite. This
microscopic observation explained the decrease of mechanical properties of the sample
pressed at 80 kN in comparison with the one pressed at 60 kN. Our study may help for
designing of novel calcium carbonate based materials with enhanced properties.

Acknowledgements. The authors gratefully acknowledge support from the Czech Science
Foundation GA ČR grant 17-05030S. We thank Mgr. Petra Mácová for help with preparation of
testing specimens.
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Abstract. Mode shape is very important in dynamic analysis of the structures.
It can be employed to assess dynamic interaction between a structure and its
supports to avoid sudden failure. However, unlike undamped structures, exact
mode shapes for damped structures are difficult to obtain due to the eigenvectors
complexity. In practice, damped structures cannot be shunned and they are
available in many engineering applications. Some undamped structures may
become damped structures during the operations. Such structures include pipes
conveying fluid and because of their roles globally, their dynamic analysis
becomes vital to check their integrity to prevent abrupt failures. In this paper,
different methods of obtaining approximate mode shapes of composite pipe
conveying fluid were investigated. The pipe is modeled using the extended
Hamilton’s theory and discretized using wavelet-based finite element method.
The pipe complex modal characteristics were obtained by solving the general-
ized eigenvalue problem and its mode shapes were computed.

Keywords: Mode shapes � Composite fluid pipe � Damped structures �
Complex eigenvectors � Wavelets

1 Introduction

The pipes conveying fluid are commonly employed in pump discharge lines, marine
risers, chemical plants, oil pipelines, and nuclear reactor components [1]. These pipes
are subjected to flow-induced vibration as a result of turbulence in the flow. Hence,
many researchers have been working on dynamic analysis of the fluid pipes in order to
prevent the negative consequences of this vibration. However, the dynamic analysis of
pipes conveying fluid is not as simple as that of empty pipes because the fluid flowing
in the pipe will turn the system from undamped to damped system. This will lead to
complex eigenvalues and eigenvectors and as a result, mode shapes constructions
become complicated. While some researchers have discussed or mentioned the meth-
ods that can be used to obtain mode shapes of other structures, few researchers have
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discussed how to obtain the mode shapes of pipes conveying fluid in one way or the
other. Liu et al. [2] employed Frequency Response Function based method to calculate
mode shapes of pipe conveying fluid while natural frequencies were obtained using a
hybrid analytical numerical method based on the Transfer Matrix Method. Yun-dong
and Yi-ren [3] studied the free vibration analysis of pipe conveying fluid with different
boundary conditions using He’s variational iteration method and mode shapes were
obtained from real part of complex modes. Sarkar and Paidoussis [4] used semi-
analytical approach to obtain the proper orthogonal modes of non-linear oscillation of a
cantilevered fluid pipe with end-mass.

It can be observed from the review that more needs to be done on the construction
of damped systems mode shapes. In this work, three methods that can be employed to
obtain approximate mode shapes of damped structures or pipe conveying fluid at
different velocities are presented. The extended Hamilton’s theory was employed to
model the composite pipe conveying fluid and discretized using the wavelet-based
finite element method. The mode shapes were then constructed from the complex
modal characteristics of the composite pipe-fluid vibrations obtained by solving the
generalized eigenvalue problem.

2 Composite Pipe Conveying Fluid

As the fluid passes through the pipe of length L with inlet velocity v1 and discharge
velocity v2, the vibrational behavior of the system will be affected by the fluid-pipe
interaction. The equilibrium of forces acting along the x-direction on the fluid element
obtained in [5] can be expressed for the fluid in a pipe element of length dx as

Fs ¼ Ai
dP
dx

dx ð1Þ

where Fs ¼ ssdx. Besides, the strain energy U of the laminated composite pipe element
conveying fluid and the total kinetic energy T can be defined as

U ¼ 1
2

Zle
0

HðxÞ @2y
@x2

� �2

dx; T ¼ 1
2

Zle
0

MðxÞV2
p dxþ

1
2

Zle
0

mfV
2
f dx ð2Þ

where MðxÞ = RR
Ap
qpdAp ¼

PN
‘¼1

pq‘ðr2‘ � r2‘�1Þ kg=m

Vp ¼ @y
@t

; Vf ¼ @y
@t

þV
@y
@x

; Ap ¼ p
4
ðD2

o � D2
i Þ; mf ¼ qf Af ; Af ¼ p

4
D2

i

and H and M are stiffness and mass per unit length of the laminated composite pipe
element; Di and Do are inner and outer pipe diameters; q‘ and r‘ are density and radius
of ‘th layer. The Equation used in Ref. [6] can be modified for healthy composite pipe
conveying fluid and it will become
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H ¼ A11R
3 þ 2B11R

2 þD11R
� �

p ð3Þ

where A11, B11, and D11 are stiffness coefficients and R ¼ 0:25ðDi þDoÞ.
As a result of various sources of energy dissipation, fluid that is flowing through the

pipes is always associated with losses. The major or minor loss can be used to describe
the energy losses in the pipes. The energy loss in the components because of changes in
velocity responsible for minor losses while the associated losses due to friction (hf ) in
the pipes and the viscosity are the cause of major losses [7, 8]. As a result of losses,
Eq. (1) will become

Fs ¼ Af
dP
dx

dx ¼ �hfmf g ð4Þ

3 Equation of Motion of Composite Pipe Conveying Fluid

By substituting Eqs. (1) and (2) in the extended Hamilton’s principle, it becomes

Zt2
t1

Zle
0

HðxÞ @
4y

@x4
dydx

2
4

3
5� d

1
2

Zle
0

me
@y
@t

� �2

dx

0
@

1
Aþ d

1
2

Zle
0

2mfV
@2y
@t@x

dx

0
@

1
A

2
4
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:
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2 @
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@x2

dydx

3
5�

Zle
0

Fp
@2y
@x2

dydx

2
4

3
5
9=
; dt ¼ 0

ð5Þ

Upon simplification of Eq. (5), the equation of motion for the laminated composite
pipe conveying fluid can be obtained as

HðxÞ @
4y

@x4
þme

@2y
@t2

þ 2mfV
@2y
@t@x

þ Fp þmfV
2

� � @2y
@x2

¼ 0 ð6Þ

where me ¼ MðxÞþmf and Fp ¼ �Fs.

4 Finite Element Formulation of Composite Pipe Conveying
Fluid

The laminated composite pipe conveying fluid equation in Eq. (6) has been discretized
using the Euler-Bernoulli pipe element in order to solve it, in which the B-spline
wavelet on the interval was utilized. Consequently, Eq. (6) can then be expressed in a
compressed form as
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½M�ef€yge þ ½B�ef _yge þ ½K�efyge ¼ 0 ð7Þ

where ½M�e ¼
Rle
0
leme½TB�TfWgTfWg½TB�df; ½B�e ¼

Rle
0
Cb½TB�TfWgTfW0 g½TB�df,

½K�e ¼
Rle
0

H
l3e
½TB�TfW00 gTfW00 g½TB�df�

Rle
0

1
le
Ck½TB�TfW0 gTfW0 g½TB�df, and Cb ¼ 2mf V ;

Ck ¼ Fp þmfV2

Hence, Eq. (7) is the equation of motion for the composite pipe conveying fluid.
Furthermore, Eq. (7) can be expressed in state space using the state vectors f_zg and
fzg, as

½ �M�f_zg � ½�K�fzg ¼ 0 ð8Þ

where ½ �M� ¼ ½I� ½0�
½0� ½M�e

� �
; ½�K� ¼ ½0� ½I�

�½K�e �½B�e

� �
, fzg ¼ fy1g

fy2g
� �

; and

f_zg ¼ f _y1g
f _y2g

� �
.

The state vectors can be stated for harmonic motion in the form

fzg ¼ fWgeixt; f_zg ¼ ixfWgeixt ð9Þ

where k ¼ ix and x is frequency. Upon substituting Eq. (9) in Eq. (8), the generalized
eigenvalue problem is obtained as

½�K� � k½ �M�½ �fWg ¼ 0 ð10Þ

5 Numerical Results and Discussions

In this section, the pinned-pinned composite pipe that has been considered in [9–11]
and by other numerous researchers was considered with fluid flow in order to examine
its vibration behavior and show the approximate mode shapes of a fluid-pipe or damped
structure. First and foremost, the frequency of this pipe without fluid flow was obtained
to validate the model and the results obtained for first frequency using current model is
98.76 while 98.65 Hz is obtained by [10, 11] using different solution methods. It can be
observed that the result obtained in the present study agreed with other results.

Now, the pipe is then considered as the one conveying fluid. The 2n complex con-
jugate k and eigenvectors were obtained and as a result, the mode shapes are not easy to
obtain as in undamped pipe. However, approximate mode shapes can be obtained from
complex eigenvectors using three techniques: imaginary parts, real parts and absolute of
complex eigenvectors. Mode shapes obtained from any of these techniques can be used
for further analysis instead of using undampedmodes that are not true mode shapes of the
pipe when conveying fluid. Although, they are expected to be similar as long as the
boundary conditions remain the same. The results obtained for the pipe conveying fluid at
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different velocities are compared with mode shapes of the pipe without fluid (or
undamped pipe) and some of them are as presented in Fig. 1. It is interesting to see that at
lower velocities, the mode shapes obtained from the imaginary part of eigenvectors
provide the mode shapes that are similar to mode shapes of pinned-pinned pipes.
However, as velocity increases, the real part of eigenvectors gives the needed mode
shapes but imaginary mode shapes are no longer portray correct mode shapes.

6 Conclusions

The structural mode shapes can be used: to appraise the dynamic interaction between
the structures and their supports to avoid catastrophic failures, as a guide during the
structural experimental analysis, and for further structural dynamic analysis. In this
study, different methods for obtaining mode shapes of damped structures were
examined in which composite fluid pipe was considered as a case study. It was dis-
covered that at lower velocities, the mode shapes from absolute or imaginary part of
eigenvectors can give approximate required mode shapes. On the other hand, the mode
shapes from absolute or real part of eigenvectors can give approximate needed mode
shapes at higher velocities. It can be seen that the three methods presented can be
employed to obtain mode shapes of damped structure or fluid pipe for further analysis
if necessary instead of using undamped mode shapes that are not true mode shapes and
far more above the actual mode shapes. Besides, unlike it was reported in literature, it
can be deduced that neither only real nor only imaginary part of complex eigenvectors
is enough to obtain the correct approximate mode shapes of pipes conveying fluid at
different velocities.

Fig. 1. a Mode shapes for empty pipe; b and c are imaginary and real mode shapes for pipe
conveying fluid at V = 10 m/s; d and e are imaginary and real mode shapes for pipe conveying
fluid at V = 80 m/s.

Approximate Mode Shape for Damped Structures 13



References

1. Hu, Y.-J., Zhu, W.: Vibration analysis of a fluid-conveying curved pipe with an arbitrary
undeformed configuration. Appl. Math Model 64, 624–642 (2018)

2. Liu, M., Wang, Z., Zhou, Z., Qu, Y., Yu, Z., Wei, Q., Lu, L.: Vibration response of multi-
span fluid-conveying pipe with multiple accessories under complex boundary conditions.
Eur J Mech A Solids 72, 41–56 (2018)

3. Yun-dong, L., Yi-ren, Y.: Vibration analysis of conveying fluid pipe via He’s variational
iteration method. Appl Math Model 43, 409–420 (2017)

4. Sarkar, A., Paidoussis, M.P.: A cantilever conveying fluid: coherent modes versus beam
modes. Int J Non-Linear Mech 39(3), 467–481 (2004)

5. Wang, L.: Vibration and instability analysis of tubular nano- and micro-beams conveying
fluid using nonlocal elastic theory. Physica E 41(10), 1835–1840 (2009)

6. Oke, W.A., Khulief, Y.A.: Effect of internal surface damage on vibration behavior of a
composite pipe conveying fluid. Compos Struct 194, 104–118 (2018)

7. Young, D.F., Munson, B.R., Okiishi, T.H., Huebsch, W.W.: A Brief Introduction to Fluid
Mechanics, 5th edn. Wiley, USA (2011)

8. Bansal, R.K.: A textbook of fluid mechanics and hydraulic machines, 9th edn. Laxmi
Publications (P) Ltd, New Delhi, India (2010)

9. Oke, W.A., Khulief, Y.A.: Vibration analysis of composite pipes using the finite element
method with B-spline wavelets. J Mech Sci Technol 30(2), 623–635 (2016)

10. Hajianmaleki M, Qatu MS Advances in composite materials—analysis of natural and man-
made materials. InTech (2011)

11. Qatu, M.S., Iqbal, J.: Transverse vibration of a two-segment cross-ply composite shafts with
a lumped mass. Compos Struct 92(5), 1126–1131 (2010)

14 W. A. Oke et al.



Deformation Behavior
of Ferrite/Austenite Duplex Stainless Steel

in Hot Compression Processing

Hezong Li1(&), Suxia Huang1, Qiusheng Li1, Xiaopin An2,
Facai Ren3, and Simon S. Wang1,4

1 College of Mechanical and Equipment Engineering, Hebei University of
Engineering, 056038 Handan, Hebei, China

Lhzong@126.com
2 Tianjin Bridge Welding Materials Group Company, 300380 Tianjin, China
3 Shanghai Institute of Special Equipment Inspection and Technical Research,

200062 Shanghai, China
4 Department of Aeronautical and Automotive Engineering, Loughborough

University, LE11 3TU Loughborough, Leicestershire, UK

Abstract. The deformation behavior of Cr23 ferrite/austenite duplex stainless
steel has been investigated at deformation temperatures from 1173 to 1473 K
and strain rates from 0:01 to 10 s�1 at a given total strain of 0.8. The results
show that the flow stress is strongly influenced by the deformation temperature,
the strain rate and the strain. There is a balance between the working hardening
and the softening at strain rate of 1 s�1 and elevated deformation temperature
when the strain is in excess of 0.25. The softening mechanism of the dynamic
recovery and dynamic recrystallization is prominent at lower strain rate less than
0:1 s�1. The Arrhenius-type constitutive model is used to predict the flow stress
which is closed to the experimental data.

Keywords: Ferrite/austenite duplex stainless steel � Dynamic recrystallization �
Deformation behavior

1 Introduction

Ferrite/austenite duplex stainless steels (FADSS) have been investigated since 1980s.
These materials have excellent mechanical properties, such as, improved strength,
corrosion resistance and good weldability and being used in chemical, petro-chemical,
nuclear and energy plants [1–3]. In general, the variation of flow stress of materials
during hot deformation processing, such as hot rolling, forging, and extruding, is very
complex due to microstructure evolution with interaction metallurgical phenomena
such as work hardening, dynamic recovery and dynamic recrystallization. Furthermore,
the deformation distribution is not uniform because the hard austenite and soft ferrite
phases would be deformed jointly at high temperature [4, 5]. Therefore, it is vital to
understand the deformation behavior of FADSS to obtain the hot working parameters
and thus improve its performance.
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In this paper, hot deformation behavior of Cr23 material has been investigated in
more details to evaluate the effect of high deformation temperatures on flow behavior
with strain rate based on hot compression tests on Gleeble-1500D thermo-mechanical
simulator.

2 Experimental Procedures

The chemical composition of Cr23 Ferrite/austenite duplex stainless steel used in this
investigation was analyzed with an energy dispersive X-ray detector (EDS) and shown
in Fig. 1 and Table 1.

Hot compression tests were conducted on a Gleeble-1500D thermos mechanical
simulator at temperatures of 1173, 1273, 1373 and 1473 K, and strain rates of 0.01,
0.1, 1, and 10 s�1. Cylindrical specimens of 10 mm in diameter and 15 mm in height
were used in this study. In order to reduce friction between the specimen and the punch
and inhomogeneous deformation, the sticky graphite was painted on both ends of the
specimens. At the same time, an inert gas (Argon) was injected around the specimens
to prevent oxidation during the heating process. All of the specimens were preheated to
1473 K, held for 300 s to maintain composition homogenization and similar
microstructure and then cooled to different deformation temperatures at a rate of 10 °
C/s. Each specimen was held for 30 s to eliminate the internal thermal gradient at the
compressing temperatures, and compressed to a total true strain of 0.8. Finally, the
specimens were quenched in water as soon as possible.

Fig. 1. EDS analysis of Cr23 FADSS

Table 1. Chemical composition of Cr23 FADSS (wt.%).

C Mo Cr Ni Mo Mn Cu Fe

� 0.03 0.53 22.91 8.39 0.05–0.6 � 2.5 0.05–0.6 Bal.
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3 Results and Discussions

3.1 Flow Stress Analysis

The true stress-stain curves obtained from compression tests at different deformation
temperatures and strain rates are shown in Fig. 2. Significant effects of deformation
temperature and strain rate on the flow stress occurred. The flow softening phenomena
are clearly observed on the flow curves due to dynamic recovery and dynamic
recrystallization. The flow stress decreases with increasing deformation temperature
and decreasing strain rate. This is because that the higher deformation temperature and
lower strain rate promote higher mobility of grain boundary and there is enough time to
maintain growth of new recrystallize grains. At higher deformation temperature of
1473 K, there is no obvious work hardening except at the strain rate of 10 s�1, but at
lower deformation temperature of 1173 K, the work hardening is clearly seen (see
Fig. 2a, d). Therefore, the dynamic recovery and dynamic recrystallization are the main
softening mechanism during compression processing at lower strain rate. There is a
parallel balance between the work hardening and softening at the strain rate of 1 s�1

with different deformation temperature. Of course, the balance between working
hardening and softening is more or less related to the deformation. When the strain is
less than 0.25 at 1173 K, the work hardening is prominent over the softening
mechanics, such as the dynamic recovery and dynamic recrystallization. When the
strain increases over 0.25, the softening mechanics are exceeding the work hardening
because of the deformation energy accumulation.

3.2 Constitutive Model Developing

The flow stress, which is related to the deformation temperature (T), the strain rate _eð Þ
and the strain (ɛ), can be expressed by the Arrhenius-type equation to analyze and
predict the hot deformation behavior [6]. The constitutive model can be expressed as:

r ¼ 1
a
ln

Z
A

� �1=n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z
A

� �2=n

þ 1

s2
4

3
5 ð1Þ

where a, n, A are the material constants. Z is the Zener-Hollomon parameter, which is
related to the deformation and strain rate, and expressed as:

Z ¼ _eexp
Q
RT

� �
ð2Þ

where Q is the activation energy for hot deformation, R is the gas constant, and T is the
absolute temperature at which the hot deformation occurs.

In the constitutive equations, Eqs. (1) and (2), material parameters a, n, A, and Q
can be calculated at different deformation strain. Then, the relationship between each
material parameter with the true strain can be expressed with a 6th order polynomial for
the investigated material as follows:
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a ¼ 0:0115� 0:0385eþ 0:4243e2 � 2:052e3 þ 4:877e4 � 5:5286e5 þ 2:3957e6

n ¼ 6:0846� 34:604eþ 276:57e2 � 1185:3e3 þ 2644:7e4 � 2902:3e5 þ 1238:4e6

Q ¼ 584:33� 3415:2eþ 37107e2 � 184186e3 þ 442735e4 � 505894e5 þ 220614e6

lnA ¼ 50:419� 301:5eþ 3284:1e2 � 16313e3 þ 39234e4 � 44849e5 þ 19561e6

ð3Þ

3.3 Verification of Developed Constitutive Model

The predicted values are compared with experimental data at different deformation
temperatures, strain rates and the true strain, shown in Fig. 3, in which the scattered
hollow points are experimental data and the predicted curves (solid lines) are obtained
from the constitutive model based on Eqs. (1), (2) and (3). It is clearly shown that the
predicted flow stress curves are in good agreement with experimental data over the
entire strain range, especially at lower strain rate (0.01 and 0.1 s−1).

Fig. 2. True stress-True strain curves with different strain rates at different deformation
temperatures of a 1173 K; b 1273 K; c 1373 K; d 1473 K.
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4 Conclusions

In this study, the deformation behavior and constitutive analysis of Cr23 FADSS were
investigated with hot compression tests in high temperatures of 1173, 1273, 1373, and
1473 K, at different strain rates of 0.01, 0.1, 1 and 10 s−1 and at the strain of 0.8.
Conclusions may be drawn as the followings:

• The deformation behavior of Cr23 FADSS is strongly influenced by the deforma-
tion temperature, strain rate and strain, and the flow stress decreases with increasing
deformation temperature and decreasing strain rate.

• The dynamic recovery and the dynamic recrystallization are important softening
mechanism in hot compression processing. There is a balance between the working
hardening and softening at the strain rate 1 s−1 and when the true strain exceeded
0.25 at high deformation temperature.

• The Arrhenius-type constitutive model, developed with temperature, strain rate and
strain, can be used to predict the flow stress, and the results showed good agreement
between the modeled and the experimental data.

Acknowledgements. This work is funded by the Hebei Province Natural Science Foundation
(No. E2013402064) and the Department of Education of Hebei Province (ZD20131049).

Fig. 3. Comparison of experimental data and predicted flow curves at different strain rate.
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Abstract. Cyclic loading leads to material strength degradation gradually until
fatigue fracture occurs. Material strength degradation path is significant to
fatigue life prediction and/or fatigue reliability estimation. Since the stochastic
attributes of material strength, fatigue damage and fatigue life, material strength
degradation test data are the type of partially left-censored. It makes material
strength degradation behavior description difficult. The present paper presents a
method to estimate residual strength distribution after n times of cyclic stress
application, in which the strength degradation information contained by the
early failed specimens is converted to equivalent residual strength at the
expected cycle number. The strength degradation information conversion is
based on an assumption that the residual strength is normal distributed, and the
residual strength data are roughly symmetrical to the median. Such obtained
residual strength probability density function and strength degradation path can
be applied to predict fatigue life and evaluate reliability.

Keywords: Fatigue damage � Residual strength � Equivalent strength �
Strength degradation path

1 Introduction

Strength is important material property. Under the action of cyclic stress higher than
fatigue endurance strength, material strength will degrade continuously with fatigue
damage accumulation. Since fatigue fracture occurs on residual strength being less than
applied stress, strength degradation path directly affects the time of fatigue failure
occurring. Since both material strength and the residual strength after a certain number
of stress cycles are random variables, strength degradation path has to be tested with
several groups of specimens subjected to different number of stress cycles (corre-
sponding to different life ratios), respectively, by which the residual strength can be
measured after different numbers of cyclic loading. Besides, since the randomness of
fatigue life, some specimens may fail before the assigned stress cycle number, that
produces left-censored strength data and make the corresponding residual strength
measurement impossible.
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Traditionally, residual strength estimation is made according to survived specimens
only. That is, early failed specimens are not accounted for residual strength evaluation.
That is obviously not reasonable, especially when the assigned cycle number at which
the residual stress is tested is not much less than the mean life under the related stress
level.

2 Material Residual Strength Experiment Under Cyclic
Loading

Strength detection is a kind of destructive test. Residual strength test is usually con-
ducted under several different life fractions such as ni/N = 0.5, 0.6, 0.7, 0.8 and 0.9,
respectively. Where ni stands for the cycle numbers at which residual strength is
detected, N stands for fatigue life under a suitably assigned cyclic stress level. Nor-
mally, it is assumed that residual strength is a function of life fraction (or the Miner
cumulative damage n/N) and cyclic stress level, and the cyclic stress level should be
suitable to yield the interested fatigue life, e.g. high cycle fatigue or low cycle fatigue.

According to the regulation mentioned above, several metallic material residual
strength experiments are performed. Test results from one of the experiments con-
ducted under 240 MPa (amplitude of reversal cyclic stress), obtained from several
groups of specimens designed to measure the residual strengths after different number
of stress cycles are shown.

Shown in Fig. 1 is the fatigue life distribution of the material under reversal cyclic
stress (ra = 240 MPa). Because of the randomness of fatigue life under given cyclic
stress level, there are normally two types of data, i.e. residual strength data of the
specimens survived to the assigned cycle numbers and life data of the early failed
specimens.
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Fig. 1. Fatigue life distribution under cyclic stress (ra = 240 MPa)
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(a) o – residual strengths of survived specimens, x – lives early failed specimens

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

Re
si

du
al

 st
re

ng
th

/M
Pa

Life frac on

(b)  Fatigue life (the lower line of points) and residual strength (the upper points)

0

100

200

300

400

500

600

700

800

0 300000 600000 900000 1200000

R
es

id
ua

l s
tre

ng
th

Stress cycle number

Fig. 2. Test data—residual strength and fatigue life
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Two typical groups of test results are shown in Fig. 2. Figure 2a shows that one
specimen fails before the assigned life fraction 0.6, one specimen fails before the
assigned life fraction 0.8, etc. Therefore, for the five specimens intended to measure the
residual strength at the life fraction 0.8, only four residual strengths are obtained, the
other one fails before this life fraction and the information provided is that its strength
has degraded to the applied stress level before the life fraction.

3 Residual Strength Statistical Analysis and Strength
Degradation Fitting

To fit the residual strength curve from the partial left-censored test data, appropriate
statistical method is necessary. The situation of residual strength estimation is that,
besides the specimens survived to the assigned stress cycles (the respective life
fractions or cycle ratios) by which the residual strength can be detected, there are
also some short life specimens failed before the assigned stress cycles. That is, no
residual strength data corresponding to the assigned life fraction are available for
these specimens. The short life specimens, i.e. the specimens with their fatigue lives
shorter than the cycle numbers corresponding to assigned cycle ratio make the
strength degradation curve fitting much more difficult or complicated, since such
specimens cannot yield residual strength at the previously assigned stress cycles. On
the other hand, no matter long or short the fatigue lives are, all the specimens
contribute strength degradation information. How to get the implied strength
degradation information from the short life specimens is the key to fit strength
degradation curve.

To make use of the residual strength information contained by the early failed
specimens, the present paper proposes a rule to treat the date as following. Taking
the test results at a particular stress cycle number N as an example, the specimens
with the fatigue lives longer than N provide residual strength directly, the early
failed specimens provide fatigue lives. The information contained by the specimens
with the fatigue lives shorter than N are converted into equivalent residual strengths
at the cycle number N according to “median mirror image” assumption. For
instance, five specimens are assigned to test residual strengths after cyclic stress
acting N cycles. The test results are that there are four specimens have fatigue lives
longer than N and thus four residual strengths are measured, the other specimen has
a fatigue life shorter than N. The four residual strengths are 1198, 1190, 1170 and
1100, respectively. If there were five residual strengths normal distributed, the five
values should be 1198, 1190, 1170, 1100 and S5. Here, 1170 is the sample median.
The “median mirror image” assumption means that all the data are roughly sym-
metrically located beside the median. That is, it is reasonable to let the difference
S4 − S5 = S1 − S2 now that no other information available. Therefore, let S5 =
S4 − (S1 − S2) = 1092. Consequently, the residual stress at N can be estimated
according to the five residual strength data including the equivalent one converted
from the life data.
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Another example is that, six specimens are assigned to test residual strengths after
cyclic stress acting N cycles. The situation is that there are four specimens have the
fatigue life longer than N and the respective residual strengths are measured, the other
two specimens have fatigue lives shorter than N. The four residual strengths are 1060,
1030, 1000 and 750. If there were six residual strengths normal distributed, the five
values should be 1060, 1030, 1000, 750, S5 and S6. Here, (1000 + 750)/2 = 875 is the
sample median. By the “median mirror image” assumption, S5 − S6 = S1 − S2;
S4 − S5 = S2 − S3. Therefore, S5 = 680 and S6 = 650.

Applying the real residual strength data directly detected and the equivalent
residual strength converted from the early failed specimens, reasonable strength
degradation curve can be fitted, shown in Fig. 3 in contrast to the strength degradation
curve fitted according only to the real residual strength data.

4 Conclusions

For residual strength experiments under cyclic loading, the residual strength infor-
mation contained by early failed specimens play an important role. This paper proposes
a method to convert the life data of the early failed specimens into equivalent residual
strengths. It is based on the so called “median mirror image” rule by which the residual
strength data, including the equivalent strength data, are roughly symmetrically scat-
tered around the median. It is shown that the material strength degradation curve fitted
by the new method is considerably different from that fitted with the real residual
strength data.

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

id
ua

l s
tre

ng
th

/M
Pa

Life ratio

Experimental data of survived
specimens
Fitting curve from survived
specimens only
Fitting curve by new method

Fig. 3. Test data (o—residual strengths of survived specimens, X—lives measured with
expected life ratio of short life specimens) and fitted residual strength curves by different methods

Material Strength Degradation Experiment and Statistical … 25



Acknowledgements. This research is subsidized by the Natural Science Foundation of China
“Research on reliability theory and method of total fatigue life for large complex mechanical
structures” (Grant No. U1708255) and The Collaborative Innovation Center of Major Machine
Manufacturing in Liaoning.

26 L. Xie et al.



Study of Effect of Phase Separation on Pores
Orientation of Electrospun Nanofibre

S. O. Alayande1(&), E. O. Dare2, J. N. Edokpayi3, O. A. Adeyemi1,4,
Adewale Adegbenjo4, and T. A. M. Msagati5

1 First Technical University, Ibadan, Nigeria
{samson.alayande,oaadeyemi}@tech-u.edu.ng

2 Federal University of Agriculture, Abeokuta, Nigeria
dare3160@hotmail.com

3 University of Venda, Thohoyandou 0950, South Africa
joshuaedos@gmail.com

4 University of Johannesburg, Johannesburg, South Africa
waleeleect@gmail.com

5 University of South Africa, Pretoria, South Africa
msagatam@unisa.ac.za

Abstract. Nanoporous fibres are advanced materials with wide application in
drug delivery, sensor, filtration, membrane, wound dressing, encapsulation and
catalysis. Known mechanisms for pore formation in electrospun are temperature-
induced phase separation (TIPS) and vapour induced phase separation (VIPS),
these are crucial to application and classification. The underestimated factor
electrospinning parameter (polymer concentration) resulted in polymer and sol-
vent rich phases which are capable of manipulating orientation in the jet. In view
of this, expanded polystyrene was electrospun at various concentration and
voltage. The morphology of resultant fibres were examined with Secondary
Electron (SE) and Back Scattering Electron (BSE) detectors, both revealed clear
porous micrographs. The resultant phases formed during elongation override
popular mechanism in the science of pore formation in electrospun fibre. Finally,
pathway for polymer re-use in membrane science is presented.

Keywords: Nanofibre � Electrolysis � Pore orientation � Concentration �
Mechanism

1 Introduction

A versatile, flexible and simple way of producing micro/nano fibres with hierarchical
porosity in an organized or random manner is electrospinning technique [1–3]. The
basic principle of electrospinning is well discussed in various text and reviews [4].
A notable feature of resultant fibres is the formation of pores. In view of this, elec-
trospinning has found application in catalysis [4], filtration, drug delivery, encapsula-
tion and membrane. Understanding of pore science in the fibre will promote application
in tissue engineering, regenerative medicine and drug delivery.
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Micrographs of porous fibres showed that pore formation does not solely depend on
long acclaimed principles TIPS, VIPS, and breath figure, it is also dependent on polymer
concentration [5]. Pore morphology examination using either SE or BSE was validated,
either of the detectors can also be used for examination of porous materials. Finally,
effect of polymer-rich phase as a principle in science of in electrospun fibre is established.
Another pathway for re-use of EPS is presented in membrane technology (Fig. 1).
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Fig. 1. a Pore distribution and Nitrogen adsorption-desorption isotherms of beaded fibre. b Pore
distribution and Nitrogen adsorption-desorption isotherms of Porous fibre
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Abstract. A series of experiments on tensile testing of specimens from cross-
ply reinforced plastics made from unidirectional tape ELUR-P and cold-curing
binder XT-118 and stacking sequence [±45°] were carried out. Tests were
carried out on different specimens at three maximum stress values. It was
established that the total axial strain can be represented as a sum of four com-
ponents, including: reversible strain, residual (irreversible) strain, irreversible
creep deformation and reversible creep strain due to the viscoelastic properties
of the epoxy. The questions of the choice of relations for the description of the
components of the strains and the identification of their mechanical character-
istics are considered. The conclusion is formulated that for a hereditarily elastic
model, one can use the Abel creep kernel and determine its parameters from an
experiment for long holding times. To determine the parameters included in the
irreversible creep relations, we use the results obtained immediately after the
start of exposure at maximum stresses, and a method for their determination is
proposed. After this is the initial modulus of elasticity. At the last stage, after
determining the rheological characteristics and the initial modulus of elasticity,
the nonlinear elastic reversible part of the strain can be singled out.

Keywords: Unidirectional CFRP � Specimen � Residual strain � Creep strain �
Secant modulus of elasticity � Identification � Creep kernel

1 Introduction

Problems devoted to creep strain have received much attention from many researchers
(see, in particular, [1–10]). An analysis of the work on the experimental study of the
deformation of fiber reinforced composites shows that under shear stress, creep begins
to manifest itself even at times calculated in minutes and even seconds.
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To describe it, the model of a visco-elastic (hereditarily elastic) material is con-
sidered to be the most adequate for experiments. Its peculiarity is that after removal of
the load, the creep deformations in the limit disappear. However, experiments con-
ducted by the authors show that, nevertheless, some of the creep deformations are not
restored. This suggests that this part of the creep deformations should be described by
ratios of the incremental creep theory of the aging theory type. To determine the creep
strain and the parameters of its models, the most convenient is an experiment con-
ducted over a long period of time under constant load. However, it is impossible to
separate the hereditarily elastic part of the strain and the irreversible strain of the
creep. The following is one of the approaches for solving the problem of separation of
these strains. It is also shown that traditional relations for determining the initial
modulus of elasticity can lead to a significant underestimation of it, therefore, it is
necessary to use modernized relations.

2 Experimental Results

To clarify the structure of creep strain, two series of experimental tensile studies of
specimens from cross-ply fiber reinforced plastics, were carried out. In such specimens,
under creep conditions, the creep properties are most pronounced. In this connection,
the specimens were subjected to testing under two loading programs.

The first of them consists of three stages: tension up to stress rmax (35, 45 and
55 MPa), free unloading for r ¼ 0 and further exposure (see Fig. 1). The second
loading program consists of four stages: tension up to stress rmax ¼ 45 MPa, holding
for te hours, free unloading to r ¼ 1:5 MPa, and subsequent exposure for three days
(see Fig. 2).

From these results it follows that in addition to the elastic and hereditarily elastic
components of strain, irreversible residual strain are formed.

Fig. 1. First loading program.
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3 Methodology for Identification Deformation Model
Parameters

Based on the analysis of the author’s experiments and literature, it can be assumed that
the full axial strain with sufficient accuracy can be represented as

e ¼ r
E0

þ ers þ ev þ enel ð1Þ

Here enel—the nonlinearly reversible part, ers—irreversible creep strain, ev—viscoelastic
part of the strain.

In the following, we introduce a generalization of Kachanov’s hypothesis [11],
namely, we will assume that all components of the strain develop independently of
each other, i.e.

enel ¼ enel rð Þ; ev ¼
Z t

0

f rð ÞH r; t � sð Þ ds; ders=dt ¼ F r; ers
� � ð2Þ

We first consider the problem of identifying the parameters of the hereditary model
of deformation and the model of irreversible creep. Further reasoning will be based on
the analysis of the results of experiments conducted according to the scenario corre-
sponding to the second loading program (see Fig. 3).

First, by the time t1, specimens are loaded to the maximum stress (in Fig. 3 this
corresponds to point A1), then at this stress value the specimen is kept for some time
Dtm ¼ tm � t1. Let us denote the experimental values of strain e1; e2; e3; . . . at points
A1;A2;A3; . . . at time points t1; t2; t3; . . .. Then

Di je ¼ ev rmax; tið Þþ ers rmax; tið Þ� �� ev rmax; tj
� �þ ers rmax; tj

� �� � ð3Þ

To separate the creep strain and hereditary elasticity, we accept the experimentally
confirmed hypothesis that the damping rate of irreversible creep strain occurs faster

Fig. 2. Second loading program.
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than the damping rate of hereditary elasticity strain. Therefore, provided that
tm [ ti; tj � t1, we can write down with a small error:

Di je
exp ¼ eexpi � eexpj � evi � evj ; ti; tj\tm ð4Þ

Usually in experiment law r ¼ 1 tð Þ is known. Then

evi ¼
Zti

0

f 1 sð Þð ÞH 1 sð Þ; ti � sð Þ ds ð5Þ

We approximate H by any system of functions Hk

H t � sð Þ ¼
XK
k¼1

Hk ak; t � sð Þ ð6Þ

From (6), an overdetermined system of algebraic equations follows. By minimizing
its quadratic residual constants ak are found. The authors of the experiments used the
Abel’s kernel:

H t � sð Þ ¼ Bt � s�a; 0\a\1; B[ 0 ð7Þ

To describe the process of irreversible creep the theory of aging was adopted in one
of the simplest variants regarding stress:

ders=dt ¼ v0r= 1þ v1 ers
� �m� � ð8Þ

At small times, it is necessary to write down relations (4) already with allowance
for irreversible creep strain. Minimizing the quadratic discrepancy between Di jeexp and
Di je, we define the parameters included in relations (8).

Fig. 3. Stress-strain diagram of second loading program.
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The results of processing the experiments (see Fig. 4, in which the results of the
experiment are indicated by markers, the solid line shows the results of the calculation)
showed the acceptability of the assumptions used and the efficiency of the proposed
approach. The solution to the problems described above gave the following results:

B ¼ 6:0878 � 10�7 seca�1 =MPa; a ¼ 0:6151; v0 ¼ 1:2485 � 10�7 sec �MPað Þ�1;
v1 ¼ 1:8764 � 104; m ¼ 21:1

ð9Þ

After that, the elastic modulus E0 can be determined from the increments of the
stresses and the increments of the elastic part of the deformations over the initial small
time interval. To determine the latter, viscoelastic deformations and irreversible creep
deformations were subtracted from the total deformations. We note the following fact
obtained from numerical experiments with creep kernel parameters with parameters (9).
It turned out that for viscoelastic bodies described by models with weakly singular
creep kernels, even at sufficiently high loading rates, the change in strain Dev can be on
the order of tens of percent of the total strain increment De. Therefore, use to determine
the elastic modulus E0 in accordance with known standards of the expression

E0 ¼ Dr=De ð10Þ

gives understated values. It necessary to determine from following relation

E0 ¼ Dr= De� Dev � Der0
� � ð11Þ

Further, the problem of constructing the dependence of reversible strain enel on
stresses was considered. To find this dependence, we used the results of experiments
obtained at stresses of 35, 45, 55 MPa. Values were from the following expression

enel rð Þ ¼ e� r
E0

þ er@ r; tð Þþ ev r; tð Þ
� �

ð12Þ

Fig. 4. Second loading program.
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The calculation results are shown in Table 1.

Various types of approximations enel ¼ enel rð Þ were tested. Analysis of the results
of numerical calculations leads to the conclusion that it is possible to use a variant of a
piecewise continuous function, similar to the elastic-plastic case of deformation.
Namely, there are no these strain up to a certain value r ¼ rkr, and then they develop
depending on the stresses. This can be explained by the fact that at this stress the loss of
stability of the phases of the composite begins. Of the functions considered, the most
successful was hyperbolic (in Fig. 5 it is marked with a bold line). Expression for
below:

enel ¼ aþ cr= 1þ brð Þ; a ¼ �0:00632; c ¼ 0:000643=MPa; b ¼ 0:0696=MPa
rkr � 31 MPa
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Abstract. Self-Compacting Concrete (SCC) reinforced with well dispersed
carbon nanotubes (CNTs) was successfully produced. The segregation resis-
tance of fresh CNT-SCC mixture was assessed by conducting a non-destructive
electrical resistivity technique. The addition of CNTs resulted in a more
homogenous mixture as the CNT-SCC exhibited consistent resistivity values
between different electrode pairs along the investigated column. The reinforcing
efficiency of the CNTs was also demonstrated by improvements in flexural
strength (53%), Young’s modulus (68%), and flexural toughness (38%).

Keywords: Segregation resistance � Carbon nanotubes � Flexural strength �
Young’s modulus � Toughness

1 Introduction

While fibers are specified for an enhanced crack-bridging ability and to improve some
mechanical properties of concrete matrix, inclusion of such fibers negatively affects the
workability characteristics of SCC [1]. In this study, according to the author’s
knowledge, it is the first time that the evaluation of the homogeneity and flexural
performance of a new type of SCC reinforcing with highly dispersed CNTs at amount
of 0.1 wt%, took place.

2 Results

An electrical resistivity test was conducted to evaluate the segregation resistance of
fresh SCC [2]. Three groups of mixtures were casted in 4 � 4 � 16 cm molds: SCC
under intense segregation; homogenous SCC and 0.1 wt% CNT-SCC. The resistance
was then measured in three electrode pairs, AB, BC and CD, along the column
(Fig. 1a) with the nanomodified mixture exhibiting the lower spread in resistivity
between the three parts.
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The mechanical properties of SCC nanocomposites were experimentally investi-
gated by four-point bending tests on 7 � 8 � 38 cm prismatic specimens [3, 4].
The CNT network enables the stress transfer from the surrounding SCC matrix to the
nanotube, thus enhancing the load bearing capacity of the nanomodified SCC matrix
and resulting in increases in flexural strength (53%) Young’s modulus (68%) and
flexural toughness (38%) (Table 1).

3 Conclusions

In this study, the effect of highly dispersed 0.1 wt% CNTs on the segregation resis-
tance, strength, stiffness and toughness of SCC was successfully evaluated. The
experimental findings of electrical resistivity measurements indicated that the addition
of CNTs was more efficient in improving the segregation resistance and the homo-
geneity of SCC mixture. The fiber-like structure of the CNTs and the raising domi-
nance of a crack-bridging mechanism at the nanoscale results in exceptional increases
in flexural strength (53%), Young’’s modulus (68%) and flexural toughness (38%).
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Fig. 1. Electrical resistivity of the three parts, AB, BC and CD of SCC mixture reinforced with
0.1 wt% CNTs

Table 1. Mechanical properties of 28d SCC and 0.1 wt% CNT-SCC nanocomposites

Mix Flexural
strength (MPa)

Young’s
modulus (GPa)

Flexural
toughness (MPa)

SCC 5.9 23.4 232
SCC + CNTs 0.1 wt% 9.0 39.4 372
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Abstract. Cast cobalt-based superalloys have already found applications in the
glass industry to construct glass shaping tools. The present study deals with the
high temperature characterization of the two cast cobalt-based CoNb and CoTa
superalloys which have been developed for precision casting of a rotary fibre-
glass spinner disc for glass industry. The superalloys have been characterized
through constant load creep tests at 1000, 1050 and 1100 °C in a tensile stress
range from 20 to 100 MPa, with the aim to simulate the variation of mechanical
properties occurring in a rotary fibreglass spinner disc at operational conditions.
The results have been compared and discussed, with the aim to link the dif-
ference in creep properties to the evolution of creep damage and fracture in
superalloys. It was found that the CoNb superalloy possesses longer creep life
compared to the CoTa superalloy under the same loading conditions. Fracto-
graphic investigations of the creep fractured specimens of the examined
superalloys revealed that the dominating creep fracture of the CoTa is of the
ductile transgranular dimple fracture mode due to a loss of an external section of
specimen (necking). By contrast, the final brittle fracture in the CoNb superal-
loys occurs via relatively fast propagation of the longest cracks after the ultimate
state of creep damage is reach.

Keywords: Cobalt-based superalloys � Creep damage and fracture � Breakage
of primary carbides

1 Introduction

Creep resistant nickel-based superalloys are currently used for the rotary fibreglass
spinner discs with perforated walls which transform a stream of molten glass into
thermally insulating glass wool by a centrifugal process. However, cobalt-based
superalloys, materials even more resistant to high temperature creep could give a longer
service life of the spinner discs [1]. Therefore, two high temperature cast high-
chromium refractory cobalt–based superalloys have been developed for an investment
casting of spinner discs [2]. During service, spinner discs are exposed to high tem-
perature and severe environment of molten glass. For safe usage, the understanding of
the creep behaviour and damage evolution leading to the final fracture of a material is
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essential. In our previous work [3] the analyses of the creep data of CoTa and CoNb
superalloys indicate that the creep behaviour of these superalloys obeys Monkman-
Grant relationship which can explained by a close relationship between creep defor-
mation and fracture processes. This successive work on the same CoTa and CoNb
superalloys aims to link the difference in creep properties to the differences in chemical
compositions or to presence of diverse precipitates in the microstructure. This is
considered as an essential step to tailor the cobalt superalloys chemical composition
and heat treatment for high temperature applications in glass industry.

2 Materials and Methods

The superalloys were elaborated in PBS Velká Bíteš, a.s. Czech Republic. The
chemical compositions and abbreviated names of the tested investment cobalt-based
superalloys are listed in Table 1. The superalloys were selected to investigate the
individual strengthening effect of Nb and Ta additions. The superalloys were melted in
an induction furnace and cast using an open furnace. Finally, the ingots were subjected
to a homogenization annealing at 1150 °C for 90 min followed by air cooling.

Constant load creep tests in tension were carried out until the final fracture of the
specimen [2]. Cylindrical creep specimens with a gauge of 50 mm in length and
3.5 mm in diameter were used in this study. The expected operational temperature of
melted glass in the spinner discs is about 1050 °C. Therefore, the creep testing was
conducted at 1000, 1050 and 1100 °C and at the different initial applied stresses r. The
details of creep testing and evaluation methods have been reported elsewhere [2, 3].

The microstructure of the studied superalloys in the as-received state and after creep
exposures were observed by optical microscope, scanning electron microscope
(SEM) and transmission electron microscope (TEM) [2]. Fractographic analyses of the
creep damage and the fracture surfaces were performed by scanning electron
microscope.

3 Results and Discussion

3.1 Creep Results

Representative standard creep curves of both superalloys at 1050 °C and the same
value of the applied stress r are shown in Fig. 1a. As demonstrated in Fig. 1a, the
shape of standard creep curve for the CoTa superalloy differs considerably from that

Table 1. The chemical compositions (in wt%) and abbreviated names of tested Co-based
superalloys.

Superalloy Cr Ni W C Nb Ta Si Mn Fe Co

CoNb 30.5 10.8 8.0 0.65 2.48 – 0.39 0.23 0.28 bal.
CoTa 29.3 23.0 7.0 0.60 – 2.30 1.0 0.22 4.9 bal.
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conducted on the CoNb one. It is important to note that the standard creep curves in
Fig. 1a do not clearly indicate the individual stages (like primary, stationary and ter-
tiary) of creep [4]. However, these standard e versus t curves can be easily replotted in
the form of the instantaneous strain rate _e versus time t as shown in Fig. 1b.

From Fig. 1b it is now clear that both curves exhibit a short primary stage in which
strain rate _e decreases with time, which has been attributed to strain hardening. The
primary stage is followed by tertiary creep in which the strain rate _e increases with time
until the final fracture. In this stage the recovery rate and/or creep damage development
may be high enough to balance strain hardening.

3.2 A Comparison of Creep Properties of the Superalloys

Significant differences were found in the “macroscopic” creep properties in the CoNb
superalloy when compared to the CoTa superalloy under the same loading conditions.
The results of creep tests carried out at three testing temperatures and selected applied
stresses on both superalloys are summarized in Fig. 2. Inspection of Fig. 2 leads to
three observations. First, the CoNb superalloy exhibits significantly better creep
resistance than the CoTa one; the minimum creep rate _em of the CoNb superalloy is less
than that of the CoTa superalloy over all testing temperatures (Fig. 2a). Second, as
depicted in Fig. 2b and in an agreement with previous results, the time to fracture
(creep life) tf of the CoNb superalloy is generally longer than that of the CoTa
superalloy. Third, the strain to fracture ef of the CoTa superalloy is higher than that of
the CoNb (Fig. 2c).
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Fig. 1. Creep curves for both Co-based superalloys at 1050 °C and 40 MPa: a standard creep
curves of strain e versus time t, b modified creep curves of strain rate _e versus t.
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3.3 Creep Fracture Strength

As it was mentioned earlier, the expected operational temperature of melted glass in the
spinner discs should be about 1050 °C. Therefore, to evaluate the creep fracture
strength of both tested superalloys, the experimentally determined values of the times
to fracture tf at 1050 °C were plotted against applied stress r on a bilogarithmic scale in
Fig. 3.

As depicted in Fig. 3, the dependences of tf (r) may have similar trend for both
superalloys. In general, the slopes (i.e. tf (r)) which are representing the apparent stress
exponent of the time to fracture m = − (∂ln tf/∂ln r)T [1, 2]. At temperature 1050 °C the
values of m = 4.7 (for CoNb) and m = 5.0 (for CoTa) were found.

950 1000 1050 1100 1150
TEMPERATURE [°C]

0

1.10-8

2.10-8

3.10-8

4.10-8

M
IN

IM
UM

 C
RE

EP
 R

AT
E 

 . m
 [s

-1
] CoNb

CoTa

40 MPa 25 MPa 20 MPA

950 1000 1050 1100 1150
TEMPERATURE [°C]

0

500

1000

TI
M

E 
TO

 F
RA

CT
UR

E 
 t f [h

]

CoNb

CoTa
40 MPa 25 MPa

20 MPa

950 1000 1050 1100 1150
TEMPERATURE [°C]

0

2

4

6

8

10

ST
RA

IN
 T

O
 F

RA
CT

UR
E 

 f  [
%

] CoNb

CoTa

40 MPa 25 MPa

20 MPa

)c)b)a) ) )

Fig. 2. Mutual comparison of selected creep data of the tested CoNb and CoTa superalloys:
a the minimum creep rate _em, b the time to fracture tf, and c the strain to fracture ef.

10 0 10 1 10 2 10 3 10 4

TIME TO FRACTURE  tf   [h]

100

ST
R

ES
S 

 
  [

M
Pa

]

CoTa

T= 1050°C

CoNb

20

Fig. 3. Stress dependences of the time to fracture tf at 1050 °C.

42 M. Kvapilova et al.



3.4 Creep Damage and Fracture

It was found that the creep damage initiation in the CoNb superalloy was exclusively
related to the primary complex M23C6 carbides and eutectics [1]. The decohesion at the
interface between carbides and matrix transpired due to a loss of coherency and
destruction of the primary carbides and eutectic phases occurring homogeneously in the
whole specimen section and resulted in the main crack formation and propagation
causing a premature brittle fracture. Conversely, the final ductile transgranular fracture
of the CoTa superalloy at higher stresses is primarily a consequence of a strain-induced
local instability of the dislocation microstructure and a very local breakage of isolated
primary M23C6 carbides [1]. However, at low stresses the mechanisms of creep damage
and fracture in CoTa be getting similar like the mechanisms in CoNb (Fig. 4).

4 Concluding Remarks and Summary

Creep of the superalloy at high temperature (1050 °C) is one of the factors which
require that each spinner is shut down in turn and a new spinner fitted. The main
requirements for a satisfactory rotary process may be summarized as follows: (i) re-
sistant to the high temperature environment, (ii) resistant to the high centrifugal stresses
due to the high rotational speed (about 2300 rpm) and the stress concentrating effect of
the many small holes in the rim, (iii) the need to insert hundreds of small holes through
the wall, and (iv) resistance to the corrosion and extrusion of molten glass. Using finite
element analysis [4] it can be shown that, essentially, there are three forces together
acting, a centrifugal force acting radially outwards, a clockwise tangential moment and
a force exerted by the molten glass. The highest stress was found at surfaces of holes
which can cause the change in shape of initially circular holes to rhomboidal ones. The
results are an increase of local excessive stress leading to formation of creep damage of
the material and the final fracture when the creep fracture strength is reach (Fig. 5).

500 m 500 m

(a) (b)

Fig. 4. SEM micrographs showing fracture surfaces in: a the CoNb and b the CoTa.
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Finally, the results in Fig. 3 can be used to predict the adequate fracture strength for
the predetermined creep life of the spinners made from both cobalt superalloys. Thus,
for the predetermined creep life around 300 h we obtain 30.6 MPa for the CoNb and
26.5 MPa for the CoTa. Further, for creep life *600 h we will get 26.4 MPa (CoNb)
and 23.1 MPa (CoTa), respectively. According to finite element analysis, in the region
of the rim the principal stress indicates the value of about 22 MPa. Thus it would
appear that both cast cobalt superalloys could sustain the stresses generated in use as a
rotary fibreglass spinner. However, this is an answer to only one of the factors posed by
the need to predict spinner life in glass fibre production.
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Abstract. High and medium entropy alloys are currently attracting significant
research interest due to their potential to achieve superior mechanical properties
compared to traditional alloys systems. The CoCrNi alloy has been of particular
interest owing to the simple single phase structure, superior fracture toughness,
and exceptional strength and ductility at cryogenic temperatures. Previous works
have been primarily focused on identifying the operative microstructural
mechanisms responsible for improved ductility. The activation of deformation
twining at low deformation temperatures and high strains has been identified as
a primary source for the improved ductility. However, detailed quantitative
analysis focused on the deformation heterogeneities in the vicinity of grain
boundaries, in particular at cryogenic temperatures, remains limited. Strain
heterogeneities across grain boundaries reveal the micro-mechanisms respon-
sible for the alloy strengthening and fracture properties, thus their measurements
is of fundamental importance. The current work is dedicated to study the local
strain accumulation in the vicinity of grains boundaries of plastically deforming
CoCrNi. High resolution digital image correlation was used to measure and
quantify the deformation heterogeneities at room temperature (298 K) and
cryogenic temperature (77 K). The work aims to further elucidate the role of
grain boundaries in improving the strength and ductility at cryogenic defor-
mation temperatures.

Keywords: Medium entropy alloy � Strain localization � Cryogenic
temperatures

1 Introduction

High entropy alloys is a promising class of materials with unique mechanical properties
[1]. In particular, certain compositions have been shown to exhibit exceptional
toughness combined with increased strength and ductility at cryogenic deformation
temperatures [2, 3]. These desirable trends, which deviate from traditional alloys, have
sparked intense research efforts to explain the observed properties. The FeMnNiCoCr
system has been of particular interest owing to the simple single phase structure and
exceptional strength and ductility at cryogenic temperatures [4]. More recent efforts
have identified comparable superior properties in the equiatomic medium entropy alloy

© Springer Nature Switzerland AG 2019
E. E. Gdoutos (Ed.): ICTAEM 2019, 8, pp. 45–47, 2019.
https://doi.org/10.1007/978-3-030-21894-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21894-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21894-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21894-2_9&amp;domain=pdf
https://doi.org/10.1007/978-3-030-21894-2_9


CoCrNi, however with even better and unrivaled fracture toughness levels [5–8]. With
such exceptional set of properties over a wide temperature range, the CoCrNi system is
expected to have significant promise in temperature sensitive applications. This
motivates further research to better understand the source of properties and the different
microstructural aspects which influence the response of this alloy system.

Superior mechanical properties has been reported for polycrystalline [6] and single
crystalline [5] CoCrNi alloy. The enhancement in mechanical properties has been
typically attributed to the activation of mechanical twinning as an additional defor-
mation mechanism [3, 9]. Although several studies have investigated the effect of
annealing and grain size on the alloy properties, detailed quantitative analysis focused
on the deformation heterogeneities in the vicinity of grain boundaries, in particular at
cryogenic temperatures, remains limited. In this work, high resolution strain mea-
surements were utilized to study the buildup of plastic strain heterogeneities in the
vicinity of grain boundaries in CoCrNi at 77 K. In summary, the work aims to shed
further insight on the effect of interfaces on the mechanical properties of CoCrNi
medium entropy alloy.

2 Results

Figure 1 shows a representative stress-strain curve of a tensile sample deformed
to *4% total strain at 77 K. The entire sample, tension grips, and extensometer, were
entirely submerged in liquid nitrogen throughout the experiment. The stress drop
observed during the loading cycle can be an indication of mechanical twinning. High
resolution optical images were captured using an optical microscope prior and after
deformation for full-field strain measurements using digital image correlation (DIC).
The strain contour plot shown in Fig. 1c quantifies the residual plastic strains after

Fig. 1. a Stress-Strain curve of polycrystalline CoCrNi tension sample deformed at 77 K.
b Schematic of the tensile specimen with an outline of the region of interest for EBSD and high
resolution DIC measurements. c High resolution DIC measurements in the region of interest
following unloading. EBSD grain orientation map showing the microstructure in the region of
interest.
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unloading the specimen. The microstructure in the region of interest covered with DIC
measurements is shown in Fig. 1d. Deformation heterogeneities and strain localizations
in the vicinity of grain boundaries can be clearly observed in the results presented in
Fig. 1.

Acknowledgements. The corresponding author would like to acknowledge the financial support
from the American University of Sharjah through the Office of Research (EFRG18-MSE-CEN-22).

References

1. Miracle, D.B., Senkov, O.N.: A critical review of high entropy alloys and related concepts.
Acta Mater. 122, 448–511 (2017)

2. Zhang, Z., et al.: High-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 1–6 (2015)
3. Slone, C.E., Chakraborty, S., Miao, J., George, E.P., Mills, M.J., Niezgoda, S.R.: Influence of

deformation induced nanoscale twinning and FCC-HCP transformation on hardening and
texture development in medium-entropy CrCoNi alloy. Acta Mater. 158, 38–52 (2018)

4. Gludovatz, B., George, E.P., Ritchie, R.O.: Processing, microstructure and mechanical
properties of the CrMnFeCoNi high-entropy alloy. 67(10), 2262–2270 (2015)

5. Uzer, B., et al.: On the mechanical response and microstructure evolution of NiCoCr single
crystalline medium entropy alloys. Mater. Res. Lett. 6(8), 442–449 (2018)

6. Dan Sathiaraj, G., et al.: Effect of annealing on the microstructure and texture of cold rolled
CrCoNi medium-entropy alloy. Intermetallics 101, 87–98 (2018)

7. Yoshida, S., Bhattacharjee, T., Bai, Y., Tsuji, N.: Friction stress and Hall-Petch relationship in
CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and
subsequent annealing. Scr. Mater. 134, 33–36 (2017)

8. Moravcik, I., et al.: Mechanical and microstructural characterization of powder metallurgy
CoCrNi medium entropy alloy. Mater. Sci. Eng., A 701, 370–380 (2017)

9. Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., George, E.P.: Reasons for
the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy
CrMnFeCoNi. Acta Mater. 128, 292–303 (2017)

Sub-grain Plastic Strain Localization in CoCrNi … 47



Effects of Treatment on Microstructure
and Deformation Behavior of Dissimilar
Welded Joint Between Single Crystal

and Polycrystalline Superalloy

Yang Liu1(&), Lei Wang1, Xiu Song1, Taosha Liang1, and Guo Hua2

1 Key Laboratory for Anisotropy and Texture of Materials
(Ministry of Education), School of Materials Science and Engineering,

Northeastern University, Shenyang 110819, China
liuyang@mail.neu.edu.cn

2 High Temperature Material Research Institute, Central Iron and Steel
Research Institute, Beijing 100081, China

Abstract. Dissimilar welding of Al + Ti rich and Nb rich nickel base super-
alloy has good welding performance. In this work, the tensile behavior of dis-
similar Between Single Crystal and Polycrystalline Superalloy welded joint near
its service temperatures (600–700 °C) was studied. The results show that the
deformation behavior of the welded joint is closely related to the strength dif-
ference between difference regions. The yield strength (YS) and ultimate tensile
strength (UTS) of the welded joint is dominated by the region with lower YS
and UTS, which is Single Crystal Superalloy at 25–650 °C and Polycrystalline
Superalloy at 660–700 °C. The plasticity of welded joint depends primarily on
the magnitude of strength difference between different regions. Lower strength
difference results in higher elongation. Both the UTS and elongation have peak
values at 660 °C. The welded joints fail at Single Crystal Superalloy base metal
at 25–650 °C while at Polycrystalline Superalloy base metal at 660–700 °C.
The FZ has high strength and sufficient plasticity. Soft dendrites are surrounded
and constrained by hard interdendrites. Fine discrete MC carbides and Laves
phases in the interdendrites can effectively block the movement of dislocations
from dendrites.

Keywords: Single crystal superalloy � Polycrystalline superalloy � Laser
welding � Dissimilar welding � High temperature deformation

1 Introduction

Nickel base superalloys are important materials for high temperature applications in gas
turbine engines owing to their excellent high temperature capability. Blade and disk are
the crucial parts of the engine. In order to reduce engine weight and gain high thrust-to-
weight ratio, dissimilar welding of blade to disk to replace traditional riveted joint
attracts increasing attention [1–5]. Nickel base superalloys are heavily alloyed (by Co,
Cr, Fe, Mo, Al, Ti, Nb, W, Ta and C, etc.) to ensure high temperature performance [6].
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However, high alloying leads to poor fusion welding performance. Among those
alloying elements, Al, Ti and Nb play important roles on the weldability. Nickel base
superalloy with higher Al and Ti can precipitate more c′ and its strength is higher [7].
However, c′ precipitates faster at higher temperature even during welding [5]. The
grain is strengthened while the grain boundary is weak. Hot cracking occurs easier
under the welding thermal stress [8]. Adding high Nb into the nickel iron base
superalloy is beneficial to the precipitation of c′′. Nevertheless, Nb has high segregation
tendency and would promote the formation of c-Laves eutectic which can lower the
solidification temperature [9]. On the one hand, the hot cracking tendency increases [9,
10].

Based on the above reported work, we studied the dissimilar laser welding of
DZ125L and IN718 [5]. In the present study, the deformation behavior of the laser
welded DZ125L/IN718 joint near its working temperature (600–700 °C) was investi-
gated. This research will provide guidance for improving the performance of such
welded joint. It will also be instructive for reasonable material selection and design of
new welded joint.

The DZ125L alloy was prepared by double vacuum melting, and then casted into
slab with a withdrawal speed of 6 mm/min. Afterwards, it was solution treated at
1220 °C for 2 h followed by two-step aging at 1080 °C for 4 h and 900 °C for 16 h.
The IN718 alloy was produced by vacuum induction melting and vacuum arc
remelting, then hot forged and followed by solution treatment at 1020° C for 1 h. Prior
to laser welding, both the two base metals were mechanical and chemical cleaned to
remove defects and contaminants near edges. After welding, postweld heat treatment
(PWHT) of two-step aging at 720 °C for 8 h and 620 °C for 8 h was conducted.
Tensile testing was conducted at 25, 600, 650, 660, 700 °C at 10−3 s−1 on a
SANS CMT 5500 material testing machine equipped with a heating furnace. Three
identical specimens were tested for data repeatability.

2 Results and Discussion

2.1 Microstructure and Microhardness Profile

Figure 1 shows the microstructure of the two base metals of DZ125L and IN718 alloys.
The grain in the DZ125L is columnar. The primary dendrite arm distance is about
400 lm. The cubic c′ with average size of 550 ± 43 nm is dispersed in the matrix
(Fig. 1a). In the c channels, fine spheric c′ phase with average size of *22 nm can be
observed (Fig. 1b). Moreover, the blocky MC carbides distribute in the interdendrites.
Their sizes vary from 3 to 70 lm. They are rich in Ti and Ta, as shown in the inset of
Fig. 1a. The IN718 is polycrystal. The average grain size is 81 ± 29 lm. The blocky
MC carbides with average size of 8 ± 3 lm can be seen at the grain boundaries
(Fig. 1c). The EDS analysis in the inset of Fig. 1c shows that they are rich in Ti and
Nb. In the higher magnified micrograph of Fig. 1d, fine c′′ and c′ with average size of
*25 nm can be observed.
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Figure 2 shows the microstructures in the welded area including the FZ and the two
HAZs. The shape of the FZ is funnel-like (Fig. 2a). The dendrite in FZ is fine. Its
primary dendrite arm distance is 7.1 ± 1.9 lm in average. Discrete fine script MC
carbides and irregular Laves phases distribute in the interdendrites and grain boundaries
(Fig. 2b). The MC carbide is rich in Ti, Ta, Nb and W (inset of Fig. 2c). Its average
size is 5.1 ± 1.6 lm. The Laves phase is smaller (Fig. 2d). Its size is 1.3 ± 0.3 lm in
average and it mainly contains Cr, Fe, Ni, Nb and Mo (inset of Fig. 2d). The content of
Laves and MC carbide cannot be accurately measured due to macro- and micro-
segregation of elements [5]. There are only 0.62% of MC and 0.69% of Laves phases
precipitated from the liquid metal. Their contents are much less than those of the base
metals welded alone, respectively. Fine spheric c′ and c′′ with average size of *24 nm
disperse in the matrix (inset of Fig. 2b). Details on how to recognize these two phases
in the FZ were reported in previous work [5].

The microhardness across the welded joint was measured at room temperature
along the line *1.3 mm below the top surface and the hardness profile is given in
Fig. 3. The average hardness values of different regions are 399 ± 8 HV0.05

(DZ125L), 423 ± 7 HV0.05 (the HAZ of DZ125L), 494 ± 6 HV0.05 (FZ),
457 ± 10 HV0.05 (the HAZ of IN718) and 454 ± 9 HV0.05 (IN718), respectively.
The FZ has the highest hardness, while the DZ125L has the lowest hardness.

2.2 Tensile Properties

Figure 4 shows the yield strength (YS), ultimate tensile strength (UTS) and elongation
of the welded joint and the two base metals. The YS of the welded joint is not sensitive
to deformation temperature at 25–660 °C. Their values are around 950 MPa. At 700 °
C, the YS decrease slightly to 914 ± 28 MPa. The YS is higher than that of the
DZ125L base metal but lower than that of the IN718 base metal at 25–660 °C, whereas
at 700 °C, the YS is higher than that of the IN718 base metal but lower than that of the
DZ125L base metal.

Fig. 1. SEM microstructure of the base metals. a MC carbide in DZ125L and its EDS analysis
in the inset, b cubic c′ and spheric c′ in c channel of DZ125L, c carbide in IN718 and its EDS
analysis in the inset, and d c′′ and c′ in IN718
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Fig. 2. SEMmicrostructure of the welded areas of the DZ125L/IN718 welded joint. a Overview;
b FZ and c′ and c′′ in the inset, cMC carbides and its EDS, d Laves phase and its EDS, e HAZ of
DZ125L showing the partially dissolved c′, and fHAZ of IN718 showing the liquid grain boundary

Fig. 3. Microhardness profile of the DZ125L/IN718 welded joint

Fig. 4. Tensile properties of the DZ125L, IN718, and DZ125L/IN718 welded joints at different
deformation temperatures. a YS, UTS and the mean absolute difference of YS and UTS between
DZ125L and IN718, b total elongation
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In contrast, the UTS of the welded joint increases from 1066 ± 11 MPa to
1128 ± 18 MPa with increasing temperature from 25 to 660 °C, while it decreases to
976 ± 7 MPa at 700 °C. At 25–650 °C, the UTS is higher than that of the DZ125L
base metal but lower than that of the IN718 base metal. At 660–700 °C, the UTS is
higher than that of the IN718 base metal but lower than that of the DZ125L base metal.

Similar to the UTS, the elongation of the welded joint increases from 4.2 ± 1.1%
to 13.1 ± 1.6% with increasing temperature from 25 to 660 °C, and it decreases to
5.5 ± 0.8% at 700 °C, as shown in Fig. 4b. Basically, the elongations are low. They
are slightly higher than half of that of the DZ125L base metal at 25–650 °C. They are
obviously higher than half of that of the IN718 base metal at 660 and 700 °C.

2.3 Fracture Morphology

The welded joints failed at the DZ125L at 25–650 °C and failed at the IN718 at 660
and 700 °C. The fracture locations are far away from the welded areas (FZ and the two
HAZs). Typical fracture morphologies are shown in Fig. 5. For the specimens failed at
DZ125L, the fracture surfaces consist mainly of carbides and cleavage planes which
exhibit quasi-brittle fracture features, as shown in Fig. 5c, f. It is reported that large MC
carbides are easily broken even at early deformation stage and act as crack sources [11].
The great energy and stress concentration at the crack tip facilitate the formation of
deformation twining. Cracks propagate along the interface between deformation twins
to form cleavage planes [12–14].

Fig. 5. Fracture morphology of the DZ125L/IN718 welded joints tensile deformed at different
temperatures: a–c 25 °C, d–f 650 °C, g–j 660 °C, and k–n 700°C
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3 Conclusions

The strength of the welded joint depends on the strength of the subregions with lower
YS and UTS. The YS of the welded joint is insensitive to deformation temperature
from 25 to 660 °C. It decreases to a lower value at 700 °C. The UTS of the welded
joint firstly increases then decreases with increasing temperature, peaked at 660 °C.
The YS and UTS are slightly higher than those of the region with lower YS and UTS
due to inhomogeneous plastic deformation. The FZ have both high strength and suf-
ficient plasticity at high temperature. The dendrite core is strengthened by fine dis-
persed c′ and c′′ and it is soft at high temperature. Interdendrite is strengthened by both
fine dispersed c′ and c′′ and fine discrete carbides and Laves phases, and it is hard
comparatively. Soft dendrites are surrounded and constrained by hard interdendrites.
Interdendrites can effectively hinder the movement of dislocation from dendrites. The
soft dendrite carries higher plastic strain, while the interdendrite provides more
strength.
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Abstract. In this study a thorough investigation of the pre-peak and post-crack
mechanical behavior of cement mortars reinforced with carbon nanotubes and
polypropylene microfibers, took place. Flexural strength, Young’s modulus,
energy absorption capability and energy based dimensionless indices (toughness
indices) were investigated. Prismatic specimens of neat mortar and mortars
reinforced with 0.1 vol.% CNTs and 1.0 vol.% PPs were subjected to a three
point close loop bending test. Combined networks of CNTs and PPs also
incorporated in mortar matrix in order to investigate the synergistic effect of
hybrid reinforcement on the mechanical properties of mortar composites in
comparison to the singly-reinforced mortars. The experimental results showed
an exceptional multi scale mechanical behavior of mortars as reflected from the
load-deflection curves. Cement-based composites using carbon nanotubes or
ladder scale reinforcement of CNTs and PPs are characterized by 1.9 times
higher flexural strength and stiffness and 50% increased flexural toughness over
the mortars reinforced with micro scale fibers alone. The post-crack energy
absorption capability of multiscale reinforced mortars after the formation of the
“first crack”, is also outstandingly improved as indicated by the increases of the
toughness indices I5, I10, I20.

Keywords: Mortar � Carbon nanotubes � Polypropylene � Young’s modulus �
Toughness indices

1 Introduction

The use of micro scale fibers results to an improved post-crack behavior of cementi-
tious materials by bridging the microcracks and delaying the formation of a through-
specimen macrocrack [1]. However, they cannot prevent the initiation of cracks at the
nanoscale, which affects the fundamental mechanical behavior of cement based
materials [2]. The use of fibers at the nanoscale, such as carbon nanotubes (CNTs) and
carbon nanofibers (CNFs), offers unprecedented improvements in the mechanical
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properties of cement based materials [3, 4]. The purpose of the present study is to
determine the synergistic effect of using CNTs and PPs on the flexural strength,
Young’s modulus and flexural toughness and to evaluate the post-cracking energy
absorption capability of mortars reinforced with fibers at the nano and micro scale.
Overall, the combination of CNTs and PPs provide better mechanical behavior at both
the pre-peak and the post-crack area over the mortars reinforced with carbon nanotubes
or polypropylene fibers alone. The synergistic interaction between the CNTs and PPs
results in a multiscale reinforcing mechanism as: (i) inhibits the initiation and propa-
gation of crack at the nanoscale, increasing the flexural strength (+108%) and stiffness
(+87%); and (ii) provides a post-crack bridging mechanism after the formation of the
“first crack” by improving the post-crack energy absorption capability of mortar
composites as reflected by the higher values of the toughness indices I5, I10 and I20.

2 Experimental Work

2.1 Materials and Specimens

Mortar composites were produced by using OPC Type I (w/c = 0.485), standard sand
(s/c = 2.75), 0.1 vol.% multiwalled carbon nanotubes (CNTs) and 1.0 vol.%
polypropylene fibers (PPs) at aspect ratios of 307 and 480, respectively. A total of four
mortar samples were designed and examined: (i) plain mortar (M); (ii) M + CNTs;
(iii) M + PPs, (iv) M + CNTs + PPs. CNTs were uniformly dispersed in aqueous
suspension by the application of ultrasonication energy and the use of polycarboxylate
based surfactant [5]. 40 � 40 � 160 mm prisms were prepared for the determination
of mechanical properties. Following demolding, the samples were cured in lime-
saturated water for 28 days.

