
Chapter 5
Cause-Effect Pairs in Time Series with a
Focus on Econometrics

Nicolas Doremus, Alessio Moneta, and Sebastiano Cattaruzzo

5.1 Introduction

Let us consider two scalar stochastic processes xt and yt , t ∈ Z, each observed
for T realizations. We assume that xt and yt are covariance stationary or that Δxt

and Δyt are covariance stationary. Most time series observed in macroeconomics,
for example, belong to this class of processes (see e.g. [29]). If we exclude the
possibility that the future can cause the past, but we allow contemporaneous feed-
back loops due for example to temporal aggregation, there are several possibilities
as regards the causal structure between xt and yt , which we list here below. We
denote causal relationships1 with directed edges (→), following the graphical causal
models terminology [64].

1When referring to “causal relationships”, we endorse here, in the spirit of Hoover [32], Pearl
[55], a structural account of causality: causal relationships are the fundamental, but usually latent,
building blocks of the mechanism that has generate the observed data, which we aim at representing
through a structural (or causal) model. While a structural model entails probabilistic relations, it
contains more information than a statistical model, because it allows us to analyze the effect of
interventions (cf. [58]).
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(i) The series xt has a contemporaneous or lagged causal effect on yt , i.e. xi →
yi+s for some i, s such that i ≥ 0, s ≥ 0.

(ii) The series yt has a contemporaneous or lagged causal effect on xt , i.e. yi →
xi+s for some i, s such that i ≥ 0, s ≥ 0.

(iii) A not-measured series zt has a contemporaneous or lagged causal effect on
both xt and yt .

(iv) The causal structure between xt and yt can be described by any combination
of (i)–(iii).

(v) There is no causal link or path (of any type) linking xt and yt+s , for any s ∈ N.

In principle, other, more involute, causal structures are possible between xt and
yt . For example, the data generating process may have a frequency that is different
from the frequency of data collection, so that there are hidden causal structures
between the observed variables. This class of structures has been considered in the
literature on temporal aggregation in econometrics (see e.g. [17, 18, 50]) and in
the literature on subsampling in machine learning (see [10, 36]), but will not be
further discussed in this paper. We will also limit our discussion on structures in
which variables are well-defined (i.e. they are not aggregate of variables with diverse
causal roles) and the causal structures are time invariant: i.e. if xi → wi+s given
any s ∈ Z, then this true for all i ∈ Z, where w can be any variable (included x

itself). We will also typically assume that each observed series wt will be directly
causally influenced by its own past, until a certain lag and that each variable at each
time unit will be affected, in an additive manner, by one or more independent shock.
In other words, we focus on additive noise models.

The causal structure between two time series can be represented by a causal graph
consisting of nodes for xt , . . . , xt−p, yt , . . . , yt−p, where p is the largest lag by
which xt or yt can be directly causally influenced. Using the terminology proposed
by Chu and Glymour [7], this graph is called a unit causal graph. Examples for unit
causal graphs are shown in Figs. 5.1 and 5.2, for p = 2. Figure 5.1 represents the
case in which (i) is true, while Fig. 5.2 represents the case in which (iii) is true. Chu
and Glymour [7] notice that a unit causal graph can be extended to repetitive causal
graph (not shown), including the variables xt and yt at a potentially infinite time
units. The repetitive causal graph corresponding to the unit causal graph of Fig. 5.1,
for example, would include nodes for xt−3, xt−4, . . ., for yt−3, yt−4, . . . and direct
edges from xt−s to yt−s , as well as xt−s−2 → yt−s and xt−s−1 → yt−s , for any
s ∈ Z.

Fig. 5.1 Unit causal graph
for bi-variate time series with
both lagged and
contemporaneous effects

xt–2 xt–1 xt

yt–2 yt–1 yt
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Fig. 5.2 Unit causal graph
for bi-variate time series with
a latent series zt

xt–2 xt–1 xt

yt–2 yt–1 yt

zt–2 zt–1 zt

How do we detect which of the five cases listed above (i)–(v) is true? How do we
learn which causal graph better represents the data generating process? How do we
learn to what extent an intervention on one variable at time t propagates on all the
variables at time t + h for any value of h > 0? These are the typical questions that
concern, for example, the applied macro-econometrician. In this paper we discuss
possible manners to address these questions. We review methods that are able to
disentangle among different causal structures, under different assumptions.

Some causal discovery methods developed for i.i.d. data cannot be applied,
without further modification, to the time series setting, due to the fact that, even in a
simple setting of causal pairs, there is the possibility of causal relationships with dif-
ferent effects at different lags. Furthermore, the autocorrelation (or self-dependence)
structure underlying the data introduces some complications in standard statistical
inference that reduce the efficiency of simple regression estimation or conditional
independence testing [26]. Nevertheless, the time series setting is not necessarily a
curse, and is actually a blessing in specific contexts of causal inference. Indeed, if
one accepts the assumption that the future cannot cause the past (whose acceptance
in economics involves a careful taking into account of expectational variables, see
[33]), exploiting the arrow of time allows one to solve many orientation problems,
i.e. problems where it is known that there is a causal dependence between two
variables, but not the direction. Moreover, in the case of causal pairs, the possibility
of observing past values of the variables allows us to condition on more than two
variables, which is not possible in the context of i.i.d. causal pairs.

We shall also notice that if the framework is the one of a causal time-series pair
in which only one direction of causal influence is admitted: either xt → ys (for
one or more values of s such that s ≥ t) or yt → xs (s ≥ t) and one is only
interested in the “summary graph” [58], i.e. in ascertaining whether x causes y or
y causes x at any time unit, then the problem can be solved in a relatively easy
fashion in many settings. Using a simple regression analysis, it will be sufficient to
regress xt on lagged values of itself and of the other variable, as well as to regress
yt on lagged values of itself and of the other variable. Since all the covariates in
the two regressions are pre-determined there are no endogeneity problems here and
the error terms will be independent of the regressors. Therefore, by simple testing
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the hypothesis of non-zero statistical influence of one lagged variable (e.g. xt−1) on
another (e.g. yt ) and the hypothesis of a zero statistical influence on the symmetric
regression (e.g. of yt−1 on xt ), we will be able to detect a genuine causal influence
(at some unknown time unit) from one variable to another (e.g. from x to y). This
framework is identical to the vector autoregressive framework that we will discuss
below and also related to an interpretation of Granger non-causality test that we
will also discuss below. Notice, however, than in many fields like economics the
assumption of causality running in only one direction between time series, without
the possibility of a feedback at a different time unit, is a toy example, with very
poor empirical applicability. This is why our discussion framework will be larger,
including the possibility of structures like yt−1 → xt → yt .

