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Abstract. Psi-calculi is a parametric framework for process calculi sim-
ilar to popular pi-calculus extensions such as the explicit fusion calcu-
lus, the applied pi-calculus and the spi calculus. Mechanised proofs of
standard algebraic and congruence properties of bisimilarity apply to all
calculi within the framework.

A limitation of psi-calculi is that communication channels must be
symmetric and transitive. In this paper, we give a new operational seman-
tics to psi-calculi that allows us to lift these restrictions and simplify
some of the proofs. The key technical innovation is to annotate transi-
tions with a provenance—a description of the scope and channel they
originate from.

We give mechanised proofs that our extension is conservative, and
that the standard algebraic and congruence properties of bisimilarity are
maintained. We show correspondence with a reduction semantics and
barbed bisimulation. We show how a pi-calculus with preorders that was
previously beyond the scope of psi-calculi can be captured, and how to
encode mixed choice under very strong quality criteria.

Keywords: Process algebra · Psi-calculi · Nominal logic ·
Interactive theorem proving · Bisimulation

1 Introduction

This paper is mainly concerned with channel connectivity, by which we mean the
relationship that describes which input channels are connected to which output
channels in a setting with message-passing concurrency. In the pi-calculus [18],
channel connectivity is syntactic identity: in the process

a(x).P | b y.Q

where one parallel component is waiting to receive on channel a and the other
is waiting to send on channel b, interaction is possible only if a = b.
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Variants of the pi-calculus may have more interesting channel connectivity.
The explicit fusion calculus pi-F [9] extends the pi-calculus with a primitive for
fusing names; once fused, they are treated as being for all purposes one and the
same. Channel connectivity is then given by the equivalence closure of the name
fusions. For example, if we extend the above example with the fusion (a = b)

a(x).P | b y.Q | (a = b)

then communication is possible. Other examples may be found in e.g. calculi for
wireless communication [19], where channel connectivity can be used to directly
model the network’s topology.

Psi-calculi [2] is a family of applied process calculi, where standard meta-
theoretical results, such as the algebraic laws and congruence properties of bisim-
ulation, have been established once and for all through mechanised proofs [3] for
all members of the family. Psi-calculi generalises e.g. the pi-calculus and the
explicit fusion calculus in several ways. In place of atomic names it allows chan-
nels and messages to be taken from an (almost) freely chosen term language.
In place of fusions, it admits the formulas of an (almost) freely chosen logic as
first-class processes. Channel connectivity is determined by judgements of said
logic, with one restriction: the connectivity thus induced must be symmetric and
transitive.

The main contribution of the present paper is a new way to define the seman-
tics of psi-calculi that lets us lift this restriction, without sacrificing any of the
algebraic laws and compositionality properties. It is worth noting that this was
previously believed to be impossible: Bengtson et al. [2, p. 14] even offer coun-
terexamples to the effect that without symmetry and transitivity, scope extension
is unsound. However, a close reading reveals that these counterexamples apply
only to their particular choice of labelled semantics, and do not rule out the
possibility that the counterexamples could be invalidated by a rephrasing of the
labelled semantics such as ours.

The price we pay for this increased generality is more complicated transition
labels: we decorate input and output labels with a provenance that keeps track
of which prefix a transition originates from. The idea is that if I am an input
label and you are an output label, we can communicate if my subject is your
provenance, and vice versa. This is offset by other simplifications of the semantics
and associated proofs that provenances enable.

Contributions. This paper makes the following specific technical contributions:

– We define a new semantics of psi-calculi that lifts the requirement that chan-
nel connectivity must be symmetric and transitive, using the novel technical
device of provenances (Sect. 2).

– We prove that strong bisimulation is a congruence and satisfies the usual alge-
braic laws such as scope extension. Interestingly, provenances can be ignored
for the purpose of bisimulation. These proofs are machine-checked1 in Nomi-
nal Isabelle [24] (Sect. 3.1).

1 Isabelle proofs are available at https://github.com/IlmariReissumies/newpsi.

https://github.com/IlmariReissumies/newpsi
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– We prove, again using Nominal Isabelle, that this paper’s developments con-
stitute a conservative extension of the original psi-calculi (Sect. 3.2).

– We further validate our semantics by defining a reduction semantics and
strong barbed congruence, and showing that they agree with their labelled
counterparts (Sect. 3.2).

– We capture a pi-calculus with preorders by Hirschkoff et al. [11], that was
previously beyond the scope of psi-calculi because of its non-transitive channel
connectivity. The bisimilarity we obtain turns out to coincide with that of
Hirschkoff et al. (Sect. 4.1).

– We exploit non-transitive connectivity to show that mixed choice is a derived
operator of psi-calculi in a very strong sense: its encoding is fully abstract
and satisfies strong operational correspondence (Sect. 4.2).

For lack of space we elide proofs; please see the associated technical report [1].

2 Definitions

This section introduces core definitions such as syntax and semantics. Many
definitions are shared with the original presentation of psi-calculi, so this section
also functions as a recapitulation of [2]. We will highlight the places where the
two differ.

