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Abstract
The study areas (Bulghah and Hamimuah) are located in
the Afif terrane between the Halaban–Zarghat fault zone
and Ar Rika fault zone. They consist of many gabbroic to
granitic I-type intrusions emplaced into Neoproterozoic
volcanosedimentary rocks and are intruded by Neopro-
terozoic A-type granites. The studied plutonic rocks are
I-type magmatic rocks, calk-alkaline, metaluminous to
slightly peraluminous (A/CNK > 1.2), formed in a vol-
canic arc setting. On a primitive mantle-normalized spider
diagrams, almost all rocks show a significant Nb–Ta–Ti
depletions relative to K and La, which is typical of
magmatism from a subduction zone tectonic setting.
Geochemical features of the mafic intrusion (gabbro and
diorite) are comparable to those of the arc-metavolcanic
calc-alkaline rocks of the Arabian Shield, which were
produced by partial melting of plagioclase- or
spinel-peridotite in the upper most mantle <80 km deep
in an intra-oceanic island arc. This suggests that the mafic
intrusive rocks of Bulghah and Humaymah represent the
plutonic equivalents of the Arabian Shield arc metavol-
canic calc-alkaline rocks. The compositional variations
from granodiorite to monzogranite of Bulghah and
Humaymah suggest various degree of fractional crystal-
lization of feldspar, biotite and amphibole. Y/Nb with
Th/Nb, Th/Ta and Ce/Pb relationships indicate that the
granodiorite and monzogranite were generated by a mafic
parental magma contaminated with crustal materials, and
controlled by fractional crystallization. Zircon U–Pb
dating indicates that the mafic intrusive rocks from
Bulghah and Humaymah, Saudi Arabia were formed at
*670 Ma, whereas the granitoid I-type intrusions were

formed between 661 ± 5 and 643 ± 4 Ma, confirming
the importance of the 640–700 Ma crust forming event in
Saudi Arabia.
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6.1 Introduction

The Arabian Shield (AS, Fig. 6.1) consists of Neoprotero-
zoic juvenile tectonostratigraphic island-arc terranes formed
by subduction within and around the Mozambique Ocean
between 850 and 550 Ma in the framework of the Gond-
wana supercontinent assembly (Stern 1994; Nehlig et al.
2002; Stern and Johnson 2010). These terranes are joined by
ophiolite-decorated sutures (Stoeser and Camp 1985; John-
son and Woldehaimanot 2003). The AS is divided into at
least five tectonostratigraphic terranes (Fig. 6.1; Stoeser and
Camp 1985): Midyan, Hijaz, Asir, Ar Ryan and Afif with
some workers (e.g., Johnson and Woldehaimanot 2003)
discussed the possibility of three more terranes (Jiddah, Ad
Dawadimi and Khida). All terranes (except Khida; Stacey
and Agar 1985; Stoeser and Frost 2006) are regarded as
Neoproterozoic oceanic arcs, including fore-arc and/or
backarc crust and ophiolites (Dilek and Ahmed 2003;
Stoeser and Frost 2006).

The evolution of the AS terranes records three main
tectonic stages of intra-oceanic subduction (850–700 Ma),
collision and terrain amalgamation (700–635 Ma), and tec-
tonic escape, strike-slip faulting and extension (635–
550 Ma) of the newly formed continental crust (Genna et al.
2002; Johnson and Woldehaimanot 2003; Be’eri-Shlevin
et al. 2009; Eyal et al. 2010; Stern and Johnson 2010;
Johnson et al. 2011). The volcanic arc crust range in com-
position from tholeiitic, through calc-alkaline to late high-K
suites (Robool et al. 1983). Syn-to Post-collisional
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Fig. 6.1 a General geologic map of the Arabian Shield showing major
tectonostratigraphic terranes, ophiolite belts, sutures, fault zones and
post-accretionary basins in the Arabian Shield of western Saudi Arabia
(modified after Nehlig et al. 2002; Johnson and Woldenhaimanot 2003;
Stern and Johnson 2010). Numbers are locations of the I-type intrusive

rocks represented in geochemical Figures as follows: (1) Bulghah and
Humaymah, (2) Sukhaybarat, (3) Jabal Ghadarah, and (4) Makkah
Suite. b Geological sketch map of the Afif Terrane and adjacent parts of
the Arabian Shield showing location of the study area (modified after
Johnson and Kattan 1999)
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calc-alkaline to alkaline I-type granites intruded by
Post-collisional K-rich alkaline to peralkaline A-type gran-
ites (e.g., Ali et al. 2009, 2012; Be’eri-Shlevin et al. 2009;
Eyal et al. 2010; Moreno et al. 2014; Moghazi et al. 2012).

I-type granitoids (Cryogenian and Early Ediacaran) are
major components of the ANS (Moussa et al. 2008; Johnson
et al. 2011). Geochemical studies reveal that they are met-
aluminous to slightly peraluminous, calc-alkaline,
subduction-related intrusives (Pearce et al. 1984; Maniar and
Piccoli 1989; Jarrar et al. 2003; Moussa et al. 2008; Be’er-
i-Shlevin et al. 2009; Ali et al. 2015; Robinson et al. 2015),
formed synchronously with the formation of large molasse
basins (Genna et al. 2002; Johnson 1998; Nehlig et al. 2002;
Stern and Johnson 2010). The orogenic phase was then
followed by continued convergence and the development of
regionally extensive strike-slip fault (escape tectonics) from
610 to 525 Ma (Greiling et al. 1994; Stern 1994; Genna
et al. 2002; Johnson et al. 2011; Robinson et al. 2014).