2.2 Experimental Determination of Flexural Strength, Young’s Modulus,
Energy Absorption Capability and Toughness Indices

Three-point bending tests were conducted on 40 � 40 � 160 mm prismatic speci-
mens. The tests were performed using a 25 kN MTS servo-hydraulic, closed-loop
testing machine under displacement control. The rate of displacement was kept as
0.1 mm/min. The flexural strength and Young’s modulus were determined according to
the ASTM C348-14. Flexural toughness and the dimensionless based toughness indices
I5, I10 and I20 were evaluated by the analysis of the load-deflection curves of prismatic
mortar beams as described by the ACI report on Fiber Reinforced Concrete [6].

3 Results and Discussion

Flexural strength and Young’s modulus of 28d mortars reinforced with highly dis-
persed carbon nanotubes and/or polypropylene microfibers, are presented in Fig. 1.
Comparing the results of plain mortar and mortar reinforced with 0.1 vol.% CNTs,
90% increase in both flexural strength and stiffness is observed. Mortars reinforced
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with 1.0 vol.% PPs, exhibit almost the same flexural strength and stiffness with the
plain mortar. The addition of micro scale fibers into the cementitious matrix mostly
results in post-elastic property changes [7]. Interestingly, the simultaneous incorpora-
tion of CNTs along with PPs results in 1.9 times higher flexural strength and Young’s
modulus over the plain one. It is obvious that mortar either singly nanoreinforced or in
combination with microscale fibers significantly enhance its fracture-dominant failure
mode, therefor its flexural strength and modulus of elasticity.

Figure 2 presents load-deflection curves of 28d mortars with the ladder scale
reinforcement of CNTs and PPs. As discussed above, the effect of the simultaneous
addition of carbon nanotubes and polypropylene microfibers on the mortar matrix was
outstanding. Similar to the mortar specimens reinforced with CNTs, the mortar com-
posites with ladder scale reinforcement exhibit an exceptional pre-peak flexural
behavior with almost the same peak load (�3000 N). The incorporation of CNTs
provides a higher load transfer mechanism between the mortar matrix and the nanos-
cale fiber; therefore leading in such high increases in both flexural strength and
Young’s modulus (Fig. 1). Except of the increases in the strength and stiffness, it is
also observed an increased energy absorption capability of hybrid mortars as reflected
by the flexural toughness values calculated by the area under the load-deflection curves
and also presented in Fig. 2. After the application of the peak load and the formation of
first crack (Deflection > 0.04 mm) the hybrid mortars are further deformed to a large
extend exhibiting an enhanced ability to sustain additional flexural loading and 50%
higher energy absorption capability compared to the singly micro scale reinforced
composites after the formation of the “first crack” and before their total failure.

To further examine the toughening effect of mortars modified with the nano and
micro scale reinforcement Table 1 presents the toughness indices I5, I10 and I20 of 28d
mortar reinforced with CNTs and/or PPs. As it is shown from Table 1 the addition of
polypropylene fibers has a great effect of post-cracking toughness of mortars, as PP
reinforced mortar composites exhibit a 3.4, 6.8 and 14.2 times higher energy absorption
capability at the area up to a deflection of 3.0, 5.5. and 10.5 times the first-crack
deflection. It should be mentioned here that toughness indices for the nanoreinforced
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and plain mortar cannot be calculated as the materials does not exhibit any post-
cracking mechanical behavior. Interestingly, the synergistic effect of carbon nanotubes
and polypropylene fibers results in even higher improvement of the post-crack energy
absorbing efficiency. Toughness indices of CNT and PP reinforced mortars are 26, 19
and 15% higher up to deflections of 3.0, 5.5 and 10.5 times the first-crack deflection,
comparing to the singly micro scale fiber reinforced mortars.

4 Conclusions

The characterization of the pre-peak and post-crack mechanical behavior of cement
mortars reinforced with nano and/or micro scale fibers, took place in this study. Carbon
nanotubes and polypropylene fibers at volume fractions of 0.1 and 1.0%, respectively,
were used for the matrix’s reinforcement. The effect of the simultaneous use of CNTs
and PPs on the mechanical properties of the mortar matrix, over the singly-reinforced
mortars, was also investigated. The combination of CNTs and PPs provide better
mechanical performance at both pre-peak and post-crack areas over the mortars rein-
forced with carbon nanotubes or polypropylene fibers alone. The addition of 0.1 vol.%
CNTs leads to an enhanced pre-peak mechanical behavior, with 95% increased flexural
strength and Young’s modulus. On the other hand, the addition of micro scale
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Table 1. Toughness indices I5, I10 and I20 of 28d CNT and/or PP reinforced mortars.

I5 I10 I20
M + PPs 3.4 6.8 14.2
M + CNTs + PPs 4.3 8.1 16.3
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polypropylene fibers results only in post-crack changes as the mortar composites
though exhibit no increase in flexural strength and stiffness, a 25 times higher energy
absorption capability after the formation of the “first crack” is observed over the plain
mortar and mortar reinforced with CNTs alone. Overall, the interaction between the
CNTs and PPs results in an exceptional multiscale reinforcing mechanism, as com-
posites exhibit 1.2 times higher flexural strength and Young’s modulus over the singly
reinforced mortars. The enhanced bridging mechanism after the formation of the “first
crack” by the simultaneous use of nano and micro scale fibers exceptionally improves
the composites’ post-crack energy absorption capability as reflected by the higher
toughness indices, compared to the microfiber reinforced mortar.
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Abstract. Averaged accounting of motion and interaction of dislocations is a
natural way to describe plasticity at macroscale in those metals, in which dis-
location slip is the main mechanism. This approach describes the inertness of the
plasticity development, which is crucial in dynamic problems. On the other
hand, such models demand for additional equations and parameters. Molecular
dynamics (MD) simulation of elementary processes in the dislocation ensemble
at nanoscale is prospective tool for construction of these equations and fitting
their parameters. We present MD simulation of the motion of single dislocation
lines in pure metals and metals with precipitates. Influence of local stresses on
the motion of dislocations in pure metals is discussed. The dislocation motion
equation is derived and their parameters are fitted to MD simulations for Al, Cu
and Mg. Also we discuss the model for dynamic interaction of dislocation and
precipitate intended for description of plasticity in alloys.

Keywords: Dislocation plasticity � Motion of dislocations � Drag coefficient �
Interaction with precipitate � Molecular dynamics

1 Introduction

Averaged accounting of motion and interaction of dislocations is a natural way to
describe plasticity at macroscale in those metals, in which dislocation slip is the main
mechanism [1–6]. Among other advantages, this approach allows one to describe the
inertness of the plasticity development, which is crucial in dynamic problems, such as
high-velocity impact [7] or powerful laser or electron irradiation of metals [8, 9]. Strain
rates up to an inverse nanosecond are experimentally available [10–12], at these strain
rates the material shear strength tends to its ultimate value [12]. The main disadvan-
tages of the dislocation plasticity models are additional equations typically written for
each slip system, and a number of parameters. Both, the form of equations and the
values of parameters, have to be determined from elsewhere. Besides theoretical
consideration and fitting with experimental data, the atomistic simulations of ele-
mentary processes in the dislocation ensemble at nanoscale can be used [13–16].

Here we present MD simulation of motion of single dislocation lines in pure metals
and metals with precipitates. Influence of local stresses on the motion of dislocations in
pure metals is discussed [15]. The dislocation motion equation is derived and their
parameters are fitted to MD simulations for Al [15], Cu and Mg. Also we discuss the
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model for dynamic interaction of dislocations and precipitates [16] intended for
description of plasticity in alloys. Together with MD simulations of high-rate shear
deformation used for verification of the dislocation kinetics equations [17] these results
give exhausting information for formulation of continuum models of plasticity.

2 Motion of Dislocations in Pure Metals

MD simulations are performed using LAMMPS package [18]. OVITO [19] with the
dislocation extraction algorithm (DXA) [20] are used for analysis of the atomic con-
figurations and tracing position of dislocations. Atomsk [21] is implemented for
obtaining of the initial configuration of single crystal with straight dislocation. The MD
samples are oriented in such a way that the dislocation line lies along z-axis and moves
along x-axis. The Burgers vector is directed either along x-axis (for edge dislocation) or
along z-axis (for screw dislocation). Periodic boundary conditions are set along the
dislocation line (z-axis) and direction of its motion (x-axis). One of the faces perpen-
dicular to y-axis is fixed, while another one moves creating either rxy or ryz component
of stress tensor, which provokes the motion of dislocation in the required direction.
Two problem statements are considered: (i) initial instantaneous finite shear of the face
and whole sample [15] (Figs. 1 and 2); (ii) shifting of face with constant speed [16],
Fig. 3. Constant temperature is maintained in the MD system.

Variation of average shear stress, position and velocity of dislocation are compared
with the theoretical model based on the dislocation motion equation [15], and the
parameters of this equation are fitted, see Table 1. The model takes into account quasi-
relativistic effect (infinite increase in the dislocation energy at the achievement of
transverse sound speed) and the local character of the resolved shear stress, which
moves the dislocation. Detailed analysis [15] of the relaxation of initial instant shear,

Fig. 1. Relaxation of initial shear in the case of screw dislocation in Al sample: a dislocation
velocities and b shear stresses. Comparison of the dislocation motion equation [15] (solid lines)
with MD data (symbols) for initial displacements of 0.14, 0.29, 0.86 and 1.43 nm is presented.
The MD system size is 74.4 � 56.1 � 10 nm3; the temperature is equal to 300 K.
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problem statement (i), showed that not the average over MD system, but local stresses,
averaged through the region of the order of 10 nm in size, should be used in the
dislocation motion equation. Besides it, the stress distribution is very heterogeneous
near the dislocation line [15]: a moving dislocation leaves a relaxed area (trace) behind
itself. This features leads to step-wise change in velocity, Figs. 1a, 2b, at entering of
trace of the previous dislocation, arising of negative velocities, Fig. 2b, and non-
monotonic dependence of the final stress over initial one, Fig. 2d.

In the problem statement (ii) with continuous shift, the periodic entering into the
traces of previous dislocations leads to oscillations of the dislocation velocity and
average shear stress, Fig. 3. At fast shift, an unsaturated increase in shear stress takes
place (Fig. 3 for 9 m/s) due to the restriction of the dislocation velocity [16].

Fig. 2. Relaxation of initial shear in Mg sample containing straight edge dislocation in basal
plane: time evolution of a positions of dislocations, b dislocation velocities and c shear stresses;
d dependence of final shear stress upon initial one. Comparison of the dislocation motion
equation [15] (solid lines) with MD data (symbols) for initial displacements of 0.12, 0.24, 0.48,
1.2 and 2.4 nm is presented. The MD system size is 51 � 52 � 28 nm3; the temperature is
constant and equal to 300 K.
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3 Interaction with Precipitates

MD simulation of the dislocation motion in metals with various obstacles, both the
model ones (rigid obstacles and inclusions of various forms) and the obstacles
repeating the structure of real precipitates of alloys [16] are performed. The simulations
show that the main mechanism for overcoming of an obstacle is the formation of an
Orowan loop around it. The shear deformation of the obstacle is a secondary process; it
is observed either during the first or subsequent dislocation passing depending on the
stiffness of the inclusion. Cutting of the obstacle occurs due to the shift by the Burgers
vector of one part of the matrix surrounding the obstacle relative to the other part of it
during each passage of the dislocation. When the displacement of the surrounding
matrix becomes large enough, one part of the obstacle shifts relative to the other one. In
some cases, when the obstacles are small in size or the dislocation passes near the edge
of the obstacle, it can be avoided due to the ejection of a segment of the dislocation line
into the adjacent plane (cross-slip) with emission of vacancies.

The mechanical model is formulated in [16] for description of the dynamics of
dislocation with the formation of the Orowan loop. The model takes into account
increase in the dislocation line energy due to increase of its size, which counteracts the

Fig. 3. Shear stresses in Cu sample with edge dislocation at boundary shift with constant
velocities indicated near lines: MD data (solid lines) and calculations with using of the
dislocation motion equation [15] (dashed lines). The MD system size is 46 � 43.8 � 9.6 nm3;
the temperature is constant and equal to 300 K.

Table 1. Parameters of the dislocation motion equation [15] for 300 K: the drag coefficient B0

(at low velocity of dislocation) and the rest mass of dislocation m0.

Parameter Al (edge) [15] Al (screw) Mg (edge) Cu (edge)

B0; 10�5Pa s 1.45 1.69 1.54 1.20

m0; 10�16kg=m 1.10 2.15 1.97 1.10
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dislocation motion, and relaxation of stresses by dislocation, which promotes its motion.
The model reflects the main tendencies observed in MD simulations [16], Fig. 4.

4 Conclusions

Atomistic simulations of the dislocation motion in pure metals and alloys are used for
formulation and verification of the mechanical models of continuum level, and fitting
of the parameters of the models. Motion of dislocations creates heterogeneous distri-
bution of stresses at nanoscale. Formation of Orowan loop is revealed to be the main
mechanism of the overcoming of obstacles at dynamic loading.
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of Science and Higher Education of the Russian Federation (State task 3.2510.2017/4.6).
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Abstract. The paper describes the methodology of residuals stress determi-
nation on the basis of displacement fields measurement near drilled holes by
means of 3D Digital Image Correlation. Detailed information concerning testing
procedure are presented and supplemented by exemplary tests results for steel
sample uniaxially loaded to 300 MPa. Determined values of residual stress
calculated with inverse method algorithm are compared to the ones obtained
with traditional method with near the hole strain measurements by means of
tensometric rosette. In both cases 2 mm mill was used to drill the flat bottom
hole with 0.25 mm increase steps. The influence of FEM model geometry used
to deliver correction terms to the analytical model, necessary in the case of blind
holes, is discussed. Determined residual stress from DIC based method agreed
reasonably with traditional method.

Keywords: Residual stress � 3D digital image correlation � Inverse method

1 Introduction

The most popular method of residual stress determination is based on strain mea-
surements near the drilled hole by means of specially designed rosettes usually con-
sisting of three tensometers. Stress relaxation caused by material removal causes small
deformation on the surface dependent on stress distribution. The method is standard-
ized, however has some drawback related to time consuming tensometers fixing pro-
cedure, hole eccentricity sensitivity and limited drill diameters range (dependent on the
available tensometric rosettes geometry). Overmentioned disadvantages might be
overcome by replacing tensometers with non-contact optical measurements by means
of Digital Image Correlation (DIC) method. Moreover, DIC measurements deliver
much more data (hundreds or thousands data points) in comparison to tensometric
rosettes (usually three readings, only) allowing to use over-deterministic procedures for
stress calculations and improvement of the method accuracy.
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2 Methodology

2.1 Development of Testing Stand

Testing stand aimed for displacement fields measurements near drilled holes by means
of 3D DIC has been developed. 3D DIC system utilizes digital images of the object
surface (with contrast in the form of speckle pattern) registered before and after
deformation with at least two cameras. In two cameras system they are placed in 30–
60° angle to each other which gives an opportunity to place driller between them and
eliminate the need of removing camera while drilling. During presented tests upgraded
stand was used (see Fig. 1). Preliminary tests which results are presented elsewhere [1]
revealed the need for construction stiffness improvement and better cameras fixing.
Hole depth was controlled by a stepper motor steered with Arduino microcontroller.

2.2 Development of Calculation Algorithms

Equations describing displacement field near drilled hole are available in the form [2]:

ur ¼ Aðrx þ ryÞþB rx � ry
� �

cos 2hþ 2rxy sin 2h
� � ð1Þ

uh ¼ C rx � ry
� �

sin 2h� 2rxy cos 2h
� � ð2Þ

where:
ur radial displacement,
uh angular displacement,
rx, ry, rxy residual stress components

Fig. 1. Experimental set-up: a loading table with mounted sample, b frame with driller.
Development of calculation algorithms.
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In the through hole case there are available analytical equations for A, B and C
coefficients:

A ¼ r0
2E

1þ tð Þq ð3Þ

B ¼ r0
2E

4q� 1þ tð Þq3� � ð4Þ

C ¼ r0
2E

2 1� tð Þqþ 1þ tð Þq3� � ð5Þ

where:
r0 hole radius,
E Young’s modulus,
v Poisson’s ratio,
q distance form the hole center to hole radius ratio (r/r0).

Blind hole case is not straightforward due to the lack of direct analytical solutions.
However, correction terms replacing A, B and C might be introduced from Finite
Element Modelling (FEM) results for uniaxial loading case as proposed in [2] and
presented and in author previous work [1]. These correction terms are depended on
elastic constants, hole geometry and distance from the hole center and valid for arbi-
trary residual stress components values.

Correction terms for analytical equations were determined from FEM models of
two geometries. First one geometry agreed with sample gauge section dimensions
while the second one was designed for more general cases and was in the form of
20 � 20 � 4 mm plate. Images of meshes for both models are presented in Fig. 2.
Element death technique was used to simulate material removal caused by drilling.

Correction terms were determined for different discrete r/r0 values. 4th order
polynomial was fitted to obtained data allowing to use them for arbitrary coordinates
combinations for fixed hole depth.

Fig. 2. FEM model meshes for: a sample and b plate case.
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Inverse method iterative algorithm has been developed for residual stress calcula-
tions from DIC data. The aim of calculations was to determine the optimized set of rx,
ry, rxy as well as coordinates of the hole center and rigid body motion and rotation by
minimizing global difference between model and DIC measured displacements.
Algorithm reliability has been preliminary validated using artificial FEM generated
displacement fields for different biaxial residual stress conditions as the input data. The
results agreed with less than 1% error.

2.3 Experimental Work

Experimental work covered an attempt to determine residual stress in steel sample of
10 � 4 mm cross section uniaxially loaded to 300 MPa. Prior testing sample was
annealed to relieve any possible residual stress coming from material processing.
Sample was loaded and locked in special table (Fig. 1a) and final stress was determined
from Hook’s law basing on attached extensometer readings. After achieving desire
uniaxial stress level extensometer was removed, sample surface prepared for DIC
measurements by black and white paint spraying and the loading table with sample
mounted to testing stand. 1.5 mm diameter hole was drilled with diameter in 0.25 mm
consecutive steps to final depth of 2 mm. For each step three digital images were
registered for 3D DIC measurements. Reported rx values are averages from the results
of model parameters optimization for three DIC measurements for the same hole depth.

Additionally drilling procedure was done on the same sample in the center of
tensometric rosette fixed after sample loading. In this case residual stress were deter-
mined in accordance to ASTM standard [3].

3 Results and Discussion

Exemplary displacement fields maps from DIC measurements sample geometry based
model after parameters optimization are shown in Fig. 3. The results of dominating
component average values are presented in Fig. 4.

In general, the results obtained with DIC based method agreed well with those from
standardized procedure, especially when FEM model geometry used for blind hole
correction was depicting sample gauge section and calculation were made for hole
depth exceeding 0.75 mm. It suggest necessity for dedicated FEM model geometry
development to deliver blind hole correction terms in the cases when residual stress has
to be determined near an object edge.
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4 Conclusions

Residual stress in steel sample loaded to known stress level has been determined with
the improved stand and calculations algorithm based on displacement fields mea-
surements near drilled blind holes by means of 3D DIC. Obtained results agreed
reasonably with standardized method, validating proposed testing procedure. This
methodology might be used for holes geometry not limited by available tensometric
rosettes sizes and related mills diameters.
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Fig. 3. Exemplary displacement field maps from DIC measurements and corrected analytical
model (Sample geometry model correction, 2 mm hole depth).

Fig. 4. Results of rx determined from DIC based and standardized method.
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Abstract. We propose a fringe analysis algorithm for the automatic detection
of defects from a single fringe pattern (FP). Typically, the surface defects exhibit
high fringe density areas in the FP. Consequently, high fringe density regions
can be utilized as a signature for detecting and locating the surface defects. An
algorithm based on monogenic filtering of the FP is proposed for an efficient
computation of the fringe density. The defect related high density fringe areas
are segmented from the defect-free region based on a threshold derived from the
fringe density histogram. The algorithm is found to be noise robust and it does
not require any pre-processing of the FP. A single FP based analysis approach is
suitable in identifying defects using interferometric systems in an industrial
environment. Simulation and experimental results are provided to demonstrate
the feasibility of the proposed algorithm.

Keywords: Fringe analysis � Interferometry � Monogenic filtering

1 Introduction

Optical interferometric measurement techniques such as digital holographic interfer-
ometry, electronic speckle pattern interferometry, and shearography have been
employed in the applications of defect detection, deformation analysis and non-
destructive testing [1–3]. In these techniques, the information on the measurand is
recorded in the form of a sinusoidal variation in intensity, usually termed as a fringe
pattern. In general, phase shifting interferometry has to be employed for performing
quantitative measurement [4]. Since phase shifting is sensitive to vibrations, it is
desirable to perform deformation analysis using a single recording of a fringe pattern.
In this work, we propose a frequency selective filtering based on monogenic repre-
sentation of the fringe pattern for surface defect detection.

2 Monogenic Filtering Based Fringe Analysis

The FP can be represented as,
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I rð Þ ¼ a rð Þþ b rð Þ cos/ rð Þ
where, r ¼ x; y½ �T indicates the pixel spatial coordinates of the FP; a rð Þ and b rð Þ
represent the background intensity and the fringe amplitude, respectively; / rð Þ
represents the phase embedded in the fringe pattern. In deformation analysis using
electronic speckle pattern interferometry and holographic interferometry, this phase is
proportional to surface displacement. On the other hand, in shearography, the phase is
proportional to surface displacement derivative.

Adaptive monogenic filtering has been considered in [5] for the purpose of fringe
normalization and denoising. In this work, we propose to use the adaptive monogenic
filtering operation for the estimation of fringe density at each pixel. At a given pixel r0,
the FP within a small window can be expressed as a single frequency sinusoid as,

I rð Þ ¼ Acos xT
0 r� r0ð Þ þ/

� �
;

where, x0 ¼ xx;xy
� �T

represent the local frequency vector. If an appropriate filter is
designed, the local amplitude A and phase / can be estimated accurately. To do so, we
need to obtain a two-dimensional analytic signal, i.e. monogenic signal, corresponding
to the FP. For the computation of monogenic signal, we consider an isotropic log-
Gabor filter, which is given as

H xð Þ ¼ exp �
log xj j

x0

� �� �2

2 log rð Þ2

0

B@

1

CA:

The bandwidth of the filter passband depends on the shape parameter r. The FP
filtered by H xð Þ constitutes the real part of the monogenic signal. The two imaginary
parts of the monogenic signal are computed using a complex valued filter

HO xð Þ ¼ jxx � xy

xj j H xð Þ; j ¼
ffiffiffiffiffiffiffi
�1

p
:

The real and imaginary components of the output of this filter corresponds to the
two odd parts of the monogenic signal. Let Ie rð Þ, I01 rð Þ and I02 rð Þ represent the real and
imaginary components of the monogenic signal. The local amplitude estimate is
obtained as,

Io rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I01 rð Þ2 þ I01 rð Þ2

q

A rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ie rð Þ2 þ I0 rð Þ2

q
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The local amplitude is computed using a number of filter frequencies x0ð Þ, say K.
The frequencies are selected such that low and high fringe frequencies corresponding to
slow phase variations and noise, respectively, are filtered out. Subsequently, at each
pixel, the maximum filter output amplitude among all the filter outputs is computed.
This maximum amplitude map clearly indicate the defective region with high ampli-
tude against the low amplitude defect-free region. The amplitude map is normalized
and a threshold is applied to obtain a binary map segmenting the defective and defect-
free region. The threshold is computed based on the histogram of the maximum
amplitude map.

3 Simulation and Experimental Results

A simulation example is provided in Fig. 1a with a typical shearogram recorded in
shearography setup. Four defect locations with different fringe densities are present.
The FP is corrupted by additive noise. Spatially varying background intensity and
fringe amplitudes are considered in the simulation. Figure 1b shows the maximum
amplitude map. The binary image in Fig. 1c clearly indicates the identified defective
regions. Figure 1d is provided for the purpose of illustration.

Figure 2a shows the FP recorded in a holographic interferometry setup corre-
sponding to out-of-plane deformation of an aluminum plate. A circle indicating the
point of loading is shown in the figure. The proposed algorithm is implemented to

Fig. 1. Simulation results: a simulated shearogram with four defects, b monogenic filter
amplitude, c binary image indicating defect locations and d high density fringes present at the
defect locations.
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locate the point of load. Figure 2b, c show the maximum amplitude map and identified
defect map, respectively.

4 Conclusion

A noise robust fringe analysis algorithm is proposed for the automatic identification of
surface defects. A monogenic filtering based algorithm effectively computes the local
fringe amplitude map at different filter frequencies based on which high fringe density
areas are identified. The simplicity of implementation and simulation and experimental
results substantiates the practical applicability of the proposed method.
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Abstract. A thorough investigation of the pre-peak, first crack and post-crack
flexural response, energy absorption performance and ductility of cement mortar
composites with hybrid reinforcement using nano and micro scale carbon fibers
took place in this study. Young’s modulus, energy absorption capability and
energy based dimensionless indices (toughness indices) were investigated
through the Linear Elastic Fracture Mechanics theory. Prismatic notched spec-
imens of neat mortar and mortars reinforced with 0.1 vol.% CNFs and/or 0.5
vol.% CFs were subjected to a three-point close loop bending test, using the
crack mouth opening displacement, CMOD. Combined networks of CNFs and
CFs were incorporated in mortar matrix in order to investigate the synergistic
effect of hybrid reinforcement on the mechanical properties of the single-
reinforced mortars. The experimental results showed an exceptional multi scale
mechanical performance of nano and micro scale fiber reinforced mortars as
reflected from the load-CMOD response of specimens. The energy absorption
capability and load carrying capacity of multiscale reinforced mortars after the
formation of the initial crack (first crack), are outstandingly improved as
indicated by the 138 and 100% increases of the proposed size independent
toughness indices, up to the peak load and the ultimate failure, respectively.

Keywords: Carbon nanofibers � Carbon fibers � Energy absorption capability �
Toughness indices

1 Introduction

The most important properties that structural materials such as mortars and concrete
can provide are strength, stiffness, flexural toughness and post-cracking energy
absorption capability. Failure in cement based materials is a gradual multi-scale pro-
cess. In order to improve the load-bearing capacity of cementitious materials, crack
growth must be delayed at the nano, micro and eventually at the macro scale.
Microfibers, such as carbon fibers (CFs) can improve the post-peak behavior by
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bridging the microcracks and delaying the formation of a through-specimen macroc-
rack [1, 2]. However, cracks in cementitious materials initiate from the nanoscale
where microfibers are not effective. Carbon nanofibers (CNFs) exhibit several distinct
advantages as reinforcing materials for cementitious composites. Effectively dispersed
nanoscale fibers are able to control the matrix cracks at the nanoscale, resulting in
essentially improved flexural strength, stiffness and energy absorption ability as well as
enhanced flexural toughness [3]. The ladder scale reinforcement, with the simultaneous
use of carbon nanofibers and microscale PVA fibers in cement paste yielded remark-
able improvement in flexural strength and stiffness up to 50 and 84%, respectively, and
the composites also exhibited 33 times higher flexural toughness [4]. This study aims to
evaluate the synergistic effect of carbon fibers at the nano and micro scale on the
flexural strength, Young’s modulus, flexural toughness and the post-cracking energy
absorption capability of hybrid nano- and micro-modified mortars. The synergistic
interaction between the carbon fibers at the nano and micro scale results in a multiscale
reinforcing mechanism as: (i) inhibits the initiation and propagation of cracks at the
nanoscale, increasing the flexural strength (+108%) and stiffness (+96%) and the
proportionality of load-CMOD response until the “first crack”; and (ii) provides an
enhanced post-crack bridging mechanism after the formation of the “first crack”. The
combined nano and micro scale fiber networks exceptionally improve the post-crack
energy absorption capability of micro scale fiber mortar composites as reflected by the
�2.0 times higher toughness indices, up to peak load and ultimate failure, respectively.

2 Experimental Work

2.1 Materials and Specimens

In this study, mortar samples were produced by adding 0.1 vol.% CNFs and/or 0.5 vol.%
CFs to Type I ordinary Portland cement (OPC) 42.5R and standard sand according to
EN 196-1, at a water to cement ratio (w/c) 0.485 and sand to cement ratio (s/c) 2.75.
Effective dispersion was achieved by adding the fibers to an aqueous polycarboxylate
based surfactant solution, at a surfactant to fibers weight ratio of 4.0 and applying
ultrasonic energy [5]. After mixing, notched 20 � 20 � 80 mm prisms were prepared
to conduct 3 point bending mechanical testing. Following demolding, the samples were
cured in lime-saturated water for 28 days.

2.2 Experimental Determination of Flexural Strength, Young’s Modulus
and Toughness Indices

Three point bending tests were conducted on 20 � 20 � 80 mm specimens according
to the procedure based on ASTM C348-14. The test was performed using a 25 kN
MTS servo-hydraulic, closed-loop testing machine. Flexural strength and Young’s
modulus were determined according to the Linear Elastic Fracture Mechanics theory
and the ASTM C348-14 [6]. The toughness indices are determined by dividing the area
under the load-CMOD curve up to a specified point by the CMOD at which “first
crack” is deemed to have occurred [7].
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3 Results and Discussion

Flexural strength and Young’s modulus of 28d mortars reinforced with highly dis-
persed carbon nanofibers and/or microfibers, are presented in Fig. 1. Comparing the
results of plain mortar and mortar reinforced with 0.1 vol.% CNFs, �94% increase in
both flexural strength and stiffness is observed. Mortars reinforced with 0.5 vol.% CFs,
exhibit almost the same flexural strength and stiffness with the plain mortar. The
addition of micro scale fibers into the cementitious matrix mostly results in post-elastic
property changes [8]. However, the simultaneous incorporation of nano and micro scale
fibers results in 2.1 times higher flexural strength and 1.9 times higher Young’s
modulus over the plain one.

Figure 2 presents load-CMOD curves of 28d mortars with the ladder scale rein-
forcement of CNFs and CFs. The addition of CNFs doubles the flexural toughness of
neat mortar matrix as reflected by the bigger area under the load-CMOD curve. The
energy absorption capability of the mortars reinforced with microscale CFs is
approximately 12 times higher than the toughness exhibited by the neat or
nanomodified mortar. It is obvious that the addition of microscale fibers has a con-
siderable positive influence on the post elastic energy absorption capability of mortar
composites. Interestingly, the energy absorption capability of mortars reinforced with
hybrid networks of CNF-CF is almost 105% higher than that exhibited from the
mortars singly reinforced with CFs.

The flexural toughness, however, cannot be used as a true material property since it
is size and geometry dependent. For this reason, energy-based dimensionless indices
(toughness indices) were developed and used to interpret the material’s post-cracking
behavior. Toughness indices identify the pattern of the material behavior up to a
selected bending strain criteria, according to ACI 544R-1 report on fiber reinforced
concrete [9]. The addition of CFs however has a great effect on post-cracking tough-
ness of mortars, as both the TPL/TFC and TU/TFC ratios are greatly enhanced from 1.3
up to 4.4 and 4.9 up to 59.5, respectively. Toughness index of CNF-CF reinforced

Fig. 1. Flexural strength and Young’s modulus of 28d plain mortar and mortars reinforced with
CNFs and/or CFs.
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mortars is 1.6 higher up to the application of the peak load, comparing to the micro
scale fiber reinforced mortars. The hybridization of the mortar matrix has also a higher
impact at the post peak area up to failure, as the mortar reinforced with both CNFs and
CFs exhibit 74% higher toughness index comparing to the mortar reinforced only with
the carbon micro scale fibers (Table 1).

4 Conclusions

The principal objective of this study is a thorough mechanical characterization at the
pre-peak and post-crack area of cement mortars reinforced with single or multiple nano
and micro scale fiber reinforcement. The combination of CNFs and CFs provide better
mechanical performance at both pre-peak and post-crack over the mortars reinforced
with microscale fibers alone. The addition of 0.1 vol.% CNFs leads to an enhanced
pre-peak mechanical behavior, with 95 and 94% increased flexural strength and
Young’s modulus, respectively. On the other hand, the addition of micro scale carbon
fibers results only in post-crack changes as the mortar composites though exhibit no
increase in flexural strength and stiffness, a 14 times higher energy absorption
capability after the formation of the “first crack” is observed over the plain mortar and

Table 1. Toughness indices up to peak load and ultimate failure of 28d plain mortar and hybrid
mortar nanocomposites reinforced with CNFs and CFs

Sample TPL/TFC TU/TFC

M 1.3 4.9
M + CNFs 1.6 5.5
M + CFs 4.4 59.5
M + CNFs + CFs 7.4 103.6

Fig. 2. Load-CMOD curves of 28d mortars reinforced with CNFs and/or CFs.
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mortar reinforced only with CNFs, respectively. The enhanced bridging mechanism
after the formation of the “first crack” by the simultaneous use of nano and micro scale
fibers exceptionally improves the composites’ post-crack energy absorption capability
as reflected by the �2.0 times higher toughness indices, up to peak load and ultimate
failure, respectively.
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Abstract. Based on the large deflection beam theory and the deflection beam
profile equation, a two-point bending stress determination method for ultra-thin
glass plates was proposed in this paper. The full-profile bending stress distri-
bution as the ultra-thin glass plate is bent with any contact angle and any
compression displacement in the two-point bending test can be determined by
the proposed method. In experiment, the widths and heights of the profile as
well as the compression forces of a 100 lm thickness ultra-thin glass plate bent
with different contact angles and compression displacements were measured.
Measurement results of the widths and heights of the profiles as well as the
compression forces are in good agreement with the theoretical values.

Keywords: Ultra-thin glass plate � Bending stress � Large deflection beam
theory � Two-point bending test � Enhanced exposure theory of photoelasticity

1 Introduction

The residual stress and micro defect produced by the cutting processing may reduce the
flexibility of the ultra-thin glass plate. Two-point bending test has been one of
industrial standards to be used to inspect the ultra-thin glass plate after cutting. In the
common inspection standard, the bending stress on the profile center when the ultra-
thin glass plate is coming to be fractured is regarded as the strength of the ultra-thin
glass plate in two-point bending test. Therefore, the previous investigations of two-
point bending test [1, 2] only developed the theories to determine the bending stress on
the profile center of the specimen. It means that those theories reported in [1, 2] can be
applied only in the situation that the fracture is generated right on the profile center.
However, in general, the fracture is not on the profile center.

Exactly determining the bending stress at the fracture point will help manufacturers
and users accurately define the quality of ultra-thin glass plates. Sung et al. [3] pro-
posed a method to determine the full-profile bending stress of ultra-thin glass plate by
using the enhanced exposure theory of photoelasticity (EEToP) [4]. Nevertheless, a
correlation between the full-profile bending stress distribution and the compression
displacement needs to be explored.

In this paper, a method capable of determining the full-profile bending stress with
any contact angle and compression displacement in two-point bending test was pro-
posed. In this method, the large deflection beam theory was utilized and the deflection
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beam profile equation was proposed to derive the general equation for two-point
bending stress determination. An ultra-thin glass plate was bent with different contact
angles and compression displacements. Measurement results of the widths and heights
of the profile as well as the compression forces of the ultra-thin glass plate were
compared with the theoretical values to verify the feasibility of this method.

2 Experimental Setup

The test specimen was a 100 lm thickness ultra-thin glass plate (OA-10G, Nippon
Electric Glass Co., Ltd.) with 140 mm in length and 70 mm in width. The experimental
setup involved a self-made two-point bending frame and a digital still camera. The
compression load and displacement by the built-in load cell and graduated scale can be
measured by the two-point bending frame, respectively. The digital still camera was
placed in the lateral side of the two-point bending frame to capture the profile image of
the ultra-thin glass plate under bending. By analyzing the profile image, the width and
height of the profile as well as the contact angle can be obtained. Then, through these
three values, the deflection beam profile equation proposed in this study can be
expressed.

3 Experimental Results

With the different compression displacements, measurement results of the widths and
heights of the profiles as well as the compression forces of the ultra-thin glass plate are
all well-matched with the theoretical values in the large deflection beam theory. The
maximum absolute difference rates between the measurement results and the theoretical
values in the width and height of profile as well as the compression force are 1.76, 2.26,
and 4.78%, respectively. Figure 1 shows the comparison between the real profile
(green line) and the profile reconstructed by the deflection beam profile equation (blue
line) of the ultra-thin glass plate with the compression displacement of 22.06 mm. The
good match between the real and reconstructed profiles demonstrates the correctness of
the proposed deflection beam profile equation. By integrating the deflection beam

Fig. 1. The comparison between the real profile (green line) and the profile reconstructed by the
deflection beam profile equation (blue line) when the compression displacement is 22.06 mm.
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profile equation into the large deflection beam theory, the general equation of the full-
profile bending stress determination can be derived. Figure 2 shows results of the
bending stress distribution of the ultra-thin glass plate with the compression dis-
placement of 22.06 mm. Apparently, in the bending stress distribution the stress value
is maximum on the profile center and gradually decreases to zero from the center to the
side of the profile. Thus, as long as the location of the fracture point on the profile is
known, the bending stress at the fracture point can be exactly determined.

4 Conclusions

In this paper, the general equation of the full-profile two-point bending stress deter-
mination was derived by using the large deflection beam theory and the proposed
deflection beam profile equation. The required parameters in the general equation, i.e.
the width and height of the profile as well as the contact angle, can be obtained from the
profile image. Besides, to make the stress distribution on the edge of the ultra-thin glass
plate under bending could be more precisely determined, the full-profile bending stress
determination results could be combined with the residual stress measurement results
on the edge of the ultra-thin glass plate by EEToP [5]. Therefore, the method and
system proposed in this paper may assist the manufacturers and users of ultra-thin glass
plate in improving the inspection standard and increasing the product quality.
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Abstract. In this paper, the grating collimation of coherent gradient sensing
(CGS) technique was investigated. Due to the basic principle of the CGS
technique, two gratings are used to obtain the interference fringe pattern,
therefore, the accuracy of the CGS technique is directly influenced by the col-
limation of the two gratings. In order to investigate the grating collimation of the
CGS technique, a standard specimen was implemented. The measurement
results show that the error becomes larger when the rotational misalignment
between the gratings was increased.

Keywords: Collimation � Grating � Coherent gradient sensing technique �
Rotational misalignment

1 Introduction

The coherent gradient sensing (CGS) technique [1] has been widely adopted for
measuring the curvature and topography of the specimen. The schematic of CGS
technique is shown in Fig. 1. Interference fringe pattern is produced by the collimated
light passing through two gratings with the same pitch. The fringe pattern is filtered by
the aperture and is recorded by the CCD camera. In the CGS system, the two grating
lines must be arranged in parallel. If one of the two gratings has rotational misalign-
ment, the recorded pattern fringe becomes inclined. Consequently, unwanted error will
be produced. This rotational misalignment was observed by Tippur [1] and Dhanotia
[2]. However, the error caused by grating rotational misalignment has not been
investigated. Therefore, the variation of fringe patterns and the error produced by
different inclinations between the two gratings were investigated in this paper.
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2 Results and Discussions

In order to investigate the grating rotational misalignment of the CGS system, a
standard specimen (spherical mirror with 5 ± 0.005 m radius of curvature) was
employed. Figure 2a shows the CGS fringe patterns generated by the two gratings
when they are in parallel. Hereinafter, this parallel condition is called parallel.
Figure 2b and c show the CGS fringe patterns when the angles between the two
gratings are one and two degrees, respectively. Hereinafter, these two conditions are
called 1 degree and 2 degrees, respectively. It can be observed that the fringe patterns
are inclined when the two gratings are not parallel to each other. Besides, as the angle
between the two gratings becomes larger, the fringe pattern is more inclined.

It is interested to point out that the profile of the standard specimen can be obtained
by using the calculated phases through numerical integration. In this paper, the cal-
culated profile results obtained from the conditions parallel and 1 degree (case 1) as

Fig. 1. Schematic of the CGS technique.

(a.) Parallel. (b.) One degree. (c.) Two degrees.

Fig. 2. The CGS fringe patterns produced without and with rotational misalignment between
gratings.
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well as conditions parallel and 2 degrees (case 2) were compared to each other. The
experimental results showed that the difference of the maximum height of the standard
specimen between the results obtained by cases 1 and 2 are 11% and 18%, respectively.
Moreover, the shape of the specimen is not a concentric circle when the grating
rotational misalignment presents.
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Abstract. The effects of grain boundary on tensile deformation behaviors of
Inconel 690 alloy precharged with hydrogen were investigated by changing the
grain size, in order to clarify the mechanism of hydrogen embrittlement of the
alloy. The results show that tensile strength and elongation of precharged alloy
decreases, and the decreasing degree is gradually reduced with the increase of
grain size, indicating that the interaction between grain boundary and hydrogen
dominate hydrogen embrittlement of Inconel 690 alloy. Hydrogen could easily
migrate towards the grain boundaries following the moving dislocations during
tensile, and then enrich at grain boundaries, when the strain rate is relatively
low. Thus, the accumulation of hydrogen results in dislocations pile-up, and if
such dislocations pile-up reaches a critical degree, the hydrogen-induced
cracking will initiate at grain boundaries, which leads to the brittle intragranular
fracture characteristics. That means hydrogen-enhance dislocation pile-up is the
main reason for hydrogen embrittlement of Inconel 690 alloy. Therefore, how to
control the ratio of grain boundary could be considered as the key to avoid the
hydrogen embrittlement.

Keywords: Inconel 690 alloy � Grain boundary � Hydrogen embrittlement

1 Introduction

The vapor generator made of Inconel 690 alloy is one of the current choices for
pressurized water reactor (PWR) of nuclear power plant, because this alloy exhibits
good mechanical properties and superior stress corrosion resistance when exposed to
PWR [1]. However, after long-term servicing, the plasticity and toughness of the
Inconel 690 alloy is usually reduced by the high-temperature and high-pressure
hydrogen, even hydrogen-induced fracture will occur. Therefore, considering the safety
assessment of nuclear power plants, it is necessary to study the relationship between the
diffusion and enrichment of hydrogen and fracture behaviors of Inconel 690 alloy, in
order to explore the hydrogen embrittlement mechanism of the alloy.

It has been found that hydrogen could be absorbed in Ni-based alloys under PWR,
resulting in hydrogen brittlement [2, 3]. Especially hydrogen could enrich at the grain
boundaries, which is the main hydrogen trapping site. However, it is cleat that the grain
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boundary and the carbides are both typical irreversible hydrogen trapping sites in the
alloy [4, 5]. The presence of hydrogen trapping sites could play the key role on the
effective hydrogen diffusivity and potential alloy susceptibility to hydrogen embrit-
tlement. Also it has been reported that hydrogen atoms can also accumulate at the
interface between carbides and matrix, leading to weaken the interface bonding force
[6, 7]. Up to now, the essence of hydrogen embrittlement of Inconel 690 alloy has not
been clear yet. In order to clarify the essence of hydrogen embrittlement and eliminate
the influence of grain boundary carbides on hydrogen embrittlement, the tensile
behaviors of the hydrogen precharged alloys with different grain sizes were investi-
gated. And the hydrogen embrittlement mechanisms were also discussed.

2 Experimental

The Inconel 690 alloy was fabricated by double vacuum melting, forging, and then
rolled to form the bar. The chemical compositions of Inconel 690 alloy (wt%) were C
0.018, Fe 8.19, Cr 29.3, Cu 0.02, Co 0.018, Si 0.05, Al 0.23, Ti 0.2, Nb 0.06, Mn 0.34,
P 0.005, S 0.002, B 0.002, Ni balance. Three heat treatment processes were used to
change the grain size for controlling the grain boundary ratio (as shown in Table 1).

Before hydrogen charging, the specimens were carefully cleaned by ultrasonic
vibrations with acetone and alcohol. High pressure thermal charging method was used.
In this study, the reactor pressure is 10 MPa, and the hydrogen purity was 99.99%
(vol.%). The reactor temperature is about 300 °C, and the hydrogen charging time is
about 240 h. A LECO hydrogen analyzer (TCH600) was used to measure the hydrogen
contents. The hydrogen contents of the sample A, B and C were all about 25 lg/g. The
specimens were kept in the freezer to reduce the hydrogen loss, and the mechanical
tests were completed as early as possible after hydrogen charging.

Dog-bone-type tensile specimens were prepared in accordance with ASTM E08-
2008. The loading direction of the specimens was parallel with the forging direction.
The gage dimensions were /5 mm � 25 mm. ASANS-CMT5105 testing machine was
used with an initial strain rate of 3 � 10−4 s−1.

Internal friction test is carried out on dynamic mechanical analyzer (DMA). The
measurement mode is forced vibration with the frequency is 1 Hz, and the applied
strain is 0.001%. The temperature range is form room temperature to 350 °C. The data
measured in the experiment are processed by Origin software. The microstructures of
Inconel 690 alloy of each group with different grain boundary ratios were observed by

Table 1. Heat-treatment parameters of Inconel 690 alloy

Group Solution treatment Aging treatment

A 1070 °C � 300 s, AC 720 °C � 3.6 ks, AC
B 1070 °C � 900 s, AC 720 °C � 3.6 ks, AC
C 1070 °C � 1.8 ks, AC 720 °C � 3.6 ks, AC
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an OLYMPUS GX71 Optical Microscope (OM), and TECNAIG2 Transmission
Electron Microscope (TEM). Fracture surfaces were observed using a JEOL 6510A
scanning electron microscope (SEM).

3 Results and Discussions

3.1 Fracture Surfaces Observations

Figure 1 shows the microstructure of Inconel 690 alloy with different grain boundary
ratios. It can be seen that the matrix is austenite grain, and the M23C6 carbides are
distributed at the grain boundaries (Fig. 1d). By quantitative analysis, the grain size of
group A, B and C is about 60, 100, and 130 lm, respectively. The grain boundary ratio
of group A, B and C sample is 0.031, 0.019, and 0.013%.

3.2 Effect of Grain Boundary on Tensile Properties

Figure 2a shows that the tensile strength of group A sample after charging hydrogen
decreases by 45 MPa, which is about 6.8%, and the elongation decreased by 24.6%,

(d) (c)(b)(a)

200 µm 200 µm 200 µm 1 µm 

Fig. 1. Microstructure of Inconel 690 alloy with different grain sizes: a group A; b group B;
c group C; d TEM morphology of grain boundary carbides and corresponding SAED.
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Fig. 2. a Stress-strain curves of Inconel 690 alloy at group A; b decrease of tensile strength and
fracture elongation versus proportion of grain boundary
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indicating the obvious hydrogen embrittlement. In this study, in order to clarify the
hydrogen embrittlement mechanism, the effect of grain boundary ratio on tensile
properties of hydrogen charged samples of the testing alloy was analyzed. Figure 2b
shows the tensile properties of the three groups of samples, and the decreasing degree of
tensile strength and fracture elongation with proportion of grain boundary was com-
pared. The results show that tensile strength and elongation of hydrogen precharged
alloy with different grain boundary ratio all decrease. In addition, compared with that of
group A sample, the tensile strength of group B sample decrease by 29 MPa, which is
about 4.7%, and the elongation decreases by 13.9%. While, the tensile strength of group
C sample decreases by 13 MPa, which is about 2.2%, and the elongation decreases by
8.4%. That means, with the increase of grain size, the decreasing degree of tensile
strength and the elongation increases after charging hydrogen.

Figure 3 shows the fracture morphology of Inconel 690 alloy with a grain size of
100 lm before and after charging hydrogen. It is still a typical dimple fracture surface
of the alloy before charging hydrogen, while after charging hydrogen, the fracture
morphology changed into mixed fracture morphology with intergranular fracture as the
main feature, which shows that hydrogen influence on the alloy grain boundary.

3.3 Hydrogen Embrittlement Mechanism

According to the previous studies results about the hydrogen embrittlement of Inconel
690 alloy, hydrogen atoms in the alloy easily migrate towards grain boundaries and
carbides at the grain boundaries in the form of Cottrell hydrogen atmosphere following
the moving dislocations during the tensile deformation [8, 9]. With further deformation,
hydrogen atoms would enrich at the grain boundaries and then be captured by grain
boundaries or grain boundary carbides, resulting in hydrogen embrittlement, because
the grain boundary and carbides are both strong traps for hydrogen in Ni-based alloy.
While the results in the present study show that the decrease of tensile strength and
elongation of the samples after charging hydrogen gradually decreases, with the
decrease of grain boundary ratio. That means the decrease of tensile properties of the
testing alloy is mainly due to the enrichment of hydrogen at grain boundaries, and it is
the interaction between grain boundary and hydrogen dominate hydrogen embrittle-
ment. In order to clarify the interaction between grain boundary and hydrogen during

(a) (b)

100 µm 100 µm 

Fig. 3. Microfractography of Inconel 690 alloy before (a) and after (b) charging
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the tensile deformation, the internal friction curves of hydrogen uncharged and charged
samples are tested, as shown in Fig. 4. The S-K-K internal friction peak of Inconel 690
alloy after subtracting background is shown in Fig. 4, which is 0.86 � 10−4 in
undeformed sample, while it is 2.08 � 10−4 and 2.77 � 10−4 in the samples at the
tensile deformation of 2% of hydrogen uncharged and charged samples, respectively. It
can be seen that the S-K-K internal friction peak of the sample after charging hydrogen
is significantly higher than that of the sample without charging hydrogen under the
same deformation of 2%. That means that the dislocation density inside the hydrogen
charged sample is higher than that of uncharged sample.

Figure 5 illustrates typical dislocation configurations at grain boundary and within
the grains in the alloys under 2% deformation with hydrogen charged and uncharged
specimens. It is obvious that the dislocation density near the grain boundary is sig-
nificantly higher than that of the uncharged sample, while the dislocation density within
the grain is nearly not changes. That result is well coordinated with that by internal
friction tests, showing that the accumulation of hydrogen at grain boundary causes a
significant increase in dislocation density near the grain boundaries of the alloy.

Therefore, during the deformation, the hydrogen atoms charged into the alloy
mostly migrate towards the grain boundaries with dislocations in the form of Cottrell
hydrogen atmosphere and enrich at the grain boundaries. That could greatly promote
the dislocations pile-up near the grain boundaries. However, if the dislocation accu-
mulation at the grain boundary reaches a critical degree, hydrogen-induced cracking
will initiate, which tends to propagate along the grain boundaries at a very high speed,
causing the fracture. That is why the obvious brittle intragranular fracture appears on
the fracture surface in hydrogen charging alloy. In summary, hydrogen induced dis-
location pile-up is the main reason for hydrogen embrittlement of Inconel 690 alloy.
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Fig. 4. The height of S-K-K peak after subtracting background of the tensile specimen
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4 Conclusions

(1) With the increase of grain boundary ratio, the decreasing degree of tensile strength
and elongation gradually increases, which indicates that the main reason for
hydrogen-induced brittleness of Inconel 690 alloy is related to the interaction
between grain boundary and hydrogen.

(2) Hydrogen atoms can migrate together with the moving dislocations during the
tensile deformation in the form of Cottrell hydrogen atmosphere and enrich at the
grain boundaries, which can change the fracture features of Inconel 690 alloy and
reducing the strength and plasticity of the alloy.

(3) The accumulation of hydrogen at the grain boundary results in dislocations pile-
up, thus the hydrogen-induced cracking will initiate, which leads to the brittle
intragranular fracture characteristics.
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Abstract. In this study, a camera-array constructed by four regular CCD
cameras which can provide 20 frames per second output is used for taking
images and then analyzed by digital image correlation method to determine the
motion route of an object. The object for tracking is prepared by spraying to
form artificial random dots on the surface. The camera-array is first calibrated by
using black-white chess board to align all image centers of cameras within 2
pixels. No special time-synchronization among cameras is implemented for
camera-array, images are taken by a triggering signal and then analyzed by
digital image correlation method to obtain whole filed displacement filed with
respect to reference frame which is taken before object moved. The test object
first is first moved horizontally and then vertical away from and back to the
original with maximum 20 mm, the motion at different time interval is then
calculated by averaging the displacement field evaluated by DIC. The motion-
path determined by DIC matches well to the predefined route but with small zig
zag noise can be found from the plot. The result reveals the proposed camera-
array can improve temporal resolution and provide motion route, however, the
reason for zig zag motion departure is given in the end of this paper which is
helpful to improve the proposed method.

Keywords: Digital image correlation � Motion route � Camera-array �
Frame rate

1 Introduction

Digital image correlation method (DIC) is an image based strain measurement method
which has been well and widely used for measuring object displacement and strain
field. For traditional image processing method, motion of an object can be determined
by finding maximum cross-correlation of images taken at different status. DIC method
calculates the integer-pixel displacement also based on finding extreme value of cross-
correlation of two images; however, as shown in Fig. 1, different from the typical
image processing method, DIC is always applied to deformable object for displacement
determination; therefore, the object image is always divided into image set instead of
using whole image for calculating the cross-correlation value and high spatial
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resolution is then can be achieved. In addition, considering DIC method is always
applied to deformable object; obviously, deformation must be considered while cal-
culating the cross-correlation value. Therefore, interpolation and shape functions are
always used for subset whenever DIC is applied. The differences for determining
motion of an object by using typical image processing method (IMP) and DIC method
can be briefly itemized as

(1) DIC can provide reliable motion route and deformation filed at the same time all
over the object, IMP can provide motion path of discrete points of an object;

(2) DIC need artificial random marks on the surface for tracking motion of an object;
in general, IMP tracks object motion need stickers or tags which different from the
background are attached to the object; it is worth to mention that the
motion/displacement of an object can also be tracked cross video-streamlines based
on automatically determined characteristic points of reference image but the rela-
tion between points are not confirmed;

(3) DIC method consider an object to be deformable makes motion tracking becomes
an ill-pose inverse problem; but IMP method treat an object as rigid body (at least
there is no constrain among tracking marks) and some iteration method such as
iterative closest point algorithm can be applied for solving the unknowns directly.

Obviously, tracking motion of an object can obtain much more message than
traditional image tracking method; therefore, in this paper tracking an object subject to
in-plane motion by using DIC method would be performed and discussed. Meanwhile,
the accurate of motion route also relies on the temporal resolution, high temporal
resolution would end up more detail motion information; therefore, the temporal res-
olution issue would also be considered by using camera-array system in this paper.

Fig. 1. Digital image correlation method determines the displacement field by tracing
characteristic pattern between two video-frames.
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2 Experiments and Discussions

As shown in Fig. 2, a camera-array consists of four 2 Mpixels monochromatic digital
CCD cameras and arranged into 2 � 2 array format, the camera frame rate is 20 fps
with global shutter. The camera-array is integrated by a HMI by using NI-MAX virtual
instrument which provides necessary functions for trigging cameras, taking images and
storing captured images. The virtual instrument also provide image shifting functions;
therefore, the camera-array is calibrated by placing a b/w chess board to the same
location of the test object, then taking series images to determine the averaged
departure in pixels among cameras. The determined departures are then compensated
by shifting the images. Limited by the hardware, the departures of image centers among
four cameras are reduced to be less than 2 pixels.

The motion of the test object is moved to 0; 0ð Þ; þ 10; 0ð Þ; 0; 0ð Þ; 0; þ 10ð Þ and
0; 0ð Þ in sequence by two motor-stages with encoder; the motion route indicates the
object is moved first +10 mm in horizontal and then moved −10 mm horizontally back
to the origin, afterward moved +10 mm vertically and returned back to the origin again
by moving −10 mm vertically. The motion is completed in 3.5 s which yields 11.5 m/s
averaged motion speed and 280 images recorded. By using commercial available VIC-
2D from Correlated Solutions Ltd., the typical U, V displacement fields are then
determined as shown in Figs. 3 and 4. The images shown in Figs. 3 and 4 are only 8
images out of the captured 280 images, from which 4 images are for object moved
horizontally and the other 4 images are for vertical movement. Obviously, while object
moved vertically, the 4 images of first line of Fig. 4 are all rendered with zero dis-
placement and no displacement gradient can be found, same results can also be seen for
the images shown along the second line of Fig. 3. Moreover, from images shown in
first line of Fig. 3 and second line of Fig. 4 which reveal the horizontal and vertical
motion respectively; however, the determined displacements cannot provide enough
information of real motion route which reflect the fact that if the temporal resolution is
too low then the determined motion route would totally depart from the fact. In this
study, for presenting the calculated the motion route efficiency, the motion route would

Fig. 2. Camera-array used for taking images for motion-tracking by DIC method
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be represented by average displacement �u;�vð Þ of each image frame which can be
calculated by equation

�u;�vð Þ ¼
Pm;n

i;j U i; jð Þ
m� n

;

Pm;n
i;j V i; jð Þ
m� n

� �

Figure 5 shows the motion route of the object by calculating the averaged dis-
placement �u;�vð Þ frame by frame of all 280 images and the motion route fits well with
the given code for motor-stages but there is zig zag noise can been seen all over the
plot. To explore the causing reason, the calibration result are reinvestigated again.
Taking upper left camera as first and reference camera and then numbering the cameras
clockwise in sequence, then the departures of the image centers among all four cameras
are recalculated with respect to reference image; as shown in Fig. 6. In fact, the image
center departures can be considered as virtual U and V displacement corresponding to
the departure distance along x- and y-axis. Based on the support evidence, the zig zag
noise reported from Fig. 5 might be caused because of image center errors are still

Fig. 3. Determined displacement along horizontal direction

Fig. 4. Determined displacement along vertical direction
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available. However, this result reveals the measuring system might can be improved by
adopting mechanical adjusting mechanism for physically shifting the
locations/orientations of cameras.

3 Conclusions

In this study, according to the experimental results and discussions, the achievements
can be concluded as

(1) The proposed system together with calibration procedure can completely and
accurately reconstructs route of the round-trip movements along horizontal and
vertical direction with motion speed is 11.5 m/s in details.

(2) The phenomenon of zig zag has been identified and the reason for this irregular
movement have been discussed; the residual image center departures among
cameras is considered to be the major reasons for introduce zig zag with strong
evidences presented to support the conclusion.

(3) Camera-array is a potential optical system formeasurement displacement/deformation/
strain field of a movement object.

Acknowledgements. This paper was supported in part by the Ministry of Science and Tech-
nology, Taiwan (Grant no. MOST-106-2221-E-492-013 and MOST-107-2221-E-492-012).

Fig. 5. Plot of DIC determined motion in horizontal and vertical direction

Fig. 6. Residual pseudo-displacement after camera-calibration causes zig zag phenomenon for
DIC determined motion-track
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Abstract. In some previous papers, we presented some linear stability analyses
of the coplanar propagation of a crack loaded in mixed-mode I + III, using a
propagation criterion combining a Griffith-type energetic condition and Gold-
stein and Salganik’s “principle of local symmetry”. In the last one, the local
value of the fracture energy was no longer considered as a constant but
heuristically permitted to depend upon the ratio of the local mode III to mode I
stress intensity factors. As a result, a much improved agreement of theory and
experimental observations was obtained for the “threshold” value of the ratio of
the unperturbed mode III to mode I stress intensity factors, above which
coplanar propagation becomes unstable. This analysis is extended here to the
situation, of considerable practical significance, where a small additional mode
II loading component is present in the initially planar configuration of the crack.
This component induces a small, general kink of this crack from the moment it
is applied. The main novelty resulting from its application is that the instability
modes, present above the threshold, must drift along the crack front during its
propagation. It is hoped that this prediction will be useful to theoretically
interpret a number of experiments where such a drifting motion was indeed
observed but left unexplained.

Keywords: Configurational stability � Mode I + II + III � Griffith condition �
Principle of local symmetry � Drifting motion

1 Introduction

In a previous paper [1], we proposed an interpretation of the experimentally well-
known instability of coplanar crack propagation in mode I + III, based on a linear
stability analysis. This analysis was itself based on two elements: (i) analytical
expressions of the stress intensity factors (SIFs) for a 3D crack slightly perturbed both
within and out of its original plane [2, 3]; (ii) a “double” propagation criterion com-
bining Griffith’s energetic condition involving the fracture energy [4], and Goldstein
and Salganik’s “principle of local symmetry” (PLS) according to which the SIF of
mode II must remain zero on the entire crack front and throughout the entire
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propagation [5]. With these hypotheses instability modes were indeed evidenced for
values of the mode mixity ratio—ratio of the mode III to mode I SIFs applied remotely
—larger than some “threshold” value depending only on Poisson’s ratio. Unfortu-
nately, for typical values of this material parameter, the predicted threshold values were
much larger than those actually observed in most experiments.

To try and resolve this paradox, in a more recent paper [6], we re-examined the
linear stability analysis of a propagating 3D crack in mode I + III conditions, with the
extra hypothesis that the fracture energy may depend upon the local mixity ratio, with a
constitutive relationship between these two quantities motivated by experimental
observations. We showed that such a dependence suffices, provided that it is strong
enough, to significantly lower the threshold value of the mode mixity ratio for insta-
bility, bringing it in a range of values more consistent with experiments.

However, in actual experiments a small mode II component is also frequently
present, generating a small general kink of the crack. The aim of this paper is to
investigate the modifications brought into the linear stability analysis of the propa-
gating crack by introduction of such an additional loading component.

2 General Geometrical and Mechanical Hypotheses

We consider an initially flat semi-infinite crack, occupying the domain x\0 within the
plane y ¼ 0, obtained through machining of the specimen, or propagation in mode I
fatigue, or any other possible means. A static load including mode II and III compo-
nents, of sufficient magnitude to induce crack propagation, is applied on this pre-crack.
A general kink of the crack ensues, with possibly superimposed perturbations of the
crack front and surface growing in an unstable manner.

Figure 1 provides 2D schematic illustrations, in the plane Oxy, of the configurations
of the crack in its initial state and after some propagation under such conditions. On the
right the full line represents the fundamental, kinked but unperturbed configuration, and
the dotted line a kinked and perturbed configuration. (Note that since the perturbation
is assumed to already be nonzero at x ¼ 0, it must necessarily extend over some small
distance in the region x\0.)

Fig. 1. Configurations of the crack before (left) and during (right) propagation in mixed mode
I + II + III.
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The SIFs in the initial configuration being denoted K0
I ;K

0
II ;K

0
III , we define the

dimensionless ratios

u0 ¼ K0
II

K0
I
; q0 ¼ K0

III

K0
I
: ð1Þ

The ratio u0 is assumed to be much smaller than unity, because the mode II
component of the loading generates a general kink angle proportional to it to first order;
thus if it were allowed to be large, the kink angle could also be large, and this would
prohibit use of first-order formulae for the perturbed SIFs [2, 3], which demand small
slopes of the crack surface with respect to the initial crack plane.

3 First Stability Analysis

In a first linear stability analysis, the fracture energy is assumed to possibly depend
upon the ratio of the local mode III to mode I SIFs:

Gc x; zð Þ ¼ Gc q x; zð Þ½ �; q x; zð Þ ¼ KIII x; zð Þ
KI x; zð Þ ð2Þ

according to the phenomenological formula

Gc qð Þ ¼ GMode I
c 1þ c qj jjð Þ ð3Þ

where GMode I
c denotes the value of Gc in pure mode I, and c and j positive, dimen-

sionless material parameters. (The inequality c[ 0 means that presence of mode III
increases the value of Gc.)

With this assumption, the calculations resulting from combination of the first-order
formulae for the perturbed SIFs [2, 3] and the conditions resulting from the double
criterion reveal extremely heavy. In order to keep them reasonable, it is assumed that
the ratio q0 is small like u0, and all expressions are expanded only to first order in the
pair u0; q0ð Þ.

The result of the stability analysis is as follows. Just like in the case of a mixed
mode I + III loading envisaged earlier [1, 6], coplanar propagation becomes unstable
when the ratio q0 exceeds some threshold value; and above the threshold, the instability
modes correspond to a perturbed crack front having the shape of an elliptic helix, of
central axis coinciding with the unperturbed front, and semi-axes growing in proportion
and exponentially with the distance x of propagation of the crack. There is however a
major novelty: the helix no longer moves in the general direction x of propagation of
the crack, but drifts along the front as it propagates. This effect results, in the approach
adopted, from combination of existence of a general mode II loading component and
dependence of the fracture energy upon mode mixity. (The drift velocity is proportional
to both K0

II and c and thus vanishes when either of these parameters is zero.)
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Figure 2 illustrates both the absence and presence of a drifting motion of the
instability modes, in the absence and presence of a mode II loading component.

4 Second Stability Analysis

The conclusions of the preceding analysis raise an issue pertaining to the conditions
found necessary for existence of a drifting motion of instability modes along the crack
front. Indeed, in the absence of general mode II, the absence of a drifting motion of
instability modes finds its root in the invariance of both the geometry and the loading in
a rotation of 180° about the direction x of general propagation of the crack. Introduction
of a general mode II component destroys this invariance, so that a drifting motion of
instability modes along the crack front is no longer a priori impossible, and may
reasonably be expected to occur no matter whether or not the fracture energy depends
upon mode mixity. But the preceding stability analysis says otherwise since it predicts
that a q-dependent Gc, in addition to a nonzero K0

II , is necessary for the instability
modes to drift.

To investigate this question, the stability analysis is repeated with a constant Gc, in
order to see whether a drifting motion can be predicted under the sole condition that K0

II

be nonzero. However the hypothesis of a small q0 is now discarded, since the pre-
ceding analysis has unambiguously shown that with a small q0, there is no drifting
motion in the absence of a dependence of Gc upon q.

The output of the new calculation is that a drifting motion of instability modes
indeed exists under such conditions; this motion results from higher order terms in the
pair u0; q0ð Þ disregarded in the preceding analysis. The drift velocity is however much
smaller than with a q-dependent Gc.

5 Perspectives

Many experiments have evidenced crack propagation in mode I + III in the form of
tilted facets. In many cases these facets have been observed not to propagate in the
direction of general propagation of the crack, but to drift along the front as it propa-
gates. No clear and irrefutable explanation of this phenomenon has been provided.

Fig. 2. Schematic representation of the geometry of instability modes. Left, no general mode II,
no drift; right, presence of general mode II, existence of a drift.
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The preceding results concerning the prediction of a drifting motion of instability
modes offer an interesting perspective for the interpretation of such experiments. The
first point of comparison of theory and experiments will simply be the sign of the drift.
If the theory is found to successfully predict the sign actually observed, it will remain to
see whether experimental drift angles can be satisfactorily predicted by the theory, and
whether this will require assuming a q-dependent Gc or not.

Whatever the conclusions of future studies, an important feature of the present work
has been to emphasize the importance of existence of a small mode II loading com-
ponent upon existence of a drift.

References

1. Leblond, J.B., Karma, A., Lazarus, V.: Theoretical analysis of crack front instability in mode I
+III. J. Mech. Phys. Solids 59, 1872–1887 (2011)

2. Gao, H., Rice, J.R.: Shear stress intensity factors for planar crack with slightly curved front.
ASME J. Appl. Mech. 53, 774–778 (1986)

3. Movchan, A.B., Gao, H., Willis, J.R.: On perturbation of plane cracks. Int. J. Solids Struct.
35, 3419–3453 (1998)

4. Griffith, A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. Ser.
A 221, 163–198 (1920)

5. Goldstein, R.V., Salganik, R.L.: Brittle fracture of solids with arbitrary cracks. Int. J. Fract.
10, 507–523 (1974)

6. Leblond, J.B., Karma, A., Ponson, L., Vasudevan, A.: Configurational stability of a crack
propagating in a material with mode-dependent fracture energy—part I: mixed-mode I+III.
Submitted to J. Mech. Phys. Solids (2018)

Configurational Stability of a Crack Propagating in Mixed-Mode … 105



Limiting Equilibrium of Interfacial
Shear Cracks at the Corner Point
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Abstract. An exact solution of symmetric problem on the elastic equilibrium of
piece-homogeneous isotropic plane with the interface of media in the form the
sides of angle, which contains the interfacial shear cracks is constructed by the
Wiener—Hopf method. The case of smooth contact between sides of cracks is
investigated. The stress intensity factor at the end of the shear crack is
determined.

Keywords: Interface of media � Corner point � Interfacial shear crack �
Wiener—hopf method

Under the conditions of plane deformation, the elastic equilibrium the piece-
homogeneous isotropic plane with the interface of media in the form of the sides of
angle which contains the interfacial shear cracks propagated from its the corner point is
investigated in the static symmetric problem framework (see Fig. 1). We propose that
friction is absent between the sides of cracks. The asymptotic of the stress field on
infinity is the same with the asymptotic of the stress field near the corner point in the
corresponding problem for the piece-homogeneous plane without interfacial cracks (see
Fig. 2).

The boundary conditions of corresponding symmetric problem of elasticity theory
are as follows:

h ¼ p� a; srh ¼ 0; uh ¼ 0; h ¼ �a; srh ¼ 0; uh ¼ 0;

h ¼ 0; rhh i ¼ srhh i ¼ 0; uhh i ¼ 0;

h ¼ 0; r\l; srh ¼ 0; h ¼ 0; r[ l; urh i ¼ 0; h ¼ 0; r ! 1; srh ¼ Cg rk0 þ o 1=rð Þ:

Here 0� h� p; ah i—jump of a; gða; e0; m1; m2Þ ðe0 ¼ E1=E2Þ—is known function;
k0—is unique on interval ��1; 0½ root of next equation
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Dð�x� 1Þ ¼ 0;DðzÞ ¼ d0ðzÞþ d1ðzÞeþ d2ðzÞe2;

d0ðzÞ ¼ sin2zaþ zsin2að Þ �1sin2z p� að Þþ zsin2a½ �;

d1ðzÞ ¼ 1þ�1ð Þ 1þ�2ð Þsin2zp� sin2zaþ z sin2að Þ �1sin2z p� að Þ½
þ z sin2a� � sin2z p� að Þ � z sin2a½ � �2sin2za� z sin2að Þ;

d2ðzÞ ¼ sin2z p� að Þ � zsin2a½ � �2sin2za� zsin2að Þ;

e ¼ 1þ v2
1þ v1

e0; �1;2 ¼ 3� 4v1;2

Using the Mallin’s integral transform [1], the theory of elasticity problem is
reduced to the Wiener–Hopf functional equation [2] of the following form

Uþ ðpÞþ s
pþ kþ 1

¼ Actg ppGðpÞU�ðpÞ;

A ¼ ð1þ�1Þ½1þ�1 þð1þ�2Þe�
2½�1 þð1þ�1�2Þeþ�2e2� ; GðpÞ ¼ G1ðpÞ

G2ðpÞ ;

G1ðpÞ ¼ ½�1 þð1þ�1�2Þeþ�2e
2�½a0ðpÞþ a1ðpÞe�sin pp;

Fig. 1. Piece-homogeneous isotropic plane with interior interfacial shear cracks

Fig. 2. Piece-homogeneous isotropic plane with the interface of media in the form the sides of
angle
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G2ðpÞ ¼ ½1þ�1 þð1þ�2Þe�½b0ðpÞþ b1ðpÞeþ b2ðpÞe2�cos pp;
a0ðpÞ ¼ ð1þ�1Þ½cos2pðp� aÞ � cos2a�ðsin2paþ p sin2aÞ;

b0ðpÞ ¼ ðsin2paþ psin2aÞ½�1sin2pðp� aÞþ p sin2a�;

b1ðpÞ ¼ ð1þ�1Þð1þ�2Þsin2pp� ðsin2paþ p sin2aÞ½�1sin2pðp� aÞþ p sin2a�
� ½sin2pðp� aÞ � p sin2a�ð�2sin2pa� psin2aÞ;

b2ðpÞ ¼ ½sin2pðp� aÞ � p sin2a�ð�2sin2pa� p sin2aÞ; s ¼ �Cglk0 ;

Uþ ðpÞ ¼
Z1

1

srhðql; 0Þqpdq; U�ðpÞ ¼ E1

4 1� v21
� �

Z1

0

@ur
@r

� ����� r ¼ ql
h ¼ 0

qpdq;

which took place in the strip of complex plane contains the imagine axis. The fac-
torization of the equation coefficient on the imagine axis carried out by its splitting into
two functions: the function which factorizes using gamma-functions [3] and the
function which factorizes according Gakhov’s formula [4]. Using these factorizations,
the exact analytical solution of the Wiener—Hopf equation, which expresses by
Cauchy type integrals and gamma-functions, is built.

