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Foreword

The problem of distinguishing cause from effect caught my attention, thanks to
the ChaLearn Cause-Effect Pairs Challenge organized by Isabelle Guyon and her
collaborators in 2013. The seminal contribution of this competition was casting the
cause-effect problem (“Does altitude cause a change in atmospheric pressure, or
vice versa?”) as a binary classification problem, to be tackled by machine learning
algorithms. By having access to enough pairs of variables labeled with their causal
relation, participants designed distributional features and algorithms able to reveal
“causal footprints” from observational data. This was a striking realization: Had we
discovered some sort of “lost causal signal” lurking in data so far ignored in machine
learning practice?

Although limited in scope, the cause-effect problem sparked significant interest
in the machine learning community. The use of machine learning techniques to
discover causality synergized these two research areas, which historically struggled
to get along, and while the cause-effect problem exemplified “machine learning
helping causality,” we are now facing the pressing need for having “causality
help machine learning.” Indeed, current machine learning models are untrustworthy
when dealing with data obtained under test conditions (or interventions) that differ
from those seen during training. Examples of these problematic situations include
domain adaptation, learning under multiple environments, reinforcement learning,
and adversarial learning. Fortunately, the long sought-after partnership between
machine learning and causality continues to forge slowly but steadily, as can be
seen from the bar graph below illustrating the frequency of submissions related to
causality at the NeurIPS conference (a premier machine learning conference).
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NeurIPS titles containing “caus”

This book is a great reference for those interested in the cause-effect problem.
Chapter 1 by Dominik Janzing is an excellent motivation that borrows ideas
and intuitions matured over a decade of expertise. Chapter 2 by Isabelle Guyon
deepens into the conundrum of evaluating causal hypotheses from observational
data. Chapters 3 and 4, led by Olivier Goudet and Diviyan Kalainathan, are fantastic
surveys on cause-effect methods, divided into generative and discriminative models,
respectively. The first part of this book closes with two important extensions of
the cause-effect problem: Nicolas Doremus et al. discuss time series in Chap. 5,
while Frederick Eberhardt explores the multivariable case in Chap. 6. The second
part of the book, Selected Readings, discusses the results of the cause-effect pairs
competitions (Chap. 6), as well as a selection of algorithms to address this problem
(Chaps. 8–14).

I believe that the robustness and invariance properties of causation will be
key to remove the elephant from the room (the “identically and independently
distributed” assumption) and move towards a new generation of causal machine
learning algorithms. This quest begins in the following pages.

Paris, France David Lopez-Paz
April 2019



Preface

Discovering causal relationships from observational data will become increasingly
important in data science with the increasing amount of available data, as a means of
detecting the potential triggers in epidemiology, social sciences, economy, biology,
medicine, and other sciences. Although causal hypotheses made from observations
need further evaluation by experiments, they are still very important to reduce costs
and burden by guiding large-scale experimental designs. In 2013, we conducted a
challenge on the problem of cause-effect pairs, which pushed the state-of-the-art
considerably, revealing that the joint distribution of two variables can be scrutinized
by machine learning algorithms to reveal the possible existence of a “causal
mechanism,” in the sense that the values of one variable may have been generated
from the values of the other. This milestone event has stimulated a lot of research in
this area for the past few years. The ambition of this book is to provide both tutorial
material on the state-of-the-art on cause-effect pairs and expose the reader to more
advanced material, with a collection of selected papers, some of which are reprinted
from the JMLR special topic on “large-scale experimental design and the inference
of causal mechanisms.” Supplemental material includes videos, slides, and code that
can be found on the workshop website.

In the first part of this book, six tutorial chapters are provided. In Chap. 1, an
introduction to the cause-effect problem is given for the simplest but nontrivial
case where the causal relationships are predicted from the observations of only
two variables. In this chapter, the reader gains a better understanding of the causal
discovery problem as well as an intuition about its complexity. Common methods
and recent achievements are explored besides pointing out some misconceptions.
In Chap. 2, the benchmarking problem of causal inference from observational data
is discussed, and a methodology is provided. In this chapter, the focus is the
methods that produce a coefficient, called causation coefficient, that is used to decide
direction of causal relationship. By this way, the cause-effect problem becomes
a usual classification problem, which can be evaluated by classification accuracy
metrics. A new notion of “identifiability,” which defines a particular data generation
process by bounding type I and type II errors, is also proposed as a validation
metric. In Chap. 3, the reader dives into algorithms that solve the cause-effect pair

vii
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problem by modeling the data generating process. Such methods allow gaining not
only a clue about the causal direction but also information about the mechanism
itself, making causal discovery less of a black box decision process. In Chap. 4,
discriminative algorithms are explored. A contrario, such algorithms do not attempt
to reverse engineer the data generating process; they merely classify the empirical
joint distribution of two variables X and Y (a scatter plot) as being and X cause Y
or a Y cause X (or neither). While throughout Chaps. 1–4, the emphasis is on cross-
sectional data (without explicit reference to time), in Chap. 5, the authors investigate
the causal discovery methods for time series. One interesting contribution compared
to the older approaches of Granger causality is the introduction of instantaneous
causal relationships. Finally, in Chap. 6, the authors present research going beyond
the treatment of two variables, including triplet and more. This put in perspective
the effort of the rest of the book, which focuses on two variables only, and reminds
the reader of the limitations of the analyses limited to two variables, particularly
when it comes to the treatment of the problem of confounding.

In the second part of the book, we compile articles related to the 2013 ChaLearn
Cause-Effect Pairs challenges1 including articles that were part of the proceedings
of the NIPS 2013 workshop on causality and the JMLR special topic on large-scale
experimental design and the inference of causal mechanisms. The cause-effect pairs
challenge, described in Chap. 7, provided a new point of view to the problem of
causal modeling by reformulating it as a classification problem. Its purpose was
attributing causes to effects by defining a causation coefficient between variables
such that positive and negative large values indicate causal relation in one or the
other direction, whereas the values close to zero indicates no causal relationship.
The participants were provided with hundreds of pairs from different domains, such
as ecology, medicine, climatology, engineering, etc., as well as artificial data for all
of which the ground truth is known (causally related, dependent but not causally
related or independent pairs). Because of problem setting, the methods based on
conditional independence tests were not applicable. Inspired by the starting kit
provided by Ben Hamner at Kaggle, the majority of the participants engineered
features of the joint empirical distribution of pairs of variables then applied standard
classification methods, such as gradient boosting.

From Chap. 8, the approaches used by the top participants of the challenges
and their results are given in the second part as selected readings. In Chap. 8, the
authors perform an extensive comparison of methods on data of the challenge,
including a method that they propose based on Gaussianity measures that fare well.
The winner of the challenge, the team ProtoML (Chap. 10), proposes a feature
extraction method which takes extensive number of algorithms and functions as
an input parameters to build many models and extracts features by computing
their goodness of fit in many different ways. The method achieves 0.84 accuracy
for artificial data and 0.70 accuracy for real data. If the features are extracted
without human intervention, the method is prone to create redundant features. It

1http://www.causality.inf.ethz.ch/cause-effect.php.

http://www.causality.inf.ethz.ch/cause-effect.php
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also increases computational time since about 9000 features are calculated from
the input parameters. There is a trade-off between computational time/complexity
and automated feature extraction. The second ranked participant, jarfo (Chap. 12),
concentrates on conditional distributions of pairs of random variables, without
enforcing a strict independence between the cause and the conditional distribution
of effect. He defines a Conditional Distribution Score (CDS) measuring variability,
based on the assumption that for a given mechanism, there should be a similarity
among the conditional distributions of effect, regardless of causal distributions.
Other features of jarfo are based on information theoretic measures (e.g., entropy,
mutual information, etc.) and variability measures (e.g., standard deviation, skew-
ness, kurtosis, etc.). The algorithm achieves 0.83 and 0.69 accuracy for artificial
and real data, respectively. It has comparable results with the algorithm proposed
by the winner in terms of predictive performance, with a better run time. It also
performs better on novel data, based on post-challenge analyses we report in
Chap. 7. The team HiDLoN, having the third place in the challenge (Chap. 11),
defines a causation coefficient as the difference in (estimated) probability of either
causal direction. They consider two binary classifiers using information theoretic
features, each classifying one causal direction versus all other relations. By this way,
a score representing a causation coefficient can be defined by taking the difference
of the probabilities for each sample to be belonging to a certain class. Using one
classifier for each causal direction makes possible to evaluate feature importance
for each case. Another participant, mouse, having fifth place, evaluates how features
are ranked based on the variable types by using different subsets of training data
(Chap. 13). He defines 13 groups of features resulting in 211 features in total
and determine their importance to estimate causal relation. Polynomial regression
and information theoretical features are the most important features for all cases;
in particular polynomial regression is the best feature to predict causal direction
when the type of variables is both numerical, whereas it is information theoretical
features if the cause is categorical and the effect is numerical variables. Similarly, the
method proposed by Bontempi (Chap. 9) defines features based on some statistical
dependency, such as quantiles of marginal and conditional distributions and learn
mapping from features to causal directions. In addition to having only pairs of
variables to predict their causal structure, He also extends his solution for n-
variate distributions. In this case, features are defined as a set of descriptors
to define dependency between the variables, which are the elements of Markov
blankets of two variables of interest. Finally, the last chapter (Chap. 14) provides a
complementary perspective opening up to the treatment of more than two variables
with a more conventional Markov blanket approach.

Berkeley, CA, USA Isabelle Guyon
San Francisco, CA, USA Alexander Statnikov
Paris, France Berna Bakir Batu
January 2019
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Chapter 1
The Cause-Effect Problem: Motivation,
Ideas, and Popular Misconceptions

Dominik Janzing

1.1 The Cause-Effect Problem: Notation and Introduction

Telling cause from effect from purely observational data has been a challenge at the
NIPS 2008 workshop on Causality. Let me first describe the scenario as follows:

Given observations (x1, y1), . . . , (xk, yk) iid drawn from some distribution PX,Y , infer
whether X causes Y or Y causes X, given the promise that exactly one of these alternatives
is true.

Here it is implicitly understood that there is no significant confounding, that is, that
the observed statistical dependences between X and Y are due to the influence of
one of the variables on the other one and not due to a third variable influencing
both.1Assuming such a strict restriction for valid cause-effect pairs (which is
certainly only approximately satisfied for empirical data) we can write structural

The major part of this work has been done in the author’s spare time before he joined Amazon.

1If there is a known common cause Z that is observed, conditioning on fixed values of Z can in
principle control for confounding, but if Z is high-dimensional there are serious limitation because
the required sample size is exploding. Note that Chap. 2 of this book also considers the case of
pure confounding as a third alternative (certainly for good reasons). Nevertheless I will later argue
why I want to focus on the simple binary classification problem.

D. Janzing (�)
Amazon Development Center, Tübingen, Germany
e-mail: janzind@amazon.com

© Springer Nature Switzerland AG 2019
I. Guyon et al. (eds.), Cause Effect Pairs in Machine Learning,
The Springer Series on Challenges in Machine Learning,
https://doi.org/10.1007/978-3-030-21810-2_1
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4 D. Janzing

equations (SEs), also called functional causal models (FCMs) [1] as follows. If the
causal relation reads X → Y , there exists an ‘assignment’ [2]

Y := fY (X,NY ) with NY ⊥⊥ X, (1.1)

where NY is an unobserved noise term. Likewise, if the causal relation reads Y →
X, there exists an assignment

X := fX(Y,NX) with NX ⊥⊥ Y, (1.2)

where NX is an unobserved noise term. The fact that Eqs. (1.1) and (1.2) are
structural equations, implies that they formalize causal relations rather than only
describing a model that reproduces the observed joint probability distribution
correctly. After all, any joint distribution PX,Y can be generated either way, via a
model of the form Eqs. (1.1) and (1.2), see Proposition 4.1 in [2].

To be more explicit, reading (1.1) as structural equation implies that the value Y

would have attained, if X were set to x by an external intervention, is given by the
variable

Ydo(X=x) = f (x,NY ). (1.3)

Since the right hand sides of (1.1) and (1.2) also describe the observational
conditionals, they imply

P
do(X=x)
Y = PY |X=x, (1.4)

and

P
do(Y=y)
X = PX|Y=y, (1.5)

respectively. Hence, interventional probabilities can be computed from the joint
distribution once the causal direction is known. In contrast, the structural equa-
tions (1.1) and (1.2) are not uniquely determined by joint distribution and causal
direction. They entail additional counterfactual statements about which value Y

or X, respectively, would have attained in every particular instance for which the
values of the noise are known, given that X or Y (respectively) had been set to some
specific value (see, e.g., [1] and 3.3 in [2]). Although the cause-effect problem, as it
has usually been phrased, does not entail the harder task of inferring the structural
equations (1.1) and (1.2), several approaches to cause-effect inference are based on
fitting structural equations. Additive noise based causal inference [3, 4], for instance,
amounts to fitting regressions

f̂Y (x) := E[Y |x] (1.6)
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and

f̂X(Y ) := E[X|y] (1.7)

and deciding X → Y whenever the regression residual Y − f̂Y (X) is independent
of X, provided that the regression residual X − f̂X(Y ) for the converse direction is
not independent of Y . Then, (1.1) turns into

Y = f̂Y (X)+NY with NY ⊥⊥ X. (1.8)

Consequently, for each particular instance, the value nY of NY can be easily
computed from the observed pair (x, y) due to

nY = y − f̂Y (x). (1.9)

This entails the counterfactual statement ‘Y would have attained the value y′ :=
y + f̂Y (x′) − f̂Y (x) instead of y if an intervention had changed X from x to x′.
The inference method ‘additive noise’ thus provides counterfactual statements for
free—regardless of whether one is interested in them or not. Similar statements also
hold for the post-nonlinear model [5], which reads Y = gY (f̂Y (X)+NY ) with some
possibly non-linear function gY .

The chapter is structured as follows. Section 1.2 motivates the cause-effect
problem in the context of tasks that may occur more often in practice. Section 1.3
briefly reviews the principles behind common approaches. Section 1.4 provides
a critical discussion of human intuition about the cause-effect problem. Finally,
Sect. 1.5 sketches the relation to the thermodynamic arrow of time to argue for
accepting the cause-effect problem also as a physics problem.

Note that finite sample issues are not in the focus of any of the sections. This
should by no means mistaken as ignoring their importance. I just wanted to avoid
that problems that are unique to causal learning gets hidden behind problems that
occur everywhere in statistics and machine learning.

1.2 Why Looking at This “Toy Problem”?

In the era of ‘Big Data’ one would rather expect challenges that address problems
related with high dimensions, that is, a large number of variables. It thus seems
surprising to put so much focus on a causal inference problem that focuses on two
variables only. One reason is that for causality it can sometimes be helpful to look
at a domain where the fundamental problem of inferring causality does not interfere
too much with purely statistical problems that dominate high dimensional problems.
‘Small data’ problems show more clearly how much remains to be explored even
regarding simple questions on causality.
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1.2.1 Easier to Handle Than Detection of Confounders

The cause-effect problem became surprisingly popular after 2008, e.g., [3, 5–9].
Nevertheless, the majority of causal problems I have seen from applications are not
cause-effect problems (although cause-effect problems do also occur in practice).
After all, for two statistically dependent variables X, Y , Reichenbach’s Principle
of Common Cause describes three possible scenarios (which may also interfere) in
Fig. 1.1.

(1) X causes Y , (3) Y causes X, or (2) there is a third variable Z causing X

and Y . If X precedes Y in time, (3) can be excluded and the distinction between
(1) and (2) remains to be made. Probably the most important case in practice,
however, is the case where X is causing Y and in addition there is a large number
of confounding variables Zj (or one high-dimensional variable Z if this view is
preferred) of which only some are observed. Consider, for instance, the statistical
relation between genotype and phenotype in biology: It is known that Single
Nucleotid Polymorphisms (SNPs) influence the phenotypes of plant and animals,
but given the correlation between a SNP and a phenotype, it is unclear whether the
SNP at hand influences the respective phenotype or whether it is only correlated
with another SNP causing the phenotype.

Even the toy problem of distinguishing between case (1) and (2), given that they
don’t interfere, seems harder than the cause-effect problem. Although there are also
some ideas to address this task [10–13], the following fundamental problem should
be mentioned. Consider a scenario where the hidden common cause Z influences
X by a mechanism where X becomes just a copy of Z with some small error
probability. In the limit of zero error probability, PX,Y and PZ,Y have the same
distribution, although X, Y are related by X ← · → Y (even in the limit of zero
error probability, interventions on X have no effect on Y ) while Z and Y are related
by Z → Y . One may object that also X → Y and Y → X become indistinguishable
when the causal mechanism is just a copy operation. However, in the later case,
observing PX,Y already tells us that the causal relation is deterministic, while the
deterministic relation between Z and X cannot be detected from PX,Y . It is then
impossible to distinguish between the cases (1) and (2) in Reichenbach’s principle.
In the following scenario it is even pointless: if Z is some physical quantity and X

the value obtained in a measurement of Z (with some measurement error) one would
certainly identify X with the quantity Z itself and consider it as the cause of Y—in
contradiction to the outcome of a hypothetical powerful causal inference algorithm

X Y X

Z

Y X Y

1) 2) 3)

Fig. 1.1 The three types of causal explanations of observed dependences between X and Y in
Reichenbach’s principle
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that recognizes PX,Y as obtained by a common-cause scenario. Due to all these
obstacles, it seems reasonable to start with the cause-effect problem as a challenging
toy problem, being aware of the fact that it is not the most common problem that
data science needs to address in applications (although it does, of course, also occur
in practice).

1.2.2 Falsifiable Causal Statements Are Needed

Accounting for the fact that the three types of causal relations in Reichenbach’s
Principle typically interfere in practice, one could argue that a more useful causal
inference task consists in the distinction between the five possible acyclic graphs
shown in Fig. 1.2 (formally, there are, more possible DAGs, but they are irrelevant
for our purpose. We only care about Z if it influences both observed variables X and
Y ).

Thinking about which of the alternatives most often occur in practice one
may speculate that (2), (4), and (5) are the main candidates because entirely
unconfounded relations are probably rare. A causal inference algorithm that always
infers the existence of a hidden common cause is maybe never wrong—it is just
useless unless it further specifies to what extent the dependences between X and Y

can be attributed to the common cause and to what extent there is a causal influence
from X to Y or from Y to X that explains part of the dependences. The DAGs (1),
(2), and (3), imply the following post-interventional distributions

1) P
do(X=x)
Y = PY |X=x and P

do(Y=y)
X = PX

2) P
do(X=x)
Y = PY and P

do(Y=y)
X = PX

3) P
do(X=x)
Y = PY and P

do(Y=Y )
X = PX|Y=y.

(1.10)

In contrast, the DAGs (4) and (5) do not imply any equations for any interventional
conditionals without further specification of structural equations or the joint distri-
bution PX,Y,Z . This raises the question of how to construct an experiment that could
disprove these hypotheses. After all, falsifiability of causal hypotheses is, according
to Karl Popper [14], a necessary criterion for their scientific content. Accordingly,
one can argue that (4) and (5) only define causal hypotheses with scientific content
when these DAGs come with further specifications of parameters, while the DAGs
(1)–(3) are causal hypotheses in their own right due to their strong implications

X Y X

Z

Y X Y X

Z

Y X

Z

Y

1) 2) 3) 4) 5)

Fig. 1.2 Five acyclic causal structures obtained by combining the three cases in Reichenbach’s
principle
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for interventional probabilities. Maybe discussions about which causal DAG is ‘the
true causal structure’ in the past have sometimes blurred the fact that scientific
hypotheses need to be specific enough to entail falsifiable consequences (at the cost
of being oversimplified) rather than insisting in finding ‘the true’ causal graph.

1.2.3 Binary Classification Problems Admit Simple
Benchmarking

Evaluating causal discovery methods is a non-trivial challenge in particular if the
task is—as it traditionally was the case since the 1990s—to infer a causal DAG with
n nodes. On the one hand, it is hard to find data sets with generally accepted DAGs as
ground truth. Despite the abundance of interesting data sets from economy, biology,
psychology, etc, discussions of the underlying causal structure usually requires
domain knowledge of experts, and then these experts need not agree. Further, even
worse, given the ‘true’ DAG, it remains unclear how to assess the performance if
the inferred DAG coincides with the ‘true’ DAG with respect to some arrows, but
disagrees regarding other edges: Should one count an arrow Xi → Xj as wrong
if ‘the true DAG’ contains no edge between Xi and Xj —without asking whether
the inferred arrow describes a weak or strong influence?2 The cause-effect problem
does not suffer from these problems because the two options read: the statistical
dependences between X and Y are either entirely due to the influence of X on Y or
entirely due to the influence of Y on X. In Sect. 1.2.2 we have already explained
that both hypotheses are easy to test if interventions can be made. Assessing
the performance in a binary classification problem amounts to a straightforward
counting of errors. The problem of finding data sets where the ground truth does not
require expert knowledge remains non-trivial. However, discussing ground truth for
the causal relation between just two variables is much easier than for more complex
causal relations and Ref. [17] is an example on how to perform extensive evaluations
of cause effect inference algorithms using empirical data from the database [18] as
well as simulated data.

1.2.4 Relations to Recent Foundational Questions in
Theoretical Physics

Since causes precede there effects it is natural to conjecture that statistical asym-
metries between cause and effect [19] are related to asymmetries between past and

2Of course, causal inference algorithms like PC [15] do not infer the strength of the arrow.
However, given a hypothetical causal DAG on the nodes X1, . . . , Xn, the influence of Xi on Xj

is determined by the joint distribution PX1,...,Xn and the strength of this influence becomes just a
matter of definition [16].
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A B A B A

C

Bor versus

Fig. 1.3 There exist statistical dependences between two quantum systems A,B that uniquely
indicate whether they were obtained by the influence of one on the other (left) or by a common
cause (right). In the latter case, the joint statistics of the two systems is described by a positive
operator on the joint Hilbert space, while the former case is described by an operator whose partial
transpose is positive [26, 27]

future, which is one of the main subjects of statistical physics and thermodynamics.
Understanding why processes can be irreversible—despite the invertibility of
elementary physical laws—has bothered physicists since a long time [20, 21]. In
Sect. 1.5 we will briefly sketch how the cause-effect problem is related to the
standard arrow of time in physics. This is worth pointing out in particular because
the scientific content of the concept of causality has been denied for a long time, in
tradition of Russel’s famous quote [22]:

The law of causality, I believe, like much that passes muster among philosophers, is a relic
of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to
do no harm.

In stark contrast to this attitude, there is a recent tendency (apart from the above
link to thermodynamics) to consider causality as crucial for a better understanding of
physics: in exploring the foundations of quantum theory, researchers have adopted
framework and ideas from causal inference [23], including Pearl’s framework, and
even tried to derive parts of the axioms of quantum theory from causal concepts
[24, 25]. In some of this recent work on causality in theoretical physics, toy problems
similar to the cause-effect problem occur. Reference [26], for instance, shows that
there exist statistical dependences between two quantum systems A and B that
uniquely indicate whether one is the cause of the other or whether there is a common
cause of both, see Fig. 1.3. This kind of recent advances in better understanding
physics by rephrasing simple scenarios in a causal language [28] can be seen as a
general tendency to accept the scientific content of causality.

1.2.5 Impact for General Machine Learning Tasks

The fact that it makes a difference in machine learning whether a learning algorithms
infers the effect from its cause (‘causal learning scenario’) or a cause from its
effect (‘anticausal scenario’) has been explained in [29]. The idea is that Pcause
and Peffect|cause usually correspond to independent mechanisms of nature. This
should entail, among others, the following consequences for machine learning: First,
Pcause and Peffect|cause contain no information about each other and therefore semi-
supervised learning only works in anticausal direction (for a more precise statement
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see [2, Section 5.1.2]). To sketch the argument, recall the standard semi-supervised
learning scenario where X is the predictor variable and Y is supposed to be predicted
from X. Given some (x, y)-pairs, additional unpaired x-values provide additional
information about PX. A priori, there is no reason why knowing more about PX

should help in better predicting Y from X since the latter requires information about
PY |X. However, if Y is the cause and X the effect, PX may contain information
about PY |X, while [29] assumes that the insights about PX do not help if X is the
cause and Y the effect.

A second reason why causal directions can be important for machine learning is
that the independence of the objects Pcause and Peffect|cause can be seen as implying
that they change independently across data sets [29]. This matters for important
problems such as domain adaptation and transfer learning, see e.g. [30]: whenever
Pcause,effect changed it may often be the case that only Pcause or Peffect|cause changed.
Therefore, optimal machine learning algorithms that combine data from different
distributions should account for whether the scenario is causal or anticausal. Of
course, the causal structure matters also in the multi-variate scenario, but many ideas
can already be explained for just two variables [2].

1.2.6 Solving a So-Called ‘Unsolvable’ Problem

One of the fascination of the cause-effect problem comes from the fact that it
has been considered unsolvable for many years. Although most authors have been
cautious enough not to state this explicitly, one could hear this general belief often in
private communication and read in anonymous referee reports during the previous
decade. The reason is that the causal inference community has largely focused on
conditional independence based methods [1, 31], which is only able to infer the
direction of an arrow if the variable pair is part of a causal DAG with at least three
variables.

The cause-effect problem has stimulated a discussion about what properties
of distributions other than conditional independences contain information on the
underlying causal structure, with significant impact for the multivariate scenario
[32, 33] where causal inference algorithms that only employ the Markov condition
and causal faithfulness suffer from many weaknesses, for instance because of the
difficulty of conditional independence testing for non-linear dependences.

1.3 Current Approaches

The cause-effect problem has meanwhile been tackled by a broad variety of
approaches, e.g., [3, 7, 8, 17, 34–37]. Note, however, that these references are only
restricted to the case where both X and Y are scalar random variables. When X
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and Y are vector-valued, there are other methods e.g., [38, 39]. If X and Y are
time-series, there exist well-known approaches like Granger-causality [40], but also
novel approaches, e.g. [41]. For an overview of assumptions see [2]. The underlying
principles may roughly be classified into the three categories in Sects. 1.3.1, 1.3.2,
and 1.3.4. Section 1.3.3 explains why Sects. 1.3.1 and 1.3.2 are so closely linked
that it is hard to tell them apart.

1.3.1 Complexity of Marginal and Conditional

Several approaches to cause-effect inference are more or less based on the idea to
look at the factorization of PX,Y into

PXPY |X and PY PX|Y (1.11)

and compare the complexities of the terms with respect to some appropriate notion
of complexity. In a Bayesian approach, the decision on which model is ‘more
simple’ could also be based on a likelihood with respect to some prior on the
parameter spaces for PX, PY |X and, accordingly for PY , PX|Y [36]. Other practical
approaches are based on description length [7] or regression error [8]. Some
approaches infer the direction by just defining a class of ‘simple’ marginals and
conditionals [42–44], other define only classes of conditionals, such as, for instance,
additive noise models [3], or post-nonlinear models [5]. The problem of whether a
set of marginals and conditionals is small enough to fit the joint distribution in at
most one direction is often referred to as identifiability.

1.3.2 Independent Mechanisms

The postulate reads that Pcause and Peffect|cause contain no information about each
other, in a sense that needs to be further specified. In [45, 46], for instance, this has
been formalized as algorithmic independence meaning that knowing Pcause does not
enable a shorter description of Peffect|cause and vice versa. Reference [29] phrased
independence as the hypothesis that semi-supervised learning does not work in a
scenario where the effect is predicted from the cause.

Depending on the formalization of the independence principle, it yet needs
to be explored to what extent the independence can be confirmed for real data.
In biological systems, for instance, evolution may have developed dependences
between mechanisms when creatures adapt to their environment. This limitation of
the independence idea has already been pointed out in the case of causal faithfulness
[31] (which can be seen as a special kind of independence of mechanisms for the
multi-variate case), see also the example in Fig. 5 in [46].
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To understand further possible limitations of the independence principle note that
there is some ‘dependence of scales’ due to the following ‘attention bias’. Assume,
for instance, a causal relation between X and Y given by

Y = fY +NY , (1.12)

where NY is some, not necessarily independent noise term and fY : R → R a
function that shows some kind of saturation for x → ±∞. Just as an example,
consider the function

fY (x) := tanh x, (1.13)

which satisfies

lim
x→±∞ fY (x) = ±1, (1.14)

see Fig. 1.4. Whenever the distribution PX is mainly located at small or at large
x-values, the function fX does not generate any significant dependences between
X and Y . Given some ‘interesting’ cause-effect pair, that is, where X and Y are
reasonably dependent, PX must have significant probability mass around x = 0. In
this sense, PX and PY |X are not entirely ‘independent’. Despite these limitations,
independence can be a guiding principle for developing new approaches to cause-
effect inference.

Fig. 1.4 Toy example of a functional relation between X and Y that becomes only apparent when
the x-values are in a certain range (here: the red points). The green and the blue points correspond
to data sets for which X and Y look unrelated. By focusing only on ‘interesting’ data sets for
which the relation becomes apparent (red points), researchers observe that PX and PY |X are not
‘independent’ in the sense that PX is typically localised in the region with large slope
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1.3.3 Relations Between Independence and Complexity

The two types of postulates described in Sects. 1.3.1 and 1.3.2 are closely related.
To provide an idea of this relation, I show two instructive examples.

Algorithmic Information Theory Independence can be formalized as algorithmic
independence [45], that is,

I (Pcause : Peffect|cause) = 0, (1.15)

approximately, where I denotes algorithmic mutual information. It is defined by
the description length (in the sense of Kolmogorov complexity K) of Pcause plus
the description length of Peffect|cause minus the joint description length [45]. Hence,
independence amounts to the statement that the description of Pcause does not get
shorter when Peffect|cause is known. Equivalently, the description of Peffect|cause does
not get shorter when Pcause is known.3

One can show [2] that (1.15) implies

K(Pcause)+K(Peffect|cause)
+≤ K(Peffect)+K(Pcause|effect), (1.16)

where the symbol
+
< means that the inequality only holds up to a constant

error (uniformly over all possible choices of the joint distribution Pcause, effect.
Inequality (1.16), on the other hand, can be seen as a possible formalization of the
principle in Sect. 1.3.1 to prefer the direction that yields less complex terms.

Additive Noise Based Inference To see another relation between the postulates
described in Sects. 1.3.1 and 1.3.2, recall that Ref. [3] infer X → Y if there is an
additive noise model from X to Y as in (1.8), but not from Y to X. It is an easy
exercise [48] to show that the differential Shannon entropies H satisfy

H(X)+H(Y − f̃Y (X)) < H(Y )+H(X − f̃X(Y )), (1.17)

if f̃Y is chosen such that Y − f̃Y (X) is independent of X and f̃X is arbitrary. Taking
those marginal entropies as complexity measure, the description is less complex in
causal direction whenever the independence of the input and noise holds in causal
direction but not in anticausal direction.

3It is not obvious at all that these two statements are equivalent, but this is a deep result from
algorithmic information theory [47].
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1.3.4 Supervised Learning

Despite intense research one has to admit that cause-effect inference is still a
challenging task4 and that at least most of the approaches are based on too specific
assumptions. It is therefore instructive to explore whether machine learning methods
are able to learn the classification task by standard supervised learning techniques
[6] rather than by hand-designing features that contain information about the causal
direction. The idea is to represent the distributions PX, PY |X, PY , PX|Y as vectors
in a so called Reproducing Kernel Hilbert Space (RKHS) and consider the cause-
effect inference problem as standard binary classification task (in such a scenario,
arguments from statistical learning theory can even provide generalization bounds
[6]). Approaches of this kind may be useful to understand the limits of cause-effect
inference in empirical data.

1.4 Human Intuition About the Cause-Effect Problem

1.4.1 Examples Where Our Intuition Seems Right

Ideas for the cause-effect problem can already be found in earlier work before
the problem was explicitly phrased as problem of causal inference. Whenever one
defines classes of ‘generating models’ for distributions PX,Y for which generating X

first and generating Y from X later yields a different class than starting from Y , one
has already defined an approach to causal inference [42] even if the word ‘causality’
does not appear explicitly.

There are quite intriguing toy examples where either of one direction is consider-
ably more plausible as generating model than the other direction. This phenomenon
occurs in particular when discrete and continuous variables are combined. Then,
describing distributions generated by quite natural conditionals yield rather strange
conditionals when described in the wrong causal direction. In other words, com-
bining discrete and continuous variables yield scenarios where complexity of
conditionals vary particularly strongly in different causal directions. This has been
observed already in [49] for causal structures with 2–4 variables. Here, complexity
of conditionals is meant in a purely intuitive sense without any formalization.
Among the most obvious examples we should mention the cases where one of the
variables is binary and the other is real-valued, as illustrated by the Gaussian mixture
model displayed in Fig. 1.5. Although most people would agree that X → Y is
more plausible than Y → X in this simple toy scenario, it is not that clear how to
justify this statement. One may argue that X → Y is plausible [43, 44] because
one yields ‘simple’ marginal p(x) and conditionals p(y|x): after all, p(x) is just
a binary distribution and each p(y|X = 0) and p(y|X = 1) is a Gaussian with

4See, for instance, the challenge http://www.causality.inf.ethz.ch/cause-effect.php.

http://www.causality.inf.ethz.ch/cause-effect.php
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Fig. 1.5 Left: joint distribution pXY of a binary variable X and a real-valued variable Y that
strongly suggests that X causes Y and not vice versa: Then, X is simply shifting the mean of
the Gaussian, see Fig. 5.4 in [2]. Right: the marginal distribution of Y (mixture of two Gaussians)
already suggests a joint distribution where each Gaussian corresponds to a different x-value

Fig. 1.6 Scatter plots from two cause-effect pairs in our benchmark data base [18]. Left: day of
the year (x-axis) vs. temperature (y-axis). Right: altitude of some places in Germany (x-axis) vs.
long-term average temperature (y-axis). In both cases I have repeatedly observed that humans tend
to correctly infer that X is the cause and Y the effect

different expectation. The decomposition for the converse causal statement, on the
other hand, yields more complex terms: p(y) is a mixture of Gaussians and the
conditional p(y|x) is given by

p(X = 1|y) = p(X = 1)e−(y−c)2

p(X = 0)e−y2 + p(X = 1)e−(y−c)2 , (1.18)

where we have assumed standardized Gaussians with mean 0 and c, respectively.
It is hard to find examples in real data that are as nice as this toy example, but
our cause-effect data base5 http://webdav.tuebingen.mpg.de/cause-effect/ contains
scatter plots where many humans indeed guessed the correct causal direction, see
Fig. 1.6. In both cases, the idea is that Y is basically given by a function of X up

5See also http://www.causality.inf.ethz.ch/cause-effect.php.

http://webdav.tuebingen.mpg.de/cause-effect/
http://www.causality.inf.ethz.ch/cause-effect.php
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to some noise, while a hypothetical causal model from Y to X does not admit any
functional form since there are y-values for which there are two clusters of x-values.
These and further examples that I have discussed with the audience in many talks
suggest that humans do have a reasonable intuition about cause-effect asymmetries
for many cases—even for those where formalizing the asymmetry seems difficult.
On the other hand, I have heard a large number of ideas for cause-effect inference
about which I have some doubts. This will be discussed in the following section.

1.4.2 Be Aware of Too Simple Approaches: Some
Misconceptions

On the one hand, the simple examples in Sect. 1.4 are inspiring. On the other hand,
there is some danger of generating ideas that are conceptually flawed. After more
than one decade of research, one should admit that telling cause from effect from
purely observational data remains a challenging enterprise [17] and one should be
skeptical about too simple proposals.

Preferring the Deterministic Direction
The real-world examples in Fig. 1.6 and the remarks at the end of Sect. 1.4 may
suggest to consider bijectivity or not as a criterion for inferring the causal direction.
In other words, if Y = f (X) where f is not injective, one may prefer X → Y as
the causal direction. Although the relation in Fig. 1.6 is noisy, one can easily think
of an underlying deterministic mechanism: After all, seasons are just a result of
the change of the incident angle of the solar radiation. To think of a deterministic
dependence on the season, one could put a planar surface, parallel to the surface of
the earth, above the atmosphere (without disturbing weather exposure) and look at
the solar radiation at 12pm, see Fig. 1.7. Then the solar radiation will periodically
depend on the season and be close to a sine function of the day of the year after

Fig. 1.7 Seasonal change of
the solar radiation at some
point on the earth in
non-equatorial position.
Angle of the earth is the cause
of the radiation strength, not
vice versa
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removing the offset. Clearly, the season is the cause of the strength of the solar
radiation and not vice versa.

Examples like the above seem to confirm the intuition that the causal direction
is the one that admits a functional relation Y = f (X) if the converse direction
is non-deterministic, that is, X is not a function of Y . Maybe this intuition is in
fact more often true than it fails. Nevertheless it is worth describing a (more or
less) natural scenario where this intuition fails, just to inspire thoughts about less
superficial criteria. To this end, Fig. 1.8 shows a scenario with a causal relation that
is deterministic in anticausal direction: A ball at position x0 ∈ (−∞, c] flies with
velocity v towards the point c ∈ R, where a wall appears (N = 1) or not (N = 0)
with probability P(N = 1) = q. After some fixed time t , the ball is at position
y = y0 if the wall didn’t appear and at y = y′0 if it did. We then obtain

y =
{

x + vt for N = 0
2c − x − vt for N = 1

(1.19)

Equation (1.19) can be read as structural equation of the form

Y = f (X,N), (1.20)

with the binary noise N . On the other hand, we have

X = g(Y ) = |Y − c| + c − vt, (1.21)

that is, the cause X is a deterministic function of the effect Y contrary to the belief
that the deterministic direction is the causal one.

To point out that even this contrived example does reveal the causal direction
we should mention that there is a criterium other than determinism that indicates
the causal direction: the ‘independence of cause and mechanism’, which appears

Fig. 1.8 Causal relation that is deterministic in anti-causal direction: A ball initially at position
x ∈ (−∞, c] flies with velocity v towards the point c (left), where a binary random variable
N controls whether a wall appears (N = 1) or not. For N = 0 (middle), the ball passes the
point c, while it is reflected for N = 1. If y denotes the position at some later time after the
potential reflection, the map x 	→ y depends on N and is thus non-deterministic. The relation is
deterministic in anticausal direction because the initial position is uniquely determined by the final
position without prior knowledge of N (the value of N can be seen from the final position anyway)
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with different formalizations and names as ‘algorithmic independence of Pcause
and Peffect|cause’ in [45, 46], as independence of ‘input and mechanism’ in [29], as
‘independence of mechanisms’ in [2]. Assume, for simplicity, that PX is a Gaussian
with mean μX and variance σ . Then PY is a mixture of two Gaussians at positions

μY := μ+ vt and μ′Y := −(μ− c + vt)+ c. (1.22)

Then the independence of cause and mechanism is violated for Y → X because
the position c of the wall can be reconstructed from both PY and g. This is seen as
follows. On the one hand, c is the average of both means:

c = 1

2
(μY − μ′Y ). (1.23)

On the other hand, for each point y ∈ (−∞, c], there is a second point y′ := y+ 2c

for which g(y) = g(y′). For this reason, PY is not a typical input for the function
g: Replacing PY with a Gaussian mixture with c′ 
= c does not yield a Gaussian
PX, but mixtures of two Gaussians, hence PY and g (which describes PX|Y ) are
dependent. Therefore, we can reject the causal hypothesis Y → X.

1.4.3 Abusing the Second Law: Superficial Entropy Arguments

As mentioned, there are good reasons to believe that asymmetries between cause
and effect are related to asymmetries between past and future—which inevitably
leads to the arrow of time, one of the big questions of theoretical physics [20, 21,
50]. Section 1.5 argues that this link is helpful for understanding the foundations
of causal inference. There is, however, one idea that I have heard repeatedly of
which I believe that it is a dead end: The decisive feature of physical processes
whose time inversion is impossible, so called irreversible processes is the increase
of entropy. It is therefore tempting to conjecture that effects have more entropy than
causes. The idea is that the latter precede the former, thus the conjecture seems to
be in agreement with the general law that physical systems can generate, but not
annihilate, entropy.

The simplest argument disproving this conjecture is a cause-effect relation where
the effect is binary and the cause real-valued with some probability density. The
entropy of a continuous variable depends on the discretization, but one can hardly
argue that it is smaller than the entropy of a simple binary since reasonable
discretization yields entropy values that significantly exceed 1 bit.

The reason why simple entropy arguments of this kind fail is that, even if X

and Y can be assigned to observables of physical systems, they will in general only
describe a small parts of the system. The entropies of X and Y thus do not reveal
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anything about the entropy of the entire physical system. In fact, in Information
Geometric Causal Inference (IGCI) [34, 35] the cause is the variable with larger
entropy. This is because IGCI assumes a deterministic invertible function whose
output is typically less uniform since it generically tends to add peaks to a
distribution instead of smoothing peaks. This conclusion, however, heavily depends
on the assumption of a deterministic relation and one can easily construct an
example where the effect has larger entropy that the cause: Let C be a continuous
variable and E = C +N where N is some independent noise. Then the differential
entropy H(PX) := − ∫ p(x) log p(x)dx satisfies H(PE) > H(PC) due to

H(PE)=H

(∫
PC+np(n)dn

)
≥
∫

H(PC+n) p(n)dn=
∫

H(PC)p(n)dn=H(PC).

(1.24)
If PC and PN are uniform distributions on some intervals, for instance, the entropy
of the convolution is larger although it is no longer uniform (which is possible only
because it is spread over a larger interval). Roughly speaking one can say: whether
entropy decreases or increases from cause to effect for two real-valued variables
depends on whether the entropy decrease due to non-linearity or the increase due
to noise is more relevant. In both cases, however, entropy depends on the scaling of
the variables—an issue that the idea of comparing entropies ignores anyway. IGCI,
for instance, uses the convention that either both variables are scaled to have unit
variance or scaled to have 0 and 1 as smallest and largest values, respectively. In the
first case, comparing entropies amounts to comparing the relative entropy distance
to the closest Gaussian, while scaling to the unit interval amounts to comparing
relative entropy distance to the uniform distribution.

A related dead end is given by the claim that the distribution of the effect should
usually be ‘more complex’ than the distribution of the cause with respect to whatever
notion of complexity. The intuition is that the effect inherits complexity from both
the mechanism relating cause and effect and the distribution of the cause. Indeed,
the deterministic scenario in [34] confirms this idea, but once the causal relation
is noisy the noise can also make the distribution of the effect smoother than the
cause distribution, as mentioned above. Then the effect distribution can be arbitrarily
simple (in the sense, for instance, of being close to a Gaussian).

1.4.4 Comparing Only Conditionals

An intuitive approach that many people come up with as first guess is to compare
the conditionals PY |X and PX|Y and prefer the direction with the ‘less complex’
conditional with respect to whatever notion of complexity. It is hard to argue against
postulates of causal inference, but the following remarks may explain my concerns
about this approach. Assume that X and Y are discrete variables attaining nX and
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nY different values, respectively. The space of joint distributions has a natural
parameterization in terms of a vector in R

nXnY−1. A model from X to Y can be
parameterized by a vector in R

nX−1 for PX and a vector in R
nX(nY−1) for PY |X.

Hence, the dimensions of the parameterizations add up to nX − 1+ nX(nY − 1) =
nXnY − 1, a value that is symmetric in X and Y , in agreement with the fact that we
have parameterized the full set of joint distributions. In other words, the parameter
space of PX and PY |X together is equally large as the space of PY and PX|Y together,
no matter whether nX and nY are similar or not. If we compare only complexities
PY |X and PX|Y we compare objects from the parameter spaces RnX(nY−1) to objects
described by a vector in R

nY (nX−1). If nX � nY , the former space is much larger,
which probably introduces bias towards PY |X being more complex than PX|Y for
many notions of complexity. This would result in preferring the variable with the
smaller range as cause, which would be an undesired bias. In Sect. 1.3.3 we will
explain that the postulate of independence of Pcause and Peffect|cause also suggests
to consider the sum of marginal and conditional complexities when complexities
are quantified via Kolmogorov complexity. The following argument shows that the
algorithmic independence of Pcause and Peffect|cause does not imply

K(Peffect|cause)
+≤ K(Pcause|effect). (1.25)

First, we simply consider the trivial case where X and Y are statistically independent
and assume K(PX) < K(PY ). Let us further assume the algorithmic independence

I (PX : PY |X)
+= 0 (which simply amounts to the algorithmic independence of PX

and PY here). Due to PY = PY |X and PX = PX|Y we have K(PY |X) > K(PX|Y ).
The trivial case may not be convincing by itself, but it can be modified to making the
case more convincingly: assume, in some causal model, an arbitrary distribution PX

is combined with some independent conditional PY |X that is highly complex. Then
the complexity of PY |X does not necessarily result in a complex relation between
X and Y . Instead, it could also result in PY being complex, as the limiting case of
independent X and Y shows.

Despite these arguments it should be emphasized that several existing cause-
effect approaches (e.g. additive noise) are based on the conditional only without
accounting for the marginal of the hypothetical cause. There are, however, justifi-
cations (e.g. [51] for additive noise) that do not rely on the belief that Peffect|cause is
less complex than Pcause|effect.

To summarize this subsection in particular as well as the whole section in general,
my main point is that there is meanwhile a large number of proposals for inferring
causal directions by comparing model complexities (here I count entropies also as
‘complexities’). One should always keep in mind, however, that different ranges and
scaling of variables render the task of getting comparable complexity measures is
non-trivial.
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1.5 Where Does the Asymmetry Come From? A Detour to
Physical Toy Models

On an abstract level it is not surprising that the asymmetry between cause and effect
is somehow related to the asymmetry between past and future, but fortunately this
link can be made more explicit. To this end, I consider a joint distribution of cause
and effect for which a simple causal inference method works, namely the method
‘Linear non-Gaussian Acyclic Models’ (LiNGAM) [52]. The method infers that X0
is the cause of X1 whenever there is a linear model with independent additive noise
from X0 to X1, that is

X1 = αX0 + βN0 with X0 ⊥⊥ N0, (1.26)

where α, β ∈ R and N0 is an unobserved noise term6 provided that there is no
additive noise model from X1 to X0. Unless the joint distribution of X0, X1 is
bivariate Gaussian, an additive noise model can exist in at most one direction.
Hence,

X0 
= γX1 + δN1 with X1 ⊥⊥ N1, (1.27)

for all choices of γ, δ,N1. Certainly, not every cause-effect relation can be described
by an additive noise model, but if an additive noise model fits in either direction, it is
unlikely not to be the causal direction, as argued via algorithmic information theory
in [51]. To understand the asymmetry between cause and effect given by (1.26)
and (1.27) from an underlying physical toy model, we assume that X0 and N0
are states of two physical systems SX and SN , respectively, before SX and SN are
subjected to an interaction. Further, let X1 and N1 describe the states of SX and
SN after they have interacted. Figure 1.9 shows the different levels of describing
the system: The figure on the left hand side shows just the DAG with two nodes
visualizing the cause-effect relation.

The figure in the middle visualizes the corresponding functional causal model
showing not only the observed variables but also the unobserved noise term N0 that
renders the relation between cause and effect probabilistic. Finally, the figure on
the right hand side shows the physical description level where X0, N0 are initial
states and X1, N1 are final states of interacting physical systems SX and SN . More
explicitly, let the interaction between SX and SN be given by the rotation

(
X1

N1

)
= Rφ

(
X0

N0

)
, (1.28)

6The scaling factor β in front of the noise term is uncommon, but makes the argument below more
concise.
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X0

X1

X0

X1

N0 X0

X1

N0

N1

Fig. 1.9 Different description levels of the causal relation between the observed variables X0 and
X1. Left: The DAG visualizing that X0 is the cause and X1 the effect. Middle: Functional causal
model where X1 is a deterministic function of X0 and an independent unobserved noise variable
N0. Right: Underlying physical model where X0, X1 are initial and final state of an observed
system SX and N0, N1 initial and final state of an unobserved system SN . If we assume that the
dynamics defines a bijective map from (X0, N0) to (X1, N1), the only asymmetry of the scenario
with respect to time inversion consists in the assumption that X0 and N0 are independent while X1
and N1 will then be dependent for typical maps (see text)

where Rφ is the rotation matrix

Rφ :=
(

cos φ sin φ

− sin φ cos φ

)
, (1.29)

with some angle φ. Assuming that SX and SN have never been interacting before,
we necessarily have

X0 ⊥⊥ N0, (1.30)

because any statistical dependence is due to some interaction according to Reichen-
bach’s principle of the common cause [53]. Hence, the physical model indeed
induces the additive noise model (1.26) with α = cos φ and β = sin φ. For our
argument later it is crucial to mention that Rφ generates dependences between X1
and N1 unless φ is a multiple of π/2 since the resulting linear combinations of the
non-Gaussian variables X0 and N0 cannot be statistically independent due to the
Theorem of Darmoir-Skitovic [54].

Since Rφ is invertible, one may think that an interaction given by the inverse
rotation R−φ would induce an additive noise model from the effect X1 to the cause
X0—which would mislead the causal inference algorithm LiNGAM. This would,
however, require X1 ⊥⊥ N1, that is, the systems SX, SN would be independent after
they have interacted, but dependent before the interaction. This is in contradiction
to the obvious arrow of time in every-day experience: the fact that photographic
images show the past and not the future is due to the fact that the light particles
(‘photons’) contain information about an object after it has interacted with it, not
before the interaction. As argued in [55], this asymmetry can be seen as a part of a
more general independence principle stating that the initial state of a physical system
does not contain information about the dynamics it is subjected to. Reference [55]
further argues that this principle reproduces the standard thermodynamic arrow of
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time by implying that bijective dynamics can only increase physical entropy, but not
decrease it, which implies that heat can only flow from the hot to the cold reservoir,
but not vice versa. This way, the asymmetry between cause and effect is closely
linked to known aspects of the thermodynamic arrow of time. In the above toy
scenario, the arrow of time in physics provides some justification for the causal
inference method LiNGAM.

On the other hand, causal inference can help to discover aspects of the arrow of
time that have not been described before: Reference [56] directly infers the time
direction of empirical time series using a modification of LiNGAM for time series
and Ref. [41] distinguishes an acoustic signal from its echo using a new causal
inference method for time-series.

To learn a more general lesson from the above toy model, note that the causal
conditional PX1|X0 inherits linearity from the underlying physical process Rφ ,
while the anticausal conditional PX0|X1 does not admit a linear model although
R−φ is certainly also linear. The reason is, as stated before, that we would need
independence of X1 and N1 to obtain an additive noise model for PX0|X1 . More
generally speaking, this suggests that causal conditionals ‘inherit’ the simplicity
of the underlying physical laws, while anticausal conditionals do not inherit the
simplicity of the time-inverted physical law because the statistical dependences
between the system under consideration and the system providing the noise destroys
the simplicity [57, 58]. This way, the cause-effect problem can also refresh discus-
sions on the right view on Occam’s Razor, which nicely shows the philosophical
dimension of this little toy problem.

References

1. J. Pearl. Causality. Cambridge University Press, 2000.
2. J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference – Foundations and

Learning Algorithms. MIT Press, 2017.
3. P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B Schölkopf. Nonlinear causal discovery

with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Proceedings of the conference Neural Information Processing Systems (NIPS) 2008,
Vancouver, Canada, 2009. MIT Press.

4. J. Peters, D. Janzing, and B. Schölkopf. Identifying cause and effect on discrete data using
additive noise models. In Proceedings of The Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), JMLR: W&CP 9, Chia Laguna, Sardinia, Italy, 2010.

5. K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09,
pages 647–655, Arlington, Virginia, United States, 2009. AUAI Press.

6. D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin. Towards a learning theory of cause-
effect inference. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of JMLR Workshop and Conference Proceedings, page 1452–1461. JMLR, 2015.

7. A. Marx and J. Vreeken. Telling cause from effect using MDL-based local and global
regression. In 2017 IEEE International Conference on Data Mining, ICDM 2017, New
Orleans, LA, USA, November 18–21, 2017, pages 307–316, 2017.



24 D. Janzing

8. P. Bloebaum, D. Janzing, T. Washio, S. Shmimizu, and B. Schölkopf. Cause-effect inference
by comparing regression errors. In A. Storkey and F. Perez-Cruz, editors, Proceedings of the
21th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 84,
pages 900–909. PMLR, 2018.

9. J. Song, S. Oyama, and M. Kurihara. Tell cause from effect: models and evaluation.
International Journal of Data Science and Analytics, 2017.

10. D. Janzing, J. Peters, J. Mooij, and B. Schölkopf. Identifying latent confounders using additive
noise models. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
(UAI 2009), 249–257. (Eds.) A. Ng and J. Bilmes, AUAI Press, Corvallis, OR, USA, 2009.

11. D. Janzing, E. Sgouritsa, O. Stegle, P. Peters, and B. Schölkopf. Detecting low-complexity
unobserved causes. In Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence (UAI 2011). http://uai.sis.pitt.edu/papers/11/p383-janzing.pdf.

12. D. Janzing and B. Schölkopf. Detecting confounding in multivariate linear models. Journal of
Causal Inference, 6(1), 2017.

13. D. Janzing and B. Schölkopf. Detecting non-causal artifacts in multivariate linear regression
models. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80, pages 2245–2253. PMLR, 2018. http://
proceedings.mlr.press/v80/janzing18a/janzing18a.pdf.

14. K. Popper. The logic of scientific discovery. Routledge, London, 1959.
15. TETRAD. The tetrad homepage. http://www.phil.cmu.edu/projects/tetrad/.
16. D. Janzing, D. Balduzzi, M. Grosse-Wentrup, and B. Schölkopf. Quantifying causal influences.

Annals of Statistics, 41(5):2324–2358, 2013.
17. J. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing cause from

effect using observational data: methods and benchmarks. Journal of Machine Learning
Research, 17(32):1–102, 2016.

18. Database with cause-effect pairs. https://webdav.tuebingen.mpg.de/cause-effect/. Copyright
information for each cause-effect pair is contained in the respective description file.

19. D. Janzing. Statistical assymmeries between cause and effect. In R. Renner and S. Stupar,
editors, Time in physics, volume Tutorials, Schools, and Workshops in the Mathematical
Sciences. Birkhäuser, Cham, pages 129–139. Springer, 2017.

20. R. Balian. From microphysics to macrophysics, volume 1. Springer, 2007.
21. R. Balian. From microphysics to macrophysics, volume 2. Springer, 1991.
22. B. Russell. On the notion of cause. Proceedings of the Aristotelian Society, 3:1–26, 1912–

1913.
23. C. Wood and R. Spekkens. The lesson of causal discovery algorithms for quantum correlations:

causal explanations of Bell-inequality violations require fine-tuning. New Journal of Physics,
17(3):033002, 2015.

24. M. Pawlowski and V. Scarani. Information causality. In G. Chiribella and R. Spekkens, editors,
Quantum Theory: Informational Foundations and Foils, pages 423–438. Springer, 2016.

25. H. Barnum and A. Wilce. Post-classical probability theory. In R. Spekkens and G. Chiribella,
editors, Quantum Theory: Informational Foundations and Foils, pages 367–420. Springer,
2016.

26. K. Ried, M. Agnew, L. Vermeyden, D. Janzing, R. Spekkens, and K. Resch. A quantum
advantage for inferring causal structure. Nature Physics, 11(5):414–420, 05 2015.

27. M. Leifer and R. Spekkens. Towards a formulation of quantum theory as a causally neutral
theory of Bayesian inference. Phys Rev, A(88):052130, 2013.

28. D. Schmied, K. Ried, and R. Spekkens. Why initial system-environment correlations do not
imply the failure of complete positivity: a causal perspective. preprint, arXiv:1806.02381,
2018.

29. B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and
anticausal learning. In Langford J. and J. Pineau, editors, Proceedings of the 29th International
Conference on Machine Learning (ICML), pages 1255–1262. ACM, 2012.

http://uai.sis.pitt.edu/papers/11/p383-janzing.pdf
http://proceedings.mlr.press/v80/janzing18a/janzing18a.pdf
http://proceedings.mlr.press/v80/janzing18a/janzing18a.pdf
http://www.phil.cmu.edu/projects/tetrad/
https://webdav.tuebingen.mpg.de/cause-effect/
http://arXiv:1806.02381


1 The Cause-Effect Problem: Motivation, Ideas, and Popular Misconceptions 25

30. K Zhang, B Schölkopf, Krikamol Muandet, and Z Wang. Domain adaptation under target
and conditional shift. 30th International Conference on Machine Learning, ICML 2013, pages
1856–1864, 01 2013.

31. P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search (Lecture notes in
statistics). Springer-Verlag, New York, NY, 1993.

32. J. Peters, J. Mooij, D. Janzing, and B. Schölkopf. Identifiability of causal graphs using
functional models. In Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence (UAI 2011). http://uai.sis.pitt.edu/papers/11/p589-peters.pdf.

33. C. Nowzohour and P. Bühlmann. Score-based causal learning in additive noise models.
Statistics, 50(3):471–485, 2016.

34. P. Daniusis, D. Janzing, J. M. Mooij, J. Zscheischler, B. Steudel, K. Zhang, and B. Schölkopf.
Inferring deterministic causal relations. In Proceedings of the 26th Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pages 143–150. AUAI Press, 2010.

35. D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and
B. Schölkopf. Information-geometric approach to inferring causal directions. Artificial
Intelligence, 182–183:1–31, 2012.

36. J. Mooij, O. Stegle, D. Janzing, K. Zhang, and B. Schölkopf. Probabilistic latent variable
models for distinguishing between cause and effect. In Advances in Neural Information
Processing Systems 23 (NIPS*2010), pages 1687–1695, 2011.

37. E. Sgouritsa, D. Janzing, P. Hennig, and B. Schölkopf. Inference of cause and effect with
unsupervised inverse regression. In G. Lebanon and S. Vishwanathan, editors, Proceedings of
the 18th International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR
Workshop and Conference Proceedings, 2015.

38. D. Janzing, P. Hoyer, and B. Schölkopf. Telling cause from effect based on high-dimensional
observations. Proceedings of the 27th International Conference on Machine Learning (ICML
2010), Haifa, Israel, 06:479–486, 2010.

39. J. Zscheischler, D. Janzing, and K. Zhang. Testing whether linear equations are causal: A free
probability theory approach. In Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence (UAI 2011), 2011. http://uai.sis.pitt.edu/papers/11/p839-zscheischler.pdf.

40. C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral
methods. Econometrica, 37(3):424–38, July 1969.

41. N. Shajarisales, D. Janzing, B. Schölkopf, and M. Besserve. Telling cause from effect in
deterministic linear dynamical systems. In Proceedings of the 32th International Conference
on Machine Learning (ICML), pages 285–294. Journal of Machine Learning Rearch, 2015.

42. J. W. Comley and D. L. Dowe. General Bayesian networks and asymmetric languages. In
Proceedings of the Hawaii International Conference on Statistics and Related fields, June
2003.

43. X. Sun, D. Janzing, and B. Schölkopf. Causal inference by choosing graphs with most plausible
Markov kernels. In Proceedings of the 9th International Symposium on Artificial Intelligence
and Mathematics, pages 1–11, Fort Lauderdale, FL, 2006.

44. D. Janzing, X. Sun, and B. Schölkopf. Distinguishing cause and effect via second order
exponential models. http://arxiv.org/abs/0910.5561, 2009.

45. D. Janzing and B. Schölkopf. Causal inference using the algorithmic Markov condition. IEEE
Transactions on Information Theory, 56(10):5168–5194, 2010.

46. J. Lemeire and D. Janzing. Replacing causal faithfulness with algorithmic independence of
conditionals. Minds and Machines, 23(2):227–249, 7 2012.

47. G. Chaitin. A theory of program size formally identical to information theory. J. Assoc.
Comput. Mach., 22(3):329–340, 1975.

48. S. Kpotufe, E. Sgouritsa, D. Janzing, and B. Schölkopf. Consistency of causal inference under
the additive noise model. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning (ICML), W&CP 32 (1), pages 478–495. JMLR,
2014.

http://uai.sis.pitt.edu/papers/11/p589-peters.pdf
http://uai.sis.pitt.edu/papers/11/p839-zscheischler.pdf
http://arxiv.org/abs/0910.5561


26 D. Janzing

49. X. Sun. Schätzen von Kausalstrukturen anhand der Plausibilität ihrer Markoff-Kerne, 2004.
Diploma thesis (in German), Universität Karlsruhe (TH).

50. S. Hawking. A brief history of time. Bantam, 1990.
51. D. Janzing and B. Steudel. Justifying additive-noise-based causal discovery via algorithmic

information theory. Open Systems and Information Dynamics, 17(2):189–212, 2010.
52. Y. Kano and S. Shimizu. Causal inference using nonnormality. In Proceedings of the

International Symposium on Science of Modeling, the 30th Anniversary of the Information
Criterion, pages 261–270, Tokyo, Japan, 2003.

53. H. Reichenbach. The direction of time. University of California Press, Berkeley, 1956.
54. V. Skitovic. Linear combinations of independent random variables and the normal distribution

law. Select. Transl. Math. Stat. Probab., (2):211–228, 1962.
55. D. Janzing, R. Chaves, and B. Schölkopf. Algorithmic independence of initial condition

and dynamical law in thermodynamics and causal inference. New Journal of Physics,
18(093052):1–13, 2016.

56. J. Peters, D. Janzing, A. Gretton, and B. Schölkopf. Detecting the direction of causal time
series. In A Danyluk, L Bottou, and ML Littman, editors, Proceedings of the 26th International
Conference on Machine Learning, pages 801–808, New York, NY, USA, 2009. ACM Press.

57. D. Janzing. On causally asymmetric versions of Occam’s Razor and their relation to
thermodynamics. http://arxiv.org/abs/0708.3411v2, 2008.

58. D. Janzing. On the entropy production of time series with unidirectional linearity. Journ. Stat.
Phys., 138:767–779, 2010.

http://arxiv.org/abs/0708.3411v2


Chapter 2
Evaluation Methods of Cause-Effect
Pairs

Isabelle Guyon, Olivier Goudet, and Diviyan Kalainathan

2.1 Introduction and Motivations

The field of causal discovery from observational data has traditionally been divided
into several schools of thought, including the “potential outcome” [53, 54], and
the “graphical model” [47, 57] schools. The former (potential outcomes) focus on
(X = treatment, Y = outcome) pairs in the context case-control studies, when
there is a strong enough dependency between X and Y to warrant an investigation
of a possible causal effect X → Y . In that context, the context, the direction
X → Y of the putative causal relation is not questioned, but the “intensity” of
the causal effect must be evaluated. This intensity can eventually be zero, if the
observed dependency between X and Y solely results from one or several common
cause(s) or confounding factor(s). Specifically, the data include “observations” of
(X, Y ) pairs for a number of patients together with jointly observed covariates Z
(such as age, gender, origin, etc.), which are possible confounding factors. The
hypothesis X → Y is tested against X ← Z → Y . The latter school of thoughts
(graphical models) seek to recover a full causal graph from the joint observation of
many variables (X1, X2, · · · ), generally up to an equivalence class of graphs, using
conditional independence between variables (Markov properties). Such methods do
not allow us to orient pairs of variables taken in isolation, since X → Y and X ← Y
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are Markov equivalent. In the past few years, new approaches have emerged, which
have started to constitute a third school of thoughts [9, 33, 35, 46]: focus on orienting
pairs (X, Y ) of variables, i.e. determine whether X → Y or X ← Y .

Limiting ourselves to pairs of variables, rather than addressing the muti-variate
case is a deliberate choice. At first sight, focusing on pairs seems easier. However,
researchers versed in causal discovery know all-too-well the difficulty of distin-
guishing between a causal effect and a spurious dependency due to confounding.
In layman terms, “correlation is not causation”. This problem is even harder
when potential confounding factors are hidden variables. Furthermore, observing
additional variables may help orienting causal edges, e.g. using colliders or V-
structures [47]. This is not possible when only pairs of variables are given. So why
making things potentially more complicated than they already are by considering
only pairs of variables?

There are multiple justifications to embrace the cause-effect pair setting. The
primary justification is practical: cause-effect pair methods might extend the
potential outcome framework to resolve cases with no a priori on causal direction
X → Y or X ← Y . All is needed is to first condition P(X, Y ) on known potential
confounders Z (e.g. age, gender, etc.) or adjust with a propensity score [53] to
get P(X, Y |Z), then address edge orientation as a cause-effect pair problem. The
setting of cause-effect pairs, making no a priori assumption on causal orientation
nor on the presence of hidden confounders, lends itself to applications in areas like
epidemiology, when it is unclear which variable is the “treatment” and which one is
the “outcome”, e.g. X = diabetes_consumption and Y = drinking_diet_soda

[15]. Other justification have been invoked. One may argue that the cause-effect
pair problem is of fundamental scientific interest. Indeed, it is the smallest problem
addressing the issue of finding asymmetries in joint distributions of variables that
are potentially revealing of causal relationships, and it cannot be resolved using
Markov properties (conditional independence testing). Another argument is that
basing causal discovery on cause-effect pairs may help fighting against the “curse
of dimensionality” by avoiding to perform extensive conditional independence tests,
which are very data hungry. However, what is gained on one side might be lost on
another and ultimately, the effect of multiple testing might be the same. So it is
better to think of pairwise methods as complements to multi-variate graphical model
methods that help orienting edges left un-oriented in Markov equivalence classes.

This chapter introduces methodology to address both the problems of validating
methods, validating discoveries, and benchmarking.

In Sect. 2.2, we describe the problem setting. In this section, we formulate the
problem of cause-effect pairs as a “classical” machine learning problem in which we
want to classify “objects”. In this case, objects are pairs of variables (X, Y ), or more
concretely, jointly drawn samples of two variables, which can be viewed as a two-
dimensional scatter plot representing an empirical joint distribution (see examples
in Table 2.1). A theoretical framework around this setting was proposed in [43],
replacing miscellaneous data generative hypotheses outlined in Chap. 1, deemed
necessary to infer causal relationships, by a unified notion of mother distribution.
A mother distribution is a distribution over input/output samples {(X, Y ),G}, where
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Table 2.1 Mini artificial examples

Generative model Scatter plot CR2 CIR CH CS CCDS

1 X ∼ N(0, 1).

Z ∼ N(0, 0.5).

Y = X + Z. � �

2 X ∼ U(−1, 1).

Z ∼ U(−0.5, 0.5).

Y = X + Z. � � �

3 X ∼ U(0, 1).

Z ∼ U(0, 1).

Y = ZX. � � �

4 X ∼ N(0, 1).

Z ∼ N(0, 0.1).

Y = tanh(X)+ Z. � � � �

5 X ∼ U(−1, 1).

Y = X2.

� � � �

6 X ∼ U(0, 1).

Z ∼ B(−1, 1).

Y = Z
√

X. � �

All pairs are X → Y . The last columns indicate the success of simple causation coefficients (see
Sect. 2.3.1), which give inconsistent results

G is the “ground truth” (causal graph). We consider four possible ground truth
categories (as opposed to just two, in Chaps. 1 and 3):

1. X → Y (X causes Y )
2. X ← Y (Y causes X)
3. X ↔ Y (X and Y are dependent but neither causes the other)
4. X ⊥ Y (X and Y are independent)

Chapter 6 refines ground truth categories to the case of partial confounding, i.e.
classes 1 and 2 are subdivided depending on whether the dependency between X
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and Y is partially explained by common causes Z. The mother distribution fully
describes the data generative process of cause-effect pairs: it can be endowed by
any explicit data generative model, but can also represent unknown distributions of
real (X, Y ) pairs, eventually labeled by experts.

In Sect. 2.3 we then introduce a notion of causation coefficient C(X, Y ), which
is a discriminant value in the problem of classifying X → Y vs. all other cases.
Because of the symmetry of the problem, C(X, Y ) can also be used to separate
X ← Y vs. all other cases: small negative values of C(X, Y ) mean X ← Y , large
positive values mean X → Y , and middle values mean either X ↔ Y , X ⊥ Y , or
“inconclusive result”.

In Sect. 2.4, we tackle the problem of validating methods, from the point of
view of algorithm developers. Since we bring the problem back to a two-class
classification problem, usual metrics of classification accuracy may be used (such
as accuracy, balanced accuracy, area under the ROC curve, area under the precision-
recall curve, etc.). We propose a new notion of (α, β)-identifiability, in terms of
tolerances on Type I and Type II errors for a given mother distribution, replacing
classical notions of identifiability [33, 46, 66, 67], which refer to a particular data
generative process (i.e. the existence of a functional causal model in one direction
but not in the other). We demonstrate that our framework extends to the finite sample
case.

In Sect. 2.5, we shift our attention to the problem of validating discoveries, i.e.
evaluating the significance of given putative causal relationships for particular pairs
of variables in the context of an application. We thus take the point of view of
practitioners deploying causal discovery methods in their day to day work. Finally,
in Sect. 2.6, we turn to the problem of benchmarking causal discovery algorithms
and comparing their relative merits. This is the problem of algorithm developers
and benchmark or challenge organizers. One central difficulty in causal discovery
is gaining access to “ground truth" (or causal graph) G, necessary to validate
either methods or discoveries. Building on prior work to create datasets of real and
artificial data, such as the Tuebingen dataset [46], and expanding on earlier work
we did on assessing causal discovery methods in the context of challenges [26], we
describe in some details the dataset of the cause-effect pair challenges we organized
in 2013–2014 [31] and explain the efforts we made to avoid common pitfalls biasing
data.

Most of this chapter focuses on problems in which independently and identically
drawn samples of the joint distribution of X and Y are given, as opposed to joint
time series. The latter problem will be addressed in more details in Chap. 5.
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2.2 Problem Setting

2.2.1 Definition of Causality and Ground Truth of Causal
Relationships

In what follows, we consider a notion of causality between pairs random vari-
ables (denoted by capital letters X and Y ), as opposed to causality between events
or objects. Such random variables generally result from physical measurements
(e.g. temperature, blood pressure, compressive strength) or surveys (e.g. age,
income, number of children); they can be binary, categorical, or continuous (see
Fig. 2.1), though most of our illustrative examples use continuous variables (e.g.
Tables 2.1 and 2.2). For the most part, we consider a notion of “instantaneous”
causality, for which effects are supposed to propagate instantaneously (from X

to Y or Y to X or from a common cause). This allows us to consider that pairs
{(x1, y1), (x2, y2), · · · , (xi, yi), · · · , (xn, yn)} of joint observations of X and Y are
drawn i.i.d. from a distribution P(X, Y ). However, in some cases, we extend the
discussion to time series: the index i then represents the time ordering of the
samples, and the samples are supposed to have been drawn from a dynamic system.

Many definitions of causality have been proposed in the scientific and philosophy
literature [34, 47]. Some of the commonly used definitions include:

• Counterfactuals: X is a cause of Y if we observed X = x and Y = y, but,
had X been different, Y would have been different. For instance, the heat wave
caused the thermometer needle to rise to a reading of 45◦C. Had the temperature
remained mild, the thermometer needle would not have risen that high. Note that
we cannot go back in time and change the climate settings from “heat wave” to

Fig. 2.1 Scatter plots of pairs of variables. Each little group of points represents a two-
dimensional scatter plot of a pair of variables (X, Y ) from the cause-effect pair challenge. The
variables can be continuous, binary, or categorical. Each pair (X, Y ) is labeled with a ground truth
G ∈ {X → Y,X ← Y,X ↔ Y,X ⊥ Y }
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Table 2.2 Comparison of real and artificial examples

Generative model Graph CR2 CIR CH CS CCDS

1 X = log(altitude).

Y = temperature.

� �

2 X = N(9, 1.5).

Z ∼ N(0, 1000).

Y = 14 exp(0.75X)− exp(X)+ Z. � � � �

3 X = age.

Y = weight.
�

4 X ∼ N(0.8, 0.3).

Z ∼ N(0, 0.2).

Y = (−(X − 1)2 + 1)+ ZX. � �

5
X = aspect.

Y = hillshade3pm.

� � �

6 X ∼ U(−π, π).

Z ∼ exp(U(−1, 1)).

Y = Z sin(X). � � �

Each real pair is compared with a simple data generative model providing a similar-looking scatter
plot, but not always the same causation coefficient results

“not heat wave”: a counterfactual is different from an experiment. It can, at best,
be a “thought experiment”.

• Interventions or experiments: X is a cause of Y if, given forced assignments
of X to values X = do(x) (as opposed to naturally observed values X = x),
P(Y |X = do(x)) = P(Y |X = x) holds while P(X|Y = do(y)) = P(X|Y = y)

does not hold. For instance, temperature in a room causes the temperature value
indicated by a thermometer’s needle. So, forcing the room temperature to change
to T should result in the same thermometer readings than letting the temperature
change on its own to T , however manually moving the needle of the thermometer
should not change the room temperature.
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• Mechanisms: X is a cause of Y if there exists a mechanism f such that Y :=
f (X,N), which generated Y from X and some noise N (summarizing the effect
of other unknown variables). For instance, we can open the thermometer’s box
and observe that there is a coil spring whose dilatation increases with temperature
and drives the motion of the needle. This is the mechanism by which the position
of the needle is obtained from the temperature.

In Chap. 1, we saw that these three notions of causality are inter-related and
practically we expect that, if one definition holds, the others are true too. For
example, in medicine, if we establish with a randomized controlled trial (an
experiment) [16] that a given drug is effective against a given disease, we assume
that there is a mechanism that explains the effect and that, if a patient is cured
after taking the medicine, he would not have been cured had he not taken it
(a counterfactual). However, clearly these three definitions are not equivalent.
Intuitively, we might think that mechanisms are the most fundamental way of
evidencing causal relationships. But the existence of a mechanism does not imply the
existence of a measurable effect that can be experimentally evidenced and, likewise,
does not necessarily imply counterfactuals. In medicine, the gold standard of
establishing causal relationships remains randomized controlled trials [19, 56, 62].
According to these sources, the use of a controlled study is the most effective way
of establishing causality between variables. In a controlled study, the sample or
population is split in two groups, comparable in almost every way. The two groups
then receive different treatments, and the outcomes of each group are assessed. For
example, in medical research, one group may receive a placebo while the other
group is given a new type of medication. If the two groups have noticeably different
outcomes, the different experiences may have caused the different outcomes. Due
to ethical reasons, there are limits to the use of controlled studies; it would not
be appropriate to use two comparable groups and have one of them undergo a
harmful activity while the other does not. To overcome this situation, observational
studies are often used to investigate correlation and causation for the population of
interest. The studies can look at the groups’ behaviors and outcomes and observe any
changes over time. The objective of these studies is to provide statistical information
to add to the other sources of information that would be required for the process of
establishing whether or not causality exists between two variables.

In this chapter however, we focus on a definition of causality stemming from
structural equation models, based on “mechanisms”. We assume that if X → Y ,
then there exists a mechanism that produced Y from X and that this mechanism
can be mathematically represented by a functional relationship, called Structural
Equation Model—SRM—or Functional Causal Model—FCM [47, 48]). Using
informal mathematical notations, the “mechanical” definition of causality is:

G = [X → Y ] def= ∃f ∧ ∃N s.t. Y := f (X,N) ⇒ P(Y |X) (2.1)
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The symbol := should be thought of as an assignment, not an equality: Y was
obtained from f (X,N). Such mechanisms underlie our notion of ground truth, both
for real and artificial data. We show examples of pairs in Tables 2.1 and 2.2.

Definition 2.1 (Pairwise Causal and Non-causal Relationships) We consider
that pairs of variables X and Y can be in one of four types of relationships: X

causes Y (X → Y ), Y causes X (X ← Y ), X and Y are dependent, but not in
a causal relationship (X ↔ Y ) or X and Y are independent (X ⊥ Y ). Any pair
of variables (X, Y ) is associated with one and only one such relationships, called
“ground truth” G. By definition, we have:

⎧⎪⎪⎨
⎪⎪⎩

G = [X → Y ] ⇒ ∃f ∧ ∃Ny s.t. Y := f (X,Ny)

G = [X ← Y ] ⇒ ∃f ∧ ∃Nx s.t. X := f (Y,Nx)

G = [X ↔ Y ] ⇒ ∃f, g ∧ ∃Nx,Ny, Z s.t. X := f (Z,Nx) ∧ Y := g(Z,Ny)

G = [X ⊥ Y ] X and Y are independent, no functional relationship
(2.2)

We do not necessarily assume that (X ⊥ Ny) nor that (Y ⊥ Nx), thus there can
be additional latent confounders in the first two cases X → Y and X ← Y . In
practice, variables X and Y are known to us through samples drawn according
to a distribution P(X, Y ). For instance, if G = [X → Y ], x samples are first
drawn according to P(X), then y samples are drawn according to P(Y |X) using a
“mechanism” Y := f (X,N). Thus, the various data generative processes are the
following:

⎧⎪⎪⎨
⎪⎪⎩

G = [X→Y ] : x∼P(X), ny∼P(Ny) y:=f (x, ny)

G = [X←Y ] : y∼P(Y ), nx∼P(Nx) x:=f (y, nx)

G = [X↔Y ] : z∼P(Z), nx∼P(Nx), ny∼P(Ny) x:=f (z, nx), y:=g(z, ny)

G = [X ⊥ Y ] : x ∼ P(X), y∼P(Y )

(2.3)

Thus, the structural equations entail a definition of causality and data generative
processes. A graphical representation of the various cases is given in Fig. 2.2.

Let us make a few remarks:

Fig. 2.2 Graphical representation of causal graphs considered in this chapter: the full edges
represent necessary causal links. The dashed edges represents optional links
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• The existence quantifier ∃ from the mechanistic definition of causality lets us
understand that a mechanistic explanation of a causal relationship may not be
unique. In particular, our explanation is limited to what we can apprehend of
X and Y . For example, if G = [X → Y ] and all we can “see” of X and Y is a
sample of P(X, Y ) (even infinite), we will never be able to evaluate the difference
between two explanations Y := f 1(X,N1

y ) and Y := f 2(X,N2
y ), yielding the

same P(Y |X) on the support of P(X).
• The definition involves an implication ⇒, not an equivalence. The existence of

a function Y := f (X,Ny) allowing us to predict Y from X (to the extent that
we faithfully reproduce the joint distribution P(X, Y ), which assumes of course
that we have also identified P(X) and P(Ny)), does NOT imply that X → Y .
This is our dilemma: we will have to determine under which conditions finding
an explanation of P(X, Y ) in terms of P(X), P(Ny), and Y := f (X,Ny) allows
us to prefer the hypothesis that X → Y over alternative hypotheses. It can even
be shown, under some assumptions, that there always exists X,Ny, Y,Nx, f, g

such that Y := f (X,Ny) and X := g(Y,Nx) (see [67]).
• For simplicity, in artificially generated data, we imposed that (X ⊥ Ny) and

(Y ⊥ Nx). However, this is not necessarily the case in real data (partial con-
founding/dashed lines in Fig. 2.2). See Chap. 6 for extensions of this framework.

• The case G = [X ↔ Y ] represents a dependency between two variables, which
is NOT causal. When we generate simulated data, we bring this case back to
the existence of one or several common cause(s) Z (following Reichenbach’s
common cause principle [52]). In real data, there may be violations to the
common cause principle: cases of inter-dependences between variables may be
explained by constraints, equilibria, or cycles. However, for simplicity, we will
not further discuss the mechanisms underlying non causal dependencies and we
will model them all via the existence of a common cause.

• For real data, we are relying on “expert opinion” to determine ground truth.
In the medical domain, this is considered a very low level of evidence, lower
than randomized controlled trials (experiments) and even case-control studies
(observational studies) [7]. We will see in Sect. 2.6 how we ensure the quality of
real data labels.

2.2.2 Mathematical Statement of the Problem

We can cast the cause-effect pair problem as a regular machine learning classi-

fication problem in which input-output pairs
(
PΠ=π (X, Y ),G = g

)
are drawn

randomly and independently from a “mother distribution” PM

(
PΠ(X, Y ),G

)
[43],

then divided into training and test sets. The problem is to “classify” distributions
PΠ=π (X, Y ) into one of four classes g ∈ { X → Y , X ← Y , X ↔ Y , X ⊥ Y }.
The “mother distribution” PM is a distribution over distributions PΠ(X, Y ), where
the index Π is itself a random variable, identifying a particular joint distribution
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over X and Y . Practically, PΠ=π (X, Y ) is only known through a finite sample
SΠ=π (X, Y ) = {(x1, y1), (x2, y2), · · · , (xn, yn)} (a scatter plot). Hence, we have
a double random process:

1. Draw pair
(
PΠ=π (X, Y ),G = g

)
from mother distrib. PM

(
PΠ(X, Y ),G

)
.

2. Draw n samples from PΠ=π (X, Y ) :
SΠ=π (X, Y ) = {(x1, y1), (x2, y2), · · · , (xn, yn)}.

3. Repeat the process to obtain enough training and/or test examples:
{(S1(X, Y ), g1

)
,
(
S2(X, Y ), g2

)
, · · · ,

(
SN(X, Y ), gN

)}.
(2.4)

Therefore the mother distribution is a distribution over join distributions of pairs
of variables.1 In what follows, we adopt the following definition of a “mother
distribution”:

Definition 2.2 (Mother Distribution) A mother distribution PM

(
PΠ(X, Y ),G

)

is a distribution over pairs
(
PΠ=π (X, Y ),G = g

)
, where Π and G are random

variables:

• Π = π indexes distribution PΠ=π (X, Y ) over random variables X and Y ; π

may possibly take an infinite number of values (e.g. parameters of a generative
process);

• G = g labels causal relationship, g ∈ {X → Y , X ← Y , X ↔ Y , X ⊥ Y}.