Intrusion of post-collisional alkaline to peralkaline rocks
(A-type granites) and development of extensive pull-apart
basins during the final suturing of the Arabian-Nubian Shield
and the formation of subsequent extensional basins (Greiling
et al. 1994; Johnson 1998, 2003; Wilde and Youssef 2000;
Nehlig et al. 2002; Johnson et al. 2011). The alkaline granites
constitute about 2% of the Arabian–Nubian Shield and rep-
resent one of the largest fields of alkaline granites on Earth
(Stoeser 1986; Liégeois and Stern 2010; Johnson et al. 2011).
Petrogenetic models for the generation of A-type alkaline
granites range from partial melting of the lower crust to
extreme differentiation of mantle-derived tholeiitic or alkaline
basaltic magma (Bonin and Giret 1990; Turner et al. 1992;
Collins et al. 1992; Frost and Frost 1997; Patiño Douce 1997;
Mushkin et al. 2003; Huang et al, 2011). Assimilation of older
crustal material into mantle derived granitic magma is plau-
sible model to account for the petrogenesis of such rocks (Eby
1990, 1992; Kemp et al. 2006; Zhang et al. 2012).

This paper will present results of U–Pb zircon
geochronology and whole-rock geochemical data of some
plutonic rocks from Bulghah and Humaymah areas (west of
the Afif terrane) of Saudi Arabia. While gold is mined from
Bulghah area since 2001, it is still under evaluation and
development by Ma’aden Co. in the Humaymah area. In
these areas, gold is spatially associated with some intrusive
rocks intruding the layered volanosedimentary the
Hulayfah/Siham and Murdamah group rocks. These intru-
sive rocks can be grouped into two groups; older mafic to
intermediate gabbro-diorite and younger intermediate to
felsic tonalite-granodiorite intrusive bodies. These data will
be used to clarify the magma sources for these rocks, and to
assess fractional crystallization as a possible petrogenetic
mechanism for the formation of these rocks (Miller 1985;
Secchi et al. 1991; Teixeira et al. 2012; Wang et al. 2014).

6.2 Geology Background and Petrography

The two selected areas (Bulghah and Humaymah) for the
present study are located in the Afif terrane (Figs. 6.1 and
6.2). The Afif terrane is one of the largest terranes in the
Arabian Shield. Much of the recent researches on the shield
in the last 15 years, Johnson and Kattan (1999) addressed
the composite nature of the Afif terrane in age and prove-
nance, mainly based on detailed mapping, Pb-isotope sys-
tematics and U–Pb zircon geochronology (e.g., Stacey and
Hedge 1984; Stacey and Agar 1985; Agar 1985, 1988; Agar
et al. 1992). Based on these studies, the Afif terrane was
divided into four possible subterranes including the Khida,
Nuqrah, Siham, and Suwaj (Fig. 6.2). While the Khida
subterrane represents remnants of the Archean to Paleopro-
terozoic continental rocks, the Nuqrah, Siham, and Suwaj
subterranes and the post-amalgamation assemblages (Mur-
dama and Bani Ghayy groups) represent the Neoproterozoic
volcanic/magmatic arc-subterranes (Johnson and Kattan
1999). Agar et al. (1992) reported 1.7 Ga zircon ages for
pre-Neoproterozoic sources in the Khida subterrane. The
ophiolite assemblages (mafic/ultramafic rocks) represent the
oldest Neoproterozoic rocks in the study areas. A pla-
giogranite dyke in serpentinized peridotites from a near
vicinity to the study area in the Bir Tuluha ophiolite
(Fig. 6.2) yielded U–Pb zircon ages from 843 to 821 Ma
(Pallister et al. 1988). The mafic-ultramafic rocks are rep-
resented by gabbro, metabasalt, serpentinites, listvenites and
amphibolites. The Siham group (Fig. 6.2) is unconformably
overlain by the volcanosedimentary rocks of the Bani Ghayy
group (Stacey and Agar 1985). The Siham group is meta-
morphosed to greenschist facies and composed mainly of
volcanosedimentary assemblages. It is composed mainly of
basaltic lava range from tholeiitic to calc-alkaline and has
affinity with lavas in active continental margins (Agar 1986).
The sedimentary rocks of Siham group are represented by
lithic sandstone, shale and conglomerate. The age of the
Siham group is constrained at *746 ± 10 Ma (Agar et al.
1992) from a granodiorite sample from Naim complex which
intruded the Siham group. The Bani Ghayy group in the
study area consists of unmetamorphosed sandstone, con-
glomerate, limestone, basalt and rhyolite. In the western part
of the study area (Fig. 6.2), the Bani Ghayy and Murdama
groups are separated by a thrust fault. Some workers con-
sidered the two groups to be equivalent because they are
similar in age and lithology (Brown et al. 1989). The two
groups suggested to be deposited during and soon after the
Nabitah orogeny (680–640 Ma, Johnson et al. 2011). Stacey
and Agar (1985) reported a U–Pb zircon age of 620 ± 5 Ma
for a rhyolite sample from the Bani Ghayy group and a
volcanic sample from Murdama group yielded a U–Pb
zircon age of 625 ± 4 (Kusky and Matsah 2003)..
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Fig. 6.2 Geological map showing the study areas (Bulghah and Humaymah) modified from the Geological maps 1:250000 of the Al Hissu
quadrangle, sheet 24 E (Delfour 1981) and the Nuqrah quadrangle, sheet 25 E (Delfour 1977)
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The volcanosedimentary rocks and intermediate to felsic
intrusions of the Afif terrane were intruded by gabbros to
highly evolved granites between *750 and 570 Ma. Based
on their composition, textures and/or absolute ages, these
rocks are classified from the oldest to the youngest as the
Jidh, Suwaj, Fahud, Khishaybi, Humaymah, Haml and syn-
to post-Shammar intrusions of the Idah and Abanat suites.
The post-collision monzogranite rocks of Haml batholith
were dated at 609 ± 8 Ma (Robinson et al. 2014).