Based on the solution of Wiener–Hopf equation, the formula for the stress intensity
factor at the end of the shear crack is obtained:

KII ¼ 2
ffiffiffi
2

p
1þ�2eð ÞgCðk0 þ 3=2Þ

1þ�1 þð1þ�2Þe½ �Cðk0 þ 2ÞGþ ð�k0 � 1ÞCl
k0 þ 1=2:

The dependence of the dimensionless stress intensity factor K0
II ¼ �KII=ðClk0 þ 1=2Þ

on the angle a for various values of the parameter e0 ¼ E1=E2 [ 1 (v1 ¼ v2 ¼ 0; 3) is
shown in the Fig. 3.

Fig. 3. The dimensionless stress intensity factor for various values of the parameter e0
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The values a�max1; a
�
max2 of the angle a at which the function K0

IIðaÞ will take the
greatest values at each of the intervals �0; p=2½; �p=2; p½ and the corresponding values of
the function are listed in the Table 1.

Proceeding on the force fracture criterion, the equation for determent the breaking
load is obtained:

C ¼ 1þ�1 þð1þ�2Þe½ �Cðk0 þ 2ÞGþ ð�k0 � 1ÞKIIc

2
ffiffiffi
2

p
1þ�2eð ÞgCðk0 þ 3=2Þlk0 þ 1=2

Crack starts when the loading parameter C, which increases with the external
loading increasing, will reach its critical value.

Analyzing the formula for stress intensity factor and guiding by the criterion the
crack stabilizing equilibrium, next result was obtained. If interfacial small-scale shear
cracks were born at the corner point of the media-separating boundary of isotropic
elastic body than their equilibrium is unstable in case of smooth contact between sides
of these cracks. After reaching the limit equilibrium state, the dynamic mode crack
propagation will take place.

References

1. Uflyand, Y.S.: Integral Transformations in Elasticity Theory Problems. Nauka, Leningrad
(1967) (in Russian)

2. Nobl, B.: Applying the Wiener—Hopf Method for Solving Partial Derivatives Differential
Equtions. Inostr. lit, Moscow (1962). (in Russian)

3. Lavrentiev, M.A., Shabat, B.V.: The Theory of Complex Variable Methods. Nauka, Moscow
(1973). (in Russian)

4. Gakhov, F.D.: Boundary-Value Problems. Nauka, Moscow (1977). (in Russian)

Table 1. Maximums of function K0
IIðaÞ ðv1 ¼ v2 ¼ 0; 3Þ

e0 2 3 5 10

a�max1 42.4 37.1 35.3 33.5

K0
IIðamax1Þ 2.0224 2.3371 2.7663 4.5121

a�max2 139.2 135.4 134.1 132.4

K0
IIðamax2Þ 1.2025 1.6012 2.3644 4.2363
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Abstract. The problem of compressing a piece-homogeneous half-plane with
forces directed along the near-surface crack located in the interface of two
materials is considered. The problem relates to non-classical problems of frac-
ture mechanics, since under such a loading scheme the stress-strain state realized
in the body is homogeneous and in the corresponding expressions for stresses
and displacements near the crack there are no singular components. Due to the
fact that the stress intensity factors are equal to zero, the classical Griffiths-Irwin
fracture criteria are inapplicable for the problem under consideration. In this
situation, the start of crack propagation is associated with the local stability loss
of the equilibrium state of a part of the material in the region adjacent to the
crack. Using the approaches of the linearized theory of deformed bodies sta-
bility, the mathematical formulation of the problem was carried out.

Keywords: Piece-homogeneous half-plane � Compressing along crack �
Interfacial crack � Linearized theory of deformed bodies stability

Under the conditions of plane deformation the piece-homogeneous half-plane x2 � h
with a free of loading boundary surface x2 ¼ h and rectilinear media-separating
boundary x2 ¼ 0 is considered (Fig. 1). Let media 1 (the strip 0� x2 � h) and media 2
(the half-plane x2 � 0) are rigidly linked. Media-separating boundary between materials
1 and 2 contains free of loading opened crack, which has the length equals 2a. The
materials are compressed on infinity along the Ox1 axis by the uniformly distributed
loading such that equals shortenings along this axis are provided for both materials
1 and 2.

Research is carried out within the linearized theory of deformed bodies stability
[1–4]. Boundary conditions of the problem under the consideration are the follows

tð�Þ
22 ¼ 0; tð�Þ

21 ¼ 0; x2 ¼ 0; x1j j\a;

tðþ Þ
22 ¼ tð�Þ

22 ; tðþ Þ
21 ¼ tð�Þ

21 ; uðþ Þ
1 ¼ uð�Þ

1 ; uðþ Þ
2 ¼ uð�Þ

2 ; x2 ¼ 0; x1j j � a; ð1Þ

tðþ Þ
22 ¼ 0; tðþ Þ

21 ¼ 0; x2 ¼ h:
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Hereinafter, the superscript “+” in brackets denotes the values related to the
material of the strip 1, and the superscript “−” in brackets denotes the half-plane 2.

Considering only those forms of loss of stability that “at infinity” attenuate in the
same way as the corresponding solutions of plane static problems of the linear theory of
elasticity [4], we write the last two conditions in (1) in the equivalent form:

@uðþ Þ
1

@x1
¼ @uð�Þ

1

@x1
;

@uðþ Þ
2

@x1
¼ @uð�Þ

2

@x1
when x2 ¼ 0; x1j j[ a

We introduce complex variables

zðþ Þ
k ¼ x1 þ lðþ Þ

k x2; k ¼ 1; 2

for material 1 and

zð�Þ
k ¼ x1 þ lð�Þ

k x2; k ¼ 1; 2

For material 2, where values lð�Þ
1;2 for each of the materials are the roots of the

corresponding characteristic equation [2, 3]

lð�Þ4 þ 2Að�Þlð�Þ2 þAð�Þ
1 ¼ 0;

2Að�Þ ¼ xð�Þ
1111x

ð�Þ
2222 þxð�Þ

2112x
ð�Þ
1221 � ðxð�Þ

1122 þxð�Þ
1212Þ2

xð�Þ
2222x

ð�Þ
2112

;

Að�Þ
1 ¼ xð�Þ

1111x
ð�Þ
1221

xð�Þ
2222x

ð�Þ
2112

:

The values xð�Þ
ijkl ¼ xð�Þ

ijkl ðk1; k2Þ are components of the fourth-rank tensors ~xð�Þ and
characterize the chosen material model. Similar representations were obtained [2, 3] for

Fig. 1. The piece-homogeneous half-plane with a crack
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the case of incompressible bodies. We note the advantage of the approach used here,
proposed in [2, 3], within which the specification of the material model occurs only at
the final stage of solving the problem, which allows us to conduct research in general
form for elastic and elastic-plastic, isotropic and orthotropic bodies, for small and finite
subcritical deformations.

Consider the case when for each of materials of strip and half-plane, the corre-
sponding characteristic equation has equal roots lþ

1 ¼ lþ
2 ; l�1 ¼ l�2

� �
.

Then following representations take place

t22 ¼ Ref½Wðz1Þþ z1U
0ðz1Þ� þ cð2Þ22 Uðz1Þg;

t21 ¼ Refl1cð1Þ21 ½Wðz1Þþ z1U
0ðz1Þ� þ cð2Þ21 Uðz1Þg;

t21 ¼ Ref�l1½Wðz1Þþ z1U
0ðz1Þ� þ cð2Þ12 Uðz1Þg;

t21 ¼ Refl21cð1Þ11 ½Wðz1Þþ z1U0ðz1Þ� þ cð2Þ11 Uðz1Þg;
@uk
@x1

¼ Refcð1Þk ½Wðz1Þþ z1U
0ðz1Þ� þ ðcð1Þk þ cð2Þk ÞUðz1Þg; k ¼ 1; 2;

z1 ¼ x1 þ l1x2:

ð2Þ

Expressions (2) determinates stresses and derivatives from displaces in materials 1
and 2 (you only need to put in all quantities the index “ + ” or “−”) using two
analytical functions of complex variables in case of equal roots. Coefficients

ckð�Þ
ij ; ckð�Þ

j ; i; j; k ¼ 1; 2 are known functions of tensor’s ~xð�Þ [2, 3] components.

Functions Uðþ Þ;Wðþ Þ are analytical in the strip 0\Imzðþ Þ
1 \ lðþ Þ

1

���
���h and functions

Uð�Þ;Wð�Þ are analytical in the half-plane Imzð�Þ
1 \0:

Substituting expressions (2) in boundary conditions (1) we obtain boundary con-
ditions of the problem in terms of analytical functions of complex variables

Ref½Wð�Þðx1Þþ x1U
ð�Þ0ðx1Þ� þ cð2Þð�Þ

22 Uð�Þðx1Þg ¼ 0;

Reflð�Þ
1 cð1Þð�Þ

21 ½Wð�Þðx1Þþ x1U
ð�Þ0ðx1Þ� þ cð2Þð�Þ

21 Uð�Þðx1Þg ¼ 0; x1j j\a;

Ref½Wðþ Þðx1Þþ x1U
ðþ Þ0ðx1Þ� � ½Wð�Þðx1Þþ x1U

ð�Þ0ðx1Þ�
þ cð2Þðþ Þ

22 Uðþ Þðx1Þ � cð2Þð�Þ
22 Uð�Þðx1Þg ¼ 0;

Reflðþ Þ
1 cð1Þðþ Þ

21 ½Wðþ Þðx1Þþ x1U
ðþ Þ0ðx1Þ� � lð�Þ

1 cð1Þð�Þ
21 ½Wð�Þðx1Þþ x1U

ð�Þ0ðx1Þ�
þ cð2Þðþ Þ

21 Uðþ Þðx1Þ � cð2Þð�Þ
21 Uð�Þðx1Þg ¼ 0;

Refcð1Þðþ Þ
1 ½Wðþ Þðx1Þþ x1U

ðþ Þ0ðx1Þ� � cð1Þð�Þ
1 ½Wð�Þðx1Þþ x1U

ð�Þðx1Þ�
þ ðcð1Þðþ Þ

1 þ cð2Þðþ Þ
1 ÞUðþ Þðx1Þ � ðcð1Þð�Þ

1 þ cð2Þð�Þ
1 ÞUð�Þðx1Þg ¼ 0;

ð3Þ
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Refcð1Þðþ Þ
2 ½Wðþ Þðx1Þþ x1U

ðþ Þ0ðx1Þ� � cð1Þð�Þ
2 ½Wð�Þðx1Þþ x1U

ð�Þðx1Þ�
þ ðcð1Þðþ Þ

2 þ cð2Þðþ Þ
2 ÞUðþ Þðx1Þ � ðcð1Þð�Þ

2 þ cð2Þð�Þ
2 ÞUð�Þðx1Þg ¼ 0; x1j j � a;

Ref½Wðþ Þðx1 þ lðþ Þ
1 hÞþ ðx1 þ lðþ Þ

1 hÞUðþ Þ0ðx1 þ lðþ Þ
1 hÞ�

þ cð2Þðþ Þ
22 Uðþ Þðx1 þ lðþ Þ

1 hÞg ¼ 0;

Reflðþ Þ
1 cð1Þðþ Þ

21 ½Wðþ Þðx1 þ lðþ Þ
1 hÞþ ðx1 þ lðþ Þ

1 hÞUðþ Þ0ðx1 þ lðþ Þ
1 hÞ�

þ cð2Þðþ Þ
21 Uðþ Þðx1 þ lðþ Þ

1 hÞg ¼ 0:

It should be noted that all the expressions presented above for each of the areas
“1” and “2” are written using two functions of the complex variable, which are ana-
lytical in the area occupied by the corresponded material. One of the possible
approaches to solving the formulated problem is transition to the one (for each of the
materials) function in these expressions, which is analytic in the whole complex plane,
which will allow reducing the boundary problem to the conjugation problem of two
analytical functions defined in the whole complex plane. An essential complication in
the implementation of this approach is the fact that the conjugation of analytic func-
tions is performed not on the border of the half-plane, but on the inner interface line of
the media x2 ¼ 0, which leads to the appearance of an additional condition follows
from the last of conditions (3) already on the border of the half-plane itself.
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Abstract. Nonclassical problem of fracture mechanics for near-surface crack
under the action of compressive loads, directed along crack was investigated.
The axisymmetrical problem for penny-shaped crack was considered. There are
two approaches that are used to investigate such problems “beam approxima-
tion” and three-dimensional linearized theory of stability of deformable bodies
for finite and small subcritical strains. Within the limits of the offered in second
approach the problem was reduced to the solution of system of integral equa-
tions Fredholm with a side condition. Using the Bubnov-Galerkin method and
numerically analytic technique, the problem was reduced to system of linear
equations. As an example numerical research for a composite material was
conducted. Critical loads were obtained for small and large distance between
crack and free surface. Results for the composite materials behavior were also
present and discussed.

Keywords: Composite materials � Compression along near-surface crack �
Stress intensity factors

1 Compression Along Cracks

Fracture of material at compression along cracks is one of the nonclassical problems of
fracture mechanics. In this case, the classical approaches of fracture mechanics such as
Griffiths-Irwin don’t work. Currently, there are two approaches that are used to
investigate such problems [1]. The first of them is the use of approximate calculation
schemes and approximate theories [2]. Within the framework of this approach, has the
greatest application the “beam approximation”, when the part between the crack and
the free surface (between the cracks) is replaced by a thin-walled element: beam, plate
or shell, which are investigated in the framework of the applied theory of stability of
thin systems. However, this method has significant drawbacks: it is necessary to carry
out separate investigations to determine the possibilities of its application depending on
the distance between the cracks, but even having determined this distance, there
remains the question of choosing the conditions for fixing of thin-walled element. The
second approach is based on the basic relationships and methods of the three-
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dimensional linearized theory of stability of deformable bodies for finite and small
subcritical strains [3]. At the same time, the destruction process is identified as the
moment of local stability loss within the framework of a rigorous linearized theory of
elasticity. In [4] using the second approach was found the conditions of applicability of
the “beam approximation” for elastic materials with near surface crack. And it’s
interesting find such conditions for composite materials.

1.1 Problem Formulation

We considered a half-space from composite material with penny-shaped crack of radius
a which is situated in the plane x3 ¼ 0 with center on Ox3 see Fig. 1. The initial stresses
that operated along a crack correspond to biaxial uniform compression and defined from.

Within the limits of the second approach the problem was reduced to the solution of
system of integral equations Fredholm with a side condition [5]

f ðnÞþ 1
pk

Z1

0

M1ðn; gÞf ðgÞdgþ 1
pk

Z1

0

N1ðn; gÞgðgÞdg ¼ 0;

gðnÞþ 1
pk

Z1

0

M2ðn; gÞgðgÞdgþ 1
pk

Z1

0

N2ðn; gÞf ðgÞdgþ ~C1 ¼ 0;

Z1

0

gðnÞdn ¼ 0 ð0� n� 1; 0� g� 1Þ;

f ðnÞ � uðanÞ; gðnÞ � wðanÞ:

ð1Þ

r

x3
h

a

Fig. 1. Compression of half-space along penny-shaped crack.
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1.2 Exploratory Procedure

We used the procedure on the basis of a method Bubnov-Galerkin for solve integral
equations (1) and search of critical shortening and stress. As system of coordinate
functions power functions were used.

f ðxÞ ¼
XN
i¼0

Fix
i; gðxÞ ¼

XN
i¼0

Gix
i: ð2Þ

For further calculations, the numerical analytical procedure proposed in [4], which
allowed us to obtain results for elastic materials, was used. Unlike the previous works
[6, 7] where after substitution of coordinate functions (2) to system the numerical
integration was executed. Here the procedure which allows analytically to calculate
integrals for the chosen system of coordinate functions using a package of symbolic
computations was used. It has allowed to achieve at the further numerical calculations
higher exactitude of evaluations at the expense of a numerical integration lapse
exclusion. For acceleration of integrals solutions the recurrence relations were used.

Using a method offered in [4] Fredholm integral equations (1) have been trans-
formed to system of the equations with corresponding factors F1ji, G1ji and variables Fi,
Gi, ~C1, i; j 2 ½0;N�.

XN
i¼0

FiF1ji þ
XN
i¼0

GiG1ji ¼ 0;

XN
i¼0

FiF2ji þ
XN
i¼0

GiG2ji þ ~C1 ¼ 0; ð3Þ

XN
i¼0

1
iþ 1

Gi ¼ 0; 0� j�N:

1.3 Results

As an example the task for near surface penny-shaped crack in half space from laminate
composite with isotropic layers was conducted.

In macrovolumes such composite may be considered transversely-isotropic med-
ium. In the case considered, crack are located in plane x3 ¼ const, parallel to interface
boundary of layers. Dependence of critical dimensionless compressive stress r011=E on
ratio of the dimensionless distance between a crack and free surface b ¼ h=a are given
in Figs. 2 and 3 and Table 1 (for m ¼ m1 ¼ m2, fiber concentration c1 is 0.7 and fiber
aspect ratio is 10).

Critical values of r011=E at b ! 1 go asymptotically to values 0.0965, which are
equal to respective critical values at surface instability of half-space. For a thin plate
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critical stress can be found as rcr ¼ Acrb
2 and for small dimensionless distance

between a crack and free surface coefficient A found in Table 1.
Critical compressive stress was obtained for composite materials for large and small

distances between the crack and fry surface. Analysis of the results was allowed to
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Fig. 2. Dependence of critical dimensionless compressive stress on ratio of the dimensionless
distance between a crack and free surface.
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Fig. 3. Dependence of critical dimensionless compressive stress on ratio of the dimensionless
distance between a crack and free surface for small distance.

Table 1. Critical compressive stress for small dimensionless distance between a crack and free
surface.

b Critical compressive stress r011=E
� �

A

1 � 10−2 −1.268 � 10−4 −1.268
1 � 10−3 −1.290 � 10−6 −1.290
1 � 10−4 −1.287 � 10−8 −1.287
1 � 10−5 −1.285 � 10−10 −1.285
1 � 10−6 −1.1284 � 10−12 −1.284
1 � 10−9 −1.284 � 10−18 −1.284
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determine the conditions of applicability of the “beam approximation”. Beam
approximation good work for small distance between the crack and the free surface
(when b\0:01 computing error less than 1%) and bad work in else case (when b[ 0:1
computing error more than 5%).
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Abstract. Knowledge about the evolution of the size distribution of pores
during fracture of material is essential for formulation and verification of the
fracture models. Here we continue our previous study on the size distribution of
pores in molten and solid metals in conditions of high-rate tension. We expand
the previous molecular dynamics simulations on larger systems and lower strain
rates. This simulations show that behaviour of solid metals can be more complex
than in the case of melts. Solid metals can exhibit secondary nucleation of voids
in intersection of lattice defects created by plastic growth of primary pores. Also
we compare the obtained molecular dynamics results with theoretical model that
takes into account nucleation of pores due to thermal fluctuations and variation
of their sizes, which is governed by viscous flow in the case of melt or plasticity
in the case of solid metals.

Keywords: Tensile fracture � Evolution of pore ensemble � Size distribution �
Nucleation and size variation � Molecular dynamics

1 Introduction

Dynamic tensile fracture at unloading of a rapidly heated layer or reflection of a shock
pulse from a free surface is peculiar to both solids [1–3] and molten substances [4–7].
Dynamic tension follows the compression and transfers matter into a metastable state
with the subsequent relaxation by means of nucleation and growth of pores. The
dynamic tensile (spall) fracture is characterized by formation and interaction of mul-
tiple pores of different sizes, which eventually leads to fragmentation [8] or formation
of main crack. The study of the size distribution of pores [9, 10] and the reasons of its
evolution can significantly contributes formulation of the fracture model and allow one
to take into account important statistical aspects of fracture.

We showed previously by means of molecular dynamics (MD) simulations that the
exponential size distribution of pores is typical at the stage of their initial nucleation for
both molten and solid metals [10]. The following relaxation of tensile stresses leads to
collapse of small pores, and the size distribution of pores is transformed into normal
one in the most cases [10]. In present paper we expand the MD simulations on larger
systems and lower strain rates. Also we compare the MD results with theoretical model
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that takes into account nucleation of pores due to thermal fluctuations and variation of
their sizes, which is governed by viscous flow in the case of melt or plasticity in the
case of solid metals.

2 Size Distribution of Pores in Melt

The problem statement and results of MD study for the case of melt are described in
details in [10]. Increase in the system size and decrease in the strain rate do not alter the
main conclusions about evolution of the pore size distribution in metal melt at tension.
Exponential size distribution is revealed in all the investigated cases at the stage of the
initial nucleation of pores after reaching the dynamic tensile strength. The following
decrease in tensile stress due to growth of the void volume stops the nucleation and
leads to collapse of smallest voids driven by surface tension. The collapse transforms
the size distribution of pores into normal one. At very late stages, the size distribution is
corrupted due to pore merging. Formation of normal size distribution can absent at very
high strain rates (more than 10–100/ns depending on specific metal), at which merging
starts before the collapse significantly contributes.

Let us consider how a theoretical model taking into account nucleation and size
variation of pores can describe these statistical regularities observed in MD simulations.
Critical radius at negative pressure P is Rcr ¼ 2c=ð�PÞ, where c is the coefficient of
surface tension. Large pores with radii R[Rcr grow due to tension of matter, while
smaller pores collapse due to surface tension. It is generally accepted that initial
supercritical pores arise due to thermal fluctuations. The probability p of nucleation of a
new critical pore during the time interval t � tj

� �
from the previous nucleation instant tj

can be obtained by time integration of the nucleation rate [7].

p ¼ N
Zt

tj

c
a

� �
exp � 16pc3

3kTP2

� �
dt0; ð1Þ

where N is the number of atoms in the system; c is the sound velocity; a is the average
interatomic distance. In numerical realization of the theoretical model, a pseudorandom
number n uniformly distributed within the range 0; 1½ � is generated each time step, and
new supercritical pore is introduced if n� p. Its initial radius is defined as

Rjþ 1 tjþ 1
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
cr þ

3kT
4pc

ln
p
n

� �s

; ð2Þ

which takes into account stochastic variation of the nucleated pore size. Subsequent
evolution of each pore in the system is described by Rayleigh-Plesset equation [7].

€Ri ¼ � 3 _Ri

2Ri
þ 1

qRi
�P� 2c

Ri
� 4g

_Ri

Ri

� �
; i ¼ 1; . . .; j; ð3Þ
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where q is the melt density; g is the viscosity of the melt. Tracing of nucleation and size
variation of pores allows one to calculate the total volume of voids

Vp ¼
Xj

i¼1

4p
3
R3
i ; ð4Þ

the volume occupied by melt Vm ¼ V � Vp and, consequently, the pressure in the
system P Vm; Tð Þ. Thus, we obtain the closed model predicting the melt reaction on
tension, which determines the current volume V of the system.

Figure 1 shows the results of comparison between the theoretical model and the
MD simulations for pressure and number of pores in the system. Variation of two
model parameters, the surface tension coefficient and the melt viscosity coefficient,
allows us to obtain a good correspondence. The initial monotonic decrease in pressure
with melt tension is interrupted by abrupt nucleation of pores. Increase in total volume
of voids leads to increase in pressure and collapse of all small voids as mentioned in
[10, 11]. Subsequent oscillations of pressure are observed in both the model and the
MD data, while the amplitude of oscillations is larger in the case of model. For higher
strain rates, the pressure oscillations are less pronounced [8, 11].

The theoretical model gives not only the average parameters like pressure and
number of voids, but also individual trajectories of pores and their size distributions.
Individual trajectories show that initial growth changes to subsequent collapse and
elimination from the ensemble for the most of the pores. Only largest pores emerged at
the very beginning of the nucleation stage survive after the pressure increase. The
number of pores continuously decreases with time. Here we restrict calculation by
achieving the void volume fraction about 0.2 � 0.25. Very late stages of tension with

Fig. 1. Comparison of MD data (solid lines) and theoretical model (dashed lines) for the case of
aluminum melt: time evolution of a pressure and b number of pores. The melt temperature is
2000 K; uniform tension with the true strain rate of 3/ns. The initial system size is
86 � 86 � 86 nm3; it contains 32 million atoms in MD.
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larger fraction of pores require another description proposed in [11] with taking into
account strong the interaction between pores.

The size distributions of pores are analyzed as proposed in [10]. The sample
distribution is compared with the exponential and normal trial distributions, both are
defined on the finite interval restricted by minimal and maximal pore radius. Parameters
of trial distributions are estimated to fit the sample mean and the sample variance.

Figure 2 shows that the developed theoretical model describes the evolution of the
size distribution of pores observed in MD. Figure 2a and b correspond to beginning
and end of the nucleation stage, respectively. One can see that the size distribution is
close to exponential one at this stage. The following collapse of small pores leads to
establishment of normal size distribution, see Fig. 2c and d. The calculated ranges of
pore radii coincide with the results of MD simulations [10].

Fig. 2. Size distributions of pores calculated with theoretical model (circles) and its
approximation by exponential (dashed red line) and normal (solid green line) distributions:
evolution in time. The aluminum melt temperature is 2000 K; uniform tension with the true strain
rate of 3/ns. The initial system size is 86 � 86 � 86 nm3.
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3 Size Distribution of Pores in Solid Metal

MD simulations are performed for aluminum single crystals using LAMMPS [12] and
interatomic potential [13]; OVITO [14] is used for data visualization. The pore search
algorithm is described in [10]. It consists in dividing the volume of the system into
domains with sizes smaller than interatomic distances, defining empty domains as
being farther from the center of atoms than the average interatomic distance, and
combining all empty domains with adjoining faces into a separate pore. The type of
size distribution is defined from comparison of cumulative distribution functions.
Determination of parameters is based on the coincidence of variance and/or mean for
model and sample distributions [10]. We consider both uniaxial and triaxial (uniform)
tension with strain rates of 1/ns and 3/ns at a constant temperature of 300 K.

Increase in tensile stress up to 8–9 GPa leads to nucleation of pores (primary
nucleation), see Fig. 3a. The formation and growth of pores leads to stress relaxation,
as a result, the smallest pores become unstable (subcritical) and collapse; the number of
pores decreases slightly. During further tension, the stresses in the system are main-
tained in the range from 0 to 1 GPa, and the number of pores can both smoothly
decrease (at the strain rate of 3/ns) and increase (at 1/ns). Thus, the secondary nucle-
ation of pores is possible at considerably lower level of stress (about 1 GPa) than the
primary one. The cause of secondary nucleation at lower tensile stresses is the for-
mation of lattice defects around the primary pores during their plastic growth.

Similar to the case of metal melts [10], the pore size distribution is close to
exponential one at the stage of primary nucleation. Further, a normal distribution can be

Fig. 3. Pores in solid aluminum: a MD system with atoms colored in correspondence with their
total energy (light areas correspond to pores); b size distributions of pores from MD (circles) and
its approximation by lognormal distribution (dashed line). The temperature of aluminum single
crystal is 300 K; uniaxial tension with the true strain rate of 1/ns; the time moment is 120 ps from
the beginning of tension. The MD system contains 108 million atoms.
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established due to the collapse of the smallest pores. Besides it, a lognormal distri-
bution is a good approximation in many cases, see Fig. 3b.

In the case of solid metals, the theoretical model includes the equations of plasticity
driven growth of each pore [15] instead of the Rayleigh-Plesset equation (3). The
nucleation part is the same as for melt.

4 Conclusions

MD simulations of formation and evolution of multiple pores in the course of tension of
matter can be used for verification and calibration of physically-based models of
fracture. Comparison of the MD results with the model predictions allows one to test
both the nucleation and the size variation equations and their interplay for prediction of
the statistical features of the pore ensemble.
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Abstract. Lightweighting has been deemed as one of the most effective
strategies to improve fuel efficiency and reduce human-induced emissions in the
automotive and aerospace industry. Magnesium alloy, as an ultra-lightweight
metallic material, has recently received significant attention in the transportation
industry to reduce the vehicle weight due to its high strength-to-weight ratio,
dimensional stability, good machinability and recyclability. However, the
hexagonal close-packed (hcp) crystal structure of magnesium alloys gives only
limited slip systems and develops sharp deformation textures, leading to strong
mechanical anisotropy and tension-compression yield asymmetry caused by the
presence of twinning in compression and detwinning in tension when loading
along the extrusion or rolling direction. For the vehicle components subjected to
dynamic loading, such asymmetry could exert an unfavorable effect on the
performance. This issue could be overcome through texture weakening via
addition of rare-earth (RE) elements and other alloying elements to refine grains
and generate nano-sized precipitates. To ensure the structural integrity, dura-
bility, and safety of load-bearing structural components, understanding the
characteristics and mechanisms of deformation and fatigue of magnesium alloys
is vitally important. In this talk, a few examples on the cyclic deformation
behavior of extruded magnesium alloys containing both high and low RE
contents will be presented in comparison with RE-free extruded magnesium
alloys. Moreover, twinning, twin growth, and twin-twin interactions during
uniaxial compression in the extrusion direction and de-twinning in the trans-
verse direction will also be discussed.

Keywords: Magnesium alloy � Fatigue � Deformation � Texture � Twinning �
Detwinning

1 Introduction

The titles such as “Why lightweighting is a game changer in automotive design”, and
“Lightweighting is top priority for automotive industry” have recently grabbed the
headlines. Vehicle lightweighting is nowadays recognized as one of the decisive
strategies to improve fuel efficiency and reduce anthropogenic climate-changing,
environment-damaging, costly, and human death-causing emissions [1–4], since every
10% reduction in weight can lead to 6–8% increase in fuel efficiency. Lightweight
magnesium alloy has the potential to reduce component weight up to 70%. However,
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the hexagonal close-packed (hcp) crystal structure of magnesium alloys limits the
availability of slip systems and results in strong mechanical anisotropy and tension-
compression yield asymmetry due to the presence of twinning and the associated
deformation texture. For the components subjected to dynamic cyclic loading, such
asymmetry could play an unfavorable part in the material performance and compromise
the structural integrity, safety, and durability of highly-loaded structural components.
This issue could be surmounted through weakening the basal texture via the addition of
rare-earth (RE) elements, e.g., Y, Gd and Ce, and other alloying elements to refine
grain sizes and generate strengthening precipitates. Then the formation and growth of
deformation twins could be blocked. The underlying deformation characteristics and
mechanisms of these magnesium alloys have thus been studied.

2 Results and Discussion

In the past ten years, Dr. Chen’s team at Ryerson University, Toronto, Canada, has
studied extensively fatigue and deformation behavior of various magnesium alloys
including both cast (e.g., AZ91 [5], AM60 [6], ZK60 [7]) and wrought (e.g., AZ31 [8,
9], AM30 [10], ZEK100 [11], ME20 [12], GW103K [13, 14], NZ30K [15], ZM31 [16,
17]) magnesium alloys, focusing mainly on the twinning, twin growth, and twin-twin
interactions during uniaxial compression in the extrusion direction and de-twinning in
the transverse direction. For instance, as shown in Fig. 1, during cyclic deformation the
stress-strain hysteresis loops of the mid-life cycles of the extruded GW103K (Mg-
10Gd-3Y-0.5Zr) alloy in different material states were nearly symmetrical, which were
somewhat similar to those of fcc metals (e.g., Al, Cu and Ni) as a result of the
dislocation slip-dominated deformation [14, 18].

Fig. 1. Typical stress–strain hysteresis loops of the mid-life cycles at a given total strain
amplitude of 1.2% in push-pull fatigue tests (R = −1) for the extruded RE-free AM30 and high
RE-containing GW103K alloy in different alloy states, respectively [14, 18].
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This is in contrast to that of RE-free AM30 and AZ31 magnesium alloys, where a
skewed asymmetrical shape appeared due to the occurrence of twinning in compression
and detwinning in tension [8–10, 18]. In addition to the finer grain sizes in the
GW103K alloy, a large number of nano-sized plate-shaped precipitates in T5 and T6
conditions can effectively impede the formation and propagation of twins (Fig. 2).

When the compressive loading direction is parallel to the extrusion direction (ED),
{10�12} extension twinning occurs as a consequence of the presence of basal texture
with the c-axes of hcp unit cells in the majority of grains being perpendicular to the ED.
With increasing compressive strain, the extension twins grow wider via the movement
of twinning dislocations along the twin boundaries and also more extension twins are
formed, as seen from Fig. 3. Various interesting twinning characteristics, such as
(1) the operation of one twin variant exhibiting a morphology of parallel twins, (2) the
operation of two twin variants present at an angle (either blocked or penetrated each
other), and (3) more complicated twin-twin interactions (e.g., ladder-like structures, and
branching-like structures with three twin variants operated) were observed. Also,
{11�21} embryonic twin structures were spotted [19].

After the compressive deformation in the ED to a certain amount (say, 4.3%) with
the generation of a sufficient number of {10�12} extension twins which are also wide
enough, changing the compressive loading direction to the normal direction (ND) will
result in the occurrence of detwinning, i.e., the disappearance or narrowing or short-
ening of the pre-existing extension twins, as illustrated in Fig. 4. This leads to the
recovery of the pre-deformed material to its initial state to some extent. Furthermore,
such a change of compressive loading direction also causes the presence of {10�11} and
{10�13} contraction twins as well as the impingement of {10�11} contraction twins
nucleated in the grain matrix on a pre-existing {10�12} extension twin [20].

Fig. 2. A schematic illustration of the interaction between a plate-shaped precipitate and {10�12}
extension twin in the GW103K alloy [13, 18].
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3 Concluding Remarks

Fatigue and deformation behavior of magnesium alloys are of vital importance for the
lightweight structural applications. The commercially available RE-free wrought
magnesium alloys (e.g., AZ31 and AM30) exhibit strong hysteresis loop asymmetry
during cyclic deformation due to the occurrence of {10�12} extension twinning in
compression and partial detwinning in tension when the cyclic loading direction is
parallel to the ED. The presence of a large number of extension twins causes significant
cyclic hardening, arising from the twin-twin, twin-dislocation, and twin-grain boundary
interactions. The addition of RE elements can effectively hinder the twinning as a result
of the formation of nano-sized precipitates, grain refinement, solid solution effect,
interfacial segregation and pinning effect. The suppression of twinning paves the way
for the dislocation slip-dominated deformation, leading to nearly symmetrical hys-
teresis loops and cyclic stabilization. To better understand the twinning-detwinning
mechanisms, uniaxial compression tests were conducted. When the compressive
loading direction is along the ED, {10�12} extension twinning occurs. With increasing
compressive strain, the extension twins become increasingly wider via the motion of

Fig. 3. EBSD orientation maps of an extruded AZ31 magnesium alloy compressed along the
extrusion direction at a strain amount of a 0%, b 1.2%, c 2.5%, d 5.5%, and e 8% [19].
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twinning dislocations along the twin boundaries in conjunction with the formation of
more extension twins. Some interesting twinning characters, such as the operation of a
single twin variant and two twin variants, more complicated twin-twin interactions
(e.g., ladder-like structures, and branching-like structures), and {11�21} embryonic twin
structures are observed. When the compressive loading direction is changed to the ND,
detwinning (i.e., the vanishing or narrowing or shortening of the pre-existing extension
twins) occurs, along with the formation of {10�11} and {10�13} contraction twins and
the impingement of {10�11} contraction twins nucleated in the matrix on a pre-existent
{10�12} extension twin. More studies via in situ EBSD and high-resolution transmis-
sion electron microscopy as well as atomic simulations are needed to further deepen the
understanding of the intriguing twinning and detwinning mechanisms in magnesium
alloys.
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Fig. 4. EBSD band contrast maps, orientation maps, and the corresponding {0001} pole figures
of the matrix and the twins of the central grain compressed at a, b, c 0%, d, e, f 4.3% ED, and g,
h, i 4.3% ED–4.3% ND, respectively [20].

130 D. Chen



Mirza, Dr. N. Tahreen, Dr. D. Sarker, Dr. D. R. Ni, Dr. C. L. Fan, Dr. W. P. Jia, Mr. S. M. A. K.
Mohammed, Ms. S. Begum, Mr. H. A. Patel, Mr. X. Z. Lin, Ms. M. Luk, Mr. A. R. Emami, and
Mr. K. Wang, and his research collaborators in this aspect including Prof. S. D. Bhole, Prof.
J. Friedman, Prof. D. Y. Li, Prof. M. A. Wells, Prof. A. Luo, Dr. S. Xu, Dr. K. Sadayappan, Prof.
X. Q. Zeng, Dr. D. J. Li, Prof. B. L. Xiao, Prof. Z. Y. Ma, Prof. X. Q. Jiang, Prof. D. F. Zhang,
and Prof. F. S. Pan.

References

1. Barrett, S.: Choices in the climate common. Science 362, 1217 (2018)
2. Diffenbaugh, N.S., Singh, D., Mankin, J.S.: Unprecedented climate events: historical

changes, aspirational targets, and national commitments. Sci. Adv. 4(2), eaao3354 (2018)
3. Anenberg, S.C., Miller, J., Minjares, R., Du, L., Henze, D.K., Lacey, F., Malley, C.S.,

Emberson, L., Franco, V., Klimont, Z., Heyes, C.: Impacts and mitigation of excess diesel-
related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017)

4. Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., Schellnhuber, H.
J.: A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017)

5. Patel, H.A., Chen, D.L., Bhole, S.D., Sadayappan, K.: Cyclic deformation and twinning in a
semi-solid processed AZ91D magnesium alloy. Mater. Sci. Eng. A 528(1), 208–219 (2010)

6. Patel, H.A., Chen, D.L., Bhole, S.D., Sadayappan, K.: Low cycle fatigue behavior of a semi-
solid processed AM60B magnesium alloy. Mater. Des. 49, 456–464 (2013)

7. Hadadzadeh, A., Mokdad, F., Amirkhiz, B.S., Wells, M.A., Williams, B., Chen, D.L.:
Bimodal grain microstructure development during hot compression of a cast-homogenized
Mg-Zn-Zr alloy. Mater. Sci. Eng. A 724, 421–430 (2018)

8. Lin, X.Z., Chen, D.L.: Strain controlled cyclic deformation behavior of an extruded
magnesium alloy. Mater. Sci. Eng. A 496(1–2), 106–113 (2008)

9. Begum, S., Chen, D.L., Xu, S., Luo, A.A.: Low cycle fatigue properties of an extruded
AZ31 magnesium alloy. Int. J. Fatigue 31(4), 726–735 (2009)

10. Begum, S., Chen, D.L., Xu, S., Luo, A.A.: Strain-controlled low cycle fatigue properties of a
newly developed extruded magnesium alloy. Metall. Mater. Trans. A 39, 3014–3026 (2008)

11. Mokdad, F., Chen, D.L.: Strain-controlled low cycle fatigue properties of a rare-earth
containing ZEK100 magnesium alloy. Mater. Des. 67, 436–447 (2015)

12. Mirza, F.A., Wang, K., Bhole, S.D., Friedman, J., Chen, D.L., Ni, D.R., Xiao, B.L., Ma, Z.
Y.: Strain-controlled low cycle fatigue properties of a rare-earth containing ME20
magnesium alloy. Mater. Sci. Eng. A 661, 115–125 (2016)

13. Mirza, F.A., Chen, D.L., Li, D.J., Zeng, X.Q.: Low cycle fatigue of a rare-earth containing
extruded magnesium alloy. Mater. Sci. Eng. A 575, 65–73 (2013)

14. Mirza, F.A., Chen, D.L., Li, D.J., Zeng, X.Q.: Cyclic deformation behavior of a rare-earth
containing extruded magnesium alloy: effect of heat treatment. Metall. Mater. Trans. A 46
(3), 1168–1187 (2015)

15. Mirza, F.A., Chen, D.L., Li, D.J., Zeng, X.Q.: Low cycle fatigue of an extruded Mg-3Nd-
0.2Zn-0.5Zr magnesium alloy. Mater. Des. 64, 63–73 (2014)

16. Tahreen, N., Zhang, D.F., Pan, F.S., Jiang, X.Q., Li, C., Li, D.Y., Chen, D.L.:
Characterization of hot deformation behavior of an extruded Mg-Zn-Mn-Y alloy containing
LPSO phase. J. Alloy. Compd. 644, 814–823 (2015)

17. Tahreen, N., Zhang, D.F., Pan, F.S., Jiang, X.Q., Li, D.Y., Chen, D.L.: Strengthening
mechanisms in magnesium alloys containing ternary I, W and LPSO phases. J. Mater. Sci.
Technol. 34(7), 1110–1118 (2018)

Fatigue and Deformation of Light Magnesium Alloys 131



18. Mirza, F.A., Chen, D.L.: Fatigue of rare-earth containing magnesium alloys: a review.
Fatigue Fract. Eng. Mater. Struct. 37, 831–853 (2014)

19. Mokdad, F., Chen, D.L., Li, D.Y.: Single and double twin nucleation, growth, and
interaction in an extruded magnesium alloy. Mater. Des. 119, 376–396 (2017)

20. Mokdad, F., Chen, D.L., Li, D.Y.: Twin-twin interactions and contraction twin formation in
an extruded magnesium alloy subjected to an alteration of compressive direction. J. Alloy.
Compd. 737, 549–560 (2018)

132 D. Chen



Part III
Miscellaneous (Biomechanics,

Computational Mechanics, Dynamics,
Nanomechanics, Plasticity, Structures,

Wave Propagation)



Research on Contact Pressure of Friction Pair
Based on Finite Element Method

Changlu Wang1, Long Wu2, Zichun Xu3(&), Yaping Zhang3,
Hao Gao4, and Yanzhong Wang3

1 Beautiful China Development Institute, 365004 Sanming, China
2 Fujian Provincial Collaborative Innovation Center for Green Casting,

Forging and Advanced Manufacturing, 365004 Sanming, China
3 School of Mechanical Engineering and Automation, Beihang University,

100191 Beijing, China
1019856685@qq.com

4 Engineering Research Center, Fujian Province University for Modern
Mechanical Design and Manufacturing Technology, 365004 Sanming, China

Abstract. The brake is a device that realizes mechanical speed reduction and
braking, and its key component is the friction pair. In this paper, the problem of
the brake pressure distribution characteristic of the friction pair is studied.
The dynamic and static contact pressure of the friction pair is simulated by
ABAQUS. Based on MATLAB and statistical moment analysis methods, the
simulation results of contact pressure under different working conditions are
analyzed.

Keywords: Friction pair � Static contact pressure � Dynamic contact pressure

1 Static Contact Pressure Simulation Model of Friction Pair

The object of this paper is the friction pair, which is used in the all-disc brake. The
friction pair is mainly composed of a static friction disc and a dynamic friction disc.
The static and dynamic friction disc are both composed of a friction plate and a friction
plate base, and the friction plates have a circumferentially uniform arrangement on the
friction disk. Therefore, the simplified structural model of the friction pair of the single
dynamic friction plate and the plurality of static friction plates is established by the
symmetry distribution of the friction plates (see Fig. 1).

The static contact pressure simulation of friction pairs is the contact pressure
simulation of friction pairs under pure extrusion without relative sliding between the
dynamic friction plate and the static friction plate. In order to eliminate the influence of
the loading input on the friction pair, the loading method is to apply uniform pressure
on the upper surface of the dynamic friction plate. The general static solver of
ABAQUS is used in this paper. The “CPRESS” information of the 927 unit nodes
involved in the dynamic friction plate is mainly analyzed, and the static contact
pressure response of the friction pair is finally obtained.
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2 Static Contact Pressure Analysis of Friction Pair

Qualitative observation of the simulation results, Fig. 2 is the static contact pressure of
the dynamic friction plate of the friction pair with a loading pressure of 0.8 MPa. It can
be seen that the static contact pressure of the friction pair is not uniform, which has
obvious geometric symmetry. From the numerical point of view, the edge contact
pressure of the friction plate is smaller, the maximum contact pressure appears in the
interior near the outer edge and the center pressure of the friction plate is relatively
uniform.

In view of the non-uniformity of the static contact pressure, it is assumed that the
contact pressure on the dynamic friction plate node has the statistical characteristic. As
shown in Fig. 3, it is the distribution of the static contact pressure of the friction pair
under 0.8 MPa. The horizontal coordinate scale is the scale after the node pressure
value is taken as log10, and the longitudinal coordinate is the frequency of the node
pressure value. The horizontal coordinate position corresponding to the vertical dotted
line is the average pressure corresponding position of the theoretical node pressure
when the loading force is 0.8 MPa, and the horizontal coordinate position corre-
sponding to the vertical solid line is the corresponding pressure position after taking the
arithmetic mean of the contact pressure of 927 nodes. Its value is 826,989.51 Pa. The

Fig. 1. Friction pair structure model.

Fig. 2. Simulation results of friction pair contact pressure under 0.8 MPa loading pressure (left).
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error from the theoretical loading value is approximately 3.37%. Therefore, it can be
considered that the simulation value is basically consistent with the theoretical value,
and the simulation is effective.

As mentioned in the previous paragraph, the static node pressure distribution has a
probability distribution characteristic. In this paper, the first-order center moment,
second-order center moment, third-order center moment and kurtosis of the node
contact pressure samples are mainly studied. The first-order center moment represents
the mean value of the sample and the second-order center moment represents the
variance of the sample. The third-order center moment characterizes the symmetry of
the sample with respect to the mean, and the kurtosis characterizes the similarity
between the sample distribution and the normal distribution [1].

The contact pressure response under loading conditions of 0.8, 0.6, 0.4, and
0.2 MPa was simulated. Figure 4a–d show the relationship between the first-order,
second-order, third-order center moment and kurtosis and loading conditions, respec-
tively. As can be seen from Fig. 4a, the first-order center moment is linear with the
loading conditions. The error between the simulation result and the theoretical result is
less than 5% within the operating conditions. It can be seen from Fig. 4b that the
second-order center moment is constantly increasing with the loading condition, which
means that the dispersion of the contact pressure on the friction pair becomes larger,
and the surface pressure unevenness of the friction plate increases with the pressure. It
can be seen from Fig. 4c that the third-order center moment has a tendency to become
smaller with the loading condition, which is close to zero. Therefore, the contact
pressure of the friction pair node has a good symmetry centered on the mean. It can be
seen from Fig. 4d that the kurtosis of the contact pressure of the friction plate node
tends to decrease with the pressure and is close to zero. Therefore, the larger the
loading pressure in the static case, the closer the contact pressure distribution is to the
normal distribution.

Fig. 3. Contact pressure distribution of friction pair nodes under 0.8 MPa (right).
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3 Dynamic Contact Pressure Simulation Model of Friction
Pair

The dynamic contact pressure simulation model of friction pair is the simulation of the
contact pressure between the dynamic friction plate and the static friction plate under
extrusion and relative sliding. The model is modified based on the friction pair static
contact pressure simulation model, and its structural model is identical to the former
structural model. The difference between the two is in the boundary constraint in the
simulation setup. The dynamic contact pressure simulation of the friction pair adds a
rotation boundary to the dynamic friction plate. The solver for this model is the
dynamic solver for ABAQUS, and this model inherits the meshing of static models and
processes the contact pressure response results in the same way.

There are two input parameters for the friction pair dynamic contact pressure
simulation model: the relative sliding speed of the friction pair and the loading pres-
sure. One variable is set to increase and another variable is set as an input parameter in
order to study the effect of two factors on the contact pressure response. The relative
sliding speed is between 0 and 60 m/s, and the theoretical loading pressure is between
0 and 0.8 MPa. Therefore, the simulation conditions of Table 1 are set.

Fig. 4. The first four-order central moment of the contact pressure value of nodes under different
working conditions.

Table 1. Dynamic contact pressure simulation of friction pair.

Test number 1 2 3 4 5 6 7 8 9

Relative sliding speed (m/s) 10 20 30 40 50 60 30 30 30
Pressure (MPa) 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.4 0.2
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4 Dynamic Contact Pressure Analysis of Friction Pair

Qualitative observation of the simulation results, Fig. 5b–d are the dynamic contact
pressure of the friction pair under different speed conditions, which is significantly
different from the static contact pressure of Fig. 5a. The former loses the distribution
symmetry of the latter. The maximum pressure is multiplied and the pressure distri-
bution is more concentrated. However, the dynamic contact pressure distribution under
different operating conditions has similar characteristics.

Figure 6 shows the distribution of the contact pressure of the contact nodes under
the condition of 0.8 MPa and 40 m/s. It can be seen that there is a big difference
between the static situation and the dynamic situation. The static node pressure dis-
tribution is concentrated near the theoretical pressure value. The dynamic node pressure
distribution is dispersed, but the overall node pressure distribution state still presents a
bell shape. The average value of the samples is 8:2435� 105 Pa, which is 3.04%
different from the theoretical value (8:00� 105 Pa). It can be considered that the
simulation can reflect a certain degree of authenticity.

As shown in Fig. 7, only the first moment of the contact pressure of the node has a
significant tendency, because the average value of contact pressure increases with the
linear velocity of friction plate. It can be seen from Fig. 7a that the contact unevenness
of friction plate is intensified as the linear velocity changes of friction plate. It can be
seen from Fig. 7b that in the dynamic case, the friction plate contact pressure has a
significant dispersion compared with the static contact pressure, that is, the contact
pressure is not uniform. The symmetry of the pressure distribution of the friction plate
can be seen from Fig. 7c. Whether static or dynamic condition, the skewness of node
pressure samples is negative, which means that the distribution is negatively skewed. In

(a) Static condition(0.8MPa) (b) Dynamic condition(0.8MPa, 10m/s)

(c) Dynamic condition(0.8MPa, 30m/s) (d) Dynamic condition(0.8MPa, 50m/s)

Fig. 5. Dynamic contact pressure simulation results of friction pair.
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the dynamic case, the value is more concentrated on the left side than that in the static
case, which means that the pressure node has a large probability of large pressure value,
but its skewness value is relatively small, which can be approximated as symmetric
distribution. The difference between normal distribution and pressure distribution of
friction plate can be seen from Fig. 7d. The pressure distribution is steeper than the
normal distribution generally.

Fig. 6. Dynamic node contact pressure distribution of friction pair.

Fig. 7. First four-order center moment of dynamic contact pressure.
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5 Conclusion

The static pressure at the frictional plate edge is small, and the maximum static pressure
appears at a certain distance from the frictional plate edge. The distribution of the
dynamic pressure destroys the symmetry of the static pressure distribution. Its distri-
bution is roughly that the dynamic contact pressure at the edge of the friction plate is
large and the contact pressure inside the friction plate is small. Along the velocity
direction, the dynamic contact pressure at the front of the friction plate is greater than
that at the back. This conclusion is similar to Gao’s conclusion [2] to some extent that
the maximum dynamic contact pressure appears at the entrance and the minimum at the
exit. It is found that the distribution of static contact pressure values approximates a
normal distribution with a theoretical value, and the distribution of dynamic contact
pressure values has a higher kurtosis than the normal distribution.
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Abstract. Flux Switching Motor (FSM) with segmental rotor is a new class of
electric motor, with both AC and DC windings on the stator. The rotor is devoid
of any windings. FSM with its high torque density, compactness, less heat
production and high ruggedness can prove to be an ideal motor topology to be
used for the propulsion systems of electric vehicles. The objective of this study
is to investigate the noise and vibration characteristics of an FSM with seg-
mental rotor due to the electromagnetic forces acting on the motor and optimize
the design to reduce noise and vibration levels.

Keywords: Flux switching motor � Vibration � Noise � Electromagnetic
analysis � Electro-mechanical interaction

1 Introduction

When a rotor spins, unbalance lateral forces and moments are generated due to limi-
tations in machining and assembly accuracy. These forces and moments give rise to
vibration at the same frequency as rotational speed. If the excitation frequency matches
that of any of the natural frequencies of the rotor, resonance takes place, leading to
higher vibration and noise and sometimes costly failures. There are many reasons for
induction of rotor dynamic instability, viz., electro-mechanical interactions, misalign-
ments, air gap eccentricity, etc.

2 Methodology

A flux-switching motor of 1 kW power rating, having 8 rotor segments was designed
from scratch and 3D CAD model developed. Modal analysis was done to obtain natural
frequencies and mode shapes of the rotor. Transient magnetic analysis was then per-
formed to get the electromagnetic forces acting on the rotor and stator. Based on the
results of transient magnetic analysis, the rotor and stator design were optimized to,
avoid magnetic saturation of the material, provide a low reluctance path for the
magnetic flux lines and avoid magnetic flux leakage. Impulse excitation exerted on the
rotor by electromagnetic forces was used as the load for vibration transient analysis and
the rotor response found out.
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3 Configuration and Design of FSM

Figure 1 shows the construction of an FSM. It consists of stator, windings (coils), rotor
segments and rotor core. Based on available research literature, 7-segment and 8-
segment rotors are considered to be the optimum options for a 12-pole stator. The
rationale behind opting 8 rotor segments was that, more number of rotor segments
result in less torque ripples and even number of segments have lesser noise and
vibration problems [1]. The configuration of the 8-segment FSM is as listed in Table 1.
Table 2 shows the materials assigned for different parts of the motor.

4 Electromagnetic Simulation

4.1 FSM Design Optimization

Providing a low reluctance path for magnetic flux, by optimizing the rotor and stator
design would not only result in an increased torque output but also reduce vibration and
noise levels. Avoiding magnetic saturation of the rotor and stator material would lead
to higher efficiency. The magnetic flux density was studied and the dimensions of the
stator tooth was iterated to limit the magnetic flux density to around 1.5 T. The same
process was employed to finalize rotor segment design. Magnetic flux density of the
motor is shown in Fig. 2. It was observed that most of the magnetic flux on the stator
and the rotor segments was below 1.44 T, and hence magnetic saturation was avoided.
Presence of magnetic flux above 1.6 T (saturation limit) was observed in a very small
localized area.

Fig. 1. Flux-switching motor with segmental rotor
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Table 1. Motor configuration

Parameter Value

Rating of the motor 1 kW
Rated speed 3000 RPM
Number of AC phase 3
Number of AC excited coils 6 (96 turns each)
Number of DC excited coils 6 (96 turns each)
Number of stator poles 12
Number of rotor segments 7 and 8
AC supply current 5 A, 400 Hz
DC supply current 5 A
Air gap 0.5 mm

Table 2. Material configuration

Part Material

Rotor segments M36 electrical steel
Rotor core AISI 304 stainless steel (non-electrical steel)
Stator M36 electrical steel
Windings AWG 12 copper

Fig. 2. Magnetic flux density distribution contour plot

144 H. Sanket et al.



4.2 Electromagnetic Force Calculation

The most important vibration excitation is the reluctance force produced in the air gap
between the stator and rotor. The reluctance force of electric motor is electromagnetic
force which has two components, radial (Frad) and tangential (Ftan) components. In
electromagnetic FEA calculations, the material boundaries are chosen on edge of the
stator tip [2]. Equations (1) and (2) give the formulae for radial and tangential elec-
tromagnetic forces respectively. The integral is performed over the length of the stator
tip edge length, l.

Frad ¼ Lstk
2l0

I
B2
n � B2

t

� �
dl ð1Þ

Ftan ¼ Lstk
l0

I
Bn:Btð Þdl ð2Þ

where Bn and Bt are the normal and tangential components of magnetic flux density
respectively, l0 ¼ 4p� 10�7 H=m, is permeability of vacuum and Lstk is stack length
of the machine.

Figure 3 shows the maximum nodal force (EMF) acting on the rotor at any point
in time. Average absolute total EMF for the 8-segment rotor was found to be
75.86 N.

Fig. 3. Maximum nodal force (EMF) versus time
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5 Rotor Noise and Vibration Characteristics

5.1 Modal Analysis

A free-free eigen value analysis was then carried out to find out the natural frequencies
of the rotor (Table 3). The values of the first six modes were zero or near zero, which
verified structural integrity of the FE model.

5.2 Rotor Response to EMF

The response of the rotor was found for operational frequency range of 0–50 Hz (0–
3000 RPM). From Fig. 4 and the modal analysis results, it can be concluded that the
rotor is very much safe in the operation range. Equation (3) gives the equation for
Sound Pressure Level (SPL) in decibels.

SPL ¼ 20 log10
P1

P0
ð3Þ

Table 3. Modal analysis results

Mode Frequency (Hz)

7 13,342
8 13,349
9 14,801
10 14,808

Fig. 4. Rotor response in the operational frequency range
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where P1 is actually measured sound pressure level of a given sound, and P0 is a
reference value of 20 lPa, which corresponds to the lowest hearing threshold of the
young, healthy ear.

It was observed that in the operational frequency range of 0–50 Hz, the maximum
sound pressure level (SPL) was 101.49 dBA at a rotational velocity of 3000 RPM or
50 Hz.

6 Conclusion

In this paper, an effort was made to find out the noise and vibration characteristics of a
1 kW 8-segment FSM rotor due to the EMF acting on the rotor. The rotor and stator
design were optimized to reduce noise and vibration by avoiding magnetic saturation of
the material, providing a low reluctance path for the magnetic flux lines and preventing
magnetic flux leakage.

Modal analysis of the rotor revealed that its natural frequencies lie very far away
and hence the rotor is safe in the operation range. The results were analytically verified.
Response of the rotor due to the EMF was found out. A maximum Sound Pressure
Level of 101.49 dBA was found out at the maximum operation speed (50 Hz) of the
rotor. It is to be considered that this analysis was done for the bare rotor, which was not
physically connected to the whole motor, through bearings, in which case, the effective
mass of the system increases and the SPL comes down. SPL can also be further
reduced by using acoustic padding inside the motor.
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Abstract. In the present paper a new model for describing structural trans-
formation of solids under external impact is discussed. We suppose that the
material consists of two crystalline lattices with close physical properties,
connected by nonlinear interaction force. The relative displacement of the
components is considered to be an additional degree of freedom responsible for
transition of material to a new equilibrium position. Using experimental data on
shock-wave loading and analogy between continuous model and its discrete
representation allows to evaluate the unknown parameters and to reveal the
mechanism of energy transfer from macro to micro level. Also it becomes
possible to predict the parameters of external impact, necessary to start the
process of transition to another state. The results of analytical investigation are
confirmed by numerical solution of the original problem.

Keywords: Structural transformations � Non-stationary wave � Discrete model

1 Introduction

Mathematical modeling such phenomena as rearrangement of crystalline lattice under
external impact always requires the introduction of additional equations, providing the
connection between micro and macro level. These equations usually contain unknown
parameters, which are difficult to estimate. In the present paper we consider the
problem of structural transformations caused by shock-wave loading. Recent experi-
ments on high-speed deformation of metals demonstrate in a certain range of impactor
velocities propagation of the shock wave leads to nucleation of reticulate structures of
0:1� 0:3 lm in diameter that do not disappear after removal of the stress [1]. At the
macro level, the process of structure formation is revealed through energy losses, which
can be observed experimentally [2]. At the same time, the transition dynamics is
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accompanied by the oscillations with a certain frequency on the time profile of the
particle velocity on the free surface of the sample (see Fig. 1).

To describe this process we introduce a one dimensional model of two-component
material, consisting of two similar lattices [3, 4]. Supposing that each of them obeys the
Hooke’s law, one can write the governing equations for the center of mass displace-
ment U ¼ q1u1 þ q2u2

q1 þ q2
and for the relative displacement z ¼ u1 � u2 in the following form

@2U
@x2 � 1

c2u
@2U
@t2 ¼ a @2z

@x2

@2z
@x2 � 1

c2z
@2z
@t2 ¼ bRðz; _zÞþ c @2U

@t2
: ð1Þ

Here the following notation is used: c2u ¼ E1 þE2
q1 þ q2

, c2z ¼ E1E2ðq1 þ q2Þ
ðE1 þE2Þq1q2, where Ekðk ¼

1; 2Þ signifies Young modulus. Parameters a, b and c are defined by the physical
properties of material: a ¼ E2q1�E1q2

ðE1 þE2Þðq1 þq2Þ, b¼ E1 þE2
E1E2

, c¼ E2q10�E1q20
E1E2

. The interaction

force between the components is denoted as R. Taking into account the periodic
structure of the lattice [5], its analytical expression is given by

R ¼ K sin kzþ m_z: ð2Þ

where K defines its maximum value and v characterizes dissipation. The parameter
k ¼ 2p

d is inversely proportional to the period of the lattice d. Supplementing Eq. (1)
with appropriate boundary and initial conditions, we are able to formulate a nonlinear
Cauchy problem, but any attempt of solving is useless without evaluating the param-
eters of the interaction force.

Fig. 1. Oscillations on the time profile.
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2 Continuous Model

After introducing dimensionless variables ~x ¼ xx�
c1
, ~t ¼ x�t, ~U ¼ Uk, ~z ¼ zk,

~r ¼ c1kr
x�ðE1 þE2Þ, ~m ¼ mx�

Kk , where x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E1
E2

� �

Kk
q1

r

and r ¼ r1 þ r2, Eq. (1) can be

presented as

@2 ~U
@~x2 � 1

~c2u
@2 ~U
@~t2 ¼ a @2~z

@~x2

@2~z
@~x2 � 1

~c2z
@2~z
@~t2 ¼ sin~zþ~m_~zþ d @2 ~U

@~t2
; ð3Þ

where ~c2u ¼ ð1�vdÞ
1�d ; ~c2u ¼ 1

1�vd ; d ¼ 1� c21
c22
. Here c2k ¼ Ek

qk
ðk ¼ 1; 2Þ signifies the veloci-

ties of sound and, the coefficient v ¼ q1
q1 þq2

denotes the mass fraction of the first

component. Furthermore, we assume that parameters c1 and c2 do not differ much. In
this case two branches on the dispersion graph (see Fig. 2) corresponding to the center
of mass displacement and relative motion are located sufficiently close to each other. It
means that we can expect energy transfer from one branch to another due to existence
of nonlinear forces. Also taking an approximate value for cutoff frequency x� from
experimental data (see Fig. 1), we are able to estimate the interaction force between the
components.

Fig. 2. Dispersion curves
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3 Discrete Model

In spite of a rapid development of numeric methods one-dimensional discrete models
still retain their significance. Structural element from the rheological model of two-
component medium is represented by the nonlinear system of coupled oscillators with

close natural frequencies d ¼ x2
2�x2

1
x2

1
. Denoting their displacements as x1 and x2 it is

possible describe its dynamics analogously to continuous problem, taking for unknown
functions the center of mass displacement x ¼ 1

2 ðx1 þ x2Þ and the relative displacement
z ¼ x1 � x2. In dimensionless variables the governing equations are given by

€xþ x ¼ dz
4

€zþ n_zþ zþ j sin z ¼ dx
: ð4Þ

At the same time the correspondence between continuous and discrete systems is
established by the following relations

j ¼ 4pKd
E‘

; n ¼ x�2d2m
pc1K

: ð5Þ

In linear system ðj ¼ 0Þ we obtain beat oscillations with the period T ¼ 4p
d

depending on the difference between physical properties of the lattices. The appearance
of nonlinear term changes its dynamics dramatically. The specific feature of the process
for sufficiently large value of initial velocity for x is the time point separating two
different regimes (see Fig. 3). Note that the amplitude of oscillations at the second one
is reduced in comparison with initial value due to dynamics of the relative
displacement.

Fig. 3. Dynamics of discrete model
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To realize the energy transfer it is important that its duration se ¼ 2p
d won’t exceed

the relaxation time sr ¼ 1
n of the partial system. Otherwise, the oscillations of the

relative displacement will be damped before the center of mass displacement has
enough time to be excited. This implies that n� d

2p.

4 Conclusion

After the necessary estimates of parameters are provided, we return to the original
continuous problem given by Eq. (3) considered in the half space 0\x\1. Initial
conditions are assumed to be zero, as for the boundary conditions a rectangular pulse of
s duration is applied at x ¼ 0

rjx¼0¼ r0ðHðtÞ � Hðt � sÞÞ; ð6Þ

where HðtÞ is the Heaviside step function. Numeric solution of the problem is obtained
basing on finite difference method. The strain distribution in the two-component rod is
presented in Fig. 4.

The same effect of reduction of initial pulse caused by energy transfer as in the
discrete model is observed. In conclusion it should be noted that the nonlinear problem
turns to be rather sensitive to small changes in parameters and any attempt of dis-
covering the required effect is useless without preliminary analysis.

The work was performed within the RSF Project No. 15-19-00182.

Fig. 4. Strain distribution in the two-component rod
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Abstract. Implementations of different algorithms designed for material con-
stant identification are discussed in this contribution. Identification is performed
by varying the input variables (i.e., the material constants) and juxtaposing the
results obtained by analysis of the model and some benchmark example. In
order to reduce the iterations needed to achieve a good agreement with desired
results, different numerical strategies can be employed. One of the possibilities
is to use a genetic algorithm. The combination of finite element analysis and
identification algorithm is a strong tool but it is time consuming and very
demanding in computational resources. A surrogate modeling can be employed
to reduce computational time. Generally, it consists in replacing the original
model with a simplified one. Two approaches are taken into consideration
herein: the polynomial chaos expansion and the artificial neural network. The
efficiency of the above-mentioned algorithms is to be assessed in terms of
computational resource.

Keywords: FEM � Material constants identification � Artificial neural network
Implementations of different algorithms designed for material constants identification
are discussed in this contribution.

Commonly, identification is performed by varying the input variables (i.e., the
material constants) and juxtaposing the results obtained by analysis of the model and
some benchmark example.

In order to reduce the iterations needed to achieve a good agreement with desired
results, different numerical strategies can be employed. One of the possibilities is to use
a genetic algorithm [1]. A typical iteration comprises three modules: analysis module,
comparison module and modification module. The results (obtained for example by
finite element analysis) in the analysis module are compared to the target set of data
points in the comparison module. On the basis of the assessment of the ‘distances’ (in
the considered space) between points obtained by numerical analysis and benchmark
points, modifications of the input variables (referred to as ‘crossover’ and ‘mutations’)
can be performed in order to obtain a better fit with target data in the subsequent
iteration(s).

In this context, combination of finite element analysis and identification algorithm
is a strong tool for accurate calibration of model constants. However, it is well known
that this strategy is time consuming and very demanding in computational resources.
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A surrogate modeling can be employed to reduce computational time. Generally,
surrogate modeling consists in replacing the original model with a simplified one.
Different approaches have been proposed in literature: polynomial chaos expansion
(PCe), support vector machine, Kriging metamodel, artificial neural network
(ANN) etc. [2–6].

The polynomial chaos expansion of a response variable for a random input vector
X and finite variance can be defined as follows [2]:

Y ¼
X

a

bawaðXÞ ð1Þ

In Eq. (1) indices ai are ordered lists of integers, b are deterministic coefficients, w
represent multivariate orthonormal basis functions with respect to joint probability
density function of the input variables.

Generally, the artificial neural network is a parallel signal processing system
designed to solve a specified task. The ANN can be formalized by a sorted triple (N, V,
x) [7]. N is a given set of neurons, V is a set containing all defined connections between
neurons i and j from N:

V � i; jð Þ i; j 2 Njf g ð2Þ

and x(i, j) is a function which defines the weight of a specified connection.
The weights of the connections as well as the structure of the neural network can be

changed during solution.
The efficiency of the above-mentioned algorithms is to be assessed in terms of

computational resources and time (i.e., number of iterations needed to obtain a satis-
factory fit with the target set of data points).
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Abstract. Many major faults separate two tectonic plates that slowly move past
each other in opposite directions. The relative motion is accommodated by faults
by both sudden dramatic rupture events perceived as earthquakes and much
slower, quasi-static fault slips. We study the mechanics of these rupture pro-
cesses using dynamic-fracture ideas and continuum-mechanics modeling that
incorporates laboratory-derived fault friction laws [1–3], shear heating, and
effects of pore fluids [4–6]. The modeling can reproduce all stages of the past
behavior of some fault segments—including locked, slowly moving, and
earthquake-producing—with remarkable qualitative, and often quantitative,
agreement. In part, it reveals the potential physics behind the unexpected
extreme events, such the 2011 Mw 9.0 Tohoku earthquake in Japan [6, 7] that
caused up to 40-m tsunami and numerous casualties. The modeling has been
used to study situations in which energy-related quantities estimated from
seismic shaking based on traditional fracture mechanics theory are valid and
when they are not [8]. Such continuum-mechanics-based models, when further
developed, will enable us to incorporate our increasing understanding of
earthquake source physics into the assessment of seismic hazards and seismicity
response to perturbations of natural or anthropogenic origins.

Keywords: Numerical modeling � Dynamic fracture � Earthquake mechanics

1 Introduction: Fault Slip Modes and Interface Friction

Faults in the earth’s crust accommodate slow relative motion between tectonic plates
through a combination of slow slip and dynamic rupture events perceived as earth-
quakes. The slow and fast slip is often assumed to occur on fault segments with
different friction properties. Rate-and-state friction paradigm has been developed ([1]
and references therein), based on laboratory experiments at slow slip velocities, in
which interface friction depends on the slip velocity (defined as the rate of the relative
shear across the interface) and an evolving state variable. The rate-and-state fault
models associate creeping regions with velocity-strengthening (VS) steady-state fric-
tion, suggesting that they act as barriers to earthquake ruptures since their strength
increases with their slip velocity (also called slip rate). Indeed, earthquakes often arrest
at the boundaries of creeping regions. The regions that host earthquakes are associated
with velocity-weakening (VW) steady-state friction [1–3].
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2 Possibility of Dynamic Rupture on Fault Segments
Currently Considered Stable

However, experimental and theoretical studies reveal that several dynamic weakening
mechanisms, such as flash heating thermal pressurization of pore fluids, can be acti-
vated at high seismic slip rates [4, 5]. As earthquake rupture penetrates into the VS fault
areas, it significantly increases slip rates there, potentially activating the additional co-
seismic weakening and turning the stable fault areas into seismogenic ones.

We have explored such behavior in a numerical continuum-mechanics modeling
with frictional and hydro-mechanical fault properties measured using rock samples
obtained from the Chelungpu fault, the site of the 1999 Chi-Chi earthquake [6]. The
modeling reproduces a number of both long-term and coseismic observations about
faults that hosted the 2011 Tohoku and 1999 Chi-Chi earthquakes. Moreover, only
models in which a shallow creeping region dynamically ruptures can reproduce the
proposed 1000-year recurrence interval proposed for the Tohoku-like events [7]. In
short, it is physically plausible for a creeping fault region to sustain dramatic seismic
slip, and this may have occurred in the 2011 Tohoku-Oki and 1999 Chi-Chi
earthquakes.

The possibility that seismic rupture can be sustained in a creep-prone, VS region
due to coseismic weakening implies that earthquake ruptures can potentially penetrate
below the locked seismogenic zone, into the deeper creeping fault extensions [8]. Our
strike-slip fault models mimicking segments of the San Andreas Fault (SAF) show that
the depth extent of the largest events is determined by the boundary where enhanced
coseismic weakening stops being efficient. The depth extent of coseismic rupture
influences the seismicity pattern throughout the post-seismic and inter-seismic period,
due to changes in the stress distribution on the fault interfaces. When large events are
confined in the traditionally defined seismogenic region, with velocity-weakening
(VW) rate-and-state friction properties, streaks of microseismicity are seen at and
above the VS/VW transition due to stress concentration between the locked and
creeping regions being in the VW area. In the cases with deeper penetration due to the
enhanced dynamic weakening, the microseismicity streaks disappear, as the stress
concentrations are buried deeper, in the interseismically stable VS regions, and cannot
nucleate dynamic events. These characteristic behaviors resemble the observed seis-
micity activity on the Parkfield and Carrizo segments on SAF, respectively.

