
Jorge A. Pérez
Nobuko Yoshida (Eds.)

 123

LN
CS

 1
15

35

39th IFIP WG 6.1 International Conference, FORTE 2019
Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019
Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings

Formal Techniques
for Distributed Objects,
Components, and Systems

Lecture Notes in Computer Science 11535

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jorge A. Pérez • Nobuko Yoshida (Eds.)

Formal Techniques
for Distributed Objects,
Components, and Systems
39th IFIP WG 6.1 International Conference, FORTE 2019
Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019
Kongens Lyngby, Denmark, June 17–21, 2019
Proceedings

123

Editors
Jorge A. Pérez
University of Groningen
Groningen, The Netherlands

Nobuko Yoshida
Imperial College London
London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-21758-7 ISBN 978-3-030-21759-4 (eBook)
https://doi.org/10.1007/978-3-030-21759-4

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1452-6180
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.1007/978-3-030-21759-4

Foreword

The 14th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Kongens Lyngby, Denmark, during June 17–21, 2019. It was
organized by the Department of Applied Mathematics and Computer Science at the
Technical University of Denmark.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprised three conferences:

– COORDINATION, the IFIP WG 6.1 21st International Conference on Coordina-
tion Models and Languages

– DAIS, the IFIP WG 6.1 19th International Conference on Distributed Applications
and Interoperable Systems

– FORTE, the IFIP WG 6.1 39th International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing
subjects, ranging from theoretical foundations and formal description techniques to
systems research issues.

In addition to the individual sessions of each conference, the event included several
plenary sessions that gathered attendants from the three conferences. This year, the
general chair and the DisCoTec Steering Committee joined the three DisCoTec con-
ferences in the selection and nomination of the plenary keynote speakers, whose
number was accordingly increased from the traditional three to five. The five keynote
speakers and the title of their talks are listed below:

– Prof. David Basin (ETH Zürich, Switzerland) – “Security Protocols: Model
Checking Standards”

– Dr. Anne-Marie Kermarrec (Inria Rennes, France) – “Making Sense of Fast Big
Data”

– Prof. Marta Kwiatkowska (University of Oxford, UK) – “Versatile Quantitative
Modelling: Verification, Synthesis and Data Inference for Cyber-Physical Systems”

– Prof. Silvio Micali (MIT, USA)—“ALGORAND—The Distributed Ledger for the
Borderless Economy”

– Prof. Martin Wirsing (LMU, Germany) – “Toward Formally Designing Collective
Adaptive Systems”

As is traditional in DisCoTec, an additional joint session with the best papers from
each conference was organized. The best papers were:

– “Representing Dependencies in Event Structures” by G. Michele Pinna
(Coordination)

– “FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps” by
Lakhdar Meftah, Romain Rouvoy and Isabelle Chrisment (DAIS)

– “Psi-Calculi Revisited: Connectivity and Compositionality” by Johannes Åman
Pohjola (FORTE)

Associated with the federated event were also two satellite events that took place:

– ICE, the 12th International Workshop on Interaction and Concurrency Experience
– DisCoRail, the First International Workshop on Distributed Computing in Future

Railway Systems

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and their conferences for their guidance
and support. The organization of DisCoTec 2019 was only possible thanks to the
dedicated work of the Organizing Committee, including Francisco “Kiko” Fernández
Reyes and Francesco Tiezzi (publicity chairs), Maurice ter Beek, Valerio Schiavoni,
and Andrea Vandin (workshop chairs), Ann-Cathrin Dunker (logistics and finances), as
well as all the students and colleagues who volunteered their time to help. Finally, I
would like to thank IFIP WG 6.1 for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the
reviewing infrastructure, the Nordic IoT Hub for their sponsorship, and the Technical
University of Denmark for providing meeting rooms and additional support.

June 2019 Alberto Lluch Lafuente

vi Foreword

Preface

This volume contains the papers presented at FORTE 2019: the 39th IFIP WG 6.1
International Conference on Formal Techniques for Distributed Objects, Components,
and Systems. FORTE 2019 was held as one of three main conferences of the 14th
International Federated Conference on Distributed Computing Techniques (DisCoTec),
during June 17–21, 2019 in Lyngby, Denmark.

FORTE is a well-established forum for fundamental research on theory, models,
tools, and applications for distributed systems, with special interest in:

– Software quality, reliability, availability, and safety
– Security, privacy, and trust in distributed and/or communicating systems
– Service-oriented, ubiquitous, and cloud computing systems
– Component- and model-based design
– Object technology, modularity, software adaptation
– Self-stabilization and self-healing/organizing
– Verification, validation, formal analysis, and testing of the above

The Program Committee received a total of 42 quality submissions, written by
authors from 21 different countries. Of these, 18 papers were selected for inclusion in
the scientific program: 15 full papers, one short paper, and two “journal first” papers—a
new submission category we introduced this year. Each submission was reviewed by at
least three Program Committee members with the help of external reviewers in selected
cases. There was one submission with which both of us declared ourselves in conflict;
Uwe Nestmann kindly agreed to oversee and lead the discussion for this submission,
which was eventually accepted.

The selection of accepted submissions was based on electronic discussions via the
EasyChair conference management system. Toward the end of this electronic discus-
sion, there was a two-day physical meeting in which we discussed the referee reports
for each submission with the relevant Program Committee members. We found this
combination of electronic and physical discussion highly effective.

As program chairs, we actively contributed to the selection of the five keynote
speakers of DisCoTec 2019:

– Prof. David Basin (ETH Zürich, Switzerland)
– Dr. Anne-Marie Kermarrec (Inria Rennes, France)
– Prof. Marta Kwiatkowska (University of Oxford, UK)
– Prof. Silvio Micali (MIT, USA)
– Prof. Martin Wirsing (LMU, Germany)

We are most grateful to Prof. Basin for accepting our invitation as FORTE-related
keynote speaker. This volume includes the abstract of his keynote talk: “Security
Protocols: Model Checking Standards.”

As is traditional in DisCoTec, a joint session with the best papers from each main
conference was organized. The best paper of FORTE 2019 was “Psi-Calculi Revisited:
Connectivity and Compositionality” by Johannes Åman Pohjola (Data61/CSIRO,
University of New South Wales, Australia).

We wish to thank all the authors of submitted papers, all the members of the
Program Committee for their thorough evaluations of the submissions, and the 26
external reviewers who assisted the evaluation process. We are also indebted to the
Steering Committee of FORTE for their advice and suggestions. Last but not least, we
thank the DisCoTec general chair, Alberto Lluch Lafuente, and his organization team
for their hard, effective work on providing an excellent environment for FORTE 2019
and all other conferences and workshops.

April 2019 Jorge A. Pérez
Nobuko Yoshida

viii Preface

Organization

Program Committee

Samik Basu Iowa State University, USA
Annette Bieniusa University of Kaiserslautern, Germany
Stefano Calzavara Università Ca’ Foscari Venezia, Italy
Natalia Chechina Bournemouth University, UK
Mila Dalla Preda University of Verona, Italy
Rayna Dimitrova University of Leicester, UK
Patrick Eugster University of Lugano (USI), Switzerland
Ichiro Hasuo National Institute of Informatics, Japan
Thomas Hildebrandt University of Copenhagen, Denmark
Sophia Knight University of Minnesota, USA
Etienne Lozes I3S, University of Nice and CNRS, France
Emanuela Merelli University of Camerino, Italy
Roland Meyer TU Braunschweig, Germany
Uwe Nestmann TU Berlin, Germany
Gustavo Petri IRIF, Paris Diderot, Paris 7, France
Jorge A. Pérez University of Groningen, The Netherlands
Willard Rafnsson IT University of Copenhagen, Denmark
Anne Remke WWU Münster, Germany
Guido Salvaneschi TU Darmstadt, Germany
Cesar Sanchez IMDEA Software Institute, Spain
Ana Sokolova University of Salzburg, Austria
Alexander J. Summers ETH Zurich, Switzerland
Peter Thiemann Universität Freiburg, Germany
Jaco van de Pol Aarhus University, Denmark
Tim Willemse Eindhoven University of Technology, The Netherlands
Nobuko Yoshida Imperial College London, UK
Lukasz Ziarek SUNY Buffalo, USA

Additional Reviewers

Aldini, Alessandro
Alvim, Mario S.
Åman Pohjola, Johannes
Back, Christoffer Olling
Chini, Peter
Courtieu, Pierre
Dubut, Jérémy
Francalanza, Adrian
Inverso, Omar

Keiren, Jeroen
Madiot, Jean-Marie
Maestri, Stefano
Maubert, Bastien
Menikkumbura, Danushka
Neumann, Elisabeth
Otoni, Rodrigo
Pilch, Carina
Radanne, Gabriel

Sasse, Ralf
Savvides, Savvas
Schweizer, Sebastian
Sedwards, Sean
Tesei, Luca
Wolff, Sebastian
Yamada, Akihisa
Zeller, Peter

Security Protocols: Model Checking Standards
(Invited Talk)

David Basin

Department of Computer Science, ETH Zurich, Switzerland

The design of security protocols is typically approached as an art, rather than a science,
and often with disastrous consequences. But this need not be so! I have been working
for ca. 20 years on foundations, methods, and tools, both for developing protocols that
are correct by construction [9, 10] and for the post-hoc verification of existing designs
[1–4, 8]. In this talk I will introduce my work in this area and describe my experience
analyzing, improving, and contributing to different industry standards, both existing
and upcoming [5–7].

References

1. Basin, D.: Lazy infinite-state analysis of security protocols. In: Secure Networking — CQRE
[Secure] 1999. CQRE. LNCS, vol. 1740, pp. 30–42. Springer, Heidelberg (1999)

2. Basin, D., Cremers, C., Dreier, J., Sasse, R.: Symbolically analyzing security protocols using
tamarin. SIGLOG News 4(4), 19–30 (2017). https://doi.org/10.1145/3157831.3157835

3. Basin, D., Cremers, C., Meadows, C.: Model checking security protocols. In: Clarke, E.,
Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 727–762.
Springer, Cham (2018)

4. Basin, D., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for security
protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005). published online December 2004

5. Basin, D.A., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard for entity
authentication. J. Comput. Secur. 21(6), 817–846 (2013)

6. Basin, D.A., Cremers, C.J.F., Miyazaki, K., Radomirovic, S., Watanabe, D.: Improving the
security of cryptographic protocol standards. IEEE Secur. Priv. 13(3), 24–31 (2015). https://
doi.org/10.1109/MSP.2013.162, http://dx.doi.org/10.1109/MSP.2013.162

7. Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: Formal analysis of
5G authentication. CoRR abs/1806.10360 (2018). http://arxiv.org/abs/1806.10360

8. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-Hellman pro-
tocols and advanced security properties. In: Proceedings of the 25th IEEE Computer Security
Foundations Symposium (CSF), pp. 78–94 (2012)

9. Sprenger, C., Basin, D.: Refining key establishment. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium (CSF), pp. 230–246 (2012)

10. Sprenger, C., Basin, D.: Refining security protocols. J. Comput. Secur. 26(1), 71–120
(2018). https://doi.org/10.3233/JCS-16814, http://dx.doi.org/10.3233/JCS-16814

https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1109/MSP.2013.162
https://doi.org/10.1109/MSP.2013.162
http://dx.doi.org/10.1109/MSP.2013.162
http://arxiv.org/abs/1806.10360
https://doi.org/10.3233/JCS-16814
http://dx.doi.org/10.3233/JCS-16814

Contents

Full Papers

Psi-Calculi Revisited: Connectivity and Compositionality 3
Johannes Åman Pohjola

Squeezing Streams and Composition of Self-stabilizing Algorithms 21
Karine Altisen, Pierre Corbineau, and Stéphane Devismes

Parametric Updates in Parametric Timed Automata 39
Étienne André, Didier Lime, and Mathias Ramparison

Parametric Statistical Model Checking of UAV Flight Plan 57
Ran Bao, Christian Attiogbe, Benoît Delahaye, Paulin Fournier,
and Didier Lime

Only Connect, Securely . 75
Chandrika Bhardwaj and Sanjiva Prasad

Output-Sensitive Information Flow Analysis . 93
Cristian Ene, Laurent Mounier, and Marie-Laure Potet

Component-aware Input-Output Conformance. 111
Alexander Graf-Brill and Holger Hermanns

Declarative Choreographies and Liveness . 129
Thomas T. Hildebrandt, Tijs Slaats, Hugo A. López, Søren Debois,
and Marco Carbone

Model Checking HPnGs in Multiple Dimensions: Representing State Sets
as Convex Polytopes . 148

Jannik Hüls and Anne Remke

Causal-Consistent Replay Debugging for Message Passing Programs. 167
Ivan Lanese, Adrián Palacios, and Germán Vidal

Correct and Efficient Antichain Algorithms for Refinement Checking 185
Maurice Laveaux, Jan Friso Groote, and Tim A. C. Willemse

Towards Verified Blockchain Architectures: A Case Study on Interactive
Architecture Verification . 204

Diego Marmsoler

Unfolding-Based Dynamic Partial Order Reduction of Asynchronous
Distributed Programs . 224

The Anh Pham, Thierry Jéron, and Martin Quinson

Encapsulation and Sharing in Dynamic Software Architectures:
The Hypercell Framework . 242

Jean-Bernard Stefani and Martin Vassor

Decentralized Real-Time Safety Verification for Distributed
Cyber-Physical Systems . 261

Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang,
and Taylor T. Johnson

Short and “Journal First” Papers

On Certifying Distributed Algorithms: Problem of Local Correctness. 281
Kim Völlinger

On a Higher-Order Calculus of Computational Fields 289
Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini,
and Jacob Beal

Semantically Sound Analysis of Content Security Policies 293
Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi

Author Index . 299

xiv Contents

Full Papers

Psi-Calculi Revisited: Connectivity
and Compositionality

Johannes Åman Pohjola1,2(B)

1 Data61/CSIRO, Sydney, Australia
johannes.amanpohjola@data61.csiro.au

2 University of New South Wales, Sydney, Australia

Abstract. Psi-calculi is a parametric framework for process calculi sim-
ilar to popular pi-calculus extensions such as the explicit fusion calcu-
lus, the applied pi-calculus and the spi calculus. Mechanised proofs of
standard algebraic and congruence properties of bisimilarity apply to all
calculi within the framework.

A limitation of psi-calculi is that communication channels must be
symmetric and transitive. In this paper, we give a new operational seman-
tics to psi-calculi that allows us to lift these restrictions and simplify
some of the proofs. The key technical innovation is to annotate transi-
tions with a provenance—a description of the scope and channel they
originate from.

We give mechanised proofs that our extension is conservative, and
that the standard algebraic and congruence properties of bisimilarity are
maintained. We show correspondence with a reduction semantics and
barbed bisimulation. We show how a pi-calculus with preorders that was
previously beyond the scope of psi-calculi can be captured, and how to
encode mixed choice under very strong quality criteria.

Keywords: Process algebra · Psi-calculi · Nominal logic ·
Interactive theorem proving · Bisimulation

1 Introduction

This paper is mainly concerned with channel connectivity, by which we mean the
relationship that describes which input channels are connected to which output
channels in a setting with message-passing concurrency. In the pi-calculus [18],
channel connectivity is syntactic identity: in the process

a(x).P | b y.Q

where one parallel component is waiting to receive on channel a and the other
is waiting to send on channel b, interaction is possible only if a = b.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-21759-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_1&domain=pdf
http://orcid.org/0000-0002-6406-7875
https://doi.org/10.1007/978-3-030-21759-4_1

4 J. Åman Pohjola

Variants of the pi-calculus may have more interesting channel connectivity.
The explicit fusion calculus pi-F [9] extends the pi-calculus with a primitive for
fusing names; once fused, they are treated as being for all purposes one and the
same. Channel connectivity is then given by the equivalence closure of the name
fusions. For example, if we extend the above example with the fusion (a = b)

a(x).P | b y.Q | (a = b)

then communication is possible. Other examples may be found in e.g. calculi for
wireless communication [19], where channel connectivity can be used to directly
model the network’s topology.

Psi-calculi [2] is a family of applied process calculi, where standard meta-
theoretical results, such as the algebraic laws and congruence properties of bisim-
ulation, have been established once and for all through mechanised proofs [3] for
all members of the family. Psi-calculi generalises e.g. the pi-calculus and the
explicit fusion calculus in several ways. In place of atomic names it allows chan-
nels and messages to be taken from an (almost) freely chosen term language.
In place of fusions, it admits the formulas of an (almost) freely chosen logic as
first-class processes. Channel connectivity is determined by judgements of said
logic, with one restriction: the connectivity thus induced must be symmetric and
transitive.

The main contribution of the present paper is a new way to define the seman-
tics of psi-calculi that lets us lift this restriction, without sacrificing any of the
algebraic laws and compositionality properties. It is worth noting that this was
previously believed to be impossible: Bengtson et al. [2, p. 14] even offer coun-
terexamples to the effect that without symmetry and transitivity, scope extension
is unsound. However, a close reading reveals that these counterexamples apply
only to their particular choice of labelled semantics, and do not rule out the
possibility that the counterexamples could be invalidated by a rephrasing of the
labelled semantics such as ours.

The price we pay for this increased generality is more complicated transition
labels: we decorate input and output labels with a provenance that keeps track
of which prefix a transition originates from. The idea is that if I am an input
label and you are an output label, we can communicate if my subject is your
provenance, and vice versa. This is offset by other simplifications of the semantics
and associated proofs that provenances enable.

Contributions. This paper makes the following specific technical contributions:

– We define a new semantics of psi-calculi that lifts the requirement that chan-
nel connectivity must be symmetric and transitive, using the novel technical
device of provenances (Sect. 2).

– We prove that strong bisimulation is a congruence and satisfies the usual alge-
braic laws such as scope extension. Interestingly, provenances can be ignored
for the purpose of bisimulation. These proofs are machine-checked1 in Nomi-
nal Isabelle [24] (Sect. 3.1).

1 Isabelle proofs are available at https://github.com/IlmariReissumies/newpsi.

https://github.com/IlmariReissumies/newpsi

Psi-Calculi Revisited: Connectivity and Compositionality 5

– We prove, again using Nominal Isabelle, that this paper’s developments con-
stitute a conservative extension of the original psi-calculi (Sect. 3.2).

– We further validate our semantics by defining a reduction semantics and
strong barbed congruence, and showing that they agree with their labelled
counterparts (Sect. 3.2).

– We capture a pi-calculus with preorders by Hirschkoff et al. [11], that was
previously beyond the scope of psi-calculi because of its non-transitive channel
connectivity. The bisimilarity we obtain turns out to coincide with that of
Hirschkoff et al. (Sect. 4.1).

– We exploit non-transitive connectivity to show that mixed choice is a derived
operator of psi-calculi in a very strong sense: its encoding is fully abstract
and satisfies strong operational correspondence (Sect. 4.2).

For lack of space we elide proofs; please see the associated technical report [1].

2 Definitions

This section introduces core definitions such as syntax and semantics. Many
definitions are shared with the original presentation of psi-calculi, so this section
also functions as a recapitulation of [2]. We will highlight the places where the
two differ.

We assume a countable set of names N ranged over by a, b, c, . . . , x, y, z. A
nominal set [8] is a set equipped with a permutation action ·; intuitively, if X ∈ X
and X is a nominal set, then (x y) · X, which denotes X with all occurrences
of the name x swapped for y and vice versa, is also an element of X. n(X) (the
support of X) is, intuitively, the set of names such that swapping them changes
X. We write a#X (“a is fresh in X) for a /∈ n(X). A nominal set X has finite
support if for every X ∈ X, n(X) is finite. A function symbol f is equivariant if
p · f(x) = f(p ·x); this generalises to n-ary function symbols in the obvious way.
Whenever we define inductive syntax with names, it is implicitly quotiented by
permutation of bound names, so e.g. (νx)a〈x〉 = (νy)a〈y〉 if x, y#a.

Psi-calculi is parameterised on an arbitrary term language and a logic of
environmental assertions:

Definition 1 (Parameters). A psi-calculus is a 7-tuple (T,A,C,�,⊗,1,
.→)

with three finitely supported nominal sets:

1. T, the terms, ranged over by M,N,K,L, T ;
2. A, the assertions, ranged over by Ψ ; and
3. C, the conditions, ranged over by ϕ.

We assume each of the above is equipped with a substitution function [:=] that
substitutes (sequences of) terms for names. The remaining three parameters are
equivariant function symbols written in infix:

� : A × C ⇒ bool (entailment) ⊗ : A × A ⇒ A (composition)
1 : A (unit) .→ : T × T ⇒ C (channel connectivity)

6 J. Åman Pohjola

Intuitively, M
.→ K means the prefix M can send a message to the prefix K. The

substitution functions must satisfy certain natural criteria wrt. their treatment
of names; see [2] for the details.

Definition 2 (Static equivalence). Two assertions Ψ, Ψ ′ are statically equiv-
alent, written Ψ 	 Ψ ′, if ∀ϕ. Ψ � ϕ ⇔ Ψ ′ � ϕ.

Definition 3 (Valid parameters). A psi-calculus is valid if (A/ 	,⊗,1) form
an abelian monoid.

Note that since the abelian monoid is closed, static equivalence is preserved
by composition. Henceforth we will only consider valid psi-calculi. The original
presentation of psi-calculi had .↔ for channel equivalence in place of our .→,
and required that channel equivalence be symmetric (formally, Ψ � M

.↔ K iff
Ψ � K

.↔ M) and transitive.

Definition 4 (Process syntax). The processes (or agents) P, ranged over by
P,Q,R, are inductively defined by the grammar

P := 0 (nil) �Ψ� (assertion)
M N.P (output) M(λx̃)N.P (input)
case ϕ̃ : ˜P (case) P | Q (parallel composition)
(νx)P (restriction) !P (replication)

A process is assertion guarded (guarded for short) if all assertions occur under-
neath an input or output prefix. We require that in !P , P is guarded; that in
case ϕ̃ : ˜P , all ˜P are guarded; and that in M(λx̃)N .P it holds that x̃ ⊆ n(N).
We will use PG, QG to range over guarded processes.

Restriction, replication and parallel composition are standard. M N.P is a
process ready to send the message N on channel M , and then continue as P .
Similarly, M(λx̃)N.P is a process ready to receive a message on channel M
that matches the pattern (λx̃)N . The process �Ψ� asserts a fact Ψ about the
environment. Intuitively, �Ψ� | P means that P executes in an environment
where all conditions entailed by Ψ hold. P may itself contain assertions that
add or retract conditions. Environments can evolve dynamically: as a process
reduces, assertions may become unguarded and thus added to the environment.
case ϕ̃ : ˜P is a process that may act as any Pi whose guard ϕi is entailed by
the environment. For discussion of why replication and case must be guarded we
refer to [2,15].

The assertion environment of a process is described by its frame:

Definition 5 (Frames). The frame of P , written F(P) = (ν˜bP)ΨP where ˜bP

bind into ΨP , is defined as

F(�Ψ�) = (νε)Ψ F(P | Q) = F(P) ⊗ F(Q) F((νx)P) = (νx)F(P)

F(P) = 1 otherwise

Psi-Calculi Revisited: Connectivity and Compositionality 7

where name-binding and composition of frames is defined as (νx)(ν˜bP)ΨP =
(νx,˜bP)ΨP , and, if ˜bP #˜bQ, ΨQ and ˜bQ#ΨP ,

(ν˜bP)ΨP ⊗ (ν˜bQ)ΨQ = (ν˜bP ,˜bQ)ΨP ⊗ ΨQ.

We extend entailment to frames as follows: F(P) � ϕ holds if, for some ˜bP , ΨP

such that F(P) = (ν˜bP)ΨP and ˜bP #ϕ, ΨP � ϕ. The freshness side-condition
˜bP #ϕ is important because it allows assertions to be used for representing local
state. By default, the assertion environment is effectively a form of global non-
monotonic state, which is not always appropriate for modelling distributed pro-
cesses. With ν-binding we recover locality by writing e.g. (νx)(�x = M� | P) for
a process P with a local variable x.

The notion of provenance is the main novelty of our semantics. It is the key
technical device used to make our semantics compositional:

Definition 6 (Provenances). The provenances Π, ranged over by π, are
either ⊥ or of form (νx̃; ỹ)M , where M is a term, and x̃, ỹ bind into M .

We write M for (νε; ε)M . When x̃, ỹ#˜x′, ˜y′ and x̃#ỹ, we interpret the expres-
sion (νx̃; ỹ)(ν ˜x′; ˜y′)M as (νx̃ ˜x′; ỹ ˜y′)M . Furthermore, we identify (νx̃; ỹ)⊥ and
⊥. Let π ↓ denote the result of moving all binders from the outermost binding
sequence to the innermost; that is, (νx̃; ỹ)M ↓= (νε; x̃, ỹ)M . Similarly, π ↓ z̃
denotes the result of inserting z̃ at the end of the outermost binding sequence:
formally, (νx̃; ỹ)M ↓ z̃ = (νx̃, z̃; ỹ)M .

Intuitively, a provenance describes the origin of an input or output transition.
For example, if an output transition is annotated with (νx̃; ỹ)M , the sender is
an output prefix with subject M that occurs underneath the ν-binders x̃, ỹ.
For technical reasons, these binders are partitioned into two distinct sequences.
The intention is that x̃ are the frame binders, while ỹ contains binders that
occur underneath case and replication; these are not part of the frame, but may
nonetheless bind into M . We prefer to keep them separate because the x̃ binders
are used for deriving � judgements, but ỹ are not (cf. Definition 5).

Definition 7 (Labels). The labels L, ranged over by α, β, are:

M (νx̃)N (output) M N (input) τ (silent)

The bound names of α, written bn(alpha), is x̃ if α = M (νx̃)N and ε other-
wise. The subject of α, written subj(α), is M if α = M (νx̃)N or α = M N .
Analogously, the object of α, written obj(α), is N if α = M (νx̃)N or α = M N .

While the provenance describes the origin of a transition, a label describes
how it can interact. For example, a transition labelled with M N indicates readi-
ness to receive a message N from an output prefix with subject M .

8 J. Åman Pohjola

Table 1. Structured operational semantics. A symmetric version of Com is elided. In
the rule Com we assume that F(P) = (ν˜bP)ΨP and F(Q) = (ν˜bQ)ΨQ where ˜bP is

fresh for Ψ and Q, x̃ is fresh for Ψ, ΨQ, P , and ˜bQ, ỹ are similarly fresh. In rule ParL

we assume that F(Q) = (ν˜bQ)ΨQ where ˜bQ is fresh for Ψ, P, π and α. ParR has the
same freshness conditions but with the roles of P, Q swapped. In Open the expression
ã ∪ {b} means the sequence ã with b inserted anywhere.

In
Ψ � K

.→ M

Ψ � M(λỹ)N . P
K N [ỹ:=˜L]−−−−−−−→

M
P [ỹ := ˜L]

Out
Ψ � M

.→ K

Ψ � M N . P
KN−−→
M

P

ParL
ΨQ ⊗ Ψ � P

α−→
π

P ′

Ψ � P | Q
α−−−→

π↓˜bQ

P ′ | Q
bn(α)#Q

ParR
ΨP ⊗ Ψ � Q

α−→
π

Q′

Ψ � P | Q
α−−−−→

(ν˜bP)π
P | Q′ bn(α)#P

Com

ΨQ ⊗ Ψ � P
M(νã)N−−−−−−→
(ν˜bP ;x̃)K

P ′ ΨP ⊗ Ψ � Q
K N−−−−−−→

(ν˜bQ;ỹ)M
Q′

Ψ � P | Q
τ−→
⊥

(νã)(P ′ | Q′)
ã#Q

Case
Ψ � Pi

α−→
π

P ′ Ψ � ϕi

Ψ � case ϕ̃ : ˜P
α−→
π↓

P ′ Scope
Ψ � P

α−→
π

P ′

Ψ � (νb)P α−−−→
(νb)π

(νb)P ′ b#α, Ψ

Open
Ψ � P

M(νã)N−−−−−→
π

P ′

Ψ � (νb)P
M(νã∪{b})N−−−−−−−−→

(νb)π
P ′

b#ã, Ψ, M
b ∈ n(N) Rep

Ψ � P | !P α−→
π

P ′

Ψ � !P α−→
π↓

P ′

Definition 8 (Operational semantics). The transition relation −→⊆ A ×
P×L×Π ×P is inductively defined by the rules in Table 1. We write Ψ � P

α−→
π

P ′ for (Ψ, P, α, π, P ′) ∈−→. In transitions, bn(α) binds into obj(α) and P ′.

The operational semantics differs from [2] mainly by the inclusion of prove-
nances: anything underneath the transition arrows is novel.

The Out rule states that in an environment where M is connected to K, the
prefix M N may send a message N from M to K. The In rule is dual to Out,
but also features pattern-matching. If the message is an instance of the pattern,
as witnessed by a substitution, that subtitution is applied to the continuation P .

Psi-Calculi Revisited: Connectivity and Compositionality 9

In the Com rule, we see how provenances are used to determine when two
processes can interact. Specifically, a communication between P and Q can be
derived if P can send a message to M using prefix K, and if Q can receive a
message from K using prefix M . Because names occuring in M and K may
be local to P and Q respectively, we must be careful not to conflate the local
names of one with the other; this is why the provenance records all binding
names that occur above M,K in the process syntax. Note that even though we
identify frames and provenances up-to alpha, the Com rule insists that we con-
sider alpha-variants such that the frame binders and the outermost provenance
binders coincide. This ensures that the K on Q’s label really is the same as the
K in the provenance.

It is instructive to compare our Com rule with the original:

Com-Old

ΨQ ⊗ Ψ � P
M (νã)N−−−−−−→ P ′

ΨP ⊗ Ψ � Q
K N−−−→ Q′ Ψ ⊗ ΨP ⊗ ΨQ � M

.↔ K

Ψ � P | Q
τ−→ (νã)(P ′ | Q′)

ã#Q

where F(P) = (ν˜bP)ΨP and F(Q) = (ν˜bQ)ΨQ and ˜bP #Ψ,˜bQ, Q,M,P and
˜bQ#Ψ,˜bQ, Q,K, P . Here we have no way of knowing if M and K are able to syn-
chronise other than making a channel equivalence judgement. Hence any deriva-
tion involving Com-Old makes three channel equivalence judgements: once each
in In, Out and Com-Old. With Com we only make one—or more accurately,
we make the exact same judgement twice, in In resp. Out. Eliminating the
redundant judgements is crucial: the reason Com-Old needs associativity and
commutativity is to stitch these three judgements together, particularly when
one end of a communication is swapped for a bisimilar process that allows the
same interaction via different prefixes.

Note also that Com has fewer freshness side-conditions. A particularly unin-
tuitive aspect of Com-Old is that it requires ˜bP #M and ˜bQ#K, but not ˜bP #K

and ˜bQ#M : we would expect that all bound names can be chosen to be distinct
from all free names, but adding the missing freshness conditions makes scope
extension unsound [14, pp. 56–57]. With Com, it becomes clear why: because
˜bQ binds into M .

All the other rules can fire independently of what the provenance of the
premise is. They manipulate the provenance, but only for bookkeeping purposes:
in order for the Com rule to be sound, we maintain the invariant that if Ψ � P

α−→
π

P ′, the outer binders of π are precisely the binders of F(P). Otherwise, the rules
are exactly the same as in the original psi-calculi.

The reader may notice a curious asymmetry between the treatment of prove-
nance binders in the ParL and ParR rules. This is to ensure that the order of
the provenance binders coincides with the order of the frame binders, and in the
frame F(P | Q), the binders of P occur syntactically outside the binders of Q
(cf. Definition 5).

10 J. Åman Pohjola

3 Meta-theory

In this section, we will derive the standard algebraic and congruence laws of
strong bisimulation, develop an alternative formulation of strong bisimulation
in terms of a reduction relation and barbed congruence, and show that our
extension of psi-calculi is conservative. While weak equivalences are beyond the
scope of the present paper, we believe it is possible (if tedious) to adapt the
results about weak bisimilarity from [15] to our setting.

3.1 Bisimulation

We write Ψ � P
α−→ P ′ as shorthand for ∃π. Ψ � P

α−→
π

P ′. Bisimulation is
then defined exactly as in the original psi-calculi:

Definition 9 (Strong bisimulation). A symmetric relation R ⊆ A × P × P
is a strong bisimulation iff for every (Ψ, P,Q) ∈ R
1. Ψ ⊗ F(P) 	 Ψ ⊗ F(Q) (static equivalence)
2. ∀Ψ ′.(Ψ ⊗ Ψ ′, P,Q) ∈ R (extension of arbitrary assertion)
3. If Ψ � P

α−→ P ′ and bn(α)#Ψ,Q, then there exists Q′ such that Ψ � Q
α−→

Q′ and (Ψ, P ′, Q′) ∈ R (simulation)

We let bisimilarity .∼ be the largest bisimulation. We write P
.∼Ψ Q to mean

(Ψ, P,Q) ∈ .∼, and P
.∼ Q for P

.∼1 Q.

Clause 3 is the same as for pi-calculus bisimulation. Clause 1 requires that two
bisimilar processes expose statically equivalent assertion environments. Clause 2
states that if two processes are bisimilar in an environment, they must be bisim-
ilar in every extension of that environment. Without this clause, bisimulation is
not preserved by parallel composition.

This definition might raise some red flags for the experienced concurrency
theorist. We allow the matching transition from Q to have any provenance,
irrespectively of what P ’s provenance is. Hence the Com rule uses information
that is ignored for the purposes of bisimulation, which in most cases would result
in a bisimilarity that is not preserved by the parallel operator.

Before showing that bisimilarity is nonetheless compositional, we will argue
that bisimilarity would be too strong if Clause 4 required transitions with match-
ing provenances. Consider two distinct terms M,N that are connected to the
same channels; that is, for all Ψ,K we have Ψ � M

.→ K iff Ψ � N
.→ K. We

would expect M.0 and N .0 to be bisimilar because they offer the same interac-
tion possibilities. With our definition, they are. But if bisimulation cared about
provenance they would be distinguished, because transitions originating from
M.0 will have provenance M while those from N .0 will have N .

The key intuition is that what matters is not which provenance a transition
has, but which channels the provenance is connected to. The latter is preserved
by Clause 3, as this key technical lemma—formally proven in Isabelle, by a
routine induction—hints at:

Psi-Calculi Revisited: Connectivity and Compositionality 11

Lemma 1. (Find connected provenance)

1. If Ψ � P
M N−−−→

π
P ′ and C is finitely supported, then there exists ˜bP , ΨP , x̃,K

such that F(P) = (ν˜bP)ΨP and π = (ν˜bP ; x̃)K and ˜bP #Ψ, P,M,N, P ′, C, x̃
and x̃#Ψ, P,N, P ′, C and Ψ ⊗ ΨP � M

.→ K.
2. A similar property for output transitions (elided).

In words, the provenance of a transition is always connected to its subject, and
the frame binders can always be chosen sufficiently fresh for any context. This
simplifies the proof that bisimilarity is preserved by parallel: in the original psi-
calculi, one of the more challenging aspects of this proof is finding sufficiently
fresh subjects to use in the Com-Old rule, and then using associativity and
symmetry to connect them (cf. [2, Lemma 5.11]). By Lemma 1 we already have
a sufficiently fresh subject: our communication partner’s provenance.

Theorem 1 (Congruence properties of strong bisimulation).

1. P
.∼Ψ Q ⇒ P | R

.∼Ψ Q | R
2. P

.∼Ψ Q ⇒ (νx)P .∼Ψ (νx)Q if x#Ψ
3. PG

.∼Ψ QG ⇒ !PG
.∼Ψ !QG

4. ∀i.Pi
.∼Ψ Qi ⇒ case ϕ̃ : ˜P

.∼Ψ case ϕ̃ : ˜Q if ˜P , ˜Q are guarded
5. P

.∼Ψ Q ⇒ M N.P
.∼Ψ M N.Q

Theorem 2 (Algebraic laws of strong bisimulation).

P
.∼Ψ P | 0 P | (Q | R) .∼Ψ (P | Q) | R P | Q

.∼Ψ Q | P (νa)0 .∼Ψ 0

P | (νa)Q .∼Ψ (νa)(P | Q) if a#P M N.(νa)P .∼Ψ (νa)M N.P if a#M,N

M(λx̃)N.(νa)P .∼Ψ (νa)M(λx̃)N.P if a#x̃,M,N !P .∼Ψ P | !P

case ϕ̃ : ˜(νa)P .∼Ψ (νa)case ϕ̃ : ˜P if a#ϕ̃ (νa)(νb)P .∼Ψ (νb)(νa)P

The proofs of Theorems 1 and 2 have been mechanised in Nominal Isabelle.
Note that bisimilarity is not preserved by input, for the same reasons as the
pi-calculus. As in the pi-calculus, we can define bisimulation congruence as the
substitution closure of bisimilarity, and thus obtain a true congruence which
satisfies all the algebraic laws above. We have verified this in Nominal Isabelle,
following [2].

The fact that bisimilarity is compositional yet ignores provenances suggests
that the semantics could be reformulated without provenance annotations on
labels. To achieve this, what is needed is a side-condition S for the Com rule
which, given an input and an output with subjects M,K, determines if the input
transition could have been derived from prefix K, and vice versa:

ΨQ ⊗ Ψ � P
M (νã)N−−−−−−→ P ′ ΨP ⊗ Ψ � Q

K N−−−→ Q′ S

Ψ � P | Q
τ−→ (νã)(P ′ | Q′)

12 J. Åman Pohjola

But we already have such an S: the semantics with provenances! So we can let

S = ΨQ ⊗ Ψ � P
M(νã)N−−−−−−→
(ν˜bP ;x̃)K

P ′ ∧ ΨP ⊗ Ψ � Q
K N−−−−−−→

(ν˜bQ;ỹ)M
Q′

Of course, this definition is not satisfactory: the provenances are still there,
just swept under the carpet. Worse, we significantly complicate the definitions
by effectively introducing a stratified semantics. Thus the interesting question is
not whether such an S exists (it does), but whether S can be formulated in a way
that is significantly simpler than the semantics with provenances. The author
believes the answer is negative: S is a property about the roots of the proof trees
used to derive the transitions from P and Q. The provenance records just enough
information about the proof trees to show that M and K are connected; with
no provenances, it is not clear how this information could be obtained without
essentially reconstructing the proof tree.

3.2 Validation

We have defined semantics and bisimulation, and showed that bisimilarity satis-
fies the expected laws. But how do we know that they are the right semantics, and
the right bisimilarity? This section provides two answers to this question. First,
we show that our developments constitute a conservative extension of the origi-
nal psi-calculi. Second, we define a reduction semantics and barbed bisimulation
that are in agreement with our (labelled) semantics and (labelled) bisimilarity.

Let −→o and .∼o denote semantics and bisimilarity as defined by Bengtson
et al. [2], i.e., without provenances and with the Com-Old rule discussed in
Sect. 2. The following result has been mechanised in Nominal Isabelle:

Theorem 3 (Conservativity). When .→ is symmetric and transitive we have
.∼o = .∼ and −→o = −→.

Our reduction semantics departs from standard designs [4,17] by relying on
reduction contexts [7] instead of structural rules, for two reasons. First, standard
formulations tend to include rules like these:

P −→ P ′

P | Q −→ P ′ | Q α.P + Q | α.R + S −→ P | R

A parallel rule like the above would be unsound because Q might contain asser-
tions that retract some conditions needed to derive P ’s reduction. The reduction
axiom assumes prefix-guarded choice. We want our semantics to apply to the full
calculus, without limiting the syntax to prefix-guarded case statements.

But first, a few auxiliary definitions. The reduction contexts are the contexts
in which communicating processes may occur:

Psi-Calculi Revisited: Connectivity and Compositionality 13

Table 2. Reduction semantics. Here ˜Ψ abbreviates the composition Ψ1 ⊗Ψ2 ⊗ . . . , and
˜�Ψ� abbreviates the parallel composition �Ψ1� | �Ψ2� | . . . —for empty sequences they
are taken to be 1 and 0 respectively.

Struct
P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′
Scope

P −→ Q

(νa)P −→ (νa)Q

Ctxt
˜Ψ � M

.→ N K = L[x̃ := ˜T] ∀ϕ ∈ conds(C). ˜Ψ � ϕ

Ψ | C[M K.P, N(λx)L.Q] −→ Ψ | P | Q[x :=T] | ppr(C)

Definition 10 (Reduction contexts). The reduction contexts, ranged over
by C, are generated by the grammar

C := PG (process) [] (hole)
C | C (parallel) case ϕ̃ : ˜PG [] ϕ′ : C [] ˜ϕ′′ : ˜QG (case)

Let H(C) denote the number of holes in C. C[˜PG] denotes the process that results
from filling each hole of C with the corresponding element of ˜PG, where holes
are numbered from left to right; if H(C) �= |˜PG|, C[˜PG] is undefined.

We let structural congruence ≡ be the smallest equivalence relation on pro-
cesses derivable using Theorems 1 and 2. The conditions conds(C) and parallel
processes ppr(C) of a context C are, respectively, the conditions in C that guard
the holes, and the processes of C that are parallel to the holes:

ppr(PG) = PG ppr([]) = 0 ppr(C1 | C2) = ppr(C1) | ppr(C2)

ppr(case ϕ̃ : ˜PG [] ϕ′ : C [] ˜ϕ′′ : ˜QG) = ppr(C) conds(PG) = ∅

conds([]) = ∅ conds(C1 | C2) = conds(C1) ∪ conds(C2)

conds(case ϕ̃ : ˜PG [] ϕ′ : C [] ˜ϕ′′ : ˜QG) = {ϕ′} ∪ conds(C)

Definition 11 (Reduction semantics). The reduction relation −→ ⊆ P×P
is defined inductively by the rules of Table 2.

In words, Ctxt states that if an input and output prefix occur in a reduc-
tion context, we may derive a reduction if the following holds: the prefixes are
connected in the current assertion environment, the message matches the input
pattern, and all conditions guarding the prefixes are entailed by the environ-
ment. The ppr(C) in the reduct makes sure any processes in parallel to the holes
are preserved.

14 J. Åman Pohjola

Theorem 4. P −→ P ′ iff there is P ′′ such that 1 � P
τ−→ P ′′ and P ′′ ≡ P ′

For barbed bisimulation, we need to define what the observables are, and
what contexts an observer may use. We follow previous work by Johansson et
al. [15] on weak barbed bisimilarity for the original psi-calculi on both counts.
First, we take the barbs to be the output labels a process can exhibit: we define
P ↓M(νã)N (P exposes M(νã)N) to mean ∃P ′. 1 � P

M(νã)N−−−−−→ P ′. We write

P ↓M for ∃ã, N.P ↓M(ν ˜A)N , and P ⇓α for P
τ−→

�

↓α. Second, we let observers
use static contexts, i.e. ones built from parallel and restriction.

Definition 12 (Barbed bisimilarity). Barbed bisimilarity, written .∼
barb

, is

the largest equivalence on processes such that P
.∼

barb
Q implies

1. If P ↓M(νã)N and ã#Q then Q ↓M(νã)N (barb similarity)

2. If P −→ P ′ then there exists Q′ such that Q −→ Q′ and P ′ .∼
barb

Q′

(reduction simulation)
3. (νã)(P | R) .∼

barb
(νã)(Q | R) (closure under static contexts)

Our proof that barbed and labelled bisimilarity coincides only considers psi-
calculi with a certain minimum of sanity and expressiveness. This rules out some
degenerate cases: psi-calculi where there are messages that can be sent but not
received, and psi-calculi where no transitions whatsoever are possible.

Definition 13. A psi-calculus is observational if:

1. For all P there are MP ,KP such that F(P) � MP
.→ KP and not P ⇓Kp

.
2. If N = (x̃ ỹ) · M and ỹ#M and x̃, ỹ are distinct then M [x̃ := ỹ] = N .

The first clause means that no process can exhaust the set of barbs. Hence
observing contexts can signal success or failure without interference from the
process under observation. For example, in the pi-calculus MP ,KP can be any
name x such that x#P . The second clause states that for swapping of distinct
names, substitution and permutation have the same behaviour. Any standard
definition of simultaneous substitution should satisfy this requirement. These
assumptions are present, explicitly or implicitly, in the work of Johansson et
al. [15]. Ours are given a slightly weaker formulation.

We can now state the main result of this section:

Theorem 5. In all observational psi-calculi, P
.∼

barb
Q iff P

.∼1 Q.

4 Expressiveness

In this section, we study two examples of the expressiveness gained by dropping
symmetry and transitivity.

Psi-Calculi Revisited: Connectivity and Compositionality 15

4.1 Pi-Calculus with Preorders

Recall that pi-F [25] extends the pi-calculus with name equalities (x = y) as
first-class processes. Communication in pi-F gives rise to equalities rather than
substitutions, so e.g. xy.P | xz.Q reduces to y = z | P | Q: the input and output
objects are fused. Hirschkoff et al. [11] observed that fusion and subtyping are
fundamentally incompatible, and propose a generalisation of pi-F called the pi-
calculus with preorders or πP to resolve the issue.

We are interested in πP because its channel connectivity is not transitive.
The equalities of pi-F are replaced with arcs a/b (“a is above b”) which act
as one-way fusions: anything that can be done with b can be done with a, but
not the other way around. The effect of a communication is to create an arc
with the output subject above the input subject, so x(y).P | x(z).Q reduces to
(νxy)(z/y | P | Q). We write ≺ for the reflexive and transitive closure of the
“is above” relation. Two names x, y are considered joinable for the purposes of
synchronisation if some name z is above both of them: formally, we write x � y
for ∃z.x ≺ z ∧ y ≺ z.

Hirschkoff et al. conclude by saying that “[it] could also be interesting to study
the representation of πP into Psi-calculi. This may not be immediate because
the latter make use of on an equivalence relation on channels, while the former
uses a preorder” [11, p. 387]. Having lifted the constraint that channels form
an equivalence relation, we happily accept the challenge. We write ΨP for the
psi-calculus we use to embed πP . We follow the presentation of πP from [12,13],
where the behavioural theory is most developed.

Definition 14. The psi-calculus ΨP is defined with the following parameters:

T � N C � {x ≺ y : x, y ∈ N} ∪ {x � y : x, y ∈ N}

A � Pfin({x ≺ y : x, y ∈ N}) 1 � {} ⊗ � ∪
.→ � � � � the relation denoted � in [13].

The prefix operators of πP are different from those of psi-calculi: objects are
always bound, communication gives rise to an arc rather than a substitution, and
a conditional silent prefix [ϕ]τ.P is included.2 These are encodable as follows:

Definition 15 (Encoding of prefixes). The encoding � � from πP to ΨP is
homomorphic on all operators except prefixes and arcs, where it is defined by

�a/b� = �b ≺ a� �a(y).P � = (νxy)(ax.(�x ≺ y� | �P �) where x#y, P

�a(y).P � = (νy)(a(λx)x.(�y ≺ x� | �P �)) where x#y, P

�[ϕ]τ.P � = case ϕ : (νx)(x(λx)x.0 | xx.�P �) where x#P

2 We ignore protected prefixes because they are redundant, cf. Remark 1 of [12].

16 J. Åman Pohjola

This embedding of πP in psi-calculi comes with a notion of bisimilarity per
Definition 9. We show that it coincides with the labelled bisimilarity for πP
(written ∼) introduced in [12,13].

Theorem 6. P ∼ Q iff �P �
.∼ �Q�

Thus our encoding validates the behavioural theory of πP by connecting it
to our fully mechanised proofs, while also showing that a substantially different
design of the LTS yields the same bisimilarity. We will briefly compare these
designs. While we do rewriting of subjects in the prefix rules, Hirschkoff et al.
instead use relabelling rules like this one (mildly edited to match our notation):

P
a(x)−−−→ P ′ F(P) � a ≺ b

P
b(x)−−→ P ′

An advantage of this rule is that it allows input and output labels to be as
simple as pi-calculus labels. A comparative disadvantage is that it is not syntax-
directed, and that the LTS has more rules in total. Note that this rule would
not be a viable alternative to provenances in psi-calculi: since it can be applied
more than once in a derivation, its inclusion assumes that the channels form a
preorder wrt. connectivity.

πP also has labels [ϕ]τ , meaning that a silent transition is allowed in envi-
ronments where ϕ is true. A rule for rewriting ϕ to a weaker condition, similar
to the above rule for subject rewriting, is included. Psi-calculi does not need this
because the Par rules take the assertion environment into account. πP transi-
tions of kind P

[ϕ]τ−−→ P ′ correspond to ΨP transitions of kind {ϕ} � P
τ−→ P ′.

Interestingly, the analogous full abstraction result fails to hold for the embed-
ding of pi-F in psi-calculi by Bengtson et al. [2], because outputs that emit dis-
tinct but fused names are distinguished by psi-calculus bisimilarity. This issue
does not arise here because πP objects are always bound; however, we believe the
encoding of Bengtson et al. can be made fully abstract by encoding free output
with bound output, exploiting the pi-F law a y.Q ∼ a(x)(Q | x = y).

4.2 Mixed Choice

This section will argue that because we allow non-transitive channel connectivity,
the case operator of psi-calculi becomes superfluous. The formal results here will
focus on encoding the special case of mixed choice. We will then briefly discuss
how to generalise these results to the full case operator.

Choice, written P + Q, is a process that behaves as either P or Q. In psi-
calculi we consider P + Q to abbreviate case � : P [] � : Q for some condition
� that is always entailed. Mixed choice means that in P + Q, P and Q must
be prefix-guarded; that is, the outermost operators of P,Q must be input or
output prefixes. In particular, mixed choice allows choice between an input and
an output. There is a straightforward generalisation to n-ary sums that, in order
to simplify the presentation, we will not consider here.

Psi-Calculi Revisited: Connectivity and Compositionality 17

Fix a psi-calculus P = (T,A,C,�,⊗,1,
.→) with mixed choice; this will be

our source language. We will construct a target psi-calculus and an encoding such
that the target terms make no use of the case operator. The target language
E(P) adds to T the ability to tag a term M with a name x; we write Mx for the
tagged term. We write αx for tagging the subject of the prefix α with x. Tags
are used to uniquely identify which choice statement a prefix is a summand of.
As the assertions of E(P) we use A × Pfin(N), where Pfin(N) are the disabled
tags.

The encoding � � from P to E(P) is homomorphic on all operators except
assertion and choice, where it is defined as follows:

��Ψ�� = �(Ψ, ∅)� �α.P +β.Q� = (νx)(αx.(�P � | �(1, {x})� | βx.(�Q� | �(1, {x})�

where x#α, β, P,Q. If we disregard the tag x, we see that the encoding sim-
ply offers up both summands in parallel. This clearly allows all behaviours of
α.P + β.Q, but there are two additional behaviours we must prevent: (1) com-
munication between the summands, and (2) lingering summands firing after the
other branch has already been taken. The tagging mechanism prevents both, as
a consequence of how we define channel equivalence on tagged terms in E(P):

(Ψ,N) � Mx
.→ Ny if Ψ � M

.→ N and x �= y and x, y /∈ N

That is, tagged channels are connected if the underlying channel is connected. To
prevent (1) we require the tags to be different, and to prevent (2) we require that
the tags are not disabled. Note that this channel connectivity is not transitive,
not reflexive, and not monotonic wrt. assertion composition—not even if the
source language connectivity is.

Theorem 7 (Correctness of choice encoding).

1. If Ψ � P
α−→ P ′ then there is P ′′ such that (Ψ, ∅) � �P �

α−→ P ′′ and
P ′′ .∼(Ψ,∅) �P ′�.

2. If (Ψ, ∅) � �P �
α−→ P ′ then there is P ′′ such that Ψ � P

α⊥−−→ P ′′ and
P ′ .∼(Ψ,∅) �P ′′�.

3. P
.∼1 Q iff �P �

.∼(1,∅) �Q�.

Here α⊥ denote the label α with all tags removed. It is immediate from Theo-
rem 7 and the definition of � � that our encoding also satisfies the other standard
quality criteria [10]: it is compositional, it is name invariant, and it preserves and
reflects barbs and divergence.

In the original psi-calculi, our target language is invalid because of non-
transitive connectivity. If we remove the requirement that tags are distinct, and
only allow separate choice (where either both summands are inputs or both
summands are outputs), the encoding is correct for the original psi-calculi.

These results generalise in a straightforward way to mixed Case state-
ments case ϕ1 : α.P [] ϕ2 : β.Q by additionally tagging terms with a condition,
i.e. Mx,ϕ1 , that must be entailed in order to derive connectivity judgements

18 J. Åman Pohjola

involving the term. The generalisation to free choice, i.e. P + Q where P,Q can
be anything, is more involved and sacrifices some compositionality. The idea is
to use sequences of tags, representing which branches of which (possibly nested)
case statements a prefix can be found in, and disallowing communication between
prefixes in distinct branches of the same Case operator.

5 Conclusion and Related Work

We have seen how psi-calculi can be conservatively extended to allow asymmetric
and non-transitive communication topologies, sacrificing none of the bisimulation
meta-theory. This confers enough expressiveness to capture a pi-calculus with
preorders, and makes mixed choice a derived operator.

The work of Hirschkoff et al. [11] is closely related in that it uses non-
transitive connectivity; see Sect. 4.1 for an extensive discussion.

Broadcast psi-calculi [5] extend psi-calculi with broadcast communication in
addition to point-to-point communication. There, point-to-point channels must
still be symmetric and transitive, but for broadcast channels this condition is
lifted, at the cost of introducing other side-conditions on how names are used:
broadcast prefixes must be connected via intermediate broadcast channels which
have no greater support than either of the prefixes it connects, precluding lan-
guage features such as name fusion. We believe provenances could be used to
define a version of broadcast psi-calculi that does not need this side-condition.

Kouzapas et al. [16] define a similar reduction context semantics for (broad-
cast) psi-calculi. Their reduction contexts requires three kinds of numbered
holes with complicated side-conditions on how the holes may be filled; we
have attempted to simplify the presentation by having only one kind of hole.
While (weak) barbed congruence for psi-calculi has been studied before [15]
(see Sect. 3.2), barbed congruence was defined in terms of the labelled seman-
tics rather than a reduction semantics, thus weakening its claim to independent
confirmation slightly.

There is a rich literature on choice encodings for the pi-calculus [10,20–23],
with many separation and encodability results under different quality criteria
for different flavours of choice. Encodings typically require complicated protocols
and tradeoffs between quality criteria. Thanks to the greater expressive power
of psi-calculi, our encoding is simpler and satisfies stronger quality criteria than
any choice encoding for the pi-calculus. Closest to ours is the choice encoding of
CCS into the DiX calculus by Busi and Gorrieri [6]. DiX introduces a primitive
for annotating processes with conflict sets, that are intended as a generalisation
of choice. Processes with overlapping conflict sets cannot interact, and when
a process acts, every process with an overlapping conflict set is killed. These
conflict sets perform the same role in the encoding as our tags do. We believe
the tagging scheme used in our choice encoding also captures DiX-style conflict
sets.

Psi-Calculi Revisited: Connectivity and Compositionality 19

Acknowledgements. These ideas have benefited from discussions with many people
at Uppsala University, ITU Copenhagen, the University of Oslo and Data61/CSIRO,
including Jesper Bengtson, Christian Johansen, Magnus Johansson and Joachim Par-
row. I would also like to thank Jean-Marie Madiot and the anonymous reviewers for
valuable comments on earlier versions of the paper.