6.3 Analytical Techniques

Four representative samples of the intrusive rocks were
selected for dating using U–Pb zircon geochronology. Bulk
samples of these rocks (each weight � 3 kg) were crushed
and pulverised to a fine fraction and sieved. The fractions of
these samples that fall between 250 and +75 µm were
washed by distilled water and dried. These initial sample
preparations were carried out in the laboratory facilities at
the department of Mineral Resources and Rocks at the
Faculty of Earth Sciences, King Abdulaziz University
(KAU) in Jeddah (Saudi Arabia). Heavy liquids were used to
separate the heavy fraction from these samples using
Methylene Iodide (specific gravity 3.3 gm/ml). The
non-magnetic fraction of these samples which may contain
the zircon grains were separated using a Franz Isodynamic
separator. Finally, zircon grains were collected by hand-
picking under a binocular stereoscopic microscope. Zircons
were analysed for their U–Pb age at John de Laeter Centre,
Curtin University of Technology (Australia) and at the
University of Oslo (Norway).

Prior to analysis, zircon grains were imaged on the pol-
ished puck by cathodoluminecence (CL) to examine the
growth structure of individual grains using a scanning
electron microscope. U–Pb isotope data on zircons were
obtained by laser-ablation inductively coupled plasma
source mass spectrometry (LA-ICP-MS) using a Nu
Plasma HR mass spectrometer and a New Wave LUV213
laser microprobe at University of Oslo (Norway) and by
sensitive high resolution ion microprobe (SHRIMP II) at
Curtin University (Australia). The analytical protocols of the
LA-ICP-MS are described in detail by Rosa et al. (2009),
and SHRIMP analytical procedure is described by Compston
et al. (1984) and Kennedy and de Laeter (1994). The
1065 ± 0.6 Ma (2r) Geostandards zircon 91500 (Wieden-
beck et al. 1995) and 600 ± 4.5 Ma (2r) Geostandards
GJ-1 (Jackson et al. 2004) were both used for Pb/U cali-
bration and U concentration estimates and were analysed on
a regular basis during the analytical sessions by
LA-ICP-MS, and BR266 (559 Ma; 903 ppm U) was used
for SHRIMP. Calculations used the routines of Isoplot

(Ludwig 2001a, b). U–Th–Pb concentrations and isotopic
compositions are listed in Table 6.1 (SHRIMP II) and
Table 6.2 (LA-ICP-MS), and plotted as two-sigma error
ellipses on Concordia diagrams (Wetherill 1956).

A total of 53 intrusive samples were selected for major,
trace and rare earth elements analyses. Major element com-
positions and Sc, Ba, and Ni abundances were determined by
inductively coupled plasma-atomic emission spectrometry
(ICP-AES). All the others trace and rare earth elements
(REE) were determined by inductively coupled plasma-mass
spectrometry (ICP-MS). All the analyses were carried out at
the ACME Analytical Laboratories Ltd., Canada. Analytical
precision, as calculated from replicate analyses, is 0.5% for
major elements and varies from 2 to 20% for trace elements.
Analytical results are listed in the Table 6.3.

6.4 Results

6.4.1 U–Pb Geochronology

Sample B139 (N25° 01′ 37.0″, E41° 36′ 32.9″) is a dark
grey, coarse-grained diorite collected from Bulghah area.
Zircons separated from this sample are euhedral, acicular,
and yellowish brown in color. A total of 21 measurements
were made on the twenty one zircon crystals (Table 6.1).
The U content varies from 65 to 161 ppm and Th from 18 to
70 ppm. One zircon analysis produced a concordant data
point with 206Pb/238U age of 707 ± 10 Ma, interpreted as
that as xenocryst derived from older source material.
Omitting three analyses with high common Pb and/or dis-
cordant leaves seventeen tightly grouped and concordant
analyses that define a concordia age of 677 ± 8 Ma (95%
conf.; MSWD = 0.91; Fig. 6.3a). We interpret this as the
age of intrusion and crystallization of the diorite.

Sample B-mine (N24° 59′ 21.5″, E41° 35′ 51.6″) is a
quartz-diorite collected from Bulghah mine area (Fig. 6.2).
Zircon extracted from this sample is mostly euhedral, clear
to yellow-brown, prismatic (*200 lm � 50 lm) and show
well-developed oscillatory zoning consistent with a mag-
matic origin. One analysis was made on each of 10 zircons
(Table 6.1) and these are presented on a concordia plot
(Fig. 6.3b). Zircon U contents are low (58–163 ppm) and
Th/U is low (0.3–0.4; Table 6.1). One analysis is concordant
and has low Th content (16 ppm) and yields a 206Pb/238U
age of 746 ± 14 Ma, higher than the 9 analyses, interpreted
to represent an inherited grain from the older rocks in the
area. The remaining nine analyses are concordant, defining a
concordia age of 667 ± 6 Ma (2r; MSWD = 2.3; Fig. 6.3
b). This age is identical to the age of the previous diorite
sample (B139) and is interpreted as the crystallization age of
the quartz-diorite.
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Sample Hm19 (N24° 42′ 11.3″, E41° 42′ 57.8″) is
medium to coarse-grained tonalite from Humaymah area
(Fig. 6.2). Zircon recovered from this sample is subhedral to
euhedral and yellow to pale brown. Zircon grains are
idiomorphic, slender, and needle shaped, and exhibit
well-preserved oscillatory growth zoning. These zircons
contain moderate U contents (76–325 ppm) and have Th/U
in the range expected for igneous zircons (0.2–0.5). Out of
twenty-one zircon grains analyzed (Table 6.1), eleven
analyses yield a concordia age of 683 ± 4 Ma (2r,
MSWD = 0.03), interpreted to represent inheritance from
older rocks in the area. Three analyses are discordant and
excluded from age calculation (Fig. 6.3c). Seven analyses
were done on the rims of the same zircon grains produced a
concordant data points and yield a concordia age of
661 ± 5 Ma (2r, MSWD = 2.7; Fig. 6.3c), interpreted