In reviewing different methods we distinguish between methods that filter the
series through a vector autoregressive model (Sect. 5.2.1) and methods that apply
causal search directly to time series data (Sect. 5.3).

5.2 Vector-Autoregressive Framework

5.2.1 The VAR Model

One of the most popular approaches to identify dynamic causal effects in time series
econometrics is structural vector autoregressive (VAR) analysis. Structural VAR
analysis is based on the assumption that the statistical properties of a data generating
process can be well approximated by a reduced-form VAR model.

Let us consider a vector Yt of k time series variables. For example, Yt = (xt , yt )
′,

in which case k = 2. We assume that Yt follows a stochastic process that can be well
approximated by a linear VAR process of the form

Yt = μ + A1Yt−1 + · · · + ApYt−p + ut , (5.1)

where μ is a k × 1 vector of constants, Ai (i = 1, . . . , p) is a k × k matrix and
ut is a k × 1 vector of white noise, whose elements are referred to as reduced-
form residuals. Each element of ut is in turn assumed to be a linear combination
of latent structural shocks, ε1t , ε2t , . . ., which are the sources of variation of the
system. In macroeconomics these shocks have special meaning such as, for example,
the productivity shock, the monetary policy shock, the fiscal policy shock, etc. It
is standard in the VAR literature to assume that the number of shocks is equal to
the number of measured variables. Another usual assumptions is that ε1t , . . . , εkt

are mutually independent, although orthogonality is sufficient in many applications.
Thus we have:

ut = Bεt , (5.2)
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where B is a k × k invertible matrix (the impact or mixing matrix) and εt =
(ε1t , . . . , εkt )

′ is a vector of independent shocks. Let W be B−1. By pre-multiplying
Eq. (5.1) by W we get the structural VAR form:

WYt = μ′ + Γ1Yt−1 + · · · + ΓpYt−p + εt , (5.3)

where μ′ = Wμ and Γi = WAi for i = 1, . . . , p. From Eq. (5.1) it is evident that
the matrix W incorporates information about the contemporaneous causal structure,
while the matrices Γi’s incorporate information about the lagged causal structure.
Since Sims [62], econometricians have focused their attention on the identification
of the effect of εt on Yt over time. These are called impulse response functions, and
we will be discussed in a subsequent Sect. 5.2.4.

Since Eq. (5.3) cannot be directly estimated because of endogeneity problem, the
idea of VAR analysis is to follow a two-step procedure: first Eq. (5.1) is estimated
through standard regression methods. From this stage one obtains an estimate of
the reduced-form residuals ut . Second, the parameters of Eq. (5.3) (in particular the
coefficients entering in W and Γi) can be recovered by analyzing the relationships
among the elements of ut , which, under some conditions, may allow identifying the
matrix B entering in Eq. (5.2). Notice that, having estimated (5.1), knowing B is
sufficient for identifying (5.3).

For example, Swanson and Granger [68], Bessler and Lee [3], Demiralp and
Hoover [11], Moneta [52] propose a two-step identification method, consisting in
first estimating the reduced-form VAR residuals, and then applying to the estimated
ut (which should share characteristics of i.i.d. data) conditional independence tests,
in the spirit of a causal search based on graphical causal models [64]. This allows
them to find out which entries of B are zero.

For k = 2, as is the case of causal pairs, independence tests between u1t and
u2t can only discriminate between the presence and the absence of a causal link
between the contemporaneous variables, but are not of any help in finding causal
directions. In other words, they find zero entries in B only in the case when u1t and
u2t are mutually independent (corresponding to the absence of contemporaneous
causal relations).

5.2.2 ICA-Based Identification

An alternative method to identify B in the same two-step framework is to apply
Independent Component Analysis (ICA) to the estimated reduced-form residuals
ut . Since, as shown in (5.2), ut = Bεt , it is possible to apply ICA to recover
the coefficients that linearly mix the elements of εt to produce ut [9, 37, 39]. ICA
has been applied to a VAR setting by Hyvärinen et al. [40], Moneta et al. [53],
Gouriéroux et al. [22], among others.

ICA is based on a theorem, see [9, Th. 11], [15, Th. 3], [22, p.112], according to
which if B is invertible, and if the components of εt (ε1t, . . . , εkt ) are independent,



196 N. Doremus et al.

with at most one Gaussian distribution, then the matrix B is identifiable up to a post
multiplication by DP , where P is a permutation matrix and D a diagonal matrix
with non zero diagonal elements.

There are many ICA approaches to estimate the mixing matrix B (cfr. [39] for
an overview), most popular of which are the fastICA algorithm [38], which is based
on minimization of mutual information and maximization of negentropy, the JADE
algorithm [5], which maximizes a measure of non-Gaussianity based on the fourth
moments, and the product density ICA algorithm [28], which is based on maximum
likelihood principle. Alternative approaches have been also recently proposed in
econometrics, e.g. the distance covariance approach by Matteson and Tsay [51], the
Cramer-von-Mises distance approach by Herwartz [30], the maximum likelihood
approach by Lanne et al. [48], and the pseudo ML approach by Gouriéroux et
al. [22].

Assuming that B is invertible implies that each observed variable uit is affected
by at least one shock εit and that each εit influences at least one variable. In other
words, there is always a column-permutation of the mixing matrix B̃ output of ICA
such that all the elements in the main diagonal are significantly different from zero.
This assumption is in tune with the standard VAR framework.

In the case of causal pairs (k = 2), with matrix B of dimension 2 × 2, it
is therefore very useful to test which entries in B are significantly close to zero
and check their row position. The significance test can be done with a bootstrap
procedure, by performing a nonparametric quantile test in order to decide whether
0 is an outlier, as proposed by Lacerda et al. [47]. Alternatively, one can test a zero
restriction in B by exploiting the asymptotic distribution of the pseudo ML estimator
of B, as proposed by Gouriéroux et al. [22].