The meaning of this “mother distribution” may seem mysterious. However, let
us consider a few examples of causal discovery problems, which could clarify
this notion. For notational simplicity we sometimes reformulate PΠ=π (X, Y ) as
P(Xπ, Yπ), the distribution over two random variables indexed by π . In our
examples, π is just a discrete index k.

Example 1: Genomics. Pharmaceutical companies are interested in determining
the influence of genes on each other [58]. A dataset may consist of jointly
recorded gene activities for N pairs of genes (Xk, Yk), k = 1, · · ·N and for n

patients Sk = {(xk1, yk1), · · · , (xkn, ykn}. Determining which gene influences
which other gene is a costly experimental process, so only a subset of pairs of
genes are generally labeled with ground truth of causal relationship G = gk .
The labeled dataset

{
(S1, g1), · · · , (Sk, gk), · · ·

}
, k = 1 · · ·N , is an empirical

sample of the “mother distribution” over pairs of genes and their causal labels,
which may be used as training data to obtain a classifier, such that predictions of
unknown causal labels can be made on new pairs of genes.

Example 2: Ecology. A study is conducted to understand better an ecosystem
in a forest area and preserve biodiversity [3]. The question is to determine
which factor influences which other factor. The dataset consists of n jointly
recorded values of many variables (Xk, Yk), k = 1, · · ·N , in different locations,

1In case of time series, {(x1, y1), (x2, y2), · · · , (xn, yn)} are time ordered and not drawn i.i.d..
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such as soil, humidity, lighting, presence of certain plants or animals, etc.,
resulting in samples Sk = {(xk1, yk1), · · · , (xkn, ykn}. Determining which factor
influences which other factor is a complicated process, however, prior knowledge
of physics and biology may allow us to label some pairs with ground truth
G = gk (for example the aspect of a slope can influence hill shade and not
vice-versa, see example 5 in Table 2.2). The labeled dataset thus obtained{
(S1, g1), · · · , (Sk, gk), · · ·

}
, k = 1 · · ·N , is an empirical sample of the “mother

distribution”. It is hoped that we can label automatically more pairs with a
classifier trained on such data, if the mechanisms of the other pairs bear some
similarity.

Example 3: Social sciences. A country conducts a census survey, including
socio-demographic questions (age, gender, education, profession, number of
children, salary, etc.), e.g. [39]. The question is to determine which factor
influences which other factor. The dataset consists of joint answers from n

citizens for factor pairs (Xk, Yk), k = 1, · · ·N : Sk = {(xk1, yk1), · · · , (xkn, ykn}.
Prior knowledge allows us to determine the ground truth for a few pairs (Xk, Yk)

(for example age can influence wages and not vice-versa). This constitutes an
empirical “mother distribution” of pairs

{
(S1, g1), · · · , (Sk, gk), · · · , (SN , gN)

}
from which we might train a classifier to label other similar pairs with their
causal direction.

A mother distribution may be endowed with an explicit data generative process
PΠ(X, Y ) underlying PΠ(X, Y ), for example, an Additive Noise Model (ANM)
[33, 49]2:

PANM
Π=π (X, Y )

{
g = [X → Y ] : x ∼ P(X), n ∼ P(N),X ⊥ N, y := f (x)+n

g = [X ← Y ] : Reverse the role of X and Y.

(2.5)
The data generative process PANM

Π=π is parameterized by π , which includes the choice
of ground truth (or causal graph) g, input distribution P(X), noise distribution
P(N), and function f . Pairs (x, y) drawn according to PANM

Π=π (X, Y ) are (by defi-
nition) distributed according to P ANM

Π=π (X, Y ).3 We will use the shorthand notation:

PM

(
PΠ(X, Y ),G

)
. PM provides a distribution over choices of parameters π of

the generative process.
In what follows, we assume that the training and test sets are drawn from the

same distribution PM

(
PΠ(X, Y ),G

)
or PM

(
PΠ(X, Y ),G

)
, leaving for further

study problems of domain adaptation or transfer learning [64, 65]. Even though we
cast our problem as a learning problem, we do not exclude approaches not involving
any learning (see examples in Sect. 2.3). In that case, the training set is just unused.

2The difference with the general case is outlined in blue: the noise is additive. It is usually assumed
that the noise and the input are independent in the ANM (noted X ⊥ N ).
3However, we remind the reader that several data generative processes may generate the same data
distribution.
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Table 2.3 Comparing two pattern recognition problems

Attribute Handwritten digits Cause-effect pairs

Patterns
“M”

Pixel maps Scatter plots

Pattern
resolution

Number of pixels Number of
sampled {x, y} points

Generating
process

Handwriting
SRM/FCM

data generative process:
points in scatter plot obtained

from Eq. (2.15)

Ground truth
“G”

{One, T wo, T hree, · · · , Nine} {X → Y,X ← Y, X ↔ Y,X ⊥ Y }

Mother
distribution
PM (M, G)

Join distribution
of images of digits

(pixel maps “M”) and
labels G ∈ {One, T wo, · · · }

Join distribution
of scatter plots

(sample “M” of P(X, Y ))
and labels G ∈ {X → Y, · · · }

Methods
to obtain

labeled data

(1) Generate artificial digits
from handwriting models

(2) Ask humans to
handwrite given digits
(3) Collect examples

of digits e.g. from zip codes
and have human experts

labels them

(1) Generate artificial scatter
plots from a causal model

(2) Use a real causal system
to generate data

(3) Use real pairs of
variables with known

causal directions

Data split
Training, validation,

and test sets
Training, validation,

and test sets
Reduction to

binary
classification

Separate
one class vs. the rest

Separate
[X → Y ] vs. the rest

Discriminant
functions

One function Di(M;w, θ)

per class
A “causation coefficient”

C(M;w, θ) � C(X, Y ;w, θ)

Classification
method

Ĝ = argmaxiDi(M;w, θ) Ĝ = [X → Y ] iffC(M;w, θ) > 0

Training Adjust w of Di(M;w, θ)

using training data
and θ using validation data

Adjust w of C(M;w, θ)

using training data
and θ using validation data

Evaluation Error rate, BER
(balanced error rate),

etc., on test data

Error rate,
BER= 0.5(FPR+FNR),
AUC, etc., on test data

Overfitting
avoidance

Don’t use test data
to select parameters,

hyper-parameters or models

Don’t use test data
to select parameters,

hyper-parameters or models
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2.2.3 Causal Discovery as a Pattern Recognition Problem

In our setting, causal discovery is nothing but a regular pattern recognition
problem. To gain further intuition, we compare the cause-effect pair problem
with the well-known handwritten digit recognition problem (Table 2.3). Some
parallels are interesting: First, digit resolution (number of pixels) and the number
of points n in scatter plot, play a similar role. Second, in “on-line” character
recognition, points are sampled with a touch sensitive pad, resulting in ordered
samples {(x1, y1), (x2, y2), · · · , (xn, yn)}. Similarly time-ordered (x, y) pairs may
be obtained from a dynamic causal process. Even though handwritten characters are
always the result of a sequential dynamic process, we often ignore time ordering and
perform pattern recognition from pixel maps. Likewise, when we consider causal
discovery from scatter plots, we ignore time dependencies. Even though we know
that causes precede their effects, we assume instantaneous propagation of causal
effects. Finally, overfitting may be an issue for causal discovery as in every pattern
recognition problem. Until recently, many papers in causal discovery have been
published with no data split: models were selected and evaluated using a single
dataset (de facto serving both as training and test set), thus making error bars much
worse than advertised. For a review on performance bounds, see [41].

2.3 Causation Coefficients

Once our problem has been formulated as a learning problem, we need to build
a classifier (eventually using training data) to predict the ground truth of causal
relationships as accurately as possible. For practical reasons, we find it convenient to
recast the problem as a two-class classification problem separating X → Y from all
other cases. We propose to construct a causation coefficient, which is a discriminant
function in this two-class classification problem.

2.3.1 Definition

We consider a pair of random variables (X, Y ) with ground truth G ∈ {X →
Y,X ← Y,X ↔ Y,X ⊥ Y }, drawn from an unknown mother distribution. We
call Ĝ an estimator of G based on (X, Y ). We define a causation coefficient for, as
follows:

Definition 2.3 (Causation Coefficient) A causation coefficient C(X, Y ) is a real
scalar value, such that the larger C(X, Y ), the more confident we are that G =
X → Y .
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A causation coefficient must have the following desired properties:

1. C(X, Y ) = −C(Y,X) [Anti-symmetry]
2. C(X, Y ) > θ ≥ 0 ⇒ Ĝ = [X → Y ]

(and Ĝ 
= [X → Y ] otherwise) [Discriminant]
3. C(aX + b, cY + d) = C(X, Y ); a, b, c, d ∈ R, a 
= 0, c 
= 0 [Arbitrary units]

Several cause-effect pair filters (not involving any learning) have been proposed
as causation coefficients, based on various data generative assumptions. Examples
in Tables 2.1 and 2.2 show the result of applying some filters defined below to
continuous variables:

• CR2=R-squared: The difference between the R-square statistic measuring good-
ness of fit in both direction: CR2 = R2

y − R2
x [4, 33, 49].4

• CIR=Input/Residual Independence: The difference between statistics of inde-
pendence between input and residual: CIR = I (Ry,X)− I (Rx, Y ) [33, 49].5

• CH =Entropy: The difference in (discretized) entropy of the marginal distribu-
tions: CH = Hx −Hy , with Hx =∑m

k=1 pk log pk; using m = 20 bins [36].6

• CS=Slope: The difference in average slope in both direction: CS = Sy−Sx , with
Sy =∑m−1

k=1 pk Δyk/Δxk; using m = 20 intervals [36].7

• CCDS: Conditional Distribution Standard deviation: The difference between
conditional distributions average standard deviation, in both directions [18]:
CCDS = CDS(X|Y )− CDS(Y |X).8

We give in Fig. 2.3 an example of cause-effect pair in which all causation
coefficient filters agree and give the correct causal direction! This example was
generated as follows:

4In our examples, we perform a piece-wise constant fit using m = 20 equally spaced points. If we
believe that the fit should be better in the “causal direction”, then R2 = R2

y−R2
x should be positive

if X → Y ), since R2
y is the residual of the fit ŷ = f (x).

5Using an ANM model (Eq. (2.5)), we expect that input and residual of regression (our estimation
of the noise) are independent, i.e. if X → Y , Ry ⊥ X. We use a kernel independence test statistic
[25] to calculate I (X, Y ); larger values of I (X, Y ) mean a greater confidence that X and Y are
independent. For example, I (., .) can be the HSIC statistic.
6According to the Information Geometry Causal Inference (IGCI) principle, if (X → Y ) and there
is independence between “causal mechanism” and P(X), then, under some conditions (e.g. no
noise and invertible mechanism), Hx ≥ Hy [36].
7According to IGCI principle again, if X → Y , under the same conditions as for the entropy
criterion, Sy ≥ Sx [36].
8CDS measures variations in conditional distribution. The idea is that, for X → Y , if X is
independent of the noise, then, after normalizing the support P(Y |X) should not vary a lot.
For additive noise models, CCDS should be similar to CIR (but not always, because of support
normalization). In the case of multiplicative noise, CCDS should capture the independence of noise
and input, where CIR usually fails.
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Fig. 2.3 Example of pair for which all causation coefficient filters agree. Ps(Y |X) is the
conditional distribution of Y given X with re-normalized support. Values of the statistics
R2

Y , IRY , SY ,HX , and CDS(X|Y ) (on top of in the lower left plots) are larger than those of
R2

X, IRX, SX,HY , and CDS(Y |X) (on top of the upper right plots). Thus all corresponding
causation coefficients agree that X → Y

g =[X → Y ] : x ∼ U(−1, 1), n ∼ N(0, 0.001),

⎧⎨
⎩

x ≤ −0.5, y := x + 0.5+ n

−0.5 < x < 0.5, y := n

x ≥ 0.5, y := x − 0.5+ n

But, don’t be too hopeful. Causation coefficient filters succeed or fail depending
on the validity of assumptions made, details of implementation, and sample
variance, as can be seen in Tables 2.1 and 2.2 (all examples shown are of type
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X → Y and the check marks indicate a correct prediction of the causal relationship;
graphical representations such as Fig. 2.3 are provided in Appendix 3 for all example
pairs.). Rather than making a wrong decision, if no hypothesis is significantly better
supported than others, it is preferable to reject them all (see Sect. 2.5). Several
authors, e.g. [58], have attempted to use ensemble methods to combine various
causation coefficients proposed in the literature, reporting increased performance.
The participants of the cause-effect pair challenge 2013–2014 [31] used them as
features to train predictive models, in combination with other engineered features
[6, 10, 17, 45, 55] (see Chap. 4). Other methods have emerged that will be described
in Chap. 3 and 4 for the i.i.d. case, and in Chap. 5 for time series.

2.3.2 Bayes Optimal Causation Coefficients

In this section, we apply Bayesian decision theory to define several theoretically
optimal causation coefficients. We make the following assumptions: (a) Data are

drawn from a mother distribution PM

(
PΠ(X, Y ),G

)
. (b) We treat the asymptotic

case of perfect knowledge of PΠ(X, Y ) (i.e. we classify pairs (X, Y ) given an
infinite size sample). However, extending results to the finite sample case is trivial,
by replacing PΠ(X, Y ) by SΠ(X, Y ), (see Sect. 2.4.2). (c) To ensure that property
3 in the definition of a causation coefficient holds (see Sect. 2.3), all variables X

and Y are first standardized (subtract mean and divide by standard deviation).
(d) The ground truth G belongs to {X → Y,X ← Y,X ↔ Y,X ⊥ Y }. (e)
The mother distribution is perfectly symmetrical and unbiased towards a particular

causal direction: PM

(
G = [X → Y ]

)
= PM

(
G = [Y → X]

)
; for the case

of X ↔ Y we also postulate that the mother distribution generates models and
their swap (exchanging X and Y) with the same probability. A causation coefficient
is a discriminant function (Property 2 in the definition of a causation coefficient,
Sect. 2.4.2). Bayesian decision theory allows us to define optimal discriminant
functions. Bayes’ rule applied to the mother distribution yields,9

PM

(
PΠ(X, Y ),G

)
= PM

(
PΠ(X, Y ) | G

)
PM

(
G
)

= PM

(
G | PΠ(X, Y )

)
PM

(
PΠ(X, Y )

)
.

As per Bayesian decision theory [12], the largest attainable classification accu-
racy is:

9If Π takes continuous values, PM

(
PΠ(X, Y )

)
and PM

(
PΠ(X, Y ) | G

)
should be understood

as densities rather than a distributions.
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BayesAccuracy = E
[

max
j

PM

(
G = j | PΠ(X, Y )

)]
, (2.6)

where the expectation E[.] is taken over the randomness of Π . This is attainable
with:

Classify pair (Xπ, Yπ) as [X → Y ] iff

PM

(
G = [X → Y ] | (Xπ , Yπ)

)
> PM

(
G 
= [X → Y ] | (Xπ, Yπ)

)
.

(2.7)
where we use the notation shorthand PΠ=π (X, Y ) = P(Xπ, Yπ).

We show in Appendix 2 that the following causation coefficients are Bayes
optimal:

CB1(Xπ , Yπ) = Φ
(
PM

(
G = [X → Y ]

∣∣∣∣(Xπ, Yπ)
))

−Φ
(
PM

(
G = [X ← Y ]|(Xπ, Yπ)

))
CB2(Xπ , Yπ) = Φ

(
PM

(
(Xπ, Yπ)|G = [X → Y ]

))
−Φ

(
PM

(
(Xπ, Yπ)|G = [Y → X]

))
(2.8)

where the function Φ(.) is any convenient strictly monotonically increasing func-
tion, such as Φ(.) = log(.), introduced to make the formulas more general.

For CB1, PM

(
G = [X → Y ]|(Xπ, Yπ)

)
is NOT equal to (1 − PM

(
G = [X ←

Y ]|(Xπ, Yπ)
)

, because we consider four possible truth values G ∈ {X → Y,X ←
Y,X ↔ Y,X ⊥ Y }.

For CB2, remarkably, even though we consider four possible truth values for G,
this causation coefficient involves only two data generative processes, for [X → Y ]
and [X ← Y ]. We remind the reader that (Xπ , Yπ) is a shorthand for PΠ(X, Y )

and we denote by PΠ(X, Y ) any data generative process yielding to a distribution
identical to PΠ(X, Y ). Thus CB2 compares two data generative models:

PΠ(X, Y ) | G = [X → Y ]

and

PΠ(X, Y ) | G = [Y → X].

This is similar to what is usually done in the literature of cause-effect pair generative
models (see Chap. 3), except that we do NOT limit ourselves to just two classes
G = [X → Y ] or G = [Y → X]. More about this in Sect. 2.4.1.
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2.4 The Point of View of Algorithm Developers

In this section and in the following ones, we will talk about methods of evaluation
of cause-effect pair algorithms. We take three points of view: that of algorithm
developers in need to characterize their new algorithms both theoretically and
empirically, that of practitioners who want to ensure the validity of a potential
discovery, and that of benchmark organizers who want to make fair comparisons.

We begin in this section with the point of view of algorithm developers. We
first discuss the problem of backing algorithms with theoretical justifications, then
review empirical assessment methods.

2.4.1 Identifiability of Cause-Effect Pairs

One central question investigated in many causality papers is that of “identifiabil-
ity”. Identifiability refers to the feasibility of solving the inverse problem: given
(X, Y ) pairs having been generated by a given causal mechanism, recover the
correct causal relationships unambiguously. In this section, we begin by defining
the classical notion of identifiability considering that the (data generative) model
class is the same as the hypothesis class, i.e. the method consists in fitting
models belonging to the class of models that generated data. We then move to
a generic machine learning approach in which no assumption is made about data
generative models; rather, data are supposed to have been drawn from an unknown
“mother distribution” and causation coefficients predict causal relationships without
necessarily fitting a generative model or making assumptions about how data were
generated.

The literature on identifiability of cause-effect pair mechanisms [33, 46, 66, 67]
focuses for the most part only two class labels g ∈ G = {X → Y , X ← Y},
considering that only pairs that are significantly dependent should be tested for
causal orientation and excluding the case of “confounding” (presence of a common
cause). We call BΠ such a binary cause-effect pair data generative process:

Definition 2.4 (Binary Cause-Effect Pair Data Generative Process)

BΠ(X, Y )

{
g = [X → Y ] : x ∼ P(X), n ∼ P(N) y := f (x, n)

g = [X ← Y ] : Reverse the role of Xand Y.
(2.9)

BΠ(X, Y ) is parameterized by Π , which includes the choice of ground truth (causal
graph) g ∈ G, input distribution P(X) ∈ X, noise distribution P(N) ∈ N, and
function f ∈ F. Pairs (x, y) drawn according to BΠ(X, Y ) are distributed according
to PΠ(X, Y ).
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This definition yield a first definition of “identifiability”:

Definition 2.5 (B-Identifiability) Given a cause-effect pair (X, Y ) obtained from
a data generative process BΠ(X, Y ), its causal direction is B-identifiable iff :

G = [X → Y ] ⇒
{∃ (f ∈ F ∧ P(N) ∈ N) s.t. Y := f (X,N)

� (f ∈ F ∧ P(N) ∈ N) s.t. X := f (Y,N).

and vice versa if we reverse the roles of X and Y .
BΠ(X, Y ) is B-identifiable iff the causal direction of all possible generated pairs
are B-identifiable.10

Typically B-identifiability is obtained by making restrictive assumptions on
F (such as surjectivity, strict monotonicity/invertibility, continuity, derivability,
smoothness) and on X and N (such as Gaussianity or non-Gaussianity, uniformity,
etc.). Additionally, it is usually assumed that X ⊥ N (X and N are independent).
Also G excludes X ⊥ Y on the grounds that independence can easily be tested, thus
we can focus on dependent pairs. Less justifiably, X ↔ Y is also excluded from G,
for simplicity.

As a particular case, if P(X, Y ) is symmetric, the pair (X, Y ) is not identifiable.
By symmetric, we mean that P(X = x, Y = y) = P(X = y, Y = x) once the
support of X and Y have been standardized. Data generated with a linear additive
noise model with Gaussian input and Gaussian noise (Case 1 in Table 2.1) is
a particular case if symmetric distribution. The more general the family of data
generative models (i.e. the less restrictive the assumptions made), the larger the set
of non-identifiable cases. It can be shown [67] that if no restrictions are placed, it
is always possible to find a function f and noise N such that Y := f (X,N) and
another function f and noise N such that X := f (Y,N). Thus it is essential to make
some assumptions or place some restrictions on the data generative process. Notice
that the notion of B-identifiability is an asymptotic property: a perfect knowledge
of P(X, Y ) is assumed. The finite sample case is addressed in Sect. 2.4.2.

A greater level of generality in the definition of identifiability is obtained
by considering the notion of “mother distribution” PM . By definition (See

Sect. 2.2.2), a mother distribution PM

(
PΠ(X, Y ),G

)
is a distribution over pairs(

PΠ=π (X, Y ),G = g
)

, where Π and G are random variables: Π = π indexes

distribution PΠ=π (X, Y ) over random variables X and Y and may include the
parameters of a generative process; G = g labels causal relationship, g ∈ G =
{X → Y , X ← Y , X ↔ Y , X ⊥ Y}. Note that, even though there is an
implicit data generative process underlying a mother distribution, the definition
does not preclude of any particular data generative process and thus applies to
synthetic/artificial data (for which the generative process is known) as well as to
real data (for which mechanisms may be unknown). If we want to assume that
a given data generative PΠ(X, Y ) underlies PΠ(X, Y ) process, we can use the

notation PM

(
PΠ(X, Y ),G

)
instead of PM

(
PΠ(X, Y ),G

)
.

10Except possibly for a finite subset or a subset of measure 0.
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From the notion of mother distribution and of causation coefficient, we derive a
more general notion of identifiability (see Fig. 2.4 for a schematic illustration the
distribution of a hypothetical causation coefficient):

Definition 2.6 ((α, β)-Identifiability) Assume that pairs
(
PΠ=π (X, Y ),G = g

)

are drawn according to a given “mother distribution” PM

(
PΠ(X, Y ),G

)
or

PM

(
PΠ(X, Y ),G

)
. The causal direction of a given pair (X, Y ) with G = X → Y

is (α, β)-identifiable for PM (with 0 ≤ α ≤ 1, 0 ≤ β ≤ 1) iff there exist a causation
coefficient C(X, Y ) and a threshold θ > 0 such that:

Pr(C(X, Y ) > θ | G 
= [X → Y ]) ≤ α. (Type I errors)

Pr(C(X, Y ) < θ | G = [X → Y ]) ≤ β. (Type II errors)

where the probability is taken over the randomness of Π . PM is (α, β)-identifiable
iff the causal direction of all possible pairs is (α, β)-identifiable.

This definition seeks to bound simultaneously Type I and Type II errors.
Alternative definitions of identifiability using a “mother distribution” are possible.
For example, one could set a threshold on the area under the ROC curve (plotting
True Positive Rate as a function of False Positive Rate) obtained by varying θ .

Fig. 2.4 Schematic representation of the density of a causation coefficient: the dashed line
represents the density of a hypothetical causation coefficient C(X, Y). The blue shaded area
represents the density of the negative class G ∈ {X ← Y,X ↔ Y,X ⊥ Y } (multiplied by the
prior probability of the negative class) and the red shaded area the density of the positive class
G = X → Y (multiplied by the prior probability of the positive class). For a given threshold θ

we have a given fraction of false positive (shaded area), corresponding to a p-value (called α in the
text)
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Yet another possibility would be to use the area under the precision-recall curve
(precision is the number of true positive over (true positive + false positive) and
recall is the sensitivity. For concreteness, we show in Fig. 2.5 examples of empirical
densities (histograms) of the causation coefficients of three top ranking participants
of the cause-effect pair challenge [29]. The data of the challenge constitutes an
empirical “mother distribution”; it is described in Sect. 2.6.

In the definition of (α, β)-identifiability, we require the existence of a causation
coefficient. This is not a restriction, since there exists several optimal Bayesian
causation coefficients (see Sect. 2.3.2), which can be used to derive theoretical
bounds of identifiability. Using the optimal Bayesian causation coefficient of
Eq. (2.30), we can prove that B-identifiability implies (α, β)-identifiability.

Theorem 2.1 (B-Identifiability Implies (α, β)-Identifiability) Given a mother

distribution PM

(
BΠ(X, Y ),G

)
endowed by a binary cause-effect pair data

generative process BΠ(X, Y ) with identical class priors PM

(
G = [X → Y ]

)
=

Fig. 2.5 Density of causation coefficients. We show the empirical density (histogram) of
causation coefficients for the top three ranking participants of the cause-effect pair challenge
[29]. For comparison we show the distribution of the Pearson correlation coefficient (excluding
categorical variables)
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PM

(
G = [X ← Y ]

)
, if BΠ(X, Y ) is B-identifiable then PM is (α, β)-identifiable,

with α = β = θ = 0. Reciprocally, (α, β)-identifiability, with α = β = θ = 0
implies B-identifiability.

Proof of the theorem is given in Appendix 2.
The definition of (α, β)-identifiability rests upon likelihoods P(C | G) rather

than posterior probabilities P(G | C). It is useful to build bridges with sta-
tistical testing (Sect. 2.5.3). However, it may be impractical for empirical eval-
uations (Sect. 2.4.3). By using Bayes inversion P(G | C ≶ θ) = P(C ≶
θ | G)P (G)/P (C ≶ θ), we propose another notion of identifiability.

Definition 2.7 ((a, p)-Identifiability) Assume that pairs
(
(X, Y ),G = g

)
are

drawn according to a given “mother distribution” PM . PM is said to be (a, p)-
identifiable, for 0 ≤ a ≤ 1 and 0 ≤ p ≤ 1, iff there exist a causation coefficient
C(X, Y ) and a threshold θ > 0 such that:

Accuracy(θ)=Pr (G=X→Y |C(X, Y )>θ ∨ G=X←Y |C(X, Y )< −θ)≥a

DecisionRate(θ) = Pr = ( |C(X, Y )| > θ ) ≥ p

where the probability “Pr” means probability taken over the randomness of PM .

Finally, it is useful to specialize (a, p)-identifiability to the case when a = 1,
namely 100% accuracy, no Type I error, i.e. no false causal discovery.

Definition 2.8 (p-Identifiability) Assume that pairs
(
(X, Y ),G = g

)
are drawn

according to a given “mother distribution” PM . PM is said to be p-identifiable iff
there exist a causation coefficient C(X, Y ) and a threshold θ∗ > 0 such that:

Accuracy(θ) = Pr (G=X→Y | C(X, Y )>θ ∨ G = X ← Y | C(X, Y ) < −θ)

θ∗ = argmaxθ [Accuracy(θ) = 1] (No Type I error)

p = Pr
( |C(X, Y )| > θ∗

)
(DecisionRate(θ∗))

where the probability “Pr” is taken over the randomness of PM .

For the definitions of (α, p)-identifiability and p-identifiability, we have sym-
metrized the roles of X → Y and X ← Y . If we compare with the definition
of (α, β)-identifiability, a plays the role of (1 − α) and p plays the role of
(1 − β). Similarly, (α, p)-identifiability (and p-identifiability) is equivalent to B-
identifiability if the mother distribution is endowed by a binary cause-effect pair
data generative process, in the case a = p = 1 and θ = 0. This corresponds
to 100%-identifiability. Note that (α, β)-identifiability, (α, p)-identifiability, and p-
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identifiability are intrinsic properties of the mother distribution, NOT of any
causal discovery algorithm. They are linked to the Bayes optimal classification
accuracy and its associated Bayes optimal causation coefficients.

2.4.2 Finite Sample Case, Consistency, and Rates of
Convergence

In the previous subsection, we only considered asymptotic properties, in the sense
that we assumed that, for each pair (Xπ , Yπ), its distribution PΠ(X, Y ) was
perfectly known. In practice only samples SΠ(X, Y ) are given, i.e. scatter plots.

However, all the notions introduced before can be extended to empirical distri-
butions. The only thing we have to do is to replace PΠ(X, Y ) by SΠ(X, Y ). This
is totally justified by the fact that SΠ(X, Y ) is an empirical distribution (hence a

distribution). Therefore we can define a mother distribution PM

(
SΠ(X, Y ),G

)
directly on empirical distributions SΠ(X, Y ), bypassing the notion of double
random process of Eq. (2.4). For convenience, we repeat the definition of (α, β)-
identifiability in the finite sample case, but it is exactly the same.

Definition 2.9 ((α, β)-Identifiability (Finite Sample Case)) Assume that pairs(
SΠ=π (X, Y ),G = g

)
are drawn according to a given mother distribution

PM

(
SΠ(X, Y ),G

)
. The causal direction of a given pair (X, Y ) with G = X → Y

is (α, β)-identifiable for PM (with 0 ≤ α ≤ 1, 0 ≤ β ≤ 1) iff there exist a causation
coefficient C (SΠ=π (X, Y )) and a threshold θ > 0 such that:

Pr(C (SΠ=π (X, Y )) > θ | G 
= [X → Y ]) ≤ α). (Type I errors)

Pr(C (SΠ=π (X, Y )) < θ | G = [X → Y ]) ≤ β). (Type II errors)

where the probability is taken over the randomness of Π , which includes the
drawing of scatter-plot samples. PM is (α, β)-identifiable iff the causal direction
of all pairs is (α, β)-identifiable.

The randomness of the finite sample in lumped into Π . If we want to consider
empirical distributions with a variety of number of samples n, we can impose a prior
distribution on n and lump it into Π . We can similarly define notions of empirical
(a, p)-identifiability or p-identifiability.

The identifiability problem remains the same in the finite sample case, except that
it becomes more difficult because empirical distributions are (presumably) harder to
classify. From the theoretical point of view, it is useful to derive rates of convergence
(learning curves), providing the speed at which asymptotic identifiability is reached
from a finite sample (consistency). Some authors have started working on this
subject in the context of the Additive Noise Model (ANM; Eq. (2.16)) [40, 46],
but much remains to be done.
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For simplicity, when there in no ambiguity, we will replace C (SΠ=π (X, Y )) with
the simpler notation Ĉ(X, Y ) in what follows.

2.4.3 Empirical Evaluations

In previous sections, we have adopted a framework in which the notion of mother
distribution and (α, β)-identifiability (or p-identifiability) generalizes previous
frameworks of binary cause-effect pair data generative process and B-identifiability.
Determining (α, β)-identifiability (or p-identifiability) only requires providing a
causation coefficient, NOT a data generative model faithfully reproducing the data.
In machine learning jargon: the hypothesis class does not need to be the same as
the model class. The definition of (α, β)-identifiability provides a statistical notion
of identifiability more general and flexible than B-identifiability. It allows us to
authorize a certain fraction of Type I and Type II errors. It does not require finding
a generative model faithfully reproducing the data.

Few papers have explicitly adopted this framework pioneered in [43], but
empirical evaluations are implicitly using it. Indeed, testing causation coefficients
on empirical data, treating the problem as a classification problem while using
a variety of datasets achieves essentially the same purpose as verifying (α, β)-
identifiability empirically. In Sect. 2.6, we present several datasets that are suitable
for that purpose.

The definition of (α, β)-identifiability is not necessarily practical for empirical
evaluations. We review several alternatives:

Bi-Directional AUC In the cause-effect-pair challenge [29, 30], for instance, the
metric of evaluation was the average of two Area under ROC curve (AUC). Let
Ĉ(X, Y ) be the predicted score and G the target values G ∈ {X → Y,X ← Y,X ↔
Y,X ⊥ Y }. We define target values C1 and C2 as follows: C1 = 1, if X → Y and−1
otherwise. C2 = −1, if X ← Y and 1 otherwise. Then, the score of the challenge is
defined as:

Score = Bidirectional AUC = 0.5
(
AUC(Ĉ(X, Y ), C1)+ AUC(Ĉ(X, Y ), C2)

)
(2.10)

Multi-Class Metrics Another related approach is to consider a four class classi-
fication problem (see e.g. [8]) and use classical multi-class classification metrics
(for instance, error rate or balanced error rate). This requires defining multiple
discriminant functions.

But, using a single causation coefficient, the problem could also be turned into a
ternary classification problem, with target values C1 = 1, if X → Y , C2 = −1, if
X ← Y and C3 = 0 otherwise. Setting thresholds ±θ allows you to make decisions
Ĉ(X, Y ) > θ , decide X → Y , Ĉ(X, Y ) < −θ decide X ← Y , and decide X ↔ Y ,
or X ⊥ Y otherwise.
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Empirical p-Identifiability Even in the case of a simple binary classification prob-
lem G ∈ {X → Y,X ← Y }, setting two thresholds can be advantageous to reserve
a region of rejection −θ ≤ Ĉ(X, Y ) ≤ θ . In [36], the authors use this approach.
They then plot the classification Accuracy as a function of DecisionRate, i.e. the
fraction of pairs on which a decision was taken |Ĉ(X, Y )| > θ . In Fig. 2.6 we show
an example of curves of Accuracy vs. DecisionRate, from [42].

We can view the curves plotting empirical Accuracy vs. DecisionRate as
a way of visualizing empirical p-indentifiability (Sect. 2.4.1). The largest value
of the DecisionRate such that Accuracy = 1 provides the value of p in p-
identifiability. For example, in Fig. 2.6, one would say that the Tuebingen dataset
is roughly 30%-identifiable (based on the best causation coefficient RCC). We
remind that p-indentifiability is a property of mother distributions (in this case the
Tuebingen dataset) and requires a (hopefully good) causation coefficient. Obviously,
if 100% accuracy cannot be attained, one can resort to reporting a weaker (a, p)-
indentifiability.

Statistical Significance and Machine Learning “Hygiene” As usual in any
machine learning problem, if learning is performed to tune parameters or hyper-
parameters of Ĉ(X, Y ) or if model selection is performed, it is important to set
aside a test set to carry out evaluations, not to be used until the very final testing. It is
advisable to perform a three-way split of data into a training set to tune parameters of
C(X, Y ), a validation set to carry out hyper-parameter selection or model selection,

Fig. 2.6 Comparison of causation coefficient accuracies: three coefficients are compared: RCC
[42], ANM [33], and IGCI[36] on the 82 scalar pairs of the Tuebingen dataset [46] (see also
Sect. 2.6). For each decision rate, the authors indicated the 95% confidence interval that the
accuracy is not significantly different from 50% by a grey area (not corrected for multiple testing).
According to this figure (reprinted from [42]), the Tuebingen dataset is approximately 30%
identifiable, based on the RCC coefficient
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and a final test set, which in theory should be used only once for final testing. In
practice, most algorithm developers abuse their test set (i.e. use it many times). It
is important to be aware that error bars reported should, in principle, be multiplied
by the square root of the number of models compared (or ideas tried), to account
for “multiple testing” [28]. If this discipline was really enforced, most of the results
reported in the literature would be found not significant.

If results are mediocre, one might settle for showing that they are better than
chance. This is the intention of the grey area in Fig. 2.6: results outside of the
grey area are “statistically significantly” better than chance, i.e. they are in the
rejection region of a statistical test whose null hypothesis is: decisions were made
at random. Since we have a binary classification problem, the expected accuracy of
a random decision is 50%. Decision follow a Bernoulli process with probability A

of being correct (1 − A) of being wrong (A being the classification accuracy). For
n cause-effect pairs, the standard error is

√
A(1− A)/n. A 95% confidence interval

is approximately obtained for two times the standard error, defining the grey area
in the figure: 0.5 ± 1/

√
n. Equivalently, for a decision rate d and a total number of

available pairs N , since n = d.N , the gray area as a function of d is 0.5± 1/
√

d.N .
For instance, since we have a total of N = 82 pairs available, for a decision rate of
d = 0.2, the grey area is 0.5± 1/

√
d.N = 0.5± 0.25. The method also work if the

dataset includes X ↔ Y and X ⊥ Y pairs, and accuracy is defined as the average
of the accuracy of classifying correctly pairs of class X → Y vs. the rest and the
accuracy of classifying correctly pairs of class X ← Y vs. the rest.

2.5 The Point of View of Practitioners

In this section, we take the point of view of practitioners who want to use causation
coefficients in various real-world applications (in medicine or epidemiology, social
sciences, econometrics, etc.). The point of view of practitioners differs from that
of benchmark organizers (Sect. 2.6) in that they do not want to evaluate methods,
they want to use them to identify potential cause-effect relationships in pairs of real
variables. Thus, for practitioners, “evaluation” (the theme of this chapter) means
assessing the reliability of given putative cause-effect relationship “discoveries”
inferred from observational data.

2.5.1 Wish List

If practitioners are provided with a causation coefficient, what do they expect? Here
is our tentative list, based on discussions with various practitioners:
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1. Prerequisites:

• Reproducibility: getting open source code and data, to inspect and re-run
benchmarks demonstrating the validity of the approach.

• Speed: getting results in reasonable time.
• Prior knowledge: possibility of incorporating prior knowledge, such as

model structure (including type of function, noise, potential confounders).
• Testability of assumptions: if assumptions are made, e.g. additive noise,

being able to test their validity.
• Flexibility: being able to handle mixed data with binary, categorical, and

continuous variables; not needing to make assumptions on the type of
function, input, or noise distributions.

2. Efficacy:

• Theoretical groundings: proofs of identifiability and consistency; rate of
convergence as a function of sample size.

• Testability of hypothesis: method for testing the validity of the presumed
causal relationship, computing a confidence interval, a p-value or false
positive rate (FPR) or a false discovery rate (FDR).

• Robustness: method and/or guarantee of getting correct results even in the
presence of outliers.

• Stability: method and/or guarantee of getting the same results with multiple
samples of the same size.

3. Post-hoc evaluation:

• Strength of effect: obtaining a degree of influence or a signal to noise ratio.
• Direction of effect: obtaining an indication of whether the effect is positive

or negative.
• Explainability: understanding why the causal direction decision was made.
• Mechanism: obtaining a data generative model easily interpretable.
• Transfer: obtaining a mechanism that explains other datasets, collected in

different conditions.

Well. . . this is a long list, hopefully we did not forget anything! We hope it will
be useful to researchers who design new algorithms. Let us make a few comments
because some of these requirements conflict with one another and practitioners
might need to be ready to make compromises.

2.5.2 Prerequisites

Regarding Reproducibility, we evidently encourage researchers to accompany
publications with source code and data; luckily this is becoming a standard practice.

The Speed requirement is less obvious, because there may be speed-accuracy
tradeoffs. However, if only a few pairs must be evaluated, speed is not such a
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critical aspect. In a past competition, we forced the participants to produce causation
coefficients that ran relatively fast, by testing them in limited time on a large
dataset,11 leading to method that can rate a pair in less than a tenth of a second
on a standard CPU [42].

As for Prior knowledge, being able to include prior knowledge is always nice,
we will come back to it in Sect. 2.7.

Prior knowledge may be linked to Testability if it is uncertain whether some
assumptions made hold in data. Those may include assumptions on (1) possible
confounders used as conditioning set to “adjust” the data, e.g., with respect to
age, gender, origin, (2) distribution of inputs, or noise, and (3) types of functions
of the data generative process. Unfortunately, if we use available data to test our
assumptions, we weaken further use of such data to test causal relationship, based on
those assumptions. So it is better to only use “sure” prior knowledge and otherwise
avoid making assumptions: this bring us to the need of Flexibility, i.e. providing
methods not specific of certain kinds of data.

Flexibility is maybe best understood by making a comparison between “causa-
tion coefficients” and “correlation coefficients”. Correlation coefficients are widely
used indicators of dependencies between variables. Wouldn’t is be nice to have
a universal correlation coefficient that allows us to test (simply) whether two
variables are dependent (not talking about causality, just dependence)? Does this
exist? Here is a brief discussion of the subject [11, 24, 63]:

Is there a one-size-fit-all correlation coefficient?
The Pearson correlation coefficient is the most commonly used method; however, it is
only sensitive to linear correlations. Spearman’s correlation coefficient and Kendall’s
tau correlation coefficient are the two most common non-linear rank based corre-
lation coefficients but they are limited to monotonic functional dependencies. Other
commonly used methods measuring the correlation between random variables include
distance correlation, Hoeffding’s independence test, Maximal information coefficient
(MIC), Hilbert-Schmidt Information Criterion (HSIC) and Heller Heller Gorfine distance
(HHG). But none of those methods handle categorical (nominal) variables. Methods to
handle categorical variables include the χ2 statistic and the G-statistic (directly related to
mutual information). If you have one continuous variable and one binary you may want
to use the T-statistic or the AUC (are under ROC curve) and if one variable is continuous
and the other categorical, an ANOVA statistic. But, what if you have several pairs (X, Y )

and want to compare them with one another using the SAME metric of dependence?
It seems to be that mutual information is the smallest common denominator. But, why
then is not everybody just using mutual information? One aspect is the computational
complexity of evaluating mutual information for continuous variables (often bypassed by
binning). Another aspect is the statistical complexity and the risk of overfitting: detecting
dependencies that do not exist. IF we know that dependencies are only linear with
Gaussian noise, we are better off using Pearson correlation (less risk of false positive).

Likewise, the ambition of the cause-effect pair challenge [31] was to provide
a one-size-fit-all causation coefficient. The following three chapters (Chaps. 3, 4,
and 5) review and compare the properties of various causation coefficients. As
convenient as a universal causation coefficient might be, we have to realize that

11https://competitions.codalab.org/competitions/1381.

https://competitions.codalab.org/competitions/1381
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the more universal a coefficient (less assumptions made), the larger the false positive
(FPR) rate may be. Conversely, the more restrictive the assumptions made, the larger
the false negative rate (FNR) may be. This is analogous to the common “bias-
variance” tradeoff known to statistics and machine learning researchers [20]: large
modeling spaces yield high variance and small modeling spaces large bias. This
naturally leads us to Efficacy properties.

2.5.3 Efficacy and Confirmatory Analysis

We have already touched upon theoretical foundations in Sects. 2.4.1 and 2.4.2.
Providing such a theoretical grounding is key to reassure practitioners. However,
it is insufficient. Practitioners are looking for means of evaluating the “statistical
significance” of their findings, in the finite sample case, for particular observations
of a given putative cause-effect pair. They are accustomed to using statistical tests
and p-values. Thus algorithm designers have been trying to provide statistical tests
together with their causation coefficient to provide means of validating a given
causal hypothesis, in the finite sample case.

Testing Causation Coefficients In our framework, we have two sources of ran-
domness: drawing the data generative process and drawing samples from that pro-
cess. We take the angle of Sect. 2.4.2 in which we consider a mother distribution PM
from which we draw directly scatter plots (x, y) = {(x1, y1), (x2, y2), · · · , (xn, yn)}
and their associated ground truth g ∈ {X → Y , X ← Y , X ↔ Y , X ⊥ Y}, lumping
together all factors of randomness, including the choice of ground truth (causal
graph), input distribution, noise or hidden variable distribution(s), mechanisms, and
number of examples n in the scatter plot.12

The test statistic is the causation coefficient Ĉ(X, Y ). The null hypothesis is
H0 : ¬ X → Y and the alternative hypothesis is H1 : X → Y . Given a null
distribution for Ĉ(X, Y ) (derived from prior knowledge we have of PM ), a test can
be conducted as follows:

1. Choose a significance level α, e.g. α = 0.05.
2. Compute (empirically or analytically) the cumulative distribution of Ĉ(X, Y )

under the null hypothesis Pr(Ĉ(X, Y ) > θ | H = H0), where “Pr” is taken
over the randomness of PM .

3. Determine the threshold θα , such that Pr(Ĉ(X, Y ) > θα | H = H0) = α.
4. For our given empirical sample (x, y), if Ĉ(x, y) > θα , then reject H0 (in the

favor of H1).

12This could easily be refined in a number of ways, including restricting the mother distribution
PM to scatter plots with the exact same number of samples as the pairs to be tested. In the dataset
of the cause-effect pair challenge that we use as PM , the number of samples vary between 500
and 5000.
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Table 2.4 Two-part tests: for each test result, 1 means the H0 is rejected in the favor of H1; 0
means that H0 is not rejected

Test 1 Test 2

H0 ¬ (X → Y ) ¬ (X ← Y ) Test statistic Conclusion

H1 X → Y X ← Y

One rejected in 1 0 Ĉ(X, Y ) ≥ θα X → Y

favor of the other 0 1 Ĉ(X, Y ) ≤ −θα X ← Y

Neither rejected 0 0 −θα < Ĉ(X, Y ) < θα ?

At significance level α, pairs that have a causation coefficient Ĉ(X, Y ) ≥ θα are X → Y and those
with Ĉ(X, Y ) ≤ −θα are X ← Y . The question mark means that there is no conclusive result

Two tests must be conducted, one for H0 : ¬ X → Y and H1 : X → Y , and
one for H0 : ¬ X ← Y and H1 : X ← Y . It is not good enough to set a threshold
on |Ĉ(X, Y )| and conduct a two-tailed test with null hypothesis H0 : X ↔ Y ∨
X ⊥ Y and alternative hypotheses H1 : X → Y and H2 : X ← Y . This is because
the distributions of X → Y and X ← Y may overlap and therefore must each
be taken into account in the null distribution of the other. The overall procedure is
recapitulated in Table 2.4.

The big question is how to compute the cumulative distribution of Ĉ(X, Y ) under
the null hypothesis Pr(Ĉ(X, Y ) > θ | H = H0). We propose to use a large
dataset of pairs including many scatter plots of real and artificial pairs, which are
“representative” of the pairs we are interested in testing. This is no unlike parametric
tests, in which specific assumptions are made about the null distribution. In Fig. 2.7,
we illustrate this procedure from the causation coefficient produced by Domcastro
and Sayani in the first cause-effect pair challenge [29]. We use the test data of the
cause-effect pair challenge to provide a null distribution for the tests. Using these
data, we could determine the threshold θα = 1.7, for α = 0.05.

This proposed method bears similarity with the “probe” method used in feature
selection, allowing practitioners to use any feature selection criterion as a test
statistic to evaluate the “significance” of the dependence between a feature and a
target value (See [32], Chapter 2). These p-values must be taken with a grain of salt
because they heavily on assumptions underlying PM , but, at the very least, they
allow us to calibrate causation coefficients.

Obtaining p-values for causation coefficients can be done as follows:

If C(x, y) > θα, p-value1(x, y) = Pr(Ĉ(X, Y ) > Ĉ(x, y) | G 
= X → Y ),

If C(x, y) < −θα, p-value2(x, y) = Pr(Ĉ(X, Y ) < Ĉ(x, y) | G 
= X ← Y ).

(2.11)
Those can be tabulated once and for all using PM (e.g. estimated empirically

with the dataset of the cause-effect pair challenge) for each causation coefficient.

Statistical Power We also represented in Fig. 2.7 the distributions of H1 (alterna-
tive distributions) for the two tests considered, based on PM (the distribution of the
cause-effect pair challenge examples in this case). Those can be used to compute the
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Fig. 2.7 Two-part test. We show the empirical density (histogram) of a mother distribution (cause-
effect pair challenge dataset [29]) for the Domcasto-Sayani causation coefficient. Only 5% of pairs
that are NOT X → Y have a causation coefficient Ĉ(X, Y ) > 0.17. Hence, at confidence level α =
0.05, if Ĉ(X, Y ) > θα = 0.17, the null hypothesis of Test 1 is rejected, in favor of H1 : X → Y .
Likewise, only 5% of pairs that are NOT X ← Y have a causation coefficient Ĉ(X, Y ) < −0.17.
Hence, at confidence level α = 0.05, if Ĉ(X, Y ) < −θα = −0.17, the null hypothesis of Test 2
is rejected, in favor of H1 : X ← Y . If −θα < Ĉ(X, Y ) < θα , no hypothesis, including X → Y ,
X ← Y , X ↔ Y or X ⊥ Y can be rejected. In fact, there are quite a few pairs of all types in that
region. (a) Test 1: H0 : X ← Y ∨ X ↔ Y ∨ X ⊥ Y . (b) Test 1: H1 : X → Y . (c) Test 2: H0 :
X ↔ Y ∨ X ⊥ Y ∨ X → Y . (d) Test 2: H1 : X ← Y

power of the tests, i.e. Pr(reject H0|H1 is true), for a given level of significance α.

If C(x, y) > θα, power1 = Pr( Ĉ(X, Y ) > θα | G = X → Y ),

If C(x, y) < −θα, power2 = Pr( Ĉ(X, Y ) < −θα | G = X ← Y ).
(2.12)

Using a significance level α = 0.05, in our example of Fig. 2.7, 44% of the X → Y

pairs are found significant and 46% of the X ← Y pairs. This evaluates the power
of the test based on the Domcastro & Sayani causation coefficient. We show in
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Table 2.5 the statistical power of tests based on the causation coefficients of the
top ranking participants of the cause-effect pair challenge [31], for various levels of
significance. The ranking of participants by statistical power is not quite the same as
the ranking by the score of the challenge (see Table 2.11), but similar. The statistical
power is not excellent: 0.8 is usually what is commonly sought.

Multiple Testing Instead of testing just one pair, practitioners may want to test nc

pairs simultaneously. As is known, p-values (or equivalently confidence intervals)
then degrade. If we follow the Bonferroni correction [5], the p-value should be
multiplied by nc. However, this correction can be too conservative, particularly if
the number of candidates nc is large.

Another approach to multiple testing is to bound the False Discovery Rate (FDR):

FDR = FP

FP + T P
= FP

nsc

where FP is the number of pairs wrongly called significant, and T P the number
of pairs correctly called significant, and nsc = FP + T P is the number of selected
candidates. Of course, we have no way of knowing which pairs are correctly or
not identified since the ground truth of pairs being tested is unknown. We can only
compute a bound on the FDR. The total number of candidates to be tested nc =
FP + T N + T P + FN can be bounded as nc ≤ FP + T N . We thus obtain:

FDR = FP

nc

nc

nsc

� FP

FP + T N

nc

nsc

= FPR
nc

nsc

.

The bound is tight if T P + FN � FP + T N that is if there are very few
good candidates in the pairs tested, which is often the case for example in genomic
applications. The next step is to estimate the false positive rate FPR = FP

FP+T N
by

assuming that the fraction of false positive in the set of candidates considered is the
same as in the mother distribution, for a given threshold on the causation coefficient.
The FPR for the mother distribution corresponds to the p-values of Eq. (2.11). With
this assumption, we get:

If C(x, y) > θα, FDR1(x, y) � p-value1. nc/nsc,

If C(x, y) < −θα, FDR2(x, y) � p-value2. nc/nsc.
(2.13)

The FDR multiple testing method consists in setting a threshold of significance
to bound FDR1 and FDR2, e.g. FDR � p-value. nc/nsc < 0.05. This is more
lenient than the Bonferroni correction, which boils down to setting a threshold of
significance on the corrected p-value = p-value. nc.

Tests for Binary Generative Processes Several authors have derived causation
coefficients based on binary generative processes, which assume only two types of
ground truth: g ∈ {X → Y , X ← Y}. The most commonly used paradigm in that

https://en.wikipedia.org/wiki/Bonferroni_correction
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case is to use is a two-level test, testing first for dependency and second for causal
orientation.

Methods based on binary generative processes compare the likelihood that an
observed pair (x, y) was produced by a model generating X → Y pairs vs. a model
generating X ← Y pairs. Both models are tested separately. We call C+(X, Y ) and
C−(X, Y ) the test statistics to test the adequacy of (x, y) to X → Y and X ← Y

models, respectively (satisfying C+(X, Y ) = C−(Y,X)). A causation coefficient
can be defined based on such statistics, here are a few examples, already provided
in Sect. 2.3:

C(X, Y ) = C+(X, Y ) − C−(X, Y )

CB(X, Y ) = PB

(
G = [X → Y ] | (X, Y )

)
− PB

(
G = [X ← Y ] | (X, Y )

)
CR2(X, Y ) = R2

y − R2
x

CIR(X, Y ) = HSIC(Ry,X) − HSIC(Rx, Y )

(2.14)
As far as we know, this idea was first exploited for the additive noise models

(ANM) [33, 49]. According to [46], one of the most effective cause-effect pair
method is ANM-HSIC, namely the Additive Noise Model (Eq. (2.9)), equipped
with the HSIC independence test [24], corresponding to the causation coefficient
CIR(X, Y ). The CDS method [17, 18] can be thought of as a generalization of
this method to non additive noise models. The CR2(X, Y ) simply comparing the
residuals of fits was recently rejuvenated [4] and seems to be doing quite well under
certain conditions. Chapter 3 gives many methods which use directly CB(X, Y ), i.e.
exploit the likelihoods of the two alternative models.

The procedure to conduct the tests and conclude about the causal relationships
is outlined in Table 2.6. Several hypotheses are being tested. First the independence
between X and Y is tested (e.g. using the HSIC independence test [24]). If the
hypothesis H0 : X ⊥ Y is rejected, then two other tests are conducted testing
H0 : X → Y (with alternative hypothesis H1 : X ← Y ) and H0 : X ← Y (with
alternative hypothesis H1 : X → Y ). The first one uses C+(X, Y ) as test statistic
and the second one C−(X, Y ). The conclusions drawn depending on the results of
the tests are shown in Table 2.6.

Note that, all causation coefficients can be expressed as the difference of two
statistics C+(X, Y ) and C−(X, Y ) such that C+(X, Y ) = C−(Y,X), by virtue of
the fact that they are anti-symmetric, i.e. C(X, Y ) = −C(Y,X). One trivial case is
C+ = C and C− = −C. This brings us back to the kind of test we were conducting
in the previous section. However, not decompositions into C+(X, Y ) and C−(X, Y )

lend themselves to conduct two separate tests. Consider for instance the case of
CH (X, Y ) = Hx − Hy . It would not make sense to use C+(X, Y ) = Hx and
C−(X, Y ) = Hy .

Although this chapter has seldom talked about time series, which will be covered
in Chap. 5, is worth noting that the well known Granger causality test follows a
similar two-part paradigm [23]. The test seeks to determine whether one time series
is useful in forecasting another. There are many variants, but, for instance, an auto-



2 Evaluation Methods of Cause-Effect Pairs 61

Table 2.6 Multi-level tests: for each test result, 1 means the H0 is rejected in the favor of H1; 0
means that H0 is not rejected

Level 1

X ⊥ Y Conclusion

H0 0 X ⊥ Y ?

1 Level 2

Test 1 Test 2

H0 X ← Y X → Y
Test statistics Conclusion

H1 X → Y X ← Y

One rejected in
favor of the other

1 0
Ĉ+(X, Y ) ≥ θα

Ĉ−(X, Y ) < θα

X → Y

0 1
Ĉ+(X, Y ) < θα

Ĉ−(X, Y ) ≥ θα

X ← Y

Neither rejected 0 0
Ĉ+(X, Y ) < θα

Ĉ−(X, Y ) < θα

X ↔ Y ?

Both rejected 1 1
Ĉ+(X, Y ) ≥ θα

Ĉ−(X, Y ) ≥ θα

X � Y ?

First independence is tested (Level 1). If independence is rejected, causal direction is tested in
both directions separately (Level 2, Test 1 and Test 2). Question marks indicate that the result is
inconclusive or inconsistent with the modeling hypotheses (e.g. that there cannot be two-cycles or
dependencies not explained by a causal relationship)

regressive model predicting X from past values of X and Y might provide a better
fit than one based on past values of X only (and vice versa). A Granger causation
coefficient can be defined as CG(X, Y ) = Rxy/Rxx − Ryx/Ryy , where Rxy is the
residual of the model predicting X from past values of X and Y (supporting X ←
Y ), Rxx of an auto-regressive model for X (predicting X from past values of X), Ryx

is the residual of the model predicting Y from past values of X and Y (supporting
X → Y ), and Ryy of an auto-regressive model for Y . Thus larger values of G(X, Y )

support the hypothesis X → Y . To conduct a two-part test, one defines C+(X, Y ) =
Rxy/Rxx and C−(X, Y ) = Ryx/Ryy , both of which lend themselves to conducting
F-tests.

Two other desirable properties of “causation coefficients” are Robustness and
Stability. Regarding Robustness to outliers, it is again useful to make a parallel
with correlation coefficients. The issue of robustness has been extensively studied
in that context. To avoid that large outlying value may result in a spurious high
correlation, a standard technique is to repeat the computation of the correlation
coefficient M times, each time removing one value, then averaging the results. The
result is called “Jack-knife correlation coefficient” [13]. This procedure can easily
be used for “causation coefficients” as well. The issue of Stability is tightly related
to that of Robustness. Stability concerns the property of a “causation coefficients”
to deliver values in the finite sample case that have a small variance, i.e. vary little
across drawing of samples Sn(X, Y ) = {(xT

1 , yT
1 ), (xT

2 , yT
2 ), · · · , (xT

n , yT
n )} of the

same size n. Since in practice we only have a single sample of size n, a common
way to estimate the variance is to resample the data, for instance using the bootstrap
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method [14]. The bootstrap method is a method of resampling with replacement.
A large number of samples of size n are drawn form Sn(X, Y ), with replacement.
This results in new samples of the same size, in which some samples are repeated,
and which contain on average approximately 2/3 of the observations. It is then
possible to compute C(X, Y ) for each bootstrap sample and compute an average and
a variance. The variance obtained is an indicator of stability and it should decrease
with n. The average provides a causation coefficient, which is more stable. This is
analogous to ensemble methods such as “bagging” in machine learning, commonly
used by Random Forests. Notice that the “Jack-knife” method is a resampling
method that is an ancestor of the bootstrap method. Using a “bagged” causation
coefficient adds both stability and robustness.

2.5.4 Post-hoc Evaluation

Assuming all previous steps went well and we have found one (or several) pairs
that we believe have a statistically significant relationship of type X → Y .
Before engaging in possibly costly experimental verifications or basing decisions
on this hypothetical causal relationship, we might want to consolidate our findings.
Causation coefficients provide us with which we believe that X → Y , but does not
let us know about the Strength or Direction of effect. Strength measures the degree
of influence of X on Y , e.g. how much change in Y would be obtained by doubling
X. Direction measures whether the effect is positive or negative, for instance, does
a certain substance cure a patient of disease or make him sicker.

For linear dependencies, the Pearson correlation coefficient c(X, Y ) provides us
with both a Strength=abs(c(X, Y )) and Direction=sign(c(X, Y )). For monotonic (or
quasi-monotonic) relationships, Spearman’s and Kendall’s tau correlation coeffi-
cients can be used in a similar way. For non monotonic relationships, it may be
more meaningful to split the dependency into monotonic sub-domains.

Many practitioners may rightfully want to understand better why a certain causal
relationship was unveiled by a given causation coefficient. Explainability is key for
the adoption of the new methodology by practitioners. There is not just one way
of making the decision of a causation coefficient explainable. This may include
identifying the most prominent features, and, of course, exhibiting a plausible
Mechanism i.e. a data generative model easily interpretable.

Finally, if such a mechanism is exhibited, one last way of verifying that the causal
relationship is plausible before carrying out experiments is to use it as a predictive
model to explains other datasets, collected in different conditions.
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2.6 The Point of View of Benchmark Organizers

In this section, we investigate how algorithms to discover cause-effect pair rela-
tionships from observational data can be quantitatively evaluated in the context
of a benchmark. Until the years 2000, most efforts to evaluate causal discovery
methods in benchmarks were limited to generating data with Bayesian networks.
One well-known source of data was the Bayesian Network repository,13 last
updated in 1998. A first departure from that limited paradigm stemmed from
genomic studies and, in particular, the work of Aliferis and his collaborators [1]
and the DREAM challenges.14 Recognizing the need to evaluate causal discovery
methods systematically, the Causality Workbench consortium started in 2007.15 Its
activities included the organization of several challenges. The 2008 a “Pot-luck
challenge” allowed participants to propose their own tasks. Dominik Janzing and
his collaborators of the Max Plank Institute for Intelligent Systems (from the lab of
Bernhard Schoelkopf16) proposed the cause-effect pair task (with only eight pairs at
the time). This kick-started research in that domain for the past decade, ultimately
leading to this book.

We dwelled in previous sections on theoretical guaranties and confirmatory
analysis (statistical tests). But the growing number of alternative methods, all having
different assumptions, advantages and disadvantages, leaves practitioners with a
choice dilemma. This prompted us in 2013 and 2014 to organize a large scale
evaluation of cause-effect pair methods. The goal was to discover whether the
data supports the hypothesis that Y = f (X, noise), which for the purpose of this
challenge was our definition of causality X → Y , vs. other hypotheses: X ← Y ,
X ↔ Y , X ⊥ Y . Our objective was to scale up the Tuebingen dataset collected
in the Schoelkopf lab [46]. Initially we only thought of providing test pairs. As
we were brainstorming on the challenge design with Ben Hamner from Kaggle,
it became clear that we should also provide training data. This led to the new
Machine Learning statement of the cause-effect pair problem, which we described
in Sect. 2.2, and was later more formalized mathematically by David Lopez Paz
and collaborators [43]. This opened new horizons both in causality research and in
benchmarking causal models. As in many other scientific domains, the metric of
success shapes the problem. In this particular case, framing causal discovery as
a pattern recognition problem, completely changed the way in which researchers
thought about causality, moving a way from the necessity of uncovering the data

13http://www.cs.huji.ac.il/~galel/Repository/.
14http://dreamchallenges.org.
15Causality workbench: http://www.causality.inf.ethz.ch/. Founding members: Constantin F. Alif-
eris (Vanderbilt University, Tennessee), Gregory F. Cooper (University of Pittsburgh, Penn-
sylvania), André Elisseeff (IBM Research, Switzerland), Jean-Philippe Pellet (IBM Research,
Switzerland), Alexander Statnikov (Vanderbilt University, Tennessee), Peter Spirtes (Carnegie
Mellon University, Pennsylvania).
16https://ei.is.tuebingen.mpg.de/.

https://webdav.tuebingen.mpg.de/cause-effect/
http://www.cs.huji.ac.il/~galel/Repository/
http://dreamchallenges.org
http://www.causality.inf.ethz.ch/
https://ei.is.tuebingen.mpg.de/
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generative model (or at least its structure) and beginning to simply build predictive
models to classify scatter plots as belonging to various ground truth classes of
causal relationships. Implicitly, the mother distribution “defines” the particular
notion of causality we are interested in. This section presents the efforts that the
community has been making over the past few years to create good benchmark
datasets and discusses various hurtles that must be overcome.

2.6.1 Benchmark Design

Prior to the cause-effect pair challenge, benchmarks in causal modeling required
possessing a causal DAG representing the “True” causal structure. This blurred the
fact that, in scientific modeling, no model is ever “True”: it is only “not rejected
yet”, based on empirical evidence accumulated thus far [51]. In machine learning,
we are accustomed to the fact that the accuracy of classifiers is upper bounded by
the Bayes optimal accuracy, which accounts for the fact that the ground truth may
be partially wrong or uncertain. The Bayes optimal accuracy sets a limit on the
accuracy that the best model can achieve. In causality, up until the cause-effect pair
challenge, causal relationships needed to be either right or wrong. We changed that
concept: the labeling of causal relationships can be uncertain and contain a certain
fraction of errors.

This new “lenient” way of establishing ground truth, accepting noisy labels,
facilitates the collection of real data. Establishing causal relationships is notoriously
difficult, and requires (see Sect. 2.2) either identifying mechanisms or conducting
randomized controlled experiments. Accepting possible errors makes it possible to
rely on human judgement/prior knowledge to establish ground truth, as proposed
first by the authors of the Tuebingen dataset [46]. For example, age causes how
much you sleep and not the opposite. Determining from human expertise whether
there is (some amount of) confounding is much harder though. We dealt with that in
Sect. 2.6.6 by introducing semi-artificial pairs that were dependent but not causally
related. One shortcoming of collecting real pairs in this way is that data usually
comes with incomplete information about the data collection procedure. Some pairs
may be purely observational, others may come from designed experiments. This
may introduce a pernicious form of data leakage [38]: input variables in experimen-
tal data often have easily identifiable distributions, with quantized regularly spaced
points, as opposed to output variables, which are continuous. Hence it is possible to
distinguish causes from effects based on this artifact of marginal distributions. See
Sect. 2.6.6 for details.

Another option to get benchmark data is to create synthetic or artificial data.
We make a distinction between the two. Synthetic data refers to data generated
by realistic simulators of real systems. For example, a simulator of a biological
process (e.g. a gene network or an artificial neural network), a chemical process, or
a physical process. See Sect. 2.6.2. In contrast, artificial data refers to data generated
by a structural equation model (a.k.a. functional causal model). No knowledge of

https://webdav.tuebingen.mpg.de/cause-effect/
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biology, physics, or chemistry is needed, this is a purely mathematical abstraction.
All is needed is to “noise” distributions and functional mechanisms. See Sect. 2.6.3.
Still, there are important design issues concerning: how to balance data to include a
diversity of types of variables (continuous, binary, categorial), types of distributions,
types of functional mechanisms, and signal to noise ratios. Finally, artificial datasets
are not except of the risk of introducing biases. All of these issues are discussed in
Sect. 2.6.3.

In the best of all worlds, synthetic or artificial data should be indistinguishable
from real data, and could serve to augment datasets of real data, since real data
are scarce. A central problem is therefore whether it is possible to “adjust” the
distributions of artificial data to that of real data, to create large homogeneous
datasets. We explain in Sect. 2.6.5 our attempts to make the distributions of real
and artificial data similar.

2.6.2 Realistic Synthetic Data

Most authors use structural equations models to generate artificial data. It is
questionable whether such data are realistic. It is necessary to put more effort in
this direction to obtain large quantities of realistic data, which can serve to train
causation coefficients, calibrate them, or conduct statistical test.

Another approach to obtain realistic data is to use physical models. One of
the earliest causal benchmark studies using simulators was obtained for genomics
data simulators. DREAM challenges http://dreamchallenges.org/ have made use
of such data over the years. For example, cause-effect pairs {transcription factor,
activated gene} have been used in [59, 60] and were part of the dataset of the
cause-effect pair challenge [29, 30]. It has been made available as part of the
Causality Workbench repository.17 Another example is the neural connectomics
dataset, which was use in the ChaLearn connectomics challenge.18 A relatively
realistic simulator of neural activity was use to generate spike trains. A physical
model of fluorescence imaging was then used to generate simulated data of observed
neural activities in neural cultures, imitating real experimental data. The goal was to
unravel neuron interconnections from the sole information of their activity [2, 27].
Some authors created ad-hoc simulators using differential equations describing their
system, e.g. [37]. Other valuable resources of biological models that could be used
for causal studies include the bio-model database.19 Of course, simulators of real
systems are not limited to biology. There are many simulators in physics, chemistry,
and engineering, e.g. chemical plants.20

17Causality Workbench repo: http://www.causality.inf.ethz.ch/repository.php.
18Connectomics challenge: http://connectomics.chalearn.org/.
19Bio-model database: http://www.ebi.ac.uk/biomodels-main/.
20Chemical plant simulator: http://depts.washington.edu/control/LARRY/TE/download.html.

http://dreamchallenges.org/
http://www.causality.inf.ethz.ch/repository.php
http://connectomics.chalearn.org/
http://www.ebi.ac.uk/biomodels-main/
http://depts.washington.edu/control/LARRY/TE/download.html
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Recently many bridges have been made between causal studies and reinforce-
ment learning (RL). This is quite natural since the goal of RL is to create agents
learning to act in given environments by developing appropriate policies (i.e.
mappings of state to action) to attain particular goals or accrue rewards. This is
equivalent to unravel cause-effect relationships cause = action → eff ect =
reward. In this context, simulators developed for RL are resources for causal
discovery benchmarks, although it is some work to create causal discovery tasks
from RL simulators. Examples of RL simulators include:

• GYM: https://gym.openai.com/envs/
• RLlab: https://rllab.readthedocs.io/en/latest/#
• Pypownet: https://github.com/MarvinLer/pypownet
• EPIMOD: http://idmod.org/software

The Carnegie Mellon school of causal studies, who contributed over the years
several members of the Causality Workbench, has continued to be very active to
gather case studies of interest, including via the workshop organized by Richard
Scheines.21 Contributors to the workshop presented econometrics, brain imaging,
and climate simulators.

Unfortunately, harnessing simulators and creating cause-effect pair data from
them is a huge endeavor. Except for the genomics transcriptome data, cause-effect
pairs from realistic simulators have not been incorporated yet in benchmark data.
However, this may happen soon in the context of the “Cause me” project.22

2.6.3 Artificial Data

In this section, we now turn to purely artificial data generators found in the literature,
including those of Table 2.7, then describe in more details the dataset of the cause-
effect pair challenge that we are most familiar with, and whose description was not
published yet elsewhere.

2.6.3.1 General Setting

To make notations less heavy, we do not always fully specify the double random
process. It will be assumed implicitly that, for each data generative model:

1. We draw a data generative process PΠ=π (X, Y ) from a mother distribution PM .
2. We draw n samples SΠ=π (X, Y ) = {(x1, y1), (x2, y2), · · · , (xn, yn)} (a scatter

plot) from PΠ=π (X, Y ).

21CMU case studies: https://www.cmu.edu/dietrich/philosophy/events/workshops-conferences/
causal-discovery/index.html.
22http://causeme.uv.es/index.html.

https://gym.openai.com/envs/
https://rllab.readthedocs.io/en/latest/#
https://github.com/MarvinLer/pypownet
http://idmod.org/software
https://www.cmu.edu/dietrich/philosophy/events/workshops-conferences/causal-discovery/index.html
https://www.cmu.edu/dietrich/philosophy/events/workshops-conferences/causal-discovery/index.html
http://causeme.uv.es/index.html
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Table 2.7 Cause-effect pair datasets

Causal
Origin Type relation Data Date Ref.

Tuebingen dataset
CE-Tueb

Real X → Y

X ← Y

108 pairs 2013–15 [46]

Janzing et al. Artificial X → Y

X ← Y

CODE 2012 [36]

CE pair challenge
CE-Cha

Real & artificial X → Y

X ← Y

X ↔ Y

X ⊥ Y

24299 pairs
& CODE

2013–14 This chapter

Mooij et al.
CE-Gauss

Artificial X → Y

X ← Y

400 pairs
& CODE

2016 [46]

Chalupka et al. Artificial X → Y

X ← Y

X ↔ Y

X ⊥ Y

CODE 2016 [8]

Goudet et al.
CE-Multi

Artificial X → Y

X ← Y

X ↔ Y

X ⊥ Y

CODE 2017 [22]

Lopez Paz et al.
CE-Net CE-Multi

Artificial X → Y

X ← Y

600 pairs
& CODE

2017
[44]
[21]

Ttagasovska et al. Artificial X → Y

X ← Y

CODE 2018 [61]

The nicknames CE-Cha, CE-Tueb, CE-Net, CE-Gauss, CE-Multi are used in Chap. 3

PΠ(X, Y ) is parameterized by Π , which includes the choice of ground truth (causal
graph) g ∈ G ⊂ {X → Y , X ← Y , X ↔ Y , X ⊥ Y}, input distribution P(X) ∈ X

or P(Y ) ∈ Y, noise or hidden variable distribution(s) P(Nx) ∈ Nx , P(Ny) ∈ Ny ,
P(Nz) ∈ Nz, and function(s) f ∈ F, and h ∈ H. When not specified, all noise
variables are independent of one another and the input is independent of the noise
variable(s).

Most authors generate data using structural equation models (functional causal
models) of the type:

PΠ=π (X, Y )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g = [X → Y ] : x∼P(X), ny∼P(Ny) y:=f (x, ny)

g = [X ← Y ] : y∼P(Y ), nx∼P(Nx) x:=f (y, nx)

g = [X ↔ Y ] :
nx∼P(Nx),

ny∼P(Ny),

nz ∼ P(Nz),

x:=f (nx, nz), y:=h(ny, nz)

g = [X ⊥ Y ] : x∼P(X), y∼P(Y )

(2.15)
This paradigm corresponds to lumping the effect of all latent variables in the

“noise” variables Nx and Ny (see e.g. [50]). In [36], the authors take another angle:

https://webdav.tuebingen.mpg.de/cause-effect/
http://parallel.vub.ac.be/research/causalModels/determRelations.html
http://www.causality.inf.ethz.ch/CEdata/AllDataCode/
http://www.causality.inf.ethz.ch/CEdata/AllDataCode/
https://staff.fnwi.uva.nl/j.m.mooij/code/14-518-appendix2.zip
https://staff.fnwi.uva.nl/j.m.mooij/code/14-518-appendix1.zip
http://www.vision.caltech.edu/~kchalupk/code.html
https://github.com/GoudetOlivier/CGNN/blob/master/Code/generator/ce_multi_generator.lua
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3757KX
https://github.com/lopezpaz/causation_learning_theory/tree/master/code/generators
https://github.com/tagas/qccd
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they generate data from a multivariate graphical model, then isolate cause-effect
pairs. We focus here on the first paradigm consisting in generating pairs in isolation.

2.6.4 Cause Effect Pairs: G = {X → Y , X ← Y }

Initial work on (non-linear) additive noise models (Eq. (2.16))) [33, 49] was limited
to G = {X → Y , X ← Y}:

{
g = [X → Y ] : x ∼ P(X), ny ∼ P(Ny),X ⊥ Ny, y := f (x)+ ny

g = [X ← Y ] : y ∼ P(Y ), nx ∼ P(Nx), Y ⊥ Nx, x := f (y)+ nx.

(2.16)
In [42], to make data more realistic, the author fit the parameters of their models

to obtain more realistic scatter plots. The use (unlabeled) real data scatter plots and
minimize a distance between embeddings of synthetic scatter plots and real scatter
plots (drawn from the Tuebingen dataset).

The independence assumption X ⊥ Ny and Y ⊥ Nx may be lifted to account for
partial confounding. For instance, for the X → Y case, this could be represented
by:

g = [X → Y ] : x ∼ P(X|Ny), ny ∼ P(Ny), y := f (x)+ ny, (2.17)

where x could be simply generated with x := h(ny)+ nx, nx ∼ P(Nx).
Another popular model for generating pairs is the post-non-linear (PNL) model

[66]:

g = [X → Y ] : x ∼ P(X), ny ∼ P(Ny),X ⊥ Ny, y := f (h(x)+ny). (2.18)

In [46] (CE-Gauss), the authors remove the additive noise restriction:

g = [X → Y ] : nx ∼ P(Nx), ny ∼ P(Ny),Nx ⊥ Ny, x := h(nx), y := f (x, ny),

(2.19)
In that paper, random functions are sampled from a Gaussian process. Independent
noise distributions are obtained by mapping a standard-normal distribution through
a random function sampled from a Gaussian Process. Finally, Gaussian measure-
ment noise is added to both X and Y. The authors of [46] also consider a partial
confounding case:

g = [X → Y ] : nx ∼ P(Nx), ny ∼ P(Ny), nz ∼ P(Nz),

x : = h(nx, nz), y := f (x, ny, nz). (2.20)

with all noise variables drawn from independent variables: Nx ⊥ Ny , Nx ⊥ Nz,
Ny ⊥ Nz. This generalizes Eq. (2.17). The authors consider several scenarios:
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SIM, SIM-c, SIM-ln, and SIM-G SIM is the default scenario without confounders.
SIM-c includes a one-dimensional confounder, whose influences on X and Y are
typically equally strong as the influence of X on Y. The setting SIM-ln has low
noise levels, and one can expect IGCI to work well in this scenario. Finally, SIM-G
has approximate Gaussian distributions for the cause X and approximately additive
Gaussian noise (on top of a nonlinear relationship between cause and effect); it is
expected that methods which make these Gaussianity assumptions will work well in
this scenario. Figure 2.8 shows examples of this dataset. The authors provide data
and code, see Table 2.7, which is very valuable for further research.

Other authors have provided data for the cases X → Y abd X ← Y with or
without partial confounding. In [61], the authors consider three types of models,
with additive or multiplicative noise:

g = [X → Y ] : x ∼ P(X), ny ∼ P(Ny),X ⊥ Ny,

⎧⎨
⎩

(1)y := f (x)+ ny

(2)y := f (x)+ h(x) . ny

(3)y := f (x) . ny

(2.21)
Similarly, in [21, 22], the authors of the CE-Multi dataset generated 300

artificial pairs using pre- or post- additive or multiplicative noise (two of these
cases correspond to the Additive Noise Model (ANM) and the Post Non-Linear

Fig. 2.8 SIM datasets. We show a few examples of scatter plots from [46]. From left to right and
top to bottom, SIM, SIM-c, SIM-G, and SIM-ln (see text)
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model (PNL)); the mechanism f is linear or polynomial of degree 2 with random
coefficients:

g = [X → Y ] : x ∼ P(X), ny ∼ P(Ny),X ⊥ Ny,

⎧⎪⎪⎨
⎪⎪⎩

(1)y := f (x)+ ny (ANM)
(2)y := f (x) . ny

(3)y := f (x + ny) (PNL)

(4)y := f (x . ny)

(2.22)
In [44], the authors generalize this type of data generative process to image data.
Other authors have generated pairs using a neural network, following the generic

structural equation model:

g = [X → Y ] : x ∼ P(X), ny ∼ P(Ny) y := f (x, ny) (2.23)

For instance, in [21] the authors of the CE-Net dataset generated 300 artificial
pairs with a neural network initialized with random weights and used for P(X)

distributions drawn randomly from the set {exponential, gamma, lognormal,

laplace}.

2.6.5 All Pairs: G = {X → Y , X ← Y , X ↔ Y , X ⊥ Y }

In contrast with other authors, [8] consider the full set G = {X → Y , X ← Y , X ↔
Y , X ⊥ Y}. They consider only categorical variables (multinomial distributions).
Their data generative processes are of the type:

⎧⎪⎪⎨
⎪⎪⎩

g = [X → Y ] : x ∼ P(X),∀x, y ∼ P(Y |X = x)

g = [X ← Y ] : y ∼ P(Y ),∀y, x ∼ P(X|Y = y)

g = [X ↔ Y ] : h ∼ P(H),∀h, x ∼ P(X|H = h), y ∼ P(Y |H = h)

g = [X ⊥ Y ] : x ∼ P(X), y ∼ P(Y ),

(2.24)
where all distributions P(X), P(Y ), P(H), P(Y |X = x), P(X|Y = y), P(X|H =
h), and P(Y |H = h) are all drawn from Dirichlet priors.

The scripts of [22] provide an option to build confounding pairs or independent
pairs (although this is not used in the paper):

{
g=[X↔Y ] : nx∼P(Nx), ny∼P(Ny), h∼P(H), y:=f (h, nx), y := f (h, ny)

g = [X ⊥ Y ] : nx ∼ P(Nx), ny ∼ P(Ny), x := f (nx), y := f (ny).

(2.25)
The most comprehensive dataset for all pairs is the cause-effect-pair challenge

dataset [29, 30]. It is the only dataset we know of, which considers the full set G =
{X → Y , X ← Y , X ↔ Y , X ⊥ Y} that mixes continuous and categorical
variables. In that respect it is significantly more difficult than other datasets. The
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dataset released for the challenge included 80% artificial data and 20% real data.
We describe here the artificial data. The real data is described in Sect. 2.6.6.

Real Exogenous Variables The first step in the dataset construction was to collect
a large pool of 15,552 real variables from multiple datasets of machine learning
and data mining, to obtain a rich collection of distributions of real variables, each
having 10,000 samples (pool1). Another pool of 15,552 variables was created from
the original variables using randomly drawn functions from the library to get 15,552
smooth continuous variables (pool2). Those were used to draw data for exogenous
(noise) variables P(Nx), P(Ny), P(Nz), instead of using synthetic data. Thus all
input and noise distributions of continuous variables are real.

To get ordinal (discrete numerical), categorical, and binary variables from
continuous variables x, a discretization algorithm Δ was implemented:

Δ(x; t, r) =
{

round(r.(x− x̄)/σx) if t = Numerical

reassign(round(r.(x− x̄)/σx)) if t = Categorical
(2.26)

where t is the desired variable type t ∈ {Numerical, Categorical}, r is a dis-
cretization parameter, and the reassign function randomly reassigns each (discrete)
value to an arbitrary categorical label.

Structural Equation Model The second step was to implement a library of diverse
functions of two variables y = f (x1, x2) producing continuous values y, f ∈ { line,
parabola, cubic, sqrt, sine, hyperbola, log, exp, tanh, atanh, rbf }.

Noise was mixed in one of four ways:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)f (x, ny) = f (α.x + β.ny) “preadd” (PNL model)
(2)f (x, ny) = f (xα. n

β
y ) “premult”

(3)f (x, ny) = α.f (x)+ β.ny “postadd” (ANM model)
(4)f (x, ny) = f (x)α. n

β
y “postmult”

(2.27)

where parameter α and β control the signal to noise ratio. The noise level s2n was
varied in the range {0.25, 0.5, 1, 2} and the parameters calculated as β = 1/(1+s2n)

and α = 1− β.
The ground truth g was drawn uniformly in the set G = {X → Y , X ← Y ,

X ↔ Y , X ⊥ Y} and pairs were generated as follows:

Postprocessing The pairs of variables prepared as indicated before, undergo the
following postprocessing steps:

• The number of points in each scatter plot is reduced to n, 500 ≤ n ≤ 8000
by drawing a subset of points without replacement. The value of n is drawn
uniformly on a log2 scale in the interval chosen.