to represent the crystallization age of the tonalite
intrusion.

Sample HC196 (N24° 43′ 01.5″, E41° 43′ 2.5″) is
coarse-grained tonalite from Humaymah (Fig. 6.2). Zircon
recovered from this sample is subhedral to euhedral and yel-
low to pale brown. Zircon grains are idiomorph, slender, and
needle shaped, and exhibit well-preserved oscillatory growth
zoning. Out of fourteen zircon grains analyzed (Table 6.2),
twelve analyses yielded a concordia age of 643 ± 4 Ma (2r,
MSWD = 1.1), interpreted to represent the age of the tonalite.
Two analyses are discordant and excluded from age calcula-
tion (Fig. 6.3d). This age is indistinguishable from the age of a
quartz diorite sample (629 ± 6 Ma; Harbi et al. 2018) in the
Sukhaybarat area (70 km north of the study area) and the age
of a monzogranite sample (631 ± 1 Ma) from Bulghah area
(Bakhsh, unpublished data).

Fig. 6.3 U–Pb concordia diagrams of ion microprobe (SHRIMP) and
laser-ablation inductively coupled plasma source mass spectrometry
(LA-ICP-MS) data for zircons studied from the Bulghah and

Humaymah areas. Dashed ellipses indicate zircon analyses that were
excluded from age calculations. Errors for data ellipses are 2r.
Analytical data are given in Tables 6.1 and 6.2
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6.4.2 Whole-Rock Geochemistry

The results of chemical composition of 53 whole-rock
samples from Bulghah and Humaymah areas are listed in
Table 6.3. We compared our results with previous geo-
chemical data of the I-type intrusive rocks (Figs. 6.5, 6.6,

6.7, 6.8, 6.9, 6.10, 6.11, 6.12 and 6.13) from Harbi et al.
(2016, 2018) and Robinson et al. (2015). The intrusive
samples from Bulghah show wide variations (in wt%) of
SiO2 (51.4–74.7), Al2O3 (12.39–19.95), CaO (1.05–9.95),
Na2O (3.10–5.85), MgO (0.30–6.50), Fe2O3t (1.06–7.41),
and TiO2 (0.18–1.02) (Table 6.3, Fig. 6.4). The K2O content

Fig. 6.4 Major and trace element variations diagrams (Harker dia-
grams) for the gabbro, diorite, tonalite, granodiorite and monzogranites
define two different trends and showing compositional gap between the

mafic intrusive rocks (gabbro and diorite) and granitoids
(granodiorite-tonalite and monzogranite)
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Fig. 6.5 Major and trace elements chemical classification diagrams.
a Total alkalis (Na2O + K2O) versus SiO2 (Cox et al. 1979), b The Q’–
ANOR plutonic rocks classification diagram using their molecular
normative compositions (after Streckeisen and Le Maitre 1979),
c R1-R2 diagram (de la Roche et al. 1980). The field of Sukhaybarat
I-type granitoids from Harbi et al. (2018) and the field of Jabal
Ghadarah I-type granitoids from Harbi et al. (2016). Analytical data are
given in Table 6.2

Fig. 6.6 a Shand’s index (Maniar and Piccoli 1989) classification
diagram, showing the intrusive studied samples exhibit metaluminous
to slightly peraluminous geochemical features.
b (Al2O3 + CaO/FeOt + Na2O + K2O) versus 100(MgO + FeOt +
TiO2 + SiO2) discrimination diagram (Sylvester 1998) showing the
predominantly calc-alkaline to highly fractionated calc-alkaline char-
acteristics of the studied samples. c Agpaitic index (AI = Na + K/Al)
versus SiO2 diagram showing the calc-alkaline characters of the studied
intrusive samples, the line with AI = 0.87 (Liégeois and Black 1987)
separates alkaline and calc-alkaline granite series. The field of
Sukhaybarat I-type granitoids from Harbi et al. (2018) and the field
of Jabal Ghadarah I-type granitoids from Harbi et al. (2016)
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indicates that the studied samples are high-K calc-alkaline
(1.07–4.11 wt%; Fig. 6.4d). The intrusive rocks from
Humaymah are more mafic than samples from Bulghah area.
They exhibit variable variations (in wt%) of SiO2 (48.4–
64.3), Al2O3 (14.0–19.33), CaO (4.26–12.22), Na2O (1.05–
4.09), and high TiO2 (0.45–1.60), MgO (1.78–10.64) and
Fe2O3t (5.35–9.89) (Table 6.3, Fig. 6.4). The intrusive rocks
have been classified using the total alkalis versus silica (Cox
et al. 1979), Q′–ANOR diagram of Streckeisen and Le

Maitre (1979) and R1-R2 diagram of de la Roche et al.
(1980). The intrusive samples of Bulghah plot in the mon-
zogranite–synogranite, granodiorite-tonalite and syenodior-
ite fields (Fig. 6.5), whereas the Humaymah intrusive
samples fall in the diorite, quartz diorite, gabbro and quartz
gabbro fields, and one sample (Hm 19) plots in the tonalite
field (Fig. 6.5).