Let us continue to assume that Yt = (xt , yt )
′. On the basis of tests on zero

restrictions in B, one can distinguish among four different cases: (1) If there is only
one zero entry in B and this lies in the first row, this means that the first element of
ut , which we call uxt , is affected only by one shock, while the second element of
ut , which we call uyt , is affected by both shocks. This means that xt causes yt . (2)
Symmetrically, if the only zero entry of B lies in the second row, yt causes xt . (3)
If there are two zero entries in B, which, by construction, must lie either in its main
or anti-diagonal, then xt and yt are not (contemporaneously) causally related. (4) If
there are no zero entries in B, some other structures are possibilities: there could be
a feedback loop between xt and yt , or a latent variable zt affecting both xt and yt ,
possibly also including causal relationships between xt and yt .

If there is a latent variable zt , this means that the shocks affecting the system
are potentially three, while the observed variables are still two. Attempting to
identify the structural model would bring us outside the VAR framework. It is worth
noting, however, that the ICA framework has been extended to the cases where the
number of sources is greater than the number of mixtures (overcomplete ICA) (see
[39, ch.16]). The identification of the rectangular mixing matrix potentially allows
distinguishing between the case of feedback loop between xt and yt (two shocks
affecting the system) and the case of a latent variable (three shocks affecting the
system with at least one idiosyncratic shock).
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If it is known that, underlying the structural model, there is a recursive contem-
poraneous structure, that is either xt causes yt or yt causes xt (equivalently, there
is a permutation of the matrices B and W that make them lower triangular), then,
a valid and efficient alternative to the test of zero-coefficient suggested above, is
performing a LiNGAM (short for Linear Non-Gaussian Acyclic Model) analysis, as
proposed by Shimizu et al. [61]. LiNGAM is an algorithm that incorporates ICA in
the first step, and then search for the right row-permutation of the unmixing matrix
W that yields a lower triangular matrix. Lacerda et al. [47] propose an extension of
this algorithm to the cyclic case (in which feedback loops are allowed), called LiNG.
Hoyer et al. [34] propose an extension of basic LiNGAM to the case in which latent
common cause are allowed, called LvLiNGAM.

5.2.3 Nonlinear Framework

The standard VAR framework, as proposed in the econometric literature, is a linear
model. In economics and in many other fields, however, there is no compelling
substantive reason why a variable should depend only linearly on current values
of other variables, on past values of itself and of other variables. Thus, a class of
nonlinear structural VAR models has been proposed (see [44, ch. 18]) that allows
nonlinear dependence among measured time-series but with an additive white noise
error terms. In this case, we can apply a two-step identification procedure similar to
linear case: in a first step one estimates a reduced-form nonlinear VAR model, and
in a second step one extracts from the estimated additive errors information in order
to recover the structural VAR model. A general nonlinear VAR model with additive
errors can be written as:

Yt = Ft(Yt−1, . . . , Yt−p) + ut , (5.4)

where the nonlinear function Ft(·) may depend on t . Most nonlinear VAR models
considered in the econometric literature deal with time-varying coefficients (see e.g.
[59]) which are able to capture very general nonlinear dynamics, while keeping
linear the mixing structure between reduced-form and structural residuals.

We do not review here this literature (see [27, 43], and references therein). Rather,
we point out a method to identify the contemporaneous causal direction that exploits
the nonlinear dependence among the variables and is based on two assumptions: (i)
there is a contemporaneous, nonlinear causal relationship between xt and yt in only
one direction (either xt −→ yt or yt −→ xt ), (ii) the structural form model can
be written as Yt = F(Yt−1, . . . , Yt−p) + G(Yt ) + εt , where F(·) and G(·) are two
linear functions with ε1t ⊥⊥ε2t .

The method follows a two-step procedure, as is typical of a VAR-based approach.
In the first step the lagged effects are filtered out through nonlinear or nonparametric
estimates of the regressions xt = f1(xt−1, . . . , xt−p, yt−1, . . . , yt−p) + u1t and
yt = f2(xt−1, . . . , xt−p, yt−1, . . . , yt−p) + u2t , in order to obtain estimates of u1t
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and u2t . In the second step one the contemporaneous causal direction is detected
through a nonlinear additive noise model (see [35, 58]). Indeed we will have that if
the contemporaneous causal relation is xt → yt

u2t = fy(u1t ) + Ny (5.5)

where Ny is an unobserved noise term and N
y
t ⊥⊥u1t . Likewise, if the contempora-

neous causal relation is yt → xt

u1t = fx(u2t ) + Nx, (5.6)

where Nx is an unobserved noise term and Nx ⊥⊥u2t .
Thus, once u1t and u2t are estimated through a nonlinear or nonparametric

VAR model, one regress them on each other, using a nonparametric estimator, and
obtains estimated of Nx and Ny . If, on the basis of a nonparametric independence
test (see e.g. [25]), the independence between Ny and u1t is not rejected, while
the independence between Nx and u2t is rejected, one infer xt → yt . If, the
independence between Nx and u2t is not rejected, while the independence between
Ny and u1t is rejected, one infer yt → xt .

5.2.4 Impulse Response Functions

Having identified the mixing matrix B and the structural shocks εt , econometricians
are mostly interested in the responses over time of each element of Yt = (xt , yt )

′
to a one-time impulse in each element of εt = (ε1t , ε2t )

′. These impulse response
functions are defined [44, p. 110] as:

∂Yt+i

∂ε′
t

= Θi i = 0, 1, 2, . . . , H, (5.7)

where, in the case of two variables, Θi is a 2 × 2 matrix, whose four elements are:
∂xt+i

∂ε1t
, ∂yt+i

∂ε1t
(first column), ∂xt+i

∂ε2t
, ∂yt+i

∂ε2t
(second column).