We assume a countable set of names N ranged over by a, b, c, . . . , x, y, z. A
nominal set [8] is a set equipped with a permutation action ·; intuitively, if X ∈ X
and X is a nominal set, then (x y) · X, which denotes X with all occurrences
of the name x swapped for y and vice versa, is also an element of X. n(X) (the
support of X) is, intuitively, the set of names such that swapping them changes
X. We write a#X (“a is fresh in X) for a /∈ n(X). A nominal set X has finite
support if for every X ∈ X, n(X) is finite. A function symbol f is equivariant if
p · f(x) = f(p ·x); this generalises to n-ary function symbols in the obvious way.
Whenever we define inductive syntax with names, it is implicitly quotiented by
permutation of bound names, so e.g. (νx)a〈x〉 = (νy)a〈y〉 if x, y#a.

Psi-calculi is parameterised on an arbitrary term language and a logic of
environmental assertions:

Definition 1 (Parameters). A psi-calculus is a 7-tuple (T,A,C,�,⊗,1,
.→)

with three finitely supported nominal sets:

1. T, the terms, ranged over by M,N,K,L, T ;
2. A, the assertions, ranged over by Ψ ; and
3. C, the conditions, ranged over by ϕ.

We assume each of the above is equipped with a substitution function [ := ] that
substitutes (sequences of) terms for names. The remaining three parameters are
equivariant function symbols written in infix:

� : A × C ⇒ bool (entailment) ⊗ : A × A ⇒ A (composition)
1 : A (unit) .→ : T × T ⇒ C (channel connectivity)
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Intuitively, M
.→ K means the prefix M can send a message to the prefix K. The

substitution functions must satisfy certain natural criteria wrt. their treatment
of names; see [2] for the details.

Definition 2 (Static equivalence). Two assertions Ψ, Ψ ′ are statically equiv-
alent, written Ψ 	 Ψ ′, if ∀ϕ. Ψ � ϕ ⇔ Ψ ′ � ϕ.

Definition 3 (Valid parameters). A psi-calculus is valid if (A/ 	,⊗,1) form
an abelian monoid.

Note that since the abelian monoid is closed, static equivalence is preserved
by composition. Henceforth we will only consider valid psi-calculi. The original
presentation of psi-calculi had .↔ for channel equivalence in place of our .→,
and required that channel equivalence be symmetric (formally, Ψ � M

.↔ K iff
Ψ � K

.↔ M) and transitive.

Definition 4 (Process syntax). The processes (or agents) P, ranged over by
P,Q,R, are inductively defined by the grammar

P := 0 (nil) �Ψ� (assertion)
M N.P (output) M(λx̃)N.P (input)
case ϕ̃ : ˜P (case) P | Q (parallel composition)
(νx)P (restriction) !P (replication)

A process is assertion guarded ( guarded for short) if all assertions occur under-
neath an input or output prefix. We require that in !P , P is guarded; that in
case ϕ̃ : ˜P , all ˜P are guarded; and that in M(λx̃)N .P it holds that x̃ ⊆ n(N).
We will use PG, QG to range over guarded processes.

Restriction, replication and parallel composition are standard. M N.P is a
process ready to send the message N on channel M , and then continue as P .
Similarly, M(λx̃)N.P is a process ready to receive a message on channel M
that matches the pattern (λx̃)N . The process �Ψ� asserts a fact Ψ about the
environment. Intuitively, �Ψ� | P means that P executes in an environment
where all conditions entailed by Ψ hold. P may itself contain assertions that
add or retract conditions. Environments can evolve dynamically: as a process
reduces, assertions may become unguarded and thus added to the environment.
case ϕ̃ : ˜P is a process that may act as any Pi whose guard ϕi is entailed by
the environment. For discussion of why replication and case must be guarded we
refer to [2,15].

The assertion environment of a process is described by its frame:

Definition 5 (Frames). The frame of P , written F(P ) = (ν˜bP )ΨP where ˜bP

bind into ΨP , is defined as

F(�Ψ�) = (νε)Ψ F(P | Q) = F(P ) ⊗ F(Q) F((νx)P ) = (νx)F(P )

F(P ) = 1 otherwise



Psi-Calculi Revisited: Connectivity and Compositionality 7

where name-binding and composition of frames is defined as (νx)(ν˜bP )ΨP =
(νx,˜bP )ΨP , and, if ˜bP #˜bQ, ΨQ and ˜bQ#ΨP ,

(ν˜bP )ΨP ⊗ (ν˜bQ)ΨQ = (ν˜bP ,˜bQ)ΨP ⊗ ΨQ.

We extend entailment to frames as follows: F(P ) � ϕ holds if, for some ˜bP , ΨP

such that F(P ) = (ν˜bP )ΨP and ˜bP #ϕ, ΨP � ϕ. The freshness side-condition
˜bP #ϕ is important because it allows assertions to be used for representing local
state. By default, the assertion environment is effectively a form of global non-
monotonic state, which is not always appropriate for modelling distributed pro-
cesses. With ν-binding we recover locality by writing e.g. (νx)(�x = M� | P ) for
a process P with a local variable x.

The notion of provenance is the main novelty of our semantics. It is the key
technical device used to make our semantics compositional:

Definition 6 (Provenances). The provenances Π, ranged over by π, are
either ⊥ or of form (νx̃; ỹ)M , where M is a term, and x̃, ỹ bind into M .