According to Shand’s index (Maniar and Piccoli 1989)
classification diagram, the studied mafic intrusive samples

Fig. 6.7 Primitive mantle-normalized trace element diagrams for the studied Bulghah and Humaymah samples. Normalizing values from Sun and
McDonough (1989)
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(gabbro and diorite-quartz diorite) from Bulghah and
Humaymah are strongly metaluminous, whereas the grani-
toid rocks (granodiorite, tonalite and monzogranite) are
strongly metaluminous to slightly peraluminous (Fig. 6.6a).
On the major element discrimination diagram of Sylvester
(1998), the studied intrusive rocks are calk-alkaline
(Fig. 6.6b). They also fall in the calc-alkaline field (AI <

0.87; Fig. 6.6c) according to Liégeois and Black (1987).
Three monzogranite samples (B46, B49 and B50) fall in the
alkaline and highly fractionated calc alkaline field in both
diagrams (Fig. 6.6b, c).

Primitive mantle normalized trace-element patterns for all
intrusive samples from Bulghah and Humaymah are enri-
ched in incompatible elements, showing negative anomalies

Fig. 6.8 Chondrite normalized REE patterns for the studied Bulghah and Humaymah samples. Normalizing values from Sun and McDonough
(1989)
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in Nb–Ta, Ti and P and a positive Pb anomaly (Fig. 6.7).
The mafic and granitoid rocks in the studied areas have
variable Al2O3/(CaO + Na2O + K2O) molar ratios
(A/CNK), mostly less than 1.1 (Fig. 6.6a), which is typical
of I-type magmatism (Chappell 1999). The trace element

patterns (Fig. 6.7) are typical of those developed in island
arc settings (Elliott 2003; Ali et al. 2015).

The granodiorite-tonalite and monzogranite samples are
both LREE and MREE enriched [(La/Yb)N = 6.12 −
21.70], with slightly fractionated HREE patterns
[(Dy/Yb)N = 0.93 − 2.13] and minor negative to slightly
positive Eu (Eu/Eu* = 0.35 − 1.25) and positive Sr
anomalies (Figs. 6.7 and 6.8) which are indicative of feld-
spar fractionation. The diorite-quartz diorite samples are
LREE and MREE enriched [(La/Yb)N = 3.38 − 11.24],
with flat to slightly fractionated HREE patterns
[(Dy/Yb)N = 1.00 − 1.63] and minor negative to slightly
positive Eu (Eu/Eu* = 0.75 − 1.29) and positive Sr
anomalies (Figs. 6.7 and 6.8). However, the Humaymah
gabbro samples show almost flat REE patterns
[(La/Yb)N = 2.06 − 4.67 and (Dy/Yb)N = 1.14 − 1.28],
indicating that garnet did not control elemental partitioning
during melting or fractionation, with positive Eu
(Eu/Eu* = 1.08 − 1.43) and Sr anomalies (Figs. 6.7 and
6.8), and overall REE abundance is lower.

The variation of Th and U show strong positive correla-
tions (Fig. 6.9a) which indicates magmatic behavior of Th
and U during magmatic differentiation (Moghazi et al.
2011). Moreover, the variation of Ta versus Nb, and Hf
versus Zr (Fig. 6.9b, c) show positive correlation, suggesting
that the behavior and enrichment of Nb and Ta are largely
controlled by magmatic process (Lehmann and Mahawat
1989; Charoy and Nornoha 1991).

6.5 Discussion

New U–Pb zircon ages and geochemical data that charac-
terize the Bulghah and Humaymah areas, when combined
with available geochemical data from previous studies
(Harbi et al. 2016, 2018; Robinson et al. 2015), allow us to
discuss their tectonic setting and their petrogenesis.

6.5.1 Tectonic Stetting

Granitic rocks are divided into I-, S- and A-types (Whalen
et al. 1987; Chappell and White 1992, 2001). A-type gran-
ites contain high temperature hydrous phases such as
pyroxene and fayalite, and late crystallization biotite and
alkali amphibole (Wormald and Price 1988; King et al.
1997). However, petrographic investigation indicates that
Bulghah and Humaymah granites show no pyroxene or
fayalite, and contain hornblende which is inconsistent with
alkali amphibole in typical A-type granites. Moreover, the
slight enrichment in high field strength element (HFSE) and
REE concentrations, in combination with the petrographic
characteristics and the slight low Zr, Nb, Ce and Y

Fig. 6.9 a Th versus U, b Ta versus Nb, and c Hf versus Zr variation
diagrams of the studied intrusive samples from the Bulghah and
Humaymah areas, showing geochemical positive correlation between
the different granitic types, suggesting that the behavior of these trace
elements are largely controlled by magmatic processes. The field of
Sukhaybarat I-type granitoids from Harbi et al. (2018)
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concentrations in most granitic samples, suggest that the
studied samples are not A-type granites. The studied grani-
toids are not also S-type granites because they are metalu-
minous to slightly peraluminous, and have A/CNK < 1.1
and A/NK > 1 (Fig. 6.6a). It show also that P2O5 decreases
with increasing SiO2 (Fig. 6.4h). Additionally, the studied
samples contain no Al-rich minerals such as cordierite,
muscovite or garnet which are considered the common
features of S-type granites (Chappell and White 1992;
Huang et al. 2013).