Consider, for simplicity, a linear VAR model with one lag (p=1) and no intercept:

Yt = A1Yt−1 + ut . (5.8)

By recursive substitution it can be written:

Yt+i = Ai+1
1 Yt−1 +

i∑

j=0

A
j

1ut+i−j . (5.9)
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The responses of Yt to reduced-form errors (also referred to as forecast errors) i

periods ago2 are then captured by the matrix Φi = Ai
1. If Yt is a stable process (all

eigenvalues of A have modulus less than 1), i.e. each element of Yt is covariance
stationary, Eq. (5.8) can be equivalently expressed according to the moving average
(MA) representation (Wold decomposition):

Yt =
∞∑

i=0

Φiut−i , (5.10)

where Φi is calculated as above (for the one-lag case), with Φ0 = I . From
Eqs. (5.10), (5.2) and (5.7) it follows

Yt =
∞∑

i=0

ΦiBB−1ut−i =
∞∑

i=0

ΦiBεt−i =
∞∑

i=0

Θiεt−i . (5.11)

If the VAR is not stable, the infinite Wold representation is not allowed, but the same
approach to calculate Φi and Θi will work, because Eq. (5.9) does not depend on
stationarity. In case of unstable process, the impulse response functions will not be
tied to the MA representation and will not converge to zero for i → ∞. In particular
if Δxt is stationary the impulse response function to Δxt will converge to a finite
number.

This framework to calculate impulse response functions can be easily extended
to the case of more lags using a “companion matrix” representation (see [44, p. 25])
and is not substantively affected by the presence of a constant in (5.8). However, it
cannot be applied to nonlinear VAR models, due to its reliance on Eq. (5.9).

Thus structural impulse responses in a nonlinear setting are defined in an
alternative manner, using the concept of conditional expectation [44, 45, p. 615].
Denoting by Ωt−1 the information set available at date t −1 and by δ the magnitude
of the impulse of which one wants to study the response (e.g. δ = standard deviation
(ε1t )), the structural response of xt+i to the structural shock ε1t is defined as

Ix(i, δ,Ωt−1) = E(xt+i |ε1t = δ,Ωt−1)−E(xt+i |Ωt−1) i = 0, . . . , H. (5.12)

Having estimated a nonlinear reduced form VAR model (5.4) and having recovered
the structural shocks (for example on the basis of additive noise model framework,
see end of Sect. 5.2.3), one can evaluate (5.12) using a Monte Carlo procedure
[44, pp. 615–616]. In this procedure, one simulates two time paths: in a first path
the shock of interest is set at time 0 to a particular value δ and the subsequent
realizations of the variables of interest are estimated; in a second time path the value
of the shock of interest is drawn from an empirically estimated marginal distribution.

2Or, equivalently, the responses of Yt+i to forecast errors at time t .
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Thus, Eq. (5.12) is estimated by subtracting the average outcome of the second path
from the first.

5.2.5 Granger Causality in a VAR Framework

VAR models have also been used for a type of causal analysis that does not involve
the identification of a structural model like Eq. (5.3). This approach is based on a
notion of causal relationship proposed by Granger [23, 24], which is referred to as
Granger causality. Granger’s general definition of causality relies on two general
principles: (i) the effect does not precede its cause in time; (ii) the causal time
series contains unique information about the series being caused that is not available
otherwise (see [13]). A corollary of these principles is that xt Granger causes yt if xt

is helpful for predicting future values of yt . Incidentally, these tenets share profound
similarities with probabilistic theories of causality proposed in the philosophy of
science literature [20, 21, 67] (see also [65]).

Although the definition of Granger causality is more general (see Sect. 5.3.1
below), several empirical studies and statistical software make it operational in a
linear VAR framework. Consider a bivariate VAR with p lags:

(
xt

yt

)
=

p∑

i=1

[
a11,i a12,i

a21,i a22,i

] (
xt−i

yt−i

)
+ ut . (5.13)

In this framework xt is said to be non-Granger-causal for yt if and only if
a21,i = 0 for i = 1, . . . , p [49, p. 154]. This amounts to say that the information set
available until time t−1 to forecast yt comprises only xt−1 (with more lagged terms)
and yt−1 (with more lagged terms), and one wants to check whether excluding or
not lagged xt from the information set makes a difference in predicting yt . The zero
restrictions can be tested with standard Wald χ2- or F -tests, which have standard
asymptotic properties if the series are stationary [49, p. 154].

A main limitation of this framework is that lagged xt may make a difference
in forecasting yt (so that to infer that xt Granger-causes yt ) because it contains
information that is not contained in the information set comprising lagged yt and
lagged xt , but it is always possible that if one considered a larger set of information,
for example one containing lagged values of a series zt , xt would not bring a further
contribution for the prediction of yt . If zt is a common cause of both xt and yt

one would have wrongly inferred that xt causes yt . Thus, although scholars have
worked in this direction, introducing concepts such as conditional independencies
and higher-order interactions, causal sufficiency is still a fundamental tenet of this
approach; this is particularly true, if the focus on causality goes beyond what
sometimes is referred to as “predictive causality.”

Granger-causality in causal pairs is a very powerful method in a setting in which,
as mentioned in the introduction, the presence of a causal relationship between the
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two variables, until some lag p ≥ 0, is known, but is unknown whether it is xt−p

that causes yt or it is yt−p that causes xt .
Suppose, for example, that is known that xt−p causes yt with p = 0 or 1 and there

are no causal relationships from yt to xt at any lag. Then in all the 3 admitted cases
in which xt can cause yt ((i) xt−1 → yt ; (ii) xt → yt ; (iii) i ∪ ii), the coefficient
a12,1, estimated by regressing equation (5.13), is expected to be not significantly
different from zero, while the other coefficients of the same matrix will be non-
zero. Symmetrically, if yt−p causes xt with p = 0, 1 (and no feedback from xt to yt

at any lag), then the only coefficient of the same matrix, obtained by regressing the
same equation, which is expected to be zero is a21,1.

Standard Granger-causality in a VAR framework neglects, by choice, the con-
temporaneous causal link, which is considered by the structural VAR approach.
Geweke [19], however, proposes an extension of the Granger-causality concept to
detect linear contemporaneous feedback between two time-series, xt and yt .