• Pairs having at least one variable with only 1 value are eliminated.
• Variables with 2 values are considered binary and mapped to 0/1.
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G Generative model

X → Y
nx ∼ U(pool2), ny ∼ U(pool1),

r, r ′ ∼ P(R), t, t ′ ∼ P(T )
x := Δ(nx, r, t), y := Δ(f (x, ny), r ′, t ′)

X ← Y Same as [X → Y ], swapping the roles of x and y

X ↔ Y

nx ∼ U(pool1), ny ∼ U(pool1),
nz ∼ U(pool1),

r, r ′ ∼ P(R), t, t ′ ∼ P(T )

x := Δ(f (nx, nz), r, t), y := Δ(h(ny, nz), r
′, t ′)

X ⊥ Y Use [X → Y ] or [X ← Y ] pairs and permute values independently

Table 2.8 Cause-effect pair challenge data statistics

Dataset All pairs X → Y X ← Y X ↔ Y X ⊥ Y Real CE

Training 4050 965 1033 1010 1042 354

Validation 4050 986 1034 1014 1016 332

Test 4050 1041 1025 1007 977 364

Sup1 (artif, numeric) 5998 1514 1485 1500 1499 0

Sup2 (artif, mixed) 5989 1529 1466 1497 1497 0

Sup3 (real) 162 42 39 41 40 81

Total 24, 299 6077 6082 6069 6071 1131

• Categorical variables with C values are assigned randomly class numbers
between 1 and C.

• Numerical variables (discrete or continuous) are standardized (the mean is
subtracted and then the result is divided by the standard deviation) and then
quantized by multiplying the result by 10,000 and rounding to the nearest
integer.

Examples of pairs from this dataset are shown in Fig. 2.1. For the challenges,
several data sets were released, including two datasets containing only artificial
data SUP1 and SUP2 (Table 2.8). SUP1data: contains only continuous variables
(CE-Cha used in Chap. 4 is a subset of those pairs). SUP2 data contains mixed
binary, categorical, and continuous variables. For illustrative purposes, we show all
the statistics of the SUP2 data in Table 2.9.

A trained human eye gets about 0.7 AUC score on SUP1data (a sample of which
is shown in Fig. 2.9 under the name CE-Cha). SUP2 data are much more difficult
for the human eye (see Fig. 2.1).

Quality Control One danger when generating artificial data is to introduce artifacts
that can easily be picked up by a learning machine, making the problem of
separating the classes of artificial pairs trivial, but delivering useless causation
coefficients. In particular, the marginal distributions of the variables X and Y should
not betray the causal direction. The most obvious thing to do is to standardize
variables to avoid at least biases in the mean or standard deviation (this is done
as post-processing and does not alter the causal relationships.)
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Table 2.9 Statistics on the SUP2 data [29]

G Num. pairs Pearson corr.

All pairs 5989 0.23

X → Y 1529 0.36

X ← Y 1466 0.38

X ↔ Y 1497 0.17

X ⊥ Y 1497 0.02

Num. pairs Binary Categorical Discrete Numerical

Binary 102 83 117 433

Categorical 93 92 95 463

Discrete 124 93 128 461

Numerical 465 457 453 2330

Sample size 500–1000 1000–2000 2000–4000 4000–8000

Num. pairs 1486 1563 1508 1432

S2N 0.25 0.50 1.00 2.00

% pairs 23 27 25 25

These are artificial pairs, distributed similarly to those of the cause-effect pair challenge

Fig. 2.9 CHA datasets. We show a few examples of scatter plots from [21]
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During the first challenge [29], participants identified one such flaw: the number
of unique values of X was smaller that of Y , on average, for pairs X → Y . This was
a consequence from using “real” variables for X (some of which were quantized)
and passing them through functions returning continuous values. Interestingly,
this problem is also found in real data, see Sect. 2.6.6. This motivated the new
implementation of discretization and quantization described in the previous section.

The discretization parameters were drawn from the same distribution for all g ∈
{X → Y , X ← Y , X ↔ Y , X ⊥ Y}. In this way, the distribution of unique values
of variables is the same in all causal categories, as verified by QQplots (Fig. 2.10).

A new version of the dataset was released to the 313 challenge participants and
scrutinized for further problems of “data leakage” (trivial features revealing the
causal categories). Nothing new was found, so this gives confidence that this dataset
is free of trivial biases. This does not mean of course that the pairs are realistic and
resemble real data.
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Fig. 2.10 SUP2 dataset QQ plots. These plots were made as a sanity check for the cause-effect
pair challenge data in [29]. They show that in all quantiles, the distribution of unique values of
X and Y is similar, for all types of causal categories. Each cross represents thresholds ux and uy

on the number of unique values Ux and Uy of random variables X and Y for a given value of k

such that Pr[Ux < ux ] ≤ k/q and Pr[Uy < uy ] ≤ k/q, given q quantiles. If the distributions of
unique values of X and Y are identical, the points should be on the diagonal (red dashed lines)
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We know of one attempt to make data more realistic by adjusting hyper-
parameters of the data generative model to minimize the distance between the
distribution of real data and of artificially generated data [42]. More effort must
be put in this direction.

2.6.6 Real Data

The first sizeable dataset of real cause-effect pairs has been the Tuebingen dataset
[46]. It has been carefully manually curated and is used as a benchmark in many
publications. However, because of its small size (� 100 pairs), there is a high
risk of overfitting if training is used or of multiple testing if many methods are
compared. In this dataset, the pairs are not independent. This is compensated for by
giving weights to each pair. A small fraction of the pairs include multivariate data
for X and Y .

A larger dataset of real pairs was prepared for the cause-effect pair challenges
[29, 30]. Real data came from miscellaneous sources: including the UCI repository,
past challenges (KDD cup, ChaLearn, Kaggle, DREAM, etc.), R datasets, and NYU
transcriptome data [59, 60]. The pairs were drawn from a wide variety of domains
of application. Examples include:

Demographics

Sex → Height
Age → Wages
Native country → Education
Latitude → Infant mortality

Ecology

City elevation → Temperature
Water level → Algal frequency
Elevation → Vegetation type
Distance to hydrology → Fire

Econometrics

Mileage → Car resell price
Number of rooms → House price
Trade price last day → Trade price

Medicine

Cancer volume → Recurrence
Metastasis → Prognosis
Age → Blood pressure
Genomics (mRNA level): transcription factor → protein induced
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Engineering

Car model year → Horsepower
Number of cylinders → MPG
Cache memory → Compute power
Roof area → Heating load
Cement used → Compressive strength

However, the data are not well balanced with respect to application domains
(see Table 2.10). In particular, a very large number of pairs are drawn from the
NYU transcriptome dataset [59, 60], which provided an abundant source of pairs
of “transcription factor → protein induced”. All other pairs were manually curated
(Fig. 2.11).

There is no guarantee that cause-effect pairs thus collected from real data are not
partially confounded by hidden variables. However, the are considered X → Y and
X ← Y pairs for the purpose of the dataset construction. As described in Fig. 2.12,
the dataset was augmented with semi-artificial X ⊥ Y and X ↔ Y pairs, in the
following way: A random subset of half of the original pairs was selected to create
X ⊥ Y pairs by randomly permuting independently the values of X and Y . TheX ↔
Y pairs were obtained from a random selection of half of the original pairs to which
an algorithm that preserves the marginal distributions while destroying the causal
relationships was applied:

• Generate an artificial X ↔ Y pair according the method described in Sect. 2.6.5,
with n samples.

• Randomly select two real variables Xr and Yr from real data and resample the
data to obtained n samples.

Table 2.10 Number of pairs variables coming from the various data sources, in the cause-effect-
pair challenge dataset

ADA 42 FIRE 4 PROCA 23

AIDS 6 GAGURINE 1 QUINE 4

BLOOD 3 GLASS 9 RADIA 36

BOND 10 IMPORTS1 9 SITKA 3

CAR 36 IMPORTS2 37 SURVEY 5

CLAIM 29 IMPORTS3 4 SYLVA 48

COIL 71 LEMON 21 TITANIC 27

CONCRETE 8 MISC 1 VETERAN 11

CPU 14 MPI0001 - DWD 81 VIT2005 12

CREDIT 15 NLSCHOOLS 5 YEAST 2779

ECOLI 1713 PIMA 12

ENERGY 13 PROCA2 6

TOTAL 5098 TOTAL NYU 4492 TOTAL other 606

A very large fraction of pairs is coming from the transcriptome data of NYU (YEAST and ECOLI)
[59, 60]
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Fig. 2.11 Tuebingen dataset. We show a few examples of the Tuebingen dataset, called
CAUSEEFFECTPAIRS benchmark data in [46]

Fig. 2.12 Process for generating semi-artificial real data in the cause-effect pair challenge [29,
30]. The X → Y and X ← Y pairs are real (though post-process). Other pairs are semi-artificial.
X ⊥ Y pairs are obtained by random shuffling or real variables. X ↔ Y pairs are obtained from
artificial X ↔ Y pairs but their marginal distributions are back-fitted to marginal distributions of
real variables

• Replace the values of the samples of X by the values of samples of Xr , respecting
the rank ordering of values (i.e. smallest X replaced by smallest Xr values,
second smallest X replaced by second smallest Xr values, etc.), and likewise
for Y and Yr .
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It is worth mentioning that even real data can be biased. As mentioned in
Sect. 2.6.5 the cause-effect pair challenge participants discovered bias in the first
dataset that was released: the number of unique values of X was smaller that that
of Y , on average, for pairs X → Y . This was true both for artificial data and
for real data. To compensate for this bias, we applied to real data pairs the same
discretization and quantization technique described in Sect. 2.6.5. We verified that
the distribution of unique values was reasonably well balanced using QQ plots. We
show an example of such plots for the SUP3 dataset, which was provided to the
participant as additional training data. It includes that pairs of the Tuebingen dataset,
postprocessed to even out the number of unique values of X and Y and augmented
with semi-artificial X → Y and X ← Y pairs (Fig. 2.13).

Overall the artificial pairs remain significantly easier than the real pairs, as can be
seen from the performance of the top ranking participants (Table 2.11). The score
used in this table were calculated as follows: we call C the causation coefficient
provided by the participants and T the target values (−1, 0, 1; −1 for X ← Y , +1
for X → Y and 0 otherwise) (Fig. 2.14).

• (challenge) Score: The score of the challenge, that is the average of two AUCs
for the separation of X → Y vs. everything else and X ← Y vs. everything else.
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Fig. 2.13 SUP3 dataset QQ plots. These plots were made as a sanity check for the cause-effect
pair challenge data in [29]. The dataset is constructed from real pairs of the Tuebingen dataset. The
plots show that in all quantiles, the distribution of unique values of X and Y is similar, for all types
of causal categories
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Table 2.11 Results of the top ranking teams on real and artificial data (round 1 on Kaggle)

Rank Team Dependency Confounding Causality Score

Real data

1 ProtoML 0.88057 0.65432 0.75756 0.70420

2 Jarfo 0.95721 0.70386 0.73312 0.68642

3 HiDloN 0.91476 0.69209 0.74774 0.69669

4 FirfiD 0.92352 0.69547 0.73960 0.68274

5 Mouse 0.87689 0.64211 0.75008 0.69259

6 Domcasto & Sayani 0.85339 0.65786 0.78075 0.71355

Artificial data

1 ProtoML 0.95372 0.76944 0.90946 0.84206

2 Jarfo 0.98063 0.83663 0.89425 0.83499

3 HiDloN 0.94416 0.76777 0.89466 0.82883

4 FirfiD 0.97644 0.80086 0.88644 0.82249

5 Mouse 0.94966 0.75831 0.86722 0.80620

6 Domcasto & Sayani 0.91789 0.72655 0.86299 0.79507

Fig. 2.14 Tuebingen dataset QQ plot. By comparison with Fig. 2.13 the QQ plots show that the
distribution of unique values of X and Y differ in the original data

• Causality (score): Similar to the score of the challenge, but limited to the pairs
X → Y and X ← Y . To compute this score, the X → Y and X ← Y pairs are
removed.

• Confounding (score): AUC for the separation of X ↔ Y vs. (X → Y or X ←
Y ) using abs(C).To compute this score, the X ⊥ Y pairs are removed.
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• Dependency (score): AUC for the separation of X ⊥ Y vs. (X → Y or X ← Y )
using abs(C). To compute this score, the X ↔ Y pairs are removed.

Notice that we do not have a score that could measures how well X ↔ Y and X ⊥ Y

are separated since these two classes were lumped together with the same target 0.
For the cause-effect pair challenges, the artificial data were mixed with real data

in the proportion 20% of real data and 80% of artificial data. Samples were evenly
split in three sets of equal sizes called training (provided with labels), validation (for
the public leaderboard), and test set (for the private leaderboard), each including
4050 pairs. We computed the average absolute value of the Pearson correlation
coefficient for the pairs of continuous variables, in the various causal categories.
For pairs of independent variable we found 0.02. For X → Y and X ← Y , we
obtained 0.35. For non causally related dependent variables X ↔ Y we found 0.16.
The last category can therefore be separated from X → Y and X ← Y on the basis
of correlation alone. However, this is not an easy separation, as the performance
results of Table 2.11 indicate.

2.7 Conclusion

In this chapter, we have introduced methods for evaluating causal discovery
algorithms, which uncover causal relationships from observed samples of only two
variables. Starting from a “mechanistic” definition of causal discovery cast in the
framework of structural equation models (a.k.a. functional causal models), we have
brought the problem of cause-effect pairs to a pattern recognition problem, in which
samples of (X, Y ) pairs of variables (scatter plots) are patterns in a supervised
learning problem with ground truth G being the causal graphs in {X → Y , X ← Y ,
X ↔ Y , X ⊥ Y}. Pairs of patterns and labels are drawn i.i.d. from the joint
distribution of (X, Y ) and G, called mother distribution. Given the symmetry of the
problem, one can bring it back to a binary classification problem X → Y vs. other
cases and define discriminant functions, called “causation coefficients” having large
positive values if X → Y , small negative values if X ← Y and values near zero
otherwise. We introduce the notion of Bayes-optimal coefficients from which we
derive a notion of identifiability of causal relationships related to the Bayes optimal
classification accuracy. In this sense, identifiability is a property of the mother
distribution and causal discovery algorithms seek to approximate as well as possible
optimal Bayesian causation coefficients. These notions can help characterize new
algorithms and compare them, given data generated artificially or semi-artificially
and/or from real data. We give many pointers to such benchmark data. Practitioners
interested in testing the validity of causal assumptions made on particulars pairs
can also use empirical mother distributions to derive ad hoc statistical tests.

Our framework rests upon the existence of mother distributions. Does it push the
problem further without solving it? In many application areas of pattern recognition
it seems natural to have a training set and a test set drawn from the same (but



2 Evaluation Methods of Cause-Effect Pairs 81

unknown) probability distribution. What is different for causal discovery? One
important difference is that, in applications, we generally have no or very few
labeled examples of our “mother distribution”. hence we must resort to “few short
learning” or “zero short learning” or learning from simulated data resembling data
drawn from out mother distribution, and hope that we operate quality “transfer
learning”. Thus, causation coefficients should “generalize” well not only for data
drawn from the same mother distribution, but also for data generated from other
mother distributions. This pushes the problem even further, in the direction of
defining a “grand-mother distribution” of mother distributions. . .

Another limitation of this framework is that it addresses only pairs of variables.
However, it can be generalized and one can consider the orientation of pairs of
variables within a graph in a similar way. In that case though, it becomes even more
important to test algorithms on pairs not drawn from the same mother distribution,
i.e. drawn from other systems of variables related via different causal graphs in
training and in test data.

Acknowledgements The authors would like to thank Dominik Janzing and Berna Batu for their
careful review of this chapter.

Appendix 1: Derivation of Bayes Optimal Causation
Coefficients

We derive the Bayes optimal causation coefficients introduced in Sect. 2.3.2.
The Bayes optimal decision rule prescribes the following:

Classify pair (Xπ, Yπ) as [X → Y ] iff

PM

(
G = [X → Y ] | (Xπ , Yπ)

)
> PM

(
G 
= [X → Y ] | (Xπ, Yπ)

)
.

(2.28)
Given a classification problem of patterns z (in our case z = (Xπ, Yπ) pairs), with
ground truth g1 and g0 (in our case g1 = [X → Y ] and g0 = ¬[X → Y ]), we
define a “discriminant function” as a function g(z) taking values in R such that we
predict class g1 if g(z) > θ and class g0 otherwise. Important: with our definition,
θ is a real number not necessarily equal to 0 (as is commonly used).
In this context,

PM

(
G = [X → Y ] | (Xπ , Yπ)

)
− PM

(
G 
= [X → Y ] | (Xπ, Yπ)

)

is a Bayes optimal discriminant function and because:

PM

(
G = [X → Y ] | (Xπ , Yπ)

)
= 1− PM

(
G 
= [X → Y ] | (Xπ, Yπ)

)
,



82 I. Guyon, et al.

the following is also a Bayes optimal discriminant function:

2 PM

(
G = [X → Y ] | (Xπ , Yπ)

)
− 1

and therefore, so is:

PM

(
G = [X → Y ] | (Xπ , Yπ)

)
.

Also note that we could have considered the symmetric problem of classifying
Y → X vs. all other cases. If we assume that the mother distribution is perfectly
symmetrical, i.e. that for each pair (X, Y ) labeled X → Y we have the symmetric
pair (Y,X) labeled Y → X and for all pairs (X, Y ) labeled X ↔ Y , we have the
same pair labeled Y ↔ X and for all pairs (X, Y ) labeled X ⊥ Y , we have the same
pair labeled Y ⊥ X, then, the ranking of all pairs (Xπ , Yπ) by sorting according

to PM

(
G = [X → Y ] | (Xπ , Yπ)

)
should be in reverse order as the ranking with

PM

(
G = [X ← Y ] | (Xπ, Yπ)

)
. Consequently we obtain the same ranking with:

CB1(Xπ , Yπ ) = Φ
(
PM

(
G = [X → Y ]|(Xπ , Yπ )

))
−Φ

(
PM

(
G = [X ← Y ]|(Xπ , Yπ )

))

(2.29)
where Φ(.) is any strictly monotonically increasing function.

It is important to note that, because we consider four possible truth values for G,

G ∈ {X → Y,X ← Y,X ↔ Y,X ⊥ Y }, PM

(
G = [X → Y ] | (Xπ , Yπ)

)
is NOT

equal to (1− PM

(
G = [X ← Y ] | (Xπ , Yπ)

)
.

It may also be convenient to define an Bayes optimal causation coefficient in
terms of data generative model. To that end, notice that if a − b is a discriminant
function, so is a/b − 1. Therefore,

PM

(
G = [X → Y ] | (Xπ, Yπ)

)
/PM

(
G = [X ← Y ] | (Xπ, Yπ)

)
− 1

is also a Bayes optimal discriminant function. Using Bayes’ rule again,

PM

(
G = [X → Y ] | (Xπ, Yπ)

)
=

PM

(
(Xπ , Yπ) | G = [X → Y ]

)
PM

(
G = [X → Y ]

)
/PM

(
(Xπ, Yπ)

)

and further assuming that the mother distribution is not biased towards a particular
causal direction:

PM

(
G = [X → Y ]

)
= PM

(
G = [Y → X]

)
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the following is also a Bayes optimal discriminant function:

PM

(
(Xπ , Yπ) | G = [X → Y ]

)
/PM

(
(Xπ , Yπ) | G = [Y → X]

)
− 1

and so is, for any strictly monotonically increasing function Φ(.):

CB2(Xπ , Yπ ) = Φ
(
PM

(
(Xπ , Yπ )|G = [X → Y ]

))
−Φ

(
PM

(
(Xπ , Yπ )|G = [Y → X]

))

(2.30)

Appendix 2: Proof of Theorem 2.1: B-Identifiability Implies
(α, β)-Identifiability

Given the hypotheses of the theorem (symmetrical mother distribution), we can
choose CB2 as causation coefficient (Eq. (2.8)) and apply it to BΠ(X, Y ):

CB2(Xπ , Yπ) =PM

(
BΠ(X, Y ) | G = [X → Y ]

)

− PM

(
BΠ(X, Y ) | G = [Y → X]

)
.

Imposing α = β = θ = 0, as per the definition of (α, β)-identifiability, the

causal direction is (α, β)-identifiable for PM

(
BΠ(X, Y ),G

)
iff :

Pr(CB2(Xπ , Yπ) > 0 | G = [X ← Y ]) = 0. (Type I errors)

Pr(CB2(Xπ , Yπ) < 0 | G = [X → Y ]) = 0. (Type II errors)

In other words, (α, β)-identifiability with α = β = θ = 0 for BΠ(X, Y ) is
equivalent to:
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G = [X → Y ]
⇒ PM

(
BΠ(X, Y ) | G = [X → Y ]

)
> PM

(
BΠ(X, Y ) | G = [Y → X]

)
.

(2.31)

and vice versa if we invert the roles of X and Y . If B-identifiability holds, then:

G = [X → Y ] ⇒
{∃ (f ∈ F ∧ P(N) ∈ N) s.t. Y := f (X,N)

� (f ∈ F ∧ P(N) ∈ N) s.t. X := f (Y,N).
(2.32)

which can be equivalently re-written, for the given pair (Xπ, Yπ), as:

G = [X → Y ] ⇒
⎧⎨
⎩

PM

(
BΠ(X, Y ) | G = [X → Y ]

)
> 0

PM

(
BΠ(X, Y ) | G = [Y → X]

)
= 0.

(2.33)

It can easily be seen that if Eq. (2.33) is satisfied then Eq. (2.31) holds. Thus we have
proved that B-identifiability implies (α, β)-identifiability with α = β = θ = 0 for
BΠ(X, Y ). Let us prove now the reciprocal statement.

Starting from Eq. (2.31), if we swap the role of X and Y , we obtain: G = [Y →
X] ⇒ PM

(
BΠ(X, Y ) | G = [Y → X]

)
> PM

(
BΠ(X, Y ) | G = [X → Y ]

)
;

and if we contrapose Eq. (2.31) we obtain: PM

(
BΠ(X, Y ) | G = [Y → X]

)
>

PM

(
BΠ(X, Y ) | G = [X → Y ]

)
⇒ G = [Y → X], since when data are

generated with a binary process ¬(G = [X → Y ]) is equivalent to G = [Y → X].
Thus we have an equivalence, both for the previous formula and for Eq. (2.31):

G = [X → Y ] ⇔ PM

(
BΠ(X, Y ) | G = [X → Y ]

)

> PM

(
BΠ(X, Y ) | G = [Y → X]

)
≥ 0. (2.34)

In this last formula, if PM

(
BΠ(X, Y ) | G = [Y → X]

)

= 0, then ∃(X, Y ) s.t.

G = [Y → X]. This would contradicts that G = [X → Y ]. Hence we must

have PM

(
BΠ(X, Y ) | G = [Y → X]

)
= 0. Therefore, if Eq. (2.34) holds, then

Eq. (2.33) holds too, or equivalently Eq. (2.32). Thus, we have proved that (α, β)-
identifiability with α = β = θ = 0 implies B-identifiability. �
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Appendix 3: Examples of Cause-Effect Pairs

In this section, we should graphically how the some of the causation coefficient
filters are computed. The examples are drawn from Tables 2.1 and 2.2. It can be
observed that, depending on the type of data generative model, one or the other
assumption is violated. Hence the causation coefficient filters generally disagree
on the causal direction. Even though the small decision tree of Fig. 7.7 performs
relatively well on the challenge data, it is very easy to construct pairs to make it
fail. In the following chapters, we will see more advanced method (Figs. 2.15, 2.16,
2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25 and 2.26).

Fig. 2.15 Linear with additive Gaussian noise. Pair 1 in Table 2.1. This is a well-known non
identifiable pair. However, due to the finite sample size, wrong decisions might be made
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Fig. 2.16 Linear with additive uniform noise. Pair 2 in Table 2.1. Unlike the previous pair, this one
is identifiable with the Additive Noise Model (ANM): IRY > IRX , there is a better independence
between the input and the residual in the correct direction. However the R2 is better in the wrong
direction!
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Fig. 2.17 Linear with multiplicative uniform noise. Pair 3 in Table 2.1. The ANM has difficulties,
but the CDA works
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Fig. 2.18 S-shaped function with Gaussian input violating the independence of input density and
function. Pair 4 in Table 2.1. The IGCI entropy criterion fails, but the IGCI slope criterion works
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Fig. 2.19 Parabola with very small noise. Pair 5 in Table 2.1. The IGCI slope criterion fails,
because the function is ntn invertible
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Fig. 2.20 Square root with binary noise. Pair 6 in Table 2.1. The regression fit and residual criteria
fail as well as the CDS. But the IGCI criteria work
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Fig. 2.21 Altitude vs. temperature of German cities. Pair 1 in Table 2.2. The IGCI slope criterion
fails, because the function is not invertible. More surprisingly, CDS fails too, probably because of
outliers
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Fig. 2.22 Simulated altitude vs. temperature. Pair 2 in Table 2.2. Only the IGCI slope criterion
fails, because the function is not invertible



2 Evaluation Methods of Cause-Effect Pairs 93

Fig. 2.23 Real weight vs. age pair. Pair 3 in Table 2.2. Only H really works on that pair (IR is
neutral)
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Fig. 2.24 Simulated weight vs. age pair. Pair 4 in Table 2.2. Only R2 and H work on that pair
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Fig. 2.25 Real pair “hill shade at 3 pm” vs. aspect. Pair 5 in Table 2.2. R2 fails because of the
multiplicative noise and S fails because the function is not invertible
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Fig. 2.26 Simulated pair “hill shade at 3 pm” vs. aspect. Pair 6 in Table 2.2. The only pair in
which all diagnoses agree between real and synthetic data
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Chapter 3
Learning Bivariate Functional Causal
Models

Olivier Goudet, Diviyan Kalainathan, Michèle Sebag, and Isabelle Guyon

3.1 Introduction

A natural approach to address the cause-effect pair problem is from a reverse
engineering perspective: given the available measurements {(xi, yi)}ni=1 of the two
variables X and Y, the task is to discover the underlying causal process that led the
variables to take the values they have. To find this model, one needs implicitly to
answer two questions:

1. First, is there a causal relationship between X and Y and what is the causal
direction? Was X generated first and then Y generated from X, or the opposite?

2. Second, what is the causal mechanism that can explain the behavior of the
system? How was Y generated from X or X generated from Y?

Therefore this approach for causal discovery goes beyond finding the causal
structure, as it requires also to define a generative model of the data, which do
not seem mandatory at first sight if one is only interested in finding if X → Y

or Y → X.
This type of generative model has notably been formalized with the framework of

Functional Causal Models (FCMs) [21], also known as Structural Equation Models
(SEMs), that can well represent the underlying data-generating process, supports
interventions and allows counterfactual reasoning.
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3.1.1 Toy Example: Recovering the Underlying Generative
Process

Let us first introduce a simple cause-effect example depicted on Fig. 3.1. This
bivariate example was generated using an artificial causal mechanism from one
variable to another.1 Interestingly enough, the correlation coefficient between X and
Y is zero, but one can immediately see what could be the causal direction.

Indeed it seems very intuitive to prefer the causal direction X → Y . And this
is true in this case as the data were generated from X to Y according the following
stochastic process with quadratic deterministic mechanism:

X ∼ U (−1, 1) (3.1)

NY ∼ U (−1, 1)/3 (3.2)

Y := 4× (X2 − 0.5)2 +NY , (3.3)

where U (−1, 1) denotes uniform distribution between −1 and 1. Here we use
the symbol “:=” when writing the model to signify that it has to be seen as an
assignment from cause to effect.

The correlation coefficient is equal to zero, but there is a nonlinear dependency
between X and Y . Moreover, if one assumes that this dependency is due to the
influence of one of the variable on the other and not due to a third variable

Fig. 3.1 Data generated with the quadratic model of Eq. (3.3)

1Example coming from https://en.wikipedia.org/wiki/Correlation_and_dependence.

https://en.wikipedia.org/wiki/Correlation_and_dependence
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influencing both, one of the two following causal hypotheses holds as stated in
Chap. 1 of this book:

• Y := fY (X,NY ) with NY ⊥⊥ X (hypothesis 1, X → Y ),
• X := fX(Y,NX) with NX ⊥⊥ Y (hypothesis 2, Y → X),

where the noise variable NY (respectively NX) summarizes all the other unobserved
influences on X (respectively on Y ).

In order to recover the causal mechanism, one can propose to search in the class
of polynomial functions of degree 4 by fitting regression models y = f̂Y (x) and
x = f̂X(y) on the data with mean squared error loss (Fig. 3.2).

The expected mean squared error is lower for the model f̂Y from X to Y than for
the other model f̂X from Y to X. The residuals of each polynomial regression are
displayed on Fig. 3.3.

To some extent, as the residual Y − f̂Y (X) is independent of X, one can build an
explanatory model of the data as : Y := f̂Y (X) + NY , with f̂Y quadratic and with
almost NY ⊥⊥ X and NY ∼ U (−1, 1)/3. In this case the underlying data generative
process of the data corresponding to the true model (see Eq. (3.3)) is recovered. The
causal direction X → Y is identified and one has also built a simulator close to the
true mechanism (up to small parameter adjustments) that can be used to simulate
the effect of interventions on the system. Indeed with this functional model, one can
now compute Ydo(X=x) = f̂Y (x) + NY , with NY ∼ U (−1, 1)/3. It should give
results on average similar to the true model of Eq. (3.3).

Fig. 3.2 Data generated with the true quadratic model (blue points). Polynomial fit of degree 4 of
Y on X is depicted as green curve. Polynomial fit of degree 4 of X on Y is depicted as red curve.
The best fit appears with the green curve. Better seen in color
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Fig. 3.3 Left: error Y − f̂Y (X) is almost independent of X. Right: error X − f̂X(Y ) is not
independent of Y . Better seen in color

In the opposite direction, as the residual is not independent of Y , one cannot
build any model such as X := f̂X(Y ) + NX with NX ⊥⊥ Y . However we will
see later in this chapter that it is possible to prove that a model X := f̂X(Y,NX)

with NX ⊥⊥ Y exists in this case, but its expression may be more complex as the
noise term is not additive and the mechanism f̂X is not continuous on its definition
domain. Therefore, from an explanatory perspective, the additive noise model Y :=
f̂Y (X)+NY (hypothesis 1) offers a simpler explanation of the phenomenon than the
other explanation X := f̂X(Y,NX) (hypothesis 2) with a non additive noise. For this
reason, it seems intuitive to “prefer” hypothesis 1 to hypothesis 2. It is not a formal
proof of causality, as it comes from an “Occam razor principle” that favors a simple
explanation with the prior assumption that an additive noise model is simpler than a
non additive noise model [12]. Another notion of simplicity could be preferred such
as multiplicative noise Y := fY (X)×NY as explained later in this chapter.

Given the available measurements, the goal is to recover an explanatory model of
the data by using statistical tools to test causal hypotheses. However, even if in this
toy example the preferred explanatory model also corresponds to the model with the
best predictive power, one has to keep in mind that this is not always the case.

3.1.2 Real Example: To Explain or to Predict?

Let us introduce now a real example well known in “the cause-effect pair commu-
nity”: the first cause-effect real pair of the Tübingen database.2 Figure 3.4 displays
collected data on altitude (X-axis) and temperature (Y-axis) in the atmosphere from
349 meteorological stations in Germany over the years 1961–1990.

2This database is composed of more than one hundred real cause-effect pairs with known ground
truth and is available online at https://webdav.tuebingen.mpg.de/cause-effect/.

https://webdav.tuebingen.mpg.de/cause-effect/
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Fig. 3.4 349 real couples of points (altitude, temperature) collected from meteorological stations
in Germany over the years 1961–1990

T is the temperature and Z the corresponding altitude. We assume for this simple
example that the observed dependency between T and Z is only due to a direct
causal relation from one of the two variables to the other. We will see later in this
chapter that it is not actually obvious and the model may be actually more complex,
as at least one hidden variable latitude may also have an impact on both variables.

In order to test causal hypotheses, the data are re-scaled with zero mean and
unit variance, the dataset are split a large number of times between train (80%) and
test sets (20%) and two alternative nonlinear Gaussian process regression models
are learned on the train set.3 When regressing the temperature on altitude one
obtains the model t = f̂t (z) (Fig. 3.5-left) and when regressing the altitude on
the temperature one obtains the model z = f̂z(t) (Fig. 3.6-left).

Interestingly enough, the expected mean squared error on the train and test sets
averaged over 100 runs are lower for the false causal orientation T → Z than for the
true causal orientation Z → T . Therefore the overall predictive accuracy measured
in term of mean squared error is better, even if the model z = f̂z(t) does not seem to
accurately reproduce the data generative process notably in the non-reversible part
of the relation (circled area on Fig. 3.6-left).

The best predictive model does not necessarily corresponds to the true causal
orientation [29]. It comes from the fact that minimizing a predictive score such as
an expected mean squared error does not give necessarily an explanation of the data

3GaussianProcessRegressor algorithm with default parameters from python library scikit-learn
0.19.1 [23] are used.
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Fig. 3.5 Left: real couples of points (altitude, temperature) in blue and regression model t =
f̂t (z) in green. To some extent this residual is independent of the altitude Z. Therefore, the causal
hypothesis T := f̂T (Z)+NT with NT ⊥⊥ T may hold

Fig. 3.6 Left: real couples of points (altitude, temperature) in blue and regression model z = f̂z(t)

in red. Right: residual of the non-linear regression of the altitude on temperature (red). The circled
area corresponds to the non-reversible part of the relation (Z,T). To some extent this residual is
not independent of the temperature T . Therefore, the causal hypothesis Z := f̂Z(T ) + NZ with
NZ ⊥⊥ T does not hold

generative process and then may lead to misunderstandings when it comes to causal
interpretation.4

If one uses the same nonlinear regression model, but rather than looking at the
mean squared error on the test set, one looks at the residuals on the test set defined
respectively as nt (z) = t (z) − f̂t (z) and nz(t) = z(t) − f̂z(t), one can see that
a causal footprint may be detected. Indeed, the residual NZ is almost independent
of Z (Fig. 3.5-right), while the residual NT is not independent of T (Fig. 3.6-right).

4Let us note however that a recent work of [2] shows that comparing mean square error after fitting
regression models in both direction can achieve overall good results when specific assumptions are
satisfied such as the function φ that represents the causal mechanism is monotonically increasing
(or decreasing) and a specific independence postulate between the variance of the noise and the
derivative φ′ is satisfied (see Sect. 3.5.3.4 for a description of this method). A wide comparative
evaluation of all the methods, including this method RECI, will also be proposed in Sect. 3.6.
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It confirms, to some extent, that the causal hypothesis T := f̂T (Z) + NT with
NT ⊥⊥ Z holds, while the causal hypothesis Z := f̂z(T ) + NZ with NZ ⊥⊥ T does
not hold. Therefore, from an explanatory perspective, using the same conclusion as
in the previous example, the additive noise model T := f̂T (Z) + NT (model 1)
is preferred to the other explanation Z := f̂Z(T ,NZ) (model 2) with non additive
noise.

From a probabilistic point of view, the model T := f̂T (Z) + NT corresponds
to the stochastic model PT |Z that accounts for uncertainty about the mechanism
involved. Indeed for a given altitude there are several values of temperature possible,
because the temperature may depend on other unobserved factors such as the
latitude, the type of vegetation, the type of soil, the degree of humidity in the air, etc.
In order to characterize a full generative model, one may consider that the altitude
depends from other unknown variables such as the variations in terrain elevation:
Z := f̂Z(NZ), where NZ models latent source causes. It gives a distribution of PZ ,
which when combined with PT |Z gives a full generative model PZPT |Z = PZ,T ,
that can be used as a simulator to draw samples (z, t) in the region.

This explanatory model may recover a causal interpretation, formally defined
with the do-notation [22]. The temperature T is said to be a cause of Z if:

P
do(Z=z)
T 
= P

do(Z=z′)
T , (3.4)

for some z, z′ [20]. An intervention, denoted as do(Z = z), forces the variable
altitude Z to take the value z, while the rest of the system remains unchanged.
Concretely this mathematical formulation can be translated into: “all other things
being equal”, when modifying the altitude (climbing a mountain), it has an impact
on the temperature (it decreases)”. However P

do(T=t)
Z = PZ as modifying the

temperature (heating the air) does not increase the altitude. Nevertheless this causal
implication would not be true for hot air balloons! Indeed in causality “random
variables” cannot be isolated from their context, because they are intimately related
to an underlying specific system.

Moreover this functional causal model could also be used to derive counterfactual
statements [22]. Indeed, for any specific meteorological station with a couple of
datapoints altitude and temperature, (zi, ti), if one knows fT , one can calculate the
value ni

T such that ti = fT (zi)+ ni
T , and therefore for any specific station, one can

answer the question “what would have been the temperature t ′i in this meteorological
station if the altitude had changed from zi to z′i?” by using the mathematical
expression t ′i = fT (z′i )+ ni

T . This counterfactual reasoning on specific individuals
would not be possible when having only a model PT |Z at the population level and not
the underlying functional causal model including both causal orientation (Z → T )
and mechanism fT .
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3.1.3 Comparing Alternative Data Generating Models

As shown with this real introductory example, finding the causal direction, when
assuming that there are no confounding effects, consists in comparing two alter-
native data generating models and deciding whether the causal process Z → T is
more natural or simpler than the backward process T → Z. Intuitively, we can think
of it as a rudimentary physical model that generates the temperature (effect) from
the altitude (cause), which provides a better explanation in some way (more natural
or simpler) than generating the altitude from the temperature.

In order to compare these alternatives models, an Occam’s razor principle is
always invoked in one way or another in the literature. Generally speaking, an
Occam’s razor principle can be seen as a general heuristic used in science to
guide the modeler to find the simplest explanation when testing different causal
hypotheses on the data. In order to apply this principle, two things must be defined
: what do we mean by simplest explanation, which refers to the notion of the
complexity of a model? And what do we mean by testing a causal hypothesis on
the data, which refers to the notion of the fit of a model? These two notions of
complexity and model fit have been formalized in different ways in the literature.
We will detail them in this chapter.

Furthermore, one has always to keep in mind however that this heuristic choice
is not an irrefutable principle. It is impossible in the cause-effect pair problem from
purely observational data to formally prove that an explainable causal model is
true. It is easy to find examples where Occam’s razor principle favors the wrong
theory given available data. Indeed in the introductory example with altitude and
temperature, the true causal mechanism could have been Z := fZ(T ,NZ) (as
shown later on in this chapter one can always exhibit such mechanism fZ and
variable NZ with NZ ⊥⊥ T ) and a conclusion based on the idea that T :=
fT (Z)+NT is simpler would have led to a false conclusion.

However this Occam razor principle has been implemented in the literature with
good empirical success on artificial and real data [20]. By looking at the overall
picture, we can distinguish three types of methods implementing this principle in
different ways. The first class of methods uses fixed complexity of models and
chooses the causal direction corresponding to the model that best fits the data. A
second type of methods evaluates a weighted aggregation between two criteria:
complexity and fit of the model. The last approaches exhibit two candidate models
that are assumed to perfectly correspond to the data generative process and compare
their complexities.

In Sect. 3.2, we introduce the bivariate problem setting with the usual assump-
tions invoked. In Sect. 3.3 we discuss the specific problem of identifiability that
appears in this problem. The following Sect. 3.4 is devoted to the general method
developed in the literature to tackle this identifiability issue. It will allow us to
define a typology of the cause-effect inference methods that we will present more
in detail in Sect. 3.5 with their practical implementations. In Sect. 3.6 we propose a
benchmark of various methods presented in this chapter on artificial and real data.
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The next Sect. 3.7 is a discussion on open problems and extensions for the cause-
effect pair setting. The last Sect. 3.8 concludes.

3.2 Problem Setting

In this section, we present the cause-effect pair problem from the generative
approach perspective. We first introduce the notations used in the chapter as well
as the main assumptions usually involved. Then we present the general bivariate
structural model.

3.2.1 Notations and Assumptions

X and Y are two one-dimensional random variables in R with joint distribution
PX,Y .

3.2.1.1 Identically and Distributed Samples

The given observations D = {(xi, yi)}ni=1 of the random variables X and Y are
independent and identically distributed drawn from PX,Y .

3.2.1.2 Time

The time for which the observed data have been collected is not available. It is then
impossible to exploit Granger causality tests for time series relying on the principle
that if X → Y , then the predictions of the value of Y based on its own past values
and on the past values of X are better than predictions of Y based only on its own
past values [8]. In the approaches presented in this chapter, time is not explicitly
modeled, even though it is assumed that causes precede their effects.

3.2.1.3 Faithfulness Assumption

This is the classical faithfulness assumption used in graphical causal inference,
transposed for two variables: “if there is a causal relation between X and Y , the
two variables are not independent”.

Pathological cases could arise for example as depicted on Fig. 3.7. The altitude
has negative effect on temperature, but the altitude could have also negative impact
on the degree of humidity in the air, which could have a negative effect on the
temperature (as strange as it may seem, but this is an illustrative case). In this
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Fig. 3.7 Example of
unfaithful case

altitude

temperature

humidity-

-

-

scenario the altitude would directly inhibit the temperature and indirectly improve
it, which would result in a statistical independence between altitude and temperature
by coincidence even if it is well known that altitude causes temperature.

In this chapter we will consider only pair effect problems where the two variables
X and Y are statistically dependent. When detecting a dependency between X and
Y five main cases may arise:

1. X causes Y
2. Y causes X
3. Selection bias: there is a unobserved common effect W of both X and Y on which

X and Y were conditioned during the data acquisition. This selection bias creates
a spurious dependency between X and Y .

4. Confounder: X and Y are both common consequences of a same third variable
X ← Z → Y

5. Feedback loop: X is a cause of Y and Y is a cause of X.
6. Constraint relation: X and Y are linked together, but there is no causal relation-

ship between them.

Let us note that multiple combinations such as case 1 and 4 may arise at the same
time, X causes Y and both variables are also caused by an unobserved variable Z.

3.2.1.4 Selection Bias

A selection bias corresponds to an unobserved variable on which the two variables
X and Y were implicitly conditioned: graph X → W ← Y (Fig. 3.8-(3)). In our
introductory example, we may imagine for example that the variable temperature is
in fact independent of the variable altitude. However the temperature has an impact
on the number of dwarf mountain pines present in the region because this type
of trees grows only in cold region. The altitude has also an impact of this type
of vegetation as this type of trees grows only in mountains. Then if the weather
stations were only constructed in area with this type of vegetation (as strange as it
may seem), when collecting the data, an artificial dependency link would be created
between altitude and temperature (Fig. 3.9).

Throughout this chapter, it is assumed that the sample {(xi, yi)}ni=1, correspond-
ing to the variables X and Y , was collected without selection bias.
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X Y

(1) X causes Y

X Y

(2) Y causes X

X Y

W

(3) X and Y cause W

Z

X Y

(4) Z causes X and Y

X Y

(5) Feedback loop

X Y

(6) Constraint relation

Fig. 3.8 Five main cases when detecting a dependency between X and Y

Fig. 3.9 Selection bias when
measuring altitude and
temperature

altitude temperature

number of mountain pines

+ -

Fig. 3.10 Latitude causes
altitude and temperature

latitude

altitude temperature

3.2.1.5 Causal Sufficiency Assumption

Under this assumption it is assumed that X and Y are not common consequences
of the same hidden variables (case corresponding to X ← Z → Y (Fig. 3.8-(4))
excluded).

This causal sufficiency assumption is made by many methods of the cause-effect
pair literature that we will review in this chapter as it allows to considerably simplify
the cause-effect pair problem. However there are many realistic cases where there
are potential confounding effects that can affect both variables (the most typical
examples of confounding factors are the age or the gender in epidemiological
studies). In this regard, if we come back to our introductory example, a confounding
effect may be present as illustrated on Fig. 3.10. Indeed, the hidden variable latitude
is known to be a cause of the temperature, but it is also a cause of the altitude,
because in Germany all the mountains are situated in the south of the country.
Therefore the link between altitude and temperature could be completely spurious
and disappears when conditioned on the latitude variable. However it is not the
case with this example as we still have a well known causal effect from altitude
to temperature, but it highlights the fact that for the cause-effect pair analysis, one
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should always study the relationship between X and Y after conditioning on the
potential observed confounding variables. In Sect. 3.7, we will provide a discussion
on the confounding case, which is a great challenge and the problem is far from
being solved for the cause-effect pair setting. To keep the problem simple in the first
instance and clearly explain the cause-effect pair problem where only X → Y or
Y → X are considered, we will first assume in this chapter that the confounding
case is excluded.

3.2.1.6 Feedback Loops

A feedback loop appears when both X causes Y and Y cause X: graph X � Y

(Fig. 3.8-(5)). Even if the notion of time is not present, this case may happen for
example in cross-sectional studies where data are collected over a certain period of
time. Mooij et al. [20] give an example where the two variables are the temperature
and the amount of sea ice: “an increase of the global temperature causes sea ice to
melt, which causes the temperature to rise further (because ice reflects more sun
light)”.

We will assume in this chapter that this case is excluded. Therefore the causal
graph between X and Y refers to the literature on Directed Acyclic Graph (DAG)
(with only two variables).

3.2.1.7 Constraint Relation

This case of dependency with a relation X−Y (Fig. 3.8-(4)) may arise for example if
the two variables are linked by a logical or mathematical formula, and not related by
a causal relation. As an example, if we write that the productivity P in a firm is equal
to the total added value V A of the firm divided by the total number of employees
N , the two variables P and V A are linked by a mathematical expression: P = V A

N
.

By observing V A and knowing N we can immediately deduce P , but the opposite
is also true as knowing P and N gives V A, with equivalent mathematical relation,
without any notion of an underlying system that could have generated one of the
variable from the other. We do not consider this case in this chapter.

3.2.1.8 Measurement Noise

In general in the literature, it is assumed that there are no measurement noise. Such
measurement noise may happen if for example the altitude is not measured precisely,
but its noisy version noted Z̃. However the variable temperature T is still a function
of the original variable Z that is not corrupted by measurement noise. This problem
is related to a cause-effect pair problem between T and Z̃ in presence of a latent
hidden variable which is the original Z. We refer the reader to [20] who propose a
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benchmark that verify the robustness of various cause-effect algorithms in presence
of small perturbations of the data.

3.2.1.9 Variables Units

The orders of magnitude of the variable as well as their physical units are not
considered in the problem. In most methods, the variables X and Y are re-scaled
with zero mean and unit variance.

3.2.2 Bivariate Functional Causal Models

In the literature on causality, if G denotes an acyclic causal graph (DAG) obtained by
drawing arrows from causes XPa(i;G ) towards their effects Xi , it is often assumed
that the effects are expressed as a linear function of their cause and an additive
Gaussian noise. These models are linear structural equation models, where each
variable is continuous and modeled as:

Xi :=
∑

j∈Pa(i;G )

αjXj +Ni, for i = 1, . . . , d, (3.5)

with Pa(i;G ) the subset of index of the parents of each variable Xi in graph G
and Ni a random noise variable, meant to account for all unobserved variables. The
parameters αj are real values. Each equation characterizes the direct causal relation
explaining variable Xi from the set of its causes XPa(i;G ), based on some linear
causal mechanisms. These models are used a lot in social science fields such as
econometric and sociology. Although this simplified model with linear mechanisms
and additive Gaussian noise appears to be very convenient from a theoretical point
of view, it is not often realistic as the interactions between cause and noise may be
more complex in reality. Therefore a more general framework has been proposed by
Pearl [21] with potential nonlinear interactions between cause and effect:

Xi := fi(XPa(i;G ), Ni), for i = 1, . . . , d. (3.6)

When the DAG G is reduced to X → Y , this system of equation refers to a
bivariate structural model.

Definition 3.1 A bivariate structural model noted BG ,f,PN
is a triplet (G , f, PN),

where G is the causal graph X → Y or Y → X, f = (fX, fY ) is a couple of
possibly nonlinear functions and (NX,NY ) are two independent random variables
drawn according to continuous distribution PN = (PNX

, PNY
), such that:

• X := fX(NX) and Y := fY (X,NY ) if X → Y

• Y := fY (NY ) and X := fX(Y,NX) if Y → X
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One can notice that this definition holds for any type of continuous distribution
of the noise PN . For example PNY

can be set to the uniform distribution on [0, 1]
and this is not a general restriction, since one can always write NY = gY (ÑY ), for
some function gY , with ÑY ∼ U [0, 1] and f̃Y = fY (·, gY (·)) [31].

Without loss of generality, we could also write X := NX, with PNX
= PX, but

in the following we prefer to keep the formulation with two functions (fX, fY ) in
order to stay consistent with the general formulation of FCM given by Eq. (3.6).

According to [20], the assumption that NX and NY are independent, is justified
by the assumptions that there is no confounding effect, no selection bias, and no
feedback between X and Y (see Sect. 3.2.1).

3.3 The Problem of Identifiability with Two Variables

Given the formulation of the processes described in Sect. 3.2.2, the task is to identify
the causal structure X → Y or Y → X that could have generated the observed data.
By identifying we mean proving that f and PN exist so that the hypothesis BG ,f,PN

holds in the causal direction G with respect to the observed data while there do not
exist any f ′ and P ′

N so that BG ′,f ′,P ′
N

holds in the opposite causal direction G ′.
This problem faces two difficulties. The first is a classical empirical problem

because in general one has access to a finite sample size D = {(xj , yj ]}nj=1 making
impossible to evaluate perfectly PX,Y . This is why the evaluation will rely on the
definition of a model QX,Y of the data distribution, which we will discuss later on.
The second difficulty is more profound as it is related to the inference of a DAG
when only two variables are observed. In this case, it is impossible to identify the
causal direction by using classical conditional independence tests (e.g. as in the
PC algorithm of [30]), because the two graphs X → Y and Y → X are Markov
equivalent.

3.3.1 The Particular Linear Gaussian Case

A first well known identifiability issue arises in the linear Gaussian case because it
induces a perfectly symmetric distribution after rescaling (Fig. 3.11).

A linear Gaussian generative bivariate FCM is defined by the system of equa-
tions:

{
X := αXNX with NX ∼ N (μX, σX)

Y := βY X + αY NY , with NY ∼ N (μY , σY ),
(3.7)

with αX, αY , βY ∈ R3. As shown by Mooij et al. [20], it is always possible in this
case to find parameters α′X, α′Y , β ′X,μ′X,μ′Y , σ ′X, σ ′Y such that:
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Fig. 3.11 Pairwise linear Gaussian case

{
Y := α′Y NY with NY ∼ N (μ′Y , σ ′Y )

X := β ′XY + α′XNX, with NX ∼ N (μ′X, σ ′X).
(3.8)

Therefore, for this pair a perfect symmetric generative model exists in both
directions (that can only be dissociated by the values of its parameters) and it is
impossible to determine the causal direction from these observational data.

3.3.2 General Case

Given any two random variables X and Y with continuous support, [36] shows that
if FY |X is the conditional cumulative distribution function of Y given X and q an
arbitrary continuous and strictly monotonic function with a non-zero derivative, then
the quantity Ñ = q ◦ FY |X, where ◦ denotes function composition is independent
from X. Furthermore, the transformation from (X, Y ) to (X, Ñ) is always invertible,
in the sense that Y can be uniquely reconstructed from (X, Ñ).

Stated in another way, given any two random variables X and Y with continuous
support, one can always construct a function fY and another variable, denoted by
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NY , which is statistically independent from X and such that Y := fY (X,NY ). And
equivalently, on can always construct a function fX and another variable, denoted
by NX, which is statically independent from Y and such that X := fX(Y,NX).

3.3.2.1 Characterization with Continuous Quantile Functions and
Uniform Noise

More specifically if the joint density function h of PX,Y is continuous and strictly
positive on a compact and convex subset of R

2, and zero elsewhere, the model
BG ,f,PN

holds with a couple of continuous quantile functions f = (fX, fY ) in
any direction X → Y and Y → X.

Indeed, if one considers the cumulative distribution FX defined over the domain
of X (FX(x) = Pr(X < x)). FX is strictly monotonous as the joint density function
is strictly positive therefore its inverse, the quantile function QX : [0, 1] 	→ dom(X)

is defined. If nX is drawn in U [0, 1], by construction, QX(nX) = F−1
X (nX) and by

setting fX = QX, we obtain X = fX(NX). For any noise value nX let x be the value
of X defined from nX. The conditional cumulative distribution FY (y|X = x) =
Pr(Y < y|X = x) is strictly continuous and monotonous with respect to y, and
can be inverted using the same argument as above. Then we can define fY (x, ny) =
F−1

Y (x, ny) and we obtain Y := fY (X,NY ). In an equivalent manner, we can show
that there exists a set f = (fX, fY ) such that Y := fY (NY ) and X := fX(Y,NX).

Furthermore, it has been shown by Goudet et al. [7] that under the same
assumptions on PX,Y for both candidate generative bivariate FCM X → Y and
Y → X, the functions fX and fY defined above are continuous on their definition
domain.

An example of a continuous joint density function PX,Y , strictly positive on a
compact and convex subset of R2 and zero elsewhere is depicted on Fig. 3.12. On

Fig. 3.12 Cause-effect pair with quantile regressions 0.25 (orange), 0.5 (green) and 0.75 (red) in
both directions X → Y (left) and Y → X (right). Better seen in color
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the left part of the Figure is shown a quantile regression of the variable Y on X with
fraction 0.25 (orange curve), 0.5 (green curve) and 0.75 (red curve). It corresponds
to the estimation of the FCM y := fY (x, ny) with uniform noise and where ny is
respectively set to the values 0.25, 0.5 and 0.75. On the right part of this Figure is
shown the quantile regression of X on Y , corresponding to the estimation of the
FCM x := fX(y, nx), with nx set to the values 0.25 (orange curve), 0.5 (green
curve) and 0.75 (red curve). It highlights the fact that continuous FCM may be
recovered in both directions in this case. However for the causal orientation X → Y ,
the FCM is linear for any fixed noise value ny , while for the causal orientation
Y → X, the FCM is more complicated as it seems to be only linear for nx = 0.5
(green curve).

3.3.2.2 How to Overcome This Identifiability Problem?

This identifiability problem is a negative result for the cause-effect pair problem,
because without any additional assumptions the problem is unsolvable.

However, even if both BX→Y,f,PN
and BY→X,f ′,P ′

N
hold, there is almost always

an asymmetry in the data generative process X → Y and Y → X, because in
general the mechanisms f and f ′ do not belong to the same class of functions
(except in the linear Gaussian case mentioned before).

If we go back to the introductory example with altitude and temperature, there
exist two plausible causal models:

{
Z := fZ(NZ)

T := fT (Z,NT ), with NT ⊥⊥ Z
(3.9)

{
T := fT (NT )

Z := fZ(T ,NZ), with NZ ⊥⊥ T
(3.10)

However, the first model of Eq. (3.9) can be rewritten to some extent with an
additive mechanism:

{
Z := fZ(NZ)

T := fT (Z)+NT , with NT ⊥⊥ Z,
(3.11)

while the alternative causal model with causal orientation T → Z cannot be
expressed using the same type of expression with additive noise. If one accepts the
fact that an additive mechanism is a “simpler” form of conditional, we may prefer
the causal orientation Z → T according to Occam’s Razor principle.
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In general, one can see that the factorization of the joint density function PX,Y

into PXPY |X or PY PX|Y may lead to models with different complexities, with
respect to some appropriate notion of complexity to be defined.

3.4 Computing a Trade-Off Fit/Complexity

The determination of the best explainable model is then based in the literature on
these main lines:

• Different candidate bivariate models (hypotheses) are evaluated in both direc-
tions.

• For each candidate model one evaluates a score monitoring the trade-off between
the fit of the model (meaning its adequacy to the observational data) and the
complexity of the mechanisms involved.

• The model with the best score is returned, with its corresponding causal arrow
X → Y or Y → X.

3.4.1 Defining Candidate Bivariate Models and Sampling Data

In order to model such continuous underlying bivariate generative process BG ,f,PN

which is assumed to have generated the data, we introduce the notion of candidate
model B̂Ĝ ,f̂ ,QN

described by:

• a structure defined by a causal orientation X → Y or Y → X

• its estimated mechanisms modeled by f̂

• an estimated distribution of noise QN

3.4.1.1 Structure of a Candidate Model

We note θX and θX the vectors of parameters of the estimated mechanisms f̂X

and f̂Y . And we note respectively θNX
and θNY

the vectors of parameters of the
distribution of the modeled noise variables QNX

and QNY
. The noise variables

are independent. The global vector of parameters of the model is noted θ =
(θX, θY , θNX

, θNY
).

When Ĝ = X → Y , this candidate generative model depicted on
Fig. 3.13 generates a distribution QX,Y (θ) = QX(θX, θNX

)QY |X(θY , θNY
).

When Ĝ = Y → X, this candidate model generates a distribution QX,Y (θ) =
QY (θY , θNY

)QX|Y (θX, θNX
).

In some approaches proposed in the literature, the cause variable is not modelled
but taken as the observed variable. In this case, QX = PX. We refer the reader to
Chap. 1 of this book explaining why it could be a problem for cause-effect inference.
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Fig. 3.13 Candidate
generative model with causal
orientation X → Y

NX

f̂X (qX)

XQX NY

f̂Y (qY)

YQY|X

∼ QNY (qNY)

∼ QNX (qNX)

3.4.1.2 Mechanisms

After having defined the overall structure, one needs to model the mechanisms:

• A first characterization that needs to be specified is related to the type of
interaction between the noise variable and the cause. Indeed in the literature, we
distinguish mainly additive noise interaction of the form Y := f̂Y (X) + NY or
complex noise interaction of the form Y := f̂Y (X,NY ), where the cause variable
and the noise are mixed with a non-linear mechanism.

• The second characterization concerns the class of functions used to define
f̂ . It may range from linear mechanisms as in LiNGAM algorithm [28] to
complex non-linear mechanisms modeled with Gaussian processes [31] or neural
networks [16]. In general, the more complex the mechanisms are, the more the
candidate model can fit the data and the more the model is general (meaning
that it can be applied to a wide variety of cases). However, it may result in
more difficulty to assess the causal orientation because the candidate model
has more chances to fit equally well the data in both directions. A method for
controlling the complexity of the mechanisms involved will be discussed later on
in Sect. 3.4.3.

3.4.1.3 Sampling Data Points with a Candidate Model

Now we have all the ingredients required to sample data points of the estimated
distribution QX,Y with the generative model depicted in Fig. 3.13 by proceeding
as follow:

1. Draw {(nX,j , nY,j )}nj=1, n samples independent and identically distributed from
the joint distribution QNX

(θNX
) × QNY

(θNY
) of independent noise variables

(NX,NY ).
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2. Generate n samples D̂ = {(x̂j , ŷj )}nj=1, where each estimated sample x̂j of

variable X is computed from f̂X(θX) with the j -th estimated samples nX,j ; then
each estimated sample ŷj of variable Y is computed from f̂Y (θY ) with the j -th
estimated samples nY,j and x̂j .

Generative candidate models support interventions, that is, freezing the variable
X to some constant vi . The resulting joint distribution noted Q

do(X=vi )
Y , called

interventional distribution [22], can be computed from this model by clamping the
value of X to the value vi . However when freezing the value of Y to some constant
wi , it has no impact on X: Q

do(Y=wi)
X = QX. Generative candidate models support

also counterfactual reasoning [22] as explained with the introductory example.

3.4.2 Model Fitness Score

In order to evaluate the quality of a candidate generative model, we introduce a fit
score SB̂(θ) of a candidate model B̂Ĝ ,f̂ ,QN

(θ). This score has been implemented
in different ways in the literature. It has always the property to be minimal when
P = Q (perfect fit in the large sample limit).

3.4.2.1 Log-Likelihood Parametric Scores

An example of score used in [31, 32] is the negative log-likelihood score defined for
a candidate generative model with causal orientation X → Y by:

SB̂(θ) = − log f̂ (D |θ)

= −
n∑

i=1

[
log QX=xi (θX, θNX

)+ log QY=yi |X=xi (θY , θNY
)
]
.

(3.12)

This likelihood score is often computed in a parametric context with special
constraints imposed on the class of densities for the distribution of the cause QX and
the distribution of the conditional QY |X. For example in [31], a Gaussian mixture
model is used as a prior distribution of the cause and a Gaussian process with a zero
mean function and a squared-exponential covariance function is chosen as prior of
the conditional.
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3.4.2.2 Implicit Fit Score Computed as an Independence Score Between
Cause and Noise Variable

If one considers a model with causal orientation X → Y , [36] shows that computing
this maximum likelihood score of the model with respect to the observational
data is equivalent to minimizing a mutual information term I (X, N̂Y ; θ) between
the estimated noise N̂Y and the cause X. We re-transcribed here the theoretical
justification given by Zhang et al. [36] with our notations.

We consider a candidate model B̂Ĝ ,f̂ ,QN
(θ) with causal orientation X → Y and

where the distribution of the source cause is not modelled and taken as PX.
One can write QX,NY

= PXQNY
as in this model X and NY are assumed to be

independent. Therefore, the Jacobian matrix of the transformation from (X,NY ) to
(X, Y ) is:

JX→Y =
(

δX
δX

δX
δNY

δY
δX

δY
δNY

)
=
(

1 0
δfY

δX
δfY

δNY

)
. (3.13)

The absolute value of its determinant is |JX→Y | = | δfY

δNY
|. Then,

QX,Y = QX,NY
/|JX→Y | = PXQNY

| δfY

δNY

|−1, (3.14)

which implies

QY |X = QNY
| δfY

δNY

|−1. (3.15)

As the transformation from (X,NY ) to (X, Y ) is invertible, given any parameter
set θY involved in the function fY , the noise NY can be recovered, and the authors
denote by N̂Y the estimated noise variable. For any parameter set θ = (θY , θNY

),
using Eq. (3.15) the negative log-likelihood score attained by the model is:

SB̂(θ) = − log f̂ (D |θ)

= −
n∑

i=1

[
log PX=xi + log QY=yi |X=xi (θY , θNY

)
]

= −
n∑

i=1

log PX=xi −
n∑

i=1

log QNY=n̂i
Y
(θNY

)

+
n∑

i=1

log | δfY

δNY X=xi ,NY=n̂i
Y

(θY )|.

(3.16)
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Now the fit of the model can be seen differently. Instead of fitting the model
(Sect. 3.2.2) by modeling the noise NY which is independent of X and then
modeling the conditional QY |X, one can start from the true distribution PX,Y and
look for such an estimate N̂Y that N̂Y and X are independent. In this approach,
(X, Y ) is recovered from (X, N̂Y ) as:

PX,Y = Q
X,N̂Y

| δf

δNY

|−1. (3.17)

In order to make N̂Y and X independent, one can compute the mutual information
between X and N̂Y that depends of the parameters θ of the model:

I (X, N̂Y ; θ) = Ex∼PX,n̂Y∼Q
N̂Y

[
log

Q
X=x,N̂Y=n̂Y

PX=xQN̂Y=n̂Y

]

= −Ex∼PX
logPX=x − En̂Y∼Q

N̂Y

logQ
N̂Y=n̂Y

+ Ex∼PX,n̂Y∼Q
N̂Y

logQ
X=x,N̂Y=n̂Y

.

(3.18)

By using the sample version of this quantity and Eq. (3.17) the authors obtain:

Î (X, N̂Y ; θ) = −1

n

n∑
i=1

logPX=xi − 1

n

n∑
i=1

logQ
N̂Y=n̂i

Y
(θNY

)

+ 1

n

n∑
i=1

log| δfY

δNY X=xi ,NY=n̂i
Y

(θY )| + 1

n

n∑
i=1

logP(X = xi, Y = yi).

(3.19)
Thus,

SB̂(θ) = nÎ (X, N̂Y ; θ)−
n∑

i=1

logP (X = xi, Y = yi). (3.20)

As the term
∑n

i=1 logP (X = xi, Y = yi) does not depend on the parameters
θ of the model, minimizing the likelihood score SB̂(θ) amounts to minimizing the

mutual information between the cause X and the estimated noise N̂Y .
This kind of evaluation score with an independence test is used to fit the model

ANM [12] and PNL [35] presented in Sect. 3.5.1.

3.4.2.3 Non-parametric Scores

Other methods such as [7, 16] use a non-parametric approach. In these methods the
authors do not specify any type of distribution for the model of the data QX,Y , but
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instead compare directly with a two sample test the observed data sample D with
the generated data sample D̂ coming from any candidate model.

In [16], the score of the model is non-parametric and computed with Conditional
Generative Adversarial Networks, or CGANs [18] (see Sect. 3.5.2.2). It has been
shown by Goodfellow et al. [6] that in the large sample limit, the Generative Adver-
sarial Networks allows to approximate the Jensen-Shannon divergence between the
true distribution P and the generated distribution Q:

SB̂(θ) � JSD(P,Q). (3.21)

The Jensen–Shannon divergence is an information theory method of measuring
the similarity between two probability distributions. This metric is always positive
and equal to zero when P = Q.

Goudet et al. [7] used the empirical Maximum Mean Discrepancy (MMD) [10],
a kernel based metric between distribution, as a two sample test to compare D and
D̂ (see Sect. 3.5.2.3).

3.4.3 Complexity of the Model

Now we introduce a term of complexity of a candidate bivariate model B̂Ĝ ,f̂ ,QN
(θ)

that we note CB̂(θ). This complexity notion refers to a simplicity prior on the
underlying data generative process. It has been handled in different ways in the
literature from fix a class of admissible mechanisms to more flexible criteria.

3.4.3.1 Explicit Class of Admissible Mechanisms

A first type of methods in the literature defines a rudimentary notion of complexity:
all mechanisms f̂ belonging to a particular class F of bivariate FCM are assumed
to be simple, while the others are assumed to be complex. In [12], for a causal
model with orientation X → Y , a mechanism is assumed to be simple if it can be
written under the form Y := f̂Y (X) + NY with X ⊥⊥ NY (additive noise model).
A more general class of mechanism is defined by the Post-Nonlinear model (PNL)
[35], involving an additional nonlinear function on the top of an additive noise:
Y := ĝY (f̂Y (X) + NY ), with ĝY an invertible function and X ⊥⊥ NY . For these
methods, we write CB̂(θ) = 0 if f̂ ∈ F and CB̂(θ) = 1 otherwise.

In [7] (CGNN), the class of functional causal model is defined as Y :=
f̂Y (X,NY ) where f̂Y is a one hidden unit neural network with RelU activation
functions and NY ∼ N (0, 1) with X ⊥⊥ NY . The class of admissible mechanisms
is variable as it is measured as a number of hidden units nh in this one hidden
layer neural network. In this framework, the complexity term can be expressed as
CB̂(θ) = nh.
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3.4.3.2 Kolmogorov Complexity

In the previous section, the complexity term was defined in term of an explicit class
of functionals, but another approach coming from the information theory has been
developed in the literature.

In this information theory framework, the basic postulate that “the factorization
of the joint density function Pcause,effect into PcausePeffect|cause should lead to a
simpler model than PeffectPcause|effect”, can be expressed with the Kolmogorov
complexity framework as shown by [14]:

K(Pcause)+K(Peffect|cause)
+≤ K(Peffect)+K(Pcause|effect). (3.22)

This inequality comes from the postulate of algorithmic independence between
the distribution of the cause Pcause and the distribution of the causal mechanism
Peffect|cause stated by Janzing and Schölkopf [14] as:

I (Pcause : Peffect|cause)
+= 0. (3.23)

where I (Pcause : Peffect|cause) denotes algorithmic mutual information.
Kolmogorov complexity and algorithmic mutual information are not computable

in practice but they have led to two different practical implementations in the
literature.

Model Selection with Minimum Message Length Principle (MML)

A first practical implementation of the postulate defined in Eq. (3.22) is the
Minimum Message Length principle (MML), which can be seen as an information
theory restatement of Occam’s Razor principle.

For a candidate bivariate generative model BĜ ,f̂ ,QN
, we have defined a family

of functions f̂ (i.e. linear mechanisms, neural networks, Gaussian processes) and
a family of noise distributions QN . The overall model (mechanisms and noise
distributions) is parametrized by the vector of parameter θ ∈ Θ . Furthermore one
can also define a prior probability distribution π of θ over Θ , that can be seen as a
simplicity prior over the parameter space. Now according to the MML principle, the
modeling problem of transmitting the observed data D = {(xi, yi)}ni=1 to a receiver
can be decomposed into two parts:

1. First, the model BĜ ,f̂ ,QN
with parameter θ from the parameter space Θ is send

by the transmitter to the receiver (assertion). According to [33] the complexity of
this model seen in term of total code length can be approximated as:

CB̂(θ) ≈ −logπ(θ)+ 1

2
log|Jθ | − k

2
log(2π)+ 1

2
log(kπ), (3.24)
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where |Jθ | is the determinant of the Fisher information matrix defined as the
matrix of expected second derivatives of the negative log-likelihood function
with respect to all continuous parameters of the model, with entry (i, j) given by:

I (θ)i,j = −
∫

(x,y)∈R2
f̂ ((x, y)|θ)

δ2

δθi,j

logf̂ ((x, y)|θ)dxdy. (3.25)

2. Second, the data D are transmitted to the receiver using this model. The length of
the detail, which encodes the data using the model defined by the set of parameter
θ , corresponds to the negative log-likelihood of the data according to the model
defined previously in Eq. (3.12) as SB̂(θ) = − log f̂ (D |θ).

This MML principle is used for example by Stegle et al. [31] to select the model
associated to X → Y or Y → X with the lower total code length AB̂(θ) =
CB̂(θ)− log f̂ (D |θ) (see Sect. 3.5.2).

Independence Between Cause and Mechanism

Another characterization of complexity comes from the algorithmic independence
principle of Eq. (3.23) to derive the idea that if X → Y , the marginal probability
distribution of the causal mechanism PY |X should be independent of the cause PX,
hence estimating a model QY |X from PX should hardly be possible, while estimating
a model QY |X based on PX may be possible.

This complexity measure has been evaluated directly as a covariance estimation
between QY |X and PX in [4] or by a characterization of the variance of the kernel
embedding of QY |X when X varies according in its definition domain [19] (see
Sect. 3.5.3).

One can see that there is a direct connection between “the postulate of indepen-
dence between the cause and the mechanism” and the complexity of the mechanism,
as when PY |X is independent on PX, the function f̂Y required to model QY |X takes
in general a simpler form than the function f̂X required to model QX|Y .

3.4.4 Bi-objective Trade-Off for Cause-Effect Inference

In the previous section, we have defined the complexity CB̂(θ) and the fit SB̂(θ)

of a candidate bivariate model parameterized by the vector of parameters θ . From
a general point of view, we can now frame the model selection as a bi-objective
trade-off with a Pareto front of optimal models (cf. Fig. 3.14).

This general bi-objective trade-off between fit and complexity is very general
in science. It has been seen from two different angles. Some of the modeling
approaches favor models of lower complexity, while others favor models with better
explanatory power (Fig. 3.14):
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Fig. 3.14 Bi-objective trade-off between complexity and reproduction

• The first is the KISS approach (Keep It Simple, Stupid) proposed by Axelrod and
Hamilton [1] and stating that the models should include the minimal number of
parameters and mechanisms and only add new ones only if required.

• On the other hand, the KIDS principle (Keep It Descriptive, Stupid) is an
anti-simplistic approach that favors the accuracy of the model and states that
all parameters and mechanisms that appear relevant should be included, but
parameters that do not add quality of the model should be removed [5].

When transposing these modeling approaches to the cause-effect problem, we
can see that some methods favor models with low complexity and low explanatory
power such as linear Gaussian models while others have a better explanatory power
as they can model complex interactions between noise and causes (for example
when using generative neural networks as in [16]), but at the cost of more complex
mechanisms.

In the cause-effect pair literature, we can distinguish three different approaches
used to deal with this complexity/fit trade-off:

• Methods such as those by [7, 12, 16, 35] that reason at fixed complexity CB̂(θ)

and choose the causal direction according to the best fit. For any candidate model
BĜ ,f̂ ,QN

, we note θ̂ the set of parameters that minimizes the score SB̂(θ) and

for the purposes of simplified notations, we note SX→Y (θ̂) the best fit score
corresponding to the model BĜ ,f̂ ,QN

with Ĝ = X → Y .
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If SX→Y (θ̂) < SY→X(θ̂), it is decided that X → Y , otherwise it is decided
that Y → X.

• Methods such as those by [4, 27] that assume a comparative fit P = Q in
both directions and choose the causal direction by comparing the complexity
terms. In this case, for any candidate model BĜ ,f̂ ,QN

, we note θ̂ the set of

parameters that minimizes the score CB̂(θ) and CX→Y (θ̂) the lowest complexity
score corresponding to the model BĜ ,f̂ ,QN

with Ĝ = X → Y .

If CX→Y (θ̂) < CY→X(θ̂), it is decided that X → Y , otherwise it is decided
that Y → X.

• Methods such as those by Stegle et al. [31] that compute a weighted bi-criteria
aggregation between fit and complexity AB̂(θ) = SB̂(θ) + λCB̂(θ). We use
the same notation θ̂ for the set of parameters that minimizes the score AB̂(θ). If
AX→Y (θ̂) < AY→X(θ̂), it is decided that X → Y , otherwise it is decided that
Y → X.

This bi-objective aggregation corresponds for example to cause-effect infer-
ence based on the MML principle. In this case, the total score is directly
SB̂(θ)+CB̂(θ), without any aggregation parameter λ. However this aggregation
parameter is “implicitly” set in the chosen prior π(θ).

With all these different approaches, a causal score that measures the confidence
of the approach in the causal orientation can be defined as the difference between
the two scores evaluated in each direction. For example for the methods that reason
at fixed complexity and compare the fit scores if SX→Y (θ̂) < SY→X(θ̂), X → Y is
preferred with causal score ΔX→Y = SY→X(θ̂)− SX→Y (θ̂) > 0.

3.5 Review of the Main Pairwise Methods

According to the complexity/fit trade-off framework defined in the previous section
we can propose a reading grid for the main algorithms developed in the literature
(Table 3.1).

We introduce a taxonomy of methods according to the type of functional
involved, their fit scores, their complexity scores and their way to deal with the
trade-off fit/complexity.

Three main families of methods emerge:

1. Methods with a restricted class of mechanisms.
2. Non-parametric methods.
3. Methods exploiting the independence between cause and mechanism.

We present with more details these families in the next Sects. 3.5.1–3.5.3.
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3.5.1 Methods with a Restricted Class of Mechanisms

This first class of methods developed from 2006 to 2010 rely on restrictive class
of admissible mechanisms F and focus on identifiability results. The main idea is
to show that in some cases there exist f ∈ F and QN such that the hypothesis
BG ,f,QN

holds in the causal direction G with respect to the observed data while
there do not exist any f ′ ∈ F nor Q′

N such that BG ′,f ′,Q′
N

holds in the opposite
causal direction G ′.

These methods range from very simple class of functions with LINGAM [28]
to more complex class of functions such as PNL [34], with each time a trade-off
between the identifiability and the generality of the proposed approach as depicted
on Fig. 3.15.

Indeed, when the class of function is very restricted, there are fewer non
identifiable cases, but the model can only successfully be used when encountering
very specific observed data (such as data generated by linear mechanisms). When
the class of functions becomes larger, the model becomes more general and can be
used for more types of distribution, but at the cost of more non identifiable cases. In
the extreme case of a completely general model without restriction on the class of
mechanisms, all pairs become non identifiable as shown in Sect. 3.3.

3.5.1.1 Pairwise LiNGAM Inference

The LiNGAM [28] method was first developed for directed acyclic graph orientation
for more than two variables. LiNGAM handles linear structural equation models,
where each variable is continuous and modeled as:

Xi :=
∑

k

αkP
k
a (Xi)+ Ei, i ∈ �1, n�, (3.26)

with P k
a (Xi) the k-th parent of Xi and αk a real value. Assuming further that all

probability distributions of source nodes in the causal graph are non-Gaussian, [28]
show that the causal structure is fully identifiable (all edges can be oriented).

Fig. 3.15 Diagram on the identifiability/generality trade-off
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Model

In the bivariate case, the authors assume that the variables X and Y are non
Gaussian, as well as standardized to zero mean and unit variance. The goal is to
distinguish between candidate linear causal models.

The first is denoted by X → Y and defined as:

Y := ρX +NY with X ⊥⊥ NY . (3.27)

The second model with orientation Y → X is defined as:

X := ρY +NX with Y ⊥⊥ NX. (3.28)

The parameter ρ is the same in the two models because it is equal to the
correlation coefficient between X and Y .

Identifiability Result

A theoretical identifiability has been derived by Shimizu et al. [28] who prove that
if PX,Y admits the linear model Y := aX+NY with X ⊥⊥ NY (model 1), then there
exist b ∈ R and a random variable NX such that X := bY + NX with Y ⊥⊥ NX

(model 2) if and only if X and NY are Gaussian.
In different words there is only one non-identifiable case corresponding to the

linear Gaussian case presented in Sect. 3.3.1. Moreover if X or NY is non-Gaussian,
when the candidate linear model with orientation X → Y holds, the candidate linear
model with orientation Y → X does not hold.5

Practical Evaluation

The candidate models correspond to a restrictive class of mechanism and the
comparison of the candidate models is based on comparison of fit scores at fixed
complexity. The fit score used for comparison is the likelihood score as defined in
Sect. 3.4.2.1 and derived by Hyvärinen and Smith [13] in this case as:

SX→Y = −
[

n∑
i=1

GX(xi)+GNY
(
yi − ρxi√

1− ρ2
)

]
+ nlog(1− ρ2), (3.29)

5However as discuss in Sect. 3.3.2 there always exists a potential nonlinear model Y → X that
holds (X := fY (Y,NX)) but this model is assumed to be more complex and is rejected due to the
prior assumption that linear mechanisms are simpler.
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where GX(u) = logPX(u) and GNY
is the standardized log probability distribution

function of the residual when regressing Y on X. SY→X is computed similarly and
the causal direction is decided by comparing SX→Y with SY→X.

3.5.1.2 Additive Noise Model

An extension of the previous model to deal with nonlinear mechanism has been
derived by Hoyer et al. [12].

Model

A bivariate additive noise model (ANM) X → Y is defined as:

Y := fY (X)+NY with X ⊥⊥ NY . (3.30)

fY : R→ R is a Borel measurable function.

Identifiability Result

Hoyer et al. [12] proved that the ANM model is generally identifiable, saying that if
PX,Y satisfies an additive noise model with orientation X → Y , PX,Y cannot satisfy
an additive model with orientation Y → X.

However, specific cases have been identified where ANM is non-identifiable
(see [35]). In particular the linear Gaussian case presented in Sect. 3.3.1 is non
identifiable.

Practical Evaluation Based on Independence Score (ANM-HSIC)

In the original paper of [12] the ANM is seen as a discriminative model and the fit
score is based on an independence test between noise and cause (Sect. 3.4.2.2). More
precisely for the two alternatives X → Y and Y → X, the estimated mechanisms f̂Y

and f̂X are obtained via Gaussian process regressions. These estimated regression
functions are used to estimate the residuals n̂Y = y − f̂Y (x) and n̂X = x − f̂X(y).
The scores SX→Y and SY→X correspond respectively to kernel HSIC independence
test [9] between n̂Y and x (for X → Y ) and between n̂X and y (for Y → X).

If SX→Y < SY→X it is decided that X → Y . If SX→Y > SY→X it is decided that
Y → X.
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3.5.1.3 Post Nonlinear Model

The ANM may fail to recover the causal direction when the noise is not additive.
Therefore a generalization of ANM called Post-NonLinear model (PNL) that takes
into account nonlinear interactions between the cause and the noise has been
proposed by Zhang and Hyvärinen [34].

Model

A bivariate Post-NonLinear Model (PNL) X → Y is defined as:

Y := ĝY (f̂Y (X)+NY ) with X ⊥⊥ NY . (3.31)

f̂Y : R → R and ĝY : R → R are two Borel measurable functions. ĝY is
assumed to be invertible.

One can notice that LiNGAM and ANM are special cases of PNL. Indeed by
setting ĝY to the identity function we recover the ANM. By choosing also f̂Y to be
linear and one of X or NY to be non Gaussian we recover the LiNGAM model.

Identifiability Result

Zhang and Hyvärinen [35] proved that the PNL model is generally identifiable,
saying that if PX,Y satisfies a PNL model X → Y , PX,Y cannot satisfy a PNL Y →
X, except when specific conditions are encountered. The set of non-identifiable
distribution PX,Y is larger than for ANM. However PNL is more general and can
handle more types of observed distribution.

Practical Evaluation

The model has been evaluated in [34] using an independence score between cause
and noise (cf. Sect. 3.4.2.2).