Except for three samples, the granitoid rocks of Bulghah
and Humaymah fall in the magnesian field on FeOt/FeOt +
MgO versus SiO2 diagram (Frost et al. 2001) (Figure not
shown). They are classified as I-type granites on the
10,000 � Ga/Al versus Zr diagram (Whalen et al. 1987)
(Fig. 6.10a). Rb, Ta, Nb and Y, among other trace elements,
have been used to discriminate the different tectonic setting
of granitoid rocks (Pearce et al. 1984). The studied grani-
toids fall in the volcanic-arc/syn-collisional fields (VAG +
syn-COLG) in the Y + Nb versus Rb, Y versus Nb, and Yb
versus Ta diagrams (Fig. 6.10b–c) of Pearce et al. (1984).

Mafic intrusive rocks (gabbro and diorite) have been clas-
sified using the Cr versus Y diagram (Fig. 6.10a; Pearce et al.
1984) and Cr versus Ce/Sr diagram (Fig. 6.10b; Pearce 1982),
they plot in the island arc tholeiites (IAT) field. However, V
versus Ti/1000 discrimination diagram ((Fig. 6.7c; Shervais
1982) classify the gabbro and diorite samples as mid-ocean
ridge (MORB)/back-arc basin (BAB) mafic components. In
summary, variation in multi-elements diagrams (Fig. 6.7) and
REE discrimination diagram (Figs. 6.10 and 6.11) indicates
that the studied rocks are related to calc-alkaline I-type mag-
matism formed in an island-arc setting.

6.5.2 Petrogenetic Evaluation

The main compositional trends of the studied intrusive rocks
are shown on Harker variation diagrams (Fig. 6.4). The
figure shows that many elements do not have straight-line
variations (e.g., Al2O3, MgO, CaO, TiO2, Na2O, P2O5, Nb,
Ni and Y) but exhibiting compositional gap between dif-
ferent intrusive types. This suggest two different

Fig. 6.10 Major and trace
elements tectonic discrimination
diagrams. a Rb versus Y + Nb,
b Nb versus Y and c Ta versus Yb
diagrams (after Pearce et al.
1984), showing the studied
granitoids plot in the VAG field.
d Zr versus 10,000 Ga/Al
diagram (Whalen et al. 1987),
showing the studied intrusive fall
in the I-type granite field.
However, few monzogranite
samples fall in the A-type field,
perhaps due to the mobility of Al
(major element). Note diorite
intrusive samples are also plotted
to highlight the compositional
range within these suites, but are
classified in Fig. 6.11.
VAG = volcanic arc granite,
syn-COLG = syn-collision
granite, ORG = ocean ridge
granite, WPG = within plate
granite and
post-COLG = post-collisional
granite. The field of Sukhaybarat
I-type granitoids from Harbi et al.
(2018) and the field of Jabal
Ghadarah I-type granitoids from
Harbi et al. (2016)
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compositional trends in Bulghah and Humaymah intrusive
rocks; one for gabbro and diorite and the other for
granodiorite-tonalite and monzogranite. Overall, the mafic
intrusive rocks are characterized by slightly LREE enriched
patterns and relatively flat HREE patterns
[(Dy/Yb)N = 1.00 − 1.33, except for three diorite samples
show higher values [(Dy/Yb)N = 1.45 − 1.63) (Fig. 6.8a, d,
e). Most samples show Cs, Sr, Rb and K enrichments and
Nb, Ta and Ti depletions. The gabbroic samples have La/Nb
ratios range from 0.9 to 2.3 and slightly LREE enriched
[(La/Yb)N = 2.06 − 4.67] (Fig. 6.8), although all mafic
samples (gabbro and diorite) are outside this range
[(La/Yb)N = 2.06 − 11.24]. All mafic intrusive samples
show negative Ce and positive or slightly negative Eu
anomalies (Eu/Eu* = 0.75 − 1.43) (Figs. 6.7 and 6.8).
These geochemical features are comparable to those of the
arc-metavolcanic calc-alkaline rocks of the Arabian Shield
(Ali et al. 2010), which were produced by partial melting of
plagioclase- or spinel-peridotite in the upper most mantle
<80 km deep in an intra-oceanic island arc, as indicated
from the flat HREE patterns (Rudnick et al. 2004) and other
trace element characteristics (Ali et al. 2010). This suggests
that the mafic intrusive rocks of Bulghah and Humaymah

represent the plutonic equivalents of the Arabian Shield arc
metavolcanic calc-alkaline rocks.

I-type granitoids can be formed through number of
magmatic processes (e.g., Miller 1985; Jiang et al. 2007;
Hassanen et al. 1996; Best and Christiansen 2001; Roberts
and Clements 1993; Skjerlie and Johnston 1992; Frost and
Frost 1997; Clemens et al. 2011; Chappell et al. 2012;
Huang et al. 2013; Zhang et al. 2015), including Derivation
from magmas generated by partial melting of mafic and
intermediate igneous rocks has been proposed for some
I-type granitoids (see Best and Christiansen 2001). Others
have suggested that the I-type granitoids derived from partial
melting of ancient lower crust (e.g., Jiang et al. 2007) or
hydrous, calc-alkaline to high-K calk-alkaline old meta-
morphic rocks (Roberts and Clemens 1993). Several studies
proposed fractional crystallization of mafic/intermediate
magmas as an important process to generate felsic magmas
(e.g., Miller and Mittlefehlt 1984; Miller 1985; Secchi et al.
1991; Teixeira et al. 2012). Partial melting of eclogite or
garnet amphibolite at mantle depth (Hassanen et al. 1996)
and dehydration melting of amphibole-bearing tonalite
(Creaser et al. 1991; Skjerlie and Johnston 1992; Frost and
Frost 1997) are other potential sources to generate I-type