The much larger occasional extent of earthquake ruptures in our numerical models
than what would be inferred based on currently locked fault areas highlights the
potential for extreme, unexpected earthquake events. To improve our understanding of
earthquake hazard, we need to study the structure, properties, and past behavior of
creeping regions to evaluate their propensity for coseismic weakening, and hence their
ability to sustain large seismic slip.
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3 Estimation of Energy-Related Quantities for Earthquake
Rupture

Observational seismological studies of earthquakes seek to understand their source
physics by determining averaged quantities from remote observations, such as static
stress drop and radiation efficiency. These inferences rely on the use of idealized
fracture mechanics models, whereas the actual spatial distribution of slip and local
stress change may be different from such models throughout the ruptured area. The
relationship between average rupture characteristics inferred observationally and their
actual values is therefore not obvious. We have been exploring this relation using our
modeling. Our preliminary results [9] indicate that the validity of the seismological
estimates significantly depend on the rupture mode and may not be valid for the typical
style of large earthquake ruptures observed. If these conclusions withstand the further
numerical interrogation for a broader parameter range, then inferences about energy
budget of large earthquake rupture would need to be reconsidered.
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Abstract. In some cases, the finite element solution does not converge because
of severe distortions in the finite elements of the initially generated mesh.
Numerical strategies aimed to overcome such issues are discussed in this con-
tribution. The context is the numerical simulation of concrete/RC beams
strengthened with composite material. The structural element is considered as a
multiple-component system: constitutive relations and local failure criteria are
defined for all components, i.e., for all materials: concrete, steel and composite
material. A damage-based constitutive law is retained for concrete. As a result of
this procedure application, zones of reduced or of zero or rigidity are formed in
the medium which is initially defined as homogeneous and isotropic. A new
initial state for the subsequent post-failure solution is defined on the basis of the
state at the time preceding the loss of convergence. After homogenization, zones
containing distorted finite elements are ‘healed’.

Keywords: FEM � Large displacement response � Post failure behavior
In some cases, the finite element solution does not converge because of severe dis-
tortions in the finite elements of the initially generated finite element mesh. This
‘premature’ (compared to the experimentally obtained results) numerical failure can
result in underestimation of the mechanical performances of the modeled structure.

Numerical strategies aimed to overcome such issues are discussed in this contri-
bution. They can potentially appear in the context of the numerical simulation of
concrete/reinforced concrete beams strengthened with composite material.

Generally, the overall behavior of such structural elements is governed mainly by
the behavior of concrete. The behavior of concrete is the most complex one compared
to the responses of the other materials used in the structural element.

In this contribution, the structural element is considered as a multiple-component
system: constitutive relations and local failure criteria are defined for all components,
i.e., for all materials: concrete, steel and composite material(s).

A damage-based constitutive law is retained for concrete: a damage variable is
integrated in the stress-strain relationship [1, 2].

According to the damage mechanics fundamentals, the damage variable quantifies the
mechanical damage accumulated in the material. The evolution of the damage variable
depends on a quantity ‘constructed’ from the positive values of the principal strains [3].
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Two thresholds are associated with the damage variable: the lower threshold (i) and
upper threshold (ii). When the lower threshold is reached by the above-defined
quantity, damage starts to grow. If the upper threshold is reached by the damage
variable a local failure occurs: it can be stated that a meso-crack is initiated/propagates
where the upper damage threshold is reached.

As a result of the application of such procedure zones of zero rigidity are formed in
the medium which is initially defined as homogeneous and isotropic. Moreover, zones
of reduced rigidity (or zones of modified mechanical characteristics) are formed along
with the damage accumulation throughout the loading history (see Fig. 1).

All these factors eventually contribute to the accumulation of severe distortions in
the remaining finite elements (the finite elements which are not deactivated via the
numerical engine designed to model damage and crack propagation).

As it has been already stated, the distortion of some finite elements could result in
the loss of convergence. Therefore, if a ‘premature’ numerical failure occurs, these
finite elements should be ‘healed’ before continuing solution. This could involve the
definition of a new initial state (for the subsequent post-failure solution) on the basis of
the state preceding the loss of convergence. This approach also involves homoge-
nization since damage accumulation and propagation leads to forming adjacent finite
elements of different material properties. Results of homogenization should be carefully
assessed in order to minimize possible loss of accuracy in the subsequent analysis.

Fig. 1. Damage zone propagation for three consecutive values of the applied load F: finite
elements in which damage variable exceeds a specified value are not displayed; taking into
account the symmetries only a quarter-model space is considered in the finite element simulation
of the four-point bending test.
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Abstract. The study and numerical simulation of randomly rough surfaces is a
fundamental topic in contact mechanics. Existing theory permits calculating the
distributions of values such as height, slopes and gradients based on the power
spectrum of the surface. Determination of derived quantities like summit height
or radius distribution tends to become mathematically intractable. An alternative
approximation is then to simulate the random surfaces to obtain these distri-
butions empirically. Here, a direct Monte-Carlo approach is presented in which
distributions of summit heights and curvatures are obtained directly from the
theoretical formulae. Results are compared to distributions calculated from
simulated surfaces, over a wide range simulation parameters. The latter
approach induces significant statistical dispersion as compared to the former.
The summit radius distribution is narrower for the simulated surfaces than
predicted by theory.

Keywords: Random surface � Roughness � Fractal dimension � Monte Carlo
simulation � Contact mechanics

1 Introduction

From the early development of surface profilers, it was recognised that roughness is a
random process [1]. More recently, it has been found that roughness can often be
described as a fractal stochastic process [2, 3]. In general, the difference between fractal
and non-fractal descriptions resides in the power spectrum. The use of fractal
descriptions has been criticised by several authors [4, 5], as surface roughness often has
a non-random component (a pattern). Patterns would appear as discrete peaks in the
power spectrum, contrary to the random part which produces a continuous spectrum.
Only the latter part is studied if randomly rough surfaces are considered.

The first model for the contact of randomly rough surfaces was proposed by
Greenwood andWilliamson (GW) [6]. They considered a set of spherical asperities, with
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a fixed radius and randomly distributed heights, each one in Hertzian contact with the
mating surface. This model has been modified in later studies, to consider the distri-
bution of asperity radius [7], elliptical asperities [8], plastic deformation [9–11], elastic
interaction between neighbouring asperities [7, 12] and coalescence of asperities into
larger contact patches [12]. Analyses which use the full surface topography but do not
involve the definition of spherical asperities are the boundary element method [13–15]
and finite element method [16–18]. A broader review was given recently in ref. [19].

Several methods for the generation of randomly rough surfaces exist [20]. In the
spectral method, the surface is constructed by the sum of cosine waves with random
phase angle and wave vectors, with amplitudes determined from the power spectrum.
The theoretical background for this method was established long before computer
simulation of random surfaces became a topic of interest [21, 22]. Statistical distri-
bution of height, slopes, gradients and the number of local maxima can be found as
simple mathematical expressions. Calculation of further properties, such as the height
or radius distribution of asperities, become very cumbersome [23]. This work presents
a new approach to obtain the joint statistical distribution of surface curvature and height
from theory. The results, in terms of asperity radius, height and density, will be
compared to simulations using the spectral method. In the latter, the cut-of radius and
number of wave components will be treated as simulation parameters.

2 Theory and Simulation Methods

2.1 Fundamentals

The statistical analysis of randomly rough surfaces, defined by their power spectral
density (PSD), is based on the calculation of the moments of the PSD [21]. The PSD
for isotropic fractal surfaces is written as:

pRðrÞ ¼
H abð Þ2H

p b2H�a2Hð Þ r
�2 Hþ 1ð Þ r 2 a; b½ �

0 r 62 a; b½ �

(
ð1Þ

where r is the length of the wave vector, a and b are the lower and upper cut-of radius
and H the Hurst exponent, which relates to the fractal dimension D as H = 3 − D. The
PSD has been normalised such that its integral over frequency space is equal to 1. The
lower cut-of radius was set equal to 1. The nth (polar) moment of the PSD is:

Mn ¼ 2H
n� 2H

bna2H � anb2H

b2H � a2Hð Þ ð2Þ

With 0 < H � 1, the limit for b ! ∞ is finite only for n = 0, i.e. without an upper
cut-off limit, the moments do not exist. The number of local maxima per unit area is
given by:
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nAsp ¼ 1

8
ffiffiffi
3

p M4

M2
¼ 1

8
ffiffiffi
3

p 1� H
2� H

� �
a4b2H � a2Hb4

a2b2H � a2Hb2
ð3Þ

From the generalised central limit theorem, it follows that the joint probability
distribution for surface heights and slopes follows a Gaussian distribution, written as:

pV ðvÞ ¼ 2p Rj jð Þ�3exp � 1
2
v � R�1 � v

� �
ð4Þ

where v is the vector of random variables and R the correlation matrix. As heights and
curvatures are of interest in this work, v has the components z(0,0)(x, y), z(2,0)(x, y),
z(1,1)(x, y) and z(0,2)(x, y), with z the surface height as a function of x and y and the
numbers between parentheses indicate the (n, m)th derivative with respect to x and
y respectively. The correlation matrix is found as [24]:

R ¼
M0 �M2

2 0 �M2
2

�M2
2

3M4
8 0 M4

8
0 0 M4

8 0
�M2

2
M4
8 0 3M4

8

0
BBB@

1
CCCA ð5Þ

z(0,0)(x, y), z(2,0)(x, y) and z(0,2)(x, y) are correlated variables while z(1,1)(x, y) is
independent.

2.2 Direct Monte-Carlo Simulation

A random vector of 3 uncorrelated Gaussian variables with given mean and variance is
easily composed by calculating n random numbers independently. For the correlated
variables (z(0,0), z(2,0), z(0,2)) one must diagonalize R, which corresponds to a rotation in
random variable space. Three independent random numbers are then generated with
mean 0 and variance Ri, with Ri the ith eigenvalue of R. The resulting vector is rotated
back to the original reference system and an independently chosen value for z(1,1) is
added to complete the random vector. For each random vector thus created, the
Gaussian curvature is found as follows:

K ¼ z 2;0ð Þz 0;2ð Þ � z 1;1ð Þ2

1þ z 1;0ð Þ2 þ z 0;1ð Þ2ð Þ2
ð6Þ

The term in the denominator is equal to 1 at a stationary point, hence K = det(H),
with H the Hessian matrix of the surface at a given point. For the point to be a
maximum, the additional conditions that K > 0 and z(2,0) + z(0,2) < 0. The determinant
of H is equal to the product of the mean curvatures; the geometric mean radius of
curvature q = det(H)−1/2.

The simulation is performed by creating 105 random vectors for the height and the
second derivatives. As the first derivatives are independent from the former values, the
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numerator in Eq. (6) will be independent of the first derivatives (K is not). Hence, to
determine the distribution of q, the first derivatives need not be simulated.

2.3 Surface Monte-Carlo Simulation

Random surfaces were simulated by means of the spectral method [13, 15], with a cut-
of radius b and c components in the sum. Surfaces were produced on a unit square with
step size 2−m, resulting in (2−m + 1) � (2−m + 1) grid points. In the examples, m = 9.
The value of b was varied from 26 to 210, with steps of 1/2 in the exponent. c was
varied in the same way. The entire simulation was performed twice, producing 162
random surfaces. Direct Monte Carlo simulation was performed for the same values of
b, using 105 random vectors for each simulation. H was set equal to 0.5 in all
simulations.

An asperity is defined as a point which is higher than its 8 neighbours. A second-
order polynomial (Taylor expansion) is fitted through the asperity and its 8 neighbours:

z x; yð Þ ¼ z 0; 0ð Þþ @z
@x

Dxþ @z
@y

Dyþ 1
2
@2z
@x2

Dx2 þ @2z
@x@y

DxDyþ 1
2
@2z
@y2

Dy2 ð7Þ

The partial derivatives are determined by the fitting procedure. The geometric mean
radius is q = det(H)−1/2. To verify the quality of the produced surfaces, the fractal
dimension was calculated by the triangular prism method, according to Ref. [24].

3 Results

Figure 1 presents the plots of the surfaces for different combinations of b and c. A
response surface analysis was executed for the full set of 162 surfaces, analysing the
behaviour of the Hurst exponent and the coefficient of determination (R2) of the
regression used in determining H. An optimal combination of both can be found at
b = 28 and c = 210. A low value of c creates the risk that the roughness is dominated by
a few long wavelengths. Low values of b produce surfaces which are not fractal at the
lowest wavelengths, while a value of b which is too high only induces random noise.

Figure 2 compares the results of direct Monte Carlo simulation to surface simu-
lation. The number of asperities in the surface simulations is not related to what is
predicted by the theoretical formulas. The average curvature is underestimated, and the
average height of asperities is too low. The effect of c in the simulations is smaller than
the statistical spread on the individual data. A final set of simulations was performed to
verify whether coincidence can be obtained between the surface simulations and the
direct Monte Carlo approach. The spectral method with m = 11, b = 29 and c = 210,
m = 9, b = 28 and c = 210 was compared to results of the midpoint algorithm [21] for
m = 11 and m = 9 and direct Monte Carlo for b in the range of 211–214. The asperity
height distribution for direct Monte Carlo is independent from b, but the asperity radius
distribution shifts to the right upon decreasing b (Fig. 3). Surface simulations miss the
smallest radii and drops to zero much more rapidly at higher radii, explaining the much
lower average radius observed in Fig. 2b.
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4 Conclusions

A new method to simulate the statistics of asperity heights and radii, based on the
mathematical theory of randomly rough surfaces was presented and compared to
surface simulations by means of the spectral method. No clear relationship was found
between the asperity density in direct and surface simulations. The mean asperity radius

Fig. 1. Examples of simulated surfaces for different values of b and c.

Fig. 2. Comparison of surface simulation to direct Monte Carlo simulation (black curve).

Fig. 3. Probability distributions for asperity height and radius, for different simulations.
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is seriously underestimated in the latter technique and the radius distribution misses
both the small radii and the heavy tail. As surface measurements involve some of the
same problems as surface simulations (finite measurement area, finite resolution, finite
precision), they cannot be used to decide which approach is better. Hence, precise
measurement and simulation of physical properties such as contact stiffness and ther-
mal or electrical conductivity will be needed to decide on the optimal method for
surface simulation.
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Abstract. The self-loosening of a joint through unscrewing of the bolt is a
phenomenon mainly occurring when the assembly is solicited by transverse
repeated loads. Previous works highlighted that the transversal sliding of the
bearing surfaces, either in the threads or underneath the bearing surfaces of bolts
and/or nuts, is its root cause and that this phenomena begins during the first
loading cycles. In order to study the early stage of this self-loosening, a sim-
plified numerical model has been developed. The latter factors the bearing
surfaces of the bolt, the preload, the friction coefficient, the amplitude of the
shear-load and the fastener’s material. Through measurements and interpretation
of the results, the shearing of the fastener has been identified as the main
deformation leading to the self-loosening of the assembly, while the bending of
the fastener shank limits the self-loosening. Moreover, according to the values
of preload and shear-load, the behaviors were identified and an interpretation has
been proposed.

Keywords: Self-loosening � Bolted joints � Shear-load � Finite elements
analysis

1 Introduction

1.1 The Self-loosening in the Literature

A few scientists such as Reid [1], Hattori [2] or Dinger [3] highlighted that in some
specific conditions, the self-loosening of the fasteners clamping the pieces of a structure
together can be noticed. This phenomena might be due to an excessive cycled shear-
loading of the parts. In order to focus on this phenomena, several papers are studying
the self-loosening of a single bolted joint to get rid of the additional phenomena
implied by the bolting sequence in a multi bolted assembly [4–7].

Junker [4] is the first to have studied this phenomena. Thanks to a specific test
bench, he considered the sliding of the bearing surfaces of the fasteners and the bolt’s
bending as its root cause. Dinger [3] and Zhou [5] studied the influence of the bolt
coating on the self-loosening of the joint. They noticed that the lower was the friction
coefficient, the most severe was its self-loosening as it can be seen on Fig. 1.
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Whichever the coating Zhou considered, the loss of normal strength could be observed.
Indeed, the higher was the friction coefficient, the latter and the slower was the
phenomena.

Zadoks interested himself in the behavior of the sliding surfaces [6]. He factored the
transverse sliding and the plate and bolt deformation in order to propose an explanation
to the self-loosening. He described the phenomena thanks to ratios between the relative
circumferential and transverse velocities, either in the threads or under the head.
According to Jiang [7], the loosening curves can be split into two parts, Fig. 2.
Moreover, he stated that the early loosening “Stage I”, is driving the phenomena as the
first movement or deformation, breaking the bolt’s steadiness, were the most important
one.

1.2 Purpose of the Study

Understanding which process implies the early self-loosening might help us to avoid
the loss of preload due to the rotation of the fastener. To do so, a simplified numerical
models of the contact between the fastener’s bearing surfaces and the clamped part will

Fig. 1. Loosening curve for different fastener coatings [5]

Fig. 2. The self-loosening sequence, [7]
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be developed. Once this model has been validated thanks to specific tests, an analysis
will be done in order to identify the process and more specifically the deformation,
either shearing or bending, leading to the self-loosening of the assembly. Finally, an
analytical approach will aim at proposing a definition of the loosening load, the effort
implying the loss of preload.

2 The Numerical Analysis

2.1 Presentation of the Model

We will study an assembly of three plates (Fig. 3a) tightened together by a bolt,
solicited transversally by a sinusoidal shaped load. Our model, developed on Abaqus
(Fig. 3b), only represents the head of the fastener, a part of its shank and its bearing
plates. The bolt (diameter 9.52 mm, in red), is in titanium whereas the plate (with bore
clearance of 30 µm, in light grey) is in aluminum. The simulation is composed of 3
steps. The first one is an axial loading F0 to apply a preload on section Sb. A maximum
preload of 28,000 N, chosen according to Airbus standards, corresponds to 60% of the
yield strength for the Ti4Al6V. The second one is an axial torque C0 applied to the
section Sb, to consider the reaction of the nut’s threads on the bolt’s threads due to the
preload. The last one is the shear-loading of the assembly by a sinusoidal shear-load
Ft(t) at a frequency of 5 Hz, applied to the cylinder Ct.

Two contacts with Coulomb friction are modeled (Fig. 3b):

• Contact ①: Between the aluminum coated bolt’s head and the primer coated
bearing surface of the plate, f = 0.06.

• Contact ②: Between the aluminum coated bolt’s rod and the uncoated hole of the
plate, f = 0.08.

The variation of three parameters will be tested. Their values are presented Table 1.
The influence of the preload and shear-load will aim at identifying the process leading
to the self-loosening whereas the Young modulus of the bolt will highlight which
deformation implies the phenomena.

A B

Fig. 3. Definition of the complete assembly (a) and the model (b)
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2.2 The Results

Influence of the Shear-Load
In a first step, the influence of the amplitude of the shear-load has been investigated.
For each preload value, the loosening speed (i.e. the mean rotation of the bolt for one
loading cycle, measured in steady state after a stabilization time) has been plotted

versus the amplitude of the shear-load, Fig. 4.
The curves can be split into several parts from A to E:

• Part AB: The head of the fastener sticks to its bearing surface. Therefore, the bolt
cannot rotate.

• Part BC: Beyond a certain shear-load, the head starts to slip on the plate. The
loosening of the fastener can be noticed. Up to a preload of 15,000 N, this part is
vertical, which correspond to the Coulomb theory. The corresponding loading will
be qualified as “loosening load”. As soon as the solicitation reaches it, the distance
of the head’s slipping will be the clearance as the bending is negligible. For higher
preload, the shear-load necessary for the head to slip will imply the fastener
bending. Then, the slipping distance will be lower as well as the loosening speed.

Table 1. Definition of the parameters

Parameters Shear-load (N) Preload (N) Young modulus (GPa)

Number of values 50 5 10
Range of values 30–25,000 500–25,000 60–250

Fig. 4. Comparison of loosening speed versus shear-load, for different preloads.
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• Part CD: For low preload, once the fastener slides, its shank will contact the plate
hole. The sliding will be stopped and the loosening speed will be the same whatever
the shear-load in the part CD. For higher preload, the fastener will bend more, the
slipping distance and the loosening speed will be lower. But when the shear-load
increases, the contact between the shank and its hole gets closer to the head. So the
slipping distance and the loosening speed increases with the shear-load.

• Part DE: The shear-load is sufficiently high to cause the plastic deformation of the
hole, causing its ovalization, then the possible sliding distance becomes larger and
the loosening angle caused by the head slipping is higher.

Influence of the Preload
Then, the influence of the normal stress has been investigated. In order to do so, the
preload and the torque applied during the first and second simulation steps has been
changed a simulation from another. For each of them, the evolution of the loosening
load, defined by points B on Fig. 4, has been plotted on Fig. 5.

The loosening load is proportional to the preload, which matches the Coulomb
theory. This result shows that for this level of shear-load and for any preload con-
sidered, the plate’s deformation is negligible as the fastener will slide on the plate for a
specific load which could be calculated thanks to an analytical model with simple
hypothesis.

Influence of the Young Modulus
Bending and shearing of the shank are caused by the shear-loading of the fastener. In
order to define which one implies the loss of preload, the influence of the fastener
material has been investigated. The loosening speed for preload of 28,000 N and shear-
load of 10,000 N for different Young modulus of the bolt has been plotted Fig. 6.

Fig. 5. Loosening load versus the preload.
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We observe that the higher the fastener’s Young modulus is, the lower its bending
deformation is, and the more severe its self-loosening. So we can conclude that the
bending of the bolt prevents the self-loosening. This can be attributed to the contact of
the bolt shank and its hole, that happens earlier when the shank bends, and which
decreases the amplitude of the sliding of the head on the plate as seen before.

3 Conclusion

The self-loosening is a phenomenon characterized by a loss of preload within the joint
coming from unscrewing. Its root cause is the sliding of the bolt’s bearing surface
caused by an excessive shear-load. It has been proven that the early stage of the
phenomena is driving the subsequent rotation. In order to study the behavior of the bolt
during the first cycles, a simplified numerical model including only a part of the bolt
and a plate has been developed. Thanks to it, the influences of the preload, the
amplitude of shear-load and the fastener material have been investigated.

The results highlighted that whichever the preload and beyond a certain shear-load,
the bolt will self-loosen, matching the Coulomb theory. However, for high value of
preload, this simple theory is not sufficient as the bending of the bolt shank induces a
contact of the shank on its hole, which reduces the sliding of the bolt head and the
unscrewing. Finally, the shearing of the bolt has been identified as the main solicitation
implying the self-loosening. Indeed, the higher is the bolt’s bending rigidity, the more
severe is its self-loosening.
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Abstract. A plane-strain model of multiple shear bands, arranged in different
configurations, is presented in order to investigate the effects of their dynamic
interaction. Reference is made to a material stressed to the verge of instability
and subject to incoming harmonic waves of small amplitude. It is shown that
shear band arrays may be subject to resonance and corresponding shear band
growth or, conversely, to shear band annihilation. At the same time, multiple
scattering may bring about focusing or, conversely, shielding from waves.

Keywords: Shear band � Wave propagation � Pre-stress

1 Introduction

Interaction of shear bands has been documented so far for quasi-static deformation
processes [1], where it has been shown that different shear band patterns emerge as
related to load conditions and material properties of the samples, and where parallel,
aligned, and converging shear bands [2] are frequently observed. In dynamics, results
are restricted to high strain-rate loading, where numerical simulations [3] have been
presented. In this context, experiments on metallic glass [4] show the development of a
complex texture of multiple shear bands, with complex interactions.

Direct experimental investigation on the fine development of shear bands in a
material and their effect on the stress field during time-harmonic vibrations remains
difficult to be carried out, so that mechanical modelling represents the worthwhile way
to shed light on a complex phenomenon, whose comprehension is a key point for
engineering materials with enhanced mechanical properties.

In this paper, shear bands of finite length are idealized as discontinuity surfaces,
formed inside the infinite medium at a certain stage of a continuous deformation. Each
shear band is seen as a weak surface whose faces can freely slide, but are constrained to
remain in contact.

2 Constitutive Equations

The incremental behaviour of an infinite, incompressible, nonlinear elastic material,
homogeneously deformed under plane strain condition, is considered. According to
Biot [5], the constitutive relations between the nominal stress increment _tij and the
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gradient of incremental displacement vi;j (a comma denotes partial differentiation) can
be expressed in the principal reference system of Cauchy stress (here denoted by axes
x1 and x2) as follows

_tij ¼ Kijklvl;k þ _pdij ð1Þ

where repeated indices are summed and range between 1 and 2, dij is the Kronecker
delta, _p is the incremental hydrostatic stress and Kijkl are the instantaneous moduli.
These moduli possess the major symmetry Kijkl ¼ Kklij and are functions of principal
components of Cauchy stress, r1 and r2, describing the pre-stress, and of two incre-
mental moduli l and l� (which can depend arbitrarily on the current stress and strain)
corresponding to shearing parallel to, and at 45° to, the principal stress axes. The non-
null components are:

K1111 ¼ l� �
r
2
� p; K1122 ¼ K2211 � l�; K2222 ¼ l� þ

r
2
� p ð2Þ

K1212 ¼ lþ r
2
; K1221 ¼ K2112 ¼ l� p; K2121 ¼ l� r

2

with

r ¼ r1 � r2; p ¼ r1 þ r2ð Þ=2: ð3Þ

Equation (1) is complemented by the incompressibility constraint for incremental
displacement vi

vi;i ¼ 0: ð4Þ

Constitutive Eqs. (1)–(4) describe a broad class of material behaviors, including all
possible elastic incompressible materials which are isotropic in an initial state, but also
materials which are orthotropic with respect to the principal stress directions.

3 The Boundary Value Problem

In Fig. 1 possible different arrays of shear bands, each one of total length 2l, are
represented together with local reference systems ðx̂1; x̂2Þ centered on each shear band,
with x̂1-axis aligned parallel to the shear band, and rotated at an angle h with respect to
the principal reference system ðx1; x2Þ introduced for constitutive Eq. (1).

According to the model described in [6], by introducing the jump operator for a
generic function f, smooth on two regions labeled “+” and “−”, and discontinuous
across the surface Sn of the nth shear band, as

f½ �½ � ¼ f þ � f� ð5Þ
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where f� denote the limits approached by function f at the faces of the discontinuity
surface, the boundary conditions at shear band surface Sn can be written as

v̂2½ �½ � ¼ 0; t̂22½ �½ � ¼ 0; t̂21 ¼ 0 ð6Þ

with v̂i, t̂ij being incremental displacement and incremental stress components in the
local reference system.

Time-harmonic incident shear waves of circular frequency X characterized by
incremental displacement field vinc xð Þ, with amplitude A and phase velocity c, prop-
agation direction p and direction of motion d, are considered

vinc ¼ Adei
X
c x�p�ctð Þ ð7Þ

so that the total incremental displacement field v(x) is given by the sum of the incident
and of the scattered field vsc xð Þ.

The dynamic response of the medium in terms of total incremental displacement
field can be found by adopting integral representations for the wave-fields as is shown
in [7], using the infinite body Green function [8]. The system of boundary integral
equations in the unknown scalar functions v̂1½ �½ � at each Sn, i.e. the jumps of tangential
incremental displacement across the faces of each shear band, has been given in [7].

4 Numerical Examples

Using a collocation method, the boundary integral equation system in [7] can be
transformed into a linear algebraic system where the unknown nodal values of dis-
placement jumps across shear band faces can be determined in terms of known nodal
values of incident tangential tractions on shear bands. To this purpose, each shear band
is subdivided into Q line elements (Q = 100), and a quadratic variation of the incre-
mental displacement jump is assumed within each line element, with the exception of
two line elements situated at the shear band tips, where a square root variation is
adopted to take into account the singularity at the shear band tip.

Fig. 1. Arrays of shear bands: a parallel; b aligned; c converging; d with 4 shear bands.
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A ductile low-hardening metal, modelled through the J2-deformation theory of
plasticity [9–11], with the hardening exponent N = 0.4 (representative of a medium
carbon steel) is considered. A level of prestress close to the elliptic boundary, with
k ¼ r=2l ¼ 0:87 and n ¼ l=l� ¼ 0:26, corresponding to shear band inclination
h ≅ ±26°, is assumed so that some shear bands are expected to be already formed.

The material response to shear waves with angle of incidence b (see Fig. 1) and
wavenumber Xl=c1 ¼ 1 (c1 is the propagation velocity in the direction of x1-axis), is
shown in terms of modulus of the incremental deviatoric strain field for arrays of shear
bands which are parallel (Fig. 2), aligned (Fig. 3), converging (Fig. 4) or formed by

Fig. 2. Parallel shear bands with parallel incident wave (b = h).

Fig. 3. Aligned shear bands with parallel incident wave (b = h).
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four shear bands (Fig. 5). In all figures, maps show the scattered wave-field on the left
hand side and the total wave-field on the right hand side, with the exception of Fig. 4
where only the total wave-field is reported.

Fig. 4. Converging shear bands with different angles of wave incidence (distance d = l/10).

Fig. 5. Four shear bands with horizontal incident wave (b = 0).
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In Fig. 2, graphs on the right side are cross-sections of the scattered deviatoric
strain along x̂2-axis, at the shear band centre. The two cases differ only in the distance
d between the shear bands, with d ¼ 2:5kp=2þ h or d ¼ 4kp=2þ h, where ka is the
wavelength in the propagation direction singled out by angle a. Analogously, in Fig. 3
where a = h.

In Fig. 4a, the dimensionless stress intensity factor is reported as a function of the
angle b of wave incidence. It can be seen that when the wave travels orthogonal to one
shear band, the relevant shear band tip is unloaded. This effect, which corresponds to
annihilation of a shear band, is visible in parts (c) and (d) of the same figure, where one
shear band (dashed white line) “disappears”, while the other one is “highlighted”.

In Fig. 5, focusing of signal is noted in the area circumscribed by shear bands at a
distance d ¼ 8kp=2þ h, whereas shielding is evidenced at a distance d ¼ 8:5kp=2þ h

producing an “island of stress relief”.
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Dynamic Failure of Granular Slopes:
Due to Unidirectional Stress Transfer

or Multi-dimensional Wave Propagation?
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Abstract. In order to numerically study fracture development in solids, models
composed of discrete elements are often assumed instead of those based on
continuum mechanics. Although realistic results have been obtained through the
investigation of discontinua, the real fracture process in discrete media, in
particular that under dynamic loading conditions, has not been experimentally
scrutinized thoroughly. Here, we employ experimental technique of dynamic
photoelasticity in conjunction with high speed cinematography and trace evo-
lution of fracture inside discontinuous media. Especially, we consider dynamics
of two-dimensional dry granular slopes consisting of penny-shaped birefringent
elastic particles and having some inclination angle. The observations of transient
stress and fracture development owing to dynamic impact on the top slope
surface indicate that at least two specific failure patterns exist and whichever
occurs seems to be governed by force-chain-like unidirectional stress transfer
and continua-like multi-dimensional wave propagation.

Keywords: Dynamic slope failure � Fracture dynamics � Waves and fracture �
Force chain � Granular media

1 Unexpected Earthquake-Induced Slope Failure

Although the strong influence of tsunamis was highlighted, the seismic waves gener-
ated by the 2011 off the Pacific coast of Tohoku, aka Great East Japan, earthquake did
directly affect the natural and man-made structures severely, particularly in the
northeastern part of Japan. One unexpected and puzzling phenomenon found on that
occasion is the dynamically induced tensile cracks in fill slopes in Sendai that extended
rather straight and parallel to the upper edge in the top slope surface [1]. To be peculiar,
the cracks were located some meters away from the edge, and basically no other
damage to the slopes appeared. Very similar open cracks were produced exactly in the
same slopes by the 1978 Miyagi-ken-oki earthquake [2]. It is noteworthy that the slopes
were reinforced with steel pipe piles after the 1978 quake using the conventional
countermeasures that normally take into account the body wave effect. Not well-
known, but this kind of seismic failure was reported at other sites including California,
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the United States, in 1906, 1957 and 1989, as well as the South Island, New Zealand, in
2011. Efforts have been made to reproduce the observed failure pattern through the
mechanical analyses of body wave interaction with continuum model slopes, but the
exact mechanisms behind have not been fully identified. Even in time-dependent
simulations of discontinuous granular slopes, the effect of wave propagation on
dynamic fracture is usually neglected and only granular mass flow, i.e. almost simul-
taneous and total collapse of a slope is illustrated. Hence the single damage, or tensile
cracks in the top surface, cannot be numerically produced.

2 Experimental Observations of Impact-Generated Wave
Propagation and Particle Motion in Granular Slopes

Lately, from a time-harmonic analysis of continua [2] and a dynamic particle simu-
lations [1], we have theoretically suggested more significant roles played by Rayleigh
surface waves than body waves in producing tensile cracks in slopes. Also experi-
mentally, utilizing the technique of dynamic photoelasticity, we have examined the
propagation of Rayleigh waves in vertical and inclined model slopes made of con-
tinuous polycarbonate [3]. In this contribution, experimentally but in place of continua,
we study wave propagation and fracture evolution in a two-dimensional dry granular
slope composed of penny-shaped photoelastic particles [4]. We trace the particle
motion and stress development inside every particle due to dynamic impact on the top
free surface of the slope that is imparted, e.g. by an airsoft gun-launched projectile. The
photographs taken by a high speed digital video camera show the presence of at least
two failure patterns in the granular slope that are controlled by the mode of energy
transmission. One is mass flow or total collapse of the slope related to unidirectional
stress transfer that is similar to force chains found in quasi-static models. The other is
toppling failure-like separation of the slope face only, which is induced by propagation
of multi-dimensional waves caused and widely radiated owing to impact.
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Program (No. 16K06487).
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Abstract. The method of Singular Integral Relations (SIR) for solving prob-
lems of stationary thermoelasticity for a piecewise homogeneous transversely
isotropic space is generalized. Using the SIR method, the stationary thermoe-
lasticity problem for interphase circular inclusion that is in smooth contact with
piecewise homogeneous transversely isotropic space is reduced directly to a
system of two-dimensional singular integral equations (SIE) with nuclei, which
are expressed through elementary functions. An exact solution has been built for
the said SIS; as a result, dependences of the translational displacement of the
inclusion on temperature, the resulting load, the main momentum and the
thermomechanical characteristics of transversely isotropic materials have been
obtained. The order of the features of stresses and displacements jump is
determined. Expressions for the stress intensity factor at the boundary of the
inclusion are obtained, as well as numerical dependences of these coefficients on
the polar angle, temperature and loads.

Keywords: Thermoelasticity problem � Interphase circular inclusion � Singular
integral equations � Piecewise-homogeneous transversely isotropic space

1 Formulation of the Problem

Let the heat active absolutely rigid interphase inclusion occupying a circular area

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
� a

n o
; in the plane x3 ¼ 0 of the connection of two different trans-

versely isotropic half-spaces, is in smooth contact with the specified half-spaces. The
inclusion of an arbitrary applied load, which leads to the resultant force P ¼ ðP1;P2;P3Þ
and the main moment M ¼ ðM1;M2;M3Þ. The location of the face of inclusion after
deformation describe the function

f�6 ¼ f06 þ#�
0 ðx1; x2Þ; f�k ¼ f0k ; k ¼ 4; 5; ðx1; x2Þ 2 X

f04 ¼ d1 � u3x3; f05 ¼ d2 þu3x1; f06 ¼ d3 þu2x2 þu1x2; ð1Þ
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ff�k g8k¼1 ¼ fr3ðx1; x2;�0Þ; r4ðx1; x2;�0Þ; r5ðx1; x2;�0Þ; u1ðx1; x2;�0Þ;
u2ðx1; x2;�0Þ; u3ðx1; x2;�0Þ; Tðx1; x2;�0Þ;Qðx1; x2;�0Þg;

r ¼ frkg6k¼1 ¼ frx; ry; rz; syz; sxz; sxyg; u ¼ fukg3k¼1 ¼ fu; v;wg;

#�
0 ðx1; x2Þ setting the form of inclusion, respectively, when x3 ¼ �0; dk;uk;

k ¼ 1; 2; 3—translational movements and turning angles around the corresponding
axes; Tðx1; x2; x3Þ—temperature; Qðx1; x2; x3Þ—heat flow.

On the inclusion of specified heat flux, and the inclusion faces are in smooth
contact with the half-spaces. In this case the boundary conditions in a plane x3 ¼ 0 we
shall write so

v�4 ðx1; x2Þ ¼ ð1� 1Þf04; v�5 ðx1; x2Þ ¼ ð1� 1Þf05
v�6 ðx1; x2Þ ¼ #�ðx1; x2Þþ ð1� 1Þf06; #� ¼ #þ

0 � #�
0 ; ðx1; x2Þ 2 X

f�8 ðx1; x2;�0Þ ¼ qðx1; x2Þ; ðx1; x2Þ 2 X;

v�k ðx1; x2Þ ¼ 0; k ¼ 1; 7; ðx1; x2Þ 62 X; kþ
3 @2f7ðx1; x2; þ 0Þ ¼ k�3 @2f7ðx1; x2;�0Þ;

ð2Þ

v�k ¼ hfkðx1; x2Þi� ¼ fþk ðx1; x2Þ � f�k ðx1; x2Þ; k ¼ 1; 8; ðx1; x2Þ 2 X

For definiteness, we assume that the heat flux given in the region X varies linearly

qðx1; x2Þ ¼ q0
X1
i;j¼0

bijxi1x
j
2

Given the conditions (2) and using the method of the SIR [2–6], relatively unknown
jumps of the normal stresses, the tangential displacements and temperature v�k ðx; yÞ
ðk ¼ 1; 4; 5; 7Þ; we obtain the following system of two-dimensional SIE.

1
2p

ZZ
X

q21v
�
1 @2

1
r0

þ q�23v
�
4 @

2
12

1
r0

þ v�5 q23@
2
2
1
r0

� ~q12@
2
1
1
r0

� �� �
dn1dn2 ¼ g1ðx1; x2Þ

1
2p

ZZ
X

q21v
�
1 @1

1
r0

þ v�4 q23@
2
1
1
r0

� ~q12@
2
2
1
r0

� �
þ q�23v

�
5 @

2
12

1
r0

� �
dn1dn2 ¼ g2ðx1; x2Þ

ð3Þ

1
2p

ZZ
X

q41v
�
1
1
r0

þ q43 v�4 @1
1
r0

þ v�5 @2
1
r0

� �� �
dn1dn2 ¼ g3ðx1; x2Þ;
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� q65
2p

ZZ
X
v�7

1
r30
dtds ¼ vþ

8

gj ¼ �q24@3�jv
�
6 � q25

ZZ
X
v�7 @3�j

1
r0
dn1dn2; j ¼ 1; 2;

g3 ¼ vþ
6 � q44v

�
6 � q45

ZZ
X
v�7

1
r0
dn1dn2

To determine the unknowns d3;u1;u2 need to use the following conditions of force
and moment equilibrium.

ZZ
X
v1ðx1; x2Þdx1dx2 ¼ P3;

ZZ
X

x1
x2

� �
v1ðx1; x2Þdx1dx2 ¼ M1

M2

� �
ð4Þ

2 The Solution of the SIE

Following the work [1–8] after the introduction of combinations of jumps and sums
s� ¼ v�3 þ iv�2 ; u

� ¼ v�4 þ iv�5 ; and the transition to the polar coordinates, we look for
the solution of the problem in the form

v�j q;uð Þ ¼
X1
n¼�1

Vj;�
n qð Þeinu; Vj;�

n qð Þ ¼ 1
2p

Zp
�p

v�j q;uð Þe�inudu; j ¼ 1; 3; 5; ð5Þ

where

v�1 ðr;uÞ ¼ v�1 ðq cosu; q sinuÞ; v�3 ðr;uÞ ¼ e�iuu�ðq cosu; q sinuÞ;

fv�k g8 ¼ fhrzi�; hszui�; hszqi�; huqi�; hvui�; hwi�; hTi�hqi�g

u�ðq cosu; q sinuÞ ¼ eiuu�ðq;uÞ; u� ¼ v�4 þ iv�5

Relatively Vj;�
n qð Þ, a system of integral equations with Weber-Sonin cores was

obtained, the decision of the latter [1, 4–6] allowed us to obtain explicit expressions for
the jumps of the normal stresses and tangential displacements:

v�1 ðq;uÞ ¼
2
p

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p 2
b�21 Bj j d3 þ h0 þ ~s21b�11a

�3

2b1
Reðf Tn e�iuÞþ b2Reð/12e

iuÞ
� �

� s11W�
0;0½F�

0 ðqÞ� � ~s11V
5;�
0 � ~s11ReðV5;�

1 eiuÞ;
ð6Þ
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v�3 ðq;uÞ ¼ � 2s21
pq

fa�1f�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p
� L½F�

0 ðqÞ�g � ~s21fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p
� aÞa�1f T0

þ~s21
2b00
3q

ða3 � ða2 � q2Þ3=2ÞgþV3;�
�1 ðqÞe�iu þV3;�

1 ðqÞeiu
ð7Þ

V3;�
�1 ¼ 1

p

~b1
2b1

~s21
a3

�f T1 þ b�22ð2b1 � ~b1Þ
b1

/12

( ) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p
þ 4

3
~s21ðb10 þ b01iÞ

Zq
0

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
dr

V3;�
1 ðqÞ ¼ q�2~s21

2
p
f T1
a3

Zq

0

r3drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p � 4
3
ðb10 � b01iÞ

Zq

0

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
dr

8<
:

9=
;

b1 ¼
b�21~q

�
23 þ 2

2~q�23

� �
; b2 ¼

b�12b1 � b�22b
�
11

2b1
; h0 ¼ b�11

b�21
a�1 s21f� þ~s21f

T
0

	 

;

f� ¼
Za

0

tF�
0 ðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � t2

p ; f Tn ¼ p
Za

0

V5;�
n ðqÞqnþ 1dq; V5;�

0 ðqÞ ¼ 2b00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p
;

V5;�
�1 ¼ 4

3
b10 � b01ið Þq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p
; sj1 ¼ b�j1q24 þ b�j2q44; ~sj1 ¼ b�j1q25 þ b�j2q45

B ¼ bjm
� �2¼ q21 ~qþ

23
q41 q43

� �
; Bj j ¼ q21q43 � q41~q

þ
23 ; ~q�23 ¼ 0:5 q�23 � qþ

23

	 


Expressions for translational displacementswill be determined from the conditions (8)

d3 ¼ b�21 Bj j
4a

P3 � b�f� � bT f
T
0

u1 ¼
3b2
2a3

M1 � 3
2a3

b2b
T
1 Im f T1

	 

; u2 ¼

3
8a3

b2M2 � 3
8a3

b2b
T
1Re f T1

	 
 ð8Þ

b� ¼
b�21 Bj jðb�11s21 � s11b�21Þ

2a
; bT ¼ b�21 Bj jðb�11~s21 � ~s11b�21Þ

2a
;

bT1 ¼ 4
3
a3

b�11~s21
b1

� ~s112p

In Figs. 1 and 2 present the dependence of the generalized intensity coefficient
(GIC) from the polar angle u of the heat flux q0 and the resulting moments M1;M2. The
magnitudes of the moments in Figs. 1 and 2 differ by an order of magnitude, i.e. M1 ¼
M2 ¼ 20 for the first picture andM1 ¼ M2 ¼ 200 for the second. It can be seen from the
figures that the value of the heat flux and the moments on the inclusion significantly affect
the values of GIC. The GIC values also depend on the polar angle, which shows the
anisotropy effect of the thermoelastic properties of materials on the GIC.
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Fig. 1. The generalized intensity coefficient (GIC) from the polar angle u of the heat flux q0 and
the resulting moments M1 ¼ M2 ¼ 20

Fig. 2. The generalized intensity coefficient (GIC) from the polar angle u of the heat flux q0 and
the resulting moments M1 ¼ M2 ¼ 200
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Similarly can be obtained the exact solution of the problem of stationary ther-
moelasticity with different conditions of contact interaction of interfacial inclusions
with a piecewise homogeneous transversely isotropic space.
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Unsteady Elastic Diffusion Oscillations
of a Timoshenko Beam with Considering

the Diffusion Relaxation Effects

O. A. Afanasieva1, U. S. Gafurov1,2, and A. V. Zemskov1,2(&)

1 Moscow Aviation Institute (National Research University), Moscow, Russia
azemskov1975@mail.ru

2 Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia

Abstract. The unsteady Timoshenko beam oscillations with mass transfer
considering are investigated. In general formulation, the beam is under the
action of tensile forces, bending moments and shearing forces given at its ends.
The densities of diffusion fluxes are also given at ends. All the above factors are
in the plane of the beam bend. To solve the obtained problem, the Laplace
integral transform on time and Fourier series expansion on spatial coordinate are
used.

Keywords: Mechanodiffusion � Elastic diffusion � Timoshenko beam �
Unsteady oscillations

1 Problem Formulation

The plane unsteady oscillations problem of Timoshenko beam is considered. The
scheme of the applied forces and bending moments, as well as the orientation of the
axes of the rectangular Cartesian coordinate system is shown in Fig. 1.

The equations of beam transverse oscillations are obtained on the basis of the
Hamilton variational principle as a condition for the functional stationarity. Variation of
the functional H ui;g qð Þ� �

has the form [1]

dH ¼
Zt2
t1

ds
Z
G

€ui � @rij

@xj
� Fi

� �
duidGþ

XN
q¼1

Zt2
t1

ds
Z
G

_g qð Þ þ @J qð Þ
i

@xi
� Y qð Þ

 !
dg qð ÞdG

þ
Zt2
t1

ZZ
Pr

rijnj � Pi
� �

duidSdsþ
XN
q¼1

Zt2
t1

ZZ
PJ

J qð Þ
i � I qð Þ

i

� �
nidg

qð ÞdSds;
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where rij and J qð Þ
i are the stress tensor components and the diffusion flux vector

respectively, which are defined as follows q ¼ 1;N
� �

[1–3]:

rij ¼ Cijkl
@uk
@xl

�
XN
q¼1

a qð Þ
ij g qð Þ; J qð Þ

i þ sq _J
qð Þ
i ¼ �D qð Þ

ij
@g qð Þ

@xj
þK qð Þ

ijkl
@2uk
@xj@xl

:

Here the dots denote the time derivative. All quantities are dimensionless. For them
the following notation is used

xi ¼ x�i
l
; ui ¼ u�i

l
; s ¼ Ct

l
; Cijkl ¼

C�
ijkl

C1111
; C2 ¼ C�

1111

q
; a qð Þ

ij ¼ a� qð Þ
ij

C1111
;

D qð Þ
ij ¼ D� qð Þ

ij

Cl
; K qð Þ

ijkl ¼
m qð ÞD� qð Þ

ij a� qð Þ
kl n qð Þ

0

qRT0Cl
; Fi ¼ qlF�

i

C1111
; Y qð Þ ¼ lY� qð Þ

C
;

where t is time; x�i are rectangular Cartesian coordinates; q is the medium density; u�i
are displacement vector components; C�

ijkl are elastic constant tensor components; T0 is

initial temperature; D� qð Þ
ij are the self-diffusion coefficients; R is the universal gas

constant; m qð Þ is the molar mass; g qð Þ ¼ n qð Þ � n qð Þ
0 is the concentration increment of q-

th component in the N-component medium; n qð Þ
0 and nðqÞ are the initial and actual

concentrations (mass fractions); a� qð Þ
ij are coefficients characterizing the medium vol-

umetric changes due to diffusion; l is beam length; Pi, I
qð Þ
i are mechanical and diffusive

surface perturbations Fi and Y qð Þ are mechanical and diffusive bulk perturbations; s qð Þ is
relaxation time of diffusion perturbations.

Fig. 1. Illustration to problem formulation.
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Further, for the bending equations formulation, we assume that:

– the beam material is a homogeneous orthotropic continuum (k and l are Lame
coefficients)

Cijkl ¼ kdijdkl þ l dikdjl þ dildjk
� �

; K qð Þ
aabb ¼ Kq; a qð Þ

aa ¼ aq; D qð Þ
aa ¼ Dq;

– the transverse deflections are considered small,
– the cross-sections that are normal to the beam axis before deformation, remain flat

even after deformation (the hypothesis of flat sections).

Then the desired values linearization by the spatial variable x2 takes the form [4, 5]:

u1 x1; x2; sð Þ ¼ u x1; sð Þþ x2v x1; sð Þ; u2 x1; x2; sð Þ ¼ v x1; sð Þþ x2w x1; sð Þ;
g qð Þ ¼ Nq x1; sð Þþ x2Hq x1; sð Þ:

Using the necessary condition for the functionals stationarity, we obtain the
unsteady plane bending model of Timoshenko elastic diffusion beam

€v� lk2 v00 � v0ð Þ þF1 ¼ 0;

€v� v00 � F
J3
lk2 v0 � vð Þþ PN

q¼1
aqH0

q þF2 ¼ 0;

_Hq þ sq €Hq � DqH00
q � Kqv000 þFqþ 2 ¼ 0;

ð1:1Þ

v0 þ
XN
q¼1

aqHq

 !�����
x1¼0

¼ f21 sð Þ; v0 þ
XN
q¼1

aqHq

 !�����
x1¼1

¼ f22 sð Þ;

vjx1¼0¼ f11 sð Þ; vjx1¼1¼ f12 sð Þ; Hq

��
x1¼0¼ fqþ 2;1 sð Þ; Hq

��
x1¼1¼ fqþ 2;2 sð Þ;

ð1:2Þ

F1 x; sð Þ ¼ � q x; sð Þ
F

; F2 x; sð Þ ¼ �m x; sð Þ
J3

; Fqþ 2 x; sð Þ ¼ � z qð Þ x; sð Þ
J3

;

f11 sð Þ ¼ V0 sð Þ; f12 sð Þ ¼ V1 sð Þ; fqþ 2;1 sð Þ ¼ Hq0 sð Þ; fqþ 2;2 sð Þ ¼ Hq1 sð Þ;

f21 sð Þ ¼ �M0 sð Þ
J3

; f22 sð Þ ¼ �M1 sð Þ
J3

:

where F is the cross-sectional area, J3 is moment of inertia of the beam section relative
to the axis Ox3, m is the linearly distributed moment, q is the linearly distributed
transverse load; z qð Þ is the linearly distributed sources of mass transfer. The remaining
external force factors are presented in Fig. 1.

The coefficient k considering the uneven distribution of tangential stresses over the
beam cross-section [5]. If the tangential stresses are distributed according to the
Zhuravsky formula, then for a rectangular beam section of unit thickness and height
h there is an equality k2 ¼ 5=6:
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2 Solution Method

The solution of the problem (1.1), (1.2) is represented as (k ¼ 1;N þ 1) [6, 7]:

v x; sð Þ
v x; sð Þ
gq x; sð Þ

8><
>:

9>=
>; ¼

XNþ 2

k¼1

Zs

0

G1k x; s� tð Þ
G2k x; s� tð Þ
Gqþ 2;k x; s� tð Þ

8><
>:

9>=
>;fk1 tð Þþ

G1k 1� x; s� tð Þ
G2k 1� x; s� tð Þ
Gqþ 2;k 1� x; s� tð Þ

8><
>:

9>=
>;fk2 tð Þ

2
64

3
75dt

þ
XN þ 2

k¼1

Zs

0

Z1

0

~G1k x; n; s� tð Þ
~G2k x; n; s� tð Þ
~Gqþ 2;k x; n; s� tð Þ

8><
>:

9>=
>;Fk n; tð Þdndt:

ð2:1Þ

Here x = x1; Gmk are surface Green’s functions satisfying the equations

€G1k � l k2 G00
1k � G0

2k

� � ¼ 0;

€G2k � G00
2k �

F
J3

l k2 G0
1k � G2k

� �þ XN
q¼1

aqG
0
qþ 2;k ¼ 0;

_Gqþ 2;k þ sq €Gqþ 2;k � DqG00
qþ 2;k þKqG000

2k ¼ 0;

ð2:2Þ

and boundary conditions:

G1kjx1¼0¼ d1kd sð Þ; G1kjx1¼1¼ 0; Gqþ 2;k

��
x1¼0¼ dqþ 2;kd sð Þ; Gqþ 2;k

��
x1¼1¼ 0;

G0
2k �

PN
j¼1

ajGjþ 2;k

 !�����
x1¼0

¼ d2kd sð Þ; G0
2k �

PN
j¼1

ajGjþ 2;k

 !�����
x1¼1

¼ 0:

ð2:3Þ

~Gmk are bulk Green’s functions satisfying the equations

€~G1k � lk2 ~G00
1k � ~G0

2k
� �þ d1kd x� nð Þd sð Þ ¼ 0;

€~G2k � ~G00
2k � F

J3
lk2 ~G0

1k � ~G2k
� �þ XN

q¼1

aq ~G0
qþ 2;k þ d2kd x� nð Þd sð Þ ¼ 0;

_~Gqþ 2;k þ sq
€~Gqþ 2;k � Dq ~G00

qþ 2;k þKq ~G000
2k þ dqþ 2;kd x� nð Þd sð Þ ¼ 0:

and homogeneous boundary conditions corresponding to (2.3).
To find the surface Green’s functions, the Laplace transform and Fourier series

expansion are used. As a result, we obtain the following representations for the surface
Green functions Gmk.
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G1k x; sð Þ
Gqþ 2;k x; sð Þ

	 

¼
X1
n¼1

Gs
1k kn; sð Þ

Gs
qþ 2;k kn; sð Þ

	 

sinknx;

G2k x; sð Þ ¼ Gc
2k 0; sð Þ
2

þ
X1
n¼1

Gc
2k kn; sð Þcosknx;

Gs
ik kn; sð Þ ¼

X2Nþ 2

j¼1

A jð Þ
ik knð Þesj knð Þs; A jð Þ

ik knð Þ ¼ Pik kn; sj knð Þ� �
P0 kn; sj knð Þ� � ;

Gs
qþ 2;1 kn; sð Þ ¼

X2Nþ 2

j¼1

A jð Þ
qþ 2;1 knð Þesj knð Þs; A jð Þ

qþ 2;1 knð Þ ¼ Pqþ 2;1 kn; sj knð Þ� �
P0 kn; sj knð Þ� � ;

Gs
qþ 2;pþ 2 kn; sð Þ ¼

X2
l¼1

A 2Nþ 2þ lð Þ
qþ 2;pþ 2 knð Þþ 2kn Dqdpq � Kqap

� �
1þ 2sqnl knð Þ

� �
enl knð Þs

þ
X2Nþ 2

j¼1

A jð Þ
qþ 2;pþ 2 knð Þesj knð Þs;

Gs
qþ 2;2 kn; sð Þ ¼

X2
l¼1

A 2Nþ 2þ lð Þ
qþ 2;2 knð Þ � 2Kqkn

1þ 2sqnl knð Þ
� �

enl knð Þsþ
X2N þ 2

j¼1

A jð Þ
qþ 2;2 knð Þesj knð Þs;

A jð Þ
qþ 2;pþ 2 knð Þ ¼ Pqþ 2;pþ 2 kn; sj knð Þ� �

Q0
q kn; sj knð Þ� � ; A jð Þ

qþ 2;2 knð Þ ¼ Pqþ 2;2 kn; sj knð Þ� �
Q0

q
kn; sj knð Þ� � ;

n1;2 knð Þ ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sqDqk

2
n

q
2sq

;

where P kn; sð Þ, Pkm kn; sð Þ are polynomials depend on s. Their explicit form is not given
here. sj knð Þ are simple zeros of polynomial P kn; sð Þ; Qq kn; sð Þ ¼
sþ sqs2 þDqk

2
n

� �
P kn; sð Þ.

Algorithm for the bulk Green’s functions ~Gmk is similar. Substituting the obtained
expressions for the Green’s functions into convolutions (2.1), we obtain the problem
solution of the Timoshenko beam bending in formulation (1.1) and (1.2).

Thus, the coupled unsteady model of elastodiffusive Timoshenko beam oscillations
is presented. An algorithm for the surface Green functions constructing of the problem
is proposed. Based on the developed model, the interaction of mechanical and diffusion
fields is investigated.
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Interphase Inclusion and Crack
in an Inhomogeneous Anisotropic Plane
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Abstract. In the inhomogeneous anisotropic plane the problem about interac-
tion between interphase crack and inclusion, which is in the conditions of full
cohesion, was considered. Using the method of singular integral relations for
interphase defects, the problem was reduced to the system of singular integral
equations, and the method for its solution is proposed. As a result, the effect of
the distance between defects, the loading applied to them and the properties of
anisotropic materials on the features of the stress fields in the neighborhood of
defects was investigated. In particular, the critical distance between the crack
and the inclusion, according to which the mutual influence of the defects is
significant, was established. It was also established under what loads it is
advisable to remain within the singular statement of the problem without taking
into account the contact zones of the crack edges.

Keywords: Inhomogeneous anisotropic plane � Interphase crack and inclusion �
Systems of singular integral equations � Stresses � Stress intensity factor

1 Statement of the Problem

The inhomogeneous anisotropic plane consisting of two different anisotropic half-
planes was considered. The conjunction line of these half-planes is the Oy axis on
which the crack L1 : fx ¼ 0; y 2 ½a; b�g and the absolutely rigid, thin inclusion
L2 : fx ¼ 0; y 2 ½c; d�g, ða\b\c\dÞ, which is in the conditions of full cohesion with
anisotropic materials, are located. At the infinity the forces are applied that generate the
stresses rxð�0; yÞ ¼ rðyÞ, sxyð�0; yÞ ¼ sðyÞ, y 2 ½a; b� on the crack edges. The shapes
of the inclusion edges u�� ðyÞ ¼ uð�0; yÞ, y 2 L2 are given, and the arbitrary load is
applied to the inclusion, which reduces to the resultant force P ¼ ðP1;P2Þ and creates
the moment P0 relatively to the inclusion center.

To reduce the problem to the system of singular integral equations (SIE) the method
of singular integral relations was applied [1–10]. As a result, the following matrix SIE
was obtained relatively to the unknown stresses jumps H�

j ðyÞ; j ¼ 1; 2 and the
derivatives of displacements H�

j ðyÞ; j ¼ 3; 4.

BðjÞ � tðjÞðyÞþC jð Þ � C1½tðjÞ� þCðjÞ
� � C2½tðjÞ� ¼ pðjÞðyÞ; y 2 Lj j ¼ 1; 2: ð1Þ
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Cj½f � ¼ 1
p

Z
Lj

f ðtÞdt
t � y

; t 1ð ÞðyÞ ¼ H�
3 ðyÞ

H�
4 ðyÞ

� �
; t 2ð ÞðyÞ ¼ H�

1 ðyÞ
H�

2 ðyÞ
� �

;

p 1ð ÞðyÞ ¼ 2l
rðyÞ
sðyÞ

� �
; p 2ð ÞðyÞ ¼ 2l

0

dþ gþ ðyÞ

� �
;B 1ð Þ ¼ r�4 0

0 �r�4

� �
;

B 2ð Þ ¼ r�54 0

0 �r�54

� �
;C 1ð Þ ¼ �rþ1 rþ2

rþ3 �rþ1

� �
;C 1ð Þ

� ¼ rþ14 rþ24
�rþ34 �rþ14

� �
;

C 2ð Þ ¼ �rþ15 �rþ25
�rþ35 �rþ15

 !
;C 2ð Þ

� ¼ �rþ14 rþ24
�rþ34 rþ14

� �
;

where 2l ¼ rþ2 rþ3 � ðrþ1 Þ2 � ðr�4 Þ2, and r�j ; r
�
ij depend from the elastic properties of

anisotropic half-planes [1], 2gþ ðyÞ ¼ ðuþ
� ðyÞþ u�� ðyÞÞ0y, d—the unknown angle of

inclusion rotation. The statement of the problem completes the additional conditions

Zb

a

t 1ð Þ yð Þdy ¼ 0;
Zd

c

t 2ð Þ yð Þdy ¼ P;
Zd

c

H�
1 yð Þydy ¼ P0: ð2Þ

2 Solution the System of SIE

Using the approach of works [1–6], the matrix SIE (1) was applied as follows

JðjÞ � sðjÞðyÞþCj½s jð Þ� þVðjÞ � C3�j½sð3�jÞ� ¼ UðjÞ � pðjÞðyÞ; y 2 Lj; j ¼ 1; 2 ð3Þ

sðjÞðyÞ ¼ ðSðjÞÞ�1 � tðjÞðyÞ; UðjÞ ¼ ðCðjÞ � SðjÞÞ�1; V jð Þ ¼ U jð Þ � C jð Þ
� � S 3�jð Þ

S 1ð Þ ¼ rþ2 rþ2
rþ1 � ik01 rþ1 þ ik01

� �
; S 2ð Þ ¼ �rþ25 �rþ25

rþ15 � ik02 rþ15 þ ik02

 !
; J jð Þ ¼ k2j�1 0

0 k2j

� �
;

kj ¼ �1ð Þjþ 1ir�4 d
�1
1 k01; j ¼ 1; 2; k01 ¼ sgnðr�4 Þ �

ffiffiffiffiffi
d1

p
; d1 ¼ rþ2 � rþ3 � ðrþ1 Þ2;

kj ¼ �1ð Þjþ 1ir�54d
�1
2 k02; j ¼ 3; 4; k02 ¼ sgnðr�54Þ

ffiffiffiffiffi
d2

p
; d2 ¼ rþ25 � rþ35 � rþ15

� �2
:

The analysis of the solutions of the matrix SIE (3) led to the conclusion that the
stresses at the ends of the crack and inclusion have a root singularity reinforced
oscillation. The latter makes it possible to construct the solutions in the form of series

by Jacobi polynomials P
�cj;cj
n ðnÞ:

TjðnÞ ¼ sj
b� a
2

nþ bþ a
2

� �
¼
X1
n¼1

qjn � Qcj
n ðnÞþ qj0 � x�1

j ðnÞ; nj j � 1; j ¼ 1; 4;

ð4Þ
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Q
cj
n nð Þ ¼ 1� nð Þ�cj 1þ nð ÞcjP�cj;cj

n nð Þ;x�1
j nð Þ ¼ 1� nð Þ�cj 1þ nð Þcj ; j ¼ 1; 2;

c j

2þ j

� � ¼ � 1
2
þ i �1ð Þjþ 1a 1

2

� �; aj ¼ 1
2p

ln
1� a0j
1þ a0j

; a01 ¼ r�4
		 		 ffiffiffiffiffiffiffiffi

d�1
1

q
; a02 ¼ r�54

		 		 ffiffiffiffiffiffiffiffi
d�2
2

q
:

To determine the unknown coefficients qkm, using the method of orthogonal
polynomials, an infinite system of linear algebraic equations was obtained. For the
latter, the reduction method [11] was applied, and the exponential rate of its conver-
gence to the exact solution was proved.

As a result, the coefficients qkm of the expression (4) is defined and the rotation
angle of the inclusion d is obtained by the formula:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a202

p
8l � u 2ð Þ

12

q31 �
1þ 4a22
� ��1

2lp � u 2ð Þ
12

A
X2
j¼1

v 2ð Þ
1j

X1
n¼1

qjnJ
3j
0n þF0
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 !
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The expression (4) makes it possible to obtain formulas for the generalized stress
intensity factors (GSIF) at the vertices of the crack and inclusion:

K1�
T ¼

ffiffiffiffiffiffiffiffiffiffiffi
b� a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a201

p
2l

�rþ1 S 1ð Þ
11 þ rþ2 S 1ð Þ

21


 �
R�
1

			 			; ð6Þ

K2�
T ¼

ffiffiffiffiffiffiffiffiffiffiffi
b� a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a201

p
2l

rþ3 S 1ð Þ
11 � rþ1 S 1ð Þ

21


 �
R�
1

			 			;
K1�
I ¼

ffiffiffiffiffiffiffiffiffiffiffi
d � c

p

2l
rþ14 � S 2ð Þ

11 þ rþ24 � S 2ð Þ
21


 �
R�
3

			 			
K2�
I ¼

ffiffiffiffiffiffiffiffiffiffiffi
d � c

p

2l
rþ34 � S 2ð Þ

11 þ rþ14 � S 2ð Þ
21


 �
R�
3

			 			; R�
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a202

q
R�
2 � 2P 1ð Þ

1

p d � cð Þ ;

R�
j ¼

X1
n¼1

q2j�1n 0:5� ia2j�1
� �

n

�1ð Þnn! ; j ¼ 1; 2:

where Kj�
T —GSIF for normal (j ¼ 1) and shear stresses (j ¼ 2) at the vertices of the

crack a and b respectively, and Kj�
I —GSIF for normal (j ¼ 1) and shear stresses

(j ¼ 2) at the vertices of the inclusion c and d respectively.

3 Numerical Results and Conclusions

In the numerical implementation, was considered the composite anisotropic plane
consisting of the combination of such anisotropic materials [10]: fiberglass single
reinforced (material m1), fiberglass orthogonally reinforced (material m2), fiberglass
STET (material m3), fiberglass ACTT(b) (material m4). In each figure the curve 1
corresponds to the plane, composing of material m1 (x\0) and material m2 (x[ 0),
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curve 2—the plane, composing of material m4 (x\0) and material m3 (x[ 0), curve 3
—the plane, composing of material m2 (x\0) and material m4 (x[ 0). The stresses’
fields near the crack and the inclusion essentially depend on the distance between these
defects. Figure 1 displays the dependence of GSIF for the normal stress from the
distance between the defects when r yð Þ ¼ �1, s yð Þ ¼ 0, P ¼ 0 and P0 ¼ 0 for the
lower (1a) and upper (1b) crack’s vertices.

From the figure above, we can conclude that when defects approach each other,
GSIF decreases for the crack, and the decrease is greater for the vertex closer to the
inclusion. For the inclusion GSIF, on the contrary, increases with approaching, and
increases more for the vertex closer to the crack. If only the inclusion is under the load,
then the GSIF behavior is just the opposite, i.e., GSIF for the crack increases, but for
the inclusion, on the contrary, decreases. Thus, the effect of defects on stresses’ fields
becomes significant when d0 � 0:25.

The contact zones between the crack edges were also investigated for the different
loadings of both defects. As it turned out, any tangential load both on the crack and on
the inclusion causes the contact of the edges at both vertices of the crack, and one of
these zones is much smaller, than the other. According to this, we can assume that only
one contact zone arises on the crack. When the crack is under the constant normal load,
and the tangential load is less than the normal one, and the resultant force on the
inclusion is smaller than the normal load, or these forces are completely absent, then
both contact zones are so small that their sizes can be neglected comparing to the crack
size. The contact zones’ sizes, can be compared with the crack size when the crack is
only under the tangential load or when the tangential load is bigger than normal. So, for
example, setting only the tangential load on the crack and assuming that the inclusion is
free of load, the contact zone on the crack is equal to half of the its length.

Figure 2 shows the dependences of the contact zone’s length lz on the ratio of loads
P1=r, when the crack is under the load r yð Þ ¼ �1; s yð Þ ¼ 0, and the inclusion is
under the load, which reduces to the resultant force P ¼ P1; 0ð Þ (0�P1 � 50) and
creates a zero moment relatively to the center of inclusion (P0 ¼ 0). As can be seen

Fig. 1. The dependence of GSIF for the normal stress from the distance between the defects
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from Fig. 2 for the appearance of the contact zone lz, the length of which is equal 1% of
the crack length, it is necessary that the normal component P1 of the resultant force
applied to the inclusion is 20 times greater than the normal load on the crack for less
rigid materials that consist the anisotropic plane, or even more for more rigid materials.

If the crack is under the normal load, then for the appearance of 1% contact zone, it
is necessary that the tangential load applied to the crack is 3 times more by absolute
value than the normal load on the crack for more rigid materials or even more for less
rigid materials.

Thus, the mutual influence of the interphase crack and inclusion becomes signifi-
cant if the distance between them is less than a quarter from one of their lengths. If the
crack is under the normal load, then to increase the contact area of the crack edges to
sizes that can’t be neglected, it is necessary that the crack or inclusion is under tan-
gential load. So the tangential load on the crack should be at least three times greater
than the normal one for more rigid materials which are consisted the plane, or even
more—for less rigid materials. The load on the inclusion must be 20 times bigger that
the normal load on the crack for less rigid materials or even bigger for more rigid
materials. So, the application of oscillatory model of the crack was established for this
problem.

Similarly, the problems concerning interphase crack and inclusion under other
contact interaction conditions with half-planes can be considered.
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Abstract. The study of the behavior of bodies from pseudo-elastic-plastic
materials requires the development of special algorithms for calculating the
stress-strain state. When constructing the physical relations, it was assumed that
the deformation at a point is represented as a sum of the elastic component, the
deformation jump at the phase transition, the plastic deformation and the
deformation caused by temperature changes. A numerical method of enhanced
accuracy based on the use of two-dimensional spline functions is proposed for
solving multidimensional nonstationary problems of thermo-elastic-plastic the-
ory for bodies produced of pseudo-elastic-plastic materials. The basic equations
comprising heat conduction, equilibrium or motion equations and geometric
relations are written. The boundary and initial conditions are formulated in a
general form and numerical examples are considered.

Keywords: Pseudo-elastic-plastic material � Phase transitions

1 Introduction

Pseudo-elastic-plasticity is the ability of a loaded material to accumulate deformations
of a certain value at a higher temperature mode, and then return to its original state after
unloading (through a hysteresis loop). The main mechanism is the inverse martensitic
transformation between the phases of a solid, which can occur at room temperature.
Such a transformation may be caused by a change in temperature or stress. The material
is also characterized by non-linear mechanical behaviour, high internal damping and
high yield stress.

Alloys that demonstrate shape memory and pseudo-elastic-plasticity are the fol-
lowing: NiTi AuCd, CuAlNi, CuSn, CuZn, NiFeGa, NiTiNb, NiNiGa, NiFeGa, NiPi,
NiPeGa, NiPiGi [1, 3].

Such characteristics make SMA suitable for use in various devices or as component
parts in some advanced composite materials. NiTi alloy leads in most of these appli-
cations due to its structural properties.
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The first SMAs were developed in the middle of the last century; however, there are
no strict and reliable determining models of the continual level necessary for engi-
neering applications of these materials. The relationship between microscopic and
macroscopic behavior is very complex and has not yet been developed to the extent
required by such models. This is partly due to the rather strong dependence of the
mechanical reactions on temperature, loading rate, range of deformation, geometry of
the body under study, thermo mechanical history and nature of the environment as well
as the interaction between these parameters themselves.

2 Phenomenological Model

One aspect of general non-stationary problems solution for inelastic bodies is the
choice of the constitutive relations between the stresses and strains. This choice is
justified by consistency with the experiment and is closely related to the processes of
deformation under investigation. In a general case the strain values are functions of the
process of stresses and temperatures variations, which are determined by the charac-
teristics of the entire preceding process of physical factors variations, and not just the
current values. Detailed information on this issue can be found in [2].

When constructing the physical relations, it was assumed that the deformation at a
point is represented as the sum of the elastic component, the deformation jump at the
phase transition, the plastic deformation and the deformation caused by the temperature
variations.

The instant thermo mechanical surface is under construction of experiment on a
simple stretching of samples at the various fixed temperatures. This function for some
classes of originally isotropic materials with the big degree of accuracy does not
depend on the type of stress state. As a result, it can be determined using tensile
experiments on cylindrical specimens.

Figure 1 shows a typical plot of dependencies r from e that are determined as a
result of experiments for a pseudo-elastic-plastic material.

Fig. 1. Diagram of pseudo-elastic-plastic alloy.
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The diagrams have an initial linear section OA. The processes of deformation on it
are reversible. The increase and decrease of the stress follow a straight line, and the
deformations are small. At point C, the elastic component of the total deformation of
the sample disappears. Jump deformation caused by phase transition disappears also,
and remains only plastic deformation. The total strain tensor can be represented as

ê ¼ êe þ êT þ êp þ êH:

where êT ¼ cT
@fc
@r̂ ;

_̂ep ¼ _k @fp
@r̂ ; êH ¼ aðT � T0Þ, fcðr̂Þ ¼ 0; fpðr̂Þ ¼ 0; which respectively

define the boundaries of the surfaces in the space of stresses. During the transition
across the surface fcðr̂Þ ¼ 0, the elastic deformation increases abruptly, and during the
transition through the surface fpðr̂Þ ¼ 0 plastic deformations occur in the body.
Figure 1 also shows the elastic unloading of the sample along the straight line BC,
which is assumed to be parallel to the line OA. Such representation of the unloading
mechanism displays in general terms only the actual process of the material defor-
mation under small deformations. For large strains (10% or more), the sample
unloading process will be non-linear.