We write M for (νε; ε)M . When x̃, ỹ#˜x′, ˜y′ and x̃#ỹ, we interpret the expres-
sion (νx̃; ỹ)(ν ˜x′; ˜y′)M as (νx̃ ˜x′; ỹ ˜y′)M . Furthermore, we identify (νx̃; ỹ)⊥ and
⊥. Let π ↓ denote the result of moving all binders from the outermost binding
sequence to the innermost; that is, (νx̃; ỹ)M ↓= (νε; x̃, ỹ)M . Similarly, π ↓ z̃
denotes the result of inserting z̃ at the end of the outermost binding sequence:
formally, (νx̃; ỹ)M ↓ z̃ = (νx̃, z̃; ỹ)M .

Intuitively, a provenance describes the origin of an input or output transition.
For example, if an output transition is annotated with (νx̃; ỹ)M , the sender is
an output prefix with subject M that occurs underneath the ν-binders x̃, ỹ.
For technical reasons, these binders are partitioned into two distinct sequences.
The intention is that x̃ are the frame binders, while ỹ contains binders that
occur underneath case and replication; these are not part of the frame, but may
nonetheless bind into M . We prefer to keep them separate because the x̃ binders
are used for deriving � judgements, but ỹ are not (cf. Definition 5).

Definition 7 (Labels). The labels L, ranged over by α, β, are:

M (νx̃)N (output) M N (input) τ (silent)

The bound names of α, written bn(alpha), is x̃ if α = M (νx̃)N and ε other-
wise. The subject of α, written subj(α), is M if α = M (νx̃)N or α = M N .
Analogously, the object of α, written obj(α), is N if α = M (νx̃)N or α = M N .

While the provenance describes the origin of a transition, a label describes
how it can interact. For example, a transition labelled with M N indicates readi-
ness to receive a message N from an output prefix with subject M .
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Table 1. Structured operational semantics. A symmetric version of Com is elided. In
the rule Com we assume that F(P ) = (ν˜bP )ΨP and F(Q) = (ν˜bQ)ΨQ where ˜bP is

fresh for Ψ and Q, x̃ is fresh for Ψ, ΨQ, P , and ˜bQ, ỹ are similarly fresh. In rule ParL

we assume that F(Q) = (ν˜bQ)ΨQ where ˜bQ is fresh for Ψ, P, π and α. ParR has the
same freshness conditions but with the roles of P, Q swapped. In Open the expression
ã ∪ {b} means the sequence ã with b inserted anywhere.

In
Ψ � K

.→ M

Ψ � M(λỹ)N . P
K N [ỹ:=˜L]−−−−−−−→

M
P [ỹ := ˜L]

Out
Ψ � M

.→ K

Ψ � M N . P
KN−−→
M

P

ParL
ΨQ ⊗ Ψ � P

α−→
π

P ′

Ψ � P | Q
α−−−→

π↓˜bQ

P ′ | Q
bn(α)#Q

ParR
ΨP ⊗ Ψ � Q

α−→
π

Q′

Ψ � P | Q
α−−−−→

(ν˜bP )π
P | Q′ bn(α)#P

Com

ΨQ ⊗ Ψ � P
M(νã)N−−−−−−→
(ν˜bP ;x̃)K

P ′ ΨP ⊗ Ψ � Q
K N−−−−−−→

(ν˜bQ;ỹ)M
Q′

Ψ � P | Q
τ−→
⊥

(νã)(P ′ | Q′)
ã#Q

Case
Ψ � Pi

α−→
π

P ′ Ψ � ϕi

Ψ � case ϕ̃ : ˜P
α−→
π↓

P ′ Scope
Ψ � P

α−→
π

P ′

Ψ � (νb)P α−−−→
(νb)π

(νb)P ′ b#α, Ψ

Open
Ψ � P

M(νã)N−−−−−→
π

P ′

Ψ � (νb)P
M(νã∪{b})N−−−−−−−−→

(νb)π
P ′

b#ã, Ψ, M
b ∈ n(N) Rep

Ψ � P | !P α−→
π

P ′

Ψ � !P α−→
π↓

P ′

Definition 8 (Operational semantics). The transition relation −→⊆ A ×
P×L×Π ×P is inductively defined by the rules in Table 1. We write Ψ � P

α−→
π

P ′ for (Ψ, P, α, π, P ′) ∈−→. In transitions, bn(α) binds into obj(α) and P ′.

The operational semantics differs from [2] mainly by the inclusion of prove-
nances: anything underneath the transition arrows is novel.

The Out rule states that in an environment where M is connected to K, the
prefix M N may send a message N from M to K. The In rule is dual to Out,
but also features pattern-matching. If the message is an instance of the pattern,
as witnessed by a substitution, that subtitution is applied to the continuation P .
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In the Com rule, we see how provenances are used to determine when two
processes can interact. Specifically, a communication between P and Q can be
derived if P can send a message to M using prefix K, and if Q can receive a
message from K using prefix M . Because names occuring in M and K may
be local to P and Q respectively, we must be careful not to conflate the local
names of one with the other; this is why the provenance records all binding
names that occur above M,K in the process syntax. Note that even though we
identify frames and provenances up-to alpha, the Com rule insists that we con-
sider alpha-variants such that the frame binders and the outermost provenance
binders coincide. This ensures that the K on Q’s label really is the same as the
K in the provenance.