References

1. Åman Pohjola, J.: Psi-calculi revisited: connectivity and compositionality. Tech-
nical report, EP192416, CSIRO, Canberra, Australia (2019). https://publications.
csiro.au/rpr/pub?pid=csiro:EP192416

2. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Logical Methods Comput. Sci. 7(1)
(2011). https://doi.org/10.2168/LMCS-7(1:11)2011

3. Bengtson, J., Parrow, J., Weber, T.: Psi-calculi in Isabelle. J. Autom. Reasoning
56(1), 1–47 (2016). https://doi.org/10.1007/s10817-015-9336-2

4. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1990, pp. 81–94. ACM, New York (1990). https://doi.org/10.1145/96709.
96717

5. Borgström, J., et al.: Broadcast psi-calculi with an application to wireless protocols.
Softw. Syst. Model. 14(1), 201–216 (2015). https://doi.org/10.1007/s10270-013-
0375-z

6. Busi, N., Gorrieri, R.: Distributed conflicts in communicating systems. In: Cian-
carini, P., Nierstrasz, O., Yonezawa, A. (eds.) ECOOP 1994. LNCS, vol. 924, pp.
49–65. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59450-7 4

7. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992). https://doi.org/
10.1016/0304-3975(92)90014-7

8. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects Comput. 13, 341–363 (2002). https://doi.org/10.1007/
s001650200016

9. Gardner, P., Wischik, L.: Explicit fusions. In: Nielsen, M., Rovan, B. (eds.) MFCS
2000. LNCS, vol. 1893, pp. 373–382. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44612-5 33

10. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput. 208(9), 1031–1053 (2010). https://doi.org/10.1016/
j.ic.2010.05.002

11. Hirschkoff, D., Madiot, J., Sangiorgi, D.: Name-passing calculi: from fusions to pre-
orders and types. In: 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 378–387. IEEE
Computer Society (2013). https://doi.org/10.1109/LICS.2013.44

12. Hirschkoff, D., Madiot, J., Xu, X.: A behavioural theory for a π-calculus with
preorders. J. Log. Algebr. Meth. Program. 84(6), 806–825 (2015). https://doi.org/
10.1016/j.jlamp.2015.07.001

13. Hirschkoff, D., Madiot, J.-M., Xu, X.: A behavioural theory for a π-calculus with
preorders. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp.
143–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24644-4 10

https://publications.csiro.au/rpr/pub?pid=csiro:EP192416
https://publications.csiro.au/rpr/pub?pid=csiro:EP192416
https://doi.org/10.2168/LMCS-7(1:11)2011
https://doi.org/10.1007/s10817-015-9336-2
https://doi.org/10.1145/96709.96717
https://doi.org/10.1145/96709.96717
https://doi.org/10.1007/s10270-013-0375-z
https://doi.org/10.1007/s10270-013-0375-z
https://doi.org/10.1007/3-540-59450-7_4
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/3-540-44612-5_33
https://doi.org/10.1007/3-540-44612-5_33
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1109/LICS.2013.44
https://doi.org/10.1016/j.jlamp.2015.07.001
https://doi.org/10.1016/j.jlamp.2015.07.001
https://doi.org/10.1007/978-3-319-24644-4_10

20 J. Åman Pohjola

14. Johansson, M.: Psi-calculi: a framework for mobile process calculi: cook your own
correct process calculus - just add data and logic. Ph.D. thesis, Uppsala University,
Division of Computer Systems (2010)

15. Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-
calculi. In: LICS, pp. 322–331. IEEE Computer Society (2010). https://doi.org/
10.1109/LICS.2010.30

16. Kouzapas, D., Gutkovas, R., Gay, S.J.: Session types for broadcasting. In: Don-
aldson, A.F., Vasconcelos, V.T. (eds.) Proceedings 7th Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Software,
PLACES 2014, Grenoble, France, 12 April 2014. EPTCS, vol. 155, pp. 25–31
(2014). https://doi.org/10.4204/EPTCS.155.4

17. Milner, R.: Functions as processes. In: Paterson, M.S. (ed.) ICALP 1990. LNCS,
vol. 443, pp. 167–180. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0032030

18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Inf.
Comput. 100(1), 1–77 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

19. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theor. Comput. Sci. 367(1–2), 203–227 (2006)

20. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Inf. Comput. 163(1), 1–59
(2000). https://doi.org/10.1006/inco.2000.2868

21. Palamidessi, C.: Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. In: Lee, P., Henglein, F., Jones, N.D. (eds.) Conference
Record of POPL 1997: The 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Papers Presented at the Symposium, Paris,
France, 15–17 January 1997, pp. 256–265. ACM Press (1997). https://doi.org/10.
1145/263699.263731

22. Peters, K., Nestmann, U.: Is it a “good” encoding of mixed choice? In: Birkedal, L.
(ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 210–224. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28729-9 14

23. Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 310–329.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 18

24. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356
(2008). https://doi.org/10.1007/s10817-008-9097-2

25. Wischik, L., Gardner, P.: Explicit fusions. Theor. Comput. Sci. 304(3), 606–630
(2005). https://doi.org/10.1016/j.tcs.2005.03.017

https://doi.org/10.1109/LICS.2010.30
https://doi.org/10.1109/LICS.2010.30
https://doi.org/10.4204/EPTCS.155.4
https://doi.org/10.1007/BFb0032030
https://doi.org/10.1007/BFb0032030
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1006/inco.2000.2868
https://doi.org/10.1145/263699.263731
https://doi.org/10.1145/263699.263731
https://doi.org/10.1007/978-3-642-28729-9_14
https://doi.org/10.1007/978-3-642-37036-6_18
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1016/j.tcs.2005.03.017

Squeezing Streams and Composition
of Self-stabilizing Algorithms

Karine Altisen(B), Pierre Corbineau, and Stéphane Devismes

Univ. Grenoble Alpes, CNRS,
Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), VERIMAG,

38000 Grenoble, France
Karine.Altisen@univ-grenoble-alpes.fr

Abstract. Composition is a fundamental tool when dealing with com-
plex systems. We study the hierarchical collateral composition which
is used to combine self-stabilizing distributed algorithms. The PADEC
library is a framework developed with the Coq proof assistant and dedi-
cated to the certification of self-stabilizing algorithms. We enrich PADEC
with the composition operator and a sufficient condition to show its cor-
rectness. The formal proof of the condition leads us to develop new tools
and methods on potentially infinite streams, these latter ones being used
to model the algorithms’ executions. The cornerstone has been the defi-
nition of the function Squeeze which removes duplicates from streams.

Keywords: Coq proof assistant · Streams · Coinduction ·
Composition · Distributed algorithm · Self-stabilization

1 Introduction

In computer science, separation of concerns is a standard design principle which
consists of decomposing a complex problem into several simpler ones. These sub-
problems are then solved independently, and finally, glued together to obtain
a global solution to the initial problem. With this in mind, composition is a
natural tool that simplifies both the design and proof of complex algorithms. For
example, the sequential composition of two algorithms “A1; A2” enforces A1 and
A2 to be executed in sequence, i.e., A2 is initiated only after A1’s completion.
Composition methods are widely used in distributed systems [4,10,25].

Self-stabilization [21] is a versatile fault-tolerant paradigm of distributed com-
puting. Indeed, a self-stabilizing distributed algorithm resumes a correct behav-
ior within finite time, regardless the initial state of the system, and therefore
also after a finite number of transient faults hit the system and place it in
some arbitrary global state. The ability to implement sequential composition

This study has been partially supported by the anr projects Descartes (ANR-16-
CE40-0023) and Estate (ANR-16-CE25-0009).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 21–38, 2019.
https://doi.org/10.1007/978-3-030-21759-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_2

22 K. Altisen et al.

in a distributed system mainly relies on the ability to locally detect the termi-
nation. Now, termination detection is inherently impossible for self-stabilizing
algorithms [34]. Indeed, since the system may suffer from faults such as memory
corruption, the nodes cannot trust their local memory. To circumvent such an
issue, several other composition operators devoted to self-stabilizing algorithms
have been proposed, e.g., the fair [23] and cross-over [6] compositions. We are
more particularly interested in the hierarchical collateral composition [20], a sim-
ple and widely used variant of the collateral composition [27]. This composition
actually emulates the sequential composition “A1; A2” by providing the same
output despite A1 and A2 being executed (more or less) concurrently.

The PADEC framework [2,3] consists in a library for certifying self-stabilizing
algorithms. The certification of an algorithm means proving its correctness for-
mally using a proof assistant, here Coq [9,35], i.e., a tool which allows to develop
formal proofs interactively and mechanically check them. The framework includes
tools to model self-stabilizing algorithms, certified general statements that can
be used to build certified correctness proofs of such algorithms, and case stud-
ies that validate them. In PADEC, the semantics of self-stabilizing algorithms’
executions is defined as potentially infinite streams and properties, such as algo-
rithm specifications, are defined using temporal logic on those streams. Hence,
the definitions and proofs presented in PADEC as well as this paper, make an
intensive use of streams and thus of coinductive definitions and proofs.

Overview of the Contributions. The first contribution of this paper consists of
new general tools for streams, in particular a squeezing operator. This latter is
actually a productive filter on streams that uses both inductive and coinductive
mechanisms. Our second contribution is a case study: we apply the squeezing
operator to certify the hierarchical collateral composition of self-stabilizing algo-
rithms. To our knowledge, our proposal is the first work on the certification of
a composition operator for self-stabilization.

Detailed Contributions. We develop many tools for streams. Our streams are
potentially infinite sequences of at least one element and require to be defined
over a partial setoid, i.e., over a type endowed with a partial equivalence relation
that models equality; thus justifying this new development. Apart from usual
tools required by developments on streams, such as temporal logic operators,
we also provide tools specific for PADEC. In particular, the squeezing toolbox
provides a filter to remove any duplicated value from a given stream that may
contain an infinite suffix of duplicates. We study the conditions under which
such a squeezed stream can be computed and provide a function that actually
builds it. This filter can be viewed as an extension of a work by Bertot [8]. Indeed,
although Bertot’s filter relies on a general predicate (ours simply uses the equality
between two consecutive elements), the squeezing operator is designed for more
complex streams (that can be finite or infinite) and allows to remove an infinite
suffix. In his paper, Bertot clearly explains the difficulty to formally define such
a filter since this latter mixes both coinduction and induction mechanisms. The
definition of squeezing is even more difficult since it requires to decide at each

Squeezing Streams and Composition of Self-stabilizing Algorithms 23

step whether the filtering of new elements should continue or be given up because
a constant, potentially infinite, suffix has been reached.

As an application, we use these tools to enrich the PADEC library with a for-
malization of the hierarchical collateral composition operator ⊕ and a sufficient
condition to show its correctness. By correctness, we mean that if A1 and A2 are
self-stabilizing w.r.t. their specification, then A1⊕A2 is also self-stabilizing w.r.t.
both specifications. Executions of self-stabilizing algorithms and their composi-
tions are modeled as streams, and the squeezing toolbox has been the cornerstone
to solve the major locks in the correctness proof of the composition operator.

Related Work. Previous work dealing with PADEC [3] only considered termi-
nating algorithms that did not require any scheduling assumption, consequently
their proofs were only induction-based. Here, A2 may be a non-terminating algo-
rithm (e.g., a token circulation). Moreover, the sufficient condition to show the
correctness of the composition assumes a weakly fair scheduling, which requires a
coinductive definition. Coinductive objects and proofs allow to reason on poten-
tially infinite objects. They are supported by major proof assistants such as Coq
[26], Isabelle [32], and Agda [1]. Coinductive constructions are commonly used to
represent potentially infinite behaviors of programs and systems (see, for exam-
ple, [31] for sequential programs and [17] for distributed systems) but also for
modeling lazy programs such as the prime number sieve [8].

Proofs in distributed algorithms are commonly written by hand, based on
informal reasoning. This potentially leads to errors when arguments are not
perfectly clear, as explained by Lamport in his position paper [30]. As a mat-
ter of facts, several studies [7,22] reveal, using formal methods, some bugs in
existing literature. Hence, certification of distributed algorithms is a powerful
tool to prevent bugs in their proofs, and so, to increase confidence in their cor-
rectness. Certification of non fault-tolerant distributed algorithms is addressed
in [13,14,17]; and certification in the context of fault-tolerant, yet non self-
stabilizing, distributed computing is addressed in [5,28]. Up to now, only few
simple self-stabilizing algorithms have been certified, e.g., [29] (in PVS) and
[3,16] (in Coq). By simple, we mean non-composed algorithms working on par-
ticular topologies (i.e., rings, lines, or trees) and/or assuming restrictions on
possible interleaving (e.g., in [29], only sequential executions are considered).
Now, progress in self-stabilization has led to consider more and more complex dis-
tributed systems running in increasingly more adversarial environments. As an
illustrative example, the three first algorithms proposed by Dijkstra in 1974 [21]
were designed for oriented ring topologies and assuming sequential executions
only, while nowadays most self-stabilizing algorithms are designed for fully asyn-
chronous arbitrary connected networks, e.g., [12,19], and even for networks, such
as peer-to-peer systems, where the topology (frequently) varies over the time,
e.g., [11]. Consequently, the design of self-stabilizing algorithms becomes more
and more intricate, and accordingly, their proofs of correctness and complex-
ity. To handle such difficulties, designers must adopt a modular approach, e.g.,
using composition operators. Consequently, a preliminary necessary step to cer-
tify present-day self-stabilizing algorithms is the certification of a composition
operator.

24 K. Altisen et al.

Roadmap. Section 2 introduces streams and self-stabilization as defined in
PADEC. Section 3 presents the composition. Section 4 details the squeezing tool-
box and shows its application into the proof of correctness of the composition.

The composition and the stream toolboxes contain about 1500 lines of Coq
specifications and 4800 lines of Coq proofs.1 This represents about 25% of the
whole PADEC library. We advocate the reader to visit the following webpage
for a deeper understanding of our work.

http://www-verimag.imag.fr/∼altisen/PADEC/

All documentation and source codes are available at this address.

2 Streams and Self-stabilization in the PADEC Library

PADEC is a Coq library designed to model and prove results on self-stabilizing
algorithms. The framework makes an intensive use of (partial-)setoids, i.e., types
for which the equality is represented by a (partial-)equivalence relation. This
choice is justified in [3] and has some consequences on the design of the frame-
work. Nevertheless, we omit here the technical issues due to the use of such
(partial-)setoids, since it is out of the scope of this paper.

We now present self-stabilizing algorithms as they are defined in distributed
computing and the PADEC library. Beforehand, we introduce streams as they
are used to model executions of self-stabilizing algorithms in PADEC.

2.1 Streams

We implement a stream as a potentially infinite sequence of at least one element.
Each element belongs to some given type A. A stream is then defined as a value
of the following type.

CoInductive Stream: Type := | O: A → Stream

| C: A → Stream → Stream.

Remark that such a stream cannot be empty since each constructor (O,
C) enforces the existence of a first element. Moreover, it may be finite or
infinite since the keyword CoInductive generates the greatest fixed point
capturing potentially infinite constructions.2 For instance, the finite stream
of naturals 1 2 3 4 is given by s4 = C 1 (C 2 (C 3 (O 4))) and the infi-
nite stream of naturals, made of an infinite number of 1, is defined by
CoFixpoint ones: Stream (A := nat) := C 1 ones. Therefore, the above defi-
nition allows to construct both finite and infinite streams thanks to the two
constructors. In contrast, streams from the standard Coq API [35] and those
proposed by Bertot [8] are made of only one constructor, which enforces the
stream to be necessarily infinite.
1 As evaluated by the ad hoc tool coqwc.
2 In contrast, the keyword Inductive generates the smallest fixed point and only

captures finite constructions.

http://www-verimag.imag.fr/~altisen/PADEC/

Squeezing Streams and Composition of Self-stabilizing Algorithms 25

We define the function (H: Stream → A) which returns the first element of
the stream, e.g., (H s4) returns 1. For any function (f: A → B) and any type
B, we note (f • H: Stream → B) the function defining the composition of H and
f as follows: ((f • H) s) returns (f (H s)), for any stream s.

We now briefly introduce tools on streams that will be used in the sequel.
The following predicates are usual temporal logic operators [15,33]. They are
defined w.r.t. a given predicate P over streams. The first one checks that there
is a suffix of the stream in which P is satisfied. The second one checks that P is
satisfied in every suffix of the stream.

Inductive Eventually (P: Stream → Prop): Stream → Prop :=

| ev_now: ∀ s, P s → Eventually P s

| ev_later: ∀ a s, Eventually P s → Eventually P (C a s).

CoInductive Always (P: Stream → Prop): Stream → Prop :=

| al_one: ∀ a, P (O a) → Always P (O a)

| al_cons: ∀ a s, P (C a s) → Always P s → Always P (C a s).

Note the difference between the two definitions: Eventually is defined using the
keyword Inductive since a proof of (Eventually P s), for some stream s and
predicate P, should only contain a finite number of ev_later. In contrast, Always
uses CoInductive: a proof of (Always P s) would potentially contain an infinite
number of al_cons and so, should be lazily constructed. We defined many other
properties and technical tools that ease the use of those predicates (see [2] for
details), e.g., we use Eventually to check that a stream is finite:

finite: Stream → Prop := Eventually P_finite.

where (P_finite s) holds if and only if the stream s is made of a single element
a, i.e., is equal to (O a).

2.2 Self-stabilization: Model and Semantics

Most of self-stabilizing algorithms are designed in the atomic-state model, a
computational model introduced by Dijkstra [21], which abstracts away the com-
munications between nodes of the network. The PADEC framework has been
developed using this model (see [3]). However, we do not detail the model here,
since this is not the heart of the contribution. Instead, we summarize features
that are mandatory to present and understand our contributions.

A distributed algorithm is executed over a network, made of a finite number
of nodes (we introduce the Coq type Node to represent nodes). Each node p
is endowed with a local state (of type State) defined by the value of its local
variables. Node p updates its local state by executing its local algorithm in
atomic moves, where it first reads its own local state and that of its neighbors,
and then only writes its own variables. Notice that some variables owned by
p, usually system inputs, should never be written by its local algorithm. Such
variables are declared read-only. A node is said to be enabled if its next move
will actually modify its local state. Otherwise, the node is said to be disabled.

26 K. Altisen et al.

We call environment the global state of the network. In PADEC, environ-
ments are functions from Node to State: Env := Node → State, namely for an
environment (g: Env) and a node (n: Node), (g n) is the local state of n in g. If
no node is enabled in g, then g said to be terminal. This property is defined by
the predicate terminal: Env → Prop. Each node can locally evaluate whether
or not it is enabled. So, since the number of nodes is finite, the terminal property
is decidable, i.e., the evaluation of (terminal g) is computable:3

Lemma. terminal_dec: ∀ g, { terminal g }+{ ¬terminal g }.

Let g be the current environment. If g is not terminal, then a step of the
distributed algorithm is performed as follows: every node n that is enabled in
(g n) is candidate to be executed; some candidates (at least one) are nonde-
terministically activated, meaning that they atomically update their local state
using their local algorithm, leading the system to a new environment g’. This
nondeterminism actually materializes the asynchronism of the system.

Notice that two environments linked by a step are necessarily different.
This point is fundamental in asynchronous deterministic algorithms: the sys-
tem progress can only be observed when the environment changes. In PADEC,
we use the relation Step: Env → Env → Prop to encode all possible steps.

A maximal run in the network is defined as a stream of environments, using
type Exec: Type := Stream (A := Env), where every pair of consecutive envi-
ronments in the stream is a step, and if the stream is finite then its last envi-
ronment is necessarily terminal. This notion is captured by the predicate

is_max_run (e: Exec): Prop := Always P_run e.

where (P_run e) checks that the stream e matches one of the two following
patterns. Either e is (O g) and the environment g is terminal, i.e., (terminal g)

holds; or e is (C g e’) (with g an environment and e’ a stream) and there is a
step from g to (H e’), i.e., (Step (H e) g’) holds.

We model the nondeterminism of the system using an artifact called the
daemon. In this paper, we focus on the so-called weakly fair daemon [24]: a
maximal run is executed under the weakly fair daemon if and only if every node
that is continuously enabled is eventually activated by the daemon. To encode
the weakly fair daemon, we define the following predicate:

weakly_fair (e: Exec): Prop := ∀ (n: Node),

Always (fun e’ => EN n e’ → Eventually (AN n) e’) e.

Namely, all along a run e, whenever some node n is enabled (predicate (EN n)),
it is eventually either activated or neutralized (predicate (AN n)), i.e., either it is
eventually chosen by the daemon to execute in a step, or it eventually becomes
disabled, due to the move of some of its neighbors. Note that this definition
involves both inductive and coinductive predicates.

3 The notation { A }+{ B } (so-called sumbool in Coq) means there exists an algo-
rithm able to choose between Conditions A and B.

Squeezing Streams and Composition of Self-stabilizing Algorithms 27

A self-stabilizing algorithm is designed to fulfill a given specification under
some assumptions, often related to the system. In the literature, those assump-
tions are directly encoded in the configurations using constants whose values
achieve some conditions. For example, an identified network is modeled using a
constant variable, called identifier, for each process and assuming that every two
distinct processes have different identifiers. Following the literature, we express
those assumptions (predicate Assume: Env → Prop) on the read-only variables
of the nodes. Such assumptions need only to be checked on the initial environ-
ment of a run. Indeed, they are then inherently satisfied all along the run since
they only rely on read-only variables.

To sum up, we define an execution of the algorithm to be a stream of environ-
ments which is a maximal run satisfying the daemon constraints and where the
read-only assumptions are satisfied in its first environment. Hence, executions
are encoded by the following predicate.

is_exec (e: Exec): Prop :=

(Assume • H) e ∧ is_max_run e ∧ weakly_fair e.

It is important to note that a self-stabilizing algorithm can be initiated from any
environment where the read-only assumptions are satisfied. This, in particular,
means that every suffix of an execution is also an execution.

The specification of an algorithm is given as a predicate S: Exec → Prop.
Then, an algorithm A is self-stabilizing (predicate self_stabilization A: Prop)
w.r.t. a specification S under the weakly fair daemon if there exists a set of
environments called legitimate and detected using the predicate LEG: Env →
Prop, such that for every execution e (implicitly e: Exec and is_exec e),

– if its initial environment is legitimate, then each of its environments is legiti-
mate, i.e., (LEG • H) e → Always (LEG • H) e (Closure);

– it converges to a legitimate environment, i.e., Eventually (LEG • H) e (Con-
vergence); and

– if it is initiated in a legitimate environment, then it satisfies the specification,
i.e., (LEG • H) e → S e (Specification).

In this paper, we also consider the class of silent self-stabilizing algorithms.
In the atomic-state model, an algorithm A is silent if all executions are finite:
silent A: Prop := ∀ (e: Exec), is_exec e → finite e. A silent algorithm is
designed to converge to terminal environments satisfying some properties. So,
the specification of such an algorithm is rather formulated as a predicate over
environments Sg: Env → Prop, henceforth called environment specification.

3 Composition

The hierarchical collateral composition has been introduced in [20] together with
a simple sufficient condition to show its correctness. We now describe the oper-
ator, its modeling, and the certification of the sufficient condition in PADEC.

28 K. Altisen et al.

Beyond the higher confidence in the accuracy of the result, certification, by
enforcing proofs to be more rigorous, leads to a deeper understanding of the
result.

The goal of the hierarchical collateral composition operator is to mimic the
sequential composition “A1; A2”. A1 and A2 run concurrently modulo some
priorities (see details below) and collaborate together using common variables.
The goal of A1 is to self-stabilizingly output correct inputs to A2. A2 is self-
stabilizing provided that its inputs, in particular those computed by A1, are
correct. Hence, the actual convergence of A2 is ensured only after A1 has sta-
bilized. For example, the clustering algorithm for general networks given in [18]
is a hierarchical collateral composition A1 ⊕ A2, where A1 is a spanning tree
construction and A2 a clustering algorithm dedicated to tree topologies.

A1 should converge so that its output variables permanently fulfill the input
assumptions of A2 to ensure that A2 stabilizes in nominal conditions. To that
goal, we assume that A1 is silent, e.g., in [18], once the spanning tree construction
has stabilized, all its variables, in particular those defining the tree, are constant.

For each node, the local variables of the composite algorithm A1 ⊕ A2 are
made of variables specific to A1 and A2 respectively, but also of variables com-
mon to A1 and A2. Those variables store, in particular, the output of A1 used
as input by A2. They should be read-only in A2 since A2 should not prevent A1

from stabilizing by overwriting these variables.
In the previous collateral composition [27] of Gouda and Herman, the choice

for an activated node to execute either A1 or A2, when both are enabled, was
nondeterministic. In contrast, in the hierarchical collateral composition, the com-
posite algorithm gives priority to A1 over A2 locally at each node. Let p be a
node enabled w.r.t. A1⊕A2 in some environment and assume that p is activated
by the daemon in the next step.

– If A1 is enabled at p (n.b., A2 may be enabled at p too), then p makes a move
of A1 only.

– Otherwise, p is disabled w.r.t. A1, but enabled w.r.t. A2, and so makes a
move of A2 (only).

Hence, when p moves in A1 ⊕ A2, it either executes A1 or A2, but not both.
We should underline that this priority mechanism is only local: globally, a step
of A1 ⊕ A2 may contain moves of A1 only, moves of A2 only, but also a mix of
them, yet executed at different nodes.

3.1 The Composite Algorithm in Coq

We model the composite algorithm A1 ⊕ A2 in Coq as follows. We define the
local states S3 of A1 ⊕A2 assuming that the local states of A1, noted S1, can be
handled using the following getter and setter:

– read1: S3 → S1 is a projection from S3 to S1,
– write1: S1 → S3 → S3 modifies the S1-part of a composite state.

Squeezing Streams and Composition of Self-stabilizing Algorithms 29

Functions read2 and write2 are defined similarly for the local states S2 of A2.4

Those functions follow the properties given by the commutative diagram of
Fig. 1. For example, to update the S1-part of the composite local state (x3: S3)

with (x1: S1), we use write1(x1,x3): this produces a new S3 local state with S1-
part x1, namely, read1(write1(x1,x3)) returns x1. Additionally, we encode the
fact that any writing in the S2-part (by A2), that respects the read-only condi-
tion, actually does not modify the S1-part of an S3 state. Indeed, the common
part between S1 and S2 is necessarily read-only for S2 (see x in Fig. 2).

S3S1×S3 S2

S1

S2×S3

write1

write2

π1

π1

read1

read2

Fig. 1. Commutative diagram for read
and write. π1 gives access to the first
element of the pair.

x3

write2(x2,x3)

x2

x

x

x

read2(x3)

=
read1(x3)

x2

Fig. 2. write2 cannot modify S1-part.
x is the common part between S1 and
S2, read-only for S2.

We generalize the projections read1 and read2 to environments and streams.
The projection envread1 to A1 of an environment g of A1 ⊕ A2 is an environ-
ment for A1 defined as read1 • g. Namely, for a node n, the projection of (g n)

on A1, is obtained by (read1(g n)). The projection on A1 of a stream s of
A1 ⊕ A2 is called execread1 and is obtained using a cofixed point that applies
envread1 to every element of the stream (i.e., a map on a stream). In particular,
((H • execread1) s) and ((envread1 • H) s) represent one and the same envi-
ronment. The projections envread2 and execread2 on A2 are defined similarly.

3.2 Correctness of the Composition

The composition operator is proven correct under the following hypotheses:

H1 : The daemon is weakly fair.
H2 : A1 is silent and self-stabilizing w.r.t. the environment specification Sg

1 :
given the read-only assumption Assume1, each of its executions is finite and
terminates in an environment satisfying Sg

1 .
H3 : A2 is self-stabilizing w.r.t. specification S2: given the read-only assumption

Assume2, each of its executions eventually reaches a legitimate environment
(predicate LEG2) from which S2 is satisfied.

4 S1, S2, S3 stand for type State dedicated to Algorithms A1, A2, A1 ⊕ A2,
respectively.

30 K. Altisen et al.

H4 : The read-only assumption of A1 ⊕ A2 is Assume1 on A1-projections.
H5 : Sg

1 implies Assume2, i.e., ∀ g, Sg
1 (envread1 g) → Assume2 (envread2 g).

Under those hypotheses, we have proven the theorem below for the specification
S := fun e => Always (Sg

1 • H • execread1) e ∧ (S2 • execread2) e.

Theorem. Composition_Correctness : self_stabilization A1 ⊕ A2.

The above theorem states that A1 ⊕A2 eventually reaches an environment from
which S2 holds and Sg

1 is satisfied in all environments.
We now outline the proof of the theorem. We first have to exhibit a predicate

that defines the legitimate environments LEG3 of A1 ⊕ A2. This predicate holds
in each environment that is terminal for A1 and legitimate for A2:

LEG3 := fun g3 => terminal (envread1 g3) ∧ LEG2 (envread2 g3).

Then, we prove the following intermediate result:

Lemma. t1_e2: ∀ e, is_exec e → (terminal • H) (execread1 e) →
Always (terminal • H) (execread1 e) ∧ is_exec (execread2 e).

Namely, any execution e of A1 ⊕ A2 that starts in an A1-terminal environ-
ment remains in A1-terminal environments and is actually an execution for
A2. First, from an environment which is terminal for A1, there is no way to
update variables of A1. So, e remains in environments that are A1-terminal.
This claim also implies that each step of e is actually a step of A2 and, conse-
quently, (execread2 e) is a maximal run of A2 satisfying the weakly fair con-
dition. Finally, ((H • execread2) e) satisfies Assume2. Indeed, A1 being silent
and self-stabilizing, this implies that if A1 starts in a terminal environment,
then, this environment satisfies Sg

1 . Thus, we can use hypothesis H5 on the first
environment of e. Hence, we can conclude that (execread2 e) is an execution
of A2.

In the rest of the explanation, we consider an arbitrary execution e of A1⊕A2.

Closure. To show the closure, we have to prove that if e starts in a legitimate
environment of A1 ⊕A2 (i.e., an environment satisfying LEG3), it always remains
in such environments. This is straightforward using Lemma t1_e2. Indeed, first,
e remains in environments that are A1-terminal. Second, as (execread2 e) is
an execution for A2, we can use the closure property of A2 on (execread2 e)

(since A2 is self-stabilizing) and prove that legitimate environments for A2 are
maintained forever in (execread2 e).

Specification. We have to prove that if e is initiated in LEG3, then (S e) holds.
We use Lemma t1_e2 again. First, every environment of e is A1-terminal, and so
satisfies Sg

1 . Second, (execread2 e) is an execution of A2 on which we can apply
the specification property of A2 (since A2 is self-stabilizing), hence satisfies S2.

Convergence. We should prove that e eventually reaches an environment that is
legitimate for A1 ⊕ A2. This goal is split into three subgoals:

(1) Eventually (terminal • H) (execread1 e)

Squeezing Streams and Composition of Self-stabilizing Algorithms 31

i.e., e eventually reaches an environment which is terminal for A1. This part
of the proof is postponed to Sect. 4. Claim (1) ensures that e contains a suf-
fix σ that starts in a terminal environment for A1: we have ((terminal • H)

(execread1 σ)). The second subgoal is then:

(2) Always (terminal • H) (execread1 σ)

i.e., σ remains A1-terminal. As any suffix of an execution is also an execution,
so is σ. Hence, Claim (2) is immediate from Lemma t1_e2. The third subgoal is:

(3) Eventually (LEG2 • H) (execread2 σ)

After e has reached an environment that is terminal for A1, it eventually reaches
an environment that is legitimate for A2. Indeed, its suffix σ eventually reaches
an environment that is legitimate for A2: to prove this, we use the convergence
of A2 (as A2 is self-stabilizing) since, by Lemma t1_e2, (execread2 σ) is an
execution of A2. Now, as σ eventually reaches LEG2, so does e.

4 Squeezing Streams and Convergence of Composition

The main part of the proof consists in proving that any execution of the compos-
ite algorithm eventually reaches an environment which is terminal for A1 (Claim
(1)). This requires to use the assumption that A1 is silent, i.e., Hypothesis H2.
To that goal, we consider an execution e of A1 ⊕ A2 and we focus on its projec-
tion on A1, (execread1 e). Now, this latter stream is usually not an execution
of A1 and H2 only applies to executions of A1. Actually, each step of e matches
one of the two following cases: either at least one node executes A1 in the step,
or all activated nodes only execute A2. In the former case, the projection of the
step on A1 is a step of A1. In the latter case, the projection gives two identical
environments of A1. Hence, (execread1 e) is made of steps of A1, separated by
duplicates. So, to apply H2, it is mandatory to construct an execution of A1 by
computing the squeezing of (execread1 e), i.e., the stream obtained by removing
all duplicates from (execread1 e).

In Subsect. 4.1, we describe how to compute the squeezing of a general stream.
Again, it is a filter in the sense of Bertot [8] since it removes elements from the
stream. Yet, its filtering predicate is particular, as it forbids any two consecutive
elements to be equal. But, in contrast with Bertot [8], the squeezing applies to
streams that can be finite or infinite and allows to remove an infinite suffix of
duplicates. Therefore, we have an additional issue: the squeezing needs to decide
at each step whether to continue or give up because a constant, potentially
infinite, suffix has been reached.

The object resulting from squeezing – so-called squeezed stream – is com-
plex since it is defined as an explicit construction. Consequently, dealing with it
directly in proofs requires heavy Coq developments. To avoid such implementa-
tion details, we rather work on an abstraction stream relation, called simulation,
which encompasses the useful properties of the squeezed stream.

32 K. Altisen et al.

4.1 Squeezing

We now explain how to build the squeezing of an arbitrary stream whose elements
are of type A. Let s be such a stream. The squeezed version of s contains exactly
the same elements as s, in the same order, yet without any duplicate.

For example, if s = 1 2 2 3 3 3 3 3 4 5 6 6 7 8 8 8 ... (s ends with
an infinite suffix of 8), then the squeezing of s is the finite sequence
s’ = 1 2 3 4 5 6 7 8. Every element in s is still present in s’, following the
same increasing order, yet every duplicate has been removed from s, including
the infinite sequence of 8. Note that a squeezing may not be finite, e.g., if s is
the infinite repetition of the pattern 1 2 3, then the squeezing of s is s itself.

We want to build the squeezed stream, i.e., to define a function Squeeze which
computes the squeezed version of an input stream s. This computation will be
carried out by a coinductive function. To compute (Squeeze s), it is necessary to
test whether all elements in the stream s are identical to (H s). If so, (Squeeze s)

will be (O (H s)); otherwise it will be (C (H s) (Squeeze s�)), where s� is the
maximal suffix of s starting with an element distinct from (H s). Now, a stream
may be infinite, and so the aforementioned test is undecidable in general. Thus,
we need extra information in order to make the decision and, since we will base
the result of the squeezing algorithm on this decision, it has to be constructive.
In Coq, constructive objects are in sort Type and carry computational content.5

We assume (Skippable (H s) s) where:

Skippable (a: A) (s: Stream): Type :=

{ is_constant a s }+{ reach_diff a s }.

Any value of (Skippable (H s) s) carries either a proof of (is_constant

(H s) s) or a proof of (reach_diff (H s) s).
For an element a and a stream s, (is_constant a s) means (Always (fun s =>

H s ∼= a) s),6 i.e., the stream s contains nothing but the element a, albeit
finite or not. Then, (reach_diff a s) means that s begins with a finite num-
ber of a followed by some element different from a. To be able to compute
Squeeze, (reach_diff a s) should also provide a way to compute the suffix s�

of s where all the instances of a at the beginning of s have been removed.
Actually, we implement (reach_diff a s) as (Acc (Rskip a) s). For an ele-
ment a and two streams s1, s2, (Rskip a s1 s2) holds when either s1 and
s2 are both reduced to the single element a or s2 is equal to (C a s1), i.e.,
C a s1 ∼= s2 ∨ s1 ∼= O a ∧ O a ∼= s2. The inductive proposition Acc is taken
from the Coq.Init.Wf standard library which provides tools on well-founded
inductions. Predicate (Acc (Rskip a) s) means that any descending chain from
s, using relation (Rskip a), is finite. Using a well-founded induction on a value
of (reach_diff a s), we are able to define a recursive function Skip with depen-
dent arguments (a: A), (s: Stream), and (rd: reach_diff a s) that computes

5 Conversely, objects in sort Prop are only proofs of logical statements.
6 ∼= is a generic notation that represents equality; when it applies on streams, it imple-

ments pointwise equality.

Squeezing Streams and Composition of Self-stabilizing Algorithms 33

the maximal suffix of s starting with an element distinct from a. Thus, whenever
we obtain a proof of (reach_diff (H s) s), we can compute s� using Skip.

However, to be able to compute the corecursive call (Squeeze s�), we need
to exhibit a value of (Skippable (H s�) s�). This means that we need an algo-
rithm that may compute, repeatedly and lazily, along the stream, a value of
(Skippable (H σ) σ), where σ is any suffix of s. This is performed by Always_,
the counterpart in Type of Always. So, we obtain the following definition:

Squeezable (s: Stream): Type :=

Always_ (fun s => Skippable (H s) s) s.

The construction of Squeeze can now be completed as a cofixed point with depen-
dent arguments (s: Stream A) and (sq: Squeezable s) (n.b., we omit parameter
sq when it is clear from the context).

As a direct consequence of the definition, we can show that a squeezed stream
contains no duplicate:

Lemma. Squeeze_Always_moves:

∀ (s: Stream) (sq: Squeezable s), Always moves (Squeeze s).

In the lemma, the predicate moves checks that a stream differs on its two first
elements if they exist. The lemma is proven using a coinductive proof that follows
the definition of Squeeze. It essentially relies on the fact that for every element
a and stream s on which (Skip a s) can be evaluated (i.e., which begins with a
finite number of a), the first element of (Skip a s) is different from a.

4.2 Preserving Properties by Simulation

We now define the simulation relation. As usual, our simulation defines an
abstract view, yet adapted to our context. Given two streams X and Y, (Y ≤sim X)

means that Y is obtained from X by removing some of its duplicates, namely Y and
X contains exactly the same elements, in the same order, yet each element is at
most as duplicated in Y as in X. For instance, with s = 1 2 2 3 3 3 3 4 5 6 6 7

8 8... (ending with an infinite sequence of 8) and s’ = 1 2 2 3 3 4 5 6 7 8...,
we have (s’ ≤sim s) since every value, from 1 to 8, appears in both sequences
and the number of 1 (resp. 2, 3, 4, 5, 6, 7, 8) is smaller or equal in s’. The relation
≤sim is based on inductive and coinductive mechanisms, defined as follows:

CoInductive ≤sim: Stream → Stream → Prop :=

| sim_constant: ∀ a s, is_constant a s → O a ≤sim s

| sim_cons: ∀ a s1 s2 s3 , s1 ≤sim s2 → C_plus a s2 s3 →
C a s1 ≤sim s3.

The first constructor sim_constant means that every stream made of one ele-
ment a is smaller than any stream constantly made of a (albeit finite or infi-
nite). The second constructor sim_cons means that given an element a and
two streams s1 and s2 such that s1 is smaller than s2, if the stream s3 is
obtained from s2 by adding a positive number of a (namely, (C_plus a s2 s3)

holds), then (C a s1) is smaller than s3. The predicate C_plus is inductively

34 K. Altisen et al.

defined and (C_plus a s1 (C a s2)) checks that either s1 and s2 are equal or
(C_plus a s1 s2).

We can show that ≤sim is a partial order, and as squeezing means removing
all duplicates of a stream, we can prove that for a given squeezable stream, its
squeezing is minimal w.r.t. ≤sim (see [2] for details):

Lemma. Squeeze_is_min: ∀ (s: Stream) (sq: Squeezable s),

Squeeze s ≤sim s ∧ ∀ x, x ≤sim s → Squeeze s ≤sim x.

We show that some properties can be transferred between ≤sim-related
streams. Precisely, a property P is defined to be (decreasing) monotonic (resp.
comonotonic) w.r.t. ≤sim as follows:

monotonic P := ∀ x y, x ≤sim y → P y → P x

comonotonic P := ∀ x y, x ≤sim y → P x → P y

The proof of Claim (1) requires to prove the preservation of the following
properties. First, we prove a result related to the implication: for two predi-
cates P and Q, such that P is comonotonic and Q is monotonic, we easily obtain
that (fun s => P s → Q s) is monotonic. For some property P which is mono-
tonic (resp. comonotonic), (Eventually P) is monotonic (resp. comonotonic):
indeed if P is reached by a given stream y, then it is also reached by any
stream x that contains less (resp. more) duplicates. Similarly, for some monotonic
property P, (Always P) is monotonic. Some other ad-hoc properties are proven
(co)monotonic, if necessary, using straightforward coinductions.

4.3 Proof of Claim (1)

The core of the proof is to use Squeeze on (execread1 e) and to show that the
result is actually an execution of A1.

To allow the use of Squeeze (execread1 e), we need to show that (execread1 e)

is squeezable, meaning that from any environment of (execread1 e), we can
decide whether the remaining sequence of environments is constant. This
proof uses the fact that e is weakly fair and that the predicate terminal

is decidable. First, if initially e is terminal for A1, then it remains so for-
ever, and (execread1 e) is a constant sequence made of the environment
(H (execread1 e)) only. Second, we show that if initially, e is not terminal
for A1, then necessarily, we have reach_diff (H (execread1 e)) (execread1 e)

which means that (execread1 e) begins by a finite number of duplicates of
(H (execread1 e)). Indeed, as (H e) is not terminal for A1, there exists a node
which is enabled to execute its local algorithm A1 in e. It will remain contin-
uously enabled until being activated or neutralized, meaning that the node or
one of its neighbors has made a move of A1. This activation or neutralization
eventually occurs due to the weakly fair assumption and the fact that A1 has
priority over A2. Following this remark, the proof is done by induction on the
weakly fair assumption. Third, whether or not e is initially terminal for A1 is

Squeezing Streams and Composition of Self-stabilizing Algorithms 35

decidable (Lemma terminal_dec). Hence, the proof that (execread1 e) is squeez-
able is performed coinductively and each step of the coinduction decides whether
the current environment is terminal for A1.

So we can build Se = Squeeze (execread1 e) and show it is an execution of A1.

(a) Se is initiated under Assume1 since a stream and its squeezing have the same
initial environment.

(b) Se is weakly fair. We have Se ≤sim (execread1 e) by Lemma Squeeze_is_min.
We show that (execread1 e) is weakly fair by induction and coinduction on the
definition of weakly_fair. Now, we can prove that weakly_fair is monotonic
directly using preservation properties. So, we conclude that Se is weakly fair.

(c) Se is a maximal run. We first prove the following intermediate claim:

(c1) ∀ e1, Always moves e1 → e1 ≤sim execread1 e →
is_max_run e1.

The proof is split into two subgoals: (Always s_Step e1) and (Always s_terminal

e1). Let s be any stream. (s_Step s) means that when s is made of at least
two elements (i.e., s is equal to some (C a ss)), then (Step (H ss) a) holds.
(s_terminal s) means that when s is made of a single element a (i.e., s is equal
to (O a))), then (terminal a) holds.

Subgoal 1 follows from the fact that Always (fun e => moves e → s_Step e)

is monotonic. This latter can be shown by a direct coinduction, which mainly
relies on the fact that as s_Step applies on the first two elements of the stream
and can hold only when they are different.

For Subgoal 2, we use the assumption (weakly_fair e) to show the property

(c2) ∀ g1, is_constant g1 (execread1 e) → terminal g1.

namely, if (execread1 e) is constantly made of an environment g1, then g1 is
terminal. Actually, we proceed by contradiction and prove that if g1 is not ter-
minal, then there exists a node n which is enabled in g1. Therefore, due to the
weakly fair assumption, n will be eventually activated or neutralized in A1 ⊕A2,
hence in A1, since A1 has priority over A2 in A1 ⊕ A2. Then, by induction
on (Eventually (AN n) e), we obtain that e cannot be constantly made of g1.
Subgoal 2 is then obtained with a direct coinductive proof using Claim (c2).

This concludes the proof of Claim (c1) which can be applied on Se since,
again, (Se ≤sim execread1 e) and (Always moves) hold on Se (see Lemma Sque

eze_Always_moves). Hence, Se is a maximal run. Actually, e1 and Se represent one
and the same stream, but working on e1 has allowed to get rid of the (complex)
construction of Se = Squeeze (execread1 e) in the proof.

As a conclusion, we deduce (by (a), (b), and (c)) that the squeezing Se of the
stream (execread1 e) is an execution of A1 and use it on H2 (A1 is silent). Hence,
Se is finite, i.e., it eventually reaches a terminal environment. As Eventually

is comonotonic, (execread1 e) eventually reaches a terminal environment too,
hence Claim (1) holds. This concludes the proof of convergence.

36 K. Altisen et al.

5 Conclusion

The composition theorem proves that hierarchical collateral composition pre-
serves self-stabilization when applied under convenient assumptions, in particu-
lar assuming weakly fair executions. It comes with a toolbox for squeezing streams
that was mandatory to achieve the proof of the theorem. As an example, we
instantiated the theorem with the two first layers of the algorithm proposed in
[20]. The first layer builds a rooted spanning tree on an identified connected net-
work; the second layer assumes such a tree exists and computes a k-dominating
set of the network (k ∈ N) using this tree. Both algorithms are self-stabilizing
under a weakly fair daemon, and our result certifies that their composition is
also self-stabilizing and so builds a k-dominating set of an arbitrary connected
identified network.

Composition techniques, in particular the hierarchical collateral composition,
are widely used in the self-stabilizing area [18,23,27] because adopting a modular
approach is unavoidable to design and prove complex present-day algorithms.
Certification of such techniques is a step beyond traditional handmade proofs
that offers hugely more confidence in the correctness of the result; and also a
step towards the certification of complex multi-layered algorithms.

References

1. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: The 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25
January 2013 (2013)

2. Altisen, K., Corbineau, P., Devismes, S.: PADEC: A Framework for Certified Self-
Stabilization. http://www-verimag.imag.fr/∼altisen/PADEC/

3. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-
stabilization. Logical Methods Comput. Sci. (special issue of FORTE 2016) 13(4)
(2017)

4. Altisen, K., Devismes, S., Durand, A.: Concurrency in snap-stabilizing local
resource allocation. J. Parallel Distrib. Comput. 102, 42–56 (2017)

5. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossi-
bility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama,
Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03089-0 13

6. Beauquier, J., Gradinariu, M., Johnen, C.: Cross-over composition - enforcement
of fairness under unfair adversary. In: Datta, A.K., Herman, T. (eds.) WSS 2001.
LNCS, vol. 2194, pp. 19–34. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45438-1 2

7. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016). https://doi.org/10.1007/s00446-016-0271-1

8. Bertot, Y.: Filters on coinductive streams, an application to eratosthenes’ sieve. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Heidelberg
(2005). https://doi.org/10.1007/11417170 9

http://www-verimag.imag.fr/~altisen/PADEC/
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/978-3-319-03089-0_13
https://doi.org/10.1007/3-540-45438-1_2
https://doi.org/10.1007/3-540-45438-1_2
https://doi.org/10.1007/s00446-016-0271-1
https://doi.org/10.1007/11417170_9

Squeezing Streams and Composition of Self-stabilizing Algorithms 37

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

10. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent
self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS,
vol. 8756, pp. 18–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11764-5 2

11. Caron, E., Chuffart, F., Tedeschi, C.: When self-stabilization meets real platforms:
an experimental study of a peer-to-peer service discovery system. Future Gener.
Comput. Syst. 29(6), 1533–1543 (2013)

12. Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: A self-stabilizing k-clustering
algorithm for weighted graphs. J. Parallel Distrib. Comput. 70(11), 1159–1173
(2010)

13. Castéran, P., Filou, V., Mosbah, M.: Certifying distributed algorithms by embed-
ding local computation systems in the coq proof assistant. In: Symbolic Computa-
tion in Software Science (SCSS 2009) (2009)

14. Chen, M., Monin, J.F.: Formal verification of netlog protocols. In: Sixth Interna-
tional Symposium on Theoretical Aspects of Software Engineering, TASE 2012,
Beijing, China, 4–6 July 2012 (2012)

15. Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of
inductive constructions. J. Log. Comput. 13(6), 801–813 (2003)

16. Courtieu, P.: Proving self-stabilization with a proof assistant. In: 16th International
Parallel and Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale,
FL, USA, 15–19 April 2002, CD-ROM/Abstracts Proceedings (2002)

17. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7 14

18. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Competi-
tive self-stabilizing k-clustering. Theor. Comput. Sci. 626, 110–133 (2016)

19. Datta, A.K., Gurumurthy, S., Petit, F., Villain, V.: Self-stabilizing network ori-
entation algorithms in arbitrary rooted networks. Stud. Inform. Univ. 1(1), 1–22
(2001)

20. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-
stabilizing small k-dominating sets. IJNC 3(1), 116–136 (2013)

21. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

22. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57708-1 12

23. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
24. Dubois, S., Tixeuil, S.: A Taxonomy of Daemons in Self-stabilization. CoRR

abs/1110.0334 (2011). http://arxiv.org/abs/1110.0334
25. Fei, L., Yong, S., Hong, D., Yizhi, R.: Self stabilizing distributed transactional

memory model and algorithms. J. Comput. Res. Dev. 51(9), 2046 (2014)
26. Giménez, E.: An application of co-inductive types in Coq: verification of the alter-

nating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol.
1158, pp. 135–152. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
61780-9 67

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-319-57708-1_12
http://arxiv.org/abs/1110.0334
https://doi.org/10.1007/3-540-61780-9_67
https://doi.org/10.1007/3-540-61780-9_67

38 K. Altisen et al.

27. Gouda, M., Herman, T.: Adaptive programming. IEEE Trans. Softw. Eng. 17,
911–921 (1991)

28. Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algo-
rithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol.
7604, pp. 209–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33475-7 15

29. Kulkarni, S.S., Rushby, J.M., Shankar, N.: A case-study in component-based
mechanical verification of fault-tolerant programs. In: 1999 ICDCS Workshop on
Self-stabilizing Systems, Austin, Texas, 5 June 1999, Proceedings (1999)

30. Lamport, L.: How to write a 21st century proof. J. Fixed Point Theory Appl.
11(1), 43–63 (2012)

31. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput.
207(2), 284–304 (2009)

32. Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. J.
Log. Comput. 7(2), 175–204 (1997)

33. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977)

34. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, Cambridge (2001)

35. The Coq Development Team: The Coq Proof Assistant Documentation, June 2012.
http://coq.inria.fr/refman/

https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.1007/978-3-642-33475-7_15
http://coq.inria.fr/refman/

Parametric Updates in Parametric Timed
Automata

Étienne André1,2,3 , Didier Lime4 , and Mathias Ramparison1(B)

1 Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France
ramparison@lipn13.fr

2 JFLI, CNRS, Tokyo, Japan
3 National Institute of Informatics, Tokyo, Japan

4 École Centrale de Nantes, LS2N, CNRS, UMR 6597, Nantes, France

Abstract. Verification of timed concurrent systems is hard, especially
when the exact value of timing constants remains unknown. In this work,
we propose a new subclass of Parametric Timed Automata (PTAs) enjoy-
ing a decidability result; we allow clocks to be compared to parameters
in guards, as in classic PTAs, but also to be updated to parameters. If
we update all clocks each time we compare a clock with a parameter
and each time we update a clock to a parameter, we obtain a syntactic
subclass for which we can decide the EF-emptiness problem (“is the set
of parameter valuations for which some given location is reachable in
the instantiated timed automaton empty?”) and even perform the exact
synthesis of the set of rational valuations such that a given location is
reachable. To the best of our knowledge, this is the first non-trivial sub-
class of PTAs, actually even extended with parametric updates, for which
this is possible.

1 Introduction

Timed automata (TAs) are a powerful formalism to model and verify timed
concurrent systems, both expressive enough to model many interesting systems
and enjoying several decidability properties. In particular, the reachability of a
discrete state is PSPACE-complete [1]. In TAs, clocks can be compared with
constants in guards, and can be updated to 0 along edges. This can model a
system where processes synchronise (are reset) together periodically.

Timed automata may turn insufficient to verify systems where the timing
constants themselves are subject to some uncertainty, or when they are sim-
ply not known at the early design stage. Parametric timed automata (PTAs) [2]
address this drawback by allowing parameters (unknown constants) in the timing

This work is partially supported by the ANR national research program PACS (ANR-
14-CE28-0002).
É. André—Partially supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 39–56, 2019.
https://doi.org/10.1007/978-3-030-21759-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_3&domain=pdf
http://orcid.org/0000-0001-8473-9555
http://orcid.org/0000-0001-9429-7586
http://orcid.org/0000-0001-6764-1214
https://doi.org/10.1007/978-3-030-21759-4_3

40 É. André et al.

constraints; this high expressive power comes at the cost of the undecidability of
most interesting problems . In particular, the basic problem of EF-emptiness (“is
the set of valuations for which a given location is reachable in the instantiated
timed automaton empty?”) is “robustly” undecidable: even for a single rational-
valued [20] or integer-valued parameter [2,8], or when only strict constraints are
used [15]. A well-known syntactic subclass of PTAs that enjoys limited decidabil-
ity is L/U-PTAs [17], where the parameters set is partitioned into lower-bound
and upper-bound parameters, i.e., parameters that can only be compared to a
clock as a lower-bound (resp. upper-bound). The EF-emptiness problem is decid-
able for L/U-PTAs [11,17] and for PTAs under several restrictions [13]; however,
most other problems are undecidable (e.g., [4,7,11,18,21]).

Contributions. We investigate parametric updates, which can model an
unknown timing configuration in a system where processes need to synchronise
together on common events, as in e.g., programmable controller logic programs
with concurrent tasks execution. We show that the EF-emptiness problem is
decidable for PTAs augmented with parametric updates, with the additional con-
dition that whenever a clock is compared to a parameter in a guard or updated
to a parameter, all clocks must be updated (possibly to parameters)—this gives
R-U2P-PTA. This result holds when the parameters are bounded rationals in
guards, and possibly unbounded rationals in updates. Non-trivial decidable sub-
classes of PTAs are a rarity (to the best of our knowledge, only L/U-PTAs [17]
and integer-points (IP-)PTAs [7]); this makes our positive result very welcome.
In addition, not only the emptiness is decidable, but exact synthesis for bounded
rational-valued parameters can be performed—which contrasts with L/U-PTAs
and IP-PTAs as synthesis was shown intractable [7,18].

A full version of this paper with all detailed proofs is available at [6].

Related Work. Our construction is reminiscent of the parametric difference
bound matrices (PDBMs) defined in [22, Sect. III.C] where the author revisit the
result of the binary reachability relation over both locations and clock valuations
in TAs; however, parameters of [22] are used to bound in time a run that reaches
a given location, while we use parameters directly in guards and resets along the
run, which make them active components of the run specifically for intersection
with parametric guards, key point not tackled in [22].

Allowing parameters in clock updates is inspired by the updatable TA defined
in [10] where clocks can be updated not only to 0 (“reset”) but also to rational
constants (“update”). In [5], we extended the result of [10] by allowing para-
metric updates (and no parameter elsewhere, e.g., in guards): the EF-emptiness
is undecidable even in the restricted setting of bounded rational-valued param-
eters, but becomes decidable when parameters are restricted to (unbounded)
integers.

Synthesis is obviously harder than EF-emptiness: only three results have been
proposed to synthesize the exact set of valuations for subclasses of PTAs, but
they are all concerned with integer -valued parameters [5,11,18]. In contrast, we
deal here with (bounded) rational-valued parameters—which makes this result
the first of its kind. The idea of updating all clocks when compared to parameters

Parametric Updates in Parametric Timed Automata 41

comes from our class of reset-PTAs briefly mentioned in [7], but not thoroughly
studied. Finally, updating clocks on each transition in which a parameter appears
is reminiscent of initialized rectangular hybrid automata [16], which remains one
of the few decidable subclasses of hybrid automata.

Section 2 recalls preliminaries. Section 3 presents R-U2P-PTA along with our
decidability result. Section 4 gives a concrete application of our result.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables evolving at the same rate. A clock valuation is w : X → R+.
We write 0 for the clock valuation that assigns 0 to all clocks. Given d ∈ R+,
w + d (resp. w − d) denotes the valuation such that (w + d)(x) = w(x)+ d (resp.
(w − d)(x) = w(x) − d if w(x) − d > 0, 0 otherwise), for all x ∈ X. We assume
a set P = {p1, . . . , pM} of parameters, i.e., unknown constants. A parameter
valuation v is a function v : P → Q+. We identify a valuation v with the point
(v(p1), . . . , v(pM)) of QM

+ . Given d ∈ N, v +d (resp. v −d) denotes the valuation
such that (v + d)(p) = v(p) + d (resp. (v − d)(p) = v(p) − d if v(p) − d > 0, 0
otherwise), for all p ∈ P.

In the following, we assume � ∈ {<,≤} and �� ∈ {<,≤,≥, >}.
A parametric guard g is a constraint over X∪P defined as the conjunction of

inequalities of the form x �� z, where x is a clock and z is either a parameter or a
constant in Z. A non-parametric guard is a parametric guard without parameters
(i.e., over X).

Given a parameter valuation v, v(g) denotes the constraint over X obtained
by replacing in g each parameter p with v(p). We extend this notation to an
expression: a sum or difference of parameters and constants. Likewise, given a
clock valuation w, w(v(g)) denotes the expression obtained by replacing in v(g)
each clock x with w(x). A clock valuation w satisfies constraint v(g) (denoted
by w |= v(g)) if w(v(g)) evaluates to true. We say that v satisfies g, denoted by
v |= g, if the set of clock valuations satisfying v(g) is nonempty. We say that g
is satisfiable if ∃w, v s.t. w |= v(g).

A parametric update is a partial function u : X ⇀ N ∪ P which assigns
to some of the clocks an integer constant or a parameter. For v a parameter
valuation, we define a partial function v(u) : X ⇀ Q+ as follows: for each clock
x ∈ X, v(u)(x) = k ∈ N if u(x) = k and v(u)(x) = v(p) ∈ Q+ if u(x) = p a
parameter. A non-parametric update is unp : X ⇀ N. For a clock valuation w
and a parameter valuation v, we denote by [w]v(u) the clock valuation obtained
after applying v(u).

Given a clock x and a clock valuation w, �w(x)	 denotes the integer part
of w(x) while frac(w(x)) denotes its fractional part. We define the same notation
for parameter valuations.

We first define a new class of parametric timed automata and further define
classic parametric timed automata and timed automata.

42 É. André et al.

idle mine

checkx

checky

rewardx

rewardy

newTx

t = p
newBlock
x := p1
y := p2
t := 0

x = max ∧ y < max
blockSolutionx

x := 0
y := pv2
t := 0

y = max ∧ x < max
blockSolutiony

x := pv1
y := 0
t := 0

y ≤ v
okBlock

x := 0
y := 0
t := 0y > v

fakeBlock
x := p1
y := p2
t := 0

x ≤ v
okBlock

x := 0
y := 0
t := 0

x > v
fakeBlock
x := p1
y := p2
t := 0

addBlock

t := 0

addBlock

t := 0

Fig. 1. A proof-of-work modeled with a bounded R-U2P-PTA.

Definition 1. An update-to-parameter PTA (U2P-PTA) A is a tuple
A = (Σ , L, l0,X,P, ζ), where: (i) Σ is a finite set of actions, (ii) L is a finite
set of locations, (iii) l0 ∈ L is the initial location, (iv) X is a finite set of clocks,
(v) P is a finite set of parameters, (vi) ζ is a finite set of edges e = 〈l, g, a, u, l′〉
where l, l′ ∈ L are the source and target locations, g is a parametric guard, a ∈ Σ
and u : X ⇀ N ∪ P is a parametric update function.

An U2P-PTA is depicted in Fig. 1. Note that all clocks are updated whenever
there is a comparison with a parameter (as in newBlock) or a clock is updated to
a parameter (as in blockSolutionx). Given a parameter valuation v, we denote by
v(A) the structure where all occurrences of a parameter pi have been replaced
by v(pi). If v(A) is such that all constants in guards and updates are integers,
then v(A) is a updatable timed automaton [10] but will be called timed automaton
(TA) for the sake of simplicity in this paper.
A bounded U2P-PTA is a U2P-PTA with a bounded parameter domain that
assigns to each parameter a minimum integer bound and a maximum integer
bound. That is, each parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N.
Hence, a bounded parameter domain is a hyperrectangle of dimension M .
A parametric timed automaton (PTA) [2] is a U2P-PTA where, for any edge
e = 〈l, g, a, u, l′〉 ∈ ζ, u : X ⇀ {0}.