3 Numerical Results

In [4] a variant of the method of enhanced accuracy, developed for solving non-
stationary problems of the theory of thermo-elasticity and thermo-plasticity is pre-
sented. The main unknowns are displacement rates, stresses, strains and temperature.

Let’s consider the problem of non-stationary deformation of a cylindrical NiTi alloy
tube with a notch. A cylindrical coordinate system is used here
x 2 0; L½ �; r 2 R0;R1½ �;u 2 0; 2p½ �; t 2 0;1½ Þ:

At the edge x ¼ 0 the stretching rate is zero. At the other end x ¼ L the rate of
stretching v ¼ V0 is set. The side edges of the tube are stress-free. The load-free notch
through the thickness of the tube is defect which tip is modeled at a point with
coordinates x ¼ l; r ¼ R1 � h;u ¼ 0:

The sought values are the velocities; stress; deformation and temperature.
To account for the heat released as result of a phase transition the temperature is

determined from the solution of the thermal conductivity equation with a mobile source
of heat. This source takes into account the heat release at a moving point of a cylin-
drical body when moving from point A to point B (Fig. 1). It is established that the heat
source moves in a spiral which develops over time.

Consider a series of numerical results obtained for a cylindrical tube. Here the outer
radius is 5 cm, the inner radius is 4 cm, the tube length is 30 cm. The circumference is
divided into 58 sectorial elements. The thickness of the tube is taken as 2 elements, the
length as 60 elements, the notch is 3 cm below the upper rigidly fixed end, the lower
end is stretched during 100 s at a speed of 0.0001 m/s.

Figure 2 shows the distribution of strains with active loading for the indicated time
points.
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The obtained results show that the boundary of the spiral-shaped deformation
change propagates with a constant speed which depends only on the mechanical
properties of the material. In the process of heat generation due to phase transitions the
temperature distribution along the plate axis becomes uniform over time.

4 Conclusions

An experimental substantiation of the phenomenological model of the behaviour of a
pseudo-elastic-plastic material with shape memory has been carried out. The model
gives the opportunity to quantitatively evaluate the complex interactions between
stresses.

A new class of non-stationary problems of the theory of thermo-elastic-plasticity
for pseudo-elastic-plastic materials with shape memory has been solved.
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Abstract. The null-field method is applied to two-dimensional problems on
P- and SV-waves scattering on an elastic inclusion of non-classical shape with a
thin interphase layer of low rigidity. The interaction between the inclusion and
its surrounding is modeled by means of the effective conditions imposed on the
contour of the inclusion. The amplitudes of the scattering waves are analyzed in
a far-wave field.
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cross-section � Thin interphase layer � Effective boundary condition � Null-field
approach

1 Introduction

Solutions of problems on scattering of elastic waves on local nonhomogeneities are
important for proper mathematical modeling of wave generation processes in matrix-
and fiber-composites. One of the features of such materials is the occurrence of zones
with slackening of connection between the structural elements. In [1–4], the contact
imperfections between the elements of a fiber composite were modeled by a thin
interphase layer of constant thickness. The vast majority of relevant research papers are
focused on structures with elastic filling compounds of classical shapes, e.g., the cir-
cular [2, 3] or spherical [4, 5] ones. The interphase layer was either treated as an elastic
solid perfectly connected with both a matrix and a fiber or simulated in its interaction
with the surrounding by means of effective imperfect conditions on the interface
between the matrix and inclusion.

The null-field method can be regarded as an efficient tool for the analysis of
scattering problems for the waves of different physical nature on object of complex
shape. By this means, the interaction of elastic waves with volumetric inclusions have
been usually considered under the conditions of perfect contact between the nonho-
mogeneity and the surrounding. In [6], this method has been employed for the scat-
tering of SH-waves in the presence of a thin piezoelectric interlayer. Herein, the same
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method is extended to the case of P- an SV-waves scattering on an inclusion of non-
classical shape under the presence of a thin elastic interphase layer of variable thickness
and small rigidity.

2 Problem Formulation and Scattered Far Field

Consider a homogeneous unbounded elastic solid (a matrix) in two dimensions with
density q1 and Lamé moduli k1 and l1. Assume the solid to contain an inclusion W2 of
a non-classical shape with the corresponding material parameters q2; k2; l2. The
inclusion is coated by a thin elastic layer W0 with parameters q0; k0;l0 (Fig. 1). The
elastic system undergoes the steady-state oscillations in time. In what follows, the time
multiplier expð�ixtÞ is omitted, where x is the angular frequency and t is time. The
displacement vectors ujðxÞ, j ¼ 0; 1; 2; u1ðxÞ ¼ uinðxÞþ uscðxÞ, in the composite meet
the two-dimensional motion equations:

k�2
pj rr�ujðxÞþ k�2

sj r�r�ujðxÞþ ujðxÞ ¼ 0; x 2 Wj; j ¼ 1; 2; ð1Þ

ðk0 þ l0Þrr�u0ðxÞþ l0r2u0ðxÞþxq0u0ðxÞ ¼ 0; x 2 W0;

where x ¼ x1; x2ð Þ are Cartesian coordinates, uinðxÞ is a wave that incident upon the

inclusion, kpj ¼ x qj=ðkj þ 2ljÞ
� �1=2

and ksj ¼ xðqj=ljÞ1=2; j ¼ 1; 2, are the wave
numbers of the P- and SV-waves in the composite. The scattered field uscðxÞ meets the
radiation conditions at infinity [1]

usc xð Þ ¼
X
a¼p;s

expðika1rþ ip=4Þ
8pka1rð Þ1=2

fa x; hð ÞþO r�1� �
; r ! 1;

x1 ¼ r cos h; x2 ¼ r sin h; 0� h� 2p;

ð2Þ

where faðx; hÞ are vectors of complex scattering amplitude for the longitudinal a ¼ pð Þ
an transversal a ¼ sð Þ waves, r; hð Þ are polar coordinates.

Fig. 1. Problem configuration
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The wave numbers of the matrix and inclusion, the thickness of the layer hðxÞ and
its elastic parameters meet the conditions:

kaj max
x2@W2

h xð Þj j � 1; a ¼ p; s; j ¼ 1; 2;

e ¼ a�1 max
x2@W2

hðxÞ� 1; maxðk0; l0Þ=maxðkj; ljÞ � 1; j ¼ 1; 2;

where e is a small dimensionless parameter, a is a characteristic size of the domain W2.
Under such conditions, the dynamic interaction between the thin layer and its sur-
rounding can be asymptotically modeled by means of effective contact conditions on
the contour of the inclusion S ¼ @W2 [7]:

u1ðXÞ � u2ðXÞ ¼ hðXÞðg�1
0 nnþ l�1

0 ss) � t1ðu1Þ; x2S;

t1ðu1Þ ¼ t2ðu2Þ; x2S; ð3Þ

where tjðujÞ ¼ nkjr � uj þ 2lj
@uj
@n þ ljn� ðr � ujÞ is a stress vector, n and s are the

external unit normal and a unit tangential vector on S, g0 ¼ ðk0 þ 2l0Þ.
Analytical-numerical solution to problem (1)–(3) in the far zone of wave scattering

can be evaluated by means of the null-field method [6, 8]. The incident and scattered
waves are to be represented as decompositions by cylindrical vector functions:

uinðxÞ ¼ u0
X
a¼p;s

X2
r¼1

X1
m¼0

ainarmReU
1
arm(x); ð4Þ

uscðxÞ ¼ u0
X
a¼p;s

X2
r¼1

X1
m¼0

farmU
1
arm(x) xj j[ r1; ð5Þ

U j
prm(x) ¼ e1=2m rw j

prm(x), U j
srm(x) ¼ e1=2m r� ezw

j
srm(x), j ¼ 1; 2;

w j
arm(x) ¼ Hð1Þ

m kajr
� �

Crm hð Þ; Rew j
armðxÞ ¼ Jm kajr

� �
Crm hð Þ; j ¼ 1; 2;

C1m hð Þ ¼ cos mhð Þ; C2m hð Þ ¼ sin mhð Þ;

where u0 is the amplitude of the incident wave, r1 is the radius of a circle circum-
scribing the scatterer, ðer; eh; ezÞ are the unit vectors of the cylindrical coordinate

system, Jm xð Þ and Hð1Þ
m ðxÞ are Bessel and Hankel functions of the first kind and order

m, respectively, em ¼ 2� dm0; dmn is the Kronecker delta. The relation between the
known coefficients ainarm in the series for an incident wave and the quested-for coef-
ficients farm in the series for a scattered wave, in view of fixed incidence and obser-
vation angles, hin and h, can be expressed through the transition matrix with elements
Tarm;a0r0m0 of the form
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farm ¼
X

a0;r0;m0
Tarm;a0r0m0aina0r0m0 ð6Þ

For an incident plane P-wave, Eq. (4) implies

uinðxÞ ¼ u0g expðikp1g � xÞ; ainprm ¼ e1=2m CrmðhinÞ
imþ 1kp1

; ainsrm ¼ 0:

In the case of an SV-wave, we have

uinðxÞ ¼ �u0g� ez expðiks1g � xÞ; ainprm ¼ 0; ainsrm ¼ e1=2m

im�1ks1
CrmðhinÞ;

where the unit vector g ¼ �ðcos hin; sin hinÞ determines the direction of the wave
incidence.

By making use of the known internal and external boundary-integral representa-
tions of the wave fields [8], we obtain a system of equations for the null-field method:

Z

S

u1 � t1ðU1
armÞ �U1

arm � t1ðu1Þ
� �

dS ¼ 4iu0l1k
2
s1a

in
arm;

Z

S

u2 � t2ðReU2
armÞ � t2ðu2Þ � ReU2

arm

� �
dS ¼ 0;

ð7Þ

Z

S

u1 � t1ðReU1
armÞ � t1ðu1Þ � ReU1

arm

� �
dS ¼ �4iu0l1k

2
s1farm;

a ¼ p; s; r ¼ 1; 2; m ¼ 0;1:

ð8Þ

The unknown displacements and stresses on the contour of an inclusion can be
found from the relations (7) in the form of series by the system of trigonometric
functions:

u1ðxÞ � u2ðxÞ ¼ u0
X2
r0¼1

X1
m0¼0

x1r0m0Cr0m0 hð Þ;

u2 Xð Þ ¼ u0
X2
r0¼1

X1
m0¼0

x2r0m0Cr0m0 hð Þ; X2S;

xjr0m0 ¼
X
a0¼p;s

xja0r0m0ea0 ; ep � n es � s; j ¼ 1; 2:

ð9Þ

Substituting (9) into the null-field Eq. (7) with account for the contact conditions
(3), we derive a system of linear algebraic equations of infinite order for determination
of the coefficients xjpr0m0 and xjsr0m0 :

212 R. Kushnir et al.



X
a0;r0;m0

a1arm;a0 r0m0x1a0 r0m0 þ a2arm;a0 r0m0 x2a0 r0m0
� �

¼ 4ik2s1l1a
in
arm

X
a0;r0;m0

a3arm;a0 r0m0 x1a0 r0m0 þ a4arm;a0 r0m0 x2a0 r0m0
� �

¼ 0;

a ¼ p; s; r ¼ 1; 2; m ¼ 0;1;

ð10Þ

a1arm;a0 r0m0 ¼ ea0 �
Z

S

t1ðU1
armÞ � ðnnþ ssÞCr0m0 ðhÞdS

� ea0 �
Z

S

h�1ðhÞ g0nnþ l0ssð Þ �U1
armCr0m0 ðhÞdS

a2arm;a0 r0m0 ¼ ea0 �
Z

S

t1ðU1
armÞCr0m0 ðhÞdS;

a3arm;a0 r0m0 ¼ �ea0 �
Z

S

ðg0nnþ l0ssÞ � ReU2
arm

Cr0m0 ðhÞ
hðhÞ dS;

a4arm;a0 r0m0 ¼ ea0 �
Z

S

t2ðReU2
armÞCr0m0 ðhÞdS:

For the amplitudes of the wave fields, Eqs. (2) and (8) yield:

fpðx; hÞ ¼ u0f
pðx; hÞer; fsðx; hÞ ¼ u0f

sðx; hÞeh;

f a x; hð Þ ¼ ð�1Þdas ika1
u0l1k

2
s1

X
r;m

e1=2m i�mCrmðhÞ
Z

S

u1 � t1ðReU1
armÞ

� �

�t1ðu1Þ � ReU1
arm

�
dS:

ð11Þ

Representation (11) with account for (9) can be given in the form

f aðx; hÞ ¼ 4ð�1Þdas ka1
X
r;m

X
a0;r0;m0

e1=2m i�mCrmðhÞTarm;a0 r0m0aina0 r0m0 ;

where elements Tarm;a0 r0m0 of T-matrix are related to the inverse matrix of system (10).

3 Numerical Simulation and Conclusions

A solution of system (10) is constructed by means of the reduction method. We
analyzed the amplitudes of P- and SV-waves scattering on an inclusion of circular,
elliptic, square and triangular shapes with smoothed angles. For the considered scatters,
the order of reduction M of system (10) was selected as M ¼ 6þmd at kp1a� 3 and
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M ¼ Eð2kaÞþmd at 3\kp1a� 5, where EðxÞ is an integer part of x. Parameter md was
selected from a numerical experiment.

It is shown that for small rigidity of the interphase layer and different mechanical
properties of the matrix and the inclusion, the spectra of scattering amplitude exhibit
clearly defined low-frequency resonance induced by the rotational oscillations of the
fiber as a rigid solid. Beyond this resonance, the scattering amplitude is nearly identical
to the scattering amplitude on a void of corresponding shape. If the material mismatch
parameter of the thin interphase layer is comparative to its thickness, the spectra of
scattering amplitudes do not exhibit the resonance behavior in the ranges of low and
medium frequencies. When increasing the wave dimension of the scatterer, the effect of
the intherphase layer is neglected.

The corrugating of an interphase layer coating a circular inclusion does not have a
critical effect in the amplitudes of scattered waves, with an exception for the ranges of
resonant frequencies, where this effect is significant. Under the bistatic probing at the
resonant frequencies of inclusions with soft coating, when the corrugating order is
greater than four periods of the sinusoid, the amplitudes of scattered waves are rather
the same as for a coating of constant thickness 0:75e.
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Abstract. The axisymmetric dynamic problem of determining the stress state in
the vicinity of a ring-shaped crack in a finite cylinder is solved. The source of
the loading is the rigid circular plate, which is joined with one of the cylinder
ends and loaded by the time-dependent torque. The proposed method consists in
the difference approximation of only the time derivative. To do this, specially
selected non-equidistant nodes and special representation of the solution in these
nodes are used. Such an approach allows the original problem to be reduced to a
sequence of boundary value problems for the homogeneous Helmholtz equation.
Each such problem is solved by using integral Fourier and Hankel transforms,
with their subsequent reversal. As a result, integral representations were
obtained for the angular displacement through unknown tangential stresses in
the plane of the crack. From boundary condition on a crack, an integral equation
is obtained, which, as a result of using the Weber-Sonin integral operator and a
series of transformations, is reduced to the Fredholm integral equation of the
second kind. The numerical solution found made it possible to obtain an
approximate formula for calculating the stress intensity factor (SIF).

Keywords: Stress intensity factor � Ring-shaped crack � Finite cylinder �
Finite differences � Non-stationary torsion

1 Introduction

The analysis of modern scientific literature shows that the stress state of cylindrical
bodies with cracks under static loading has been studied sufficiently enough, but works
with the analysis of the stress state under dynamic loading conditions is much smaller.
As a rule, the researchers study cylinders of infinite length [1–3].

The complexity of theoretical studies of dynamic problems is due to the necessity
of using the Laplace integral transform in time with subsequent numerical inversion.
However, this task is not only mathematically complicated, but incorrect.

These difficulties can be avoided by use mixed numerical-experimental methods.
In [4], the dynamic tension and in [5] the dynamic torsion of finite cylinders with ring
cracks was investigated. But these methods, like all the experimental ones, are char-
acterized by the disadvantages associated with the need to carry out experiments for
each particular sample. This complicates the study of the impact of cylinder geometric
dimensions on SIF values.
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Recently, there have appeared works in which the modified method of finite
difference in time is applied [6]. Using this method, in this paper, the problem of
determining the SIN in the vicinity of a ring-shaped crack in a finite cylinder under the
action of torque is solved. So far, such a problem has been considered only in a
stationary formulation [7] and for a harmonic moment [8, 9].

2 Problem Formulation

Consider an isotropic finite elastic cylinder with height a and radius r0 (Fig. 1). The
cylinder is related to the cylindrical coordinate system, whose centre coincides with the
centre of the bottom end, and the axis Oz with the axis of the cylinder.

The bottom end of the cylinder is rigidly fixed and its top end is joined with a rigid
plate with thickness d and the same radius. The plate suffers the action of a time-
dependent torsional moment M(t). The cylinder contains a ring-shaped crack parallel to
its ends and occupies the region z ¼ c; b� r� r0; 0�u� 2p. The lateral surface of the
cylinder and the surface of the crack are free of stresses.

The cylinder is in state of the axisymmetric torsional deformation and only the
angular displacement �wðr; z; tÞ will be nonzero. Next, to formulate the initial boundary
value problem, we proceed to dimensionless quantities using the formulas:

�w r; z; tð Þ ¼ r0 � w g; f; sð Þ; c ¼ a=r0; l ¼ c=a; b ¼ b=r0
r ¼ r0g; 0�g� 1; z ¼ af; 0� f� 1; t ¼ r0s=c2; s 2 0; þ1ð Þ; c22 ¼ G � q�1 ;

where q;G—density and shear modulus for the cylinder material.
Then, dimensionless displacement will satisfy the equation with zero initial

conditions:

Dgfw ¼ @2w
@s2

; Dgf ¼ @2

@g2 þ 1
g

@

@g
� 1
g2 þ 1

c2
@2

@f2
: ð1Þ

We formulate boundary conditions in relative dimensionless quantities.

Fig. 1. Cylinder with outer ring-shaped crack.
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On the cylinder ends, they have the form:

wjf¼0 ¼ 0; wjf¼1 ¼ a sð Þg; 0�g� 1; s 2 0; þ1½ Þ; ð2Þ

where a(s)—unknown angle of rotation of the plate. It is determined from the equation
of the motion of the plate:

pcm0€a sð Þ ¼ 2 M0 sð Þ �MR sð Þð Þ; a 0ð Þ ¼ 0; a 0ð Þ ¼ 0; ð3Þ

where m0—a mass ratio of the plate and cylinder, M0, MR—dimensionless moments.
On the lateral surface of the cylinder, there must be fulfilled the equality:

surð1; f; sÞ ¼ 0; 0� f� 1; s 2 0; þ1½ Þ: ð4Þ

For the condition on the crack, we have:

suzðg; l; sÞ ¼ v g; sð Þ; s 2 0; þ1ð Þ; v g; sð Þ ¼ v r0g; r0s=c2ð Þ; ð5Þ

where v gð Þ � 0; b�g� 1, and v r; tð Þ—unknown tangential stresses acting in the
crack plane.

To solve the formulated initial boundary value problem (1)–(5), we apply a method
based on the difference approximation of time derivatives, detailed in [6]. For this
purpose, we create a time grid:

sk ¼
Xk
m¼1

hm; hm ¼ sk � sk�1; ðs0 ¼ 0Þ; k ¼ 1; 2; 3; . . .hi 6¼ hj

We introduce the designation w g; f; skð Þ ¼ wk g; fð Þ and use the left-sided finite
difference for time derivatives. Then, from zero initial conditions and Eq. (1), we find

w0 ¼ 0; Dgfw1 ¼ w1

h21
; Dgfwk � wk

h2k
¼ wk�2

hkhk�1
� wk�1

hk

1
hk

þ 1
hk�1

� �
; k ¼ 2; 3; . . .

ð6Þ

Next, according to [6], we write the angular displacement, the angle of rotation of
the plate, the stresses in the cylinder and the moment in the form of a linear
combination of new functions:

wk ¼
Xk
m¼1

CkmUm; ak ¼
Xk
m¼1

CkmAm; surk ¼
Xk
m¼1

Ckmsurm; suzk ¼
Xk
m¼1

Ckmsuzm;

M0k ¼
Xk
m¼1

Ckml0m;

ð7Þ
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where Ckm determined by the formulas:

Ckk ¼ 1; k ¼ 1; 2; 3; . . .; Ck;k�1 ¼ hk�1

hk�1 � hk
; k ¼ 2; 3; . . .

Ck;m ¼ h2m
h2k � h2m

� hk
hk�1

Ck�2;m � 1þ hk
hk�1

� �
Ck�1;m

� �
; k ¼ 3; 4; . . .; m ¼ 1; 2; . . .; k � 2:

Then the functions Um satisfy the homogeneous Helmholtz equation

DgfUm � j2mUm ¼ 0; m ¼ 1; 2; 3; . . .; jm ¼ h�1
m : ð8Þ

The boundary conditions on the cylinder surface for these functions can be written
as follows:

Umjf¼0 ¼ 0; Umjf¼1 ¼ Amg; surm
��
g¼1¼ 0: ð9Þ

The conditions for the crack will take the form:

suzm
��
f¼l¼ vm gð Þ; 0�g� 1; vm gð Þ � 0; b�g� 1; vk ¼

Xk
m¼1

Ckmvm: ð10Þ

And Eq. (3) takes the form:

pcm0v
2
mAm ¼ 2 l0m � lRmð Þ; lRm sð Þ ¼ 2p

Z1

0

g2suzm
��
f¼1dg; ð11Þ

where l0m can be found from the recurrence relation.

3 Solution of the Problem

The solution of the boundary value problem (7)—(11) is represented in the form:

Umðg; fÞ ¼ U0
mðg; fÞþU1

mðg; fÞ; U0
mðg; fÞ ¼ Amg

sh cfvmð Þ
sh cvmð Þ : ð12Þ

The first term is the solution to the problem in the absence of crack. The second
term is the solution to Eq. (8). It satisfies the zero conditions on the cylinder ends and
lateral surface and on the surface of the crack it satisfies the condition:

s1uzmðg; lÞ ¼ vm gð Þ � s0uzmðg; lÞ; 0�g� 1: ð13Þ
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The functions U1
m g; fð Þ are found separately for the parts of the cylinder separated

by the crack plane:

U1
m g; fð Þ ¼ U�

m g; fð Þ; f 2 0; l½ Þ; U1
m g; fð Þ ¼ U þ

m g; fð Þ; f 2 l; 1ð �: ð14Þ

In order to find U�
m g; fð Þ, it is necessary to solve Eq. (8) with boundary conditions:

U�
m

��
f¼0 ¼ 0; U þ

m

��
f¼1¼ 0; s�uzmðg; lÞ ¼ vm gð Þ � s0uzmðg; lÞ; 0�g� b;

s�urmð1; fÞ ¼ 0; 0� f� l; sþurmð1; fÞ ¼ 0;¼ 0; l� f� 1:
ð15Þ

The solution to these boundary value problems is constructed by the integral
transform method, similarly to [8]. It contains unknown tangential stresses acting in the
crack plane. To find they, we obtain an integral equation for they by using the condition
of continuity of angular displacements in the crack plane for g 2 0; b½ �.

By using the procedure proposed in [8], we reduce this equation to a Fredholm
equation of the second kind for an unknown function associated with tangential stresses
acting in the crack plane:

gm sð Þþ 1
2p

Z1

�1

gm yð Þ F y� sð ÞþQ y� sð Þ½ �dy ¼ Ams
ch cjm 1� lð Þð Þ ; ð16Þ

where F Yð Þ and Q Yð Þ are expressed via uniformly convergence integrals and series,
and Am determined from Eq. (11).

An approximate solution to Eq. (16), as in [8, 10], is sought in the form of an
interpolation polynomial. To solve Eq. (16), we approximate its integrals according to
the quadrature Gauss-Legendre formula and obtain a system of linear algebraic
equations for the values of the unknown function in the interpolation nodes. As a result
of the solution of the system, the unknown function is approximated by the interpo-
lation polynomial.

The solution of Eq. (16) allowed us to obtain a formula for calculating the
dimensionless SIF:

K skð Þ ¼ K tkð Þ
G

ffiffiffi
b

p ; K skð Þ ¼
Xk
m¼1

CkmKm; Km ¼
ffiffiffi
2

p

p
gm 1ð Þ: ð17Þ

4 Numerical Results

Using Formula (17), there was performed a numerical study of the dependence of the
SIF on the dimensionless time s for different load cases. The time grid nodes were
condensed near the point s ¼ 0. The results of calculations are shown in Fig. 2 in the
form of graphs of time dependencies of dimensionless SIFs. During these calculations
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it was considered that the relative thickness of the plate is d = d/a = 0.1, the relative
height of the cylinder is c = a/r0 = 2, the crack is located in the middle plane of the
cylinder l = c/r0 = 0.5, and the relative inner crack radius is b = b/r0 = 0.5.

The charts have been constructed for the case of the action of a suddenly applied
torsional load (Fig. 2 (left)), and the case of specifying the torsional load by a suddenly
applied moment of the unit length (Fig. 2 (right)). Curve 1–4 correspond to different
values of the relative plate density: �q ¼ qplate=qcyl : 0:1; 0:25; 1; 4.

From the graphs in Fig. 2 it can be seen that in all considered types of loading,
during the transient process, the maximum SIF values are observed. When a sudden
constant load is applied, this maximum is 1.5–2 times higher than the static value of
SIF. Hence, it is most likely that the destruction of the cylinder will occur during the
transient period. In addition, as can be seen from Fig. 2, an increase in the mass of the
plate leads to an increase in the time until the SIF reaches its maximum value. How-
ever, it almost does not affect the maximum value itself, in the case of the action of a
suddenly applied torsional load. In the case of the action of a load by a suddenly
applied moment of the unit length, a decrease in the magnitude of the SIF maximum is
observed. It can be explained by the fact that SIF does not have time to reach its
maximum during the action of the load.

5 Conclusion

The paper proposes a method for solving the problem of determining the stress-strain
state of an elastic finite cylindrical body with an outer ring-shaped crack that is under
torsional loading. This technique is based on the differential approximation of the time
derivative and use of a time grid with specially selected nodes. Numerical results
demonstrate the effectiveness of such an approach when investigating the transient
processes that occur immediately after load application. But arise some problems in
applying this technique for large time intervals, due to the step-by-step accumulation of
errors.

Fig. 2. Time dependence of dimensionless SIFs for different types of load: M0ðsÞ ¼ HðsÞ (left);
M0ðsÞ ¼ HðsÞ � Hðs� 1Þ (right).
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Abstract. The problem of the diffraction field determination is arising as a
result of the longitudinal shear wave interaction with the thin rigid inclusions
system arbitrarily situated in an infinity body was solved. Inclusions are con-
sidered to be fully coupled to the elastic medium and are moving. Unknown
amplitudes of inclusions are determined from the equations of motion. The
solution method is based on the submission diffraction field displacement as sum
of discontinuous solutions to the Helmholtz equation, the constructed for each
inclusion. As result the original problem is reduced to the system of the singular
integral equations for unknown jumps of stresses on the inclusions surface, The
iterative method of this system solving, where the zero approximation are the
solutions of the integral equations for the single inclusions, is proposed. This
integral equation for single inclusions are numerical solved the mechanical
quadrature method. The final result is the approximate formulas for calculating
stress intensity factors and the amplitudes of the oscillations.

Keywords: Thin ridged inclusion � Wave interaction � Integral equations �
Iterative method

1 Introduction

Nowadays methods of mechanics of deformable bodies (potentials method, discon-
tinuous solutions method, etc.) make it easy to reduce the problem of determination of
wave fields in a body with system of thin inclusions or cracks to the solution systems of
integral equations. But, the main attention is paid to bodies with systems of cracks.
Research of dynamic stress state bodies with systems of thin rigid inclusions is much
less. One of the first works in this direction, probably should be considered [1], where
is solved the problem of diffraction of waves on two parallel thin rigid incautions.
Interaction of waves with periodic systems of curvilinear inclusions is considered in
[2]. The method of explosive articles decisions wave fields and stress intensity factors
(SIF) for elastic waves diffraction on systems of radially placed inclusions are defined
of discontinuous solutions method in [3, 4]. Achievements in solving dynamic prob-
lems for bodies with arbitrary systems of inclusions are associated with the develop-
ment of for boundary integral equations and boundary elements methods can be seen in
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[5, 6]. But when applying methods, based on the reducing the original boundary value
problems for bodies with inclusions to systems of integral equations, there is a sig-
nificant problem. It consists in the need to solve systems of integral equations of large
dimension. That’s why during calculation of SIF and wave fields, authors of the limited
case of a few, often just two, inclusions. Thus the determination of dynamic stress state
and wave fields in bodies with systems of thin rigid inclusions is not completely solved.
In the submitted article, iterative method for determination of SIF and wave fields in the
interaction of the longitudinal shear waves of N inclusions.

2 Statement of the Problem

Let an elastic body that is in a longitudinal shear strain condition, N through thin rigid
inclusions are situated. These inclusions are occupied on the plane Oxy by the segments
length 2dk and with centers at points with coordinates ak; bkð Þ; k ¼ 1; 2; . . .;N (Fig. 1).

The wave of longitudinal shear interacts with them which is propagated in the body
and causing the following displacement along axis Oz:

Wqðx; yÞ ¼ A eij2ðx�cos h0 þ y�sin h0Þ; j22 ¼
qx2

G
; ð1Þ

where x—the frequency of the oscillations, q;G—density and modulus of shear of the
body, h0—the angle between the direction of propagation of the wave and the positive
direction of the axis Ox. Multiplier e�ixt which determines dependency from time here
and then rejected. Let Wðx; yÞ is the only different from 0 in the conditions of longi-
tudinal shear strain component of the vector of displacements caused by waves
reflected from the defects. Then it must to satisfy the Helmholtz equation.

DW þ j22W ¼ 0; ð2Þ

where D—the Laplace operator in a system of coordinates Oxy.

Fig. 1. The system of the thin ridged inclusions in the body
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This equation must be seen with conditions on the inclusions for the formu-
lation that the local coordinate systems Okxkyk connected with each of them. It is
assumed that inclusion is completely coupled with an elastic medium that leads to
equation

Wk xk; 0ð Þ ¼ ck �Wq
k xk; 0ð Þ;Wq

k xk; 0ð Þ ¼ �Aeij2z0k ; ð3Þ

z0k ¼ ak cos h0 þ bk sin h0 þ xk cos ak � h0ð Þ � yk sin ak � h0ð Þ; k ¼ 1; 2; 3; . . .;N:

Also the surface impurities cause a discontinuity stress unknown jumping which
denomination

szyk xk; þ 0ð Þ � szyk xk;�0ð Þ ¼ v1k xkð Þ;�dk\xk\dk; k ¼ 1; 2; . . .;N: ð4Þ

In equality (3) consists of -unknown displacement inclusions under the influence of
propagating wave. They are determined from the equations of motion of inclusions,
which in the case of harmonic oscillation are of the form

mkx
2ck ¼

Zdk

�dk

v1k xkð Þdxk; k ¼ 1; 2; . . .N ð5Þ

where mk-mass of k-th inclusion.
When formulated conditions the problem of determination the displacement and

stress of the diffraction field in the body and SIF for inclusions is posed.

3 Solution of the Problem

For the solution of the problem for each inclusion with a number l in a coordinate
system Olxlyl, connected with it, of discontinuous solutions of Eq. (2) [7, 8] from
jumping (4) are built

Wd
l ðxl; ylÞ ¼

Zdl

�dl

v1lðgÞ
G

r2ðg� xl; ylÞdg; l ¼ 1; 2; . . .;N: ð6Þ

Displacement of the scattered wave field in the coordinate system Oxy is repre-
sented in the form of

W x; yð Þ ¼
XN
l¼1

Wg
l x; yð Þ; ð7Þ

where Wg
l ðx; yÞ are obtained from (6) as a result of the l coordinate transformation. But

in order to use the formulas (7) it is necessary to determine the unknown jumps of
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stress (4) on the inclusions. For determination of the unknown jumps v1lðxlÞ from the
conditions (3) the system of integral equations must be obtained. That the received
system has received singularity Cauchy type, (3) is replaced by the following equiv-
alent equalities

@Wk

@xk
ðxk; 0Þ ¼ � @Wq

k

@xk
ðxk; 0Þ;Wkð�dk; 0Þ ¼ ck �Wq

k ð�dk; 0Þ; k ¼ 1; 2; . . .;N: ð8Þ

After transformations of coordinates in the (7) and substitution to (8) the following
system of singular integral equations with additional conditions is obtained:

1
2p

R1
�1

uk sð Þ � 1
s�1þFkðs�1Þð Þds

þ
PN
l¼1
l6¼k

1
2pulðsÞRklðs;1Þ ds¼�ij0A0 cosðak�h0Þeij0r0k ð1Þ ;

ck
2p

R1
�1

uk sð Þ lnð1þ sÞþDk ðsþ 1Þ½ �dsþ
PN
l¼1;
l6¼k

cl
2p

R1
�1

ulðsÞDlk ðsÞds¼c0k�A0e
ij0rk ð�1Þ ;

k¼1;2;::;N:

ð9Þ

In this system, introduced the notation

ulðsÞ ¼ vlðdlsÞ=G; k ¼ 1; 2; . . .;N; g ¼ dls; xk ¼ dk1; ck ¼ dk=d
j0 ¼ j2d; d ¼ max d1; d2; . . .; dNð Þ:

c0k ¼ � 1
2ckh0kj

2
0qk

R1
�1

uk sð Þ ds; c0k ¼ ck
d ; qk ¼ qk

q ; h0k ¼ hk
dk
:

where hk; qk are the thickness and density of the material of k-th inclusion.

4 Iterative Method Solution

The system of integral Eqs. (9) can be solved approximately using the by the
mechanical quadrature method, as in [3–6]. But the immediate use of this method
requires solving a system of linear algebraic equations, which is proportional to the
number of inclusions N. Therefore, the iterative method for solving the system (9) is
proposed for elimination of this problem. For this, the zero approximation is solution of
N separate equations for single inclusion. Then an iterative process continues by
solving the next equations at every step
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1
2p

R1
�1

u ið Þ
k sð Þ � 1

s�fþFk s�fð Þð Þ ds¼�ij0A0 cos ak�h0ð Þeij0r0k fð Þ

�
PN
l¼1
l 6¼k

cl
2p

R1
�1

u
i�1ð Þ
l

sð ÞRkl s;fð Þds;

ck
2p

R1
�1

u
ið Þ
k

sð Þ ln 1þ sð ÞþDk sþ 1ð Þð Þds¼ c
ið Þ
0k

�A0e
�ij0r0k �1ð Þ

�
PN
l¼1
l 6¼k

cl
2p

R1
�1

u
i�1ð Þ
l

sð ÞDkl s;fð Þds;

ð10Þ

Solution of integral Eqs. (10) is based on the representation of unknown functions
in the form

u ið Þ
k sð Þ ¼ w ið Þ

k sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ; k ¼ 1; 2; . . .;N; i ¼ 1; 2; . . . ð11Þ

The formula (11) provide an opportunity to numerically solve Eqs. (10) method of
mechanical quadratures [9]. As a result, Eqs. (10) are reduced to the solution of sys-
tems of linear algebraic equations sequence that differ only in the right sides of. As it is
known [10] stresses in the body around the thin rigid inclusions are described stress
intensity factors K�

l near its ends xl ¼ �dl. After solving the system (10) their
approximate value by results of the i-th iteration are calculated on formulas.

k�l ¼ K�
l

Gl
ffiffiffiffiffiffi
2dl

p ¼ w ið Þ
l �1ð Þ; l ¼ 1; 2; . . .;N ð12Þ

5 Results of Numerical Analyses

One of the main purposes of the numerical analysis was to study practical convergence
of iterative method is proposed. This was a system with three inclusions of the same
length 2d is considered. Inclusions are placed at the sides of the proper triangle with
sides long 4d, as shown in Fig. 2 (left). The thickness and density of the inclusions here
are of the implementation of the specified number of iterations. We can considered to
be the same: h0k ¼ 0:05; �q0k ¼ 1. It was assumed that plane wave of longitudinal
shear, propagating along the positive direction of the axis. interacts with inclusions
0y h0 ¼ 90�ð Þ.
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Figure 2 (right) shows the dependency graphs of absolute value of the dimen-
sionless SIF k1j j ¼ k�1

�� �� ¼ kþ
1

�� �� for first inclusion of the dimensionless wave number
j0 ¼ j2d. Curve 1 corresponds to the values SIF obtained as a result of the immediate
solution of the system of integral Eqs. (9) mechanical quadrature methods. Curves 2, 4
show the value of the SIF is obtained by the formula (12) as a result see that after 4
iterations the results are obtained by different methods almost do not differ. The
continuation of the iterative process lids to the complete coincidence of the results. And
at the frequencies of oscillations such that convergence results is observed already after
two iterations.

6 Conclusions

The above results allow making the following general conclusions. Effective iterative
method of solving the problem by definition stress condition and diffraction fields in
body with arbitrary system of thin rigid inclusions at the interaction with the longi-
tudinal shear waves. This method can be used for systems of inclusions with implicate
geometry and sufficiently tightly placed inclusions. Numerical investigation has
determined that the configuration of a system of inclusions, their size and relative
locating substantially influence the value of the SIF. Interaction repeatedly reflected
from inclusions of the waves provides dependence to SIF on the frequency of implicate
shape with lots of maximums and minimums.
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Stress State Near Arbitrarily Oriented Cracks
on the Continuation of a Rigid Inclusion
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Abstract. The problem about determining of the dynamic stress intensity
factors (SIF) for the cracks that are located at an angle from the ends of the
inclusion is solved. The inclusion is located in an unbounded elastic body, in
which the longitudinal shear harmonic waves are propagated. Unknown
amplitude of inclusions are determined from the equations of motion. Boundary
conditions are formed in the assumption that the inclusion is fully coupled with
the medium (matrix), and the surface of cracks are not loaded. The method of
the solution is based on the presentation of displacements in the body as a
superposition of three discontinuous solutions which are built respectively to the
cracks and the inclusion. As result the original problem is reduced to the system
of the singular integral equations for unknown jumps of stresses and displace-
ments to the defect. For the numerical solution of the system the method is
developed. It takes into consider the real asymptotic of the unknown functions
and uses the special quadrature formulas for singular integrals.

Keywords: Stress intensity factors � Singular integro-differential equations �
Cracks � Inclusion � Elastics wave

1 Introduction

In the field of construction technology and mechanical engineering, the structures and
parts of machines quite often contain elements or technological defects that can be
considered as thin inclusions of high stiffness. But studies [1] show that thin stiff
inclusions cause a significant concentration of stresses in the environment, which can
lead to the formation of cracks propagating at certain angles relative to the plane of
inclusion. The stress intensity factors (SIF) for cracks on the continuation of inclusion,
which are located on the same line, in a static setting, were studied in research papers
[2–4]. A similar problem for a half-plane with a crack on the continuation of the
inclusion was solved in [5]. The problems of determining the dynamic stress state near
the defects, which are thin inclusions, from the ends of which cracks propagate at
certain angles, were hardly solved. This is associated with the difficulties that arise
when solving integro-differential equations with fixed singularities. The problems of
determining the dynamic stress state in the vicinity of V-shaped cracks and inclusions,
as well as cracks in the form of polyline, were solved in research papers [6–8].
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The same research papers also propose a numerical method for solving integral and
integro-differential equations with fixed singularities. This method considers the real
asymptotics of the solution in the vicinity of singular points and is based on the use of
special quadrature formulas for singular integrals. In this paper, a similar method is
used in solving the following problem.

2 Statement of the Problem

An elastic isotropic medium in a state of out-of-plane deformation is considered. It has
a through defect in the form of absolutely stiff inclusion from the ends of which cracks
propagate at arbitrary angles. In the plane Oxy the inclusion and cracks are located as
shown in Fig. 1.

The defect interacts with a flat harmonic wave of longitudinal offset causing
displacement:

w0ðx; yÞ ¼ Aeij2ðx cos h0 þ y sin h0Þ; j22 ¼ qx2=G ð1Þ

where x—the frequency of the oscillations, q;G—density and modulus of shear of the
body. Multiplier e�ixt which determines dependency from time here and then rejected.
Under such conditions, the single non-zero z—component of the displacement vector,
satisfies the Helmholtz equation:

Dwþ j22w ¼ 0 ð2Þ

where D—Laplace operator in the coordinate system Oxy.
To formulate the boundary conditions for a defect, let us associate the local

coordinate system Olxlyl; l ¼ 1; 2 with each crack, where the center of such coordinate
system coincides with the middle of the corresponding crack (Fig. 1).

Fig. 1. The inclusion from the ends of which cracks propagate at arbitrary angles.
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Let wlðxl; ylÞ; l ¼ 1; 2 be the displacement in the coordinate system associated with
l—crack. Then, if there are no load on the crack edges, the following equations should
be satisfied:

sylzðxl; 0Þ ¼ 0; xl 2 �dl; dl½ �; l ¼ 1; 2: ð3Þ

In addition, on the surface of cracks, the displacements wlðxl; ylÞ; l ¼ 1; 2 endure
breaks with unknown jumps, for which the following designations are introduced:

wlðxl; þ 0Þ � wlðxl;�0Þ ¼ vlðxlÞ; xl 2 �dl; dl½ �; l ¼ 1; 2: ð4Þ

Let us formulate the boundary conditions on inclusion from the conditions of ideal
bonding:

wðx; 0Þ ¼ a; x 2 �d; d½ � ð5Þ

where a—unknown amplitude of longitudinal (along Oz axis) oscillations of inclusion.
On the surface of inclusion, the stress syzðx; yÞ has a break with an unknown jump, for
which the designation is introduced:

syzðx; þ 0Þ � syzðx;�0Þ ¼ vðxÞ; x 2 �d; d½ �: ð6Þ

The unknown amplitude is determined from the following equation:

�mx2a ¼
Z d

�d
vðgÞ dgþP; m ¼ 2dqvh ð7Þ

3 Solution of the Problem

To solve the formulated problem in the coordinate system associated with defects, the
discontinuous solutions of Eq. (2) with jumps (4) and (6) are constructed. These
discontinuous solutions are found using the formulas [9]:

wdðx; yÞ ¼
Z d

�d

vðgÞ
G

r2ðg� x; yÞdg; wd
l ðxl; ylÞ ¼

Z dl

�dl

vlðgÞ
@

@yl
r2ðg� xl; ylÞdg; ð8Þ

where r2ðg� x; yÞ ¼ �i4�1Hð1Þ
0 ðj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg� xÞ2 þ y2
q

Þ; Hð1Þ
0 ðzÞ—Hankel function.

Displacement are searched as superposition:

wðx; yÞ ¼ wdðx; yÞþwg
1ðx; yÞþwg

2ðx; yÞ; ð9Þ
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where wg
l ðx; yÞ; l ¼ 1; 2 are found by formulas (8) after transition to coordinates Oxy.

In order to decisively determine the displacement of the diffraction field, it is necessary
to find unknown jumps (4), (6). To do this, we need to use the conditions (3), (5). In
this case, the equality (5) is replaced by two equivalent equalities:

@wdðx; 0Þ
@x

¼ 0; wdðd; 0Þ ¼ a: ð10Þ

After substituting (9) into the boundary conditions (3) and (10), we obtain a system
of integro-differential equations for the unknown jumps. This system, after extraction
of singular components of kernels and transition to the interval ½�1; 1� takes the
following form:

1
2p

R

1

�1

Qðs;fÞ
s�f þGðs; fÞþRðs; fÞ

� �

FðsÞ dsþ 1
2p

R

1

�1
ðj20D ln s� fj j þR0ðs; fÞÞUðsÞds ¼ ZðfÞ;

1
2p

R

1

�1
u0ðsÞ½c ln 1þ sj j þR1ðsÞ� ds� 1

p

R

1

�1
u2ðsÞR2ðsÞ ds ¼ �A0e�ij0c cos h0 ;

8

>

>

>

<

>

>

>

:

ð11Þ

Gðs; fÞ ¼ gljðs; fÞ
� �

; l; j ¼ 0; 1; 2—the matrix, whose nonzero elements are equal:

g10ðs; fÞ ¼ c sin b1s
þ =p1ðsþ ; f�Þ; g20ðs; fÞ ¼ c sin b2s

�=p2ðs�; fþ Þ;
g01ðs; fÞ ¼ �s�=p1ðfþ ; s�Þ; g02ðs; fÞ ¼ sþ =p2ðf�; sþ Þ;
FðsÞ ¼ ðu0ðsÞ;u0

1ðsÞ;u0
2ðsÞÞT ¼ ðf0ðsÞ; f1ðsÞ; f2ðsÞÞT ;

pjðx; yÞ ¼ c2x2 þ 2ccjxy cos bj þ c2j y
2; j ¼ 1; 2; s� ¼ 1� s; f� ¼ 1� f;

flðsÞ ¼ vlðgÞd�1
l ; xl ¼ dlf;g ¼ dls; cl ¼ dlb

�1; f0ðsÞ ¼ vðgÞG;g ¼ ds; c ¼ db�1; b ¼ maxðd; dlÞ:

4 Approximate Solution of a System of Integro-Differential
Equations

The presence of singular component of the system (11) of fixed singularities affects the
behavior of its solution in the vicinity of points f ¼ �1 [10]. The asymptotics of the
solution in the neighborhood of these points is determined by the method described in
[11]. As a result, it was found that unknown functions should be sought in the fol-
lowing form:

flðsÞ ¼ ð1þð�1ÞlsÞdlð1� ð�1ÞlsÞ�1=2wl sð Þ; l ¼ 1; 2; f0ðsÞ
¼ ð1þ sÞd1ð1� sÞd2w0 sð Þ; ð12Þ

232 А. S. Misharin and V. G. Popov



where power indicators are found by the following formulas:

dl ¼ �ðpþ 2blÞ=ð2pþ 2blÞ; 0\bl\p; l ¼ 1; 2; b1 ¼ a1 � p; b2 ¼ a2:

Moreover, for functions with such singularities to be solutions of the system (11),
the following equalities must be fulfilled [11]:

w1ð1Þ ¼ ðc1=cÞd1w0ð�1Þ; w2ð�1Þ ¼ ðc2=cÞd2w0ð1Þ: ð13Þ

and the functions wlðsÞ; l ¼ 0; 1; 2; are considered to be such that they satisfy the
Holder condition on the interval ½�1; 1�. Further solution is based on the approximation
of these functions by interpolation polynomials:

wlðsÞ ¼
Xn

m¼1
wlm

PlnðsÞ
ðs� slmÞ½PlnðslmÞ�0

; l ¼ 0; 1; 2; ð14Þ

wlm ¼ wlðslmÞ; P0nðsÞ ¼ Pd2;d1
n ðsÞ; P1nðsÞ ¼ P�d1;�1=2

n ðsÞ; P2nðsÞ ¼ P�1=2;�d2
n ðsÞ—Jacobi

polynomials, slm—the roots of these polynomials.
For integrals with a Cauchy kernel, we apply the following quadrature formulas

from [12]. Similar formulas for integrals with fixed singularities were obtained in [13].
To calculate integrals that contain directly unknown functions flðsÞ; l ¼ 0; 1; 2; and for
integrals with a logarithmic function, the formulas from [6] are applied.

The application of quadrature formulas leads to the replacement of the system of
integro-differential Eqs. (11) by a system of linear algebraic equations with respect to
the values of functions wl; l ¼ 0; 1; 2 in the interpolation nodes.

For the destruction mechanics, the stress intensity factors (SIF) are of particular
interest, whose approximate values are expressed by the following formulas through
the solution of system (11):

kl ¼ Kl2dl�1G�1=
ffiffiffiffi

dl
p

¼ wlðð�1ÞlÞ; l ¼ 1; 2: ð17Þ

5 Results of Numerical Analyses

When conducting a numerical implementation, the primary goal was to study the
practical convergence of the proposed method of numerical solution. For this purpose,
the defect shown in Fig. 1 was considered at a1 ¼ pþ b;a2 ¼ b; b1 ¼ b2 ¼ b. Cracks
and inclusion have the same length d ¼ dl; l ¼ 1; 2. Dimensionless SIF vales were
calculated by formulas (17). And as a result of symmetry, we have that
k1j j ¼ k2j j ¼ kj j. The calculation is performed at an angle b ¼ 45o. When receiving
SIF values with an error not exceeding 0; 1% it suffices up to 20 interpolation nodes in
(14). And for waves with a low frequency, such that, for a dimensionless wave number
j0 � 2 it suffices 5 nodes j0 ¼ j2b; b ¼ max d; dlð Þð Þ.

A study of the influence of cracks location on the SIF value when changing the
angle values b depending on the dimensionless value of the wave number was
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conducted. Positions of the cracks is determined by the angle b; which they form with
the plane of inclusion. Calculation results are shown in Fig. 2 for angles b ¼
5; 30; 60; 90; 120; 150; 175

�
: At sharp angles, we observe a decrease in SIF values as

the angle b increases. At obtuse angles, on the contrary, there is an increase in SIF
values as the angle b increases. SIF values are minimal when the cracks are perpen-
dicular to the inclusion. In general, as a result of the complexity of the wave field
created by the reflection of waves from a defect, the dependence of SIF on frequency
has significant maxima, the magnitude and position of which are affected by the
configuration of the defect.

6 Conclusions

Taking into account the true asymptotics of solutions and the application of special
quadrature formulas for singular integrals improves the convergence of numerical
methods for solving singular equations. The conducted numerical analysis has estab-
lished the significant influence of the position of cracks relative to the inclusion on the
change of SIF.
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with a System of Cracks Under Oscillations
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Abstract. The problem of determining the stress state near the through-cracks
in an infinite hollow cylinder of arbitrary cross-section under oscillations of
longitudinal shear is solved. The method allows satisfying the conditions sep-
arately on the surface of cracks and on the borders of the cylinder. The solution
scheme is based on the use of discontinuous solutions of equations of motion of
elastic medium with jumps of displacements on the surface of defects. For this
displacement are represented by the sums of discontinuous solutions, built for
each defect, and an unknown characteristic function. Designed presentation
enables fulfilling separately the boundary conditions on the surface of defects
that leads to the set of systems of integral equations, which don’t depend from
the shape of the boundaries of the body. Then the unknown coefficients of
represented characteristic function are determined from the conditions on the
boundaries of the body by the collocation method.

Keywords: Hollow cylinder of arbitrary cross section � Harmonic oscillations �
Crack � Stress intensity factors � The system of cracks

1 Introduction

Research of the stress state of bodies with cracks is actual for formulation the condi-
tions for the fracture of bodies and diagnoses such defects, based on information about
their influence on resonant frequency. The results obtained in this direction it is mainly
up to infinity and semi-infinite bodies with defects [1–4]. Situations where the body
occupy finite area, considered much less. This is due to the fact that when applying the
method of boundary integral equations of the initial boundary value problems are
reduced to the related systems of integral equations defined and surface defects and on
the boundary of the body [5–7]. As a result, numerical solution essentially more
complicated, especially in the case of systems defects and multiplies connected areas.
Method that allowing independently consistently satisfying the boundary conditions on
defects and on the surface of the body is proposed there.
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2 Statement of the Problem

Hollow elastic cylindrical body with axis parallel to the axis Oz of the cross section
plane xOy which is a two connected area that is bounded by arbitrary smooth curves is
considered. These curves in a polar coordinate system, the pole of which coincides with
the center of coordinates system xOy are defined by the equations:

r ¼ r0w0 uð Þ; r ¼ r1w1 uð Þ; 0�u\2p:

The first equation defines the outside boundary of the cross-section, and the second
equation defines inside. The cylinder contains N through cracks. These cracks in cross
section plane occupied segments of 2ak; k ¼ 1;N length with centers at points ck; dkð Þ
that do not intersect with the boundaries of cross section and among themselves
(Fig. 1).

The longitudinal shear oscillation proceeds in the cylinder as a result of the har-
monic load GP uð Þe�ixt on the outside boundary, where G is shear module, x is the
frequency of oscillation. The multiplier e�ixt is everywhere on omitted. Only the
z-component of the vector of displacement is different from 0, which satisfies
the Helmholtz equation

Dwþ j22w ¼ 0; j22 ¼ x2q=G; ð1Þ

D-is the Laplace operator in a polar coordinate system. Due to the load on the
outside surface of the body and on the supposition about the fixity inside surface next
conditions are fulfilled on them

s�nz r0w0 uð Þ;uð Þ ¼ GP uð Þ;w r1w1 uð Þ;uð Þ ¼ 0; 0�u\2p: ð2Þ

For the formulation of boundary conditions on the cracks with the center of each
the local coordinate system xkOkyk; k ¼ 1;N is associated (Fig. 1).

Let wk xk; ykð Þ is the z—component of the vector of displacement after the trans-
formation from polar coordinates to Cartesian xkOkyk . Cracks are considered to be free
from stresses:

Fig. 1. Infinite cylindrical body with cracks.
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szyk xk; 0ð Þ ¼ 0; xkj j\ak; k ¼ 1;N ð3Þ

Also displacement is discontinuous on the surfaces of the cracks with jumps

szyk xk; 0ð Þ ¼ 0; xkj j � ak; vk �akð Þ ¼ 0 k ¼ 1;N ð4Þ

Under such conditions, the problem of determining the wave field in the body and
stress state in the vicinity of the cracks is posed.

3 Solution of the Problem

For each of the cracks in the local coordinate system xlOlyl discontinues solution of
Eq. (1) [8] with jumping (4) is built

w dð Þ
l ðxl; ylÞ ¼ @

@yl

Zal
�al

vlðgÞr2ðg� xl; ylÞdg; ð5Þ

where r2ðg� xl; ylÞ ¼ � i
4H

1ð Þ
0 j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� xlÞ2 þ y2l

q� �
; H 1ð Þ

0 —Hankel function.

Then in a polar system displacement is represented in the form of:

w gð Þ r;uð Þ ¼ w gð Þ
0 r;uð Þþ

XN
l¼1

w gð Þ
l r;uð Þ ð6Þ

where w gð Þ
l r;uð Þ are discontinuous solutions (5) after the transition to polar coordi-

nates, w gð Þ
0 r;uð Þ is some unknown function which conditions (2) on the surface of the

body would be satisfied. Further, this function is represented as a linear combination of
the partial solutions of Helmholtz Equation [9]:

w gð Þ
0 r;uð Þ ¼ r0

PM
s¼1

Asgs r;uð ÞþBshs r;uð Þð Þ
h2m�1ðr;uÞ ¼ Hm�1ðj2rÞ cosðm� 1Þu; h2mðr;uÞ ¼ Hmðj2rÞ sinmu
g2m�1ðr;uÞ ¼ Jm�1ðj2rÞ cosðm� 1Þu; g2mðr;uÞ ¼ Jmðj2rÞ sinmu

ð7Þ

After transition in (7) to the Cartesian coordinates xkOkyk and substitution to (4)
system of integro-differential equations for functions ul sð Þ ¼ vl alsð Þ=al is obtained.

Formulas (7) and the linearity of this system allow to represent the unknown
function in form:

ul sð Þ ¼ al
XM
s¼1

Asu
1ð Þ
sl sð ÞþBsu

2ð Þ
sl sð Þ

� �
;u0

l gð Þ ¼
XM
s¼1

As u 1ð Þ
sl sð Þ

� �0
þBs u 2ð Þ

sl sð Þ
� �0� �

:
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As a result of these actions the set of systems of integral equations for u ið Þ
sl sð Þ are

obtained finally

1
2p

R1
�1

u ið Þ
sk sð Þð Þ0 1

s�1þR 1ð Þ
k s�1ð Þ½ �dsþ 1

2p

R1
�1

u ið Þ
sk sð Þ �c2kj

2
0 ln s�1j j þR 0ð Þ

k s�1ð Þ½ �ds

þ
PN
l¼1
l6¼k

1
2p

R1
�1

u
ið Þ
sl

sð Þð Þ0F 1ð Þ
kl

s;1ð Þdsþ 1
2p

R1
�1

u
ið Þ
sl

sð ÞF 0ð Þ
kl

s;1ð Þds

� �
¼ f

ið Þ
sk

1ð Þ;

f
1ð Þ

sk
1ð Þ ¼ �r0

@gs ak 1;0ð Þ
@yk

; f
2ð Þ

sk
1ð Þ ¼ �r0

@hs ak 1;0ð Þ
@yk

; k¼1;...;N; s¼1;...M; i¼1;2:

ð8Þ

Solution of systems (8) is based on the representation of derivatives of unknown
functions in the form [10]:

u ið Þ
sk sð Þ

� �0
¼ w ið Þ

sk sð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ; k ¼ 1; 2; . . .;N ð9Þ

Then the mechanical quadrature method with (8) the set of systems of linear

algebraic equations for the knots values of unknown function w ið Þ
sk

� �
m
¼ w ið Þ

sk smð Þ are

obtained with (8). Where Tn sð Þ is Chebyshev’s polynomial,sm is its roots. Unknown
coefficients Ak , Bk in (7) are determined by condition (2) in the boundaries of the body.
After the its realization and applying of the collocation method systems of linear
algebraic equations for these coefficients are obtained

PM
s¼1

As
Pn
m¼1

amw
1ð Þ
sm

Pn
l¼1

DlmG Zl; rrð ÞþF1
s rrð Þ

� �

þ PM
s¼1

Bs
Pn
m¼1

amw
2ð Þ
sm

Pn
l¼1

DlmG Zl; rrð ÞþF2
s rrð Þ

� �
¼ P rrð Þ;

PM
s¼1

As
Pn
m¼1

amw
1ð Þ
sm

Pn
l¼1

DlmE Zl;rrð Þþ gs rrð Þ
� �

þ PM
s¼1

Bs
Pn
m¼1

amw
2ð Þ
sm

Pn
l¼1

DlmE Zl;rrð Þþ hs rrð Þ
� �

¼ 0;

rr ¼ 2pr
M ; r ¼ 1; ::;M:

ð10Þ

Values that define the possibility of developing cracks, there are stress intensity
factors (SIF) K�

l near its edges xl ¼ �al, After the solution (8) and (10) its dimen-
sionless value are founded

k�l ¼ K�
l

G
ffiffiffi
al

p ¼ �1ð Þnþ 1

2n

PM
s¼1

As
Pn
m¼1

�1ð Þmw 1lð Þ
sm ctg cm

2

	 
�1 þ PM
s¼1

Bs
Pn
m¼1

�1ð Þmw 2lð Þ
sm ctg cm

2

	 
�1
� �

;

cm ¼ pð2m�1Þ
2n :
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4 The Results of Numerical Analyses

As an example, the cylindrical body with cross-section bounded of two ellipses (Fig. 2)
was considered when the next load surface P uð Þ ¼ sin 2u.

Eccentricities of internal and external ellipses are same and equal e ¼ 0; 5, the ratio
of axes of the ellipses is r1=r0 ¼ 0; 5. The dependence of the absolute values of the SIF
on dimensionless wave numbers j0 ¼ j2r0 was studied for different angles of incli-
nation of the cracks to the axis of the ellipse. Figure 3 corresponds to the case of a
crack with a length equal to one third of the distance AB between the vertexes of
ellipses, and centered on the axis of the cross section. Curves 1–5 are illustrating the
change of SIF kþj j with increase of the wave number for the following angles,
0�; 30�; 45�; 60�; 90� respectively. We can see that until reach the first resonance fre-
quency absolute value of SIF decreases with increase factor of crack inclination angle.
Crack inclination angle also substantially affects the number and value of resonant
frequencies. So, for the angles of inclination a ¼ 0� and a ¼ 90� there is no resonance
for j0 � 2; 6; which is observed for the other angles. However, all the cases revived are
characterized by resonant behavior of SIF for j0 � 3; 8:

5 Conclusions

Effective analytical-numerical method for determining the dynamic stresses in hollow
cylindrical body with arbitrary cross-section with through cracks for longitudinal shear
strain conditions was proposed. This method allows solving separate integral equations

Fig. 2. The cross section of cylindrical body with crack.

Fig. 3. Dependence of SIF on wave number when changing cracks inclination angle.
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on defects and satisfying the conditions on the boundary of body, which facilitates
numerical realization. The method can be generalized to the case of the plane defor-
mation state and more difficult problems. Some difficulties in applying this method
arise when approaching the defect to the crack and unsmooth the boundaries of the
body. But in general, the proposed method allows the approximate calculation of SIF
and study the impact on their value of geometrical parameters of the cracks and the
body in a wide frequency area. It is shown that the presence of cracks in an elastic
hollow cylinder for harmonic load is accompanied by both the intensity of the dynamic
stresses in the vicinity of defects, and the resonant nature of their changes. In the
considered frequency area opportunities of achievement one or two resonances
depending on the position of the cracks in the body are revealed.
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Abstract. The problem of an elastic twice-truncated cone wave field estimation
is considered for a steady state torsional oscillations. The G. Ya. Popov integral
transformation with regard to an angular coordinate is applied. It allows the
reduction of the original problem to a one-dimensional boundary value problem
in the transformation’s domain. The solution of this boundary value problem is
derived in an explicit form. The dependence of the eigenfrequencies on the
cone’s geometric parameters is investigated.

Keywords: Twice truncated cone � Steady state torsional oscillations �
G. ya. popov integral transformation

1 Introduction

An important task widely common in engineering practice is to determine the dynamic
stress state of a cone under the impact of a non-stationary load. A particularly important
point is the ability to calculate the eigenfrequencies required to evaluate the dynamic
stability of the constructions.

The solving of the initial boundary value problems for cone-shaped elastic bodies is
not a new problem, however, there are many unresolved issues, especially when the
cone is twice-truncated. A thick-walled twice-truncated cone from two-dimensional,
functionally graded materials exposed to the combined load is considered at [1]. In [2]
the stress state of a twice-truncated cone resting on a rigid base of the lateral surface
under a uniform load applied at a larger base is investigated. An axisymmetric problem
for a twice-truncated anisotropic cone is solved in [3] with the help of the straight lines
method for three-dimensional elasticity equations. The general solution for axisym-
metric boundary value problems for a twice-truncated cone is derived in [4]. More
complicated, an axially mixed problem for a twice-truncated hollow cone under its own
weight was considered in [5]. Significantly less problems are confirmed with an
investigation of the dynamic field of conical bodies. An axisymmetric dynamic
problem for a twice truncated dynamic cone first was considered at [6], but a lot of
unresolved questions connected with eigenvalues investigation still remain.
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2 Statement of the Problem

The twice truncated elastic cone is considered in the spherical coordinate system
a\r\b;�w� h�w;�p�u\p (Fig. 1).

The problem is stated for the case of steady-state oscillations and for all mechanical
characteristics representation ~f r; h;u; tð Þ ¼ eix tf r; h;uð Þ takes place, where x is the
steady state frequency, factor eix t will be omitted in all next formulas.

An absolutely rigid overlay is in adhesion with the bottom spherical face
r ¼ a;�w� h�w;�p�u\p: The torsion dynamic moment impacts the cone
through this rigid overlay:

wjr¼a¼ a l sin h cos h; ð1Þ

here wðr; hÞ ¼ uu r; hð Þ the only non-zero displacement in this problem statement,
l ¼ b� a and a is the unknown rotation angle. This rotation angle should be found
further from the movement equation of the overlay

2p a3
Zx

0

sin2 h sruða; hÞdhþMþx2a J ¼ 0; ð2Þ

where M is torque, applied to overlay, J is overlay’s known inertia moment.
The cone’s surface a\r\b; h ¼ w;�p�u\p is free from stress

shu
��
h¼w

¼ 0: ð3Þ

The upper spherical face of the cone r ¼ b;�w� h�w;�p�u\p is fixed

wjr¼b¼ 0: ð4Þ

Fig. 1. Geometry of the problem
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It is required to determine the displacement satisfying the boundary conditions (1),
(3), (4) and the torsion equation

ðr2w0Þ0 þ ðsin hw�Þ�
sin h

� w

sin2 h
¼ �r2q2

@2w
@t2

; ð5Þ

where w� ¼ @w r;hð Þ
@h ; q ¼ x

c is the wave number and c ¼
ffiffiffi
G
q

q
; is the shear wave speed, q

is density and G is the shear modulus.

3 The Problems Solving

The integral G. Ya. Popov transformation [7] is applied to derived problem (1), (3)–(5)

wkðrÞ ¼
Zw

0

sin hP1
mk
ðcos hÞwðr; hÞdh ð6Þ

with the inverse transformation formula

wðr; hÞ ¼
X1
k¼0

P1
mkðcos hÞwkðrÞ
P1
mk ðcos hÞ

�� ��2 ; ð7Þ

where P1
mk ðcos hÞ is associated Legendre’s function of the first kind, mk are the roots of

the transcendental equation

@P1
mk ðcos hÞ
@h

����
h¼w

� ctgxP1
mk
ðcoswÞ ¼ 0 ð8Þ

Thus, in the transformation’s domain, a one-dimensional boundary value problem
is written:

r2w0
k

� �0�mk mk þ 1ð Þwk � r2q2wk ¼ 0

wkjr¼b¼ 0

wkjr¼a¼ a lck; ck ¼
sin3 wP1

mk ðcoswÞ
mk � 2ð Þ mk þ 3ð Þ

ð9Þ

the solution of boundary value problem (9) is constructed in the form [8]

wk rð Þ ¼ W0k rð Þa l ck ð10Þ

where W0k rð Þ;W1k rð Þf g is the system of the basis solutions
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W0k rð Þ ¼ a
1
2r�

1
2 J~mk qrð ÞY~mk qbð Þ � J~mk qbð ÞY~mk qrð Þð ÞD�1

W1k rð Þ ¼ �b
1
2r�

1
2 J~mk qrð ÞY~mk qað Þ � J~mk qað ÞY~mk qrð Þð ÞD�1

D ¼ J~mk qað ÞY~mk qbð Þ � J~mk qbð ÞY~mk qað Þ
ð11Þ

here J~mk qrð Þ and Y~mk qrð Þ are Bessel’s functions of the first and second kind respectively.
G. Ya. Popov inverse integral transformation (7) is applied to the expression (10). It

leads to the final formula for the displacement

w r; hð Þ ¼ a
r

� �1
2
a l sin2 w

X1
k¼0

P1
mkðcos hÞP1

mk coswð Þ
mk � 1ð Þ mk þ 2ð Þ P1

mk
ðcos hÞ�� ��2

J~mk qrð ÞY~mk qbð Þ � J~mk qbð ÞY~mk qrð Þ
J~mk qað ÞY~mk qbð Þ � J~mk qbð ÞY~mk qað Þ

ð12Þ

Formula (12) determines the cone’s displacement, if the rotation angle a is known.
To find it one must use the formula (5)

a ¼ � M
x2J

ð13Þ

Taking into account the correspondent (13) an explicit solution of the problem
(1–5) is derived.

4 Discussion of the Numerical Results

From the point of view of mechanical applications, the most important is to find the
eigenfrequencies. It requires the solving of the transcendental equation

D xð Þ ¼
YN
k¼0

J~mk x
a
c

� �
Y~mk x

b
c

	 

� J~mk x

b
c

	 

Y~mk x

a
c

� �	 

¼ 0 ð14Þ

The following input parameters were selected for the calculation. N ¼ 5;
G ¼ 45:5� 1010 г/cм/c2, q ¼ 8:92 г/cм3, a ¼ 10 cм, b ¼ 3a; c ¼ 2:26� 105 cм/c,
V ¼ 0:1 cм3, m ¼ qV ¼ 0:892 г, J ¼ 2:43 г � cм2, M ¼ 120 � 1010 г � cм2/c2, where
V and m are an overlay’s volume and mass respectively.

For three different cone angles w ¼ 15�; 45�; 75� the first eigenfrequencies are
evaluated and shown in Table 1.
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In Table 2 one can see how changing the cone size influences the values of first
eigen frequencies w ¼ 45�ð Þ:

In Fig. 2 one can see values k1 ¼ sru b;hð Þ
aj jG where 0� h�w and displacement

k2 ¼ w r;wð Þ
aj j where a\r\b for different cone opening angles w ¼ 45� and w ¼ 75�:

5 Concluding Remarks

The explicit formulas for the wave field of a twice-truncated cone under dynamic
torsion impact are derived in this paper. The dependence of the eigenfrequencies on the
opening angle and the linear size of the cone was stated. The explicit formulae of stress
and displacement were derived.

It is established that increasing the opening angle, the first eigenfrequencies are
decreased, however, when increasing the cone’s linear size, they are increased.

Table 1. Eigenfrequencies dependence from cone’s opening angle

wð�Þ Xi ¼ 2xi l
pc ; i ¼ 1; . . .; 5

15 2.08253 4.04742 6.03272 8.02487 10.0200
45 2.08253 4.04742 4.63559 6.03272 6.23599
75 2.08253 3.25786 4.04742 4.58078 4.90631

Table 2. Eigenfrequencies dependence from cone’s linear size

b 1:5a 2a 3a 10a

X1 2.01231 2.03500 2.08253 2.25799

Fig. 2. The values of k1 and k2 dependencies
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The proposed approach can be used to determine the dynamic stress and dis-
placement of a twice-truncated cone in the case when the load is applied to the body
weakened by a spherical defect (a crack or a thin absolutely hard inclusion).
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Abstract. The nonstationary Lamb-Cerutti problem was solved in the spatial
statement for the elastic half-plane. Explicit formulae in the Laplace transform
domain were derived. The solution was provided in detail for the case of steady
state tangential and normal loads. Explicit formulae for the stresses and dis-
placements of the half-space for both normal and tangent load were obtained.

Keywords: Lamb-Cerutti problem � Nonstationary � Spatial � Explicit form �
Integral transforms

1 Introduction

In many three-dimensional contact problems, such as the indentation of a cylinder into
an elastic half space, it is necessary to have formulae defining the stress and dis-
placements of a half-space, not only under normal, but also under tangential load on its
surface. In the static statement these solutions are studied sufficiently fully (Cerutti’s
problem) in two-dimensional formulation. However, in the dynamic spatial statement
the Cerutti’s problem, as distinct from Lamb’s problem [1, 2], is not fully investigated
[3]. In the proposed paper the explicit solution of a nonstationary spatial Cerutti
problem is constructed in the Laplace transform domain. Also the formulae for the
displacements and stress of a half-space under steady state tangential load are derived
for the spatial statement.