It is instructive to compare our Com rule with the original:

Com-Old

ΨQ ⊗ Ψ � P
M (νã)N−−−−−−→ P ′

ΨP ⊗ Ψ � Q
K N−−−→ Q′ Ψ ⊗ ΨP ⊗ ΨQ � M

.↔ K

Ψ � P | Q
τ−→ (νã)(P ′ | Q′)

ã#Q

where F(P ) = (ν˜bP )ΨP and F(Q) = (ν˜bQ)ΨQ and ˜bP #Ψ,˜bQ, Q,M,P and
˜bQ#Ψ,˜bQ, Q,K, P . Here we have no way of knowing if M and K are able to syn-
chronise other than making a channel equivalence judgement. Hence any deriva-
tion involving Com-Old makes three channel equivalence judgements: once each
in In, Out and Com-Old. With Com we only make one—or more accurately,
we make the exact same judgement twice, in In resp. Out. Eliminating the
redundant judgements is crucial: the reason Com-Old needs associativity and
commutativity is to stitch these three judgements together, particularly when
one end of a communication is swapped for a bisimilar process that allows the
same interaction via different prefixes.

Note also that Com has fewer freshness side-conditions. A particularly unin-
tuitive aspect of Com-Old is that it requires ˜bP #M and ˜bQ#K, but not ˜bP #K

and ˜bQ#M : we would expect that all bound names can be chosen to be distinct
from all free names, but adding the missing freshness conditions makes scope
extension unsound [14, pp. 56–57]. With Com, it becomes clear why: because
˜bQ binds into M .

All the other rules can fire independently of what the provenance of the
premise is. They manipulate the provenance, but only for bookkeeping purposes:
in order for the Com rule to be sound, we maintain the invariant that if Ψ � P

α−→
π

P ′, the outer binders of π are precisely the binders of F(P ). Otherwise, the rules
are exactly the same as in the original psi-calculi.

The reader may notice a curious asymmetry between the treatment of prove-
nance binders in the ParL and ParR rules. This is to ensure that the order of
the provenance binders coincides with the order of the frame binders, and in the
frame F(P | Q), the binders of P occur syntactically outside the binders of Q
(cf. Definition 5).
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3 Meta-theory

In this section, we will derive the standard algebraic and congruence laws of
strong bisimulation, develop an alternative formulation of strong bisimulation
in terms of a reduction relation and barbed congruence, and show that our
extension of psi-calculi is conservative. While weak equivalences are beyond the
scope of the present paper, we believe it is possible (if tedious) to adapt the
results about weak bisimilarity from [15] to our setting.

3.1 Bisimulation

We write Ψ � P
α−→ P ′ as shorthand for ∃π. Ψ � P

α−→
π

P ′. Bisimulation is
then defined exactly as in the original psi-calculi:

Definition 9 (Strong bisimulation). A symmetric relation R ⊆ A × P × P
is a strong bisimulation iff for every (Ψ, P,Q) ∈ R
1. Ψ ⊗ F(P ) 	 Ψ ⊗ F(Q) (static equivalence)
2. ∀Ψ ′.(Ψ ⊗ Ψ ′, P,Q) ∈ R (extension of arbitrary assertion)
3. If Ψ � P

α−→ P ′ and bn(α)#Ψ,Q, then there exists Q′ such that Ψ � Q
α−→

Q′ and (Ψ, P ′, Q′) ∈ R (simulation)

We let bisimilarity .∼ be the largest bisimulation. We write P
.∼Ψ Q to mean

(Ψ, P,Q) ∈ .∼, and P
.∼ Q for P

.∼1 Q.

Clause 3 is the same as for pi-calculus bisimulation. Clause 1 requires that two
bisimilar processes expose statically equivalent assertion environments. Clause 2
states that if two processes are bisimilar in an environment, they must be bisim-
ilar in every extension of that environment. Without this clause, bisimulation is
not preserved by parallel composition.

This definition might raise some red flags for the experienced concurrency
theorist. We allow the matching transition from Q to have any provenance,
irrespectively of what P ’s provenance is. Hence the Com rule uses information
that is ignored for the purposes of bisimulation, which in most cases would result
in a bisimilarity that is not preserved by the parallel operator.

Before showing that bisimilarity is nonetheless compositional, we will argue
that bisimilarity would be too strong if Clause 4 required transitions with match-
ing provenances. Consider two distinct terms M,N that are connected to the
same channels; that is, for all Ψ,K we have Ψ � M

.→ K iff Ψ � N
.→ K. We

would expect M.0 and N .0 to be bisimilar because they offer the same interac-
tion possibilities. With our definition, they are. But if bisimulation cared about
provenance they would be distinguished, because transitions originating from
M.0 will have provenance M while those from N .0 will have N .

The key intuition is that what matters is not which provenance a transition
has, but which channels the provenance is connected to. The latter is preserved
by Clause 3, as this key technical lemma—formally proven in Isabelle, by a
routine induction—hints at:
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Lemma 1. (Find connected provenance)

1. If Ψ � P
M N−−−→

π
P ′ and C is finitely supported, then there exists ˜bP , ΨP , x̃,K

such that F(P ) = (ν˜bP )ΨP and π = (ν˜bP ; x̃)K and ˜bP #Ψ, P,M,N, P ′, C, x̃
and x̃#Ψ, P,N, P ′, C and Ψ ⊗ ΨP � M

.→ K.
2. A similar property for output transitions (elided).