Parametric Updates in Parametric Timed Automata 43

Definition 2 (Concrete semantics of a TA). Given a U2P-PTA A =
(Σ , L, l0,X,P, ζ), and a parameter valuation v, the concrete semantics of v(A)
is given by the timed transition system (S, s0,→), withS = {(l, w) ∈ L × R

H
+},

s0 = (l0,0) and → consists of the discrete and (continuous) delay transition
relations:

– discrete transitions: (l, w) e�→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e =
〈l, g, a, u, l′〉 ∈ ζ, w′ = [w]v(u), and w |= v(g).

– delay transitions: (l, w) d�→ (l, w + d), with d ∈ R+.

Moreover we write (l, w) e−→ (l′, w′) for a combination of a delay and discrete
transitions where ((l, w), e, (l′, w′)) ∈ → if ∃d,w′′ : (l, w) d�→ (l, w′′) e�→ (l′, w′).

Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states
of S as the concrete states of v(A). A (concrete) run of v(A) is a possibly infinite
alternating sequence of concrete states of v(A) and edges starting from s0 of the
form s0

e0−→ s1
e1−→ · · · em−1−→ sm

em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ ζ,
and (si, ei, si+1) ∈ →.

Given a state s = (l, w), we say that s is reachable (or that v(A) reaches s)
if s belongs to a run of v(A). By extension, we say that l is reachable in v(A),
if there exists a state (l, w) that is reachable.

Throughout this paper, let K denote the largest constant in a given U2P-
PTA, i.e., the maximum of the largest constant compared to a clock in a guard
and the largest upper bound of a parameter (if the U2P-PTA is bounded).

Let us recall the notion of clock region [1].

Definition 3 (clock region). For two clock valuations w and w′, ∼ is an
equivalence relation defined by: w ∼ w′ iff (i) for all clocks x, either �w(x)	 =
�w′(x)	 or w(x), w′(x) > K; (ii) for all clocks x, y with w(x), w(y) ≤ K,
frac(w(x)) ≤ frac(w(y)) iff frac(w′(x)) ≤ frac(w′(y)); (iii) for all clocks x with
w(x) ≤ K, frac(w(x)) = 0 iff frac(w′(x)) = 0.

A clock region is an equivalence class of ∼.

Two clock valuations in the same clock region reach the same regions by time
elapsing, satisfy the same guards and can take the same transitions [1].

In this paper, we address the EF-emptiness problem: given a U2P-PTA A
and a location l, is the set of parameter valuations v such that l is
reachable in v(A) empty?

3 A Decidable Subclass of U2P-PTAs

We now impose that, whenever a guard or an update along an edge contains
parameters, then all clocks must be updated (to constants or parameters). Our
main contribution is to prove that this restriction makes EF-emptiness decidable.

44 É. André et al.

Definition 4. An R-U2P-PTA is a U2P-PTA where for any 〈l, g, a, u, l′〉 ∈ ζ,
u is a total function whenever:1 (i) g is a parametric guard, or (ii) u(x) ∈ P for
some x ∈ X.

The main idea for proving decidability is the following: given an R-U2P-
PTA A we will construct a finite region automaton that bisimulates A, as in
TA [1]. Our regions will contain both clocks and parameters, and will be a finite
number. Since parameters are allowed in guards, we need to construct parameter
regions and more restricted clock regions. We will define a form of Parametric
Difference Bound Matrices (viz., p–PDBMs for precise PDBMs, inspired by [17])
in which, once valuated by a parameter valuation, two clock valuations have the
same discrete behavior and satisfy the same non-parametric guards. A p–PDBM
will define the set of clocks and parameter valuations that satisfies it, while
once valuated by a parameter valuation, a valuated p–PDBM will define the set
of clock valuations that satisfies it. A key point is that in our p–PDBMs the
parametric constraints used in the matrix will be defined from a finite set of
predefined expressions involving parameters and constants, and we will prove
that this defines a finite number of p–PDBMs. Decidability will come from this
fact. We define this set (PLT for parametric linear term) as follows: PLT =
{frac(pi), 1 − frac(pi), frac(pi) − frac(pj), frac(pj) + 1 − frac(pi), 1, 0, frac(pi) −
1 − frac(pj),−frac(pi), frac(pi) − 1}, for all 1 ≤ i, j ≤ M . Given a parameter
valuation v and d ∈ PLT , we denote by v(d) the term obtained by replacing
in d each parameter p by v(p). Let us now define an equivalence relation between
parameter valuations v and v′.

Definition 5 (regions of parameters). We write that v � v′ if (i) for all
parameter p, �v(p)	 = �v′(p)	; (ii) for all d1, d2, d3 ∈ PLT , v(d1) ≤ v(d2)+v(d3)
iff v′(d1) ≤ v′(d2) + v′(d3);

Parameter regions are defined as the equivalence classes of �. The definition
is in a way similar to [1, Definition 4.3] but also involves comparisons of sums
of elements of PLT . In fact, we will need this kind of comparisons to define
our p–PDBMs. Nonetheless we do not need more complicated comparisons as
in R-U2P-PTA whenever a parametric guard or update is met the update is a
total function: this preserves us from the parameter accumulation, e.g., obtaining
expressions of the form 5frac(pi)−1−3frac(pj) (that may occur in usual PTAs).

In the following, our p–PDBMs will contain pairs of the form D = (d, �),
where d ∈ PLT . We therefore need to define comparisons on these pairs.

We define an associative and commutative operator ⊕ as �1 ⊕ �2 = < if
�1 �= �2, or �1 if �1 = �2. We define D1 + D2 = (d1 + d2, �1 ⊕ �2). Following the
idea of parameter regions, we define the validity of a comparison between pairs

1 In the following we only consider either non-parametric, or (necessarily total) fully
parametric update functions. A total update function which is not fully parametric
(i.e., an update of some clocks to parameters and all others to constants) can be
encoded as a total fully parametric update immediately followed by a (partial) non-
parametric update function.

Parametric Updates in Parametric Timed Automata 45

of the form (di, �i) within a given parameter region, i.e., whether the comparison
is true for all parameter valuations v in the parameter region Rp.

Definition 6 (validity of comparison). Let Rp be a parameter region. Given
any two linear terms d1, d2 over P (i.e., of the form

∑
i αipi + d with αi, d ∈ Z),

the comparison (d1, �1) � (d2, �2) is valid for Rp if:

1. � = <, and either (i) for all v ∈ Rp, v(d1) < v(d2) evaluates to true, or (ii)
for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, �1 = < and �2 = ≤;

2. � = ≤, and either (i) for all v ∈ Rp, v(d1) < v(d2) evaluates to true, or (ii)
for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, and �1 = �2, or �1 = <;

Transitivity is immediate from the definition: if D1 �1 D2 and D2 �2 D3 are valid
for Rp, D1(�1 ⊕ �2)D3 is valid for Rp.

We can now define our data structure, namely p–PDBMs, inspired by the
PDBMs of [17] themselves inspired by DBMs [14]. However, our p–PDBM com-
pare differences of fractional parts of clocks, instead of clocks as in classical
DBMs; therefore, our p–PDBMs are closer to clock regions than to DBMs and
fully contained into clock regions of [1] A p–PDBM is a pair made of an integer
vector (encoding the clocks integer part), and a matrix (encoding the paramet-
ric differences between any two clock fractional parts). Their interpretation also
follows that of PDBMs and DBMs: for i �= 0, the matrix cell Di,0 = (di,0, �i0) is
interpreted as the constraint frac(xi) �i0 di,0, and D0,i = (d0,i, �0i) as the con-
straint −frac(xi) �0i d0,i. For i �= 0 and j �= 0, the matrix cell Di,j = (di,j , �ij) is
interpreted as frac(xi) − frac(xj) �ij di,j .

Definition 7 (p–PDBM). Let Rp be a parameter region. A p–PDBM for Rp

is a pair (E,D) with E = (E1, · · · , EH) a vector of H integers (or ∞ when
it exceeds a possible upper-bound) which is the integer part of each clock, and
D is an (H + 1)2 matrix where each element Di,j is a pair (di,j , �ij) for all
0 ≤ i, j ≤ H, where di,j ∈ PLT . Moreover, for all 0 ≤ i ≤ H, Di,i = (0,≤). In
addition, for all i, j, k:

1. (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,
2. For all i �= 0, j �= 0, either (0,≤) ≤ Di,j ≤ (1, <) is valid for Rp and (−1, <)

≤ Dj,i ≤ (0,≤) is valid for Rp or (0,≤) ≤ Dj,i ≤ (1, <) is valid for Rp and
(−1, <) ≤ Di,j ≤ (0,≤) is valid for Rp.

3. Di,j ≤ Di,k + Dk,j is valid for Rp (canonical form).
4. If di,j = −dj,i and di,j �= ±1 then �ij = �ji = ≤, else �ij = �ji = <,

The use of validity ensures the consistency of the p–PDBM. We denote
the set of all p–PDBMs that are valid for Rp by p–PDBM(Rp). Given a p–
PDBM (E,D), it defines the subset of R

H ∪ Q
M satisfying the constraints∧

i,j∈[0,H] frac(xi) − frac(xj) �i,j di,j ∧
∧

i∈[1,H]�xi	 = Ei.
Given a parameter valuation v, we denote by (E, v(D)) the valuated p–

PDBM, i.e., the set of clock valuations defined by:
∧

i,j∈[0,H]

frac(xi) − frac(xj) �i,j v(di,j) ∧
∧

i∈[1,H]

�xi	 = Ei.

46 É. André et al.

For a clock valuation w, we write w ∈ (E, v(D)) if it satisfies all constraints
of (E, v(D)). Intuitively, our p–PDBMs are partitioned into three types.

(1) The point p–PDBM is a clock region defined by only parameters which
contains only one clock valuation; it represents the unique clock valuation (for a
given parameter valuation) obtained after a total parametric update in an U2P-
PTA. Each clock is valuated to a parameter and each difference of clocks is
valuated to a difference of parameters (it corresponds to constraints of the form
x = p and x − y = pi − pj).

Let v be a parameter valuation. We assume �v(p2)	 = �v(p1)	 = k ∈ N and
frac(v(p1)) > frac(v(p2)). The p–PDBM obtained after an update u(x) = v(p2)
and u(y) = v(p1) is represented using the following pair (where the indices 0,x,y
are shown for the sake of comprehension)

(E,D) =
((

k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (−frac(p2),≤) (−frac(p1),≤)
x (frac(p2),≤) (0,≤) (frac(p2) − frac(p1),≤)
y (frac(p1),≤) (frac(p1) − frac(p2),≤) (0,≤)

⎞
⎟⎠

)

y

(k, k + 1)

frac(v(p1))

(k, k)
frac(v(p2)) (k + 1, k) x

1− frac(v(p1))

Fig. 2. Graphical representations
of p–PDBMs and [1] regions (Color
figure online)

Once valuated with v, it contains a unique
clock valuation. We represent it as the black
dot in Fig. 2.

(2) In contrast, a border p–PDBM is
a clock region which can contain several
clock valuations satisfying some possibly
parametric constraints, or contain at least
one clock valuation satisfying non-parametric
constraints (as the corner-point region of [1]).
In particular, the initial clock region {0H}
and any clock region that is a single integer
clock valuation is a p–PDBM. A border p–
PDBM is characterized by at least one clock x
s.t. Dx,0 = D0,x = (0,≤) and can be seen as a subregion of an open line segment
or a corner point region of [1, Fig. 9 Example 4.4]. After an immediate update
of x to k, the above p–PDBM (E,D) becomes

(E,D) =
((

k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (0,≤) (−frac(p1),≤)
x (0,≤) (0,≤) (−frac(p1),≤)
y (frac(p1),≤) (frac(p1),≤) (0,≤)

⎞
⎟⎠

)

We represent it once valuated with v as the blue dot in Fig. 2. The open line
segment of [1, Fig. 9 example 4.4] can be represented as

((
k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (0,≤) (0, <)
x (0,≤) (0,≤) (0, <)
y (1, <) (1, <) (0,≤)

⎞
⎟⎠

)

and is depicted as the vertical left black line in Fig. 2.
(3) A center p–PDBM is a clock region which can contain several clock

valuations satisfying some possibly parametric constraints (as the open region
of [1]). A center p–PDBM is characterized by at least one clock y s.t. Dy,0 =

Parametric Updates in Parametric Timed Automata 47

(1, <) and for all x s.t. D0,x = (0, �ox), then we have �ox = < and can be
seen as a subregion of an open region of [1, Fig. 9 Example 4.4]. After some time
elapsing, and before any clock valuation reaches the next integer k+1—therefore
the next border p–PDBM—, the above p–PDBM (E,D) becomes

(E,D) =
((

k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (0, <) (−frac(p1), <)
x (1 − frac(p1), <) (0,≤) (−frac(p1),≤)
y (1, <) (frac(p1),≤) (0,≤)

⎞
⎟⎠

)

We represent it once valuated with v as the red line in Fig. 2. The open region
of [1, Fig. 9 Example 4.4] can be represented as

((
k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (0, <) (0, <)
x (1, <) (0,≤) (0, <)
y (1, <) (1, <) (0,≤)

⎞
⎟⎠

)

and is depicted as the top left black triangle in Fig. 2.
Remark that sets of the form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1} are in

contradiction with Definition 7 (4) and therefore cannot be part of a p–PDBM,
as in the regions of [1]. Basically, only the first p–PDBM after a (necessarily
total) parametric clock update will be a point p–PDBM; any following p–PDBM
will be a border p–PDBM or a center p–PDBM until the next (total) parametric
update.

The differentiation made in the previous paragraph between border p–PDBM
and center p–PDBM is intended to give an intuition to the reader about the
inclusion of p–PDBMs into [1] clock regions. Technical details are not relevant
for a good understanding of this paper but are given in [6].

In the following Sect. 3.1, we are going to define operations on p–PDBMs
(i.e., update of clocks, time elapsing and guards satisfaction), and will show
that the set of p–PDBMs is stable under these operations.

3.1 Operations on p–PDBMs

Non-parametric Update. To apply a non-parametric update on a p–PDBM,
following classical algorithms for DBMs [9], we define an update operator.

Given a p–PDBM (E,D) and unp a non-parametric update function that
updates a clock x to k ∈ N, update((E,D), unp) defines a new p–PDBM by (i)
updating Ex to k; (ii) setting the fractional part of x to 0: Dx,0 := D0,x := (0,≤);
(iii) updating the new difference between fractional parts with all other clocks i,
which is the range of values i can currently take: Dx,i := D0,i and Di,x := Di,0.

Intuitively, we update in (E,D) the lower and upper bounds of some clocks
to (0,≤) and the difference between two clocks Di,j to D0,j if xi is updated:
that is, the new difference between two clocks if one has been updated is just
the lower/upper bound of the one that is not updated. This allows us to conserve
the canonical form as we only “moved” some cells in D that already verified the
canonical form. Therefore update((E,D), unp) is a p–PDBM.

The following lemma states that the update operator behaves as expected.

48 É. André et al.

Fig. 3. Representation of p–PDBMs in two dimensions with two clocks x, y, two param-
eters p1, p2 and v s.t. �v(p1)� = �v(p2)� and frac(v(p1)) > frac(v(p2)).

Parametric Updates in Parametric Timed Automata 49

Lemma 1 (semantics of update on p–PDBM(Rp)). Let Rp be a parameter
region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let unp be a non-parametric
update. For all clock valuations w, w ∈ update((E, v(D)), unp) iff w′ ∈ (E, v(D))
for some w′ s.t. w = [w′]unp

.

Proof idea. The technical part is (⇒). The idea is to prove that, given w′ ∈
update((E, v(D)), unp) there is a non-empty set of clock valuations w s.t. w′ =
[w]unp

that is precisely defined by the constraints in (E, v(D)).

Parametric Update. Given (E,D)∈p–PDBM(Rp) we write update((E,D), u)
to denote the update of (E,D) by u, when u is a total parametric update func-
tion, i.e., updating the set of clocks exclusively to parameters. We therefore
obtain a point p–PDBM, containing the parametric set of constraints defining a
unique clock valuation. The semantics is straightforward.

Time Elapsing. Given a parameter region Rp, recall that constraints satisfied
by parameters are known, and we can order elements of PLT . Thanks to this
order, within a p–PDBM (E,D) the clocks with the (possibly parametric) largest
fractional part i.e., the clocks that have a larger fractional part than any other
clock, can always be identified by their bounds in D. For a p–PDBM (E,D), we
define the set of clocks with the largest fractional part (LFP) as LFPRp

(D) =
{x ∈ [1,H] | 0 ≤ Dx,i is valid for Rp, for all 0 ≤ i ≤ H}. Clocks belonging to
LFP are the first to reach the upper bound 1 by letting time elapse.

Note that several clocks may have the largest fractional parts (up to some
syntactic replacements , in that case they satisfy the same constraints in (E,D)).

Let (E,D) ∈ p–PDBM(Rp) and x ∈ LFPRp
(D). To formalize time elapsing

until the largest fractional part frac(x) reaches 1, we define a time elapsing
operator that will decline in two variants depending on the input: border p–
PDBM or center/point p–PDBM.

Given a border p–PDBM (E,D) with Ex = k, TE ((E,D)) defines a new
center p–PDBM by (i) setting Dx,0 := (1, <) as x is the first one that will
reach k + 1; (ii) updating the upper bound of all other clocks i, which has
increased: Di,0 := Di,x + (1, <); (iii) updating all lower bounds as they have
to leave the border : D0,i := D0,i + (0, <) (x included). This gives the range of
possible clock valuations before frac(x) reaches 1. Intuitively it represents the
transformation from an open line segment or the corner-point region of [1] into
an open region of [1].

The time elapsing operator also operates the transformation from an open
region of [1] to the upper open line segment or the corner-point region of [1].
Given a center/point p–PDBM (E,D) where Ex = k, TE ((E,D)) defines a
new border p–PDBM by (i) setting Dx,0 := D0,x := (0,≤) (intuitively both
became (1,≤)) and Ex = k +1 (if Ex ≤ K +1), as x is now in the upper border ;
(ii) updating the upper and lower bounds of all other clocks i: Di,0 := Di,x +
(1,≤) and D0,i := Dx,i + (−1,≤); (iii) updating the new difference between
fractional parts with all other clocks i, which is the range of values i can currently
take (as in the update operator): Dx,i := D0,i and Di,x := Di,0.

50 É. André et al.

Although we perform some additions such as Dj,i + (1, <), we do not create
new expressions that are not in PLT . In fact, this addition is performed on a
negative term (e.g., frac(p) − 1), as xi is a clock with the largest fractional part
and adding 1 transforms it into another term of PLT . The intuition is simi-
lar when performing additions such as Di,j + (−1,≤): as xi is a clock with the
largest fractional part, di,j is a positive term. The canonical form is also pre-
served by the last setting operations of the algorithm, as in the update operator.
Therefore TE ((E,D)) is a p–PDBM.

Proposition 1 (semantics of p–PDBM under TE). Let Rp be a param-
eter region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. There exists w′ ∈
TE ((E, v(D))) iff there exist w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof idea. This proof is quite technical. Intuitively, we bound the difference of
each upper bound v(di,0) and w(xi) and each lower bound v(d0,i) and w(xi).
This allows us to take a delay δ inside these bounds that allows us to reach the
next p–PDBM.

Running example: Figure 3 represents graphically different p–PDBMs obtained
after an update u(x) = v(p2) and u(y) = v(p1) (figure 1). Time elapsing
before y ∈ LFP reaches the next integer gives the center p–PDBM (figure 2)

(E,D) =
((

k

k

)
,

⎛
⎜⎜⎜⎝

0 x y

0 (0, ≤) (−frac(p2), <) (−frac(p1), <)

x (frac(p2) + 1 − frac(p1), <) (0, ≤) (−frac(p1) + frac(p2), ≤)

y (1, <) (frac(p1) − frac(p2), ≤) (0, ≤)

⎞
⎟⎟⎟⎠

)

After an update of y to k prior to reaching k + 1, the border p–PDBM obtained
is (figure 3)

(E,D) =
((

k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (−frac(p2), <) (0,≤)
x (frac(p2) + 1 − frac(p1), <) (0,≤) (frac(p2) + 1 − frac(p1), <)
y (0,≤) (−frac(p2), <) (0,≤)

⎞
⎟⎠

)

Time elapsing before x ∈ LFP reaches the next integer gives the center p–PDBM
(figure 4)

(E,D) =
((

k
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (−frac(p2), <) (0, <)
x (1, <) (0,≤) (frac(p2) + 1 − frac(p1), <)
y (1 − frac(p2), <) (−frac(p2), <) (0,≤)

⎞
⎟⎠

)

When x ∈ LFP reaches k + 1, the border p–PDBM obtained is (figure 5)

(E,D) =
((

k + 1
k

)
,

⎛
⎜⎝

0 x y
0 (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
x (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
y (1 − frac(p2), <) (1 − frac(p2), <) (0,≤)

⎞
⎟⎠

)

Parametric Updates in Parametric Timed Automata 51

Non-parametric Guard. From [1, Sect. 4.2] we have that either every clock
valuation of a clock region satisfies a guard, or none of them does. Note that a
p–PDBM for Rp is contained into a clock region of [1, Section 4.2], therefore we
have that if w ∈ (E, v(D)) satisfies a non-parametric guard g, then for all w′ ∈
(E, v(D)) we also have w′ satisfies g.

Let v ∈ Rp. We define v ∈ guard∀(g,E,D) iff for all w ∈ (E, v(D)), w |= g.
As any two v, v′ ∈ Rp satisfy the same constraints, it is straightforward that if
v ∈ guard∀(g,E,D), then for all v′ ∈ Rp, v′ ∈ guard∀(g,E,D).

Parametric Guard. Using a projection on parameters does not create new con-
straints on parameters that are not already in a parameter region Rp. Indeed,
a parametric guard g only adds new constraints of the form x �� p which gives
again a comparison between elements of PLT . Therefore, these new constraints
already belong to PLT and we can decide whether the set of clock valuations
satisfying this set of constraints is non-empty i.e., given v ∈ Rp, v(g) is satis-
fied by some clock valuation w ∈ (E, v(D)). This is a key point in the overall
process of proving the decidability of our R-U2P-PTAs. Note that there will
also be additional constraints involving clocks (with other clocks, constants or
parameters), but they will not be relevant as we immediately update all clocks,
therefore replacing these constraints with new constraints encoding the clock
updates.

Let v ∈ Rp. We define v ∈ p-guard∃(g,E,D) iff there is a w ∈ (E, v(D))
s.t. w |= v(g).2 Again, as any two v, v′ ∈ Rp satisfy the same constraints, it
is straightforward that if v ∈ p-guard∃(g,E,D), then for all v′ ∈ Rp, v′ ∈
p-guard∃(g,E,D).

Now that we have defined useful operations on p–PDBMs, we are going, given
a parameter region Rp, to construct a finite region automaton in which for any
run, there is an equivalent concrete run in the R-U2P-PTA.

3.2 Parametric Region Automaton

Let (E,D) ∈ p–PDBM(Rp), we say (E′,D′) ∈ Succ((E,D)) ⇔ ∃ i ≥ 0 s.t.
(E′, v(D′)) = TE i((E,D)). In other words, (E′,D′) is obtained after apply-
ing TE ((E,D)) a finite number of times. Succ((E,D)) is also called the time
successors of (E,D).

In order to finitely simulate an R-U2P-PTA, we create a parametric region
automaton.

Definition 8 (Parametric region automaton). Let Rp be a parameter
region. For an R-U2P-PTA A = (Σ , L, l0,X,P, ζ), given (E0,D0) the ini-
tial p–PDBM where all clocks are 0, the parametric region automaton R(A)
over Rp is the tuple (L′,Σ , L′

0, ζ
′) where: (i) L′ = L × p–PDBM(Rp) (ii)

2 Remark that here is why our construction works for EF-emptiness, but cannot be
used for, e.g., AF-emptiness (“is there a parameter valuation such that all runs
reach a goal location l”): unlike guard∀(g,E,D), not all clock valuations in a p–
PDBM (E, v(D)) can satisfy a parametric guard if v ∈ p-guard∃(g,E,D).

52 É. André et al.

L′
0 = (l0, (E0,D0)) (iii) ζ ′ = {

(
(l, (E,D)), e, (l′, (E′,D′)

)
∈ L′ × ζ × L′ |

either ∃e = 〈l, g, a, unp, l
′〉 ∈ ζ, g is a non-parametric guard, ∃(E′′,D′′) ∈

Succ((E,D)), Rp ⊆ guard∀(g, (E′′,D′′)) and (E′,D′) = update(E′′,D′′, unp),
or ∃e = 〈l, g, a, u, l′〉 ∈ ζ, g is a parametric guard, ∃(E′′,D′′) ∈ Succ((E,D)),
Rp ⊆ p-guard∃(g, (E′′,D′′)) and (E′,D′) = update(E′′,D′′, u).}

Let Rp be a parameter region, A be an R-U2P-PTA and R(A) =
(L′,Σ, L′

0, ζ
′).

A run in R(A) is an untimed sequence
σ : (l0, (E0,D0))e0(l1, (E1,D1))e1 · · · (li, (Ei,Di))ei(li+1, (Ei+1,Di+1))ei+1 · · ·
such that for all i we have

(
(li, (Ei,Di)), ei, (li+1, (Ei+1,Di+1))

)
∈ ζ ′, which

we also write (li, (Ei,Di))
ei−→ (li+1, (Ei+1,Di+1)) where ei. Note that we label

our transitions with the edges of the R-U2P-PTA.

3.3 Decidability of EF-emptiness and Synthesis

Using our construction of the parametric region automaton R(A) for a given
R-U2P-PTA A, we state the next proposition.

Proposition 2. Let Rp be a parameter region. Let A be an R-U2P-PTA
and R(A) its parametric region automaton over Rp. There is a run σ :
(l0, (E0,D0))

e0−→ (l1, (E1,D1))
e1−→ · · · (lf−1, (Ef−1,Df−1))

ef−1−→ (lf , (Ef ,Df))
in R(A) iff for all v ∈ Rp there is a run ρ : (l0, w0)

e0−→ (l1, w1)
e1−→

· · · (lf−1, wf−1)
ef−1−→ (lf , wf) in v(A) s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

From Proposition 2, if there is a run reaching a goal location in an instantiated
R-U2P-PTA, then for another parameter valuation in the same parameter region
there is a run in the instantiated R-U2P-PTA with the same locations and
transitions (but possibly different delays), reaching the same location.

Theorem 1. Let A be an R-U2P-PTA. Let Rp be a parameter region and v ∈
Rp. If there is a run ρ = (l0, w0)

e0−→ · · · ei−1−→ (li, wi) in v(A), then for all
v′ ∈ Rp there is a run ρ′ = (l0, w′

0)
e0−→ · · · ei−1−→ (li, w′

i) in v′(A) with for all i,
there is (Ei,Di) ∈ p–PDBM(Rp) s.t. wi ∈ (Ei, v(Di)) and w′

i ∈ (Ei, v
′(Di)).

Note that there is a finite number of p–PDBMs for each parameter region Rp.
Let (E,D) ∈ p–PDBM(Rp) and consider PLT : D is an (H+1)2 matrix made of
pairs (d, �) where d ∈ PLT and � ∈{≤, <}. Therefore the number of possibleD
is bounded by (2 × (2 + 3 ×

(
M
2

)
+ 4 × M))(H+1)2 . Moreover the number of

possible values for E is unbounded, but only a finite subset of all values needs
to be explored, i.e., those smaller than K + 1: indeed, following classical works
on timed automata [1,10], (integer) values exceeding the largest constant used
in the guards or the parameter bounds are equivalent.

To test EF-emptiness given a bounded R-U2P-PTA A and a goal location l,
we first enumerate all parameter regions (which are in finite number), and apply

Parametric Updates in Parametric Timed Automata 53

for each Rp the following process: we pick v ∈ Rp (e.g., using a linear pro-
gramming algorithm [19]). Then, we consider v(A) which is an updatable timed
automaton and test the reachability of l in v(A) [10]. Then EF-emptiness is false
if and only if there is v and a run in v(A) reaching l.

Theorem 2. The EF-emptiness problem is PSPACE-complete for bounded R-
U2P-PTAs.

Given a goal location l and a bounded R-U2P-PTA A, we can exactly syn-
thesize the parameter valuations v s.t. there is a run in v(A) reaching l by
enumerating each parameter region (of which there is a finite number) and test
if l is reachable for one of its parameter valuations. The result of the synthesis
is the union of the parameter regions for which one valuation (and, from our
results, all valuations in that region) indeed reaches the goal location in the
instantiated TA.

Corollary 1. Given a bounded R-U2P-PTA A and a goal location l we can
effectively compute the set of parameter valuations v s.t. there is a run in v(A)
reaching l.

Remark 1. By bounding parameter valuations in guards but not those used in
updates, we still have a finite number of parameter regions. Indeed, an integer
vector E with components Ex greater than �K	 + 1 is equivalent to an integer
vector E′ with E′

x = Ex if Ex < �K	 + 1 and E′
x = �K	 + 1 if Ex ≥ �K	 + 1.

Moreover for all p, we have to replace each parameter valuation v used in an
update by v(p) = v′(p) if v(p) ≤ K and v′(p) = K + 1 if v(p) > K.

4 Case Study

We implemented EFsynth for R-U2P-PTAs in IMITATOR, a parametric model
checker for (extensions of) PTAs [3].

Our class is the first for which synthesis is possible over bounded rational
parameters. We believe our formalism is useful to model several categories of
case studies, notably distributed systems with a periodic (global) behavior for
which the period is unknown: this can be encoded using a parametric guard
while resetting all clocks—possibly to other parameters.

Consider the R-U2P-PTA in Fig. 1 with six locations, three clocks compared
to parameters (x, y, t), one constant (max) and six parameters (p, p1, p2, v, pv1,
pv2).

We consider the case of a network of peers exchanging transactions grouped
by blocks, e.g., a blockchain, using the Proof-of-Work as a mean to validate new
blocks to add. In this simplified example, we consider a set of two peers (repre-
sented by x, y) which have different computation power (represented by p1, p2).
Peers write new transactions on the current block (newTx). If it is full (t = p),
both peers try to add a new block (newBlock) to write the transaction on it.
We update x to p1, y to p2, and t to 0 as the peers have a different computation

54 É. André et al.

power, and they start “mining” the block (find a solution to a computation prob-
lem). Either x or y will eventually offer a solution to the problem (blockSolutionx

if x = max or blockSolutiony if y = max). If y offers a solution, x will check
whether the solution is correct: x is updated to pv1 to represent its rapidity to
verify an offer. x can refuse the offer if the verification is too long (fakeBlock
if x > v) therefore the mining step restarts. x can approve the offer (okBlock
if x ≤ v), y is rewarded and the block is added to the blockchain (addBlock).

We are interested in a malicious peer x that wants to avoid y to be rewarded
for every new block. Therefore x asks: “what are the possible computation
power configurations and verification rapidity so that y is eventually rewarded”
(EF (rewardy)-synthesis), considered as a bug state in the automaton.

We run this R-U2P-PTA using IMITATOR [3]. We set max = 30 units of time
and also the upper bound of p and 1 ≥ v > 0 unit of time. IMITATOR computes
a disjunction of constraints so that rewardy is unreachable: we keep two relevant
ones; (i) p1 ≥ p2: x has strictly more computation power than y in which case x
always offers a block solution, or has the same computation power than y in
which case the systems blocks. x should invest heavily into hardware to keep
its computation power high; (ii) pv1 > v: the malicious peer x is always faster
to verify the solution offered by y and refuses it. The blockchain is probably
compromised.

Using a parameter valuation respecting one of the previous constraints guar-
antees that y is never rewarded.

5 Conclusion and Perspectives

Our class of bounded R-U2P-PTAs is one of the few subclasses of PTAs (actually
even extended with parametric updates) to enjoy decidability of EF-emptiness.
In addition, R-U2P-PTAs is the first “subclass” of PTAs to allow exact synthesis
of bounded rational -valued parameters.

Beyond reachability emptiness, we aim at studying unavoidability-emptiness
and language preservation emptiness, as well as their synthesis.

Finally, we would like to investigate whether our parametric updates can be
applied to decidable hybrid extensions of TAs [12,16].

Acknowledgements. We would like to thank anonymous reviewers for constructive
remarks.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993).https://doi.org/10.1145/167088.167242

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242

Parametric Updates in Parametric Timed Automata 55

3. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyz-
ing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32759-9 6, http://www.lsv.fr/Publis/PAPERS/PDF/
AFKS-fm12.pdf

4. André, É., Lime, D.: Liveness in L/U-parametric timed automata. In: ACSD, pp.
9–18. IEEE (2017). https://doi.org/10.1109/ACSD.2017.19

5. André, É., Lime, D., Ramparison, M.: Timed automata with parametric updates.
In: Juhás, G., Chatain, T., Grosu, R. (eds.) ACSD, pp. 21–29. IEEE (2018, to
appear). https://doi.org/10.1109/ACSD.2018.000-2

6. André, É., Lime, D., Ramparison, M.: Parametric updates in parametric timed
automata (full version) (2019). https://lipn.univ-paris13.fr/∼ramparison/articles/
ResetPTAfull.pdf

7. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed
automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 400–416. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 25

8. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 6

9. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

10. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

11. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009). https://doi.
org/10.1007/s10703-009-0074-0

12. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.:
Time-bounded reachability for monotonic hybrid automata: complexity and fixed
points. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
55–70. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8 6

13. Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-
Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp.
123–134. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-
8 11

14. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

15. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208–213 (2007). https://doi.org/10.1016/j.ipl.2006.11.018

16. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998). https://doi.org/
10.1006/jcss.1998.1581

17. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002).
https://doi.org/10.1016/S1567-8326(02)00037-1

18. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.
1109/TSE.2014.2357445

https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
http://www.lsv.fr/Publis/PAPERS/PDF/AFKS-fm12.pdf
http://www.lsv.fr/Publis/PAPERS/PDF/AFKS-fm12.pdf
https://doi.org/10.1109/ACSD.2017.19
https://doi.org/10.1109/ACSD.2018.000-2
https://lipn.univ-paris13.fr/~ramparison/articles/ResetPTAfull.pdf
https://lipn.univ-paris13.fr/~ramparison/articles/ResetPTAfull.pdf
https://doi.org/10.1007/978-3-319-47846-3_25
https://doi.org/10.1007/978-3-319-47846-3_25
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/978-3-319-02444-8_6
https://doi.org/10.1007/978-3-662-44522-8_11
https://doi.org/10.1007/978-3-662-44522-8_11
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1016/j.ipl.2006.11.018
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/TSE.2014.2357445

56 É. André et al.

19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–396 (1984). https://doi.org/10.1007/BF02579150

20. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear
hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790,
pp. 296–310. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-
1 26

21. Quaas, K.: MTL-model checking of one-clock parametric timed automata is unde-
cidable. In: André, É., Frehse, G. (eds.) SynCoP. EPTCS, vol. 145, pp. 5–17 (2014).
https://doi.org/10.4204/EPTCS.145.3

22. Quaas, K., Shirmohammadi, M., Worrell, J.: Revisiting reachability in timed
automata. In: LICS, pp. 1–12. IEEE Computer Society (2017). https://doi.org/
10.1109/LICS.2017.8005098

https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/3-540-46430-1_26
https://doi.org/10.1007/3-540-46430-1_26
https://doi.org/10.4204/EPTCS.145.3
https://doi.org/10.1109/LICS.2017.8005098
https://doi.org/10.1109/LICS.2017.8005098

Parametric Statistical Model Checking
of UAV Flight Plan

Ran Bao1,2, Christian Attiogbe2 , Benôıt Delahaye2(B) , Paulin Fournier2,
and Didier Lime3

1 PIXIEL GROUP, Nantes, France
https://www.pixiel-group.com/

2 Université de Nantes - LS2N UMR CNRS 6004, Nantes, France
benoit.delahaye@univ-nantes.fr

3 Centrale Nantes - LS2N UMR CNRS 6004, Nantes, France

Abstract. Unmanned Aerial Vehicles (UAV) are now widespread in our
society and are often used in a context where they can put people at risk.
Studying their reliability, in particular in the context of flight above a
crowd, thus becomes a necessity. In this paper, we study the modeling
and analysis of UAV in the context of their flight plan. To this purpose,
we build a parametric probabilistic model of the UAV and use it, as well
as a given flight plan, in order to model its trajectory. This model takes
into account parameters such as potential filter or sensor (like GPS) fail-
ure as well as wind force and direction. Because of the nature and com-
plexity of the successive obtained models, their exact verification using
tools such as PRISM or PARAM is impossible. We therefore develop a
new approximation method, called Parametric Statistical Model Check-
ing, in order to compute failure probabilities. This method has been
implemented in a prototype tool, which we use to resolve complex issues
in a practical case study.

Keywords: UAV · Formal model · Markov chain ·
Parametric statistical model checking

1 Introduction

Unmanned Aerial Vehicles (UAV) are more and more present in our lives through
entertainment or industrial activities. They can be dangerous for their environ-
ment, for instance in case of a failure when an UAV (aka a drone) is flying above
a crowd. Unfortunately until today, there does not exist any kind of UAV reg-
ulation around the world. Only some recommendations are used; for instance
in order to avoid accidents in case of malfunctioning, a drone should never fly
above a crowd.

In this context, we are working with PIXIEL group to build a reliable UAV
control system. PIXIEL group is a company expert in safety drones and public

Supported by PIXIEL and Association Nationale Recherche Technologie (ANRT).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 57–74, 2019.
https://doi.org/10.1007/978-3-030-21759-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_4&domain=pdf
http://orcid.org/0000-0002-7815-1752
http://orcid.org/0000-0002-9104-4361
https://doi.org/10.1007/978-3-030-21759-4_4

58 R. Bao et al.

performances including UAVs. For example, PIXIEL is in particular known for
developing a public performance in the French entertainment park called “Puy
du Fou” that includes both human actors and drones. The company is strongly
attached to the safety of the public. Therefore, ensuring that its UAV systems
are secure for humans during the performances is a priority. As for the current
practices, the performances including UAVs are only allowed to occur when the
weather is sunny and when the area above which the UAVs fly is unauthorized
for actors and public. However, there is no certification proving that the UAVs
always follow their intended flight plan.

The management of performances indeed requires to pay close attention to
the drone trajectory computation as well as to the accuracy of the measure-
ments concerning its immediate position in space and its movements. However,
a rigorous study is necessary to ensure reliability of the drone control system,
for instance by decreasing the risks of failure using the appropriate tuning of the
drone flying parameters which impact the computation of its trajectory. Accord-
ingly, the questions are how to prove that the UAV failure probability is low and
which parameters have to be taken into account to ensure human safety during
performances including UAVs.

High-quality aircrafts such as Hexarotors can easily avoid the majority of
minor failures related to hardware because they can fly with only five motors
and the probability of concurrent failure of more than two motors is in general
negligible. In the same way, in case of battery failure, the UAV is able to land
down on a specified area without any safety issue for the environment as long as
it is situated in a safe zone where humans are not endangered. However, software
failure may be a lot more problematic and complex to study. In this case, the
UAV behavior might become unpredictable. One critical issue in this context
is the potential inaccuracy of position estimation in drone systems, either as a
result of inaccurate sensor measurements or of misinterpretation of data coming
from those sensors. Besides aircraft system failure consideration, there is also a
far more critical aspect to take into account: the weather environment. Therefore,
a general approach to improve UAV safety is to study the impact of inaccuracy
in position measurements on the resulting flight path compared to a given, fixed,
flight plan while taking into account weather conditions.

There are many works dedicated to the UAV domain. In [20] Koppány Máthé
and Lucian Buşoniu basically explain the functioning of a drone. UAV movement
recognition is studied in [10]. Automatic landing on target is described in [17]
and monitoring and conservation are dealt with in [11]. Some works also try to
detect breakdowns and malfunctions that can impact drones. We can mention
inter alia, the detection of communication errors in a multi-drone framework
studied in [13] or the development of a basic diagnosis model for solving system
issues in [9]. Our work is closer to this second category of topics. However, to
the best of our knowledge, there are no existing works on the parametric study
of the impact of component inaccuracy on UAV trajectory. In [5,24] the authors
study through the secure estimation problems how to estimate the true states of
an UAV system when the measurements from sensors are corrupted, for instance
by attackers. In their work, these authors reformulate the estimation problem

Parametric Statistical Model Checking of UAV Flight Plan 59

into the error correction problem and then they use the successively observed
measurement anomalies to reconstruct the correct states of the system. While
the used techniques are completely different, the objectives of avoiding bad states
is similar to ours, in avoiding the states reaching bad security zones.

The purpose of our work is therefore to provide means to study the reliability
of UAVs in the context of a given flight plan. In order to do that, we have to
build a formal (mathematical) model which will allow us (1) to analyze the
drone system and detect the most important parameters, and (2) to tune those
parameters in order to reduce the system failure probability. To this intent,
we thoroughly study the UAV system, formalize it and analyze it with using
parametric probabilistic methods. Among the components of a drone system,
we particularly focus on the Flight Control System (FCS), which is responsible
for computing estimations of the UAV position during its flight in order to adapt
its trajectory to a given predefined flight plan. We therefore build a formal model
of the flight controler in terms of parametric probabilistic models that takes into
account the potential inaccuracy of the position estimation. Since UAVs are
particularly sensitive to the weather environment (and in particular to wind
conditions), we also enhance our model in order to take into account potential
wind perturbations. Since wind force can drastically vary from one point of a
given flight plan to another, we also use parameters to encode the wind force
and allow our model to adapt to particular weather conditions.

The contributions of this paper are:

– a method to build a parametric model of UAV systems; the parameters can
then be finely tuned until reaching values that ensure defined safety thresh-
olds;

– a parametric statistical model checking technique; this enables us to formally
analyze the parametric models build for the drones. Indeed because of the
complexity of the built models, tools such as PRISM [15,16] and PARAM
[12] were limited for their analysis.

– an illustration of the use of our method on a complex industrial case study.

The paper is organized as follows. In Sect. 2 we provide the essential back-
ground to understand UAV functioning and then we build a formal model that
support their behaviours. Section 3 is an introduction to parametric Markov
chains and Statistical Model Checking. Implementations of the models and
experimentations are presented in Sect. 4; finally Sect. 5 draws conclusions and
further work.

2 Building a Formal Model of UAV

In this section, we present our method to build the UAV model. Recall that
we are interested in studying UAV safety, i.e. studying the probability that a
UAV encounters dangerous situations. These situations are of two kinds: either
the UAV can stop flying and fall, or it can enter a “forbidden” zone were it
endangers humans. As explained earlier, professional UAV can handle the falling
risk through material redundancy. Moreover, as long as a UAV stays in a “safe”

60 R. Bao et al.

zone, it will not endanger human even in case of falling. The aim of our model
is therefore to evaluate the probability for a UAV to enter a “forbidden” zone.

We start by explaining how the zones are computed with respect to the
given flight plan. We then show how the UAV software can be decomposed
into components and focus on the most important ones. Finally, we detail how
the formal (mathematical) models for the important components are built and
present the resulting global model.

2.1 Safety Zones

Fig. 1. Safety zones

In the context of software,
considerations in airborne sys-
tems and equipment certifica-
tion (named DO-178C) defined
five levels of safety zones, the
most secure being Zone 1 and
the most dangerous being Zone
5. These zones are character-
ized by their distance from the
intended flight plan, as shown in
Fig. 1.

The size of each safety zone is not definitely fixed; it can be defined for a
specific requirement or for a given application. In practice the safety zones are
specifically defined for a flight environment and for a given flight plan. The
main principle is that no human should be present in Zones 1 to 3, while a few
people can be present in Zone 4 and most people can be present in Zone 5.
As a consequence, the probability that the UAV endangers humans is directly
proportional to the probability that it enters Zones 4 or 5. In the following of
the paper, our target will therefore be to compute this probability.

2.2 Drone Components

We now move to the decomposition of the UAV hardware and UAV software into
components and introduce the most important component in the UAV system:
the flight controller (FC). The FC is responsible for collecting data from various
sensors, using this data to compute the precise position and attitude of the drone
and adjust the attitude in order to follow the given flight plan to the best of its
ability.

Fig. 2. Attitude coordinates

Notice the difference between posi-
tion and attitude: while the position of
the UAV is defined by 3-dimensional
coordinates x, y and z, its attitude is
the collection of yaw , pitch and roll
measurements for the UAV compared
to the vertical (see Fig. 2). The atti-
tude allows to control the movement

Parametric Statistical Model Checking of UAV Flight Plan 61

Fig. 3. Flight control overview

of the UAV: by controlling the speed of each motor, one can control which
motor will be the highest, and hence control the direction the UAV will fly to.

Flight Controller. As explained above, the FC is the central component in any
UAV as it is responsible for collecting data from sensors and translating them to
the UAV attitude. An overview of the FC of an UAV is given in Fig. 3. Remark
that the FC can be linked to components responsible for communicating with a
remote control. While these components are necessary in order to allow a pilot
to take over when the automatic flight mode of the UAV fails, we will consider
in the following that this is not the case and that the UAV we study are always
in automatic flight mode.

As one can see from Fig. 3, the intuitive behavior of the FC is as follows.
The filter uses sensors measurements in order to compute the current drone
position and attitude. Since the data can be noisy and inaccurate, the filter
uses complex algorithms in order to clean the noises in the measurements and
compute a realistic position and attitude. Remark that in some cases, the filter
can itself introduce inaccuracy in the computed position and attitude, which can
be problematic. Once the estimated current position and attitude are computed,
the Proportional Integral Derivative (PID) uses this information to compute the
local trajectory that the drone has to follow in order to be as close as possible
to its intended flight plan. This local trajectory is then transformed into a new
value for the attitude of the drone. Finally, Modulation transforms this attitude
into signal to the Electronic Speed Controller (ESC) which is responsible for
controlling each motor’s speed.

Recall that we are interested in computing the probability that a UAV enters
a forbidden zone while following its flight plan. By construction, as long as the
position and attitude measurements are perfect, there is no reason why the UAV
should deviate from its intended trajectory, and therefore the probability that it
enters a forbidden zone is null. However, as explained above, the data gathered
from sensors can be noisy and inaccuracy can sometimes be introduced through

62 R. Bao et al.

filtering. In this case, the estimated position and attitude of the UAV can be
faulty, resulting in a deviation from the intended flight plan and potentially
leading to a forbidden zone. It is therefore of paramount importance to study
how the filters work and to take into account in our formal model the potential
inaccuracy of position and attitude measurement.

Filter. The role of the filter is to use sensors measurements in order to compute
the UAV position and attitude with the highest possible precision. However, the
high precision comes with a cost in terms of complexity: in order to gain precision,
filters have to run complex algorithms which takes time. As a consequence, the
most precise filters are also the slowest, which implies that the position can be
estimated less often, which itself results in inaccuracy.

There exists a large amount of filters in UAV industry, among which one
can find Extended Kalman Filter (EKF) [22], Explicit Complement Filter [8],
Gradient Descent [19], Conjugate Gradient, and a more accurate but slower
filter: Unscented Kalman Filter (UKF) [6], etc. Usually, researchers use EKF as a
fundamental to compare to other kinds of filters and explain precision and speed
differences. All filters improve their accuracy during the flight through training,
in particular by recording recurrent noises and correcting them. However, this
training is only valid through a single flight and is lost as soon as the UAV lands.

Since the accuracy of the estimated position and attitude is of paramount
importance for computing the probability of entering a forbidden zone, and
since the choice of filter has a direct impact on this measurement, we chose
to implement this accuracy as a parameter of our model. This will be explained
in more details in Sect. 2.4.

2.3 Formal Model of the UAV in Its Environment

Fig. 4. A flow diagram of
the formalization steps

We use a flow diagram to present our global approach
for formalizing the UAV functioning (See Fig. 4).
After a step where the filter computation reflects the
precision of position and attitude estimation, we con-
sider the computations of the probabilities to reach
the given safety zones in the next time-step; accord-
ingly, the idea is to adapt the next attitude according
to the original flight plan in order to be more secure.
The last step allows to incorporate wind perturba-
tions and compute the next UAV position.

As explained above, the filter is one of the most
crucial components and its ability to estimate the UAV position precisely has a
huge impact on the probability of reaching a forbidden zone. For this reason, we
choose to represent the accuracy of the estimated position of the UAV (therefore
including both sensor measurements and filter correction) as a parameter of our
model. In the following, we show how the next position of the UAV is computed
according to the current estimated position, and how errors in the estimation
can lead to the drone entering forbidden zones.

Parametric Statistical Model Checking of UAV Flight Plan 63

Computation of the Next Position. We now explain how the next position
is computed according to the estimated current position. In particular, we show
that inaccuracy in the estimation can lead the UAV to entering a forbidden zone.

Fig. 5. Issue on drone location and misleading positions

For the sake of simplicity, we assume here that the UAV moves in 2 dimen-
sions only and that inaccuracy only occurs on one of them. Figure 5 illustrates
the situation. Assume that the intended flight plan consists in going from point A
to point B. Assume also that the current position of the UAV is exactly on A but
that the estimated position (taking into account sensors and filter inaccuracy)
is on A′. As a consequence, the PID will try to correct the current deviation by
changing the angle of the UAV in order to lead it back to B. However, since the
UAV is really on A, the correction will instead lead the UAV to a position B′,
in the forbidden zone. Fortunately, the position estimation takes place several
times between A and B, according to the filter frequency f . Therefore, a new
position will be estimated before reaching B′, hopefully with a better accuracy,
which will allow the PID to again correct the trajectory. We should also take into
account that the speed of the UAV is also computed according to the flight plan,
which precises the remaining time and distance before the next checkpoint. We
now show how we can compute the safety zone where the UAV ends before the
position is estimated again. In Fig. 5, this zone is represented by the distance Sn.

Let Sanswer be the distance that the UAV covers before a new estimation of
the position. Let V be the velocity of the UAV, which is computed by the PID in
order to reach B on time, i.e. in precisely T time units. We therefore have V =
A′B/T , and Sanswer = V/f = (A′B)/(T ∗ f). Finally, AA′/A′B = Sn/Sanswer,
and therefore

Sn =
AA′

T ∗ f
.

Remark that the resulting deviation is directly proportional to AA′/f , hence
the necessity to take into account the trade-off between accuracy and filter speed
in order to optimize the probability of never entering any dangerous zone.

64 R. Bao et al.

Taking into account wind perturbations follows a similar computation than
the one presented above. This allows us to incorporate wind parameters as well
in our model.

2.4 Resulting Global Model

Fig. 6. Global behaviour of the FCS

The global model of the UAV flight
control system is depicted in Fig. 6.
The purpose of this model is to rep-
resent the computations taking place
in the FCS in order to adapt the UAV
trajectory to the intended flight plan
according to inaccurate position and
attitude estimations as well as wind
perturbations. In this model, the exact
position of the UAV is encoded using
3-d coordinates. These coordinates are
then compared to the intended flight
plan in order to decide to which safety
zone they belong. As soon as the UAV
reaches one of the forbidden zones (4
or 5), the computation stops.

The model uses several proba-
bilistic parameters. Parameters Filter-
Proba1, FilterProba2, FilterProba3,
FilterProba4 and FilterProba5 repre-
sent the accuracy of the position and
attitude estimation by both the filter
and the sensors. The resulting prob-
abilistic choice depicted in the box
labelled Filter Computation there-
fore dictates the distance between the
exact and estimated position of the
UAV. This choice is followed by a com-
putation in the box labelled Safety
Zone Computation that computes
the exact coordinates of the next posi-
tion of the drone and allows to decide

the safety zone to which this position belongs. When the wind is not taken into
account, the result of this computation is enough to decide whether the model
should pursue its execution. When the wind is taken into account, another step
follows, depicted in the box labelled Wind Computation, where other prob-
abilistic parameters are used in order to decide the wind strength (we assume
that the direction is constant) and a new position taking into account these
perturbations is computed. Finally, the zone to which this last position belongs

Parametric Statistical Model Checking of UAV Flight Plan 65

is computed and, depending on whether this zone is safe, the model goes on to
another position estimation.

Remark that the filter frequency and the position and distance of checkpoints
in the flight plan are given as inputs to the model. The position of checkpoints in
the flight plan allows to compute the required UAV speed, while the frequency
of the filter allows to fix the number of position estimations that will happen in
a given flight plan (i.e. the number of loops the model goes through, at most).

3 Parametric Statistical Model Checking

As explained above, we have developed a parametric probabilistic model in order
to represent the behaviour of our UAV according to a given flight plan. We
now introduce the necessary theory to formally compute the probabilities of a
given UAV entering a forbidden zone in the context of its flight plan. We start
by recalling a classical verification technique called Statistical Model Check-
ing (SMC), then introduce the modeling formalism we use: parametric Markov
Chains (pMCs) and finally show how SMC can be adapted to this formalism.

3.1 Standard Statistical Model Checking

Recall that a Markov Chain (MC) is a purely probabilistic model M = (S, s0, P),
where S is a set of states, s0 ∈ S is the initial state, and P : S × S → [0, 1] is
a probabilistic transition function that, given a pair of states (s1, s2), yields the
probability of moving from s1 to s2.

Given a MC M, one can define a probability measure on the infinite execu-
tions of M using a standard construction based on the σ-algebra of cylinders.

A run of a MC is a sequence of states s0, s1 . . . such that for all i, P (si, si+1) >
0. Given a finite run ρ = s0s1 . . . sl, its length, written |ρ| represents the number
of transitions it goes through (including repetitions). Here |ρ| = l. We write
ΓM(l) (or simply Γ (l) when M is clear from the context) for the set of all finite
runs of length l, and ΓM for all finite runs i.e. ΓM = ∪l∈NΓM(l). As usual we
define the probability measure, written PM on runs based on the sigma-algebra
of cylinders (see e.g. [2]). This gives us that for any finite run ρ = s0s1 . . . sn,
PM(ρ) =

∏n
i=1 P (si−1, si). In the rest of the section, we only consider finite

runs. Given a reward function r : Γ (l) → R, we write E
l
M(r) for the expected

value of r on the runs of length l of a given MC M.
Statistical Model Checking [23] is an approximation technique that allows

to compute an estimation of the probability that a purely probabilistic systems
satisfies a given property1. In particular, the Monte Carlo technique uses samples
of the runs of length l, Γ (l), of a given Markoc chain M in order to estimate the
probability that M satisfies a given bounded linear property. It can also be used

1 Particular SMC techniques also allow to estimate the satisfaction of qualitative prop-
erties [18].

66 R. Bao et al.

for approximating the expected value of a given reward function r on the runs
Γ (l) of M. In order to provide some intuition, we briefly recall how standard
Monte Carlo analysis works in the context of statistical model checking of MC. In
this context, a set of n samples of the runs of the MC. These runs are generated
at random using the probability distribution define through the Markov chain.
Each of these samples is evaluated, yielding a reward value according to the
reward function r. According to the law of large numbers (see e.g. [21]), the
mean value of the samples provides a good estimator for the expected value
of the reward function r on the runs of the given MC. Moreover, the central
limit theorem provides a confidence interval that only depends on the number
of samples (provided this number is large enough).

3.2 Parametric Markov Chains (pMC)

Markov Chains are inadequate in the context of drone flight plan analysis.
Indeed, the models we develop in this context are subject to uncertainties that
we model using parameters, such as precision of the position and attitude esti-
mations and wind strength. The resulting models are therefore not purely prob-
abilistic since they contain parameters. As a consequence, we need to use a more
expressive type of model that allows to take into account probabilistic parame-
ters, such as Parametric Markov Chains (see e.g. [1]).

A pMC is a tuple M = (S, s0, P,X) such that S is a finite set of states, s0 ∈ S
is the initial state, X is a finite set of parameters, and P : S × S → Poly(X)
is a parametric transition probability function, expressed as a polynomial on
X. A parameter valuation is a function v : X → [0, 1] that assigns values to
parameters. A parameter valuation v is valid w.r.t. a given pMC M if, when
replacing parameters with their assigned values, the resulting object is a MC
(i.e. the outgoing probabilities of all states sum up to 1). If v is a valid parameter
valuation with respect to M, the resulting Markov chain is written M�.

Given a pMC M, a run ρ of M is a sequence of states s0s1 . . . such that
for all i ≥ 0, P (si, si+1) �= 0 (i.e. the probability is either a strictly positive real
constant or a function of the parameters). As for MCs, we write ΓM(l) for the
set of all finite runs of length l and ΓM for the set of all finite runs.

Observe that for any valid parameter valuation v, ΓMv (l) ⊆ ΓM(l) since v
may assign 0 to some transition probabilities.

3.3 Parametric SMC

As it is, standard SMC cannot be used in the context of pMC because of their
parametric nature. Indeed, we cannot produce samples according to the para-
metric transition probabilities. Luckily, the underlying theory used in SMC can
be extended in order to take into account parameters. The method we propose in
the following is in line with a technique called importance sampling (see [21] for
a description). The purpose of this technique is to sample a stochastic system

Parametric Statistical Model Checking of UAV Flight Plan 67

using a chosen probability distribution (which is not the original distribution
present in this system) and “compensate” the results using a likelihood ratio in
order to estimate a measure according to the original distribution. In the con-
text of SMC, importance sampling has mainly been used in order to estimate the
probability of rare events [3] and/or to reduce the number of required samples
in order to obtain a given level of guarantee [14]. It has also been used in the
context of parametric continuous-time Markov chains in order to estimate the
value of a given objective function on the whole parameter space while using a
reduced number of samples [4]. However, to the best of our knowledge, impor-
tance sampling has never been used in order to produce symbolic functions of
the parameters as we do here.