As ĝY is assumed to be invertible, the idea is that the noise variable in Eq. (3.31)
can be recovered from PX,Y as:

N̂Y = g−1
Y (Y )− fY (X). (3.32)

The noise variable is then estimated by functions l1 and l2 such as N̂Y = l1(Y )−
l2(X) with N̂Y independent of X. It comes back to solve a constrained nonlinear ICA
problem, that can be achieved by minimizing I (X, N̂Y ; θ), the mutual information
between X and N̂Y [34] with respect to the parameter of the model θ . Symmetrically,
an optimization of I (Y, N̂X; θ) is performed.



3 Learning Bivariate Functional Causal Models 133

The causal direction X → Y is preferred if I (X, N̂Y ; θ̂ ) < I (Y, N̂X; θ̂ ), Y → X

otherwise.

3.5.1.4 Causal Inference by Choosing Graphs with Most Plausible
Markov Kernel

In [32], the generative candidates model are derived from plausible Markov kernels
and evaluated with log-likelihood scores.

Model

For a generative bivariate model X → Y , the evaluation of cause and mechanism
are the following:

• the distribution of the modeled cause QX is recovered by maximizing the entropy
H(QX) under constraints on the first and second moments of QX to make them
correspond to those of the observed data PX.

• following the same idea the distribution of the mechanism QY |X is modeled
by maximizing the entropy H(QY |X) under constraints on the first and second
moments.

Evaluation

Once the model is recovered, log-likelihood scores of the model QXQY |X and
QY QX|Y are computed as explained in Sect. 3.4.2.1 and the causal direction is
determined by comparing the two scores.

3.5.2 Non-parametric Methods

The methods presented in the last section always assumed that the causal mecha-
nisms belong to a restricted class of functions F . However, this a priori restriction
poses serious practical limitations when the task is to infer the causal direction
on real data. Indeed in reality the mechanisms are often far from linearity and
the interaction between noise and cause may be more complex than additive or
even post-nonlinear noise. This is why more general methods have been proposed
following pioneer works by Stegle et al. [31]. These methods in general offer better
overall results on real data as they are more flexible, but they come with a loss of
theoretical identifiability results, as no explicit restriction on the class of function
is imposed (Sect. 3.3). The causal direction is often recovered by setting a smooth
prior on the complexity of the mechanisms.
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3.5.2.1 Probabilistic Latent Variable Models

A fully non-parametric Bayesian approach was proposed by Stegle et al. [31]. The
name of the algorithm is GPI for Gaussian Process Inference.

Model

The approach aims to address the most general formulation of generative bivariate
model with orientation X → Y with complex interaction between cause and noise:
Y := fY (X,NY ).

The distribution of cause in GPI if modeled with a Gaussian mixture model with
k modes:

Q(xi |θX) =
k∑

j=1

αjN (xi |μj , σ
2
j ), (3.33)

with parameters θX = {(αj , μj , σj )}kj=1.
The mechanism of GPI is a Gaussian process with zero mean and square

exponential covariance function KθY
whose entry (i, j) is:

kθY
((xi, ni

Y ), (xj , n
j
Y )) = λ2

Y exp

(
− (xj − xi)2

2λ2
X

)
exp

(
− (n

j
Y − ni

Y )2

2λ2
N

)
,

(3.34)
where θY = (λX, λY , λN) are hyper parameters. Gamma priors are set on all these
lambda parameters.

Practical Evaluation

The model is then evaluated using the MML framework exposed in Sect. 3.4.3.2.
According to [31], for a GPI model in the direction X → Y , the global aggregated
MML score between fit and complexity can be expressed as:

AX→Y = AX +AY |X, (3.35)

where the MML score for the cause is:

AX = min
θX

⎛
⎝ k∑

j=1

log(
nαj

12
)+ k

2
log

N

12
+ 3k

2
− logQ(x|θX)

⎞
⎠ . (3.36)

The MML score for the mechanism is:
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AY |X = min
θY ,nY

(
− logπ(θY )− logN (nY |0, I)

−logN (y|0, KθY
)+

n∑
i=1

log|MiK
−1
θY

y|
)

, (3.37)

where the matrix M is defined for index (i, j) as Mi,j = δkθY

δnY
((xi, ni

Y ), (xj , n
j
Y )).

If AX→Y < AY→X, it is decided that X → Y , Y → X otherwise.

3.5.2.2 Conditional GAN for Causal Discovery

Lopez-Paz and Oquab [16] propose to use Conditional Generative Adversarial
Networks, or CGANs [18] in order to model realistic causal mechanisms.

Model

The model with direction X → Y takes the form of a discriminative model, where
the causal mechanism is defined by a one hidden unit neural network f̂Y with
parameter θY . The variable Y is generated as:

Y := f̂Y (X,NY ). (3.38)

NY is independent from X and drawn according to standard normal distribution
N (0, 1). X is the conditioning variable input to the generator and follow the
observed distribution PX.

Evaluation

In order to train this conditional GAN, a discriminative neural network d with
parameter ω is used and the problem amounts to solve this min max optimization
problem:

SX→Y (θ̂)=min
θ

max
ω

(
Ex,y[log dω(x, y)]+Ex,nY

[log(1− dω(x, f̂Y (x, nY ; θ)))]
)

.

(3.39)
Then the principle used for causal discovery is to learn two CGANs: one with

a generator f̂Y from X to Y to synthesize the dataset D̂X→Y = {(xi, ŷi )}ni=1, and

the other with a generator f̂X from Y to X to synthesize the dataset D̂Y→X =
{(x̂i , yi)}ni=1. Then, the causal direction is decided to be X → Y if the two-sample
test statistic between the real sample D = {(xi, yi)}ni=1 and D̂X→Y is smaller than
the one between D and D̂Y→X.
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3.5.2.3 Causal Generative Neural Network

Goudet et al. [7] proposed and extension of [16] for multivariate causal discovery
called CGNN for Causal Generative Neural Network. As in [16] the mechanisms
are modelled with generative neural networks.

If the joint density function h of PX,Y is continuous and strictly positive on a
compact and convex subset of R2, and zero elsewhere, it has been shown that there
exist two CGNNs X → Y and Y → X, that approximates PX,Y with arbitrary
accuracy. This result highlights the generality of the approach. However it raises also
the issue that the CGNN can reproduce equally well the observational distribution in
both directions. This non-identifiability issue is empirically mitigated by restricting
the class of CGNNs considered, and specifically limiting the number nh of hidden
neurons in each causal mechanism. This parameter nh can be seen as a complexity
parameter that governs the CGNN ability to model the causal mechanisms: too small
nh, and data patterns may be missed; too large nh, and overly complicated causal
mechanisms may be retained.

Practical Evaluation

For practical use in the cause-effect pair setting nh is empirically set to 30 hidden
units in [7]. The fit score of the model is evaluated with a kernel two sample test
between the sample D coming from observed distribution PX,Y and the sample D̂
coming from the generated distribution QX,Y :

SX→Y (θ) = M̂MDk(D, D̂), (3.40)

where M̂MDk(D, D̂) is the empirical Maximum Mean Discrepancy (MMD) [10]
defined as:

M̂MDk(D, D̂) = 1

n2

n∑
i,j=1

k(zi , zj )+ 1

n2

n∑
i,j=1

k(ẑi , ẑj )− 2

n2

n∑
i,j=1

k(zi , ẑj ),

(3.41)
where z = [x, y] is the two dimensional vector composed of x and y. The kernel k

is usually taken as the Gaussian kernel (k(z, z′) = exp(−γ ‖z− z′‖2
2)).

For a fix number of hidden units nh in each mechanism f̂X and f̂Y , the causal
direction is then based on the comparison of these best fit scores SX→Y (θ̂) and
SY→X(θ̂) in both directions.
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3.5.3 Methods That Exploit Independence Between Cause and
Mechanism

This class of methods exploits the notion of complexity of the causal mechanisms
from a different perspective. They are based on the principle stated in Sect. 3.4.3.2
saying that when X → Y the distribution of the cause PX should not contain
information that can be useful to derive the conditional model QY |X on the data.

3.5.3.1 NonLinear Deterministic Mechanism

One of the first method that exploits the postulate of independence between cause
and mechanism is the Information Geometric Causal Inference algorithm (IGCI)
[4].

Model

When X → Y , the authors assume that Y was generated from X by a nonlinear
deterministic and invertible function:

Y := h(X). (3.42)

Then the authors exploit a certain type of independence between PX and the
estimate of the function h. In particular, they interpret x → PX(x) and x →
logh′(x) as random variables on the probability space [0, 1]. Then they compute the
covariance of these two random variables with respect to the uniform distribution
on [0, 1]:

Cov(logh′, PX) = E(logh′ṖX)− E(logh′)E(PX)

=
∫ 1

0
logh′(x)ṖX(x)dx −

∫ 1

0
logh′(x)dx

∫ 1

0
PX(x)dx.

(3.43)
The authors show that if Cov(logh′, PX) is close to zero, meaning that PX does

not contain information about QY |X. Moreover it implies that for the reverse direc-
tion PY and logh′−1 are positively correlated. Therefore PY contains information
about QX|Y , which implies an asymmetry between X and Y .

Practical Evaluation

To evaluate this model, the authors compute:
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CX→Y =
∫ 1

0
logh′(x)PX(x)dx. (3.44)

CY→X =
∫ 1

0
logh′−1(y)PY (y)dy = −SX→Y . (3.45)

The algorithm IGCI infers X → Y whenever CX→Y is negative. The authors
also show that the evaluation can be simplified into:

CX→Y = H(Y)−H(X). (3.46)

Then it is decided that X → Y if H(X) > H(Y ) and Y → X otherwise.

3.5.3.2 Unsupervised Inverse Regression

Sgouritsa et al. [27] propose a method based on the idea that if X → Y , PX should
not contain information about PY |X, while PY may contain information about PX|Y .
Therefore the estimation of QY |X based on PX should be less accurate than the
estimation of QX|Y based on PY .

Model

The causal mechanism QY |X is modeled with a Gaussian process latent variable
model whose likelihood function with respect to the data is given by:

Q(y|x, θY ) = N (y|0, K(x)+ σ 2
n I)). (3.47)

The entry (i, j) of K is:

k((xi), (xj )) = σ 2
f exp

(
− (xj − xi)2

�2

)
, (3.48)

with the set of parameters θY = (�, σf , σn).
The idea is then to estimate Q

unsup
X|Y based only on the sample y∗ = {yi}ni=1 of PY

with unsupervised Gaussian process regression and to compare it with the estimate
Q

sup
X|Y based on the sample D = {(xi, yi)}ni=1 of PX,Y . Negative log-likelihoods

scores of both models are then computed as C
unsup
X|Y = − 1

n

∑n
i=1 logQ

unsup
X|Y (xi |yi)

and C
sup
X|Y = − 1

n

∑n
i=1 logQ

sup
X|Y (xi |yi). The accuracy of the estimation of QX|Y

based only on PY is then accessed by computing CX|Y = C
unsup
X|Y − C

sup
X|Y . A

symmetric evaluation is done for CY |X. The causal direction X → Y is then
preferred to Y → X if CX|Y < CY |X.
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3.5.3.3 Causal Inference via Kernel Deviance Measures

Mitrovic et al. [19] exploit the same postulate that QY |X should be independent of
PX whenever X → Y . The idea is that the estimate of the conditional distribution
{QY |X=xi }ni=1 should be less sensitive to the different values xi taken by the variable
X than the conditional {QX|Y=yi }ni=1 is sensitive to the different values of Y = yi .

Model

For i = 1..n, {QY |X=xi }ni=1 is evaluated with a conditional RBF kernel embedding
into the Hilbert space of infinitely differentiable functions.

Evaluation

A score for the causal direction X → Y is evaluated as the deviance of this set
of conditional embeddings with respect to the Reproducing Kernel Hilbert Space
(RKHS) norm as:

CX→Y = 1

n

n∑
i=1

⎛
⎝|| μY |X=xi ||HY

−1

n

n∑
j=1

|| μY |X=xj ||HY

⎞
⎠

2

. (3.49)

CY→X is computed analogously and the causal direction X → Y is preferred if
CX→Y < CY→X.

3.5.3.4 Cause-Effect Inference by Comparing Regression Errors

A new method proposed by Bloebaum et al. [2] called RECI is based on a slightly
different idea than the assumption of independence between cause and mechanism.
The authors assume that the causal mechanism represents a law of nature that
persists when the distribution of the cause and the distribution of the noise “change
due to changing background conditions”.

Model

They denote by φ the function that minimizes the expected least-squares error when
predicting Y from X, φ(x) = E [Y |X = x], and ψ the minimizer of the least-
squares error for predicting X from Y , φ(y) = E [X|Y = y].

For a model with the causal orientation X → Y , the authors rewrite the bivariate
functional causal model of Definition 3.1 under the following new form:
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Yα := φ(X)+ αN, (3.50)

where α ∈ R
+ and N is a noise variable not necessarily independent of X.

They show under the regime of almost deterministic relations (when α → 0) that
it implies:

E

[
(Y − φ(X))2

]
≤ E

[
(X − ψ(Y ))2

]
, (3.51)

which can be translated into “the MSE of regressing Y on X is lower that the MSE
of regressing X on Y ”.

To obtain this result, the authors make the main following assumptions that we
briefly summarize here:

• Invertible function: φ is a strictly monotonically increasing (or decreasing)
twice differentiable function.

• Compact supports: the distribution of X has compact support.
• Independence postulate: the functions x 	→ φ′(x) and x 	→ Var [N |X = x]

pX(x) that define random variables are assumed to be uncorrelated, which is
formally stated after re-scaling of the variables between 0 and 1 as:

∫ 1

0
φ′(x)Var [N |X=x] pX(x)dx−

∫ 1

0
φ′(x)dx

∫ 1

0
Var [N |X=x] pX(x)dx=0.

(3.52)

Practical Evaluation

The method RECI consists in fitting a non-linear regression model on both
directions after re-scaling between 0 and 1 both variables and comparing the mean
squared error losses. The regression models used by the authors may be logistic
functions, polynomial functions or neural networks. In practice the authors report
better empirical results with simple polynomial regression models such as the
shifted monomial functions ax3 + c.

3.6 Experimental Comparison of Cause-Effect Inference
Algorithms

In the last section we have presented an overview of the main methods proposed for
the cause-effect pair problem. Now we propose to evaluate the different algorithms
whose code are available online on several cause-effect pair datasets.
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3.6.1 Datasets

Five datasets with continuous variables are considered 6:

• CE-Cha: 300 continuous variable pairs from the cause-effect pair challenge [11]
that will be presented with more details in the next chapter. Here we only consider
pairs with label +1 (X → Y ) and −1 (Y → X) (notably the confounding case is
excluded).

• CE-Net: 300 artificial pairs generated with a neural network initialized with
random weights and random distribution for the cause (exponential, gamma,
lognormal, laplace. . . ).

• CE-Gauss: 300 artificial pairs without confounder sampled with the generator of
[20]: Y := fY (X,NY ) and X := fX(NX) with NX ∼ PNX

and NY ∼ PNY
.

PNX
and PNY

are randomly generated Gaussian mixture distributions. Causal
mechanisms fX and fY are randomly generated Gaussian processes.

• CE-Multi: 300 artificial pairs generated with linear and polynomial mechanisms.
The effect variables are built with post additive noise setting (Y := fY (X)+NY ),
post multiplicative noise (Y := fY (X)×NY ), pre-additive noise (Y := fY (X +
NY )) or pre-multiplicative noise (Y := fY (X ×NY )).

• CE-Tueb: 99 real-world cause-effect pairs from the Tuebingen cause-effect pairs
dataset, version August 2016 [20]. This version of this dataset is taken from
various domains: climate, census, medicine data.

For all variable pairs, the size n of the data sample is set with a maximum of 1500
for the sake of an acceptable overall computational load. To provide an overview of
the type of pairs encountered in each dataset, one hundred pairs of each of them
are displayed in Fig. 3.16 (the real pair with altitude and temperature given as
introductory example corresponds to the first pair in the top left corner of CE-Tueb).

3.6.2 Algorithms

We compare the performance of the following algorithms presented in this chap-
ter:

• Best mse: the method presented in the introduction that consists in fitting a non-
linear Gaussian process regression model on both directions after re-scaling with
zero mean and unit variance and comparing the mean squared error loss (mse).
The direction corresponding to the fit with the lowest mse is preferred.

6The first four datasets are available at http://dx.doi.org/10.7910/DVN/3757KX. The Tuebingen
cause-effect pairs dataset with real pairs is available at https://webdav.tuebingen.mpg.de/cause-
effect/.

http://dx.doi.org/10.7910/DVN/3757KX
https://webdav.tuebingen.mpg.de/cause-effect/
https://webdav.tuebingen.mpg.de/cause-effect/
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Fig. 3.16 (X,Y) plots of one hundred pairs of each dataset

• RECI: the practical implementation of this method is equivalent to the Best mse
method except that the re-scaling is made between 0 and 1 and Gaussian process
regression is replaced by polynomial regression with monomial function ax3+ c

[2] (see Sect. 3.5.3.4).
• LiNGAM: a pairwise version of the method developed by Shimizu et al. [28]

relying on Independent Component Analysis to identify the linear relations
between variables (see Sect. 3.5.1.1).



3 Learning Bivariate Functional Causal Models 143

• ANM: the Additive Noise Model [20] with Gaussian process regression and
HSIC independence test of the residual (see Sect. 3.5.1.2).

• IGCI: the Information Geometric Causal Inference algorithm [4] with entropy
estimator and Gaussian reference measure (see Sect. 3.5.3.1).

• PNL: the Post-NonLinear model with HSIC independence test [35] (see
Sect. 3.5.1.3).

• GPI: the Gaussian Process Inference algorithm [31] based on the Minimum
message length principle (see Sect. 3.5.2.1).

• CGNN: the Causal Generative Neural method [7] using neural networks to
model causal mechanisms and Maximum Mean Discrepancy as fit score (see
Sect. 3.5.2.3).

For the methods Best mse and RECI we use the implementation provided in the
CausalDiscoveryToolbox.7 For the implementation of the algorithms ANM, IGCI,
PNL, GPI and LiNGAM we use the R program available at https://github.com/
ssamot/causality. For CGNN we use the code available on github at https://github.
com/GoudetOlivier/CGNN. We use default authors parameters for each algorithm
implementation.

3.6.3 Performance Metric

The task of orienting each pair observed pair as X → Y or Y → X is a binary
classification problem. We propose to use two scores to evaluate the performance of
the algorithms:

• The accuracy score computed as the ratio of well oriented edges over the total
number of edges for the datasets CE-Cha, CE-Net, CE-Gauss and CE-Multi. For
the CE-Tueb dataset, a weighted accuracy is computed as in [20] in order to take
into account dependent pairs from the same domain.

• The area under the ROC curve computed using the causal score given by each
model that measures the confidence of the approach in the causal orientation for
each pair. This score is defined as the difference between the two scores of each
candidate model evaluated in both directions (cf. Sect. 3.4).

7Available online at https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox.

https://github.com/ssamot/causality
https://github.com/ssamot/causality
https://github.com/GoudetOlivier/CGNN
https://github.com/GoudetOlivier/CGNN
https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox
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3.6.4 Results

Table 3.2 reports the area under the roc curve (AUROC) and the accuracy (in
parenthesis) for each benchmark and each algorithm. The corresponding ROC
curves are displayed in Fig. 3.17.

The method LiNGAM is outperformed as it uses linear mechanisms to model the
data generative process which is in many cases unrealistic. IGCI does not seem to be
very robust: it takes advantage of some specific features of the dataset, (e.g. the cause
entropy being lower than the effect entropy in CE-Multi), but remains near chance
level otherwise. The method ANM yields good results when the additive assumption
holds (e.g. on CE-Gauss), but fails otherwise. PNL, less restrictive than ANM,
yields overall good results compared to the former methods. The method RECI
based on comparison of mean square error scores after proper re-scaling provides
overall good results too. However it fails for more complex pairs due to restrictive
assumptions on the causal mechanisms involved. Lastly, methods like GPI and
CGNN that admit the most flexible class of causal mechanisms and non-parametric
metrics to match the distributions perform well on most datasets, including the real-
world cause-effect pairs CE-Tueb, in counterpart for a higher computational cost
(resp. 32 min on CPU for GPI and 24 min on GPU for CGNN).8

Let us note that better scores for the dataset Tübingen (CE-Tueb) are reported in
recent papers such as [16] (accuracy of 82.0%) and [19] (accuracy of 78.7%) using
ensemble methods with the algorithms presented in Sects. 3.5.2.2 and 3.5.3.3.

Table 3.2 Area under the Precision Recall curve and accuracy in parenthesis on the five datasets
and for all the algorithms

Methods CE-Cha CE-Net CE-Gauss CE-Multi CE-Tueb All

Best mse 50.0 (46.7) 86.4 (76.7) 18.7 (23.7) 46.9 (36.3) 61.3 (61.7) 61.3 (61.7)

RECI 59.0 (56.0) 66.0 (60.3) 71.0 (64.3) 94.7 (85.3) 70.5 (70.8) 73.8 (66.7)

LiNGAM 57.8 (55.7) 3.3 (36.7) 72.2 (77.3) 62.3 (63.3) 31.1 (44.3) 54.8 (57.8)

IGCI 55.6 (55.0) 57.4 (57.0) 16.0 (21.3) 77.8 (68.0) 63.1 (62.6) 52.8 (50.7)

ANM 43.7 (46.0) 87.8 (78.0) 90.7 (83.3) 25.5 (38.0) 63.9 (62.7) 60.7 (61.4)

PNL 78.6 (76.0) 75.6 (65.3) 84.7 (78.3) 51.7 (56.3) 73.8 (66.2) 71.9 (68.9)

GPI 71.5 (67.0) 88.1 (79.0) 90.2 (82.0) 73.8 (77.7) 70.6 (62.5) 79.9 (76.0)

CGNN 76.2 (71.6) 86.3 (75.3) 89.3 (81.0) 94.7 (87.3) 76.6 (75.9) 86.5 (78.8)

Underline values corresponds to best score for each dataset. Bold value corresponds to best overall
score on all dataset.

8Computational times are measured on Intel Xeon 2.7Ghz (CPU) or on Nvidia GTX 1080Ti
graphics card (GPU).
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Fig. 3.17 ROC curves for the algorithms PNL, GPI, CGNN, IGCI, LiNGAM, ANM and Best mse
on the different datasets. The last plot corresponds to the overall score on the five datasets

3.7 Discussion and Open Problems

The cause-effect inference problem is relatively new in the Machine Learning
literature and there are still a lot of open problems to be addressed in order to build
a robust tool that can be used by the practitioner to confirm for example if a given
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treatment has an impact or not on a given disease or to discover if a gene has a
regulatory power on an other one.

3.7.1 Relax the Causal Sufficiency Assumption

To build such useful tools for practitioners, one of the first assumption that needs
to be relaxed is the causal sufficiency assumption as in a lot of real problems it
is very rare to find a cause-effect problem that is not affected by hidden common
confounder that can affect both variables such as age or gender.

One idea proposed in the literature is to model confounders by introducing
correlation between the noise variables NX and NY that affect X and Y as in [26] or
by modelling all the unobserved confounding effects by a new noise variable NXY

entering in the generation process of X and Y [7, 15].
If we reformulate the generative bivariate framework of Sect. 3.4.1.1 in presence

of confounders three alternative candidate models must be considered:

1. If G = X → Y :

• X := f̂X(NX,NXY ) with NX ∼ QNX
, NXY ∼ QNXY

and NX ⊥⊥ NXY

• then Y := f̂Y (X,NY ,NXY ) with NY ∼ QNY
and NY ⊥⊥ NXY

2. If G = Y → X :

• Y := f̂Y (NY ,NXY ) with NY ∼ QNY
, NXY ∼ QNXY

and NY ⊥⊥ NXY

• then X := f̂X(Y,NX,NXY ) with NX ∼ QNX
and NX ⊥⊥ NXY

3. If G = Y ↔ X,

• X := f̂X(NX,NXY ) with NX ∼ QNX
, NXY ∼ QNXY

and NX ⊥⊥ NXY

• Y := f̂Y (NY ,NXY ) with NY ∼ QNY
and NY ⊥⊥ NXY

A diagram of the model is presented in Fig. 3.18. We use the same notation for
the vector of parameters as in Sect. 3.4.1.1 but with a new set of parameters θNXY

for the distribution of the common noise variable NXY .
The same approach with a trade-off between fit and complexity could be used

to compare these three alternative models in presence of potential confounders. An
additional penalty term depending on the total number of edges |Ĝ| in the model
could be introduced like in score based methods for multivariate inference [3], in
order to remove the eventual spurious link due to the confounding effect between X

and Y . We have indeed |Ĝ| = 1 for the models with structures X → Y or Y → X,
and |Ĝ| = 0 for the models with structure Y ↔ X.

This framework could also take into account known variables as confounders. In
this case the variable NXY would be replaced by a set of observed variables (e.g. the
latitude in the introductory example of this chapter with altitude and temperature).

Furthermore one can notice that this extension of the generative approach
in presence of the confounding effect would not be possible for discriminative
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Fig. 3.18 Candidate
generative models X → Y

with a potential confounding
effect modelled with the noise
variable NXY

NXQNX(qNX)
NXY QNXY(qNXY)

f̂X(qX)

XQX NY QNY(qNY)

f̂Y(qY)

YQY|X

approaches where the source cause is not modelled (when only comparing PY |X
with PX|Y ).

3.7.2 Need for Real Datasets of a Big Size

Another important problem that is often overlooked in the “cause-effect pair
community” concerns benchmarking. As of the writing of this chapter, the main
real data benchmark used to compare the different methods by the community is
the Tübingen Dataset,9 composed of only 100 hundred pairs which are often very
similar. It is indeed very difficult to collect cause-effect pairs with enough data
points from the real world with an authenticated known ground truth. But one must
to keep in mind that it is very easy for most of the methods presented in this chapter
to tune their hyper parameters (even unintentionally) in order to obtain the best
results. This overfitting problem is often compounded by the fact that this dataset
is, most of the time, not separated into train/validation/test sets. To overcome this
problem a Cause-effect Pair Challenge has been proposed by Guyon [11] with real
and artificial data generated with various mechanisms. It will be discussed in the
next chapter.

9https://webdav.tuebingen.mpg.de/cause-effect/.

https://webdav.tuebingen.mpg.de/cause-effect/
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Fig. 3.19 Age of a snail (X-axis) and corresponding weight of its shell (Y-axis)

3.7.3 Biased Assessment Due to Artifacts in Data

It is often observed that the cause variable is discrete ordinal while the other is
continuous. This induces an artificial asymmetry between cause and effect which
could lead to biased assessments.

Let us consider for example real abalone data10 representing the age of snails
(X-axis) and the corresponding weight of its shell (Y-axis) as depicted in Fig. 3.19.
The ground truth is age causes weight of the shell.

We see that due to the experimental conditions when collecting the data, the
variable age is discrete (categorical ordered variable or ordinal variable) and not
continuous. Because of this artifact on the age variable, the conditional Pweight|age
has really more chance to be simpler than Page|weight. Therefore it favors approaches
that compare only PY |X with PX|Y and it may lead to inconsistent methods for the
cause-effect pair problem as stated in Chap. 1 of this book.

An open problem could be to find a way to correct this bias when one encounters
this type of data. This was done in the design of the dataset of the Cause-effect Pair
Challenge.

10https://archive.ics.uci.edu/ml/datasets/Abalone.

https://archive.ics.uci.edu/ml/datasets/Abalone
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3.7.4 Extension of the Generative Approach for Categorical
Variables

In this chapter we have discussed the cause-effect pair problem for continuous
variables, but the same idea could be used for categorical variables or mixed
variables. To the best of our knowledge, only few attempts have been made to solve
the cause-effect pair problem with categorical data [17, 24].

It may be explained by the fact that the cause-effect problem for categorical
data may be really harder than for continuous data, because there is in general less
information to exploit in the distribution of the noise and in the asymmetry of the
causal mechanisms.

If one considers for example the extreme case of two binary variables, what
kind of causal information can be really exploited from a matrix of size (2,2) that
represents the repartition of the data points into the 4 different cases (1,0), (0,1),
(1,1) and (0,0) ?

3.7.5 Extension of the Pairwise Setting for Complete Graph
Inference

There is a need for methods that can really cross the bridge between the cause-
effect pair problem and the complete problem of causal discovery with more than
two variables. A way of research could be to propose an efficient approach for the
general multivariate case that can potentially exploit all the information available,
including the asymmetry between cause and effect and the conditional independence
relations.

In this direction, an extension of the bivariate Post-NonLinear model (PNL) has
been proposed [35], where an FCM is trained for any plausible causal structure,
and each model is tested a posteriori for the required independence between errors
and causes, but the main limitation is its super-exponential cost with the number
of variables [35]. Another hybrid approach uses a constraint based algorithm to
identify a Markov equivalence class, and thereafter uses bivariate modeling to orient
the remaining edges [35]. For example, the constraint-based PC algorithm [30]
can identify the v-structure, enabling the bivariate PNL method to further infer
the remaining arrows that are not identifiable with conditional independence tests.
However an effective combination of constraint-based and bivariate approaches
requires a final verification phase to test the consistency between the v-structures
and the edge orientations based on asymmetry.

An extension of the ANM model (Sect. 3.5.1.2) called CAM [25] proposed a
consistent framework that can exploit the interaction and the asymmetry of the
cause and effect, but the approach is restricted to the assumption of causal additive
noise. The CGNN algorithm presented in Sect. 3.5.2.3 can be extended in the
multivariate case [7]. It is more general than the CAM algorithm, but needs to start
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from a supposed known skeleton of the causal graph and employ simple exploratory
heuristic to explore the space of DAG due to computational reasons.

3.7.6 Computational Complexity Limitations

Some methods suffer from computational complexity limitations. In the bivariate
case, there are only two alternative DAGs to compare, but for the multivariate case
with more than 1000 variables, the number of different DAGs to consider grows
exponentially. Therefore it is a real challenge to make the successful methods of the
cause-effect problem scale for big data problem. In particular the methods that can
model complex interactions between cause and noise, such as those using Gaussian
process regressions or neural networks are often really slow to compute and do not
scale well in term of number of variables and number of data points.

3.7.7 Relax Restrictive Assumptions on Causal Mechanisms

Another open problem concerns the fact that all these methods rely on specific
assumptions on the underlying data generative process. All of them can work well
when these specific assumptions are encountered in the observed data. This is why
a new Machine Learning approach, presented in the next chapter, has appeared
in recent years. It is based on the idea to combine all the successful algorithms
presented in this chapter into a single meta algorithm that could benefit from the
advantages of each of them.

3.8 Conclusion

We have briefly explained the difference between explanatory models and predictive
models and seen that causal discovery consists in finding the best explanatory model
of the data. We have then defined the problem of cause-effect inference in the
bivariate setting and the main assumptions usually involved in the literature. Under
these assumptions we have formalized the notion of bivariate structural equation
model. We have then seen that the task of recovering the good causal direction
from X → Y or Y → X consists in comparing alternative candidate models
estimated from data. This comparison is always based in one way or another on
a complexity/fit trade-off. We have reviewed how the complexity and the fit terms
are usually evaluated in order to compute a causal score in both directions. It has led
us to propose a reading grid of the main methods proposed in the literature.

Three main families have emerged: (1) methods that restrict the class of
admissible causal mechanisms and focus on identifiability results; (2) methods
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that do not explicitly restrict the class of admissible mechanisms and focus on the
generality of the approach at the expense of theoretical identifiability guaranties; and
(3) lastly methods that exploit the postulate that the cause should be independent of
the causal mechanism.

We have then compared the main methods of the literature whose code is
available online. It appears that methods that allow for flexible causal mechanism
and complex realistic interactions can obtain consistent scores on a wide range of
cause-effect problems (artificial and real data). These results need however to be
confirmed on real datasets of bigger size with known ground truth.

One fruitful way of research could be to extend the best generative approach for
causal discovery presented in this chapter to deal with potential confounding effects.
Another interesting way of research could be to provide a theoretical framework
that can unify the cause-effect pair methods presented in this chapter with the
multivariate methods for causal discovery using conditional independence tests.

Software Packages
• R package including ANM, IGCI, PNL, GPI and LiNGAM algorithms available

at the URL:
https://github.com/ssamot/causality.

• Python package including Best mse, RECI, CGNN, ANM, IGCI and LiNGAM
algorithms available at the URL:

https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox.
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Chapter 4
Discriminant Learning Machines

Diviyan Kalainathan, Olivier Goudet, Michèle Sebag, and Isabelle Guyon

4.1 Introduction

Distinguish causes from effects is of utmost importance in order to understand
mechanisms and provide unbiased predictions, or to be able to make recommenda-
tions. In order to ascertain causal relationships, randomized controlled experiments
represent the gold standard. However those experiments are often costly, unethical,
or even unfeasible, leaving only available observational data. Causal discovery out
of observational data has been thoroughly studied in the graph setting1 [11, 35, 47],
but we will focus in this chapter on the particular case where we have only access to
two variables without time information to determine their causal relationship. This
setting is relevant when only two variables are available, or when only two variables
are of interest and are already conditioned on the covariates.

To tackle this problem, the literature proposed generative models for causal
discovery which aim to find models matching the empirical distribution of the
data (c.f. Chapter III). These models are sought in a model class, that needs to be
restrictive after [53]: actually, too general a class might allow to learn an accurate

1Where more than two variables are available and conditional independencies can be exploited to
recover the causal structure of the graph.
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generative model whatever the hypothesized causal dependencies, hindering the
identification of the true causal mechanisms. Therefore, generative models explicitly
assume the simplicity of the sought causal mechanism. For instance, the Additive
Noise Model (ANM) [21] identifies causal relationships when the total of external
contributions influence linearly the mechanism:

Y = f (X)+ E (4.1)

where Y represents the effect, X the cause and E a random noise variable accounting
for the unobserved variables. The ANM explicitly models the direct effect between
the variables through the possibly non-linear causal mechanism f .

Another issue related to simple model classes is the testability of the underlying
assumptions2 which proved itself to be difficult, even though pioneering has been
done by Scheines [43], Zhang and Spirtes [52], and Uhler et al. [49].

As said, generative models strongly rely on the simplicity assumption, stating
that the causal mechanism is the simplest model that generates one variable from the
other(s). Here “simplicity” could be formalized in terms of Kolmogorov Complexity
(K), stating that the causal direction is the direction holds the lowest K . For
instance, Janzing and Schölkopf [22]3 states that:

K(Pcause)+K(Peffect|cause) ≤ K(Peffect)+K(Pcause|effect) (4.2)

This strong assumption does not always hold true in real-world settings, due to e.g.
missing intermediate variables or complex causal mechanisms.

These limitations have been addressed through a new learning approach to pair-
wise causal discovery, formalized through the Cause Effect Pairs (CEP) Challenge
[19, 20] (c.f. Appendix 1). Considering two variables X and Y and (a sample
of) their joint distribution, the CEP goal is to determine the category of their
causal relationship (whether X causes Y , or Y causes X, or neither causes the
other one). Thereby the causal discovery problem is shifted from modeling the
causal mechanism relating given variables, to a classification problem where any
joint distribution is associated a causal class. Accordingly, by leveraging Machine
Learning algorithms, a classifier is trained to leverage causally relevant features
from joint distributions of pairs of variables sampled from a Mother Distribution
(Sect. 4.2.5) for classification. Such classification approaches come in two modes:
(1) ensemble learning methods build upon statistical features and pre-existing
generative models; (2) discriminant learning methods build on top of representation
learning and distribution embeddings.

This chapter first formalizes the pairwise cause-effect inference problem as a
classification task (Sect. 4.2), and thoroughly presents the various approaches for
feature construction in Sect. 4.3. The different approaches and algorithms developed

2C.f. Sect. 4.2.2.
3Refer to Chapter III for details.



4 Discriminant Learning Machines 157

to address these challenges are presented in Sect. 4.4. The limitations of these
approaches are discussed and some perspectives for further research are presented
in Sect. 4.5.

The appendices consist in: Appendix 1 describes the Cause Effect Pairs Chal-
lenges organized by Guyon [19, 20], Appendix 2 refers to the traditional learning
bounds [50] and Appendix 3 extends these bounds for our problem of learning out
of distributions, with a kernel based feature construction step (Sect. 4.4.2).

4.2 Problem Setting

This section formalizes pairwise causal discovery as a learning task. You are
given a dataset ((d1, g1), (d2, g2), . . . , (dn, gn)); each dj is itself a dataset of pairs
(x1j , y1j ), . . . , (xpj , ypj ) and the label gi represents the causal mechanism at play
in the dataset di , defined after Reichenbach’s Principle of Common Cause [2]:
(i) causal class (X → Y ); (ii) anti-causal class (X ← Y ); (iii) there exists a
confounding variable Z such that X ← Z → Y ; (iv) X and Y are independent
(X ⊥⊥ Y ). Classes (iii) and (iv) are merged in the following; we shall return to this
point in Sect. 4.5.

The examples are exploited using mainstream classification algorithms; eventu-
ally the trained classifier is used to predict the causal class associated with a new
joint distribution PX′,Y ′ .

4.2.1 Notations

We will briefly introduce the various notations that we will use throughout this
chapter.

• X and Y denote random variables with values in R. Unless specified otherwise,
X is considered as the cause and Y as the effect of X.

• PX represents the probability distribution of X.
• Sj = {xij , yij }nj

i=1 depicts a empirical distribution, based on which the algorithms
infer the causal direction of the pair.

•
(
Sj , gj

)
depicts a empirical distribution along with its label gj , based on which

the algorithms learn the causal direction of the pair. gj represents the ground
truth of the causal relation between the two variables (encoded as described in
Sect. 4.2.3). This set of data points and label is also called causal pair.

• S = {Sj , gj }nj=1 denotes the dataset of causal pairs.
• μ(PSj

) represents a single vector of features (of potentially infinite dimension)

encoding the embedding of the empirical distribution {xij , yij }nj

i=1.
• C(X, Y ) represents the causal coefficient (c.f. Sect. 4.2.4) for the (X, Y ) pair of

variables.
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4.2.2 Causal Assumptions

We will define here the various assumptions made in this chapter, some of which
traditionally made are not explicitly made by the presented framework. However,
some of the assumptions are made by the presented algorithms in Sect. 4.4.

Reichenbach’s Principle
Reichenbach’s principle states that if two variables X and Y are dependent, then
either: (i) X → Y , (ii) Y → X, (iii) ∃Z,X ← Z → Y , Z being a confounding
variable. The presented framework does not make this assumption,4 therefore
including the case in which there can be dependency without any causal relationship,
e.g. constraint or equilibrium (c.f. Chap. 7).

Causal Sufficiency
Causal sufficiency assumes that the direct dependency between two variables is the
result of a direct causal influence between the two variables, and not the result of a
confounding effect from a hidden variable (case (iii)) in Reichenbach’s principle).
We will not make this assumption in this chapter, as we will consider this case during
classification.

Causal Faithfulness
Causal faithfulness states that if two variables X, Y are causally related, then they
are dependent. A typical case where this hypothesis does not hold true is if X

influences both Y and an auxiliary variable Z, and Z influences Y in such a way
that the direct effect of X is counteracted by the influence of Z.

Causal Markov
Causal Markov assumes that if two variables X and Y are dependent, then they are
d-connected. Under the abovementioned additional assumptions, it comes down to
four cases:

1. X → Y

2. Y → X

3. ∃Z,X ← Z → Y , Z being a confounding variable
4. X ↔ Y , denoting a feedback loop or a 2-cycle.

In this study, we will exclude the case of cycles between the variables of interest; i.e.
there exists no paths between X and Y such as X → . . . → Y and Y → . . . → X,
therefore excluding the fourth case.

4Even though many algorithms make this assumption.
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4.2.3 Causal Discovery as a Classification Task

Let S denote an example associated with a pair of variables X, Y . Its description({(xi, yi)
m
i=1}, gi

)
is an iid sample drawn after joint distribution PX,Y along with its

associated label gi . gi is 1 i.f.f. X causes Y (X → Y ), −1 if Y causes X (X ← Y )
and 0 otherwise (if X and Y are independent, X ⊥⊥ Y ; or there exists a third variable
Z causing both X and Y , X ← Z → Y ) (Fig. 4.1).

Note that the label gi primarily depends on the relationship between both
variables X and Y : if X → Y and there exists a third variable Z such that
X ← Z → Y (Fig. 4.1(5) and (6)), distribution PX,Y is labelled as 1 (c.f. Chap. 1).

From a training set made of examples S1, . . . ,Sn, mainstream classification
algorithms are leveraged to train a classifier, used to associate a causal scenario
with any sample coming from a new joint distribution PX′,Y ′ .

This problem setting casts causal discovery as a regular supervised learning task.
After the usual methodology, the training set is used to train a classifier with
given hyper-parameters; a validation set is used to optimize the hyper-parameters
of the learning algorithm; and the performance of the trained classifier is assessed
using a test set. Notably, this setting accommodates heterogeneous causal discovery
problems: examples can involve distribution samples of different sizes, associated
with continuous, categorical, ordinal or binary variables.

In order to compensate for this heterogeneity, some pre-processing step (feature
construction) can be applied in order to map any joint distribution sample onto a
k-dimensional real-valued vector. Appendix 2 highlights the bounds obtained for a
learning problem, for an optimal feature construction step out of distributions.

X Y

(1)

X Y

(2)

Z

YX

(3)

X Y

(4)

Z

YX

(5)

Z

YX

(6)

(7) Table of correspondence
between causal scenarios and
classes

Configuration Class
(a) 1
(b) −1
(c) 0
(d) 0
(e) 1
(f) −1

Fig. 4.1 A pair of variable X and Y is associated with one out of six causal scenarios, falling in
three classes
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4.2.4 Causation Coefficient

While each example falls into one out of three causal classes (Fig. 4.1), for
convenience one most often associates to each variable pair X, Y a continuous
causation coefficient C(X, Y ) ∈ R, such that:

• C(X, Y ) > 0 corresponds to X → Y

• C(X, Y ) < 0 corresponds to X ← Y

• C(X, Y ) ≈ 0 corresponds to X ⊥⊥ Y or ∃Z,X ← Z → Y

The advantage of using a continuous causation coefficient is twofold. On one hand,
the absolute value |C(X, Y )| is interpreted as the confidence of the prediction. When
|C(X, Y )| goes to 0, the causal direction is unclear; variables could be considered
as either independent, or dependent because of a confounding effect; we shall return
to this in Sect. 4.5.

On the other hand, C(X, Y ) is used to rank pairs of variables, supporting the
definition of confidence based scores such as the precision-recall score or the area
under the ROC curve score. From a practitioner’s viewpoint, C(X, Y ) can be used to
prioritize experiments in order to assess causal predictions. Additionally, C(X, Y )

allows practitioners to orient edges in partially oriented causal graphs.

4.2.5 Mother Distributions

After [29], the proposed causal discovery setting is amenable to a theoretical
analysis rooted in statistical learning theory and risk minimization [50]. The analysis
relies on the notion of Mother Distribution. Let M be a distribution defined on P×G,
where P depicts the set of joint distributions of causally related pairs of variables,
and G denotes the set of causal labels (Fig. 4.1). For simplicity, only the case
G = {1,−1} is considered in the following; the extension to multi-classes follows
from [29]. All n examples {(S1, g1), . . . (Sn, gn)} are independently sampled from
M , called the Mother distribution of the causal discovery problem.

As said, feature construction5 is commonly used to map each Sj onto a k-
dimensional real-valued vector in R

k . The problem of learning from empirical
joint distributions is thus shifted to a standard supervised learning problem of
classification R

k 	→ G.

5Representation learning, mapping each distribution sample onto a latent space, will be also
considered in Sect. 4.4.2.
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Fig. 4.2 General structure of
discriminant learning
algorithms for pairwise causal
discovery

Data

Feature
construction

Learning Algorithm

Predictions

4.2.6 Learning Algorithms for This Classification Problem

A distinctive characteristic of the causal pairwise classification problem compared
to the traditional classification problem is the nature of the samples points. In a
regular classification problem a sample is a vector representing the position of the
example in the feature space R

d , where d represents the number of features. In our
pairwise classification problem, a sample is an empirical distribution, a set of points
{xi, yi}nj

i=1.
Therefore, a feature construction step is added between the data and the learning

algorithm, making the structure of algorithms as shown in Fig. 4.2.

4.3 Feature Construction out of Distributions for Pairwise
Classification

In order to apply regular learning tools for classification, features have to be
extracted out of the data distribution samples. This step is a feature construction
step, and the literature has taken three different approaches to extract such features:
firstly, the manual construction of causally relevant features to classify the pairs.
Secondly, the embedding of the sample distributions into a fixed size feature vector:
the resulting manifold will be mapped to the target classes using the training set,
allowing to classify unseen examples using the same embedding. Finally, the third
approach is to not only use embeddings of distributions, but to also automatically
learn and identify classification patterns using the training set.

Sine-Based Pairwise Example Dataset In this section, we will illustrate the inner
workings of the various features using a simple dataset, as all the mechanisms
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Fig. 4.3 Examples of causal pairs generated with Eq. (4.3)

are sine functions. The causes follow either a Gaussian distribution or a Gaussian
mixture distribution; and the noise is additive and is sampled from a Gaussian or a
uniform distribution. The causal mechanisms sums up to:

Y = sin(ωX + ϕ)+ E (4.3)

with E the noise variable, ω and ϕ the frequency and phase parameters of the sine
function, sampled in N0,1 × U [−π, π ]. Examples of generated pairs is given in
Fig. 4.3. One of the perks of this dataset is the varying complexity of the generated
pairs: as ω tends to 0, some of the generated pairs tend to the unidentifiable case of
Gaussian input, Gaussian noise and linear mechanism. On the opposite end, when ω

takes high values the pairs come down to high frequency sinuses, in which the noise
might confuse the pair.

All code of experiments performed in this section is available at: https://github.
com/Diviyan-Kalainathan/ChapterV-Causal-Pairs-Book.

https://github.com/Diviyan-Kalainathan/ChapterV-Causal-Pairs-Book
https://github.com/Diviyan-Kalainathan/ChapterV-Causal-Pairs-Book
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4.3.1 Handcrafted Causal Features

An intuitive way to obtain features out of empirical distributions for this new
learning problem is to use the output of preexisting causal discovery algorithms,
but also feature characterizing the joint and marginal distributions of the samples.
In this section we will discuss the different types of features that can be employed
as features for the classifier, while giving some examples of those features.

4.3.1.1 Statistical Features of the Distributions

In the Cause-Effect pair challenge (Appendix 1), all participants included indepen-
dence tests in their algorithms: either to avoid testing for causal relationships if the
variables are independent,6 or to maximize the accuracy of the predictions as a class
in the challenge was dedicated to independent pairs.

The independence test statistics used consist in mainly two types: the correlation-
based and the kernel-based tests. Firstly, the correlation-based tests consist in the
well-known statistic tests such as the Pearson’s correlation and the Spearman’s
correlation, but also tests based on mutual information. The challenges contained all
types of data, including continuous data. In order to compute mutual information out
of the empirical distributions, algorithms binned their continuous variables prior to
computing mutual information based features. In this section we will consider U,V ,
obtained by binning X and Y . Examples of these features are mutual information,
normalized mutual information [27] and adjusted mutual information [51].

Mutual Information Mutual information is a quantity measuring dependence in
information theory, basing itself on how the knowledge of one variable reduces the
uncertainty on the other variable. In our case, this quantity can be expressed as:

I (U, V ) =
|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log
N |Ui ∩ Vj |
|Ui ||Vj | (4.4)

where U,V represent the input variables and Ui, Vj represent the categories of the
variables.

6Therefore assuming Causal Markov.
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Normalized Mutual Information Normalized mutual information [27] is a varia-
tion of the mutual information score, normalized to range from 0, representing no
mutual information, to 1, representing perfect correlation.

NMI(U, V ) = 2I (U, V )

H(U)+H(V )
(4.5)

where H represents the entropy. However, this score does not account for chance.

Adjusted Mutual Information Adjusted mutual information has been proposed
by Vinh et al. [51] to solve this issue, that takes into account the number of samples
in each category:

AMI(U, V ) = I (U, V )− E(I (U, V ))

1
2 (H(U)+H(V ))− E(I (U, V ))

(4.6)

4.3.1.2 Statistical Asymmetries in the Distribution

In the cause effect pairs challenge, many statistical quantities have been used to
highlight patterns and asymmetries that might provide hints of the causal direction.
These features come in different natures: information theory, regression based or
statistical properties. The latter denotes features such as moments of the empirical
distributions, and moments of regression residuals. These quantities are computed
for the learning machine following in the pipeline (Fig. 4.2) to lever these features
in order to detect causal patterns in the distributions.

Regression Based Features Regression based features represent the majority of
features in algorithms using predefined features. They come in various forms,
such as the errors of polynomial regressions of various degrees, independence of
the residuals with the cause of the polynomial regression. Features of conditional
distribution variability have been introduced by Fonollosa [13]. One of those, called
standard deviation of the conditional distributions (CDS) manages to achieve
good performance even when used alone. The CDS score measures the spread of
the conditional distributions after normalization of the bins:

CDS(X, Y ) =

√√√√√ 1

M

M−1∑
y=0

varx(pn(Y = y|X = x)) (4.7)

where pn(Y = y|X = x) represents the normalized conditional probability and
varx the sample variance over x. This feature proved itself very useful for causality
detection, as it captures the distribution asymmetry; typically, it standalone yields a
score of 0.69 on the Tübingen dataset [33].
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4.3.1.3 Preexisting Pairwise Causal Discovery Algorithms

Many approaches basing their inference on predefined features [13, 40] use as input
of the classifier already known models for pairwise causal discovery in a stacked
classifier fashion. Examples of used algorithms are the Additive Noise Model
(ANM) model [21] or the Information Geometric Causal Inference (IGCI) model
[12]. These two models are the most employed, as they represent a decent tradeoff
between performance and computational cost.

We will briefly present these two algorithms, as a more detailed description is
made in Chapter III.

Additive Noise Model Additive noise model [21] is one of most popular
approaches for pairwise causal discovery. As said, it bases itself of the hypothesis
that the causal mechanism is a structural equation model based on a additive noise:

Y = f (X)+ E (4.8)

where f is a (possibly non-linear) function and E is a noise variable independent
from the cause X. If the ANM fits in one direction and not in the other, the causal
direction is identifiable.

Information Geometric Causal Inference Information geometric causal infer-
ence [12] takes on another approach to infer the causal direction in the pairwise
setting. It bases itself on the independence between the cause and the causal
mechanism: under the strong assumption that X and Y are related by a bijective
relation,7 the cause PX is independent from the mechanism PY |X and not in the
opposite direction. This approach can also be related to a complexity approach on
the mechanisms [33].

4.3.1.4 Applying Transformations to Variables

Beyond computing all the above-mentioned features on the empirical distributions
given as input, Almeida [1] and Fonollosa [13] also compute additional sets of the
same features, but by changing the input variables by applying transformations.
These transformations come in various forms, such as conversions from one type
of variable to another, aggregating the distributions, or computing regressions and
using the residuals as the new variables.

This kind of transformations allow for computing higher order statistics and to
grow the number of features considerably, as such transformations can be stacked
multiple times before computing the various features.

7Therefore assuming minimal noise.
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4.3.2 Building Distribution Embeddings

Another approach to feature construction for pairwise causal discovery is to use
distribution embeddings to represent the distribution samples in a latent space as a
vector with a fixed number of features. Unlike computing a custom set of variables
(Sect. 4.3.1), this approach represents each distribution in a latent space and the
learning algorithm learns to split this latent space into the different classes. Inference
of unseen pairs consist in applying the embedding to the distribution and reporting
the label assigned to the region in the latent space corresponding to the image of
the sample. One could see this operation as to look for the closest distribution in the
training set to the sample and assign its label. Appendix 3 develops the bounds given
in Appendix 2 for a kernel-based preprocessing instead of assuming the optimality
of the feature construction.

In this section, we will focus on two types of embeddings: kernel-based embed-
dings of the joint distribution (Sect. 4.3.2.1) and embeddings of the conditional
distributions (Sect. 4.3.2.2).

4.3.2.1 Kernel Based Embeddings

Kernel embeddings for learning machines have proven themselves to achieve
great performance through strong representational power [6, 44]. To leverage this
performance, Lopez-Paz et al. [29] introduced kernel-based embedding for feature
construction in pairwise causal discovery. Starting from the dataset of empirical
distributions S = {(xij , yij )

ni

j=1}ni=1, a kernel mean embedding allows to project
all those empirical distributions into the same Reproducing Kernel Hilbert Space
(RKHS) Hk . To obtain a homogeneous and low dimension embedding, Lopez-Paz
et al. [29] uses random cosine based embeddings that approximate empirical kernel
mean embeddings in low dimension:

μk,m(PSj
) = 2Ck

|S|
∑

xij ,yij∈Sj

(cos(wx
j ∗ xij + w

y
j ∗ yij + bj ))

m
j=1 ∈ R

m (4.9)

where {wj , bj }mj=1 are the kernel parameters sampled i.i.d. in N0,2×[0, 2π ], as well
as their number m defining the number of dimensions of the output space, PS is the
empirical distribution, and Ck =

∫
Z pk(w)dw, with pk : Rd 	→ R the positive and

integrable Fourier transform of the chosen kernel k, equal to 1 in this case.

Illustration Using the Sine Dataset (Sect. 4.3) We will now highlight the perfor-
mance of the kernel mean embeddings using the dataset introduced at the beginning
of this section. By applying the embedding and by reducing the dimension of the
output feature space using T-SNE [31], we obtain Fig. 4.4. T-SNE is a projection
technique that allows for visualization of high dimension spaces, compressing
information into local information: close points in the original space are close in
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Fig. 4.4 T-SNE of the sine dataset with random mean kernel embeddings. Each point represents
a causal pair {xi , yi}nj

i=1 sampled following Eq. (4.3) and a unique set of parameters ω and φ. The
label of the respective pair is represented by its color

(1) (2) (3) (4)

Fig. 4.5 Scatter plots of causal pairs in distinct clusters, their number refer to those in Fig. 4.4. (1)
X → Y pair in 1 . (2) X → Y pair in 1 . (3) Y → X pair in 2 . (4) Y → X pair in 2

the projected space. One can notice on Fig. 4.4 that multiple small homogeneous
clusters (from the same class) emerge (such as 1 and 2 ), along with a large

central heterogeneous cluster ( 3 ). The small clusters highlight the efficiency of
the embedding approach to distinguish classes: Fig. 4.5 shows examples of pairs
from these distinct clusters, which causal direction is easily identifiable. The pairs
composing the same cluster present also the same characteristics of distributions.
However, the embedding shows the large cluster 3 is composed by samples from
both classes, making these hard to distinguish. Indeed, as shown by scatter plots
of some of those pairs in Fig. 4.6, those pairs are hardly identifiable, even though
they were labelled and generated by Eq. (4.3). These pairs represent distributions
sampled from Eq. (4.3), using a small value of ω and a small signal/noise ratio.
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Fig. 4.6 Scatter plots of causal pairs in the middle cluster in Fig. 4.4. The causal direction is
unclear as seen on the scatter plots. (1) X → Y pair in 3 . (2) Y → X pair in 3

4.3.2.2 Embeddings of the Conditional Distributions

In order to highlight the asymmetries in the distributions, Mitrovic et al. [32] has
introduced embeddings on the conditional distributions PY |X and PX|Y instead
of the joint distribution. This allows for distinguishing asymmetries along with
building an embedding of the distribution. In [32], the proposed conditional
embedding is based on the Gaussian kernel along with an α quantity that performs
as conditioning:

μk,M(PSj
) =

⎧⎨
⎩

ni∑
j=1

αj (y)km(·, xj ),

ni∑
j=1

αj (x)km(·, yj )

⎫⎬
⎭

m∈M

(4.10)

with α(y) = (L+ nλI)−1ly , L = [l(yi, yj )]ni,j=1, ly = [l(y1, y), . . . , l(yn, y)]T ,

α(·) = [α1(·), . . . , αn(·)]T , regularization parameter λ, identity matrix I, and M the
set of parameters for the kernel k.

4.3.3 Automatic Feature Construction out of Distributions

Kernel embeddings allow for a general and strong representation of the distributions.
However, these representation are not specific to the problem of pairwise causal dis-
covery and therefore some patterns might be missed by those. Therefore, adapting
the embeddings to the given distributions and to the task through learning allow the
algorithms to automatically distinguish relevant patterns in the distributions, thus
merging the last two steps of the four-step procedure described in Fig. 4.2.
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This paradigm fits with “Deep Learning” or more generally into the “Automatic
Machine Learning” concept in which only the data has to be fed to the algorithm
with no further domain specific knowledge. This merges representation learning and
supervised learning: the algorithms learn their own features based on the given data
and task.

4.3.3.1 Learning an Custom Embedding from the Samples

Going from empirical distributions to a fixed-size vector representing the learnt
relevant features implies a dimension reduction operation. Lopez-Paz et al. [30]
leverages mean embeddings to perform this operation: after applying a transforma-
tion to each point in the sample, all outputs are averaged to produce the feature
vector representing the sample. This process can be summed up by the following
equation:

μ(PSj
) = 1

nj

nj∑
i=1

f (xi, yj ) (4.11)

where f is a function with learnable parameters, nj is the number of points in the
sample Sj = {xi, yi}nj

i=1. In [30], the f function is represented by a neural network
learnt by backpropagation.

Application on the Sine Dataset By applying the same methodology as in
Sect. 4.4.2, we train neural network-based mean embeddings using NCC (c.f.
Sect. 4.4.3.1) [30], and then we plot the embeddings (in 20 dimensions) of the pairs
using T-SNE [31]. The results shown in Fig. 4.7, denotes a much clearer separation
between the two classes than in Fig. 4.4, therefore highlighting the effectiveness of
such automatic feature construction.

4.3.3.2 Visual Patterns on the Joint Distribution

Another idea to represent the empirical distribution into a fixed-size two dimen-
sional object would be to represent the pair given as input as a scatter plot; the
algorithms would then try to visually identify causal patterns in the drawn scatter
plot. This approach, exploited by Singh et al. [46] through a deep convolutional
neural network, aligns itself with the examples and the idea that non-invertible
causal mechanisms (a visually noticeable feature) give away the causal direction.

Many different visual representations of the distributions are available to the
practitioners, and little is known on their influence. We will focus on two of them:
the “raw” scatter plot of the data, where a pixel is either 1 or 0 depending on whether
a data point is present in the region represented by the pixel. The second is obtained
by considering a Gaussian distribution centered on each point, with a relatively low
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X → Y

Y → X

Fig. 4.7 T-SNE of the sine dataset with trained kernel embeddings after 2000 epochs. Each point
represents a causal pair {xi , yi}nj

i=1 and the label of the respective pair is represented by its color

variance. The following equations sum up these two approaches:

μraw[i, j ] =
{

1 if ∃(x, y) ∈ S, (x ∗ r, y ∗ r) ∈ [i, i + 1] × [j, j + 1]
0 otherwise

(4.12)

where r represents the chosen resolution of the image.

μgaussian[i, j ] = A
∑

x,y∈S

e
−
(

(x−i)2

2σ2
1
+ (y−j)2

2σ2
2

)
(4.13)

where A and σ1, sigma2 represent respectively the amplitude and the standard
deviation of the Gaussian distributions.

The outputs given by those two approaches is illustrated in Fig. 4.8. Singh
et al. [46] highlighted the influence of some preprocessing methods; they claim
that “raw” scatter plot are better for numerical variables as it allows for detection of
subtle causal patterns (Fig. 4.8(1), (2)), whereas density based scatter plots are more
suited to categorical variables, as “raw” scatter plot can sum up to grid-like images
(Fig. 4.8(3), (4)).

Experiment Using Gradient Visualization We will now perform an experiment
consisting in training a convolutional neural network on the above-mentioned sine
dataset, and in a second step visualize which pattern triggers the prediction of a
causal direction by using Grad-CAM [45], a recent visualization technique. The
convolutional neural network consists in three convolutional layers, taking as input
64 × 64 pixels images and producing 4096 features fed into three layers of dense
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Fig. 4.8 Scatter plots using either Eq. (4.12) for (1, 3) and Eq. (4.13) for (2, 4). (1) Raw scatter
plot. (2) Density based plot. (3) Raw scatter plot of a binary pair. (4) Density based plot of a binary
pair

Fig. 4.9 Gradient sensitivity analysis of a Y → X causal pair using Grad-CAM [45], X being
on the X-axis and Y on the Y-axis. (1) Original scatter plot of a Y → X pair given as input. (2)
Heatmap of the gradient for the Y → X class

layers. The network is trained using Adam [26], and converges rather quickly using
minibatches of 32 images. After applying Grad-CAM, we obtain Fig. 4.9(2), which
highlights that the network uses the non-invertible characteristic of the given causal
pair as it looks vertically for the point where a value of X has multiple images
in Y , therefore highlighting the non-injectivity of the mechanism function in the
Y = F(X,E) hypothesis.

4.4 Overview of Algorithms Using the Mother Distribution
Framework

This section reviews the main pairwise causal discovery algorithms participating
in the Challenges (Appendix 1), distinguishing three categories of pre-processing
methodologies: (1) manually defined features describing the empirical distributions



172 D. Kalainathan et al.

(Sect. 4.3.1); (2) features based on the kernelization of the empirical distributions
(Sect. 4.4.2); and (3) latent features based on neural net-based change of repre-
sentations (Sect. 4.4.3). As said, standard learning algorithms are used on the top
of the pre-processing phase (Sect. 4.4.1) to learn classifiers and predict the causal
label associated with an empirical joint distribution. To avoid redundancy with
the previous section, the feature construction step of algorithms will be briefly
presented.

4.4.1 Learning Algorithms

For the sake of self-containedness, this section briefly presents the long known
supervised learning algorithms used in causal discovery algorithms, referring the
reader to [5] for a more comprehensive introduction. Throughout this section, we
will refer to the original software provided by the authors, but many of them are
available at https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox.

4.4.1.1 Decision Trees

A decision tree is a tree-like graph model, hierarchically testing conditions on
the data features until arriving in a tree leaf, here associated with a causal class
(Fig. 4.10). Decision tree learning [8] iteratively proceeds by determining the most
informative feature depending on the current training set. In a classification context,
one selects the feature maximizing an information score (e.g. information gain or
Gini score; f ∗ = arg min

∑
v p(f (x) = v)

∑
c p(y = c|f (x) = v)log(p(y =

c|f (x) = v)) and the training data is split according to the value of the selected
feature; in a regression context, one selects the feature maximizing the variance of
the label conditionally to the feature value (f ∗ = arg min

∑
v V ar(y|f (x) = v)).

Data (A, B)

Class -1
B → A

Class 1
A → B

Causal

Class 0
Non causal

Dependentvariables

Class 0Independent

variables

Fig. 4.10 Example of decision tree based on two features: an independence test and a confounder
test; the class is the causal label

https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox
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4.4.1.2 Random Forests

Random forests [9] address the main limitation of decision trees, namely their poten-
tial to overfit small- or medium-sized data through hyper-parameter setting. Given
d features, random forests build a large number of decision trees, independently
learned using a fraction of the available features (classically,

√
d) and a random

subset of the training samples; these trees are aggregated using a vote procedure
(bagging). Random forests are celebrated for their excellent empirical performance
and computational efficiency. An extension of random forests, ExtraTrees [17]
proceed by selecting the splitting condition uniformly (uniformly selecting the
feature and the splitting condition in the feature range).

4.4.1.3 Neural Networks

Like decision trees, neural nets (NNs) have extensively been used since the 1980s for
their computational efficiency, versatility and performance. A neural net is a set of
interconnected computational units called neurons, delivering an output computed
in a non-linear way from its weighted input. NN learning consists of adjusting
the weights in order to optimize the learning criterion (e.g. cross-entropy in the
classification context; mean-square error in the regression context). In the standard
case of feedforward NN (acyclic computational graph), the weights are optimized
using stochastic gradient descent as long as all terms involved in the learning
criterion are differentiable. The computational efficiency of large neural net learning
is related to the use of highly parallel computational architectures such as Graphical
Processing Units (GPUs) [38]. The stacking of many neuronal layers, yielding deep
NNs, supports the building of increasingly abstract features and delivers applicative
breakthroughs (see [18] for an overview).

4.4.1.4 Boosting Methods

Boosting [42] is a term to qualify meta-algorithms that base themselves on many
small algorithms, added sequentially as an ensemble method. To each classifier
a weight is assigned to measure its relevance for the current classification task.
The misclassified training examples are weighted so the following classifiers added
to the ensemble improve the performance of the ensemble by focusing on those
examples. Well known examples of boosting methods are Adaboost [14] and
Xgboost [10].

Two methods, using decision trees on the top of manually defined features, with
good performance in the Cause-Effect pairs challenges, are ProtoML (Sect. 4.4.1.5)
and Jarfo (Sect. 4.4.1.6).
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4.4.1.5 ProtoML

Description ProtoML [1] won the 2013 Cause-Effect pairs challenge on Kaggle. It
is based on a pipeline, generating and selecting and generating very many features
(up to 20,000+), and achieving supervised learning on the top of the selected
features; overall, it aims at minimal human intervention.

Feature Construction Feature construction is based on multiple feature patterns, a
feature pattern being a valid set of conversion functions followed by an aggregation
function if the feature function outputs a multi-dimensional value. All possible
feature patterns are applied to the data.

Learning Algorithm Learning algorithm is a gradient boosted decision tree
ensemble [15] is learned on the top of the extensive set of features thus created,
and the learned classifier predicts the causal direction associated with an empirical
distribution.

Computational Cost Computational cost is the main limitation of the approach
is its learning and prediction computational times (as all features involved in the
learned classifier have to be computed for each sample). After the competition,
another algorithm named autocause based on ProtoML was proposed by the same
author, using much fewer features with a huge computational gain at the expense of
a slight performance loss.

4.4.1.6 Jarfo

Description Jarfo [13], one of the best performing algorithms over both challenges,
operates as follows: (1) a type-dependent preprocessing of the input variables is
applied; (2) information theoretic measures and other causally relevant features are
computed; (3) a gradient boosting classifier. It is rather popular due to the robust
performance/computational cost ratio that it offers.

Feature Construction The preprocessing of the initial variables goes as follows.
Numerical variables are normalized and binned along 19 intervals to compute fea-
tures such as discrete mutual information or discrete entropy. Categorical variables
are relabelled with sorted probabilities to obtain numerical variables. Information-
theoretic measures include discrete entropy, mutual information, divergence, and
standard deviation on conditional distributions (CDS). Extra features, commonly
used in conditional discovery, are computed: Hilbert Schmit Independence Criterion
(HSIC), moments, the IGCI score [23] for causal discovery, a Pearson correlation
and a polynomial fit on the variables, and the obtained residual of the fit.

Learning Algorithm Learning algorithm is a gradient boosting classifier based on
the previous features is trained using a tenfold cross-validation.

Computational Cost Computational cost is average, and is dependent on the
number of computed features.
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4.4.2 Learning over Distribution Embeddings

The second category of pre-processing uses kernel-based representations of distri-
butions. This randomized functional representation of distributions, exploited using
random forest learning, yields the Random Causation Coefficient (RCC) [29] with
good accuracy and computational efficiency. This idea was extended by Mitrovic
et al. [32] for embeddings of conditional distributions.

4.4.2.1 Randomized Causation Coefficient

Description RCC [29] introduces kernel embeddings of distributions to pairwise
causal discovery, while producing robust performance: standalone precision score
above 0.80 on the Tüebingen dataset, and third place on the fast causation challenge
[20].

Feature Construction Feature construction is based on projecting empirical distri-
butions into a RKHS using random mean kernel embeddings, the causal pairs being
classified in this new space (c.f. Sect. 4.4.2).

Learning Algorithm Learning algorithm is a decision tree learning directly over
the kernel space.

Computational Cost Computational cost for this approach is very attractive as the
feature construction step is summed up as a projection into a latent space using a
random feature matrix.

4.4.2.2 Kernel Conditional Deviance for Causal Inference

Description Kernel Conditional Deviance for Causal Inference (KCDC) [32] is an
algorithm that extends the approach of [29] regarding embeddings of distributions,
by applying it to conditional distributions instead of the joint distributions. It
achieves an accuracy score of 78.7% the Tüebingen dataset.

Feature Construction As explained more throughoutly in Sect. 4.3.2.2, the
embedding is built using the Gaussian kernel along with a conditioning quantity α.

Learning Algorithm Learning algorithm ranges from a difference between scores
of different parameter sets to a random forest algorithms depending on the version of
the algorithm used. Another well performing algorithm is a majority vote between
the outputs of the scores.

Computational Cost Computational cost is rather low as the algorithm has a
simple decision algorithm and the feature construction step is straightforward.
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4.4.3 Mapping Distributions onto Latent Spaces

A general trend in Machine Learning, best exemplified by Deep Learning [18], aims
to seamlessly and autonomously integrate representation learning and supervised
learning. This subsection presents two algorithms mapping the empirical joint
distributions onto a latent space.

4.4.3.1 Neural Causal Coefficient

Description As said (Eq. (4.21)), the random causation coefficient approach pro-
posed by Lopez-Paz et al. [29] is based on a predefined kernel matrix capturing the
distribution sample. In a further work, Lopez-Paz et al. [30] learn this feature matrix
using a multilayer perceptron. The data sample is sequentially supplied to the NN,
and the corresponding outputs are averaged to define a single point, submitted to the
classifier NCC:

NCC({(xi, yi)}mi=1) = ψ

(
1

m

m∑
i=1

φ(xi, yi)

)
, (4.14)

where both classifier ψ and representation φ are simultaneously trained as neural
networks from the sample data.

Feature Construction Feature construction is a neural network, processing each
data point before computing the average of all points of a distribution sample (c.f.
Sect. 4.3.3.1).

Learning Algorithm Learning algorithm is also a neural network, taking as input
the mean embedding of the pairs.

Computational Cost On the one hand, the NCC approach linearly scales with the
size of the training set, using stochastic gradient descent to train both classifier ψ

and representation φ. On the other hand, neural training is known to require large
sized datasets. Empirically, NCC standalone achieves a score of 0.79 precision on
the Tüebingen dataset [33], matching the score of RCC at a fraction of its cost.

4.4.3.2 Convolutional Neural Networks

Description Finally, another possibility is to view the empirical distribution as
an image, and to exploit convolutional neural architectures extensively used in
computer vision to learn from such images. Singh et al. [46] exploits scatter plots
built from the empirical distributions and uses these to train a convolutional neural
network architecture (CNN).
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Fig. 4.11 Scatter plots of binary-binary (a, b) and numerical-numerical (c, d) empirical distribu-
tions. Raw scatter plots (i.e. data points) are represented in (a) and (c); colored scatter plots in (b)
and (d) associate to each point its frequency [46]

Feature Construction For numerical variables, the scatter plot is used after a
standard normalization. For categorical or binary variables, scatter plots usually are
uninformative (Fig. 4.11), and this issue is addressed by coloring the points with the
normalized frequency of the observations.

Learning Algorithm The CNN is used together with a gradient boosted classifier
inspired from Jarfo [13], delivering a score of 0.825 on the Cause-effect pairs
challenge. This score, obtained after the end of the challenge, outperforms that of
the challenge winner ProtoML [1].

Computational Cost The computational cost is rather low as it leverages the
computational efficiency of convolutional neural networks. However the proposed
solution as a ensemble method with Jarfo (Sect. 4.4.1.6) makes it quite computa-
tionally heavy.

4.5 Discussion

Within the Mother Distribution framework (Sect. 4.2), the pairwise causal discovery
problem is cast as a supervised learning problem. The advances made along this
formalization, leveraging machine learning algorithms and due to the efforts of all
participants to both causality challenges, are impressive (Table 4.1). This section
analyses their current limitations and discusses some research perspectives to
address them.

4.5.1 Sensitivity to Mother Distributions and Generalization

A primary limitation is due to the examples used to train the classifiers. As widely
known, the accuracy of trained classifiers depends on the quality of the training
examples. In quite a few causal examples however, the joint distributions present
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Table 4.1 The two causality challenges: winning algorithms

(a) Top algorithms of the Cause-Effect Pairs challenge, ProtoML manages to top the leaderboard,
having however a significant computational cost

Algorithm Author Ladder score

ProtoMLa Diogo Moitinho de Almeida 0.820

Jarfob José A.R. Fonollosa 0.811

FirfIDc Spyridon Samothrakis, et al. 0.800

(b) Top algorithms of the Fast Causation Coefficient challenge. RCC manages to obtain a good
score while being almost six  times faster than Jarfo

Algorithm Author Ladder score Execution time

Jarfob José A.R. Fonollosa 0.826 1891 s

FastCausationd Wei Zhang 0.818 1057 s

RCCe David Lopez-Paz 0.719 316 s

typical features giving away the causality label, a phenomenon referred to as data
leakage. Another issue would be the presence of biases in the training set of the
classifiers. For example, if the causal pairs with one categorical variable and one
numerical variable are always labelled such as categorical → numerical, the learn-
ing algorithms might learn biased features on distributions due to the training set.

For instance, if we take an example with two numerical quantities but one is
sampled regularly; e.g. a physical experiment evaluating the influence of voltage on
the perceived luminance of a light bulb typically proceeds by setting the voltage
value using a regular grid. The acquisition process thus introduces a substantial bias
in the data through the marginal distribution of the cause (Fig. 4.12), with a number
of unique values much lower for the cause than for the effect variable.

Such biases hinder the generality of the causality classifiers, as they might be
exploited by learning algorithms and induce biased hypotheses.

A second limitation related with the data is their insufficient amount. As far as
neural nets and deep learning are involved in the learning process, the quantity of
examples also becomes essential. Given the comparatively few variable pairs for
which the causality label is known from prior knowledge, many authors thus rely on
data augmentation, generating new artificial examples from scratch or by perturbing
the available examples [29].

However, theoretical results require that causal classifiers be trained and eval-
uated on examples following the same Mother Distribution. The empirical results
(Table 4.2) also confirm that the classifier accuracy is much better when applied
on data following the same Mother Distribution as the training examples. As in
all machine learning problem, the simplest setting is the i.i.d. setting in which
training and test data are drawn from the same distribution. The same applies to the
cause-effect pair problem: higher performance is attained when the pairs are drawn
from the same mother distribution. Unfortunately, in many real world applications,
one does not know from which “mother distribution” a new incoming pair to be
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Fig. 4.12 Joint and marginal plots of the voltage/luminance of the light bulb example

Table 4.2 Post-challenge
(cause-effect pairs)
experiment based on a new
3648 pairs dataset generated
with GeneNetWeaver [41]

Algorithm Experiment 1 Experiment 2

AUC Jarfo 0.873 0.997
FirfiD 0.596 0.984

ProtoML 0.8085 0.991

Time Jarfo 5 h 5 h
FirfiD 7 h 8 h

ProtoML 10 h 12 h

Bold denotes best performance

classified is drawn and one does not have labeled examples of cause-effect pairs
from the “mother distribution” of interest.

Both limitations, regarding the quality and the quantity of the training data,
can be addressed using Domain Adaptation and Transfer Learning principles
[4, 16], adapting classifiers trained from abundant artificial and diversified Mother
Distributions to focused application domains.
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4.5.2 Refining the Supervised Learning Problem

Variable pairs (X, Y ) actually fall in one out of four cases: the causal case X → Y ,
the anti-causal case X ← Y , the independent case X ⊥⊥ Y , and the confounder case
X ← Z → Y . For convenience, the four cases are handled using a single continuous
causation coefficient L(X, Y ), positive in the causal case and negative in the anti-
causal case, and both the independence and the confounder case are associated with
a low absolute value of L(X, Y ). In all generality however, a low value of L(X, Y )

might reflect either the independence of both variables, or the uncertainty regarding
the causal direction.

A perspective for further research thus consists in extending the proposed
framework, and associate with each variable pair (X, Y ) two continuous scores,
noted (λX,Y , λY,X) ∈ R2+, respectively characterizing the causal and anti-causal
strength of the link between both variables. This pair of scores lends itself to a clear
interpretation (Fig. 4.13), enabling to distinguish the independence region where
both scores are low, from the region of 2-cycles where both scores are high, from
the confounding case where both scores are neither low nor high but similar, from
the causal and anti-causal region.

4.5.3 Explaining the Causal Mechanism

Another perspective for further research concerns the explanation of the causal
mechanism. Quite a few causal algorithms proceed by identifying the potential

AB

BA

A → B
B → A
Independent variables
Highly dependent
variables
Unidentifiable causal
relation, 2-cycles
BA = AB

Fig. 4.13 Representation of a two dimension causal coefficient (λAB, λBA) and the associated
causal interpretations depending on the values of each dimension. Taken from [24]
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causal mechanism leading from X to Y and vice-versa, and selecting the causal
label depending on the causal mechanism best fitting the data (subject to some
limitations on its complexity, as noted in the introduction). It is of utmost interest to
the practitioner to “open the black-box” and understand the nature of the underlying
causal mechanism, typically distinguishing four cases depending on the influence
of the noise variable E:

• Y = f (X)+ E (Post-additive)
• Y = f (X)× E (Post-multiplicative)
• Y = f (X + E) (Pre-additive)
• Y = f (X × E) (Pre-multiplicative)

A potential approach would be to extend and apply the Automated Statistician
[25, 28] to uncover the nature of the causal mechanism, making a leap towards
explainable causal learning.

4.6 Conclusion

Pairwise causal discovery has shown itself as a slightly particular machine learning
problem: in fact, the samples are not represented by single vectors of features,
but by empirical distributions which number of samples is not fixed. However,
literature has quickly adapted itself through the cause-effect pair challenges [19, 20]
by adding a feature construction step before its traditional learning algorithm.
Algorithms have taken different paths to build their features: off the shelf features
of distributions, embeddings of distributions, or even learning those embeddings.
Finally, discriminative learning machines have proven themselves to be quite useful
for pairwise causal discovery as their accuracy exceeded 80%.

Acknowledgements The authors want to thank David Lopez-Paz for many discussions and
insights, and Corentin Tallec for his insightful feedback. The second author was funded on a grant
from La Fabrique de l’Industrie.

Appendix 1: The Cause-Effect Pair Challenges

Two challenges pioneering the above causal setting were organized by ChaLearn
[19, 20]. This section reports on the data and the experimental setting of both
challenges, together with their results.
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Kaggle Cause-Effect Pair Challenge

The Cause-Effect Pair Challenge organized in 2013 on the Kaggle platform by
Guyon [19] is the first competition focusing on pairwise causal discovery, pioneer-
ing the supervised learning setting presented in Sect. 4.2. The training data involves
12,081 pairs of variables; the test data involves 4050 other pairs of variables. Each
pair of variables is associated its ground truth causal label, ranging in four classes
respectively corresponding to X → Y , X ← Y , X ⊥⊥ Y and ∃Z,X ← Z → Y .

The training and test pairs of variables included circa 18% real pairs and 82%
artificial pairs with continuous, categorical and binary variables.

Real Data Real data originate from multiple domains: demographics, medicine,
ecology, genetics, economics and engineering. The causal labels are determined
by considering exogenous variables as causes or independent variables, and using
prior knowledge to assess the plausibility of the causal relationship. For example,
the causal label of pair (Age,Wage) is Age → Wage as (1) interventions on the
Wage variable do not affect the Age variable; (2) Age increase does increase the
Wage due to the seniority bonus. The circa 4000 real pairs included in the challenge
are equidistributed among the three causal relationship classes. Independent pairs
are built by randomly shuffling one of the variables, thus breaking the causal
relationship. The generation of pairs falling in class 4 (involving a confounding
variable) proceeds by (1) considering a real pair X, Y ; (2) generating three artificial
variables Z, X̃, Ỹ such that X̃ ← Z → Ỹ ; (3) replacing X̃ values by X values
using a monotonous transformation, and likewise replacing Ỹ values by Y values.
Care was taken to make sure that the causal relationship between X and Y could not
be determined solely on the basis of simple statistics of the marginal distributions
of X and Y : all variables were standardized and quantized on a number of levels
distributed similarly for X and Y in all four causal relationship classes.

Artificial Data Artificial data are generated by perturbing real-world data as
follows. The cause variable X is selected among the real variables, and the
effect variable Y is generated using four causal equations involving a fixed causal
mechanism f and an additive or multiplicative noise E:

1. Y = f (X)+ E

2. Y = f (X)× E

3. Y = f (X + E)

4. Y = f (X × E)

Performance Metric The hypothesis learned by either a classification or a regres-
sion algorithm associates with each variable pair X, Y an estimated causation
coefficient Ĉ(X, Y ) in R; a positive Ĉ(X, Y ) is interpreted as X causing Y while
a negative Ĉ(X, Y ) is interpreted as Y causing X. Two criteria are considered: L1
denotes the Area Under the ROC Curve (AUC) associated with the prediction of
X → Y against the other three classes, and L2 denotes the AUC associated with the
prediction of X ← Y against the other three classes. The score of the algorithm is
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the half sum of both AUCs. While this score does not directly account for class 0
(independent variables or dependent variables due to a confounding variable), this
class is implicitly taken into account through the pair ordering based on Ĉ(X, Y ),
as wrongly classified independent pairs penalize one of the AUC scores.