In words, the provenance of a transition is always connected to its subject, and
the frame binders can always be chosen sufficiently fresh for any context. This
simplifies the proof that bisimilarity is preserved by parallel: in the original psi-
calculi, one of the more challenging aspects of this proof is finding sufficiently
fresh subjects to use in the Com-Old rule, and then using associativity and
symmetry to connect them (cf. [2, Lemma 5.11]). By Lemma 1 we already have
a sufficiently fresh subject: our communication partner’s provenance.

Theorem 1 (Congruence properties of strong bisimulation).

1. P
.∼Ψ Q ⇒ P | R

.∼Ψ Q | R
2. P

.∼Ψ Q ⇒ (νx)P .∼Ψ (νx)Q if x#Ψ
3. PG

.∼Ψ QG ⇒ !PG
.∼Ψ !QG

4. ∀i.Pi
.∼Ψ Qi ⇒ case ϕ̃ : ˜P

.∼Ψ case ϕ̃ : ˜Q if ˜P , ˜Q are guarded
5. P

.∼Ψ Q ⇒ M N.P
.∼Ψ M N.Q

Theorem 2 (Algebraic laws of strong bisimulation).

P
.∼Ψ P | 0 P | (Q | R) .∼Ψ (P | Q) | R P | Q

.∼Ψ Q | P (νa)0 .∼Ψ 0

P | (νa)Q .∼Ψ (νa)(P | Q) if a#P M N.(νa)P .∼Ψ (νa)M N.P if a#M,N

M(λx̃)N.(νa)P .∼Ψ (νa)M(λx̃)N.P if a#x̃,M,N !P .∼Ψ P | !P

case ϕ̃ : ˜(νa)P .∼Ψ (νa)case ϕ̃ : ˜P if a#ϕ̃ (νa)(νb)P .∼Ψ (νb)(νa)P

The proofs of Theorems 1 and 2 have been mechanised in Nominal Isabelle.
Note that bisimilarity is not preserved by input, for the same reasons as the
pi-calculus. As in the pi-calculus, we can define bisimulation congruence as the
substitution closure of bisimilarity, and thus obtain a true congruence which
satisfies all the algebraic laws above. We have verified this in Nominal Isabelle,
following [2].

The fact that bisimilarity is compositional yet ignores provenances suggests
that the semantics could be reformulated without provenance annotations on
labels. To achieve this, what is needed is a side-condition S for the Com rule
which, given an input and an output with subjects M,K, determines if the input
transition could have been derived from prefix K, and vice versa:

ΨQ ⊗ Ψ � P
M (νã)N−−−−−−→ P ′ ΨP ⊗ Ψ � Q

K N−−−→ Q′ S

Ψ � P | Q
τ−→ (νã)(P ′ | Q′)
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But we already have such an S: the semantics with provenances! So we can let

S = ΨQ ⊗ Ψ � P
M(νã)N−−−−−−→
(ν˜bP ;x̃)K

P ′ ∧ ΨP ⊗ Ψ � Q
K N−−−−−−→

(ν˜bQ;ỹ)M
Q′

Of course, this definition is not satisfactory: the provenances are still there,
just swept under the carpet. Worse, we significantly complicate the definitions
by effectively introducing a stratified semantics. Thus the interesting question is
not whether such an S exists (it does), but whether S can be formulated in a way
that is significantly simpler than the semantics with provenances. The author
believes the answer is negative: S is a property about the roots of the proof trees
used to derive the transitions from P and Q. The provenance records just enough
information about the proof trees to show that M and K are connected; with
no provenances, it is not clear how this information could be obtained without
essentially reconstructing the proof tree.

3.2 Validation

We have defined semantics and bisimulation, and showed that bisimilarity satis-
fies the expected laws. But how do we know that they are the right semantics, and
the right bisimilarity? This section provides two answers to this question. First,
we show that our developments constitute a conservative extension of the origi-
nal psi-calculi. Second, we define a reduction semantics and barbed bisimulation
that are in agreement with our (labelled) semantics and (labelled) bisimilarity.

Let −→o and .∼o denote semantics and bisimilarity as defined by Bengtson
et al. [2], i.e., without provenances and with the Com-Old rule discussed in
Sect. 2. The following result has been mechanised in Nominal Isabelle:

Theorem 3 (Conservativity). When .→ is symmetric and transitive we have
.∼o = .∼ and −→o = −→.

Our reduction semantics departs from standard designs [4,17] by relying on
reduction contexts [7] instead of structural rules, for two reasons. First, standard
formulations tend to include rules like these:

P −→ P ′

P | Q −→ P ′ | Q α.P + Q | α.R + S −→ P | R

A parallel rule like the above would be unsound because Q might contain asser-
tions that retract some conditions needed to derive P ’s reduction. The reduction
axiom assumes prefix-guarded choice. We want our semantics to apply to the full
calculus, without limiting the syntax to prefix-guarded case statements.

But first, a few auxiliary definitions. The reduction contexts are the contexts
in which communicating processes may occur:
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Table 2. Reduction semantics. Here ˜Ψ abbreviates the composition Ψ1 ⊗Ψ2 ⊗ . . . , and
˜�Ψ� abbreviates the parallel composition �Ψ1� | �Ψ2� | . . . —for empty sequences they
are taken to be 1 and 0 respectively.