The intuition of the method we propose here is to fix the transition proba-
bilities to an arbitrary function f , which we call normalization function, and to
use these transition probabilities in order to produce samples of the pMC M.
However, instead of evaluating the obtained runs by directly using the desired
reward function r, we define a new (parametric) reward function r′ that takes
into account the parametric transition probabilities. We show that, under any
parameter valuation v, the evaluation of the mean value of r′ on the set of sam-
ples is a good estimator for the expected value of the reward r on Mv. The
central limit theorem (see e.g. [21]) also allows to produce parametric confidence
intervals, but we do not go into details here (see [7] for more details on this
topic).

Remark. The choice of the normalization function is crucial. In particular, the
results presented below require that the graph structure of the MC obtained with
this normalization function is identical to the graph structure of the MC obtained
using the chosen parameter valuation. This is discussed in more details in [7].
In the following, we only consider parameter valuations that assign non-zero
probability to parameterized transitions. Since we use the uniform normalization
function, the graph structures of the obtained MCs are indeed identical, which
ensures that the results presented below hold as expected.

Let Pa : ΓM → Poly(X) be a parametric reward function. For any valid
valuation v and any run ρ ∈ ΓMv we have PMv (ρ) = Pa(ρ)(v).

Given any valid normalization function f and any run ρ ∈ ΓM, let paramet-
ric reward function r′ be r′(ρ) = Pa(ρ)

PMf (ρ)r(ρ).

We now prove that the expected values are equal. Let ρ ∈ ΓMf (l) be a
random sample of Mf and let Y be the random variable defined as follows
Y = r′(ρ). The following computation shows that, under any valid parameter
valuation v such that Mf and Mv have the same structure, we have E(Y)(v) =
E

l
Mv (r).

68 R. Bao et al.

E(Y)(v) =
(∑

ρ∈ΓMf (l)

PMf (ρ)y(ρ)
)

(v)

=
(∑

ρ∈ΓMf (l)

PMf (ρ)
Pa(ρ)
PMf (ρ)

r(ρ)
)

(v)

=
∑

ρ∈ΓMf (l)

Pa(ρ)(v)r(ρ)

=
∑

ρ∈ΓMf (l)

PMf (ρ)r(ρ)

=
∑

ρ∈ΓMv (l)

PMf (ρ)r(ρ)

= E
l
Mv (r)

Our adaptation of the Monte Carlo technique for pMC is thus to estimate
the expected value of Y in order to obtain a good estimator for the expectation
of r. Let ρ1, . . . , ρn be a set of n runs of length l of Mf . Let Yi be the random
variable with values in Poly(X) such that Yi = r′(ρi). Notice that the Yi are
independent copies of the random variable Y . Yi are therefore independent and
identically distributed. Let γ be the parametric function giving their mean value.
By the results above, for all valid parameter valuation v such that Mv and Mf

have the same structure, El
Mv (r) = E(Y)(v) = E(

∑n
i=1 Yi/n)(v) = γ(v). Our

parametric approximation of the expected value is therefore:

γ̂ =
∑n

i=1 Yi/n.

In the sequel we will this use Parametric Statistical Model Checking (PSMC)
to check the formal model we will implement for the UAV.

4 Implementation, Experimentations and Results

While our complete formal model has been introduced in Sect. 2 in the form of
an automata, we now explain how we successively implemented and improved
the model by considering different formalisms and model checking tools. At each
step, we show the limitations of the related model which leads to the next step
of the implementation. The different steps of the model implementations are
depicted in Fig. 7.

To start, a first partial version of the formal model of Sect. 2.3 was imple-
mented as a PRISM model using the PRISM tool [16], without parameters.

This first version, as depicted in Fig. 7a, corresponds to a very simple UAV
flight plan, going in a straight line from point A to point B in T time units. In
this context, the intermediate positions are estimated T ∗f times, where f is the
frequency of the filter. The sizes used for the five security zones are respectively
20 m, 40 m, 60 m, 80 m and 100 m.

Parametric Statistical Model Checking of UAV Flight Plan 69

Fig. 7. Incremental development of the SMC model

As explained in Sect. 2,
the filter removes the noise
corrupting data coming
from sensors. In this first
version, we only consider
potential deviations along
the y-axis. At each com-
putation step, the inaccu-
rate position given by the
filter is computed using
the accuracy of the filter
and sensors (as a single
real-valued variable), and
compared to the intended
position as given by the
flight plan. The safety zone
is deduced from the dis-
tance between the esti-
mated position and the
intended position. If the
UAV enters Zones 4 or 5,
the computation stops.

In this first model,
the accuracy of the fil-
ter is probabilistic but
not parametric, i.e. prob-
ability values have been
encoded directly in the
model. These values are
the results of a set of
experiments performed by
using a flight controller

plugged on a production line with a predefined path with a loop. We launched
several runs of the device on the production line path and measured the outputs
of the EKF filter. These measures then allowed us to compute the estimated posi-
tion, which can then be compared to the exact position on the production line.
We consequently obtained probabilities for the accuracy of the position estima-
tion using an EKF filter and sensors coming from an industrial UAV. However,
the major drawback of these experimentations is that they did not reflect a
realistic UAV environment. In particular, since the experiment was conducted
indoor using a fixed production line, the precision of some of the sensors (GPS
for instance) is not representative of the precision one could obtain in a realistic
flight environment. Although we were able to verify this model using PRISM, the
results are not representative and can only be considered as a proof-of-concept.
Since our aim is to study the same problem for different accuracy probabilities,

70 R. Bao et al.

we changed the exact probability values to parameters and submitted this new
model to the PRISM Model Checker. However, because of the real-valued vari-
ables used in the model and of the numerous intermediate computations, PRISM
was not able to handle this model and timed-out after 2 hours of unsuccessful
computations.

Facing these shortcomings with the PRISM tool, we considered the imple-
mentation of our model with the PARAM tool [12] which is a model checker
for parametric discrete-time Markov chains. PARAM is efficient and allows to
compute the probability of satisfying given properties as polynomials or rational
functions of the parameters. As PRISM, PARAM also failed to model check our
current version of the model. At this stage, since both PARAM and PRISM
failed to verify our simplest model because of its complexity, we considered
using a different approach based on Parametric Statistical Model Checking. For
this purpose, we developed a prototype tool2. In this context, our model was
expressed as a python program using real-valued variables both for the position
of the UAV and for the probabilistic parameters. It appears that PSMC is partic-
ularly efficient in this context, and was able to verify our model (by performing
more than 20k simulations) in less than 1 min. We therefore chose to pursue our
experimentation using this prototype tool and refined versions of our model.

In the second version of the model, depicted in Fig. 7b, we allowed devia-
tions to also occur along the x-axis. This is not problematic when considering a
straight line flight plan, but could become important as soon as the flight plan
is curved (as the one in Fig. 1). Indeed, in this context, deviations along the x-
axis (for example if the drone is “late”) could result in the PID deciding to cut
the trajectory, i.e. going straight to point C before reaching point B, therefore
promoting a trajectory that might colide with the forbidden safety zones. Again,
our tool managed to verify this model in a very short time.

For the third version of the model as depicted in Fig. 7c, we add a third target
point to the flight plan, which is not aligned with the first to points, i.e. like in
Fig. 1. In this third version, the inacurracy of the position estimation along the
x-axis also allows the UAV to be “late” and decide to cut the flight plan as
explained above.

Finally, the last version, as depicted in Fig. 7d, takes into account wind per-
turbations. We assumed here that the wind direction was constant but that the
wind force was again parametric. This will allow us to study the right trade-off
between filter capacity and frequency depending on the weather conditions. This
last version is the most complex we studied, and therefore took more time to
verify than the previous ones. With our prototype tool, it took 190 s to perform
the verification using 10k simulations in this context while the same amount of
simulations only took 28 s for the previous model (without wind parameters).3

2 available at https://github.com/paulinfournier/MCpMC.
3 We do not share the exact models used in our prototype tool for confidentiality

reasons, but the models used in PRISM and PARAM can be found here: https://
github.com/br4444/modelPrism/tree/master.

https://github.com/paulinfournier/MCpMC
https://github.com/br4444/modelPrism/tree/master
https://github.com/br4444/modelPrism/tree/master

Parametric Statistical Model Checking of UAV Flight Plan 71

The outputs of our prototype tool are multivariate polynomials on the param-
eters of our model. Given the number of parameters, the size of the model and
the length of the considered simulations, these polynomials are quite complex
and therefore difficult to report in this paper. As an example, below is the output
polynomial representing the probability that a UAV enters Zones 4 or 5 using
our last version of the model:

0.43 ∗ ProbaF ilter3 ∗ ProbaWind1 + 0.16 ∗ ProbaF ilter3 ∗ ProbaWind2

+ 0.17 ∗ ProbaF ilter3 ∗ ProbaWind3 + 0.28 ∗ ProbaF ilter3 ∗ ProbaWind4

+ 0.85 ∗ ProbaF ilter4 ∗ ProbaWind1 + . . .

Instead of showing the resulting polynomials, we will only present the evalu-
ation of these polynomials using realistic values for the parameters. We defined
two scenarios (Scenario 1, Scenario 2) with one set of values of parameters for
each scenario. For these two scenarios, ProbaF0 (resp F1, F2, F3, F4) models the
probability that the estimated position is from 0 to 2 m (resp. 2–4 m, 4–6 m, 6–
8 m, 8–10 m) from the real position. In the first (resp. second) scenario, we have
set these values to 0.15/0.3/0.4/0.1/0.05 (resp. 0.1/0.25/0.35/0.2/0.1). Accord-
ing to experiments done at PIXIEL, the first scenario is more realistic than
the second one. Similarly, the wind parameters correspond to the probability
of having a wind force of 0–20 km/h, 20–30 km/h, 30–50 km/h and 50–70 km/h
respectively and have been set to 0.55/0.43/0.01/0.01 (which corresponds to typ-
ical weather conditions in Nantes, France) for the numerical evaluation. In both
scenarios, Zone 4 (resp. 5) is situated 8 m (resp. 50 m) from the flight plan.

In Table 1, we gather the results for running the simulation for the two con-
sidered scenarios; the simulation with PSMC is performed with 10k, 20k and
50k samples. Each time, a polynomial is computed and then evaluated using the
parameter values given above. In order to illustrate the stability of our results
despite their statistical nature, each complete scenario was performed two times
(labelled V1 and V2 in the table). The value reported in the table represents
the probability of the UAV eventually reaching Zones 4 or 5 during its flight.
Experiments were performed using the formal models presented in Fig. 7c (with-
out wind) and Fig. 7d (including wind perturbations) on a flight plan resembling
the one shown in Fig. 1, with a total flight duration of 5 s and a filter frequency
of 1 Hz. We considered two versions of the model from Fig. 7d: 7d(np) where
wind strength is directly input as a constant probability in the model (result-
ing in a polynomial where the only variables represent the precision of position
estimation), and Fig. 7d(p) where wind strength is input as parameter variables
in the model (allowing to evaluate/optimize the resulting polynomial according
to any wind strength). Remark that the results in the first case are more pre-
cise because there are less variables in the polynomial, and obtained in a more
efficient manner. Depending on whether we are interested in specific or generic
information concerning the weather environment, we can chose to use the first
of the second version. Remark that the probabilities of entering the forbidden
zones are quite high. This is not surprising as Zone 4 is situated 8 m from the
intended trajectory and the precision of position estimation can be up to 10 m.

72 R. Bao et al.

Table 1. Results of the experiments

Model 10k 20k 50k

V1 V2 V1 V2 V1 V2

Running time Fig. 7c 28 s 51–54 s 142–143 s

Scenario 1 Fig. 7c 4.99% 5.09% 4.74% 5.10% 4.91% 4.98%

Scenario 2 Fig. 7c 10.38% 10.04% 9.82% 10.05% 9.95% 9.81%

Running time Fig. 7d(np) 28 s 53–54 s 149–155 s

Scenario 1 Fig. 7d(np) 5.43% 5.31% 5.61% 5.21% 5.59% 5.47%

Scenario 2 Fig. 7d(np) 10.8% 10.9% 10.8% 10.8% 10.9% 10.7%

Running time Fig. 7d(p) 185–190 s 311–314 s 612–621 s

Scenario 1 Fig. 7d(p) 4.95% 5.97% 5.28% 6.62% 4.16% 5.61%

Scenario 2 Fig. 7d(p) 9.55% 9.87% 10.3% 11.3% 9.57% 10.7%

These values have been made deliberately high for the purpose of this study but
can be chosen more realistically when verifying the real model.

5 Conclusion and Future Work

In this paper, we have presented a formal model to study the safety of a UAV
in automatic flight following a predefined flight plan. This formal model consists
in a parametric Markov Chain and takes that takes into account the precision
of position and attitude estimation using sensors and filters as well as poten-
tial wind perturbations. We have also proposed a new verification technique for
parametric probabilistic model: parametric Statistical Model Checking. This new
technique has been implemented in a prototype tool. While state of the art tools
such as PRISM and PARAM have timed out on the verification of the simplest
version of our formal model, our prototype tool has been able to successfully
verify the most complex version in less than 12 min.

In the future, we plan to keep enhancing our model in order to include filter
frequency to be used as a parameter in the model. Using these parameters will
allow us to obtain the parametric probability to enter dangerous zones depending
on both the filter frequency and the precision probabilities. Studying/optimizing
this parametric probability will allow PIXIEL to work on the trade-off between
frequency and precision in order to choose their components wisely depending
on their intended flight plan.

Parametric Statistical Model Checking of UAV Flight Plan 73

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
16–18 May 1993, San Diego, CA, USA. pp. 592–601 (1993). https://doi.org/10.
1145/167088.167242

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for

statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 331–346. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5 23

4. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
Continuous-Time Markov Chains. Inf. Comput. 247, 235–253 (2016)

5. Chang, Y.H., Hu, Q., Tomlin, C.J.: Secure estimation based Kalman Filter
forcyber-physical systems against sensor attacks. Automatica 95, 399–412 (2018).
https://doi.org/10.1016/j.automatica.2018.06.010

6. de Marina, H.G., Pereda, F.J., Giron-Sierra, J.M., Espinosa, F.: UAV attitude
estimation using unscented Kalman Filter and TRIAD. IEEE Trans. Ind. Electron.
59(11), 4465–4474 (2012). https://doi.org/10.1109/TIE.2011.2163913

7. Delahaye, B., Fournier, P., Lime, D.: Statistical model checking for parameter-
ized models, February 2019. https://hal.archives-ouvertes.fr/hal-02021064, work-
ing paper or preprint

8. Euston, M., Coote, P., Mahony, R., Kim, J., Hamel, T.: A complementary filter for
attitude estimation of a fixed-wing UAV. In: 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 340–345, September 2008. https://
doi.org/10.1109/IROS.2008.4650766

9. Freddi, A., Longhi, S., Monteriù, A.: A model-based fault diagnosis system for
unmanned aerial vehicles. IFAC Proc. 42(8), 71–76 (2009). https://doi.org/10.
3182/20090630-4-ES-2003.00012, http://www.sciencedirect.com/science/article/
pii/S147466701635755X. 7th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes

10. Ga̧sior, P., Bondyra, A., Gardecki, S.: Development of vertical movement controller
for multirotor UAVs. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) ICA
2017. AISC, vol. 550, pp. 339–348. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54042-9 31

11. Gonzalez, L.F., Montes, G.A., Puig, E., Johnson, S., Mengersen, K.L., Gaston,K.J.:
Unmanned aerial vehicles (UAVs) and artificial intelligencerevolutionizing wildlife
monitoring and conservation. Sensors 16(1), 97 (2016). https://doi.org/10.3390/
s16010097

12. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer
Aided Verification, pp. 660–664. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 56

13. Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-
unmanned aerial vehicle (UAV) cooperative fault detection employing differential
global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579
(2009). https://doi.org/10.3390/s90907566

14. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 26

https://doi.org/10.1145/167088.167242
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1016/j.automatica.2018.06.010
https://doi.org/10.1109/TIE.2011.2163913
https://hal.archives-ouvertes.fr/hal-02021064
https://doi.org/10.1109/IROS.2008.4650766
https://doi.org/10.1109/IROS.2008.4650766
https://doi.org/10.3182/20090630-4-ES-2003.00012
https://doi.org/10.3182/20090630-4-ES-2003.00012
http://www.sciencedirect.com/science/article/pii/S147466701635755X
http://www.sciencedirect.com/science/article/pii/S147466701635755X
https://doi.org/10.1007/978-3-319-54042-9_31
https://doi.org/10.1007/978-3-319-54042-9_31
https://doi.org/10.3390/s16010097
https://doi.org/10.3390/s16010097
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.3390/s90907566
https://doi.org/10.1007/978-3-642-31424-7_26

74 R. Bao et al.

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. ACM SIGMETRICS Perform. Eval. Rev.
36(4), 40–45 (2009)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

17. Kyristsis, S., et al.: Towards autonomous modular UAV missions: the detection,
geo-location and landing paradigm. Sensors16(11), 1844 (2016). https://doi.org/
10.3390/s16111844

18. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

19. Madgwick, S.O.H.: An efficient orientation filter for inertial and inertial/magnetic
sensor arrays (2010)

20. Máthé, K., Busoniu, L.: Vision and control for UAVs: a survey of general methods
and of inexpensive platforms for infrastructure inspection. Sensors 15(7), 14887–
14916 (2015). https://doi.org/10.3390/s150714887

21. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 10.
Wiley, Hoboken (2016)

22. Sabatelli, S., Galgani, M., Fanucci, L., Rocchi, A.: A double-stage Kalman filter for
orientation tracking with an integrated processor in 9-DIMU. IEEE Trans. Instrum.
Meas. 62(3), 590–598 (2013). https://doi.org/10.1109/TIM.2012.2218692

23. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

24. Zhou, Z., Ding, J., Huang, H., Takei, R., Tomlin, C.: Efficient path planning algo-
rithms in reach-avoid problems. Automatica 89, 28–36 (2018). https://doi.org/10.
1016/j.automatica.2017.11.035

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.3390/s16111844
https://doi.org/10.3390/s16111844
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.3390/s150714887
https://doi.org/10.1109/TIM.2012.2218692
https://doi.org/10.1007/11513988_26
https://doi.org/10.1016/j.automatica.2017.11.035
https://doi.org/10.1016/j.automatica.2017.11.035

Only Connect, Securely

Chandrika Bhardwaj(B) and Sanjiva Prasad

Indian Institute of Technology Delhi, New Delhi, India
{chandrika,sanjiva}@cse.iitd.ac.in

Abstract. The lattice model proposed by Denning in her seminal work
provided secure information flow analyses with an intuitive and uniform
mathematical foundation. Different organisations, however, may employ
quite different security lattices. In this paper, we propose a connection
framework that permits different organisations to exchange information
while maintaining both security of information flow as well as their auton-
omy in formulating and maintaining security policies. Our prescriptive
framework is based on the rigorous mathematical framework of Lagois
connections given by Melton, together with a simple operational model
for transferring object data between domains. The merit of this formu-
lation is that it is simple, minimal, adaptable and intuitive, and pro-
vides a formal framework for establishing secure information flow across
autonomous interacting organisations. We show that our framework is
semantically sound, by proving that the connections proposed preserve
standard correctness notions such as non-interference.

Keywords: Security class lattice · Information Flow ·
Lagois connection · Atomic operations · Non-interference

1 Introduction

Denning’s seminal work [7] proposed complete lattices1 as the appropriate math-
ematical framework for questions regarding secure information flow (SIF), i.e.,
only authorised flows of information are possible. An information flow model
(IFM) is characterised as 〈N,P, SC,�,�〉 where: Storage objects in N are
assigned security classes drawn from a (finite) complete lattice SC. P is a set of
processes (also assigned security classes as clearances). The partial ordering �
represents permitted flows between classes; reflexivity and transitivity capture
intuitive aspects of information flow; antisymmetry helps avoid redundancies
in the framework, and the join operation � succinctly captures the combina-
tion of information belonging to different security classes in arithmetic, logical

1 Denning showed that the proposed structures, namely complete join semi-lattices
with a least element, are in fact complete lattices.

Supported by Indo-Japanese project Security in the IoT Space, DST, Govt of India.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 75–92, 2019.
https://doi.org/10.1007/978-3-030-21759-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_5&domain=pdf
http://orcid.org/0000-0003-0365-5478
http://orcid.org/0000-0001-5887-1237
https://doi.org/10.1007/978-3-030-21759-4_5

76 C. Bhardwaj and S. Prasad

and computational operations. This lattice model provides an abstract uniform
framework that identifies the commonalities of the variety of analyses for differ-
ent applications – e.g., confidentiality and trust – whether at the language level
or at a system level. In the ensuing decades, the vast body of secure information
flow analyses has been built on these mathematical foundations, with the devel-
opment of a plethora of static and dynamic analysis techniques for program-
ming languages [13,15,17,19–21], operating systems [2,8,12,20,25], databases
[22], and hardware architectures [9,27], etc.

The soundness of this lattice model was expressed in terms of semantic
notions of system behaviour, for instance, as properties like non-interference
[10] by Volpano et al. [23] and others. Alternative semantic notions of security
such as safety properties have been proposed as well, e.g., [1], but for brevity we
will not explore these further.

The objective of this paper is to propose a simple way in which large-scale
distributed secure systems can be built by connecting component systems in a
secure and modular manner. Our work begins with the observation that large
information systems are not monolithic: Different organisations define their own
information flow policies independently, and subsequently collaborate or feder-
ate with one another to exchange information. In general, the security classes
and the lattices of any two organisations may be quite different—there is no
single universal security class lattice. Moreover, modularity and autonomy are
important requirements since each organisation would naturally wish to retain
control over its own security policies and the ability to redefine them. There-
fore, fusing different lattices by taking their union is an unsatisfactory approach,
more so since the security properties of application programs would have to be
re-established in this possibly enormous lattice.

When sharing information, most organisations limit the cross-domain com-
munications to a limited set of security classes (which we call transfer classes).
In order to ensure that shared data are not improperly divulged, two organisa-
tions usually negotiate agreements or memorandums of understanding (MoUs),
promising that they will respect the security policies of the other organisation.
We argue that a good notion of secure connection should require reasoning only
about those flows from just the transfer classes mentioned in a MoU. Usually,
cross-domain communication involves downgrading the security class of priv-
ileged information to public information using primitives such as encryption,
and then upgrading the information to a suitable security class in the other
domain. Such approaches, however, do not gel well with correctness notions
such as non-interference. Indeed the question of how to translate information
between security classes of different lattices is interesting [6].

Contributions of This Paper. In this paper, we propose a simple framework
and sufficient conditions under which secure flow guarantees can be enforced
without exposing the complexities and details of the component information
flow models. The framework consists of (1) a way to connect security classes
of one organisation to those in another while satisfying intuitive requirements;
(2) a simple language that extends the operations within an organisation with

Only Connect, Securely 77

primitives for transferring data between organisations; and (3) a type system
and operational model for these constructs, which we use to establish that the
framework conserves security.

In Sect. 2, we first identify, using intuitive examples, violations in secure flow
that may arise when two secure systems are permitted to exchange information
in both directions. Based on these lacunae, we formulate security and precision
requirements for secure bidirectional flow. We then propose a framework that
guarantees the absence of such policy violations, without impinging on the auton-
omy of the individual systems, without the need for re-verifying the security of
the application procedures in either of the domains, and confining the analysis
to only the transfer classes involved in potential exchange of data. Our app-
roach is based on monotone functions and an elegant theory of connections [16]
between the security lattices. Theorem 1 shows that Lagois connections between
the security lattices satisfy the security and precision requirements.

We present in Sect. 3 a minimal operational language consisting of a small
set of atomic primitives for effecting the transfer of data between domains.
The framework is simple and can be adapted for establishing secure connec-
tions between distributed systems at any level of abstraction (language, system,
database, ...). We assume each domain uses atomic transactional operations for
object manipulation and intra-domain computation. The primitives of our model
include reliable communication between two systems, transferring object data in
designated output variables of one domain to designated input variables of a spec-
ified security class in the other domain. We also assume a generic set of operations
in each domain for copying data from input variables to domain objects, and
from domain objects to output variables. To avoid interference between inter-
domain communication and the computations within the domains, we assume
that the sets of designated input and output variables are all mutually exclu-
sive of one another, and also with the program/system variables used in the
computations within each domain. Thus by design we avoid the usual suspects
that cause interference and insecure transfer of data. The operational descrip-
tion of the language consists of the primitives together with their execution rules
(Sect. 3.1).

The correctness of our framework is demonstrated by expressing soundness
(with respect to the operational semantics) of a type system (Sect. 3.2), stated in
terms of the security lattices and their connecting functions. In particular, Theo-
rem 7 shows the standard semantic property of non-interference in both domains
holds of all operational behaviours. We adapt and extend the approach taken
by Volpano et al. [23] to encompass systems coupled using the Lagois connec-
tion conditions, and (assuming atomicity of the data transfer operations) show
that security is conserved. Since our language is a minimal imperative model
with atomic transactions, reads and writes as the basic elements, we are able to
work with a simplified version of the type system of Volpano et al.. In particu-
lar, our language does not include conditional constructs in the transfer of data
between domains, and assumes all conditional computation is absorbed within
atomic intradomain transactions. Thus, we do not have to concern ourselves with
issues of implicit flows that arise due to branching structures (e.g., conditionals

78 C. Bhardwaj and S. Prasad

�2�1

CollegePrincipal

Dean (F)

Faculty

Dean (S)

Student

⊥1

Chancellor

V ice Chancellor

Dean(Colleges)

Univ.Fac.

⊥2

Fig. 1. Solid green arrows represent
permitted flows according to the infor-
mation exchange arrangement between
a college and a university. Red dash-
dotted arrows highlight a new flow that
is a security violation. (Color figure
online)

�2�1

CollegePrincipal

Dean (F)

Faculty

Dean (S)

Student

⊥1

Chancellor

V ice Chancellor

Dean(Colleges)

Univ.Fac.

⊥2

Fig. 2. Unidirectional flow: If the solid
blue arrows denote identified flows con-
necting important classes, then the
dashed green arrows are constrained
by monotonicity to lie between them.
(Color figure online)

and loops in programming language level security, pipeline mispredictions at the
architectural level, etc.) While non-interference is the property addressed in this
paper, we believe that our formulation is general enough to be applicable to
other behavioural notions of secure information flow as a safety property [1].

In Sect. 4, we briefly review some related work. We conclude in Sect. 5 with
a discussion on our approach and directions for future work.

2 Lagois Connections and All that

Motivating Examples. Consider a university system in which students study
in semi-autonomously administered colleges (one such is C) that are affiliated
to a university (U). The university also has “university professors” with whom
students can take classes. We assume each institution has established the security
of its information flow mechanisms and policies.

We first observe that formulating an agreement between the institutions
which respects the flow policies within each institution is not entirely trivial.
Consider an arrangement where the College Faculty and University Faculty can
share information (say, course material and examinations), and the Dean of Col-
leges in the University can exchange information (e.g., students’ official grade-
sheets) with the college’s Dean of Students. Even such an apparently reasonable
arrangement suffers from insecurities, as illustrated in Fig. 1 by the flow depicted
using dashed red arrows, where information can flow from the college’s Faculty to
the college’s Dean of Students. (Moral: internal structure of the lattices matters.)

Only Connect, Securely 79

�2�1

CollegePrincipal

Dean (F)

Faculty

Dean (S)

Student

⊥1

Chancellor

V ice Chancellor

Dean(Colleges)

Univ.Fac.

⊥2

Fig. 3. The solid blue/green and
dashed brown/red arrows respectively
define monotone functions in each
direction. However, the dash-dotted
red arrow highlights a flow that is a
security violation. (Color figure online)

�2�1

CollegePrincipal

Dean (F)

Faculty

Dean (S)

Student

⊥1

Chancellor

V ice Chancellor

Dean(Colleges)

Univ.Fac.

⊥2

Fig. 4. The arrows define a secure and
precise connection. However, the secu-
rity classification escalates quickly in a
few round-trips when information can
flow in both directions.

As long as information flows unidirectionally from colleges to the University,
monotone functions from the security classes of the college lattice C to those
in the university security lattice U suffice to ensure secure information flow.
A function α : C → U is called monotone if whenever sc1 � sc2 in C then
α(sc1) �′ α(sc2) in U .2 Monotonicity also constrains possible flows between
classes of the two domains, once certain important flows between certain classes
have been identified (see Fig. 2). Moreover, since monotone functions are closed
under composition, one can chain them to create secure unidirectional informa-
tion flow connections through a series of administrative domains. Monotonicity
is a basic principle adopted for information flow analyses, e.g. [13].

However, when there is “blowback” of information, mere monotonicity is
inadequate for ensuring SIF. Consider the bidirectional flow situation in Fig. 3,
where data return to the original domain. Monotonicity of both functions α :
C → U and γ : U → C does not suffice for security because the composition
γ ◦α may not be non-decreasing. In Fig. 3, both α and γ are monotone but their
composition can lead to information leaking from a higher class, e.g., College
Principal, to a lower class, e.g., Faculty within C—an outright violation of the
college’s security policy. Similarly, composition α◦γ may lead to violation of the
University’s security policy.

Requirements. We want to ensure that any “round-trip” flow of information,
e.g., from a domain L to M and back to L, is a permitted flow in the lattice L,

2 Note that it is not necessary for the function α to be total or surjective.

80 C. Bhardwaj and S. Prasad

m2γ(m2)

l1 α(l1)

l2 α(l2)

γ(m1) m1

Fig. 5. Secure flow conditions: (sc1) l1�γ(m2) (sc2) m1�′α(l2).

from where the data originated. Thus we require the following (tersely stated)
“security conditions” SC1 and SC2 on α : L → M and γ : M → L, which
preclude any violation of the security policies of both the administrative domains
(see Fig. 5):

SC1 λl.l � γ ◦ α SC2 λm.m � α ◦ γ

In other words, the data can flow only in accordance with the flows permitted
by the ordering relations of the two lattices.

We also desire precision, based on a principle of least privilege escalation—if
data are exchanged between the two domains without any computation done
on them, then the security level should not be needlessly raised. Precision is
important for meaningful and useful analyses; otherwise data would be escalated
to security classes which permit very restricted access.

PC1 α(l1) =
⊔ {m1 | γ(m1) = l1}, ∀l1 ∈ γ[M]

PC2 γ(m1) =
⊔ {l1 | α(l1) = m1}, ∀m1 ∈ α[L]

Further, if the data were to go back and forth between two domains more
than once, the security classes to which data belong should not become increas-
ingly restrictive after consecutive bidirectional data sharing (See Fig. 4, which
shows monotone functions that keep climbing up to the top). This convergence
requirement may be stated informally as conditions CC1 and CC2, requiring
fixed points for the compositions γ ◦α and α◦γ. Since security lattices are finite,
CC1 and CC2 necessarily hold – such fixed points exist, though perhaps only
at the topmost elements of the lattice. We would therefore desire a stronger
requirement, where fixed points are reached as low in the orderings as possible.

Galois Connections Aren’t the Answer. Any discussion on a pair of partial orders
linked by a pair of monotone functions suggests the notion of a Galois connection,
an elegant and ubiquitous mathematical structure that finds use in computing,
particularly in static analyses. However, Galois connections are not the appro-
priate structure for bidirectional informational flow control.

Let L and M be two complete security class lattices, and α : L → M and
γ : M → L be two monotone functions such that (L,α, γ,M) forms a Galois
connection. Recall that a Galois connection satisfies the condition

GC1 ∀l1 ∈ L,m1 ∈ M, α(l1) �′ m1 ⇐⇒ l1 � γ(m1)

Only Connect, Securely 81

�2�1

CollegePrincipal

Dean (F)

Faculty

Dean (S)

Student

⊥1

Chancellor

V ice Chancellor

Dean(Colleges)

Univ.Fac.

⊥2

Fig. 6. The arrows between the
domains define a Galois Connection.
However, the red dash-dotted arrows
highlight flow security violations
when information can flow in both
directions. (Color figure online)

�2�1

CollegePrincipal

Dean (F)

Faculty

Dean (S)

Student

⊥1

Chancellor

V ice

Chancellor

Dean(Colleges)

Univ.Fac.

⊥2

Fig. 7. A useful increasing Lagois con-
nection for sharing data. Dashed black
arrows define permissible flows between
buds.

So in a Galois connection we have α(γ(m1)) �′ m1 ⇐⇒ γ(m1) � γ(m1). Since
γ(m1) � γ(m1) holds trivially, we get α(γ(m1)) �′ m1. If α(γ(m1)) �=′ m1 then
α(γ(m1)) �′ m1 (strictly), which would violate secure flow requirement SC2.
Figure 6 illustrates such a situation.

Why Not Galois Insertions? Now suppose L and M are two complete security
class lattices, and α : L → M and γ : M → L be two monotone functions such
that (L,α, γ,M) forms a Galois insertion, i.e., a Galois connection where α is
surjective:

GI λl.l � γ ◦ α and λm′.m′ = α ◦ γ

Then the flow of information permitted by α and γ is guaranteed to be secure.
However, Galois insertions mandate conditions on the definitions of functions α
and γ that are much too strong, i.e.,

– γ : M → L is injective, i.e., ∀m1,m2 ∈ M : γ(m1) = γ(m2) =⇒ m1 = m2

– α : L → M is surjective, i.e., ∀m1 ∈ M,∃l1 ∈ L : α(l1) = m1.

Typically data are shared only from a few security classes of any organisation.
Organisations rarely make public their entire security class structure and permit-
ted flow policies. Organisations also typically do not want any external influences
on some subsets of its security classes. Thus, if not all elements of M are transfer
classes, it may be impossible to define a Galois insertion (L,α, γ,M) because we
cannot force α to be surjective.

82 C. Bhardwaj and S. Prasad

Lagois Connections. Further, the connection we seek to make between two
domains should allow us to transpose them. Fortunately there is an elegant
structure, i.e., Lagois Connections [16], which exactly satisfies this as well as
the requirements of security and bidirectional sharing (SC1, SC2, PC1, PC2,
CC1 and CC2). They also conveniently generalise Galois insertions.

Definition 1 (Lagois Connection [16]). If L = (L,�) and M = (M,�′)
are two partially ordered sets, and α : L → M and γ : M → L are order-
preserving functions, then we call the quadruple (L,α, γ,M) an increasing Lagois
connection, if it satisfies the following properties:

LC1 λl.l � γ ◦ α LC2 λm′.m′ �′ α ◦ γ
LC3 α ◦ γ ◦ α = α LC4 γ ◦ α ◦ γ = γ

LC3 ensures that γ(α(c1)) is the least upper bound of all security classes in
C that are mapped to the same security class, say u1 = α(c1) in U .

The main result of this section is that if the negotiated monotone functions
α and γ form a Lagois connection between the security lattices L and M , then
information flows permitted are secure and precise.

Theorem 1. Let L and M be two complete security class lattices, α : L → M
and γ : M → L be two monotone functions. Then the flow of information
permitted by α, γ satisfies conditions SC1, SC2, PC1, PC2, CC1 and CC2
if (L,α, γ,M) is an increasing Lagois connection.

Proof. Condition SC1 holds because if α(l1) �′ m2, by monotonicity of γ,
γ(α(l1)) � γ(m2). But by LC1, l1 � γ(α(l1)). So l1 � γ(m2). (A symmetric
argument holds for SC2.) Conditions PC1 and PC2 are shown in Proposition
3.7 of [16]. Conditions CC1 and CC2 hold since the compositions γ ◦ α and
α ◦ γ are closure operators, i.e., idempotent, extensive, order-preserving endo-
functions on L and M .

In fact, Lagois connections (e.g. Fig. 7) ensure that information in a security
class in the original domain remains accessible even after doing a round-trip
from the other domain (Proposition 3.8 in [16]):

γ(α(l)) = �{l∗ ∈ γ[M] | l � l∗}, (1)

α(γ(m)) = �{m∗ ∈ α[L] | m �′ m∗}. (2)

Properties of Lagois Connections. We list some properties of Lagois connections
that assist in the construction of a secure connection, and in identifying those
security classes that play an important role in the connection. Proposition 2 says
that the two functions γ and α uniquely determine each other.

Proposition 2 (Proposition 3.9 in [16]). If (L,α, γ,M) is a Lagois connection,
then the functions α and γ uniquely determine each other; in fact

γ(m) =
⊔

α−1 [�{ m∗ ∈ α[L] | m �′ m∗}] (3)

Only Connect, Securely 83

α(l) =
⊔

γ−1[�{ l∗ ∈ γ [M] | l � l∗}] (4)

Proposition 3 shows the existence of dominating members in their pre-images,
which act as equivalence-class representatives of the equivalence relations ∼M

and ∼L induced by the functions γ and α.

Proposition 3 (Proposition 3.7 in [16]). Let (L,α, γ,M) be a Lagois connection
and let m ∈ α[L] and l ∈ γ[M]. Then α−1(m) has a largest member, which is
γ(m), and γ−1(l) has a largest member, which is α(l).

That is, for all m ∈ α[L] and l ∈ γ[M], γ(m) and α(l) exist. Also, the
images γ[M] and α[L] are isomorphic lattices. L∗ = γ[α[L]] = γ[M] and M∗ =
α[γ[M]] = α[L] define a system of representatives for ∼L and ∼M . Element m∗ =
α(γ(m′)) in M∗, called a budpoint, acts as the representative of the equivalence
class [m′] in the following sense:

if m ∈ M and m∗ ∈ M∗ with m ∼M m∗ then m �′ m∗ (5)

Symmetrically, L∗ = γ[α[L]] = γ[M] defines a system of representatives for ∼L.
These budpoints play a significant role in delineating the connection between
the transfer classes in the two lattices.

Further, Proposition 4 shows that these budpoints are closed under meets.
This property enables us to confine our analysis to just these classes when rea-
soning about bidirectional flows.

Proposition 4 (Proposition 3.11 in [16]). If (L,α, γ,M) is a Lagois connection
and A ⊆ γ[M], then

1. the meet of A in γ[M] exists if and only if the meet of A in L exists, and
whenever either exists, they are equal.

2. the join â of A in γ[M] exists if the join ǎ of A in L exists, and in this case
â = γ(α(ǎ))

3 An Operational Model

3.1 Computational Model

Let us consider two different organisations L and M that want to share data
with each other. We start with the assumptions that the two domains comprise
storage objects Z and Z ′ respectively, which are manipulated using their own
sets of atomic transactional operations, ranged over by t and t′ respectively. We
further assume that these transactions within each domain are internally secure
with respect to their flow models, and have no insecure or interfering interactions
with the environment. Thus, we are agnostic to the level of abstraction of the
systems we aim to connect securely, and since our approach treats the applica-
tion domains as “black boxes”, it is readily adaptable to any level of discourse
(language, system, OS, database) found in the security literature.

84 C. Bhardwaj and S. Prasad

We extend these operations with a minimal set of operations to transfer
data between the two domains. To avoid any concurrency effects, interference
or race conditions arising from inter-domain transfer, we augment the storage
objects of both domains with a fresh set of export and import variables into/from
which the data of the domain objects can be copied atomically. We designate
these sets X,X ′ as the respective export variables, and Y , Y ′ as the respective
import variables, with the corresponding variable instances written as xi, x′

i and
yi, y′

i. These export and import variables form mutually disjoint sets, and are
distinct from any extant domain objects manipulated by the applications within
a domain. These variables are used exclusively for transfer, and are manipulated
atomically. We let wi range over all variables in N = Z ∪X ∪Y (respectively w′

i

over N ′ = Z ′∪X ′∪Y ′). Domain objects are copied to export variables and from
import variables by special operations rd(z, y) and wr(x, z) (and rd′(z′, y′) and
wr′(x′, z′) in the other domain). We assume atomic transfer operations (trusted
by both domains) TRL, TLR that copy data from the export variables of one
domain to the import variables of the other domain as the only mechanism for
inter-domain flow of data. Let “phrase” p denote a command in either domain or
a transfer operation, and let s be any (empty or non-empty) sequence of phrases.

(command) c ::= t | rd(z, y) | wr(x, z) c′ ::= t′ | rd′(z′, y′) | wr′(x′, z′)
(phrase) p ::= TRL(x′, y) | TLR(x, y′) | c | c′ (seq) s ::= ε | s1; p

T
μ � t ⇒ ν

〈μ, μ′〉 � t ⇒ 〈ν, μ′〉 T’
μ′ � t′ ⇒ ν′

〈μ, μ′〉 � t′ ⇒ 〈μ, ν′〉
Wr 〈μ, μ′〉 � wr(x, z) ⇒ 〈μ[x := μ(z)], μ′〉

Wr’ 〈μ, μ′〉 � wr′(x′, z′) ⇒ 〈μ, μ′[x′ := μ′(z′)]〉
Rd 〈μ, μ′〉 � rd(z, y) ⇒ 〈μ[z := μ(y)], μ′〉

Rd’ 〈μ, μ′〉 � rd′(z′, y′) ⇒ 〈μ, μ′[z′ := μ′(y′)]〉
Trl 〈μ, μ′〉 � TRL(y, x′) ⇒ 〈μ[y := μ′(x′)], μ′〉
Tlr 〈μ, μ′〉 � TLR(y′, x) ⇒ 〈μ, μ′[y′ := μ(x)]〉

Seq0 〈μ, μ′〉 � ε ⇒∗ 〈μ, μ′〉

SeqS
〈μ, μ′〉 � s1 ⇒∗ 〈μ1, μ

′
1〉, 〈μ1, μ

′
1〉 � p ⇒ 〈μ2, μ

′
2〉

〈μ, μ′〉 � s1; p ⇒∗ 〈μ2, μ
′
2〉

Fig. 8. Execution rules

A store (typically μ, ν, μ′, ν′) is a finite-domain function from variables to a
set of values (not further specified). We write, e.g., μ(w) for the contents of the

Only Connect, Securely 85

store μ at variable w, and μ[w := μ′(w′)] for the store that is the same as μ
everywhere except at variable w, where it now takes value μ′(w′).

The rules specifying execution of commands are given in Fig. 8. Assuming
the specification of intradomain transactions (t, t’) of the form μ � t =⇒ ν
and μ′ � t′ =⇒ ν′, our rules allow us to specify judgments of the form 〈μ, μ′〉 �
p =⇒ 〈ν, ν′〉 for phrases, and the reflexive-transitive closure for sequences of
phrases. Note that phrase execution occurs atomically, and the intra-domain
transactions, as well as copying to and from the export/import variables affect
the store in only one domain, whereas the atomic transfer is only between export
variables of one domain and the import variables of the other.

3.2 Typing Rules

Let the two domains have the respective different IFMs:

FML = 〈N,P , SC,�,�〉 FMM = 〈N ′, P ′, SC ′,�,�′〉,
such that the flow policies in both are defined over different sets of security
classes SC and SC ′.3

The (security) types of the core language are as follows. Metavariables l and
m′ range over the sets of security classes, SC and SC ′ respectively, which are
partially ordered by � and �′. A type assignment λ is a finite-domain func-
tion from variables N to SC (respectively, λ′ from N ′ to SC ′). The important
restriction we place on λ and λ′ is that they map export and import variables
X,X, Y ′, Y only to points in the security lattices SC and SC ′ respectively which
are in the domains of γ and α, i.e., these points participate in the Lagois connec-
tion. Intuitively, a variable w mapped to security class l can store information
of security class l or lower. The type system works with respect to a given type
assignment. Given a security level, e.g., l, the typing rules track for each com-
mand within that domain whether all written-to variables in that domain are
of security classes “above” l, and additionally for transactions within a domain,
they ensure “simple security”, i.e., that all variables which may have been read
belong to security classes “below” l. We assume for the transactions within a
domain, e.g., L, we have a type system that will give us judgments of the form
λ � c : l. The novelty of our approach is to extend this framework to work over
two connected domains, i.e., given implicit security levels of the contexts in the
respective domains. Cross-domain transfers will require pairing such judgments,
and thus our type system will have judgments of the form

〈λ, λ′〉 � p : 〈l,m′〉
We introduce a set of typing rules for the core language, given in Fig. 9. In

many of the rules, the type for one of the domains is not constrained by the rule,
and so any suitable type may be chosen as determined by the context, e.g., m′

in the rules Tt, Trd, Twr and TTRL, and both l and m′ in Com0.
3 Without loss of generality, we assume that SC ∩ SC′ = ∅, since we can suitably

rename security classes.

86 C. Bhardwaj and S. Prasad

Tt 〈λ, λ′〉 � t : 〈l, m′〉 if for all z assigned in t, l � λ(z)
& for all z1 read in t, λ(z1) � l

Tt’ 〈λ, λ′〉 � t′ : 〈l, m′〉 if for all z′ assigned in t′, m′ �′ λ′(z′)
& for all z′

1 read in t′, λ′(z′
1) �′ m′

Trd
λ(y) � λ(z)

〈λ, λ′〉 � rd(z, y) : 〈λ(z), m′〉
Trd’

λ′(y′) �′ λ′(z′)
〈λ, λ′〉 � rd′(z′, y′) : 〈l, λ′(z′)〉

Twr
λ(z) � λ(x)

〈λ, λ′〉 � wr(x, z) : 〈λ(x), m′〉
Twr’

λ′(z′) �′ λ′(x′)
〈λ, λ′〉 � wr′(x′, z′) : 〈l, λ′(x′)〉

TTRL

γ(λ′(x′)) � λ(y)
〈λ, λ′〉 � TRL(y, x′) : 〈λ(y), λ′(x′)〉

TTLR’
α(λ(x)) �′ λ′(y′)

〈λ, λ′〉 � TLR(y′, x) : 〈λ(x), λ′(y′)〉
Com0 〈λ, λ′〉 � ε : 〈l, m′〉
ComS

〈λ, λ′〉 � p : 〈l1, m′
1〉 〈λ, λ′〉 � s : 〈l, m′〉

〈λ, λ′〉 � s; p : 〈l1�l, m′
1�m′〉

Fig. 9. Typing rules

For transactions e.g., t entirely within domain L, the typing rule Tt con-
strains the type in the left domain to be at a level l that dominates all variables
read in t, and which is dominated by all variables written to in t, but places
no constraints on the type m′ in the other domain M . In the rule Trd, since
a value in import variable y is copied to the variable z, we have λ(y) � λ(z),
and the type in the domain L is λ(z) with no constraint on the type m′ in the
other domain. Conversely, in the rule Twr, since a value in variable z is copied
to the export variable x, we have λ(z) � λ(x), and the type in the domain L is
λ(x) with no constraint on the type m′ in the other domain. In the rule TTRL,
since the contents of a variable x′ in domain M are copied into a variable y in
domain L, we require γ(λ′(x′)) � λ(y), and constrain the type in domain L to
λ(y). The constraint in the other domain is unimportant (but for the sake of
convenience, we peg it at λ′(x′)). Finally, for the types of sequences of phrases,
we take the meets of the collected types in each domain respectively, so that we
can guarantee that no variable of type lower than these meets has been written
into during the sequence. Note that Proposition 4 ensures that these types have
the desired properties for participating in the Lagois connection.

Only Connect, Securely 87

3.3 Soundness

We now establish soundness of our scheme by showing a non-interference theorem
with respect to operational semantics and the type system built on the security
lattices. This theorem may be viewed as a conservative adaptation (to a minimal
secure data transfer framework in a Lagois-connected pair of domains) of the
main result of Volpano et al. [23].

We assume that underlying base transactional languages in each of the
domains have the following simple property (stated for L, but an analogous
property is assumed for M). Within each transaction t, for each assignment of
an expression e to any variable z, the following holds: If μ, ν are two stores such
that for all w ∈ vars(e), we have μ(w) = ν(w), then after executing the assign-
ment, we will get μ(z) = ν(z). That is, if two stores are equal for all variables
appearing in the expression e, then the value assigned to the variable z will be
the same. This assumption plays the rôle of “Simple Security” of expressions in
[23] in the proof of the main theorem. The type system plays the rôle of “Con-
finement”. We start with two obvious lemmas about the operational semantics,
namely preservation of domains, and a “frame” lemma:

Lemma 5 (Domain preservation). If 〈μ, μ′〉 � s ⇒∗ 〈μ1, μ
′
1〉, then dom(μ) =

dom(μ1), and dom(μ′) = dom(μ′
1).

Proof. By induction on the length of the derivation of 〈μ, μ′〉 � s ⇒∗ 〈μ1, μ
′
1〉.

Lemma 6 (Frame). If 〈μ, μ′〉 � s ⇒∗ 〈μ1, μ
′
1〉, w ∈ dom(μ) ∪ dom(μ′), and w is

not assigned to in s, then μ(w) = μ1(w) and μ′(w) = μ′
1(w).

Proof. By induction on the length of the derivation of 〈μ, μ′〉 � s ⇒∗ 〈μ1, μ
′
1〉.

The main result of the paper assumes an “adversary” that operates at a secu-
rity level l in domain L and at security level m′ in domain M . Note however,
that these two levels are interconnected by the monotone functions α : L → M
and γ : M → L, since these levels are connected by the ability of information
at one level in one domain to flow to the other level in the other domain. The
following theorem says that if (a) a sequence of phrases is well-typed, and (b, c)
we start its execution in two store configurations that are (e) indistinguishable
with respect to all objects having security class below l and m′ in the respec-
tive domains, then the corresponding resulting stores after execution continue
to remain indistinguishable on all variables with security classes below these
adversarial levels.

Theorem 7 (Type Soundness). Suppose l,m′ are the “adversarial” type levels
in the respective domains, which satisfy the condition l = γ(m′) and m′ = α(l).
Let

(a) 〈λ, λ′〉 � s : 〈l0,m′
0〉; (s has security type 〈l0,m′

0〉)
(b) 〈μ, μ′〉 � s ⇒∗ 〈μf , μ′

f 〉; (execution of s starting from 〈μ, μ′〉)
(c) 〈ν, ν′〉 � s ⇒∗ 〈νf , ν′

f 〉; (execution of s starting from 〈ν, ν′〉)

88 C. Bhardwaj and S. Prasad

(d) dom(μ) = dom(ν) = dom(λ) and dom(μ′) = dom(ν′) = dom(λ′);
(e) μ(w) = ν(w) for all w such that λ(w) � l, and μ′(w′) = ν′(w′) for all w′

such that λ′(w′) �′ m′.

Then μf (w) = νf (w) for all w such that λ(w) � l, and μ′
f (w′) = ν′

f (w′) for all
w′ such that λ′(w′) �′ m′.

Proof. By induction on the length of sequence s. The base case is vacuously true.
We now consider a sequence s1; p. 〈μ, μ′〉 � s1 ⇒∗ 〈μ1, μ

′
1〉 and 〈μ1, μ

′
1〉 � p ⇒

〈μf , μ′
f 〉 and 〈ν, ν′〉 � s1 ⇒∗ 〈ν1, ν′

1〉 and 〈ν1, ν′
1〉 � p ⇒ 〈νf , ν′

f 〉 By induction
hypothesis applied to s1, we have μ1(w) = ν1(w) for all w such that λ(w) � l,
and μ′

1(w
′) = ν′

1(w
′) for all w′ such that λ′(w′) �′ m′.

Let 〈λ, λ′〉 � s1 : 〈ls,m′
s〉, and 〈λ, λ′〉 � p : 〈lp,m′

p〉. We examine four cases
for p (the remaining cases are symmetrical).

Case p is t: Consider any w such that λ(w) � l. If w ∈ X ∪ Y (i.e., it doesn’t
appear in t), or if w ∈ Z but is not assigned to in t, then by Lemma 6 and the
induction hypothesis, μf (w) = μ1(w) = ν1(w) = νf (w).

Now suppose z is assigned to in t. From the condition 〈λ, λ′〉 � p : 〈lp,m′
p〉, we

know that for all z1 assigned in t, lp � λ(z1) and for all z1 read in t, λ(z1) � lp.
Now if l � lp, then since in t no variables z2 such that λ(z2) � l are assigned
to. Therefore by Lemma 6, μf (w) = μ1(w) = ν1(w) = νf (w), for all w such that
λ(w) � l.

If lp � l, then for all z1 read in t, λ(z1) � lp. Therefore, by assumption
on transaction t, if any variable z is assigned an expression e, since μ1, ν1 are
two stores such that for all z1 ∈ Ze = vars(e), μ1(z1) = ν1(z1), the value of e
will be the same. By this simple security argument, after the transaction t, we
have μf (z) = νf (z). Since the transaction happened entirely and atomically in
domain L, we do not have to worry ourselves with changes in the other domain
M , and do not need to concern ourselves with the adversarial level m′.

Case p is rd(z, y): Thus 〈λ, λ′〉 � rd(z, y) : 〈λ(z),m′〉, which means λ(y) � λ(z).
If l � λ(z), there is nothing to prove (Lemma 6, again). If λ(z) � l, then since
by I.H., μ1(y) = ν1(y), we have μf (z) = μ1[z := μ1(y)](z) = ν1[z := ν1(y)](z) =
νf (z).

Case p is wr(x, z): Thus 〈λ, λ′〉 � wr(x, z) : 〈λ(x),m′〉, which means λ(z) � λ(x).
If l � λ(x), there is nothing to prove (Lemma 6, again). If λ(x) � l, then since
by I.H., μ1(z) = ν1(z), we have μf (x) = μ1[x := μ1(z)](x) = ν1[x := ν1(z)](x) =
νf (x).

Case p is TRL(y, x′): So 〈λ, λ′〉 � TRL(y, x′) : 〈λ(y), λ′(x′)〉, and γ(λ′(x′)) � λ(y).
If l � λ(y), there is nothing to prove (Lemma 6, again). If λ(y) � l, then by
transitivity, γ(λ′(x′)) � l. By monotonicity of α: α(γ(λ′(x′))) �′ α(l) = m′

(By our assumption on l and m′). But by LC2, λ′(x′) �′ α(γ(λ′(x′))). So by
transitivity, λ′(x′) �′ m′. Now, by I.H., since μ′

1(x
′) = ν′

1(x
′), we have μf (y) =

μ1[y := μ′
1(x

′)](y) = ν1[y := ν′
1(x

′)](y) = νf (y).

Only Connect, Securely 89

4 Related Work

The notion of Lagois connections [16] has surprisingly not been employed much
in computer science. The only cited use of this idea seems to be the work of
Huth [11] in establishing the correctness of programming language implementa-
tions. To our knowledge, our work is the only one to propose their use in secure
information flow control.

Abstract Interpretation and type systems [5] have been used in secure flow
analyses, e.g., [3,4] and [24], where security types are defined using Galois con-
nections employing, for instance, a standard collecting semantics. Their use of
two domains, concrete and abstract, with a Galois connection between them, for
performing static analyses within a single domain should not be confused with
our idea of secure connections between independently-defined security lattices of
two organisations.

There has been substantial work on SIF in a distributed setting at the systems
level. DStar [26] for example, uses sets of opaque identifiers to define security
classes. The DStar framework extends a particular Decentralized Information
Flow Control (DIFC) model [12,25] for operating systems to a distributed net-
work. The only partial order that is considered in DStar’s security lattice is
subset inclusion. So it is not clear if DStar can work on general IFC mechanisms
such as FlowCaml [19], which can use any partial ordering. Nor can it express
the labels of JiF [17] or Fabric [13] completely. DStar allows bidirectional com-
munication between processes R and S only if LR �OR

LS and LS �OS
LR, i.e.,

if there is an order-isomorphism between the labels. Our motivating examples
indicate such a requirement is far too restrictive for most practical arrangements
for data sharing between organisations.

Fabric [13,14] adds trust relationships directly derived from a principal hier-
archy to support federated systems with mutually distrustful nodes and allows
dynamic delegation of authority.

Most of the previous DIFC mechanisms [2,8,12,17,20,25] including Fabric
are susceptible to the vulnerabilities illustrated in our motivating examples,
which we will mention in the concluding discussion.

5 Conclusions and Future Work

Our work is similar in spirit to Denning’s motivation for proposing lattices,
namely to identify a simple and mathematically elegant structure in which to
frame the construction of scalable secure information flow in a modular man-
ner that preserved the autonomy of the individual organisations. From the basic
requirements, we identified the elegant theory of Lagois connections as an appro-
priate structure. Lagois connections provide us a way to connect the security
lattices of two (secure) systems in a manner that does not expose their entire
internal structure and allows us to reason only in terms of the interfaced secu-
rity classes. We believe that this framework is also applicable in more intricate

90 C. Bhardwaj and S. Prasad

information flow control formulations such as decentralised IFC [18] and mod-
els with declassification, as well as formulations with data-dependent security
classes [15]. We intend to explore these aspects in the future.

In this paper, we also proposed a minimal operational model for the transfer
of data between the two domains. This formulation is spare enough to be adapt-
able at various levels of abstraction (programming language, systems, databases),
and is intended to illustrate that the Lagois connection framework can conserve
security, using non-interference as the semantic notion of soundness. The choice
of non-interference and the use of a type system in the manner of Volpano
et al. [23] was to illustrate in familiar terms how those techniques (removed
from a particular language formulation) could be readily adapted to work in the
context of secure connections between lattices. In this exercise, we made suitable
assumptions of atomicity and the use of fresh variables for communication, so as
to avoid usual sources of interference. By assuming that the basic intra-domain
transactions are atomic and by not permitting conditional transfer of informa-
tion across domains in the language, we have avoided dealing with issues related
to implicit flows. We believe that the Lagois connection framework for secure
flows between systems is readily adaptable for notions of semantic correctness
other than non-interference, though that is an exercise for the future.

In the future we intend to explore how the theory of Lagois connections
constitutes a robust framework that can support the discovery, decomposition,
update and maintenance of secure MoUs for exchanging information. In this
paper, we concerned ourselves only with two domains and bidirectional infor-
mation exchange. Compositionality of Lagois connections allows these results to
extend to chaining connections across several domains. In the future, we also
intend to explore how one may secure more complicated information exchange
arrangements than merely chains of bidirectional flow.