Codalab Fast Causation Coefficient Challenge

Most approaches submitted to the Cause-Effect Pair Challenge involve a heavy
feature construction process, associating to each sample of any joint distribution
P(X, Y ) a real-valued vector of feature values (up to 20,000 features), on the top of
which a standard learning algorithm is used. Due to the high computational effort
required to achieve this statistical feature construction, a follow-up 2-month chal-
lenge, the Fast Causation Coefficient challenge has been proposed by Guyon [20],
aimed at algorithms achieving a reasonable trade-off between predictive causal
accuracy and computational efficiency. The assessment of algorithms was made
possible as the Fast Causation Coefficient challenge (with same setting as the
previous challenge) was hosted on the Codalab challenge platform. This Codalab
platform allows participants to submit an executable code, that can therefore be
assessed in a fair and reproducible way.

Results of the Challenges

The Cause-Effect Pair Challenge spanned over 5 months in 2013. Two hundred and
sixty-six teams participated to the competition and submitted over 4578 entries. As
said, most submissions relied on a two step procedure: (1) data pre-processing and
computation of predefined statistical features describing the empirical distributions;
(2) learning of a classifier on top of these features. The pre-processing and the
feature extraction were diversified, ranging from normalization, binning numerical
variables and grouping categorical variables, to independence tests, entropy mea-
sures, and computing fit residuals. On the contrary, the classifiers used were mainly
based on decision trees or random forests (85%).

The results obtained8 were quite promising (Table 4.1) with a final score of 0.82
on the test set (where the score is the half sum of the AUCs associated with the
X → Y and the X ← Y classes).

The best performing algorithms were further tested using an additional 3648 new
cause-effect pair benchmark generated by the organizers using the GeneNetWeaver
3.0 software [41] based on the E. Coli transcriptional regulatory network. Two

8The monetary rewards ranged from 1500 USD (with 1000 USD for travel expenses) to 500 USD
for the best performing teams that made their software publicly available.
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experiments were performed: the first one was to apply the given algorithms with no
training on the new dataset and the second experiment was to train the algorithms on
one half of the dataset and to test on the other half. The experiments were conclusive
(Table 4.2): the AUC score for the first experiment was of 0.80 for ProtoML and of
0.87 for Jarfo, and over 0.99 for both algorithms on the second experiment. These
experiments empirically establish the merit of the winning algorithms.

The goal of the follow-up Fast Causation Coefficient challenge is to reduce the
computational cost of causal discovery with no performance loss compared to the
first challenge. This challenge attracted seven participants, who were given a light
version of the Jarfo algorithm,9 achieving the best performance vs computational
cost tradeoff on the first challenge. As shown in Table 4.1b, the original version
of Jarfo by Fonollosa [13] came on top of the ranking. The second algorithm,
FastCausation, managed to almost preserve Jarfo predictive accuracy while reduc-
ing the computational cost by 44%. The third RCC algorithm used a distribution
embedding instead of manual feature extraction, and achieved a score of 0.72 for
17% of the computational cost of Jarfo. This follow-up challenge thus deliver
practical algorithms, with decent predictive accuracy at an affordable computational
cost.

Appendix 2: Error Bounds for a Classical Classification
Problem

In this section, we will remind the error bounds for a traditional learning problem,
where the goal is to classify samples {xi}ni=1 in the label space G, where xi is a k-
dimensional feature vector. Given a loss function L , the learning goal thus is to find
a classifier h : Rk → G with minimal expected risk R(h) [50]:

R(h) = Ex,g∼Rk×L[L (h(x), g)] (4.15)

with g ∈ G The expected risk is classically related to the empirical risk R̂(h)

measured on the available training set:

R̂(h) = 1

n

n∑
i=1

L (h(xi), gi) (4.16)

The standard loss function is the 0–1 loss L01(ĝ, g) = |ĝ − g|, for which R(h)

comes down to the probability of misclassification. While the consistency of the 0–1
loss is established [7], it defines a non-convex optimization problem. For tractability,
real-valued classifiers f : Rk 	→ R are considered [48], and margin-based loss

9Version that does not include some of the most computationally expensive features.
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functions varphi : R → R+, with ϕ(f (x), g) = [m − f (x)g]+ (where [A]+ =
max(A, 0)) are used [3], inducing a smooth optimization problem. The associated
expected and empirical risks respectively read:

Rϕ(f ) = Ex,g∼Rk×L [ϕ(f (x), g)] (4.17)

R̂ϕ(f ) = 1

n

n∑
i=1

ϕ(f (xi), gi) (4.18)

Letting f ∗ (respectively f̂n) denote the hypothesis minimizing the expected risk,
Eq. (4.17) (resp. the empirical risk, Eq. (4.18)), the excess risk EF (f̂n) is bounded
after [7]:

Theorem 4.1 Let F be a class of functions mapping Rk onto R. Let ϕ : R → R+
be a κ-Lipschitz function such that ϕ(ε) ≥ 1ε>0. Let B be a uniform upper bound on
ϕ
(−f (ε)�

)
. Let {(xi, �i)}ni=1 ∼ Rk×L and {σi}ni=1 be i.i.d. in {1,−1} (Rademacher

random signs). Then, with probability at least 1− δ,

EF (f̂n) = Rϕ(f̂n)− Rϕ(f ∗) ≤ 4κe

[
sup
f∈F

1

n

∣∣∣∣∣
n∑

i=1

σif (xi)

∣∣∣∣∣
]
+ B

√
log(1/δ)

2n
,

where the expectation is taken w.r.t. {σi, xi}ni=1.

Naturally, in our case of learning through empirical distributions, the expected
risk (and thus the performance of f̂n) crucially depends on the feature construction
step mapping each data distribution sample Sj onto a k-dimensional real-valued
vector.

Appendix 3: Error Bounds in the Cause-Effect Pairs Setting
for Kernel-Based Embeddings

Lopez-Paz et al. [29] exploits functional representations of empirical distributions
based on Reproducing Kernel Hilbert Spaces (RKHS). Letting k denote a kernel
on the sample space, given an n-sample x1 . . . xn drawn iid from distribution P , a
functional representation of these samples is given as:

μk(P ) = 1

n

n∑
i=1

k(xi, ·) (4.19)

with μk(P ) being a function in the RKHS Hk associated with kernel k. This
representation enables to refine Theorem 4.1 as follows:
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Theorem 4.2 ([29]) With same notations as in Theorem 4.1, let Hk denote the
RKHS associated with some bounded, continuous kernel function k, such that
supz k(z, z) ≤ 1. Let Fk be a class of functions mapping Hk to R with Lipschitz
constant uniformly bounded by κF. Let ϕ : R→ R+ be a κ-Lipschitz function such
that φ(ε) ≥ 1ε>0. Let ϕ

(−f (ε)�
) ≤ B for every f ∈ Fk , ε ∈ Hk , and � ∈ L. Then,

with probability greater than 1− δ (over all sources of randomness)

EF (f̂n) =Rϕ(f̂n)− Rϕ(f ∗) ≤ 4κRn(Fk)+ 2B

√
log(2/δ)

2n

+ 4κκF

n

n∑
i=1

⎛
⎝
√

ez∼PSj
[k(z, z)]
ni

+
√

log(2n/δ)

2ni

⎞
⎠ ,

with Rn(Fk) = e
[
supf∈Fk

1
n

∣∣∑n
i=1 σif (xi)

∣∣] the Rademacher complexity of Fk .

Theorem 4.2 represents the bound for our causal pairs learning problem with kernel
embeddings as features. Compared to Theorem 4.1, an additional term is added to
cope with the feature construction step: if the kernel embedding manages to capture
all information out of the distributions useful for the classification of the causal
pairs, then we obtain the bound given by Theorem 4.1.

Lopez-Paz et al. [29] goes towards a more scalable approach for kernel com-
putation relying on Fourier-based approximations of real-valued and shift invariant
kernels [39], defined as:

∀x, x′ ∈ Rd , k(x, x′) = 2Ck ew,b

[
cos(〈w, x〉+ b) cos(〈w, x′〉+ b)

]
(4.20)

where w ∼ 1
Ck

pk , b ∼ U [0, 2π ], pk : Rd → R is the positive and integrable
Fourier transform of k, and Ck =

∫
Z

pk(w)dw.
For example, the shift-invariant Gaussian kernel with kernel width γ can be

approximated using Eq. (4.20) with pk(w) = Pr(w|N (0, 2γ I)), and Ck = 1
[29, 36, 37], with linear complexity, as:

v̂x
m(·) = 1

m

m∑
i=1

2Ck cos(〈w, x〉 + b) cos(〈w, ·〉 + b) (4.21)

with (wj , bj ) iid sampled in N0,2 × [0, 2π ]. After [29], this approximation enables
to refine Theorem 4.1:

Lemma 4.1 ([29]) Let Z = Rd . For any shift-invariant kernel k s.t.
supz∈Z k(z, z) ≤ 1, any fixed S = {zi}ni=1 ⊂ Z, any probability distribution Q

on Z, and any δ > 0, it comes:
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∥∥∥∥μk(PS)− 1

n

n∑
i=1

ĝzi
m(·)

∥∥∥∥
L2(Q)

≤ 2Ck√
m

(
1+√2 log(n/δ)

)

with probability greater than 1− δ over {(wi, bi)}mi=1.
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Chapter 5
Cause-Effect Pairs in Time Series with a
Focus on Econometrics

Nicolas Doremus, Alessio Moneta, and Sebastiano Cattaruzzo

5.1 Introduction

Let us consider two scalar stochastic processes xt and yt , t ∈ Z, each observed
for T realizations. We assume that xt and yt are covariance stationary or that Δxt

and Δyt are covariance stationary. Most time series observed in macroeconomics,
for example, belong to this class of processes (see e.g. [29]). If we exclude the
possibility that the future can cause the past, but we allow contemporaneous feed-
back loops due for example to temporal aggregation, there are several possibilities
as regards the causal structure between xt and yt , which we list here below. We
denote causal relationships1 with directed edges (→), following the graphical causal
models terminology [64].

1When referring to “causal relationships”, we endorse here, in the spirit of Hoover [32], Pearl
[55], a structural account of causality: causal relationships are the fundamental, but usually latent,
building blocks of the mechanism that has generate the observed data, which we aim at representing
through a structural (or causal) model. While a structural model entails probabilistic relations, it
contains more information than a statistical model, because it allows us to analyze the effect of
interventions (cf. [58]).
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(i) The series xt has a contemporaneous or lagged causal effect on yt , i.e. xi →
yi+s for some i, s such that i ≥ 0, s ≥ 0.

(ii) The series yt has a contemporaneous or lagged causal effect on xt , i.e. yi →
xi+s for some i, s such that i ≥ 0, s ≥ 0.

(iii) A not-measured series zt has a contemporaneous or lagged causal effect on
both xt and yt .

(iv) The causal structure between xt and yt can be described by any combination
of (i)–(iii).

(v) There is no causal link or path (of any type) linking xt and yt+s , for any s ∈ N.

In principle, other, more involute, causal structures are possible between xt and
yt . For example, the data generating process may have a frequency that is different
from the frequency of data collection, so that there are hidden causal structures
between the observed variables. This class of structures has been considered in the
literature on temporal aggregation in econometrics (see e.g. [17, 18, 50]) and in
the literature on subsampling in machine learning (see [10, 36]), but will not be
further discussed in this paper. We will also limit our discussion on structures in
which variables are well-defined (i.e. they are not aggregate of variables with diverse
causal roles) and the causal structures are time invariant: i.e. if xi → wi+s given
any s ∈ Z, then this true for all i ∈ Z, where w can be any variable (included x

itself). We will also typically assume that each observed series wt will be directly
causally influenced by its own past, until a certain lag and that each variable at each
time unit will be affected, in an additive manner, by one or more independent shock.
In other words, we focus on additive noise models.

The causal structure between two time series can be represented by a causal graph
consisting of nodes for xt , . . . , xt−p, yt , . . . , yt−p, where p is the largest lag by
which xt or yt can be directly causally influenced. Using the terminology proposed
by Chu and Glymour [7], this graph is called a unit causal graph. Examples for unit
causal graphs are shown in Figs. 5.1 and 5.2, for p = 2. Figure 5.1 represents the
case in which (i) is true, while Fig. 5.2 represents the case in which (iii) is true. Chu
and Glymour [7] notice that a unit causal graph can be extended to repetitive causal
graph (not shown), including the variables xt and yt at a potentially infinite time
units. The repetitive causal graph corresponding to the unit causal graph of Fig. 5.1,
for example, would include nodes for xt−3, xt−4, . . ., for yt−3, yt−4, . . . and direct
edges from xt−s to yt−s , as well as xt−s−2 → yt−s and xt−s−1 → yt−s , for any
s ∈ Z.

Fig. 5.1 Unit causal graph
for bi-variate time series with
both lagged and
contemporaneous effects

xt–2 xt–1 xt

yt–2 yt–1 yt
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Fig. 5.2 Unit causal graph
for bi-variate time series with
a latent series zt

xt–2 xt–1 xt

yt–2 yt–1 yt

zt–2 zt–1 zt

How do we detect which of the five cases listed above (i)–(v) is true? How do we
learn which causal graph better represents the data generating process? How do we
learn to what extent an intervention on one variable at time t propagates on all the
variables at time t + h for any value of h > 0? These are the typical questions that
concern, for example, the applied macro-econometrician. In this paper we discuss
possible manners to address these questions. We review methods that are able to
disentangle among different causal structures, under different assumptions.

Some causal discovery methods developed for i.i.d. data cannot be applied,
without further modification, to the time series setting, due to the fact that, even in a
simple setting of causal pairs, there is the possibility of causal relationships with dif-
ferent effects at different lags. Furthermore, the autocorrelation (or self-dependence)
structure underlying the data introduces some complications in standard statistical
inference that reduce the efficiency of simple regression estimation or conditional
independence testing [26]. Nevertheless, the time series setting is not necessarily a
curse, and is actually a blessing in specific contexts of causal inference. Indeed, if
one accepts the assumption that the future cannot cause the past (whose acceptance
in economics involves a careful taking into account of expectational variables, see
[33]), exploiting the arrow of time allows one to solve many orientation problems,
i.e. problems where it is known that there is a causal dependence between two
variables, but not the direction. Moreover, in the case of causal pairs, the possibility
of observing past values of the variables allows us to condition on more than two
variables, which is not possible in the context of i.i.d. causal pairs.

We shall also notice that if the framework is the one of a causal time-series pair
in which only one direction of causal influence is admitted: either xt → ys (for
one or more values of s such that s ≥ t) or yt → xs (s ≥ t) and one is only
interested in the “summary graph” [58], i.e. in ascertaining whether x causes y or
y causes x at any time unit, then the problem can be solved in a relatively easy
fashion in many settings. Using a simple regression analysis, it will be sufficient to
regress xt on lagged values of itself and of the other variable, as well as to regress
yt on lagged values of itself and of the other variable. Since all the covariates in
the two regressions are pre-determined there are no endogeneity problems here and
the error terms will be independent of the regressors. Therefore, by simple testing
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the hypothesis of non-zero statistical influence of one lagged variable (e.g. xt−1) on
another (e.g. yt ) and the hypothesis of a zero statistical influence on the symmetric
regression (e.g. of yt−1 on xt ), we will be able to detect a genuine causal influence
(at some unknown time unit) from one variable to another (e.g. from x to y). This
framework is identical to the vector autoregressive framework that we will discuss
below and also related to an interpretation of Granger non-causality test that we
will also discuss below. Notice, however, than in many fields like economics the
assumption of causality running in only one direction between time series, without
the possibility of a feedback at a different time unit, is a toy example, with very
poor empirical applicability. This is why our discussion framework will be larger,
including the possibility of structures like yt−1 → xt → yt .

In reviewing different methods we distinguish between methods that filter the
series through a vector autoregressive model (Sect. 5.2.1) and methods that apply
causal search directly to time series data (Sect. 5.3).

5.2 Vector-Autoregressive Framework

5.2.1 The VAR Model

One of the most popular approaches to identify dynamic causal effects in time series
econometrics is structural vector autoregressive (VAR) analysis. Structural VAR
analysis is based on the assumption that the statistical properties of a data generating
process can be well approximated by a reduced-form VAR model.

Let us consider a vector Yt of k time series variables. For example, Yt = (xt , yt )
′,

in which case k = 2. We assume that Yt follows a stochastic process that can be well
approximated by a linear VAR process of the form

Yt = μ+ A1Yt−1 + · · · + ApYt−p + ut , (5.1)

where μ is a k × 1 vector of constants, Ai (i = 1, . . . , p) is a k × k matrix and
ut is a k × 1 vector of white noise, whose elements are referred to as reduced-
form residuals. Each element of ut is in turn assumed to be a linear combination
of latent structural shocks, ε1t , ε2t , . . ., which are the sources of variation of the
system. In macroeconomics these shocks have special meaning such as, for example,
the productivity shock, the monetary policy shock, the fiscal policy shock, etc. It
is standard in the VAR literature to assume that the number of shocks is equal to
the number of measured variables. Another usual assumptions is that ε1t , . . . , εkt

are mutually independent, although orthogonality is sufficient in many applications.
Thus we have:

ut = Bεt , (5.2)
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where B is a k × k invertible matrix (the impact or mixing matrix) and εt =
(ε1t , . . . , εkt )

′ is a vector of independent shocks. Let W be B−1. By pre-multiplying
Eq. (5.1) by W we get the structural VAR form:

WYt = μ′ + Γ1Yt−1 + · · · + ΓpYt−p + εt , (5.3)

where μ′ = Wμ and Γi = WAi for i = 1, . . . , p. From Eq. (5.1) it is evident that
the matrix W incorporates information about the contemporaneous causal structure,
while the matrices Γi’s incorporate information about the lagged causal structure.
Since Sims [62], econometricians have focused their attention on the identification
of the effect of εt on Yt over time. These are called impulse response functions, and
we will be discussed in a subsequent Sect. 5.2.4.

Since Eq. (5.3) cannot be directly estimated because of endogeneity problem, the
idea of VAR analysis is to follow a two-step procedure: first Eq. (5.1) is estimated
through standard regression methods. From this stage one obtains an estimate of
the reduced-form residuals ut . Second, the parameters of Eq. (5.3) (in particular the
coefficients entering in W and Γi) can be recovered by analyzing the relationships
among the elements of ut , which, under some conditions, may allow identifying the
matrix B entering in Eq. (5.2). Notice that, having estimated (5.1), knowing B is
sufficient for identifying (5.3).

For example, Swanson and Granger [68], Bessler and Lee [3], Demiralp and
Hoover [11], Moneta [52] propose a two-step identification method, consisting in
first estimating the reduced-form VAR residuals, and then applying to the estimated
ut (which should share characteristics of i.i.d. data) conditional independence tests,
in the spirit of a causal search based on graphical causal models [64]. This allows
them to find out which entries of B are zero.

For k = 2, as is the case of causal pairs, independence tests between u1t and
u2t can only discriminate between the presence and the absence of a causal link
between the contemporaneous variables, but are not of any help in finding causal
directions. In other words, they find zero entries in B only in the case when u1t and
u2t are mutually independent (corresponding to the absence of contemporaneous
causal relations).

5.2.2 ICA-Based Identification

An alternative method to identify B in the same two-step framework is to apply
Independent Component Analysis (ICA) to the estimated reduced-form residuals
ut . Since, as shown in (5.2), ut = Bεt , it is possible to apply ICA to recover
the coefficients that linearly mix the elements of εt to produce ut [9, 37, 39]. ICA
has been applied to a VAR setting by Hyvärinen et al. [40], Moneta et al. [53],
Gouriéroux et al. [22], among others.

ICA is based on a theorem, see [9, Th. 11], [15, Th. 3], [22, p.112], according to
which if B is invertible, and if the components of εt (ε1t, . . . , εkt ) are independent,
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with at most one Gaussian distribution, then the matrix B is identifiable up to a post
multiplication by DP , where P is a permutation matrix and D a diagonal matrix
with non zero diagonal elements.

There are many ICA approaches to estimate the mixing matrix B (cfr. [39] for
an overview), most popular of which are the fastICA algorithm [38], which is based
on minimization of mutual information and maximization of negentropy, the JADE
algorithm [5], which maximizes a measure of non-Gaussianity based on the fourth
moments, and the product density ICA algorithm [28], which is based on maximum
likelihood principle. Alternative approaches have been also recently proposed in
econometrics, e.g. the distance covariance approach by Matteson and Tsay [51], the
Cramer-von-Mises distance approach by Herwartz [30], the maximum likelihood
approach by Lanne et al. [48], and the pseudo ML approach by Gouriéroux et
al. [22].

Assuming that B is invertible implies that each observed variable uit is affected
by at least one shock εit and that each εit influences at least one variable. In other
words, there is always a column-permutation of the mixing matrix B̃ output of ICA
such that all the elements in the main diagonal are significantly different from zero.
This assumption is in tune with the standard VAR framework.

In the case of causal pairs (k = 2), with matrix B of dimension 2 × 2, it
is therefore very useful to test which entries in B are significantly close to zero
and check their row position. The significance test can be done with a bootstrap
procedure, by performing a nonparametric quantile test in order to decide whether
0 is an outlier, as proposed by Lacerda et al. [47]. Alternatively, one can test a zero
restriction in B by exploiting the asymptotic distribution of the pseudo ML estimator
of B, as proposed by Gouriéroux et al. [22].

Let us continue to assume that Yt = (xt , yt )
′. On the basis of tests on zero

restrictions in B, one can distinguish among four different cases: (1) If there is only
one zero entry in B and this lies in the first row, this means that the first element of
ut , which we call uxt , is affected only by one shock, while the second element of
ut , which we call uyt , is affected by both shocks. This means that xt causes yt . (2)
Symmetrically, if the only zero entry of B lies in the second row, yt causes xt . (3)
If there are two zero entries in B, which, by construction, must lie either in its main
or anti-diagonal, then xt and yt are not (contemporaneously) causally related. (4) If
there are no zero entries in B, some other structures are possibilities: there could be
a feedback loop between xt and yt , or a latent variable zt affecting both xt and yt ,
possibly also including causal relationships between xt and yt .

If there is a latent variable zt , this means that the shocks affecting the system
are potentially three, while the observed variables are still two. Attempting to
identify the structural model would bring us outside the VAR framework. It is worth
noting, however, that the ICA framework has been extended to the cases where the
number of sources is greater than the number of mixtures (overcomplete ICA) (see
[39, ch.16]). The identification of the rectangular mixing matrix potentially allows
distinguishing between the case of feedback loop between xt and yt (two shocks
affecting the system) and the case of a latent variable (three shocks affecting the
system with at least one idiosyncratic shock).
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If it is known that, underlying the structural model, there is a recursive contem-
poraneous structure, that is either xt causes yt or yt causes xt (equivalently, there
is a permutation of the matrices B and W that make them lower triangular), then,
a valid and efficient alternative to the test of zero-coefficient suggested above, is
performing a LiNGAM (short for Linear Non-Gaussian Acyclic Model) analysis, as
proposed by Shimizu et al. [61]. LiNGAM is an algorithm that incorporates ICA in
the first step, and then search for the right row-permutation of the unmixing matrix
W that yields a lower triangular matrix. Lacerda et al. [47] propose an extension of
this algorithm to the cyclic case (in which feedback loops are allowed), called LiNG.
Hoyer et al. [34] propose an extension of basic LiNGAM to the case in which latent
common cause are allowed, called LvLiNGAM.

5.2.3 Nonlinear Framework

The standard VAR framework, as proposed in the econometric literature, is a linear
model. In economics and in many other fields, however, there is no compelling
substantive reason why a variable should depend only linearly on current values
of other variables, on past values of itself and of other variables. Thus, a class of
nonlinear structural VAR models has been proposed (see [44, ch. 18]) that allows
nonlinear dependence among measured time-series but with an additive white noise
error terms. In this case, we can apply a two-step identification procedure similar to
linear case: in a first step one estimates a reduced-form nonlinear VAR model, and
in a second step one extracts from the estimated additive errors information in order
to recover the structural VAR model. A general nonlinear VAR model with additive
errors can be written as:

Yt = Ft(Yt−1, . . . , Yt−p)+ ut , (5.4)

where the nonlinear function Ft(·) may depend on t . Most nonlinear VAR models
considered in the econometric literature deal with time-varying coefficients (see e.g.
[59]) which are able to capture very general nonlinear dynamics, while keeping
linear the mixing structure between reduced-form and structural residuals.

We do not review here this literature (see [27, 43], and references therein). Rather,
we point out a method to identify the contemporaneous causal direction that exploits
the nonlinear dependence among the variables and is based on two assumptions: (i)
there is a contemporaneous, nonlinear causal relationship between xt and yt in only
one direction (either xt −→ yt or yt −→ xt ), (ii) the structural form model can
be written as Yt = F(Yt−1, . . . , Yt−p) +G(Yt ) + εt , where F(·) and G(·) are two
linear functions with ε1t⊥⊥ε2t .

The method follows a two-step procedure, as is typical of a VAR-based approach.
In the first step the lagged effects are filtered out through nonlinear or nonparametric
estimates of the regressions xt = f1(xt−1, . . . , xt−p, yt−1, . . . , yt−p) + u1t and
yt = f2(xt−1, . . . , xt−p, yt−1, . . . , yt−p) + u2t , in order to obtain estimates of u1t
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and u2t . In the second step one the contemporaneous causal direction is detected
through a nonlinear additive noise model (see [35, 58]). Indeed we will have that if
the contemporaneous causal relation is xt → yt

u2t = fy(u1t )+Ny (5.5)

where Ny is an unobserved noise term and N
y
t ⊥⊥u1t . Likewise, if the contempora-

neous causal relation is yt → xt

u1t = fx(u2t )+Nx, (5.6)

where Nx is an unobserved noise term and Nx⊥⊥u2t .
Thus, once u1t and u2t are estimated through a nonlinear or nonparametric

VAR model, one regress them on each other, using a nonparametric estimator, and
obtains estimated of Nx and Ny . If, on the basis of a nonparametric independence
test (see e.g. [25]), the independence between Ny and u1t is not rejected, while
the independence between Nx and u2t is rejected, one infer xt → yt . If, the
independence between Nx and u2t is not rejected, while the independence between
Ny and u1t is rejected, one infer yt → xt .

5.2.4 Impulse Response Functions

Having identified the mixing matrix B and the structural shocks εt , econometricians
are mostly interested in the responses over time of each element of Yt = (xt , yt )

′
to a one-time impulse in each element of εt = (ε1t , ε2t )

′. These impulse response
functions are defined [44, p. 110] as:

∂Yt+i

∂ε′t
= Θi i = 0, 1, 2, . . . , H, (5.7)

where, in the case of two variables, Θi is a 2 × 2 matrix, whose four elements are:
∂xt+i

∂ε1t
, ∂yt+i

∂ε1t
(first column), ∂xt+i

∂ε2t
, ∂yt+i

∂ε2t
(second column).

Consider, for simplicity, a linear VAR model with one lag (p=1) and no intercept:

Yt = A1Yt−1 + ut . (5.8)

By recursive substitution it can be written:

Yt+i = Ai+1
1 Yt−1 +

i∑
j=0

A
j

1ut+i−j . (5.9)
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The responses of Yt to reduced-form errors (also referred to as forecast errors) i

periods ago2 are then captured by the matrix Φi = Ai
1. If Yt is a stable process (all

eigenvalues of A have modulus less than 1), i.e. each element of Yt is covariance
stationary, Eq. (5.8) can be equivalently expressed according to the moving average
(MA) representation (Wold decomposition):

Yt =
∞∑
i=0

Φiut−i , (5.10)

where Φi is calculated as above (for the one-lag case), with Φ0 = I . From
Eqs. (5.10), (5.2) and (5.7) it follows

Yt =
∞∑
i=0

ΦiBB−1ut−i =
∞∑
i=0

ΦiBεt−i =
∞∑
i=0

Θiεt−i . (5.11)

If the VAR is not stable, the infinite Wold representation is not allowed, but the same
approach to calculate Φi and Θi will work, because Eq. (5.9) does not depend on
stationarity. In case of unstable process, the impulse response functions will not be
tied to the MA representation and will not converge to zero for i →∞. In particular
if Δxt is stationary the impulse response function to Δxt will converge to a finite
number.

This framework to calculate impulse response functions can be easily extended
to the case of more lags using a “companion matrix” representation (see [44, p. 25])
and is not substantively affected by the presence of a constant in (5.8). However, it
cannot be applied to nonlinear VAR models, due to its reliance on Eq. (5.9).

Thus structural impulse responses in a nonlinear setting are defined in an
alternative manner, using the concept of conditional expectation [44, 45, p. 615].
Denoting by Ωt−1 the information set available at date t−1 and by δ the magnitude
of the impulse of which one wants to study the response (e.g. δ = standard deviation
(ε1t )), the structural response of xt+i to the structural shock ε1t is defined as

Ix(i, δ,Ωt−1) = E(xt+i |ε1t = δ,Ωt−1)−E(xt+i |Ωt−1) i = 0, . . . , H. (5.12)

Having estimated a nonlinear reduced form VAR model (5.4) and having recovered
the structural shocks (for example on the basis of additive noise model framework,
see end of Sect. 5.2.3), one can evaluate (5.12) using a Monte Carlo procedure
[44, pp. 615–616]. In this procedure, one simulates two time paths: in a first path
the shock of interest is set at time 0 to a particular value δ and the subsequent
realizations of the variables of interest are estimated; in a second time path the value
of the shock of interest is drawn from an empirically estimated marginal distribution.

2Or, equivalently, the responses of Yt+i to forecast errors at time t .
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Thus, Eq. (5.12) is estimated by subtracting the average outcome of the second path
from the first.

5.2.5 Granger Causality in a VAR Framework

VAR models have also been used for a type of causal analysis that does not involve
the identification of a structural model like Eq. (5.3). This approach is based on a
notion of causal relationship proposed by Granger [23, 24], which is referred to as
Granger causality. Granger’s general definition of causality relies on two general
principles: (i) the effect does not precede its cause in time; (ii) the causal time
series contains unique information about the series being caused that is not available
otherwise (see [13]). A corollary of these principles is that xt Granger causes yt if xt

is helpful for predicting future values of yt . Incidentally, these tenets share profound
similarities with probabilistic theories of causality proposed in the philosophy of
science literature [20, 21, 67] (see also [65]).

Although the definition of Granger causality is more general (see Sect. 5.3.1
below), several empirical studies and statistical software make it operational in a
linear VAR framework. Consider a bivariate VAR with p lags:

(
xt

yt

)
=

p∑
i=1

[
a11,i a12,i

a21,i a22,i

](
xt−i

yt−i

)
+ ut . (5.13)

In this framework xt is said to be non-Granger-causal for yt if and only if
a21,i = 0 for i = 1, . . . , p [49, p. 154]. This amounts to say that the information set
available until time t−1 to forecast yt comprises only xt−1 (with more lagged terms)
and yt−1 (with more lagged terms), and one wants to check whether excluding or
not lagged xt from the information set makes a difference in predicting yt . The zero
restrictions can be tested with standard Wald χ2- or F -tests, which have standard
asymptotic properties if the series are stationary [49, p. 154].

A main limitation of this framework is that lagged xt may make a difference
in forecasting yt (so that to infer that xt Granger-causes yt ) because it contains
information that is not contained in the information set comprising lagged yt and
lagged xt , but it is always possible that if one considered a larger set of information,
for example one containing lagged values of a series zt , xt would not bring a further
contribution for the prediction of yt . If zt is a common cause of both xt and yt

one would have wrongly inferred that xt causes yt . Thus, although scholars have
worked in this direction, introducing concepts such as conditional independencies
and higher-order interactions, causal sufficiency is still a fundamental tenet of this
approach; this is particularly true, if the focus on causality goes beyond what
sometimes is referred to as “predictive causality.”

Granger-causality in causal pairs is a very powerful method in a setting in which,
as mentioned in the introduction, the presence of a causal relationship between the
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two variables, until some lag p ≥ 0, is known, but is unknown whether it is xt−p

that causes yt or it is yt−p that causes xt .
Suppose, for example, that is known that xt−p causes yt with p = 0 or 1 and there

are no causal relationships from yt to xt at any lag. Then in all the 3 admitted cases
in which xt can cause yt ((i) xt−1 → yt ; (ii) xt → yt ; (iii) i ∪ ii), the coefficient
a12,1, estimated by regressing equation (5.13), is expected to be not significantly
different from zero, while the other coefficients of the same matrix will be non-
zero. Symmetrically, if yt−p causes xt with p = 0, 1 (and no feedback from xt to yt

at any lag), then the only coefficient of the same matrix, obtained by regressing the
same equation, which is expected to be zero is a21,1.

Standard Granger-causality in a VAR framework neglects, by choice, the con-
temporaneous causal link, which is considered by the structural VAR approach.
Geweke [19], however, proposes an extension of the Granger-causality concept to
detect linear contemporaneous feedback between two time-series, xt and yt .

Jacobs et al. [41] and Hoover [32, pp. 151–152] present examples of bivariate,
one-lag structural VAR models in which xt−1 → yt ; yt−1 → xt ; xt → yt ,
but, for particular configurations of the parameters, in the reduced form VAR the
coefficient corresponding to the influence of yt−1 on xt (a11,1 in Eq. (5.13)) is
zero. One could exclude these types of parameters configuration as “measure-zero.”
This assumption would be similar to the faithfulness assumption in the graphical
causal model literature [64], where configurations of parameters that yield statistical
independence actually corresponding to causal dependence are ruled out. Hoover
[32] argues further that specific configurations of parameters for which Granger
non-causality does not match structural non-causality may correspond to theoretical
economic models and thus cannot be easily dismissed.

5.3 Direct Causal Search

In this section we discuss methods for causal pairs search that are applied directly
to time series data, without filtering them through a vector autoregressive model.
Skipping VAR estimation has the clear advantage of not being tied to the imposition
of a functional form (e.g. linear VAR), when estimating the relationship between
current and lagged values of the variables of interest. On the other hand, direct
causal search deals directly with autocorrelated data.

5.3.1 Granger Causality

As mentioned above (Sect. 5.2.5), the central notion in Granger causality is “incre-
mental predictability” [32, p.150]: if a time series yt+1 is better predicted by the set
of all information available up to time t than by the same information set less the
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series xt , then xt Granger-causes yt+1. The general definition given by Granger [24,
p. 49] is that xt is said to cause yt+1 if

P(yt+1 ∈ A|Ωt) 
= P(yt+1 ∈ A|Ωt − xt ), (5.14)

where Ωt is all the knowledge in the universe available at time t , Ωt − xt is the
same information set except the values taken by a xt up to time t , where xt ∈ Ωt ,
and A is any set of values that yt+1 can take. We can also write that xt does not
Granger-causes yt+1 if [13]

yt+1⊥⊥Ωt |Ωt − xt , (5.15)

otherwise xt is said to Granger-cause yt+1. As Granger [24] admits, this general
definition of causality is not operational, i.e. it cannot be implemented with actual
data. A practical solution is to consider Ωt as incorporating only current and past
values (until certain lags) of xt , yt and of a set of observed variables Zt . Thus we
have that xt is Granger-noncausal for yt+1 if [16, 66]

yt+1⊥⊥{xt , . . . , xt−q}|{yt , . . . , yt−p, Zt , . . . , Zt−r }, (5.16)

given lags p, q, r , where by {xt , . . . , xt−q} we denote the σ -field generated by the
vector of random variables (xt , . . . , xt−q), and similarly for {yt , . . .}. The σ -field
generated by a random variable is the set of events that may be described in terms
of that random variable [16, p. 588]. Let us suppose that the background knowledge
available at time t comprises only two time series: xt and yt . Then, given lags p and
q, xt−1 does not Granger causes yt if

yt ⊥⊥{xt−1, . . . , xt−q}|{yt−1, . . . , yt−p}. (5.17)

Assuming that xt and yt are stationary and ergodic, many studies have proposed
nonparametric tests of (5.17), without assuming a linear structure (which could be
treated in a linear VAR framework) (see [1, 2, 4, 12, 31, 66, 70]). In case of p, q = 1
the proposed tests have high performance, which tends to decline for high p and q

for data with limited sample size [6]. The assumption of Ωt as comprising only two
time series is, of course, a strong assumption in empirical contexts where causal
sufficiency may fail.

5.3.2 Graphical Models for Time Series

Since Granger-causality faces fundamental hurdles in case of unmeasured causal
variables, one possible solution is to rely on causal inference procedures that are
designed to perform well in presence of latent variables. One algorithm that is
asymptotically correct in the presence of latent variables is the Fast Causal Inference
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(FCI) algorithm proposed by Spirtes et al. [64]. This method belongs to the more
general approach of graphical causal models based on conditional independence
tests, also known as “constraint-based causal search” (see [63]). We have mentioned
this approach in Sect. 5.2.1, noticing that it was of little use when applied to
pairs of estimated VAR reduced-form residuals. This approach, however, has larger
applicability when applied directly to pairs of time series data (not filtered by a VAR
model), because it can exploit the possibility of conditioning both on lagged and
contemporaneous variables. An interesting method, in this setting, is the adaptation
of the FCI algorithm that Entner and Hoyer [14] propose for time series.

In case of causal sufficiency (and no feedback loops), constraint-based causal
search moves from the assumption that the data generating process can be described
by a directed acyclic graph (DAG) and a joint distribution P(X), where X =
(X1, . . . , Xn) is the set of observable variables represented by the set V of n vertices
of the DAG. Causal inference is based on two assumptions: Markov and faithfulness
condition. Markov condition states that if vertices i and j of a DAG G given some
subset W ⊆ V \{i, j} are d-separated (a graphical criterion defined by Pearl [54]),
then we have Xi ⊥⊥ Xj |{Xw : w ∈ W }. Faithfulness condition states that all
(conditional and unconditional) independence relations in P(X) are entailed by
the Markov condition. In this setting, the PC algorithm [64], on the base of these
assumptions, starts from a complete graph (all vertices connected by undirected
edges) over all variables, and performs a series of independence tests that allows the
removal of edges between pairs of variables that are independent conditionally on
any set of variables (included the empty set). Then it makes use of some rules which
allow us to orient edges among triple of vertices, and in particular to distinguish
between collider (· → · ← ·) structure and fork/chain structures (· ← · → ·,
or · ← · ← ·, or · → · → ·). This is also done on the basis of conditional
independence tests and the two conditions above. The outcome of the algorithm is a
set of DAGs that share the same (conditional) independence relations, i.e. a class of
Markov equivalent DAGs.

Relaxing the assumption of causal sufficiency, the FCI algorithm [64] moves
also from the assumption that the process underlying the data can be described
by a DAG, but this DAG may contain vertices that correspond to latent variables.
Richardson and Spirtes [60] (see also [8]) introduced a new class of graphs whose
vertices are observed variables, but in which the causal relationships may involve
latent variables. These graphs, in which a latent cause Z affecting the observed
variables X and Y is represented by X ↔ Y , are called maximal ancestral graphs
(MAGs). The idea is that any DAG whose vertices include latent variables can be
transformed in a unique MAG whose vertices comprise only observed variables.
Moreover, MAGs encode conditional independence relations among the observed
variables through m-separation, a generalization of d-separation [8, 60]. A MAG is
a graph M with the following properties: (i) M is a mixed graph (it contains not
only directed (→), but also undirected (−) and bi-directed (↔) edges); (ii) M is an
ancestral graph (there is no vertex i which is a ancestor of any of its parents nor any
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of its spouse3); (iii) for every pair of variables 〈Xi,Xj 〉 there is an edge between i

and j in M if and only if there does not exist a set of vertices W ⊆ V \{i, j} in M
such that Xi⊥⊥Xj |{Xw : w ∈ W } [14, 60].

Similarly to PC algorithm, the output of the FCI algorithm is a class of MAGs that
entail the same set of conditional independence relationships. This class of MAGs
is represented by a partial ancestral graph (PAG), which is a graph which have
a third edge mark, besides arrowtail (−) and arrowhead (>), namely a circle (◦).
Excluding feedback loops or selection bias (hence undirected edges), a PAG can
only incorporate these types of edges:→,↔, ◦→, and ◦−◦. If Xi ↔ Xj then neither
variable is ancestor of the other and there is a latent variable between Xi and Xj .
The circle (◦) denotes the case where it is undecided whether in the underlying data
generating process there is an arrowtail or an arrowhead next to the vertex where
the circle appear. This means that the PAG contains a MAG with (−) and a MAG
with (>) at that location. Like the PC algorithm, the FCI in a first step removes
edges from a complete graph on the base of conditional independence tests, and in
a second step it orients edges so that the inferred causal structures are in tune with
the Markov and faithfulness assumptions (all the conditional independence relations
must be derived from m-separation).

Entner and Hoyer [14] adapt the FCI in a time series framework, which they call
tsFCI. Suppose the observed time series variables are {xt } = x1, . . . , xT and {yt } =
y1, . . . , yT . The algorithm starts from a complete graph on a time window of the
time series, i.e. the set of vertices are xt , xt−1, . . . , xt−p, yt , yt−1, . . . yt−p. It then
remove edges from this complete graph, as in a standard FCI algorithm, on the basis
of conditional independence test, but with the addition that if the contemporaneous
edge is eliminated, this will be eliminated at all time units (t, t − 1, . . . , t − p). If a
lagged edge with lag l is eliminated (for example from xt−l to yt ), this is eliminated
at all time units (for example from xt−l−1 to yt−1). Orientation makes use not only
of the orientation rules of the standard FCI algorithm, but also makes use of the
“arrow of time”: if there is an undirected edge between two lagged variable, it will
be put an arrowtail at the variable coming before and an arrowhead at the variable
coming after. Moreover, if an edge is oriented contemporaneously at time t , this will
be oriented in the same manner for all time units (t, t−1, . . .). If a lagged edge with
lag l is oriented (for example xt−l → yt ), this is oriented in the same manner for all
time units (for example xt−l−1 → yt−1).

Thus, exploiting the assumption that an effect cannot precede a cause and the
assumption of repetition of causal structures over time (time invariance), one can
reach a more detailed description of the data generating process than the one
that would be provided by a standard application of constraint based algorithm.
However, since these methods ultimately rely on conditional independence tests

3A vertex i is an ancestor of j if there is a sequence of directed edges (→) between i and j . A
vertex i is a parent of j if i → j . A vertex i is a spouse of j (and j a spouse of i) if there is a
bi-directed edge between i and j .
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is crucial that they are designed taking into account the specificity of testing self-
dependence in a time series context (see [46]).

5.3.3 Additive Noise Models

We consider in this subsection the problem of distinguishing among different causal
structures over the time-series pair {xt , yt }, using a specific class of structural
equation models. We assume that: (i) there are no latent common causes between
xt and yt (at any lag); (ii) no contemporaneous causal feedback loops (i.e. either
xt → yt or xt ← yt , but it is possible that xt−s → yt → xt+h, for s ≥ 0, h ≥ 1);
(iii) each variable xt and yt causally depends on its own past (respectively xt−1, . . .

and yt−1, . . .) until a lag p; (iv) both contemporaneous and lagged causal structures
recur over time: if xt−i → yt then xt−i−s → yt−s , for i ≥ 0, s ≥ 1. To simplify the
illustration, we also assume here that (v) p = 1. In Fig. 5.3 we show the 12 directed
acyclic graphs (DAGs) corresponding to all the possible causal structures related to
the data generating process (represented as unit graphs) under these assumptions.
We also assume that (vi) xt and yt are stationary and ergodic processes. We also
assume that the data generating process can be formalized as a specific type of
structural equation model (or functional equation model, see [55]), namely as an
additive noise model [35, 56, 57], where

xt = fx(PAx)+Nx
t (5.18)

and

yt = fy(PAy)+N
y
t , (5.19)

where PAx are the graphical parents of xt (and PAy of yt ) in the DAG representing
the data generating process, and Nx

t and N
y
t are independent white noise processes.

We assume (vii) Nx
t ⊥⊥ PAx , N

y
t ⊥⊥ PAy , and Nx

t ⊥⊥ N
y
t ; (viii) fx(·) and fy(·) are

either nonlinear functions or linear but with the additional assumption that Nx
t and

N
y
t have non-Gaussian distribution.4

In Fig. 5.3, below each DAG it is shown the set of corresponding structural
equations and the set of implied (conditional or unconditional) independence
relationships. Hoyer et al. [35] (see also Sect. 5.2.3) proposes a procedure to check if
a DAG corresponding to a nonlinear additive noise model is consistent with the data:
first one constructs a nonlinear regression of each variable on its parents, then one
tests whether the estimated residuals are independent of the covariates and among

4Specific nonlinear functions fx(·) and distributions of the noise terms have also to be excluded.
A precise specification can be found in Peters et al. [57, Proposition 23] and Zhang and Hyvärinen
[69].
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Fig. 5.3 Unit graphs of all the possible structural equations models under assumption (i)–(viii)
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each other. If any independence test is rejected the DAG is rejected, if none of the
independence tests are rejected, the DAG is consistent with the data.

Thus, in principle, one could run the regressions corresponding to the equations
indicated below each DAG in Fig. 5.3 to check whether a specific DAG is consistent
with the data. Let us analyze some specific cases.

If the data are generated by DAG 1 (see Fig. 5.3), and the data generating process
were not known to the observer, by constructing the nonparametric regressions5:

xt = f1(xt−1)+N
x,1
t (5.20)

yt = f1(yt−1)+N
y,1
t (5.21)

and by not rejecting the independence relations:

N̂
x,1
t ⊥⊥xt−1, (5.22)

N̂
y,1
t ⊥⊥yt−1, (5.23)

N̂
x,1
t−i⊥⊥̂

N
y,1
t−j for〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, (5.24)

one would conclude the DAG 1 is consistent with the data. Are other DAGs
consistent with these findings? If we run the same regressions but using data

generated by DAG 2, we will not necessarily reject: N̂
x,1
t ⊥⊥ xt−1, N̂

y,1
t ⊥⊥ yt−1.

Indeed these regressions may suffer of omitted variable bias, but not of reverse

causality. However, we will have that ̂
N

x,1
t−1 ⊥⊥/ N̂

y,1
t . Indeed N̂

y,1
t results from

a regression in which it is omitted xt−1. Hence N̂
y,1
t is dependent on xt−1, and

since xt−1 is in turn dependent on ̂
N

x,1
t−1, then ̂

N
x,1
t−1 ⊥⊥/ N̂

y,1
t . If we run the same

regressions (Eqs. (5.20), (5.21)) using data generated by any other DAG (from DAG
3 to DAG 12), for analogous lines of reasoning we would reach the same conclusion:

N̂
x,1
t−i⊥⊥/ ̂

N
y,1
t−j for some 〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉.

Let us now suppose that DAG 1 has been found not consistent with the data and
one runs the nonparametric regressions (also indicated below DAG 2 in Fig. 5.3):

xt = f2(xt−1)+N
x,2
t , (5.25)

yt = f2(xt−1, yt−1)+N
y,2
t . (5.26)

By not rejecting:

5Here and below the subscript i in the function fi(·), as well as the superscript i in the noise term
N
·,i
t , indicate that these functions and noise terms enter in the additive noise model associated to

DAG i (see Fig. 5.3).
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N̂
x,2
t ⊥⊥xt−1, (5.27)

N̂
y,2
t ⊥⊥xt−1, (5.28)

N̂
y,2
t ⊥⊥yt−1, (5.29)

N̂
x,2
t−i⊥⊥̂

N
y,2
t−j for〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, (5.30)

one would conclude the DAG 2 is consistent with the data. If the data were generated

by DAG 3, we would have that N̂
x,2
t ⊥⊥/ ̂

N
y,2
t−1, because in regressing xt on xt−1 we

are omitting yt−1, which is a graphical parent of xt in DAG 3. If the data were
generated by any DAG containing the contemporaneous causal link (DAG 4–DAG

12, except DAG 10), we would have that N̂
x,2
t ⊥⊥/ N̂

y,2
t . If DAG 10 were generating

the data, we would have that N̂
x,2
t ⊥⊥/ ̂

N
y,2
t−1, because, again, we would omit yt−1 in

the regression of xt on xt−1.
Let us suppose now that DAG 4 is the data generating process. By running the

nonparametric regressions,

xt = f4(xt−1)+N
x,4
t (5.31)

yt = f4(xt , yt−1)+N
y,4
t (5.32)

and not rejecting

N̂
x,4
t ⊥⊥xt−1 (5.33)

N̂
y,4
t ⊥⊥xt (5.34)

N̂
y,4
t ⊥⊥yt−1 (5.35)

N̂
x,4
t−i⊥⊥̂

N
y,4
t−j for〈i, j 〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, (5.36)

we would conclude that DAG 4 is consistent with the data. If the data generating
process were any DAG with opposite contemporaneous causal link (DAG 5, 7,
9, 12), running the same regressions ((5.31), (5.32)) and tests ((5.33)–(5.36)), we

would get N̂
y,4
t ⊥⊥/ xt . If the data generating process were any DAG among DAG

2, 3, 6, 8, 10, 11, there would be no reverse contemporaneous causal link, but an
omitted lagged variables in one (or both) of the two regressions. This would imply

that N̂
x,4
t−i⊥⊥/ ̂

N
y,4
t−j for some 〈i, j 〉 = 〈1, 0〉, 〈0, 1〉.

These examples should already suggest that, under the framework of the 12 possi-
ble DAGs of Fig. 5.3, under the assumptions listed above, with an exhaustive search
of independence relationships derived by the possible DAGs, one is able to uniquely
identify the model that has generated the data. Based on these considerations, we
propose a search procedure formalized in the algorithm described in the Table here
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below. The algorithm avoids an exhaustive causal search, but at the same time is
able to uniquely identify, among the 12 DAGs represented in Fig. 5.3, the one that
has generated the data.

The search algorithm is able to efficiently infer one of the 12 DAGs on the
base of a limited number of nonparametric regressions and tests of unconditional
independence. Once the algorithms outputs DAG number i, however, we suggest
to check its consistency with the data through the nonparametric regressions and
(conditional and unconditional) independence tests indicated in Fig. 5.3 under the
inferred DAG number.

For a more general framework in which there are k possible time series and p lags
of causal influence, Peters et al. [56] propose a search procedure based on additive
noise models called TiMINO, i.e. time series models with independent noise. The

Search Algorithm

1. Input: Samples from a 2-dimensional time series of length T , maximal order p = 1.

2. Run nonpar. regressions: xt = f1(xt−1)+N
x,1
t ; yt = f1(yt−1)+N

y,1
t , get N̂

x,1
t , N̂

y,1
t

3. Test: N̂
x,1
t ⊥⊥N̂

y,1
t

4. If N̂
x,1
t ⊥⊥N̂

y,1
t

5. Test: N̂
x,1
t−i⊥⊥̂

N
y,1
t−j for 〈i, j〉 = 〈1, 0〉, 〈0, 1〉

6. If N̂
x,1
t−i⊥⊥̂

N
y,1
t−j for 〈i, j〉 = 〈1, 0〉, 〈0, 1〉, break, output DAG 1

7. If N̂
x,1
t ⊥⊥̂

N
y,1
t−1 and ̂

N
x,1
t−1⊥⊥/ N̂

y,1
t , then break, output DAG 2

8. If ̂Nx,1
t−1⊥⊥N̂

y,1
t and N̂

x,1
t ⊥⊥/ ̂

N
y,1
t−1, then break, output DAG 3

9. Else break, output DAG 10

10. If N̂
x,1
t ⊥⊥/ N̂

y,1
t

11. Run nonp. reg.: xt = f4(xt−1)+N
x,4
t ; yt = f4(xt , yt−1)+N

y,4
t , get N̂

x,4
t , N̂

y,4
t

12. Test: N̂
y,4
t ⊥⊥xt

13. If N̂
y,4
t ⊥⊥xt

14. Test: N̂
x,4
t−i⊥⊥̂

N
y,4
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉

15. If N̂
x,4
t−i⊥⊥̂

N
y,4
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, break, output DAG 4

16. If N̂
x,4
t−i⊥⊥̂

N
y,4
t−j only for 〈i, j〉 = 〈0, 0〉, 〈0, 1〉, break, output DAG 6

17. If N̂
x,4
t−i⊥⊥̂

N
y,4
t−j only for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, break, output DAG 8

18. Else break, output DAG 11

19. If N̂
y,4
t ⊥⊥/ xt

20. Run xt = f5(xt−1, yt )+N
x,5
t ; yt = f5(yt−1)+N

y,5
t , get N̂

x,5
t , N̂

y,5
t

21. Test: N̂
x,5
t−i⊥⊥̂

N
y,5
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉

22. If N̂
x,5
t−i⊥⊥̂

N
y,5
t−j for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, break, output DAG 5

23. If N̂
x,5
t−i⊥⊥̂

N
y,5
t−j only for 〈i, j〉 = 〈0, 0〉, 〈0, 1〉, break, output DAG 7

24. If N̂
x,5
t−i⊥⊥̂

N
y,5
t−j only for 〈i, j〉 = 〈0, 0〉, 〈1, 0〉, break, output DAG 9

25. Else break, output DAG 12

26. Output: One DAG among DAG 1 - DAG 12.
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output of TiMINO is however, a summary graph. This means that it is not possible
to disentangle between contemporaneous and lagged causal effects. The advantage
of our search algorithm is that it is possible to distinguish between these two types
of effects, but only under the specific framework of time series pairs.

5.3.4 Local Projections

Local projections were introduced by Jorda [42] to compute impulse responses
(see Sect. 5.2.4) without specifying and estimating a VAR model. Furthermore,
any attempt of representing the data generating process through a multivariate time
series structural system is eschewed in local projections. The idea here is to focus
on the estimation of impulse responses through regression methods that are applied
at each period of interest, without hinging on a pre-specified or pre-estimated time
series model.

Let be Yt = (xt , yt )
′, as in Sect. 5.2.1. Jorda [42] considered projecting Yt+s onto

the linear space generated by (Yt−1, . . . , Yt−p)′ for a certain choice of lag p, namely

Yt+s = αs + P s+1
1 Yt−1 + P s+1

2 Yt−2 + . . .+ P s+1
p Yt−p + us

t+s , (5.37)

where αs is a (2×1) vector of constant, P s+1
i are (2×2) matrices of coefficients, and

us
t+s is a (2 × 1) vector of errors by construction uncorrelated with the regressors.

Superscripts here are meant to denote the time window where the regression is
performed.

Impulse response functions are defined as the difference between two forecasts,
which is an idea consistent with Eq. (5.12). More specifically, we have that the
impulse response of xt+s to a shock at time t , s ∈ Z is

IR(t, s, δ) = E(xt+s |v1t = δ, Yt )−E(xt+s |v1t = 0, Yt ) i = 0, . . . , H. (5.38)

where E(·|·) denotes the best, mean squared predictor, v1t is a disturbance shock,
and d is the magnitude of the shock the impact of which one wants to measure.

The impulse responses estimated from (5.37) are

IR(t, s, δ) = P̂ s
1 δ. (5.39)

As noted by Kilian and Lütkepohl [44, chapter 12], these impulse responses will be
relative to a reduced-form error (vit = uit ) and not to the true shock affecting the
system, if they are estimated directly through a least square regression of Eq. (5.38).
Thus, it is fundamental in this context to transform the reduced-form residuals in
a mixture of structural shocks. But here the problem is analogous to the problem
of identification of the structural VAR model and the literature on local projections
seems not to have found a method yet that bypasses this step.
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5.4 Conclusions

In this paper we have addressed the problem of causal inference from data
that are realizations of bivariate time series processes. We have focused on the
setting typically encountered in econometrics, namely stationary or difference-
stationary autoregressive processes with additive noises. The standard approach in
econometrics to address this problem is structural vector autoregressive analysis.
This allows the researcher to filter the time-series data, in order to apply causal
search algorithms to the i.i.d. filtered data. Since the time structure is filtered out,
the output of this causal search is a contemporaneous causal structure, which, in a
second step, gives the possibility of recovering the entire structural autoregressive
model. In a causal pair setting, however, causal search in this framework is limited.
For example, in the case of Gaussian data, the linear causal structure between
the two filtered time series is not identifiable. We have shown that identification
is possible under non-Gaussianity (exploiting independent component analysis) or
under non-linearity (exploiting non-linear additive noise model). But we have also
shown that in a setting of bivariate time series, an alternative valid approach is
to address the problem of causal inference by avoiding the vector autoregressive
framework. This is possible by applying graphical models algorithms (like FCI) or
nonlinear additive noise models algorithms (like the one presented in this paper)
directly to the data, without filtering them. We have also shown the possibility of
applications of Granger non-causality testing and local projections in a framework
in which VAR models are not necessarily estimated. The latter two techniques,
however, deviate for many aspects, from a structural interpretation of causality (see
footnote 1), i.e. from a framework which allows intervention, while they are closer
to a notion of predictability. A study of the relative merits of the different methods
presented above with empirical and simulated data is left to future research.
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Chapter 6
Beyond Cause-Effect Pairs

Frederick Eberhardt

6.1 Introduction

This volume has focused on the identification of cause-effect pairs. The original
cause-effect pair challenge at the NIPS 2008 Causality workshop considered the
specific case of determining the edge orientation between two causal variables:
X → Y vs. X ← Y (that is, the blue partition in Fig. 6.1). The unconnected case
X Y (case (c)) can be easily excluded with a suitable independence test. The NIPS
2013 challenge extended this setting to three classes, X → Y , X ← Y or the null
class, which, for the purposes of that challenge, consisted of the unconnected case
X Y or the case of pure confounding X ↔ Y (this notation is used as shorthand
for X ← H → Y , where H is unobserved, but where neither X or Y cause each
other). That is, it combined cases (c) and (d) in Fig. 6.1 into one class, which had to
be distinguished from (a) and (c), resulting in the red partition.

As Dominik Janzing already noted in Chap. 1, the identification of the causal
relation between two variables can, of course, be more complex than just deter-
mining whether one causes the other. The variables that cause each other may in
addition be confounded (cases (e) and (f)), they might stand in a feedback relation,
where each causes the other (X→←Y ), or a combination of feedback and confounding.
Moreover, dependencies between the two variables may arise for other reasons, such
as sample selection bias, ill-defined variables or other non-causal relations, such as
e.g. logical relations.

This chapter reverses the specific focus on determining the cause among a pair of
variables by connecting the ideas that have come out of the NIPS 2013 challenge to
the broader question of how to learn causal graph structures over multiple variables,
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Fig. 6.1 The Cause-Effect Pair challenge and its extensions. The original 2008 proposal focused
on the distinction between X causing Y and Y causing X, cases (a) and (b), the blue partition. The
NIPS 2013 challenge had three output classes, (a) vs. (b) vs. {(c), (d)}, i.e. the red partition, H is
assumed to be unobserved. The six depicted causal structures linking X and Y were distinguished
by the classification method developed in Chalupka et al. [5], but they assumed that X, Y and
H are all discrete. Of course, there are other possible causal structures among the two variables,
such as a feedback loop (alone or in combination with unobserved confounding), and observed
dependencies between two variables may have other non-causal sources, such as sample selection
bias or ill-defined variables

and by placing the cause-effect pair challenge in the context of a variety of other
causal discovery challenges.

In many ways, the generalization to learning the causal structure over a set of
variables is anachronistic, as the development of methods for learning causal graphs
from observational data preceded most of the methods for causal pairs discussed in
this volume. Prior to the focus on causal pairs, causal discovery algorithms primarily
used the independence structure over a set of variables to infer something about the
underlying causal structure (see, e.g. the discovery algorithms discussed in Spirtes
et al. [33]). The independence structure often (though not always!) underdetermines
the orientations of edges and consequently two or more different causal structures
cannot be distinguished. These are then said to be Markov equivalent, as are, in
particular, X → Y and X ← Y . Consequently, a significant motivation for studying
causal pairs came from a desire to improve the number of edges that could be
oriented for a discovery algorithm that outputs equivalence classes of causal graphs.
This challenge then resulted in several methods to solve the Cause-Effect-Pair
problem, distinguishing whether X → Y , X ← Y or neither. However, as is evident
from the possible output classes of the NIPS 2013 challenge, the solution proposals
were developed under the explicit assumption that confounding does not co-occur
with a direct causal relation between the variables: Either one of the variables causes
the other, or (exclusive or!) there is confounding or (inclusive or!) independence.
There was no need to be sensitive to the distinction between cases (a) and (e) or
(b) and (f) in Fig. 6.1. My understanding is that training data was only generated
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from these three classes. Consequently, it is by no means obvious that methods that
are successful at solving the cause-effect pair challenge would similarly work as a
post-processing step to orient causal edges in a structure learning graph that returns
unoriented edges that may, in addition, be confounded.

This chapter then aims to achieve the following: In Sect. 6.2 we explore whether
and how the winning methods from the NIPS 2013 cause-effect pair challenge could
be generalized to consider more classes. Section 6.3 briefly discusses the existing
approaches (and their challenges) that apply to the cause-effect pair challenge, but
have in fact been generalized to graph learning methods. Section 6.4 considers the
generalization of the Cause-Effect Pair challenge in a different direction—not as an
expansion to more variables, but posing it as a challenge in new types of discovery
scenarios over a pair of variables. And finally, Sect. 6.5 considers an inverted version
of the cause-effect pair challenge: how can one construct a cause-effect pair if in fact
one has a large number of individual variables that one would like to aggregate into
a pair of cause and effect variables?

6.2 How to Extend the Winning Methods Beyond the
Cause-Effect Pair Case?

Figure 6.1 illustrates in red the partition of the output that was considered in
the NIPS 2013 challenge. A natural initial extension is to ask whether there are
straightforward adaptations of the methods that succeeded at that challenge to
address, for example, the distinction among all six possible causal structures.
That is, in particular, are these methods extendable to distinguish cases that have
unobserved confounding in combination with a causal relation? I omit the case
involving feedback here primarily because the presence of feedback raises separate
questions about how exactly the data was sampled (e.g. as a time series or in
equilibrium?) and what exactly the feedback graph means. Chapter 5 considers these
issues in more detail.

6.2.1 Classification-Based Causal Discovery

Remarkably, all the winning or highly ranked methods of the actual competition
discussed in this volume treated the challenge as a pure classification task [7, 22,
23, 29]. In part, as Janzing describes in Chap. 1, converting the causal discovery
problem to a classification task was a deliberate aim of the challenge, since it vastly
simplified the comparative evaluation between methods.

The highly ranked approaches applied relatively standard machine learning
methods of the time to generate and select between 20 and 20,000 features using
the training data, which were then in turn applied to classifying the test data.
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The winning method [23] deliberately did not select features associated with well-
understood justifications for their relevance to causal inference, but instead used
feature patterns, which generated features from a set of simple measures of the data
(that is, features were generated from e.g. means, correlations, various loss functions
etc.). In contrast, the second placed method [7] at least used some features that were
based on the assumption that when in fact X → Y , then the conditional distribution
P(Y |X) is simpler than the conditional distribution P(X|Y ). Such an assumption
derives from the “independent mechanisms” assumption discussed in Chap. 1. This
approach is echoed, though with different features, in a subsequent paper [11].

The extension of these pure classification-based approaches to the problem when
the pair of causal variables may (also) be confounded is conceptually trivial. It
merely extends the classification problem from two (or three) classes (the blue or
red partition in Fig. 6.1) to however many more constellations of two variables one
intends to distinguish. One would expect that with more classes, more features might
have to be generated, but to the extent that there is any marker in the data that
provides a basis for distinctions between the underlying causal structures, there will
be suitable classifiers (if not the present ones) that distinguish the classes.

This, however, is the crux of this approach: We know from basic results
about the identifiability of causal models that for linear Gaussian and multinomial
parameterizations, the underlying causal structure remains underdetermined by the
Markov equivalence class, i.e. by the set of causal models that share the same
independence structure. Under the assumption that the causal model is acyclic and
that there are no unmeasured common causes, Geiger and Pearl [8] and Meek
[21] proved the completeness of independence based methods for continuous and
discrete causal models, respectively:

Theorem 6.1 (Markov Completeness) For linear Gaussian and multinomial
causal relations, an algorithm that identifies the set of causal graphs with the same
independence structure is complete.

That is, if the value of each variable in the causal graph is determined by a linear
function of its parents in the graph plus a Gaussian error term, or if the model is
multinomial, then the independence structure contains all the information about the
causal structure that there is. So, in particular, for these parameterizations, X → Y

and X ← Y cannot be distinguished in principle. In fact, this underdetermination
is worsened if there can be unmeasured common causes. So for a causal pair, no
matter whether in fact there is an edge one way or the other, or confounding, within
the class of linear Gaussian or multinomial models, any of those structures can be fit
to the data. As we will see in Sect. 6.3 this is not true for other specific model classes
(such as e.g. for additive noise models). For those model classes, the underlying
causal model can be uniquely (or close to uniquely) identified. For many other
classes of models the identifiability is simply unknown.

What do these types of identifiability results imply for classification based causal
discovery methods?—Most obviously, unless some additional assumption about, for
example, the parameterization of the causal relations is made, such classifiers will
exhibit an irreducible baseline error, a misclassification error that cannot be avoided.
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In the strict sense of the statistical term then, these methods cannot be consistent,
since the models are not uniquely identifiable.

In classification tasks in machine learning, such a baseline error is standard
and widely accepted as an unavoidable difficulty of the problem to be solved—
after all, not all images of dogs can be distinguished from all images of cats. But
for causal discovery, the challenge for any extension along these lines is that if
there is no theoretical justification for the features being used, it remains unclear
what the magnitude of the irreducible error of the method is. The estimation of
such an error hinges on the appropriateness of the assumption that the training and
test data accurately represent the manifold of causal models that the algorithm is
subsequently applied to. Of course, the appropriateness of the training and test data
is an issue every classification algorithm faces for any domain (e.g. are 20% of the
images I will have to classify really going to be dogs, as my training/test datasets
suggest?). But in the causal case this problem is exacerbated due to the dearth of real
data for which the true causal model is known. For dogs and cats we have a sense
of the manifold that any image of them will lie on. The manifold of causal models
we encounter in our data is much more elusive, not least because for many datasets
we have no idea what the ground truth is. Unlike for images of cats and dogs where
a simple inspection of the image can generally determine the label, the true causal
structure is not written into the data in any obvious way. This is why the Tübingen
causal pairs data set [24] proves so useful—it starts to address the question of what
real data looks like in cases where we know (or have good reason to think we know)
the causal ground truth.

Thus, while traditional causal discovery methods use background assumptions
about the underlying causal model (say, linearity, Gaussianity etc.) as basis for the
identifiability results, classification-based approaches to causal discovery have to
replace these with an assumption that the training/test data is appropriate for the
actual application of the algorithm and have to hope that the classes (the different
underlying causal models) can indeed be distinguished (with a low misclassification
error).

The assumption of independent mechanisms (discussed in Chap. 1) provides a
basis for this latter hope, as it offers a reason to expect detectable features in the data
that indicate what the underlying causal model is. These features might track the
complexities of the conditional distributions or identify particular independencies
between residuals in the data. Nevertheless, even under this assumption it remains
quite unclear how to obtain well-justified estimates of the inevitable misclassifi-
cation error, since the notion of independence in the assumption of independent
mechanisms, or the notion of complexity for the conditionals, is only understood
either in very abstract form (in terms of Kolmogorov complexity) or for very
restricted settings (with a specific computable measure). Chapter 1 discusses some
of these issues and provides useful references.
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6.2.2 Extensions

In light of the previous considerations, what can we say about the extension
of classification based causal discovery algorithms beyond the cause-effect pair
challenge?

Obviously, one can build a classifier with more classes and generate training
and test data for which one knows that the classes are identifiable, thereby
guaranteeing in principle a zero misclassification error. Alternatively, one could
train a classification algorithm on a dataset with more varied ground truth causal
structures and hope for the best that (1) they are distinguishable, and (2) that the
examples are representative of the domain of application. This latter approach is
essentially the route Lopez-Paz et al. [18] took when they trained a neural net on
the features of a kernel mean embedding of the distribution of a pair of variables
to address the causal pair task. They suggest that their approach can be extended to
the more general case of also distinguishing confounding by simply adding more
classes, but they do not actually show any results for the confounded case.

In Chalupka et al. [5] we took a somewhat different approach in trying to
classifying the six cases shown in Fig. 6.1, for discrete data. Obviously, for general
multinomial distributions, these models are not identifiable (except for case (c)).
Motivated by the assumption of “independent mechanisms”, we made the following
assumptions:

1. P(effect | cause) ⊥⊥ P(cause)
2. P(effect | cause = c) is sampled from an uninformative hyperprior for each c.
3. P(cause) is sampled from an uninformative hyperprior

In fact, (2) is often not taken to be part of the independent mechanisms assump-
tion, instead allowing for additional structure within the generating conditional
distribution. In the case of finite discrete variables, the uninformative hyperprior is
given by the Dirichlet distribution with all parameters set to 1. Under these generat-
ing assumptions the causal models (a) vs. (b) in Fig. 6.1 are not strictly identifiable,
but we were able to derive an analytic classification boundary with a well-defined
irreducible misclassification error. Without putting significant restrictions on the
nature of the confounder, we could not derive analytical classification boundaries
for all six cases in Fig. 6.1, but instead used a neural net trained on distributions
generated under the assumptions given above.

The approach we took is intermediate between the case of making sufficient
background assumptions that guarantee full identifiability, and one where the
irreducible misclassification error is completely unknown. We leveraged the fact that
the training and test data is known to contain features that distinguish the classes,
even if a baseline error remains. As can be seen in Fig. 6.2, the biggest “confusion”
for the classifier arises, unsurprisingly, in distinguishing the orientation. But as noted
above, while we can estimate the inevitable misclassification error in this way for
the general problem of classifying the six causal structures in Fig. 6.1, it remains



6 Beyond Cause-Effect Pairs 221

Fig. 6.2 Confusion matrix for the classification method developed in Chalupka et al. [5] (their
figure) to address the causal discovery task of distinguishing the six causal structures in Fig. 6.1.
The test set contained 10,000 distributions, with all the classes sampled with equal probability. For
the confusion matrix presented here X and Y are binary discrete variables. There is significantly
less confusion when the cardinality of the variables is increased. When each variable has more than
10 states, there is hardly any misclassification error—see the reference for details

unclear how reasonable these data generating assumptions are for any domain of
application.

The only other approach that I am aware of (thanks to an anonymous reviewer)
that attempts to tackle the full set of structures shown in Fig. 6.1 is in Janzing
and Schoelkopf [15]. Here the authors take X, Y and H to be high-dimensional
continuous variables, and apply spectral analysis. But rather than a lack of effort,
I suspect that the dearth of attempts to extend the classification-based approach
likely indicates the following realization: While these classification approaches are
straightforwardly generalizable to include more possibilities of the causal relation
between two variables (confounding, feedback, selection bias etc.), we generally
have little insight about the manifold that causal structures in any domain may
be described by. Consequently, our training data for these causal classification
algorithms is a somewhat arbitrary guess about the distribution of causal models we
expect to encounter. In contrast, in the case of the standard domains of application
of classification algorithms, such as image or text classification, we have a relatively
good understanding of the manifold that our samples come from, and we can more
easily explore the classification boundaries actively.

On the other hand, if there is a justification for the features that the classification
is based on—generally these are motivated by some version of the independent
mechanisms assumption—then for simple cases the irreducible misclassification
error can be quantified (such as in Hernandez-Lobato et al. [11] and Chalupka
et al. [5]), but these analytic results are often not easily generalized beyond the
very simple cases.
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6.3 Established Extensions to Graph Search

The previous section considered the generalization of the cause-effect pair challenge
to more than just the two possible relationships between two variables X → Y and
X ← Y . One may think that the search for causal graphs, i.e. a structure over a set of
variables, is then just a repeated classification problem of the relationship between
any two variables in the graph. I am not aware of any such approach using the
types of feature-based classification algorithms suggested by the winning methods
of the NIPS challenge, but the recent publication of Goudet et al. [10] goes in this
direction.

6.3.1 Additive Noise Models

There are a variety of methods based on the Additive Noise Model (see Peters
et al. [26] for an overview of ANMs) that both apply to the cause-effect pair
challenge and have been extended to the general graph search. In fact, in the case
of the “LiNGAM” discovery method for Linear non-Gaussian Models (a subclass
of the additive noise models), the method was developed for graph search from the
outset [32].

One way of looking at the ANM-based methods is to return to Geiger & Pearl’s
limiting result (Theorem 6.1 above) that indicates that for linear Gaussian models
the Markov equivalence class of the true model is the best one can hope for from
a causal discovery algorithm. This limiting result says nothing about the case when
the causal relations are non-linear or non-Gaussian.

Shimizu et al. [32] considered precisely one of these cases and showed that if the
functional relation still remains linear, but the error terms are anything but Gaussian
(LiNGAM), then the causal graph is uniquely identifiable. That is, the causal graph
is identifiable if for each variable y ∈ V, y is given by

y =
∑

xi∈pa(y)

aixi + εy with εy ∼ NonGauss(θ),

where pa(y) are the parents of y in the graph and NonGauss(θ) is some non-
degenerate distribution that is not Gaussian. So, in particular, X → Y and X ← Y

can be distinguished in this model class.
With slightly weaker identifiability results, LiNGAM has been extended to

acyclic causal structures with latent variables [13] and to causal structures with
cycles (but without latent confounding) [17]. So in many ways the LiNGAM
method is precisely what one would have hoped to discover in the cause-effect pair
challenge, since it addresses that particular challenge, but could also be extended
usefully to more general scenarios. But it preceded the challenge.
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The identifiability results for the non-linear ANMs take the other alternative of
avoiding Theorem 6.1 by exploring the role of the function. They assume that for
each variable y ∈ V, y is given by

y = fy(pa(y))+ εy

where fy(.) is a continuous function and εy is an additive error term with some
positive distribution. Hoyer et al. [12] then show that in general (i.e. except for very
special cases, that include the linear Gaussian case) X → Y can be distinguished
from X ← Y . Peters et al. [25] extended the identifiability result to graph structures.

It is worth noting an important aspect to the non-linear ANMs that is rarely
discussed in any detail: Unlike the LiNGAM model or traditional linear Gaussian
or multinomial causal models, non-linear ANMs are not (in general) closed
under marginalization. This effectively makes them inapplicable to scenarios with
unmeasured confounding, or, for that matter, any unobserved variable. If the true
model is a non-linear ANM, the marginalized observable model is, in general,
not. This feature then places a strong demand on having exactly the right set of
variables: if the world is indeed well-described by non-linear ANMs, then there is
exactly one level of correct causal description. Note, for example that the approach
to confounder detection considered by Janzing et al. [16] only considers non-linear
ANMs where there is no causal connection between the observed variables, and
therefore the marginalization problem does not arise. Of course, one might take the
unique level of causal description implied by non-linear ANMs as a virtue, useful
to detect truly direct causal relations, rather than as problem of this model class. In
that case, it would be of interest to develop an argument why we should expect the
world to be structured in this way.

While the LiNGAM methods in their original incarnation identified the graph
directly on the basis of matrix operations on the data, the extensions of non-linear
ANMs to identifying the graph are really just an iterative procedure of applying
the pairwise result, taking into account that any edge might now also be subject
to confounding from a variable higher up in the graph structure. In the Causal
Additive Model (CAM) approach of Bühlmann et al. [2], which considers non-
linear ANMs with Gaussian errors, the search method first determines the (partial)
order of the variables in the causal graph using maximum likelihood estimation, and
then subsequently the specific parents of each variable are determined using sparse
regression.

Other approaches based on the LiNGAM model echo this division of labor and
also outsource the search for graph structure to methods that use the independence
structure (such as the PC algorithm) and then only attempt to resolve the orienta-
tions. For example, Zhang and Chan [35] and Zhang and Hyvärinen [34] consider
the case where the data is generated by a linear non-Gaussian model and then subject
to a non-linear invertible transformation. This post-nonlinear model is in general
identifiable. The generalization from the pairwise case to a graph is simply done by
using another method like the PC-algorithm to search for the adjacency structure
among the variables and then applying the post-non-linear test to each undirected
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edge. A similar approach is taken by various other methods implemented in the
Tetrad code package [1].

While these identifiability results are remarkable and constitute significant
theoretical advances, the success of these methods at orienting edges in practice
remains unclear. Perhaps the most thorough empirical investigation of the Additive
Noise Methods was done in Mooij et al. [24] with a specific focus on the cause-effect
pair challenge. The results were mixed, with the method described in Hoyer et al.
[12] obtaining the best results. I am not aware of investigations that systematically
considered graph search.

The LiNGAM methods and variations of them have been applied in a variety of
real-world settings or realistic simulations and the authors report results on edge
orientations that are consistent with background knowledge (see e.g. Shimizu and
Bollen [31] and Ramsey et al. [27]). However, I am not aware of any application
of these methods where an edge orientation that was not determinable from the
independence structure, was subsequently confirmed, e.g. by experimentation. It
remains an open question just how good these orientation methods are in practice.

6.4 More Causal Challenges for Pairs of Variables

Section 6.2 discussed the possibility of extending the methods developed for the
cause-effect pair challenge to other causal scenarios among pairs of variables.
Although we did not discuss cases of selection bias or feedback cycles in any
detail, these are all cases that can be well described within the framework of causal
graphical models. This section considers two cases of the search for cause-effect
pairs that do not neatly fit this framework, but are still of significant interest to
causal discovery.

6.4.1 Discovery of Dynamical Causal Relations

Chapter 5 already discussed causal discovery in time series data. Time series
data has the advantage of providing a time order over the samples and therefore
somewhat restricts the possible causal influences among variables. But this time
order usually comes in fixed discrete intervals and in general there is no reason
to think that the measurement interval has anything to do with the speed of the
causal process. As a result, even if the causal inference algorithm works well,
the discovered causal effects should be thought of as causal effects relative to the
particular sampling rate. Various attempts have then been made to determine what
the actual causal process looks like if the time series subsamples the causal process,
i.e. when the causal effects occur faster than the sampling rate [9, 14].

In the extreme of infinitesimal time delay between cause and effect, the system
can be described as a dynamical causal process. Time is continuous, and—at least
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in principle—one could obtain measurements at any time granularity. However, the
data is not independent and identically distributed (i.i.d.), there is no stationary
distribution or any of the other niceties that come with (or are generally assumed
for) standard causal (even time series) data sets. Nevertheless, the cause-effect pair
challenge still remains: How can we learn the causal relation between X and Y (if
any) when they both have continuous-in-time trajectories?

As with the standard cause-effect pair challenge, one might define the ground
truth in terms of the results of interventions: X is a cause of Y if an intervention that
sets X to a particular value results in a change in Y . But can such a causal relation
be learned from just observing a suitably long trajectory? If so, how?

Despite the fact that dynamical models are ubiquitous in the natural sciences,
there are only very few approaches to causal discovery in dynamical systems. Roy
and Jantzen [28] provide an explicitly causal treatment of the problem for the case
of first order differential equation models. The challenge they pose can be easily
stated: Suppose one has measurements in (continuous) time of two variables x and
y, that may be unidirectionally coupled by a first order autonomous system, such as:

ẋ = α(x, ẏ, y)

ẏ = β(y)

Clearly, y has an influence on x but not vice-versa (hence, unidirectional coupling).
Given measurements of x and y in continuous time, and the assumption that we
are only considering first order autonomous systems (i.e. no unmeasured variables),
how can one determine that y → x and not vice versa? The authors propose a
method based on symmetry transformations and compare their approach to methods
based on Transfer Entropy and the Convergent Cross Map. This opens the door to
address much more general questions of causal discovery in dynamical systems.

6.4.2 Discovery of Relational Causes

The second setting also concerns a non-i.i.d. scenario for the data collection, but the
issue is rather different from the case of dynamical systems. Consider a relational
database that contains individuals that have properties, e.g. whether they smoke
or not, and relations, e.g. which other individuals they are friends with. A causal
question about an individual I that one may hope to address with such a database
is: Is it the friends that I has that cause I to smoke, or does I ’s smoking cause
I ’s friends to smoke, or is there a common cause of I ’s own and I ’s friends’
smoking, for example, the friendship relation itself? There may of course be other,
even causal, explanations, but we can start with these.

The challenge in addressing these types of relational causal discovery questions
arises from the fact that in addition to the causal relations, there are logical relations
between the individuals, in this case the friendship relation, that need to be taken
into account. These logical relations can introduce dependencies in the data that are
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not in fact causal. Similar such constraints may arise from boundary conditions or
conservation laws, such as that the total energy in a physical system is constant or
that there are resource constraints in economic models.

With a few very notable exceptions [19, 30], this task of relational causal learning
has been completely neglected, even though it might be one of the most important
causal questions when it comes to social science and social network data. The most
thorough investigation in this direction has been done in a variety of publications
Maier, Marazopolou and Jensen (see e.g. Maier et al. [20]. They have extended
the PC algorithm to relational causal models. To my knowledge there has been no
attempt to consider any of the insights from the cause-effect pair approaches in the
relational setting.

6.5 Construction of Cause Effect Pairs

Finally, I will invert the cause-effect pair challenge to ask how we obtain our cause
and effect pair variables in the first place. This question is motivated by a concern
that I think has been neglected in the discussion of causal models:

What makes a random variable causal?