Jacobs et al. [41] and Hoover [32, pp. 151–152] present examples of bivariate,
one-lag structural VAR models in which xt−1 → yt ; yt−1 → xt ; xt → yt ,
but, for particular configurations of the parameters, in the reduced form VAR the
coefficient corresponding to the influence of yt−1 on xt (a11,1 in Eq. (5.13)) is
zero. One could exclude these types of parameters configuration as “measure-zero.”
This assumption would be similar to the faithfulness assumption in the graphical
causal model literature [64], where configurations of parameters that yield statistical
independence actually corresponding to causal dependence are ruled out. Hoover
[32] argues further that specific configurations of parameters for which Granger
non-causality does not match structural non-causality may correspond to theoretical
economic models and thus cannot be easily dismissed.

5.3 Direct Causal Search

In this section we discuss methods for causal pairs search that are applied directly
to time series data, without filtering them through a vector autoregressive model.
Skipping VAR estimation has the clear advantage of not being tied to the imposition
of a functional form (e.g. linear VAR), when estimating the relationship between
current and lagged values of the variables of interest. On the other hand, direct
causal search deals directly with autocorrelated data.

5.3.1 Granger Causality

As mentioned above (Sect. 5.2.5), the central notion in Granger causality is “incre-
mental predictability” [32, p.150]: if a time series yt+1 is better predicted by the set
of all information available up to time t than by the same information set less the
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series xt , then xt Granger-causes yt+1. The general definition given by Granger [24,
p. 49] is that xt is said to cause yt+1 if

P(yt+1 ∈ A|Ωt) 	= P(yt+1 ∈ A|Ωt − xt ), (5.14)

where Ωt is all the knowledge in the universe available at time t , Ωt − xt is the
same information set except the values taken by a xt up to time t , where xt ∈ Ωt ,
and A is any set of values that yt+1 can take. We can also write that xt does not
Granger-causes yt+1 if [13]

yt+1 ⊥⊥Ωt |Ωt − xt , (5.15)

otherwise xt is said to Granger-cause yt+1. As Granger [24] admits, this general
definition of causality is not operational, i.e. it cannot be implemented with actual
data. A practical solution is to consider Ωt as incorporating only current and past
values (until certain lags) of xt , yt and of a set of observed variables Zt . Thus we
have that xt is Granger-noncausal for yt+1 if [16, 66]

yt+1 ⊥⊥{xt , . . . , xt−q}|{yt , . . . , yt−p, Zt , . . . , Zt−r }, (5.16)

given lags p, q, r , where by {xt , . . . , xt−q} we denote the σ -field generated by the
vector of random variables (xt , . . . , xt−q), and similarly for {yt , . . .}. The σ -field
generated by a random variable is the set of events that may be described in terms
of that random variable [16, p. 588]. Let us suppose that the background knowledge
available at time t comprises only two time series: xt and yt . Then, given lags p and
q, xt−1 does not Granger causes yt if

yt ⊥⊥{xt−1, . . . , xt−q}|{yt−1, . . . , yt−p}. (5.17)

Assuming that xt and yt are stationary and ergodic, many studies have proposed
nonparametric tests of (5.17), without assuming a linear structure (which could be
treated in a linear VAR framework) (see [1, 2, 4, 12, 31, 66, 70]). In case of p, q = 1
the proposed tests have high performance, which tends to decline for high p and q

for data with limited sample size [6]. The assumption of Ωt as comprising only two
time series is, of course, a strong assumption in empirical contexts where causal
sufficiency may fail.

5.3.2 Graphical Models for Time Series

Since Granger-causality faces fundamental hurdles in case of unmeasured causal
variables, one possible solution is to rely on causal inference procedures that are
designed to perform well in presence of latent variables. One algorithm that is
asymptotically correct in the presence of latent variables is the Fast Causal Inference
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(FCI) algorithm proposed by Spirtes et al. [64]. This method belongs to the more
general approach of graphical causal models based on conditional independence
tests, also known as “constraint-based causal search” (see [63]). We have mentioned
this approach in Sect. 5.2.1, noticing that it was of little use when applied to
pairs of estimated VAR reduced-form residuals. This approach, however, has larger
applicability when applied directly to pairs of time series data (not filtered by a VAR
model), because it can exploit the possibility of conditioning both on lagged and
contemporaneous variables. An interesting method, in this setting, is the adaptation
of the FCI algorithm that Entner and Hoyer [14] propose for time series.

In case of causal sufficiency (and no feedback loops), constraint-based causal
search moves from the assumption that the data generating process can be described
by a directed acyclic graph (DAG) and a joint distribution P(X), where X =
(X1, . . . , Xn) is the set of observable variables represented by the set V of n vertices
of the DAG. Causal inference is based on two assumptions: Markov and faithfulness
condition. Markov condition states that if vertices i and j of a DAG G given some
subset W ⊆ V \{i, j} are d-separated (a graphical criterion defined by Pearl [54]),
then we have Xi ⊥⊥ Xj |{Xw : w ∈ W }. Faithfulness condition states that all
(conditional and unconditional) independence relations in P(X) are entailed by
the Markov condition. In this setting, the PC algorithm [64], on the base of these
assumptions, starts from a complete graph (all vertices connected by undirected
edges) over all variables, and performs a series of independence tests that allows the
removal of edges between pairs of variables that are independent conditionally on
any set of variables (included the empty set). Then it makes use of some rules which
allow us to orient edges among triple of vertices, and in particular to distinguish
between collider (· → · ← ·) structure and fork/chain structures (· ← · → ·,
or · ← · ← ·, or · → · → ·). This is also done on the basis of conditional
independence tests and the two conditions above. The outcome of the algorithm is a
set of DAGs that share the same (conditional) independence relations, i.e. a class of
Markov equivalent DAGs.