Struct
P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′
Scope

P −→ Q

(νa)P −→ (νa)Q

Ctxt
˜Ψ � M

.→ N K = L[x̃ := ˜T ] ∀ϕ ∈ conds(C). ˜Ψ � ϕ

Ψ | C[M K.P, N(λx)L.Q] −→ Ψ | P | Q[x :=T ] | ppr(C)

Definition 10 (Reduction contexts). The reduction contexts, ranged over
by C, are generated by the grammar

C := PG (process) [ ] (hole)
C | C (parallel) case ϕ̃ : ˜PG [] ϕ′ : C [] ˜ϕ′′ : ˜QG (case)

Let H(C) denote the number of holes in C. C[˜PG] denotes the process that results
from filling each hole of C with the corresponding element of ˜PG, where holes
are numbered from left to right; if H(C) �= |˜PG|, C[˜PG] is undefined.

We let structural congruence ≡ be the smallest equivalence relation on pro-
cesses derivable using Theorems 1 and 2. The conditions conds(C) and parallel
processes ppr(C) of a context C are, respectively, the conditions in C that guard
the holes, and the processes of C that are parallel to the holes:

ppr(PG) = PG ppr([ ]) = 0 ppr(C1 | C2) = ppr(C1) | ppr(C2)

ppr(case ϕ̃ : ˜PG [] ϕ′ : C [] ˜ϕ′′ : ˜QG) = ppr(C) conds(PG) = ∅

conds([ ]) = ∅ conds(C1 | C2) = conds(C1) ∪ conds(C2)

conds(case ϕ̃ : ˜PG [] ϕ′ : C [] ˜ϕ′′ : ˜QG) = {ϕ′} ∪ conds(C)

Definition 11 (Reduction semantics). The reduction relation −→ ⊆ P×P
is defined inductively by the rules of Table 2.

In words, Ctxt states that if an input and output prefix occur in a reduc-
tion context, we may derive a reduction if the following holds: the prefixes are
connected in the current assertion environment, the message matches the input
pattern, and all conditions guarding the prefixes are entailed by the environ-
ment. The ppr(C) in the reduct makes sure any processes in parallel to the holes
are preserved.
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Theorem 4. P −→ P ′ iff there is P ′′ such that 1 � P
τ−→ P ′′ and P ′′ ≡ P ′

For barbed bisimulation, we need to define what the observables are, and
what contexts an observer may use. We follow previous work by Johansson et
al. [15] on weak barbed bisimilarity for the original psi-calculi on both counts.
First, we take the barbs to be the output labels a process can exhibit: we define
P ↓M(νã)N (P exposes M(νã)N) to mean ∃P ′. 1 � P

M(νã)N−−−−−→ P ′. We write

P ↓M for ∃ã, N.P ↓M(ν ˜A)N , and P ⇓α for P
τ−→

�

↓α. Second, we let observers
use static contexts, i.e. ones built from parallel and restriction.

Definition 12 (Barbed bisimilarity). Barbed bisimilarity, written .∼
barb

, is

the largest equivalence on processes such that P
.∼

barb
Q implies

1. If P ↓M(νã)N and ã#Q then Q ↓M(νã)N (barb similarity)

2. If P −→ P ′ then there exists Q′ such that Q −→ Q′ and P ′ .∼
barb

Q′

(reduction simulation)
3. (νã)(P | R) .∼

barb
(νã)(Q | R) (closure under static contexts)

Our proof that barbed and labelled bisimilarity coincides only considers psi-
calculi with a certain minimum of sanity and expressiveness. This rules out some
degenerate cases: psi-calculi where there are messages that can be sent but not
received, and psi-calculi where no transitions whatsoever are possible.

Definition 13. A psi-calculus is observational if:

1. For all P there are MP ,KP such that F(P ) � MP
.→ KP and not P ⇓Kp

.
2. If N = (x̃ ỹ) · M and ỹ#M and x̃, ỹ are distinct then M [x̃ := ỹ] = N .

The first clause means that no process can exhaust the set of barbs. Hence
observing contexts can signal success or failure without interference from the
process under observation. For example, in the pi-calculus MP ,KP can be any
name x such that x#P . The second clause states that for swapping of distinct
names, substitution and permutation have the same behaviour. Any standard
definition of simultaneous substitution should satisfy this requirement. These
assumptions are present, explicitly or implicitly, in the work of Johansson et
al. [15]. Ours are given a slightly weaker formulation.

We can now state the main result of this section:

Theorem 5. In all observational psi-calculi, P
.∼

barb
Q iff P

.∼1 Q.

4 Expressiveness

In this section, we study two examples of the expressiveness gained by dropping
symmetry and transitivity.
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4.1 Pi-Calculus with Preorders

Recall that pi-F [25] extends the pi-calculus with name equalities (x = y) as
first-class processes. Communication in pi-F gives rise to equalities rather than
substitutions, so e.g. xy.P | xz.Q reduces to y = z | P | Q: the input and output
objects are fused. Hirschkoff et al. [11] observed that fusion and subtyping are
fundamentally incompatible, and propose a generalisation of pi-F called the pi-
calculus with preorders or πP to resolve the issue.