We close this discussion with a reminder of why it is important to have a
framework in which secure flows should be treated in a modular and autonomous
manner. Consider Myer’s DIFC model described in [18], where a principal can
delegate to others the capacity to act on its behalf. We believe that this notion
does not scale well to large, networked systems since a principal may repose
different levels of trust in the various hosts in the network. For this reason,
we believe that frameworks such as Fabric [13,14] may provide more power
than mandated by a principle of least privilege. In general, since a principal
rarely vests unqualified trust in another in all contexts and situations, one should
confine the influence of the principals possessing delegated authority to only
specific domains. A mathematical framework that can deal with localising trust
and delegation of authority in different domains and controlling the manner in
which information flow can be secured deserves a deeper study. We believe that
algebraic theories such as Lagois connections can provide the necessary structure
for articulating these concepts.

Acknowledgments. The second author thanks Deepak Garg for insightful discussions
on secure information flow. Part of the title is stolen from E.M. Forster.

Only Connect, Securely 91

References

1. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman,
J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-01465-9 2

2. Cheng, W., et al.: Abstractions for usable information flow control in Aeolus. In:
2012 USENIX Annual Technical Conference, Boston, MA, USA, 13–15 June 2012,
pp. 139–151 (2012)

3. Cortesi, A., Ferrara, P., Halder, R., Zanioli, M.: Combining symbolic and numerical
domains for information leakage analysis. Trans. Comput. Sci. 31, 98–135 (2018)

4. Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Datacentric semantics for verifica-
tion of privacy policy compliance by mobile applications. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 61–79. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 4

5. Cousot, P.: Types as Abstract Interpretations. In: Conference Record of POPL
1997: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Papers Presented at the Symposium, Paris, France, 15–17 Jan-
uary 1997, pp. 316–331 (1997)

6. Deng, S., Gümüsoglu, D., Xiong, W., Gener, Y.S., Demir, O., Szefer, J.: SecChisel:
language and tool for practical and scalable security verification of security-aware
hardware architectures. IACR Cryptology ePrint Archive 2017/193 (2017). http://
eprint.iacr.org/2017/193

7. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

8. Efstathopoulos, P., et al.: Labels and event processes in the Asbestos operating
system. In: Proceedings of the 20th ACM Symposium on Operating Systems Prin-
ciples 2005, SOSP 2005, Brighton, UK, 23–26 October 2005, pp. 17–30 (2005)

9. Ferraiuolo, A., Zhao, M., Myers, A.C., Suh, G.E.: Hyperflow: a processor architec-
ture for nonmalleable, timing-safe information flow security. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, 15–19 October 2018, pp. 1583–1600 (2018)

10. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982)

11. Huth, M.: On the equivalence of state-transition systems. In: Burn, G., Gay, S.,
Ryan, M. (eds.) Theory and Formal Methods 1993. Workshops in Computing, pp.
171–182. Springer, London (1993). https://doi.org/10.1007/978-1-4471-3503-6 13

12. Krohn, M.N., et al.: Information flow control for standard OS abstractions. In:
Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007,
SOSP 2007, Stevenson, Washington, USA, 14–17 October 2007, pp. 321–334 (2007)

13. Liu, J., Arden, O., George, M.D., Myers, A.C.: Fabric: building open distributed
systems securely by construction. J. Comput. Secur. 25(4–5), 367–426 (2017)

14. Liu, J., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: a platform
for secure distributed computation and storage. In: Proceedings of the 22nd ACM
Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana,
USA, 11–14 October 2009, pp. 321–334 (2009)

15. Lourenço, L., Caires, L.: Dependent information flow types. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, 15–17 January 2015, pp. 317–328 (2015)

https://doi.org/10.1007/978-3-642-01465-9_2
https://doi.org/10.1007/978-3-662-46081-8_4
http://eprint.iacr.org/2017/193
http://eprint.iacr.org/2017/193
https://doi.org/10.1007/978-1-4471-3503-6_13

92 C. Bhardwaj and S. Prasad

16. Melton, A., Schröder, B.S.W., Strecker, G.E.: Lagois connections - a counterpart
to Galois connections. Theor. Comput. Sci. 136(1), 79–107 (1994)

17. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1999, San Antonio, TX, USA, 20–22 January 1999, pp.
228–241 (1999)

18. Myers, A.C.: Mostly-static decentralized information flow control. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA (1999). http://hdl.
handle.net/1721.1/16717

19. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.
Lang. Syst. 25(1), 117–158 (2003)

20. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: practi-
cal fine-grained decentralized information flow control. In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2009, Dublin, Ireland, 15–21 June 2009, pp. 63–74 (2009)

21. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

22. Schultz, D.A., Liskov, B.: IFDB: decentralized information flow control for
databases. In: Eighth Eurosys Conference 2013, EuroSys 2013, Prague, Czech
Republic, 14–17 April 2013, pp. 43–56 (2013)

23. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

24. Zanotti, M.: Security typings by abstract interpretation. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 360–375. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45789-5 26

25. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in histar. In: 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI 2006), Seattle, WA, USA, 6–8 November, pp. 263–278 (2006)

26. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing distributed systems with
information flow control. In: Proceedings of 5th USENIX Symposium on Networked
Systems Design & Implementation, NSDI 2008, San Francisco, CA, USA, 16–18
April 2008, pp. 293–308 (2008)

27. Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design language for
timing-sensitive information-flow security. In: Proceedings of the Twentieth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2015, Istanbul, Turkey, 14–18 March 2015, pp. 503–
516 (2015)

http://hdl.handle.net/1721.1/16717
http://hdl.handle.net/1721.1/16717
https://doi.org/10.1007/3-540-45789-5_26

Output-Sensitive Information
Flow Analysis

Cristian Ene(B) , Laurent Mounier , and Marie-Laure Potet

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
{Cristian.Ene,Laurent.Mounier,Marie-laure.Potet}@univ-grenoble-alpes.fr

Abstract. Constant-time programming is a countermeasure to prevent
cache based attacks where programs should not perform memory accesses
that depend on secrets. In some cases this policy can be safely relaxed
if one can prove that the program does not leak more information than
the public outputs of the computation.

We propose a novel approach for verifying constant-time programming
based on a new information flow property, called output-sensitive non-
interference. Noninterference states that a public observer cannot learn
anything about the private data. Since real systems need to intentionally
declassify some information, this property is too strong in practice. In
order to take into account public outputs we proceed as follows: instead
of using complex explicit declassification policies, we partition variables
in three sets: input, output and leakage variables. Then, we propose a
typing system to statically check that leakage variables do not leak more
information about the secret inputs than the public normal output. The
novelty of our approach is that we track the dependence of leakage vari-
ables with respect not only to the initial values of input variables (as
in classical approaches for noninterference), but taking also into account
the final values of output variables. We adapted this approach to LLVM
IR and we developed a prototype to verify LLVM implementations.

Keywords: Information flow · Output-sensitive non-interference ·
Type system

1 Introduction

An important task of cryptographic research is to verify cryptographic imple-
mentations for security flaws, in particular to avoid so-called timing attacks.
Such attacks consist in measuring the execution time of an implementation on
its execution platform. For instance, Brumley and Boneh [12] showed that it was
possible to mount remote timing attacks by against OpenSSL’s implementation
of the RSA decryption operation and to recover the key. Albrecht and Paterson

This work is supported by the French National Research Agency in the framework of
the “Investissements d’ avenir” program (ANR-15-IDEX-02).
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 93–110, 2019.
https://doi.org/10.1007/978-3-030-21759-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_6&domain=pdf
http://orcid.org/0000-0001-6322-0383
http://orcid.org/0000-0001-9925-098X
http://orcid.org/0000-0002-7070-6290
https://doi.org/10.1007/978-3-030-21759-4_6

94 C. Ene et al.

[3] showed that the two levels of protection offered against the Lucky 13 attack
from [2] in the first release of the new implementation of TLS were imperfect. A
related class of attacks are cache-based attacks in which a malicious party is able
to obtain memory-access addressses of the target program which may depend
on secret data through observing cache accesses. Such attacks allow to recover
the complete AES keys [17].

A possible countermeasure is to follow a very strict programming discipline
called constant-time programming. Its principle is to avoid branchings con-
trolled by secret data and memory load/store operations indexed by secret data.
Recent secure C libraries such as NaCl [10] or mbedTLS1 follow this program-
ming discipline. Until recently, there was no rigorous proof that constant-time
algorithms are protected to cache-based attacks. Moreover, many cryptographic
implementations such as PolarSSL AES, DES, and RC4 make array accesses
that depend on secret keys and are not constant time. Recent works [4,6,11] fill
this gap and develop the first formal analyzes that allow to verify if programs
are correct with respect to the constant-time paradigm.

An interesting extension was brought by Almeida et al. [4] who enriched
the constant-time paradigm “distinguishing not only between public and private
input values, but also between private and publicly observable output values”.
This distinction raises interesting technical and theoretical challenges. Indeed,
constant-time implementations in cryptographic libraries like OpenSSL include
optimizations for which paths and addresses can depend not only on public input
values, but also on publicly observable output values. Hence, considering only
input values as non-secret information would thus incorrectly characterize those
implementations as non-constant-time. [4] also develops a verification technique
based on symbolic execution. However, the soundness of their approach depends
in practice on the soundness of the underlying symbolic execution engine, which
is very difficult to guarantee for real-world programs with loops. Moreover, their
product construction can be very expensive in the worst case.

In this paper we deal with statically checking programs for output-
sensitive constant-time correctness: programs can still do branchings or mem-
ory accesses controlled by secret data if the information that is leaked is sub-
sumed by the normal output of the program. To give more intuition about the
property that we want to deal with, let us consider the following example, where
ct eq is a constant time function that allows to compare the arguments:

good = 1;
for (i=0; i<B_Size; i++){good = good & ct_eq(secret[i],in_p[i]);}
if (!good) { for(i=0; i<B_Size; i++) secret[i] = 0; }
return good;

Let suppose that the array variable secret is secret, and all the other vari-
ables are public. Intuitively this a sort of one-time check password verifying that
in p = secret and otherwise overwrites the array secret with zero. Obviously,
this function is not constant-time as the variable good depends on secret, and
1 mbed TLS (formerly known as PolarSSL). https://tls.mbed.org/.

https://tls.mbed.org/

Output-Sensitive Information Flow Analysis 95

hence branching on good violates the principles of constant-time programming.
It is easy to transform this program into an equivalent one which is constant
time. For example one could replace

if (!good) { for(i=0; i<B_Size; i++) secret[i] = 0; }

by

for (i=0; i<B_Size; i++) {secret[i] = secret[i] & ct_eq(good,1);}

But branching on good is a benign optimization, since anyway, the value of good
is the normal output of the program. Hence, even if the function is not constant-
time, it should be considered output-sensitive constant time with respect
to its specification. Such optimization opportunities arise whenever the interface
of the target application specifies what are the publicly observable outputs, and
this information is sufficient to classify the extra leakage as benign [4].

The objective of this work is to propose a static method to check if a program
is output-sensitive constant time secure. We emphasize that our goal is not to
verify that the legal output leaks “too much”, but rather to ensure that the
unintended (side-channel) output does not leak more than this legal output.

First, we propose a novel approach for verifying constant-time security based
on a new information flow property, called output-sensitive noninterference.
Information-flow security prevents confidential information to be leaked to pub-
lic channels. Noninterference states that a public observer cannot learn anything
about the private data. Since real systems need to intentionally declassify some
information, this property is too strong. An alternative is relaxed noninterfer-
ence which allows to specify explicit downgrading policies. In order to take into
account public outputs while staying independent of how programs intentionally
declassify information, we develop an alternative solution: instead of using com-
plex explicit policies for functions, we partition variables in three sets: input,
output and leakage variables. Hence we distinguish between the legal public
output and the information that can leak through side-channels, expressed by
adding fresh additional leakage variables. Then we propose a typing system that
can statically check that leakage variables do not leak more secret information
than the public normal output. The novelty of our approach is that we track the
dependence of leakage variables with respect to both the initial value of input
variables (as classically the case for noninterference) and final values of output
variables. Then, we show how to verify that a program written in a high-level
language is output-sensitive constant time secure by using this typing system.

Since timed and cache-based attacks target the executions of programs, it
is important to carry out this verification in a language close to the machine-
executed assembly code. Hence, we adapt our approach to a generic unstructured
assembly language inspired from LLVM and we show how we can verify programs
coded in LLVM. Finally, we developed a prototype tool implementing our type
system and we show how it can be used to verify LLVM implementations.

To summarize, this work makes the following contributions described above:
- in Sect. 2 we reformulate output-sensitive constant-time as a new interesting

96 C. Ene et al.

(x := e, σ) −→ σ[x σ(e)] (skip, σ) −→ σ

(c1, σ) −→ σ

(c1; c2, σ) −→ (c2, σ)

(c1, σ) −→ (c1, σ)

(c1; c2, σ) −→ (c1; c2, σ)

σ(e) = 1 ? i = 1 : i = 2
(If e then c1 else c2 fi , σ) −→ (ci, σ)

σ(e) = 1
(While e Do c oD , σ) −→ σ

σ(e) = 1
(While e Do c oD , σ) −→ (c;While e Do c oD , σ)

Fig. 1. Operational semantics of the While language

noninterference property and we provide a sound type system that guarantees
that well-typed programs are output-sensitive noninterferent;

- in Sect. 3 we show that this general approach can be used to verify that
programs written in a high-level language are output-sensitive constant time;

- in Sect. 4 we adapt our approach to the LLVM-IR language and we develop
a prototype tool that can be used to verify LLVM implementations.

An extended version of this paper, including all proofs and complete type
systems is available on-line2.

2 Output-Sensitive Non-interference

2.1 The While Language and Output-Sensitive Noninterference

In order to reason about the security of the code, we first develop our framework
in While, a simple high-level structured programming language. In Sect. 3 we
shall enrich this simple language with arrays and in Sect. 4 we adapt our approach
to a generic unstructured assembly language. The syntax of While programs is
listed below:

c :: = x := e | skip | c1; c2 | If e then c1 else c2 fi | While e Do c oD

Meta-variables x, e and c range over the sets of program variables V ar, expres-
sions and programs, respectively. We leave the syntax of expressions unspecified,
but we assume they are deterministic and side-effect free. The semantics is shown
in Fig. 1. The reflexive and transitive closure of −→ is denoted by =⇒. A state
σ maps variables to values, and we write σ(e) to denote the value of expression
e in state σ. A configuration (c, σ) is a program c to be executed along with the
current state σ. Intuitively, if we want to model the security of some program c
with respect to side-channel attacks, we can assume that there are three special

2 https://www-verimag.imag.fr/∼Cristian.Ene/OSNI/main.pdf.

https://www-verimag.imag.fr/{~}Cristian.Ene/OSNI/main.pdf

Output-Sensitive Information Flow Analysis 97

subsets of variables: XI the public input variables, XO the public output vari-
ables and XL the variables that leak information to some malicious adversary.
Then, output sensitive noninterference asks that every two complete executions
starting with XI -equivalent states and ending with XO-equivalent final states
must be indistinguishable with respect to the leakage variables XL.

Definition 1. (adapted from [4]) Let XI ,XO,XL ⊆ V ar be three sets of vari-
ables, intended to represent the input, the output and the leakage of a program.
A program c is (XI ,XO,XL)-secure when all its executions starting with XI-
equivalent stores and leading to XO-equivalent final stores, give XL-equivalent
final stores. Formally, for all σ, σ′, ρ, ρ′, if 〈c, σ〉 =⇒ σ′ and 〈c, ρ〉 =⇒ ρ′ and
σ =XI

ρ and σ′ =XO
ρ′, then σ′ =XL

ρ′.

2.2 Typing Rules

This section introduces a type-based information flow analysis that allows to
check whether a While program is output-sensitive noninterferent, i.e. the pro-
gram does not leak more information about the secret inputs than the public
normal output.

As usual, we consider a flow lattice of security levels L. An element x of L
is an atom if x �= ⊥ and there exists no element y ∈ L such that ⊥ � y � x. A
lattice is called atomistic if every element is the join of atoms below it.

Assumption 2.21. Let (L,
,�,⊥,�) be an atomistic continuous bounded lat-
tice. As usual, we denote t1 t2 iff t2 = t1 � t2. We assume that there exists a
distinguished subset TO ⊆ L of atoms.

Hence, from the above assumption, for any τo ∈ TO and for any t1, t2 ∈ L:

1. τo t1 � t2 implies τo t1 or τo t2,
2. τo t1 implies that there exists t ∈ L such that t1 = t � τo and τ0 � t.

A type environment Γ : V ar �→ L describes the security levels of variables
and the dependency with respect to the current values of variables in XO. In
order to catch dependencies with respect to current values of output variables,
we associate to each output variable o ∈ XO a fixed and unique symbolic type
α(o) ∈ TO. For example if some variable x ∈ V ar has the type Γ (x) = Low�α(o),
it means that the value of x depends only on public input and the current value
of the output variable o ∈ XO.

Hence, we assume that there is a fixed injective mapping α : X0 �→ T0

such that
∧

o1,o2∈XO

(
o1 �= o2 ⇒ α(o1) �= α(o2)

)
∧

∧

o∈XO

(
α(o) ∈ TO

)
. We extend

mappings Γ and α to sets of variables in the usual way: given A ⊆ V ar and
B ⊆ XO we note Γ (A)

def
=

⊔

x∈A

Γ (x), α(B)
def
=

⊔

x∈B

α(x).

98 C. Ene et al.

Our type system aims to satisfy the following output sensitive non-
interference condition: if the final values of output variables in XO remain the
same, only changes to initial inputs with types t should be visible to leakage
outputs with type t � α(XO). More precisely, given a derivation �α Γ{c}Γ ′,
the final value of a variable x with final type Γ ′(x) = t � α(A) for some t ∈ L
and A ⊆ XO, should depend at most on the initial values of those variables y
with initial types Γ (y) t and on the final values of variables in A. We call “real
dependencies” the dependencies with respect to initial values of variables and
“symbolic dependencies” the dependencies with respect to the current values
of output variables. Following [19] we formalize the non-interference condition
satisfied by the typing system using reflexive and symmetric relations.

We write =A0 for relation which relates mappings which are equal on all
values in A0 i.e. for two mappings f1, f2 : A �→ B and A0 ⊆ A, f1 =A0 f2 iff
∀a ∈ A0, f1(a) = f2(a). For any mappings f1 : A1 �→ B and f2 : A2 �→ B, we
write f1[f2] the operation which updates f1 according to f2, namely (f1[f2])(x) =
if x ∈ A2 then f2(x) else f1(x). Given Γ : V ar �→ L, X ⊆ V ar and t ∈ L, we
write =Γ,X,t for the reflexive and symmetric relation which relates states that
are equal on all variables having type v t in environment Γ , provided that
they are equal on all variables in X: σ =Γ,X,t σ′ iff σ =X σ′ ⇒

(
∀x, (Γ (x) t ⇒

σ(x) = σ′(x))
)
. When X = ∅, we omit it, hence we write =Γ,t instead of =Γ,∅,t.

Definition 2. [20] Let R and S be reflexive and symmetric relations on states.
We say that program c maps R into S, written c : R =⇒ S, iff ∀σ, ρ, if 〈c, σ〉 =⇒
σ′ and 〈c, ρ〉 =⇒ ρ′ then σRρ ⇒ σ′Sρ′.

The type system we propose enjoys the following useful property:
if �α Γ{c}Γ ′ then c: =Γ,Γ (XI) =⇒ =Γ ′,XO,α(XO)�Γ (XI)

This property is an immediate consequence of Theorem 2.
Hence, in order to prove that the above program c is output sensitive non-

interferent according to Definition 1, it is enough to check that for all xl ∈ XL,
Γ ′(xl) α(XO) � Γ (XI). Two executions of the program c starting from initial
states that coincide on input variables XI , and ending in final states that coincide
on output variables XO, will coincide also on the leaking variables XL.

We now formally introduce our typing system. Due to assignments, values and
types of variables change dynamically. For example let us assume that at some
point during the execution, the value of x depends on the initial value of some
variable y and the current value of some output variable o (which itself depends
on the initial value of some variable h), formally captured by an environment Γ
where Γ (o) = Γ0(h) and Γ (x) = Γ0(y) � α(o), where Γ0 represents the initial
environment. If the next to be executed instruction is some assignment to o, then
the current value of o will change, so we have to mirror this in the new type of x:
even if the value of x does not change, its new type will be Γ ′(x) = Γ0(y)�Γ0(h)
(assuming that α(o) � Γ0(y)). Hence Γ ′(x) is obtained by replacing in Γ (x) the
symbolic dependency α(o) with the real dependency Γ (o).

Output-Sensitive Information Flow Analysis 99

x XO
As1

p α Γ{x := e}Γ [x p Γ [α](fv(e))]

x ∈ XO \ fv(e) Γ1 = Γ α x
As2

p α Γ{x := e}Γ1 [x p Γ1[α](fv(e))]

Skip
p α Γ{skip}Γ

x ∈ XO ∩ fv(e) Γ1 = Γ α x
As3

p α Γ{x := e}Γ1 [x p Γ (x) Γ1[α](fv(e) \ x)]

p α Γ{c1}Γ1 p α Γ1{c2}Γ2
Seq

p α Γ{c1; c2}Γ2

p0 p1 Γ Γ p1 α Γ {c}Γ1 Γ1 Γ1
Sub

p0 α Γ{c}Γ1

p p α Γ{ci}Γi

p = (Γ [α](fv(e)), Γ) α (affO(c1) ∪ affO(c2))

Γ = Γ1 α affO(c2) Γ2 α affO(c1)
If

p α Γ{If e then c1 else c2 fi }Γ

p pe α Γ{c}Γ

pe = (Γ [α](fv(e)), Γ) α affO(c)

Γ (Γ α affO(c)) Γ
Wh

p α Γ{While e Do c oD }Γ

Fig. 2. Flow-sensitive typing rules for commands with output

Definition 3. If t0 ∈ TO is an atom and t′, t ∈ L are arbitrary types, then
we denote by t[t′/t0] the type obtained by replacing (if any) the occurrence of
t0 by t′ in the decomposition in atoms of t. Now we extend this definition to
environments: let x ∈ XO and p ∈ L. Then Γ1

def
= Γ �α x represents the

environment where the symbolic dependency on the last value of x of all vari-
ables is replaced by the real type of x: Γ1(y)

def
= (Γ (y))[Γ (x)/α(x)]. Similarly,

(p, Γ) �α x
def
= p[Γ (x)/α(x)].

We want now to extend the above definition from a single output variable x to
subsets X ⊆ XO. Our typing system will ensure that each generated environment
Γ will not contain circular symbolic dependencies between output variables,
i.e., there are no output variable o1, o2 ∈ XO such that α(o1) Γ (o2) and
α(o2) Γ (o1). We can associate a graph G(Γ) = (XO, E) to an environment
Γ , such that (o1, o2) ∈ E iff α(o1) Γ (o2). We say that Γ is well formed,
denoted AC(Γ), if G(Γ) is an acyclic graph. For acyclic graphs G(Γ) we extend
Definition 3 to subsets X ⊆ XO, by first fixing an ordering X = {x1, x2, . . . xn}
of variables in V compatible with the graph (i.e. j ≤ k implies that there is no

path from xk to xj), and then (p, Γ) �α X
def
= (((p, Γ) �α x1) �α x2) . . . �α xn.

Let aff(c) be the set of assigned variables in a program c and let us denote

aff I(c)
def
= aff(c) ∩ (V ar \ XO) and affO(c)

def
= aff(c) ∩ XO. We define the

ordering over environments: Γ1 Γ2
def
=

∧

x∈V ar

Γ1(x) Γ2(x). For a command

c, judgements have the form p �α Γ{c}Γ ′ where p ∈ L and Γ and Γ ′ are type
environments well-formed. The inference rules are shown in Fig. 2. The idea is
that if Γ describes the security levels of variables which hold before execution of

100 C. Ene et al.

p = ⊥, Γ0 = [y → Y, z → Z, o1 → O1, o2 → O2]
(1) o1 := x + 1

Γ1 = [y → Y, z → Z,o1 → X, o2 → O2]
(2) y := o1 + z

Γ2 = [y → O1 Z, z → Z, o1 → X, o2 → O2]
(3) o1 := u

Γ3 = [y → X Z, z → Z,o1 → U, o2 → O2]
(4) z := o1 + o3

Γ4 = [y → X Z, z → O1 O3, o1 → U, o2 → O2]
(5) If (o2 = o3 + x) p = O3 O2 X
(6) then o1 := o2

Γ6 = [y → X Z, z → U O3,o1 → O3 O2 X O2, o2 → O2]
(7) else o2 := o1

Γ7 = [y → X Z, z → O1 O3, o1 → U, o2 → O3 O2 X O1]
(8) fi

Γ8 = (Γ6 α o2) (Γ7 α o1) = [y → X Z, z → U O3,
o1 → O3 O2 X U, o2 → O3 O2 X U]

Fig. 3. Example of application for our typing system

c, then Γ ′ will describe the security levels of those variables after execution of c.
The type p represents the usual program counter level and serves to eliminate
indirect information flows; the derivation rules ensure that all variables that can
be changed by c will end up (in Γ ′) with types greater than or equal to p. As
usual, whenever p = ⊥ we drop it and write �α Γ{c}Γ ′ instead of ⊥ �α Γ{c}Γ ′.
Throughout this paper the type of an expression e is defined simply by taking the
lub of the types of its free variables Γ [α](fv(e)), for example the type of x+y+o
where o is the only output variable is Γ (x) � Γ (y) � α(o). This is consistent
with the typings used in many systems, though more sophisticated typing rules
for expressions would be possible in principle. Notice that considering the type
of an expression to be Γ [α](fv(e)) instead of Γ (fv(e)) allows to capture the
dependencies with respect to the current values of output variables. In order to
give some intuition about the rules, we present a simple example in Fig. 3.

Example 1. Let {x, y, z, u} ⊆ V ar\XO and {o1, o2, o3} ⊆ XO be some variables,
and let us assume that ∀i ∈ {1, 2, 3}, α(oi) = Oi. We assume that the initial
environment is Γ0 = [x → X, y → Y, z → Z, u → U, o1 → O1, o2 → O2, o3 →
O3]. Since the types of variables x, u and o3 do not change, we omit them in the
following. We highlighted the changes with respect to the previous environment.
After the first assignment, the type of o1 becomes X, meaning that the current
value of o1 depends on the initial value of x. After the assignment y := o1 + z,
the type of y becomes O1 � Z, meaning that the current value of y depends on
the initial value of z and the current value of o1. After the assignment o1 = u,
the type of y becomes X � Z as o1 changed and we have to mirror this in the
dependencies of y, and the type of o1 becomes X. When we enter in the If , the
program counter level changes to p = O3 � O2 � X as the expression o2 = o3 + x

Output-Sensitive Information Flow Analysis 101

depends on the values of variables o2, o3, x, but o2 and o3 are output variables
and o2 will be assigned by the If command, hence we replace the “symbolic”
dependency α(o2) = O2 by its“real” dependency Γ (o2) = O2. At the end of
the If command, we do the join of the two environments obtained after the
both branches, but in order to prevent cycles, we first replace the “symbolic”
dependencies by the corresponding “real” dependencies for each output variable
that is assigned by the other branch.

As already stated above, our type system aims to capture the following non-
interference condition: given a derivation p �α Γ{c}Γ ′, the final value of a vari-
able x with final type t � α(XO), should depend at most on the initial values of
those variables y with initial types Γ (y) t and on the final values of variables in
XO. Or otherwise said, executing a program c on two initial states σ and ρ such
that σ(y) = ρ(y) for all y with Γ (y) t which ends with two final states σ′ and
ρ′ such that σ′(o) = ρ′(o) for all o ∈ XO will satisfy σ′(x) = ρ′(x) for all x with
Γ ′(x) t�α(XO). In order to prove the soundness of the typing system, we need
a stronger invariant denoted I(t, Γ): intuitively, (σ, ρ) ∈ I(t, Γ) means that for
each variable x and A ⊆ XO, if σ =A ρ and Γ (x) t � α(A), then σ(x) = ρ(x).

Formally, given t ∈ L and Γ : V ar �→ L, we define I(t, Γ)
def
=

⋂

A⊆XO

=Γ,A,α(A)�t .

The following theorem states the soundness of our typing system.

Theorem 1. Let us assume that AC(Γ) and ∀o ∈ XO, α(o) � t. If p �α Γ{c}Γ ′

then c : I(t, Γ) =⇒ I(t, Γ ′).

2.3 Soundness w.r.t. to Output-Sensitive Non-interference

In this section we show how we can use the typing system in order to prove that
a program c is output-sensitive noninterferent. Let V are = V ar ∪ {o | o ∈ XO}.

Let us define L def
= {τA | A ⊆ V are}. We denote ⊥ = τ∅ and � = τV are and we

consider the lattice (L,⊥,�,) with τA � τA′
def
= τA∪A′ and τA τA′ iff A ⊆ A′.

The following Theorem is a consequence of the Definition 1 and Theorem 1.

Theorem 2. Let L be the lattice described above. Let (Γ, α) be defined by Γ (x) =
{τx}, for all x ∈ V ar and α(o) = {τo}, for all o ∈ XO. If �α Γ{c}Γ ′ and for all
xl ∈ XL, Γ ′(xl) Γ (XI) � α(XO), then c is (XI ,XO,XL)-secure.

3 Output-Sensitive Constant-Time

Following [1,4], we consider two types of cache-based information leaks: (1) dis-
closures that happen when secret data determine which parts of the program
are executed; (2) disclosures that arise when access to memory is indexed by
sensitive information. In order to model the latter category, we shall enrich the
simple language from Sect. 2.2 with arrays:

c :: = x := e | x[e1] := e | skip | c1; c2 | If e then c1 else c2 fi | While e Do c oD

102 C. Ene et al.

Fig. 4. Syntax and labeled operational semantics

Fig. 5. Typing rules for output sensitive constant time (excerpts)

To simplify notations, we assume that array indexes e1 are basic expressions (not
referring to arrays) and that XO does not contain arrays. Moreover as in [4], a
state or store σ maps array variables v and indices i ∈ N to values σ(v, i). The
labeled semantics of While programs are listed in Fig. 4. In all rules, we denote−→
f = (fi)i, where xi[fi] are the indexed variables in e. The labels on the execu-
tion steps correspond to the information which is leaked to the environment (r()
for a read access on memory, w() for a write access and b() for a branch oper-
ation). In the rules for (If) and (While) the valuations of branch conditions are
leaked. Also, all indexes to program variables read and written at each statement
are exposed. We give in Fig. 5 an excerpts of the new typing rules. As above,
we denote

−→
f = (fi)i, where xi[fi] are the indexed variables in e. We add a fresh

variable xl, that is not used in programs, in order to capture the unintended
leakage. Its type is always growing and it mirrors the information leaked by each
command. In rule (As1”) we take a conservative approach and we consider that
the type of an array variable is the lub of all its cells. The information leaked
by the assignment x[e1] := e is the index e1 plus the set

−→
f = (fi)i of all indexes

occurring in e. Moreover, the new type of the array variable x mirrors the fact
that now the value of x depends also on the index e1 and the right side e.

Definition 4. An execution is a sequence of visible actions: a1−→ a2−→ . . .
an−→.

A program c is (XI ,XO)-constant time when all its executions starting with
XI-equivalent stores that lead to finally XO-equivalent stores, are identical.

Output-Sensitive Information Flow Analysis 103

Fig. 6. Instrumentation for ω(•)

Following [4], given a set X of program variables, two stores σ and ρ are
X-equivalent when σ(x, i) = ρ(x, i) for all x ∈ X and i ∈ N. Two execu-
tions a1−→ . . .

an−→ and b1−→ . . .
bm−→ are identical iff n = m and aj = bj for

all 1 ≤ j ≤ n. We can reduce the (XI ,XO)-constant time security of a com-
mand c to the (XI ,XO, {xl})-security (see Sect. 2.3) of a corresponding com-
mand ω(c), obtained by adding a fresh variable xl to the program variables
fv(c), and then adding recursively before each assignment and each boolean
condition predicate, a new assignment to the leakage variable xl that mirrors
the leaked information. Let :,b(,)r(,)w() be some new abstract operators. The
construction of the instrumentation ω(•) is shown in Fig. 6. As above, we denote−→
f = (fi)i, where xi[fi] are the indexed variables in e. Then, we extend, as in
the rules As1′, Ass1” from Fig. 5, the typing system from Sect. 2.2 to take into
account the array variables. The following lemma holds.

Lemma 1. Let c a command such that xl �∈ fv(c), σ, σ′ two stores, tr some
execution trace and [] the empty trace.

1. p �ct
α Γ{c}Γ ′ iff p �α Γ{ω(c)}Γ ′.

2. (c, σ) tr−→
∗

σ′ iff (ω(c), σ[xl �→ []]) −→∗ σ′[xl �→ tr].

Now combining Theorem 2 and Lemma 1 we get the following Theorem.

Theorem 3. Let L be the lattice defined in the Sect. 2.3. Let (Γ, α) be defined by
Γ (x) = {τx}, for all x ∈ V ar and α(o) = {τo}, for all o ∈ XO and Γ (xl) = ⊥. If
p �ct

α Γ{c}Γ ′ and Γ ′(xl) Γ (XI) � α(XO), then c is (XI ,XO)- constant time.

4 Application to Low-Level Code

We show in this section how the type system we proposed to express output-
sensitive constant-time non-interference on the While language can be lifted to
a low-level program representation like the LLVM byte code [21].

104 C. Ene et al.

Fig. 7. Syntax and informal semantics of simplified LLVM-IR

4.1 LLVM-IR

We consider a simplified LLVM-IR representation with four instructions: assign-
ments from a temporary expression (register or immediate value) or from a mem-
ory location (load), writing to a memory location (store) and (un)conditional
jump instructions. We assume that the program control flow is represented by a
control-flow graph (CFG) G = (B,→E , binit) where B is the set of basic blocks,
→E the set of edges connecting the basic blocks, and binit ∈ B the entry point.
We denote by Reach(b, b′) the predicate indicating that there exists a path from
b to b′. A program is a (partial) map from control points (b, n) ∈ B × N to
instructions. Each basic block is terminated by a jump instruction. The memory
model consists in a set of registers R and the memory M (including the execution
stack). V al is the set of values and memory addresses. The informal semantics of
our simplified LLVM-IR is given in Fig. 7, where r ∈ R and v ∈ R∪V al. We con-
sider an operational semantics where execution steps are labelled with leaking
data, i.e., addresses of store and load operations and branching conditions.

4.2 Type System

For a CFG G = (B,→E , binit):
1. Function dep : B → 2B associates to each basic block its set of “depending
blocks”, i.e., b′ ∈ dep(b) iff b′ dominates b and there is no block b” between b′

and b such that b” post-dominates b′. We recall that a node b1 dominates (resp.
post-dominates) a node b2 iff every path from the entry node to b2 goes through
b1 (resp. every path from b2 to the ending node goes through b1).
2. Partial function br : B → R returns the “branching register”, i.e., the register
r used to compute the branching condition leading outside b (b is terminated by
an instruction cond(r, bthen, belse)). Note that in LLVM branching registers are
always fresh and assigned only once before to be used.
3. Function PointsTo : (B×N)×V al → 2R returns the set of registers containing
memory locations pointed to by a given address at a given control point. For
example, for a given address v, r ∈ PointsTo(b, n)(v) means that register r
contains a memory address pointed to by v.

We define a type system to express output-sensitive constant-time property
on LLVM-IR. The main differences from the rules at the source level is that the
control-flow is explicitly given by the CFG. For lack of space we describe only

Output-Sensitive Information Flow Analysis 105

p(b, n) = store(v1, v2)

τ0 =
x∈br(dep(b))

Γ [α](x)

Am = PointsTo(b, n)(v2)
A0 = Am ∩ X0

τ1 = Γ1[α](v2) τ0

Γ1 = (Γ, α) 0

τ2 = Γ1[α](v1)

St
α (b, n) : Γ ⇒ Γ1[xl → Γ1(xl) τ1][vs∈Am

→ Γ (vs) τ2 τ0]

Fig. 8. Store instruction

the rule for the Store instruction (Fig. 8). It updates the type of v1 by adding the
dependencies of all memory locations pointed to by v2. In addition, the type of
the leakage variable xl is also updated with the dependencies of all these memory
locations lying in Am (since these locations are read).

4.3 Well Typed LLVM Programs Are Output-Sensitive
Constant-Time

Definition 5. An LLVM-IR program p is well typed with respect to an initial
environment Γ0 and final environment Γ ′ (written �α p : Γ0 ⇒ Γ ′), if there is a
family of well-defined environments {(Γ)(b,n) | (b, n) ∈ (B,N)}, such that for
all nodes (b, n) and all its successors (b′, n′), there exists a type environment γ
and A ⊆ XO such that �α (b, n) : Γ(b,n) ⇒ γ and (γ �α A) Γ(b′,n′).

In the above definition the set A is mandatory in order to prevent dependency
cycles between variables in XO. The following Theorem shows the soundness of
the typing system with respect to output-sensitive constant-time.

Theorem 4. Let L be the lattice from the Sect. 2.3. Let (Γ, α) be defined by
Γ (x) = {τx}, for all x ∈ R ∪ M , α(o) = {τo}, for all o ∈ XO and Γ (xl) = ⊥. If
�α p : Γ ⇒ Γ ′ and Γ ′(xl) Γ (XI) � α(XO), then p is (XI ,XO)-constant time.

4.4 Implementation

We developed a prototype tool implementing the type system for LLVM pro-
grams. This type system consists in computing flow-sensitive dependency rela-
tions between program variables. Definition 5 provides the necessary conditions
under which the obtained result is sound (Theorem 4). We give some technical
indications regarding our implementation.

Output variables XO are defined as function return values and global vari-
ables; we do not currently consider arrays nor pointers in XO. Control depen-
dencies cannot be deduced from the syntactic LLVM level, we need to explic-
itly compute the dominance relation between basic blocks of the CFG (the dep
function). Definition 5 requires the construction of a set A ⊆ XO to update the
environment produced at each control locations in order to avoid circular depen-
dencies (when output variable are assigned in alternative execution paths). To
identify the set of basic blocks belonging to such alternative execution paths

106 C. Ene et al.

leading to a given block, we use the notion of Hammock regions [15]. More pre-
cisely, we compute function Reg : (B × B × (→E)) → 2B, returning the set of
Hammock regions between a basic block b and its immediate dominator b′ with
respect to an incoming edge ei of b. Thus, Reg(b′, b, (c, b)) is the set of blocks
belonging to CFG paths going from b′ to b without reaching edge ei = (c, b):
Reg(b′, b, (c, b)) = {bi | b′ →E b1 · · · →E bn →E b∧∀i ∈ [1, n−1]. ¬Reach(bi, c)}.
Fix-point computations are implemented using Kildall’s algorithm. To better
handle real-life examples we are currently implementing the PointsTo function,
an inter-procedural analysis, and a more precise type analysis combining both
over- and under-approximations of variable dependencies (see Sect. 6).

5 Related Work

Information Flow. There is a large number of papers on language-based secu-
rity aiming to prevent undesired information flows using type systems (see [26]).
An information-flow security type system statically ensures noninterference, i.e.
that sensitive data may not flow directly or indirectly to public channels [24,28–
30]. The typing system presented in Sect. 2.2 builds on ideas from Hunt and
Sands’ flow-sensitive static information-flow analysis [20].

As attractive as it is, noninterference is too strict to be useful in practice, as
it prevents confidential data to have any influence on observable, public output:
even a simple password checker function violates noninterference. Relaxed defi-
nitions of noninterference have been defined in order to support such intentional
downward information flows [27]. Li and Zdancewic [22] proposed an expressive
mechanism called relaxed noninterference for declassification policies that sup-
ports the extensional specification of secrets and their intended declassification.
A declassification policy is a function that captures the precise information on a
confidential value that can be declassified. For the password checker example, the
following declassification policy λp.λx.h(p) == x, allows an equality comparison
with the hash of password to be declassified (and made public), but disallows
arbitrary declassifications such as revealing the password.

The problem of information-flow security has been studied also for low level
languages. Barthe and Rezk [8,9] provide a flow sensitive type system for a
sequential bytecode language. As it is the case for most analyses, implicit flows
are forbidden, and hence, modifications of parts of the environment with lower
security type than the current context are not allowed. Genaim and Spoto present
in [16] a compositional information flow analysis for full Java bytecode.

Information Flow Applied to Detecting Side-Channel Leakages.
Information-flow analyses track the flow of information through the program
but often ignore information flows through side channels. Side-channel attacks
extract sensitive information about a program’s state through its observable
use of resources such as time or memory. Several approaches in language-based
security use security type systems to detect timing side-channels [1,18]. Agat
[1] presents a type system sensitive to timing for a small While-language which

Output-Sensitive Information Flow Analysis 107

includes a transformation which takes a program and transforms it into an equiv-
alent program without timing leaks. Molnar et al. [23] introduce the program
counter model, which is equivalent to path non-interference, and give a program
transformation for making programs secure in this model.

FlowTracker [25] allows to statically detect time-based side-channels in
LLVM programs. Relying on the assumption that LLVM code is in SSA form,
they compute control dependencies using a sparse analysis [13] without building
the whole Program Dependency Graph. Leakage at assembly-level is also con-
sidered in [6]. They propose a fine-grained information-flow analysis for checking
that assembly programs generated by CompCert are constant-time. Moreover,
they consider a stronger adversary which controls the scheduler and the cache.

All the above works do not consider publicly observable outputs. The work
that is closest to ours is [4], where the authors develop a formal model for
constant-time programming policies. The novelty of their approach is that it is
distinguishing not only between public and private input values, but also between
private and publicly observable output values. As they state, this distinction
poses interesting technical and theoretical challenges. Moreover, constant-time
implementations in cryptographic libraries like OpenSSL include optimizations
for which paths and addresses can depend not only on public input values, but
also on publicly observable output values. Considering only input values as non-
secret information would thus incorrectly characterize those implementations
as non-constant-time. They also develop a verification technique based on the
self-composition based approach [7]. They reduce the constant time security
of a program P to safety of a product program Q that simulates two parallel
executions of P. The tool operates at the LLVM bytecode level. The obtained
bytecode program is transformed into a product program which is verified by the
Boogie verifier [5] and its SMT tool suite. Their approach is complete only if the
public output is ignored. Otherwise, their construction relies on identifying the
branches whose conditions can only be declared benign when public outputs are
considered. For all such branches, the verifier needs to consider separate paths
for the two simulated executions, rather than a single synchronized path and in
the worst case this can deteriorate to an expensive product construction.

6 Conclusion and Perspectives

In this paper we proposed a static approach to check if a program is output-
sensitive constant-time, i.e., if the leakage induced through branchings and/or
memory accesses do not overcome the information produced by (regular) observ-
able outputs. Our verification technique is based on a so-called output-sensitive
non-interference property, allowing to compute the dependencies of a leakage
variable from both the initial values of the program inputs and the final values
of its outputs. We developed a type system on a high-level While language, and
we proved its soundness. Then we lifted this type system to a basic LLVM-IR
and we developed a prototype tool operating on this intermediate representation,
showing the applicability of our technique.

108 C. Ene et al.

This work could be continued in several directions. One limitation of our
method arising in practice is that even if the two snippets xl = h; o = h
and o = h;xl = o are equivalent, only the latter can be typed by our typ-
ing system. We are currently extending our approach by considering also an
under-approximation β(•) of the dependencies between variables and using
“symbolic dependencies” also for non-output variables. Then the safety con-
dition from Theorem 2 can be improved to something like “∃V such that
(Γ ′(xl) �α V) (Γ (XI) �α V) � (β′(XO) �α V) � α(XO)”. In the above exam-
ple, we would obtain Γ ′(xl) = α(h) = β′(o) α(o) � β′(o), meaning that the
unwanted maximal leakage Γ ′(xl) is less than the minimal leakage β′(o) due
to the normal output. From the implementation point of view, further develop-
ments are needed in order to extend our prototype to a complete tool able to
deal with real-life case studies. This may require to refine our notion of arrays
and to take into account arrays and pointers as output variables. We could
also consider applying a sparse analysis, as in FlowTracker [25]. It may hap-
pen that such a pure static analysis would be too strict, rejecting too much
“correct” implementations. To solve this issue, a solution would be to combine
it with the dynamic verification technique proposed in [4]. Thus, our analysis
could be used to find automatically which branching conditions are benign in
the output-sensitive sense, which could reduce the product construction of [4].
Finally, another interesting direction would be to adapt our work in the context
of quantitative analysis for program leakage, like in [14].

References

1. Agat, J.: Transforming out timing leaks. In: Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 40–
53. ACM (2000)

2. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy (SP), pp.
526–540. IEEE (2013)

3. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on Amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 24

4. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium (USENIX
Security 16), pp. 53–70. USENIX Association, Austin (2016). https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/almeida

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

6. Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level non-
interference for constant-time cryptography. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1267–1279.
ACM (2014)

https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-49890-3_24
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1007/11804192_17

Output-Sensitive Information Flow Analysis 109

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 2004 17th IEEE Proceedings of Computer Security Foundations Workshop, pp.
100–114. IEEE (2004)

8. Barthe, G., Rezk, T.: Secure information flow for a sequential JAVA virtual
machine. In: Types in Language Design and Implementation, TLDI 2005. Cite-
seer (2003)

9. Barthe, G., Rezk, T., Basu, A.: Security types preserving compilation. Comput.
Lang. Syst. Struct. 33(2), 35–59 (2007)

10. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33481-8 9

11. Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations
by abstract interpretation. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10492, pp. 260–277. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66402-6 16

12. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

13. Choi, J.D., Cytron, R., Ferrante, J.: Automatic construction of sparse data flow
evaluation graphs. In: Proceedings of the 18th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1991, pp. 55–66. ACM
(1991)

14. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015). https://doi.org/10.1145/2756550

15. Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its
use in optimization. TOPLAS 9(3), 319–349 (1987)

16. Genaim, S., Spoto, F.: Information flow analysis for JAVA bytecode. In: Cousot,
R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 346–362. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30579-8 23

17. Gullasch, D., Bangerter, E., Krenn, S.: Cache games-bringing access-based cache
attacks on AES to practice. In: 2011 IEEE Symposium on Security and Privacy
(SP), pp. 490–505. IEEE (2011)

18. Hedin, D., Sands, D.: Timing aware information flow security for a javacard-like
bytecode. Electron. Notes Theor. Comput. Sci. 141(1), 163–182 (2005)

19. Hunt, S., Sands, D.: Binding time analysis: a new perspective. In: Proceedings of
the ACM Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM 1991), pp. 154–164. ACM Press (1991)

20. Hunt, S., Sands, D.: On flow-sensitive security types. In: ACM SIGPLAN Notices,
vol. 41, pp. 79–90. ACM (2006)

21. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization. CGO
2004. IEEE Computer Society, Washington (2004)

22. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In: Pro-
ceedings of POPL, vol. 40, pp. 158–170. ACM (2005)

23. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1007/978-3-319-66402-6_16
https://doi.org/10.1145/2756550
https://doi.org/10.1007/978-3-540-30579-8_23
https://doi.org/10.1007/11734727_14

110 C. Ene et al.

24. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 228–241. ACM (1999)

25. Rodrigues, B., Quintão Pereira, F.M., Aranha, D.F.: Sparse representation of
implicit flows with applications to side-channel detection. In: Proceedings of
the 25th International Conference on Compiler Construction, pp. 110–120. ACM
(2016)

26. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

27. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

28. Swamy, N., Chen, J., Chugh, R.: Enforcing stateful authorization and information
flow policies in Fine. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
529–549. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-
6 28

29. Vaughan, J.A., Zdancewic, S.: A cryptographic decentralized label model. In: 2007
IEEE Symposium on Security and Privacy, SP 2007, pp. 192–206. IEEE (2007)

30. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2–3), 167–187 (1996)

https://doi.org/10.1007/978-3-642-11957-6_28
https://doi.org/10.1007/978-3-642-11957-6_28

Component-aware Input-Output
Conformance

Alexander Graf-Brill1(B) and Holger Hermanns1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
grafbrill@depend.uni-saarland.de, hermanns@depend.uni-saarland.de

2 Institute of Intelligent Software, Guangzhou, China

Abstract. Black-box conformance testing based on a compositional
model of the intended behaviour is a very attractive approach to vali-
date the correctness of an implementation. In this context, input-output
conformance is a scientifically well-established formalisation of the test-
ing process. This paper discusses peculiar problems arising in situations
where the implementation is a monolithic black box, for instance for
reasons of intellectual property restrictions, while the specification is
compositional. In essence, tests need to be enabled to observe progress
in individual specification-level components. For that, we will reconsider
input-output conformance so that it can faithfully deal with such sit-
uations. Refined notions of quiescence play a central role in a proper
treatment of the problem. We focus on the scenario of parallel compo-
nents with fully asynchronous communication covering very many noto-
rious practical examples. We finally illustrate the practical implications
of component-aware conformance testing in the context of a prominent
example, namely networked embedded software.

Keywords: Model-based testing · Input-output conformance ·
Compositionality

1 Introduction

Component-based or modular systems are systems which are composed of several
components in order to provide a higher degree of functionality or just to offer the
ensemble of features offered by its components. From an implementation point
of view, component-based systems are very flexible since single components can
be updated or exchanged easily, or the system can be extended by additional
components, without having to touch the whole system.

When it comes to the verification of such systems, one usually tries to ben-
efit from the compositional structure. Correctness of the components is easier
to verify in isolation and under appropriate conditions, correctness of the whole
system is derived from the correctness of all components. This reduces the over-
all verification effort. In particular, when updating a single component of the
system, one only has to verify the new component without the need to verify
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 111–128, 2019.
https://doi.org/10.1007/978-3-030-21759-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_7

112 A. Graf-Brill and H. Hermanns

the other components again. However, this approach is only applicable if the
correctness properties are compositional [1,2,10,12,17,18,21].

Model-based testing is a validation technique where, based on a formal spec-
ification of a system, a suitable set of experiments (test suite) is generated in
an automated manner and executed on the implementation of that system, so
as to assert some notion of conformance between the implementation and its
specification. In model-based testing, compositional testing is a research area of
its own. Given a specification and an implementation under test (IUT), each as
combinations of several components, a compositional conformance tester checks
conformance between the components of the specification and the respective IUT
components, so as to conclude conformance between the combined specification
and IUT. If this implication holds, there is no need for further integration test-
ing when combining the different IUT components [2,3,6,7,11]. Otherwise this
is a costly and time-consuming step since the combined specification has to be
taken into account which is notorious in size relative to the sizes of the individual
components.

What all these approaches have obviously in common is the assumption that
the IUT is indeed a combination of several components which can be accessed
individually. Interestingly little attention has been payed to the situation where
only the specification is composed of clearly distinguished components, but the
IUT is a single black box, i.e. a monolithic object, or an object where components
are not accessible in isolation.

We consider this as a mismatch, since the previously described scenario is
pretty much the norm for black-box systems protected by intellectual property
rights. Especially if such systems need to undergo a certification according to
some well-structured component-based or scenario-based standard. This is the
concrete problem motivating our work. But beyond that there are several other
reasons for attacking this challenge.

Since there are no dedicated theoretical approaches targeting the testing
of such scenarios, the standard input-output conformance [23] is the natural
base methodology. Input-output conformance (ioco) is based on the idea that a
reasonable implementation of a formally specified system should assure that

the IUT progresses as foreseen by the specification, and this progress is observ-
able by the tester.

Since IUT progress corresponds to outputs of the IUT, this means that

1. any interaction sequence between tester and IUT possible according to the
specification is followed only by IUT outputs foreseen according to the spec-
ification;

2. only in situations where no IUT output is foreseen, the IUT is allowed to be
quiescent.

Quiescence, and especially the possibility to observe quiescence is a crucial ingre-
dient to the theory of input-output conformance. It makes progress observable by
refining classical testing equivalences and preorders [8,9] with concepts of refusal
testing [19,22], thus enabling a more fine grained relation between systems based

Component-aware Input-Output Conformance 113

on their state-based capabilities to produce any output at all. In practice, quies-
cence is approximated by timeout mechanisms: If after some interaction sequence
no IUT output is witnessed before the timeout, the IUT is interpreted as now
being quiescent. The concept of quiescence therefore provides an implicit mech-
anism to test for absence as well as presence of progress, without an explicit
reference to real time.

This paper explores the simple question what needs to change in the the-
ory of input-output conformance in order to be able to test for the progress
of components of a component-based specification. So, we add the idea that a
reasonable implementation of a component-based system should assure that

the IUT progresses as foreseen by the component-based specification, and this
progress is observable by the tester.

This then translates concretely to (the first item being unchanged),

1. any interaction sequence between tester and IUT possible according to the
specification is followed only by IUT outputs foreseen according to the spec-
ification;

2. only in situations where no IUT output is foreseen by some component, the
IUT is allowed to be quiescent with respect to that component.

The first requirement is indeed the standard ioco criterion considering func-
tional correctness of an IUT. The second requirement is the core motivation for
this paper. This requirement harvests the available information about the inner
structure of a compositional specification. Since the specification is white-box,
any observable behaviour of the system can be associated to the components
possibly causing that behaviour. This provides the opportunity to deduce which
components are taking part in an interaction, and effectively enables a fine-
grained notion of quiescence. With this, we require an IUT to progress when-
ever possible not only on the system-level, but instead for each component of
a composed system. Notably, we will apply this to monolithic black-box imple-
mentations, but we nevertheless ask them to respect the compositional nature
of their specification. From a testing perspective this implies among others that
we would reject an implementation which only exhibits the behaviour of a single
component, in situations where other components can not stay quiescent i.e. they
potentially can progress by observable behaviour. We make all this deducible by
only looking at the compositional specification.

Organisation of the Paper. After setting the stage, we first argue why precisely
standard input-output conformance is ill-suited for the problem at hand. We
then focus on specifications that are fully asynchronous, so they are merely col-
lections of behaviour descriptions where none of the behaviour emerges through
interaction across components. This is a very widespread scenario in practice.
We explain the details of a natural solution which comes with adaptations to the
quiescence definition. On the practical side we discuss in how far the resulting
notions can indeed be tested for, which leads to a well-motivated revision of
the theory. We finally illustrate the practical implications of component-aware
conformance testing in the context of networked embedded software.

114 A. Graf-Brill and H. Hermanns

2 Preliminaries

The basis for model-based testing is a precise specification of the IUT which
unambiguously describes what an implementation may do, respectively not do.

Input-Output Transition Systems. A common semantic model to describe the
behaviour of a system are labeled transition systems (LTS). In the presence of
inputs and outputs, a suitable variation is provided by Input-Output Transition
Systems (IOTS).

Definition 1. An input-output transition system is a 5-tuple 〈Q,L?, L!, T, q0〉
where

– Q is a finite, non-empty set of states;
– L? and L! are disjoint countable sets (L? ∩ L! = ∅) of input labels and output

labels, respectively;
– T ⊆ Q × (L ∪ {τ}) × Q, with τ /∈ L, is the transition relation, where

L = L? ∪ L!;
– q0 is the initial state.

The class of input-output transition systems with inputs in L? and outputs in L!

is denoted by IOT S(L?, L!).

As usual, τ represents an unobservable internal action of the system. We
write q

μ−→ q′ if there is a transition labelled μ from state q to state q′, i.e.,
(q, μ, q′) ∈ T . The composition of transitions q1

μ1·μ2·...·μn−1−−−−−−−−−−→ qn expresses that
the system, when in state q1, may end in state qn, after performing the sequence
of actions μ1 · μ2 · . . . · μn−1, i.e. ∃(qi, μi, qi+1) ∈ T, i ≤ n − 1. Due to non-
determinism, it may be the case, that after performing the same sequence, the
system may end in another state (or multiple such states): q1

μ1·μ2·...·μn−1−−−−−−−−−−→ q′
n

with qn �= q′
n.

Traces and Derived Notions. Usually an IOTS can represent the entire behaviour
of a system, including concrete interactions between system and environment.
One such behaviour is represented by a so-called trace, of which we are only
interested in its observable part, obtained by abstracting from internal actions of
the system. Let p = 〈Q,L?, L!, T, q0〉 be an IOTS with q, q′ ∈ Q,L = L? ∪ L!, a, ai

∈ L, and σ ∈ L∗. We write q
ε=⇒ q′ to express that q = q′ or q

τ ·····τ−−−−→ q′. q
a=⇒ q′

denotes the fact that ∃q1, q2 ∈ Q : q
ε=⇒ q1

a−→ q2
ε=⇒ q′. This can be extended

for a sequence of actions q
a1·...·an=====⇒ q′ s.t. ∃q0, ..., qn ∈ Q : q = q0

a1=⇒ q1
a2=⇒

. . .
an=⇒ qn = q′. q

σ=⇒ and q
σ

�=⇒ are then defined as ∃q′ : q
σ=⇒ q′ and

�q′ : q
σ=⇒ q′, respectively.

Furthermore, init(q) denotes the set of available transitions in a state q,
i.e., {μ ∈ L ∪ {τ} | q

μ−→}. The set of traces starting in state q is defined as
traces(q) =def {σ ∈ L∗ | q

σ=⇒}. For a given trace σ, the set of reachable states is
given by the definition q afterσ =def {q′ | q

σ=⇒ q′}. The extension for starting

Component-aware Input-Output Conformance 115

in a set of states Q′ is Q′ afterσ =def

⋃
{q afterσ | q ∈ Q′}. With der(q) we

denote the set of all reachable states from q, i.e., {q′ | ∃σ ∈ L∗ : q
σ=⇒ q′}.