The previous section already suggested that there can be logical relations among
variables in addition to causal ones. It follows from the definition of a random
variable that every function of a random variable is a random variable. But the
same is not true in the same way for causal variables: We do not consider X and
the variable Y that is defined as Y = 2X as two distinct causal variables. We might
consider them to be two descriptions of the same variable, or a translation of one
another, but we do not have two separate causal variables. In addition to the features
of ordinary random variables, causal variables play a role in supporting interventions
and counterfactuals. One cannot intervene on X without intervening on Y (as
defined above), nor are the counterfactuals between definitionally related variables
analogous to the counterfactuals between causally related variables. These points are
generally emphasized when structural equations are introduced to describe causal
relations: The authors generally point out that these equations should be understood
as assignments, often marked by the symbol “:=”, rather than as mathematical
equations where quantities can be exchanged between sides of the equal sign.
The reason, though not always explicitly stated, is that the causal relations permit
interventions and counterfactual statements that are, in general, not symmetric.

Obviously, any dependence between X and Y (as 2X) should be attributed to
their mathematical relation, and not to any causal connection. But this realization
leads us to a concern for causal discovery: Before applying any causal discovery
methods to a dataset, we need to ensure that the variables are indeed all distinct
and appropriate causal variables to be combined in a model, they should not be
definitionally related. The approaches to relational causal learning in the previous
section provide one avenue to address this challenge. I will here consider a different
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approach motivated not by relational databases, but by the challenge of constructing
causal variables.

Consider the following example: There have been several studies exploring
which features of a face lead to judging that face to be attractive. Subjects are
shown a variety of portraits and asked to rate them on a scale of how attractive
they consider the faces to be. What is the (visual) cause of such an attractiveness
judgment? In this case we have an effect variable (the judgment), but it is unclear
what the cause is. Is each pixel of the image a cause? Is the presence of a smile in
the picture the cause? Is there a correct level of description at which to identify the
cause?—Commonly, the symmetry of facial features is cited as a candidate cause
of attractiveness judgments. (See e.g. the overview here: https://en.wikipedia.org/
wiki/Facial_symmetry. The proposal is supported by evidence that changes in the
symmetry of the depicted faces lead to changes in the attractiveness judgment.

One may well wonder whether symmetry tells the whole story. There is evidence
that perfect symmetry appears uncanny and that slight asymmetries in the face score
higher on attractiveness. For our purposes here, the key question is about how
this search for causes should be approached in the first place. If we just consider
candidate causal hypotheses that are easily described in a few words, then even
if we find that they have some effect on the attractiveness judgment, they might
only describe aspects or indicators of the full (visual) cause of the attractiveness
judgment.

In current machine learning circles this concern would be approached using a
deep neural net to identify possibly very complex features in the portrait images
that do strongly predict the attractiveness judgment, even if the features themselves
do not lend themselves to a simple description in natural language. Since the studies
use an experimental set-up in which the evaluating subjects were shown portrait
images in a lab setting that minimizes any confounding, the predictive features
such a deep neural net detects can be considered to be causes of the attractiveness
judgments, not merely predictive features. The appropriate description of the cause
of the attractiveness judgment is not at the level of the pixels of the image, but at the
level of the features of the image. The pixels constitute the features in the images,
but the individual pixels are not causes of the attractiveness judgment. Manipulating
an individual pixel will not change the attractiveness judgment (unless it is a very
coarse image).

Here then is an attempt to give a coherent causal account of how we might
identify and construct the cause of the attractiveness judgment from a low level
pixel space: The pixels of the image containing the face describe a high dimensional
state space I . An image of a face specifies a state I = i in the pixel state space
I , where I is the variable ranging over the state space. We can use a neural net to
identify the features in pixel space that predict the attractiveness judgment E. The
features identified by the neural net then provide a partition Π of the state space of
the pixels I . The cause C of the attractiveness judgment E is then a variable, whose
state-space stands in a bijection to the labels of the cells of the partition Π identified
by the neural net. So the cause C of the attractiveness judgment E supervenes on
the pixel state space I , in the sense that any change in the cause C necessitates a

https://en.wikipedia.org/wiki/Facial_symmetry
https://en.wikipedia.org/wiki/Facial_symmetry
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change of at least one pixel, but there may be changes of the pixels that do not affect
the cause of the attractiveness judgment E. Importantly, the relationship between
the pixels and the cause of the attractiveness judgment is a mathematical one, not a
causal one. That is, the variable I ranging over the pixel state space I is related
to C, the cause of the attractiveness judgment, by a mathematical (definitional)
relation, not a causal one: C = f (I). Figure 6.3 illustrates the relations, including
the possibility the effect may also supervene on a much higher dimensional space
J . For example, the (mental) attractiveness judgment is presumably defined in
terms of the underlying neural activity. In general, there may also be unobserved
confounding between C and E, which complicates the inference from I to C, since
some features of I now may be merely predictive of E, but no longer causes of E.

In the scenario of judging the attractiveness of images of faces shown in a lab
setting, the features that a neural net identifies are obviously causal because the set-
up is experimental: the pictures of faces are shown to the judge in experimental
conditions. There is no confounding between content in the picture and the

Fig. 6.3 Construction of cause effect pairs: Consider I and J to be very high-dimensional
measurement variables, such as, for example images, or temperature maps, or neural recordings. In
many cases only coarser descriptions of the underlying system are relevant to the causal questions
we are interested in. For example, for the causal question “What makes a face look attractive?”
we are not interested in the pixel values of the image depicting the face, but in candidate higher
level features. Similarly, on the effect side, we are interested in the attractiveness judgment, not
necessarily in the neural details that implement the attractiveness judgment. So we have a cause
C of an effect E (which may in principle also be confounded by an unobserved H ), but C and E

supervene on the low level measurement spaces I and J , respectively. While the relations among
C and E (and H ) are causal, the relation between I and C is not causal, but constitutive (similarly,
for J and E). Any intervention on C necessarily is an intervention on I . Given I and J , can we
nevertheless construct a causal pair C and E?
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attractiveness judgment. In these conditions, a simple application of a neural net an
appropriate way to identify causal relations, since the predictive features correspond
to the causal ones. But what if the data were non-experimental? For example,
suppose we have a temperature map and a wind map over a specific geographical
region that specify the temperature/windspeed for each location in the region. We
obtained this data by observation, not experimentation, and for all we know, the
two maps may be heavily confounded by the location of the sun or other geological
activity. Can we still analyze the causal effect of the wind on the temperature?

One approach would be to consider the causal relations at the “pixel” level.
Each individual “pixel” of the wind map would be a candidate cause for any of the
“pixels” of the temperature map. If we allow for feedback, then the reverse relations
would also have to be considered, and there could be confounding. But even leaving
feedback relations and confounding aside, this approach would be equivalent to
claiming in our earlier example of attractiveness judgments that each pixel of the
image of the face individually may be a cause of the attractiveness judgment.
While it is possible that our judgments of attractiveness are that sensitive, it seems
implausible. The cause of the attractiveness judgment is a feature that supervenes
on the pixels, it is a function of the pixels, the pixels themselves are not the relevant
causal variables. Analogously then, a causal analysis of the relationship between
wind and temperature over a geographical area may well exist at a coarser level
of description than the “pixel level” of measurement. How then can we construct
a cause-effect pair from two high-dimensional spaces of observational low level
measurement variables?

In Chalupka et al. [3] we addressed this problem in the following way: Given
high-dimensional measurement variables I and J , we wanted to find a method that
could determine whether there are coarser variables C and E such that C is a cause
of E, i.e. C → E, and C = f (I) and E = g(J ) for some surjective functions f

and g. One of the criteria of identifying such a macro-level cause C of E is that we
have to be able to define intervention distributions P(E|do(C)). That is, in order to
define C, we have to be able to make sense of what it means to intervene on C and
specify a well-defined effect for such an intervention.

We started with an approach similar to the one proposed above for the case
of attractiveness judgments: Given the observational conditional probability dis-
tribution P(J |I ), we clustered states of I and J according to the following two
equivalences:

i1 ∼ i2 ⇐⇒ ∀j ∈ J, P (j |i1) = P(j |i2)
j1 ∼ j2 ⇐⇒ ∀i ∈ I, P (j1|i) = P(j2|i)

That is, we clustered states of I if they implied the same conditional probability
distribution for J , and we clustered states of J if for any i they had the same
conditional probability distribution. This clustering can be performed by a neural
net, and results in a partition Πo(I) of the state space of I and a partition Πo(J )

of the state space of J . If the probabilities in the above equivalences had been
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interventional probabilities, i.e. P(J |do(I)), then the discovered partitions would
already describe the states of C and E, respectively. But so far, the partitions only
describe the dependencies between I and J in a maximally succinct form. These
dependencies could still be entirely due to confounding between I and J .

So the questions is, how do the observational partitions Πo defined by the
equivalences above, differ from the causal partitions Πc of the state spaces of I

and J defined by:

i1 ∼ i2 ⇐⇒ ∀j ∈ J, P (j |do(i1)) = P(j |do(i2))

j1 ∼ j2 ⇐⇒ ∀i ∈ I, P (j1|do(i)) = P(j2|do(i))

The state space of C is defined as a bijection to the labels of the cells of the partition
Πc(I) implied by the first equivalence: While there may be several different states
of I that map to the same state of C, those differences are causally irrelevant to E.

We showed in the Causal Coarsening Theorem (see proof in Chalupka et al.
[6]) that under relatively weak assumptions, if indeed there are descriptions of the
causal system at a coarser level, then the causal partitions Πc are a coarsening of
the observational partitions Πo. That is, the distinctions in the state space of I that
are found by clustering on the basis of P(J |I ) are a superset of the distinctions in
the state space of I that have a causal influence on J .

This should not come as a surprise: all dependencies between two variables,
whether due to a causal relation or confounding, can be useful for predicting one
variable from another. This is the reason why we use a barometer to predict the
weather tomorrow: The distinctions it makes (in tracking pressure) are useful for
prediction. But we do not think that the barometer reading is a cause of the weather
tomorrow. The observational partition of the readings of the barometer needle are
very fine, but the causal partition of the barometer readings is maximally coarse,
since every reading has the same causal effect on the weather tomorrow, namely
none.

The Causal Coarsening Theorem provides the basis for an efficient experimental
method to check which distinctions in the observational partition are actually
causally relevant. One does not have to check every possible state of I , but only
the different distinctions of the observational partition. In cases where one cannot
intervene, the methods developed as a result of the cause-effect pair challenge
provide a natural basis to start detecting which features are causal and which are
due to confounding.

The approach provides an account of how to construct causal variables with well-
defined intervention distributions from low level measurement data. In Chalupka
et al. [4] we extend this approach to consider cases where there might be multiple
levels of causal description at various levels of analysis. But these results by no
means provide a full-fledged account of how to identify causal variables. As they
stand, they are restricted to discrete variables without feedback.
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6.6 Final Remarks

My view is that the cause-effect pair challenge at the NIPS 2013 workshop failed
in an interesting way: It did not produce winning methods with interesting gener-
alizable insights for the field of causal discovery. However, this failure highlighted
an important point about the limits of existing causal discovery methods: that for
specific settings with well-established training and test data, brute force black box
machine learning methods will outperform causal discovery algorithms. What is
one to make of that?—Unlike the case of image or text classification, we rarely
have a good understanding of what the ground truth causal relations look like. So
the success of black box machine learning methods on these sorts of challenges
provides very limited assurance of their success in general. This raises the question
of how to structure causal discovery challenges in future? The Tübingen test data
set seems like a step in the right direction. But we now need to go from the “causal
MNIST” dataset to the “causal ImageNet”. So which domains could provide large
and varied datasets with known causal ground truth?

With regard to the general question of where we stand with regard to handling
causal structures that are observationally Markov equivalent, I think the field has
made enormous steps forward, largely driven by the careful analysis of the Additive
Noise Model framework (which I frame broadly to include the LiNGAM methods).
But on that front, the advance on the theoretical side has not yet been matched by
broad successes in application.
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Chapter 7
Results of the Cause-Effect Pair
Challenge

Isabelle Guyon and Alexander Statnikov

7.1 Introduction

The problem of attributing causes to effects is pervasive in science, medicine,
economy and almost every aspects of our everyday life involving human reasoning
and decision making. What affects your health? the economy? climate changes?
The gold standard to establish causal relationships is to perform randomized
controlled experiments. However, experiments are costly while non-experimental
“observational” data collected routinely around the world are readily available.
Unraveling potential cause-effect relationships from such observational data could
save a lot of time and effort.

Consider for instance a target variable Y, like occurrence of “lung cancer” in
patients. The goal would be to find whether a factor X, like “smoking”, might cause
Y. The objective of the challenge we organized on “cause-effect pairs” is to rank
pairs of variables {X, Y } to prioritize experimental verification of the conjecture that
X causes Y. As is known, “correlation does not mean causation”. More generally,
observing a statistical dependency between X and Y does not imply that X causes
Y or that Y causes X; X and Y could be consequences of a common cause. But, is it
possible to determine from the joint observation of samples of two variables X and
Y that X should be a cause of Y?
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There are new algorithms that have appeared in the literature in the past few
years that tackle this problem. This challenge has been an opportunity to the public
to evaluate them and propose new techniques to improve on them. We provided
hundreds of pairs of real variables with known causal relationships from domains
as diverse as chemistry, climatology, ecology, economy, engineering, epidemiology,
genomics, medicine, physics, and sociology. Those were intermixed with controls
(pairs of independent variables and pairs of variables that are dependent but not
causally related) and semi-artificial cause-effect pairs (real variables mixed in
various ways to produce a given outcome).

This challenge was limited to pairs of variables deprived of their context.
Thus constraint-based methods relying on conditional independence tests and/or
graphical models were not applicable. The goal was to push the state-of-the art in
complementary methods, which can eventually disambiguate Markov equivalence
classes. The idea was to create a “causation coefficient”, analogous to a correlation
coefficient, but indicative not only of statistical dependency, but also of causal
orientation. The cause-effect pair challenges [8, 9] attracted a large number of
participants in the first round on Kaggle1 focusing on accuracy (over 300) and
only a few participants in the second round with code submission organized on
Codalab,2 with emphasis on code efficiency. The participants adopted a machine
learning approach, which contrasted, at the time, with previously published model-
based methods. They extracted numerous features of the joint empirical distribution
of X and Y and built a classifier to separate pairs belonging to the class X → Y

from other cases (X ← Y , X ↔ Y , and X ⊥ Y ). The classifier was trained
from examples provided by the organizers and tested on independent test data for
which the truth values of causal relationships was known only to the organizers. The
participants achieved an Area under the ROC Curve (AUC) over 0.8 in the first phase
deployed on the Kaggle platform, which ran from March through September 2013,
significantly outperforming baseline methods that reach an AUC around 0.6. The
participants were then invited to improve upon the code efficiency by submitting
fast causation coefficients on the Codalab platform (April through June 2014). The
causation coefficients developed by the winners have been made available under
open source licenses and the methods were presented at a NIPS workshop.3 The
challenge resources including data, code submitted by participants, and challenge
platform remain available for students and researchers at http://www.causality.inf.
ethz.ch/cause-effect.php.

7.1.1 Dataset

The design of the challenge dataset for round 1 (Table 7.1) is described in details in
Chap. 2. The dataset, which is freely available for download,4 can be very useful to

1https://www.kaggle.com/c/cause-effect-pairs.
2https://competitions.codalab.org/competitions/1381.
3http://clopinet.com/isabelle/Projects/NIPS2013/.
4Download the data http://www.causality.inf.ethz.ch/CEdata/AllDataCode/.

http://www.causality.inf.ethz.ch/cause-effect.php
http://www.causality.inf.ethz.ch/cause-effect.php
https://www.kaggle.com/c/cause-effect-pairs
https://competitions.codalab.org/competitions/1381
http://clopinet.com/isabelle/Projects/NIPS2013/
http://www.causality.inf.ethz.ch/CEdata/AllDataCode/
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Table 7.1 Cause-effect pair challenge data statistics (round 1)

Dataset All pairs X → Y X ← Y X ↔ Y X ⊥ Y real CE

Training 4050 965 1033 1010 1042 354

Validation 4050 986 1034 1014 1016 332

Test 4050 1041 1025 1007 977 364

Sup1 (artif, numeric) 5998 1514 1485 1500 1499 0

Sup2 (artif, mixed) 5989 1529 1466 1497 1497 0

Sup3 (real) 162 42 39 41 40 81

Total 24, 299 6077 6082 6069 6071 1131

continue evaluating methods and serve as a “mother distribution” for confirmatory
analysis.

Briefly, we provided hundreds of pairs of real variables with known causal
relationships, including real and semi-artificial pairs (80% semi-artificial data
and 20% real data). Real data came from miscellaneous sources: including the
UCI repository, past challenges (KDD cup, ChaLearn, Kaggle, DREAM, etc.),
R datasets, and NYU transcriptome data [21, 22]. The pairs were drawn from a
wide variety of domains of application (chemistry, climatology, ecology, economy,
engineering, epidemiology, genomics, medicine, physics, and sociology). Semi-
artificial data complemented the real data. They were obtained from real exogenous
variables from machine learning and data mining datasets, which were passed
through a wide variety of functions (line, parabola, cubic, sqrt, sine, hyperbola, log,
exp, tanh, atanh, rbf) and noise mechanisms (pre- or post-multiplication with real
exogenous variables). Both for real and artificial data, care was taken to disguise
the marginal distributions so it would be impossible from such information alone
to guess the causal direction. In particular, variables were standardized and the
distribution of number of unique values was approximately balanced across causal
classes. Specifically, all variables were post-processed in the same way:

• A random sub-sample of the num_val values original values was drawn without
replacement uniformly on a log2 scale between min_size and max_size, where
min_size=500 and max_size=8000. Pairs with less than 500 examples were not
sub-sampled.

• Pairs having at least one variable with only one value were eliminated.
• Variables with two values were considered binary and mapped to 0/1.
• Categorical variables with C values were assigned randomly class numbers

between 1 and C.
• Numerical variables (discrete or continuous) were standardized (the mean is

subtracted and then the result is divided by the standard deviation) and then
quantized by multiplying the result by 10,000 and rounding to the nearest integer.

The data were evenly split in three sets of equal sizes called training, validation,
and test set, each including 4050 pairs. We computed the average absolute value
of the Pearson correlation coefficient for the pairs of continuous variables, in the
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various causal categories. For pairs of independent variable we found 0.02. For X →
Y and X ← Y , we obtained 0.35. For non causally related dependent variables
X ↔ Y we found 0.16. The last category can therefore be separated from X →
Y and X ← Y on the basis of correlation alone. However, this is not an easy
separation, as the performance results indicate.

We provided two additional training datasets artificially generated. Those train-
ing datasets have balanced number of unique values across all classes. SUP1data
includes ∼6000 pairs of numerical variables. SUP2data includes ∼6000 pairs
of mixed variables (numerical, categorical, binary). We provided one additional
training datasets generated from real data (SUP3data), except for the X ↔ Y pairs
that are semi-artificial.

The SUP3 data was analogous to other “real data” provided in the training,
validation, and test sets. They were created from the Tuebingen dataset [15],
publicly available at the time of the challenge. The role of X and Y was reversed in
half of them to create both X → Y and X ← Y pairs. A random subset of half
of the original pairs was selected to create X ⊥ Y pairs by randomly permuting
independently the values of X and Y. The X ↔ Y pairs were obtained from a
random selection of half of the original pairs to which an algorithm that preserves
the marginal distributions while destroying the causal relationships was applied.
Pairs of artificially generated dependent variables that are not in a causal relationship
were used. Their values were replaced by the values of the real variables in a way
that preserves the rank ordering of the values (i.e. the smallest value in the artificial
variable is the smallest in the real variable, the second smallest artificial value is the
second smallest real value, etc.).

In round 2 (with code submission) fresh data were generated in a similar way for
training, validation, and test, and in the same amount (4050/4150/4150).

7.1.2 Challenge Protocol

We briefly outline the challenge protocols. More details can be found on the
websites of the challenge: http://www.causality.inf.ethz.ch/cause-effect.php.

1. Kaggle version (first round): The first event that lasted 5 months (end of
March to end of August 2013) was a “classical” data science challenge in which
the problem was to submit predictions to a classification problem. During the
development phase, the participants submitted results on the “validation set”. The
results were scored automatically on the platform and the corresponding scores
were shown on the “public leaderboard”. During the final phase, the participants
had to submit executable code capable of reproducing their results BEFORE the
organizers revealed the decryption key of the test data, then they submitted the
predictions on test data. The official final ranking was obtained using test set
scores kept on a “private leaderboard” visible to the organizers only, which was
revealed after the challenge ended once the results were validated. To validate

http://www.causality.inf.ethz.ch/cause-effect.php
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the results, the organizers ran the code provided by the participants for the top 10
participants.

2. Codalab version (second round): The second event lasted 2 months (mid April
to mid June 2013). It made use of the capability of the Codalab platform to
submit code (rather than just predictions). The participants had to submit either
Python code or Windows compiled executables, which computed a “causation
coefficient”. Training was performed off-line by the participants (using training
data supplied by the organizers). The code was tested on the platform using a
new edition of the validation and test data, not supplied to the participants. The
results on validation data and the execution time were provided as soon as the
execution completed. The results on final test data were not revealed until the
completion of the final phase.

The organizers encouraged the dissemination of results in several ways, by
inviting the participants:

• to fill out “fact sheets” (a brief survey on methods used in the challenge) to which
27 participants responded;

• to submit contributions to one of two workshops ( IJCNN 2013, August 4–9,
2013, and/or NIPS 2013, December 9, 2013).

• to submit short proceedings papers or full length papers to a special topic of the
Journal of Machine Learning Research (JMLR).

We also proposed a data donation track. However, it was canceled because of
insufficient participation.

7.1.3 Scoring Metrics

For the purpose of the challenge, variables X and Y are considered causally
related if:

Y = f (Y, noise) or X = f (Y, noise) .

If the former case, X is a cause of Y, and in the latter case Y is a cause of X. All other
factors are lumped into the “noise” variable. Samples of joint observations of X and
Y were provided, not organized in a time series. Feed-back loops were excluded and
only four types of causal relationships considered: G = {X → Y ,X ← Y ,X ↔
Y ,X ⊥ Y }, as previously defined. The problem was brought back to a 2-class
classification problem: for each pair of variable (X, Y ), determine whether X → Y

or not.
The participants were expected to produce a score between− inf and+ inf, large

positive values indicating X → Y with certainty, large negative values indicating
that X ← Y with certainty, middle range scores (near zero) indicating X ↔ Y or
X ⊥ Y .



242 I. Guyon and A. Statnikov

For each pair of variables, there is a ternary truth value indicating whether X →
Y (+1), X ← Y (−1), or neither (0). The scores provided by the participants
was used as ranking criterion. Their entries were evaluated with two Area Under
the ROC curve (AUC) scores: Let Ŷ be the predicted score Ŷ ∈ [− inf,+ inf] and
Y the target values Y ∈ {−1, 01}. We define Y1 = Y ;Y1(Y == 0) = −1; and
Y2 = Y ;Y2(Y == 0) = +1;. Then, the score of the challenge is defined as:

Score = Bidirectional AUC = 0.5
(
AUC(Ŷ , Y1)+ AUC(Ŷ , Y2)

)
(7.1)

The Forward AUC AUC(Ŷ , Y1) measures the success at correctly detecting
that X → Y rather than {X ← Y ,X ↔ Y ,X ⊥ Y }. The Backward AUC
AUC(Ŷ , Y2) measures the success at correctly detecting that X ← Y rather than
{X → Y ,X ↔ Y ,X ⊥ Y }. Since the problem is symmetric, we average both
Forward and Backward AUC.

The organizers also computed various other score for analysis purpose, but they
were not used to rank the participants. These other scores assessed the capability of
the methods to identify not only the causal direction, but to detect independence and
confounding. Let is call C the causation coefficient provided by the participants and
T the target values{−1, 0, 1} (−1 for X ← Y , +1 for X → Y and 0 otherwise).

• (challenge) Score: The score of the challenge, that is the average of two AUCs
for the separation of X → Y vs. everything else and X ← Y vs. everything
else.

• Causality (score): Similar to the score of the challenge, but limited to the pairs
X → Y and X ← Y . To compute this score, the X → Y and X ← Y pairs are
removed.

• Confounding (score): AUC for the separation of X ↔ Y vs. (X → Y or
X ← Y ) using abs(C). To compute this score, the X ⊥ Y pairs are removed.

• Dependency (score): AUC for the separation of X ⊥ Y vs. (X → Y or X ←
Y ) using abs(C). To compute this score, the X ↔ Y pairs are removed.

Notice that there is no score measuring how well X ↔ Y and X ⊥ Y are
separated since these two classes were lumped together with the same target 0.

The teams HiDloN and Bruce Cragin returned a causation coefficient not
centered on zero (a mere ranking of the pairs, smallest rank corresponding to most
likely X ← Y cases and highest rank to most likely X → Y cases. This did not
affect the calculation of the score of the challenge. However, this prevented us to
compute the dependency and confounding score. To allows us to do that, we just
centered their prediction coefficient by subtracting its mean over all pairs.
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7.1.4 Top Performing Causation Coefficients

The results of both challenge rounds are shown in Tables 7.3 and 7.5.

Round 1: Cause-effect Pair Challenge (on Kaggle)
In Fig. 7.1, we plotted the ROC curves for Round 1. They all present a strange
inflexion point that is uncommon and attributable to the non-homogeneity of the
data distribution, including four sub-classes G = {X → Y ,X ← Y ,X ↔ Y ,

X ⊥ Y }. The multi-modal nature of the distribution is also visible in Fig. 2.4.

The three winners of Round 1 are:

1. Team ProtoML-score = 0.8196, which ranked first (Diogo Moitinho de
Almeida) [2], with a method using nearly 20,000 features created automatically
based on curve fitting residuals using various models, then processed by a
Gradient Boosting Machine (GBM) [1, 5, 6].

2. Team Jarfo-score = 0.8105, which ranked second (José Adrián Rodríguez
Fonollosa) [3, 4], with a method largely based on information theoretic features
and statistics of the conditional distribution, also followed by a GBM classifier.
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Fig. 7.1 ROC curves. We compare the top 20 participants ROC curves for the separation X → Y

vs. other cases. The four best curves are color-coded: Red = ProtoML, Green = Jarfo, Blue =
HiDloN, Cyan = FirfiD

https://github.com/diogo149/CauseEffectPairsChallenge
https://github.com/jarfo/cause-effect
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3. Team FirfID-score = 0.7996, which ranked fourth (Spyridon Samothrakis,
Diego Perez, and Simon Lucas) [18] also used a method based on curve fitting
and information theoretic features, followed by a GBM.

In Round 1, 44 participants out of 267 submitted code for verification, including
all top 10 ranking participants. For the most part, the code was written in Python,
but we also received R and Matlab code. The organizers could reproduce the results
of all top 10 ranking teams, except for those of the HiDLoN team, which they could
not get to work. Because of lack of time to debug the problem, the HiDLoN team
decided to drop out. The prizes went to the teams ProtoML, Jarfo and FirfID, who
made their code publicly available under an open source license.

All three winning methods are remarkably similar. It may be more than a
coincidence that all three used GBM as a classifier, a method based on ensembles
of decision trees. An overwhelming majority of participants used ensembles of
decision trees (85%). This may have been biased by the Python sample code
that provided an example using Random Forests [11]. However, the top ranking
participants report better performances using GBM.

One may wonder if additional performance increase could still be gained. To
partially answer this question, we averaged the predictions of the top ranking
participants. Specifically, we first replaced the predicted values by their rank, as
a mean of normalizing them. We then averaged the ranks, using the validation
set accuracy to weigh their importance. The maximum score obtained is 0.8452,
a notable improvement over the final test score of the winner 0.8196, and the next
value to beat!

In post-challenge experiments, Alexander Statnikov and Sisi Ma of NYU
performed tests on fresh data, not used in the challenge (Table 7.2). The datasets
used in these experiments have been released on the Causality Workbench repository
(ECOLI and YEAST). Two experiments were conducted on the three winning
algorithms. Both experiments utilize a dataset (GNW_E.Coli dataset) with 3648
cause effect pairs (with 3616 number of one-sided edges and 32 double-sided edges)
where each pair has 1565 samples. This dataset was generated with GeneNetWeaver

Table 7.2 Post-challenge
(Cause-Effect Pairs)
experiments: results on a new
3648 pairs dataset generated
with GeneNetWeaver [19]

Experiment 1 Experiment 2

Algorithm NO retraining Retraining

AUC Jarfo 0.8730 0.9972

FirfiD 0.5963 0.9845

ProtoML 0.8085 0.9908

Time Jarfo ∼5 h ∼5 h

FirfiD ∼7 h ∼8 h

ProtoML ∼10 h ∼12 h

https://github.com/ssamot/causality
http://www.causality.inf.ethz.ch/repository.php?id=28
http://www.causality.inf.ethz.ch/repository.php?id=29
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3.0 [19], based on the E.coli transcriptional regulatory network. This dataset were
not available to participants at the time of the competition. For Experiment 1,
models were trained with a training set of 4050 cause effect pairs, provided by
the cause effect challenge (which contains pairs of REAL data of Yeast and E.coli
transcriptional data) and were tested on the whole GNW_E.Coli dataset (3648 cause
effect pairs). For Experiment 2, the GNW_E.Coli dataset was split into a training
set of 1824 cause effect pairs and a test set of 1824 cause effect pairs, respectively.
AUCs were computed on the predictions of test sets as a performance metric for
individual algorithms. Double sided edges were excluded when computing the
AUC. These experiments show that the Jarfo coefficient is robust to changes in
data distribution. All algorithms do well when retraining, but they are less capable
of generalizing across datasets than the Jarfo coefficient.

Round 2: Fast Causation Coefficient Challenge (on Codalab)
The code of Jarfo, which was the most computationally efficient and robust to
changes in data distribution among the top ranking methods of Round 1, was chosen
to become the baseline to beat in Round 2 (Fast causation coefficient challenge),
whose objective was to obtain a practical method running in reasonable time.

The three winners of Round 2 are:

1. Team Jarfo-score = 0.8264 (1891 s) of Jossé Adrián Rodríguez Fonollosa, which
was the baseline to beat [3, 4] and ranked first by score but was the slowest
method.

2. Team wzhang009-score = 0.8178 (1057 s), of Wei Zhang, which managed
to do almost as well as Jarfo with a similar method, while reducing the
computational time by 44%. This was achieved by making feature extraction
more computationally efficient: (1) a lot of features were computed from a
common transformation of the data including normalization, discretization, etc.,
(2) anti-symmetric features (contributing to characterize X ← Y when there
is one already characterizing X → Y ) were removed, (3)the code for some
features, e.g. HSICwas re-written.

3. Team david.lopez.paz-score = 0.7193 (316 s), of David Lopez Paz, which
reduced the computational time by a factor of five, using a method called
Randomized Causation Coefficient (RCC) [14] based on a randomized approxi-
mation [17] of the empirical kernel mean embedding of probability distributions
[20] to summarise each given dataset into a k-dimensional real feature vector.
These feature vectors are then passed by to a general Gradient Boosting
Classifier.

In summary, the cause-effect pair challenges yielded better performing causation
coefficients: the Jarfo coefficient, whose robustness was tested in post-challenge
experiments and the fast causation coefficient RCC.

(http://gnw.sourceforge.net/
https://github.com/jarfo/cause-effect
https://github.com/waynezhanghk/FastCausation
https://bitbucket.org/lopezpaz/causality_challenge
https://github.com/jarfo/cause-effect
https://bitbucket.org/lopezpaz/causality_challenge
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7.1.5 Analyses

We visualized the results in various ways to understand the results better. These
analyses are based on the results of Round 1 for which we have more data.

Overfitting Because the participants practice for a long time using as feed-back
the performances on the “public leaderboard”, there is always some chance that
they would overfit the validation set. We remind the reader that, in both rounds,
there were 4050 example in both the validation set and the test set. However, as
illustrated in Fig. 7.2a showing a scatter plot of round 1 results, there is no noticeable
overfitting. The correlation between results on validation and test data is very high:
0.97 (p value 3 × 10−29) (Tables 7.3, 7.4, 7.5).

Real vs. Artificial Pairs Table 7.4 shows a comparison of the results on real
and artificial data (for round 1). For all three scores (Dependency, Causality, and
Confounding), the results on artificial data are better than on real data. However,
even on real data, they are significantly better than chance for the best entrants.
To evaluate this, we performed a permutation test. We re-computed the scores 500
hundred times for each of the top 20 participants after randomly permuting the order
of the truth values of the causal relationships. This generated 10,000 points for each
score. In Fig. 7.2b we show the Dependency, Causality, and Confounding for the 20

Fig. 7.2 Score comparisons (Round 1). Each point represents a participant. (a) Correlation
between validation and final test results. (b) Comparison of final test results on real and artificial
data (top 20 participants only). We also show the results of permutation tests (crosses): All
participants performed significantly better than chance
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Table 7.3 Final evaluation scores (round 1 on Kaggle)

Rank Team name Validation Final test Entries

1 ProtoML + 0.81367 0.8196 25

2 Jarfo + 0.81464 0.81052 123

3 HiDLoN + 0.80191 0.8072 59

4 FirfiD + 0.80867 0.79957 221

5 Mouse + 0.79026 0.78782 30

6 Domcastro & Sayani + 0.78467 0.78133 324

7 nor + 0.77297 0.77595 20

8 LucaToni + 0.78671 0.77081 126

9 Rangel Dokov + 0.76993 0.7678 32

10 Liubenyuan & Abhishek + 0.76108 0.76502 70

11 Saeh & Xing + 0.7571 0.76181 33

12 Rahan + 0.75295 0.75666 48

13 Bruce Cragin + 0.75639 0.75194 60

14 E-L + 0.7438 0.74047 63

15 Dirk Gently + 0.73976 0.74035 53

16 Mr. Wolf + 0.7096 0.73741 53

17 furiouseskimo + 0.73386 0.73373 11

18 borg 0.72463 0.72943 8

19 RamSud + 0.73689 0.7244 81

20 Issam Laradji 0.71449 0.72271 13

21 kinnskogr + john backus mayes + 0.73939 0.72124 43

22 Vik Paruchuri + 0.73736 0.71499 2

23 n_m 0.69233 0.71339 4

24 Delta 0.71759 0.70316 99

25 Gurupad Hegde 0.74388 0.70233 7

26 sbachish + 0.71325 0.69436 76

27 DieselBoy 0.68673 0.68336 90

28 Attila Balogh + 0.70397 0.68262 46

29 David Low 0.69602 0.67981 14

30 kosklain 0.68552 0.67844 26

31 jajo 0.68274 0.67581 13

32 AndreyICT + 0.68361 0.67239 19

33 Ali Hassane 0.68077 0.66944 27

34 LM + 0.65093 0.66825 18

35 cmna + 0.67731 0.66778 52

36 zzol + 0.68063 0.66486 5

37 ikretus + 0.65725 0.66106 26

38 YCSU 0.64352 0.64844 34

(continued)
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Table 7.3 (continued)

Rank Team name Validation Final test Entries

39 Sexteentons + 0.6632 0.6379 27

40 Anatoliy 0.67483 0.62032 46

41 Jeong-Yoon & Damian + 0.60236 0.60823 75

42 Tony Liu 0.58991 0.59242 8

43 Christopher Nowzohour + 0.56205 0.57848 3

44 Jason Sumpter 0.58151 0.57312 59

Basic Python Benchmark 0.56809 0.57099

Results of the teams who beat the “basic Python benchmark” . Teams marked with + uploaded
their code

top ranking participants and the results of the permutation test as crosses. It can be
seen that for artificial data, even the worst participant’s scores outperform all results
of the permutation test. Considering that there are N = 44 entrants in the final phase,
even after Bonferroni correction, the hypothesis that the results of any of the top 20
participants was obtained by chance can be rejected in artificial data for all scores
with high confidence (p value 44 × 10−4). In real data, this is also the case for the
Dependency score for all top 20 ranking participants, for the Causality score in all
top 14 participants, and for the Confounding score in all 17 top ranking participants.

It is worth noticing that all the participants did not perform as well with respect
to all the scores in artificial and real data. Notably, Domcastro & Sayani obtained
the best results on real data and achived the smallest difference between real and
artificial data in the top ranking participants. Jarfo (overall ranked second) has a
particularly high Dependency score (0.96 on rel data and 0.98 on artificial data).

Factor Sensitivity Analysis By design the cause-effect pair challenge dataset
spanned a variety of difficulties. In particular, variable type, sample size, and signal
to noise ratio were drawn randomly and independently, in an approximate factorial
design (Table 2.9). In Fig. 7.3, we show the influence of these various factors on the
performance of the top ranking participants:

• Type of variables: It is very important to us to notice that the performances on
pairs of categorical or binary variables are better than chance. Some participants
do well on those pairs, almost as well as they do as on continuous variables. The
top ranking participants are not the best on those pairs.The pairs (categorical,
categorical) are the hardest, but there is a confounding factor: there were more
numerical variables that binary or categorical, so there was less training data for
those pairs.
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Table 7.4 Results of the top ranking teams, split between real and artificial data (Round 1 on
Kaggle)

Rank Team Dependency Confounding Causality Score

Real data

1 ProtoML 0.88057 0.65432 0.75756 0.70420

2 Jarfo 0.95721 0.70386 0.73312 0.68642

3 HiDloN 0.91476 0.69209 0.74774 0.69669

4 FirfiD 0.92352 0.69547 0.73960 0.68274

5 Mouse 0.87689 0.64211 0.75008 0.69259

6 Domcasto & Sayani 0.85339 0.65786 0.78075 0.71355

7 nor 0.94847 0.68080 0.70586 0.67200

8 LucaToni 0.83910 0.63084 0.70434 0.65773

9 Rangel Dokov 0.86599 0.61937 0.67195 0.63402

10 Liubenyuan & Abhishek 0.87618 0.64650 0.62838 0.60271

11 Saeh & Xing 0.82162 0.62352 0.72561 0.66813

12 Rahan 0.86864 0.68940 0.60430 0.58837

13 Bruce Cragin 0.79769 0.59270 0.64157 0.60025

14 E-L 0.90563 0.66048 0.61041 0.59288

15 Dirk Gently 0.80719 0.60958 0.69212 0.64297

16 Mr. Wolf 0.89109 0.63047 0.62772 0.60258

17 Furioso 0.83247 0.59798 0.54983 0.53855

18 borg 0.88118 0.66425 0.77271 0.70920

19 RamSud 0.98007 0.76478 0.66464 0.63072

20 Issam Laradji 0.83585 0.58518 0.51904 0.50935

Artificial data

1 ProtoML 0.95372 0.76944 0.90946 0.84206

2 Jarfo 0.98063 0.83663 0.89425 0.83499

3 HiDloN 0.94416 0.76777 0.89466 0.82883

4 FirfiD 0.97644 0.80086 0.88644 0.82249

5 Mouse 0.94966 0.75831 0.86722 0.80620

6 Domcasto & Sayani 0.91789 0.72655 0.86299 0.79507

7 nor 0.97087 0.75676 0.86348 0.79669

8 LucaToni 0.92839 0.74099 0.86214 0.79270

9 Rangel Dokov 0.93696 0.74265 0.85856 0.79289

10 Liubenyuan & Abhishek 0.92646 0.75771 0.86497 0.79620

11 Saeh & Xing 0.91056 0.74140 0.84961 0.78034

12 Rahan 0.92175 0.72586 0.85874 0.78958

13 Bruce Cragin 0.91653 0.71915 0.85376 0.78059

14 E-L 0.94194 0.72921 0.83312 0.76984

15 Dirk Gently 0.89369 0.69167 0.82472 0.75937

16 Mr. Wolf 0.93073 0.71590 0.82960 0.76326

17 Furioso 0.94129 0.74834 0.83904 0.76958

18 borg 0.91559 0.72371 0.79323 0.73381

19 RamSud 0.98097 0.80423 0.80100 0.74399

20 Issam Laradji 0.92615 0.74768 0.82929 0.76495
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Table 7.5 Results of the top ranking teams above baseline (Round 2 on Codalab)

Execution Forward Reverse Bidirectional
Rank Team time AUC AUC AUC

Validation set

1 jose.fonollosa 1942.34 0.820183 0.84349 0.831836

2 wzhang009 1069.58 0.823987 0.836836 0.830412

3 irjudson 3868.45 0.818943 0.83457 0.826756

reference 295.43 0.550647 0.565181 0.557914

Final test set

1 jose.fonollosa 1890.75 0.831516 0.82131 0.826413

2 wzhang009 1057.17 0.821189 0.814409 0.817799

3 david.lopez.paz 316.24 0.718142 0.720575 0.719359

4 aiolli 3343.26 0.679862 0.667509 0.673685

reference 289.64 0.57412 0.584624 0.579372

We outline in bold the winner of the fastest causaltion coefficient contest

• Sample size: Above � 1000 samples, performances are largely independent of
sample size. Then they start breaking down. The top ranking participants have
more robust methods: their performances degrade less for small sample sizes.

• Signal to noise ratio: In the range of signal to noise ratio (S2N) investigated,
performances do not degrade drammatically as a function of S2N. Although some
methods are less robust to bas S2N than others, all the top ranking participants
do really well, down to S2N = 0.25.

Fact Sheets We analyzed the information provided by the participants in the fact
sheets of Round 1. The bulk of the effort in this challenge has gone into feature
engineering. Most submissions followed the same workflow: (1) data pre-processing
and feature extraction; (2) training a classifier. The pre-processing and the feature
extraction were very diverse (Fig. 7.4). In contrast, the classifiers used were mainly
based on ensembles of decision trees (85%).

Explainability and Interpretability Because the models of the top ranking
participants are based of a large number of features and ensembles of decision trees,
the models are difficult to interpret and the decisions they make hard to explain. We
attempted to perform an analysis of the Jarfo coefficient [3, 4], the strongest method
according to the results of both rounds (Fig. 7.5).

The heterogeneity of the data makes it difficult to come up with simple rules. To
simplify the problem, we focused on a subset of the dataset (Fig. 7.6) and used it to
train a Jarfo coefficient. Then we performed a feature selection. The most compact

https://docs.google.com/forms/d/1Q7GnJfsmZ4CeuaVlCX7Kub4I8-wKyKDfJo9zS6HDD_E/edit?gridId=0&key=0Ak8QS7nJpK7mdGtiS2ZTVWtJek15V1dXVXF5Wkl1UkE#responses
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Fig. 7.3 Histogram of performances of the top 20 participants in Round 1 as a function of number
of (a) Variable types. (b) Sample size. (c) Signal to noise ratio. The score is the Bi-directional AUC

set of features we could obtain without sacrificing performance too much was a set
of three features, selected with a combination of a univariate filter (S2N, with a
threshold on signal to noise ratio of 2 [7]) and a forward selection method (Gram-
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Fig. 7.4 Preprocessing and feature extraction. These results were extracted from the fact sheets
of Round 1

Schmidt Relief [10]). We then trained a decision tree using the selected features and
a symmetrized dataset (Fig. 7.7). The root of the tree is thus the most imformative
feature: the Conditional Distribution Similarity (CDS) [4]. It is complemented by
the difference and the max of the marginal entropy.

This result is consistent with findings of other authors: Marginal entropy is the
basis of one of the IGCI criteria [13]. CDS can be considered a generalization of the
ANM criterion [12, 16], testing independence of the input and the noise (called IR
in this chapter). ANM has been found superior to IGCI in other benchmarks [15].
CDS works also, to some extent, for non additive noise.

https://docs.google.com/forms/d/1Q7GnJfsmZ4CeuaVlCX7Kub4I8-wKyKDfJo9zS6HDD_E/edit?gridId=0&key=0Ak8QS7nJpK7mdGtiS2ZTVWtJek15V1dXVXF5Wkl1UkE#responses
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M: Noise mixing:
any (pre-mult, pre-

add, post-mult,
post-add).

F, T: Type of
functions: any, but
no high frequency.

I, N: Patterned
input and noise

distributions (from
“real” variables).

C: Only numerical
 variables.

S: Large signal to
noise >=2.

P: Large number of
examples >=1000.

A->B or B->A

Fig. 7.5 Subset of the data. We reduced the dataset to conduct and explainability and interpretabil-
ity study

Given the design of the cuase-effect pair challenge, the X → Y and X ← Y

pairs are not partially confounded in artificial data, so testing the independence of
the input and the noise should be a good method. Since we have both cases of
mutliplicative and additive noise in the dataset, it is natural that CDS does better
than IR. We think that entropy works well because of the choice of functions that
generated the artificial data. Most are invertible.

7.2 Conclusion

The cause-effect pair challenge attained its goal to devise “causation coefficients”.
Its novel protocol casting the cause-effect pair problem as a pattern recognition
problem and providing training and test data changed completely the angle that
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Fig. 7.6 Feature selection on the Jarfo coefficient. We reduced the number of predictive features.
After pre-selecting features with the S2N filter, we carried out a forward selection with Gram-
Schmidt Relief. We show AUC on the validation set (dashed) and test set (solid). Given the error
bars, not much performance is gained with more than three features

Fig. 7.7 Simplified decision tree extracted from the Jarfo coefficient. The decisions are based on
the CDS and the marginal entropy (one implementation of the IGCI principle). The first split is
using CDS, the most informative feature and the second one entropy. If the two criteria disagree,
the opinion of CDS prevails, unless the entropy is very large

researchers took to solve the problem. Rather than using model-based methods, they
learned the causation coefficients from examples of cause-effect pairs (scatter plots),
thought of as patterns. All winning methods in the first round were remarkably
similar. It may be more than a coincidence that all three used GBM as a classifier,
a method based on ensembles of decision trees. An overwhelming majority of
participants used ensembles of decision trees (85%). This may have been biased
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by the Python sample code that provided an example using Random Forests.
However, the top ranking participants reported better performance using GBM. In
the second round a more original method emerged with the Randomized Causation
Coefficient (RCC) [14], which opened a new direction of research. Results indicated
that causation coefficients trained on real data do not necessarily generalize well
on artificial data and vice versa, but post-challenge analyses on new data gave
promising results. Further benchmark efforts should focus on drifts in the mother
distribution and transfer learning. Other directions to be pursued are the organization
of a time series challenge and a series of challenge on experimental design in which
the participants can conduct virtual experiments on artificial systems.
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Chapter 8
Non-linear Causal Inference Using
Gaussianity Measures

Daniel Hernández-Lobato, Pablo Morales-Mombiela, David Lopez-Paz,
and Alberto Suárez

8.1 Introduction

The inference of causal relationships from data is one of the current areas of
interest in the artificial intelligence community, e.g. [3, 15, 22]. The reason for
this surge of interest is that discovering the causal structure of a complex system
provides an explicit description of the mechanisms that generate the data, and
allows us to understand the consequences of interventions in the system [25]. More
precisely, automatic causal inference can be used to determine how modifications
of the value of certain relevant variables (the causes) influence the values of other
related variables (the effects). Therefore, understanding cause-effect relations is
of paramount importance to control the behavior of complex systems and has
applications in industrial processes, medicine, genetics, economics, social sciences
or meteorology.

The vast majority of the work was done while being at the Max Planck Institute for Intelligent
Systems and at Cambridge University
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Causal relations can be determined in complex systems in three different ways.
First, they can be inferred from domain knowledge provided by an expert, and
incorporated in an ad-hoc manner in the description of the system. Second, they can
be discovered by performing interventions in the system. These are controlled exper-
iments in which one or several variables of the system are forced to take particular
values. Interventions constitute a primary tool for identifying causal relationships.
However, in many situations they are unethical, expensive, or technically infeasible.
Third, they can be estimated using causal discovery algorithms that use as input
purely uncontrolled and static data.

This last approach for causal discovery has recently received much attention from
the machine learning community [10, 28, 33]. These methods assume a particular
model for the mapping mechanisms that link causes to effects. By specifying
particular conditions on the mapping mechanism and the distributions of the cause
and noise variables, the causal direction becomes identifiable Chen et al. [3]. For
instance, Hoyer et al. [10] assume that the effect is a non-linear transformation of the
cause plus some independent additive noise. A potential drawback of these methods
is that the assumptions made by the particular model considered could be unrealistic
for the data under study.

In this paper we propose a general method for causal inference that belongs to the
third of the categories described above. Specifically, we assume that the cause and
the effect variables have the same distribution and are linked by a linear relationship
contaminated with non-Gaussian noise. For the univariate case we prove that, under
these assumptions, the magnitude of the cumulants of the residuals of order higher
than two is smaller for the linear fit in the anti-causal direction than in the causal
one. Since the Gaussian is the only distribution whose cumulants of order higher
than two are zero, statistical tests based on measures of Gaussianity can be used
for causal inference. An antecedent of this result is the observation that, when cause
and effect have the same distribution, the residuals of a fit in the anti-causal direction
have higher entropy than in the causal direction [12, 17]. Since the residuals of the
causal and anti-causal linear models have the same variance and the Gaussian is
the distribution that maximizes the entropy for a fixed variance, this means that the
distribution of the latter is more Gaussian than the former.

For multivariate cause-effect pairs that have the same distribution and are related
by a linear model with additive non-Gaussian noise the proof given by Hyvärinen
and Smith [12] and Kpotufe et al. [17] can be extended to show that the entropy of
the vector of residuals of a linear fit in the anti-causal direction is larger than the
corresponding residuals of a linear fit in the causal direction. We conjecture that
also in this case there is a reduction of the magnitude of the tensor cumulants of
the anti-causal multivariate residuals and provide some numerical evidence of this
effect in two dimensions.
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The problem of non-linear causal inference is addressed by embedding the
original problem in an expanded feature space. We then make the assumption that
the non-linear relation between causes and effects in the original space is linear in
the expanded feature space. The computations required to make inference on the
causal direction based on this embedding can be readily carried out using kernel
methods.

In summary, the proposed method for causal inference proceeds by first making
a transformation of the original variables so that causes and effects have the same
distribution. Then we perform kernel ridge regression in both the causal and the
anti-causal directions. The dependence between causes and effects, which is non-
linear in the original space, is assumed to be linear in the kernel-induced feature
space. A statistical test is then used to quantify the degree of similarity between the
distributions of these residuals and a Gaussian distribution with the same variance.
Finally, the direction in which the residuals are less Gaussian is identified as the
causal one.

The performance of this method is evaluated in both synthetic and real-world
cause-effect pairs. From the results obtained it is apparent that the anti-causal resid-
uals of a linear fit in the expanded feature space are more Gaussian than the causal
residuals. In general, it is difficult to estimate the entropy from a finite sample [1].
Empirical estimators of high order cumulants involve high order moments, which
means they often have large variance. As an alternative, we propose to use statistical
tests based on the energy distance to characterize the Gaussianization effect for the
residuals of linear fits in the causal and anti-causal directions. Tests based on the
energy distance were analyzed in depth by Székely and Rizzo [31]. They have been
shown to be related to homogeneity tests based on embeddings in a Reproducing
Kernel Hilbert Space [8]. An advantage of energy distance-based statistics is that
they can be readily estimated from a sample by computing expectations of pairwise
Euclidean distances. The energy distance generally provides better results than the
entropy or cumulant-based Gaussianity measures. In the problems investigated, the
accuracy of the proposed method, using the energy distance to the Gaussian, is
comparable to other state-of-the-art techniques for causal discovery.

The rest of the paper is organized as follows: Sect. 8.2 illustrates that, under
certain conditions, the residuals of a linear regression fit are closer to a Gaussian
in the anti-causal direction than in the causal one, based on a reduction of the high-
order cumulants and on an increment of the entropy. This section considers both the
univariate and multivariate cases. Section 8.3 adopts a kernel approach to carry out a
feature expansion that can be used to detect non-linear causal relationships. We also
show here how to compute the residuals in the expanded feature space, and how to
choose the different hyper-parameters of the proposed method. Section 8.4 contains
a detailed description of the implementation. In Sect. 8.6 we present the results of
an empirical assessment of the proposed method in both synthetic and real-world
cause-effect data pairs. Finally, Sect. 8.7 summarizes the conclusions and puts forth
some ideas for future research.
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8.2 Asymmetry Based on the Non-Gaussianity of the
Residuals of Linear Models

Let X and Y be two random variables that are causally related. The direction of
the causal relation is not known. Our goal is to determine whether X causes Y ,
i.e., X → Y or, alternatively Y causes X , i.e., Y → X . For this purpose, we
exploit an asymmetry between causes an effects. This type of asymmetry can be
uncovered using statistical tests that measure the non-Gaussianity of the residuals
of linear regression models obtained from fits in the causal and in the anti-causal
direction.

To motivate the methodology that we have developed, we will proceed in
stepwise manner. First we analyze a special case in one dimension: We assume that
X and Y have the same distribution and are related via a linear model contaminated
with additive i.i.d. non-Gaussian noise. The noise is independent of the cause. Under
these assumptions we show that the distribution of the residuals of a linear fit in
the incorrect (anti-causal) direction is closer to a Gaussian distribution than the
distribution of the residuals in the correct (causal) direction. For this, we use an
argument based on the reduction of the magnitude of the cumulants of order higher
than 2. The cumulants are defined as the derivatives of the logarithm of the moment-
generating function evaluated at zero [4, 20].

The Gaussianization effect can be characterized also in terms of an increase of
the entropy. The proof is based on the results of [12], which are extended in this
paper to the multivariate case. In particular, we show that the entropy of the residuals
of a linear fit in the anti-causal direction is larger or equal than the entropy of the
residuals of a linear fit in the causal direction. Since the Gaussian it the distribution
that has maximum entropy, given a particular covariance matrix, an increase of the
entropy of the residuals means that their distribution becomes closer to the Gaussian.

Finally, we note that it is easy to guarantee that X and Y have the same
distribution in the case that these variables are unidimensional and continuous.
To this end we only have to transform one of the variables (typically the cause
random variable) using the probability integral transform, as described in Sect. 8.4.
However, after the data have been transformed, the relation between the variables
will no longer be linear in general. Thus, to address non-linear cause-effect problems
involving univariate random variables the linear model is formulated in an expanded
feature space, where the multivariate analysis of the Gaussianization effect is also
applicable. In this feature space all the computations required for causal inference
can be formulated in terms of kernels. This can be used to detect non-linear causal
relations in the original input space and allows for an efficient implementation of
the method. The only assumption is that the non-linear relation in the original input
space is linear in the expanded feature space induced by the selected kernel.



8 Non-linear Causal Inference Using Gaussianity Measures 261

8.2.1 Analysis of the Univariate Case Based on Cumulants

Let X and Y be one-dimensional random variables that have the same distribution.
Without further loss of generality, we will assume that they have zero mean and unit
variance. Let x = (x1, . . . , xN)T and y = (y1, . . . , yN)T be N paired samples
drawn i.i.d. from P(X ,Y ). Assume that the causal direction is X → Y and that
the measurements are related by a linear model

yi = wxi + εi , εi ⊥ xi , ∀i , (8.1)

where w = corr(X ,Y ) ∈ [−1, 1] and εi is independent i.d. non-Gaussian additive
noise.

A linear model in the opposite direction, i.e., Y → X , can be built using least
squares

xi = wyi + ε̃i , (8.2)

where w = corr(Y ,X ) is the same coefficient as in the previous model. The
residuals of this reversed linear model are defined as ε̃i = xi − wyi .

Following an argument similar to that of [9] we show that the residuals {ε̃i}Ni=1
in the anti-causal direction are more Gaussian than the residuals {εi}Ni=1 in the
actual causal direction X → Y based on a reduction of the magnitude of the
cumulants. The proof is based on establishing a relation between the cumulants of
the distribution of the residuals in both the causal and the anti-causal direction. First,
we show that κn(yi), the n-th order cumulant of Y , can be expressed in terms of
κn(εi), the n-th order cumulant of the residuals:

κn(yi) = wnκn(xi)+ κn(εi) = wnκn(yi)+ κn(εi) = 1

1− wn
κn(εi) . (8.3)

To derive this relation we have used (8.1), that xi and yi have the same distribution
(and hence have the same cumulants), and standard properties of cumulants [4, 20].
Furthermore,

κn(ε̃i) = κn(xi − wyi) = κn(xi − w2xi − wεi) = (1− w2)nκn(xi)+ (−w)nκn(εi)

(8.4)

= (1− w2)nκn(yi)+ (−w)nκn(εi) = (1− w2)n

1− wn
κn(εi)+ (−w)nκn(εi)

(8.5)

= cn(w)κn(εi) , (8.6)

where we have used the definition of ε̃i and (8.3) In Fig. 8.1 the value of
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Fig. 8.1 Values of the function cn(·) as a function of w for each cumulant number n (odd in the
left plot, even in the right plot). All values for cn(·) lie in the interval [−1, 1]

cn(w) = (1− w2)n

1− wn
+ (−w)n. (8.7)

is displayed as a function of w ∈ [−1, 1]. Note that c1(w) = c2(w) = 1
independently of the value of w. This means that the mean and the variance of
the residuals are the same in both the causal and anti-causal directions. For n > 2,
|cn(w)| ≤ 1 with equality only for w = 0 and w = ±1. The result is that the high-
order cumulants of the residuals in the anti-causal direction are smaller in magnitude
that the corresponding cumulants in the causal direction. Using the observation that
all the cumulants of the Gaussian distribution of order higher than two are zero [19],
we conclude that the distribution of the residuals in the anti-causal direction is closer
to the Gaussian distribution than in the causal direction.

In summary, we can infer the causal direction by (1) fitting a linear model in each
possible direction, i.e., X → Y and Y →X , and (2) carrying out statistical tests
to detect the level of Gaussianity of the two corresponding residuals. The direction
in which the residuals are less Gaussian is expected to be the correct one.

8.2.2 Analysis of the Multivariate Case Based on Cumulants

In this section we argue that the Gaussianization effect of the residuals in the anti-
causal direction also takes place when the two random variables X and Y are
multidimensional. We will assume that these variables follow the same distribution
and, without further loss of generality, that they have been whitened (i.e., they
have a zero mean vector and the identity matrix as the covariance matrix). Let
X = (x1, . . . , xN)T and Y = (y1, . . . , yN)T be N paired samples drawn i.i.d. from
P(X ,Y ). In this case, the model assumed for the actual causal relation is

yi = Axi + εi , εi ⊥ xi , ∀i , (8.8)
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where A = corr(Y ,X ) is a d × d matrix of model coefficients and εi is i.i.d.
non-Gaussian additive noise. The model in the anti-causal direction is the one that
results from the least squares fit:

xi = Ãyi + ε̃i , (8.9)

where we have defined ε̃i = xi − Ãyi and Ã = corr(X ,Y ) = AT.
As in the univariate case, we start by expressing the cumulants of Y in terms of

the cumulants of the residuals. However, the cumulants are now tensors [20]:

κn(yi ) = κn(Axi )+ κn(εi ) . (8.10)

In what follows, the notation vect(·) stands for the vectorization of a tensor. For
example, in the case of a tensor T with dimensions d × d × d

vect(T) = (T1,1,1, T2,1,1, · · · , Td,1,1, T1,2,1, · · · , Td,d,d )T.

Using this notation we obtain

vect(κn(yi )) = Anvect(κn(xi ))+ vect(κn(ε)) = (I− An)−1vect(κn(ε)) ,

(8.11)

where An = A ⊗ A ⊗ A · · · ⊗ A, n times, is computed using the Kronecker
matrix product. To derive this expression we have used (8.8), the fact that Y and
X are equally distributed and hence have the same cumulants. We also have used
the properties of the tensor cumulants vect(κn(Axi )) = Anvect(κn(xi )), where the
powers of the matrix A are computed using the Kronecker product [20].

Similarly, for the reversed linear model

κn(ε̃i ) = κn(xi − ATyi ) = κn(xi − ATAxi − ATεi ) = κn((I− ATA)xi − ATεi )

(8.12)

= κn((I− ATA)xi )+ κn(−ATεi ) . (8.13)

Using again the notation for the vectorized tensor cumulants

vect(κn(ε̃i )) = (I− ATA)nvect(κn(xi ))+ (−1)n(AT)nvect(κn(εi )) (8.14)

= (I− ATA)n(I− An)−1vect(κn(εi ))+ (−1)n(AT)nvect(κn(εi ))

(8.15)

=
(
(I− ATA)n(I− An)−1 + (−1)n(AT)n

)
vect(κn(εi )) , (8.16)

where the powers of matrices are computed using the Kronecker product as well,
and where we have used (8.11) and that Y and X are equally distributed and have
the same cumulants.
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We now give some evidence to support that the magnitude of vect(κn(ε̃i )) is
smaller than the magnitude of vect(κn(εi )) in terms of the �2-norm, for cumulants
of order higher than 2. That is, the tensors corresponding to high-order cumulants
become closer to a tensor with all its components equal to zero. For this, we
introduce the following definition:

Definition 8.1 The operator norm of a matrix M induced by the �p vector norm is
||M||op = min{c ≥ 0 : ||Mv||p ≤ c||v||p ,∀v}, where || · ||p denotes the �p-norm
for vectors.

The consequence is that ||M||op ≥ ||Mv||p/||v||p, ∀v. This means that ||M||p
can be understood as a measure of the size of the matrix M. In the case of the
�2-norm, the operator norm of a matrix M is equal to its largest singular value or,
equivalently, to the square root of the largest eigenvalue of MTM. Let Mn = (I −
ATA)n(I−An)−1+(−1)n(AT)n. That is, Mn is the matrix that relates the cumulants
of order n of the residuals in the causal and anti-causal directions in (8.16). We now
evaluate ||Mn||op, and show that in most cases its value is smaller than one for high-
order cumulants κn(·), leading to a Gaussianization of the residuals in the anti-causal
direction. From (8.16) and the definition given above, we know that ||Mn||op ≥
||vect(κn(ε̃i ))||2/||vect(κn(εi ))||2. This means that if ||Mn||op < 1 the cumulants of
the residuals in the incorrect causal direction are shrunk to the origin. Because the
multivariate Gaussian distribution has all cumulants of order higher than two equal
to zero [20], this translates into a distribution for the residuals in the anti-causal
direction that is closer to the Gaussian distribution.

In the causal direction, we have that E[yyT ] = E[(Axi + εi )(Axi + εi )
T] =

AAT + C = I, where C is the positive definite covariance matrix of the actual
residuals.1 Thus, AAT = I − C and hence the singular values of A, denoted
σ1, . . . , σd , satisfy 0 ≤ σi = √

1− αi ≤ 1, where αi is the corresponding
positive eigenvalue of C. Assume that A is symmetric (this also means that Mn

is symmetric). Denote by λ1, . . . , λd to the eigenvalues of A. That is, σi =
√

λ2
i and

0 ≤ λ2
i ≤ 1, i = 1, . . . , d. For a fixed cumulant of order n we have that

||Mn||op = max
v∈S

∣∣∣∣∣∣
n∏

j=1

[
1− λ2

vj

]
1−∏n

i=1 λvi

+ (−1)n
n∏

j=1

λvj

∣∣∣∣∣∣ , (8.17)

where S = {1, . . . , d}n, |·| denotes absolute value, and we have employed standard
properties of the Kronecker product about eigenvalues and eigenvectors [18]. Note
that this expression does not depend on the eigenvectors of A, but only on its
eigenvalues.

Figure 8.2 shows, for symmetric A, the value of ||Mn||op for n = 3, . . . , 8, and
d = 2 when the two eigenvalues of A range in the interval (−1, 1). We observe
that ||Mn||op is always smaller than one. As described before, this will lead to a

1We assume such matrix exists and that it is positive definite.
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Fig. 8.2 Contour curves of the values of ||Mn||op for d = 2 and for n > 2 as a function of λ1 and
λ2, i.e., the two eigenvalues of A. A is assumed to be symmetric. Similar results are obtained for
higher-order cumulants

reduction in the �2-norm of the cumulants in the anti-causal direction due to (8.16),
and will in consequence produce a Gaussianization effect on the distribution of the
residuals. For n ≤ 2 it can be readily shown that ||M1||op = ||M2||op = 1.

In general, the matrix A need not be symmetric. In this case, ||M1||op =
||M2||op = 1 as well. However, the evaluation of ||Mn||op for n > 2 is more difficult,
but feasible for small n. Figure 8.3 displays the values of ||Mn||op, for d = 2, as
the two singular values of A, σ1 and σ2, vary in the interval (0, 1). The left singular
vectors and the right singular vectors of A are chosen at random. In this figure a
dashed blue line highlights the boundary of the region where ||Mn||op is strictly
smaller than one. We observe that for most values of σ1 and σ2, ||Mn||op is smaller
than one, leading to a Gaussianization effect in the distribution of the residuals in the
anti-causal direction. However, for some singular values, ||Mn||op is strictly larger
than one. Of course, this does not mean that there is not such a Gaussianization
effect also in those cases. The definition given for ||Mn||op assumes that all potential
vectors v represent valid cumulants of a probability distribution, which need not be
the case in practice. For example, it is well known that cumulants exhibit some
form of symmetry [20]. This can be seen in the second order cumulant, which is
a covariance matrix. The consequence is that ||Mn||op is simply an upper bound
on the reduction of the �2-norm of the cumulants in the anti-causal model. Thus,
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Fig. 8.3 Contour curves of the values of ||Mn||op for d = 2 and for n > 2 as a function of σ1 and
σ2, i.e., the two singular values of A. A is not assumed to be symmetric. The singular vectors of A
are chosen at random. A dashed blue line highlights the boundary of the region where ||Mn||op is
strictly smaller than one
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we also expect a Gaussianization effect to occur also for these cases. Furthermore,
the numerical simulations presented in Sect. 8.6 provide evidence of this effect for
asymmetric A.

The fact that ||Mn||op is only an upper bound is illustrated in Fig. 8.4. This figure
considers the particular case of the second cumulant κ2(·), which can be analyzed
in detail. On the left plot the value of ||M2||op is displayed as a function of σ1
and σ2, the two singular values of A. We observe that ||M2||op takes values that
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are larger than one. In this case it is possible to evaluate in closed form the �2-
norm of vect(κ2(εi )) and vect(κ2(ε̃i )), i.e., the vectors that contain the second order
cumulant of the residuals in each direction. In particular, it is well known that the
second order cumulant is equal to the covariance matrix [20]. In the causal direction,
the covariance matrix of the residuals is C = I − AAT, as shown in the previous
paragraphs. The covariance matrix of the residuals in the anti-causal direction,
denoted by C̃, can be computed similarly. Namely, C̃ = I − ATA. These two
matrices, i.e., C and C̃, respectively give k2(εi ) and k2(ε̃i ). Furthermore, they have
the same singular values. This means that ||vect(k2(εi ))||2/||vect(k2(ε̃i ))||2 = 1, as
illustrated by the right plot in Fig. 8.4. Thus, ||M2||op is simply an upper bound on
the actual reduction of the �2-norm of the second order cumulant of the residuals in
the anti-causal direction. The same behavior is expected for ||Mn||op, with n > 2.
In consequence, one should expect that the cumulants of the distribution of the
residuals of a model fitted in the anti-causal direction are smaller in magnitude.
This will lead to an increased level of Gaussianity measured in terms of a reduction
of the magnitude of the high-order cumulants.

8.2.3 Analysis of the Multivariate Case Based on Information
Theory

The analysis of the multivariate case carried out in the previous section is illustrative.
Nevertheless, it does not prove that the distribution of the residuals in the anti-casual
direction is more Gaussian based on a reduction of the magnitude of the cumulants.
Further evidence of this increased level of Gaussianity can be obtained based on an
increase of the entropy obtained by using information theory. In this case we also
assume that the multi-dimensional variables X and Y follow the same distribution,
but unlike in the previous section, they need not be whitened, only centered. Here
we closely follow Sect. 2.4 of the work by Hyvärinen and Smith [12] and extend
their results to the multivariate case.

Under the assumptions specified earlier, the model in the causal direction is yi =
Axi + εi , with xi⊥εi and A = Cov(Y ,X )Cov(X ,X )−1. Similarly, the model in
the anti-causal direction is xi = Ãyi + ε̃i with Ã = Cov(X ,Y )Cov(Y ,Y )−1. By
making use of the causal model it is possible to show that ε̃i = (I − ÃA)xi − Ãεi ,
where I is the identity matrix. Thus, the following equations are satisfied:

(
xi

yi

)
= P

(
xi

εi

)
=
(

I 0
A I

)(
xi

εi

)
, (8.18)

and

(
yi

ε̃i

)
= P̃

(
xi

εi

)
=
(

A I
I− ÃA −Ã

)(
xi

εi

)
. (8.19)
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Let H(xi , yi ) be the entropy of the joint distribution of the two random variables
associated with samples xi and yi . Because (8.18) is a linear transformation, we
can use the entropy transformation formula [12] to get that H(xi , yi ) = H(xi , εi )+
log |detP|, where detP = detI = 1. Thus, we have that H(xi , yi ) = H(xi , εi ).
Conversely, if we use (8.19) we have H(yi , εi ) = H(xi , εi ) + log |detP̃|, where
detP̃ = detA · det(−Ã− (I− ÃA)A−1I) = −detI = −1, under the assumption that
A is invertible. The result is that H(xi , yi ) = H(yi , εi ) = H(xi , εi ).

Denote the mutual information between the cause and the noise with I (xi , εi ).
Similarly, let I (yi , ε̃i ) be the mutual information between the random variables
corresponding to the observations yi and ε̃i . Then,

I (xi , εi )− I (yi , ε̃i ) = H(xi )+H(εi )−H(xi , εi )−H(yi )−H(ε̃i )+H(yi , ε̃i )

(8.20)

= H(xi )+H(εi )−H(yi )−H(ε̃i ) . (8.21)

Furthermore, from the actual causal model assumed we know that I (xi , εi ) = 0. By
contrast, we have that I (yi , ε̃i ) ≥ 0, since both yi and ε̃i depend on xi and εi . We
also know that H(xi ) = H(yi ) because we have made the hypothesis that both X
and Y follow the same distribution. The result is that:

H(εi ) ≤ H(ε̃i ) , (8.22)

with equality iff the residuals are Gaussian. We note that an alternative but
equivalent way to obtain this last result is to consider a multivariate version of
Lemma 1 by Kpotufe et al. [17], under the assumption of the same distribution for
the cause and the effect. In particular, even though [17] assume univariate random
variables, their work can be easily generalized to multiple variables.

Although the random variables corresponding to εi and ε̃i have both zero mean,
they need not have the same covariance matrix. Denote with Cov(εi ) and Cov(ε̃i )

to these matrices and let ε̂i and ˆ̃εi be the whitened residuals (i.e., the residuals
multiplied by the Cholesky factor of the inverse of the corresponding covariance
matrix). Then,

H(ε̂i ) ≤ H( ˆ̃εi )− 1

2
log |detCov(ε̃i )| + 1

2
log |detCov(εi )| . (8.23)

As shown in Appendix 1, although not equal, the matrices Cov(εi ) and Cov(ε̃i ) have
the same determinant. Thus, the two determinants cancel in the equation above. This
gives,

H(ε̂i ) ≤ H( ˆ̃εi ) . (8.24)

The consequence is that the entropy of the whitened residuals in the anti-
causal direction is expected to be higher or equal than the entropy of the whitened
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residuals in the causal direction. Because the Gaussian distribution is the continuous
distribution with the highest entropy for a fixed covariance matrix, we conclude that
the level of Gaussianity of the residuals in the anti-causal direction, measured in
terms of differential entropy, has to be larger or equal to the level of Gaussianity of
the residuals in the causal direction.

In summary, if the causal relation between the two identically distributed random
variables X and Y is linear the residuals of a least squares fit in the anti-causal
direction are more Gaussian than those of a linear fit in the causal direction.
This Gaussianization can be characterized by a reduction of the magnitude of the
corresponding high-order cumulants (although we have not formally proved this, we
have provided some evidence that this is the case) and by an increase of the entropy
(we have proved this in this section). A causal inference method can take advantage
of this asymmetry to determine the causal direction. In particular, statistical tests
based on measures of Gaussianity can be used for this purpose. However and
importantly, these measures of Gaussianity need not be estimates of the differential
entropy or the high-order cumulants. In particular, the entropy is a quantity that
is particularly difficult to estimate in practice [1]. The same occurs with the high-
order cumulants. Their estimators involve high-order moments, and hence suffer
from high variance.

When the distribution of the residuals in (8.8) is Gaussian, the causal direction
cannot be identified. In this case, it is possible to show that the distribution of the
reversed residuals ε̃i , the cause xi , and the effect yi , is Gaussian as a consequence
of (8.11) and (8.16). This non-identifiability agrees with the general result of
[28], which indicates that non-Gaussian distributions are strictly required in the
disturbance variables to carry out causal inference in linear models with additive
independent noise.

Finally, the fact that the Gaussianization effect is also expected in the multivariate
case suggests a method to address causal inference problems in which the relation-
ship between cause and effect is non-linear: It consists in mapping each observation
xi and yi to a vector in an expanded feature space. One can them assume that
the non-linear relation in the original input space is linear in the expanded feature
space and compute the residuals of kernel ridge regressions in both directions. The
direction in which the residuals are less Gaussian is identified as the causal one.

8.3 A Feature Expansion to Address Non-linear Causal
Inference Problems

We now proceed to relax the assumption that the causal relationship between
the unidimensional random variables X and Y is linear. For this purpose,
instead of working in the original space in which the samples {(xi, yi)}Ni=1 are
observed, we will assume that the model is linear in some expanded feature space
{(φ(xi), φ(yi))}Ni=1 for some mapping function φ(·) : R → R

d . Importantly, this
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map preserves the property that if xi and yi are equally distributed, so will be φ(xi)

and φ(yi). According to the analysis presented in the previous section, the residuals
of a linear model in the expanded space should be more Gaussian in the anti-causal
direction than the residuals of a linear model in the causal direction, based on an
increment of the differential entropy and on a reduction of the magnitude of the
cumulants. The assumption we make is that the non-linear relation between X and
Y in the original input space is linear in the expanded feature space.

In this section we focus on obtaining the normalized residuals of linear models
formulated in the expanded feature space. For this purpose, we assume that a kernel
function k(·, ·) can be used to evaluate dot products in the expanded feature space.
In particular, k(xi, xj ) = φ(xi)

Tφ(xj ) and k(yi, yj ) = φ(yi)
Tφ(yj ) for arbitrary

xi and xj and yi and yj . Furthermore, we will not assume in general that φ(xi)

and φ(yi) have been whitened, only centered. Whitening is a linear transformation
which is not expected to affect to the level of Gaussianity of the residuals. However,
once these residuals have been obtained they will be whitened in the expanded
feature space. Later on we describe how to center the data in the expanded feature
space. For now on, we will assume this step has already been done.

8.3.1 Non-linear Model Description and Fitting Process

Assume that the relation between X and Y is linear in an expanded feature space

φ(yi) = Aφ(xi)+ εi , εi ⊥ xi, (8.25)

where εi is i.i.d. non-Gaussian additive noise.
Given N paired observations {(xi, yi)}Ni=1 drawn i.i.d. from P(X ,Y ), define the

matrices Φx = (φ(x1), . . . , φ(xN)) and Φy = (φ(y1), . . . , φ(yN)) of size d × N .
The estimate of A that minimizes the sum of squared errors is Â = Γ Σ−1, where
Γ = ΦyΦ

T
x and Σ = ΦxΦ

T
x . Unfortunately, when d > N , where d is the number

of variables in the feature expansion, the matrix Σ−1 does not exist and Â is not
unique. This means that there is an infinite number of solutions for Â with zero
squared error.

To avoid the indetermination described above and also to alleviate over-fitting,
we propose a regularized estimator. Namely,

L (A) =
N∑

i=1

1

2
||φ(yi)− Aφ(xi)||22 + τ

1

2
||A||2F , (8.26)

where || · ||2 denotes the �2-norm and || · ||F denotes the Frobenius norm. In this
last expression τ > 0 is a parameter that controls the amount of regularization. The
minimizer of (8.26) is Â = Γ Σ−1, where Γ = ΦyΦ

T
x and Σ = τ I + ΦxΦ

T
x .

The larger the value of τ , the closer the entries of Â are to zero. Furthermore, using
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the matrix inversion lemma we have that Σ−1 = τ−1I − τ−1ΦxV−1ΦT
x , where

V = (τ I+Kx,x

)−1 and Kx,x = ΦT
xΦx is a kernel matrix whose entries are given

by k(xi, xj ). After some algebra it is possible to show that

Â = Γ Σ−1 = ΦyVΦT
x , (8.27)

which depends only on the matrix V. This matrix be computed with cost O(N3).
We note that the estimate obtained in (8.27) coincides with the kernel conditional
embedding operator described by Song et al. [30] for mapping conditional distribu-
tions into infinite dimensional feature spaces using kernels.

8.3.2 Obtaining the Matrix of Inner Products of the Residuals

A first step towards obtaining the whitened residuals in feature space (which will be
required for the estimation of their level of Gaussianity) is to compute the matrix of
inner products of these residuals (kernel matrix). For this, we define εi = φ(yi) −
Âφ(xi). Thus,

εT
i εj =

[
φ(yi)− Âφ(xi)

]T [
φ(yj )− Âφ(xj )

]
(8.28)

= φ(yi)
Tφ(yj )− φ(yi)

TÂφ(xj )− φ(xi)
TÂφ(yj )+ φ(xi)

TÂÂφ(xj ) ,

(8.29)

for two arbitrary residuals εi and εj in feature space. In general, if we denote with
Kε to the matrix whose entries are given by εT

i εj and define Ky,y = ΦT
yΦy , we

have that

Kε = Ky,y −Ky,yVKx,x −Kx,xVKy,y +Kx,xVKy,yVKx,x , (8.30)

where we have used the definition of Â in (8.27). This expression only depends on
the kernel matrices Kx,x and Ky,y and the matrix V, and can be computed with cost
O(N3).

8.3.3 Centering the Input Data and Centering and Whitening
the Residuals

An assumption made in Sect. 8.2 was that the samples of the random variables X
and Y are centered, i.e., they have zero mean. In this section we show how to
carry out this centering process in feature space. Furthermore, we also show how to
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center the residuals of the fitting process, which are also whitened. Whitening is a
standard procedure in which the data are transformed to have the identity matrix as
the covariance matrix. It also corresponds to projecting the data onto all the principal
components, and scaling them to have unit standard deviation.

We show how to center the data in feature space. For this, we follow Schölkopf
et al. [27] and work with:

φ̃(xi) = φ(xi)− 1

N

N∑
j=1

φ(xj ) , φ̃(yi) = φ(yi)− 1

N

N∑
j=1

φ(yj ) . (8.31)

The consequence is that now the kernel matrices Kx,x and Ky,y are replaced by

K̃x,x = Kx,x − 1NKx,x −Kx,x1N + 1NKx,x1N , (8.32)

K̃y,y = Ky,y − 1NKy,y −Ky,y1N + 1NKy,y1N , (8.33)

where 1N is a N × N matrix with all entries equal to 1/N . The residuals can be
centered also in a similar way. Namely, K̃ε = Kε − 1N Kε −Kε1N + 1N Kε1N .

We now explain the whitening of the residuals, which are now assumed
to be centered. This process involves the computation of the eigenvalues and
eigenvectors of the d × d covariance matrix C of the residuals. This is done
as in kernel PCA [27]. Denote by ε̃i to the centered residuals. The covariance
matrix is C = N−1∑N

i=1 ε̃i ε̃
T
i . The eigenvector expansion implies that Cvi =

λivi , where vi denotes the i-th eigenvector and λi the i-th eigenvalue. The
consequence is that N−1∑N

k=1 ε̃k ε̃
T
k vi = λivi . Thus, the eigenvectors can be

expressed as a combination of the residuals. Namely, vi = ∑N
j=1 bi,j ε̃j , where

bi,j = N−1ε̃T
j vi . Substituting this result in the previous equation we have that

N−1∑N
k=1 ε̃k ε̃

T
k

∑N
j=1 bi,j ε̃j = λi

∑N
j=1 bi,j ε̃j . When we multiply both sides

by ε̃T
l we obtain N−1∑N

k=1 ε̃T
l ε̃k ε̃

T
k

∑N
j=1 bi,j ε̃j = λi

∑N
j=1 bi,j ε̃

T
l ε̃j , for l =

1, . . . d, which is written in terms of kernels as K̃εK̃εbi = λiNK̃εbi , where
bi = (bi,1, . . . , bi,N )T. A solution to this problem is found by solving the eigenvalue
problem K̃εbi = λiNbi . We also require that the eigenvectors have unit norm.
Thus, 1 = vT

i vi = ∑N
j=1

∑N
k=1 bi,j bi,k ε̃

T
j ε̃k = bT

i K̃εbi = λiNbT
i bi , which means

that bi has norm 1/
√

λiN . Consider now that b̃i is one eigenvector of K̃ε . Then,
bi = 1/

√
λiN b̃i . Similarly, let λ̃i be an eigenvalue of K̃ε . Then λi = λ̃i/N . In

summary, λi and bi,j , with i = 1, . . . , N and j = 1, . . . , N can be found with cost
O(N3) by finding the eigendecomposition of K̃ε .