Fig. 6.11 Mafic intrusive
classification schemes applied to
gabbroic and dioritic samples
from Bulghah and Humaymah
areas. a Cr versus Y and b Cr
versus Ce/Sr (after Pearce et al.
1984), showing the studied
samples fall in the IAT field. c V
versus Ti/1000 (after Shervais
1982), showing the studied
samples plot in the IAT, MORB
and BAB fields. The field of
Makkah Suite mafic intrusive
rocks (Jeddah terrane) from
Robinson et al. (2015). Results
are discussed in text.
MORB = mid-ocean ridge basalt,
BAB = back-arc basalt, and
IAT = island-arc tholeiitic
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granites. Differentiation (i.e. partial melting and/or fractional
crystallization) of crust and then the magma may have been
modified to a degree by fractional crystallization (Miller
1985; Turpin et al. 1990; Barbarin 1996; Champion and
Chappell 1992; Chappell et al. 2012; Zhang et al. 2015)
could be another source for the I-type granites.

The I-type granitoids (granodiorite-tonalite to monzo-
granite) of the current study cannot account as a product of
mafic magma fractionation since Harker diagrams exhibiting
compositional gap between different intrusive types
(Fig. 6.4). This exclude the possibility that the granitoids
were produced from magmas generated by partial melting of
mafic igneous rocks. This is further supported by the U–Pb
geochronology data, the dioritic rocks yielded U–Pb ages of
677 ± 8 Ma and 667 ± 6 Ma (Fig. 6.3), whereas the U–Pb
zircon age of the monzogranite intrusion is 631 ± 1 Ma

(Bakhsh, unpublished data). A large span in U–Pb ages from
677 (mafic rocks) to 631 (intermediate and felsic rocks)
implies that the granodiorite and monzogranite originated
from a different magma source than that of the mafic magma
(gabbro and diorite).

The compositional variations from granodiorite-tonalite
to monzogranite of Bulghah and Humaymah perhaps caused
by varying degree of partial melting suggest various degree
of fractional crystallization. Varying degree of partial melt-
ing of a source could effectively produce melts that have
diverse concentration of both major and trace elements
(Huang et al. 2013). The most felsic rocks (monzogranite)
representative of the lowest degree of partial melting of a
source should have the highest La/Yb but lowest Dy/Yb
(Huang et al. 2013). However, monzogranite and granodi-
orite samples show scattered ratios (Fig. 6.12a), inconsistent

Fig. 6.12 a Dy/Yb versus La/Yb compositional variation diagram,
indicating that the studied granitoid samples inconsistent with the
partial melting trend. b Sr versus Eu/Eu* and c Sr/Y versus Eu/Eu*
variation diagrams, showing that fractionation of plagioclase played an
important role in the differentiation of the studied I-type granitoids.
d Nb/Ta versus Dy/Yb and e Dy versus Er variation diagrams, showing
that fractionation of hornblende played an important role in the

differentiation of the studied I-type granitoids. f V/Th versus SiO2/
Al2O3 and g Sc/Th versus SiO2/Al2O3 variation diagrams, suggesting
biotite fractionation between granodiorite and monzogranite samples.
h TiO2/Yb versus Nb/La and i Eu/Eu* versus Nb/La diagrams for the
granitoid samples, showing no correlation indicate a minor role of Fe–
Ti oxides fractionation in the genesis of the granodiorites and
monzogranites
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with the partial melting trend. Thus, it is unlikely that
varying degree of partial melting is responsible for the
diverse elemental concentrations in Bulghah grantoid rocks.
Partial melting model of garnet amphibolite at mantle depth
(Hassanen et al. 1996) generates a peraluminous melt
(Beaard and Lofgen 1991). However, the studied granitoid
samples are metaluminous to weakly peraluminous, indi-
cating water undersaturated partial melting (Huang et al.
2013). Garnet with plagioclase and orthopyroxene would be
major residual phases at high pressure (Wolf and Wyllie
1994). If garnet is a residual phase in the source, the HREE
patterns will show strong depletion, but the studied granitoid
samples show flat to slightly depleted HREE (Fig. 6.8b, c,
f). Therefore, the possibility of a high pressure magma
source can be excluded as a source for the studied granitoid
samples. Contrasting REE patterns between the granodiorite-
tonalite and monzogranite samples may have resulted from
various degree of fractional crystallization. K-feldspar sep-
aration is responsible for the depletion of Ba (Wu et al. 2002;
Fig. 6.7c, e), whereas Plagioclase fractionation depleted Eu
and Sr in the melts (Figs. 6.7 and 6.8). As shown by Sr, Sr/Y
versus Eu/Eu* (Fig. 6.12b and c), the correlations observed
in Bulghah granite samples are indicative of plagioclase
fractionation. Fractionation of amphibole will lower the
Nb/Ta and Dy/Yb ratios in the remaining melt because of its
D(Nb)/D(Ta) > 1 (Tiepolo et al. 2001) and D(Dy)/D
(Yb) > 1 (Sisson 1994). A positive correlation between
Nb/Ta and Dy/Yb in the Bulghah I-type granitoids strongly
suggests amphibole fractionation (Fig. 6.12d). This is further
confirmed by the positive correlation between Er and Dy
corresponds to the fractionation of hornblende from the
parental magma (Drummond et al. 1996; Fig. 6.12e). Biotite
have a low value for Th, but high partition coefficients for Sc
and V (Bea et al. 1994), therefore biotite fractionation will
increase SiO2/Al2O3 but decrease Sc/Th and V/Th ratios in
residual melts (Huang et al. 2013). Thus, negative correla-
tions between V/Th and Sc/Th and SiO2/Al2O3 (Fig. 6.12f,
g), perhaps indicate biotite fractionation between granodi-
orite and monzogranite samples of Bulghah. Ti-bearing
minerals, such as titanite and ilmenite, might be other frac-
tionated phases as suggested by increasing TiO2 with
decreasing SiO2 (Huang et al. 2008; Table 6.3, Fig. 6.4c).
The fractional crystallization of titanium-rich minerals
commonly generates negative Nb–Ta and Ti anomalies in
basalts (Xiong et al. 2005; Huang et al. 2008). However, this
cannot be the reason for low Nb–Ta (Fig. 6.8b) in the
studied granitoids because there are lack of correlations
between TiO2/Yb, Eu/Eu* and Nb/La (Fig. 6.12h, i), indi-
cating a minor role of Fe–Ti oxide fractionation in the
genesis of the studied granitoids. Therefore, various degrees
of plagioclase, hornblende and biotite fractional crystalliza-
tion would be important mechanism for variations in
chemical composition of the studied granitoids (Fig. 6.12a–