Following the standard literature, we restrict ourselves to strongly convergent
IOTS i.e. there is no state that can perform an infinite sequence of internal
transitions. An IOTS p is called input-enabled, if and only if all its reachable
states q are input-enabled i.e. ∀q ∈ der(p),∀a ∈ L?.q

a=⇒. So, inputs can never be
blocked (or come as surprises). It is common practice to work with specifications
modelled as IOTS without requiring input-enabledness while IUTs are required
to be represented as input-enabled IOTS. This is what we assume here, too.

Input-Output Conformance and Quiescence. A specific conformance relation,
input-out conformance (ioco) [23] dominates theoretical as well as practical
work on model-based testing. It relates implementations with specifications with
respect to the possible output behaviour observed after executing traces of the
specification. In ioco, the output behaviour includes a designated output quies-
cence, abbreviated with the special label δ. Quiescence represents the situation
when there is no output to observe at all. A state q is said to be quiescent,
denoted by δ(q), iff init(q) ∩ (L! ∪ {τ}) = ∅.

Assuming δ /∈ (L ∪ {τ}) it is technically convenient to encode quiescence
wherever present into the transition structure at hand. For this a suspension
automaton Δ(p) is constructed out of an IOTS p, where transitions q

δ−→ q
are added to any quiescent state. The set of possible outputs of a state q is
then defined as out(q) =def {a ∈ L! | q

a−→} ∪ {δ | δ(q)}, and this is lifted
to sets of states P by out(P) =def

⋃
{out(q) | q ∈ P}. Since quiescence is

now interpreted as an additional observable output, we extend the definition for
traces to suspension traces.

Definition 2. Let p = 〈Q,L?, L!, T, q0〉 ∈ IOT S(L?, L!). The suspension traces
of p are given by Straces(p) =def{σ ∈ (L ∪ {δ})∗ | q0

σ=⇒}.
The definition of ioco then looks as follows:

Definition 3. Given a set of input labels L? and a set of output labels L!, the
relation ioco ⊆ IOT S(L?, L!) × IOT S(L?, L!) is defined for a specification s
and an input-enabled implementation i as

i ioco s ⇔def ∀σ ∈ Straces(s) : out(iafterσ) ⊆ out(safterσ)

Partial Specifications. Since ioco is defined based on the suspension traces of the
specification on the one hand, and only requires inclusion of the output behaviour
of the IUT w.r.t. the specified outputs on the other hand, it is possible to have
partial specifications. This means that an IUT does not have to implement all
specified output transitions of a certain state, but these can be seen as output
alternatives. Furthermore, there are no restrictions on the behaviour of an imple-
mentation once its execution left the suspension traces of the specifications i.e.
it performs an underspecified trace. Since an underspecified trace always starts
with an unspecified input action for a state input-enabled specifications do not
have any underspecified trace.

116 A. Graf-Brill and H. Hermanns

Test Generation and Execution. Theoretically, a test case is a variant of an IOTS
with two special trap states labeled pass and fail, whereby each other state
represents all states of the specification which are reachable by the suspension
trace corresponding to the trace that leads to this particular state of the test
case. In order to detect quiescence, the special transition label θ is used in order
to synchronise with δ. A test case is then generated based on the definition of
ioco in an iterative manner. In each iteration step there are three options. (1) For
all outputs in L! and quiescence a correspondingly labelled transition is added. If
the output is not foreseen by the specification, the successor state is the special
state fail and for all valid successor states the test case generation algorithm
continues in the next iteration step. (2) An input action which is enabled in one
of the encoded states of the specification is chosen and a correspondingly labeled
transition is added to the test case. In order to handle interrupting outputs of
the IUT, corresponding transitions are added as described in (1). (3) At any
iteration step, the algorithm can be stopped by placing the special state pass.

An execution of a test case is then the parallel composition of the test case
and the IUT. A test run is any trace of the parallel composition which ends in
a state which is labeled with pass or fail. An IUT passes a test case if and only
if all possible test runs lead to states labeled with pass. It fails the test case
otherwise. By assuming some kind of fairness, an IUT will reveal sooner or later
all its nondeterministic behaviour when repeatedly executed with a test case.

From a practical point of view, quiescence detection is realised by introducing
a timer. This timer is restarted after every interaction with the IUT and upon
its expiration, quiescence of the implementation is assumed and accordingly
processed.

Before we delve deeper into conformance testing of component-based systems,
we first give a formal definition of what we actually understand of a component-
based system.

Definition 4. A component-based input-output transition system (CIOTS) is
a 6-tuple 〈Q,L?, L!, T, q0,C〉 where
– the system is the composition of components in the non-empty vector C =

〈s0, . . . , sn〉 with n ∈ N0

– each sk ∈ C is a finite input-output transition system 〈Qk, L?k, L!k, Tk, q0,k〉 ∈
IOT S(L?k, L!k)

– all components are pairwise action-disjoint i.e. ∀sk.L?k ∩
⋃

sm∈C L!m = ∅ ∧
L!k ∩

⋃
sm∈C L?m = ∅

– the sets of input labels and output labels are L? =
⋃

sk∈C L?k and L! =⋃
sk∈C L!k

– the set of states Q is the cross product of the set of states of the components
in C, i.e. Q =

⊗
sk∈C Qk

– the initial state q0 is the cross product of the initial states of the components
in C, i.e. q0 =

⊗
sk∈C qk,0

– the transition relation T is the combination of the transition relations of the
components s.t.

T = {(q̂0, . . . , q̂k, . . . , q̂n)
μ−→ (q̂0, . . . , q̂′

k, . . . , q̂n) | q̂k
μ−→ q̂′

k ∈ Tk}

Component-aware Input-Output Conformance 117

b1

sig1!

(a) Component Δ(b)

g1

g2

strt?

δ

stp?

sig2!

(b) Component Δ(g)

s1,1

s1,2

sig1!

strt?stp?

sig1! sig2!

(c) Composition Δ(b, g)

Fig. 1. A simple component-based sensor node example.

The class of component-based input-output transition systems with inputs in L?

and outputs in L! is denoted by CIOT S(L?, L!). We say that a system s is
component-based, if and only if, s ∈ CIOT S(L?, L!) for some L? and L!.

Notably, 〈Q,L?, L!, T, q0〉 is itself a finite input-output transition system
in IOT S(L?, L!). Since a CIOTS is already completely defined by its com-
ponents, we may use the abbreviation 〈s0, . . . , sn〉 in order to refer to s =
〈Q,L?, L!, T, q0, 〈s0, . . . , sn〉〉.

Example 1. In Fig. 1 a very simple component-based specification is displayed.
Figure 1a and b show the suspension automata of the IOTSs of components
b and g, each specifying some kind of sensor. Sensor b can be thought of as
continuously gathering some measurement data (not modelled) which it passes
on to the environment via the action sig1!. Sensor g works similarly using action
sig2!, but can be started (strt?) and stopped (stp?) from remote. Initially it is
stopped – and hence quiescent.

Each IOTS s = 〈Q,L?, L!, T, q0〉 can be represented as a single-component
CIOTS ŝ = 〈Q,L?, L!, T, q0, 〈s〉〉 and vice versa.

3 Conformance and Component Behaviour

This section provides a motivation why the well-established general ioco testing
procedure falls short when facing a component-based specification w.r.t. the
conditions we postulated in Sect. 1.

Example 2. A potential candidate implementation i of the
composed specification from Fig. 1 is displayed on the right.
It is input-enabled (w.r.t. the set {strt?, stp?}). Indeed,
this implementation does conform to the specification, i.e.
i ioco〈b, g〉, since ∀σ ∈ Straces(i) : out(i1 afterσ) = {sig1!}
and ∀σ′ ∈ Straces(〈b, g〉) : out(s1,1 afterσ′) is either {sig1!}
or {sig1!, sig2!}.

118 A. Graf-Brill and H. Hermanns

Notably, implementation i does never offer the output action sig2!, so the
core behaviour of sensor g is effectively not present in the implementation. While
this omission of behaviour is perfectly legal for the theory of ioco, we feel that
such an implementation does not exhibit the intended behaviour of two sensor
nodes being combined as specified above. According to our initial reasoning,
after providing the input strt? it is not foreseen by component g to produce no
output, thus implementation i is not allowed to be quiescent w.r.t. component g.

One may object that, of course, a good compositional testing procedure
should preferably be based on tests of individual components in case they do
not interact with each other. Therefore one would a priori require that i ioco b
as well as i ioco g. Indeed, it turns out that i �ioco g (due to the presence of
the output action sig1!, which is not foreseen by g) while i ioco b. So, from this
perspective, the implementation i is not entirely convincing as a witness for the
shortcoming of the classical ioco theory.

Example 3. Another implementation candidate j is dis-
played on the right. It correctly outputs sig1! in the ini-
tial state and starts and stops producing the output sig2!
as intended by the inputs strt? and stp?. However, the out-
put sig1! is turned off in state j2 where the output sig2! is
produced only. Again it holds that j ioco〈b, g〉.

The essence of the problem of implementation j is similar
to the one of i appearing in Example 2. Contrary to what we
assume reasonable, some valuable output behaviour of the
specification of component b is not implemented, but here
this is in a fragment of the state space reachable by transitions belonging to
specification of component g. In this example, j ioco b as well as j ioco g provided
we assume a suitable projection mechanism to filter the observable behaviour
corresponding to the component under test.

As it stands, focusing on the behaviour of a single component, is no solution
in a quest for a compositional testing theory. Instead one has to foresee arbitrary
input actions of other components, in order to examine the full behaviour of an
IUT. Unfortunately, “the full behaviour of an IUT” might include underspeci-
fied behaviour in case of specifications that are not input-enabled (which is not
uncommon). This in turn might lead to outputs interfering with our current test
run, thus, rendering such a testing approach useless, again. Hence, one has to
adjust the provided inputs to the behaviour of the composed specification.

For now, we can conclude that the standard ioco approach is not well
suited for testing scenarios involving compositional specifications. The problem
is twofold. On the one hand, ioco is not aware of the underlying topology of
the specification model. On the other hand, the relation is based on excluding
unspecified output behaviour, rather than enforcing a certain output (set). We
shall see that the concept of quiescence is the central leverage point regarding
both aspects of the problem.

Component-aware Input-Output Conformance 119

4 A Component-Aware Theory

The lesson learned in the previous section is that the ioco approach fails at con-
sidering simultaneously the specific output behaviour of the individual compo-
nents embedded in the overall behaviour of a composed specification. Especially
the absence of any output from a particular component can not be detected. This
is however the only indicator at hand whether or not a specified component does
take part in the interactions of the IUT, or not. Thus, a quiescence definition
based on the output capabilities of single components is needed.

The composition setting has similarities to the multi-ioco (mioco) relation
as presented in [16] where communication with a system is assumed to occur
on multiple distinct interaction interfaces and quiescence is then redefined s.t.
each interface is associated with a dedicated quiescence action. No component
structure is considered, implying that this approach is not applicable right away
to the problem we consider. However, it serves as a strong inspiration for our
approach, in which we will indeed customise the definition of mioco to our
component-based setting. To get started, we assume an indexed family of qui-
escence labels of the form δk for k ∈ N. These will serve as means to signify
quiescence per individual component.

Definition 5. Let p = (p0, . . . , pn) be a state and P be a set of states of a
CIOTS s = 〈Q,L?, L!, T, q0,C〉 ∈ CIOT S(L?, L!), where C = 〈s0, . . . , sn〉 is
the finite, non-empty set of component IOTS sk = 〈Qk, L?k, L!k, Tk, q0,k〉. We
define a vector δ̂ (of dimension n) of quiescence labels by setting

δ̂k(p) =def δ(pk) for 0 ≤ k ≤ n (1)

and we propagate this into the other elements of the theory by redefining

– out(p) =def {x ∈ L! | p
x−→} ∪ {δk | δ̂k(p)},

– Δ(s) = 〈Q,L?, L! ∪ {δk | 0 ≤ k ≤ n}, T ∪ {p δk−→ p | p ∈ Q, δ̂k(p)}, q0,C〉,
– Straces(s) =def {σ ∈ (L ∪ {δk | 0 ≤ k ≤ n})∗ | Δ(s) σ=⇒}.

Definition 5 provides a component-specific version of quiescence and redefines
out() and Straces() w.r.t. this quiescence definition, where the latter one is
based on the corresponding redefinition for the suspension automaton Δ(s) of a
CIOTS s.

The behaviour of an IUT is to be interpreted relative to a given specification
CIOTS, which in essence means that the output alphabets of that CIOTS induce
vectors of quiescence labels for the IOTS representing the IUT, too. But since
IUTs are no CIOTSs themselves, the quiescence notion δ̂ from Definition 5 can
not be applied directly. Thus, we need a quiescence definition and a correspond-
ing definition of the suspension automaton for input-enabled IOTSs, given the
output alphabets of interest.

Definition 6. Let p be a state and P be a set of states of an IOTS s =
〈Q,L?, L!, T, q0〉 ∈ IOT S(L?, L!), and L = (L!0, . . . , L!n) be a finite vector of

120 A. Graf-Brill and H. Hermanns

Fig. 2. Component-based testing with mioco

sets of output labels. We define a vector δ̂
L
(of dimension n) of quiescence labels

by setting, for 0 ≤ k ≤ n,

δL
k (p) =def init(p) ∩ (L!k ∪ {τ}) = ∅ (2)

and we propagate this into the definition of the suspension automaton by setting
ΔL (s) = 〈Q,L?, L! ∪ {δk | 0 ≤ k ≤ n}, T ∪ {p δk−→ p | p ∈ Q, δL

k (p)}, q0〉.

Example 4. We revisit Fig. 1 from Example 1. In the presence of Definition 5,
the loop g1

δ−→ g1 from component g translates to a loop in s1,1 labeled δ2 in
Fig. 1c. This is the only difference. Corresponding to Definition 6, implementa-
tion i from Example 2 is quiescent for component g in its initial state and so
is implementation j appearing in Example 3. In addition, the latter is quiescent
for component b in state j2. Thus, their corresponding suspension automata for
the vector of output label sets L = ({sig1!}, {sig2!}) have loops labeled δ2 at the
initial states and δ1 at j2 of ΔL (j). These suspension automata are depicted in
Fig. 2a and b.

For a pair (CIOTS, IOTS) of specification and implementation, Definition 6
will be used on the implementation side and Definition 5 will be used on the
specification side. Both are, of course, linked by the vector of output sets L. We
assume the component quiescence labels to be uniquely identifiable and consis-
tently chosen throughout the definitions, s.t. indeed the label δk for a particular
output set L!k is identical in each case and matches the quiescence label for
the corresponding component sk of the considered CIOTS. This enables us to
drop the superscript L . For the remainder of this paper, we are (unless otherwise
stated) working with the suspension automata without explicit reference, i.e. we
use s and i instead of Δ(s) and Δ(i).

Based on the presented definitions and conventions, the definition for mioco
in the context of component-based systems is as follows.

Component-aware Input-Output Conformance 121

b1x!

(a) component b

g1 y!

(b) component g

s1,1x! y!

(c) composition b, g

Fig. 3. Non-deterministic encoding of parallel component behaviour.

Definition 7. Given a set of input labels L? and a set of output labels L!, the
relation mioco ⊆ IOT S(L?, L!) × CIOT S(L?, L!) for input-enabled implemen-
tation i and specification s = 〈Q,L?, L!, T, q0,C〉, is defined as follows:

imioco s ⇔def ∀σ ∈ Straces(s) : out(iafterσ) ⊆ out(safterσ)

Example 5. We check mioco-conformance of the implementation candidates
depicted in Fig. 2, with respect to the specification displayed in Fig. 1. Imple-
mentation i does not conform to 〈b, g〉 since out(iafter strt?) = {sig1!, δ2}
which is not contained in out(〈b, g〉after strt?) = {sig1!, sig2!}. Likewise, imple-
mentation j is rejected again, since state j2 is quiescent for component b
i.e.out(j after strt?) = {sig2!, δ1}. Contrarily, implementation kmioco〈b, g〉,
since it implements the missing sig2! transition of implementation j.

5 A Practical Theory

When it comes to the practical application of ioco-based testing approaches,
the concept of quiescence is implemented by clock timeouts and resets. In the
standard ioco setting, a single timer for the system is sufficient. Since mioco
is a refinement of ioco one can basically use the standard test generation and
execution algorithms [23], but with additional quiescence timers i.e. one timer
per component. The timer for a specific component is then started or reset after
each observable interaction with the IUT that belongs to this component, exactly
as before when considering a single global component in ioco. This renders ioco
testing as a special case of mioco testing. There are however some subtleties in
the definition of mioco rooted in the fact that the quiescence definition used for
the IUT is state-based.

Example 6. In Fig. 3, we have the specifications of two simple
components b and g, always producing the output x! and
y!, respectively. Their composition (shown in Fig. 3c) is not
quiescent for neither of the components. An implementation
i which simply alternates between output x! and y! (shown
on the right) is quiescent for both components at opposite
states, by definition. As a result, i is not mioco-conformal
to 〈b, g〉.

122 A. Graf-Brill and H. Hermanns

However, according to our initial motivation, there is no strong reason why
such a system should be rejected. After all it does not produce any unforeseen
output (w.r.t. L!) and it implements the specified behaviour for both compo-
nents, by producing x! and y! indefinitely. And in addition, a real physical sys-
tem would pass any test case that can be generated, provided sufficiently large
quiescence timeout values. So we are facing a testing practice that matches our
intuition very well, but it does not match the theory. This gap between theory
and practice is rooted in the different definition bases for quiescence. Theoreti-
cally, conformance is determined by a state-based definition of quiescence. But
practical black-box testing does not have information about the internal state
of the IUT. As a result, quiescence detection needs to be based on the observed
behaviour of the system, i.e. be trace-based. So, what we are after is a fix of the
theory on the implementation side, albeit accepting the approximative nature of
quiescence being implemented by timers. At the same time we want to maintain
the property of our theory refining ioco.

The crux lies in a relaxation δL
k (p) defined in (2) of Definition 6, so that an

implementation that postpones outputs of component k for some finite time will
not be considered quiescent. Therefore, an IUT will be declared quiescent w.r.t.
component k whenever

– it is quiescent for all components, or
– it remains silent w.r.t. component k (unless triggered by an input).

This intuition is echoed in the following definition.

Definition 8. The relation cioco is defined precisely as the relation mioco in
Definition 7, but on the basis of (2) of Definition 6 replaced by

δL
k (p) =def δ(p) ∨ (∀σ ∈ traces(p) : σ ∈ (L! ∪ {τ})∗ ⇒ σ ∈ ((L! \ L!k) ∪ {τ})∗

∧ τ /∈ init(p))
(3)

The last conjunct, enforcing non-quiescence if the implementation can step inter-
nally is needed in order to ensure that cioco is a conservative extension of ioco,
as we will discuss right away. Standard input-output conformances considers
states non-quiescent in the presence of outgoing internal transitions on both
sides of the relation i.e. specification and implementation.

Example 7. Applying the quiescence notion to implementation i from Exam-
ple 6 results in a suspension automaton without any quiescent transitions i.e.
both states are neither quiescent for component b nor g. Thus, i cioco〈b, g〉 as
intended.

Theorem 1. For specification s ∈ CIOT S(L?, L!), and input-enabled imple-
mentation i ∈ IOT S(L?, L!), the following holds:

i cioco s ⇒ i ioco s

A converse result can be established, too:

Component-aware Input-Output Conformance 123

Fig. 4. Single components considered with ioco vs. cioco.

Theorem 2. For action-disjoint specification components s0, . . . , sn and input-
enabled implementations i0, . . . , in with sk, ik ∈ IOT S(L?k, L!k) for 0 ≤ k ≤ n,
the following holds:

∀k. ik ioco sk ⇒ i0 ⊗ . . . ⊗ in cioco〈s0, . . . , sn〉

Theorems 1 and 2 together imply that ioco and cioco are equivalent for single-
component specifications.

Example 8. We consider the single component specification 〈b〉 in Fig. 4. Accord-
ing to ioco, state b2 is quiescent while b1 is not. Therefore the allowed outputs
after the traces a? and δa? differ. The same difference applies to the states i2 and
i1 of the input-enabled IOTS i (because the definition of δ is the same on both
sides) and as a result i ioco b holds. The above theorems ensure that i cioco〈b〉,
too. But Theorem 2 were broken if the conjunct τ /∈ init(p) were dropped from
(3) in Definition 8. In the example, state i1 would be considered quiescent (for
component b), as well, making it indistinguishable from i2, while the difference
between states b1 and b2 would remain, because (1) in Definition 5 reduces to
the classic ioco quiescence definition.

So, Theorem 2 hinges on the fact that internal steps are considered non-
quiescent in ioco. While this is a useful choice on the specification side [23],
it could be considered a minor shortcoming on the implementation side, where
internal steps are simply unobservable. This is rooted in the fact that the same
quiescence definition is used on both sides in the standard ioco theory. As far
as we are aware, the present work is the first to break with this tradition. If one
would do the same for standard ioco, i.e. making internal steps quiescent on the
implementation side, the two theorems above could be resurrected on the basis
of the following definition replacing (3).

δL
k (p) =def δ(p) ∨ ∀σ ∈ traces(p) : σ ∈ (L! ∪ {τ})∗ ⇒ σ ∈ ((L! \ L!k) ∪ {τ})∗

(4)

124 A. Graf-Brill and H. Hermanns

We do not work out the details due to space constraints. Indeed our practical
approach works independently of (4) and (3) since with blackbox testing in
practice no IOTS is given.

Application Context EnergyBus. The EnergyBus is a case study [5] which
drives the concrete development of model-based testing theory and applications
of us and our coworkers [13–15,20]. It aims at establishing a common basis for the
interchange and interoperation of electric devices in the context of energy man-
agement systems (EMS). The central and innovative role of EnergyBus is the
transmission and management of electrical power, in particular the safe access
to electricity and its distribution inside an EnergyBus network. Conceptually,
EnergyBus extends the CANopen architecture in terms of CANopen applica-
tion profiles endorsed by the CiA association [4]. Among these, the “Pedelec
Profile 1” (PP1) is very elaborate, targeting a predominant business context,
which is also at the centre of ongoing international standardisation efforts as
part of IEC/IS/TC69/JPT61851-3. Alongside with the standardisation, a cen-
tralised certification procedure is to be set up, according to some well-structured
component-based standard. The specifications themselves are provided as infor-
mal combinations of text, protocol flow charts, data tables, and finite state
automata (FSA). The definitions include several data structures and various
services for e.g. initial configuration, data exchange, and basic communication
capability control. The EnergyBus introduces the notion of virtual devices,
which encapsulate the functionality of a specific, dedicated role in an EMS, e.g.
of a battery pack, a motor, or a sensor unit. A real (physical) device can combine
several, not necessarily different, virtual devices. For example, a public charger
can be considered as being composed of a voltage converter, a secondary EBC,
and a load monitoring unit, each appearing as one virtual device to the protocol.

The specification of an EnergyBus-compliant system resembles a hierar-
chical, tree-like structure as sketched in Fig. 5. On top of this schematic struc-
ture, technically, a CANopen device might even consist of several EnergyBus
devices. A real physical device (field device) might incorporate several CANopen
device. The EnergyBus specification is a compositional specification by design.
A generic CANopen and EnergyBus device has to deliver several services and
continuously transmit contemporary runtime data. Furthermore, depending on
the actually implemented virtual device(s), additional services have to be pro-
vided. All these protocols are concurrently running and are loosely coupled top-
down and horizontally inside of a device. Depending on the chosen degree of
abstraction, the involved components are purely asynchronous which holds espe-
cially for all device-level abstraction layers.

The theory developed in this paper improves the value of model-based testing
in the EnergyBus context to an enormous extent. At the cioco core is a ded-
icated management of individual timers per specification-level component. The
timer for a specific component is started or reset after each observable interac-
tion with the IUT that belongs to this component, just as discussed for mioco
in the beginning of Sect. 5, but now with the matching theoretical underpinning.
The concrete difference to the standard, component-unaware testing approach

Component-aware Input-Output Conformance 125

CANopen device

NMT
start

Emergency state
start

Error control
start

. . .

other comm. protocols
start

EB device

EMS
start

Sleep mode
start

EB data exchange
start . . .

other EB protocols
start

1st EB virtual device

VD control
start

VD specific
protocols

start

VD specific
data exchange

start . . .
. . .

nth EB VD

start

Fig. 5. Schematic view on the specification of an EnergyBus (EB) device

is that the latter is unable to cope with problems as simple as some components
just stopping to work. Without our theory extension, these problems induce
the need for a careful manual inspection of each seemingly passing test run, in
order to double check for the absence of such unwanted behaviour. By using the
presented component-aware approach of this paper, all needed checks are done
mechanically, on the basis of timer mechanisms that are fully automated.

As an intermediate step, one can use the theory developed to justify a sound
transfer of the observation mechanism of the critical circumstances from the
tester to the adapter component, sitting between the actual IUT and the tester.
The adapter is then equipped with a series of observer processes which main-
tain dedicated timers for each specific transmission expected from the IUT. The
timers are started and stopped, according to the specification knowledge trans-
ferred into the adapter component. In case a time-out occurs, the adapter sends
a special absenceOfX! output to the tester. Observing that output makes the
tester stop with a fail-verdict. Indeed we performed our empirical evaluation
successfully using this approach, too. It however has the drawback that the
adapter component needs to be tailored to each case study variation manually.
This is not needed if instead implementing the cioco-testing mechanisation as
described.

126 A. Graf-Brill and H. Hermanns

6 Conclusion

This paper has developed a component-aware, yet conservative, extension of
model-based input-output conformance testing. Some effort has gone into mak-
ing this theory practical, which is linked to asymmetric definitions of component
quiescence for specification and implementation.

Our exclusive focus has been on components that do not communicate by syn-
chronisation. However, there are many real world examples where components of
a system are meant to exchange information, which is usually modelled by syn-
chronisation over shared or complementary actions. The theory we presented can
be extended in this direction, subject to several design choices which for space
constraint reasons we can only briefly touch upon here: (1) Synchronisation
between components might be internally hidden and its effects may be observ-
able in the behaviour of another component. (2) Component-local progress via
synchronisation needs a synchronisation partner which may or may not be avail-
able or may preempt a possible synchronisation by alternative transitions. (3)
While the standard ioco theory prohibits internal transition cycles, these arise
rather natural when considering synchronising components. (4) From a practi-
cal point of view, this extended scenario introduces several additional challenges
because a timer reset does no longer directly correlate with observable behaviour
of a single component.

Acknowledgements. This work has received financial support by the ERC Advanced
Investigators Grant 695614 (POWVER) and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) grant 389792660 as part of TRR 248, see https://
perspicuous-computing.science.

References

1. Benes, N., Daca, P., Henzinger, T.A., Kret́ınský, J., Nickovic, D.: Complete compo-
sition operators for IOCO-testing theory. In: Proceedings of the 18th International
ACM SIGSOFT Symposium on Component-Based Software Engineering, CBSE
2015, Montreal, QC, Canada, 4–8 May 2015, pp. 101–110 (2015). https://doi.org/
10.1145/2737166.2737175

2. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-6 7

3. Braspenning, N.C.W.M., van de Mortel-Fronczak, J.M., Rooda, J.E.: A model-
based integration and testing method to reduce system development effort. Elec-
tron. Notes Theor. Comput. Sci. 164(4), 13–28 (2006). https://doi.org/10.1016/j.
entcs.2006.09.003

4. CAN in Automation International Users and Manufacturers Group e.V.: CiA 301
CANopen Application Layer and Comm. Profile, v. 4.2.0, February 2011

5. CAN in Automation International Users and Manufacturers Group e.V., Energy-
Bus e.V.: CiA 454 Draft Standard Proposal Application profile for energy man-
agement systems - doc. series 1–14, v. 2.0.0, June 2014

https://perspicuous-computing.science
https://perspicuous-computing.science
https://doi.org/10.1145/2737166.2737175
https://doi.org/10.1145/2737166.2737175
https://doi.org/10.1007/978-3-540-24617-6_7
https://doi.org/10.1016/j.entcs.2006.09.003
https://doi.org/10.1016/j.entcs.2006.09.003

Component-aware Input-Output Conformance 127

6. Carver, R., Lei, Y.: A modular approach to model-based testing of concurrent
programs. In: Lourenço, J.M., Farchi, E. (eds.) MUSEPAT 2013. LNCS, vol. 8063,
pp. 85–96. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39955-
8 8

7. Daca, P., Henzinger, T.A., Krenn, W., Nickovic, D.: Compositional specifications
for IOCO testing. In: Seventh IEEE International Conference on Software Testing,
Verification and Validation, ICST 2014, Cleveland, Ohio, USA, 31 March–4 April
2014, pp. 373–382. IEEE Computer Society (2014). https://doi.org/10.1109/ICST.
2014.50

8. De Nicola, R.: Extensional equivalences for transition systems. Acta Inf. 24(2),
211–237 (1987). https://doi.org/10.1007/BF00264365

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

10. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous-
concurrent systems using CADP. Acta Inf. 52(4–5), 337–392 (2015). https://doi.
org/10.1007/s00236-015-0226-1

11. Gotzhein, R., Khendek, F.: Compositional testing of communication systems. In:
Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp.
227–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11754008 15

12. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of finitestate sys-
tems using interface specifications. Formal Aspects Comput. 8(5), 607–616 (1996).
https://doi.org/10.1007/BF01211911

13. Graf-Brill, A., Hartmanns, A., Hermanns, H., Rose, S.: Modelling and certifica-
tion for electric mobility. In: 15th IEEE International Conference on Industrial
Informatics, INDIN 2017, Emden, Germany, 24–26 July 2017, pp. 109–114. IEEE
(2017). https://doi.org/10.1109/INDIN.2017.8104755

14. Graf-Brill, A., Hermanns, H.: Model-based testing for asynchronous systems. In:
Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS/AVoCS -2017. LNCS,
vol. 10471, pp. 66–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67113-0 5

15. Graf-Brill, A., Hermanns, H., Garavel, H.: A model-based certification framework
for the EnergyBus standard. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014.
LNCS, vol. 8461, pp. 84–99. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43613-4 6

16. Heerink, L.: Ins and Outs in refusal testing. Ph.D. thesis, University of Twente,
Enschede, Netherlands (1998)

17. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: method-
ology and case studies. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427,
pp. 440–451. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028765

18. Janssen, R., Tretmans, J.: Matching implementations to specifications: the corner
cases of IOCO. In: ACM/SIGAPP Symp. on Applied Computing - Software Veri-
fication and Testing Track, pp. 2196–2205. ACM, USA (2019). https://sumbat.cs.
ru.nl/Publications

19. Langerak, R.: A testing theory for LOTOS using Deadlock detection. In: Brinksma,
E., Scollo, G., Vissers, C.A. (eds.) Protocol Specification, Testing and Verification
IX, Proceedings of the IFIP WG6.1 Ninth International Symposium on Protocol
Specification, Testing and Verification, Enschede, The Netherlands, 6–9 June, 1989,
pp. 87–98. North-Holland (1989)

https://doi.org/10.1007/978-3-642-39955-8_8
https://doi.org/10.1007/978-3-642-39955-8_8
https://doi.org/10.1109/ICST.2014.50
https://doi.org/10.1109/ICST.2014.50
https://doi.org/10.1007/BF00264365
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/11754008_15
https://doi.org/10.1007/BF01211911
https://doi.org/10.1109/INDIN.2017.8104755
https://doi.org/10.1007/978-3-319-67113-0_5
https://doi.org/10.1007/978-3-319-67113-0_5
https://doi.org/10.1007/978-3-662-43613-4_6
https://doi.org/10.1007/978-3-662-43613-4_6
https://doi.org/10.1007/BFb0028765
https://sumbat.cs.ru.nl/Publications
https://sumbat.cs.ru.nl/Publications

128 A. Graf-Brill and H. Hermanns

20. Marsso, L., Mateescu, R., Serwe, W.: TESTOR: a modular tool for On-the-Fly
conformance test case generation. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10806, pp. 211–228. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89963-3 13

21. Noroozi, N., Mousavi, M.R., Willemse, T.A.C.: Decomposability in input output
conformance testing. In: Proceedings Eighth Workshop on Model-Based Testing,
MBT 2013, Rome, Italy, 17th March 2013, pp. 51–66 (2013). https://doi.org/10.
4204/EPTCS.111.5

22. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50, 241–284 (1987). https://doi.
org/10.1016/0304-3975(87)90117-4

23. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.4204/EPTCS.111.5
https://doi.org/10.4204/EPTCS.111.5
https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Declarative Choreographies and Liveness

Thomas T. Hildebrandt1(B) , Tijs Slaats1 , Hugo A. López2,3 ,
Søren Debois2 , and Marco Carbone2

1 Software, Data, People & Society Section, Department of Computer Science,
Copenhagen University, Copenhagen, Denmark

{hilde,slaats}@di.ku.dk
2 Department of Computer Science, IT University of Copenhagen,

Copenhagen, Denmark
{hual,debois,maca}@itu.dk

3 DCR Solutions, Copenhagen, Denmark

Abstract. We provide the first formal model for declarative choreogra-
phies, which is able to express general omega-regular liveness properties.
We use the Dynamic Condition Response (DCR) graphs notation for
both choreographies and end-points. We define end-point projection as
a restriction of DCR graphs and derive the condition for end-point pro-
jectability from the causal relationships of the graph. We illustrate the
results with a running example of a Buyer-Seller-Shipper protocol. All
the examples are available for simulation in the online DCR workbench
at http://dcr.tools/forte19.

Keywords: Choreographies · Liveness · Declarative models

1 Introduction

Choreographies are an important tool for the development of highly distributed
applications. Using an “Alice-talks-to-Bob” notation, they permit to abstract
away details of a distributed implementation and focus on how the differ-
ent components interact. This has been a fundamental driver for the adop-
tion of choreographies in industry standards such as Message Sequence Charts
(MSC) [21], UML Sequence Diagrams [31], WS-CDL, and BPMN Choreography
Notation [30]. Moreover, choreography notations have been used in a range of
application areas, including web-service development [6,7], synthesis of protocol
behaviour [25], monitoring [3], parallel programming [26] and cyber-physical sys-
tems [27]. Paired with static analysis techniques (e.g., behavioural type systems),
they are capable of deriving distributed (endpoint) implementations where end-
points generated from a choreography ascribe to all and only the behaviors
defined by it. In practice, choreographies have “graduated” from the academic
world, and several industrial programming languages implementing choreogra-
phies exist, e.g., [7,19,22].

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 129–147, 2019.
https://doi.org/10.1007/978-3-030-21759-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_8&domain=pdf
http://orcid.org/0000-0002-7435-5563
http://orcid.org/0000-0001-6244-6970
http://orcid.org/0000-0001-5162-7936
http://orcid.org/0000-0002-4385-1409
http://orcid.org/0000-0001-9479-2632
http://dcr.tools/forte19
https://doi.org/10.1007/978-3-030-21759-4_8

130 T. T. Hildebrandt et al.

Fig. 1. BPMN Choreography for Buyer-Seller-Shipper example.

A central aspect of choreography languages is the notion of interaction. An
interaction is a first class citizen in any choreography language and, as a mini-
mum, it collects information regarding the sender, the receivers, and the action
used to synchronize participants. In Fig. 1, we show an exemplary BPMN chore-
ography, based on a variant of the Buyer-Seller protocol [6]. The choreography
involves three participants, a Buyer, a Seller and a Shipper. After asking the
Seller for a quote and getting the reply, the Buyer may either Accept, Reject or
Ask again. If the Buyer accepts, the Seller sends an Order to the Shipper, which
subsequently sends the detailed confirmation directly to the Buyer.

The second aspect considered in the design of choreography languages is the
ordering of interactions. Typically, choreography languages are seen as impera-
tive programs as the BPMN choreography above, that describe how interactions
should occur. Any other flow not explicitly written in the language is considered
forbidden. It has been observed that imperative notations are often insufficiently
flexible for modelling business processes [1,33]. An imperative notation focuses
on describing a small number of ideal flows through a process. Adding more
flows to represent edge cases and less common solutions to the model tends
to increase its complexity significantly. While this approach works for processes
where the ideal case is all we are interested in, this does not suffice for knowledge
and case work: knowledge workers tend to deal with highly variant scenarios for
which they need to determine unique solutions. For instance, in the choreogra-
phy above, we may in practice really want the liveness property, that a Quote is
eventually followed by a decision, but that the Sellers can provide new quotes or
the Buyer can ask again, any finite number of times, before accepting or rejecting
a quote. The present imperative choreography languages do not allow to specify
such general liveness property.

In the present paper, we propose using the declarative Dynamic Condition
Response (DCR) graph notation [9,14,28,29,34] as a formal declarative notation
for both choreographies and end-point specifications, allowing the specification
of both safety and general liveness properties. The DCR graphs notation has
been developed for the formalisation and digitalisation of collaborative, adaptive
case management processes. The notation is both supported by a range of for-
mal techniques, and serves as the formal base for the industrial (dcrgraphs.net)
design and simulation tool. During the recent years, the DCR graphs technology
has been employed in major industrial case management systems used in the
public sector in Denmark. DCR graphs have been extended to include both

https://www.dcrgraphs.net/

Declarative Choreographies and Liveness 131

data [35], time [18] and sub-processes [9]. In the present paper we consider
only the core notation, which is expressive enough to represent both regular
and omega-regular languages [9] as well as so-called true concurrency [10]. This
means that we provide the first choreography model supporting end-point pro-
jection and general liveness properties. Definition and simulation of DCR graphs
is supported by the on-line DCR Workbench [12] available at http://dcr.tools/
forte19. DCR diagrams in this paper were all produced using the workbench.

One of the important reasons for using choreography languages is their
correctness-by-design guarantees. Message-passing distributed systems consist of
communicating endpoints whose behaviours are defined in terms of input/output
actions. So if the choreography is to be implemented by a message-passing dis-
tributed system, it is necessary to translate choreographies into code that can
be executed by these endpoints. Such a translation is referred to as an endpoint
projection. The endpoint projection, paired with the global properties of the
choreography, warrants the safety of the distributed execution of the endpoints
(e.g. deadlock-freedom). A catch of this approach is, however, that the chore-
ography language often allows specifications that are not well-formed, meaning
that it is not possible to realise the choreography as the composition of end-point
processes. A key result for any choice of choreography language and end-point
language is therefore to provide criteria for the choreography to be well-formed.

A core property is that of local causality. Intuitively, local causality means
that if a participant initiates an interaction, it must not have direct dependencies
(or causal relationships) to interactions in which this participant is not involved.
The criteria for end-point projectability is, however, highly dependent of the
chosen languages. In BPMN 2.0.2 it is formulated as a constraint on sequencing

“The Initiator of a Choreography Activity MUST have been involved (as
Initiator or Receiver) in the previous Choreography Activity.”

as well as a number of more complex constraints on the use of so-called branching
gateways in BPMN for choices. Proving the correctness of such criteria requires
a formal semantics, which is not yet provided for BPMN Choreographies, but
for similar notations [5]. In the present paper, we will build upon the formal
semantics and theory of safe projections [17,18] for DCR graphs to provide end-
point projections for DCR choreographies.

Summary of Contributions: We provide a general end-point projection result
for: (1) a declarative choreography model, (2) that can represent general omega-
regular liveness properties [9], (3) supports a broad range of extensions such as
dynamic process spanning and refinement [9], true-concurrency semantics [10]
and time [18], and (4) is supported by both academic and industrial design and
simulation tools.

2 Interactions and Dynamic Condition Response Graphs

In this section we first define the general concept of interactions, which are com-
mon to previous work on choreographies. We then recall the model of Dynamic
Condition Response (DCR) graphs.

http://dcr.tools/forte19
http://dcr.tools/forte19

132 T. T. Hildebrandt et al.

2.1 Interactions

Assume a fixed set of actions A, ranged over by a, b, c and a fixed set of roles R,
ranged over by r, r′, r1, r2, ... (referred to as participants in [5]).

Definition 1. An interaction is a triple (a, r → R), in which the action a ∈ A
is initiated by the role r and received by the roles R ⊂fin R\{r}, i.e a finite set
of roles distinct from r. Define Initiator((a, r → R)) = r. We use the shorthand
(a, r → r′) for interactions between two participants (a, r → {r′}). We denote
by IA the set of all interactions.

We proceed to define projections of interactions to actions for end-point
processes. End-point processes describe the view of the process from a single
participant r synchronising with the other participants via messages on channels:
For each interaction (a, r → R) in the choreography, there will be channels
(a, r → r′) from r to r′ for each r′ ∈ R. To ease the definition of projections
and avoid introducing new notation, we describe actions for an end-point also as
interactions. That is, for the end-point process at role r, we use the interaction
(a, r → R′) to represent the action !(a, r → R′) for sending a message on the
channels (a, r → r′) for all participants r′ ∈ R′. The interaction (a, r′ → r),
represents the action ?(a, r′ → r) for receiving a message on the channel (a, r′ →
r). We apologize to the reader for the inconvenience this reuse of notation may
cause.

Definition 2. For an interaction α = (a, r′ → R′), define the end-point pro-
jection of α at r by:

α|r =

⎧
⎨

⎩

(a, r′ → r) when r ∈ R′

(a, r′ → R′) when r′ = r
τ otherwise

(1)

We extend end-point projections to sets and sequences of interactions by point-
wise projection and removing τ actions, and finally to sets of sequences of inter-
actions in the obvious way.

Definition 3. A choreographic language is a triple (C,A,R) where A ⊆ A,
R ⊆fin R, and C ⊆ IA∞ = IA∗ ∪ IAω. That is, a set C of finite and infinite
sequences of interactions for a given set of actions A and roles R.

When A and R are obvious from the context, we shall take C as defining a
choreographic language.

Definition 4. The end-point projection of a choreographic language (C,A,R)
is the family of languages (C|r)r∈R.

Declarative Choreographies and Liveness 133

2.2 DCR Graphs

In this section we recall Dynamic Condition Response (DCR) graphs [10,12–
14,28]. This paper follows the set-based formulation of [10,14,28].

As formally defined below, a DCR graph consists of a directed graph and a
marking. The nodes of the graph are labelled events and the edges are relations of
five kinds: conditions (→•), responses (•→), inclusions (→+), exclusions (→%)
and milestones (→�).

Definition 5. A DCR graph is a tuple (E,M,L, �,→•, •→,→�,→+,→%),
where

– E is a set of events
– M ⊆ E × E × E is a marking
– L is a set of labels
– � : E → L is a labelling function
– φ ⊆ E × E for φ ∈ {→•, •→,→�,→+,→%} are relations between events.

A DCR graph defines a process whose executions are finite and infinite
sequences of (labelled) events. Note that an event may be executed several times.
The three sets of events in the marking M = (Ex,Re, In) defines the state of the
DCR graph process, and are referred to as the executed events (Ex), the pending
response1 events (Re) and the included events (In). The relations define effects
of the execution of events and constrain the executions of the process defined by
the DCR graph as defined formally below. Briefly:

– An inclusion (respectively exclusion) relation e →+ e′ (respectively e →% e′)
means that if e is executed, then e′ is included (respectively excluded).

– A condition relation e →• e′ means that e is a condition for e′, i.e. if e is
included, then e must have been executed for e′ to be enabled for execution.

– A response relation e •→ e′ means that whenever e is executed, e′ becomes a
pending response. During a process execution, a pending event must eventu-
ally be executed (which makes it no longer pending, unless it has a response
relation to itself) or be excluded. We refer to e′ as a response to e.

– A milestone relation e →� e′ means that if e is included it must not be
pending for e′ to be enabled for execution. We refer to e as a milestone for e′.
Milestones are typically used in cyclic behaviour, when some earlier executed
event e may be required to be executed again, i.e. it becomes pending, before
the process can proceed executing event e′.

For DCR graph G with events E and marking M = (Ex,Re, In) and event
e ∈ E we write (→•e) for the set {e′ ∈ E | e′ →• e}, write (e•→) for the set
{e′ ∈ E | e •→ e′} and similarly for (e→+), (e→%) and (→�e). We can now
define when the events of a DCR graph are enabled.

1 We often simply say “pending” instead of “pending response”.

134 T. T. Hildebrandt et al.

Fig. 2. Example DCR choreography

Definition 6 (Enabled events). Let G = (E,M,L, �,→•, •→,→�,→+,→%)
be a DCR graph, with marking M = (Ex,Re, In). An event e ∈ E is enabled,
written e ∈ enabled(G), iff (a) e ∈ In and (b) In ∩ (→•e) ⊆ Ex and (c) (Re ∩
In) ∩ (→�e) = ∅.

That is, enabled events (a) are included, (b) their included conditions have
already been executed, and (c) have no pending included milestones.

Example 7. We give an example of a DCR graph in Fig. 2 as visualised by the
online-tool dcr.tools/forte19. Events are indicated by boxes with solid borders
and collections of events are shown with dashed boxes. Relations are shown as
arrows between the boxes. As formalised in [16], such collections are referred to
as “nestings” and are just a visual shorthand, understanding arrows to (from)
nestings to represent arrows to (from) every event inside the nesting.

Traditionally, the labels of DCR graphs only consist of an action and pos-
sibly a set of roles that may perform the action. In the present paper, how-
ever, the labels of the DCR graphs are interactions rather than just actions.
Instead of labelling the boxes representing the events simply with the label, e.g.,
(Ask,Buyer → {Seller1,Seller1}), we have split the label in three fields in the
visualisation similarly to the notation for BPMN choreographies: The initiator
(Buyer) is written in the field at the top of the box; the action (Ask) is written in
the middle field, and the receiver(s) (Seller1,Seller2) in the bottom field with a
grey background. When no confusion is possible, we refer to events by the action

http://dcr.tools/forte19

Declarative Choreographies and Liveness 135

shown in middle field, speaking of, e.g., “the event Ask” rather than the more
precise “the event labelled Buyer, Ask, Seller1, Seller2.”

The marking of the graph and whether events are enabled or not is indicated
visually: If the background of all fields is grey for a box, the event is included,
but not enabled. For instance, the Ask event is enabled, but the two Quote events
are not enabled (because the Ask event is a condition for the events and not yet
executed). A box which is made opaque/dimmed out, such as the two Order
events and the Details event, represents an event which is not included. When
explaining Fig. 3 we describe the visualisation of executed and pending events.

The response relation (•→) from the event Ask to the nesting box around
the Quote events means that the Quote events become pending when Ask is
executed. This expresses the liveness constraint, that if the buyer asks, a quote
must eventually be given by both sellers. The milestone relation (→�) from the
box around the Quote events to the nesting box labelled Decide means that the
events (Accept1, Accept2 and Reject) inside the Decide box cannot be executed
if any of the Quote events are pending, not even if Quote happened in the past.
This expresses the safety condition, that the buyer can not accept or reject if one
of the sellers has not responded after the last time the buyer asked for a quote.
The inclusion relation from e.g. Accept1 to Order for Seller 1 means that order
event will be included if the buyer accepts the quote from Seller 1. The circular
exclusion arrow in the Decide box means that any event inside the box is related
by an exclude relation to any event inside the box, i.e. they are mutually and
self-exclusive. That is, whenever one of the events inside the box happens, all
three events inside the box are excluded. Moreover, due to the exclude relation
from the Decide box to the Negotiate box, also the Ask and Quote events are
excluded when a decision is made.

Below we formalise how the marking changes when an enabled event e is
executed : (a) the event e is added to the set of executed events, (b) e is removed
from the set of pending response events, and the responses to e are added to the
set of pending response events, (c) the events excluded by e are removed from
the set of included events, and the events included by e are added to the set of
included events.

Definition 8 (Execution). Let G = (E,M,L, �,→•, •→,→�,→+,→%) be a
DCR graph, with marking M = (Ex,Re, In). When e ∈ enabled(G), the result of
executing e, written execute(G, e) is a new DCR graph G′ with the same events,
labels, labelling function and relations, but a new marking M ′ = (Ex′,Re′, In′),
where (a) Ex′ = Ex ∪ {e} (b) Re′ = (Re\{e}) ∪ (e•→), and (c) In′ =
(In\(e→%)) ∪ (e→+)

Example 9. In the graph in Fig. 2, we may execute the event Ask. Following the
relations in the graph, this will make the two Quote events enabled and pending:
they were previously not enabled due to their condition relation from Ask and
once Ask becomes “executed” in the marking, that condition is fulfilled, and
Quote becomes enabled. Altogether, executing Ask yields the graph shown in
Fig. 3. Red text and an exclamation mark after the action in the middle field

136 T. T. Hildebrandt et al.

Fig. 3. DCR choreography after execution of Ask. (Color figure online)

represents an event which is pending, as is the case for the two Quote events. A
box with a check mark after the label represents an event which is executed, as
can be seen for the event Ask. Note that Ask may be executed again immediately,
leaving the process in the same state, but the two Quote events must eventually
be executed (without any intermediate Ask) in order for the run to be accepting.

From the definition of execution we can define a transition semantics for DCR
graphs using labelled event transition system with responses.

Definition 10 (Transition semantics). Let G = (E,M,L, �,→•, •→,→�,
→+,→%) be a DCR graph. The Labelled Event Transition System with
Responses (LETSR) for G is defined as T (G) = (G, G,E,L, �,→, ρ), where
the DCR graph G is the initial state, E is the set of events, L is the set
of labels, � is the labelling function, →⊆ G × E × G is the transition rela-
tion, defined by (G, e,G′) ∈→ iff e ∈ enabled(G) and G′ = execute(G, e), and
G = {G′ | G →∗ G′}, the set of states, is the graphs reachable from the initial
graph G by execution of events, and finally ρ is the response function defined on
DCR graphs by ρ(G′) = Re ∩ In, if (Ex,Re, In) is the marking of G′.

We say that two LETSR T and T ′ are isomorphic, written T ≡ T ′, if there is
an isomorphism between the sets of states preserving and respecting transitions
and the response function.2

2 Isomorphism could be defined more generally by also having an isomorphism on the
set of events, but the given definition is sufficient for the present paper.

Declarative Choreographies and Liveness 137

We define the language of a DCR graph as all finite and infinite sequences of
such executions, where we demand that all pending responses are either eventu-
ally executed or excluded.

Definition 11 (Language of a DCR graph). Let G = (E,M,L, �,→•, •→,
→�,→+,→%) be a DCR graph. A run of G is a finite or infinite sequence of
events e0, e1, . . . such that ei ∈ enabled(Gi), execute(Gi, ei) = Gi+1, and G0 = G.
We call a run accepting iff for each Gi with marking Mi = (Exi,Rei, Ini) and
e ∈ Rei ∩ Ini there exists a j ≥ i such that ej = e or e �∈ Rej ∩ Inj.

The language lang(G) ⊆ L∞ of G is the set of finite and infinite sequences
of labels l0l1 · · · such that there is an accepting run e0, e1, . . . where �(ei) = li.

It has been proven in [9] that DCR graphs can express exactly the languages
that are the union of a regular and an ω-regular language. This means that one
can express regular safety and liveness properties in DCR graphs.

Since the definition of accepting runs only depends on the included pending
responses in the markings of the graphs and the events being executed during a
run, it is easy to see that if two DCR graphs have isomorphic transition systems
with responses then they also have the same languages.

Proposition 12. Let G and G′ be DCR graphs. If T (G) ≡ T (G′) then
lang(G) = lang(G′).

3 DCR Choreographies

Below we first account for how DCR Choreographies and DCR End-points can
be defined using DCR graphs. We then derive the criteria for end-point pro-
jectability and provide the operational correspondence between an end-point
projectable DCR graph and the synchronous composition of its end-points.

Definition 13. Let A ⊆ A and R ⊂fin R be sets of roles and actions, respec-
tively. A triple (G,A,R) is then a DCR choreography when G is a deadlock-free
DCR graph such that the labels L ⊆ IA of G are interactions with actions in
A and participants in R. For a role r ∈ R, a tuple (G,A,R, r) is a DCR End-
point when the labels L of G are interactions either of the form (a, r → R′) or
(a, r′ → r) with a ∈ A.

Example 14. The DCR graph in Fig. 2 is the DCR graph G of a DCR choreog-
raphy (G,A,R) where the actions A and roles R are given by:

A = {Ask,Quote,Accept1,Accept2,Reject,Order,Details}
R = {Buyer,Seller,Shipper}

Note that by virtue of being a general declarative notation, one may specify DCR
graphs with deadlocks, e.g. by having a cycle of condition relations. It is easy to
prove, that if (→• ∪ →�), i.e. the union of the condition and milestone relations,
is acyclic, then the DCR graph is free of deadlocks. Moreover, such graphs can
express all languages expressed by general DCR graphs, and in particular the
complex behaviour in our running example.

138 T. T. Hildebrandt et al.

We now turn to the key question for any choreography language: How do
we project a global choreography description onto the intended behaviour of
individual participants? And in particular, is this operation always possible, or
are some global descriptions in fact not realisable by individual end-points?

Projections and distributed execution have been studied for DCR graphs in
previous work [15,17,18], but in a rather different setting where events are only
labeled by actions and initiating roles, not receiving roles. For this reason, it is
safe in [15,17,18] to leave out an event in the projection to an end-point, if the
execution of this event does not impact the state or enabledness of any event
initiated by the participant responsible for that end-point. An example of such
an event in our running example is the Details event for the Buyer end-point.

In the present paper we have explicit receivers and need to preserve all receiv-
ing events for a participant. Consequently, we can not directly use the notion of
projection given in [15,17,18]. However, we may yet build on these projections
to obtain one useful for DCR choreographies. The core idea in those papers was
to project a graph G with events E to a network of local graphs for any divi-
sion (not necessarily disjoint) of the events δ1 ∪ δ2 ∪ . . . ∪ δn = E, then define
synchronous composition of such networks of DCR graphs. Intuitively, shared
events, i.e. events occurring in more than one graph, are executed synchronously
in the network, representing communication. The projection then ensured that
execution of the network formed by the local graphs would have a transition
system isomorphic to that of the global graph, and thus in particular exhibit the
same language as the global graph.

In the following we reconcile the notion of projection from [15,17,18] and
then subsequently define end-point projections.

First, we characterise when the execution of an event may change the marking
or enabledness of another. To this end, we define the notion of direct dependency.

Definition 15. Let G = (E,M,L, �,→•, •→,→�,→+,→%) be a DCR graph
and let e, e′ ∈ E be events of E. Then there is a direct dependency e′ e from
e′ to e iff either of the following conditions are true

1. e′ = e,
2. e′(→• ∪ •→ ∪ →+ ∪ →% ∪ →�)e,
3. ∃e′′. e′(→+ ∪ →%)e′′(→• ∪ →�)e,
4. ∃e′′. e′ •→ e′′ →� e.

That is, e′ e iff either (1) they are the same, (2) there is a relation from e′ to
e, (3) e′ includes or excludes an event which is itself a condition or milestone for
e, or (4) e′ has a response to a milestone for e.

The following proposition states that an event e must be directly dependent
on any event e′ whose execution may change the marking or enabledness of e.

Proposition 16. Let G be a DCR graph with marking M = (Ex,Re, In). Sup-
pose e′ ∈ enabled(G), and let G′ = execute(G, e′) and M ′ = (Ex′,Re′, In′) be the
marking of G′. If either of the following hold, then e′ e.

Declarative Choreographies and Liveness 139

1. e ∈ enabled(G) �⇔ e ∈ enabled(G′),
2. e ∈ Ex �⇔ e ∈ Ex′,
3. e ∈ Re �⇔ e ∈ Re′,
4. e ∈ In �⇔ e ∈ In′.

Proof. (Sketch) For lack of space we just show why condition 2 above implies
e′ e, the other conditions follow from a similar inspection of the definitions.
First note that the set Ex of executed events always grows, i.e. once executed
an event can never become not executed. So we only need to consider the case
e �∈ Ex and e ∈ Ex′. From the Definition 8 it is clear that the only event that
can be included in the set Ex during execution is the event being executed, so it
follows that e = e′ and thus e′ e.

We note that this implication is not a bi-implication, e.g., in the DCR graph
comprising just the two events e, f and the single relation e →• f in a marking
where e is already executed, we clearly have e f (by Definition 15(2) because
there is a relation from e to f), yet executing e in fact cause no changes to
marking or enabledness of f .

Intuitively, we will obtain the end-point projection for a participant r by
keeping (a) events labelled with interactions involving r, as well as (b) the
direct dependencies of the events for which r is the initiator. We then interpret
the interactions as end-point actions as described in Sect. 2.1. In order for the
interactions to make sense as actions for the end-point process at r, the role r
must be involved in its direct dependencies. We formalise this as follows.

Definition 17. Let (G,A,R) be a DCR choreography and � the labelling func-
tion of G; and let r ∈ R be a role. This choreography is end-point projectable
for r iff for all e, if Initiator(e) = r and e′ e, then �(e′)|r �= τ ,

Example 18. Referring again to the example DCR choreography in Fig. 2, we find
that this choreography is in fact not end-point projectable for the participants
Seller1 and Seller2. We see in Fig. 2 that the Accept1 event causes Accept2 to
be excluded, however, Seller2 is initiator of Accept2, but not participating in
Accept1. To be precise, because of the exclusion we have Accept1 Accept2 and
�(Accept2) = (Accept2,Buyer → Seller2) yet �(Accept1) = (Accept1,Buyer →
Seller1), so �(Accept1)|Shipper = τ .

We fix this by redefining the choreography such that Seller2 is included in
the Accept1 interaction, that is, so that Seller2 is notified that he lost the con-
tract; and vice versa including Seller1 in the Accept2 interaction. We show the
projectable process in Fig. 4. This choreography is end-point projectable.

We proceed by defining the end-point projection. We start by recalling the def-
inition of projection in [15,17,18], adapted to keep all labels.