The whitening process is carried out by projecting each residual ε̃k onto
each eigenvector vi and then multiplying by 1/

√
λi . The corresponding i-th

component for the k-th residual, denoted by Zk,i , is Zk,i = 1/
√

λivT
i ε̃k =

1/
√

λi

∑N
j=1 bi,j ε̃

T
j ε̃k , and in consequence, the whitened residuals are Z =

K̃εBD = NBD−1 = √
NB̃, where B is a matrix whose columns contain each
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bi , B̃ is a matrix whose columns contain each b̃i and D is a diagonal matrix whose
entries are equal to 1/

√
λi . Each row of Z now contains the whitened residuals.

8.3.4 Inferring the Most Likely Causal Direction

After having trained the model and obtained the matrix of whitened residuals Z
in each direction, a suitable Gaussianity test can be used to determine the correct
causal relation between the variables X and Y . Given the theoretical results of
Sect. 8.2 one may be tempted to use tests based on entropy or cumulants estimation.
Such tests may perform poorly in practice due to the difficulty of estimating
high-order cumulants or differential entropy. In particular, the estimators of the
cumulants involve high-order moments and hence, suffer from high variance. As
a consequence, in our experiments we use a statistical test for Gaussianity based
on the energy distance [31], which has good power, is robust to noise, and does not
have any adjustable hyper-parameters. Furthermore, in Appendix 2 we motivate that
in the anti-causal direction one should also expect a smaller energy distance to the
Gaussian distribution.

Assume X and Y are two independent random variables whose probability
distribution functions are F(·) and G(·). The energy distance between these
distributions is defined as

D2(F,G) = 2E[||X − Y ||] − E[||X −X ′||] − E[||Y − Y ′||] , (8.34)

where || · || denotes some norm, typically the �2-norm; X and X ′ are independent
and identically distributed (i.i.d.); Y and Y ′ are i.i.d; and E denotes expected value.
The energy distance satisfies all axioms of a metric and hence characterizes the
equality of distributions. Namely, D2(F,G) = 0 if and only if F = G. Furthermore,
in the case of univariate random variables the energy distance is twice the Cramér-
von Mises distance given by

∫
(F (x)−G(x))2 dx.

Assume X = (x1, . . . , xN)T is a matrix that contains N random samples (one
per each row of the matrix) from a d dimensional random variable with probability
density f . The statistic described for testing for Gaussianity, i.e., H0 : f =
N (·|0, I) vs H1 : f 
= N (·|0, I), that is described by Székely and Rizzo [31] is:

Energy(X) = N

⎛
⎝ 2

N

N∑
j=1

E[||xj − Y ||] − E[||Y − Y ′||] − 1

N2

N∑
j,k=1

||xj − xk||
⎞
⎠ ,

(8.35)

where Y and Y ′ are independent random variables distributed as N (·|0, I) and
E denotes expected value. Furthermore, the required expectations with respect to
the Gaussian random variables Y and Y ′ can be efficiently computed as described
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by Székely and Rizzo [31]. The idea is that if f is similar to a Gaussian density
N (·|0, I), then Energy(X) is close to zero. Conversely, the null hypothesis H0 is
rejected for large values of Energy(X).

The data to test for Gaussianity is in our case Z, i.e., the matrix of whitened
residuals, which has size N ×N . Thus, the whitened residuals have N dimensions.
The direct introduction of these residuals into a statistical test for Gaussianity is not
expected to provide meaningful results, as a consequence of the high dimensionality.
Furthermore, in our experiments we have observed that it is often the case that
a large part of the total variance is explained by the first principal component
(see the supplementary material for evidence supporting this). That is, λi , i.e., the
eigenvalue associated to the i-th principal component, is almost negligible for i ≥ 2.
Additionally, we motivate in Appendix 3 that one should also obtain more Gaussian
residuals, after projecting the data onto the first principal component, in terms of
a reduction of the magnitude of the high-order cumulants. Thus, in practice, we
consider only the first principal component of the estimated residuals in feature
space. This is the component i with the largest associated eigenvalue λi . We denote
such N -dimensional vector by z.

Let zx→y be the vector of coefficients of the first principal component of
the residuals in feature space when the linear fit is performed in the direction
X → Y . Let zy→x be the vector of coefficients of the first principal component
of the residuals in feature space when the linear fit is carried out in the direction
Y → X . We define the measure of Gaussianization of the residuals as G =
Energy(zx→y)/N − Energy(zy→x)/N , where Energy(·) computes the statistic of
the energy distance test for Gaussianity described above. Note that we divide each
statistic by N to cancel the corresponding factor that is considered in (8.35). Since
in this test larger values for the statistic corresponds to larger deviations from
Gaussianity, if G > 0 the direction X → Y is expected to be more likely the
causal direction. Otherwise, the direction Y →X is preferred.

The variance of G will depend on the sample size N . Thus, ideally one should
use the difference between the p-values associated to each statistic as the confidence
in the decision taken. Unfortunately, computing these p-values is expensive since
the distribution of the statistic under the null hypothesis must be approximated via
random sampling. In our experiments we measure the confidence of the decision in
terms of the absolute value of G , which is faster to obtain and we have found to
perform well in practice.

8.3.5 Parameter Tuning and Error Evaluation

Assume that a squared exponential kernel is employed in the method described
above. This means that k(xi, xj ) = exp

(−γ (xi − xj )
2
)
, where γ > 0 is the

bandwidth of the kernel. The same is assumed for k(yi, yj ). Therefore, two
hyper-parameters require adjustment in the method described. These are the ridge
regression regularization parameter τ and the kernel bandwidth γ . They must be
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tuned in some way to produce the best possible fit in each direction. The method
chosen to guarantee this is a grid search guided by a 10-fold cross-validation
procedure, which requires computing the squared prediction error over unseen data.
In this section we detail how to evaluate these errors.

Assume that M new paired data instances are available for validation. Let the two
matrices Φynew = (φ(ynew

1 ), . . . , φ(ynew
M )) and Φxnew = (φ(xnew

1 ), . . . , φ(xnew
M ))

summarize these data. Define εnew
i = φ(ynew

i ) − Âφ(xnew
i ). After some algebra, it

is possible to show that the sum of squared errors for the new instances is:

E =
M∑
i=1

(εnew
i )Tεnew

i = trace

(
Kynew,ynew −Kynew,yVKT

xnew,x− (8.36)

Kxnew,xVKT
ynew,y +Kxnew,xVKy,yVKT

xnew,x

)
. (8.37)

where Kynew,ynew = ΦT
ynewΦynew , Kynew,y = ΦT

ynewΦy and Kx,xnew = ΦT
xΦxnew .

Of course, the new data must be centered before computing the error estimate.
This process is similar to the one described in the previous section. In particular,
centering can be simply carried out by working with the modified kernel matrices:

K̃xnew,x = Kxnew,x −MNKx,x −Kxnew,x1N +MN Kx,x1N , (8.38)

K̃ynew,y = Kynew,y −MNKy,y −Kynew,y1N +MN Ky,y1N , (8.39)

K̃ynew,ynew = Kynew,ynew −MNKy,ynew −Kynew,yMT
N +MN Ky,yMT

N , (8.40)

where MN is a matrix of size M × N with all components equal to 1/N . In this
process, the averages employed for the centering step are computed using only the
observed data.

A disadvantage of the squared error is that it strongly depends on the kernel
bandwidth parameter γ . This makes it difficult to choose this hyper-parameter in
terms of such a performance measure. A better approach is to choose both γ and
τ in terms of the explained variance by the model. This is obtained as follows:
Explained-Variance = 1 − E/MVarynew, where E denotes the squared prediction
error and Varynew the variance of the targets. The computation of the error E is done
as described previously and Varynew is simply the average of the diagonal entries in
K̃ynew,ynew .

8.3.6 Finding Pre-images for Illustrative Purposes

The kernel method described above expresses its solution as feature maps of the
original data points. Since the feature map φ(·) is usually non-linear, we cannot
guarantee the existence of a pre-image under φ(·). That is, a point y such that



276 D. Hernández-Lobato et al.

φ(y) = Âφ(x), for some input point x. An alternative to amend this issue is to
find approximate pre-images, which can be useful to make predictions or plotting
results [26]. In this section we describe how to find this approximate pre-images.

Assume that we have a new data instance xnew for which we would like to know
the associated target value ynew, after our kernel model has been fitted. The predicted
value in feature space is:

φ(ynew) = ΦyVΦT
xφ(xnew) = ΦyVkx,xnew =

n∑
i=1

αiφ(yi) , (8.41)

where kx,xnew contains the kernel evaluations between each entry in x (i.e., the
observed samples of the random variable X ) and the new instance. Finally, each
αi is given by a component of the vector Vkx,xnew . The approximate pre-image of
φ(ynew), ynew, is found by solving the following optimization problem:

ynew = arg min
u

||φ(ynew)− φ(u)||22 = arg min
u

− 2αTky,u + k(u, u) ,

(8.42)

where ky,u is a vector with the kernel values between each yi and u, and
k(u, u) = φ(u)Tφ(u). This is a non-linear optimization problem than can be solved
approximately using standard techniques such as gradient descent. In particular, the
computation of the gradient of ky,u with respect to u is very simple in the case of
the squared exponential kernel.

8.4 Data Transformation and Detailed Causal Inference
Algorithm

The method for causal inference described in the previous section relies on the fact
that both random variables X and Y are equally distributed. In particular, if this
is the case, φ(xi) and φ(yi), i.e., the maps of xi and yi in the expanded feature
space, will also be equally distributed. This means that under such circumstances
one should expect residuals that are more Gaussian in the anti-causal direction due
to a reduction of the magnitude of the high order cumulants and an increment of
the differential entropy. The requirement that X and Y are equally distributed can
be easily fulfilled in the case of continuous univariate data by transforming x, the
samples of X , to have the same empirical distribution as y, the samples of Y .

Consider x = (x1, . . . , xN)T and y = (y1, . . . , yN)T to be N paired samples
of X and Y , respectively. To guarantee the same distribution for these samples
we only have to replace x by x̃, where each component of x̃, x̃i , is given by
x̃i = F̂−1

y (F̂x(xi)), with F̂−1
y (·) the empirical quantile distribution function of the
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random variable Y , estimated using y. Similarly, F̂x(·) is the empirical cumulative
distribution function of X , estimated using x. This operation is known as the
probability integral transform.

One may wonder why should x be transformed instead of y. The reason is that by
transforming x the additive noise hypothesis made in (8.1) and (8.8) is preserved.
In particular, we have that yi = f (F̂−1

x (F̂y(x̃i))) + εi . On the other hand, if y is
transformed instead, the additive noise model will generally not be valid anymore.
More precisely, the transformation that computes ỹ in such a way that it is distributed
as x is ỹi = F̂−1

x (F̂y(yi)), ∀i. Thus, under this transformation we have that ỹi =
F̂−1

x (F̂y(f (xi)+ εi)), which will lead to the violation of the additive noise model.
Of course, transforming x requires the knowledge of the causal direction. In

practice, we will transform both x and y and consider that the correct transformation
is the one that leads to the highest level of Gaussianization of the residuals in the
feature space, after fitting the model in each direction. That is, the transformation
that leads to the highest value of G is expected to be the correct one. We expect
that when y is transformed instead of x, the Gaussianization effect of the residuals
is not as high as when x is transformed, as a consequence of the violation of the
additive noise model. This will allow to determine the causal direction. We do not
have a theoretical result confirming this statement, but the good results obtained in
Sect. 8.6.1 indicate that this is the case.

The details of the complete causal inference algorithm proposed are given in
Algorithm 1. Besides a causal direction, e.g., X → Y or Y → X , this
algorithm also outputs a confidence level in the decision made which is defined
as max(|Gx̃ |, |Gỹ |), where Gx̃ = Energy(zx̃→y)/N − Energy(zy→x̃ )/N denotes the
estimated level of Gaussianization of the residuals when x is transformed to have
the same distribution as y. Similarly, Gỹ = Energy(zỹ→x)/N − Energy(zỹ→x)/N

denotes the estimated level of Gaussianization of the residuals when x and y are
swapped and y is transformed to have the same distribution as x. Here zx̃→y contains
the first principal component of the residuals in the expanded feature space when
trying to predict y using x̃. The same applies for zy→x̃ , zỹ→x and zx→ỹ . However,
the residuals are obtained this time when trying to predict x̃ using y, when trying to
predict x using ỹ and when trying to predict ỹ using x, respectively. Recall that the
reason for keeping only the first principal component of the residuals is described
in Sect. 8.3.4.

Assume |Gx̃ | > |Gỹ |. In this case we prefer the transformation of x to guarantee
that the cause and the effect have the same distribution. The reason is that it leads
to a higher level of Gaussianization of the residuals, as estimated by the energy
statistical test. Now consider that Gx̃ > 0. We prefer the direction X → Y because
the residuals of a fit in that direction are less Gaussian and hence have a higher value
of the statistic of the energy test. By contrast, if Gx̃ < 0 we prefer the direction Y →
X for the same reason. In the case that |Gx̃ | < |Gỹ | the reasoning is the same and
we prefer the transformation of y. However, because we have swapped x and y for



278 D. Hernández-Lobato et al.

Algorithm 1: Causal inference based on the Gaussianity of the residuals
(GR-AN)

Data: Paired samples x and y from the random variables X and Y .
Result: An estimated causal direction alongside with a confidence level.

1 Standardize x and y to have zero mean and unit variance;

2 Transform x to compute x̃ ; // This guarantees that x̃ is
distributed as y.

3 Âx̃→y ← FitModel(x̃, y) ; // This also finds the hyper-parameters
τ and γ.

4 zx̃→y ← ObtainResiduals(x̃, y, Âx̃→y) ; // First PCA component in
feature space.

5 Ây→x̃ ← FitModel(y, x̃) ; // Fit the model in the other direction

6 zy→x̃ ← ObtainResiduals(y, x̃, Ây→x̃ ) ; // First PCA component in
feature space.

7 Gx̃ ← Energy(zx̃→y)/N − Energy(zy→x̃ )/N ; // Get the Gaussianization
level.

8 Swap x and y and repeat lines 2–7 of the algorithm to compute Gỹ .

9 if |Gx̃ | > |Gỹ | then
10 if Gx̃ > 0 then
11 Output: X → Y with confidence |Gx̃ |
12 else
13 Output: Y → X with confidence |Gx̃ |
14 end
15 else
16 if Gỹ > 0 then
17 Output: Y → X with confidence |Gỹ |
18 else
19 Output: X → Y with confidence |Gỹ |
20 end
21 end

computing Gỹ , the decision is the opposite as the previous one. Namely, if Gỹ > 0
we prefer the direction Y → X and otherwise we prefer the direction X → Y .
The confidence in the decision (i.e., the estimated level of Gaussianization) is always
measured by max(|Gx̃ |, |Gỹ |).

The algorithm uses a squared exponential kernel with bandwidth parameter γ and
the actual matrices Âx̃→y and Ây→x̃ , of potentially infinite dimensions, need not be
evaluated in closed form in practice. As indicated in Sect. 8.3, all computations are
carried out efficiently with cost O(N3) using inner products, which are evaluated
in terms of the corresponding kernel function. All hyper-parameters, i.e., τ and γ ,
are chosen using a grid search method guided by a 10-fold cross-validation process.
This search maximizes the explained variance of the left-out data and 10 potential
values are considered for both τ and γ .
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8.5 Related Work

The Gaussianity of residuals was first employed for causal inference by Hernández-
Lobato et al. [9]. These authors analyze auto-regressive (AR) processes and show
that a similar asymmetry as the one described in this paper can be used to determine
the temporal direction of a time series in the presence of non-Gaussian noise.
Namely, when fitting an AR process to a reversed time series, the residuals obtained
follow a distribution that is closer to a Gaussian distribution. Nevertheless, unlike
the work described here, the method proposed by Hernández-Lobato et al. [9] cannot
be used to tackle multidimensional or non-linear causal inference problems. In their
work, Hernández-Lobato et al. [9] show some advantages of using statistical tests
based on measures of Gaussianity to determine the temporal direction of a time
series, as a practical alternative to statistical tests based on the independence of the
cause and the residual. The motivation for these advantages is that the former tests
are one-sample tests while the later ones are two-sample tests.

The previous paper is extended by Morales-Mombiela et al. [22] to consider
multidimensional AR processes. However, this work lacks a theoretical result that
guarantees that the residuals obtained when fitting a vectorial AR process in the
reversed (anti-chronological) direction will follow a distribution closer to a Gaussian
distribution. In spite of this issue, extensive experiments with simulated data suggest
the validity of such conjecture. Furthermore, a series of experiments show the
superior results of the proposed rule to determine the direction of time, which is
based on measures of Gaussianity, and compared with other state-of-the-art methods
based on tests of independence.

The problem of causal inference under continuous-valued data has also been
analyzed by Shimizu et al. [28]. The authors propose a method called LINGAM
that can identify the causal order of several variables when assuming that (a) the
data generating process is linear, (b) there are no unobserved co-founders, and (c)
the disturbance variables have non-Gaussian distributions with non-zero variances.
These assumptions are required because LINGAM relies on the use of Independent
Component Analysis (ICA). More specifically, let x denote a vector that contains
the variables we would like to determine the causal order of. LINGAM assumes
that x = Bx + e, where B is a matrix that can be permuted to strict lower
triangularity if one knows the actual causal ordering in x, and e is a vector of non-
Gaussian independent disturbance variables. Solving for x, one gets x = Ae, where
A = (I − B)−1. The A matrix can be inferred using ICA. Furthermore, given an
estimate of A, B can be obtained to find the corresponding connection strengths
among the observed variables, which can then be used to determine the true causal
ordering. LINGAM has been extended to consider linear relations among groups of
variables [6, 16].

In real-world data, causal relationships tend to be non-linear, a fact that questions
the usefulness of linear methods. Hoyer et al. [10] show that a basic linear
framework for causal inference can be generalized to non-linear models. For non-
linear models with additive noise, almost any non-linearities (invertible or not)
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will typically yield identifiable models. In particular, Hoyer et al. [10] assume
that yi = f (xi) + εi , where f (·) is a possibly non-linear function, xi is the
cause variable, and εi is some independent and random noise. The proposed causal
inference mechanism consists in performing a non-linear regression on the data
to get an estimate of f (·), f̂ (·), and then calculate the corresponding residuals
ε̂i = yi − f̂ (xi). Then, one may test whether ε̂i is independent of xi or not.
The same process is repeated in the other direction. The direction with the highest
level of independence is chosen as the causal one. In practice, the estimate f̂ (·) is
obtained using Gaussian processes for regression, and the HSIC test [7] is used as
the independence criterion. This method has obtained good performance results [15]
and it has been extended to address problems where the model is yi = h(f (xi)+εi),
for some invertible function h(·) [33]. A practical difficulty is however that such a
model is significantly harder to fit to the data.

In the work by Mooij et al. [21], a method for causal inference is proposed based
on a latent variable model, used to incorporate the effects of un-observed noise. In
this context, it is considered that the effect variable is a function of the cause variable
and an independent noise term, not necessarily additive, that is, yi = f (xi, εi),
where xi is the cause variable and εi is some independent and random noise.
The causal direction is then inferred using standard Bayesian model selection. In
particular, the preferred direction is the one under which the corresponding model
has the largest marginal likelihood, where the marginal likelihood is understood
as a proxy for the Kolmogorov complexity. This method suffers from several
implementation difficulties, including the intractability of the marginal likelihood
computation. However, it has shown encouraging results on synthetic and real-world
data.

Janzing et al. [14] consider the problem of inferring linear causal relations among
multi-dimensional variables. The key point here is to use an asymmetry between the
distributions of the cause and the effect that occurs if the covariance matrix of the
cause and the matrix mapping the cause to the effect are independently chosen. This
method exhibits the nice property that applies to both deterministic and stochastic
causal relations, provided that the dimensionality of the involved random variables
is sufficiently high. The method assumes that yi = Axi + εi , where xi is the cause
and εi is additive noise. Namely, denote with Σ̂ to the empirical covariance matrix
of the variables in each xi . Given an estimate of A, Â, the method computes Δx→y =
log trace(ÂΣ̂ÂT) − log trace(Σ̂) + log trace(ÂÂT) + d, where d is the dimension
of xi . This process is repeated to compute Δy→x where xi and yi are swapped. The
asymmetry described states that Δx→y should be close to zero while Δy→x should
not. Thus, if |Δx→y| > |Δy→x|, xi is expected to be the cause. Otherwise, the
variables in yi are predicted to be cause instead. Finally, a kernelized version of this
method is also described by Chen et al. [2].

Most of the methods introduced in this section assume some form of noise in
the generative process of the effect. Thus, their use is not justified in the case of
noiseless data. Janzing et al. [15] describe a method to deal with these situations. In
particular, the method makes use of information geometry to identify an asymmetry
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that can be used for causal inference. The asymmetry relies on the idea that the
marginal distribution of the cause variable, denoted by p(x), is expected to be
chosen independently from the mapping mechanism producing the effect variable,
denoted by the conditional distribution p(y|x). Independence is defined here as
orthogonality in the information space, which allows to describe a dependence that
occurs between p(y) and p(x|y) in the anti-causal direction. This dependence can
be then used to determine the causal order. A nice property of this method is that this
asymmetry between the cause and the effect becomes very simple if both random
variables are deterministically related. Remarkably, the method also performs very
well in noisy scenarios, although no theoretical guarantees are provided in this case.

A similar method for causal inference to the last one is described by Chen
et al. [3]. These authors also consider that p(x) and p(y|x) fulfill some sort of
independence condition, and that this independence condition does not hold for
the anti-causal direction. Based on this, they define an uncorrelatedness criterion
between p(x) and p(y|x), and show an asymmetry between the cause and the
effect in terms of a certain complexity metric on p(x) and p(y|x), which is less
than the same complexity metric on p(y) and p(x|y). The complexity metric is
calculated in terms of a reproducing kernel Hilbert space embedding (EMD) of
probability distributions. Based on the complexity metric, the authors propose an
efficient kernel-based algorithm for causal discovery.

In Sect. 8.2.3 we have shown that in the multivariate case one should expect
higher entropies in the anti-causal direction. Similar results have been obtained
in the case of non-linear relations and the univariate data case [12, 17]. Assume
x, y ∈ R and the actual causal model to be y = f (x) + d, with x⊥d and f (·) an
arbitrary function. Let e be the residual of a fit performed in the anti-causal direction.
Section 5.2 of the work by Hyvärinen and Smith [12] shows that the likelihood ratio
R of each model (i.e., the model fitted in the causal direction and the model fitted in
the anti-causal direction) converges in the presence of infinite data to the difference
between the sum of the entropies of the independent variable and the residual in each
direction. Namely, R →−H(x)−H(d/σd)+H(y)+H(e/σe)+ log σd − log σe,
where σd and σe denote the standard deviation of the errors in each direction. If
R > 0, the causal direction is chosen. By contrast, if R < 0 the anti-causal direction
is preferred. The process of evaluating R involves the estimation of the entropies of
four univariate random variables, i.e., x, d, y and e and the standard deviation of the
errors d and e, which need not be equal. The non-linear functions are estimated as in
the work by Hoyer et al. [10] using a Gaussian process. The entropies are obtained
using a maximum entropy approximation under the hypothesis that the distributions
of these variables are not far from Gaussian [11]. The resulting method is called
non-linear maximum entropy (NLME). A practical difficulty is however that the
estimation of the entropy is a very difficult task, even in one dimension [1]. Thus,
the NLME method is adapted in an ad-hoc manner with the aim of obtaining better
results in certain difficult situations with sparse residuals. More precisely, if H(x)

and H(y) are ignored and Laplacian residuals are assumed R → log σe − log σd .
That is, the model with the minimum error is preferred. The errors are estimated
however in terms of the absolute deviations (because of the Laplacian assumption).
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This method is called mean absolute deviation (MAD). Finally, [17] show the
consistency of the noise additive model, give a formal proof for R ≥ 0 (see
Lemma 1), and propose to estimate H(x), H(y), H(d) and H(e) using kernel
density estimators. Note that if x and y are equally distributed, H(x) = H(y) and
the condition R ≥ 0 implies H(e) ≥ H(d). Nevertheless, σd and σe are in general
different (see the supplementary material for an illustrative example). This means
that in the approach of [12] and [17] it is not possible to make a decision directly on
the basis of a Gaussianization effect on the residuals.

The proposed method GR-AN, introduced in Sect. 8.4, differs from the
approaches described in the previous paragraph in that it does not have to deal
with the estimation of four univariate entropies, which can be a particularly difficult
task. By contrast, it relies on statistical tests of deviation from Gaussianity to infer
the causal direction. Furthermore, the tests employed in our method need not be
directly related to entropy estimation. This is particularly the case of the energy test
suggested in Sect. 8.3.4. Not having to estimate differential entropies is an advantage
of our method confirmed by the results that are obtained in the experiments section.
In particular, we have empirically observed that GR-AN performs better than the
two methods for causal inference NLME and MAD that have been described in
the previous paragraph. GR-AN also performs better than GR-ENT, a method that
uses, instead of statistical tests of Gaussianity, a non-parametric estimator of the
entropy [29].

8.6 Experiments

We carry out experiments to validate the method proposed in this paper, and
empirically verify that the model residuals in the anti-causal direction are more
Gaussian that the model residuals in the causal direction due to a reduction of the
high-order cumulants and an increment of the differential entropy. From now on, we
refer to our method as GR-AN (Gaussianity of the Residuals under Additive Noise).
Furthermore, we compare the performance of GR-AN with four other approaches
from the literature on causal inference, reviewed in Sect. 8.5. First, LINGAM [28],
a method which assumes an additive noise model, but looks for independence
between the cause and the residuals. Second, IR-AN (Independence of the Residuals
under Additive Noise), by Hoyer et al. [10]. Third, a method based on information
geometry, IGCI [15]. Fourth, a method based on Reproducing Kernel Hilbert Space
Embeddings (EMD) of probability distributions [3]. Fifth, the two methods for non-
linear causal inference based on entropy estimation described by Hyvärinen and
Smith [12], NLME and MAD. Sixth, the same GR-AN method, but where we omit
the transformation to guarantee that the random variables X and Y are equally
distributed. This method is called GR-AN�. Last, we also compare results with two
variants of GR-AN that are not based on the energy distance to measure the level of
Gaussianity of the residuals. These are GR-K4, which uses the empirical estimate
of the fourth cumulant (kurtosis) to determine the causal direction (it chooses the
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direction with the largest estimated fourth cumulant); and GR-ENT, which uses a
non-parametric estimator of the entropy [29] to determine the causal direction (the
direction with the smallest entropy is preferred).

The hyper-parameters of the different methods are set as follows. In LINGAM,
we use the parameters recommended by the implementation provided by the
authors. In IR-AN, NLME and MAD we employ a Gaussian process whose hyper-
parameters are found by type-II maximum likelihood. Furthermore, in IR-AN the
HSIC test is used to assess independence between the causes and the residuals. In
NLME the entropy estimator is the one described by Hyvärinen [11]. In IGCI, we
test different normalizations (uniform and Gaussian) and different criteria (entropy
or integral) and report the best observed result. In EMD and synthetic data, we
follow Chen et al. [3] to select the hyper-parameters. In EMD and real-world
data, we evaluate different hyper-parameters and report the results for the best
combination found. In GR-AN, GR-K4 and GR-ENT the hyper-parameters are
found via cross-validation, as described in Sect. 8.4. The number of neighbors in
the entropy estimator of GR-ENT is set to 10, a value that we have observed to
give a good trade-off between bias and variance. Finally, in GR-AN, GR-K4, and
GR-ENT we transform the data so that both variables are equally distributed, as
indicated in Sect. 8.4.

The confidence in the decision is computed as indicated by Janzing et al. [15].
More precisely, in LINGAM the confidence is given by the maximum absolute value
of the entries in the connection strength matrix B. In IGCI we employ the absolute
value of the difference between the corresponding estimates (entropy or integral)
in each direction. In IR-AN the confidence level is obtained as the maximum of
the two p-values of the HSIC test. In EMD we use the absolute value of the
difference between the estimates of the corresponding complexity metric in each
direction, as described in [3]. In NLME and MAD the confidence level is given by
the absolute value of the difference between the outputs of the entropy estimators in
each direction [12]. In GR-K4 we use the absolute difference between the estimated
fourth cumulants. In GR-ENT we use the absolute difference between the estimates
of the entropy. Finally, in GR-AN we follow the details given in Sect. 8.4 to estimate
the confidence in the decision.

To guarantee the exact reproducibility of the different experiments described in
this paper, the source-code for all methods and data sets is available in the public
repository https://bitbucket.org/dhernand/gr_causal_inference.

8.6.1 Experiments with Synthetic Data

We carry out a first batch of experiments on synthetic data. In these experiments, we
employ the four causal mechanisms that map X to Y described by Chen et al. [3].
They involve linear and non-linear functions, and additive and multiplicative noise
effects:

https://bitbucket.org/dhernand/gr_causal_inference
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• M1: yi = 0.8xi + εi .
• M2: yi = xiεi .
• M3: yi = 0.3x3

i + εi .
• M4: yi = atan(xi)

3 + εi .

The noise εi can follow four different types of distributions: (1) A generalized
Gaussian distribution with shape parameter equal to 10 (an example of a sub-
Gaussian distribution); (2) a Laplace distribution (an example of a super-Gaussian
distribution); (3) a Gaussian distribution; and (4) a bimodal distribution with density
p(εi) = 0.5N (εi |m, s) + 0.5N (εi | − m, s), where m = 0.63 and s = 0.1. The
Laplace distribution and the Gaussian distribution are adjusted to have the same
variance as the generalized Gaussian distribution. The bimodal distribution already
has the same variance as the generalized Gaussian distribution.

As indicated by Chen et al. [3], in these experiments, the samples from the cause
variable X are generated from three potential distributions:

• p1(x) = 1√
2π

exp{−x2/2}.
• p2(x) = 1

2
√

0.5π
exp{−(x + 1)2/0.5} + 1

2
√

0.5π
exp{−(x − 1)2/0.5}.

• p3(x) = 1
4
√

0.5π
exp{−(x + 1.5)2/0.5} + 1

2
√

0.5π
exp{−x2/0.5}

+ 1
4
√

0.5π
exp{−(x − 1.5)2/0.5}.

These are unimodal, bimodal, and trimodal distributions, respectively.
Figure 8.5 displays a representative example of the plots of different combina-

tions of distributions and mapping mechanisms when the noise follows a generalized
Gaussian distribution with shape parameter equal to 10. The plots for Laplace,
Gaussian or bimodal distributed noise look similar to these ones. The assumptions
made by proposed method, i.e., GR-AN, are valid in the case of all the causal
mechanisms, except for M2, which considers multiplicative noise, and in the case
of all cause distributions, p1, p2 and p3. The only type of noise that violates the
assumptions made by GR-AN is the case of Gaussian noise. In particular, under
Gaussian noise GR-AN cannot infer the causal direction using Gaussianity measures
because the actual residuals are already Gaussian.

The average results of each method on 100 repetitions of each potential causal
mechanism, distribution for the effect, and noise distribution are displayed in
Table 8.1. The size of each paired samples of X and Y is set to 500 in these
experiments. We observe that when the assumptions made by the proposed method,
GR-AN, are satisfied, it identifies the causal direction on a very high fraction of
the 100 repetitions considered. However, when these assumptions are not valid,
e.g., in the case of the M2 causal mechanism, which has multiplicative noise, the
performance worsens. The same happens when the distribution of the residuals is
Gaussian. In these experiments, LINGAM tends to fail when the causal relation is
strongly non-linear. This is the case of the causal mechanism M3. LINGAM also
has problems when all the independent variables are Gaussian. Furthermore, all
methods generally fail in the case of independent Gaussian variables that are linearly
related. This corresponds to the causal mechanism M1, the distribution p1(x) for
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Fig. 8.5 Plots of different distributions and mechanisms when the noise follows a generalized
Gaussian distribution with shape parameter equal to 10

the cause, and the Gaussian distribution for the noise. The reason for this is that in
this particular scenario the causal direction is not identifiable [28]. IGCI and EMD
sometimes fail in the case of the causal mechanism M1 and M4. However, they
typically correctly identify the causal direction in the case of the mechanism M2,
which has non-additive noise, and where the other methods tend to fail. Finally, IR-
AN performs slightly better than GR-AN, especially in the case of additive Gaussian
noise, where GR-AN is unable to identify the causal direction. MAD provides very
bad results for some of the mechanism considered, i.e., M1 and M4. Surprisingly
this is the case even for Laplacian additive noise, which is the hypothesis made by
MAD. This bad behavior is probably a consequence of ignoring the entropies of X
and Y in this method. NLME and GR-ENT give worse results than GR-AN in some
particular cases, e.g., p1 and the causal mechanism M3. We believe this is related to
the difficulty of estimating differential entropies in practice. GR-AN� performs very
similar to GR-AN. This indicates that in practice one may ignore the transformation
that guarantees that X and Y are equally distributed. GR-K4 also gives similar
results to GR-AN, probably because in these experiments the tails of the residuals
are not very heavy.
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An overall comparison of the different methods evaluated is shown in Fig. 8.6.
This figure displays several radar charts that indicate the average accuracy of each
method for the different types of noise considered and for each mechanism M1, M2,
M3 and M4. In particular, for a given method and a given type of noise, the radius of
each portion of the pie is proportional to the corresponding average accuracy of the
method across the distributions p1, p2 and p3 for the cause. The pie at the bottom
corresponds to 100% accuracy for each causal mechanism. The conclusions derived
from this figure are similar to the ones obtained from Table 8.1. In particular, IR-
AN performs very well, except for multiplicative noise (M3), closely followed by
GR-AN, GR-AN�, and GR-K4, which give similar results. The methods perform
very poorly in the case of additive Gaussian noise, since they cannot infer the actual
causal direction in that situation. NLME and GR-ENT have problems in the case
of the causal mechanism M3 and MAD in the case of the mechanisms M1 and M4.
LINGAM also performs bad in the case of M3 and IGCI and EMD have problems in
the case of the mechanisms M1 and M4. IGCI, EMD and MAD are the only methods
performing well in the case of M2, the mechanism with non-additive noise.

We have repeated these experiments for other samples sizes, e.g., 100, 200 300
and 1000. The results obtained are very similar to the ones reported here, except
when the number of samples is small and equal to 100. In that case NLME performs
slightly better than the proposed approach GR-AN, probably because with 100
samples it is very difficult to accurately estimate the non-linear transformation that
is required to guarantee that X and Y are equally distributed. These results of these
additional experiments are found in the supplementary material.

Fig. 8.6 Radar charts showing the average accuracy of each method for the different types of noise
considered and for each mechanism M1, M2, M3 and M4. For a particular method and type of
noise, the radius of each portion of the pie is proportional to the corresponding average accuracy of
the method across the distributions p1, p2 and p3 for the cause. The pie at the bottom corresponds
to 100% accuracy for each mechanism
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In summary, the good results provided by GR-AN and its variants in the
experiments described indicate that (1) when the assumptions made by GR-AN are
valid, the method has a good performance and (2) there is indeed a Gaussianization
effect in the residuals when the model is fitted under the anti-causal direction.
Because GR-AN� also performs well in these experiments, this indicates that a
Gaussianization of the residuals may happen even when X and Y do not follow
the same distribution.

We give further evidence of the Gaussianization of the distribution of the
residuals obtained when fitting the model under the anti-causal direction. For this,
we analyze in detail three particular cases of GR-AN corresponding to the causal
mechanism M3, the distribution p2(x) for the cause and each of the three types of
additive noise considered. Namely, generalized Gaussian noise, Laplacian noise and
bimodal noise. Figure 8.7 shows the predicted pre-images for new data instances
when the model has been fitted in the causal (X̃ → Y ) and the anti-causal
(Y → X̃ ) direction alongside with a histogram of the first principal component of
the residuals in feature space. A Gaussian approximation is also displayed as a solid
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Fig. 8.7 (left column) Predicted pre-images obtained in the casual direction X̃ → Y alongside
with a histogram of the first principal component of the residuals in feature space. A Gaussian fit is
displayed as a solid black line. Results are shown for each type of additive noise considered. (right
column) Same plots for the anti-causal direction Y → X̃
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black line on top of the histogram. In this case x, i.e., the samples of X , have been
transformed to be equally distributed to y, i.e., the samples from Y . We observe
that the distribution of the residuals in the anti-causal direction (Y → X̃ ) is more
similar to a Gaussian distribution. Furthermore, for the direction X̃ → Y the
statistic of the energy based Gaussianity test for the first principal component of the
residuals is respectively 4.02, 4.64 and 11.46, for generalized Gaussian, Laplacian
and bimodal noise. Recall that the larger the value the larger the deviation from
Gaussianity. In the case of the direction Y → X̃ , the energy statistic associated
to the residuals is 0.97, 0.68 and 1.31, respectively. When y is transformed to have
the same distribution as x similar results are observed (results not shown). However,
the Gaussianization effect is not as strong as in this case, probably because it leads
to the violation of the additive noise assumption. In summary, the figure displayed
illustrates in detail the Gaussianization effect of the residuals when fitting the model
in the anti-causal direction.

8.6.2 Experiments with Real Cause-Effect Pairs

A second batch of experiments is performed on the cause-effect pairs from the
ChaLearn challenge.2 This challenge contains 8073 cause-effect data pairs with a
labeled causal direction. From these pairs, we consider a subset for our experiments.
In particular, we select the 184 pairs that have (1) at least 500 samples, and (2)
a fraction of repeated instances for each random variable of at most 1%. The
first criterion guarantees that there is enough data to make a decision with high
confidence. The second criterion removes the pairs with discrete random variables,
motivated by the transformation required by the GR-AN method to guarantee
the equal distribution of X and Y . In particular, this transformation cannot be
carried out on discrete data. Another advantage is that this filtering process of
the data facilitates the experiments since several of the methods considered in the
comparison (i.e., GR-AN, GR-ENT, GR-K4, IR-AN, NLME, MAD and EMD) are
computationally very expensive. More precisely, they have a cubic cost with respect
to the number of samples and they require tuning several hyper-parameters. The
consequence is that evaluating these methods on the 8073 pairs available is therefore
not feasible.

Using these 184 pairs we evaluate each of the methods considered in the previous
section and report the corresponding accuracy as a function of the decisions made. In
these experiments we sample at random 500 instances from each cause-effect pair.
This is a standard number of samples that has been previously employed by other
authors in their experiments with cause-effect pairs [15]. Furthermore, a threshold
value is fixed and the obtained confidence in the decision by each method is
compared to such threshold. Only if the confidence is above the threshold value, the

2See https://www.codalab.org/competitions/1381 for more information.

https://www.codalab.org/competitions/1381
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cause-effect pair is considered in the evaluation of the accuracy of the corresponding
method. A summary of the results is displayed in Fig. 8.8. This figure shows for each
method, as a fraction of the decisions made, the accuracy on the filtered data sets
on which the confidence on the decision is above the threshold value. A gray area
has been drawn to indicate accuracy values that are not statistically different from
random guessing (accuracy equal to 50%) using a binomial test (p-value above 5%).
We observe that IR-AN obtains the best results, followed by GR-AN, GR-AN�, GR-
K4, GR-ENT, IGCI, NLME and EMD. NLME, IGCI and EMD perform worse than
GR-AN and GR-AN� when a high number of decisions are made. The differences
in performance between IR-AN and GR-AN, when 100% of the decisions are made,
are not statistically significant (a paired t-test returns a p-value equal to 25%). The
fact that the performance of GR-AN� is similar to the performance of GR-AN also
indicates that there is some Gaussianization of the residuals even though the two
random variables X and Y are not equally distributed. We observe that the results
of LINGAM and MAD are not statistically different from random guessing. This
remarks the importance of non-linear models and questions the practical utility of
the MAD method. In these experiments, GR-ENT and GR-K4 perform worse than
GR-AN, which remarks the benefits of using the energy distance to estimate the
deviation from the Gaussian distribution, as a practical alternative to entropy or
cumulant based measures.

In summary, the results displayed in Fig. 8.8 confirm that the level of Gaussianity
of the residuals, estimated using statistical tests, is a useful metric that can be used
to identify the causal order of two random variables. Furthermore, this figure also
validates the theoretical results obtained in Sect. 8.2 which state that one should
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effect pairs extracted from the ChaLearn challenge. The number of samples of each pair is equal
to 500. Best seen in color
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expect residuals whose distribution is closer to the Gaussian distribution when
performing a fit in the anti-causal direction.

In the supplementary material we include additional results for other sample
sizes. Namely, 100, 200 and 300 samples. The results obtained are similar to the
ones reported in Fig. 8.8. However, the differences between GR-ENT, NLME, GR-
AN and GR-AN� are smaller. Furthermore, when the number of samples is small
(i.e., equal to 100) GR-AN performs worse than NLME, probably because with such
a small number of samples it is difficult to estimate the non-linear transformation
that guarantees that X and Y are equality distributed.

In this section we have also evaluated the different methods compared in the
previous experiments on a random subset of 184 cause-effect pairs chosen across the
8073 pairs of the ChaLearn challenge (results not shown). In this case, the ranking
of the curves obtained looks similar to the ranking displayed in Fig. 8.8, i.e., IR-
AN performs best followed by GR-AN, GR-AN�, NLME and EMD. However, all
methods obtain worse results in general and none of them, except IR-AN, perform
significantly different from random guessing.

Finally, we also have evaluated the different methods in a subset of 82 cause-
effect pairs extracted from the Tübingen cause-effect pairs.3 We only considered
those pairs with scalar cause and effect. The results obtained are displayed in
Fig. 8.9. In this case, the performance of the different methods is worse than the
one displayed in Fig. 8.8. Only IR-AN, IGCI and MAD perform significantly better
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Fig. 8.9 Accuracy of each method, as a fraction of the decisions made, on the 82 cause-effect
pairs extracted from the Tuebingen database. Best seen in color

3See http://webdav.tuebingen.mpg.de/cause-effect/ for more details.

http://webdav.tuebingen.mpg.de/cause-effect/
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than random guessing. Furthermore, GR-AN and GR-AN� do not perform well in
this set of cause-effect pairs. This is also the case of NLME. We believe that the
reason for this bad performance is that in most of these pairs some of the variables
take discrete or repeated values. In the case of GR-AN this makes infeasible to
transform the two random variables, X and Y , so that they are equally distributed.
Furthermore, the discrete random variables may have a strong impact in the tests for
Gaussianity and in the estimation of the differential entropy. This could explain the
bad performance of GR-AN�, NLME and GR-ENT.

In summary, the results reported in this section have shown that in some cause-
effect pairs, when the assumptions made by the proposed method are satisfied, there
is indeed a Gaussianization effect in the residuals obtained when fitting the model in
the anti-causal direction, and this asymmetry is useful to carry out causal inference
on both synthetic and real inference problems. Our experiments also show that the
transformation employed to guarantee that X and Y are equally distributed can be
ignored in some cases without decreasing the performance. This indicates that our
statement about the increased level of Gaussianity of the residuals, in terms of the
increase of the entropy and the reduction of the high-order cumulants, may be true
under more general assumptions.

8.7 Conclusions

In this paper we have shown that in the case of cause-effect pairs with additive
non-Gaussian noise there is an asymmetry that can be used for causal inference. In
particular, assuming that the cause and the effect are equally distributed random
variables, that are linearly related, the residuals of a least squares fit in the
anti-causal direction are more Gaussian than the residuals of a linear fit in the
causal direction due a reduction of the magnitude of the high-order cumulants.
Furthermore, by extending the results of [12] based on information theory, we have
shown that this Gaussianization effect is also present when the two random variables
are multivariate due to an increment of the differential entropy. This motivates the
use of kernel methods to work in an expanded feature space. This enables addressing
non-linear cause-effect inference problems using simple techniques. Specifically,
kernel methods allow to fit a linear model in an expanded feature space which will
be non-linear in the original input space.

Taking advantage of the asymmetry described, we have designed a method for
non-linear causal inference, GR-AN (Gaussianity of the Residuals under Additive
Noise). The method consists in computing the residuals of a linear model in an
expanded feature space in both directions, i.e., X → Y and Y → X . The
expected causal direction is the one in which the residuals appear to be more
Gaussian (i.e., the magnitude of the high-order cumulants is reduced and the
entropy is increased). Thus, a suitable statistical test that measures the level of
non-Gaussianity of the residuals can be used to determine the causal direction. In
principle, one may be tempted to use statistical tests based on entropy or cumulant
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estimation. However, our experiments show that one can obtain better results by
using a test based on an energy distance to quantify the Gaussianity of the residuals.
In particular, entropy estimation is an arguably difficult task and the estimators of
the cumulants involve high-order moments which can lead to high variance.

The effectiveness of the proposed method GR-AN has been illustrated in both
synthetic and real-world causal inference problems. We have shown that in certain
problems GR-AN is competitive with state-of-the-art methods and that it performs
better than related methods based on entropy estimation [12]. The entropy can be
understood as a measure of non-Gaussianity. Nevertheless, it is very difficult to
estimate in practice. By contrast, the statistical test employed by GR-AR is not
directly related to entropy estimation. This may explain the improvements observed.
A limitation of the current formulation of GR-AN is that the distributions of the
cause and the effect have to be equal. In the case of continuous univariate variables
finding a transformation to make this possible is straightforward. Additionally, our
experiments show that such a transformation can be side-stepped in some cases
without a deterioration in performance. In any case, further research is needed to
extend this analysis to remove this restriction.

Finally, the performance of GR-AN on cause-effect pairs with discretized values
is rather poor. We believe this is due to the fact that in this case, finding a
transformation so that the cause and the effect are equally distributed is infeasible.
Furthermore, the discretization process probably has a strong impact on the
Gaussianity tests. Further evidence that make these observations more plausible is
the fact that discretization has also a strong negative impact in the performance of
the methods based on entropy estimation.
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Appendix 1

In this appendix we show that if X and Y follow the same distribution and they
have been centered, then the determinant of the covariance matrix of the random
variable corresponding to εi , denoted with Cov(εi ), coincides with the determinant
of the covariance matrix corresponding to the random variable ε̃i , denoted with
Cov(ε̃i ).

From the causal model, i.e., yi = Axi + εi , we have that:

Cov(Y ) = ACov(X )AT + Cov(εi ) . (8.43)
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Since X and Y follow the same distribution we have that Cov(Y ) = Cov(X ).
Furthermore, we know from the causal model that A = Cov(Y ,X )Cov(X )−1.
Then,

Cov(εi ) = Cov(X )− Cov(Y ,X )Cov(X )−1Cov(X ,Y ) . (8.44)

In the case of ε̃i we know that the relation ε̃i = (I− ÃA)xi − Ãεi must be satisfied,
where Ã = Cov(X ,Y )Cov(Y )−1 = Cov(X ,Y )Cov(X )−1. Thus, we have
that:

Cov(ε̃i ) = (I− ÃA)Cov(X )(I− ATÃT)+ ÃCov(εi )ÃT (8.45)

= Cov(X )− Cov(X )ATÃT − ÃACov(X )+ ÃACov(X )ATÃT

(8.46)

+ ÃCov(X )ÃT − ÃCov(Y ,X )Cov(X )−1Cov(X ,Y )ÃT

(8.47)

= Cov(X )− Cov(X )ATÃT − ÃACov(X )+ ÃCov(X )ÃT (8.48)

= Cov(X )− Cov(X ,Y )CovX −1Cov(Y ,X ) (8.49)

− Cov(X ,Y )CovX −1Cov(Y ,X ) (8.50)

+ Cov(X ,Y )CovX −1Cov(Y ,X ) (8.51)

= Cov(X )− Cov(X ,Y )Cov(X )−1Cov(Y ,X ) . (8.52)

By the matrix determinant theorem we have that detCov(ε̃i ) = detCov(εi ). See [23,
p. 117] for further details.

Appendix 2

In this Appendix we motivate that, if the distribution of the residuals is not Gaussian,
but is close to Gaussian, one should also expected more Gaussian residuals in the
anti-causal direction in terms of the energy distance described in Sect. 8.3.4. For
simplicity we will consider the univariate case. We use the fact that the energy
distance in the one-dimensional case is the squared distance between the cumulative
distribution functions of the residuals and a Gaussian distribution [32]. Thus,

D̃2 =
∫ ∞

−∞

[
F̃ (x)−Φ(x)

]2
dx , D2 =

∫ ∞

−∞
[F(x)−Φ(x)]2 dx , (8.53)

where D̃2 and D2 are the energy distances to the Gaussian distribution in the anti-
causal and the causal direction respectively; F̃ (x) and F(x) are the c.d.f. of the
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residuals in the anti-causal and the causal direction, respectively; and finally, Φ(x)

is the c.d.f. of a standard Gaussian.
One should expect that D̃2 ≤ D2. To motivate this, we use the Gram-Charlier

series and compute an expansion of F̃ (x) and F(x) around the standard Gaussian
distribution [24]. Such an expansion only converges in the case of distributions that
are close to be Gaussian (see Sect. 17.6.6a of [5] for further details). Namely,

F̃ (x) = Φ(x)− φ(x)

(
ã3

3!H2(x)+ ã4

4!H3(x)+ · · ·
)

, (8.54)

F(x) = Φ(x)− φ(x)
(a3

3!H2(x)+ a4

4!H3(x)+ · · ·
)

, (8.55)

where φ(x) is the p.d.f. of a standard Gaussian, Hn(x) are Hermite polynomials and
ãn and an are coefficients that depend on the cumulants, e.g., a3 = κ3, a4 = κ4,
ã3 = κ̃3, ã4 = κ̃4. Note, however, that coefficients an and ãn for n > 5 depend on
combinations of the cumulants. Using such an expansion we find:

D̃2 =
∫ ∞

−∞
φ(x)2

[
−

∞∑
n=3

ãn

n!Hn−1(x)

]2

dx ≈
∫ ∞

−∞
φ(x)2

[
−

4∑
n=3

κ̃n

n!Hn−1(x)

]2

dx

(8.56)

≈ κ̃2
3

36
E[H2(x)2φ(x)] + κ̃2

4

576
E[H3(x)2φ(x)] , (8.57)

where E[·] denotes expectation with respect to a standard Gaussian and we have
truncated the Gram-Charlier expansion after n = 4. Truncation of the Gram-
Charlier expansion after n = 4 is a standard procedure that is often done in the
ICA literature for entropy approximation. See for example Sect. 5.5.1 of [13]. We
have also used the fact that E[H3(x)H2(x)φ(x)] = 0. The same approach can
be followed in the case of D2, the energy distance in the causal direction. The
consequence is that D2 ≈ κ2

3/36·E[H2(x)2φ(x)]+κ2
4/576·E[H3(x)2φ(x)]. Finally,

the fact that one should expect D̃2 ≤ D2 is obtained by noting that κ̃n = cnκn, where
cn is some constant that lies in the interval (−1, 1), as indicated in Sect. 8.2.1. We
expect that this result extends to the multivariate case.

Appendix 3

In this Appendix we motivate that one should expect also more Gaussian residuals in
the anti-causal direction, based on a reduction of the cumulants, when the residuals
in feature space are projected onto the first principal component. That is, when they
are multiplied by the first eigenvector of the covariance matrix of the residuals,
and scaled by the corresponding eigenvalue. Recall from Sect. 8.2.2 that these
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covariance matrices are C = I−AAT and C̃ = I−ATA, in the causal and anti-causal
direction respectively. Note that both matrices have the same eigenvalues.

If A is symmetric we have that both C and C̃ have the same matrix of eigenvectors
P. Let pn

1 be the first eigenvector multiplied n times using the Kronecker product.
The cumulants in the anti-causal and the causal direction, after projecting the
data onto the first eigenvector are κ̃

proj
n = (pn

1)
TMnvect(κ̃n) = c(pn

1)
Tvect(κ̃n)

and κ
proj
n = (pn

1)
Tvect(κn), respectively, where Mn is the matrix that relates the

cumulants in the causal and the anti-causal direction (see Sect. 8.2.2) and c is one of
the eigenvalues of Mn. In particular, if A is symmetric, it is not difficult to show that
pn

1 is one of the eigenvectors of Mn. Furthermore, we also showed in that case that
||Mn||op < 1 for n ≥ 3 (see Sect. 8.2.2). The consequence is that c ∈ (−1, 1), which
combined with the fact that ||pn

1|| = 1 leads to smaller cumulants in magnitude in
the case of the projected residuals in the anti-causal direction.

If A is not symmetric we motivate that one should also expect more Gaussian
residuals in the anti-causal direction due to a reduction in the magnitude of the
cumulants. For this, we derive a smaller upper bound on their magnitude. This
smaller upper bound is based on an argument that uses the operator norm of vectors.

Definition 8.2 The operator norm of a vector w induced by the �p norm is ||w||op =
min{c ≥ 0 : ||wTv||p ≤ c||v||p,∀v}.

The consequence is that ||w||op ≥ ||wTv||p/||v||p, ∀v. Thus, the smallest the
operator norm of w, the smallest the expected value obtained when multiplying any
vector by the vector w. Furthermore, it is clear that ||w||op = ||w||2, in the case
of the �2-norm. From the previous paragraph, in the anti-causal direction we have
||κ̃proj

n ||2 = ||(p̃n
1)

TMnvect(κn)||2, where p̃1 is the first eigenvector of C̃, while in

the causal direction we have ||κproj
n ||2 = ||(pn

1)
Tvect(κn)||2, where p1 is the first

eigenvector of C. Thus, because the norm of each vector p̃n
1 and pn

1 is one, we have
that ||pn

1||op = 1. However, because we expect Mn, to reduce the norm of (p̃n
1)T, as

motivated in Sect. 8.2.2, ||(p̃n
1)

TMn||op < 1 should follow. This is expected to lead
to smaller cumulants in magnitude in the anti-causal direction.
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Chapter 9
From Dependency to Causality:
A Machine Learning Approach

Gianluca Bontempi and Maxime Flauder

9.1 Introduction

The relationship between statistical dependency and causality lies at the heart
of all statistical approaches to causal inference and can be summarized by two
famous statements: correlation (or more generally statistical association) does not
imply causation and causation induces a statistical dependency between causes
and effects (or more generally descendants) [31]. In other terms it is well known
that statistical dependency is a necessary yet not sufficient condition for causality.
The unidirectional link between these two notions has been used by many formal
approaches to causality to justify the adoption of statistical methods for detecting
or inferring causal links from observational data. The most influential one is the
Causal Bayesian Network approach, detailed in [20] which relies on notions of
independence and conditional independence to detect causal patterns in the data.
Well known examples of related inference algorithms are the constraint-based
methods like the PC algorithms [35] and IC [27]. These approaches are founded
on probability theory and have been shown to be accurate in reconstructing causal
patterns in many applications [30], notably in bioinformatics [12]. At the same time
they restrict the set of configurations which causal inference is applicable to. Such
boundary is essentially determined by the notion of distinguishability which defines
the set of Markov equivalent configurations on the basis of conditional independence
tests. Typical examples of indistinguishability are the two-variable setting and the
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completely connected triplet configuration [16] where it is impossible to distinguish
between cause and effects by means of conditional or unconditional independence
tests.

If on one hand the notion of indistinguishability is probabilistically sound, on the
other hand it should not prevent us from addressing interesting yet indistinguishable
causal patterns. In fact, indistinguishability results rely on two main aspects: (1) they
refer only to specific features of dependency (notably conditional or unconditional
independence) and (2) they state the conditions (e.g. faithfulness) under which it is
possible to distinguish (or not) with certainty between configurations. Accordingly,
indistinguishability results do not prevent the existence of statistical algorithms able
to reduce the uncertainty about the causal pattern even in indistinguishable config-
urations. This has been made evident by the appearance in recent years of a series of
approaches which tackle the cause-effect pair inference, like ANM (Additive Noise
Model) [17], IGCI (Information Geometry Causality Inference) [10, 18], LiNGAM
(Linear Non Gaussian Acyclic Model) [34] and the algorithms described in [25]
and [36].1 What is common to these approaches is that they use alternative statistical
features of the data to detect causal patterns and reduce the uncertainty about their
directionality. A further important step in this direction has been represented by the
recent organization of the ChaLearn cause-effect pair challenge [14]. The good (and
significantly better than random) accuracy obtained on the basis of observations of
pairs of causally related (or unrelated) variables supports the idea that alternative
strategies can be designed to infer with success (or at least significantly better than
random) indistinguishable configurations.

It is worthy to remark that the best ranked approaches2 in the ChaLearn
competition share a common aspect: they infer from statistical features of the
bivariate distribution the probability of the existence and then of the directionality
of the causal link between two variables. The success of these approaches shows
that the problem of causal inference can be successfully addressed as a supervised
machine learning approach where the inputs are features describing the probabilistic
dependency and the output is a class denoting the existence (or not) of a directed
causal link. Once sufficient training data are made available, conventional feature
selection algorithms [15] and classifiers can be used to return a prediction better
than random.

The effectiveness of machine learning strategies in the case of pairs of variables
encourages the extension of the strategy to configurations with a larger number of
variables. In this paper we propose an original approach to learn from multivariate
observations the probability that a variable is a direct cause of another. This task is
undeniably more difficult because

• the number of parameters needed to describe a multivariate distribution increases
rapidly (e.g. quadratically in the Gaussian case),

1 A more extended list of recent algorithms is available in http://www.causality.inf.ethz.ch/cause-
effect.php?page=help.
2We took part in the ChaLearn challenge and we ranked eighth in the final leader board.

http://www.causality.inf.ethz.ch/cause-effect.php?page=help
http://www.causality.inf.ethz.ch/cause-effect.php?page=help
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• information about the existence of a causal link between two variables is returned
also by the nature of the dependencies existing between the two variables and the
remaining ones.

The second consideration is evident in the case of a collider configuration
z1 → z2 ← z3: in this case the dependency (or independency) between z1 and
z3 tells us more about the link z1 → z2 than the dependency between z1 and z2.
This led us to develop a machine learning strategy (described in Sect. 9.2) where
descriptors of the relation existing between members of the Markov blankets of
two variables are used to learn the probability (i.e. a score) that a causal link exists
between two variables. The approach relies on the asymmetry of some conditional
(in)dependence relations between the members of the Markov blankets of two
variables causally connected. The resulting algorithm (called D2C and described
in Sect. 9.3) predicts the existence of a direct causal link between two variables in a
multivariate setting by (1) creating a set of of features of the relationship based on
asymmetric descriptors of the multivariate dependency and (2) using a classifier to
learn a mapping between the features and the presence of a causal link.

In Sect. 9.4 we report the results of a set of experiments assessing the accuracy
of the D2C algorithm. Experimental results based on synthetic and published data
show that the D2C approach is competitive and often outperforms state-of-the-art
methods.

9.2 Learning the Relation Between Dependency and
Causality in a Configuration with n > 2 Variables

This section presents an approach to learn, from a number of observations, the
relationships existing between the n variate distribution of Z = [z1, . . . , zn] and
the existence of a directed causal link between two variables zi and zj , 1 ≤
i 
= j ≤ n, in the case of no confounding, no selection bias and no feedback
configurations. Several parameters may be estimated from data in order to represent
the multivariate distribution of Z, like the correlation or the partial correlation
matrix. Some problems however arise in this case like: (1) these parameters are
informative in case of Gaussian distributions only, (2) identical (or close) causal
configurations could be associated to very different parametric values, thus making
difficult the learning of the mapping and (3) different causal configurations may lead
to identical (or close) parametric values.

In other terms it is more relevant to describe the distribution in structural
terms (e.g. with notions of conditional dependence/independence) rather than in
parametric terms. Two more aspects have to be taken into consideration. First since
we want to use a learning approach to identify cause-effect relationships we need
some quantitative features to describe the structure of the multivariate distribution.
Second, since asymmetry is a distinguishing characteristic of a causal relationship,
we expect that effective features should share the same asymmetric properties.
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In this paper we will use information theory to represent and quantify the notions
of (conditional) dependence and independence between variables and to derive a set
of asymmetric features to reconstruct causality from dependency.

9.2.1 Notions of Information Theory

Let us consider three continuous random variables z1, z2 and z3 having a joint
Lebesgue density.3 Let us start by considering the relation between z1 and z2. The
mutual information [8] between z1 and z2 is defined in terms of their probabilistic
density functions p(z1), p(z2) and p(z1, z2) as

I (z1; z2) =
∫ ∫

log
p(z1, z2)

p(z1)p(z2)
p(z1, z2)dz1dz2 = H(z1)−H(z1|z2) (9.1)

where H is the entropy and the convention 0 log 0
0 = 0 is adopted. This quantity

measures the amount of stochastic dependence between z1 and z2 [8]. Note that, if
z1 and z2 are Gaussian distributed the following relation holds

I (z1; z2) = −1

2
log(1− ρ2) (9.2)

where ρ is the Pearson correlation coefficient between z1 and z2.
Let us now consider a third variable z3. The conditional mutual information [8]

between z1 and z2 once z3 is given is defined by

I (z1; z2|z3) =
∫ ∫ ∫

log
p(z1, z2|z3)

p(z1|z3)p(z2|z3)
p(z1, z2, z3)dz1dz2dz3 =

= H(z1|z3)−H(z1|z2, z3) (9.3)

The conditional mutual information is null if and only if z1 and z2 are conditionally
independent given z3.

A structural notion which can be described in terms of conditional mutual
information is the notion of Markov Blanket (MB). The Markov Blanket of variable
zi in an n dimensional distribution is the smallest subset of variables belonging to
Z \ zi (where \ denotes the set difference operator) which makes zi conditionally
independent of all the remaining ones. In information theoretic terms let us consider
a set Z of n random variables, a variable zi and a subset Mi ⊂ Z \ zi . The subset
Mi is said to be a Markov blanket of zi if it is the minimal subset satisfying

3Boldface denotes random variables.
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I (zi; (Z \ (Mi ∪ zi ))|Mi ) = 0

Effective algorithms have been proposed in literature to infer a Markov Blanket
from observed data [38]. Feature selection algorithms are also useful to construct a
Markov blanket of a given target variable once they rely on notions of conditional
independence to select relevant variables [24].

9.2.2 Causality and Asymmetric Dependency Relationships

The notion of causality is central in science and also an intuitive notion of everyday
life. The remarkable property of causality which distinguishes it from dependency
is asymmetry.

In probabilistic terms a variable zi is dependent on a variable zj if the density of
zi , conditional on the observation zj = zj , is different from the marginal one

p(zi |zj = zj ) 
= p(zi)

In information theoretic terms the two variables are dependent if I (zi; zj ) =
I (zj ; zi ) > 0. This implies that dependency is symmetric. If zi is dependent on
zj , then zj is dependent on zi too as shown by

p(zj |zi = zi) 
= p(zj )

The formal representation of the notion of causality demands an extension of
the syntax of the probability calculus as done by [26] with the introduction of the
operator do which allows to distinguish the observation of a value of zj (denoted by
zj = zj ) from the manipulation of the variable zj (denoted by do(zj = zj )). Once
this extension is accepted we say that a variable zj is a cause of a variable zi (e.g.
“diseases cause symptoms”) if the distribution of zi is different from the marginal
one when we set the value zj = zj

p(zi |do(zj = zj )) 
= p(zi)

but not vice versa (e.g. “symptoms do not cause disease”)

p(zj |do(zi = zi)) = p(zj )

The extension of the probability notation made by Pearl allows to formalize the
intuition that causality is asymmetric. Another notation which allows to represent
causal expression is provided by graphical models or more specifically by Directed
Acyclic Graphs (DAG) [20]. In this paper we will limit to consider causal relation-
ships modeled by DAG, which proved to be convenient tools to understand and use
the notion of causality. Furthermore we will make the assumption that the set of
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causal relationships existing between the variables of interest can be described by
a Markov and faithful DAG [27]. This means that the DAG is an accurate map of
dependencies and independencies of the represented distribution and that using the
notion of d-separation it is possible to read from the graph if two sets of nodes are
(in)dependent conditioned on a third.

The asymmetric nature of causality suggests that if we want to infer causal links
from dependency we need to find some features (or descriptors) which describe the
dependency and share with causality the property of asymmetry. Let us suppose that
we are interested in predicting the existence of a directed causal link zi → zj where
zi and zj are components of an observed n-dimensional vector Z = [z1, . . . , zn].

We define as dependency descriptor of the ordered pair 〈i, j 〉 a function d(i, j) of
the distribution of Z which depends on i and j . Example of dependency descriptors
are the correlation ρ(i, j) between zi and zj , the mutual information I (zi; zj ) or the
partial correlation between zi and zj given another variable zk, i 
= j, j 
= k, i 
= k.

We call a dependency descriptor symmetric if d(i, j) = d(j, i) otherwise we call
it asymmetric. Correlation and mutual information are symmetric descriptors since

d(i, j) = I (zi; zj ) = I (zj ; zi ) = d(j, i)

Because of the asymmetric property of causality, if we want to maximize our
chances to reconstruct causality from dependency we need to identify relevant
asymmetric descriptors. In order to define useful asymmetric descriptors we have
recourse to the Markov Blankets of the two variables zi and zj .

Let us consider for instance the portion of a DAG represented in Fig. 9.1 where
the variable zi is a direct cause of zj . The figure shows also the Markov Blankets of
the two variables (denoted Mi and Mj respectively) and their components, i.e. the
direct causes (denoted by c), the direct effects (e) and the spouses (s) [28].

In what follows we will make two assumptions: (1) the only path between the
sets zi ∪Mi and zj ∪Mj is the edge zi → zj and (2) there is no common ancestor
of zi (zj ) and its spouses si (sj ). We will discuss these assumptions at the end of
the section. Given these assumptions and because of d-separation [13], a number
of asymmetric conditional (in)dependence relations holds between the members of
Mi and Mj (Table 9.1). For instance (first line of Table 9.1), by conditioning on the
effect zj we create a dependence between zi and the direct causes of zj while by
conditioning on the zi we d-separate zj and the direct causes of zi .

The relations in Table 9.1 can be used to define the following set of asymmetric
descriptors,

d
(k)
1 (i, j) = I (zi; c(k)

j |zj ), (9.4)

d
(k)
2 (i, j) = I (e(k)

i ; c(k)
j |zj ), (9.5)

d
(k)
3 (i, j) = I (c(k)

i ; c(k)
j |zj ), (9.6)

d
(k)
4 (i, j) = I (zi; c(k)

j ), (9.7)
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zi

zj

c(1)
i c(2)

i

e(1)
i

c(1)
j c(2)

j

e(1)
j

s(1)
i

s(1)
j

ai

di

Fig. 9.1 Two causally connected variables and their Markov blankets

whose asymmetry is given by

d
(k)
1 (i, j) = I (zi; c(k)

j |zj ) > 0, d
(k)
1 (j, i) = I (zj ; c(k)

i |zi ) = 0, (9.8)

d
(k)
2 (i, j) = I (e(k)

i ; c(k)
j |zj ) > 0, d

(k)
2 (j, i) = I (e(k)

j ; c(k)
i |zi ) = 0, (9.9)

d
(k)
3 (i, j) = I (c(k)

i ; c(k)
j |zj ) > 0, d

(k)
3 (j, i) = I (c(k)

j ; c(k)
i |zi ) = 0, (9.10)

d
(k)
4 (i, j) = I (zi; c(k)

j ) = 0, d
(k)
4 (j, i) = I (zj ; c(k)

i ) > 0. (9.11)

At the same time we can write a set of symmetric conditional (in)dependence
relations (Table 9.2) and the equivalent formulations in terms of mutual information
terms:

I (zj ; e(k)
i ) > 0, (9.12)

I (zi; e(k)
j ) > 0, (9.13)
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Table 9.1 Asymmetric
(un)conditional
(in)dependance relationships
between members of the
Markov Blankets of zi and zj

in Fig. 9.1

Relation i, j Relation j, i

∀k zi 
⊥⊥ c(k)
j |zj ∀k zj ⊥⊥ c(k)

i |zi

∀k e(k)
i 
⊥⊥ c(k)

j |zj ∀k e(k)
j ⊥⊥ c(k)

i |zi

∀k c(k)
i 
⊥⊥ c(k)

j |zj ∀k c(k)
j ⊥⊥ c(k)

i |zi

∀k zi ⊥⊥ c(k)
j ∀k zj 
⊥⊥ c(k)

i

Table 9.2 Symmetric
(un)conditional
(in)dependance relationships
between members of the
Markov Blankets of zi and zj

in Fig. 9.1

Relation i, j Relation j, i

∀k zi 
⊥⊥ e(k)
j ∀k zj 
⊥⊥ e(k)

i

∀k zi ⊥⊥ s(k)
j ∀k zj ⊥⊥ s(k)

i

∀k zi ⊥⊥ e(k)
j |zj ∀k zj ⊥⊥ e(k)

i |zi

∀k zi ⊥⊥ s(k)
j |zj ∀k zj ⊥⊥ s(k)

i |zi

∀k e(k)
i ⊥⊥ e(k)

j |zi ∀k e(k)
j ⊥⊥ e(k)

i |zj

∀k e(k)
i ⊥⊥ s(k)

j |zj ∀k e(k)
j ⊥⊥ s(k)

i |zi

I (zj ; s(k)
i ) = I (zi; s(k)

j ) = 0, (9.14)

I (zi; e(k)
j |zj ) = I (zj ; e(k)

i |zi ) = I (zi; s(k)
j |zj ) = I (zj ; s(k)

i |zi ) = 0, (9.15)

I (e(k)
j ; e(k)

i |zi ) = I (e(k)
i ; e(k)

j |zj ) = I (e(k)
i ; s(k)

j |zj ) = I (e(k)
j ; s(k)

i |zi ) = 0.

(9.16)

9.2.3 From Asymmetric Relationships to Distinct Distributions

The asymmetric properties of the four descriptors (9.4)–(9.7) is encouraging if we
want to exploit dependency related features to infer causal properties from data.
However, this optimism is undermined by the fact that all the descriptors require
already the capability of distinguishing between the causes (i.e. the terms c) and the
effects (i.e. the terms e) of the Markov Blanket of a given variable. Unfortunately
this discriminating capability is what we are looking for!

In order to escape this circularity problem we consider two solutions. The first
is to have recourse to a preliminary phase that prioritizes the components of the
Markov Blanket and then use this result as starting point to detect asymmetries and
then improve the classification of causal links. This is for instance feasible by using
a filter selection algorithm, like mIMR [3, 5], which aims to prioritize the direct
causes in the Markov Blanket by searching for pairs of variables with high relevance
and low interaction.
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The second solution is related to the fact that the asymmetry of the four
descriptors induces a difference in the distributions of some information theoretic
terms which do not require the distinction between causes and effects within the
Markov Blanket. The consequence is that we can replace the descriptors (9.4)–(9.7)
with other descriptors (denoted with the letter D) that can be actually estimated
from data.

Let m(k) denote a generic component of the Markov Blanket with no distinction
between cause, effect or spouse. It follows that a population made of terms
depending on m(k) is a mixture of three subpopulations, the first made of causes,
the second made of effects and the third of spouses, respectively. It follows that the
distribution of the population is a finite mixture [23] of three distributions, the first
related to the causes, the second to the effects and the third to the spouses. Since
the moments of the finite mixture are functions of the moments of each component,
we can derive some properties of the resulting mixture from the properties of each
component. For instance if we can show that all the subpopulations but one are
identical (e.g. all the elements of the third subpopulation in the first mixture are
larger than the elements of the analogous subpopulation in the second mixture), we
can derive that the two mixture distributions are different.

Consider for instance the quantity I (zi;m
(kj )

j |zj ) where m
(kj )

j , kj = 1, . . . , Kj

is a member of the set Mj \ zi . From (9.8) and (9.15) it follows that the mixture

distribution associated to the populations D1(i, j) = {I (zi;m
(kj )

j |zj ), kj =
1, . . . , Kj } and D1(j, i) = {I (zj ;m(ki )

i |zi ), ki = 1, . . . , Ki} are different since

{
I (zi;m

(kj )

j |zj ) > I (zj ;m(ki )
i |zi ), if m

(kj )

j = c
(kj )

j ∧m(ki )
i = c(ki )

i

I (zi;m
(kj )

j |zj ) = I (zj ;m(ki )
i |zi ), else

(9.17)

It follows that even if we are not able to distinguish between a cause cj ∈ Mj and
an effect ej ∈ Mj , we know that the distribution of the population D1(i, j) differs
from the distribution of the population D1(j, i). We can therefore use the population
D1(i, j) (or some of its moments) as descriptor of the causal dependency.

Similarly we can replace the descriptors (9.5), (9.6) with the distributions of

the population D2(i, j) = {I (m(ki )
i ;m

(kj )

j |zj ), kj = 1, . . . , Kj , ki = 1, . . . , Ki}.
From (9.9), (9.10) and (9.16) we obtain that the distributions of the populations
D2(i, j) and D2(j, i) are different.

If we make the additional assumption that I (zj ; e(k)
i ) = I (zi; e(k)

j ) > 0
from (9.11) we obtain also that the distribution of the population D3(i, j) =
{I (zi;m

(kj )

j ), kj = 1, . . . , Kj } is different from the one of D3(j, i) =
{I (zj ;m(ki )

i ), ki = 1, . . . , Ki}.
The previous results are encouraging and show that though we are not able

to distinguish between the different components of a Markov Blanket, we can
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notwithstanding compute some quantities (in this case distributions of populations)
whose asymmetry is informative about the causal relationships zi → zj .

As a consequence by measuring from observed data some statistics (e.g. quan-
tiles) related to the distribution of these asymmetric descriptors, we may obtain
some insight about the causal relationship between two variables. This idea is made
explicit in the algorithm described in the following section.

Though these results rely on the two assumptions made before (i.e. single
path and no common ancestors), two considerations are worthy to be made. First,
the main goal of the approach is to shed light on the existence of dependency
asymmetries also in multivariate contributions. Secondly we expect that the second
layer (based on supervised learning) will eventually compensate for configurations
not compliant with the assumptions and take advantage of complementarity or
synergy of the descriptors in discriminating between causal configurations.

9.3 The D2C Algorithm

The rationale of the D2C algorithm is to predict the existence of a causal link
between two variables in a multivariate setting by (1) creating a set of features of
the relationship between the members of the Markov Blankets of the two variables
and (2) using a classifier (e.g. a Random Forest as in our experiments) to learn a
mapping between the features and the presence of a causal link.

We use two sets of features to summarize the relation between the two Markov
blankets: the first one accounts for the presence (or the position if the MB is obtained
by ranking) of the terms of Mj in Mi and vice versa. For instance it is evident that if
zi is a cause of zj we expect to find zi highly ranked between the causal terms of Mj

but zj absent (or ranked low) among the causes of Mi . The second set of features
is based on the results of the previous section and is obtained by summarizing the
distributions of the asymmetric descriptors with a set of quantiles.

We propose then an algorithm (D2C) which for each pair of measured variables
zi and zj :

1. infers from data the two Markov Blankets (e.g. by using state-of-the-art
approaches) Mi and Mj and the subsets Mi \ zj = {m(ki ), ki = 1, . . . , Ki}
and Mj \ zi = {m(kj ), kj = 1, . . . , Kj }. Most of the existing algorithms
associate to the Markov Blanket a ranking such that the most strongly relevant
variables are ranked before.

2. computes a set of (conditional) mutual information terms describing the depen-
dency between zi and zj

I = [I (zi; zj ), I (zi; zj |Mj \ zi ), I (zi; zj |Mi \ zj )] (9.18)
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3. computes the positions P
(ki )
i of the members m(ki ) of Mi \ zj in the ranking

associated to Mj \ zi and the positions P
(kj )

j of the terms m(kj ) in the ranking
associated to Mi \ zj . Note that in case of the absence of a term of Mi in Mj , the
position is set to Kj + 1 (respectively Ki + 1).

4. computes the populations based on the asymmetric descriptors introduced in
Sect. 9.2.3:

(a) D1(i, j) = {I (zi;m
(kj )

j |zj ), kj = 1, . . . , Kj }
(b) D1(j, i) = {I (zj ;m(ki )

i |zi ), ki = 1, . . . , Ki}
(c) D2(i, j) = {I (m(ki )

i ;m
(kj )

j |zj ), ki = 1, . . . , Ki, kj = 1, . . . , Kj } and

(d) D2(j, i) = {I (m
(kj )

j ;m(ki )
i |zi ), ki = 1, . . . , Ki, kj = 1, . . . , Kj }

(e) D3(i, j) = {I (zi;m
(kj )

j ), kj = 1, . . . , Kj },
(f) D3(j, i) = {I (zj , m(ki )

i ), ki = 1, . . . , Ki}
5. creates a vector of descriptors

x = [I,Q(P̂i),Q(P̂j ),Q(D̂1(i, j)),Q(D̂1(j, i)),

Q(D̂2(i, j)),Q(D̂2(j, i)),Q(D̂3(i, j)),Q(D̂3(j, i))] (9.19)

where P̂i and P̂j are the empirical distributions of the populations {P (ki)
i }

and {P (kj )

j }, D̂h(i, j) denotes the empirical distribution of the corresponding
population Dh(i, j) and Q returns a set of sample quantiles of a distribution
(in the experiments we set the quantiles to 0.1, 0.25, 0.5, 0.75, 0.9).

The vector x can be then derived from observational data and used to create a vector
of descriptors to be used as inputs in a supervised learning paradigm.

The rationale of the algorithm is that the asymmetries between Mi and Mj (e.g.
Table 9.1) induce an asymmetry on the distributions P̂ and D̂ and that the quantiles
of those distributions provide information about the directionality of causal link
(zi → zj or zj → zi). In other terms we expect that the distribution of these
variables should return useful information about which is the cause and the effect.
Note that these distributions would be more informative if we were able to rank
the terms of the Markov Blankets by prioritizing the direct causes (i.e. the terms ci

and cj ) since these terms play a major role in the asymmetries of Table 9.1. The
D2C algorithm can then be improved by choosing an appropriate Markov Blanket
selector algorithms, like the mIMR filter.

In the experiments (Sect. 9.4) we derive the information terms as difference
between (conditional) entropy terms (see Eqs. 9.1 and 9.3) which are themselves
estimated by a Lazy Learning regression algorithm [4] by making an assumption of
Gaussian noise. Lazy Learning returns a leave-one-out estimation of conditional
variance which can be easily transformed in entropy under the normal assump-
tion [8]. The (conditional) mutual information terms are then obtained by using
the relations (9.1) and (9.3).
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9.3.1 Complexity Analysis

In this subsection we make a complexity analysis of the approach: first it is
important to remark that since the D2C approach relies on a classifier, its learning
phase can be time-consuming and dependent on the number of samples and
dimension. However, this step is supposed to be performed only once and from the
user perspective it is more relevant to consider the cost in the testing phase. Given
two nodes for which a test of the existence of a causal link is required, three steps
have to be performed:

1. computation of the Markov blankets of the two nodes. The information filters
we used have a complexity O(Cn2) where C is the cost of the computation of
mutual information [24]. In case of very large n this complexity may be bounded
by having the filter preceded by a ranking algorithm with complexity O(Cn).
Such ranking may limit the number of features taken into consideration by the
filters to n′ < n reducing then considerably the cost.

2. once a number Ki (Kj ) of members of MBi (MBj ) have been chosen, the rest of
the procedure has a complexity related to the estimation of a number O(KiKj )

of descriptors. In this paper we used a local learning regression algorithm to
estimate the conditional entropies terms. Given that each regression involves at
most three terms, the complexity is essentially related linearly to the number N

of samples
3. the last step consists in the computation of the Random Forest predictions on

the test set. Since the RF has been already trained, the complexity of this step
depends only on the number of trees and not on the dimensionality or number of
samples.

For each test, the resulting complexity has then a cost of the order O(Cn+ Cn′2 +
KiKjN). It is important to remark that an advantage of D2C is that, if we are
interested in predicting the causal relation between two variables only, we are not
forced to infer the entire adjacency matrix (as typically the case in constraint-based
methods). This mean also that the computation of the entire matrix can be easily
made parallel.

9.4 Experimental Validation

In this section the D2C (Sect. 9.3) algorithm is assessed in a set of synthetic
experiments and published data sets.

9.4.1 Synthetic Data

This experimental session addresses the problem of inferring causal links from
synthetic data generated for linear and non-linear DAG configurations of different
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sizes. All the variables are continuous, and the dependency between children and
parents is modelled by the additive relationship

xi =
∑

j∈par(i)

fi,j (xj )+ εi, i = 1, . . . , n (9.20)

where the noise εi ∼ N(0, σi) is Normal, fi,j (x) ∈ L(x) and three sets of
continuous functions are considered:

• linear: L(x) = {f | f (x) = a0 + a1x}
• quadratic: L(x) = {f | f (x) = a0 + a1x + a2x

2}
• sigmoid: L(x) = {f | f (x) = 1

1+exp(a0+a1x)
}

In order to assess the accuracy with respect to dimensionality, we considered three
network sizes:

• small: number of nodes n is uniformly sampled in the interval [20, 30],
• medium: number of nodes n is uniformly sampled in the interval [100, 200],
• large: number of nodes n is uniformly sampled in the interval [500, 1000],

The assessment procedure relies on the generation of a number of DAG structures4

and the simulation, for each of them, of N (uniformly random in [100, 500]) node
observations according to the dependency (9.20). In each data set we removed the
observations of 5% of the variables in order to introduce unobserved variables.