2 The Statement of the Problem

The elastic half-space �1\x; y\1; z� 0 meets the nonstationary normal and tan-
gent loadings at the surface Z = 0 at moment t ¼ 0

rz x; y; z; tð Þjz¼0 ¼ �f x; yð ÞD tð Þ
szx x; y; z; tð Þjz¼0 ¼ �g x; yð ÞD tð Þ
szy x; y; z; tð Þjz¼0 ¼ �h x; yð ÞD tð Þ
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One must estimate the wave field of the half-space satisfying the equations of
motion and zero initial conditions

Duþ l0
@h
@x

¼ c�2
2

@2u
@t2

Dvþ l0
@h
@y

¼ c�2
2

@2v
@t2

Dwþ l0
@h
@z

¼ c�2
2

@2w
@t2

8>>>>>>><
>>>>>>>:

; h ¼ @u
@x

þ @v
@y

þ @w
@z

;

where l0 ¼ 1� 2lð Þ�1; c21 ¼ kþ 2Gð Þq�1; c22 ¼ Gq�1; l is Poisson’s coefficient,
k; G—Lame’s coefficients, q—density of elastic medium. Following Popov [1, 2] the
functions Z ¼ @u

@x þ @v
@y ; Z

� ¼ @v
@x � @u

@y were considered and Lame’s system was trans-
formed to the two coupled equations and a separate one

Dwþ l0
@

@z
Z þ @w

@z

� �
¼ c�2

2
@2w
@t2

DZþ l0rxy Zþ @w
@z

� �
¼ c�2

2
@2Z
@t2

8>>><
>>>:

; DZ� ¼ c�2
2

@2Z�

@t2
; rxy ¼ @2

@x2
þ @2

@y2
ð1Þ

The new functions are input instead of the stress: rz ¼ 2Gl0 l Zþ 1� lð Þ @w@z
� �

;

s ¼ @szx
@x þ @szy

@y ¼ G rxywþ @Z
@z

� �
; s� ¼ @szy

@x � @szx
@y ¼ G @Z�

@z :

The boundary conditions are rewritten in the form

2Gl0 lZ þ 1� lð Þ @w
@z

� �
jz¼0 ¼ �f x; yð ÞD tð Þ

sjz¼0 ¼ G rxywþ @Z
@z

� �
jz¼0 ¼ � @g

@x
þ @h

@y

� �
D tð Þ

s�jz¼0 ¼ G
@Z�

@z
jz¼0 ¼ � @h

@x
� @g

@y

� �
D tð Þ

ð2Þ

The initial conditions are reformulated in terms of the new functions as well

wjt¼0 ¼ Zjt¼0 ¼ Z�jt¼0 ¼ 0;
@w
@t

jt¼0 ¼
@Z
@t

jt¼0 ¼
@Z�

@t
jt¼0 ¼ 0:

3 Solving the Problem

The Laplace transform with regard to variable t and Fourier transform with the regard
to variables x and y were applied sequentially to Lame’s Eq. (1) and boundary con-
ditions (2)
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wa b p zð Þ; Za b p zð Þ; Z�
a b p zð Þ

D E
¼
Z1

�1
eib ydy

Z1

�1
eia xdx

Z1

0

w x; y; z; tð Þ; Z x; y; z; tð Þ; Z� x; y; z; tð Þh ie�ptdt:

It is derived in the transform domain that

w00
ab p zð Þ � c2q22wab p zð Þþ 1� c2ð ÞZ 0

ab p ¼ 0
Z 00
ab p zð Þ � c�2q21Zab p zð Þþ 1� c�2ð ÞN2w0

ab p ¼ 0

(
; Z�00

ab p zð Þ � q22Z
�
ab p ¼ 0 ð3Þ

The boundary conditions are reformulated

1� 2c2
� �

Zab p 0ð Þþw0
ab p 0ð Þ ¼ �c2G�1fabDp

N2wab p 0ð Þ � Z 0
ab p 0ð Þ ¼ �iG�1 a gab þ b hab

� �
Dp

ð4Þ

Z�0
ab p 0ð Þ ¼ �iG�1 b gab � a hab

� �
Dp: ð5Þ

Here ki ¼ pc�1
i ; c ¼ k1k�1

2 ;N2 ¼ a2 þ b2; qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ k2i

p
i ¼ 1; 2ð Þ.

The solution of the Eq. (3), satisfying the boundary condition (5) and decreasing on
infinity has the form Z�

ab p zð Þ ¼ iG�1q�1
2 b gab � ahab
� �

Dpe�q2z:

The governing Eqs. (3) are then written in vector form as L2~y zð Þ½ � ¼
I~y00 zð ÞþA~y0 zð ÞþB~y zð Þ ¼ 0; where

~y zð Þ ¼ wabp zð Þ
Zabp zð Þ

 !
;A ¼ 0 1� c2

1� c�2ð ÞN2 0

� �
;B ¼ �c2q22 0

0 �c�2q21

� �
, I

—unit matrix.
The solution of this vector equation is constructed on the base of matrix solution

L2 Y zð Þ½ � ¼ 0, through the substitution Y zð Þ ¼ es zI, leading to

Y zð Þ ¼ 1
2p i

Z
C

es zM�1 sð Þds;

where M�1 sð Þ ¼ 1
s2�q21ð Þ s2�q22ð Þ

s2 � c�2q21 � 1� c2
� �

s

� 1� c�2� �
N2s s2 � c2q22

 !
, and C is a closed

contour covering the poles s1;2 ¼ �q1 and s3;4 ¼ �q2. The decreasing on infinity
matrix solution Y zð Þ is derived after evaluation of a contour integral (taking into
consideration the poles s2 and s4). The vector solution takes the form

~y zð Þ ¼ Y zð Þ A1

A2

 !
, where constants A1 and A2 are found from the boundary condi-

tions (4). To find the unknown displacements one must use the expressions found for
transformations of new inputted functions
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uab p zð Þ ¼ iN�2 a Zab p zð Þ � b Z�
ab p zð Þ

h i
; vab p zð Þ ¼ iN�2 b Zab p zð Þþ aZ�

ab p zð Þ
h i

wab p zð Þ ¼ G�1R�1 Nð Þ 2N2 þ k22
� �

e�q1z � 2N2e�q2z
	 


q1fab
�

þ 2q1q2e�q1z � 2N2 þ k22
� �

e�q2z
	 


i a gab þ b hab
� ��

Dp

ð6Þ

where R Nð Þ ¼ 2N2 þ k22
� �2�4N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ k22

p
:

Let us apply the inverse Laplace’s and Fourier’s transforms to the derived for-
mulae. The displacement w x; y; z; tð Þ is written in the form

w x; y; z; tð Þ ¼ 1
8p3 iG

Z1

�1

Z1

�1
f n;gð Þdn dg

Zeþ i1

e�i1
Dpeptdp

Z1

�1

Z1

�1

R1 Nð Þ
R Nð Þ q1e

�ia x�nð Þ�ib y�gð Þda db

� 1
8p3 iG

@

@x

Z1

�1

Z1

�1
g n;gð Þdn dg

Zeþ i1

e�i1
Dpeptdp

Z1

�1

Z1

�1

R2 Nð Þ
R Nð Þ e�ia x�nð Þ�ib y�gð Þd a db

� 1
8p3 iG

@

@y

Z1

�1

Z1

�1
h n;gð Þdn dg

Zeþ i1

e�i1
Dpeptdp

Z1

�1

Z1

�1

R2 Nð Þ
R Nð Þ e�i a x�nð Þ�ib y�gð Þd a db

R1 Nð Þ ¼ 2N2 þ k22
� �

e�q1z � 2N2e�q2z; R2 Nð Þ ¼ 2q1q2e�q1z � 2N2þ k22
� �

e�q2z:

As may be seen, the double integrals are dependent on the expressions N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ k2i

q
i ¼ 1; 2ð Þ. It is possible to transform them into a

single integral with the help of a well-known correspondence

Z1

�1

Z1

�1
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c

q� �
e�ia x�ib yda db ¼

Z1

0

F
ffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ c

p� �
J0 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
q dq;

where J0 xð Þ is the Bessel’s function. The transformed displacement is written as

4p2iGw x; y; z; tð Þ ¼
Zeþ i1

e�i1
Dpeptdp

Z1

0

F q; x; yð ÞR1 qð Þ
R qð Þ q1q d q

� @

@x

Zeþ i1

e�i1
Dpeptdp

Z1

0

G q; x; yð ÞR2 qð Þ
R qð Þ q d q� @

@y

Zeþ i1

e�i1
Dpeptdp

Z1

0

H q; x; yð ÞR2 qð Þ
R qð Þ q d q;

where

F q; x; yð Þ;G q; x; yð Þ;H q; x; yð Þh i

¼
Z1

�1

Z1

�1
f n;gð Þ; g n;gð Þ; h n;gð Þh iJ0 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� nð Þ2 þ y� gð Þ2

q� �
dn dg
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The other displacements are found in a similar manner.
The derived solutions contain the functions F q; x; yð Þ;G q; x; yð Þ;H q; x; yð Þ, repre-

sented by double integrals and their derivatives. Let’s consider the subcase when an
external load is applied by the rectangular area xj j � a; yj j � b and uniformly
distributed there with intensity Ax; Ay; Az along the corresponding directions. It leads

to F q; x; yð Þ ¼ Az
Ra
�a

Rb
�b

J0 q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� nð Þ2 þ y� gð Þ2

q� �
dn dg, where after Sonin’s for-

mula [4] and some additional transformations, one derives F q; x; yð Þ ¼ 8
pq2 Az

Rp=2
0

sin aq coswð Þ sin bq sinwð Þ cos xq coswð Þ cos yq sinwð Þ dw
cosw sinw.

Similar correspondences are constructed for G q; x; yð Þ and H q; x; yð Þ:
Let us focus on the case when the external load is harmonic in time, i.e.

D tð Þ ¼ eix t. The explicit solutions are written for p ¼ ix:

w x; y; z; tð Þ
2pGð Þ�1eix t

¼
Z1

0

F q; x; yð Þ S1 qð Þ
S qð Þ c1q d q� @

@x

Z1

0

G q; x; yð Þ S2 qð Þ
S qð Þ q d q

� @

@y

Z1

0

H q; x; yð Þ S2 qð Þ
S qð Þ q d q

ð7Þ

Here S qð Þ ¼ 2q2 � v22
� �2�4q2c1c2; S1 qð Þ ¼ 2q2 � v22

� �
e�c1z � 2q2e�c2z

S2 qð Þ ¼ 2c1c2e
�c1z � 2q2 � v22

� �
e�c2z vi ¼ x c�1

i ; ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � v2i

q
; i ¼ 1; 2

As it is seen, if the denominator of (7) is zero S qð Þ ¼ 2q2 � v22
� �2�4q2c1c2 ¼ 0; one

arrives at the Rayleigh equation. Its unique root is q ¼ vR ¼ x c�1
R , connected with the

velocity cR of Rayleigh’s wave propagation v1\v2\vRð Þ. The damping is introduced in
a medium to direct the energy flow in Rayleigh’s wave from the load’s location. After a
contour integration procedure the formulae for the displacements are written.

For the tangential load g 6¼ 0; f ¼ h ¼ 0 the displacement has the form

w x; y; z; tð Þ
2p i Gð Þ�1 e

�ix t ¼ @

@x
p
G vR; x; yð Þ
S0 vRð Þ S2 vRð ÞvR



�
Zv1
0

G n; x; yð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � n2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q
sin z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � n2

q� �
þ 2n2 � v22
� �

sin z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q� �

2n2 � v22
� �2 þ 4n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � n2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q n dn

�
Zv2
v1

G n; x; yð Þ 2n2 � v22
� �

2n2 � v22
� �4 þ 16n4 n2 � v21

� �
v22 � n2
� � 2 2n2 � v22

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � v21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q
e�z

ffiffiffiffiffiffiffiffiffiffi
n2�v21

p�

þ 2n2 � v22
� �2

sin z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q� �
� 4n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � v21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q
cos z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 � n2

q� ��
n dn

Other formulae are not given here due to the limited size of the article.
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4 Conclusions

1. The explicit solutions of nonstationary spatial Lamb’s and Cerutti’s problems are
constructed in the Laplace’s transform domain.

2. The problem was studied in detail for the case of steady-state normal and tangential
loads. The wave field in the half-space was derived in explicit form for the spatial
statement of the problem.

Acknowledgements. Support through the Erasmus + KA107 framework is gratefully
acknowledge. The authors are also indebted to Prof J. Kaplunov for fruitful discussions.
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Abstract. Interacting with electromagnetic field, thin linear elastic homoge-
neous anisotropic shell with a smooth median surface is exploring. The equa-
tions of its movement are used, taking into account the rotation of the normal
fiber and compression. The components of the electromagnetic field together
with the Maxwell equations and the generalized Ohm’s law are linearized along
the transverse coordinate. In the surface pressure on the shell and the momentum
per unit area, electromagnetic components are distinguished, they are found
using the expression for the Lorentz force. Physical law for the shell, taking into
account piezoelectric effects, closes the system of equations. A special case of
equations for an isotropic shell is given.

Keywords: Electromagnetoelasticity � Coupled problems � Time-dependent
axisymmetric problems � Green’s functions

1 Problem Formulation

Interacting with electromagnetic field, thin linear elastic homogeneous anisotropic shell
with a smooth median surface is exploring

P : r ¼ r0 n1; n2
� �

; n1; n2
� � 2 D � R2; ð1Þ

where r—radius vector, n1; n2—curvilinear coordinates.
Its equation of motion is [1] (time derivatives are indicated with dots):

qh€ui ¼ rjT
ji � bijQ

j þ qi; qh€w ¼ riQ
i þ bijT

ij þ q;

qI€wi ¼ rjMij � Qi þmi; qI €w3 ¼ ril
i � N þm; I ¼ h3

�
12;

ð2Þ

Qi ¼ Q̂i þ bijl
j; Tij ¼ T̂ ij þ bikM

kj;N ¼ N̂ � bijM
ij; ð3Þ

T̂ ij ¼
Z h=2

�h=2
rijdz;Mij ¼

Z h=2

�h=2
zrijdz; Q̂i ¼

Z h=2

�h=2
ri3dz;

li ¼
Z h=2

�h=2
zri3dz; N̂ ¼

Z h=2

�h=2
r33dz;

ð4Þ
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2eij ¼ aij þ aji; 2jij ¼ bij þ bji; aij ¼ riuj � bijw;

bij ¼ riwj � bijw3 þ bki akj;�0i ¼ riwþ bki uk; hk ¼ wk � 0k:
ð5Þ

Here latin indexes take on values of 1,2; index «3» corresponds to the normal
coordinate z; q—material density; h—thickness; ui и w—tangential and normal
movement; wi—angles of normal rotation to the surface of the fiber; w3—its defor-
mation; bij—components of surface curvature tensor P; rij;ri3;r33—voltage tensor
components; qi; q and mi;m—coordinates of surface pressure vectors and moment,
referred to the unit area.

The electromagnetic field is described by Maxwell’s equations, linearized relatively
to the initial state by the generalized Ohm’s law and physical relations (subscript “0”
indicates the initial field; components of vectors and tensors here and further corre-
spond to the coordinate system n1; n2; z) [2]:

rotE ¼ �c�1 _B; rotH ¼ c�1 4pjþ _D
� �

; divD ¼ 4pqe; ð6Þ

j ¼ rðEþ c�1½v;B0�Þ þ qe0v; ð7Þ

Di ¼ eijEj þ ei3E3 þ jijkejk þ 2jij3ej3 þ ji33e33;

D3 ¼ e3jEj þ e33E3 þ j3jkejk þ 2j3j3ej3 þ j333e33;

Bi ¼ lijHj þ li3H3 þ cijkejk þ 2cij3ej3 þ ci33e33;

B3 ¼ l3jHj þ l33H3 þ c3jkejk þ 2c3j3ej3 þ c333e33:

ð8Þ

Here E and H—electric and magnetic field strength vectors; D and B—electric and
magnetic induction vectors; j and v—current density and medium velocity vectors;
qe—charge density; c—speed of light; r— conductivity coefficient; eij; ei3 и lij; li3—
components of dielectric and magnetic permeability tensors; jijk; jij3; ji33; j333 and
cijk; cij3; ci33; c333—components of the piezoelectric and piezomagnetic constant
tensors.

The relations (1–8) are supplemented by a generalization of Hooke’s law and a
linearized expression for the Lorentz force Fe [2]:

rij ¼ Cijklekl þCij33e33 � jijkEk þ jij3E3 þ cijkHk þ cij3H3
� ��

4p;

ri3 ¼ 2Ci3k3êk3 � ji3kEk þ ji33E3 þ ci3kHk þ ci33H3
� ��

4p;

r33 ¼ C33klekl þC3333e33 � j33kEk þ j333E3 þ c33kHk þ c333H3
� ��

4p;

ð9Þ

Fe ¼ qe0Eþ qeE0 þ c�1ð½j0;B� þ ½j;B0�Þ: ð10Þ

where Cijkl;Cij33;Ci3k3;C3333—components of the elastic constant tensor.
We assume that the initial electromagnetic characteristics do not depend on the

coordinate and restrict ourselves to a linear approximation for the components of the
electromagnetic field like the theory of elastic shells. (here i ¼ 1; 2; 3):
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Ei ¼ ei n
1; n2; t

� �þ zvi n
1; n2; t

� �
;Hi ¼ hi n

1; n2; t
� �þ zui n

1; n2; t
� �

;

Di ¼ di n
1; n2; t

� �þ z; di n
1; n2; t

� �
Bi ¼ bi n

1; n2; t
� �þ zbi n

1; n2; t
� �

;

ji ¼ yi n
1; n2; t

� �þ zti n
1; n2; t

� �
; qe ¼ re n1; n2; t

� �þ zke n1; n2; t
� �

:

ð11Þ

Then the linearized version of equalities (7) is written as (g—second invariant of
the metric tensor gij of coordinates (1); here and further in analogous equations, the
indexes i and j form a circular permutation of the numbers 1 and 2):

yi ¼ r ei þ �1ð Þ jc�1g2 _ujB03 � _wB0j
� �þ qe0 _u

i
� �

;

ti ¼ r vi þ �1ð Þ jc�1g2 _wjB03 � _w3B̂0j

� �
þ qe0 _w

i
h i

;

y3 ¼ r e3 þ c�1g2 _u1B02 � _u2B01ð Þ� �þ qe0 _w;

t3 ¼ r v3 þ c�1g2 _w1B02 � _w2B01

� �h i
þ qe0 _w3; g2 ¼

ffiffiffi
g

p
:

ð12Þ

The right parts of Eqs. (2) are presented in the form of two items (Fi
e; Fe3—

coordinates of vector Fe; indexes «*» and «e» correspond to mechanical and electro-
magnetic components):

qi ¼ qi� þ qie;m
i ¼ mi

� þmi
e; q ¼ q� þ qe; m ¼ m� þme; ð13Þ

where

qie ¼ q
Zh=2

�h=2

Fi
edz; qe ¼ q

Zh=2

�h=2

Fe3dz;m
i
e ¼ q

Zh=2

�h=2

zFi
edz;me ¼ q

Zh=2

�h=2

zFe3dz:

Using (10–12), we obtain the following formulas for electromagnetic components:

qie ¼ h qe0e
i þ reE

i
0 þ �1ð Þ jc�1g2 j0jb3 � j03bj þ yjB03 � y3B0j

� �� �
;

qe ¼ h qe0e3 þ reE03 þ c�1g2 j01b2 � j02b1 þ y1B02 � y2B01ð Þ� �
;

mi
e ¼ I qe0v

1 þ keEi
0 þ �1ð Þ jc�1g2 j02b3 � j03b2 þ t2B03 � t3B02ð Þ� �

;

me ¼ I qe0v3 þ keE03 þ c�1g2 ĵ01b2 � ĵ02b1 þ t1B̂02 � t2B̂01
� �� �

:

ð14Þ

Linearization along the coordinate of relations (9) brings equalities (4) to the fol-
lowing form of physical law for the shell:
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T̂ ij ¼ h Cijklekl þCij33w3

� �� 1
4p

jijkek þ jij3e3 þ cijkhk þ cij3h3
� �
 �

Mij ¼ I Cijkljkl � 1
4p

jijkvk þ jij3v3 þ cijkuk þ cij3u3

� �
 �
;

Q̂i ¼ h Ci3k3hk � 1
4p

ji3kek þ ji33e3 þ ci3khk þ ci33h3
� �
 �

;

li ¼ I Ci3k3 blkhl þrkw3

� �� 1
4p

ji3kvk þ ji33v3 þ ci3kuk þ ci33u3

� �
 �
;

N̂ ¼ h C33klekl þC3333w3 �
1
4p

j33kek þ j333e3 þ c33khk þ c333h3
� �
 �

:

ð15Þ

Application of a similar procedure to Eqs. (6) gives the following result (H и K—
mean and gaussian curvatures of the surface P):

g2 _b
i ¼ �1ð Þic @e3

@n2
þ bk2ek � v2

� 
; g2 _b3g2 ¼ c r2e1 �r1e2ð Þ; ð16Þ

g2 _di þ 4pyi
� � ¼ �1ð Þ jc @h3

@n j þ bkj hk � uj

� 
;

g2 _d3 þ 4py3
� � ¼ c r1h2 �r2h1ð Þ;

ð17Þ

rkd
k � 2Hd3 þ d3 ¼ 4pre; ð18Þ

g2 _b
i ¼ �1ð Þic @v3

@n j þ bkj vk þ bkj
@e3
@nk

þ ckj ek

� 
;

g2 _b3 ¼ c r2v1 �r1v2 þ bk2rke1 � bk1rke2
� �

;

ð19Þ

g2 _di þ 4pti
� �

¼ �1ð Þ jc @u3

@n2
þ bkj uk þ

@h3
@nk

þ bnkhn

� 
 �
;

g2 _d3 þ 4pt3
� �

¼ c r1u2 �r2u1 þ bk1rkh2 � bk2rkh1
� �

;

ð20Þ

rkd
k � 2Hd3 þ bnkrndk � 2 2H2 � K

� �
d3 ¼ 4pke: ð21Þ

Thus, the closed system of equations for an anisotropic electromagnetically elastic
shell includes the equations of motion (2), equalities (3), (5), (12), (13), (14), (15) and
Eqs. (16–21).This system is greatly simplified for isotropic conductors, which are
materials with the following physical characteristics. (here and further indexes i; j; k; l
take values 1, 2, 3):

Cijkl ¼ kgijgkl þ l gikgjl þ gilgjk
� �

;

jijk ¼ 0; cijk ¼ 0; eij ¼ eeg
ij; lij ¼ leg

ij;
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where k and l—elastic constants of Lame; ee and le—dielectric and magnetic per-
meability coefficients.

In this case, equalities (15) are transferred to the physical law for the elastic shell
[1], and rations (8) take the form:

Di ¼ eeEi;Bi ¼ leH;

Which is, according to (11), equivalent to equalizes

di ¼ eee
i; di ¼ eev

i; bi ¼ leh
i; bi ¼ leu

i

and leads to a decrease in the number of unknowns on (12).
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Unsteady Electro-Magneto-Elastic
Axisymmetric Oscillations of a Continuous
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Abstract. In the present work is considered an axisymmetric time-dependent
waves of an infinite cylindrical body. The body material is taken to be isotropic
and electro magneto elastic. Piezoelectric effects are not taken into account. The
deformation process is described by a system of equation with respect to radial
and angular components of deformation of the body points in cylindrical
coordinate system. In additional, it takes into account the effect of current
density, surface charges, electric and magnetic fields. All parameters and ratios
are reduced to dimensionless form. To solve the problem, are used the Fourier
transformation of angles and the Laplace transformation of time. Then, the
resulting expressions expansion in series in terms of a small parameter. The
small parameter characterizes the relationship between mechanic and electro-
magnetic fields. To move into the space of the originals using the inverse
Laplace transformation via residue theorem.

Keywords: Electromagnetoelasticity � Axisymmetric waves � Residue
theorem � Coupled problems � Time-dependent axisymmetric problems �
Green’s functions

1 Problem Statement

1.1 Basic Equations

Consider the unsteady oscillations of a continuous cylinder of infinite length with a
radius R. The material of a cylindrical body is considered electro magneto elastic and
isotropic. Piezoelectric effects will not be taken into account. The flat deformed state of
the continuous medium will be investigated, therefore all the required functions of the
problem will depend on three parameters: s—time, r—radial coordinate and
h—angular coordinate. The interaction of mechanical and electromagnetic fields is
described by the following system of equations [1–4]:
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– equations of motion respect to displacement

€ur ¼ 1� g2
� � @I1

@r
þ g2Dur � g2

r2
2
@uh
@h

þ ur

� �
þ aFer; ð1Þ

€uh ¼ 1� g2ð Þ
r

@I1
@h

þ g2Duh þ g2

r2
2
@ur
@h

� uh

� �
þ aFeh; ð2Þ

where I1 ¼ 1
r

@ rurð Þ
@r þ @uh

@h

h i
; D ¼ 1

r
@
@r r @

@r

� �þ 1
r2

@2

@h2
;

– Maxwell’s equations

1
r

@ rEhð Þ
@r

� @Er

@h

� �
¼ � _H;� @H

@r
¼ g2e cjh þ _Eh

� �
;

1
r
@H
@h

¼ g2e cjr þ _Er
� �

;
1
r

@ rErð Þ
@r

þ @Eh

@h

� �
¼ qe;

ð3Þ

– Ohm’s law

jr ¼ Er þH0 _uh þ qe0 _ur=c; jh ¼ Eh � H0 _ur þ qe0 _uh=c; ð4Þ

– Lorentz force

Fer ¼ qe0Er þ qeE0r þ c j0hHþ jhH0ð Þ;Feh ¼ qe0Eh þ qeE0h � c j0rHþ jrH0ð Þ;
ð5Þ

– Physical relationships of electromagnetism

Dr ¼ Er;D0 ¼ E0;B ¼ H: ð6Þ

Here ur; uh—components of the displacement vector; Fer;Feh—components of the
Lorentz force; Er;Eh—components of electric field; H;B—components of magnetic
field; jr; jh—components of current density; qe—volume charge density; Dr;Dh—
components of electric displacement field. All of these parameters are unknown and
depend on three variables: s, r and h. H0, qe0, E0r, E0h, j0r and j0h are the parameters of
the initial electromagnetic field and do not depend on time.

The above equations are dimensionless. In order to make these equations dimen-
sionless, the following substitutions were applied (the “-” sign indicates a dimensional
parameter):
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r ¼ �r
R
; s ¼ c1t

R
; uk ¼ �uk

R
;H ¼

�Hlec1
cE�

;B ¼
�Bc1
cE�

; qe ¼
4p�qeR
eE�

;

Ek ¼
�Ek

E�
;Dk ¼

�Dk

eE�
; jk ¼

�jk
rE�

;Fek ¼
�FekR
kþ 2l

; ge ¼
c1
ce
;

a ¼ eE2
�

4p kþ 2lð Þ ; c ¼
ceR
c1

¼ 4prR
ec1

; c21 ¼
kþ 2l

q
; c22 ¼

l
q
;

g ¼ c2
c1

; ce ¼
4pr
e

; c2e ¼
c2

lee
;

where c1 and c2—propagation velocities of tension-compression waves and shear
waves; E�—characteristic level of electric field; k and l—Lame’s parameters; e and
le—dielectric and magnetic permeability coefficients; k ¼ r; h; c—light speed in
vacuum; r—conductivity coefficients.

1.2 Initial and Boundary Conditions

It is assumed that at the initial moment of time, there are no perturbation in the solid
body.

As conditions on the boundary of a cylindrical body, the following are assumed:

ur s; r; hð Þjr¼1¼ Ur s; hð Þ; uh s; r; hð Þjr¼1¼ 0:

At the point at r ¼ 0, disturbances in a cylindrical body are considered limited:

ur s; r; hð Þjr¼0¼ O 1ð Þ; uh s; r; hð Þjr¼0¼ O 1ð Þ:

The system of Eqs. (3–6) can be reduced to a system of equations of two equations:

g2
e
€Er þ c _Er

� � ¼ N11 Erð ÞþN12 E0ð Þ � g2
e qe0€ur þ cH0€uhð Þ;

g2
e
€E0 þ c _E0

� � ¼ N21 Erð ÞþN22 E0ð Þþg2
e cH0€ur � qe0€uhð Þ;

N11 ¼ 1
r2

@2

@02
;N12 ¼ � 1

r
@

@0
@

@r
þ 1

r

� �
;

N21 ¼ � 1
r
@

@0
@

@r
� 1

r

� �
;N22 ¼ @

@r
1
r
@ rð Þ
@r

� �
:

ð7Þ

2 Solution Methods

To solve the problem of the field of displacement and the electric field are expressed
through the vector and scalar potentials:
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u ¼ graduþ rotw;

E ¼ gradue þ rotwe;

divw ¼ 0; divwe ¼ 0;

ð8Þ

where u and ue—scalar potentials, w and we—vector potentials.
The Lorentz force vector can also be represented via scalar and vector potentials:

Fe ¼ gradUþ rotW; ð9Þ

where

DU ¼ divFe ¼ 1
r
@ rFerð Þ

@r
þ 1

r
@Feh

@h
;DW ¼ �rotFe ¼ � 1

r
@ rFehð Þ

@r
þ 1

r
@Fer

@h
:

In order to fulfill the axisymmetric conditions, it is necessary that the defining
parameters of the problem, as well as the vector and scalar potentials correspond to the
following equations:

ur ¼ ur s; r; hð Þ; uh ¼ uh s; r; hð Þ; uz � 0;Fez � 0;Er ¼ Er r; h; tð Þ;
Eh ¼ Eh r; h; tð Þ;Ez ¼ E0z � 0;E0r ¼ E0r r; hð Þ;E0h ¼ E0h r; #ð Þ;
u ¼ u r; h; tð Þ;ue ¼ ue r; h; tð Þ;Fer ¼ Fer r; h; tð Þ;Eh ¼ Eh r; h; tð Þ;
wr ¼ wh � 0;wer ¼ weh � 0;wz ¼ w ¼ w r; h; tð Þ;wez ¼ we ¼ we r; h; tð Þ;
Hr ¼ H0r ¼ Hh ¼ H0h � 0;Hz ¼ H r; h; tð Þ;H0z ¼ H0 r; #ð Þ:

By substituting (8) and (9) into systems (1), (2) and (7), we obtain a system of
equations for u; w and ue;we.

First, the unknown functions are decomposed into a complex Fourier series:

u s; r; hð Þ ¼
Xþ1

n¼�1
uF
n s; rð Þeih;w s; r; hð Þ ¼

Xþ1

n¼�1
wF
n s; rð Þeih;

ue s; r; hð Þ ¼
Xþ1

n¼�1
uF
en s; rð Þeih;we s; r; hð Þ ¼

Xþ1

n¼�1
wF
en s; rð Þeih;

then, the Laplace transforms in time are applied to the obtained coefficients uF
n s; rð Þ …

wF
en s; rð Þ (s—conversion parameter):

uF
n s; rð Þ!L uFL

n s; rð Þ;
:

:

wF
en s; rð Þ!L wFL

en s; rð Þ:
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The resulting coefficients uFL
n s; rð Þ . . . wFL

en s; rð Þ are expanded in a power series for
a small parameter a:

uFL
n ¼

X1

m¼0

uFL
nma

m; . . .;wFL
en ¼

X1

m¼0

wFL
enma

m:

After that we get a new recurrent system of differential equations for the coefficient
of expansion uFL

nm … wFL
nm.

And finally in order to move obtained uFL
nm … wFL

nm parameters into the space of the
originals it is using the inverse Laplace transformation via residue theorem.
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Transient Spatial Motion of Cylindrical Shell
Under Influence of Non-stationary Pressure
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Abstract. This paper investigates a transient spatial problem for cylindrical
shell of a Tymoshenko-type subjected to external pressure distributed over some
area belonging to a lateral surface. The approach to the solution is based on the
Influence Function Method. There has been constructed an integral represen-
tation of the solution with a kernel in form of a spatial influence function for a
cylindrical shell which is found analytically by expansion in Fourier series and
Laplace and Fourier integral transformations. This paper proposes and imple-
ments an original algorithm of analytical reversion of Fourier and Laplace
integral transforms based on connection of Fourier integral with an expansion in
Fourier series based on connection of Fourier integral with expansion in Fourier
series at variable interval with examples of calculations.

Keywords: Timoshenko-type circular cylindrical shell �
Superposition method � Spatial influence function � Fourier series �
Integral transformations � Non-stationary spatial motion

1 Statement of Problem

1.1 Shell Motion Equations

Let us consider a problem of motion of an infinitely long Timoshenko-type circular
cylindrical shell under non-stationary pressure Pða; z; sÞ distributed over some arbitrary
area belonging to a lateral surface of the shell (Fig. 1). Pða; z; sÞ ¼ pða; z; sÞHðsÞhðDÞ
where HðsÞ is Heaviside function and a hðDÞ is a characteristic function of the set D:

hðDÞ ¼ 1; M 2 D;
0; M 62 D;

�
, where Mða; zÞ is a point of the shell’s lateral surface.

To describe movements of the shell motion we will use spatial motion equations in
displacements of a Timoshenko model [1]. In the normal orthogonal coordinate system
az, a 2 0; 2p½ �, z 2 �1;1ð Þ they are written as follows:
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@2W
@s2

¼ L �WþP; L ¼ ðLijÞ5�5;W ¼ ðu; v;w; v1; v2ÞT ;P ¼ ð0; 0;P; 0; 0ÞT ; ð1Þ

where u; v;w are angular, axial and normal displacements, v1; v2 are angles of rotation
of sections due to shear deformations, L is matrix operator whose elements are defined
by the following differential operators [1]:

L11 ¼ @2=@a2 þg2 @2=@z2 � k2
� �

; L12 ¼ 1� g2� �
@2=@a@z; L13 ¼ 1þ kg2� �

@=@a;

L14 ¼ �c2@2=@a2 þg2k2; L15 ¼ �c2 1� 2g2� �
@2=@a@z; L21 ¼ L12;

L22 ¼ @2=@z2 þg2@2=@a2; L23 ¼ 1� 2g2� �
@=@z; L24 ¼ �c2g2@2=@a@z;

L25 ¼ �c2g2@2=@a2; L31 ¼ �L13; L32 ¼ �L23; L33 ¼ g2k2 @2=@a2 þ @2=@z2
� �� 1;

L34 ¼ g2k2@=@a; L35 ¼ g2k2@=@z; L41 ¼ c�2L14;

L42 ¼ c�2L24; L43 ¼ �c�2L34; L44 ¼ @2=@a2 þg2 @2=@z2 � k2c�2� �
;

L45 ¼ L12; L51 ¼ c�2L15; L52 ¼ c�2L25; L53 ¼ �c�2L35; L54 ¼ L12;

L55 ¼ @2=@z2 þg2 @2=@a2 � k2c�2� �
;

Here and after all variables and parameters are reduced to a dimensionless form.
The corresponding system of dimensionless values is written as follows (dimensional
values are primed):

u ¼ u0=R; v ¼ v0=R; w ¼ w0=R; z ¼ z0=R; s ¼ c1t=R;g
2 ¼ c22=c

2
1;

c21 ¼ kþ 2lð Þ=q; c22 ¼ l=q; c2 ¼ h2=12R2; P ¼ P0R=h kþ 2lð Þ; k2 ¼ 5=6;

where R and h are radius and thickness of the shell, t is dimensional time, s is
dimensionless time, c1; c2 are speeds of strain stress wave and shear in the shells’s
material, k;l; q are elastic Lamé parameters and density of the shell, k–is shear
coefficient.

We believe that at the initial moment of time the sell is motionless which corre-
sponds to zero initial conditions

Fig. 1. Statement of problem
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ujs¼0¼ vjs¼0¼ wjs¼0¼ v1js¼0¼ v2js¼0¼ _ujs¼0¼ _vjs¼0¼ _wjs¼0¼ _v1js¼0¼ _v2js¼0¼ 0:

ð2Þ

Let us state the problem as to find normal displacements of the shell w a; z; sð Þ
under non-stationary normal pressure arbitrarily distributed over some arbitral area
belonging to a lateral surface of the shell.

1.2 Resolving Integral Relation

The solution method is based on the superposition principle [1–5] which stipulates that
normal displacement w a; z; sð Þ are linked with the pressure p a; z; sð Þ by means of
integral convolution operator by dimensional variables and time:

w a; z; sð Þ ¼
Zs

0

dt
ZZ

D
Gw a� b; z� n; s� tð Þp b; n; tð ÞdS: ð3Þ

Here Gw a; z; sð Þ is a non-stationary spatial function of influence for the shell which
represents a solution of the following problem

@2G
@s2

¼ L �Gþ d;G ¼ ðGu;Gv;Gw;Gv1;Gv2ÞT ; d ¼ 0; 0; dðaÞdðzÞdðsÞ; 0; 0½ �T ;
Gjs¼0 ¼ _G

��
s¼0¼ 0;

ð4Þ

where dðaÞ, dðzÞ, dðsÞ are the Dirac delta functions.

2 Non-stationary Spatial Function of Influence
for Cylindrical Shell

To solve the problem (4) we will expand the required and prescribed functions in
trigonometric series of Fourier by angular coordinate a. By applying the Fourier
integral transformation by coordinate z and Laplace integral transformation by time
(here in after F means the function’s transform by Fourier, L is Laplace transform,
q and s are parameters of Fourier and Laplace transformation) to the obtained equations
we will reach a system of algebraic equations with regards to Fourier Laplace
transforms.

The transforms of coefficients of expansions of the required function of influence
will take the following structure:

GFL
w;n q; sð Þ ¼

X4
j¼1

Pj q
2; s2; n2

� �
=
X5
l¼1

Rl q
2; s2; n2

� �
; ð5Þ
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where Pj q; s; nð Þ and Rl q; s; nð Þ are homogeneous polynomials of degree j and l
correspondingly with coefficients depending on dimensionless parameters g, c, k and
the number of terms of series n. They are too cumbersome to be described here in a
specific form.

Notwithstanding the obvious difficulties of joint inversion of Fourier and Laplace
transforms (5), it is possible to propose an analytical way of constructing originals, base
on the link of the inversion integral of Fourier transformation with Fourier series at a
variable interval. The final formula for computing the joint inverse Fourier-Laplace
transform is

Gw;n z; sð Þ ¼ 1
2lðsÞG

FL�1

w;n ð0; sÞH lðsÞ � zj j½ �

þ 1
lðsÞ

X1
m¼1

GFL�1

w;n pm=lðsÞ; s½ � cos pmz=lðsÞ½ �
n o

H lðsÞ � zj j½ �;
ð6Þ

where L�1 denotes the inverse Laplace transform, lðsÞ ¼ gks, H xð Þ is the Heaviside
function.

3 The Computation of the Normal Displacements of the Shell

3.1 Numerical Algorithm

Let us assume that a rest shell at an initial moment of time is affected by non-stationary
pressure of the following form:

P a; z; sð Þ
¼ sin pa=a�ð Þ � sin pz=z�ð Þ � HðzÞ � H z� z�ð Þ½ � � HðaÞ � H a� a�ð Þ½ � � HðsÞ;

ð7Þ

which corresponds to a sudden application of pressure to the shell, distributed over area
D ¼ a; zð Þ : 0� a� a�; 0� z� z�f g by law sin pa=a�ð Þ � sin pz=z�ð Þ.
Normal displacements of the shell are found by formula (3) where surface integral

adapted to the geometry of D area is substituted with an iterated integral:

w a; z; sð Þ ¼
Zs

0

dt
Za�
0

db
Zz�
0

Gw z� n; a� b; s� tð Þp n; b; tð Þdn; p n; b; tð Þ ¼ nb: ð8Þ
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For finding integral in (8) we use a quadrature formula of the rectangle method:

w a; z; sð Þ � MtMnMb
XN
i¼1

XM
j¼1

XK
k¼1

Gijk a; z; sð ÞPijk;

K ¼ s=Mt½ �; Mn ¼ z�=M; Mb ¼ a�=N;
Gijk a; z; sð Þ ¼ Gw a� iMb; z� jMn; s� kMtð Þ; Pijk ¼ p iMb; jMn; kMtð Þ;

ð9Þ

where s=Mt½ � indicates an integer part of a number.

3.2 Calculation Example

In calculations let us assume that a� ¼ p=6, z� ¼ 1, Mt ¼ 0:05. Figure 2a shows
graphs of distribution of normal displacements with respect to angular coordinate a at
time s ¼ 2 with various values of N and M. Solid curve corresponds to the case of
N ¼ 10, M ¼ 10; dashed curve corresponds to N ¼ 20, M ¼ 20; dash-and-dot curve
corresponds to N ¼ 30, M ¼ 30. The graphs are drawn in a polar coordinate system
linked with the shell cross section z ¼ 0:5. Similar distributions of normal displace-
ments on coordinate z with a ¼ 0 c are shown in Fig. 2b. As seen from the analysis of
the results, in the second and third cases the results are virtually identical, therefore, in
further calculations under formula (9) it is assumed that N ¼ 20, M ¼ 20.

Figure 3a represents distributions of normal displacements of the shell in the cross
section z ¼ 0:5 at various times. Solid curve corresponds to time s ¼ 1, dashed curve
means s ¼ 1:5, and dash-and-dot curve indicates s ¼ 2. Distributions of normal
displacements at coordinate z with a ¼ 0 are shown in Fig. 3b.

Spatial distributions of normal displacements over the shell’s surface at various
times are shown in Fig. 4a–c. Figure 4a corresponds to time s ¼ 1, 4b.—s ¼ 1:5, 4c.
—s ¼ 2.

Fig. 2. Distributions of normal displacements with various number of discrete elements of body
under pressure
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Abstract. The problems of transient wave processes in linearly viscoelastic
piecewise homogeneous bodies with small deformations, boundedness of the
disturbances propagation region, and creep boundedness of the material of
homogeneous components of the bodies are considered The issues related to the
construction of solutions of such problems by the method of the integral Laplace
transform with respect to time and subsequent reversal are touched upon. The
statements about the properties of the Laplace transform simplifying the con-
struction of the originals are formulated. The case when all homogeneous
components of the body are linearly elastic is considered.

Keywords: Dynamics of viscoelastic bodies � Piecewise homogeneous
bodies � Wave processes

1 Introduction

The study of transient wave processes in linear-viscoelastic piecewise-homogeneous
bodies using analytical and numerical-analytical methods is very important, however,
the results known today (some of which are reflected, for example, in [1–7]) are not
exhaustive. Still, the study of the influence of the hereditary properties of the material
on nonstationary processes in bodies with an arbitrary number of boundaries of the
contact between the homogeneous components arouses interest. This paper presents
theoretical results related to the construction of the solutions of dynamic linear
viscoelasticity problems for piecewise homogeneous bodies with an arbitrary number
of the components.

2 Mathematical Formulation of the Problem

Let us consider the nonstationary dynamic problem for a body occupying a domain X
with a boundary R and consisting of N homogeneous isotropic linear-viscoelastic
components: X ¼ X1 [X2 [ . . .[XN (Xi and Xj do not intersect at internal points if
i 6¼ j). On the contact surfaces between these components the conditions of continuity
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of displacement and stresses vectors are satisfied. For each component of the body we
write the equations of dynamics ðn ¼ 1; 2; . . .;NÞ:

ðk̂n þ l̂nÞgrad div uðnÞðx; tÞþ l̂nDu
ðnÞðx; tÞþ fðnÞðx; tÞ ¼ qn€u

ðnÞðx; tÞ ð1Þ

and the material relations

erðnÞðx; tÞ ¼ l̂nDef u
ðnÞðx; tÞþ k̂n div uðnÞðx; tÞeI; xðx1; x2; x3Þ 2 Xn: ð2Þ

For components with numbers 1�m�N, having the common points with a
boundary R, we present the boundary conditions

eaðmÞðxÞ erðmÞðx; tÞnþ ebðmÞðxÞ uðmÞðx; tÞ ¼ pðmÞðx; tÞ; x 2 R; t[ 0 ð3Þ

On the contact surface of adjacent components with numbers p and q write down
the relationships

uðpÞðx; tÞ ¼ uðqÞðx; tÞ; erðpÞðx; tÞ n ¼ erðqÞðx; tÞn; x 2 Rpq ð4Þ

For each component, we set the initial conditions

uðnÞðx; 0Þ ¼ bðnÞ1 ðxÞ; _uðnÞðx; 0Þ ¼ bðnÞ2 ðxÞ; x 2 Xn ð5Þ

A dot above a letter means a time derivative; erðnÞ is the stress tensor; uðnÞ, pðmÞ, fðnÞ,
bðnÞ1 , bðnÞ2 are the vectors of displacements, the vectors of boundary actions, the volume
forces, and the initial displacements and velocities related to the component of the body
with the corresponding number; qn is density; eaðmÞ; ebðmÞ- are the tensors of rank 2
determining the type of boundary conditions; n is the unit outward normal to the
corresponding boundary; D is the Laplace operator; eI is the unit tensor; k̂n; l̂n are the
operators of the form

k̂n ¼ 1
3
½3KðnÞ

0 ð1� T̂ðnÞ
t Þ � 2GðnÞ

0 ð1� T̂ ðnÞ
s Þ�; l̂n ¼ GðnÞ

0 ð1� T̂ ðnÞ
s Þ;

T̂ðnÞ
t nðtÞ ¼

Z t

0

TðnÞ
t ðt � sÞnðsÞ ds; T̂ ðnÞ

s nðtÞ ¼
Z t

0

T ðnÞ
s ðt � sÞnðsÞ ds

ð6Þ

where GðnÞ
0 ; KðnÞ

0 are the instantaneous values of the shear modulus and volume

compression; T ðnÞ
t ðtÞ; T ðnÞ

s ðtÞ are the volume and shear relaxation kernels of the body’s
component with the number n. It is assumed that the disturbances propagation domain
is bounded.
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3 The Problem in Transforms

Let us apply the integral Laplace transform with respect to time to (1)–(4), denoting the
transforms of the variables

uðnÞðx; tÞ; erðnÞðx; tÞ; fðnÞðx; tÞ; pðmÞðx; tÞ; T ðnÞ
t ðtÞ; T ðnÞ

s ðtÞ

correspondingly through

UðnÞðx; sÞ; eSðnÞðx; sÞ;FðnÞðx; sÞ;PðmÞðx; sÞ;HðnÞ
t ðsÞ;HðnÞ

s ðsÞ; s 2 C:

Taking into account (6) and the initial conditions (5), we obtain the problem for the
transforms, which includes the dynamic equations ðn ¼ 1; 2; . . .NÞ

ðKnðsÞþMnðsÞÞgrad divUðnÞðx; sÞþMnðsÞDUðnÞðx; sÞ
� qn s

2UðnÞðx; sÞþ qn½sbðnÞ1 ðxÞþ bðnÞ2 ðxÞ� þFðnÞðx; sÞ ¼ 0; x 2 Xn

ð7Þ

material relations

eSðnÞðx; sÞ ¼ MnðsÞDef UðnÞðx; sÞþKnðsÞdivUðnÞðx; sÞeI;
KnðsÞ ¼ 1

3
3KðnÞ

0 ð1�HðnÞ
t ðsÞÞ � 2GðnÞ

0 ð1�HðnÞ
s ðsÞÞ

h i
; MnðsÞ ¼ GðnÞ

0 ð1�HðnÞ
s ðsÞÞ

ð8Þ

the boundary conditions for the components which have points on the boundary R

eaðmÞðxÞeSðmÞðx; sÞnþ ebðmÞðxÞUðmÞðx; sÞ ¼ PðmÞðx; sÞ; x 2 R; 1�m�N ð9Þ

and conditions on the contact surface of adjacent components with numbers p and q

UðpÞðx; sÞ ¼ UðqÞðx; sÞ; eSðpÞðx; sÞ n ¼ eSðqÞðx; sÞn; x 2 Rpq ð10Þ

Assuming that the solution UðnÞðx; sÞ of the problem (7)–(10) is constructed, we
establish a number of its properties which simplify the construction of the original. For
this aim, in addition to problem (1)–(5), we consider the problem of damped free
oscillations of the same piecewise-homogeneous body.

4 The Problem of Free Vibrations

Let the body oscillate in the absence of volume forces and boundary actions (fðnÞ � 0
and pðmÞ � 0) after such a period of time from the beginning, that the character of the
oscillations practically does not depend on the way they are excited. So the lower
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integration limit in operators (6) of the material relations (2) is �1. Representing the
nontrivial solution of this problem in the form

uðnÞðx; tÞ ¼ VðnÞðx; sÞ est; s 2 C;

we obtain the spectral problem

ðKnðsÞþMnðsÞÞgrad divVðnÞðx; sÞþMnðsÞDVðnÞðx; sÞ � qn s
2VðnÞðx; sÞ ¼ 0;

eSðnÞðx; sÞ ¼ MnðsÞDef VðnÞðx; sÞþKnðsÞdivVðnÞðx; sÞeI; x 2 Xn;

eaðmÞðxÞeSðmÞðx; sÞnþ ebðmÞðxÞVðmÞðx; sÞ ¼ 0; x 2 R;

VðpÞðx; sÞ ¼ VðqÞðx; sÞ; eSðpÞðx; sÞn ¼ eSðqÞðx; sÞn; x 2 Rpq

ð11Þ

eigenvalue s of which determines the frequency and damping coefficient of the free
oscillations of the body.

5 Some Properties of the Solutions for the Transforms

Let us consider the connection of the branch points and poles of the components

fUðnÞ
i ðx; sÞg, i ¼ 1; 2; 3, n ¼ 1; 2; . . .;N of vectors fUðnÞg characterizing the solution of

the problem (7)–(10) with the spectrum of the problem (11). Let Es be the set of
eigenvalues of the problem (11), and Ebr be the union of sets of branch points of the

functions HðnÞ
t ðsÞ, HðnÞ

s ðsÞ and the components PðmÞ
i ðx; sÞ, FðnÞ

i ðx; sÞ, i ¼ 1; 2; 3 of the
vectors PðmÞ and FðnÞ, n ¼ 1; 2; . . .;N, 1�m�N. In the particular case Ebr may be
empty.

Statement 1 Suppose the set Es is at most countable, and the set Ebr is finite. Then, for

all x 2 X the branch points of any component UðnÞ
i ðx; sÞ of the solution UðnÞ of the

problem in transforms (7)–(10) can be only the elements of Ebr.

Remark 1 In the problem (1)–(5) it is assumed that the perturbation propagation
domain is bounded, therefore the countability of the set Es is quite natural. If the set Ebr

is empty, then all components UðnÞ
i ðx; sÞ of the solution of the problem (7)–(10) have no

branch points. In many cases it is not immediately obvious, but is revealed after a series
of calculations, often very laborious.

Statement 2 Suppose sk 6¼ 0 is a pole of the functions UðnÞ
i ðx; sÞ and their derivatives

with respect to coordinates UðnÞ
i;j ðx; sÞ, UðnÞ

i;jk ðx; sÞ for all x 2 Xn ði; j; k ¼ 1; 2; 3; n ¼
1; 2; . . .;NÞ and is not a singular point of PðmÞðx; sÞ, FðnÞðx; sÞ,HðnÞ

t ðsÞ;HðnÞ
s ðsÞ. Then sk

is an eigenvalue of the problem (11).

Remark 2 If the conditions of the Statement 2 are fulfilled for sk 6¼ 0 and at least one

of the kernels TðnÞ
t ; T ðnÞ

s for at least one n is not zero, then ReðskÞ\0. In this case, the
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sets of poles of functions UðnÞ
i ðx; sÞ may have finite limit points. These points in the

case of bounded creep of the material are located to the left of the imaginary axis.

6 The Forms of the Solution in Originals

Let us establish the connection between the original problem (1)–(5) and the static
problem of the theory of elasticity. In addition to the boundedness of perturbation
propagation domain, we assume that the following conditions are met. At least one of

the kernels T ðnÞ
t ; T ðnÞ

s of at least one homogeneous component of the body is not zero;
the creep of all components is limited; the displacements of the body as a rigid whole
are excluded; boundary actions and the volume forces are such that there are limits

lim
t!1 pðmÞðx; tÞ ¼ pðmÞ0 ðxÞ and lim

t!1 fðnÞðx; tÞ ¼ fðnÞ0 ðxÞ; n ¼ 1; 2; . . .;N; 1�m�N:

Then there is a limit lim
t!1 uðnÞðx; tÞ ¼ uðnÞ0 ðxÞ, where uðnÞ0 is a solution of the problem

of the static theory of elasticity with long-term moduli Knð0Þ ¼ kðnÞ1 , Mnð0Þ ¼ lðnÞ1
which includes the equations:

ðkðnÞ1 þ lðnÞ1 Þgrad divuðnÞ0 ðxÞþ lðnÞ1 DuðnÞ0 ðxÞþ fðnÞ0 ðxÞ ¼ 0; x 2 Xn;

boundary conditions

eaðmÞðxÞ½lðmÞ1 Def uðmÞ0 ðxÞþ kðmÞ1 div uðmÞ0 ðxÞeI�nþ ebðmÞðxÞuðmÞ0 ðxÞ ¼ pðmÞ0 ðxÞ; x 2 R

and the conditions of continuity of displacement and stress vectors on the contact
surface of adjacent components, which are omitted here.

When all the above conditions are fulfilled, as well as the corresponding asymptotic

relations in the vicinity of the accumulation points of the poles UðnÞ
i ðx; sÞ, the theo-

retical concepts presented here make it possible to construct a solution of the problem
(1)–(5) in the originals or in the form of series of residues at the poles of the transforms
(if there are no branch points)

uðnÞðx; tÞ ¼ uðnÞ0 ðxÞþ
X

k

Res
s¼sk
s 6¼0

½UðnÞðx; sÞest�; t[ 0; ð12Þ

or (both in the absence and in the presence of branch points) in the form

uðnÞðx; tÞ ¼ 1
2
uðnÞ0 ðxÞþ 1

p

Z1

0

Re½UðnÞðx; ixÞeix t�dx; t[ 0 ð13Þ

where the integrand has no singularities as x ! 0.
Let the following conditions be satisfied
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fðnÞðx; tÞ � 0 and pðmÞðx; tÞ ¼ pðmÞ0 ðxÞuðtÞ: ð14Þ

If we construct a solution uðnÞ under the condition uðtÞ ¼ hðtÞ (which is Heaviside
function), then using convolution, we can obtain a solution with another uðtÞ, which
does not necessarily have a limit as t ! 1.

Let us pay attention to two special cases, when the solution is significantly
simplified. The first one is when all homogeneous components of the body are

linearly elastic ðTðnÞ
t ðtÞ � 0; T ðnÞ

s ðtÞ � 0Þ, the initial conditions are zero bðnÞ1 ðxÞ �
0; bðnÞ2 ðxÞ � 0, equalities (14) are fulfilled and uðtÞ ¼ h ðtÞ. It can be shown that in
this case all the poles of the transforms UðnÞðx; sÞ are located on the imaginary axis and
they are simple. Representing the original in the form of an infinite sum of residues
actually means the series expansion in eigenforms of free vibrations of the considered
piecewise-homogeneous body. Note that formula (13) is not applicable for a linearly
elastic body.

Another case is when all body components are viscoelastic, but their hereditary
properties are characterized by only one kernel, the same for all components

TðnÞ
t ðtÞ � T ðnÞ

s ðtÞ � ae�bt; n ¼ 1; 2; . . .;N; 0\a\b=2: ð15Þ

Moreover, the initial conditions are zero and equalities (14) are fulfilled with
uðtÞ ¼ h ðtÞ. Then the poles of the transforms UðnÞðx; sÞ will also be simple. They are
located to the left of the imaginary axis (except s ¼ 0) and they are easy to find.

Comments. Basing on the above theoretical propositions, the solutions were con-
structed for a number of nonstationary dynamic problems for multilayer bodies with
plane-parallel, spherical and cylindrical boundaries of elastic and viscoelastic homo-
geneous layers. The cases, when the relaxation kernels of the material of the layers
were not interconnected, were considered. Wave processes in multilayer cylinders with
a large number of coaxial layers were investigated. This allowed to make the transition
to the study of the dynamics of cylinders with continuous radial inhomogeneity of the
material [8].
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Abstract. The wave field of an infinite elastic layer weakened by a cylindrical
cavity is constructed in this paper. The ideal contact conditions are given on the
upper and bottom faces of the layer. The normal dynamic tensile load is applied
to a cylindrical cavity’s surface at the initial moment of time. The Laplace and
finite sin- and cos- Fourier integral transformations are applied successively
directly to axisymmetric equations of motion and to the boundary conditions, on
the contrary to the traditional approaches, when integral transformations are
applied to solutions’ representation through harmonic and biharmonic functions.
This operation leads to a one-dimensional vector inhomogeneous boundary
value problem with respect to unknown transformations of displacements. The
problem is solved using matrix differential calculus. The field of initial dis-
placements is derived after application of inverse integral transformations. The
normal stress on the faces of the elastic layer are constructed and investigated
depending on the mechanical and dynamic parameters.

Keywords: Elastic layer � Dynamic load � Cylindrical cavity �
Integral transformation

1 Introduction

The presence of cracks in elastic bodies causes a stress concentration and significantly
affects at the stress state of engineering constructions. A typical and sufficiently
investigated problem of this class is the axisymmetric problem of the elasticity on the
stress state of a layer, weakened by a cylindrical defect, when different boundary
conditions are set on layer’s faces and defect’s surface. Existing research can be
divided into three approaches: (1) a construction of an analytic solution of the problem
in an explicit form [1, 2]; (2) a construction of an analytic-numerical solution, when the
problem is reduced either to an integral equation or to an infinite system of algebraic
equations, which are solved numerically [3, 4]; (3) a numerical solving of the problem
[5, 6]. The problem of elasticity for an infinite layer with a cylindrical cavity in a static
statement was considered by Popov [1], where an exact solution was obtained. In this
paper authors extended this method on the analogical problem in the dynamic state-
ment, where the boundary resonance phenomenon was investigated.

© Springer Nature Switzerland AG 2019
E. E. Gdoutos (Ed.): ICTAEM 2019, 8, pp. 277–282, 2019.
https://doi.org/10.1007/978-3-030-21894-2_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21894-2_51&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21894-2_51&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21894-2_51&amp;domain=pdf
https://doi.org/10.1007/978-3-030-21894-2_51


2 The Statement of the Problem

An elastic layer of thickness h (G is a shear modulus, l is a Poisson’s ratio, q is
density), describing in the cylindrical coordinate system by the correspondences:
a\r\1, �p\u� p, 0� z� h is weakened by a cylindrical cavity 0� r� a,
0\u� p, 0� z� h. The layer’s upper and bottom faces are in the conditions of ideal
contact with a rigid base (the layer is supported by a smooth foundation without a
friction)

urðr; 0; tÞ ¼ 0; szrðr; 0; tÞ ¼ 0; uzðr; h; tÞ ¼ 0; szrðr; h; tÞ ¼ 0 ð1Þ

The cylindrical cavity’s surface r ¼ a is under the influence of the normal dynamic
tensile force P ¼ Pðz; tÞ, applied at the initial moment t ¼ 0, the tangential loading is
absent

rrða; z; tÞ ¼ Pðz; tÞ; srzða; z; tÞ ¼ 0 ð2Þ

Thus, the problem was reduced to solving axisymmetric equations of motion with
respect to the functions urðr; z; tÞ ¼ uðr; z; tÞ, uzðr; z; tÞ ¼ wðr; z; tÞ in a cylindrical
coordinate system

r�1 @

@r
r
@

@r
uðr; z; tÞ

� �
� r�2uðr; z; tÞþ j� 1

jþ 1

@2

@z2
uðr; z; tÞþ 2

jþ 1

@2

@r@z
wðr; z; tÞ

¼ j� 1
jþ 1

q
G
@2uðr; z; tÞ

@t2

r�1 @

@r
r
@

@r
wðr; z; tÞ

� �
þ jþ 1

j� 1

@2

@z2
wðr; z; tÞþ 2

j� 1
r�1 @

@r
r
@

@z
uðr; z; tÞ

� �

¼ q
G
@2wðr; z; tÞ

@t2

ð3Þ

where j ¼ 3� 4l and subjected to the mixed boundary conditions (1), (2). Here
c21 ¼ jþ 1

j�1G=q—squared velocity of longitudinal wave propagation, c2 ¼ G=q—squared
velocity of shear wave propagation. So, c21 ¼ jþ 1

j�1c
2.

3 Solving the Problem

The following change of the variables was done

q ¼ a�1r; n ¼ h�1z; s ¼ ca�1t; uðaq; hn; ca�1sÞ ¼ Uðq; n; sÞ;
wðaq; hn; ca�1sÞ ¼ Wðq; n; sÞ ð4Þ

Consequently, the movement equations (3) can be written in the form
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q�1 @

@q
q
@

@q
U

� �
� q�2Uþ j� 1

jþ 1
a2

@2

@n2
Uþ 2

jþ 1
a

@2

@q@n
W ¼ j� 1

jþ 1
@2Uðq; n; sÞ

@s2

q�1 @

@q
q
@

@q
W

� �
þ jþ 1

j� 1
a2

@2

@n2
W þ q�1 2

j� 1
a
@

@q
q
@

@n
U

� �
¼ @2Wðq; n; sÞ

@s2

1\q\1; 0\n\1; s[ 0; a ¼ a=h

ð5Þ

Boundary conditions (1), taking into account the replacement (4), are transformed
into form

@

@n
Uðq; 0; sÞ ¼ 0;

@

@n
Uðq; 1; sÞ ¼ 0; Wðq; 0; sÞ ¼ 0; Wðq; 1; sÞ ¼ 0 ð6Þ

as the boundary conditions (2) take the form

@

@q
Uð1; n; sÞþ 3� j

1þ j
Uð1; n; sÞþ a

@

@n
Wð1; n; sÞ

� �
¼ aG�1j� 1

jþ 1
Pðn; sÞ ð7Þ

a
@

@n
Uð1; n; sÞþ @

@q
Wð1; n; sÞ ¼ 0 ð8Þ

In order to reduce the problem to the one-dimensional one, the finite sin- and cos-
Fourier integral transformations with regard of the variable n and Laplace integral
transformation with regard of the variable s are applied successively to the differential
equations (5) and boundary conditions (6)–(8).

As a result, Eq. (5) can be written

q�1 @

@q
q
@

@q
Uk pðqÞ

� �
þ 2

jþ 1
k�

@

@q
Wk pðqÞ � q�2Uk pðqÞ

� j� 1
jþ 1

k2�Uk pðqÞ � j� 1
jþ 1

p2Uk pðqÞ ¼ 0
ð9Þ

q�1 @

@q
q
@

@q
Wk pðqÞ

� �
� q�1 2

j� 1
k�

@

@q
qUk pðqÞ
� �� jþ 1

j� 1
k2�Wk pðqÞ � p2Wk pðqÞ ¼ 0

1\q\1; k� ¼ ka

During this operation the boundary conditions (6) are automatically satisfied, and
conditions (7), (8) have the form

U0
k pð1Þþ 3� j

1þ j
Uk pð1Þþ k�Wk pð1Þ
� � ¼ aG�1j� 1

jþ 1
Pk p

W 0
k pð1Þ � k�Uk pð1Þ ¼ 0; Pk p ¼

Z1

0

Z1

0

Pðn; sÞ cos knn dn
0
@

1
Ae�psds

ð10Þ
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For solving a one-dimensional boundary value problem (9), (10) a second-order
matrix differential operator and the unknown vector of displacements’ transformations
are set

L2 ¼
q�1 @

@q q @
@q

h i
� q�2 � j�1

jþ 1 k2� þ p2
� �

2
jþ 1k�

@
@q

� 2
j�1k�q

�1 @
@q ½q� q�1 @

@q q @
@q

h i
� jþ 1

j�1k
2
� � p2

0
B@

1
CA

yðqÞ ¼ Uk pðqÞ
Wk pðqÞ

� 	

Let’s set up the boundary functional corresponding to the boundary conditions (10)

U yð1Þ½ � ¼ A � yð1Þþ I � y0ð1Þ; A ¼
3�j
1þj

3�j
1þ jk�

�k� 0

� 	
; I ¼ 1 0

0 1

� 	

In these notations the boundary value problem (9), (10) is written down in a next
form

L2yðqÞ ¼ fðqÞ; 1\q\1; U yð1Þ½ � ¼ c ð11Þ

In order to get a general decreasing solution when q ! 1 of the vector homo-
geneous equation in (11), the solution of the matrix differential equation

L2YðqÞ ¼ 0; 1\q\1 ð12Þ

should be constructed previously.
With the help of the auxiliary matrix

Hðq; nÞ ¼ Hð1Þ
1 ðq nÞ 0
0 Hð1Þ

0 ðq nÞ

 !

where Hð1Þ
m ðzÞ is the Hankel first order function, m ¼ 0; 1, an important relationship has

been proven [1]

L2Hðq; nÞ ¼ �Hðq; nÞ �MðnÞ

MðnÞ ¼ n2 þ j�1
jþ 1 k2� þ p2
� �

2
jþ 1nk�

2
j�1n k� n2 þ jþ 1

j�1k
2
� þ p2

 !
ð13Þ

detM ¼ n� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ p2

q� �
nþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ p2

q� �
n� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ j� 1

jþ 1
p2

r� �
nþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ j� 1

jþ 1
p2

r� �

Further, with the help of the equality (13), one can be convinced that the solution of
the matrix equation (12) is
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YðqÞ ¼ 1
2p i

Z
C

Hðq; nÞ �M�1ðnÞdn

where C is the closed contour covering the origin and two poles of the first multiplicity

n ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ p2

q
; n ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ j�1

jþ 1p2
q

lying in the upper half-plane. Applying the methods

of contour integration, the matrix is derived

YðqÞ ¼ 1
2p2

ijþ 1
j�1

k2�
d1
Hð1Þ

1 iqd1ð Þ k�H
ð1Þ
1 iqd1ð Þ

jþ 1
j�1k�H

ð1Þ
0 iqd1ð Þ �id1H

ð1Þ
0 iqd1ð Þ

0
@

1
A

þ 1
2p2

�ijþ 1
j�1d2H

ð1Þ
1 iqd2ð Þ �k�H

ð1Þ
1 iqd2ð Þ

�jþ 1
j�1k�H

ð1Þ
0 iqd2ð Þ i k

2
�

d2
Hð1Þ

0 iqd2ð Þ

0
@

1
A

where d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ p2

q
, d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ j�1

jþ 1p2
q

.

Taking into account the results in [1] and the range of the parameter 1\q\1, a
decreasing solution of the matrix equation is constructed

Yk pðqÞ ¼ 1
p2

�ijþ 1
j�1

k2�
d1
K1 qd1ð Þ �k�K1 qd1ð Þ

�ijþ 1
j�1k�K0 qd1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� þ p2

q
K0 qd1ð Þ

0
@

1
A

þ 1
p2

ijþ 1
j�1d2K1 qd2ð Þ k�K1 qd2ð Þ
ijþ 1
j�1k�K0 qd2ð Þ k2�

d2
K0 qd2ð Þ

 !

where KmðzÞ is the Macdonald function, m ¼ 0; 1.
The solution of the one-dimensional problem (11) is written in the form [1]

yðqÞ ¼ Yk pðqÞ � iC0

C1

� 	
ð15Þ

The reality of the solution’s values (15) is guaranteed by the special choice of
constants C0, C1, which can be found from the boundary conditions (10).

The solution of the one-dimensional value problem (11) in transformation domain
was constructed.

In order to get the solution of initial problem (1–3), the inverse integral transfor-
mations should be applied.

The field of the initial displacements of the infinite elastic layer with the cylindrical
cavity was derived.

The case of steady-state oscillations is considered below. With this aim the sub-
stitution p ¼ ix, p2 ¼ �x2 was made (p—Laplace transformation parameter, x—cir-
cular frequency of steady-state oscillations. The normal stress on the lower face of the
layer n ¼ 0, 1\q\1 was investigated, depending on different mechanical
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characteristics: Poisson’s ratio l ¼ 1=3 or l ¼ 1=4, ratio of cavity radius to layer
thickness a ¼ a=h, different variants of natural oscillation frequencies
x ¼ 0:1; 0:3; 0:5; 1; 2; 3. The possibility of the appearance of tensile stress on the lower
face of the layer was considered. The dynamic load of constant intensity was set on the
cylindrical surface of the cavity.

4 Conclusions

1. The dynamic problem’s solution of the elasticity for a cylindrical cavity was
derived, when on the faces of the infinite layer the ideal contact conditions are
given.

2. The results were detailed for the case of steady-state oscillations.
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Abstract. Non-stationary dynamic contact problem for viscoelastic half-plane
and absolutely rigid striker at subsonic stage of interaction is considered. Vis-
coelastic properties of half-plane material are described by exponential relax-
ation kernel. Free slipping is considered as contact boundary condition. Green
function for normal displacement at the boundary of the half-plane is obtained
using generalized convolution method. The resolving equation system consists
of the striker motion equation, integral representation of half-plane boundary
normal displacement, contact area boundary equation and the relation con-
necting half-plane boundary normal displacement and striker displacement.
Equation system is solved numerically by meshing integration area and con-
structing equations difference scheme. The solution of the problem is obtained
for the case of three types of surfaces constraining the striker: parabolic, circular
and hyperbolic cylinders. Time dependencies of the striker velocity, resulting
force for contact stresses and radius and contact area expansion velocity are
obtained. The influence of relaxation kernel parameters on the mentioned con-
tact interaction characteristics is analyzed.

Keywords: Viscoelasticity � Contact problem � Half-plane � Absolutely rigid
striker � Green function

1 Problem Statement

In rectangular Cartesian coordinate system we consider viscoelastic half-plane x3 � 0.
At the initial time t ¼ 0 absolutely rigid striker of mass m starts indenting into the half-
plane.

Dimensionless equations of half-plane motion have the form [1]

DðsÞ � b2
@h
@x1

þ c2Du1

� �
¼ €u1; DðsÞ � b2

@h
@x3

þ c2Du3

� �
¼ €u3;

D sð Þ ¼ d sð Þ �M sð Þ; h ¼ @u1
@x1

þ @u3
@x3

; D ¼ @2

@x21
þ @2

@x23
; c2 ¼ 1� b2; b2 ¼ kþ l

kþ 2l
:

ð1Þ
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Here s is time; uk are components of displacement vector;MðsÞ is relaxation kernel;
k; l are elastic Lame constants.

We suppose that at initial time medium is at rest:

u1js¼0¼ u3js¼0¼ _u1js¼0¼ _u3js¼0¼ 0: ð2Þ

The striker is constrained by smooth convex cylindrical surface, the equation of
which in a coordinate system Cx1x03 referred to its mass center C we write down as
follows:

x03 ¼ x3 þ l ¼ f x1ð Þ;
f �x1ð Þ ¼ f x1ð Þ; f 0 x1ð Þ\0 x1 6¼ 0ð Þ; f 0 0ð Þ ¼ 0; f 00 x1ð Þ\0:

ð3Þ

Here l is the distance between mass center and stagnation point.
Striker motion along the axis Ox3 without external forces action is described by the

following initial problem

m€uc3 ¼ R3; R3ðsÞ ¼
Zb sð Þ

�b sð Þ

r330ðx1; sÞdx1; r330 ¼ r33jx3¼0

uc3js¼0¼ uc30; _uc3js¼0¼ vc30;

ð4Þ

where uc3 is striker mass center displacement; R3 is contact force; ½�b sð Þ; b sð Þ� is
contact area.

We suppose that half-plane boundary outside contact area is free, and interaction of
the striker and half-plane is modeled by the condition of free slipping.

Contact area radius is

b ¼ f�1 l� uc3ð Þ: ð5Þ

Besides, we must require the displacements to be constrained.
Integral equation connecting half-plane boundary normal displacement and contact

stresses has the form

w x1; sð Þ ¼ G30 x1; sð Þ � r330 x1; sð Þ; ð6Þ

where the function G30 x1; sð Þ corresponds to the problem (1), (2) and boundary
conditions

r13jx3¼0 ¼ 0; r33jx3¼0 ¼ dðx1ÞdðsÞ: ð7Þ

On the other hand, the following relation connects half-plane boundary normal
displacement with the striker displacement:
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w ¼ uc3 þ f ðx1Þ � l: ð8Þ

So the resolving equation system has the form (4)–(6), (8), and for its solution we
have to determine Green function G30 x1; sð Þ.