Relaxing the assumption of causal sufficiency, the FCI algorithm [64] moves
also from the assumption that the process underlying the data can be described
by a DAG, but this DAG may contain vertices that correspond to latent variables.
Richardson and Spirtes [60] (see also [8]) introduced a new class of graphs whose
vertices are observed variables, but in which the causal relationships may involve
latent variables. These graphs, in which a latent cause Z affecting the observed
variables X and Y is represented by X ↔ Y , are called maximal ancestral graphs
(MAGs). The idea is that any DAG whose vertices include latent variables can be
transformed in a unique MAG whose vertices comprise only observed variables.
Moreover, MAGs encode conditional independence relations among the observed
variables through m-separation, a generalization of d-separation [8, 60]. A MAG is
a graph M with the following properties: (i) M is a mixed graph (it contains not
only directed (→), but also undirected (−) and bi-directed (↔) edges); (ii) M is an
ancestral graph (there is no vertex i which is a ancestor of any of its parents nor any
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of its spouse3); (iii) for every pair of variables 〈Xi,Xj 〉 there is an edge between i

and j in M if and only if there does not exist a set of vertices W ⊆ V \{i, j} in M
such that Xi ⊥⊥Xj |{Xw : w ∈ W } [14, 60].

Similarly to PC algorithm, the output of the FCI algorithm is a class of MAGs that
entail the same set of conditional independence relationships. This class of MAGs
is represented by a partial ancestral graph (PAG), which is a graph which have
a third edge mark, besides arrowtail (−) and arrowhead (>), namely a circle (◦).
Excluding feedback loops or selection bias (hence undirected edges), a PAG can
only incorporate these types of edges: →, ↔, ◦→, and ◦−◦. If Xi ↔ Xj then neither
variable is ancestor of the other and there is a latent variable between Xi and Xj .
The circle (◦) denotes the case where it is undecided whether in the underlying data
generating process there is an arrowtail or an arrowhead next to the vertex where
the circle appear. This means that the PAG contains a MAG with (−) and a MAG
with (>) at that location. Like the PC algorithm, the FCI in a first step removes
edges from a complete graph on the base of conditional independence tests, and in
a second step it orients edges so that the inferred causal structures are in tune with
the Markov and faithfulness assumptions (all the conditional independence relations
must be derived from m-separation).

Entner and Hoyer [14] adapt the FCI in a time series framework, which they call
tsFCI. Suppose the observed time series variables are {xt } = x1, . . . , xT and {yt } =
y1, . . . , yT . The algorithm starts from a complete graph on a time window of the
time series, i.e. the set of vertices are xt , xt−1, . . . , xt−p, yt , yt−1, . . . yt−p. It then
remove edges from this complete graph, as in a standard FCI algorithm, on the basis
of conditional independence test, but with the addition that if the contemporaneous
edge is eliminated, this will be eliminated at all time units (t, t − 1, . . . , t − p). If a
lagged edge with lag l is eliminated (for example from xt−l to yt ), this is eliminated
at all time units (for example from xt−l−1 to yt−1). Orientation makes use not only
of the orientation rules of the standard FCI algorithm, but also makes use of the
“arrow of time”: if there is an undirected edge between two lagged variable, it will
be put an arrowtail at the variable coming before and an arrowhead at the variable
coming after. Moreover, if an edge is oriented contemporaneously at time t , this will
be oriented in the same manner for all time units (t, t −1, . . .). If a lagged edge with
lag l is oriented (for example xt−l → yt ), this is oriented in the same manner for all
time units (for example xt−l−1 → yt−1).

Thus, exploiting the assumption that an effect cannot precede a cause and the
assumption of repetition of causal structures over time (time invariance), one can
reach a more detailed description of the data generating process than the one
that would be provided by a standard application of constraint based algorithm.
However, since these methods ultimately rely on conditional independence tests

3A vertex i is an ancestor of j if there is a sequence of directed edges (→) between i and j . A
vertex i is a parent of j if i → j . A vertex i is a spouse of j (and j a spouse of i) if there is a
bi-directed edge between i and j .
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is crucial that they are designed taking into account the specificity of testing self-
dependence in a time series context (see [46]).

5.3.3 Additive Noise Models

We consider in this subsection the problem of distinguishing among different causal
structures over the time-series pair {xt , yt }, using a specific class of structural
equation models. We assume that: (i) there are no latent common causes between
xt and yt (at any lag); (ii) no contemporaneous causal feedback loops (i.e. either
xt → yt or xt ← yt , but it is possible that xt−s → yt → xt+h, for s ≥ 0, h ≥ 1);
(iii) each variable xt and yt causally depends on its own past (respectively xt−1, . . .

and yt−1, . . .) until a lag p; (iv) both contemporaneous and lagged causal structures
recur over time: if xt−i → yt then xt−i−s → yt−s , for i ≥ 0, s ≥ 1. To simplify the
illustration, we also assume here that (v) p = 1. In Fig. 5.3 we show the 12 directed
acyclic graphs (DAGs) corresponding to all the possible causal structures related to
the data generating process (represented as unit graphs) under these assumptions.
We also assume that (vi) xt and yt are stationary and ergodic processes. We also
assume that the data generating process can be formalized as a specific type of
structural equation model (or functional equation model, see [55]), namely as an
additive noise model [35, 56, 57], where

xt = fx(PAx) + Nx
t (5.18)

and

yt = fy(PAy) + N
y
t , (5.19)

where PAx are the graphical parents of xt (and PAy of yt ) in the DAG representing
the data generating process, and Nx

t and N
y
t are independent white noise processes.

We assume (vii) Nx
t ⊥⊥ PAx , N

y
t ⊥⊥ PAy , and Nx

t ⊥⊥ N
y
t ; (viii) fx(·) and fy(·) are

either nonlinear functions or linear but with the additional assumption that Nx
t and

N
y
t have non-Gaussian distribution.4

In Fig. 5.3, below each DAG it is shown the set of corresponding structural
equations and the set of implied (conditional or unconditional) independence
relationships. Hoyer et al. [35] (see also Sect. 5.2.3) proposes a procedure to check if
a DAG corresponding to a nonlinear additive noise model is consistent with the data:
first one constructs a nonlinear regression of each variable on its parents, then one
tests whether the estimated residuals are independent of the covariates and among

4Specific nonlinear functions fx(·) and distributions of the noise terms have also to be excluded.
A precise specification can be found in Peters et al. [57, Proposition 23] and Zhang and Hyvärinen
[69].
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Fig. 5.3 Unit graphs of all the possible structural equations models under assumption (i)–(viii)
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each other. If any independence test is rejected the DAG is rejected, if none of the
independence tests are rejected, the DAG is consistent with the data.