For each DAG, on the basis of its structure and the data set of observations,
we collect a number of pairs 〈xd, yd〉, where xd is the descriptor vector returned
by (9.19) and yd is the class denoting the existence (or not) of the causal link in the
DAG topology.

Several sizes of training set are considered. The largest D2C training set is made
of D = 60,000 pairs 〈xd, yd〉 and is obtained by generating DAGs and storing for
each of them the descriptors associated to at most four positives examples (i.e. a
pair where the node zi is a direct cause of zj ) and at most six negatives examples
(i.e. a pair where the node zi is not a direct cause of zj ). A Random Forest classifier
is trained on the balanced data set: we use the implementation from the R package
randomForest [21] with default setting.

The test set is obtained by considering a number of independently simulated
DAGs. We consider 190 DAGs for the small and medium configurations and 90 for
the large configuration. For each testing DAG we select four positives examples (i.e.
a pair where the node zi is a direct cause of zj ) and six negatives examples (i.e. a
pair where the node zi is not a direct cause of zj ). The predictive accuracy of the
trained Random Forest classifier is then assessed on the test set.

4We used the function random_dag from the R package gRbase [11].
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The D2C approach is compared in terms of classification accuracy (Balanced
Error Rate (BER)) to several state-of-the-art approaches:

• ANM: Additive Noise Model [17] using a Gaussian process with RBF kernel and
the Hilbert-Schmidt Independence Criterion (p value = 0.02)5

• DAGL1: DAG-Search score-based algorithm with potential parents selected with
a L1 penalization [32].6

• DAGSearch: unrestricted DAG-Search score-based algorithm (multiple restart
greedy hill-climbing, using edge additions, deletions, and reversals) [32] (see
footnote 6),

• DAGSearchSparse: DAG-Search score-based algorithm with potential par-
ents restricted to the ten most correlated features [32] (see footnote 6),

• gs: Grow-Shrink constraint-based structure learning algorithm [22],7

• hc: hill-climbing score-based structure learning algorithm [9] (see footnote 7),
• iamb: incremental association MB constraint-based structure learning algo-

rithm [38] (see footnote 7),
• mmhc: max-min hill climbing hybrid structure learning algorithms [39] (see

footnote 7),
• PC: Estimate the equivalence class of a DAG using the PC algorithm8 (this

method was used only for the small size configuration (Fig. 9.2) for computa-
tional time reasons)

• si.hiton.pc: Semi-Interleaved HITON-PC local discovery structure learning
algorithms [37] (see footnote 7),

• tabu: tabu search score-based structure learning algorithm (see footnote 7).

The BER of six versions of the D2C method are compared to the BER of
state-of-the-art methods in Figs. 9.2 (small), 9.3 (medium), and 9.4 (large). The
six versions of D2C are obtained by considering two types of training data (i.e.
one based on linear dependency and one based on the same dependency used for
testing) and three training set sizes (equal to 400, 3000 and 60,000 respectively)
Each subfigure corresponds to the three types of stochastic dependency (top: linear,
middle: quadratic, bottom: sigmoid).

A series of considerations can be made on the basis of the experimental results:

• the n-variate approach D2C obtains competitive results with respect to several
state-of-the-art techniques in the linear case,

• the improvement of D2C wrt state-of-the-art techniques (often based on linear
assumptions) tends to increase when we move to more nonlinear configurations,
In particular the accuracy of the D2C algorithm is able to generalize to DAG with

5The code is available in https://staff.fnwi.uva.nl/j.m.mooij/code/additive-noise.tar.gz.
6The code is available in http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/.
7The code is available in the R package bnlearn [33].
8The code is available in the R package pcalg [19].

https://staff.fnwi.uva.nl/j.m.mooij/code/additive-noise.tar.gz
http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/
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Fig. 9.2 Balanced Error Rate of the different methods for small size DAGs and three types of
dependency (top: linear, middle: quadratic, bottom: sigmoid). The notation D2Cx stands for D2C
with a training set of size x and where training and test sets are based on DAGs with the same type
of dependency. The notation D2Cx_lin stands for D2C with a training set of size x based on DAGs
with linear dependency only

Fig. 9.3 Balanced Error Rate of the different methods for medium size DAGs and three types of
dependency (top: linear, middle: quadratic, bottom: sigmoid). The notation D2Cx stands for D2C
with a training set of size x and where training and test sets are based on DAGs with the same type
of dependency. The notation D2Cx_lin stands for D2C with a training set of size x based on DAGs
with linear dependency only

different number of nodes and different distributions also when trained only on
data observed for linear DAGs (see accuracy of D2Cxlin in the second and third
row of Figs. 9.2, 9.3, and 9.4)

• the accuracy of the D2C approach improves by increasing the number of training
examples,

• with a small number of examples (i.e. N = 400) it is already possible to learn a
classifier D2C whose accuracy is competitive with state-of-the-art methods,

• the ANM approach is not able to return accurate information about causal
dependency by taking into consideration only bivariate information,
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Fig. 9.4 Balanced Error Rate of the different methods for large size DAGs and three types of
dependency (top: linear, middle: quadratic, bottom: sigmoid). The notation D2Cx stands for D2C
with a training set of size x and where training and test sets are based on DAGs with the same type
of dependency. The notation D2Cx_lin stands for D2C with a training set of size x based on DAGs
with linear dependency only
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Fig. 9.5 Importance of D2C features returned by the Random Forest mean decrease accuracy.
Ii denotes the ith component of the descriptor vector (9.18) while Q(Dx(i, j))k denotes the kth
quantile of the population of descriptor Dx(i, j)

• the analysis of the importance of the D2C descriptors (based on the Mean
Decrease Accuracy of the Random Forest in Fig. 9.5) shows that the most relevant
variables in the vector (9.19) are the terms in I , D1 and D3.

The D2C code is available in the CRAN R package D2C [6].
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9.4.2 Published Data

The second part of the assessment relies on the simulated and resimulated data sets
proposed in Table 11 of [1]. These 103 data sets were obtained by simulating data
from known Bayesian networks and also by resimulation, where real data is used
to elicit a causal network and then data is simulated from the obtained network.
We split the 103 data sets in two portions: a training portion (made of 52 sets) and
a second portion (made of 51 sets) for testing. This was done in order to assess
the accuracy of two versions of the D2C algorithm: the first uses as training set
only 40,000 synthetic samples generated as in the previous section, the second
includes in the training set also the 52 data sets of the training portion. The goal
is to assess the generalization accuracy of the D2C algorithm with respect to DAG
distributions never encountered before and not included in the training set. In this
section we compare D2C to a set of algorithms implemented by the Causal Explorer
software [2]9:

• GS: Grow/Shrink algorithm
• IAMB: Incremental Association-Based Markov Blanket
• IAMBnPC: IAMB with PC algorithm in the pruning phase
• interIAMBnPC: IAMB with PC algorithm in the interleaved pruning phase

and two filters based on information theory, mRMR [29] and mIMR [3]. The
comparison is done as follows: for each data set and for each node (having at
least a parent) the causal inference techniques return the ranking of the inferred
parents. The ranking is assessed in terms of the average of Area Under the Precision
Recall Curve (AUPRC) and a t-test is used to assess if the set of AUPRC values is
significantly different between two methods. Note that the higher the AUPRC the
more accurate is the inference method.

The summary of the paired comparisons is reported in Table 9.3 for the D2C
algorithm trained on the synthetic data only and in Table 9.4 for the D2C algorithm
trained on both synthetic data and the 52 training data sets.

It is worthy to remark that

• the D2C algorithm is extremely competitive and outperforms the other tech-
niques taken into consideration,

Table 9.3 D2C trained on synthetic data only: number of data sets for which D2C has an AUPRC
(significantly (p-val < 0.05)) higher/lower than the method in the column

GS IAMB IAMBnPC interIAMBnPC mRMR mIMR

W-L 48-3 (32-0) 43-8 (21-0) 46-5 (26-0) 46-5 (25-0) 42-9 (17-0) 34-17 (12-0)

W-L stands for Wins-Losses

9Note that we use Causal Explorer here because, unlike bnlearn which estimates the entire
adjacency matrix, it returns a ranking of the inferred causes for a given node.
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Table 9.4 D2C trained on synthetic data and 52 training data sets: number of data sets for which
the D2C has an AUPRC (significantly (p-val < 0.05)) higher/lower than the method in the column

GS IAMB IAMBnPC interIAMBnPC mRMR mIMR

W-L 49-2 (36-0) 49-2 (27-0) 49-2 (32-0) 49-2 (32-0) 42-9 (17-0) 46-5 (19-1)

W-L stands for Wins-Losses

• the D2C algorithm is able to generalize to DAG with different number of nodes
and different distributions also when trained only on synthetic data simulated on
linear DAGs,

• the D2C algorithm takes advantage from the availability of more training data
and in particular of training data related to the causal inference task of interest,
as shown by the improvement of the accuracy from Table 9.3 to Table 9.4,

• the two filters (mRMR and mIMR) algorithm appears to be the least inaccurate
among the state-of-the-art algorithms,

• though the D2C is initialized with the results returned by the mIMR algorithm, it
is able to improve its output and to significantly outperform it.

9.5 Conclusion

Two attitudes are common with respect to causal inference for observational data.
The first is pessimistic and motivated by the consideration that correlation (or
dependency) does not imply causation. The second is optimistic and driven by
the fact that causation implies correlation (or dependency). This paper belongs
evidently to the second school of thought and relies on the confidence that causality
leaves footprints in the form of stochastic dependency and that these footprints
can be detected to retrieve causality from observational data. The results of the
ChaLearn challenge and the preliminary results of this paper confirm the potential
of machine learning approaches in predicting the existence of causality links on
the basis of statistical descriptors of the dependency. We are convinced that this
will open a new research direction where learning techniques may be used to
reduce the degree of uncertainty about the existence of a causal relationships also
in indistinguishable configurations which are typically not addressed by conditional
independence approaches.

Further work will focus on (1) discovering additional features of multivariate
distributions to improve the accuracy (2) addressing and assessing other related
classification problems (e.g. predicting if a variable is an ancestor or descendant of
a given one) (3) extending the work to partial ancestral graphs [40] (e.g. exploiting
the logical relations presented in [7]) extending the validation to real data sets and
configurations with a still larger number of variables (e.g. network inference in
bioinformatics).
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Chapter 10
Pattern-Based Causal Feature Extraction

Diogo Moitinho de Almeida

10.1 Introduction

From the competition homepage [2]: The problem of attributing causes to effects is
pervasive in science, medicine, economy and almost every aspects of our everyday
life involving human reasoning and decision making. . . However, experiments are
costly while non-experimental “observational” data collected routinely around the
world are readily available. Unraveling potential cause-effect relationships from
such observational data could save a lot of time and effort. . . The objective of the
challenge is to rank pairs of variables A, B to prioritize experimental verification
of the conjecture that A causes B. Contestants were given over 20,000 training
pairs of variables deprived of their context of both real variables with known
causal relationships from diverse domains and artificially generated variables and
their respective causal relationships. Contestants were to use this data in order to
calculate a ranking of each pairs of variables were the highest ranked pairs had
the first variable, A, cause the second variable, B, and the lowest ranked pairs
have B cause A. The rankings that we provided were judged by the average of the
AUC’s of predicting whether or not A causes B and B causes A. The competition
has both a public and private leaderboard, each of which coming with 4050 pairs
of variables which contestants were not able to see the labels of. The public
leaderboard was available for the duration of the competition, where contestants
could submit rankings twice a day in order to see how well their algorithms perform
on that dataset. Because competitors could potentially overfit on that dataset, the
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final winner was determined by only one submission on the private leaderboard,
whose data was only made available after competitors submitted their algorithms to
be tested.

10.2 Method

Our method was able to attain the second highest score in the public leaderboard
and the highest score in the private leaderboard. Our final solution involved not
only the feature extraction process outlined in this paper, but also a process for the
elimination of features, which turned out to be unnecessary, and scikit-learn’s [4]
gradient boosted decision tree ensemble [3] classifier with hyper-parameters tuned
by Spearmint [5] for the final rankings (Table 10.1).

The focus of this paper will solely be on the feature extraction methodology,
because the feature extraction process contains all of our novel contributions for and
we feel that the rest of our pipeline was fairly standard for a kaggle competition.

10.2.1 Algorithm

Our process revolves around general algorithm templates that one would use to
generate causal features, which we call Feature Patterns. These Feature Patterns
take in algorithms/functions as parameters and create new algorithms that can
then generate features. By simply creating the architecture for a few patterns and
changing the parameterization of each pattern, many unique features could be
generated with this approach.

In addition to the architecture sharing that occurs within a Feature Pattern, the
commonalities between Feature Patterns allow even greater code reuse and more
importantly for the creation of more complex work flows than we could generate
from scratch. Take for example our simplest Feature Pattern: a unary function
that takes in a numerical variable. This pattern would require the unary function,
functions to convert categorical, binary, and numerical variables to numerical, and
an aggregation function for the case when the return value of one the transforms is

Table 10.1 Leaderboard scores of top submissions

Submission Public Private

Our submission (1st place): w/ feature selection + 0.81367 0.8196

Our 2nd best submission: w/o feature selection + 0.81279 0.81743

Our 3rd best submission: w/ feature selection + 0.81238 0.81681

Team jarfo (2nd place): Top submissions + 0.81464 0.81052

Team HiDLoN (3rd place): Top submissions + 0.80191 0.80720
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multidimensional (for example, if the transform from categorical to numerical is a
one-encoding), in which case we would apply the unary transform to each column
of the resulting matrix, and apply the aggregation function to combine the results.
Afterwards, we would do the same function with the variables reversed, and then
passing the two resulting values to a relative feature function (for example, taking
the difference between the two variables, or only returning second of the two).
Since all Feature Patterns would have to handle the conversion between numerical,
categorical, and binary, as well as handle the relative features and aggregation, if
any, afterwards, relatively little effort is needed to create more complex features
(Table 10.2).

In addition to sharing architecture, the same benefit can also be attained through
the unification of the possible values for similar/equivalent parameters. By doing so,
the number of features would grow at a rate greater than linearly for each possible
value of a shared parameters and thus, it would require less parameters to get an
equivalent number of unique features (Table 10.3).

The feature extraction process is then completed by simply iterating over each
Feature Pattern and parameter combination to generate valid features for each
observation.

Table 10.2 Feature patterns

Feature pattern Example parameters

N unary function N unary function, N/B/C-to-N transforms, aggregator

NN binary function NN binary function, N/B/C-to-N transforms, 2 aggregators

CN binary function CN binary function, N/B/C-to-N/C transforms, 2 aggregators

Regression metric Regression predictor, Metric, N/B/C-to-N transform, aggregator

Classification metric Classifier, metric, N/B/C-to-N/C transform, 2 aggregators

N, B, and C are used for numerical, binary, and categorical

Table 10.3 Examples of pattern parameters used

Parameter type Examples

Aggregation functions Mean, max, min, median, sum

Regression predictors Ridge regression, random forest, k-NN

Classification predictors Logistic regression, random forest, naive Bayes

Classification metrics Accuracy, AUC, hinge loss

Regression metrics Mean squared error, mean absolute error

Clustering metrics Mutual information score, homogeneity score

Statistical tests Pearson’s R, χ2 test, ANOVA

Distance metrics Euclidean distance, cosine distance

Unary functions Normalized entropy, skew, kurtosis
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10.2.2 Justification

The assumed definition of causality for this section is that which was provided in
the competition site [2]: if B = f (A, noise), then Aisthecauseof B, and vice-
versa. While each feature extraction algorithm created from each Feature Pattern
would have its own justification, we believe a specific set of patterns, namely
“Regression Metric” and “Classification Metric”, deserve special attention. This is
because these patterns have the most parameters, and thus contributed the largest
amount of features to the final feature sets, and as shown in the experimental results,
these features seemed to be the most important for performance. The gist of these
patterns is that a model is trained to predict one variable from the other variable, that
model is used to generate predictions for that variable, and a function (generally a
goodness-of-fit measure) is applied to those predictions (Fig. 10.1).

Our motivation behind this class of goodness-of-fit features are the assumptions
that the features would be especially good at detecting how likely it is that a function
from one variable to the other (namely f in the assumed definition of causality)
can exist and that the likelihood that that function exists is a good feature for
causal discovery. The first assumption makes sense because the existing machine
learning algorithms which are used to provide the fit generally perform quite
well at estimating hypothesis functions on real-world data. The second assumption
similarly makes sense because B = f(A, noise) or A = f(B, noise) being true relies
on the such an f existing.
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Fig. 10.1 Difference between goodness of fit of invertible and non-invertible functions
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10.2.3 Considerations

Due to the time constraints of the competition and the limitations of the effort
that we could afford to spend, the motivation for creating our process was
to easily, quickly, and reproducibly go from insight to features with minimal
human intervention. As such, we made the decision to trade off computational
time in order minimize human time. The result is our algorithm can be quite
inefficient since features generated from similar parameters in general would be
quite similar/redundant, though the exact computational cost would depend on the
Feature Patterns and parameters used. Another downside of our approach is that
bookkeeping on individual features quickly loses human interpretability, since it is
so far removed from the original data.

10.2.4 autocause

Because the competition code was mostly hacked together and did not take full
advantage of sharing both architecture and parameters, we refactored the codebase
of the feature extraction process into its own package: autocause.1 This allowed us to
declaratively iterate different settings and publish the settings in a human-readable,
unix-diff-able format as well for further analysis.2

10.3 Experiments

Because of the aforementioned difficulty of interpreting the individual features,
we chose to perform analyses on classes of features that might provide insight
into the most effective parts of our feature extraction process and the underlying
mechanisms of causal discovery. These analyses were performed by varying the
available parameters to Feature Patterns in order to either find which of a set
of parameters are most important, or by removing an entire set of parameters,
eliminating all Feature Patterns that depend on those parameters. Each set of features
was scored by being trained by both a linear model and gradient boosted decision
tree ensemble with both models optimized for speed on 80% of the final training
data of the competition, and having their predictions score on the final 20% of the
data using the same metric as in the competition (Table 10.4).

1Available at https://github.com/diogo149/autocause.
2See the configs subdirectory of https://github.com/diogo149/CauseEffectPairsPaper.

https://github.com/diogo149/autocause
https://github.com/diogo149/CauseEffectPairsPaper
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Table 10.4 Experimental results

Description #Feat GBM score Linear score

Competition features 8686 0.692483139268 0.663782901707

autocause default 21,207 0.696014248897 0.694080271398

Efficient parameters 324 0.682581676518 0.687203189251

Effective parameters 14,442 0.676321066209 0.681059838814

Table 10.5 Results of experiment on fit features

Description #Feat GBM score Linear score

Both together 21,186 0.713640109365 0.700135374168

Only fit default 18,612 0.693269150278 0.680996251976

No fit 2574 0.687915176559 0.611305285221

As shown in the experimental results table, after refactoring the code, a lot more
features were able to be generated with the same number of parameters. This is good
to confirm that the features generated by autocause are comparable to that of the
software used during the competition. The results for a set of parameters that were
chosen by combining insights from several dozen experiments (see the Appendix)
for a mix of relatively low dimensionality for the final feature set and good accuracy
are also included in the table. This parameter set allows us to get over 98% of the
accuracy of the default model using only 1.5% of the number of features. Using the
same methodology as in the last paragraph, we tried to construct a parameter set to
only maximize accuracy by only keeping the changes that improved accuracy by a
noticeable amount. This unfortunately led to features that performed significantly
worse than the default settings. This indicates that the methodology of picking
and choosing parameters by looking at each individually and combining them after
the fact is flawed, and that better means of creating parameter sets should be used
(Table 10.5).

One notable set of results from experiments is that of the results between features
that rely on only classification/regression predictors and those that don’t at all,
because the experiments show the performance of different Feature Patterns. The
“No Fit” features contain all the unary/binary function patterns, while the “Only Fit”
features contain “Regression Metric” and “Classification Metric” Feature Patterns.
The scores of each show the “Only Fit” features to perform significantly better,
indicating that its Feature Pattern likely contributed more to the accuracy of our
winning submission than the others.
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10.4 Conclusion

From the approach of feature extraction for accuracy, there are still more Feature
Patterns that could be added to our approach, such as those underlying the previous
state of the art features [1], and Feature Patterns such as those described in this
paper may just be the tip of the iceberg, both in terms of quality and quantity.
During the competition, we were certainly biased towards the “Regression Metric”
and “Classification Metric” Feature Patterns. Despite them performing the best in
our limited experimental results, it may be the case that we haven’t appropriately
represented other Feature Patterns. There seems to be even more work remaining
from the perspective of understanding why our process works as well as it does. We
were able to get comparable performance to our 20k-dimensional features with only
324 features, but that still is too many for us to dive deep and find the truly important
ones, and even if we did do so, the features generated may be too far removed from
the original data to retain any human interpretable meaning.

Acknowledgment Special thanks to the organizers of the ChaLearn Cause-Effect Pair Challenge
hosted by Kaggle.

Appendix

Results

See Tables 10.6, 10.7, 10.8, 10.9, 10.10, 10.11, 10.12, and 10.13.

Table 10.6 Results of experiment on meta-features

Description #Feat GBM score Linear score

autocause default 21,207 0.696014248897 0.694080271398

No metafeatures 21,186 0.713640109365 0.700135374168

Only metafeatures 21 0.513249437852 0.514610878117

Table 10.7 Results of experiment on relative features

Description #Feat GBM score Linear score

No metafeatures 21,186 0.713640109365 0.700135374168

Only difference features 7062 0.699178700923 0.707910542983

Only A to B 7062 0.646039719086 0.619346087547

Only B to A 7062 0.675171907802 0.633300654009
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Table 10.8 Results of experiment on aggregation features

Description #Feat GBM score Linear score

Only mean 4743 0.703366341099 0.66190548093

Only mode 4743 0.702727813568 0.664183581517

Only median 4743 0.691697784105 0.670042628328

Only min 4743 0.700988250898 0.660565019326

Only sum 4743 0.701434552265 0.673035609828

Only max 4743 0.691870225179 0.651876362553

All of the above 25,773 0.709451429787 0.695304807716

No aggregation features 1077 0.676581730474 0.623828720773

Table 10.9 Results of experiment on numerical vs categorical features

Description #Feat GBM score Linear score

autocause default 21,207 0.696014248897 0.694080271398

Numerical only 6321 0.656714283634 0.611395370877

Categorical only 5451 0.579135168216 0.607908620448

Table 10.10 Results of experiment on numerical to categorical transformation

Description #Feat GBM score Linear score

Discretization into 10 (default) 5451 0.579135168216 0.607908620448

KMeans into 10 5451 0.632243266485 0.622365613862

KMeans into 3 5451 0.614931332437 0.587218538488

KMeans with gap statistic 5451 0.583693386727 0.582386249005

Table 10.11 Results of experiment on categorical to numerical transformation

Description #Feat GBM score Linear score

One-hot encoding (default) 6321 0.656714283634 0.611395370877

Identity 921 0.671054122146 0.592442871034

PCA to 1 dimension 921 0.66682459185 0.606938680493

Reshuffling 921 0.651080073736 0.599028952216

Table 10.12 Results of experiment on classifiers

Description #Feat GBM score Linear score

Only naive Bayes 996 0.578082139243 0.59122957333

Only GBM 996 0.633170335784 0.607150621346

Only RandomForest 996 0.646001448959 0.607517231438

Only k-NN 996 0.607753059361 0.572566617101

Only logistic regression 996 0.620826820564 0.600463299695

Only decision tree 996 0.637150678151 0.61158719868

All of the above 5451 0.632243266485 0.622365613862

No classifier features 105 0.581141154559 0.572462173005
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Table 10.13 Results of experiment on regression predictors

Description #Feat GBM score Linear score

Only RandomForest 261 0.643682857561 0.568762197986

Only GBM 261 0.657848458945 0.596995045661

Only DecisionTree 261 0.618929711403 0.550528710645

Only k-NN 261 0.638331347172 0.577983408646

Only ridge 261 0.62702149139 0.578773516607

Only linear regression 261 0.624841890148 0.577198194394

All of the above 921 0.66682459185 0.606938680493

No regression predictor features 129 0.619709098921 0.540686641005
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Chapter 11
Training Gradient Boosting Machines
Using Curve-Fitting and
Information-Theoretic Features for
Causal Direction Detection

Spyridon Samothrakis, Diego Perez, and Simon Lucas

11.1 Introduction

Humanity’s effort to understand causality and its relationship to knowledge can
be observed in almost every academic field, including philosophy (e.g. [2]:“we
think we have knowledge of a thing only when we have grasped its cause” quoting
Aristotle) or Anthropology (e.g. see the ability for associative thinking in [3]). One
can formulate the problem of attributing causality between events in the spirit of [7]
as a Markov Decision Process (MDP). A (finite) Markov Decision Process is a tuple
< S,C, T ,R >, where c ∈ C is the set of actions an agent can perform, s ∈ S a set
of states and R(s′|s) is the reward at each state/action pair. T (s′|s, c) is a transition
function that denotes the probability of an agent moving from state s to another
state s′ given an action c. To apply MDPs to the problem of causality we make the
following instantiation: All actions come from two sets C1 = A,C2 = B and states
S1 = A, S2 = B. Thus, there is a transition function that has the form T (b|s, a)

and T (a|s, b). The MDP runs for one step, with both agents being at dummy state s

initially. The agent takes an action that either leads it to one group of states A or B,
followed by a second action that takes it to either B or A, respectively. Let’s assume
we are trying to learn a generative model of the transition function, in order to use it
later in some policy scheme. If T (A|s, B) = T (A), we claim A does not cause B.
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Otherwise, if the actions taken from set B impact T , i.e. the previous equation does
not hold, we claim that A causes B. In other words if an agent is able to effectively
control a process given the possibility of doing so, we can claim that the agent’s
actions are causal to the states of the process.

It is not always easy to perform the controlled process mentioned above, but
it might be the case that we have a number of observations of actions each agent
took, following uniform random policy (i.e. nature is the agent). This in effect
turns our problem into one of prediction. Does the knowledge of action A help
me predict action B and/or the reverse? Obviously, assuming the transition function
is stochastic, there can be no proof of this. We could possibly try to infer the causal
direction if we assume some sensible set of priors over the transition function,
mostly taking a view reminiscent of the work of Kolmogorov, i.e. assuming nature
prefers simple mechanisms. In this paper we try to infer causal structure using
a machine learning approach on features extracted from the random variables
provided.

The rest of the paper is organised as follows: In Sect. 11.2 we present the method
we used for inferring causal direction. In Sect. 11.3 we present some experimental
results and analyse the resulting classifiers. We conclude with a short discussion in
Sect. 11.4.

11.2 Methodology

There are some core concepts behind the methodology followed. Firstly, we are
trying to find whether the mapping F : A → B is more probable than F : B → A.
This can be captured by trying to fit different classifiers at each direction of the
data. This implicitly assumes that machine learning classifiers tend to prefer simpler
models. The second concept is that information theoretic features about the data
should be able to capture some of the characteristics of the underlying distributions,
thus helping our overall classification task.

11.2.1 Data and Data Pre-processing

Our data source was the union of all samples provided by the “Kaggle Causality
Challenge” and can be found here: http://www.kaggle.com/c/cause-effect-pairs/
data. The amount of data provided is doubled by reversing all the examples
provided. The total number of labelled data is 32,399 samples. Each labelled sample
belongs to either class 1 (A causes B), class −1 (B causes A) or class 0 (where
respectively the events are independent; are influenced by a third cause or we cannot
tell). The type of variable in each data sample is also known (i.e. categorical, binary
or continuous).

http://www.kaggle.com/c/cause-effect-pairs/data
http://www.kaggle.com/c/cause-effect-pairs/data
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11.2.2 Feature Extraction

What follows is a brief exposition of the features used:

1. Spearman ρ: The correlation coefficient ρ.
2. Number of Unique Samples A: Number of unique samples of variable A.
3. Number of Unique Samples B: Number of unique samples of variable B.
4. Noise Independence A→ B (trees): The mutual information of an additive noise

model [5]. Uses k-means++([1]) to discretise noise. Modelling is performed
using Regression or Decision Trees.

5. Noise Independence B → A (trees): As in feature 4, but trying to predict A
using B.

6. Noise Independence A → B (SVM): As in feature 4, with a support vector
classifier or regressor as the modelling function.

7. Noise Independence B → A (SVM): As in feature 5, but trying to predict A
using B.

8. Noise Independence A → B (trees)—spearman: As in feature 4 but, instead of
mutual information, using spearman ρ as an independence test.

9. Noise Independence B → A (trees)—spearman: As in feature 5, but trying to
predict A using B.

10. Entropy A: Entropy of Variable A. If the variable is continuous, k-means
is performed and distance is measured from closest centre as a method for
discretisation.

11. Entropy B: Entropy of Variable B. Same discretisation method as with fea-
ture 10.

12. Uncertainty Coefficient A: Uncertainty Coefficient of Variable A. In case of
continuous variable, the k-means trick from feature 10 is used.

13. Uncertainty Coefficient B: Uncertainty Coefficient of Variable B. In case of
continuous variable, the k-means trick from feature 10 is used.

14. Predicts A → B (trees): Fraction of correctly classified examples or R2,
depending on whether B is categorical or continuous. In all tree examples a
decision tree regressor or a decision tree classifier is used.

15. Predicts B → A (trees): As in feature 14, but trying to predict A using B.
16. Predicts U → B (trees): Predict B using just random variables that come from

a distribution as close to A as possible.
17. Predicts U → A (trees): As above but with reversed direction.
18. Predicts A → B (SVM): Exactly as in the case of labelit:pred, but this time with

support vector machines.
19. Predicts B → A (SVM): See above.
20. Predicts U → B (SVM): See above.
21. Predicts U → A (SVM): See above.
22. Uniform Symmetrised Divergence A: Symmetrised KL Divergence between A

and the Uniform distribution. As usual, discretisation is performed using k-
means.
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23. Uniform Symmetrised Divergence B: Symmetrised KL Divergence between B
and the Uniform distribution.

24. KL Divergence from Normal A: KL Divergence of A from the normal distribu-
tion.

25. KL Divergence from Normal B: KL Divergence of B from the normal distribu-
tion.

26. KL Divergence from Uniform A: KL Divergence of A from the uniform
distribution.

27. KL Divergence from Uniform B: KL Divergence of A from the uniform
distribution.

28. LiNGAM: The LiNGHAM causality coefficient [8], implemented by the origi-
nal author of this method.

29. ICGI—Normal Integration: IGCI Gaussian-Integration coefficient [6], imple-
mented by the original authors of this method.

30. ICGI—Uniform Integration: IGCI Uniform-Integration coefficient, as above.

11.2.3 Classifier

Two Gradient Boosting Machines (GBM see [4]) have been used, with 3000 trees
at each one. Each tree in each GBM has a maximum depth of 12 and a learning rate
of approximately 0.0063640. The minimum samples required for each tree split is
5. The first GBM1 is trained using only samples from the class 1 vs everything else,
where everything else forms class 0). The other GBM−1 is trained using samples
of class −1 vs everything else. To denote the probability of a sample belonging to
a specific class PGBM is used. the score of each sample is set to S = PGBM1(1) −
PGBM−1(−1). In other words the score attributed to each sample is the probability of
having causal direction from A to B minus the probability of having causal direction
B to A.

11.2.4 Hyperparameter Optimisation

A modified version of Stochastic Simultaneous Optimistic Optimisation [9]
(StoSOO) was used to optimise the learning rate and the subsampling percentage
(i.e. the samples to be used in a bagging-like procedure) for the two GBMs. StoSOO
is a tree-like algorithm that samples the hyperparameter space by iteratively splitting
it into smaller segments, which it then samples, until some cut-off point.
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11.3 Experiments and Analysis

The resulting classifier and meta-optimisation technique is analysed in this section.
Note that the AUC score of our classifier in the Kaggle’s causality challenge test set
is 0.79957. This gave us the third place in the competition out of 69 participants.

11.3.1 Hyperparameter Optimisation

A number of hyperparameters were optimized by a hyperparameters by a com-
bination of hand-tuning and small runs of StoSOO. A sample run can be seen
in Fig. 11.1, on a subset (10%) of the experimental data, 100 trees in our GBM
and a maximum tree depth of 10. Notice StoSOO improving AUC using just
a subset of the data. The AUC is obtained by doing threefold cross validation

Fig. 11.1 Hyper-parameter Optimization Progress. Notice that both hyper-parameters affect
regularization. Learning rate affects speed of convergence and sub-sample affects the portion of
samples used at each iteration of each GBP learning cycle
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a b

Fig. 11.2 Relative feature importance for each classifier. (a) Feature importances of GBM1. (b)
Feature importances of GBM−1

over a random selected subset of that data (i.e. dataset splits are NOT fixed in
every iteration). Notice the randomness of AUC score (within certain bounds), but
the convergence of subsample and learning rate GBM attributes. Also notice the
uncertainty concerning hyperparameter values early in the run.

11.3.2 Training and Classifier Analysis

In Fig. 11.2 one can see the relevant score of each variable plotted, with 100 being
the most important variable. Feature importance signifies the average importance
of each variable, as measured by how high in the tree the variable is (being higher
in the tree means affecting more samples). In an ensemble of features produced by
GPM the normalised average of these variables is what is plotted. From Fig. 11.2 one
can see that the most important feature is Spear’s correlation, presumably GBM is
first throwing away cases that are uncorrelated. The least important feature involved
(predictably) if the number of unique variables for variable B.

11.4 Conclusion

A method for detecting causality has been presented. Obvious improvements to
the method include creating more curve fitting features and introducing more
information theoretic features. One could, for example, add trees of different sizes,
plus a number of SVMs with different kernels/kernel parameters. Fitting linear
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classifiers/regressors or higher level polynomials would be another option. Finally,
at the beginning of this paper we emphasised the decision theoretic aspects of
causality detection. It might be possible to directly tackle the problem using decision
theoretic methods (e.g. standalone StoSOO or Monte Carlo Tree Search).

Acknowledgment This work was supported by EPSRC grant EP/H048588/1 entitled: “UCT for
Games and Beyond”.

Appendix: Causality Challenge

Title: Training Gradient Boosting Machines using Curve-fitting and Information
theoretic features for Causal Direction Detection.
Participant name, address, email and website: Spyridon Samothrakis, Diego
Perez, https://github.com/ssamot/causality.
Task(s) solved: Kaggle Competition.
Reference: This paper.
Method: A combination of feature extraction from the sample data, Gradient
boosting machines and StoSOO meta-optimisation.

• Preprocessing: Exploit Symmetries.
• Causal discovery: Gradient Boosting Machine, Curve fitting/Information theo-

retic features.
• Feature selection: Feature Ranking.
• Classification: Gradient Boosting Machine
• Model selection/hyperparameter selection: Cross-validation, Stochastic Simulta-

neous Optimistic Optimisation.

Results (Table 11.1):

• quantitative advantages: The method and ideas behind our method are relatively
simple. We advocate a feature extraction strategy based on curve fitting +
information theoretic features.

• qualitative advantages: There are some elements of novelty, mostly in the ideas
behind extracting features and doing hyper-parameter optimisation.

Code and installation instructions can be found here: https://github.com/ssamot/
causality.

Table 11.1 Result table Dataset/task Score

Test set 0.79957

https://github.com/ssamot/causality
https://github.com/ssamot/causality
https://github.com/ssamot/causality
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Chapter 12
Conditional Distribution Variability
Measures for Causality Detection

Josè A. R. Fonollosa

12.1 Introduction

There is no doubt that causality detection is a task of great practical interest. In
a wide sense, attributing causes to effects guides all our efforts to understand our
world and to solve any kind of real life problems. There is not, however, a simple
and general definition of causality and the topic remains a staple in contemporary
philosophy.

The development of analytical methods for detecting a cause-effect relationship
in a set of ordered pairs of values also lacks of a universal formal definition of
causality. From a pure statistical point of view any bivariate joint distribution
can be expressed as the product of any of the two marginal distributions by the
conditional distribution of the other variable given the first. And these two equivalent
expressions can also be used to explain the generation process in both directions.

In order to be able to attack the causality detection problem we need to introduce
one or more assumptions about the generation process or the shape of the joint
distribution. Most of those assumptions come from the Occam’s razor succinctness
principle. We expect to have a simpler model in the correct direction that in the
opposite, i.e. the algorithmic complexity or minimum description length of the
generation process should be lower in the true causal direction than in the opposite
direction. To be more precise, if the random variable X is the cause of the random
variable Y we usually expect the conditional distribution p(Y |X = x) to be
unimodal or at least to have a similar shape for different given values x of X.

Several methods have been proposed in the literature as practical measures of the
uncomputable Kolmogorov complexity of the generation model in the hypothetical
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causal direction. See [7] for a review of the usual assumptions and generation
models. In this paper we develop new causality measures based on the assumption
that the shape of the conditional distribution p(Y |X = x) tends to be very similar for
different values of x if the random variable X is the cause of Y . The main difference
with respect to previous methods is that we do not impose a strict independence
between the conditional distribution (or noise) and the cause. However we still
expect the conditional distribution to have a similar shape or similar statistical
characteristics for different values x of the cause.

The developed features are combined with standard statistical features following
a machine learning approach: the selection of a good set of relevant features and of
an adequate learning model.

12.2 Features

In this section we enumerate the features used by our model. All the measures are
computed in both directions, i.e., exchanging the role of the two random variables
X and Y, except if the measure is symmetric.

12.2.1 Preprocessing

Mean and Variance Normalization Numerical data is normalized to have zero
mean and unit variance. All of our features are scale and mean invariant.

Discretization of Numerical Variables Discrete measures as the discrete entropy
and discrete mutual information are also used as features of numerical date after a
discretization or quantization process. The quantization uses 2∗maxdev∗sf actor+
1 equally spaced segments of σ/sf actor length and truncates all absolute values
above maxdev ∗ σ . For almost all measures requiring a discretization of the input
we selected sf actor = 3 and maxdev = 3 in our experiments, i.e., a quantization
to 19 different values.

Relabeling of Categorical Variables The specific values assigned to categorical
data are assumed to have no information by themselves. However, in some cases
we considered the calculation of numerical measures (as skewness) for categorical
variables. For these computations we assigned integer values to the categorical
variables as a function of its probability. After the relabeling of variables with M
different categories we have: p(x = 0) ≥ p(x = 1) . . . ≥ p(x = M − 1). This step
let us obtain numerical features of categorical variables that do not depend on the
labels but on the sorted probabilities.
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12.2.2 Information-Theoretic Measures

In the baseline system we include the standard information-theoretic features as
entropy and mutual information. Both the discrete and the continuous version
of the entropy estimator are applied to numerical and categorical data after the
preprocessing described above.

Discrete Entropy and Joint Entropy The entropy of a random variable is a
information-theoretic measure that quantifies the uncertainty in a random variable.
In the case of a discrete random variable X, the entropy of X is defined as:

H(X) = −
∑
x

p(x) log(p(x))

In our implementation of the discrete entropy estimator we added the simple [5] bias
correction term to finally obtain

Ĥm(X) = −
∑
x

nx

N
log(

nx

N
)+ M − 1

2N

where M is the number of different values of the random variable X in the data
set. We also considered the normalized version Ĥn(X) = Ĥm(X)/ log(N) where
log(N) is the maximum entropy a discrete random variable with N different values.
The definition and estimation of the entropy can be extended to a pair of variables
replacing the counts nx by the counts nx,y of the number of times the pair (x, y)

appears in the sample set.

Discrete Conditional Entropy The conditional entropy quantifies the average
amount of information needed to describe the outcome of a random variable Y given
that the value of another random variable X is known. In our implementation, the
discrete conditional entropy H(Y |X) is computed as the difference between the
discrete joint entropy H(Y,X) and the marginal entropy H(X).

Discrete Mutual Information The Mutual Information is the information-
theoretic measure of the dependence of two random variables. It can be computed
from the entropy of each of the variables and its joint entropy as I (X;Y ) =
H(X)+H(Y)−H(X, Y ). In addition to the above unnormalized version, we also
included as features two normalized versions. The mutual information normalized
by the joint entropy and the mutual information normalized by the minimum of the
marginal entropies:

Ij (X;Y ) = I (X;Y )

H(X, Y )
Ih(X;Y ) = I (X;Y )

min(H(X),H(Y ))

Adjusted Mutual Information The Adjusted Mutual Information score is an
adjustment of the Mutual Information measure. It corrects the effect of agreement
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solely due to chance, [8]. This feature is computed with the scikit-learn python
package, [6].

Gaussian and Uniform Divergence These features are an estimation of the
Kullback-Leibler divergence or distance of the distribution of the data with respect
to a normalized Gaussian distribution and a uniform distribution respectively. After
mean and variance normalization, the estimation of the Gaussian divergence is
equivalent to the estimation of the differential entropy except for a constant factor.

Dg(X) = D(X||G) = H(X)−H(G) = H(X)− 1

2
log(2πe)

An estimator of the differential entropy can also be used to compute the divergence
respect an uniform distribution if the samples are first normalized in range:

Xu = X −min(X)

max(X)−min(X)
Du(X) = D(Xu||U) = H(Xu)−H(U) = H(Xu)

12.2.3 Conditional Distribution Variability Measures

In this section we define distribution variability measures that are used as tests of
the spread of the conditional distribution p(Y |X = x) for different values of x.
If this variable is numerical we apply first the quantization process described in
Sect. 12.2.1.

Standard Deviation of the Conditional Distributions This is a direct measure of
the spread of the conditional distributions after normalization. If Y is a numerical
variable, the conditional distribution p(Y |X = x) is normalized for each value of x

to have zero mean and then quantized as in Sect. 12.2.1. If Y is a categorical variable,
the variability of the conditional distribution p(Y |X = x) for different values of x

is calculated after sorting these probabilities for each x. The standard deviation of
the preprocessed conditional distributions is then computed as:

CDS(X, Y ) =

√√√√√ 1

M

M−1∑
y=0

varx(pn(y|x))

where pn(y|x) refers to the normalized conditional probability and varx to the
sample variance over x.

Standard Deviation of the Entropy, Skewness and Kurtosis These additional
features use the standard deviation to quantify the spread of the entropy, variance
and skewness of the conditional distributions for different values x of the hypothet-
ical cause
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HS(X, Y ) = stdx(H(Y |X = x)) SS(X, Y ) = stdx(skew(Y |X = x))

KS(X, Y ) = stdx(kurtosis(Y |X = x))

Bayesian Error Probability This feature is an estimation of the average proba-
bility of error using the (discretized) conditional distributions. For each value of
x the probability of error is computed as one minus the probability of guessing y

given x if we choose for the prediction ŷ the value that maximizes p(Y |X = x).
EP(X, Y ) = E[pe(x)] where pe(x) = 1−maxy(p(Y |X = x)).

12.2.4 Other Features

Number of Samples and Number of Unique Samples

Hilbert Schmidt Independence Criterion (HSIC) This standard independence
measure is computed using a python version of the MATLAB script provided by the
organizers.

Slope-Based Information Geometric Causal Inference (IGCI) The IGCI
approach for causality detection, Janzing et al. [3] proposes measures based on
the relative entropy and a slope-based measure that we also added to our set of
features.

Moments and Mixed Moments We included the skewness and kurtosis of each
of the variables as features, as well as the mixed moments m1,2 = E[xy2] and
m1,3 = E[xy3].
Pearson Correlation The Pearson r correlation coefficient computed by the scipy
python package, [4].

Polynomial Fit We propose two features based on a polynomial regression of order
2. The first feature is based on the absolute value of the second order coefficient. We
have observed that the causal direction usually requires a smaller coefficient. The
second feature measures the regression mean squared error or residual.

12.3 Classification Model Selection

We tested different learning methods for classification and regression. Gradient
Boosting, [2], significantly performed better that the rest of algorithms in our tenfold
cross-validation experiments on the training set after a manual hyperparameter
tuning. We used the scikit-learn implementation (GradientBoostingClassifier) with
500 boosting stages and individual regression estimators with a large depth (9).
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The classification task of the ChaLearn cause-effect pair challenge is in fact a
three-class problem. For each pair of variables A and B, we have a ternary truth
value indicating whether A is a cause of B (+1), B is a cause of A (−1), or neither
(0). The participants have to provide a single predicted value between−∞ and+∞,
large positive values indicating that A is a cause of B with certainty, large negative
values indicating that B is a cause of A with certainty, and middle range scores (near
zero) indicate that neither A causes B nor B causes A. The official evaluation metric
was the average of two Area Under the ROC curve (AUC) scores. The first AUC is
computed associating the truth values 0 and −1 to the same class (the class 1 versus
the rest), while the second AUC is computed grouping together the 1 and 0 classes
(the class −1 versus the rest).

Note that the symmetry of the task allow us to duplicate the training sample pairs.
Exchanging A with B in an example of class c provides a new example of the class
−c.

To deal with this ternary classification problem we tested three different
schemes:

1. A single ternary classification or regression model. The predicted value is
computed in this case as p1 = p(1) − p(−1) where p(1) and p(−1) are
the estimated probabilities assigned by the classifier to class 1 and class −1
respectively. Alternatively, we can use the output of any regression model. In
the case of the selected Gradient Boosting model the classifier version with the
deviance loss function gave better results than the regressor loss functions in our
experiments.

2. A binary model for estimating the direction (class 1 versus class−1) and a binary
model for independence classification (class 0 versus the rest). The first direction
model is trained only with training sample pairs classified as 1 or −1, while the
second independence model is trained with all the data after grouping class 1
and −1 in a single class. The predicted value is computed in this case as the
product of the probabilities given by each of the models p2 = pd(1)pi(0) where
pd(1) is the probability of class 1 given by the direction model and pi(0) is the
independence probability provided by the second model.

3. A symmetric model based on two binary models. In this scheme we also have two
binary models: a model for class 1 versus the rest and another model for class−1
versus the rest. In this sense, this configuration follows the same scheme of the
evaluation metric. Both binary models are trained with all the training data after
the corresponding relabeling of classes. The predicted value is then computed
as the difference of the probability given by the first model to class 1 and the
probability given by the second model to class −1, p3 = 1

2p3,1(1)− 1
2p3,2(−1).

Using the same set of selected features, the three schemes provide similar results
as shown in Table 12.1. The proposed final model uses a equally weighted linear
combination of the output of each of the three models to obtain an additional
significant gain respect to the best performing scheme.



12 Conditional Distribution Variability Measures for Causality Detection 345

Table 12.1 Performance of
the proposed schemes for the
ternary model

Scheme Score

1. Single ternary model 0.81223

2. Direction/independence models 0.81487

3. Symmetric models 0.81476

System combination 0.81960

Table 12.2 Results for different subset of the proposed features

Features Score

Baseline(21) 0.742

Baseline(21) + Moment31(2) 0.750

Baseline(21) + Moment21(2) 0.757

Baseline(21) + Error probability(2) 0.749

Baseline(21) + Polyfit(2) 0.757

Baseline(21) + Polyfit error(2) 0.757

Baseline(21) + Skewness(2) 0.754

Baseline(21) + Kurtosis(2) 0.744

Baseline(21) + the above statistics set(14) 0.790

Baseline(21) + Standard deviation of conditional distributions(2) 0.779

Baseline(21) + Standard deviation of the skewness of conditional distributions(2) 0.765

Baseline(21) + Standard deviation of the kurtosis of conditional distributions(2) 0.759

Baseline(21) + Standard deviation of the entropy of conditional distributions(2) 0.759

Baseline(21) + Measures of variability of the conditional distribution(8) 0.789

Full set(43 features) 0.820

12.4 Results

The main training database includes hundreds of pairs of real variables with known
causal relationships from diverse domains. The organizers of the challenge also
intermixed those pairs with controls (pairs of independent variables and pairs of
variables that are dependent but not causally related) and semi-artificial cause-effect
pairs (real variables mixed in various ways to produce a given outcome). In addition,
they also provided training datasets artificially generated.1

The results presented in this section correspond to the score of the test data
given by the web submission system of the cause-effect pair challenge hosted by
Kaggle. Previous cross-validation experiments on the training set provided similar
results. Table 12.2 summarizes the results for different subsets of the proposed
complete set of features. The baseline system includes 21 features: number of
samples(1), number of unique samples(2), discrete entropy(2), normalized discrete
entropy(2), discrete conditional entropy(2), discrete mutual information and the two

1http://www.causality.inf.ethz.ch/cause-effect.php?page=data.

http://www.causality.inf.ethz.ch/cause-effect.php?page=data
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normalized versions(3), adjusted mutual information(1), Gaussian divergence(2),
uniform divergence(2), IGCI(2), HSIC(1), and Pearson R(1).

A more detailed analysis of the results of the proposed system and of other top
ranking systems can be found in [1].

12.5 Conclusions

We have proposed several measures of the variability of conditional distributions as
features to infer causal relationships in a given pair of variables. In particular, the
proposed standard deviation of the normalized conditional distributions stands out
as one of the best features in our results. The combination of the developed measures
with standard information-theoretic and statistical measures provides a robust set of
features to address the causality problem in the framework of the ChaLearn cause-
effect pair challenge. In a test set with categorical, numerical and mixed pairs from
diverse domains, the proposed method achieves an AUC score of 0.82.

Appendix: ChaLearn Cause-Effect Pair Challenge. Fact Sheet

Title: Conditional distribution variability measures for causality detection
Participant name, address, email and website: José A. R. Fonollosa, Universitat
Politènica de Catalunya, c/Jordi Girona 1-3, Edifici D5, Barcelona 08034, SPAIN.
jose.fonollosa@upc.edu, www.talp.upc.edu
Task solved: cause-effect pairs
Reference: José A. R. Fonollosa: Conditional distribution variability measures for
causality detection. NIPS 2013 Workshop on Causality
Method:

• Preprocessing. Normalization of numerical variables. Relabeling of categorical
variables

• Causal discovery. Standard features plus new measures base on variability
measures of the conditional distributions p(Y |X = x) for different values of
x

• Feature selection. Greedy selection
• Classification. Gradient Boosting. Combination of three different multiclass

schemes
• Model selection/hyperparameter selection. Manual hyperparameter selection

Results:

• quantitative advantages: the developed model is simple and very fast compared
to other top ranking models

www.talp.upc.edu
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Table 12.3 Result table Dataset/task Official score Post-deadline score

Final test 0.81052 0.81960

• qualitative advantages: it relaxes the noise independence assumption introducing
less strict similarity measures for the conditional probability p(Y |X = x).

The complete python code for training the model and reproducing the presented
results (Table 12.3) is available at https://github.com/jarfo/cause-effect. The training
time is about 45 min on a 4-core server, and computing the predictions for the test
takes about 12 min.
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Chapter 13
Feature Importance in Causal Inference
for Numerical and Categorical Variables

Bram Minnaert

13.1 Introduction

Consider the following problem: we have a set of observations of (A, B) pairs.
Without any context, can we give an estimate of the causal relationship between
A and B? It is possible that A causes B (A → B), that B causes A (B → A),
that they are independent (A | B) or that they have a common cause (C → A and
C → B).

Recent years a number of very promising methods have been proposed to predict
causal relationships [3, 8, 10, 12, 13, 15]. Most studies in the field of causal discovery
require A and B to be numerical. This paper will concentrate on the differences
between numerical and categorical data.

This paper will define some features and via machine learning techniques it will
investigate the importances of these features and estimate the probability that A
causes B:

P(A → B) ∈ [0, 1]. (13.1)

Section 13.2 will describe the model on a high level. Section 13.3 will zoom in
on the different submodels. In Sect. 13.4 we look at the results of the model and
we will focus on the importances of the features. We will focus on the differences
between numerical and categorical data since only few studies have already been
performed on categorical data [14]. At last, we will draw conclusions in Sect. 13.5.
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13.2 Model Description

Figure 13.1 shows the architecture of the model.
After some preprocessing steps, such as data normalisation, a list of features

is extracted for every A − B pair, for example the correlation coefficient. The
preprocessing step and feature extraction is performed on a large number of A− B

pairs, which were provided in a training set. Because we know the correct solution
for these A − B pairs in the training set (the solution in the causal relationship, for
example: A → B), we can apply supervised learning methods. Via the ensemble
method Random Forest a large collection of classification trees is generated for the
training set (features → causal relationship). After training we can use this trained
model to predict new A− B pairs with unknown causal relationship.

The model has been developed in Python and makes uses of the libraries
Numpy, Pandas and SciPy [11]. The figures in this paper have been made using
matplotlib [9].

In order to make this study replicable, the code has been made available on the
following url: https://github.com/braincomic/CauseEffectChallenge.

13.3 Model Steps

13.3.1 Preprocessing

The following preprocessing steps are executed.

• Data normalisation if numerical (feature scaling). This is common in data
processing. The range of A/B values can vary widely. Suppose that we would like
to calculate the distances between two points. If we don’t perform normalisation,
this distance will be large if ranges of values are large and small if ranges of
values are small.

• Reordering the categories from 0 to n if A/B is categorical in such a way that
E(B|A) is increasing in A. Figure 13.2 show examples. This will enable the
numerical features to perform better on categorical data.

We have not performed outlier removal as preprocessing step because outliers
can give an indication of a causal relationship.

Fig. 13.1 Overview of the causal inference model

https://github.com/braincomic/CauseEffectChallenge
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13.3.2 Features

In this step we extract 211 features. We will not describe the full list. Instead, we
will describe groupings.

1. Number of samples: number of samples in the data set, number of unique
samples, difference of unique samples A versus B, fraction of unique samples.
These features serve mainly as control, we don’t expect these features to matter.

2. Basic statistics: median, minimum, maximum, range, percentiles, skewness,
curtosis and minimal precision.

3. Correlation: Pearson product-moment correlation coefficient, Spearman’s rank
correlation coefficient.

4. Polynomial regressions, as described in Hoyer et al. [8], ranging from degree 1
(linear regression) to degree 4. One feature will determine the best degree itself
by splitting the sample into a training and test set, up to degree 9. Examples are
shown in Fig. 13.3.

5. Logistic regression.
6. Moving average: quality of the moving average function
7. Uniformity and Normality.

Fig. 13.3 In these figures the variable is the cause of the Y variable. We expect better regressions
Y=f(X), the green line, compared to regressions X=f(Y), the red line. These figures are cherry
picked to make the idea more clear, it is not always this obvious, unfortunately
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8. Remainder test: first a regression is made (for example, regression with degree
4) and then the difference is made of the noisy data with the regression. The
resulting distribution is tested for uniformity and normality.

9. Inversibility test: specific test to check if some polynomial regression is
inversible or not.

10. Outlier detection.
11. Information theory features: Shannon entropy, conditional entropy, mutual

information, homogeneity, completeness, v-measure and information gain. This
is all calculated after binning. For each feature we used either fixed width or
fixed frequency discretisation. We choose the method that obtained the best
results on the training set. This also determined the number of bins.

12. IGCI: Information Geometric Causal Inference, both the entropy based and
the integral-approximation based estimator, both for uniform and gaussian
noise [10].

13. Clustering: quality of vector quantisation using k-means clustering.

13.3.3 Random Forest

We make use of a random forest regression [1]. This is an ensemble learning method
that creates many classification trees when training the model.

Instead of using a random forest, we also tried gradient boosting [5, 6].
Even though gradient boosting scores slightly better than random forest in a

comparison of 11 binary classification methods [2], random forest obtained better
scores in the training set predictions, so we used random forest.

The training also showed that a random forest regression performed better than a
random forest classification.

13.3.3.1 Training

We train the features using a random forest regression. In a random forest a number
of features is randomly selected to train a classification tree. The training of this tree
is not done on the entire training set, but only a random sample. This is done many
time, so a lot of classification trees are generated, which we call a forest.

We do not only perform this training on the entire training set, but we train it on
several subsets:

• Full training set.
• Numerical → Numerical.
• Categorical → Categorical.
• Categorical → Numerical.
• Numerical → Categorical.

In these subsets, binary variables are treated as Categorical.
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13.3.3.2 Predicting

In the previous step we have trained our model via the ensemble method random
forest, resulting into many classification trees. Now we can use this trained model to
make predictions on new A− B pairs. In the previous step we have not trained one
model, we have trained five models. In order to predict a new A − B pair, we need
to take the weighted average of different predictions of different trained models.

1. Predict with the model trained with the full training set. We call this function

Predfull(A,B) (13.2)

2. Predict with the model trained with the specific training set for these types. We
use TA as the type of A (Numerical or Categorical) and TB the type of B. For
example, PredCategorical,Numerical .

PredTA,TB
(A,B) (13.3)

with TA, TB ∈ {“Numerical”, “Categorical”}

3. Take the weighted average of these two predictions. As we will see in Sect. 13.4,
some models based on the specific training sets (types) achieve much better
scores than others. Therefore the better models are given an extra benefit via
a weight factor W that depend on the type of A and B. Normalisation is added:
worst possible score is 0, best is 1.

P(A → B) = Wfull,TA,TB
P redfull(A,B)+Wspec,TA,TB

P redTA,TB
(A,B)

MAX(Wfull,TA,TB
+Wspec,TA,TB

)
(13.4)

If we would like to predict a ternary truth value T (A,B) indicating whether A
is a cause of B (+1), B is a cause of A (−1), or neither (0), we simply take the
following difference.

T (A,B) = P(A → B)− P(B → A) (13.5)

13.4 Results

13.4.1 AUC Score

We use the AUC (Area Under the ROC curve) as evaluation metric. The predictions
of the full model are evaluated against a test set of 4050 A-B pairs. When we
evaluate the ternary truth value T we use the average of the two AUC score related
to P(A → B) and P(B → A)
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The following table summarizes the results. In the ChaLearn cause-effect pair
challenge, hosted by Kaggle[4], this AUC score resulted in the fifth place from 267
competitors.

Subset AUC score

Num → Num 0.818a

Cat → Cat 0.571a

Cat → Num 0.690a

Num → Cat 0.608a

Total 0.788
aAs the detailed final results of the
ChaLearn cause-effect pair challenge,
hosted by Kaggle[4], has not yet been
published, these lines contains the results
on the cross validation set instead of the
final test set. The total score on the other
hand is based on the test set

We seem to have achieved the best job in predicting Numerical → Numerical.
Categorical → Categorical on the other hand didn’t work out well.

13.4.2 Feature Importances

Random forest regressions come with a very handy scoring of the features: the
variable importance. For every feature we have calculated the sum of the variable
importances and we have listed them in Fig. 13.4.

Fig. 13.4 Importances of feature categories in the different submodels in sum of the percentages
of the features in this category
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Some features always perform badly:

• Logistic regression, even on the categorical data.
• Moving average
• Outlier detection. It seems we should have performed outlier removal in the

preprocessing steps, or at least treated them separately.
• IGCI
• Clustering

13.4.2.1 Numerical → Numerical Feature Importance

Numerical to numerical is totally ruled by the polynomial regression features. The
most important features are listed below.

• The most important feature is the R2 value of a polynomial regression with
variable degree. The degree is determined by splitting the data set into a training
set to find the best polynomial regression and a cross-validation set to measure
the quality of the regression. It’s feature importance is 75.1%.

• The degree of this polynomial has feature importance 9.9%.

Interpretation: if A causes B, then the regression B = f1(A)+ ε1 will have a higher
quality (better R2) and will be simpler (lower degree) than the regression A =
f2(B)+ ε2.

13.4.2.2 Categorical → Categorical Feature Importance

• Surprisingly the polynomial regressions do very well on categorical data. When
we introduced reordering categories as described in Sect. 13.3.1, the variable
importance of these features raised dramatically. All polynomial features sum
up to 47.1%.

• Several features of information theory score pretty well. The best are the mutual
information and correlated entropy, defined as the mutual information devised
by the Shannon entropy. The corresponding feature importances are 12.6% and
7.5%.

13.4.2.3 Categorical → Numerical Feature Importance

• The features of information theory score very high. The best are the mutual
information and the v-measure, having importances of 49.3% and 23.8%
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13.4.2.4 Numerical → Categorical Feature Importance

• The polynomial regressions again have the highest importance, summing to
52.1%.

• From information theory, the mutual information has 9.1% importance.

13.5 Conclusion

When predicting causal relationships, the category of features that gives the most
information heavily depends on the type of the variables: numerical or categorical.
Thanks to category reordering the numerical features are still important to categori-
cal data. The following table summarizes the most important categories of features.

Subset Most important feature categories

Num → Num Polynomial regression

Cat → Cat Polynomial regression, information theory

Cat → Num Information theory

Num → Cat Polynomial regression, information theory

Total Polynomial regression

Acknowledgements I would like to thank Kaggle and Chalearn to stir my interest into this
topic [7] and I thank Isabelle Guyon and Mehreen Saeed for their assistance to make my source
code portable.
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Chapter 14
Markov Blanket Ranking Using
Kernel-Based Conditional Dependence
Measures

Eric V. Strobl and Shyam Visweswaran

14.1 Introduction

Causality refers to a relation between a variable and another variable such that the
latter variable is understood to be a consequence of the former. Three groups of
methods have been described in the literature to infer causality from observational
data. The most popular group includes conditional independence test methods
such as PC [14] and FCI [13] that attempt to construct a graph representing all
causal relationships in a dataset. The second group takes a more local approach by
identifying the Markov blanket, or those variables that are conditionally independent
on a target given the remaining variables; examples include IAMB [16], HITON-
MB [1], and MMMB [17]. The final group identifies pair-wise causal relationships
by comparing the complexities of a forward and backward model such as LiNGAM
[11] and additive noise models [5]). However, to remain tractable, all of these
methods do not consider all possible multivariate interactions between variables.
As a result, they may fail to identify subtle dependencies.

A number of kernel-based methods have recently been developed that perform
multivariate conditional dependence measurements in reproducing kernel Hilbert
space (RKHS; [2, 18]). In this paper, we take advantage of these methods by
incorporating either one of two kernel-based conditional dependence measures (K-
CDMs; [2, 18]) in a backward elimination algorithm to identify the Markov blanket
in a fully multivariate fashion. The rest of this paper is structured as follows. We
first provide background on Bayesian networks in Sect. 14.2 and then discuss related
work in Sect. 14.3. In Sect. 14.4, we describe the new algorithm that identifies the
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Markov blanket of a target by iteratively eliminating variables that minimize K-
CDM. We finally provide results comparing the proposed algorithm with other
feature ranking and subset selection methods in Sect. 14.5. Section 14.6 provides
a brief conclusion.

14.2 Background

From here on, upper-case letters in italics will denote single variables, and upper-
case letters in bold italics will denote sets of variables. A Bayesian network is a
probabilistic model that combines a directed acyclic graph (DAG) with parameters
to represent a joint probability distribution over a set of random variables. More
specifically, the DAG contains a node for every variable in the dataset, and an edge
between a pair of nodes R − S is absent if R is independent of S given T for some
T , and edge R − S is present if R is dependent on S given T for all T [6]. The
absence of edges in a DAG can be determined by performing tests of conditional
independence. Two variables R and S are conditionally independent given a third
variable T if and only if the value of R provides no information about the value of
S and vice versa given the value of T . In mathematical notation, R ⊥⊥ S|T .

We now define Y as a target node, and X as the entire dataset without Y . The
Markov blanket of Y (MB(Y )) is a subset of X that includes the target’s parent,
child and spousal nodes. MB(Y ) can be identified by showing that a target node is
conditionally independent of all other nodes given its parents, children and spouses:

Y ⊥⊥ {X\MB(Y )} |MB(Y ) ⇔ Y ⊥⊥ X|MB(Y ). (14.1)

In this paper, we assess conditional dependence between arbitrary distributions
within reproducing kernel Hilbert spaces (RKHSs). Specifically, we map X and Y

into RKHSs F and G respectively using two positive semidefinite kernels KX :
X ×X → R and KY : Y × Y → R. There then exists a conditional cross-
covariance operator ΣYY |X : G → G for any function g ∈ G as well as an inner
product 〈·, ·〉G such that:

〈
g,ΣYY |Xg

〉
G = EX

[
V arY |X [g (Y ) | X]

]
, (14.2)

which represents the residual errors of predicting g(Y ) with X [2].
We now denote Xs as some subset of the variables in X such that Xs ⊆ X.

Then, the conditional cross-covariance operator exhibits the following property:
ΣYY |Xs ≥ ΣYY |X, where the order is determined by the trace operator, and the
equality holds when the subset Xs includes MB(Y ) so that Y ⊥⊥ X|Xs.

Empirically, we can compute the kernel matrices KXs and KY from a sample
size of n drawn i.i.d. from the distribution P(X, Y ). The trace of the empirical
conditional cross-covariance operator is then defined by:
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M1 = tr
(
GY (GXs + nεIn)

−1
)

, (14.3)

where GXs =
(
In − 1

n
1n1n

T
)

KXs

(
In − 1

n
1n1n

T
)

with n representing sample size,

In an n×n identity matrix, and 1n a vector of ones. The regularization term ε → 0 is
added for the inversion. A similar measure proposed by Zhang et al. [18] (Equation
12) is based on eigenvalue decompositions of centralized kernel matrices:

M2 = tr
(
TXsGY TXs

)
, (14.4)

where TXS
= ε

(
GXs + εIn

)−1. Unlike M1, this new measure was developed so that
the authors could create a test of conditional independence using a statistic shown in
their Equation 13 whose null distribution is approximated by a gamma distribution.
Note that both Y and Xs can each be multivariate with either of the two K-CDMs.
Moreover, both K-CDMs do not make assumptions about the data distributions of
Y and Xs or their functional relationship.

14.3 Related Work

The original Hilbert Schmidt Independence Criterion (HSIC; [3]) is a sensitive
measure of dependence between two kernels, where larger values denote a greater
degree of dependence. Song et al. [12] developed an algorithm called BAHSIC that
uses HSIC for feature selection by embedding the target in the first kernel and the
remaining variables in the second kernel; the algorithm then uses backward elimina-
tion to remove variables from the second kernel that maximize HSIC. In practice, the
algorithm can detect subtle dependencies and help increase classification accuracy
to a greater extent than many other feature selection algorithms.

HSIC unfortunately can have difficulty in detecting all of the variables in MB(Y ),
since some of these variables may only show a weak association with the target.
Measures of conditional dependence may instead be more useful in this regard.
Nevertheless, correctly identifying the subset of variables to condition on can be
difficult as the number of possible subsets grows exponentially with the number
of variables [15]. Markov blanket discovery algorithms including IAMB, HITON-
MB, and MMMB thus incorporate a forward selection phase, where variables
are required to display an association to the target before being included in the
conditioning set. For example, the HITON-MB algorithm relies on a univariate
association between the tested variable R and the target Y . On the other hand, the
IAMB and MMMB algorithms test the association between R and Y relative to
a growing conditioning set of previously selected variables. In other words, both
IAMB and MMMB initially rely on a univariate relationship with Y but gradually
become more multivariate. These forward selection strategies can be suboptimal
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because some variables may reveal a relationship with the target only when all the
other variables in MB(Y ) are included in the conditioning set.

Several other limitations have been described in the literature. First, HITON-
MB and MMMB may identify incorrect variables in the second step, since there
are certain conditions under which variables not in MB(Y ) can enter MB(Y ) as
described in Peña et al. [9]. Moreover, both these algorithms rely on HITON-PC
and MMPC which also have shortcomings. The PC algorithms assume that if A is
not a member of the set of variables which are parents and children of Y (pc(Y )),
then Y ⊥⊥ A|B for some B ⊆ pc(Y ), so any node not in pc(Y ) is removed, which
is not always true (an example of such a circumstance is in Table 2 of Peña et al.
[9]). Second, Lou and Obradovic [7] highlight that conditional independence testing
may become unreliable with small sample sizes. As a result, they have instead
promoted algorithms that rely on sensitive dependence measurements such as HSIC
as opposed to tests in order to discover MB(Y ). However, in this paper, we will
show that a new algorithm using Eqs. (14.3) or (14.4) can in fact perform very well
by similarly avoiding statistical testing.

The main ideas used in this paper are motivated by the work of Fukumizu et al.
[2], in which the authors introduced a method of kernel dimension reduction using
Eq. (14.3). However, their method cannot be directly used to find MB(Y ), since it
finds orthogonal projections of X with respect to kernel-induced feature space. In
this paper, we select variables with respect to input space to make the kernel-based
conditional dimensionality reduction method more applicable to MB(Y ) discovery.

14.4 The Algorithm

14.4.1 Main Idea

We discover MB(Y ) using backward elimination. First, consider measuring the
conditional dependence of Y and X given Xs, where Xs is set to X. Clearly, the
conditional dependence measure is zero, since X cannot explain Y given itself.
Next, consider removing a variable from the conditioning set Xs. Since a target is
completely shielded from the other variables given its MB(Y ) by the definition of a
Markov blanket, eliminating a variable in MB(Y ) from Xs will cause the K-CDM to
return a larger value (assuming enough sample size), since now X can better explain
Y when Xs is missing a variable in MB(Y ). In contrast, removing a variable not in
MB(Y ) will make no difference, since the conditional dependence measure is still
zero if Xs contains MB(Y ). This process of successively testing the removal of a
variable in the conditioning set Xs and then permanently removing the variable that
minimizes K-CDM is repeated until Xs is empty.
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14.4.2 Implementation

The proposed method is a feature ranking algorithm that performs backward elim-
ination using K-CDM. The pseudo-code for the method is shown in Algorithm 1,
such that K-CDM is written as:

M∗(Y, Xs, σ ),

which denotes M1 or M2 evaluated with Y , Xs, and σ such that σ is the set of kernel
hyperparameters (if any).

The algorithm works as follows. It first computes K-CDM for every variable
eliminated from the conditioning set Xs using appropriate kernel hyperparameters
σ (if any) chosen with a user defined method Ξ . For example, the Gaussian sigma
hyperparameter can be defined as the median distance between data points. The
identified variable X which minimizes K-CDM when removed is then permanently
removed from Xs and placed into X†. The above procedure is repeated until Xs
is empty. The underlying principle behind the algorithm is thus to find the variable
combination that can best explain the dependence between Y and X by iteratively
eliminating those variables that can least explain the dependence.

Note that the above procedure has some advantages over previous methods from
the nature of directly performing backward elimination rather than first performing
a forward selection step. First, the method considers all possible multivariate
relationships in MB(Y ), since all variables in MB(Y ) are eliminated from Xs
after the other variables assuming sufficient sample size to detect the relationships.
Second, the proposed algorithm outputs a ranking of variables defined by the relative
amounts of conditional dependence across the entire dataset. As a result, the ranking
represents the relative importance of each of the variables in MB(Y ).

Algorithm 1: Backward elimination
1. Input: Target feature Y , non-target features X
2. Output: Non-target features in ascending order X†

3. Xs ← X
4. X† ← ∅
5. repeat
6. X ← min

X∈Xs
M∗(Y, {Xs\X}, σ ), σ ∈ Ξ

7. Xs ← Xs\X
8. X† ← X† ∪X

9. until Xs = ∅
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Algorithm 2: Forward selection
1. Input: Target feature Y , non-target features X
2. Output: Non-target features in descending order X†

3. Xs ← X
4. X† ← ∅
5. repeat
6. X ← min

X∈Xs
M∗(Y, {X† ∪X}, σ ), σ ∈ Ξ

7. Xs ← Xs\X
8. X† ← X† ∪X

9. until Xs = ∅

The forward selection procedure (Algorithm 2) is faster and can be implemented
by including variables in X† in line 6 rather than removing variables from Xs.
However, this method underperforms backward elimination in practice and is
not guaranteed to return MB(Y ) in the infinite sample limit, since conditional
dependence is not assessed within the context of the other variables in X. Also note
that the output is in descending order in X† instead of in ascending order.

14.4.3 Proof of Correctness

Theorem The final variables in X† from Algorithm 1 will include MB(Y ) under the
assumptions that (1) K-CDM is defined by Eq. (14.3) or (14.4), and (2) the dataset
X has an infinite sample size and is drawn i.i.d. from a joint probability distribution
faithful to a DAG.

Proof First, a lower value returned from Eq. (14.3) or (14.4) denotes a higher degree
of conditional independence between Y and X given Xs than a higher value by
design. Second, Y is conditionally independent of X given MB(Y ) by the definition
of a Markov blanket. As a result, K-CDM is guaranteed to return a higher value
every time a variable in MB(Y ) is tested for removal in line 6 compared to a variable
not in MB(Y ) assuming an infinite sample size, where the data points are drawn i.i.d.
from a probability distribution faithful to a DAG. Then, if Xs contains variables in
and not in MB(Y ), a variable not in MB(Y ) will be eliminated earlier from Xs in
line 7. The variable eliminated from Xs will then be placed into X† in line 8. As a
result, the final variables in X† will include MB(Y ). �

14.4.4 Time Complexity

We assume that we remove 1 − β of Xs at every iteration. Then, the ith iteration
of Algorithm 1 takes O(βi−1dn3) where d represents the total number of variables
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and n3 represents the inversion of the kernel when calculating K-CDM. Similarly,
the ith iteration in Algorithm 2 has the same computational complexity if we iterate
over every variable, but we can also stop the algorithm after obtaining t variables. In
this case, the total number of iterations γ is t = d

[
1− (1− β)γ

]
which will require∑γ−1

i=0 d(1− β)i = d
[
1− (1− β)γ

]
/β = t/β operations. Algorithm 2 thus takes

O(tn3/β) time to discover t variables.

14.5 Experiments

14.5.1 Evaluation

We included two K-CDMs in Algorithm 1 by using Eq. (14.3) or 14.4, which we will
now denote as Proposed-F and Proposed-Z respectively. We compared Proposed-F
and Proposed-Z with four feature ranking methods including BAHSIC, Relief-F and
SVM-RFE. Rankings were normalized to compare variables with different sized
Markov blankets as follows. If the variables in MB(Y ) were correctly identified
back-to-back, then those variables were given the same rank. However, a break in
the correct identification led to a higher rank. For example, if variables 2, 3 and 4
are in MB(Y ) while 1, 5, and 6 are not, then an output of 6,3,5,4,2,1 in ascending
order would be converted to the ranking 5,4,3,2,2,1. The algorithm which provides
a lower mean rank of MB(Y ) was then judged to perform better. In the example, the
mean rank is 2.666, since the ranks of MB(Y ) are 4,2,2.

Next, we used the following accuracy measure in order to compare Algorithm 1
with three conditional dependence-based feature subset selection methods including
IAMB, HITON-MB and MMMB:

A
(

X†
c, MB(Y )

)
=
∣∣∣X†

c ∩MB (Y )

∣∣∣∣∣∣X†
c ∪MB (Y )

∣∣∣ ∗ 100, (14.5)

where X†
c is the subset output from the conditional dependence algorithms or, for

Proposed-F and Z, X†
c is X† clipped to the size of MB(Y ). For example, if variables

2, 3 and 4 are in MB(Y ) while 1, 5, and 6 are not, then an output of 6,3,5,4,2,1

from Algorithm 1 would be converted 4,2,1. Also,
∣∣∣X†

c ∩MB(Y )

∣∣∣ is the cardinality

of the intersection of the subset X†
c and the known MB(Y ) and

∣∣∣X†
c ∪MB(Y )

∣∣∣ is

the cardinality of the union. Note that score A is equal to 100 when the algorithm
outputs the exact MB(Y ). On the other hand, decreasing the cardinality of X†

c by
failing to identify parts of the MB(Y ) or increasing the cardinality of X†

c by random
guessing both decrease A.
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14.5.2 Synthetic Datasets

Due to the debate presented by Lou and Obradovic [7], we first evaluated the
reliability of the dependence and conditional dependence measures in correctly
identifying MB(Y ) under multiple conditions by comparing BAHSIC to Proposed-
F and Proposed-Z (Fig. 14.1). We compared these two algorithms because BAHSIC,
Proposed-F and Proposed-Z have similar algorithmic structures but the former uses
HSIC to measure dependence while the latter two use a K-CDM. We constructed
synthetic Markov blankets containing six continuous variables (two parents, two
children, two spouses) by (1) generating the data points of two parents and two
spouses by drawing from a Gaussian distribution with a standard deviation of 1,
(2) summing the two parents and adding Gaussian noise with a standard deviation
of 1 to create the data points of Y , (3) similarly summing the spouses and Y and
adding noise to create the data points of the two children. Thus, variables in MB(Y )

were connected by linear weights of 1. We then equipped BAHSIC, Proposed-F and
Proposed-Z with linear kernels. In Fig. 14.1, the solid lines represent the average
ranking of MB(Y ) with the corresponding 95% confidence intervals shown as two
dashed lines of the same color.

For the first experiment, we introduced ten extraneous variables drawn from a
Gaussian distribution with a standard deviation of 1 to the original seven variables
(target plus six MB(Y ) variables) and varied the number of data points from 1 to
500. We found that BAHSIC performed better in the small sample size range (<75)
but was then overtaken by Proposed-F and Proposed-Z. In order to understand
this phenomenon, recall that the parents and children display an association to
the target in this case whereas the spouses do not. As a result, BAHSIC cannot
detect the two spouses and saturates at an average rank of 3, whereas Proposed-
F and Proposed-Z continue to improve. For the second experiment, we raised the
noise level throughout the entire dataset from 0 to 5 standard deviations while
keeping the sample size constant at 70 corresponding to 10 data points for the target
and each of the six variables in MB(Y ). Proposed-F and Proposed-Z performed
better up to about a noise standard deviation of 1, suggesting that it may be more
reliable to search for MB(Y ) using dependence measures instead of conditional
dependence measures in high noise situations. This is expected, since the spouses
need a common child to be predictive [4], and thus their signal may be easily erased
with noise.

Next, we re-connected the 17 variables with 1–100 edges, again with a sample
size of 70. We also varied the number of extraneous variables from 1 to 128 with the
same sample size. Finally, we changed the value of the linear weights from 0.1 to 2.
Proposed-F and Proposed-Z outperformed BAHSIC in these last three experimental
conditions across all values. Moreover, Proposed-F and Proposed-Z gave identical
to near identical results in all of the five experiments; the difference was greatest in
the extraneous variables experiment, but it was only by 2–3 ranks with 64 and 128
extraneous variables. These results suggest that both K-CDMs can perform better
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than dependence based methods in correctly identifying MB(Y ) when the noise
level is low enough and the sample size is large enough.

We compared Proposed-F and Proposed-Z to IAMB with Fisher’s Z-test for
the second set of synthetic experiments (Fig. 14.2). We wanted to compare the
accuracy of directly performing backward elimination on the dataset using a K-
CDM instead of first performing statistical testing with a forward selection step.
The HITON-MB and MMMB algorithms were not included, since they are data
efficient modifications of IAMB which do not help in better assessing the impact
of the forward selection step; however, these two algorithms are included in the
next section. We found that Proposed-F and Proposed-Z outperformed IAMB across
all five experiments, since the forward selection step may prevent IAMB from
considering all multivariate combinations when discovering MB(Y ). Note that
IAMB performs particularly poorly in the edges experiment as the Markov blanket
size grows because statistical testing becomes unreliable with a fixed sample size.
On the other hand, Proposed-F and Proposed-Z overcome this problem by not
relying on statistical testing.

14.5.3 Expert-Designed Models and Real-World Datasets

We used three publicly available expert-designed Bayesian network models includ-
ing Alarm (36 variables), Child (20), and Insurance (27) as well as two real-world
datasets including CYTO (11; [10]) and the U.S. Linked Infant Birth and Death
Dataset from 1991 (87; [8]). CYTO is a dataset of T-lymphocyte protein-protein
interactions, and Infant is a dataset of clinical outcomes and decisions regarding
infant births; in both of these, portions of MB(Y ) have been experimentally verified
and confirmed by experts. We appropriately incorporated RBF kernels with sigma
set to the median distance between data points in all kernel methods to detect
discrete non-linear patterns. The IAMB, HITON-MB, and MMMB algorithms were
implemented with the G2 test for discrete data. We iterated over all variables to
obtain the mean rank and accuracy scores over different sample sizes. Results are
shown in Figs. 14.3 and 14.4 for the expert-designed models and real-world datasets,
respectively.

The results show that both Proposed-F and Proposed-Z outperform other feature
ranking and subset selection methods in correctly identifying MB(Y ) with larger
sample sizes in the datasets of expert-designed models. Notice that the dependency
based method BAHSIC plateaus at a relatively small sample size, but the proposed
algorithm’s performance continues to improve with larger sample sizes. These
results held when using either the method from Fukumizu et al. [2] or Zhang et al.
[18] as the K-CDM. For the real-world datasets, Proposed-F and Z outperformed
all other conditional dependence-based algorithms. The results are less clear
when comparing against the ranking algorithms in CYTO, since no algorithm
consistently outperforms the others, but we observed that the proposed algorithm
significantly outperforms Relief-F on occasion. For Infant, the proposed algorithm
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Fig. 14.4 Results from real-world datasets. Proposed-F and Proposed-Z outperform all subset
selection methods across all of the sample sizes. However, both methods are consistently
outperformed by BAHSIC in Infant

was outperformed by BAHSIC, since the Markov blankets in this dataset only
contain parents and children; in this situation, kernel-based dependency methods
may perform better, as we observed in the synthetic experiments.

14.6 Conclusion

We introduced a feature ranking algorithm that is useful for discovering MB(Y ).
The algorithm uses a K-CDM to eliminate variables using backward elimination.
Overall, the method exhibits superior performance in synthetic data and in real
datasets on average when compared to several feature ranking and subset selection
methods.
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