Definition 19 (Adapted DCR δ-Projection cf. [15,17]). Given a DCR
graph

G = (E,M,L, �,→•, •→,→�,→+,→%)

and a set of events δ ⊆ E, define the projection of G to the events δ as the graph
G|δ = (E|δ,M |δ, L|δ, �|δ,→•|δ, •→|δ,→�|δ,→+|δ,→%|δ) given by:

140 T. T. Hildebrandt et al.

Fig. 4. End-point projectable DCR choreography

1. E|δ = {e ∈ E | ∃e′ ∈ δ. e e′},
2. M |δ = (Ex|δ,Re|δ, In|δ) where:

(a) Ex|δ = Ex ∩ E|δ
(b) Re|δ = Re ∩ E|δ
(c) In|δ =

(
In ∩ ((→• δ) ∪ (→� δ) ∪ δ)

)
∪

(
E|δ \ ((→•δ) ∪ (→�δ) ∪ δ)

)
.

3. �|δ(e) = �(e),
4. L|δ = img(�)
5. →•|δ = →• ∩

(
(→• δ) × δ

)

6. →�|δ = →� ∩
(
(→� δ) × δ

)

7. •→|δ = •→ ∩
(
((•→→� δ) × (→� δ)) ∪ ((•→ δ) × δ)

)

8. →+|δ =→+ ∩(((→+→• δ)× (→• δ))∪ ((→+→� δ)× (→� δ))∪ ((→+ δ)×δ))

9. →%|δ =→% ∩(((→%→• δ)×(→• δ))∪((→%→� δ)×(→� δ))∪((→% δ)×δ)).

The complexity in these rules arises mostly from the necessity of including events
that may affect milestones or conditions for the events in δ. We see this particu-
larly in the right-most half of 2(c), in the second clause in 7–9, and in the fourth
clause in 8–9.

We now define the end-point projection for a DCR choreography with respect
to a role r. The projection comes in two steps: first we compute the δ-projection,
taking δ to be the set of events for which r is the initiator. Second, we simply
add all events where r is a receiver. The latter step does not really change the
behaviour in terms of sequences of actions, but it ensures that all receiving roles

Declarative Choreographies and Liveness 141

will be present for an interaction, even when it has no effect on other events in
the end-point. As also described in the beginning of the section, this was not
essential for the previous work, since receivers were not explicit.

Definition 20 (DCR end-point projection). Let (G,A,R) be a DCR chore-
ography with events E and labelling function �. For any r ∈ R, define

δ = {e ∈ E | Initiator(e) = r} ,

and let G|δ = (E|δ,M,L, �|δ,→•, •→,→�,→+,→%) be the δ-projection of G for
r. Suppose M = (Ex,Re, In) and define

E′ = {e ∈ E | ∃a r′. �(e)|r = (a, r′, r)}
M ′ = (∅, ∅, E′\(E\In))

�′(e) =

{
�(e)|r if e ∈ E|δ ∪ E′

undefined otherwise

The end-point projection of (G,A,R) for r is then defined as the DCR end-point
(G|r, A|r, R, r) where

G|r = (E|δ ∪ E′,M ∪ M ′, img(�′), �′,→•, •→,→�,→+,→%).

Example 21. The result of end-point projecting the corrected choreography in
Fig. 4 can be seen in Figs. 5, 6 and 7.

Lemma 22. Let (G,A,R) be a DCR choreography, let r ∈ R be a role of R,
and let (G|r, A|r, R, r) be the projection of that choreography to r. If (G,A,R)
is projectable for r, then every label in G|r is an interaction which has r as a
participant.

Proof. The set of events of G|r consists of the events E|δ of the δ-projection for
δ = {e ∈ E0 | Initiator(e) = r} and the events E′ = {e ∈ E | ∃a r′. �(e)|r =
(a, r′, r)}. Clearly, the events in E′ by definition all have the role r among the
receivers and thus as participant. According to Definition 19, we have E|δ = {e ∈
E | ∃e′ ∈ δ. e e′}. Now, since Initiator(e′) = r for all e′ ∈ δ it follows from the
definition of end-point projectability in Definition 17 that �(e)|r �= τ when e e′

and thus r is also a participant in the interaction for all e ∈ E|δ.

As shown below, it follows easily, that if an event is shared between two
end-points, it has the same initiator.

Lemma 23. Let C = (G,A,R) be an end-point projectable DCR choreography,
r, r′ ∈ R be roles of R, and (G|r, A|r, R, r) and (G|r′ , A|r′ , R, r′) be the projections
of C to r and r′. If e ∈ E ∩ E′, where E and E′ are the events of G|r and G|r′

respectively, then Initiator(�(e)) = Initiator(�(e′)).

142 T. T. Hildebrandt et al.

(Accepting)

Decide
Negotiate

Quotes

!(Accept1, Buyer->Seller1,Seller2)

!(Reject, Buyer->{Seller1,Seller2})

!(Accept2, Buyer->{Seller2,Seller1}

%

%

!(Ask, Buyer->{Seller1,Seller2})

?(Quote, Seller1->Buyer)

?(Quote, Seller2->Buyer)

?(Details, Shipper->Buyer)

Fig. 5. End-point projection of Fig. 4 for Buyer.

(Accepting)

Decide Negotiate

Quotes

?(Accept1, Buyer->Seller1) !(Order, Seller1->Shipper)+

?(Reject, Buyer->Seller1)

?(Accept2, Buyer->Seller1)

% %

?(Ask, Buyer->Seller1)

!(Quote, Seller1->Buyer)

%

Fig. 6. End-point projection of Fig. 4 for Seller1.

(Accepting)

Orders

?(Order, Seller1->Shipper)

?(Order, Seller2->Shipper)

!(Details, Shipper->Buyer)+

%

Fig. 7. End-point projection of Fig. 4 for Shipper.

Declarative Choreographies and Liveness 143

Proof. According to Definition 20, the label of an event e in an end-point pro-
jection for role r is given by the restriction �(e)|r. According to Definition 2 the
initiator role is preserved by the restriction or the label is τ . However, by Def-
inition 17 the label cannot be τ . Thus, being end-point projections of the same
end-point projectable choreography C the event in the two end-point projections
will have the same initiator role.

We now define the synchronous composition of a finite set of DCR end-points,
for which the labels of shared events agree on the Initiator role. Intuitively, an
event e is enabled in the synchronous composition, if it is enabled in all of the
end-points in which it occurs. The execution of an event is then defined simply
by executing the event in all of the components it occurs. Finally, the label is
the interaction obtained by taking the union of receivers.

Definition 24 (Synchronous composition of DCR end-points). For R =
{r1, r2, . . . , rn} and DCR end-points Pi = (Gi, Ai, R, ri) for i ∈ {1, .., n} we
write the synchronous parallel composition as P = Πi∈{1,..,n}Pi. Define

– E =
⋃

i ∈ {1, .., n}Ei, where Ei is the events of Gi.
– e ∈ enabled(P) iff e ∈ Ei implies e ∈ enabled(Gi) for all i ∈ {1, .., n}.
– execute(P, e) = Πi∈{1,..,n}P ′

i , if e ∈ enabled(P) and Pi = (G′
i, Ai, R, ri) and

G′
i = execute(Gi, e), if e ∈ Ei and P ′

i = Pi otherwise.
– �P (e) = (a, r → R′) if e ∈ Ei implies �i(e) = (a, r → R′

i) and R′ =
⋃

i ∈ I,
where I = {i ∈ {1, . . . , n} | e ∈ Ei}.

– ρP (P ′) =
⋃

i∈{1,...,n} Rei ∩ Ini if P ′ = Πi∈{1,..,n}P ′
i , P ′

i = (G′
i, Ai, R, ri) and

the marking of G′
i is (Exi,Rei, Ini).

We now define the LETSR for P by T (P) = (P, P,E, L, �P ,→P , ρP), where
(P ′, e, P ′′) ∈→P if e ∈ enabled(P ′) and P ′′ = execute(P ′, e), and P = {P ′ |
P →∗ P ′}.

The following theorem establishes the key property, that the synchronous
composition of the end-points yields a transition system with responses isomor-
phic to the transition system for the choreography, and thus is in particular
deadlock free.

Theorem 25. Let C = (G,A,R) be an end-point projectable DCR choreogra-
phy, R = {r1, . . . , rn} and Pi = (Gi, Ai, R, ri) for i ∈ {1, . . . , n} the DCR end-
points resulting from end-point projection of C. Then T (C) ≡ T (Πi∈{1,..,n}Pi)
and thus Πi∈{1,..,n}Pi is deadlock free.

Proof. (Sketch) The proof follows the same approach as the proof of Theorem
5.1 in [18] where a bisimulation is constructed between the original graph (in
this case the choreography) and the network of synchronous parallel composition
of projections. The reason why the same approach can be used is that the main
difference between the present work and the work in [18] is that we have included
also receiving events in the end-points that have no effect on the synchronous
product, such as the Details event in Fig. 5.

We note that the isomorphism by Proposition 12 implies that the language of the
choreography is the same as the language of the composition of the end-points.

144 T. T. Hildebrandt et al.

4 Conclusion and Related Work

Based on the formal process notation of DCR graphs, we have provided the first
declarative model for choreographies able to describe general liveness properties.
We identified the local causality criteria for end-point projectability and defined
end-point projections, using previous work on distributions of DCR graphs. We
showed that the synchronous product of the end-point projections had the same
behaviour as the original choreography. As future work we intend to extend the
results to declarative timed choreographies, benefiting from projections already
being defined for timed DCR graphs in [18].

Related Work. Properties for guaranteeing projectability are proposed in var-
ious settings and depend on the chosen choreography language. The results
in [6] require three main properties: connectedness, well-threadedness, and coher-
ence. While well-threadedness and coherence concern the behaviour of replicated
servers, connectedness is the same as the projectability criterium of BPMN 2.0.2,
which we also adopt in the present paper. The connectedness property occurs
also in other works on choreography, e.g., [8,23]. In the theory of multiparty
session types [20] and in Chor [7], such property is omitted at a price of a more
flexible interpretation of sequencing.

To the authors’ knowledge, this is the first work considering general liveness
properties at the choreography-level. Other works in the literature have studied
liveness for multiparty interactions from session types and contract development:
Padovani et al. [32] propose a type system for session types to control liveness
properties. However, the model considered is roleless since types describe inter-
actions but without specifying which roles implement them. The work in [11]
extends binary session types to specify response properties, that is applied to
a variant of a collaborative BPMN process language to verify whether liveness
for dead-lock free processes can be achieved. A recent paper by Lange et al. [24]
investigates a bounded liveness property for GO programs, where protocols are
specified as global types. Such property resembles a progress property and is
not as general as our liveness. For instance, requiring that after a Quote we
have eventually an Accept or a Reject cannot be expressed as bounded liveness.
Honesty is a variant of liveness used in contract-oriented programming [2]. In
short, an endpoint is honest if it abides the sequence of actions stipulated in its
contract. Honesty will fail if the contract promises the execution of an action
and the endpoint does not execute it. Contracts in this sense correspond to DCR
responses. We differ from [2] in the sense that we do not require a session-type
to verify liveness. It is specified in the model as a behavioural constraint only in
the places that is required.

Our previous work in [4], presented a proof system for choreographies where
properties such as liveness and connectedness can be expressed in terms of modal
(may/must) operators. Apart from the difference on the languages explored (the
global calculus in [4] and DCR in the present work), we differ from being able to
express one-to-many communications. For DCR graphs, projections were studied

Declarative Choreographies and Liveness 145

in a different context in [15,17,18], where all participants were implicit receivers
of actions and projections thus always defined.

Acknowledgments. Work supported by the Innovation Fund Denmark project Eco-
Know (7050-00034A); the Danish Council for Independent Research project Hybrid
Business Process Management Technologies (DFF-6111-00337), and the European
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement BehAPI No. 778233.

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197 1

2. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. Log. Methods
Comput. Sci. 12(4) (2016)

3. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring
networks through multiparty session types. In: Beyer, D., Boreale, M. (eds.)
FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38592-6 5

4. Carbone, M., Grohmann, D., Hildebrandt, T.T., López, H.A.: A logic for chore-
ographies. In: PLACES. EPTCS, vol. 69, pp. 29–43 (2010)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 2

6. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78
(2012)

7. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Symposium on Principles of Programming Languages,
POPL 2013 pp. 263–274. ACM, New York (2013)

8. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Communications in choreographies,
revisited. In: ACM Symposium on Applied Computing, pp. 1248–1255. ACM
(2018)

9. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 143–160. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 10

10. Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 72–89. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-23063-4 5

11. Debois, S., Hildebrandt, T.T., Slaats, T., Yoshida, N.: Type-checking liveness for
collaborative processes with bounded and unbounded recursion. Log. Methods
Comput. Sci. 12(1) (2016)

12. Debois, S., Hildebrandt, T.: The DCR workbench: declarative choreographies for
collaborative processes. In: Gay, S., Ravara, A. (eds.) Behavioural Types: from
Theory to Tools, pp. 99–124. River Publishers, June 2017

https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-319-19249-9_10
https://doi.org/10.1007/978-3-319-23063-4_5
https://doi.org/10.1007/978-3-319-23063-4_5

146 T. T. Hildebrandt et al.

13. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Inform. 55(6), 489–520
(2018)

14. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69, pp.
59–73 (2010)

15. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe dis-
tribution of healthcare workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011.
LNCS, vol. 7151, pp. 39–56. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32355-3 3

16. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29320-7 23

17. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 237–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24690-6 17

18. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Logic
Algebraic Program. 82(5–7), 164–185 (2013)

19. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

21. ITU recommendation z.120 : Message Sequence Chart (MSC), August 2011.
https://www.itu.int/rec/T-REC-Z.120-201102-I/en

22. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for Java. Sci. Comput. Program.
155, 52–75 (2018)

23. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: International Conference on
Software Engineering and Formal Methods, SEFM, pp. 323–332 (2008)

24. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: POPL, pp. 748–761. ACM (2017)

25. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

26. López, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: OOPSLA, pp. 280–298. ACM (2015)

27. López, H.A., Nielson, F., Nielson, H.R.: Enforcing availability in failure-aware com-
municating systems. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 195–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-
8 13

28. Mukkamala, R.R.: A formal model for declarative workflows: dynamic condition
response graphs. Ph.D. thesis, IT University of Copenhagen, June 2012

29. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC, pp. 127–136.
IEEE (2013)

30. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, version 2.0.2 (2014). http://www.omg.org/spec/BPMN/2.0.2/PDF

https://doi.org/10.1007/978-3-642-32355-3_3
https://doi.org/10.1007/978-3-642-32355-3_3
https://doi.org/10.1007/978-3-642-29320-7_23
https://doi.org/10.1007/978-3-642-24690-6_17
https://doi.org/10.1007/978-3-642-24690-6_17
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://www.itu.int/rec/T-REC-Z.120-201102-I/en
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13
http://www.omg.org/spec/BPMN/2.0.2/PDF

Declarative Choreographies and Liveness 147

31. Object Management Group UML Technical Committee: Unified Modeling Lan-
guage, version 2.5.1 (2017). http://www.omg.org/spec/UML/2.5.1/

32. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 147–162. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43376-8 10

33. Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling–an academic dream or
the future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 307–322. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40176-3 26

34. Slaats, T.: Flexible process notations for cross-organizational case management
systems. Ph.D. thesis, IT University of Copenhagen, January 2015

35. Strømsted, R., López, H.A., Debois, S., Marquard, M.: Dynamic evaluation forms
using declarative modeling. In: Proceedings of the Dissertation Award and Demon-
stration, Industrial Track at BPM 2018 (2018). CEUR-WS.org

http://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-642-40176-3_26
https://doi.org/10.1007/978-3-642-40176-3_26
http://ceur-ws.org/

Model Checking HPnGs in Multiple
Dimensions: Representing State Sets

as Convex Polytopes

Jannik Hüls(B) and Anne Remke

Westfälische Wilhelms-Universität, Münster, Germany
{jannik.huels,anne.remke}@uni-muenster.de

Abstract. Hybrid Petri Nets with general transitions (HPnG) include
general transitions that fire after a randomly distributed amount of time.
Stochastic Time Logic (STL) expresses properties that can be model
checked using a symbolic representation for sets of states as convex poly-
topes. Model checking then performs geometric operations on convex
polytopes. The implementation of previous approaches was restricted
to two stochastic firings. This paper instead proposes model checking
algorithms for HPnGs with an arbitrary but finite number of stochastic
firings and features an implementation based on the library HyPro.

1 Introduction

Hybrid systems combine continuous and discrete behavior and are used to model
and verify safety-critical systems. Different approaches exist for the reachability
analysis of Hybrid automata, e.g., flowpipe construction for different state-space
representations [12,21,23]. Hybrid Petri nets form a subclass of Hybrid automata
[2] and have further been extended to Hybrid Petri nets with general transitions
(HPnGs) in [14], that fire stochastically after a random delay. They form a sub-
class of stochastic hybrid systems with piece-wise linear continuous behaviour
without resets and a probabilistic resolution of discrete non-determinism. Albeit
these restrictions, they have been applied successfully to critical infrastructures,
like water and power distribution [8,18]. Several approaches for Hybrid automata
extended with discrete probability distributions exist [20,28,29,31]. More gen-
eral stochastic Hybrid systems often require a higher level of abstraction [1,19].
Related Petri net approaches are also restricted e.g., w.r.t. the number of con-
tinuous variables [15] or to Markovian jumps [5].

Stochastic Time Logic (STL) closely resembles MITL [3] or the temporal layer
of STL/PSL [22] and is used to specify properties of HPnGs. Their piece-wise
linear evolution of continuous variables allows to partition the state space into
convex polytopes (so-called regions) with similar characteristics [9]. The idea of
a polyhedra based representation of the state space has been explored before for
model checking HPnGs [11], for (flowpipe) approximations [6,7] and to abstract
uncountable-state stochastic processes [26,27]. Our approach explicitly includes
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 148–166, 2019.
https://doi.org/10.1007/978-3-030-21759-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_9

Model Checking HPnGs in Multiple Dimensions 149

the stochastic behaviour over time into the state representation; every stochas-
tic firing adds a dimension to the state space. Model checking then identifies all
realizations of the random variables, which satisfy a given STL formula. The sat-
isfaction set of (the conjunction of) atomic properties is a single convex polytope,
and negation requires a translation into a convex representation. A previous app-
roach using Nef polyhedra was restricted to models with two stochastic firings
[13] due to the restricted implementation of hyperplane arrangement in the cor-
responding CGAL library. Recently, we proposed the translation of the nodes of
the parametric location tree (PLT) [17] into a geometric and symbolic system rep-
resentation. This construction allows to circumvent the problem of hyperplane
arrangement while still providing a geometric state set representation. Given the
PLT of an HPnG model, this paper presents model checking for STL properties
in HPnGs with an arbitrary but finite number of stochastic firings. For each STL
operator an algorithm is introduced, based on geometric operations on symbolic
state set representations. Our implementation relies on the library HyPro [25],
which offers efficient implementations for operations on convex polytopes [32] in
higher dimensions. Being aware of other implementations [4,30], we like HyPro’s
convenient interfaces and conversion functions.

Model checking recursively follows the parse tree of the formula. Per region
a convex representation of its satisfying parts is returned. A simple but scal-
able example is used to showcase the feasibility of the approach. Note that the
resulting satisfaction sets implicitly contain the stochastic evolution and allow
to compute the probability that a HPnG satisfies a specific STL by integrating
over the density of each random variable.

Organisation: Section 2 discusses the modeling formalism, Sect. 3 illustrates the
state-space generation using HyPro. Section 4 describes the logic STL, for which
Sect. 5 introduces the region-based model checking approach.

2 Hybrid Petri Nets with General Transitions

HPnGs are defined according to [14] with the extension to multiple stochastic
firings that fire after a randomly distributed amount of time as in [10].

Their key components are: Discrete or continuous Places which contain a
number of tokens or an amount of fluid. A marking M = (m,x) combines the dis-
crete marking m = (m1, ...,mnd

), and the continuous marking x = (x1, ..., xnc
),

for nd discrete and nc continuous places. The number of tokens in the i-th dis-
crete place is denoted mi and xi contains the value of the i-th continuous place.

Transitions change the content of places upon firing. Discrete transitions
(general, deterministic and immediate) change the number of tokens in discrete
places. Transitions may only fire if all enabling criteria are met. Determinis-
tic transitions fire after being enabled for a constant predefined amount time.
Immediate transitions fire after zero time. The random firing delay of a general
transition is distributed according to an arbitrary continuous probability dis-
tribution. Continuous transitions change the fluid level of connected input and

150 J. Hüls and A. Remke

output places with a constant nominal rate. [14]. Arcs connect places and tran-
sitions and define via weights and priorities how their content changes, when a
transition fires. Guard arcs enable transitions based on the discrete or continuous
marking of connected places.

Definition 1. An HPnG is defined as a tuple (P, T ,A,M0, Φ). P is the set of
places, T the set of transitions and A the set of arcs. The initial marking is
denoted as M0 and the tuple of mappings Φ, further defines the model evolution.
The finite set P = Pd ∪ Pc combines discrete and continuous places. The finite
set of transitions T = T I ∪T D∪T G∪T F holds immediate, deterministic, general
and continuous transitions, T \T F holds the set of discrete transitions. The set
A is divided into three subsets: (i) The set of discrete arcs Ad ⊆ ((Pd × T D) ∪
(T D × Pd)) connects discrete places and transitions. (ii) The set of continuous
arcs Af ⊆ ((Pc × T F) ∪ (T F × Pc)) connects continuous places and transitions.
(iii) The set of guard arcs At ⊆ (((T D ∪ T I ∪ T G) × (Pd ∪ Pc)) ∪ (T C × Pd))
connects discrete and continuous places to all kind of transitions. The initial
marking M0 = (m0,x0) denotes the initial number of tokens and fluid levels
in the places. Parameter functions defining the specifics of enabling and model
evolution are collected in:

Φ = (ΦP
b , ΦT

p , ΦT
d , ΦT

st, Φ
T
g , ΦA

n , ΦA
u , ΦA

s)

Example 1. Figure 1 shows a HPnG, which models a buffer (B) as continuous
place (double circle) with a varying number of continuous input transitions and
one continuous output transition (double rectangle). The buffer has a max.
capacity of C = 100, starts with L = 10 and can be filled using producer
pumps I1 . . . In and is drained by one demand pump D, each with nominal
rate ri ∪ rd = 5. The general transitions (rectangle) G1, . . . , Gn, Gd disable the
pumps connected via guard arcs (two arrowheads) with weight 1 to the discrete
places (circle).

Fig. 1. Scalable HPnG model.

Enabling Rules. Every continuous place has
an upper boundary defined in ΦP

b : Pc →
R

+∪∞. (The lower boundary is always zero.)
ΦT

st : T C → R
+ defines the constant nomi-

nal flow rate for each continuous transition.
ΦT

g : T G → CDF assigns a unique cumula-
tive distribution function (CDF) to each gen-
eral transition, which does not depend on the
number of firings. ΦT

p : T D ∪T C ∪T G → N>0

defines a priority for each type of transition. Using ΦA
u : At → {�, R} with

� = {≥, <} assigns a comparison operator and a weight to each guard arc.
ΦA

n : Ad → R
+ determines the number of tokens moved when the transition fires

and ΦA
s : AC → R

+ defines a share for conflicting continuous transitions.
For transition T we define the set of input places IP(T), the set of output

places OP(T) and the set of places connected via guard arcs GP(T). Let Pd
i ∈ P d

Model Checking HPnGs in Multiple Dimensions 151

denote the i-th discrete place and Pc
i ∈ P c the i-th continuous place, respectively.

A discrete transition Tj ∈ T \ T C is enabled if the following conditions hold: (i)
Discrete guard arcs satisfy: ∀P d

i ∈ Pd∩GP(Tj), (�, q) = ΦA
u (〈Tj , P

d
i 〉) : mi�q, (ii)

Continuous guard arcs satisfy: ∀P c
i ∈ Pc ∩ GP(Tj), (�, q) = ΦA

u (〈Tj , P
c〉) : xi � q,

(iii) Connected input places satisfy: ∀P d
i ∈ IP(Tj) : mi ≥ ΦA

n (〈P d
i , Tj〉).

Continuous transitions may only be connected to discrete places via guard
arcs. The following needs to hold for a continuous transition TF

j ∈ T F to
be enabled: (i) Discrete guard arcs satisfy: ∀P d

i ∈ Pd ∩ GP(TF
j), (�, q) =

ΦA
u (〈TF

j , P d
i 〉) : mi�q, and (ii) connected input places hold fluid: ∀P c

i ∈ IP(TF
j) :

xi > 0.

Model Evolution. Discrete transitions are associated with clocks. Let cj be the
clock associated with transition Tj ∈ T \T F . If transition Tj is enabled cj evolves
with δcj/δt = 1, otherwise δcj/δt = 0. A deterministic transition fires when cj

reaches the transitions firing time defined by ΦT
d : T \ T F → R

+. A firing of a
discrete transition changes the corresponding marking according to the weights
specified in ΦA

n : A → R+. A general transition may fire at any point in time, if
enabled, and changes the discrete marking similarly to the discrete transitions.
The probability that a general transition fires at the scheduled firing time of a
discrete transition is zero, hence, model evolution needs to consider all enabled
general transitions firing before or after the next scheduled deterministic event.

For a continuous transition P c
i ∈ Pc we define the set of input transitions

IT (P c
i), the set of output places OT (P c

i). An enabled continuous transition fires
with its nominal rate. If a continuous place is at either boundary rate adaptation
is performed to connected continuous transitions. This decreases the inflow to
match the outflow if the place is full (or the other way around). Let r(TF

j) be the
actual rate of the continuous transition TF

j ∈ T F after adaptation. The in-flow
fin(P c

i) of P c
i ∈ Pc is defined as fin(P c

i) =
∑

T F
j ∈IT (P c

i) r(TF
j), i.e., the sum of

all incoming rates. The out-flow is the defined as fout(P c
i) =

∑
T F

j ∈OT (P c
i) r(TF

j).
A continuous place evolves with drift d(P c

i) = fin(P c
i) − fout(P c

i).

Example 2. The enabling of the continuous transitions in Fig. 1 depends on the
marking of the discrete places. Initially, each discrete place contains one token,
which satisfies the condition of the guard arc connecting them to Ii and D,
respectively, hence enabling them. Each general transition Gi is initially enabled
and when firing after a random delay, it disables input pump Ii. The initial
marking of place B is 10, and its drift depends on the number of enabled producer
pumps (and the enabling of D): d =

∑
1≤i≤n ri − rd. Since all ri and rd have the

same rate 5, the initial drift is d = 5(n − 1).

3 State Space Representation Using HyPro

The state of an HPnG contains all information required by the time-bounded
analysis, as well as model checking an HPnG. It is defined as Γ = (m,x, c,d,g),

152 J. Hüls and A. Remke

where m and x are the discrete and continuous marking, respectively, and
c = (c1, . . . , c|T D|) is the vector of discrete clocks, d = (d1, . . . , d|T C |) con-
tains the drift of each continuous place. Furthermore, g = (g1, . . . , g|T G|)
indicates the time each general transition has been enabled. The state space
S = {Γ = (m,x, c,d,g)} contains all reachable HPnG states w.r.t. the initial
state Γ0 = (m0,x0,0,d0,0). The continuous marking x changes with derivative
d. The discrete clocks c and the enabling time of general transitions g change
with derivative 1 for all enabled transitions. The discrete marking m and the
drift of the continuous places d change with events: (i) A continuous place reach-
ing its lower or upper boundary. (ii) A continuous place reaches the weight of
a connected guard arc. (iii) An enabled discrete transition fires. Events do not
move time forward.

Although the state of the system Γ changes continuously with time, its
bounded evolution up to some maximum time τmax can be described symbolically
using a parametric location tree (PLT) [14,17]. Nodes are so-called parametric
locations and symbolically represent all states, whose continuous marking only
differ due to the evolution of time. The occurrence of events results in branching
to new locations. A location is defined as a tuple Λ = (te, Γ,S, p). At time te
the system enters the parametric location and the state Γ follows the Definition
presented before. The potential domain S provides the bounds for each general
transition firing. The real number p is a probability assigned to each location
in case of a conflict. The number of random variables present in the system n
corresponds to the number of stochastic firings that occurred plus the number
of general transitions that are currently enabled but have not fired before τmax.
All random variables are collected in the vector s = (s0, . . . , sn) and the domain
S = ([l0, r0], . . . , [ln, rn]) contains all possible values for the random variables
per parametric location. We define s ∈ S iff si ∈ [li, ri] for all 0 ≤ i ≤ n.

The PLT is generated using a depth-first search by extending all paramet-
ric locations until τmax. We start from the initial parametric location, which
extends the initial state Γ0 by te = 0, p = 1 and S0 = ([0, τmax], . . . , [0, τmax]).
In each location the time until the next event is computed relatively to the
entry time te of that location. Note that the number of events that occur at
the next minimum event time τmin is finite [14], and for each possible event
e, a new parametric location is created with a marking adapted according to
the causing event. Additionally, each enabled general transition may fire before
that point in time. Hence, additional successors are scheduled for each enabled
general transition and the potential domains have to be set accordingly. The
next minimum event time is unique before the first stochastic firing. After a
single stochastic firing si, the entry time of a location, the clocks, the continu-
ous marking and the potential domains may linearly depend on the value of the
corresponding random variable si. The case of multiple general transition fir-
ings leads to multi-dimensional linear equations and the domains S may linearly
depend on the vector of random variables s. For each successor, the procedure
is called recursively and the domains are adapted to ensure the order of events.
The intervals denote the values of s, for which the causing event is the minimum
next event.

Model Checking HPnGs in Multiple Dimensions 153

Geometric Representation of Locations. We propose model checking algorithms
for HPnGs that combine the tree-based approach of parametric locations with
the geometric representation of stochastic time diagrams (STD). The implemen-
tation of the presented algorithm allows the analysis of HPnGs with multiple
general transition firings. For each parametric location, we construct a n + 1-
dimensional geometric representation, one dimension for each random variable
and one for time. This corresponds to a region in an STD, as defined in [9].

For a given time t and a valuation of vector s, Γ (s, t) defines a specific
system state. For all system states in a region, the initial marking Γ (s, t).m and
the drift Γ (s, t).d do not change. As shown in [9], the amount of fluid and the
clock valuations are linear equations of s and t.

Definition 2. A region R is a maximal connected set of (s, t) points, for which:

∀(s1, t1), (s2, t2) ∈ R

{
Γ (s1, t1).m = Γ (s2, t2).m,

Γ (s1, t1).d = Γ (s2, t2).d.

The boundaries between regions, which represent the occurrence of an event, are
also characterized by linear functions of s and t and represent a multi dimen-
sional hyperplane. We denote the hyperplane between regions R and R′ that
corresponds to event e as He

R,R′ . Using halfspace intersection, convex polytopes
are created as geometric representation of regions [9].

Time Evolution. Starting from a tuple (s, t) the time evolution is deterministic
within a region, such that a time step τ is defined through the forward time
closure as T +

R (s, t) = {(s, t′) | (s, t′) ∈ R ∧ t′ ≥ t}. The occurrence of an event e
does not advance time, but may lead to branching between locations, e.g. in case
multiple events are scheduled at the same time. Hence, a discrete step caused
by event e to other regions R′ is defined for all tuples that lie on the hyperplane
He

R,R′ , for R �= R′. The discrete successors of (s, t) are then defined as D+(s, t) =
{R′ | ∃e.(s, t) ∈ He

R,R′}. For a fixed valuation s, a finite path σ, starting at time
t0 is denoted as σ(s, t0) and defined as alternating sequence ((s, t0) ∈ R0)

τ1−→
((s, t1) ∈ R0)

e1−→ ((s, t1) ∈ R1)
τ2−→ . . .

τn−→ ((s, tn) ∈ Rn−1)
en−→ ((s, tn) ∈ Rn),

such that (s, ti) ∈ T +
Ri−1

(s, ti−1) and Ri ∈ D+(s, ti) and ti = t0 +
∑i

j≥1 τj for all
0 ≤ i ≤ n. A state is on path σ if it is in the forward time closure of a region in
step i of σ:

(s, t) ∈ σ iff ∃R.∃i.(s, t) ∈ T +
R (s, ti). (1)

For a definition of the resulting probability space, we refer to [24]. Note
that Zeno-behaviour is excluded by prohibiting cycles which potentially take no
time, i.e. cycles of only immediate and general transitions. This together with the
restriction to time-bounded reachability analysis ensures that a path is always
finite. The exclusion of cycles of general transition firings is mostly technical, as
the probability of infinitely many firings in finite time is zero with continuous
distributions.

154 J. Hüls and A. Remke

The Use of HyPro. The algorithm presented in [17] to transform locations
into the graphical representation of regions heavily relies on the C++ library
HyPro [25]. Amongst other data structures, HyPro contains an implementa-
tion for convex polytopes [32] as well as a wrapper class to the well-known Parma
polyhedra library (PPL) [4]. We use the so-called H-representation for convex
polytopes, where H is defined as the intersection of a finite set of halfspaces.
Note that previous implementations [10,13] used Nef-polyhedra by CGAL, but
were limited to three dimensions. While Nef-polyhedra are closed under the set
operations union, intersection and set difference, they are not necessarily con-
vex. Convex polytopes are only closed under intersection. Section 5 will present
model checking algorithms that only deal with convex state set representations.

Note that HyPro is restricted to closed convex polytopes, that also need to
be bounded. This leads to difficulties when performing operations that are not
closed w.r.t. this representation, as e.g. negation. The restriction to bounded
polytopes however naturally fits our analysis and model checking approach, as
the state space is bounded by the maximum time of analysis.

Example 3. The running example focuses on the core complexity of the HPnG
formalism, i.e. the number of general transition firings. As shown in [8,18], ana-
lyzing larger models with few random variables is not prohibitive. The random
variables modeling pump failures compete and hence increase model complexity.
In general, the resulting state space has n + 2 dimensions.

Fig. 2. A PLT and the region R1 of the root location.

Figure 2 shows the root location and the first level of child locations of the
PLT for n = 0. PLTs for all settings are available online1. The root location has
the entry time t = 0 and neither the potential domain is restricted nor any clock
has evolved. Since no input pump is present in this system, only the demand
pump is enabled, initially. The initial drift is d = −5 and given the initial level
L = 10 of place B, it takes 2 time units until B is empty. Hence, two events may
occur, i.e. either the demand is disabled first or B is empty. The entry times
of the child locations thus are t = s1 and t = 2, respectively. Their potential
domains are restricted s.t. the locations are only valid for s ∈ [0, 2], if the general
transition fires before the place is empty, and s ∈ [2, τmax] otherwise.

1 https://uni-muenster.sciebo.de/s/A3mNHLclM8233T5.

https://uni-muenster.sciebo.de/s/A3mNHLclM8233T5

Model Checking HPnGs in Multiple Dimensions 155

The geometric representation of the root location is shown in the right part
of Fig. 2. The region R1 is created by halfspace intersection: Every region is first
restricted by the entry time of the location and τmax and the potential domain
of the random variables. Hence for the root location the halfspaces defined by
t ≥ 0 and t ≤ τmax as well as s ≥ 0 and s ≥ τmax are intersected. Intersecting
the halfspaces defined by the entry time of the respective locations, i.e. t ≥ 0,
t ≤ s1 and t ≤ 2, then creates R1.

4 Stochastic Time Logic

A logic for expressing properties of interest for HPnGs at a certain time was
introduced in [11] and denoted as Stochastic Time Logic (STL). This paper
concentrates on computing those subsets of the domain S for which Φ holds at
a given point in time. An STL formula Φ is built according to Eq. 2:

Φ :: = xP ≥ c | mP = a | ¬Φ | Φ ∧ Φ | ΦU [0,T]Φ, (2)

where xP ≥ c and mP = a are continuous and discrete atomic properties and
T ∈ R

+ a time bound. The satisfaction relation from [11] is adapted, to cover
branching between locations:

Γ (s, t) |= xP ≥ c iff Γ (s, t).xP ≥ c, (3)
Γ (s, t) |= mP = a iff Γ (s, t).mP = a, (4)
Γ (s, t) |= ¬Φ iff Γ (s, t) � Φ, (5)
Γ (s, t) |= Φ1 ∧ Φ2 iff Γ (s, t) |= Φ1 ∧ Γ (s, t) |= Φ2, (6)

Γ (s, t) |= Φ1U [0,T]Φ2 iff ∃σ(s, t).∃τ ∈ [t, t + T].Γ (s, τ) |= Φ2 ∧ (s, τ) ∈ σ(s, t)
∧ (∀τ ′ ∈ [t, τ].Γ (s, τ ′) |= Φ1 ∧ (s, τ ′) ∈ σ(s, t)). (7)

The until operator holds if a path σ starting in (s, t) exists, such that a point in
time τ ≥ t exists, for which Φ2 holds and that for all time points in τ ′ ∈ [t, τ] the
formula Φ1 holds and all corresponding states (s, τ ′) lie on σ, according to Eq. 1.
We define the satisfaction set for time t′, denoted Satt

′
and the satisfaction set

for a region SatR as follows:

Satt
′
(Φ) = {s ∈ S | Γ (s, t′) |= Φ} and SatR(Φ) = {(s, t) ∈ R | Γ (s, t) |= Φ}.

(8)
The former satisfaction set contains all possible stochastic firing times, such
that their time evolution from t′ on satisfies a given STL formula Φ. These
subsets of the domain of all random variables present in the system are also
called validity intervals. The latter satisfaction set contains all points (s, t) ∈ R,
such that Γ (s, t) satisfies Φ. Note that Φ can also be wrapped into a probability
operator ϕ :: = P��p(Φ), where
� ∈ {<,>,≤,≥} is a comparison operator and
p ∈ [0, 1] a probability bound. This expresses that for a given point in time, the
probability that a formula Φ holds matches the threshold p. This probability
can be computed from the resulting satisfaction sets, which implicitly includes
information about the stochastic behaviour. This computation is however not
covered in this paper. We also exclude the nesting of multiple until operators.

156 J. Hüls and A. Remke

Example 4. All states with a disabled consumer pump are identified by Φ1 :=
(mU = 0) and Φ2 := ¬(xB ≤ 2) ensures that the buffer does not have less than
two units of fluid. Checking whether the buffer is emptied within 4 time units,
while the output pump stays on, is formulated as Φ3 := (mU = 1)U [0,4](xB ≤ 0).

5 Model Checking STL

This section presents STL model checking algorithms for HPnGs. To obtain
Satt

′
(Φ), first all regions the model can be in at time t′ are identified. Geometri-

cally, these regions all have a non-empty intersection with hyperplane Ht′ . Then
the general model checking function is called per candidate region for the overall
STL formula and returns a satisfaction set SatR(Φ) per region R. Following the
recursive definition of STL formulas, operator-specific algorithms are called to
compute satisfaction sets along the parse tree of the STL formula. Model check-
ing discrete and continuous atomic formulae as well as their conjunction solely
relies on the intersection of regions with halfspaces. However, model checking
negation and the time-bounded until operator requires the set operations com-
plement, set difference and union, which may result in non-convex polytopes. We
use sets of convex polytopes instead of performing the operation union to ensure
that the model checking algorithms are closed w.r.t. the state representation.

5.1 Model Checking Algorithms per Operator

Model checking STL is performed along the parse tree of the formula for all
regions in which the system can be at time t′. Negation and conjunction are
independent of time t′, and return the set of convex polytopes SatR(Φ). Because
of the relative definition of the time bound [0, T], the algorithm for until is
executed only for t′, and returns the satisfaction set w.r.t. time t′ and region R:

Satt
′,R(Φ1U

[0,T]Φ2) = {s ∈ S | (s, t′) ∈ R ∧ Γ (s, t′) |= Φ1U
[0,T]Φ2}. (9)

Note that the interplay between the different kind of satisfaction sets is explained
in Sect. 5.2. Recall that polytopes are represented as the intersection of a finite
number of halfspaces. We create a polyope representation P by intersecting mP

halfspaces:

P =
mP⋂

i=1

hi,P , where hi,P = {x ∈ R
d|cT

i · x ≤ di}. (10)

Restricting polytopes to their intersection with R allows defining satisfaction
sets per region as the finite union of nΦ non-necessarily disjoint polytopes PR

i :

PR = P ∩ R, and SatR(Φ) =
nΦ⋃

j=1

PR
j = {(s, t) ∈ R | Γ (s, t) |= Φ}. (11)

Model Checking HPnGs in Multiple Dimensions 157

Atomic Formula. Model checking discrete and continuous atomic formula is
shown in [17] and [11]. For completeness, we present the algorithm per region,
as shown in Listing 1. It takes as input a specific region R and a discrete or
continuous atomic property Φ and outputs a satisfaction set, which contains all
states in R that satisfy Φ. For a continuous atomic formula Φ, the region has to
be intersected with the halfspace representing the continuous level hxP ≥c (Line
3). A discrete formula is satisfied in the entire region or not at all, hence, a test
whether the considered regions meets the marking specified by the formula Φ is
sufficient (Line 4).

Theorem 1. The satisfaction set SatR(Φ) w.r.t. a region R is empty or a con-
vex polytope in case Φ is an atomic property.

Proof. Let Φ := mp = a. A discrete atomic property is satisfied in the whole
region or not at all. In either case, SatR(Φ) is a convex polytope. Let Φ := xp ≥ c.
A continuous atomic formula may only be satisfied in part of the region. The
boundary c implies a halfspace hxP ≥c which after intersection with R again
results in a convex polytope as convex polytopes are closed under intersection.

Negation. According to the semantics of STL and as implemented in [13], nega-
tion is defined as set difference. Convex polytopes are not closed under set differ-
ence, hence, the satisfaction set of Φ = ¬Φ1 is in general not a convex polytope.
We obtain a representation in terms of sets of convex polytopes, as follows. The
complement of a convex polytope with respect to a region R is a not neces-
sarily convex polytope PC and can be computed as the union of the inverted
halfspaces which define P . However, inverting halfspaces results in turning a
non-strict comparison operator in the halfspace definition into a strict compari-
son. This results in an open polytope, which HyPro currently does not support.
Hence, we define a non-disjunct complement w.r.t. region R:

P R
C̃ = (

mP⋃

i=1

h∼
i,P)∩R and h∼

i,P =

{
{x ∈ R

d|cT
i · X ≥ di} iff hi,P = {x ∈ R

d|cT
i · x ≤ di},

{x ∈ R
d|cT

i · X ≤ di} iff hi,P = {x ∈ R
d|cT

i · x ≥ di}.

(12)
such that PR

C̃
∩ PR �= ∅ and results exactly in the facets of PR. Note that this

definition also results in non-disjunct satisfaction sets and imprecise borders of
the validity intervals that are computed after model checking each region. This
is currently circumvented by additionally storing in a separate vector whether a
halfspace is open or closed. In case the satisfaction set already consists of more
than one polytope, the negation of the respective formula requires building the
complement over a set of polytopes.

Listing 2 illustrates the general algorithm for the negation of an STL formula
with respect to region R. After instantiating the satisfaction set for ¬Φ (Line 1),
the general model checking routine is called for Φ (Line 2). The resulting satisfac-
tion set consists of a set of convex polytopes, each created by the intersection of
halfspaces. Hence, when computing the satisfaction set of ¬Φ, for each polytope
all creating halfspaces need to be inverted (Line 5–6) and collected. Then, the

158 J. Hüls and A. Remke

Listing 1. Satisfaction set SatR(Φ) for atomic formula Φ and a region R.
1: SatR(Φ) ← ∅

2: if isContinuous(Φ) then
3: SatR(Φ) ← R ∩ hxp≥c

4: if isDiscrete(Φ) ∧ Γ.m = Φ.m then
5: SatR(Φ) ← R

6: return SatR(Φ)

Listing 2. Satisfaction set SatR(Φ) of a negated formula Sat(¬Φ) for region R.
1: SatR(Φ) ← modelcheck(R, Φ)
2: for all Pj ∈ SatR(Φ) do
3: H∼

PJ
← ∅ � Set of convex polytopes that fulfill ¬Φ in R.

4: for all hi,Pj ∈ Pj do � For all halfspaces defining P .
5: H∼

PJ
← H∼

PJ
∪ hi,Pj .invert()

6: for all x ∈×(H∼
Pj

) do � For all elements in the cross product over all sets H∼
Pj

.
7: P ← x1 ∩ R
8: for j ← 0; j > 1; j + + do � For all halfspaces in the cross product.
9: P ← P ∩ xj

10: SatR(Φ) ← SatR(Φ) ∪ P

11: return SatR(Φ)

cross product over all these sets of inverted halfspaces per polytope is required
(Line 7), whereas each entry in the resulting tuple indicates an inverted halfspace
from a specific polytope. For each element of the cross product, a new polytope
is constructed by successively intersecting the halfspaces that correspond to each
entry of the tuple with the region (Lines 8–10), ensuring the intersection of all
possible combinations of inverted halfspaces per polytope.

The resulting polytope, representing a part of the region satisfying ¬Φ, is
then added to the list of (not necessarily disjoint) convex polytopes, forming the
satisfaction set of ¬Φ (Line 11), which then is returned (Line 12).

Conjunction. In case of a conjunction Φ = Φ1 ∧ Φ2 both satisfaction sets with
respect to a specific region R, namely SatR(Φ1) and SatR(Φ2), are required
and intersected to compute the satisfaction set Sat(Φ). Listing 3 illustrates the
algorithm using the representation as sets of convex polytopes. First, the model
checking algorithm is called recursively for Φ1 and Φ2. Then, each of the poly-
topes in Sat(Φ1) is intersected with each of the polytopes in Sat(Φ2) (Line 4–5)
and the result (if non-empty) is added to the resulting satisfaction set. (Line 6)

Theorem 2. The satisfaction set SatR(Φ) w.r.t. a region R, for an STL for-
mula Φ that consists of negation and conjunction only, is a set of not necessarily
disjunct convex polytopes.

Proof. We prove the above Theorem by structural induction over the parse tree
of the formula Φ, using the notation introduced throughout this section.

Model Checking HPnGs in Multiple Dimensions 159

Listing 3. Satisfaction set computation of Φ1 ∧ Φ2 for a region R.
1: SatR(Φ) ← ∅

2: Sat(Φ1) ← modelcheck(R, Φ1)
3: Sat(Φ2) ← modelcheck(R, Φ2)
4: for all Pi ∈ Sat(Φ1) do � For all polytopes in Sat(Φ1)
5: for all Pj ∈ Sat(Φ2) do � For all polytopes in Sat(Φ2)
6: SatR(Φ) ← SatR(Φ) ∪ (Pi ∩ Pj)

7: return SatR(Φ)

Inductive Hypothesis: Suppose the theorem holds for arbitrary sub-formulas
Φ1 and Φ2, which only consist of negation and conjunction.

Inductive Case 1: For an atomic formula Φ follows directly from Theorem 1
that Sat(Φ) contains at most one convex polytope.

Inductive Case 2: In the following we distinguish between a formula Φ, where
the highest binding operator is a conjunction or a negation. Let Φ = Φ1 ∧ Φ2

be a conjunction. Using the constructor case, it follows that both satisfaction
sets Sat(Φ1) and Sat(Φ2) are sets of convex polytopes, which can be rewritten
according to Eq. 11. When intersecting those unions of polytopes, applying the
distributive law yields again the union (of a union) of convex polytopes, as the
intersection of two convex polytopes PR

i and PR
j will always be convex again.

SatR(Φ1 ∩ Φ2) = SatR(Φ1) ∩ SatR(Φ2) =
nΦ1⋃

i=1

PR
i ∩

nΦ2⋃

j=1

PR
j =

nΦ1⋃

i=1

nΦ2⋃

j=1

(PR
i ∩ PR

j).

(13)
Let Φ = ¬Φ1 be a negation. According to Eq. 11, let Sat(Φ1) = SatR(Φ1) =⋃nΦ1

j=1 PR
j be a finite set of convex polytopes which all satisfy Φ1 in R. Then, it

follows that:

SatR(¬Φ1) := R\SatR(Φ1) = R\(
nΦ1⋃

j=1

PR
j) = R∩¬(

nΦ1⋃

j=1

PR
j) = R∩

nΦ1⋂

j=1

PR
C̃,j

. (14)

Note that the above definition also results in non-disjunct sets SatR(Φ) ∩
SatR(¬Φ) �= ∅. Using Eq. 12, we can rewrite Eq. 14 as the intersection of R
with the intersection over all polytopes in Sat(Φ1) over the union of all inverted
halfspaces per polytope:

SatR(¬Φ1) =

⎛

⎝
nΦ1⋂

j=1

mP⋃

i=1

h∼
i,P

⎞

⎠∩R =

⎛

⎝
⋃

x∈X

mP⋂

j=1

h∼
i,P

⎞

⎠∩R =
⋃

x∈X

⎛

⎝
mP⋂

j=1

h∼
i,P ∩ R

⎞

⎠ ,

(15)
where the Cartesian product over all sets HPi

of defining halfspaces for polytopes
Pi in Sat(Φ1) is defined as X =×nΦ1

i=1
HPi

, forall PR
i ∈ SatR(Φ1).

The second equality follows from the distributive law for families of sets.
The last equality results in a set of convex polytopes, restricted to region R.

160 J. Hüls and A. Remke

Listing 4. check until: satisfaction set Satt
′,R(Φ) w.r.t. region R, time hyper-

plane H and remaining time halfspace ht′+T for Φ = Φ1U
[0,T]Φ2.

1: set<interval> I1, I2, I3 ← ∅ � Intervals validating Φ in the respective region.
2: SatR(Φ1) ← modelcheck(R, Φ1)
3: SatR(Φ2) ← modelcheck(R, Φ2)
4: R ← R ∩ ht′+T

5: I1 ← project(SatR(Φ2) ∩ H) � Intervals validating Φ2 immediately.
6: C ← project(SatR(Φ1) ∩ H) � Candidate intervals validating Φ1 immediately.
7: CΦ1∩Φ2 ← project(SatR(Φ1) ∩ SatR(Φ2))
8: CF ← project(SatR(Φ1) ∩ SatR(¬Φ1 ∧ ¬Φ2)) � Projection of boundary states.
9: I2 ← C \ (CF ∩ CΦ1∩Φ2) � Set of intervals validating Φ1UΦ2 in R.

10: CN ← C \ CF \ I2 � Removing the non-convex parts of SatR(Φ1)
11: if CN ! = ∅ then � Call function for children intersecting remaining candidates.
12: for all RC ∈ R.children() : He

R,Rc
∩ box(CN , R)! = ∅ do

13: I3 = I3 ∪ (CN ∩ check until(Rc, Φ1, Φ2, ht+T , He
R,Rc

)))

14: return I1 ∪ I2 ∪ I3

Together, both cases show that the satisfaction set of an STL formula, which
does not contain the until operator, can be expressed as a set of convex polytopes.

Time-Bounded Until. The time-bounded until operator Φ := Φ1U
[0,T]Φ2 descri-

bes a property for paths within the time interval [0, T] relative to time t′, hence
the algorithm potentially calls all regions that can be reached from the initially
called region within the time interval [t′, t′ + T]. Geometrically, these are all
regions that lie between the halfspaces ht and h∼

t+T . Recall from Sect. 3 that
each location is reached through a so-called source event. In the geometric rep-
resentation, this corresponds to a halfspace hR. Also, a region can be left through
its other facets, which mark the entrance into the children of that region in the
PLT.

According to Eq. 9, a state in region R satisfies Φ if (i) it immediately satisfies
Φ2 or if (ii) a state Φ2 is reached inside R only via Φ1-states or if (iii) a Φ2-state
outside region R is reached, also only via Φ1-states. The first two cases can be
determined per region and the third case recursively model checks each child
until the property is satisfied or time t′ + T is reached. As the time bound T is
relative to time t′, computing the satisfaction of an until operator within a region
not only depends on Sat(Φ1) and Sat(Φ2), but also on their relative distance
with respect to time, which may vary within the region. To simplify the matter,
we compute Satt

′,R(Φ1U
[0,T]Φ2), (c.f., Eq. 9) which corresponds to fixing the

t-component for all tuples (s, t) in a region to time t′.
Listing 4 describes the model checking process and first reduces the identified

region to the part that lies before the end of the time interval [0, T], (Line 4)
which is reached at time t′ + T . The remainder of the algorithm operates on
families of multi-dimensional intervals which satisfy different combinations of Φ1

and Φ2. They are obtained by projecting convex polytopes that are subsets of
region R onto the domain of the random variables S. We say that an interval I

Model Checking HPnGs in Multiple Dimensions 161

validates a formula Φ at time t, if Γ (s, t) |= Φ∀s ∈ I. All intervals that immedi-
ately validate the until property are obtained by intersecting the satisfaction set
of Φ2 with the hyperplane H and then projecting the results onto the S-space
(Line 5), as indicated by the function project. Initially, check until is called
for region R in which the model can be at time t′, the hyperplane H is instan-
tiated as t = t′. Hence, I1 identifies all points in the region that satisfy Φ2 at
time t′.

The algorithm then proceeds to identify those intervals that validate
Φ1U

[0,T]Φ2 within the region R. This corresponds to case (ii) in the above expla-
nation. First, a family C of candidate intervals is computed by projecting those
states that satisfy Φ1 when entering the region. This is done by intersecting
the satisfaction set of Φ1 again with hyperplane H (Line 6). Another family
of candidate intervals CΦ1∩Φ2 is formed by the projection of goal states, i.e.,
all (s, t) ∈ R which satisfy Φ1 ∩ Φ2 (Line 7). However, only those candidates
s which, from time t′ on, continuously fulfill Φ1 on their path to a goal state
belong to the satisfaction set. Hence, we need to identify boundaries between
SatR(Φ1) and SatR(¬Φ1). CF contains the projection of those facets that do
not fulfill Φ2 (Line 8) and can be computed as the projection of the intersection
of SatR(Φ1) ∩ SatR(¬Φ1). According to Eq. 14, the above intersection returns
precisely the points on the boundary between both satisfaction sets, due to the
non-disjunct definition of complement.

I2 then is computed (Line 9), i.e., the family of intervals validating the until
formula within region R by only taking those candidates s whose time evolution
(s, t) for t ≥ t′ continuously satisfies Φ1 and finally reaches a Φ2-state within
region R before t = t′ + T . To compute the family of intervals which validate
the until formula by reaching a Φ2-state in another region, first, the family of
intervals whose time evolution continuously satisfies Φ1 and which do not reach
a Φ2-state within region R is computed (Line 10). If this collection is non-empty
(Line 11), the model checking algorithm is called for each child of R, restricting
the potential domain to the box defined by CN and the states that can be reached
only via Φ1-states in R (Line 12–13). For each child, we collect those candidates
which reach a Φ2-state before time t′ + T within that child and intersect them
with the candidates whose time evolution continuously satisfies Φ1 and does not
satisfy Φ2 within the current region. Calling algorithm check until (Line 13)
instantiates hyperplane H as source event for each child location to account for
different possible entrance times of child locations. The algorithm returns the
family of intervals of the S domain (Line 14), which validate the until formula
in that region from time t′ on.

The approach is illustrated for three regions in Fig. 3. The model checking
algorithm is called for an until formula Φ1U

[0,T]Φ2 and for region R1, where H
is initiated as hyperplane Ht′ = ht′ ∩ h∼

t′ . The intersection of Ht′ and SatR(Φ2)
is empty, hence I1, containing those states that immediately satisfy the until
formula, is empty. The candidate intervals are computed by projecting the inter-
section of Ht′ and SatR(Φ1) and indicated in Fig. 3.

162 J. Hüls and A. Remke

Fig. 3. Intervals for time-bounded until.

Φ2 does not hold in Region R1,
hence CΦ1∩Φ2 and I2 are empty. In
the next step the facets between the
polytopes representing SatR(Φ1) and
SatR(Φ2) are projected as CF (also
shown below). They represent those
parts of the domain whose time evo-
lution after t′ not continuously satis-
fies Φ1. Hence, they have to be sub-
tracted from the candidate intervals,
yielding CN . Since the latter is not
empty, model checking is called recur-
sively for the children that have a non-
empty intersection with CN . In this
example, the function is only called
for R2, where H is initiated as hyperplane representing the occurrence time of
its source event. First, I1 is the projection of H with SatR(Φ2), as indicated
below the state space. Then I2 is obtained as the intersection of the projection
of all candidates with the projection of the facets between the polytopes repre-
senting SatR(Φ1) and SatR(Φ2). Note that the computation of check until for
region R2 requires calling the function again for the child of R2 which lies above
the polytope representing SatR(Φ1) (not illustrated in the figure). For this part
of the candidates a Φ2-state cannot be reached in R2, nor is the end of the time
bound reached. The result of the function call for R2 is intersected with the
intervals in CN of region R1 and returned as Satt

′
(Φ).

5.2 Computing Satt′
(Φ) for nested formula and complexity

We have shown that model checking atomic and compound formulas Φ generally
results in a set of convex polytopes, containing all tuples (s, t) that satisfy Φ.
Model checking an until operator, however returns a set of intervals, i.e. all s ∈ S,
which validate the formula at time t′. To enable the conjunction of an until oper-
ator with another arbitrary STL formula, its satisfaction set needs to be lifted
back into the region, by adding time t′ to all elements s ∈ Satt

′
(Φ1U

[0,T]Φ2).
This results in one convex polytope per interval. Convexity results directly from
the use of intersection, set difference and projection.

The general routine modelcheck(R,Φ) recursively calls the operator-specific
functions, as introduced above, along the parse tree of the formula. To com-
pute the overall satisfaction set Satt

′
(Φ), the satisfaction sets of all candidate

regions SatR(Φ) have to be intersected with the hyperplane representing time
Ht′ . The results are projected onto the S-space and the resulting validity inter-
vals are combined for all candidate regions. If the STL formula Φ is wrapped
inside a probability operator, multi-dimensional integration is performed over
the resulting set Satt

′
(Φ) using the density function of each random variable

combined with the branching probabilities. The computation of the PLT and
the multi-dimensional integration are explained in [16].