2 Green Function Construction

Equation system (1) solution at initial conditions (3) and boundary conditions (13) we
shall seek in accordance with the statement proved in [2] in the form

uðx1; x3; sÞ ¼
Z1

0

ueðx1; x3; aÞWrða; sÞda: ð9Þ

Here ue is constrained displacement vector with coordinates ue1 and ue3, corre-
sponding to two-dimensional elastic problem

b2 @h
@x1

þ c2Due1
� �

¼ €ue1; b2 @h
@x3

þ c2Due3
� �

¼ €ue3;

ueja¼0¼ @ue
@a

��
a¼0¼ 0; re13

��
x3¼0¼ 0; re33

���
x3¼0

¼ dðx1ÞdðaÞ:

The relation (9) on the surface x3 ¼ 0 can be written down as follows:

G30ðx1; sÞ ¼
Z1

0

G3eðx1; aÞWrða; sÞda ð10Þ

So the function G3eðx1; aÞ in (10) represents Lamb’s problem solution obtained
in [3]:

G3eðx1; aÞ ¼ G3e;rðx1; aÞþG3e;sðx1; aÞ
� �

H a� x1j jð Þ; ð11Þ

where

G3e;rðx1; aÞ ¼ G3e;1ðx1; aÞH g x1j j � að ÞþG3e:3ðx1; aÞH a� g x1j jð Þ;
G3e;kðx1; aÞ ¼ G3e;kðx1; aÞ � G3e;sðx1; aÞ; k ¼ 1; 3

G3e;1ðx1; aÞ ¼ g4

p

x21 g2x21 � 2a2
	 
2
P4ðx21; a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
;

P4ðx1; aÞ ¼ g2x1 � 2a
	 
4�16a2 a� g2x1

	 

a� x1ð Þ;
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G3e;3ðx1; aÞ ¼ g4

p
x21R22ðx21; a2Þ
P4ðx21; a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
;

G3e;sðx1; aÞ ¼ asa
x21 � c2Ra2

; as ¼ R22ðc2R; 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2R

p
pg4P2

;

R22ðx1; aÞ ¼ g2x1 � 2a
	 
2 þ 4a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� x1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� g2x1

p
;

P2 ¼ c4R � 2/2c2R þ i2; /2 ¼ 2 1� jð Þ � c2R
�
2; i2 ¼ 16 g2 � 1

	 
�
g8c2R
	 


;

cR is Rayleigh wave propagation velocity.
Then for Green function for viscoelastic half-plane G30ðx1; sÞ determination we

have to construct the function Wrða; sÞ.
In accordance with [2], the function Wr in (9) is constrained solution of one-

dimensional viscoelastic problem

€Wr ¼ D sð Þ � @
2Wr

@a2
;

Wrjs¼0¼ _Wr

��
s¼0¼ 0; a� 0;

D sð Þ �Wr a; sð Þ½ �ja¼0¼ dðsÞ; s� 0:

ð12Þ

The solution of the problem (12) is found using Laplace transform and the results of
the work [4]. Restricting ourselves by the case of exponential relaxation kernel
MðsÞ ¼ ae�#s, we have

Wrða; sÞ ¼ e�#sFða; sÞ; ð13Þ

where

Fða; sÞ ¼ e�ðc1a�#Þa d s� að Þþ P1
m¼0

dmþ 1 að Þ
m! s� að Þm

 �
H s� að Þ;

dm að Þ ¼ Pm
k¼0

akgm�k að Þ; gl að Þ ¼ Pl
n¼1

�1ð Þnanhl�n;n

n! ; hp;qþ 1 ¼
Pp
n¼0

hp�n;qen q� 1ð Þ;

hp;1 ¼ ep; ep ¼ rpþ 1apþ 1; rn ¼ 2nþ 1
2 nþ 1ð Þ a� #
h i

cn; cn ¼ 2n�1ð Þ!!
2nn! :

Taking into account (10), (11) and (13), we can write down the expression for
viscoelastic half-plane Green function G30ðx1; sÞ in the form
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G30ðx1; sÞ ¼ I0 þ Ir þ Is;

I0 ¼ e�c1as G3e;rðx1; sÞþG3e;sðx1; sÞ
� �

;

Ir ¼ e�#s
Zs

xj j

G3e;rðx1; aÞe�ðc1a�#ÞaX1
m¼0

dmþ 1 að Þ
m!

s� að Þmda;

Is ¼ e�#s
Zs

xj j

G3e;sðx1; aÞe�ðc1a�#ÞaX1
m¼0

dmþ 1 að Þ
m!

s� að Þmda:

3 Contact Problem Solution Algorithm

So finally contact problem for the subsonic stage of interaction is determined by closed
equation system

m€uc3 ¼
Rb sð Þ

�b sð Þ
r330ðx1; sÞdx1; uc3js¼0¼ uc30; _uc3js¼0¼ vc30;

b ¼ f�1 l� uc3ð Þ;
w x1; sð Þ ¼ G30 x1; sð Þ � �r330 x1; sð Þ;
w ¼ uc3 þ f ðx1Þ � l

ð14Þ

The solution of the problem is constructed using time and coordinate mesh rep-
resentation of the resolving equations integration area and the following construction of
difference scheme for these equations and quadrature formulae for the integrals. We
shall mesh the plane R2

sx1 using mesh with uniform step d: si ¼ id; nj ¼ jd
ði ¼ 0; 1; 2; . . .; j 2 ZÞ.

We shall assign the functions of one and two variables in the relations (14) to mesh
functions

uc3;i ¼ uc3ðsiÞ; bi ¼ bðsiÞ; vc3;i ¼ vc3ðsiÞ; fj ¼ f ðx1;2jÞ;
rij ¼ r330ðx1;2j; siÞ; wij ¼ w x1;2j; si

	 

:

The choice of double step for space coordinate is determined by symmetry of the
problem, as well as by characteristics of the quadrature formulae used.

Then the difference scheme for the system (14) at the point s ¼ sn; x1 ¼ x1;2m has
the form
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rnm ¼ Pn�1

i¼1

Pqi
j¼pi

an�i;2m�jrikj � wnm
d ;

wnm ¼ uc3;n þ fm þ uc0;
uc3;n ¼ uc3;n�1 þVn�1d;
Vn ¼ Vn�1 þRn�1

d
m ;

Rn ¼ 2d rn0 þ 2
Pln
j¼1

rnj

 !
;

bn ¼ f�1 �uc3;n � uc0
	 


:

ð15Þ

Here

pi ¼ max �2li; ki1ð Þ; li ¼ bi
2d

� �
; ki1 ¼ iþ 2m� n� 1;

qi ¼ min 2li þ 1; ki2ð Þ; ki2 ¼ �iþ 2mþ n; kj ¼ j
2

� �
;

anm ¼ 1
2

R1
�1

R1
�1

G30 2mþ 1� v; 2nþ 1� uð Þdudv:

Initial conditions for the system (15) have the form

uc3;0 ¼ uc30; V0 ¼ V30; r0m ¼ �V30:

As an example of the constructed algorithm using contact problem for three types
of surfaces constraining the striker is considered: parabolic, circular and hyperbolic
cylinders. Time dependencies of the striker velocity, resulting force for contact stresses
and radius and contact area expansion velocity are obtained. The influence of relaxation
kernel parameters on the mentioned contact interaction characteristics is analyzed.
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Abstract. This article investigates the vertical impact of an absolutely rigid
body (indenter) on a membrane. The supersonic (initial) and subsonic stages of
unsteady interaction are considered. The solution at the initial stage of contact
interaction is reduced to solving a differential equation. A resolving system of
equations was obtained for the problem at subsonic stage. The Green’s function
for the membrane is found and a numerical-analytical algorithm is constructed to
solve the system. The unknown functions calculation results are presented in the
graph form.

Keywords: Superposition method � Transient function � Laplace and fourier
integral transforms � Membrane � Absolutely rigid body � Unsteady contact
problem

1 Problem Formulation

We consider the contact interaction process of an absolutely rigid body bounded by a
smooth convex cylindrical surface P (indenter) with a flat membrane. The indenter
moves with velocity V0 in direction of the normal vector to membrane plane. The
contact between the absolutely rigid body and the membrane is adhesive-free (Fig. 1).
Outside the contact area X ¼ �b sð Þ; b sð Þ½ � the membrane is free from external loads (s
is a dimensionless time).

Mathematical model of the problem contains [1, 2]

– indenter motion equation

m€h sð Þ ¼ R sð Þ; R tð Þ ¼ Zb tð Þ

�b tð Þ
P t; xð Þdx ð1Þ
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– membrane motion equation

€u s; xð Þ ¼ u00 s; xð ÞþP s; xð Þ ð2Þ

boundary conditions of contact for the indenter and the membrane

u s; xð Þ ¼ f xð Þþ h sð Þ � l; xj j � b sð Þ; ð3Þ

– relation to determine the radius of the contact area

b tð Þ ¼ f �1ðl� hÞ; ð4Þ

– initial conditions (at the initial time the membrane is in an unperturbed state)

ujs¼0¼ _ujs¼0¼ 0; ð5Þ

hjs¼0¼ 0; _h
��
s¼0¼ V0; ð6Þ

All variables and parameters are presented in a dimensionless form (the prime
indicates the dimensionless values):

s ¼ at
L ; u0 ¼ u

L ; h0 ¼ h
L ; x0 ¼ x

L ; l0 ¼ l
L ;

V 0
0 ¼ V0

a ; R0 ¼ R
q a2 ; P0 ¼ PL

q a2 ; m0 ¼ m
q L :

ð7Þ

Here u t; xð Þ is a membrane deflection, a2 is the wave propagation velocity in the
membrane, P t; xð Þ is a contact pressure, m is the linear weight, h tð Þ is an indentation
depth, R tð Þ is a linear contact force, q is the membrane density, l is the distance from
the mass center to the frontal point of the indenter, L is the characteristic linear
parameter, t is a dimensional time.

In Formulas (1)–(6) and further primes are omitted. The dots denote derivatives by
dimensionless time s and the primes denote derivatives by dimensionless spatial
variable x.

According to [2], there are two speed stages of interaction between the indenter and
the membrane: supersonic and subsonic.

Fig. 1. Problem formulation
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2 Solution of the Problem at the Supersonic Interaction Stage

At the supersonic (initial) stage, the expansion speed of the contact area exceeds the
speed of wave propagation in the membrane. It leads to the fact that there are no
movements on the border

uðs;�bÞ ¼ 0 ð8Þ

and inside the contact area of the indenter and the membrane

uðs; xÞ ¼ uðs; xÞHðb� xj jÞ: ð9Þ

The found partial derivatives (11) by variables x and s taking into account (5), (8)
we substitute into Formula (4) and obtain an expression for the contact pressure at the
supersonic interaction stage _bðsÞ� 1:

Pðs; xÞ ¼ Pr þPs; ð10Þ

where Prðs; xÞ ¼ €hðsÞ � f 00ðxÞ is the regular component and Psðs; xÞ ¼
QðsÞ dðxþ bÞþ dðx� bÞ½ � is the singular component of contact pressure, QðsÞ ¼
_h _bþ f 0ðbÞ is the concentrated forces. Thus, for the supersonic interaction stage we
obtain that the contact pressure is not a continuous function at the boundary of the
contact area. In this case, concentrated forces appear on the border of contact area.

The equation for contact force RðsÞ on the interval ð�bðsÞ; bðsÞÞ is

�RðsÞ ¼ �RrðsÞ � RsðsÞ ¼
Zb sð Þ

�b sð Þ

Pr s; xð Þdxþ
Zb sð Þ

�b sð Þ

Ps s; xð Þdx ¼ 2
@

@s
_hb
� �

: ð11Þ

We integrate the indenter motion equation (2) with considering the initial condi-
tions (6) and Eq. (11). So, we get

_h sð Þ ¼ mV0

mþ 2b sð Þ : ð12Þ

Then _b sð Þ can be defined as follows:

_b sð Þ ¼ b0 hð Þ _h sð Þ ¼ b0 hð Þ mV0

mþ 2b sð Þ : ð13Þ

Using the solution of ODE (12) with the initial conditions (6), (4) and (13) we
obtain analytical dependencies h sð Þ; _h sð Þ; b sð Þ; _b sð Þ for circular and elliptic (with
semi-axes a ¼ b ¼ 1), parabolic, hyperbolic (with semi-axes a ¼ b ¼ 1) cylinders.
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3 Solution of the Problem at the Subsonic Interaction Stage

Based on the principle of superposition the membrane deflection can be represented as
a convolution [1, 3, 4]:

u s; xð Þ ¼ G s; xð Þ � p s; xð Þ ¼
Zs

0

Zb sð Þ

�b sð Þ

Gðs� t; x� nÞ � p s; nð Þdn dt: ð14Þ

Here G x; sð Þ is the Green function, which is defined as the solution of the following
boundary value problem:

€G s; xð Þ ¼ G00 s; xð Þþ d sð Þd xð Þ;Gjs¼0¼ _G
��
s¼0¼ 0; ð15Þ

where d xð Þ is Dirac delta function, p is the contact pressure.
After the Laplace and Fourier transforms, we obtain the solution of problem (15) as

an expression for the Green’s function for the membrane:

G s; xð Þ ¼ 1
2
H s� xj jð Þ; ð16Þ

where H xð Þ is the Heaviside step function.
In the subsonic interaction stage, the basic equation of the resolving system of

equations has the form (14). In addition to it, the mathematical model describing this
stage of contact between the indenter and the membrane includes the following
relations:

u s; xð Þ ¼ f xð Þþ h sð Þ � l; h sð Þ ¼ Rs
0
V tð Þdt;

b sð Þ ¼ f�1 l� h sð Þð Þ;
mV sð Þ ¼ Rs

0
R tð Þdt; R sð Þ ¼ Rb sð Þ

�b sð Þ
p s; xð Þdx;

ð17Þ

where V sð Þ is speed of indentation.
The solution of the system of Eqs. (14), (17) is sought on the plane R2

t n on which
the grid is applied with a uniform step d:

ti ¼ id; nj ¼ jd; R2
tn ¼

S
i

S
j
Kij i ¼ 1; 2; 3; . . .; j 2 Zð Þ;

Kij ¼ t; nð Þjti�1 � t� ti; ni�1 � n� nif g:
ð18Þ

We assign to functions h tð Þ; b tið Þ; f nð Þ; p t; nð Þ; u t; nð Þ the grid functions
hi ¼ h tið Þ; bi ¼ b tið Þ; fi ¼ f nið Þ; pij ¼ f ti; nj

� �
; u ti; nj
� �

:

The difference scheme for system (14), (17) is explicit and has the following form
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unm ¼ d2

4

Xn�1

i¼ns

Xqi
j¼pi

pij þ enmpnm

 !
þ
Xns
i¼0

I1;i � I2;i
� �

þ d
Xns
i¼iC

_hi _bi �
_hi
_bi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _b2i

q� �
;

I1;i ¼ x2 tið Þ � x1 tið Þð Þ €h tiþ 1ð Þ � €h tið Þ� �
;

I2;i ¼ d f 0 qið Þ � f 0 pið Þð Þ; unm ¼ hn þ fm � l;

hn ¼ hn�1 þVn�1d; Vn ¼ Vn�1 þRn�1
d
m
;

Rn ¼ d pn0 þ 2
Xln
j¼1

pnj

 !
; bn ¼ f�1 l� hnð Þ; bn ¼ b tnð Þ;

_bn ¼ � Vn

f 0 bnð Þ :

ð19Þ

A program of numerical integration has been constructed based on the difference
scheme (19). In the numerical calculation, the grid step was taken to be 0.005,
m ¼ 1;V0 ¼ 1; l ¼ 1. The results were obtained for a parabolic indenter (the depen-
dences on the depth of indentation, the indentation speed, the radius of contact area, the
expansion speed of the contact area on time, the dependence of the pressure distribution
over the contact area on the temporary layer with the number k and the pressure
distribution on time at the frontal point.
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Abstract. This work is an attempt to solve the problem how to describe static
and dynamic bending deformations of elastic sandwich plates in the frame of
two–dimensional theories. We focus here on the case of so-called hard-skin
plates, i.e. the sandwich plates the faces of which are very hard. We consider
only the hard-skin plates of symmetric structure on thickness. In this case the
any static and dynamic problem can be represented as a superposition of two
problems: one considers the deformations “in plane of the plate” (tension
deformations) and the other considers deformations “out of plane of the plate”
(bending deformations). It is proposed to solve the problem of static and
dynamic bending for hard-skin plates on the basis of governing two- dimen-
sional models derived from linear three-dimensional elasticity with the help of
variational asymptotic method [1]. We show in which cases the bending
problem must be solved on the basis the equations considering transverse shear
effects both in statics and dynamics.

Keywords: Sandwich elastic plate � Asymptotic theory �
Transverse shear effect

1 Introduction

Among various modern composite materials having wide industrial applications, the
sandwich composites occupy the special place due to their superior mechanical
properties and enhanced manufacturing technology. We consider here the problem how
to describe static and dynamic bending of elastic sandwich plates of symmetric
structure on thickness (hard-skin plates) on the basis of linear two-dimensional theo-
ries. As far as the mechanical characteristics of the layers are of different orders of
magnitude, the normal fibers cannot remain normal to the mid-surface in the course of
deformation. Therefore stress-strain state of such plates cannot be described by clas-
sical plate theory. The deviations from classical theory are characterized by transverse
shear effect and its contribution in the picture of deformation can be the leading order.
So to derive a two-dimensional theory of static and dynamic bending for sandwich
plates from three-dimensional elasticity theory it is necessary to determine the leading
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effects in the course of static and dynamic deformation. It can be realized with the help
of asymptotic analysis of three-dimensional elastic energy functional on the basis of
technique worked out by Berdichevsky [1].

2 Statement of the Problem

Consider a three-layered elastic plate of symmetric structure on thickness (denoted by
h). Each layer is made of homogeneous isotropic material, the contact between the
layers is ideal. We denote the thicknesses of the center layer and the outer layers by hc
and hs respectively. Indices c and s mark the value in the inner layer (core) and in the
outer layers s (skin). For symmetric sandwich plates we have: h ¼ hc þ 2hs. Denote by
xaða ¼ 1; 2Þ the Cartesian coordinates in the mid-plane of the plate, and by x the
normal coordinate to mid-plane. In given case the elastic properties k; l and density q
are the even functions of x. The displacements of any point of the plate with coordi-
nates x, xa are denoted by wa ða ¼ 1; 2Þ ;w. For static and dynamic bending of sym-
metric sandwich plates functions wa are odd functions of x and w is even function of x.

The problem is to carry out the two-dimensional bending static and dynamic
equations from three–dimensional elasticity as the theories of leading approximation
for symmetric hard-skin plates.

3 An Asymptotic Theory the Static Bending of Sandwich
Plates

The problem of deriving a two-dimensional asymptotic theory for statics of hard-skin
plates from three-dimensional elasticity theory was solved by Berdichevsky [2]. An
asymptotic theory was obtained as a governing theory of leading approximation using
the variational asymptotic method. It was shown that besides the small parameter h=l
(l—the characteristic length of the stress state along the plate) the additional small
parameter K ¼ lchc=lshs takes place for elastic sandwich plates.

The key role in developing an asymptotic bending theory is played by interplay of
two small parameters which are connected with the relation:

lchc
lshs

¼ h
l

� �a

:

Three different static bending situations were obtained and described in the leading
approximation:

0\a\2—the sandwich plate can be described by classical plate theory;
a[ 2—the sandwich plate behaves as a membrane and can be described by
membrane equation;
a ¼ 2—the sandwich plate must be described by the theory considering the
transverse shear effect.
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For last case the governing two-dimensional bending equations for hard-skin plates
are derived by an asymptotic analysis of linear three-dimensional elasticity as a theory
of leading approximation [2].

4 A Theory of Dynamic Bending of Sandwich Plates

In dynamics the two-dimensional equations can be obtained from static equations by
adding the leading inertia terms to the static equations only in the case of low-
frequency vibration, i.e. when the characteristic frequency x satisfies the condition:

x� 1
l

ffiffiffiffiffiffiffiffiffiffiffiffi
lc=qc

p
:

If this condition does not hold, then a two–dimensional theory must include high-
frequency effects. Such theory cannot be constructed as an asymptotic theory, and
therefore it is necessary to combine an asymptotic analysis with heuristic approach. The
main idea assumed as a basis of deriving the two–dimensional dynamic theory of hard-
skin elastic plates is to consider the interaction of low-frequency mode of vibrations
(classical form) with first high-frequency form. The main hypotheses of the bending
theory, considering the classical flexural mode and first high-frequency mode
describing the transverse shear, can be represented in the following expressions for the
displacements:

w ¼ uþ h2

4
DuyðfÞ; wa ¼ va

h
2
qðfÞ � h

2
u;a f; f ¼ 2x=h

Function uðxa; tÞ describes the bending of mid-surface of the hard-skin plate.
Functions vbðxa; tÞ describe the effect of transverse shear. The displacement distribu-
tions on the thickness are described by the functions yð1Þ; qð1Þ, respective analytic
forms were obtained in [3] from the solution of appropriate eigenvalue problem in
long-wave approximation.

The development starts with variation formulation of three-dimensional elasticity
dynamic problem with expressions for displacements represented above. The gov-
erning two-dimensional equations are constructed applying the asymptotic analysis and
averaging method to three-dimensional energy functional. The averaged equations
obtained in such way contain all leading effects.

As a result for hard-skin plates we construct the two-dimensional dynamic equa-
tions as a theory of leading approximation, which is asymptotically correct on the long
waves and qualitative correct on the sufficiently short waves. The obtained governing
two-dimensional equations can be represented as generalization Timoshenko and
Reissner-like theory on the case of elastic hard-skin plates.
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5 Conclusion

As it is known from reviews (see, for example [4, 5]), the models based on the system
of kinematical hypotheses are often too complicated and computationally inefficient to
be used in practice. Therefore the statics of symmetric hard-skin elastic plates is pro-
posed to study on the basis of asymptotic theory [2]. The dynamic behavior of sym-
metric hard-skin elastic plates is proposed to study on the basis of two-dimensional
averaged theory considering the high-frequency vibration mode. The governing
hyperbolic equations allow describing such effects as transverse shear and geometric
dispersion of waves in long-wave approximation. It was shown in which cases the
bending problem of hard-skin plates must be solved on the basis the equations con-
sidering transverse shear effects both in statics and dynamics.
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Abstract. The vibration-absorbing properties of the plate under the action of
the flat, cylindrical and spherical harmonic wave in the soil are studied. In the
soil model, an elastic isotropic medium is used. The motion of the plate is
described by the system of equations of Paimushin V.N. The mathematical
formulation of the problem includes the assignment of the incident wave, the
equations of motion of the soil and the plates, the boundary conditions for the
slab and the soil, the conditions at infinity, and the conditions of contact of the
earth with the obstacle, where we neglect the connection of the plate to the
ground. The kinematic parameters of the plate and the parameters of the dis-
turbed stress-strain state of the soil are represented in the form of double
trigonometric series satisfying the boundary conditions. After that, the constants
of integration, displacement and vibration acceleration are determined. The main
goal is to determine the total vector field of acceleration for each type of waves.

Keywords: Soil � Plate � V.T. paymushin model � Flat wave � Cylindrical
wave � Spherical harmonic wave � Frequency � Vibrations � Vibration
absorption � Vibration acceleration

1 Introduction

Increasingly, there is a need to protect existing buildings and structures from the
negative anthropogenic impact arising from the introduction of new infrastructure into
the already existing urban environment. Buildings are often exposed to huge dynamic
loads coming from industrial machinery, or transport (such as shallow-depth railroad
systems, heavy trucks, railway trains) that causes [1]. Vibration-absorbing barriers
placed between the vibration source and the protected object is an efficient way of
foundation protection against ground vibrations [2, 3].

The mechanics of sound waves passing through obstacles has been studied quite
widely. The sound insulation properties of single-layer and multilayer plates of
unlimited and real sizes are investigated. The influence of geometrical dimensions,
methods of fixing, physical and mechanical properties of plates on their vibration-
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insulating characteristics is analyzed. At the same time the study of sandwich plate
dynamics requires proper accounting for both transverse shear and transverse normal
stress in the filling layer, otherwise the dynamic stress state can be computed with
severe errors. On the other hand, the effect of the ingoing wave shape on the sound
absorption properties of plane sandwich barriers must be studied in details to be a basis
of further engineering estimates. We studied the sound-absorbing properties of plates
subjected to the effects of subsurface various types of harmonic waves, against the
background of new improved models with a lamellar plate, taking into account all the
effects present. Depending on the position of the wave source, the plate is affected
differently. In practice, in the case of a close position of a point source, a spherical
wave arises; in the case of a linear source configuration, a cylindrical wave, if the
source is far away, then a plane wave.

2 The Interaction of a Different Harmonic Wave
with a Three-Layer Plate

Let us consider the rectangular plate that consists of three layers—two bearing layers
and a honeycomb filling. The origin of the coordinate system is placed in the upper
right-handed corner of the plate. Oz-axis is directed normally to the plate surface into
the medium “2”, Ox and Oy lie in plate’s plane. Let w be the displacement of points of
the medium “2” normal to the plate, and let u be the corresponding tangential dis-
placement. Superscript denotes the media number while the subscript denotes the axis
along which the displacement takes place, 1-x, 2-y. The Plate divides the medium into
2 parts: media “1” and “2” [4]. Harmonic wave rides on the plate from the medium “1”.

To appreciate vibration absorbing properties of obstacle, term “vibration acceler-
ation” is used. The acceleration modulus is calculated using the formula (1).

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z

q
: ð1Þ

The mathematical formulation of the problem includes the task of the incident
wave, the equations of motion of the soil and the plate, boundary conditions for the
plate and the ground, conditions at infinity, as well as the conditions of contact of the
soil with an obstacle, where we neglect the adhesion of the plate with the ground.
Besides, the motion of the medium is given when different waves are applied.

3 Dynamic Equations of Soil

The Model of isotropic elastic medium is used below [4, 5]. Its motion is described by
the dynamic equations of the elasticity theory together with Cauchy relations and
constitutive equations of the Hookean law [6].

Only harmonic waves with the frequency x are considered. Finally, for the scalar
and vector potentials we obtain
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Duþ k21u ¼ 0;Dwþ k22w ¼ 0; kj ¼ x=cj

u1 ¼ @u
@x

þ @w3

@y
� @w2

@z
; u2 ¼ @u

@y
þ @w1

@z
� @w3

@x
;w ¼ @u

@z
þ @w2

@x
� @w1

@y

where: u1; u2 and w are movements along the axes Ox, Oy and Oz.
Since the medium «2» is not bounded by the coordinate z, then the Somerfield

radiation condition acts as a boundary condition [6].

4 Ingoing Harmonic Waves

The medium motion is described by the Helmholtz equation

DUa þ k21Ua ¼ 0; k1 ¼ x=c1 ð2Þ

While the first boundary condition is the Sommerfeld one, the second corresponds
to the boundedness at the infinity:

@Ua

@r
þ ik1Ua ¼ 0

1
r

� �
; r ! 1 ð3Þ

where r—radius-vector length.
Then, based on the value r33jt¼0; z¼0¼ p� the value of displacements and stresses is

determined. For the plane harmonic wave on the plate surface, the solution of Eq. (2)
with the dynamic equations and (3) taken into account is

u1 ¼ u1� ¼ u2 ¼ u2� � 0;w ¼ w� ¼ ik1p�
qx2 e�ik1z ¼ ip�

qc1x
e�ik1z;

r11 ¼ r11� ¼ jp�e�ik1z;r33 ¼ r33� ¼ p�e�ik1z;
r22 ¼ r22� ¼ p�e�ik2zr13 ¼ r12 ¼ r13� ¼ r12� � 0:

ð4Þ

For the cylindrical harmonic wave

u� ¼ p�xd
qc21N r10

H 2ð Þ
1 k1r10ð Þ;w� ¼ d2p�

q c21N r10
H 2ð Þ

1 k1r10ð Þ;
r11� ¼ p�d

N r210
1þ jð Þr10H 2ð Þ

1 k1r10ð Þ � k1 r2110H
2ð Þ
2 k1r10ð Þ

h i
;

r13� ¼ � 1� jð Þ p�d2k1xN r210
H 2ð Þ

2 k1r10ð Þ;r22 ¼ r12 ¼ r22� ¼ r12� � 0;

r33� ¼ p�d
N r210

1þ jð Þr10H 2ð Þ
1 k1r10ð Þ � k1r2330H

2ð Þ
2 k1r10ð Þ

h i
:

ð5Þ

where: r10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ d2

p
; r110 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ j d2

p
; r330 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j x2 þ d2

p
, d is the distance from

the source to the barrier.
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u1� ¼ xþ x1�ð Þp�r2�
r2N �ike�ikr � ke�ikr

r

� �
; u2� ¼ yþ x2�ð Þp�r2�

r2N �ike�ikr � ke�ikr

r

� �

w� ¼ ðzþ dÞp�r2�
r2N �ike�ikr � ke�ikr

r

� �
:

r11� ¼ r22� ¼ r33� ¼ 3kp�r2�
r2N �ike�ikr � ke�ikr

r

� �
þ 3kp�r2�

r2N �ike�ikr � ke�ikr

r

� �
;

r13 ¼ r12 ¼ r13� ¼ r12� � 0:

ð6Þ

where x�; y� are the coordinates of the source, and d is the distance from the source to

the barrier. The radius-vector—r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x�Þ2 þðy� y�Þ2 þðzþ dÞ2

q
.

5 The Plate Geometry

The plate consists of three layers, two bearing layers and the filling one. The Plate
motion is described by Paimushin equation system [7, 8], which takes into account
structural features of the plate formula (7).

Bearing layers are isotropic and have thickness 2t and elasticity modulus E and
Poisson’s ratio m. The filling layer of thickness 2h is orthotropic and honeycomb
structure with the compression modules E3 and shear modulus G1, G2 in axial direc-
tions Ox, Oy. The axis Oz is directed from layer number “1” to layer number “2”. The
plate is simply supported on the contour.

A special case of transversally soft filler layer is considered, when G1 ¼ G2 ¼ G.
The normal pressures p1 and p2 act on bearing layers. Then the dynamic equations of
the plate take the form [5, 6].

qc€u
c
1 ¼ L11 uc1

� �þ L12 uc2
� �

; qc€u
c
2 ¼ L21 uc1

� �þ L22 uc2
� �

;

qa€u
a
1 ¼ L11 ua1

� �þ L12 ua2
� �þ 2q1; qa€u

a
2 ¼ L21 ua1

� �þ L22 ua2
� �þ 2q2;

qc€wc � mcD€wc þ qwq €q1;x þ €q1;y
� �

¼ �DD2wc þ 2k1 q1;x þ q1;y
� �

þ p1 � p2;

qaw€wa � maD€wa ¼ �DD2wa � 2c3wa þ p1 þ p2;

qq1€q
1 � qwq1€wc;x ¼ ua1 � k1wc;x � k2 q1;x þ q2;y

� �
;x
þ k31q1;

qq2€q
2 � qwq2€wc;y ¼ ua2 � k1wc;y � k2 q1;x þ q2;y

� �
;y
þ k32q2:

ð7Þ

where:

uci ¼ u 1ð Þ
i þ u 2ð Þ

i ; uai ¼ u 1ð Þ
i � u 2ð Þ

i i ¼ 1; 2ð Þ;wc ¼ w 1ð Þ
0 þw 2ð Þ

0 ;wa ¼ w 1ð Þ
0 � w 2ð Þ

0 :

In the equation system (5.1) the further notation is used: wc, wa—deflections;
q1, q2—transverse shear stresses in the filling along the x-axis and y-axis; qðkÞ—the

mass density of bearing layers and the filling; u kð Þ
1 and u kð Þ

2 —tangential displacements
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along the x-axis and y-axis respectively in the kth bearing layer. B and D—tangent and
bending stiffness of the tangent plate. wðkÞ—the deflection of bearing layer. Conditions
on the simply supported contour of the plate.

6 Conditions on the Contact Surface

The pressure amplitude of the wave coming from the medium «1» is equal to the sum
of the normal stress in the medium and stress, arising as a result of the wave action.

p1 ¼ r 1ð Þ
33 þr33�

� �			
z¼0

; p2 ¼ �r 2ð Þ
33

			
z¼0

: ð8Þ

In the second medium, the pressure amplitude is the same as the normal stress for
the plane and spherical waves

w 1ð Þ þw�
� �		

z¼0¼ wð1Þ
0 ;wð2Þ		

z¼0¼ wð2Þ
0 ;

r 1ð Þ
13

			
z¼0

¼ r 2ð Þ
13

			
z¼0

¼ 0;r 1ð Þ
12

			
z¼0

¼ r 2ð Þ
12

			
z¼0

¼ 0;r 1ð Þ
23

			
z¼0

¼ r 2ð Þ
23

			
z¼0

¼ 0:
ð9Þ

For the cylindrical wave

r 1ð Þ
13

			
z¼0

¼ r 2ð Þ
13

			
z¼0

¼ 0;r 1ð Þ
12

			
z¼0

¼ r 2ð Þ
12

			
z¼0

¼ 0;r 1ð Þ
22

			
z¼0

¼ r 2ð Þ
22

			
z¼0

¼ 0: ð10Þ

Medium displacements, summed up with ingoing wave displacements, are equal to
the displacement of the first plate bearing layer. The displacement of the second
medium is the same as the displacement of the second plate bearing layer.

7 Computing of the Fourier Coefficients for the Potentials
in Ambient Media

All unknown function, as well for the plate as for both media, are decomposed into
trigonometric series and satisfy the boundary conditions of the simple support [9]. The
wave equations in the potentials are also represented through the Fourier coefficients (6.1):

@2u lð Þ
nm

@z2 þu lð Þ
nm k21 � k21n þ k22m

� �� � ¼ 0;
@2w lð Þ

i nm

@z2 þw lð Þ
inm k21 � k21n þ k22m

� �� � ¼ 0; i ¼ 1; 2; 3
ð11Þ

Solution of these equations must satisfy the Somerfield.
General solution of the wave Eq. (11) is given by the following way
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u jð Þ
nm z;xð Þ ¼ C jð Þ

1nm xð Þ eij1nm x2ð ÞzH k1 � k1n þ k2mð Þð Þþ ej1nm x2ð ÞzH k1n þ k2mð Þ � k1ð Þ
h i

;

w jð Þ
inm z;xð Þ ¼ C jð Þ

2inm xð Þ eij2nm x2ð ÞzH k2 � k1n þ k2mð Þð Þþ ej2nm x2ð ÞzH k1n þ k2mð Þ � k2ð Þ
h i

;

j ¼ 1; 2:

To determine the constants we have to use the conditions of the contact between the
plate and the medium (8), (9) for the plane and spherical waves and (8), (10) for the
cylindrical wave. This requires that the stresses, deformations and displacements will
be expressed in term of potentials so that allows one to determine the constants from
the boundary conditions. The integration constants are determined from the boundary
conditions. Further, the acceleration modulus is determined.

References

1. Umek A.: Dynamic responses of building foundations to incident elastic waves. Ph.D. Thesis.
Illinois, Ill. Inst. Technol (1973)

2. Kostrov, B.V.: Motion of a rigid massive wedge inserted into an elastic medium under the
effect of plane wave. Prikl. Mat. Mekh. 28(1), 99–110 (1964). (In Russian)

3. Rylko, M.A.: On the motion of a rigid rectangular insertion under the effect of plane wave.
Mekh. Tverd. Tela. 1, 158–164 (1977). (In Russian)

4. Rakhmatulin, K.A., Sunchalieva, L.M.: Elastic and elastoplastic properties of the ground upon
dynamic loads on the foundation. Department in VINITI, pp. 4149–83 (1983) (In Russian)

5. Berezhnoi, D.V., Konoplev, Y.G., Paimushin V.N., Sekaeva, L.R.: Investigation of the
interaction between concrete collector and dry and waterlogged grounds. Trudy Vseros.
nauch. konf. “Matematicheskoe modelirovanie i kraevye zadachi” [Proc. All-Russ. Sci. Conf.
“Mathematical Simulation and Boundary Value Problems”]. Part 1. Mathematical Models of
Mechanics, Strength and Reliability of Structures. Samara, SamGTU, pp. 37–39 (2004) (In
Russian)

6. Gorshkov, A.G., Medvedskii, A.L., Rabinskii, L.N., Tarlakovskii, D.V.: Waves in Continuum
Media, p. 472. Fizmatlit, Moscow (2004). (In Russian)

7. Ivanov, V.A., Paimushin, V.N.: Refined formulation of dynamic problems of three-layered
shells with a transversally soft filler is a numerical-analytical method for solving them. Appl.
Mech. Tech. Phys. 36(4), 147–151 (1995)

8. Ivanov, V.A., Paimushin, V.N.: Refinement of the equations of the dynamics of multilayer
shells with a transversally soft filler. Izv. RAS. MTT 3, 142–152 (1995)

9. Sheddon, I.: Fourier Transforms, p. 542. McGraw Hill, New York (1951)

Analysis of Vibration Insulation Properties of a Plate … 303



Studying of Influence of the Material
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Abstract. On the basis of a modified Dugdale model, we investigate the
influence of the anisotropy of the material, in particular, differences between the
ultimate tensile strength and ultimate compressive strength, on the limit state of
an orthotropic plate weakened by a periodic system of periodic collinear cracks
under biaxial external loading. As a strength criterion, the Hoffman strength
criterion is considered. Strength diagrams of an orthotropic plate with a crack for
different strength and crack resistance parameters are obtained.

Keywords: Periodic system of collinear cracks � Critical loading � Biaxial
loading � Orthotropic materials � Hoffman strength criterion

1 Introduction

In recent years, in fracture mechanics, the two-level approach has been developed.
According to it, on the macrolevel, in a larger part of a body with a crack, methods of
continuum mechanics are used, and, on the second level, in process zones near the
crack front, in which partial fracture of the material has occurred, the fracture process is
investigated with the help of specific modeling of physical features of concrete
materials. At present, this approach is called fracture mesomechanics. Methods of
fracture mesomechanics enable one to study fracture processes of various natural and
artificial materials such as rocks, wood, concretes, ceramics, polymers, composites, etc.
The study of fracture of anisotropic materials arouses particular interest of researchers.

As is shown by experiments, in many cases, process zones in thin plates are narrow
wedge-shaped regions of a discontinuous semi-broken material on extensions of
cracks. On the basis of these experimental data, in [1], the authors proposed a model
that, like the Leonov–Panasyuk–Dugdale model, considers a process zone in the form
of a notch to the faces of which self-balancing compressive stresses are applied.
However, in contrast to the Leonov–Panasyuk–Dugdale model, the parameters of the
model proposed in [1] are determined on the basis of the fact that the strength criterion
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of the material in the process zone is satisfied, which makes it possible to take into
account the influence of forces acting along the plane of the crack because this cannot
be achieved using the indicated model.

In the present paper, on the basis of the general solution obtained in [1] and
Hoffman strength criterion, the influence of the anisotropy of the material (the differ-
ences between moduli of elasticity along axes of orthotropy and between the ultimate
tensile strength and ultimate compressive strength) on the limit state of a thin ortho-
tropic plate weakened by a periodic system of collinear cracks under conditions of
biaxial external loading is investigated.

2 Model of a Crack in an Orthotropic Material

Consider a thin orthotropic plate with periodic system of collinear cracks of length 2l
located along the axis of orthotropy which coincides with the Ox-axis. The centers of
the cracks are located at the points xn ¼ 2nD xn ¼ 0;�1;�2; . . .; y ¼ 0ð Þ. The plate is
stretched by a homogeneous load applied at infinity

ry ¼ p[ 0; rx ¼ q; sxy ¼ 0 by z ! 1ðz ¼ xþ iyÞ:

We replace the process zones formed under the action of the load near the crack tips
by additional cuts of length d on the continuations of the cracks whose lips are sub-
jected to the action of stresses r0x ; r

0
y . Assume that the limiting state of the material in

the process zones is described by a strength criterion

F r1; r2;Cið Þ ¼ 0; ð1Þ

where r1; r2 are the principal stresses and Ci are constants of the material.
In view of the symmetry of the problem, the directions x and y are principal.

Therefore, the stresses r0x ; r
0
y satisfy the condition of strength (1) in the process zone.

These stresses are found from the solution of the system of two equations [1]:

r0x ¼ b r0y � p
� �

þ q; F r0x ; r
0
y ;Ci

� �
¼ 0; ð2Þ

b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=E2

p
; E1;E2—are the elasticity moduli of the material in directions 1 and 2.

For the numerical analysis and conclusions the Hoffman criterion of strength is
used. It is a generalization of the von Mises–Hill criterion, which takes into account the
dependence of the difference between the tensile and compressive strength of unidi-
rectional composite materials. For the plane stressed state, this criterion has the form

r21 � r1r2
rc1r

t
1

þ r22
rc2r

t
2
þ rc1 � rt1

rc1r
t
1

r1 þ rc2 � rt2
rc2r

t
2

r2 þ s212
s20

¼ 1; ð3Þ
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where rt1 ; r
t
2 are ultimate strengths in tension along the axes Ox and Oy, rc1 ; r

c
2 are

ultimate strengths in compression along the axes Ox and Oy, and s0 is the ultimate
strength in shear along the principal directions.

The crack opening displacement d x; l; Lð Þ at a point x from the segments
x� xnj j � L; y ¼ 0 is given by the formula [2]:

d xð Þ ¼ 2T0r0y l

p
sin a
a

Zsec q

x

ln
1þ n cos2 qþ sin q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 cos2 q

p
1� n cos2 qþ sin q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 cos2 q

p n� 1
nþ 1

 !
dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2 sin2 a
p ;

ð4Þ

where

T0 ¼ 1ffiffiffiffiffiffiffiffiffiffi
E1E2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
E1

E2

r
� v12

� �
þ E1

G12

s
;q ¼ pp

2r0y
; a ¼ sin

pl
2D

;x ¼ sin px
2D

sin a
:

It is clear that the integral in relation (3) is computed in the finite form as D ! 1,
which corresponds to the case of a single crack [1].

The size of process zone is determined by the ratio [2]

sin pl
2D

sin pL
2D

¼ cos
p p
2r0y

ð5Þ

3 The Limit State of the Plate

We choose the critical crack opening displacement criterion as a fracture criterion, then
the start of the crack occurs at the moment the crack tip opening displacement attains a
certain limit value dc, i.e. d lð Þ ¼ dc. Then, basing on (4), the field of ultimate loads p�
can be defined by [2]

r0y p�; q�ð Þ sin a
a

Zsec q�

1

ln
1þ n cos2 q� þ sin q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 cos2 q�

q

1� n cos2 q� þ sin q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 cos2 q�

q n� 1
nþ 1

0
B@

1
CA dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2 sin2 a
p

¼ 2r0y p 1ð Þ
� ; 0

� �
ln sec

pp 1ð Þ
�

2r0y p 1ð Þ
� ; 0

� � ;
ð6Þ

where q� ¼ pp�
2r0y p�;q�ð Þ, p

1ð Þ
� is the limit load in uniaxial loading of the plate with a single

crack. The change in p 1ð Þ
� from zero to the ultimate strength of the material in the

direction y corresponds to the change in the length of the crack from infinity to zero,
i.e., includes the whole range of change in the length of the crack.
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Since the stresses r0y , which depend on the constants that characterize the
mechanical properties of the material, enter into the determining relations (6), it is clear
that the limit state of the plate depends also on these constants.

However, it should be noted that the limit state of the plane weakened by a system
of cracks is not always determined by the fracture criteria of type (6). If the external
load is such that the condition d ¼ D� l is satisfied, then the emergence of prefracture
zones of two neighboring cracks occurs, which can also be thought to be the condition
of limit state. In view of (5), this condition takes the form

D
l
¼ p

2 arcsin cos q dð Þð Þ ; q dð Þ ¼ p p dð Þ
�

2r0y p dð Þ
�

� � ð7Þ

The relation (6) determines the load p dð Þ
� at which the areas of process zones of

neighboring cracks occur.

4 Results and Discussion

Figure 1 shows limit fracture curves obtained on the basis of (6) (solid curves), curves
of coalescence of process zones obtained on the basis of (7) (dashed curves) for

b ¼ 0:1; 0:5; 0:9 and p 0ð Þ
� =rp2 ¼ 0:5, and a limit strength curve for a defect-free

material (3) for rp1=r
p
2 ¼ 0:8, rc1=r

p
2 ¼ 0:4, rc2=r

p
2 ¼ 0:5 (curve 4); D=l ¼ 5.

Figure 2 shows dependences of the limit load p�=r
p
2 on the ratio of the moduli of

elasticity E1=E2 for q=r
p
2 ¼ �0:2; 0:5 for material with the same ultimate strengths. As

can be seen from the obtained results, an increase in the degree of anisotropy of the
material leads to a decrease in the limit load p acting perpendicularly to the line of the
cracks in the region of tensile loads q acting along the line of the cracks and to an
increase in the limit load p in the region of compressive loads q.

Fig. 1. The critical load and coalescence of process zones for different E1=E2
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Figure 3 shows limit fracture curves obtained on the basis of (6) (solid curves),
curves of coalescence of process zones obtained on the basis of (7) (dashed curves),
and the corresponding limit strength curves (3) for rc1=r

t
1 ¼ 0:5; 1:0; 2:0, and b ¼ 0:5,

p 0ð Þ
� =rt2 ¼ 0:5, rt1=r

t
2 ¼ 1:0.

Figure 4 shows limit fracture curves obtained on the basis of (6) (solid curves),
curves of coalescence of process zones obtained on the basis of (7) (dashed curves),
and the corresponding limit strength curves (3) for rc2=r

t
2 ¼ 0:5; 1:0; 2:0, and b ¼ 0:5,

p 0ð Þ
� =rt2 ¼ 0:5, rt1=r

t
2 ¼ 1:0.

Figure 5 shows dependences of the dimensionless limit load p�=rt2 of the ultimate
strength in compression along the axis of orthotropy Oy to the ultimate strength in
tension along the same axis for different values of the load acting along the line of the
crack q=rt2 ¼ �0:8; � 0:5; �0:1; 0:5; 0; 8 and rt1=r

t
2 ¼ 1:0.

Figure 6 shows the dependences of the dimensionless limit load p�=rt2 on the ratio
of the ultimate strength in compression along the axis of orthotropy Ox to the ultimate

Fig. 2. Dependence of critical load on the ratio of the moduli of elasticity E1=E2

Fig. 3. Dependence of critical load on the ratio of tensile and compressive strengths for different
rc1=r

t
1
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strength in tension along the axis of orthotropy Oy rc1=r
t
2 for different values of the load

acting along the line of the crack q=rt2 ¼ �0:8; � 0:5; �0:1; 0:5; 0; 8 and
rt1=r

t
2 ¼ 1:0.

Fig. 4. Dependence of critical load on the ratio of tensile and compressive strengths for different
rc2=r

t
2

Fig. 5. Dependence of critical load on the ratio of tensile and compressive strengths rc2=r
t
2

Fig. 6. Dependence of critical load on the ratio of tensile and compressive strengths rc1=r
t
1
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5 Conclusions

The proposed modification of the Leonov-Panasyuk-Dagdale crack model to the case
of orthotropic materials allows to effectively solve problems of the destruction of
orthotropic bodies with cracks, the material of which satisfies the condition of the
strength of the general form.

As it follows from the presented results, the difference between the ultimate tensile
strength and ultimate compressive strength along each direction influences substantially
the limit state of the orthotropic plate weakened by a periodic system of collinear
cracks.
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Abstract. The present paper is dedicated to dynamic behavior of poroelastic
solids. Biot’s model of poroelastic media with four base functions is employed
in order to describe wave propagation process, base functions are skeleton
displacements and pore pressure of the fluid filler. In order to study the
boundary-value problem boundary integral equations (BIE) method is applied,
and to find their solutions boundary element method (BEM) for obtaining
numerical solutions. The solution of the original problem is constructed in
Laplace transforms, with the subsequent application of the algorithm for
numerical inversion. The numerical scheme is based on the Green-Betty-
Somigliana formula. To introduce BE-discretization, we consider the regularized
boundary-integral equation. The collocation method is applied. As a result,
systems of linear algebraic equations will be formed and can be solved with the
parallel calculations usage. Modified Durbin’s algorithm of numerical inversion
of Laplace transform is applied to perform solution in time domain. A problem
of the three-dimensional poroelastic prismatic solid clamped at one end, and
subjected to uniaxial and uniform impact loading and a problem of poroelastic
cube with cavity subjected to a normal internal pressure are considered.

Keywords: Poroelasticity � Boundary element method (BEM) � Boundary
integral equation (BIE) � Laplace transform inversion � Durbin’s algorithm

1 Introduction

Mechanics of poroelastic materials is relevant to such disciplines as geophysics, geo-
and biomechanics, seismology, constricting, petroleum engineering. Wave propagation
in porous media is an important issue of these disciplines. Porous medium is a solid
with pore system, filled with a liquid or gas. Research of wave propagation processes in
saturated porous continua began from the works of Y.I. Frenkel [1] and M. Biot [2].
Biot’s model is based on the description of how two phases—porous elastic skeleton
and gas or liquid filler—interact. Historically Biot’s theory was the first model to
predict all three possible types of waves in porous continuum: fast shear wave, fast and
slow compression waves. Both fast waves are in their nature close to the ones of elastic
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continuum, and slow compression wave presence is the principal difference between
elastic and poroelastic continua. This wave is caused by transfer of pore filler particles
with respect to the skeleton.

Traditional methods for solving problems of deformable solids mechanics are the
finite element method (FEM) and boundary element method (BEM). A detailed review
of studies devoted to the modelling of liquid-saturated porous media using BEM and
FEM is presented in M. Schanz [3]. This paper is dedicated to the development of 3d
poroelastodynamic problems numerical modeling technique based on Boundary Ele-
ment Method (BEM) usage in Laplace domain and time-stepping schemes for Laplace
transform numerical inversion. Specially designed software allows analyzing wave
processes in homogeneous and piecewise homogeneous solids. Finite and semi-finite
solids can be considered.

2 Solution Method

2.1 Poroelastic Formulation

We consider a homogeneous solid X in three-dimensional space R3, and C ¼ @X is the
boundary of X. Porous material of a volume V can be constructed as follows:

V ¼ V f þVs ð1Þ

where V is the total volume, V f is the summary pore volume and Vs is the volume of
the skeleton. It is assumed that filler can openly seep through the pores and all closed
pores are assumed as a part of the skeleton.

Considering a boundary-value problem for Biot’s model of fully saturated poroe-
lastic continuum in Laplace domain in terms of four unknowns (displacements �ui and
pore pressure �p) the set of differential equations take the following form [4]:

G�ui;jj þ Kþ G
3

� �
�uj;ij � ðw� bÞ�p;i � s2ðq� bqf Þ�ui ¼ ��Fi;

b
sqf

�p;ii � /2s
R �p� ðw� bÞs�ui;i ¼ ��a; x 2 X;

ð2Þ

�u0ðx; sÞ ¼ ~u0; x 2 Cu; �u0 ¼ �u1; �u2; �u3; �pð Þ;
�t0nðx; sÞ ¼ ~t0n; x 2 Cr; �t0 ¼ �t1;�t2;�t3; �qð Þ: ð3Þ

where Cu and Cr denotes boundaries for boundary conditions of 1st and 2nd kind
respectively, G; K are elastic moduli, / ¼ V f =V is porosity, �Fi; �a are bulk body
forces,

b ¼ jqf/
2s

/2 þ sjðqa þ/qf Þ
;w ¼ 1� K

Ks
and

R ¼ /2KfK2
s

Kf ðKs � KÞþ/KsðKs � Kf Þ
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are constants reflecting interaction between skeleton and filler, j is permeability.
Further, q ¼ qsð1� /Þþ/qf is a bulk density, qs; qa; qf are solid, apparent mass
density and filler density respectively, Ks;Kf are elastic bulk moduli of the skeleton and
filler respectively. Apparent mass density qa ¼ C/qf was introduced by Biot to
describe dynamic interaction between fluid and skeleton. C is a factor depending on the
pores geometry and excitation frequency.

2.2 Boundary-Element Approach

Fundamental and singular solutions are considered in term of singularity isolation.
Numerical scheme is based on the Green-Betti-Somigliana formula. Boundary-value
problem (2)–(3) can be reduced to the BIE system as follows [5, 6]:

1� aX
2

tiðx; sÞ

þ
Z
C

Tijðx; y; sÞtiðy; sÞ � T0
ikðx; y; sÞtiðx; sÞ � Uijðx; y; sÞtiðy; sÞ

� �
dC ¼ 0

ð3Þ

where Uij; Tij—fundamental and singular solutions, T0
ij contains the isolated singu-

larities, x 2 C—is an arbitrary point. Coefficient aX equals 1 in case of finite domain
and -1 in case of infinite domain.

Boundary surface of our homogeneous solid is discretized by quadrangular and
triangular elements are assumed as singular quadrangular elements. We use reference
elements: square n ¼ ðn1; n2Þ 2 �1; 1½ �2 and triangle 0� n1 þ n2 � 1; n1 � 0; n2 � 0,
and each boundary element is mapped to a reference one by the following formula:

yiðnÞ ¼
X8
l¼1

NlðnÞybðk;lÞi ; i ¼ 1; 2; 3; ð4Þ

where l—local node number in element k, bðk; lÞ—global node number, NlðnÞ—shape
functions. To discretize the boundary surface eight-node biquadratic quadrilateral
elements are used, generalized displacements and tractions—are approximated by
linear and constant shape functions, respectively.

Subsequent applying of collocation method leads to the system of linear equations.
As the collocation nodes we take the approximation nodes of boundary functions.
Gaussian quadrature is used to calculate integrals on regular elements. But if an ele-
ment contains a singularity, algorithm of singularity avoiding or order reducing is
applied. When singularity is excluded we use an adaptive integration algorithm. An
appropriate order of Gaussian quadrature is chosen from primarily known necessary
precision, if it is impossible, the element is subdivided to smaller elements recursively.
Solving the system of linear equations leads to the solution of the initial boundary-
value problem in Laplace domain.
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2.3 Laplace Transform Inversion

The inverse Laplace transform is defined as the following contour integral

L�1 �f ðx; sÞ� � ¼ f ðx; tÞ ¼ 1
2pi

Zaþ i1

a�i1

�f ðx; sÞestds; ð5Þ

where a[ 0 is the arbitrary real constant greater than the real parts of all singularities
in �f ðx; sÞ: When values of �f ðx; sÞ are available only at the sample points, analytical
evaluation of integral in Eq. (5) is impossible. Supposing s ¼ aþ ix we have the
following Durbin’s method [7] (for convenience the spatial variable x is omitted
hereinafter):

f ð0Þ ¼ 1
p

Z1

0

Re �f ðaþ ixÞ½ �dx; ð6Þ

f ðtÞ ¼ eat

p

Z1

0

Re �f ðaþ ixÞ½ � cosxt� � Im �f ðaþ ixÞ½ � sinxt�dx; t[ 0: ð7Þ

In order to overcome a drawback of constant integration step Zhao [8] introduced
new approach. Let R be large real number and defining the nodes as 0 ¼
x1\x2\. . .\xn\xnþ 1 ¼ R we approximate Eqs. (6) and (7) as

f ð0Þ ¼ 1
p

Xn
k¼1

Zxkþ 1

xk

Re �f ðaþ ixÞ½ �dx; ð8Þ

f ðtÞ ¼ eat

p

Xn
k¼1

Zxkþ 1

xk

Re �f ðaþ ixÞ½ � cosðxtÞ��
Im �f ðaþ ixÞ½ � sinðxtÞ�dx ð9Þ

In each segment xk;xkþ 1½ �: Fk ¼ Re½�f ðaþ ixkÞ�; Gk ¼ Im½�f ðaþ ixkÞ�, k ¼ 1; n;
the real and imaginary parts of �f ðsÞ are approximated as follows:

Re½ f ðaþ ixÞ� � Fk þ Fkþ 1 � Fk

xkþ 1 � xk
ðx� xkÞ; ð10Þ

Im½ f ðaþ ixÞ� � Gk þ Gkþ 1 � Gk

xkþ 1 � xk
ðx� xkÞ; ð11Þ

Substituting Eqs. (10) and (11) into Eqs. (8) and (9) and making direct integration
we obtain
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f ð0Þ �
Xn
k¼1

Fkþ 1 � Fkð ÞDk

2p

� �
; ð12Þ

f ðtÞ � eat

pt2
Xn
k¼1

Fkþ 1 � Fk

Dk
cos xkþ 1tð Þ � cos xktð Þð Þ

�

þGkþ 1 � Gk

Dk
sin xkþ 1tð Þ � sin xktð Þð Þ

�
;

ð13Þ

where t[ 0;Dk ¼ xkþ 1 � xk:

3 Conclusions

Boundary integral equations method and boundary element method are applied in order
to solve three dimensional boundary-value problems. Regularized BIE system is
considered. We used mixed boundary elements to perform the spatial discretization.
Gaussian quadrature and hierarchic integrating algorithm are used for integration over
the boundary elements. Numerical inversion of Laplace transform is done by means of
modified Durbin’s algorithm.

We obtained numerical solutions of following dynamic problems: a problem of the
three-dimensional poroelastic prismatic solid clamped at one end, and subjected to
uniaxial uniform impact loading and a problem of poroelastic cube with cavity sub-
jected to a normal internal pressure are considered.
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Abstract. Defining relations for a partially saturated porous Biot medium,
written in the variables of displacements of the skeleton and pore pressures of
the fillers, are considered. The initial system of partial differential equations
includes five functions (a displacement vector and two pore pressures). The
model of the material corresponds to a three-component medium. A system of
equations in partial derivatives and boundary-value conditions are written in
Laplace transform for time variable and in direct time with initial conditions.
The boundary-value problem is analyzed using the method of boundary integral
equations, their solutions being sought with the boundary-element method. The
numerical scheme is based on using the Green-Bettie-Somigliana formula.
Quadratic interpolation polynoms are taken as form functions in describing the
boundary of the body. Unknown boundary fields are sought through nodal
values in interpolation nodes. The element-by-element numerical integration
uses Gauss method and an adaptive integration algorithm. The boundary-
element schemes are constructed, based on the consistent approximation of the
boundary functions and the collocation method. The solution of the formulated
system of linear algebraic equations is sought using the block-type Gauss
method. The boundary integral equation method in combination with the
technique of searching a boundary-element solution is oriented at a dynamic
problem of an isotropic homogeneous partially saturated poroelastic half-space.
The time-stepping method for numerical inverting the Laplace transform is used
to obtain the solution in the time domain.

Keywords: Poroelasticity � Biot’s theory � Boundary integral equation �
Time-Step method

1 Models and Methods

A poroelastic medium is represented using the following mathematical model of a
heterogeneous material: an elastic matrix phase and two filler phases—a liquid and a
gas filling the pore system. All the three phases are assumed to be compressible.
Temperature variations are neglected. Such a poroelastic material can be considered as
partially saturated, and its model is called a “three-phase” model. Dynamic equations of
a porous medium can be written in terms of representations of displacements of solid ûi
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and descriptions of pore pressures of the fillers p̂w and p̂a [1], where symbol “^”
denotes Laplace transform with complex variable s.

The boundary-element technique is based on the use of a regularized boundary
integral equation direct approach:

Z
C

Tðx; y; sÞuðx; sÞ � T0ðx; yÞuðy; sÞ� �
dC ¼

Z
C

Uðx; y; sÞtðx; sÞdC; x; y 2 C;C ¼ @X;

ð1Þ

where Uðx; y; sÞ and Tðx; y; sÞ are matrices of fundamental and singular solutions,
respectively, T0ðx; yÞ contains isolated singularities, x is integration point, y is
observation point, u is generalized displacement vector, t is generalized force vector.

To solve Eq. (1), the boundary surface C is divided into the generalized eight-node
quadrangular elements. Generalized boundary functions of the first kind are approxi-
mated bilinearly, and generalized boundary functions of the second kind are assumed to
be constant over the element. Integrals in discretized boundary integral equations are
calculated using Gaussian quadrature in combination with singularity decreasing and
eliminating algorithms [2].

The solution in the time domain is obtained using the time-step method of
numerical inversion of the Laplace transform. This method is based on the operational
calculus of integrating original f ðsÞ of representation f̂ ðsÞ. In general, the integral

yðtÞ ¼
Z t

0

f ðsÞds ð2Þ

is approximated as follows [3]:

yð0Þ ¼ 0; yðnDtÞ ¼
Xn
k¼1

xkðDtÞ; n ¼ 1; . . .N; ð3Þ

xkðDtÞ ¼ R�k

L

XL�1

l¼0

f̂ ðsÞse�k/i; / ¼ 2pl
L

; ð4Þ

where N is number of time steps, L is number of nodes for numerically integrating on
argument /.

2 Results and Discussion

The problem of the Heaviside-type load H(t) acting on the surface of a poroelastic half-
space is considered [4]. A vertical load t3= −1000 N/m2∙H(t) is specified on a surface
area of 1 m2, the rest of the surface is traction-free and impermeable. The parameters of
the partially saturated porous material correspond to those of Massilon sandstone [1].
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In Fig. 1, the color pictures of the vertical displacement and pore water pressure
results u3 and pw at t � 0.07 s are given. The Rayleigh wave is clearly observed.
Besides, the reflection surface wave can be observed due to the different boundary
conditions on the loaded and free surfaces.

3 Conclusion

Boundary-element solutions of the problem of a force in the form of Heaviside function
acting on a punch on a partially saturated poroelastic half-space are presented.
Boundary-element solutions for displacement and pore pressures are constructed.
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Abstract. Assessment of the residual strength and workability of pipelines with
detected corrosion defects assumes implementation of the limiting state criteria,
which relate the parameters of pipe material and actual geometry of structure
with the system of operating loading. Since the finite-element modeling is
widely used for the expert analysis of the results of technical diagnostics and
gives the opportunity to decrease the conservativeness of reliability determi-
nation, development of corresponding numerical techniques with regard to
specific pipeline element are actual. This work proposes the numerical approach
of statistical analysis of corroded pipelines limiting state. It consists in consid-
eration of natural nonuniformity of the material properties within the limits of
the finite-element description of the combined development of stress-strain state
and ductile subcritical damage up to the limiting state using Monte-Carlo pro-
cedure. It allows taking into account of spatial stochastic distribution of such
material characteristics as yield stress, microcleavage stress, initial concentration
of nucleated porosity of ductile fracture, critical value of plastic strain, etc. It is
shown, that this approach has lower conservativeness, than conventional ones,
those presuppose the consideration of uniform material properties, but remains
responsive enough for solution of typical engineering problems.

Keywords: Corroded pipeline � Limiting state � Probability of fracture �
Monte-Carlo method � Ductile fracture

1 Introduction

Statistical prediction of the strength and reliability of critical structures is actual
alterative to the deterministic methods of design and expert analysis. It allows avoiding
the conservative assumption that most design parameters and material properties are
known constants. Concerning the assessment of the state of main and technological
pipelines under internal pressure, one of the most typical problem is the determination
of strength and reliability taking into account the presence of operating defects such as
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corrosion (erosion) metal losses. The stress concentration in the region of wall thinning
causes the increase of the material susceptibility to nucleation and propagation of
fracture under comparatively low external loading.

There are a number of standard algorithms, those allow assessing the level of
defected pipe strength degradation due to corrosion or erosion metal loss. They pre-
suppose using the set of input parameters, such as physical mechanical properties of
material, actual geometry of structure, characteristics of resistance to specific type of
fracture. Also the assumption about material uniformity and isotropy is usually made.
To decrease the conservativeness of corroded pipe limiting state assessment taking into
account stochastic spatial distribution of material properties the methods of statistical
theory of strength can be used. The most straightforward way of mathematical
description of these phenomena is Monte-Carlo approach. But the implementation of
this approach demands the precise description of subcritical and critical fracture of pipe
under operational load as well as high-performance software for its fulfilling.

Within the limits of this work it is proposed the methodology for the numerical
prediction of the strength and reliability of corroded pipelines with spatially nonuni-
form properties by means of Monte-Carlo approach for implementation of statistical
strength theory along with finite-element description of the state of specific structure.

2 Numerical Procedure for Probabilistic Analysis of Residual
Strength of Pressurized Pipeline with Corrosion Defect

2.1 Assumptions, Mathematical Model and Finite-Element
Implementation

As the subcritical fracture of the material of pressurized pipeline with detected surface
three-dimensional metal loss (Fig. 1) is determined by ductile mechanism (that consists
in nucleation and propagation of microporosity of some volume concentration f) the
variable load bearing cross-section of the structure should be taken into account at the
finite-element (FE) simulation of the state of stresses and strains. For predicting ulti-
mate limiting state of pipeline with local corrosion metal loss of certain size under the
internal pressure the pipeline material was considered as elastic-plastic medium, where
the strain tensor increment deij was expressed as follows:

d eij ¼ deeij þ depij þ dij deT þ df =3ð Þ ð1Þ

where deeij, de
p
ij, dij deT, dij df/3 are the components of the strain tensor increment due to

elastic, plastic, thermal and fracture deformation mechanisms, respectively, i, j = r, b,
z (Fig. 1), dij is Kronecker symbol.

For numerical prediction of porosity nucleation in material of pressurized pipeline
with surface corrosion metal loss the strain-based criterion was used:

Z
depi
ec

[ 1 ð2Þ
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where depi ¼
ffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
depijde

p
ij

q
is the increment of plastic strain intensity, ec is the critical

value of plastic strain.
Fulfillment of (2) means that porosity of certain concentration f0 nucleates. The

further growth of voids depends on stress triaxiality T, i.e. the ratio of the hydrostatic
rm to equivalent req stress and the intensity of the plastic strain epi according to Rice-
Tracey law [1]:

df ¼ 1:28 exp 3
2 T
� �

depi ; if T ¼ rm
req

[ 1

1:28 Tð Þ1=4exp 3
2T
� �

depi ; if
1
3 � T � 1

(
ð3Þ

Numerical solution of the boundary-value problem for continuum with nonuniform
bearing cross-section has been carried out by tracing the elastic-plastic deformations
and the ductile fracture void concentration in structure at loading to the ultimate limit
state within the framework of finite element description. The relationship between
strains and stresses was determined by generalized Hooke’s law and the associated law
of plastic flow, according to the next relationships [2]:

Deij ¼ W rij � dijrm
� �þ dij Krm þDeT þDf =3ð Þ � 1

2G
rij � dijrm
� �� þ Krmð Þ� ð4Þ

where K = (1–2m)/E, G = 0.5E/(1 + m), E is Young modulus, m is Poison’s ratio,
symbol “*” refers to the variable of the previous tracing step, W is the state function of
the material, which is determined by the level of plastic deformation according to
plastic flow surface U, that was considered according to Gurson-Tvergaard-Needleman
model [3]:

U ¼ req

rY

� �2

� q3f
0ð Þ2 þ 2q1f 0 cosh q2

3rm

2rY

� �
ð5Þ

where q1, q2, q3 are the constants, f’ is the equivalent concentration of voids, rY is yield
stress.

Fig. 1. Scheme of pipeline element with external corrosion defect of semiellipsoidal shape in
cylindrical coordinate system
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It was considered that specific FE lost its load bearing capacity in case of fulfilling
the one of three conditions of numerical criterion of brittle-ductile fracture [4]:

W� 1
2G

� ef � epið Þ�
1:5rs e

p
ið Þ ;

f
0 � fF ¼ 1

q1
exp � 3q2rm

2rY

� �
;

r1
1� 2f =3

[ SK ;

ð6Þ

where SK is the microcleavage stress, ef is the critical strain (material deformability)
according to Mackenzie rule.

As it can be seen, there is a number of material properties, those influence on the
results of prediction of ultimate limiting state of corroded pipeline (E, rY, f0, ec, ef, SK).
The choice of their values determines the analysis conservativeness and they have
certain spatial distribution because of material natural nonuniformity.

2.2 Monte-Carlo Algorithm for Probability Assessment

Monte-Carlo procedure for prediction of failure probability of corroded pipeline ele-
ment taking into account spatial material nonuniformity consists in series of calcula-
tions of ultimate pressure in pipeline with arbitrary spatial variation of chosen
properties according their density of distribution. Thus, within the limits of represen-
tative sampling (number of numerical tests Nr) the failure probability for specific
corroded pipe under pressure P is assessed as

p Pð Þ ¼ Np=Nr ð7Þ

where Np is the number of tests, for which (6) is fulfilled at pressures equal or less
than P.

The choice of Nr has a key importance for the correct prediction of p(P) and the
decrease the calculation time. Here the next algorithm was used:

1. Comparatively low initial value of N0 (about 100–200) is chosen and the depen-
dence p0(P) is obtained.

2. Next value N1 was equaled to double the initial one (N1 = 2N0) and for N1 the
dependence p1(P) was obtained according to (7).

3. If quadratic deviation between dependences p0 and p1, was higher of equal, than
critical one Dc, than next step of tracing was implemented, i.e. N2 = 2N1 with
subsequent calculation of p2 and quadratic deviation between dependences p1 and p2.

4. If for some k-th step the deviation between dependences pk-1 and pk, was lower than
Dc, it was concluded, that Nk-1 tests was enough for representative sampling
(Nk−1 = Nr) and pk-1 was accepted as the true value of failure probability, i.e.
pk-1(P) = p(P).

This calculation algorithm is the laborious one, so for its implementation the novel
methods of parallel and hybrid computation were used [5].
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3 Results and Discussion

As a case of study it was considered the pressurized steel pipeline element (the outer
diameter D = 1420 mm and the wall thickness t = 20 mm) with the individual cor-
rosion metal loss of semiellipsoidal shape on outer surface of the pipe (2 s � 2c �
a=20 � 20 � 10 mm). The material of pipeline was steel 17G1S-U (E = 206 GPa,
m = 0.3, rY= 365–490 MPa, SK= 800–1000 MPa, f0 = 0.001–0.01, ec= 0.001–0.05). It
was accepted that some parameters have Weibull spatial distribution, that’s why the
choice of stochastically distributed characteristic X for specific FE can be made at every
numerical test by using following expression:

Xijk ¼ � ln 1� RNDð Þ½ � 1
gX BX � AXð ÞþAX ; i; j; k ¼ r; b; zð Þ; ð8Þ

where RND is random value from the range (0;1), AX, BX, ηX are the constants of
Weibull spatial distribution for characteristic X.

For the considered example of pipeline element with external defect it was accepted
that some material properties have stochastic spatial distribution, namely, yield stress
rY (Ar = 365, Br = 450, ηr = 4), concentration of nucleated porosity f0 (Af = 0.001, Bf

= 0.0052, ηf = 2), critical value of plastic strain ec (Ae = 0.001, Be = 0.0024, ηe = 2),
microcleavage stress SK (AS = 800, BS = 937, ηS = 4). As it can be seen in Fig. 2, the
consideration of spatial distribution of these variables leads to the fluctuation of the
field of stresses over the cross-section of the defective pipe in comparison with con-
ventional calculation with constant values of properties (rY = 427 MPa, f0 = 0.0055,
ec = 0.026, SK = 900 MPa). Nevertheless the stress fields are very similar from the
point of view of maximum values of equivalent stress or the areas of high stress
concentration.

Frequency of fulfilling of (6) for considered pipeline with external defect under
certain pressure within the limits of representative sampling allows assessing the
probability of failure p. The chosen algorithm of need number of test Nr for repre-
sentative sampling showed fast converging to the stationary state (see Fig. 3 a): it was

(a)         
(b) 

Fig. 2. Examples of equivalent stress distribution in pipeline (D � t=1420 � 20 mm, steel
17G1S-U) with external corrosion defect (2s � 2c � a=20 � 20 � 10 mm) under limiting
internal pressure 14.0 MPa: a—conventional calculation with constant material properties; b—
Monte-Carlo calculation
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needed five series of calculations to find true value of Nr equaled to 800 (Dc= 0.01). As
the calculation results showed, the considered pipeline can fail within the range of
internal pressure from 12.6 to 14.8 (for defects of greater depth a see Fig. 3 b this range
is naturally shifted to 11.2–13.5 MPa). In case of using of the most unfavorable set of
possible values of input data the conventional calculation gave the limiting pressure
P = 12.5 MPa, whereas the most favorable input data combination leads to the value of
limiting pressure about P = 15.6 MPa. It can be concluded that implementation of
Monte-Carlo approach allows reducing the conservativeness of reliability analysis of
defective structure.
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(a)         
      (b) 

Fig. 3. Dependencies of failure probability p of pipeline (D � t=1420 � 20 mm, steel 17G1S-
U) with external corrosion defect (2s � 2c � a=20 � 20 � 10 mm) on internal pressure P: a—
at different number of tests Monte-Carlo sampling (N0 = 100 is the initial value; N1 = is the
second iteration; Nr= 800 is accepted representative sampling); b—for different depths a of the
defect
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Abstract. The problem of numerical prediction of the process of radiation
swelling in internal elements for assessment of structural integrity and pro-
longing the lifetime of the WWER-1000 reactors is quite actual. The critical
element is core baffle, which is operating under high gradients of neutron
irradiation and temperature. The influence of features of various fuel campaigns
and their sequence on the distribution and the maximum value of radiation
swelling, as well as, on stresses and distortions in the baffle after long-term
service. The consequences of a possible decrease in the efficiency of cooling on
the external surface of the baffle in the event of a gap closing between the barrel
and the baffle due to radiation swelling or prediction tolerances are reviewed.
According to result of modeling the recommendation for numerical assessment
of residual life of internal baffle WWER-1000 reactor are formulated.