i). The wide range of Mg# (14.5–40.2), Ni (<1–36 ppm) and
V (11–89 ppm) contents of the studied granitoids
(Table 6.3), perhaps suggest that two or more different

Fig. 6.13 Relationships of (Th/Nb)N, (Th/Ta)N, and (Ce/Pb)N versus
(Y/Nb)N for the studied granitoid samples from the Bulghah and
Humaymah areas with compositional fields of active continental margin
(ACM), ocean island basalt (OIB) and continental crust (CC) from
Moreno et al. (2014). The field of Sukhaybarat I-type granitoids from
Harbi et al. (2018) and the field of Jabal Ghadarah I-type granitoids
from Harbi et al. (2016). Normalization values are from McDonough
and Sun (1995)
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magma sources are likely for the granodiorites and monzo-
granites (Kelemen 1995; Taylor and Mclennan 1985; Wang
et al. 2014). This is supported by the relationships between
Y/Nb with Th/Nb, Th/Ta and Ce/Pb (Fig. 6.13) which are
sensitive to mantle and continental crust magma sources
(Hofmann et al. 1986; Miller et al. 1994; Montero et al.
2009; Rudnick and Gao 2003; Rudnick et al. 2004; Moreno
et al. 2014). The relationships of the Y/Nb with Th/Nb and
Th/Ta (Fig. 6.13a, b) provide an efficient discrimination
between oceanic island (OIB) and convergent margin
(ACM) rock types. This is because that any change in
incompatible trace-element ratios resulting from magmatic
differentiation (e.g., crystal fractionation or partial melting)
should be small in comparison to that which may result from
two magma sources. The studied samples lie within the field
of convergent margin magmatism and inside, or close to, the
continental crust field (Fig. 6.13a and b). The (Y/Nb)N
versus (Ce/Pb)N diagram also show that the granodiorite and
the monzogranite samples have the features of a convergent
margin and continental crust component (Fig. 6.13c).
Therefore, these relationships (Fig. 6.13) suggest the sig-
nificant involvement of a continental crust component in the
granodiorites and monzogranites.

These rocks also show crustal-like trace-element patterns
with negative Nb, Ta and Ti, and positive Pb anomalies
(Fig. 6.7c, e, f). This is supported by Nb/Ta ratios ranging
from (7.6 to 21.0, average of 14.5) that are close to the
composition of magmas derived from crust and mantle
(17.5; Green 1995). However, mixing model between mafic
and felsic magmas needs to be confirmed by whole-rock
Sr-Nd isotopes.

6.6 Conclusions

The following are the conclusions from our study:

1. Zircon U–Pb dating indicates that the mafic intrusive
rocks from Bulghah and Humaymah, Saudi Arabia were
formed at *670 Ma, whereas the granitoid I-type
intrusions were formed between 661 ± 5 and
643 ± 4 Ma, confirming the importance of the 700–
640 Ma crustal forming event in Saudi Arabia.

2. Our analyses of the intrusive samples revealed no evi-
dence of pre-Neoproterozoic zircons, further indicating
that ANS crust in this region is mostly juvenile.

3. The studied intrusive rocks range in composition from
gabbro-diorite to monzogranite. The gabbro-diorites and
granodiorite-tonalite rocks are calk-alkaline, metalumi-
nous to slightly peraluminous, whereas the monzogranite
samples are classified as calc-alkaline to highly frac-
tionated calc-alkaline.

4. The granodiorite-tonalite and monzogranite samples are
I-type granites and classified as magnesian formed in a
volcanic arc setting.

5. The mafic intrusive rocks (gabbro and diorite) formed in
island arc setting, perhaps represent the plutonic equiv-
alents of the Arabian Shield arc metavolcanic
calc-alkaline rocks which were produced by partial
melting of plagioclase- or spinel-peridotite in the upper
most mantle <80 km deep in an intra-oceanic island arc.

6. Y/Nb with Th/Ta, Th/Nb Nb and Ce/Pb relationships
indicated that the granodiorites-tonalies and monzo-
granites generated by a combination of mafic parental
magma contaminated with crustal materials and con-
trolled by fractional crystallization.
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