We are interested in πP because its channel connectivity is not transitive.
The equalities of pi-F are replaced with arcs a/b (“a is above b”) which act
as one-way fusions: anything that can be done with b can be done with a, but
not the other way around. The effect of a communication is to create an arc
with the output subject above the input subject, so x(y).P | x(z).Q reduces to
(νxy)(z/y | P | Q). We write ≺ for the reflexive and transitive closure of the
“is above” relation. Two names x, y are considered joinable for the purposes of
synchronisation if some name z is above both of them: formally, we write x � y
for ∃z.x ≺ z ∧ y ≺ z.

Hirschkoff et al. conclude by saying that “[it] could also be interesting to study
the representation of πP into Psi-calculi. This may not be immediate because
the latter make use of on an equivalence relation on channels, while the former
uses a preorder” [11, p. 387]. Having lifted the constraint that channels form
an equivalence relation, we happily accept the challenge. We write ΨP for the
psi-calculus we use to embed πP . We follow the presentation of πP from [12,13],
where the behavioural theory is most developed.

Definition 14. The psi-calculus ΨP is defined with the following parameters:

T � N C � {x ≺ y : x, y ∈ N} ∪ {x � y : x, y ∈ N}

A � Pfin({x ≺ y : x, y ∈ N}) 1 � {} ⊗ � ∪
.→ � � � � the relation denoted � in [13].

The prefix operators of πP are different from those of psi-calculi: objects are
always bound, communication gives rise to an arc rather than a substitution, and
a conditional silent prefix [ϕ]τ.P is included.2 These are encodable as follows:

Definition 15 (Encoding of prefixes). The encoding � � from πP to ΨP is
homomorphic on all operators except prefixes and arcs, where it is defined by

�a/b� = �b ≺ a� �a(y).P � = (νxy)(ax.(�x ≺ y� | �P �) where x#y, P

�a(y).P � = (νy)(a(λx)x.(�y ≺ x� | �P �)) where x#y, P

�[ϕ]τ.P � = case ϕ : (νx)(x(λx)x.0 | xx.�P �) where x#P

2 We ignore protected prefixes because they are redundant, cf. Remark 1 of [12].
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This embedding of πP in psi-calculi comes with a notion of bisimilarity per
Definition 9. We show that it coincides with the labelled bisimilarity for πP
(written ∼) introduced in [12,13].

Theorem 6. P ∼ Q iff �P �
.∼ �Q�

Thus our encoding validates the behavioural theory of πP by connecting it
to our fully mechanised proofs, while also showing that a substantially different
design of the LTS yields the same bisimilarity. We will briefly compare these
designs. While we do rewriting of subjects in the prefix rules, Hirschkoff et al.
instead use relabelling rules like this one (mildly edited to match our notation):

P
a(x)−−−→ P ′ F(P ) � a ≺ b

P
b(x)−−→ P ′

An advantage of this rule is that it allows input and output labels to be as
simple as pi-calculus labels. A comparative disadvantage is that it is not syntax-
directed, and that the LTS has more rules in total. Note that this rule would
not be a viable alternative to provenances in psi-calculi: since it can be applied
more than once in a derivation, its inclusion assumes that the channels form a
preorder wrt. connectivity.

πP also has labels [ϕ]τ , meaning that a silent transition is allowed in envi-
ronments where ϕ is true. A rule for rewriting ϕ to a weaker condition, similar
to the above rule for subject rewriting, is included. Psi-calculi does not need this
because the Par rules take the assertion environment into account. πP transi-
tions of kind P

[ϕ]τ−−→ P ′ correspond to ΨP transitions of kind {ϕ} � P
τ−→ P ′.

Interestingly, the analogous full abstraction result fails to hold for the embed-
ding of pi-F in psi-calculi by Bengtson et al. [2], because outputs that emit dis-
tinct but fused names are distinguished by psi-calculus bisimilarity. This issue
does not arise here because πP objects are always bound; however, we believe the
encoding of Bengtson et al. can be made fully abstract by encoding free output
with bound output, exploiting the pi-F law a y.Q ∼ a(x)(Q | x = y).

4.2 Mixed Choice

This section will argue that because we allow non-transitive channel connectivity,
the case operator of psi-calculi becomes superfluous. The formal results here will
focus on encoding the special case of mixed choice. We will then briefly discuss
how to generalise these results to the full case operator.

Choice, written P + Q, is a process that behaves as either P or Q. In psi-
calculi we consider P + Q to abbreviate case � : P [] � : Q for some condition
� that is always entailed. Mixed choice means that in P + Q, P and Q must
be prefix-guarded; that is, the outermost operators of P,Q must be input or
output prefixes. In particular, mixed choice allows choice between an input and
an output. There is a straightforward generalisation to n-ary sums that, in order
to simplify the presentation, we will not consider here.
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Fix a psi-calculus P = (T,A,C,�,⊗,1,
.→) with mixed choice; this will be

our source language. We will construct a target psi-calculus and an encoding such
that the target terms make no use of the case operator. The target language
E(P) adds to T the ability to tag a term M with a name x; we write Mx for the
tagged term. We write αx for tagging the subject of the prefix α with x. Tags
are used to uniquely identify which choice statement a prefix is a summand of.
As the assertions of E(P) we use A × Pfin(N ), where Pfin(N ) are the disabled
tags.