Thus, in principle, one could run the regressions corresponding to the equations
indicated below each DAG in Fig. 5.3 to check whether a specific DAG is consistent
with the data. Let us analyze some specific cases.

If the data are generated by DAG 1 (see Fig. 5.3), and the data generating process
were not known to the observer, by constructing the nonparametric regressions5:

xt = f1(xt−1) + N
x,1
t (5.20)

yt = f1(yt−1) + N
y,1
t (5.21)

and by not rejecting the independence relations:

N̂
x,1
t ⊥⊥xt−1, (5.22)

N̂
y,1
t ⊥⊥yt−1, (5.23)

N̂
x,1
t−i ⊥⊥ ̂

N
y,1
t−j for〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, (5.24)

one would conclude the DAG 1 is consistent with the data. Are other DAGs
consistent with these findings? If we run the same regressions but using data

generated by DAG 2, we will not necessarily reject: N̂
x,1
t ⊥⊥ xt−1, N̂

y,1
t ⊥⊥ yt−1.

Indeed these regressions may suffer of omitted variable bias, but not of reverse

causality. However, we will have that ̂
N

x,1
t−1 ⊥⊥/ N̂

y,1
t . Indeed N̂

y,1
t results from

a regression in which it is omitted xt−1. Hence N̂
y,1
t is dependent on xt−1, and

since xt−1 is in turn dependent on ̂
N

x,1
t−1, then ̂

N
x,1
t−1 ⊥⊥/ N̂

y,1
t . If we run the same

regressions (Eqs. (5.20), (5.21)) using data generated by any other DAG (from DAG
3 to DAG 12), for analogous lines of reasoning we would reach the same conclusion:

N̂
x,1
t−i ⊥⊥/ ̂

N
y,1
t−j for some 〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉.

Let us now suppose that DAG 1 has been found not consistent with the data and
one runs the nonparametric regressions (also indicated below DAG 2 in Fig. 5.3):

xt = f2(xt−1) + N
x,2
t , (5.25)

yt = f2(xt−1, yt−1) + N
y,2
t . (5.26)

By not rejecting:

5Here and below the subscript i in the function fi(·), as well as the superscript i in the noise term
N

·,i
t , indicate that these functions and noise terms enter in the additive noise model associated to

DAG i (see Fig. 5.3).
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N̂
x,2
t ⊥⊥xt−1, (5.27)

N̂
y,2
t ⊥⊥xt−1, (5.28)

N̂
y,2
t ⊥⊥yt−1, (5.29)

N̂
x,2
t−i ⊥⊥ ̂

N
y,2
t−j for〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, (5.30)

one would conclude the DAG 2 is consistent with the data. If the data were generated

by DAG 3, we would have that N̂
x,2
t ⊥⊥/ ̂

N
y,2
t−1, because in regressing xt on xt−1 we

are omitting yt−1, which is a graphical parent of xt in DAG 3. If the data were
generated by any DAG containing the contemporaneous causal link (DAG 4–DAG

12, except DAG 10), we would have that N̂
x,2
t ⊥⊥/ N̂

y,2
t . If DAG 10 were generating

the data, we would have that N̂
x,2
t ⊥⊥/ ̂

N
y,2
t−1, because, again, we would omit yt−1 in

the regression of xt on xt−1.
Let us suppose now that DAG 4 is the data generating process. By running the

nonparametric regressions,

xt = f4(xt−1) + N
x,4
t (5.31)

yt = f4(xt , yt−1) + N
y,4
t (5.32)

and not rejecting

N̂
x,4
t ⊥⊥xt−1 (5.33)

N̂
y,4
t ⊥⊥xt (5.34)

N̂
y,4
t ⊥⊥yt−1 (5.35)

N̂
x,4
t−i ⊥⊥ ̂

N
y,4
t−j for〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, (5.36)

we would conclude that DAG 4 is consistent with the data. If the data generating
process were any DAG with opposite contemporaneous causal link (DAG 5, 7,
9, 12), running the same regressions ((5.31), (5.32)) and tests ((5.33)–(5.36)), we

would get N̂
y,4
t ⊥⊥/ xt . If the data generating process were any DAG among DAG

2, 3, 6, 8, 10, 11, there would be no reverse contemporaneous causal link, but an
omitted lagged variables in one (or both) of the two regressions. This would imply

that N̂
x,4
t−i ⊥⊥/ ̂

N
y,4
t−j for some 〈i, j 〉 = 〈1, 0〉, 〈0, 1〉.

These examples should already suggest that, under the framework of the 12 possi-
ble DAGs of Fig. 5.3, under the assumptions listed above, with an exhaustive search
of independence relationships derived by the possible DAGs, one is able to uniquely
identify the model that has generated the data. Based on these considerations, we
propose a search procedure formalized in the algorithm described in the Table here
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below. The algorithm avoids an exhaustive causal search, but at the same time is
able to uniquely identify, among the 12 DAGs represented in Fig. 5.3, the one that
has generated the data.

The search algorithm is able to efficiently infer one of the 12 DAGs on the
base of a limited number of nonparametric regressions and tests of unconditional
independence. Once the algorithms outputs DAG number i, however, we suggest
to check its consistency with the data through the nonparametric regressions and
(conditional and unconditional) independence tests indicated in Fig. 5.3 under the
inferred DAG number.

For a more general framework in which there are k possible time series and p lags
of causal influence, Peters et al. [56] propose a search procedure based on additive
noise models called TiMINO, i.e. time series models with independent noise. The