Keywords: Reactor WWER-1000 � Internals � Baffle � Barrel � Radiation
swelling � Heat exchange

1 Consideration of the Sequence of Fuel Campaigns
for Prediction of Radiation Swelling in Core Baffle

The main element of the internals, which determines and limits the residual life of the
WWER-1000 reactors when extending the service life, is the reactor core baffle, which
is operating under conditions of high gradients of neutron irradiation and temperature.
The lifetime of the baffle is primarily determined by its progressive distortion, caused
by radiation swelling. From the standpoint of ensuring the structural integrity of
internal elements, the stress state plays an important role, which can also significantly
depends on the process of radiation swelling.

The baffle is a cylindrical shell, consisting of rings, fastened with pins (Fig. 1). The
rings of the baffle have an outer cylindrical surface and a faceted inner surface that
follows the boundaries of the reactor core. The design is symmetrical, therefore, for
modeling a section of 30-degree sector is considered. Material is austenitic stainless
steel 08Cr18Ni10Ti.
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For the prediction of radiation swelling the following model was used [2]:

S ¼ CD � Dn � f1ðTÞ � f2 rm;req
� � � f3ð��Þ; S[ 0 ð1Þ

where

f1ðTÞ ¼ exp �r � T � Tmaxð Þ2
� �

; f2 rm;req
� � ¼ 1þ 8 � 10�3 0:85 � rm þ 0:15 � req

� �

f3ð��Þ ¼ exp �g � ��ð Þ;CD ¼ 1:035 � 10�4; n ¼ 1:88; r ¼ 1:825 � 10�4;

Tmax ¼ 470�C;P ¼ 4 � 10�3MPa�1;g ¼ 8:75:

In the formulation of the problem, the relationship between the rate of strain of
radiation creep and the rates of accumulated dose and complete swelling was taken into
account [2]:

decr

dt
¼ B0

dD
dt

þx
dS
dt

� �
req ð2Þ

1.1 The Results of the Calculation

The input data on the distribution in the volume of the baffle of accumulated dose
(fluence) and heat release under the influence of gamma radiation can significantly
affect the results of numerical prediction of radiation swelling of the material during
long-term operation (30–60 years) [1].

Fig. 1. Core baffle: a 3D model; b 30-degree sector
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To determine the influence of the fuel campaigns sequence and the averaging over
fuel campaigns by input data on heat release and accumulated damaging dose, two
most different fuel campaigns were chosen [3]. Based on these two campaigns, fol-
lowing five different operational scenarios for the long-term reactor operation were
considered:

1. fuel campaign No. 1 for 60 years;
2. fuel campaign No. 2 for 60 years;
3. fuel campaign No. 1 for first 30 years and No. 2 for next 30 years;
4. fuel campaign No. 2 for first 30 years and No. 1 for next 30 years;
5. averaging of the fuel campaigns No. 1 and No. 2 for 60 years.

Analysis of the results of computation for all five scenarios shows that maximum
values and distributions of temperature and swelling have a significant difference. The
maximum value 5.05% of the radiation swelling of the baffle corresponds to scenario
No. 2, since it is characterized by the highest temperature 412 °C and the level of the
accumulated dose of radiation 95 d.p.a.. The minimum value 0.1% of the radiation
swelling of the baffle material is typical for the scenario No. 1, where the maximum
temperature is 365 °C, the maximum accumulated dose of radiation is 22 d.p.a. The
calculation results are presented in Table 1 (Fig. 2).

Calculation for the two fuel campaigns, but in their different sequence (Scenarios
No. 3 and No. 4) did not lead to significant differences in the results at the end of the
operation for 60 years, but the kinetics of the development of radiation swelling may
differ.

The averaging of the fuel campaigns (Scenario No. 5) by input data on heat release
and accumulated damaging dose leads to a significant deviation of the results in
comparison with Scenarios No. 3 and No. 4. Therefore, not taking into account the
sequence of fuel campaigns and averaging by input data may significantly affect on the
accuracy of prediction the stress-strain state and radiation swelling in core baffle.

Table 1. The results of the calculation for the considered scenarios

Max. values Scenario
No. 1

Scenario
No. 2

Scenario
No. 3

Scenario
No. 4

Scenario
No. 5

Dose, d.p.a. 22.25 95.31 47.28 47.28 51.25
Swelling, % 0.09 5.05 1.38 1.37 0.59
Temperature, °C 365 412 365–412 412–365 374
Stresses, MPa 189 253 231 222 192
Displacements,
mm

9.45 11.20 10.47 10.42 9.90
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2 The Effect of Closing the Gap on the Stationary
Temperature Field and the Shaping of the Baffle

The gap between the core baffle and the barrel can be closure during operation in result
of radial distortions due to radiation swelling of baffle and possible quite large devi-
ations of gap dimension from the project value (2.5 mm). That’s why the reduction of
the cooling efficiency on the external surface of the baffle due to the closure of the gap
between the barrel and the core baffle is quite probable for the WWER-1000 units.

In the computational research, three different cases of the temperature state of the
baffle during operation were considered depending on the cooling efficiency on the
outer surface, which is determined by the boundary conditions, namely the value of the
heat transfer coefficient.

For the first case, the conditions of normal operation were specified according to
Table 2. In the second case, the possible closure of the gap and, accordingly, the lack of
cooling in the theoretically contact area was considered (Fig. 3). For the third case, low
efficiency of cooling was modeled over the entire outer surface of the baffle.

Fig. 2. The calculation results for the averaged data (scenario No. 5): a stationary temperature
field, (oC), b swelling of the baffle material after the operation for 60 years, (%)

Table 2. The main thermal and hydraulic parameters on the surfaces of the baffle [1]

Coolant temperature, °C Heat transfer coefficient, W m−2 c−1

Inner surface of the baffle 320 15,000–40,000
Outer surface of the baffle 292 2000–6000
Cooling channels 292 1000–5000
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As can be seen from Fig. 4 all of the calculated cases are characterized by specific
temperature fields with significant differences in the magnitude and the distribution.

The change in temperature field has a significant effect on the distortion of the
baffle. So, calculation results for the second case in comparison with the normal cooling
conditions (first case) show the increase in the maximum radial displacements from 9.5
to 10.0 mm with the same character of distribution (the maximum radial displacement
on the outer surface of the baffle is near the channel No. 9). For the closing the gap over
the entire outer surface of the baffle (third case), the maximum radial displacement
11.1 mm are in another zone of the external surface of the baffle near the channel No. 2.

It should be noted, that the considered rather conservative cases of reducing the
cooling efficiency of the baffle do not affect the level of maximum radiation swelling,
since in the calculated areas of temperature increase the accumulated fluence is quite
low that does not lead to change of radiation swelling of the baffle material.

3 Conclusions

• From the point of view of reliability of prediction of radiation swelling of the baffle
material during long-term operation it is necessary to take into account the features
of fuel campaigns, as well as their sequence.

• The averaging of the fuel campaigns by input data on heat release and accumulated
damaging dose leads to a significant deviation of the results. The averaging can
used only for future fuel campaigns at prolonging the lifetime of WWER-1000
reactors.

• Reducing the efficiency of cooling on the outer surface of the baffle due to closure
the gap between the baffle and the barrel can lead to a significant change in the
distribution of the temperature state in the baffle during operation.

Fig. 3. Section of the core baffle, sector 30o
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• Radial displacements also have significant changes due to reducing the efficiency of
cooling, which can lead to an increase in stresses in the contact zone, both in the
barrel and in the baffle.

• At the same time, there is no noticeable influence of cooling conditions on the outer
surface of core baffle on the radiation swelling of the baffle material.

Fig. 4. Stationary temperature field of the baffle taking into account, °C: a the gap between the
baffle and the barrel; b the closure of the gap in the zone of probable contact; c the closure of the
gap over the entire outer surface of the baffle
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Abstract. The influence of erosion damages on the vibration features of the
working titanium blades of the last stage of the steam turbine with a capacity of
1 GW for a nuclear power plant is considered. Erosion damages of these blades
were observed after 180 thousand hours of operation. Morphological and
fractographic studies have shown the nature of erosion damages, but did not
reveal degradation of the mechanical properties of the material. Such damages
cause the stress concentration, that leading to a decrease of fatigue limit and
residual life. A finite element model of the blade has been developed, which has
a denser mesh in the area of damage. Numerical studies have revealed features
of stress concentration in the damages zone. The degree of reduction of blade
fatigue and residual life is determined. It is shown that mechanical treatment of
the erosion damage zones allows to increase the fatigue limit and residual
resource.

Keywords: Erosion damage � Vibration � Blade � Life � Titanium alloy

1 Introduction and Problem Statement

Turbine blades vibration, especially with erosion damages is of great interest and the
results of their research are reflected in a number of publications [1–5].

The influence of erosion damages on the features of the vibrations of the last stage
working blades of the low-pressure cylinder of the K-1000-60/3000 steam turbine for
the nuclear power plant is considered. During the long time use in wet-steam envi-
ronment which is typical for the last stages of steam turbines, especially for NPP
turbines, there is a noticeable erosion of the blades. The greatest danger arises due to
the formation of craters and slit-type damages at the upper third parts of the blade
leading edge. Such damages cause concentration of stresses, which leads to a decrease
in fatigue limit and residual life. The radius in the mouth of erosion damage is
noticeable lager than that of a fatigue crack. The main danger for damaged blades is
vibration. Further studies have shown that the mechanical treatment of the erosion
damage zones can increase the fatigue limit and residual life.
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The blade, whose vibrations are under investigation, is made of the TS5 titanium
alloy (Ti-5Al-1.5 V) and has a length of 1200 mm. The morphological and fracto-
graphic analysis of the properties of titanium blade in the erosion zone after more than
180 thousand hours of operation was performed [4, 5].

The morphology of erosive damages to the blade contains deep cavities with arrow-
like edges in the form of pyramidal elements with distances between them 400–700 lm
and the radius of each of them is 0.02–0.05 mm in the mouth of the damage. The main
erosion damage has a saw-tooth character (Fig. 1).

With such damages to the edge-to-edge contact, no damages can be observed. The
morphological and fractographic analysis showed that the mechanical properties of the
TS5 titanium alloy in the erosion zone in general meet the requirements of the
Technical Specifications [5]. The degradation of the blade material mechanical prop-
erties after 180,000 h of operation, which should be taken into account in the blade
models, were not observed. The damages in blade body are modeled by cutouts in the
blade finite-element grid with a depth of 1–3 mm, width of 1–2 mm, radius of 0.02–
0.05 mm in the mouth of the damage (Fig. 1). Therefore, there has been developed a
blade finite element model, having a more condensed grid in the damage area, but a less
condensed one in the rest of area (Fig. 2).

Using these models, the vibrations of the blades without damage and with different
numbers of damage and in different places along the length of the blades in the stress
localization zone due to the features of the vibration forms have been studied.

2 Numerical Studies of Blade Vibration

The frequencies variation and stresses for the cases of a different numbers of damages
were studied. The natural frequencies of the blade in case of damage change slightly.
Of much more interest is the distribution of vibration stresses in a damage area.
Multivariate studies of the blades vibrations with a different number of damages, which
are located in different places along the blade length, have been performed. It is shown
that the greatest danger is represented by erosion damages, which are located in places
of stresses localization under some modes of vibration. The greatest stress localization

Fig. 1. General view of erosion damages on the back (left) and front (right) side of the blade
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is observed for the third and sixth modes of vibrations. Therefore, Fig. 3 shows the
vibration forms and the distribution of vibration stresses with one’s damage for the
third mode.

This is evident from the coincidence of erosion damage and stress localization in
the third mode. But real erosion damages are located in groups near each other.
Therefore further studies of vibrations of the blades were carried out with a different
number of damages located side by side in the stress localization zone. In Fig. 4 the
distribution of vibration stresses for the third mode with a different number of damages
is shown.

The study of vibrations with different number of damages shows that an increase in
the number of damages leads to an increase in the size of the zone of increased stresses,
but does not cause a greater concentration of stresses.

Multivariate calculations of vibrations of the blades with different number of
damages made it possible to obtain a qualitative idea of the regularities of stress
concentration in the blades with various forms of vibrations. But to consider the real

Fig. 2. Finite-element models of working blades without damage (a) and with a dense grid in
the area of damage (b)

Fig. 3. The third mode of vibrations (a) and vibration stress distribution (b) in the area of
localization of stress
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stress concentration coefficients necessary calculations of the forced vibrations of the
blades, at least under conditional loads.

Due to the lack of initial data, for the analysis of forced vibrations the conditional
level of the load acting on the blade during vibrations in the flow can be used. The
variable component of the gas-dynamical force of the flow acts on the working blades,
causing the blade to vibrate.

The variable component can be decomposed into a harmonic series [3]. The
amplitudes of these harmonic components forces are unknown. They can be estimated
only roughly based on available source data. The frequencies of the harmonics that are
dangerous can be determined. In the operating conditions always there is disturbing
force which frequency is a multiple of the number of revolutions per minute n = 3000,
which corresponds to X = 50 Hz. In addition, the harmonics caused by the guide
blades has a frequency nz, where z—number of blades guide stage. The frequency of
this harmonic is xz = 50 � 42 = 2100 Hz. The amplitude of harmonic component
with frequency xz = 2100 Hz will be taken as a distributed load equal to
Pz = 2.47 � 10−3 MPa.

Investigations of vibrations of the blades with one, two and three damages located
side by side in the zone of stress localization under the action of harmonic component
with a frequency of 2100 Hz were carried out. So in Fig. 5 the locations of vibration
stresses in the blades with two damages are presented.

Fig. 4. Fragments of vibration stress distribution in the area of stresses localization for the third
mode with one (a), two (b), three (c) and five (d) damages

Fig. 5. Distribution of displacement and vibration stress when exposed harmonic component
frequency of 2100 Hz
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The comparison of the study’s results of vibrations of the blades with a different
number of damages in the zone of maximum stresses under the action of harmonic
component with a frequency of 2100 Hz and results for the blade without damage
shows that the stress concentration coefficients are within the range 1.2–3.1. This
makes it possible to estimate the reduction in fatigue of the blade and the decrease the
residual life.

Based on literature data and calculation results, the fatigue limit can be reduced to
330 MPa. But the residual life remains more than N = 107 cycles [5, 6].

There is a lot of experience in analyzing the effect of damage on the compressor
blades of aircraft gas turbine engines. Compressor blades are subject to dust erosion,
water droplets, pieces of ice and other foreign objects. At the same time there are dents
and other damages with a size of 350–800 µm, with a radius at the mouth of damages
0.02–0.07 mm. These types of damage were investigated similarly [6]. They show the
decrease in the fatigue limit of the blades and a residual resource of more than N = 107

cycles. The operating experience of compressor blades shows that the significant
increase the fatigue limit of the blades and a residual life can be achieved by
mechanical surface treatment. This experience also can be used for titanium steam
turbine blades with erosion damage.

3 The Effect of Machining on the Fatigue Limit
and the Resource of Blades with Damage

Effective types of machining are the smoothing of the damage zone by turning and
milling. Even more effective is further grinding and polishing. Such an increase of the
fatigue limit is observed even for titanium alloys that have a relatively low degree of
fatigue [6].

The TS5 titanium alloy (Ti-5Al-1.5 V) has good technological properties, rather
high corrosion and erosion resistance. Therefore, it was chosen for the blades of the last
turbine stages for nuclear power plants operating in a wet steam environment. The
samples of material near the zone of damage to the blade after of 180 thousand hours
operation were taken. On these samples, static and fatigue tests were performed using
the MTS 810 machine at loading amplitudes of 350 MPa [5]. The results of these tests
are presented in Table 1.

Based on the results of the fatigue tests, it was found that for the given loading
amplitudes, after reaching 107 cycles the destruction of samples № 4–6 was not
observed, it means that the fatigue limit r−1 > 350 MPa.

Table 1. Mechanical properties of the blade material (alloy TS5) near the damage zone

Number of
samples

The yield stress
r0.2, MPa

Ultimate strength
rv, MPa

Fatigue limit
r−1, MPa

Residual
life

1–3 832–838 911–920
4–6 350–450 N > 107
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Therefore, even after the operation for the 180,000 h, the blades have a residual
fatigue life of N = 107 cycles, that was also found as a result of numerical calculations.
Thus, different approaches to estimating the reduction between the fatigue of the blade
material after the damage and residual life give the same results.

The displacements and stresses distributions on the blade with machining are
shown in Fig. 6. It is evident a decrease stresses concentration after the machining.

4 Conclusions

One can recommend such measures to prevent dangerous vibration stresses in the
blades of the last stage of the turbine K-1000-60/3000 [5]:

– periodic testing of vibration frequencies of blades and impellers, if the frequencies
deviate from the reference frequencies by 8–10%, stop and repair is necessary;

– checking the quality and possible damages of the damping wire ties in the wheel;
– if the turbines stop for a preventive inspection and repair then it is recommended for

the damages that are more than 500 lm in depth, smooth the damage zone by
milling, grinding and subsequent polishing;

– if possible, apply a protective coating on the surface that has undergone a
mechanical treatment;

– if possible, replacement of the impeller blade set with damage is recommended.
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Abstract. One of the current problems of the structural integrity assessment of
the reactor pressure vessel WWER-1000 is the determination of resistance to
brittle fracture taking into account the residual stresses after cladding of the
protective anticorrosion layer and heat treatment. Existing data on the residual
stresses do not take into account possible microstructural transformations in the
base material steel 2.5Cr-Mo-V (15H2NMFA). Mathematical modeling of
residual stresses taking into account microstructural phase transformations
determines a compression stress area in the heat affected zone of the base
material as result of martensite formation. These results were confirmed by
dilatometric analysis and metallography of the steel 15H2NMFA templates. The
evaluation of resistance to brittle fracture under the thermal shock load showed,
that calculated compression residual stresses in the base material HAZ reduce
value SIF for cracks of a depth up to 7 mm.

Keywords: RPV � Nozzle zone � Cladding � Thermal shock �
Brittle fracture � SIF

The reactor pressure vessel (RPV) WWER-1000 is a welded shell structure from the
perlitic 2.5Cr-Mo-V steel (15H2NMFA) with anticorrosion cladding on the inner
surface. Residual stresses (RS) caused by welding and cladding can significantly
influence on the assessment of the brittle fracture of the RPV structures.

Currently for the evaluation of the brittle fracture resistance of the RPV are used the
distributions of the residual stresses, which are presented in various standard docu-
ments and guidelines, such as VERLIFE [1], MRK-SHR-2000 [2], and others [3].
These RS distributions are quite different relative to the size of the tensile stresses zone
in the base material.

There are the experimental and calculation data on the distribution of RS in the
structural elements after cladding for another reactor steel—SA533 [4] and SA508 [5]
similar by chemical content. They have shown, that microstructural phase transfor-
mations during cladding, namely the formation of bainite and martensite at the cooling,
cause the producing of compressive stresses in the heat affected zone (HAZ) with the
subsequent transition to the tensile stresses zone.
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1 Objectives of Research

Existing data of the distribution of RS in the cladding zones RPV WWER-1000 do not
take into account possible microstructural transformations in the HAZ of the base
material during the anticorrosion layer cladding. This question is required the addi-
tional study.

2 Determination of Microstructural Phase Composition

The results on evaluation of brittle fracture of the cladding zones RPV were obtained in
the different parts of the model of the RPV nozzle zone: cylindrical part of the RPV and
nozzle Dy850 part. The RPV nozzle zone (Fig. 1a) is not located near the active zone
RPV and not exposed to intensive radiation embrittlement, but it is dangerous area in
resistance to brittle fracture during emergency situation “pressurized thermal shock”
(PTS) [6], because through nozzles into RPV fed cold boric water.

The inner surface is cladded by anticorrosion material of a total thickness 9 mm. The
arc cladding of the cylindrical part of the RPV shell is carried out under a flux with strip
electrode in two layers with preheating up to 250 °C in the following conditions:
I = 600–650 A, U = 32–36 V, cladding speed v = 2 mm/s [7]. The inner surface of the
nozzles Dy850, including rounded corner, is cladded by manual arc cladding with
coated electrodes under the conditions: I = 130–150 A, U = 26–30 V, Ø electrodes 4–
5 mm, v = 0.83 mm/s (Fig. 1b). The base material of the RPV is low-alloy steel of high
strength 2.5Cr-Mo-V steel (15H2NMFA), cladding austenitic materials: the first layer—
25Cr-13Ni (SV-07H25N13), the second layer—20Cr-10Ni (SV 04H20N10G2B).

Literature review has shown the existence of rather different data on the phase
composition of the RPV base material: perlite, bainite, bainite-matrensite. Also there is
no complete diagram of the anisotropic austenite decomposition (CCT diagram) with
data relative to the maximum content of the phase components for the cooling rates

Fig. 1. The nozzle zone of the RPV WWER-1000 (a) and scheme of the nozzle Dy850 (b)
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during welding or cladding. According to existing metallurgical diagrams it is
impossible to determine the microstructure phase composition during cladding.

For the calculation of the maximum content of the phase components and kinetic of
microstructural phase transformations, a model based on the Avrami equation [8]
(austenite decomposition into ferrite, perlite and bainite) was used:

Vj ¼ 1� expð�btnÞ ð1Þ

Vj—current mass fraction, t—isothermal transformation time, b, n—coefficients
determined on the basis of parameters of the TTT-diagrams (diagrams of isothermal
decomposition of austenite).

The simulation of microstructural transformations in conditions of continuous
cooling and the calculation of the maximum mass fraction of bainite and ferrite-perlite is
carried out on the basis of the additivity rule for isothermal transformations. The kinetic
of martensitic transformation is described by the Koistinen-Marburger equation [9]:

Vj ¼ 1� expð�bðMS � TÞnÞ ð2Þ

where Ms—temperature of the martensite start; b = 0.011; n = 1.
As a result of the simulation of the microstructural phase state (Fig. 2) we obtain in

the HAZ of the base material approximately the content of martensite 55% and bainite
45% for the strip cladding. Ferrite-perlite is not formed. For manual cladding of the
inner surface of the nozzle Dy850 the predominant content of martensite is up to 80%.

To validate the calculation data the dilatometric analysis of the austenite decom-
position for real cladding thermocycle and metallography with templates from 2.5Cr-
Mo-V steel (15H2NMFA) were done.

The common CCT diagrams are built for linear cooling rates. For real welding
(cladding) process the cooling speed is not linear. Dilatothermy and metallography
study for the real thermal cycle of welding by heating up to 1000 °C with characteristic
curve of cooling at average speed of 5 °C/s in a temperature range of 500–800 °C and
for thermal cycle with a cooling at a constant speed were conducted Fig. 3.

a) by manual arc cladding b) by strip arc cladding 

Fig. 2. Prediction of kinetic of the microstructural transformations during cooling in the HAZ
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According to the results of metallography, the structure of the template obtained for
constant cooling rate of 5 °C/s is a martensite, of another template—for the real
cladding cycle is heterogeneous and consists of 80–90% martensite and 10–20% of
lower bainite.

3 Determination of RS Taking into Account Microstructural
Phase Transformations

To simulate the stress-strain state of a material, a model of thermoviscoplasticity was
used [10]. The general deformation tensor eij in welding processes can be represented
as a sum of tensors: elastic eeij, plastic epij, and creep deformations ecij.

eij ¼ eeij þ epij þ ecij ð3Þ

In accordance with Hooke’s law and with the von Mises yield criterion, the rela-
tionship between stresses and deformations has the form:

eij ¼ rij � dijr
2G

þ dijðKrþuÞ
� �

þ kðrij � dijrÞþX rij � dijr
� � ð4Þ

where r ¼ 1
3 rrr þrbb þrzz
� �

;rij—the stress tensor; dij—unit tensor; k—scalar
function, which depends on the stresses and properties of the material; Ω—the creep
function at temperature T; K—bulk modulus; G—shear modulus; m—Poisson’s ratio;
u—volume effects caused by the change of temperature and microstructural
transformations.

By microstructural phase transformation at any point r, b, z at time t, the total effect
of volume changes of the temperature T0 to T(t) is determined as by [10]:

3u ¼
P

Vj T ; tð Þcj Tð Þ �P
Vj T0ð Þcj T0ð ÞP

Vj T0ð Þcj T0ð Þ ð5Þ

a) CCT curves by real cladding cycle (I) and by 
linear cooling thermocycle (II). 

b) microstructure of the template by real 
cladding cycle, x500 

Fig. 3. The CCT diagram (a) and martensitic-bainite microstructure of the template (b)
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where VjðTÞ—the mass fraction of the j-th phase at temperature T; cj(T)—the volume
of a unit mass of the j-th phase at temperature T. Values cj(T) for the construction steels
are presented according to [10].

For both technologies of cladding the simulation of microstructural transformations
leads to nonuniformity in the distribution of RS in thickness and along the surface of
the cladding and the appearance of the compressive stresses zone in the HAZ. The
compression reaches 400 MPa, the tensile RS are up to 750 MPa.

For mathematical modeling of the heat treatment process, the creep function of the
material was used, which was determined in [11] on the base of existing experimental
data for 2.5Cr-Mo-V steel (15H2NMFA) [12]. The relationship between stresses
intensity ri and creep strain rate has the form:

dec ¼ A � rni � dt ð6Þ

at temperature 650 °C, dec ¼ 0:17� 10�20 � r6i s−1—for base material, dec ¼ 1:85�
10�18� r4:82i s−1—for cladding material.

Figure 4 shows the distribution of the hoop component of the RS through the
nozzle thickness after heat treatment (high tempering at 650 °C and duration 20 h). In
the HAZ of the base material till the depth 7 mm the compression RS (up to
−350 MPa) were defined. For both cladding technologies, the magnitude of the tension
RS in the base material, taking into account microstructural transformations, is up to
150 MPa.

4 Assessment of Brittle Fracture on the Results of RS
Modeling

The assessment of brittle strength in the cladding zones was carried out using the
method of weight functions. For cylindrical part RPV it was carried out using analytical
recommendations of VERLIFE for cracks of the axial and circumferential orientation,
for the nozzle zone Dy850—only for axial cracks. The allowable values of SIF may be
obtained from the following dependence: KIc ¼ min 26þ 36 expð0:02 � ðT � TkÞÞ;½
200�; where Tk is the critical temperature of brittleness. The value of the stress intensity

а) by manual arc cladding b) by strip arc cladding 

Fig. 4. Distribution of hoop RS rbb after heat treatment through thickness
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factors (SIF) for crack at the deepest point was determined for depth a = 7 mm. The
calculation model was loaded according to the PTS parameters [6]. Brittle strength was
evaluated at various stress-deformed states—without taking into account the RS, with
RS according to the VERLIFE [1], with the predicted RS taking into account
microstructural phase transformation.

SIF determined with RS according to the VERLIFE for the sub-clad crack by
a = 7 mm, located in the nozzle zone Dy850 (Fig. 5a) and in the cylindrical part RPV
(Fig. 5b), are highest. Values of the SIF obtained at the calculated stresses taking into
account microstructural transformations are very low, because these cracks are located
in the zone of calculated compression RS. The value of SIF without RS is smaller in
two to three times than SIF with the RS taken into account.

5 Conclusion

Consideration of residual stresses after arc cladding of a protective anticorrosion layer
and heat treatment of the RPV WWER-1000 in the structural integrity assessment is
mandatory.

For the base material of RPV WWER-1000 2.5Cr-Mo-V steel (15H2NMFA) the
CCT-curve for characteristic thermocycle at cladding of the nozzle zone was obtained.
These experimental data correlate with the calculated data, obtained on the base of the
Avrami equation, because the martensitic content in the microstructure of the reactor
steel after the cladding has been defined.

The calculated RS obtained taking into account the microstructural phase trans-
formations showed, that due to the formation of the bainite-martensitic microstructure
in the HAZ of the base material a stress compression zone (−100 to −300 MPa)
appears with depth up to 7 mm. This factor makes it possible to reduce the conser-
vatism of the brittle fracture estimates for sub-clad cracks up to 7 mm deep.

Fig. 5. SIF by PTS at the top of the axial sub-clad crack (a = 7 mm; a/c = 0.3), located a in the
nozzle zone Dy850, b in the cylindrical part RPV
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Abstract. In this work, we investigate the possibility of using a piezoelectric
element connected to an external electric RL-circuit for passive vibrations
damping of a cantilevered plate interacting with a quiescent fluid. The behavior
of piezoelectric elements is described by the equations of electrodynamics of
deformable electroelastic media within the framework of quasi-static approxi-
mation. The motion of an ideal fluid in the case of small perturbations is con-
sidered in the framework of acoustic approximation. Small strains in a thin plate
are determined using the Reisner–Mindlin theory. A mathematical formulation
of the problem of electroelasticity elastic body with external electric circuits is
based on the Lagrange variational principle, which includes the expression for
hydrodynamic pressure. The acoustics equations together with the boundary
conditions and the impermeability condition are converted to a weak form using
the Bubnov–Galerkin method. The numerical implementation of the problem is
carried out using an original approach, which is based on the ANSYS finite
element package integrated with the program that implements the algorithm for
solving the non-classical eigenvalue problem by the Muller method. This allows
us to evaluate the values of the parameters of the external RL-circuit, which
could provide the most effective damping of vibrations at a certain frequency.

Keywords: Fluid-structure interaction � Vibration damping � Finite element
method

1 Introduction

Piezoelectric elements embedded or attached to the surface of various structures can be
used as an effective tool for control of the dynamic behavior of the resulting systems. In
the case of passive vibration damping, the surfaces of piezoelectric element covered
with electrodes are shunted to the external electric circuit. Changing the values of the
parameters of circuit components (resistance, inductance, capacitance), one can provide
maximum damping of vibrations at a certain frequency.

A mathematical formulation of the problem presented below develops the idea and
the method of solution, which are described in detail in [1], and is considered to be their
generalization to structures interacting with a quiescent fluid. The parameters of the
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resistance and inductance elements of the RL-circuit providing maximum vibration
damping are selected based on the results of solving the problem of natural and har-
monic hydroelastic vibrations of piecewise-homogeneous electroelastic bodies with
external passive electric circuits.

2 Mathematical Model

2.1 Plate with Electroelastic Body

The variational equation of motion of the body of volume V ¼ Vp þVs, consisting of
an elastic plate of volume Vs and an attached piezoelectric element of volume Vp,
connected to an external electric circuit, is formulated on the basis of the relations of
Reissner–Mindlin theory, linear theory of elasticity and quasi-static Maxwell equations
[1–4]. Both, the supply and release of energy from the deformed piezoelectric element
are realized through the electroded coatings applied to some parts of the body surface.
Having negligible mass, they are assumed to be ideal conductors. Because of the
electrode-covered surfaces, the system under consideration can be connected to the
external electric circuits of arbitrary configuration, including resistive elements (R),
capacitive elements (C) or inductive elements (L). If these circuits are not connected to
an external voltage source, they are classified as internal elements of the system (a
structure with piezoelectric element and shunting circuit). The final resolving equation
in the matrix form can be written as:

Z
Vp

ðdepÞTrpdV �
Z
Vp

ðdEÞTddV þ
Z
Vp

ðdupÞTqp �updV �
Z
Vp

dupfpdV �
Z
Sp

qedudS

þ
Z
Ss

ðdesÞTTsdSþ
Z
Vs

ðdusÞTqs �usdV �
Z
Vs

dusfsdV �
Z
Ssr

ðdusÞTtsdS

þ
XnL
k¼1

1
Lk

ZZ
uLk
1 � uLk

2

� �
dudtdtþ

XnR
q¼1

1
Rq

Z
uRq

1 � uRq

2

� �
dudtþ

XnC
r¼1

Cr uCr
1 � uCr

2

� �
du ¼ 0;

ð1Þ

where the generalized vector of forces and moments for the plate Ts is defined by

Ts ¼ Nxx;Nyy;Nxy;Mxx;Myy;Mxy;Qx;Qy
� �T¼ Dses;

and for the isothermal processes, the following physical relations are valid for piezo-
electric element

rp ¼ rp
xx;r

p
yy;r

p
zz; s

p
xy; s

p
yz; s

p
zx

n oT
¼ Dpep � bE;

d ¼ Dx;Dy;Dz
� �T¼ bTep þ eE:

Here, the superscripts “p” and “s” refer the corresponding variables to the piezo-
electric element and the plate. The following notations are accepted: d is the variation
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of the corresponding variable; column vectors e contain the components of strain
tensors and are defined according to the well-known relations [2, 3]; D are the elastic
constant matrices; b, e are the matrices of piezoelectric and dielectric coefficients; f,
t are the vectors of the body and surface forces; q is the material density; up is the
piezoelectric element’s displacements vector; us is the generalized displacement vector
for the plate which includes rotation angles; d, E are the electric flux density and
electric field intensity vectors; the potentiality condition is fulfilled for an electric field
�E ¼ fu;x;u;y;u;zg , here u is electric potential; uel

1 � uel
2 is the potential difference

for the corresponding element of electric circuit (el = Lk, Rq, Cr); nL, nR, nC are the
numbers of inductive, resistive and capacitive elements; Lk, Rq, Cr are the values of
inductance, resistance and capacitance for the corresponding element of electric circuit;
qe is the free charges surface density; Ssr is the part of the plate surface subjected to
loads ts; Sp ¼ Spel þ Sp0 is the surface of piezoelectric body, where Spel and Sp0 are the
parts of the surface covered with electrodes and free of electrodes, respectively.

On the electrode-free parts of the surface of piezoelectric body Sp0 there are no free
electric charges. Based on the form of the Maxwell equations used in this study, an
electric boundary condition for Sp0 can be written as

Z
Sp0

nTddS ¼ 0; ð2Þ

where n is the outward normal vector to the surface.
Supposing that one of the electrode-covered surfaces of the piezoelectric element is

grounded, i.e. has a zero-value electric potential, the electric boundary condition for
this part of the surface can be written in the following form

u ¼ 0; x 2 Spel: ð3Þ

When an external voltage supply is absent, the other parts of the electrode surface
are considered free. In this case, the open circuit mode is realized. On the other hand, it
can be treated as having zero-value electric potential (3), in which case the short circuit
mode is realized.

2.2 Fluid-Structure Interaction

The motion of an ideal compressible fluid in region V f in the case of small pertur-
bations is described by the well-known Euler equations, continuity equation and state
equation [5]. The elimination of velocity v from these equations gives the Helmholtz
equation governing the hydrodynamic pressure p

r2p ¼ €p=c2; ð4Þ

where c is the speed of sound in the medium.
On the boundary Ssr coupling between the motion of fluid and structure occurs,

which can be described as
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ðn f ÞT _v ¼ €w; and
@p
@n

¼ �q f ðn f ÞT _v; ð5Þ

where n f is the vector of outward normal to the fluid region, w is the normal dis-
placement of the plate.

In the simplest case the boundary condition on the free surface of the fluid Sfree is
written as p = 0. At the interface between the fluid and rigid wall Sw, the condition
ðn f ÞT _v ¼ 0 is prescribed.

A weak form of Eq. (4) after integration by parts and substitution of the boundary
conditions described above leads to [5]

Z
V f

d p
1
c2

€pþr2p

� 	
dV þ

Z
Ssr

dp€wdS ¼ 0: ð6Þ

The traction integral in Eq. (1) can be expressed as

Z
Ssr

ðdusÞTtsdS ¼
Z
Ssr

ðdusÞTn f pdS ð7Þ

because positive pressure is defined in compression and ns ¼ �n f . Thus, we can
finally write that ts ¼ �pns ¼ pn f .

2.3 Harmonic and Natural Vibrations

Let us consider a perturbed motion of the fluid and the plate with the attached
piezoelectric element defined as Uðx; tÞ ¼ upðx; tÞ;u(x; tÞ;f usðx; tÞ; pðx; tÞg ¼
~UðxÞ expðiktÞ, where ~UðxÞ is the function of coordinates and k ¼ xþ ic is the char-
acteristic parameter. Here, x corresponds to the circular natural frequency of vibrations
and c is the rate of its damping. Taking into account the above mentioned form of
solution, the Eqs. (1) and (6) can be written as

Z
Vp

ðdepÞTrpdV �
Z
Vp

ðdEÞTddV � k2
Z
Vp

ðdupÞTqpupdV �
Z
Vp

dupfpdV �
Z
Sp

qedudS

þ
Z
Ss

ðdesÞTTsdS� k2
Z
Vs

ðdusÞTqsusdV �
Z
Vs

dusfsdV �
Z
Ssr

ðdusÞTn f pdS

�
XnL
k¼1

1

k2Lk
uLk
1 � uLk

2

� �
duþ

XnR
q¼1

1
ikRq

u
Rq

1 � u
Rq

2

� �
duþ

XnC
r¼1

Cr uCr
1 � uCr

2

� �
du ¼ 0;

ð8Þ

Z
V f

dp � k2

c2
pþr2p

� 	
dV � k2

Z
Ssr

dpwdS ¼ 0
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For the problem of natural vibrations under zero-value boundary conditions in the
absence of body forces instead of (8) we have

Z
Vp

ðdepÞTrpdV �
Z
Vp

ðdEÞTddV � k2
Z
Vp

ðdupÞTqpupdV

þ
Z
Ss

ðdesÞTTsdS� k2
Z
Vs

ðdusÞTqsusdV �
Z
Ssr

ðdusÞTn f pdS

�
XnL
k¼1

1

k2Lk
uLk
1 � uLk

2

� �
duþ

XnR
q¼1

1
ikRq

uRq

1 � uRq

2

� �
duþ

XnC
r¼1

Cr uCr
1 � uCr

2

� �
du ¼ 0:

ð9Þ

3 Numerical Formulation

A solution to the problem is found with the use of the finite element method (FEM).
Implementation of the FEM standard procedures [1, 5, 6] leads to the matrix equations

�k2MþKþC kð Þ� �
~U ¼ F ð10Þ

and

�k2MþKþC kð Þ� �
~U ¼ 0; ð11Þ

where

M ¼

Mp 0 0 0

0 0 0 0

0 0 Ms 0

0 0 q fQT M f

2
6664

3
7775; K ¼

Kp Kpu 0 0

ðKpuÞT Ku 0 0

0 0 Ks �Q

0 0 0 K f

2
6664

3
7775; C kð Þ ¼

0 0 0 0

0 CuðkÞ 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775;

F ¼ Fp;Fu;Fs; 0f gT; Cu kð Þ ¼ �
XnL
k¼1

1

k2Lk
Ku

Lk þ
XnR
q¼1

1
ikRq

Ku
Rq
þ

XnC
r¼1

CrK
u
Cr
:

Here, the matrices Ku
Lk ;K

u
Rq
;Ku

Cr
contain the coefficients 1 and -1 only in positions

that refer to the nodal variables of the corresponding elements. The remaining typical
matrices of individual finite elements are determined in the known manner [5, 6].
Discretization of the fluid, piezoelectric element and plate computational domains is
based on the spatial 20-node brick elements and the 8-node flat rectangular finite
elements with a quadratic approximation of the unknown variables.

The problem of natural vibrations (11) leads to the equation, which differs from the
standard description of the generalized eigenvalue problem due to the matrix C(k). The
solution was performed using the capabilities of the ANSYS software package for
generating and assembling of finite element matrices and the program written in
FORTRAN language for computation of complex eigenvalues by the Mueller method
using the sparse matrix technology for basic operations.
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4 Conclusion

A mathematical formulation of the natural vibration problem for a piecewise-
homogeneous electroelastic body connected to a shunt external electric circuit and
interacting with a quiescent fluid has been proposed. The results of solving this
problem are the complex eigenvalues characterizing both the natural vibration fre-
quencies and the rate of its damping. The relations for the numerical implementation of
the problem on the basis of finite element method have been derived. This problem can
serve as a useful tool for studying the dynamic behavior of electromechanical structures
interacting with fluids. Since the results of the problem solution do not depend on the
initial conditions and loading modes, it can also serve as a basis for constructing
efficient algorithms for evaluation of optimal dissipative properties of structures or the
development of new dynamic behavior control strategies.

The study was supported by the grant of the Russian Scientific Foundation (project
No. 18-71-10054).
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Abstract. In this work, we explore the possibilities of passive damping the
resonance vibrations of a cantilevered duralumin plate located on the free sur-
face of a quiescent fluid. The harmonic excitation with a specified frequency is
provided by the electromagnetic field, which is generated under a combined
action of a light neodymium magnet attached to the structure and a superposed
coil. Passage of the alternating current produced by the generator through the
coil generates an electromagnetic force, which oscillates the plate. The oscil-
lations are damped by a piezoelectric element connected to an external passive
electric RL-circuit. Measurements of the plate vibrations are taken using a
Polytec PDV-100 digital laser vibrometer with a sampling frequency of 48 kHz.
The amplitude-frequency characteristics of the plate were obtained from the
experimental studies. The values of inductance and resistance parameters of the
external RL-circuit were selected in such a way as to ensure the most effective
damping of the harmonic vibrations of the plate. It was shown that the peak
value of the vibration velocity can be reduced by 20 times in air environment
and by 2.5 times in the case of interaction with fluid.

Keywords: Fluid-structure interaction � Vibrations damping � Plate

1 Introduction

Nowadays, many advanced technological solutions in different branches of industry
make wide use of thin plates. Dangerous vibrations of these structures are frequently
caused by their interaction with a liquid. High requirements to the safety of facilities, in
which these solutions are applied, suggest not only a preliminary assessment of the
system behavior under normal and abnormal operating conditions but also the feasi-
bility of controlling the dynamic processes occurring in them. Nowadays, piezoelectric
elements attached or embedded in the structure are widely used for these purposes.
A detailed overview of their application in submerged systems is presented in [1]. This
review paper analyzes and systematizes various technical applications, summarizes the
most significant results in such areas as: modal analysis, active sound and vibration
control, energy harvesting and atomic force microscopes in submerged systems. Most
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of the experimental studies listed in [1], devoted to the control of hydroelastic vibra-
tions of plates, are based on the active method. In this case the dynamic characteristics
are governed using the systems with active feedback. Such an approach is used for
example in works [2, 3]. In the paper [2], the authors investigate the effect of the active
vibration control on the reduction of the sound generated by a circular plate interacting
with a fluid is examined. Paper [3] is concerned with the active vibration control of a
vertical cantilever rectangular plate partially submerged into a fluid using two piezo-
electric sensors and two actuators located on the plate. MIMO (Multiple-Input
Multiple-Output) positive position feedback controller was designed and applied to
estimate the control efficiency. It should be noted, that for known and time-constant
frequency of external excitation, oscillations can be very effectively damped by a
passive manner. In this work, we explore the possibilities of damping the resonance
vibrations of a cantilevered duralumin plate interacting with a quiescent fluid through
the use of a piezoelectric element connected to an external electric RL-circuit.

2 Experimental Setup

The experimental setup is a thick-walled prismatic tank, in which a thin plate of length
a, width b and thickness h is used instead of the top cover (see Fig. 1). One of its edges
was rigidly fixed by a clamping plate, which was bolted to the structure walls by screws
with a force of 70 cN m. The vibrations of the plate were excited by an electromagnetic
field. For this purpose, a light neodymium magnet with a mass of 0.10 g was glued to
the plate. Vibrations were induced by a coil mounted on the U-shaped frame. An
electric current of a given frequency or a rectangular pulse of duration of 0.5 ms passed
to the coil through the amplifier from the Tektronix AFG3021C signal generator. Under
the action of the resulting electromagnetic force on the magnet the plate was set in
motion. The tank was installed on a metal base, the horizontal position of which was
regulated by means of lifting legs and laser inclinometer. The tank was filled with a
fluid until the latter reached the lower surface of the plate.

Fig. 1. Three-dimensional model of the experimental setup

358 M. Iurlov et al.



The study of the natural frequencies and harmonic vibrations of the plate was
performed using the method of laser vibrometry. The readings were taken with a
Polytec PDV-100 digital vibrometer with a samling frequency of 48 kHz and a reso-
lution of 0.3 lm/s in the velocity range of 500 mm/s. The device was positioned in
such a manner that the angle between the laser ray and the surface of the plate was 45°.
This made it possible to investigate not only bending vibrations, but also membrane
vibrations. The natural vibration frequencies of the plate were determined from the
Fourier transform of the signal received after the sample was subject to a short-term
rectangular pulse of duration of 0.5 ms. For the excitation of harmonic vibrations, an
alternating current of frequency equal to the eigenfrequency of the plate was passed to
the coil from the generator through a power amplifier. During the experiment, the
effective value of the alternating current was controlled by an ammeter and, if neces-
sary, kept constant.

Plates in the form of a rectangle with a = 150 mm, b = 10 mm, h = 0.94 mm were
cut from the sheet of D16 AT duraluminium by electro-erosion to a tolerance of
±0.02 mm. Thickness was defined as an average value obtained from ten measure-
ments at various points. A piezoelectric element measuring 30 � 20 � 0.36 mm was
made of PZT-19 piezo-ceramics and glued to the upper surface of the plate. The
physical coil in the shunt circuit was replaced by a compact inductance equivalent
circuit—a gyrator. Its main function is to make the input voltage and current of the
circuit behave like the voltage and current in an inductor using for this purpose a
capacitor and operational amplifiers.

Damping of the plate vibrations was carried out in several steps. First, the natural
frequencies of the sample were determined in the open-circuit (OC) and short-circuit
(SC) modes. Then, based on the results of numerical simulation by the finite element
method or calculation by formulas [4], the parameters of inductance and resistance of
the external RL-circuit were selected in such a way as to provide the most effective
suppression of harmonic vibrations at a given frequency. At the final stage, amplified
alternating current was passed to the coil to force harmonic vibrations of the plate, with
the piezoelectric element being connected to an external open or closed electric RL-
circuit. Measurements of the plate velocity were taken simultaneously at the control
point. Processing of the recorded vibrogram data allowed us to build its envelope and
the variation of the vibration frequency with time. In order to reduce the effect of noise
in the experimental data, which can strongly distort the overall picture, the raw
recorded signal was pre-filtered in the vicinity of the examined frequency using a
Fourier filter.

3 Results

3.1 Vibrations of the Plate in Air Environment

The effectiveness of suppressing structure vibrations in a passive manner strongly
depends on the location of the piezoelectric element. In this study, it was determined
from the condition of maximum of the electromechanical coupling coefficient, obtained
for a particular vibration mode by solving a modal problem by the finite element

Damping of Hydroelastic Vibrations of the Plate … 359



method. Location of the piezoelectric element near the fixed edge of the plate ensures
its effective operation at the first two bending modes. In the experiments, in order to
reduce the risk of damage, it was glued to the plate surface at a distance of 2 mm from
the clamped edge.

The average values of the obtained natural frequencies of the plate in air envi-
ronment and located on the layer of a fluid are shown in Table 1. The cells contain the
values of the mean square deviation calculated from 10 measurements. Before each
new measurement, the fluid was pumped out and the plate was demounted. The
“Mode” column includes the classification of vibration modes (B—bending, T—tor-
sional, M—membrane) and the number of node lines in the transverse and longitudinal
directions. The data obtained from the formulas given in [4] were used to select the
values of inductance and resistance parameters of an external RL-circuit connected to
the piezoelectric element. These parameters can provide the most effective damping of
harmonic oscillations at frequencies x1 (L = 597.90 H, R = 28,776 X), x2

(L = 19.56 H, R = 4658 X) and x4 (L = 2.89 H, R = 1355 X). The torsional mode
(x3) was not considered in this study, because the electromechanical coupling coeffi-
cient for this mode was very small (damping would not be effective).

Traditional approaches to vibration damping with the help of piezoelectric patches
shunted by resonant RL-circuits [4] involve the adjustment of external circuits to provide
a minimum amplitude for a given shape of natural vibrations (the corresponding curves
are indicated as “Hagood” at Fig. 2). This can be very useful in practical applications
where the frequency of external actions changes with time. This naturally leads to a slight
shift of the resonant peak relative to the original non-damped system, which is caused by
the appearance of an additional frequency in the spectrum due to the interaction between
the inductive element of the external circuit and the intrinsic capacitance of the piezo-
electric element [4, 5]. Another way to facilitate the vibration damping is to shift the
resonant frequency of the structure to some safe range other than the frequency range of
the external excitation. This variant is suitable for the situations, inwhich the frequency of
external excitation takes a fixed value and does not changewith time. The implementation
of this approach, leads to a slight decrease in the amplitude of vibrations compared to the
undamped structure due to the energy dissipation on the circuit elements. As an example,
Fig. 2a shows the amplitude-frequency characteristic plotted for manually sampled
parameters of the RL-circuit, which provide a minimum velocity value in the frequency
range of 39–41 Hz (see curve “manual”).

Table 1. Natural frequencies of cantilever plate with piezoelectric element

No. In air environment On the fluid
Mode SC OC Mode SC OC

x1 B (0–0) 40.54 ± 0.14 40.72 ± 0.14 B (0–0) 21.07 ± 0.32 21.07 ± 0.32
x2 B (1–0) 224.36 ± 1.11 225.16 ± 0.80 B (1–0) 119.64 ± 0.88 119.79 ± 1.03
x3 T (0–1) 544.14 ± 0.67 543.75 ± 0.44 B (2–0) 325.94 ± 2.00 326.12 ± 2.07
x4 B (2–0) 584.53 ± 2.57 585.72 ± 2.06 T (0–1) 368.85 ± 1.30 369.01 ± 1.19
x5 M (0–0) 730.60 ± 1.83 731.15 ± 1.73 M (0–0) 658.57 ± 3.55 658.65 ± 3.64
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Figure 3 presents the envelopes of harmonic vibrations of the plate at the first three
bending modes (on the SC frequencies, manual tuning) and demonstrates their passive
suppression. The results depicted in the figure show a decrease in the velocity
amplitude x1 and x2 by 20 times after closing the external RL-circuit connected to the
piezoelectric element. Note that its location for x4 is not optimal, so that the amplitude
decreases only by 3.2 times. We should also note that it turned out to be impossible to
hold the initial velocity of 200 mm/s, because the excitation coil was not designed for
high voltage. The analysis of the above dependences allows us to conclude that the
damping rate and the time of the transient process are different for each of the examined
vibration modes.

Fig. 2. Amplitude-frequency characteristics of the plate in air environment (a) and located on
the free surface of the fluid (b).

Fig. 3. Damping of vibrations of the plate in air environment at different SC frequencies.
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3.2 Vibrations of the Plate Located on the Free Surface of the Fluid

Similar studies were carried out for a plate interacting with a fluid. Figure 4 illustrates
the process of damping the harmonic vibrations at different SC frequencies. It should
be noted, that frequencies SC and OC for mode x1 was close to each other (see
Table 1). It means that the electromechanical coupling coefficient was very small, so
damping was not effective. For second bending mode x2 the velocity amplitude
decreases up to 2.5 times in the case of manual tuning of RL-circuit. The resonant
frequency of the system shifts from range 117–121 Hz similar to behavior of “manual”
curve at Fig. 2a. This results demonstrates that damping of the resonance vibrations of
the plate interacting with a quiescent fluid through the use of a shunted piezoelectric
element is less effective.

Acknowledgments. The study was supported by the grant of the Russian Scientific Foundation
(project No. 18-71-10054).
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Abstract. We propose the refined equations of motion of the plate and the fluid
with additional accounting of the energy dissipation in the material of the plate
and fluid based on the Thompson–Kelvin–Voight hysteresis model. These
equations are used for the formulation of stationary dynamic problems in the
field of acoustoelasticity of thin plates surrounded on both sides by acoustic
media, which is represented as a perfect compressible fluid. Refinement of fluid
behavior is based on the assumption that the pressure increment in fluid is
proportional not only to volumetric deformation, but also to its velocity. This
assumption allows us to obtain the generalized Helmholtz wave equation by
introducing into consideration the complex velocity of sound according to the
representation of Skudrzyk to account for energy dissipation. The equations of
the plate motion are based on the classical Kirchhoff-Love model.

Keywords: Problems of acoustoelasticity � Perfect compressible fluid � Energy
dissipation � Thompson–Kelvin–Voight model � Complex sound velocity �
Generalized helmholtz equation

1 Introduction

It should be emphasized that the most dangerous regime of the dynamic deformation of
structures is the resonant mode, which is realized in a structure when the frequency of
its natural vibrations coincides with the frequency of external cyclic action. Under such
conditions of loading, as is known, the amplitude values of parameters of the dynamic
stress and strain state of structures increase many times, which, in turn, leads also to a
sharp change in the parameters of sound waves being formed. It should be pointed out
that most correct, profound and meaningful theoretical study on the dynamic processes
of deformation of thin-walled structural elements being deformed in an acoustic
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medium is possible only with regard for the damping properties of the material,
structures as a whole, as well as energy dissipation in acoustic media surrounding the
structure.

2 Generalized Wave Equation

We assume that the material of the plate has well-pronounced viscoelastic properties
for the description of which in the case of a uniaxial stress-strain state the simplest
relationship between stress r, strain e, and strain-rate _e ¼ @e=@s, according to the well-
known Thompson–Kelvin–Voight model [1, 2], can be represented in the form of the
dependences

r ¼ Eeþ b_e: ð1Þ

Here, E is the dynamic modulus of elasticity, b is the viscosity coefficient of the
material. In the case of harmonic vibrations at a frequency x, when e ¼ e0 sin xt (e0 is
the strain amplitude), this coefficient is connected with the logarithmic decrement of
vibrations d used in the literature by the dependence d ¼ bpx=E.

As is known [2], the introduced into consideration quantity d characterizing the
internal friction of the material, is determined as a half of the relative energy dissipation
per unit volume of the material for a single cycle of vibrations with a period T

d ¼ DW
2W

¼ bpx
E

; W ¼ Ee20
2

; DW ¼
ZT

0

r de ¼
ZT

0

ðEeþ b_eÞde ¼be20px:

At harmonic vibrations of the bar, stresses and strains varying with time according
to the law e ¼ e0eixs; r ¼ r0eixs, where i ¼

ffiffiffiffiffiffiffi�1
p

—is the imaginary unit. Substituting
these results in relation (1), we obtain r0 ¼ E 1þ id=pð Þe0. As follows from here, the
introduced coefficient of viscosity b should also be considered as the imaginary part of
the complex modulus of elasticity, which is widely used in the mechanics of vis-
coelastic bodies.

Consider a thin plate of thickness t, whose space is related to a Cartesian coordinate
system 0xyz so that �t=2� z� t=2. We assume that the plate on two sides is sur-
rounded by acoustic media with densities q1, q2, and sound velocities c1, c2, occupying
the half-spaces V1 0� z� �1ð Þ;V2 0� z� þ1ð Þ, and the plate itself is in the
bending dynamic strained state, changing in time s with a circular frequency x. At such
deformation, obviously, harmonic acoustic (sound) waves must arise in the media V1

and V2. These waves are described by the following wave equations for the velocity
potentials Uk x; y; zð Þ [3–5]:

@2Uk

@x2
þ @2Uk

@y2
þ @2Uk

@z2
� 1
c2k

@2Uk

@s2
¼ 0; k ¼ 1; 2; ð2Þ
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if there is no overflow of the medium from one half-space to the other. The increments
of pressures pk and velocities vkx; v

k
y; v

k
z in media “1” and “2” are determined via the

functions Uk as follows:

pk ¼ �qk
@Uk

@s
; vkx ¼

@Uk

@x
; vky ¼

@Uk

@y
; vkz ¼

@Uk

@z
: ð3Þ

At the interaction of the plate with acoustic media without separation, solutions of
the equations of motion of the plate and acoustic media (2) at points of the planes
z ¼ �t=2 and z ¼ t=2 for a small thickness t must satisfy the conditions

_w ¼ v1z ; _w ¼ v2z : ð4Þ

We should note that, in the described model of the dynamic behavior of acoustic
media there are no components accounting the dissipation of energy in the media
(unlike model (1) used for a deformable solid).

In accordance with the results of [5, 6], there is another variant of the formulation of
the problem under consideration, which is absolutely equivalent to the one described
above. Following these works, instead of the velocities of points of acoustic media, the
components of their displacement vectors are introduced into consideration. Through
them, the volumetric strains of media in spaces Vk are determined by the relations

ek ¼ ukx;x þ uky;y þ ukz;z; ð5Þ

which are related to pressure increments by physical relations of the form [6]

pk ¼ �Kke
k ¼ �qkc

2
ke

k: ð6Þ

Here, Kk ¼ qkc
2
k denotes the modules of volumetric adiabatic compression of

acoustic media. For them, the equations of motion are of the form [6]

@pk
@x

þ qk€u
k
x ¼ 0;

@pk
@y

þ qk€u
k
y ¼ 0;

@pk
@z

þ qk€u
k
x ¼ 0: ð7Þ

In the case of introducing into consideration as unknown functions uk x; y; z; sð Þ,
that are the potentials of displacements,

ukx ¼
@uk

@x
; uky ¼

@uk

@y
; uky ¼

@uk

@z
; ð8Þ

Equation (7) with an accuracy of an arbitrary nonessential function of time are
reduced to dependencies
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pk ¼ �qk €uk; ð9Þ
which differ from dependencies contained in (3). Substitution of (8) into (5) leads to the
relation [6] ek ¼ Duk , where D—the Laplace operator. Using this relation as well as
relations (9), the dependences (6) can be reduced to the equations of the continuity of
strains [6]

c2kDuk � €uk ¼ 0; ð10Þ

having the same form as Eq. (2). However, we should note that,
Uk x; y; z:sð Þ 6¼ uk x; y; z:sð Þ.

In case of the considered statement of the problem, instead of conditions (4), the
kinematic conjugation conditions by displacements are formulated [6]

w ¼ ukz ¼
@uk

@z
: ð11Þ

Instead of model (6) of purely elastic deformation of acoustic media, by analogy
with relations (1), we adopt the model of viscoelastic volumetric deformation

pk ¼ �qkc
2
k 1þ g�k

x
@

@s

� �
ek ¼ �qkc

2
k 1þ g�k

x
@

@s

� �
Duk; ð12Þ

introducing into consideration the coefficients of viscosity of media g�k to be determined
experimentally. In the case of using (12) instead of (10) we obtain the equations

c2k 1þ g�k
x

@

@s

� �
Duk � €uk ¼ 0; ð13Þ

representing the generalized Helmholtz wave equations, compiled with additional
accounting of dissipative energy losses in acoustic media under its volume adiabatic
compression. If the deformation process is harmonic, then functions uk must be rep-
resented as uk ¼ ~uke

ixs and, Eq. (13) reduced to the form

c2k 1þ ig�k
� �

D~u�
k þx2~u�

k ¼ 0: ð14Þ

Without losing the meaningfulness of Eq. (14), it is permissible to replace it with

equation c2k 1þ igk
� �2

D~uk þx2~uk ¼ 0, if we enter into consideration complex velocity
of sound ck ¼ ck 1þ igk

� �
, according to Skudrzyk [7]. It is easy to make sure that the

parameters g�k and gk entered into consideration are related to each other by dependency
g�k � 2gk. Determining the viscosity parameter of acoustic media g, introduced into
consideration, requires appropriate experimental studies and is an independent
problem.
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3 The Equation of a Thin Plate Motion, Taking into Account
the Energy Dissipation in the Plate Material and Acoustic
Media

In the case of using relations of the form (1) for the description of bending dynamic
strained state, the differential equation of the plate motion, based on the Kirchhoff–
Love hypotheses, can be reduced to the form (w is the deflection, and qp is the density
of the plate material)

Dr2r2wþ ~Dr2r2 _wþ qpt€w� p ¼ 0; ð15Þ

where p ¼ q� þ q;D ¼ Et3
12 1�m2ð Þ ; ~D ¼ bt3

12 1�m2ð Þ ¼ d
pxD.

In Eq. (15) q� represents a certain specified external transverse load, and, for
determining the aerodynamic load q, formed due to the interaction of the plate with the
surrounding acoustic media, using the flat reflection hypothesis and introducing
complex sound speeds according to the equality q ¼ p1jz¼0�p2jz¼0 we arrive at the
expression

q ¼ �C _w; C ¼ q1c
�
1 þ q2c

�
2 ¼ q1c1 þ q2c2 þ i q1c1g1 þ q2c2g2ð Þ: ð16Þ

Here, the underlined components are responsible for taking into account the energy
dissipation in acoustic media surrounding the plate.

If a flat harmonic wave with pressure p� and frequency x falls on the plate, then, as
a results of its interaction with the plate in the surrounding half-spaces V1 and V2,
acoustic waves are induced, which are reflected and radiated in the first medium and
radiated in the second medium. These waves with respect to the velocities potentials
U�, U1, U2 in case of the refined formulation of acoustoelasticity problems can be
described by generalized wave equations

c�21 U�;zz � €U� ¼ 0; c�2k Uk;xx þUk;yy þUk;zz
� �� €Uk ¼ 0

written with additional accounting the energy dissipation by introducing into consid-
eration the complex velocity of sound according to Skudrzyk [7]. At the same time, the
aerohydrodynamic load acting on the plate p will be equal to

p ¼ q� þ q ¼ p� þ p1 � p2ð Þjz¼0;

and the components of the velocities v�z , v
k
z , at the interaction of the plate with acoustic

media without separation, must satisfy the conditions

_w ¼ v1z þ v2�
� ���

z¼0; _w ¼ v2z
��
z¼0:

On the basis of the constructed equations, exact analytical solutions are found for
the problems of free vibrations of a rectangular plate hinged around the contour with
the definition of complex eigenfrequencies, as well as for the problems of the forced
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vibrations of the plate under the action of a flat mono-harmonic incident sound wave
with determination of sound transmission loss, of plate’s stress-strain state parameters
and of the laws of sound pressures change in fluid on the distance from the plate.

The analysis of the constructed solutions has showed that correct and more
meaningful solutions of the considered class problems in the field of plate acoustoe-
lasticity are possible only in case of description of the fluid behavior on the basis of
non-simplified three-dimensional wave equations with additional accounting of energy
dissipation. Moreover, it becomes possible to drastically clarify the laws of decreasing
of reflected and emitted sound waves pressures amplitude values as they move away
from the plate.
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dation (project № 19-19-00058).
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Abstract. Laser-induced vibrations and elastic stability of a clamped-clamped
beam electrostatic transducer are considered under ultrafast laser pulse. It is
assumed that laser pulse acts as volume heat generation with Gaussian time-
profile localized in near-surface layer of the beam. Temperature load non-
stationarity and non-homogeneity through length and thickness lead to
appearance of thermal-induced mechanical moment and axial forced acting on
the beam, which can result in buckling phenomena. Semi-analytical methods for
solution of nonlinear boundary-value problems are used for static equilibrium
determination of the beam in the electric field of one stationary electrode.
Analytical solution of non-stationary temperature problem in the beam volume
is obtained. Finally, areas in parameter space of system geometrical and
mechanical properties along with laser pulse characteristics are determined
which correspond to elastic stability of initial equilibrium form of the beam
subjected to laser pulse.

Keywords: MEMS � Bernoulli-Euler beam � Laser pulse � Elastic stability

1 Introduction

The problem of dynamic stability of constructional elements is a practically important
area of research, far from being completely studied. For example, as shown in [1–3],
critical values of dynamic forces leading to a loss of stability can significantly differ
from known static (Eulerian) values. The aforesaid phenomenon occurs in applications
of laser technologies for nondestructive testing of constructions and studying the
physical properties of materials at the micro- and nanoscale level [4–6], as well as in
technological processes of laser forming [7], additive manufacturing [8] and in nano-
and microsystem engineering production [9, 10]. The necessity of solving problems of
this class arises also in studying the working capacity of nano- and microelectrome-
chanical systems in resonant operating modes under conditions of impact-impulse
thermal actions [11]. In [12–15] it was pointed out that the dynamics of the Bernoulli–
Euler beam under laser pulse action is significantly affected by thermal moments
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caused by a nonuniform temperature distribution over the volume of an elastic element.
In this work, we investigate the action of axial (membrane) thermal forces on dynamics
and stability of the considered elastic element of MEMS.

2 Problem Statement

We consider the problem about the pulse laser action on an elastic element of the
electrostatic transducer (Fig. 1) with allowance for the initial deflection caused by the
action of the electrostatic field. For the model describing the dynamics of this element,
we chose the Bernoulli–Euler beam model. A feature of its behavior in this problem is
the necessity to take into account the preliminary stress–strain state. This is caused by
two factors. First, the assembly technology is such that the initial length of an
unstrained beam can exceed the distance between the bearings, which creates an
additional compressive stress. Second, a stationary potential difference V with a fixed
electrode is transmitted to the beam as a movable electrode, which creates a preliminary
beam deflection under the action of attractive forces in the electrostatic field.

We assume that the action of a laser pulse on the beam surface is reduced mainly to
the appearance of a thermal front propagating over the bulk of the beam. The
nonuniformity and nonstationarity of the temperature field both in thickness and in
length of the beam in the general case lead to the appearance of a bending moment and
axial force, which are responsible for the eventual loss of stability. To simplify the
problem to some extent, we assume that the laser action is uniform over the beam
length. We take that the volumetric heat release during the action of the laser has the
form [16]

Q z; tð Þ ¼ H tð Þ � RaL0
dt2p

t � exp z� h
2

d
� t
tp

� �
; ð1Þ

where H tð Þ is the Heaviside function, L0 is the parameter characterizing the action
power, Ra is the absorption index of the irradiated surface, d is the characteristic depth
of the pulse penetration into the material, and tp is the pulse duration.

For a broad class of nano- and microelectromechanical electrostatic transducers, the
distance between electrodes d is considerably less than the thickness of the elastic

Fig. 1. Schematic of a MEMS capacitive transducer under laser heating
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element h, which allows one to use geometrically linear equations of transverse
deflections. Under the aforesaid assumptions, the fundamental equations describing the
dynamic bending of a beam in the physically nonlinear coupled thermoelectroelasticity
problem under consideration have the form

EI
@4w
@x4

þ qbh
@2w
@t2

þMT þP
@2w
@x2

¼ �r�0bV2

2 d � wð Þ2 ;

P ¼ P0 þPT � Ebh
2L

ZL

0

@w
@x

� �2

dx; PT ¼ EbaT

Zh
2

�h
2

hdz; MT ¼ EbaT

Z h
2

�h
2

z
@2h
@x2

dz;

ð2Þ

k
@2h
@x2

þ @2h
@z2

� �
þQ x; z; tð Þ ¼ qcv

@h
@t

þ bT0
@e
@t

:

Here, x and z are the longitudinal and vertical coordinates, respectively; t is time;
w x; tð Þ is the transverse displacement of the geometric center of the beam cross section;
h x; z; tð Þ ¼ T x; z; tð Þ � T0 is the change in the temperature relative to the reference
temperature T0; b; h; L, and d are the geometric parameters of the system: the width,
height, and length of the beam and the initial gap between the electrodes, respectively;
I ¼ bh3

12 is the moment of inertia of the cross section; E is the Young modulus; is the
Poisson ratio; q is the material density; aT is the thermal linear expansion coefficient;
�r�0 is the dielectric permittivity of the medium in the gap between the electrodes; k is
the heat conductivity coefficient of the beam material; cv is the specific heat capacity;
b ¼ EaT

1�2m is the coefficient associating the temperature increment with the rate of change

in the deformed body volume; e ¼ �z @
2w
@x2 ; and P ¼ Ebh DL

L is the axial force caused by
technology factors (is the initial deviation of the beam length from the length corre-
sponding to the stress-free state).

3 Determination of the Beam Equilibrium Shape in Static
Electric Field

The boundary value problem for finding the initial equilibrium state (the static
deflection) is obtained from the general system of equations (2) by truncation of the
inertial terms when the thermal action is absent. To obtain an approximate solution, the
authors used the Galerkin method where the coordinate functions are chosen in the
form of eigenfunctions of a compressed fixed-ended beam in the absence of an electric
field (Fig. 2). Note that a well-known catastrophic bifurcation with disappearance of

equilibrium shapes is observed in the system when the physical parameter k ¼ 6�r�0L4V2

Eh3d3

reaches a certain critical value (a regular extreme point or pull-in instability [17]).
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4 Investigation of Beam Stability Under Laser Action

The force and moment actions on the elastic element under consideration during a laser
pulse are determined from the solution of the non-stationary heat conduction problem
in the beam material (Fig. 3).

The exhaustive investigation of the dynamics of the system requires solving the
nonlinear initial-boundary value problem, which can be carried out using approximate
analytical methods. The upper estimate of the critical parameters of the action can be
obtained by analyzing the linearized motion equation obtained from (2) by Taylor
series expansion of nonlinear summands and truncation of the leading powers of the
unknown function:

Fig. 2. Microbeam equilibria for various a1 ¼ 6 d
h

� �2 and Pnon ¼ 12 L
h
DL
h

Fig. 3. Thermal response of a microbeam
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EI
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þ qbh

@2wd

@t2
þ P0 þEbaT

Zh
2

�h
2

h z; tð Þdz� Ebh
2L

ZL

0

@ws

@x

� �2

dx

2
64

3
75 @2wd

@x2

� Ebh
L

ZL

0

@ws

@x
@wd

@x
dx � @

2ws

@x2
� �r�0bV2

d � wsð Þ3 wd ¼ �EbaT

Zh
2

�h
2

h z; tð Þdz� @
2ws

@x2

ð3Þ

Note that the motion Eq. (3) in the presence of an electric field (and nonzero static
deflection ws related to it) is nonautonomous: the nonstationary temperature distribu-
tion leads to the appearance of a transverse force acting on the beam.

The solution to dynamic problem (3) is found in the form of a Galerkin series in
eigenmodes of both ends of a fixed beam with allowance for axial compression by the
force P0. Writing the projection conditions, we come to the following system of linear
equations with variable coefficients for the coordinate functions gj tð Þ:

M€gþ N þ L tð Þ½ �g ¼ H tð Þ; ð4Þ

where M and N are definite constant matrices; L tð Þ is a matrix with time-dependent
coefficients; and H tð Þ is the column vector of right-hand sides.

Applying the theorem about the sufficient condition of the Lyapunov stability of the
solution [15] to system (4) allows one to reduce the analysis of stability to the deter-
mination of signs for the real parts of eigenvalues of the system.

Leaving in expansion (4) only the oscillation mode corresponding to the lower
frequency, we obtain simple expression for the lower estimate of the critical laser pulse
power in terms of the geometric parameters of the system, the mechanical properties of
the material, the axial force value and external factors related to the action of the laser
pulse and electrostatic field:

Qcrit ¼ qcv
EbaT tpd 1� e�h=dð Þe

� EIA11 � Ebh
L C11 � �r�0bV2D11

�B11
� P0 þ Ebh

2L

ZL

0

@ws

@x

� �2

dx

8<
:

9=
;; ð5Þ

where A11;B11;C11 and D11 are certain projection coefficients.
Figure 4 shows the calculated conservative estimate for the boundary of the sta-

bility region in the space of laser pulse parameters tp; d;Qmax
� �

.
Comparison of the results of [8, 9] with the critical laser pulse power obtained

above points to the fact that the loss of stability of the initial equilibrium shape of the
Bernoulli–Euler beam due to the presence of a compressing axial force of thermal
origin can occur at considerably lesser laser pulse powers than is necessary for reaching
dangerous deflections due to the bending moment. The last must be taken into account
in practical calculations of the elastic elements of nano- and microsystem engineering,
as well as other constructions under the action of pulse thermal loads.
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