The encoding � � from P to E(P) is homomorphic on all operators except
assertion and choice, where it is defined as follows:

��Ψ�� = �(Ψ, ∅)� �α.P +β.Q� = (νx)(αx.(�P � | �(1, {x})� | βx.(�Q� | �(1, {x})�

where x#α, β, P,Q. If we disregard the tag x, we see that the encoding sim-
ply offers up both summands in parallel. This clearly allows all behaviours of
α.P + β.Q, but there are two additional behaviours we must prevent: (1) com-
munication between the summands, and (2) lingering summands firing after the
other branch has already been taken. The tagging mechanism prevents both, as
a consequence of how we define channel equivalence on tagged terms in E(P):

(Ψ,N) � Mx
.→ Ny if Ψ � M

.→ N and x �= y and x, y /∈ N

That is, tagged channels are connected if the underlying channel is connected. To
prevent (1) we require the tags to be different, and to prevent (2) we require that
the tags are not disabled. Note that this channel connectivity is not transitive,
not reflexive, and not monotonic wrt. assertion composition—not even if the
source language connectivity is.

Theorem 7 (Correctness of choice encoding).

1. If Ψ � P
α−→ P ′ then there is P ′′ such that (Ψ, ∅) � �P �

α−→ P ′′ and
P ′′ .∼(Ψ,∅) �P ′�.

2. If (Ψ, ∅) � �P �
α−→ P ′ then there is P ′′ such that Ψ � P

α⊥−−→ P ′′ and
P ′ .∼(Ψ,∅) �P ′′�.

3. P
.∼1 Q iff �P �

.∼(1,∅) �Q�.

Here α⊥ denote the label α with all tags removed. It is immediate from Theo-
rem 7 and the definition of � � that our encoding also satisfies the other standard
quality criteria [10]: it is compositional, it is name invariant, and it preserves and
reflects barbs and divergence.

In the original psi-calculi, our target language is invalid because of non-
transitive connectivity. If we remove the requirement that tags are distinct, and
only allow separate choice (where either both summands are inputs or both
summands are outputs), the encoding is correct for the original psi-calculi.

These results generalise in a straightforward way to mixed Case state-
ments case ϕ1 : α.P [] ϕ2 : β.Q by additionally tagging terms with a condition,
i.e. Mx,ϕ1 , that must be entailed in order to derive connectivity judgements
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involving the term. The generalisation to free choice, i.e. P + Q where P,Q can
be anything, is more involved and sacrifices some compositionality. The idea is
to use sequences of tags, representing which branches of which (possibly nested)
case statements a prefix can be found in, and disallowing communication between
prefixes in distinct branches of the same Case operator.

5 Conclusion and Related Work

We have seen how psi-calculi can be conservatively extended to allow asymmetric
and non-transitive communication topologies, sacrificing none of the bisimulation
meta-theory. This confers enough expressiveness to capture a pi-calculus with
preorders, and makes mixed choice a derived operator.

The work of Hirschkoff et al. [11] is closely related in that it uses non-
transitive connectivity; see Sect. 4.1 for an extensive discussion.

Broadcast psi-calculi [5] extend psi-calculi with broadcast communication in
addition to point-to-point communication. There, point-to-point channels must
still be symmetric and transitive, but for broadcast channels this condition is
lifted, at the cost of introducing other side-conditions on how names are used:
broadcast prefixes must be connected via intermediate broadcast channels which
have no greater support than either of the prefixes it connects, precluding lan-
guage features such as name fusion. We believe provenances could be used to
define a version of broadcast psi-calculi that does not need this side-condition.

Kouzapas et al. [16] define a similar reduction context semantics for (broad-
cast) psi-calculi. Their reduction contexts requires three kinds of numbered
holes with complicated side-conditions on how the holes may be filled; we
have attempted to simplify the presentation by having only one kind of hole.
While (weak) barbed congruence for psi-calculi has been studied before [15]
(see Sect. 3.2), barbed congruence was defined in terms of the labelled seman-
tics rather than a reduction semantics, thus weakening its claim to independent
confirmation slightly.

There is a rich literature on choice encodings for the pi-calculus [10,20–23],
with many separation and encodability results under different quality criteria
for different flavours of choice. Encodings typically require complicated protocols
and tradeoffs between quality criteria. Thanks to the greater expressive power
of psi-calculi, our encoding is simpler and satisfies stronger quality criteria than
any choice encoding for the pi-calculus. Closest to ours is the choice encoding of
CCS into the DiX calculus by Busi and Gorrieri [6]. DiX introduces a primitive
for annotating processes with conflict sets, that are intended as a generalisation
of choice. Processes with overlapping conflict sets cannot interact, and when
a process acts, every process with an overlapping conflict set is killed. These
conflict sets perform the same role in the encoding as our tags do. We believe
the tagging scheme used in our choice encoding also captures DiX-style conflict
sets.



Psi-Calculi Revisited: Connectivity and Compositionality 19

Acknowledgements. These ideas have benefited from discussions with many people
at Uppsala University, ITU Copenhagen, the University of Oslo and Data61/CSIRO,
including Jesper Bengtson, Christian Johansen, Magnus Johansson and Joachim Par-
row. I would also like to thank Jean-Marie Madiot and the anonymous reviewers for
valuable comments on earlier versions of the paper.

References
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