Search Algorithm

1. Input: Samples from a 2-dimensional time series of length T , maximal order p = 1.

2. Run nonpar. regressions: xt = f1(xt−1) + N
x,1
t ; yt = f1(yt−1) + N

y,1
t , get N̂

x,1
t , N̂

y,1
t

3. Test: N̂
x,1
t ⊥⊥N̂

y,1
t

4. If N̂
x,1
t ⊥⊥N̂

y,1
t

5. Test: N̂
x,1
t−i ⊥⊥ ̂

N
y,1
t−j for 〈i, j〉 = 〈1, 0〉, 〈0, 1〉

6. If N̂
x,1
t−i ⊥⊥ ̂

N
y,1
t−j for 〈i, j〉 = 〈1, 0〉, 〈0, 1〉, break, output DAG 1

7. If N̂
x,1
t ⊥⊥̂

N
y,1
t−1 and ̂

N
x,1
t−1 ⊥⊥/ N̂

y,1
t , then break, output DAG 2

8. If ̂Nx,1
t−1 ⊥⊥N̂

y,1
t and N̂

x,1
t ⊥⊥/ ̂

N
y,1
t−1, then break, output DAG 3

9. Else break, output DAG 10

10. If N̂
x,1
t ⊥⊥/ N̂

y,1
t

11. Run nonp. reg.: xt = f4(xt−1) + N
x,4
t ; yt = f4(xt , yt−1) + N

y,4
t , get N̂

x,4
t , N̂

y,4
t

12. Test: N̂
y,4
t ⊥⊥xt

13. If N̂
y,4
t ⊥⊥xt

14. Test: N̂
x,4
t−i ⊥⊥ ̂

N
y,4
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉

15. If N̂
x,4
t−i ⊥⊥ ̂

N
y,4
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, break, output DAG 4

16. If N̂
x,4
t−i ⊥⊥ ̂

N
y,4
t−j only for 〈i, j〉 = 〈0, 0〉, 〈0, 1〉, break, output DAG 6

17. If N̂
x,4
t−i ⊥⊥ ̂

N
y,4
t−j only for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, break, output DAG 8

18. Else break, output DAG 11

19. If N̂
y,4
t ⊥⊥/ xt

20. Run xt = f5(xt−1, yt ) + N
x,5
t ; yt = f5(yt−1) + N

y,5
t , get N̂

x,5
t , N̂

y,5
t

21. Test: N̂
x,5
t−i ⊥⊥ ̂

N
y,5
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉

22. If N̂
x,5
t−i ⊥⊥ ̂

N
y,5
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, break, output DAG 5

23. If N̂
x,5
t−i ⊥⊥ ̂

N
y,5
t−j only for 〈i, j〉 = 〈0, 0〉, 〈0, 1〉, break, output DAG 7

24. If N̂
x,5
t−i ⊥⊥ ̂

N
y,5
t−j only for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, break, output DAG 9

25. Else break, output DAG 12

26. Output: One DAG among DAG 1 - DAG 12.
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output of TiMINO is however, a summary graph. This means that it is not possible
to disentangle between contemporaneous and lagged causal effects. The advantage
of our search algorithm is that it is possible to distinguish between these two types
of effects, but only under the specific framework of time series pairs.

5.3.4 Local Projections

Local projections were introduced by Jorda [42] to compute impulse responses
(see Sect. 5.2.4) without specifying and estimating a VAR model. Furthermore,
any attempt of representing the data generating process through a multivariate time
series structural system is eschewed in local projections. The idea here is to focus
on the estimation of impulse responses through regression methods that are applied
at each period of interest, without hinging on a pre-specified or pre-estimated time
series model.

Let be Yt = (xt , yt )
′, as in Sect. 5.2.1. Jorda [42] considered projecting Yt+s onto

the linear space generated by (Yt−1, . . . , Yt−p)′ for a certain choice of lag p, namely

Yt+s = αs + P s+1
1 Yt−1 + P s+1

2 Yt−2 + . . . + P s+1
p Yt−p + us

t+s , (5.37)

where αs is a (2×1) vector of constant, P s+1
i are (2×2) matrices of coefficients, and

us
t+s is a (2 × 1) vector of errors by construction uncorrelated with the regressors.

Superscripts here are meant to denote the time window where the regression is
performed.

Impulse response functions are defined as the difference between two forecasts,
which is an idea consistent with Eq. (5.12). More specifically, we have that the
impulse response of xt+s to a shock at time t , s ∈ Z is

IR(t, s, δ) = E(xt+s |v1t = δ, Yt )−E(xt+s |v1t = 0, Yt ) i = 0, . . . , H. (5.38)

where E(·|·) denotes the best, mean squared predictor, v1t is a disturbance shock,
and d is the magnitude of the shock the impact of which one wants to measure.

The impulse responses estimated from (5.37) are

IR(t, s, δ) = P̂ s
1 δ. (5.39)

As noted by Kilian and Lütkepohl [44, chapter 12], these impulse responses will be
relative to a reduced-form error (vit = uit ) and not to the true shock affecting the
system, if they are estimated directly through a least square regression of Eq. (5.38).
Thus, it is fundamental in this context to transform the reduced-form residuals in
a mixture of structural shocks. But here the problem is analogous to the problem
of identification of the structural VAR model and the literature on local projections
seems not to have found a method yet that bypasses this step.
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5.4 Conclusions

In this paper we have addressed the problem of causal inference from data
that are realizations of bivariate time series processes. We have focused on the
setting typically encountered in econometrics, namely stationary or difference-
stationary autoregressive processes with additive noises. The standard approach in
econometrics to address this problem is structural vector autoregressive analysis.
This allows the researcher to filter the time-series data, in order to apply causal
search algorithms to the i.i.d. filtered data. Since the time structure is filtered out,
the output of this causal search is a contemporaneous causal structure, which, in a
second step, gives the possibility of recovering the entire structural autoregressive
model. In a causal pair setting, however, causal search in this framework is limited.
For example, in the case of Gaussian data, the linear causal structure between
the two filtered time series is not identifiable. We have shown that identification
is possible under non-Gaussianity (exploiting independent component analysis) or
under non-linearity (exploiting non-linear additive noise model). But we have also
shown that in a setting of bivariate time series, an alternative valid approach is
to address the problem of causal inference by avoiding the vector autoregressive
framework. This is possible by applying graphical models algorithms (like FCI) or
nonlinear additive noise models algorithms (like the one presented in this paper)
directly to the data, without filtering them. We have also shown the possibility of
applications of Granger non-causality testing and local projections in a framework
in which VAR models are not necessarily estimated. The latter two techniques,
however, deviate for many aspects, from a structural interpretation of causality (see
footnote 1), i.e. from a framework which allows intervention, while they are closer
to a notion of predictability. A study of the relative merits of the different methods
presented above with empirical and simulated data is left to future research.

Acknowledgements The authors want to thank Isabelle Guyon, Alexander Statnikov, and Daniele
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