Model Checking HPnGs in Multiple Dimensions 163

The complexity of the overall model checking routine depends on the number
of regions in the PLT |R| and the number of operators in the STL formula |L|.
Negation requires geometric operations on the cross product of polytopes, which
is cubic in the number of halfspaces (O(|HP |3)). Model checking Until relies on
a series of geometric operations, where polytope inversion has the worst case
complexity (similar to negation) and accesses at most |R| children. The worst
case complexity of the overall model checking routine is then O(|HP |3 × |R|2 ×
|L|), as it might be called for all regions. The dimensionality of halfspaces and
regions influences the complexity of the geometric operations.

Model checking nested formula might result in a large list of convex polytopes,
caused by negating non-atomic formulas (c.f. Sect. 5). This effect can be reduced
by rewriting the propositional parts of an STL formula in disjunctive normal
form. When negation is applied directly to atomic properties, it does not increase
the number of convex polytopes in the representation.

Example 5. Table 1 shows results for checking Φ1 and Φ2 at time t′ = 4 and Φ3

at time t′ = 0, for a varying number of input pumps. The computations have
been performed on a MacBook Pro with 2.5 GHz i7 and 16 GByte RAM. The
number of locations generated before τmax = 20 is indicated by |L|. Per formula,
we provide the number of candidate locations (|CR|), the number of intervals
stored in the satisfaction set (|Satt

′ |), and the respective computation times.
The number of candidate regions grows considerably with the number of random
variables present in the system. The computation times are much larger for the
until formula, n = 4 required 34 min and n = 5 could not be solved. The large
computation times for model checking an until formula are due to the required
geometric operations within a region and the recursive call for child regions. In
contrast model checking Φ1 only requires to check the discrete marking, with is
done in constant time per region. Checking Φ2 is more time consuming, due to
negation, but results for n = 5 can be obtained. The number of candidates is
slightly smaller for checking Φ3 at t′ = 0, as less branching has taken place. Due
to space limitations, this number is not included in the table.

Table 1. Results for model checking Φ1, Φ2, and Φ3 := (mU = 1)U [0,T](xB ≤ 0).

Φ1 := (mU = 0), t′ = 4 Φ2 := ¬(xB ≤ 2), t′ = 4 Φ3, t′ = 0

n |L| |CR| |Satt′
(Φ1)| tc [ms] |Satt′

(Φ2)| tc [ms] |Satt′
(Φ3)| tc[ms]

1 9 7 4 3 4 112 5 208

2 31 20 7 12 14 2327 3 3200

3 139 97 68 61 63 37337 4 69218

4 667 456 327 306 320 897511 7 2055254

5 3683 2338 1797 2100 1961 26790200 N/A N/A

164 J. Hüls and A. Remke

6 Conclusions

We proposed model checking algorithms for STL operators that can be used to
check properties of HPnGs with an arbitrary but finite number of stochastic fir-
ings, working only on convex state set representations. While the current paper
does not provide a framework to compute the probability that an STL formula
holds, the current results in terms of validity intervals can be used to synthesize
parameters for the timing of general transitions, which validate a specific for-
mula. To the best of our knowledge, we present a model checking approach for a
type of Hybrid Petri nets, that is neither restricted in the number of continuous
variables, nor in the number of stochastic firings. Future work will present an
algorithm to compute the complete satisfaction set SatR(Φ) for the until opera-
tor and compare computational complexities and efficiency of both approaches,
as well as an algorithm to evaluate the probability operator, taking into account
branching probabilities between locations. Furthermore, we plan to conduct a
large-scale case study, to evaluate the efficiency of the current implementation.
The transformation of a PLT to hybrid automata is being investigated.

References

1. Abate, A., Katoen, J.-P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. Eur. J. Control 6, 624–641 (2010)

2. Alla, H., David, R.: Continuous and hybrid Petri nets. J. Circuits Syst. Comput.
8(01), 159–188 (1998)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

5. Everdij, M.H.C., Blom, H.A.P.: Piecewise deterministic Markov processes repre-
sented by dynamically coloured Petri nets. Stochastics 77(1), 1–29 (2005)

6. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: 43rd IEEE Con-
ference on Decision and Control, pp. 479–484 (2004)

7. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering
in space-time. In 16th International Conference on Hybrid Systems: Computation
and Control, pp. 203–212. ACM (2013)

8. Ghasemieh, H., Remke, A., Haverkort, B.R.: Survivability analysis of a sewage
treatment facility using hybrid Petri nets. In: Performance Evaluation, vol. 97, pp.
36–56. Elsevier (2016)

9. Ghasemieh, H., Remke, A., Haverkort, B., Gribaudo, M.: Region-based analysis
of hybrid Petri nets with a single general one-shot transition. In: Jurdziński, M.,
Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 139–154. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33365-1 11

10. Ghasemieh, H., Remke, A., Haverkort, B.R.: Hybrid petri nets with multiple
stochastic transition firings. In: 2014 8th International Conference on Performance
Evaluation Methodologies and Tools, pp. 217–224. ICST (2014)

https://doi.org/10.1007/978-3-642-33365-1_11

Model Checking HPnGs in Multiple Dimensions 165

11. Ghasemieh, H., Remke, A., Haverkort, B.R.: Survivability evaluation of fluid criti-
cal infrastructures using hybrid Petri nets. In IEEE 19th Pacific Rim International
Symposium on Dependable Computing, pp. 152–161. IEEE (2013)

12. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

13. Godde, A., Remke, A.: Model checking the STL time-bounded until on hybrid
Petri nets using nef polyhedra. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017.
LNCS, vol. 10497, pp. 101–116. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66583-2 7

14. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions.
Perform. Eval. 105, 22–50 (2016)

15. Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri nets:
theory, applications, and solution techniques. J. Oper. Res. 105(1), 184–201 (1998)

16. Hüls, J., Pilch, C., Schinke, P., Delicaris, J., Remke, A.: State-space construc-
tion of hybrid Petri nets with multiple stochastic firings. Technical report,
Westfälische Wilhelms-Universität Münster (2018). https://uni-muenster.sciebo.
de/s/BMwdh25rHgmDvb6

17. Hüls, J., Schupp, S., Remke, A., Abraham, E.: Analyzing hybrid Petri nets with
multiple stochastic firings using HyPro. In 11th International Conference on Per-
formance Evaluation Methodologies and Tools (2017)

18. Jongerden, M.R., Hüls, J., Remke, A., Haverkort, B.R.: Does your domestic pho-
tovoltaic energy system survive grid outages? Energies 9(9), 736 (2016)

19. Julius, A.A.: Approximate abstraction of stochastic hybrid automata. In: Hes-
panha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 318–332. Springer,
Heidelberg (2006). https://doi.org/10.1007/11730637 25

20. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

21. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal.: Hybrid Syst. 4(2), 250–262 (2010)

22. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

23. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM
(2009)

24. Pilch, C., Remke, A.: Statistical model checking for hybrid Petri nets with multiple
general transitions. In: 47th International Conference on Dependable Systems and
Networks, pp. 475–486. IEEE (2017)

25. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: a C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

26. Esmaeil Zadeh Soudjani, S., Abate, A.: Adaptive and sequential gridding proce-
dures for the abstraction and verification of stochastic processes. SIAM J. Appl.
Dyn. Syst. 12(2), 921–956 (2013)

27. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: formal abstractions of
uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-319-66583-2_7
https://doi.org/10.1007/978-3-319-66583-2_7
https://uni-muenster.sciebo.de/s/BMwdh25rHgmDvb6
https://uni-muenster.sciebo.de/s/BMwdh25rHgmDvb6
https://doi.org/10.1007/11730637_25
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23

166 J. Hüls and A. Remke

28. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-45352-0 5

29. Teige, T., Fränzle, M.: Constraint-based analysis of probabilistic hybrid systems.
IFAC Proc. Vol. 42(17), 162–167 (2009)

30. The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
4.10 edition (2017)

31. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. Eur. J. Control 18(6), 572–587 (2012)

32. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, New York (2012). https://
doi.org/10.1007/978-1-4613-8431-1

https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1

Causal-Consistent Replay Debugging
for Message Passing Programs

Ivan Lanese1, Adrián Palacios2, and Germán Vidal2(B)

1 Focus Team, University of Bologna/Inria, Bologna, Italy
ivan.lanese@gmail.com

2 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain
{apalacios,gvidal}@dsic.upv.es

Abstract. Debugging of concurrent systems is a tedious and error-prone
activity. A main issue is that there is no guarantee that a bug that
appears in the original computation is replayed inside the debugger. This
problem is usually tackled by so-called replay debugging, which allows
the user to record a program execution and replay it inside the debugger.
In this paper, we present a novel technique for replay debugging that
we call controlled causal-consistent replay . Controlled causal-consistent
replay allows the user to record a program execution and, in contrast to
traditional replay debuggers, to reproduce a visible misbehavior inside
the debugger including all and only its causes. In this way, the user is
not distracted by the actions of other, unrelated processes.

1 Introduction

Debugging is a main activity in software development. According to a 2014
study [24], the cost of debugging is $312 billions annually. Another recent
study [2] estimates that the time spent in debugging is 49.9% of the total pro-
gramming time. The situation is not likely to improve in the near future, given
the increasing demand of concurrent and distributed software. Indeed, distri-
bution is inherent in current computing platforms, such as the Internet or the
Cloud, and concurrency is a must to overcome the advent of the power wall [25].
Debugging concurrent and distributed software is clearly more difficult than
debugging sequential code [9]. Furthermore, misbehaviors may depend, e.g., on
the execution speed of the different processes, showing up only in some (some-
times rare) cases.

This work has been partially supported by the EU (FEDER) and the Spanish Minis-
terio de Ciencia, Innovación y Universidades/AEI (MICINN) under grant TIN2016-
76843-C4-1-R, by the Generalitat Valenciana under grants PROMETEO-II/2015/013
(SmartLogic) and Prometeo/2019/098 (DeepTrust), and by the COST Action IC1405
on Reversible Computation - extending horizons of computing. The first author has
been also partially supported by French ANR project DCore ANR-18-CE25-0007. The
second author has been also supported by the EU (FEDER) and the Spanish Ayudas
para contratos predoctorales para la formación de doctores (MICINN) under FPI grant
BES-2014-069749.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 167–184, 2019.
https://doi.org/10.1007/978-3-030-21759-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_10

168 I. Lanese et al.

A particularly unfortunate situation is when a program exhibits a misbehav-
ior in its usual execution environment, but it runs smoothly when re-executed
in the debugger. This problem is usually tackled by so-called replay debugging,
which allows the user to record a program execution and replay it inside the
debugger. However, in concurrent programs, part of the execution may not be
relevant: some processes may not have interacted with the one showing a mis-
behavior, or may have interacted with it only at the very beginning of their
execution, hence most of their execution is not relevant for the debugging ses-
sion. Having to replay all these behaviors is both time and resource consuming
as well as distracting for the user.

Our main contribution in this paper is a novel technique for replay debugging
that we call controlled causal-consistent replay. It extends the techniques in the
literature as follows: given a log of a (typically faulty) concurrent execution,
we do not replay exactly the same execution step by step (as traditional replay
debuggers), but we allow the user to select any action in the log (e.g., one showing
a misbehavior) and to replay the execution up to this action, including all and
only its causes. This allows one to focus on those processes where (s)he thinks
the bug(s) might be, disregarding the actual interleaving of processes. To the
best of our knowledge, the notion of controlled causal-consistent replay is new.

We fully formalize causal-consistent replay for (a subset of) a realistic func-
tional and concurrent programming language based on message-passing: Erlang.
Moreover, we prove relevant properties, e,g., that misbehaviors in the origi-
nal computation are always replayed, and that we guarantee minimal replay
of observable behaviors. This is in contrast with most approaches to replay
in the literature, that, beyond considering different languages, are either fully
experimental (like, e.g., [1,18,19,27]), or present limited theoretical results, as
in [8,10,21].

Causal-consistent replay can be seen as the dual of causal-consistent rollback,
a technique for reversible computing which allows one to select an action in a
computation and undo it, including all and only its consequences. Indeed, the
two techniques integrate well, giving rise to a framework to explore back and
forward a given concurrent computation, always concentrating on the actions of
interest and avoiding unrelated actions. By lack of space, we will only present
causal-consistent replay in this paper. More details, including the integration
with causal-consistent rollback, proofs of technical results, and a description of
an implemented reversible replay debugger for Erlang [16] that follows the ideas
in this paper, can be found in an accompanying technical report [17]. While not
technically needed, printing the paper in color may help the understanding.

2 The Language

We present below the considered language: a first-order functional and concur-
rent language based on message passing that mainly follows the actor model.

Causal-Consistent Replay Debugging for Message Passing Programs 169

Fig. 1. Language syntax rules

Language Syntax. The syntax of the language is in Fig. 1. A program is a
sequence of function definitions, where each function name f/n (atom/arity)
has an associated definition fun (X1, . . . , Xn) → e, where X1, . . . , Xn are (dis-
tinct) fresh variables and are the only variables that may occur free in e. The
body of a function is an expression, which can include variables, literals, func-
tion names, lists (using Prolog-like notation: [] is the empty list and [e1|e2] is a
list with head e1 and tail e2), tuples (denoted by {e1, . . . , en}),1 calls to built-
in functions (mainly arithmetic and relational operators), function applications,
case expressions, let bindings, receive expressions, spawn (for creating new pro-
cesses), “!” (for sending a message), and self. As is common practice, we assume
that X is a fresh variable in let X = expr1 in expr2.

In this language, we distinguish expressions, patterns, and values, ranged over
respectively by e, e′, e1, . . ., by pat, pat′, pat1, . . . and by v, v′, v1, In contrast
to expressions, patterns are built from variables, literals, lists, and tuples. Pat-
terns can only contain fresh variables. Finally, values are built from literals,
lists, and tuples. Atoms (i.e., constants with a name) are written in roman let-
ters, while variables start with an uppercase letter. A substitution θ is a mapping
from variables to expressions, and Dom(θ) is its domain. Substitutions are usu-
ally denoted by (finite) sets of bindings like, e.g., {X1 �→ v1, . . . , Xn �→ vn}. The
identity substitution is denoted by id. Composition of substitutions is denoted
by juxtaposition, i.e., θθ′ denotes a substitution θ′′ such that θ′′(X) = θ′(θ(X))
for all X ∈ Var . Substitution application σ(e) is also denoted by eσ.

In a case expression “case e of pat1 when e1 → e′
1; . . . ; patn when en →

e′
n end”, we first evaluate e to a value, say v; then, we find (if it exists) the first

clause pati when ei → e′
i such that v matches pati, i.e., such that there exists

a substitution σ for the variables of pati with v = patiσ, and eiσ (the guard)
reduces to true; then, the case expression reduces to e′

iσ.
In our language, a running system is a pool of processes that can only inter-

act through message sending and receiving (i.e., there is no shared memory).
Received messages are stored in the queues of processes until they are con-
sumed; namely, each process has one associated local (FIFO) queue. Each pro-
cess is uniquely identified by its pid (process identifier). Message sending is

1 As in Erlang, the only data constructors in the language (besides literals) are the
predefined functions for lists and tuples.

170 I. Lanese et al.

asynchronous, while receive instructions block the execution of a process until
an appropriate message reaches its local queue (see below).

Fig. 2. A simple client/server program

In the paper, on denotes a sequence of syntactic objects o1, . . . , on.
We consider the following functions with side-effects: self, “!”, spawn, and

receive. The expression self() returns the pid of a process, while p ! v sends a
message v to the process with pid p, which will be eventually stored in p’s local
queue. New processes are spawned with a call of the form spawn(a/n, [vn]), so
that the new process begins with the evaluation of apply a/n (vn). Finally, an
expression “receive patn when en → e′

n end” should find the first message v in
the process’ queue (if any) such that case v of patn when en → e′

n end can be
reduced to some expression e′′; then, the receive expression evaluates to e′′, with
the side effect of deleting the message v from the process’ queue. If there is no
matching message, the process suspends until a matching message arrives.

Our language models a significant subset of Core Erlang [3], the intermediate
representation used during the compilation of Erlang programs. Therefore, our
developments can be directly applied to Erlang (as can be seen in the technical
report [17], where the development of a practical debugger is described).

Example 1. The program in Fig. 2 implements a simple client/server scheme with
one server, one client and a proxy. The execution starts with a call to function
main/0. It spawns the server and the proxy and finally calls function client/2.
Both the server and the proxy then suspend waiting for messages. The client
makes two requests {C, 40} and 2, where C is the pid of client (obtained using
self()). The second request goes directly to the server, but the first one is sent
through the proxy (which simply resends the received messages), so the client
actually sends {S, {C, 40}}, where S is the pid of the server. Here, we expect that
the server first receives the message {C, 40} and, then, 2, thus sending back 42 to
the client C (and calling function server/0 again in an endless recursion). If the
first message does not have the right structure, the catch-all clause “E → error”
returns error and stops.

Causal-Consistent Replay Debugging for Message Passing Programs 171

A High-Level Semantics. Now, we present an (asynchronous) operational
semantics for our language. Following [26], we introduce a global mailbox (there
called “ether”) to guarantee that our semantics generates all admissible mes-
sage interleavings. In contrast to previous semantics [15,22,26], our semantics
abstracts away from processes’ queues. We will see in Sect. 2 that this decision
simplifies both the semantics and the notion of independence, while still model-
ing the same potential computations (see the technical report [17]).

Definition 1 (process). A process is a configuration 〈p, θ, e〉, where p is its pid,
θ an environment (a substitution of values for variables), and e an expression.

In order to define a system (roughly, a pool of processes interacting through
message exchange), we first need the notion of global mailbox.

Definition 2 (global mailbox). We define a global mailbox, Γ , as a multiset
of triples of the form (sender pid, target pid,message). Given a global mailbox
Γ , we let Γ ∪{(p, p′, v)} denote a new mailbox also including the triple (p, p′, v),
where we use “ ∪” as multiset union.

In Erlang, the order of two messages sent directly from process p to pro-
cess p′ is kept if both are delivered; see [5, Section 10.8].2 To enforce such a
constraint, we could define a global mailbox as a collection of FIFO queues,
one for each sender-receiver pair. In this work, however, we keep Γ a multiset.
This solution is both simpler and more general since FIFO queues serve only to
select those computations satisfying the constraint. Nevertheless, if our logging
approach is applied to a computation satisfying the above constraint, then our
replay computation will also satisfy it, thus replay does not introduce spurious
computations.

Definition 3 (system). A system is a pair Γ ;Π, where Γ is a global mailbox
and Π is a pool of processes, denoted as 〈p1, θ1, e1〉 | · · · | 〈pn, θn, en〉; here “ |”
represents an associative and commutative operator. We often denote a system
as Γ ; 〈p, θ, e〉 | Π to point out that 〈p, θ, e〉 is an arbitrary process of the pool.

A system is initial if it has the form {}; 〈p, id, e〉, where {} is an empty global
mailbox, p is a pid, id is the identity substitution, and e is an expression.

Following the style in [22], the semantics of the language is defined in a mod-
ular way, so that the labeled transition relations −→ and ↪→ model the evaluation
of expressions and the reduction of systems, respectively. Given an environment
θ and an expression e, we denote by θ, e

l−→ θ′, e′ a one-step reduction labeled
with l. The relation l−→ follows a typical call-by-value semantics for side-effect
free expressions; for expressions with side-effects, we label the reduction with
the information needed to perform the side-effects within the system rules of
Fig. 3. We refer to the rules of Fig. 3 as the logging semantics, since the relation
is labeled with some basic information used to log the steps of a computation
(see Sect. 3). For now, the reader can safely ignore these labels (actually, labels
2 Current implementations only guarantee this restriction within the same node.

172 I. Lanese et al.

Fig. 3. Logging semantics

will be omitted when irrelevant). The topics of this work are orthogonal to the
evaluation of expressions, thus we refer the reader to [17] for the formalization of
the rules of l−→. Let us now briefly describe the interaction between the reduction
of expressions and the rules of the logging semantics:

– A one-step reduction of an expression without side-effects is labeled with
τ . In this case, rule Seq in Fig. 3 is applied to update correspondingly the
environment and expression of the considered process.

– An expression p′ ! v is reduced to v, with label send(p′, v), so that rule Send
in Fig. 3 can add the triple (p, p′, {v, �}) to Γ (p is the process performing the
send).
The message is tagged with some fresh (unique) identifier �. These tags allow
us to track messages and avoid confusion when several messages have the
same value (these tags are similar to the timestamps used in [21]).

– The remaining functions, receive, spawn and self, pose an additional problem:
their value cannot be computed locally. Therefore, they are reduced to a fresh
distinguished symbol κ, which is then replaced by the appropriate value in
the system rules. In particular, a receive statement receive cln end is reduced
to κ with label rec(κ, cln). Then, rule Receive in Fig. 3 nondeterministically
checks if there exists a triple (p′, p, {v, �}) in the global mailbox that matches
some clause in cln; pattern matching is performed by the auxiliary function
matchrec. If the matching succeeds, it returns the pair (θi, ei) with the match-
ing substitution θi and the expression in the selected branch ei. Finally, κ is
bound to the expression ei within the derived expression e′.

– For a spawn, an expression spawn(a/n, [vn]) is also reduced to κ with label
spawn(κ, a/n, [vn]). Rule Spawn in Fig. 3 then adds a new process with a
fresh pid p′ initialized with an empty environment id and the application
apply a/n (v1, . . . , vn). Here, κ is bound to p′, the pid of the spawned process.

– Finally, the expression self() is reduced to κ with label self(κ) so that rule
Self in Fig. 3 can bind κ to the pid of the given process.

Causal-Consistent Replay Debugging for Message Passing Programs 173

Fig. 4. Faulty derivation with the client/server of Example 1

We often refer to reduction steps derived by the system rules as actions taken
by the chosen process.

Example 2 Let us consider the program of Example 1 and the initial system
{ }; 〈c, id, apply main/0 ()〉, where c is the pid of the process. A possible (faulty)
computation from this system is shown in Fig. 4 (the selected expression at each
step is underlined).3 Here, we ignore the labels of the relation ↪→. Moreover,
we skip the steps that just bind variables and we do not show the bindings of
variables but substitute them for their values for clarity.

Independence. In order to define a causal-consistent replay semantics we need
not only an interleaving semantics such as the one we just presented, but also a
notion of causality or, equivalently, the opposite notion of independence. To this
end, we use the labels of the logging semantics (see Fig. 3). These labels include
the pid p of the process that performs the transition, the rule used to derive it
and, in some cases, some additional information: a message tag � in rules Send
and Receive, and the pid p′ of the spawned process in rule Spawn.

Before formalizing the notion of independence, we need to introduce some
notation and terminology. Given systems s0, sn, we call s0 ↪→∗ sn, which is a
shorthand for s0 ↪→p1,r1 . . . ↪→pn,rn

sn, n ≥ 0, a derivation. One-step deriva-
tions are simply called transitions. We use d, d′, d1, . . . to denote derivations
and t, t′, t1, . . . for transitions. Given a derivation d = (s1 ↪→∗ s2), we define
init(d) = s1. Two derivations, d1 and d2, are said coinitial if init(d1) = init(d2).

For simplicity, in the following, we consider derivations up to renaming of
bound variables. Under this assumption, the semantics is almost deterministic,
i.e., the main sources of non-determinism are the selection of a process p and of
the message to be retrieved by p in rule Receive. Choices of the fresh identifier
� for messages and of the pid p′ of new processes are also non-deterministic.
3 Roughly speaking, the problem comes from the fact that the messages reach the

server in the wrong order. Note that this faulty derivation is possible even by con-
sidering Erlang’s policy on the order of messages, since they follow a different path.

174 I. Lanese et al.

Note that each process can perform at most one transition for each label, i.e.,
s ↪→p,r s1 and s ↪→p,r s2 trivially implies s1 = s2.

We now instantiate to our setting the well-known happened-before rela-
tion [11], and the related notion of independent transitions:4

Definition 4 (happened-before, independence). Given transitions t1 =
(s1 ↪→p1,r1 s′

1) and t2 = (s2 ↪→p2,r2 s′
2), we say that t1 happened before t2, in

symbols t1 � t2, if one of the following conditions holds:

– they consider the same process, i.e., p1 = p2, and t1 comes before t2;
– t1 spawns a process p, i.e., r1 = spawn(p), and t2 is performed by process p,

i.e., p2 = p;
– t1 sends a message �, i.e., r1 = send(�), and t2 receives the same message �,

i.e., r2 = rec(�).

Furthermore, if t1 � t2 and t2 � t3, then t1 � t3 (transitivity). Two transitions
t1 and t2 are independent if t1 	� t2 and t2 	� t1.

Switching consecutive independent transitions does not change the final state:

Lemma 1 (switching lemma). Let t1 = (s1 ↪→p1,r1 s2) and t2 = (s2 ↪→p2,r2

s3) be consecutive independent transitions. Then, there are two consecutive tran-
sitions t2〈〈t1 = (s1 ↪→p2,r2 s4) and t1〉〉t2 = (s4 ↪→p1,r1 s3) for some system s4.

The happened-before relation gives rise to an equivalence relation equating
all derivations that only differ in the switch of independent transitions. Formally,

Definition 5 (causally equivalent derivations). Let d1 and d2 be deriva-
tions under the logging semantics. We say that d1 and d2 are causally equivalent,
in symbols d1 ≈ d2, if d1 can be obtained from d2 by a finite number of switches
of pairs of consecutive independent transitions.

Causal equivalence is an instance of the trace equivalence in [20].

3 Logging Computations

In this section, we introduce a notion of log for a computation. Basically, we
aim to analyze in a debugger a faulty behavior that occurs in some execution
of a program. To this end, we need to extract from an actual execution enough
information to replay it inside the debugger. Actually, we do not want to replay
necessarily the exact same execution, but a causally equivalent one. In this way,
the programmer can focus on some actions of a particular process, and actions of
other processes are only performed if needed (formally, if they happened-before
these actions). As we will see in the next section, this ensures that the considered
misbehaviors will still be replayed.
4 Here, we use the term independent, instead of concurrent as in [11], since the latter

has a slightly different meaning in the literature of causal-consistency.

Causal-Consistent Replay Debugging for Message Passing Programs 175

In a practical implementation (see the technical report [17]), one should
instrument the program so that its execution in the actual environment pro-
duces a collection of sequences of logged events (one sequence per process). In
the following, though, we exploit the logging semantics and, in particular, part of
the information provided by the labels. The two approaches are equivalent, but
the chosen one allows us to formally prove a number of properties in a simpler
way.

One could argue (as in, e.g., [21]) that logs should only store information
about the receive events, since this is the only nondeterministic action (once a
process is selected). However, this is not enough in our setting, where:

– We need to log the sending of a message since this is where messages are
tagged, and we need to know its (unique) identifier to be able to relate the
sending and receiving of each message.

– We also need to log the spawn events, since the generated pids are needed
to relate an action to the process that performed it (spawn events are not
considered in [21] and, thus, their set of processes is fixed).

We note that other nondeterministic events, such as input from the user or
from external services, should also be logged in order to correctly replay execu-
tions involving them. One can deal with them by instrumenting the correspond-
ing primitives to log the input values, and then use these values when replaying
the execution. Essentially, they can be dealt with as the receive primitive. Hence,
we do not present them in detail to keep the presentation as simple as possible.

In the following, (ordered) sequences are denoted by w = (r1, r2, . . . , rn),
n ≥ 1, where () denotes the empty sequence. Concatenation is denoted by +.
We write r+w instead of (r)+w for simplicity.

Definition 6 (log). A log is a (finite) sequence of events (r1, r2, . . .) where
each ri is either spawn(p), send(�) or rec(�), with p a pid and � a message iden-
tifier. Logs are ranged over by ω. Given a derivation d = (s0 ↪→p1,r1 s1 ↪→p2,r2

. . . ↪→pn,rn
sn), n ≥ 0, under the logging semantics, the log of a pid p in d, in

symbols L(d, p), is inductively defined as follows:

L(d, p) =

⎧
⎨

⎩

() if n = 0 or p does not occur in d
r1+L(s1 ↪→∗ sn, p) if n > 0, p1 = p, and r1 	∈ {seq, self}
L(s1 ↪→∗ sn, p) otherwise

The log of d, written L(d), is defined as: L(d) = {(p,L(d, p)) | p occurs in d}.
We sometimes call L(d) the global log of d to avoid confusion with L(d, p). Note
that L(d, p) = ω if (p, ω) ∈ L(d) and L(d, p) = () otherwise.

Example 3. Consider the derivation shown in Example 2, here referred to as d.
If we run it under the logging semantics, we get the following logs:

L(d, c) = (spawn(s), spawn(p), send(�1), send(�2))
L(d, s) = (rec(�2)) L(d,p) = (rec(�1), send(�3))

176 I. Lanese et al.

In the following we only consider finite derivations under the logging seman-
tics. This is reasonable in our context where the programmer wants to analyze in
the debugger a finite (possibly incomplete) execution showing a faulty behavior.

An essential property of our semantics is that causally equivalent derivations
have the same log, i.e., the log depends only on the equivalence class, not on the
selection of the representative inside the class. The reverse implication, namely
that (coinitial) derivations with the same global log are causally equivalent, holds
provided that we establish the following convention on when to stop a derivation:

Definition 7 (fully-logged derivation). A derivation d is fully-logged if, for
each process p, its last transition s1 ↪→p,r s2 in d (if any) is a logged transition,
i.e., r 	∈ {seq, self}. In particular, if a process performs no logged transition, then
it performs no transition at all.

Restricting to fully-logged derivations is needed since only logged transitions
contribute to logs. Otherwise, two derivations d1 and d2 could produce the same
log, but differ simply because, e.g., d1 performs more non-logged transitions
than d2. Restricting to fully-logged derivations, we include the minimal amount
of transitions needed to produce the observed log.

Finally, we present a key result of our logging semantics. It states that two
derivations are causally equivalent iff they produce the same log.

Theorem 1. Let d1, d2 be coinitial fully-logged derivations. L(d1) = L(d2) iff
d1 ≈ d2.

4 A Causal-Consistent Replay Semantics

In this section, we introduce an uncontrolled replay semantics. It takes a program
and the log of a given derivation, and allows us to replay any causally equivalent
derivation. This semantics constitutes the kernel of our replay framework. The
term uncontrolled indicates that the semantics specifies how to perform replay,
but there is no policy to select the applicable rule when more than one is enabled.
The uncontrolled semantics is suitable to set the basis of our replay mechanism,
but does not allow one to focus on the causes of a given action. For this reason,
in Sect. 5, we build on top of this semantics a controlled one, where the selection
of actions is driven by the queries from the user.

In the following, we introduce a transition relation ⇀ to specify replay. Tran-
sition ⇀ is similar to the logging semantics ↪→ (Fig. 3) but it is now driven by
the considered log. Thus, processes have the form 〈p, ω, θ, e〉, with ω a log.

The uncontrolled causal-consistent replay semantics is shown in Fig. 5. For
technical reasons, labels of the replay semantics contain the same information as
the labels of the logging semantics. Moreover, the labels now also include a set of
replay requests. The reader can ignore these elements until the next section. For
simplicity, we also consider that the log L(d, p) of each process p in the original
derivation d is a fixed global parameter of the transition rules (see rule Spawn).

Causal-Consistent Replay Debugging for Message Passing Programs 177

Fig. 5. Uncontrolled replay semantics

The rules for expressions are the same as in the logging semantics (an advan-
tage of the modular design). The replay semantics is similar to the logging seman-
tics, except that logs fix some parameters: the fresh message identifier in rule
Send , the message received in rule Receive, and the fresh pid in rule Spawn.

Example 4. Consider the logs of Example 3. Then, we have, e.g., the replay
derivation in Fig. 6. The actions performed by each process are the same as
in the original derivation in Example 2, but the interleavings are slightly differ-
ent. Moreover, after ten steps, the server is waiting for a message, the global
mailbox contains a matching message but, in contrast to the logging semantics,
receive cannot proceed since the message identifier in the log does not match (�2
vs �3).

Basic Properties of the Replay Semantics. Here, we show that the uncon-
trolled replay semantics is consistent and we relate it with the logging semantics.
We need the following auxiliary functions:

Definition 8. Let d = (s1 ↪→∗ s2) be a derivation under the logging semantics,
with s1 = Γ ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉. The system corresponding to s1 in the
replay semantics is defined as follows:

addLog(L(d), s1) = Γ ; 〈p1,L(d, p1), θ1, e1〉 | . . . | 〈pn,L(d, pn), θn, en〉

Conversely, given a system s = Γ ; 〈p1, ω1, θ1, e1〉 | . . . | 〈pn, ωn, θn, en〉 in the
replay semantics, we let del(s) be the system obtained from s by removing logs,
i.e., del(s) = Γ ; 〈p1, θ1, e1〉 | . . . | 〈pn, θn, en〉, and similarly for derivations.

In the following, we extend the notions of log and coinitial derivations, as
well as function init, to replay derivations in the obvious way. Furthermore, we

178 I. Lanese et al.

Fig. 6. Uncontrolled replay derivation with the traces of Example 3

now call a system s′ initial under the replay semantics if there exists a derivation
d under the logging semantics, and s′ = addLog(L(d), init(d)).

We extend the notion of fully-logged derivations to our replay semantics:

Definition 9 (fully-logged replay derivation). A derivation d under the
replay semantics is fully-logged if, for each process p, the log is empty and its
last transition (if any) is a logged transition.

Note that, in addition to Definition 7, we now require that processes consume
all their logs.

We will only consider systems reachable from the execution of a program:

Definition 10 (reachable systems). A system s is reachable if there exists
an initial system s0 such that s0 ⇀∗ s.

Since only reachable systems are of interest (non-reachable systems are ill-
formed), in the following we assume that all systems are reachable.

Now, we can tackle the problem of proving that our replay semantics pre-
serves causal equivalence, i.e., that the original and the replay derivations are
always causally equivalent.

Theorem 2. Let d be a fully-logged derivation under the logging semantics.
Let d′ be any finite fully-logged derivation under the replay semantics such that
init(d′) = addLog(L(d), init(d)). Then d ≈ del(d′).

Causal-Consistent Replay Debugging for Message Passing Programs 179

Usefulness for Debugging. Now, we show that our replay semantics is indeed
useful as a basis for designing a debugging tool. In particular, we prove that a
(faulty) behavior occurs in the logged derivation iff any replay derivation also
exhibits the same faulty behavior, hence replay is correct and complete.

In order to formalize such a result we need to fix the notion of faulty behavior
we are interested in. For us, a misbehavior is a wrong system, but since the
system is possibly distributed, we concentrate on misbehaviors visible from a
“local” observer. Given that our systems are composed of processes and messages
in the global mailbox, we consider that a (local) misbehavior is either a wrong
message in the global mailbox or a process with a wrong configuration.

Theorem 3 (Correctness and completeness). Let d be a fully-logged deriva-
tion under the logging semantics. Let d′ be any fully-logged derivation under the
uncontrolled replay semantics such that init(d′) = addLog(L(d), init(d)). Then:

1. there is a system Γ ;Π in d with a configuration 〈p, θ, e〉 in Π iff there is a
system Γ ′;Π ′ in d′ with a configuration 〈p, θ, e〉 in del(Γ ′;Π ′);

2. there is a system Γ ;Π in d with a message (p, p′, {v, �}) in Γ iff there is a
system Γ ′;Π ′ in d′ with a message (p, p′, {v, �}) in Γ ′.

The result above is very strong: it ensures that a misbehavior occurring in a
logged execution is replayed in any possible fully-logged derivation. This means
that any scheduling policy is fine for replay. Furthermore, this remains true
whatever actions the user takes: either the misbehavior is reached, or it remains
in any possible forward computation.

One may wonder whether more general notions of misbehavior make sense.
Above, we consider just “local” observations. One could ask for more than one
local observation to be replayed. By applying the result above to multiple obser-
vations we get that all of them will be replayed, but, if they concern different
processes or messages, we cannot ensure that they are replayed at the same time
or in the same order. For instance, in the derivation of Fig. 4, process c sends the
message with identifier �2 before process p receives the message with identifier
�1, while in the replay derivation of Fig. 6 the two actions are executed in the
opposite order. Only a super user able to see the whole system at once could see
such a (mis)behavior, which are thus not relevant in our context.

5 Controlled Replay Semantics

In this section, we introduce a controlled version of the replay semantics. The
semantics in the previous section allows one to replay a given derivation and be
guaranteed to replay, sooner or later, any local misbehavior. In practice, though,
one normally knows in which process p the misbehavior appears, and thus (s)he
wants to focus on a process p or even on some of its actions. However, to correctly
replay these actions, one also needs to replay the actions that happened before
them. We present in Fig. 7 a semantics where the user can specify which actions
(s)he wants to replay, and the semantics takes care of replaying them. Replaying

180 I. Lanese et al.

Fig. 7. Controlled replay semantics

an action requires to replay all and only its causes. Notably, the bug causing a
misbehavior causes the action showing the misbehavior.

Here, given a system s, we want to start a replay until a particular action ψ is
performed on a given process p. We denote such a replay request with ��s��({p,ψ}).
In general, the subscript of �� �� is a stack of requests, where the first element is
the most recent one. In this paper, we consider the following replay requests:

– {p, s}: one step of process p (the extension to n steps is straightforward);
– {p, �⇑}: request for process p to send the message tagged with �;
– {p, �⇓}: request for process p to receive the message tagged with �;
– {p, spp′}: request for process p to spawn the process p′.

Variable creations as not valid targets for replay requests, since variable names
are not known before their creation (variable creations are not logged). The
requests above are satisfied when a corresponding uncontrolled transition is per-
formed. Indeed, the third element labeling the relations of the replay semantics
in Fig. 5 is the set of requests satisfied in the corresponding step.

Let us explain the rules of the controlled replay semantics in Fig. 7. Here, we
assume that the computation always starts with a single request.

– If the desired process p can perform a step satisfying the request ψ on top of
the stack, we do it and remove the request from the stack (first rule).

– If the desired process p can perform a step, but it does not satisfy the request
ψ, we update the system but keep the request in the stack (second rule).

– If a step on the desired process p is not possible, then we track the depen-
dencies and add a new request on top of the stack. We have two rules: one
for adding a request to a process to send a message we want to receive and
another one to spawn the process we want to replay if it does not exist. Here,
we use the auxiliary functions sender and parent to identify, respectively, the
sender of a message and the parent of a process. Both functions sender and
parent are easily computable from the logs in L(d).

The relation � can be seen as a controlled version of the uncontrolled replay
semantics in the sense that each derivation of the controlled semantics corre-
sponds to a derivation of the uncontrolled one, while the opposite is not gen-
erally true. Notions for derivations and transitions are easily extended to con-
trolled derivations. We also need a notion of projection from controlled systems

Causal-Consistent Replay Debugging for Message Passing Programs 181

to uncontrolled systems: uctrl(��Γ ;Π��Ψ) = Γ ;Π. The notion of projection triv-
ially extends to derivations.

Theorem 4 (Soundness). For each controlled derivation d, uctrl(d) is an
uncontrolled derivation.

While simple, this result allows one to recover many relevant properties from
the uncontrolled semantics. For instance, by using the controlled semantics, if
starting from a system s = addLog(L(d), init(d)) for some logging derivation d
we find a wrong message (p, p′, {v, �}), then we know that the same message
exists also in d (from Theorem 3).

Our controlled semantics is not only sound but also minimal: causal-
consistent replay redoes the minimal amount of actions needed to satisfy the
replay request.

Here, we need to restrict the attention to requests that ask to replay transi-
tions which are in the future of the process.

Definition 11. A controlled system c = ��s��({p,ψ}) is well initialized iff
there are a derivation d under the logging semantics, a system s0 =
addLog(L(d), init(d)), an uncontrolled derivation s0 ⇀∗ s, and an uncontrolled
derivation from s satisfying {p, ψ}.

The existence of a derivation satisfying the request can be efficiently checked.
For replay requests {p, s} it is enough to check that process p can perform a step,
for other replay requests it is enough to check the process log.

Theorem 5 (Minimality). Let d be a controlled derivation such as init(d) =
��s��({p,ψ}) is well-initialized. Derivation uctrl(d) has minimal length among all
uncontrolled derivations d′ with init(d′) = s including at least one transition
satisfying the request {p, ψ}.

6 Related Work and Conclusion

In this work, we have introduced (controlled) causal-consistent replay. It is
strongly related (indeed dual) to the notion of causal-consistent reversibility,
and its instance on debugging, causal-consistent reversible debugging, introduced
in [6] for the toy language μOz. Beyond this, it has only been used so far in the
CauDEr [13,14] debugger for Erlang, which we took as a starting point for our
prototype implementation (see [17]). Causal-consistent rollback has also been
studied in the context of the process calculus HOπ [12] and the coordination
language Klaim [7]. We refer to [6] for a description of the relations between
causal-consistent debugging and other forms of reversible debugging.

The basic ideas in this paper are also applicable to other message-passing
languages and calculi. In principle, the approach could also be applied to shared
memory languages, yet it would require to log all interactions with shared mem-
ory (which may give rise, in principle, to an inefficient scheme).

182 I. Lanese et al.

An approach to record and replay for actor languages is introduced in [1].
While we concentrate on the theory, they focus on low-level issues: dealing with
I/O, producing compact logs, etc. Actually, we could consider some of the ideas in
[1] to produce more compact logs and thus reduce our instrumentation overhead.

At the semantic level, the work closest to ours is the reversible semantics
for Erlang in [15]. However, all our semantics abstract away local queues in
processes and their management. This makes the notion of independence much
more natural, and it avoids some spurious conflicts between deliveries of different
messages present in [15]. Moreover, our replay semantics is driven by the log of
an actual execution, while the one in [15] is not. Finally, our controlled semantics,
built on top of the uncontrolled reversible semantics, is much simpler than the
low-level controlled semantics in [15] which, anyway, is based on undoing the
actions of an execution up to a given checkpoint (rollback requests appeared
later, in [13]).

None of the works above treats causal-consistent replay and, as far as we
know, such notion has never been explored. For instance, no reference to it
appears in a recent survey [4]. The survey classifies our approach as a message-
passing multi-processor scheme (the approach is studied in a single-processor
multi-process setting, but it makes no use of the single-processor assumption).
It is in between content-based schemes (that record the content of the messages)
and ordering-based schemes (that record the source of the messages), since it
registers just unique identifiers for messages. This reduces the size of the log
(content of long messages is not stored) w.r.t. content-based schemes, yet differ-
ently from ordering-based schemes it does not necessarily require to replay the
system from a global checkpoint (but we do not yet consider checkpoints).

A related ordering-based scheme is [21]: it uses race detection to avoid logging
all message exchanges, and we may try to integrate it in our approach in the
future (though it considers only systems with a fixed number of processes). A
content-based work is [19] for MPI programs, which does not replay calls to MPI
functions, but just takes the values from the log. By applying this approach in
our case, the state of Γ would not be replayed, and causal-consistent replay
would not be possible since no relation between send and receive is kept.

Our work is also related to slicing, and in particular to [23], since it also
deals with concurrent systems. Both approaches are based on causal consis-
tency, but slicing considers the whole computation and extracts the fragment
of it needed to explain a visible behavior, while we instrument the computation
so to be able to go back and forward. Other differences include the considered
languages—pi calculus vs Erlang—, the style of the semantics—labelled transi-
tions vs reductions—, etc.

Causal-Consistent Replay Debugging for Message Passing Programs 183

References

1. Aumayr, D., Marr, S., Béra, C., Boix, E.G., Mössenböck, H.: Efficient and deter-
ministic record & replay for actor languages. In: Tilevich, E., Mössenböck, H. (eds.)
Proceedings of the 15th International Conference on Managed Languages & Run-
times (ManLang 2018), pp. 15:1–15:14. ACM (2018)

2. Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T.: Reversible
debugging software - quantify the time and cost saved using reversible debuggers
(2012). http://www.roguewave.com

3. Carlsson, R., et al.: Core Erlang 1.0.3. Language specification (2004). https://www.
it.uu.se/research/group/hipe/cerl/doc/core erlang-1.0.3.pdf

4. Chen, Y., Zhang, S., Guo, Q., Li, L., Wu, R., Chen, T.: Deterministic replay: a
survey. ACM Comput. Surv. 48(2), 17:1–17:47 (2015)

5. Frequently Asked Questions about Erlang (2018). http://erlang.org/faq/academic.
html

6. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

7. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a
tuple-based language. J. Log. Algebr. Methods Program. 88, 99–120 (2017)

8. Huang, J., Liu, P., Zhang, C.: LEAP: lightweight deterministic multi-processor
replay of concurrent Java programs. In: 2010 Proceedings of the 18th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, Santa
Fe, NM, USA, 7–11 November 2010, pp. 385–386. ACM (2010)

9. Huang, J., Zhang, C.: Debugging concurrent software: advances and challenges. J.
Comput. Sci. Technol. 31(5), 861–868 (2016)

10. Jiang, Y., Gu, T., Xu, C., Ma, X., Lu, J.: CARE: cache guided deterministic
replay for concurrent Java programs. In: 36th International Conference on Software
Engineering, ICSE 2014, Hyderabad, India, 31 May–07 June 2014, pp. 457–467.
ACM (2014)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

12. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

13. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent
reversible debugger for Erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS
2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-90686-7 16

14. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr website (2018). https://
github.com/mistupv/cauder

15. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebr. Methods Program. 100, 71–97 (2018)

16. Lanese, I., Palacios, A., Vidal, G.: CauDEr, causal-consistent reversible replay
debugger. Logger. https://github.com/mistupv/tracer, debugger. https://github.
com/mistupv/cauder/tree/replay

17. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for mes-
sage passing programs. Technical report, DSIC, Universitat Politècnica de València
(2019). http://personales.upv.es/gvidal/german/forte19tr/paper.pdf

http://www.roguewave.com
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
http://erlang.org/faq/academic.html
http://erlang.org/faq/academic.html
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
https://github.com/mistupv/tracer
https://github.com/mistupv/cauder/tree/replay
https://github.com/mistupv/cauder/tree/replay
http://personales.upv.es/gvidal/german/forte19tr/paper.pdf

184 I. Lanese et al.

18. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant
replay. IEEE Trans. Comput. 36(4), 471–482 (1987)

19. Maruyama, M., Tsumura, T., Nakashima, H.: Parallel program debugging based
on data-replay. In: Zheng, S.Q. (ed.) Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS 2005),
pp. 151–156. IASTED/ACTA Press (2005)

20. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

21. Netzer, R.H., Miller, B.P.: Optimal tracing and replay for debugging message-
passing parallel programs. J. Supercomput. 8(4), 371–388 (1995)

22. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In:
Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp.
259–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 15

23. Perera, R., Garg, D., Cheney, J.: Causally consistent dynamic slicing. In: Deshar-
nais, J., Jagadeesan, R. (eds.) CONCUR. LIPIcs, vol. 59, pp. 18:1–18:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

24. Undo Software: Increasing software development productivity with reversible
debugging (2014). https://undo.io/media/uploads/files/Undo ReversibleDebugg
ing Whitepaper.pdf

25. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s J. 30(3), 202–210 (2005)

26. Svensson, H., Fredlund, L.A., Earle, C.B.: A unified semantics for future Erlang.
In: 9th ACM SIGPLAN Workshop on Erlang, pp. 23–32. ACM (2010)

27. Veeraraghavan, K., et al.: DoublePlay: parallelizing sequential logging and replay.
ACM Trans. Comput. Syst. 30(1), 3:1–3:24 (2012)

https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/978-3-319-63139-4_15
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf

Correct and Efficient Antichain
Algorithms for Refinement Checking

Maurice Laveaux(B) , Jan Friso Groote , and Tim A. C. Willemse

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.laveaux,j.f.groote,t.a.c.willemse}@tue.nl

Abstract. Refinement checking plays an important role in system veri-
fication. This means that the correctness of the system is established by
showing a refinement relation between two models; one for the imple-
mentation and one for the specification. In [21], Wang et al. describe
an algorithm based on antichains for efficiently deciding stable failures
refinement and failures-divergences refinement. We identify several issues
pertaining to the correctness and performance in these algorithms and
propose new, correct, antichain-based algorithms. Using a number of
experiments we show that our algorithms outperform the original ones
in terms of running time and memory usage.

1 Introduction

Refinement is often an integral part of a mature engineering methodology for
designing a (software) system in a stepwise manner. It allows one to start from
a high-level specification that describes the permitted and desired behaviours
of a system and arrive at a detailed implementation that behaves as originally
specified. While in many settings, refinement is often used rather informally, it
forms the mathematical cornerstone in the theoretical development of the process
algebra CSP (Communicating Sequential Processes) by Hoare [12,17,18].

This formal view on refinement—as a mathematical relation between a spec-
ification and its implementation—has been used successfully in industrial set-
tings [10], and it has been incorporated in commercial Formal Model-Driven
Engineering tools such as Dezyne [3]. In such settings there are a variety of
refinement relations, each with their own properties. In particular, each notion
of refinement offers specific guarantees on the (types of) behavioural properties
of the specification that carry over to correct implementations. For the theory
of CSP, the—arguably—most prominent refinement relations are stable failures
refinement [2,18] and failures-divergences refinement [18]. Both are implemented
in the tool FDR [6] for specifying and analysing CSP processes.

Both stable failures refinement and failures-divergences refinement are com-
putationally hard problems; deciding whether there is a refinement relation
between an implementation and a specification, both represented by CSP pro-
cesses or labelled transition systems, is PSPACE-hard [13]. In practice, however,
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 185–203, 2019.
https://doi.org/10.1007/978-3-030-21759-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_11&domain=pdf
http://orcid.org/0000-0001-8732-7580
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0003-3049-7962
https://doi.org/10.1007/978-3-030-21759-4_11

186 M. Laveaux et al.

tools such as FDR are able to work with quite large state spaces. The basic algo-
rithm for deciding a stable failures refinement or a failures-divergences refinement
between an implementation and a specification relies on a normalisation of the
specification. This normalisation is achieved by a subset construction that is used
to obtain a deterministic transition system which represents the specification.

As observed in [21] and inspired by successes reported, e.g., in [1], antichain
techniques can be exploited to improve on the performance of refinement check-
ing algorithms. Unfortunately, a closer inspection of the results and algorithms
in [21], reveals several issues. First, the definitions of stable failures refinement
and failures-divergences refinement used in [21] do not match the definitions
of [2,18], nor do they seem to match known relations from the literature [8].

Second, as we demonstrate in Example 2 in this paper, the results [21, The-
orems 2 and 3] claiming correctness of their algorithms for deciding both refine-
ment relations are incorrect. We do note that their algorithm for checking stable
failures refinement correctly decides the refinement relation defined by [2,18].

Third, unlike claimed by the authors in [21], their algorithms violate the
antichain property as we demonstrate in Example 4. Fourth, their algorithms
suffer from severely degraded performance due to suboptimal decisions made
when designing the algorithms, leading to an overhead of a factor |Σ|, where Σ
is the set of events. When using a FIFO queue to realise a breadth-first search
strategy instead of the stack used by default for a depth-first search this factor is
even greater, viz. |Σ||S|, where S is the set of states of the implementation, see
our Example 3. Note that there are compelling reasons for using a breadth-first
strategy [17]; e.g., the conciseness of counterexamples to refinement.

The contributions of the current paper are as follows. Apart from pointing
out the issues in [21], we propose new antichain-based algorithms for deciding
stable failures refinement and failures-divergences refinement and we prove their
correctness. We compare the performance of the stable failures refinement algo-
rithm of [21] to ours. Due to the flaw in their algorithm for checking failures-
divergences refinement, a comparison for this refinement relation makes little
sense. Our results indicate a small improvement in run time performance for
practical models when using depth-first search, whereas our experiments using
breadth-first search illustrate that decision problems intractable using the algo-
rithm of [21] generally become quite easy using our algorithm.

The remainder of this paper is organised as follows. We recall the necessary
mathematics in Sect. 2 and we describe the essence of refinement checking algo-
rithms in Sect. 3. In Sect. 4, we analyse the algorithms of [21] and in Sect. 5,
we propose new antichain-based refinement algorithms, claim their correctness
and provide proof sketches. In Sect. 6, we compare the performance of our algo-
rithm to that of [21]. Full proofs of our claims can be found in a technical
report [14], which also contains additional experiments, showing that further
speed improvements can be obtained by applying divergence-preserving branch-
ing bisimulation [7] minimisation before checking refinement.

Correct and Efficient Antichain Algorithms for Refinement Checking 187

2 Preliminaries

In this section the preliminaries of labelled transition systems, stable failures
refinement and failures-divergences refinement checking are introduced.

2.1 Labelled Transition Systems

Let Σ be a finite set of event labels that does not contain the constant τ , mod-
elling internal events.

Definition 1. A labelled transition system is a tuple L = (S, ι,Act,→) where S
is a set of states; ι ∈ S is an initial state; Act = Σ or Act = Σ ∪ {τ} is a set of
actions and → ⊆ S × Act × S is a labelled transition relation.

The following definitions are in the context of a given labelled transition system
L = (S, ι,Act,→). We typically use letters s, t, u to denote states, U, V to denote
sets of states, a to denote an arbitrary action, e to denote an arbitrary event
and σ, ρ ∈ Act∗ to denote a sequence of actions.

We adopt the following conventions and notation. Whenever (s, a, t) ∈ → ,
we write s

a−→ t; we write s
a−→ just whenever there is some t such that s

a−→ t, and
s � a−→ holds iff not s

a−→. The set of actions that can be executed in s is given by
the set enabled(s), defined as enabled(s) = {a ∈ Act | s

a−→ }. We generalise the
relation → in the usual manner to sequences of actions as follows: s

ε−→→ t holds iff
s = t, and s

aσ−−→→ t holds iff there is some u such that s
a−→ u and u

σ−→→ t. Finally,
the weak transition relation � ⊆ S × Σ∗ × S is the least relation satisfying:

– s
ε� t if there is some σ ∈ τ∗ such that s

σ−→→ t,
– if s

a−→ t then s
a� t,

– if s
ρ� t and t

σ� u then s
ρσ� u.

Definition 2. Traces, weak traces and reachable states are defined as follows:

– σ ∈ Act∗ is a trace starting in s iff s
σ−→→ t for some t. We denote the set of

all traces starting in s by traces(s), and we define traces(L) = traces(ι),
– σ ∈ Σ∗ is a weak trace starting in s iff s

σ� t for some t. The set of all
weak traces starting in s is denoted by tracesw(s), and we define tracesw(L) =
tracesw(ι),

– the set of states, reachable from s is defined as reachable(s) = {t ∈ S | ∃σ ∈
Σ∗ : s

σ� t}; we define reachable(L) = reachable(ι).

The semantics of the CSP process algebra builds on observations of failures and
divergences. A failure is a set of event labels that the system observably refuses
following an experiment on that system, i.e., after executing a weak trace on
that system.

By assumption, refusals can only be observed when the system has stabilised.
Formally, a state s is stable, denoted stable(s), if and only if s � τ−→. A divergence
can be understood as the potential inability of a system to stabilise. In effect,

188 M. Laveaux et al.

this means that a divergence is an infinite sequence of τ -actions; formally, a state
s is a diverging state, denoted div(s), if and only if there is an infinite sequence
of states si such that s

τ−→ s1
τ−→ s2

τ−→ · · · . For a set of states U , we write div(U)
iff div(s) for some s ∈ U .

Definition 3. Let s ∈ S be a stable state. The refusals of s are defined as1 the
set refusals(s) = P(Σ \ enabled(s)). For a set of (not necessarily stable) states
U , we define refusals(U) = {X ⊆ Σ | ∃s ∈ U : stable(s) ∧ X ∈ refusals(s)}.
We are now in a position to formally define the set of divergences and the set
of failures of an LTS; we here follow the standard conventions and definitions
of [4,9,18]. Note that in [14] we instead have adopted the notational conventions
of [21] to allow for an easier comparison of our results to theirs.

Definition 4. The set of all divergences of a state s, denoted by divergences(s),
is defined as {σρ ∈ Σ∗ | ∃t ∈ S : s

σ� t ∧ div(t)}. We define divergences(L) =
divergences(ι).

Observe that a divergence is not only a weak trace that can reach a diverging
state, but also any suffix of a weak trace that can reach a diverging state. This
is based on the assumption that divergences lead to chaos. In theories in which
divergences are considered chaotic, such chaos obscures all information about
the behaviours involving a diverging state; we refer to this as obscuring post-
divergences details.

Definition 5. The set of all stable failures of a state s, denoted failures(s), is
defined as {(σ,X) ∈ Σ∗×P(Σ) | ∃t ∈ S : s

σ� t∧stable(t)∧X ∈ refusals(t)}. The
set of stable failures of a state s with post-divergences details obscured, denoted
failures⊥(s), is defined as failures(s)∪{(σ,X) ∈ Σ∗ ×P(Σ) | σ ∈ divergences(s)}.
The two standard models of CSP are the stable failures model and the failures-
divergences model. The refinement relations on LTSs, induced by these models,
are called the stable failures refinement and the failures-divergences refinement.
We remark that the LTS that is refined is commonly referred to as the specifi-
cation, whereas the LTS that refines the specification is often referred to as the
implementation.

Definition 6. Let L1 and L2 be two LTSs. We say that L2 is a stable failures
refinement of L1, denoted by L1 	sfr L2, iff tracesw(L2) ⊆ tracesw(L1) and
failures(L2) ⊆ failures(L1). LTS L2 is a failures-divergences refinement of L1,
denoted by L1 	fdr L2, iff failures⊥(L2) ⊆ failures⊥(L1) and divergences(L2) ⊆
divergences(L1).

1 We remark that [21] states the following, non-standard, definition: refusals(s) = {X |
∃s′ ∈ S : s

ε� s′ ∧ stable(s′) ∧ X ⊆ Σ \ enabled(s′)}, suggesting that refusals are also
defined for unstable states. As we discuss in Sect. 4, this has consequences for the
performance of the algorithms for deciding the various refinement relations.

Correct and Efficient Antichain Algorithms for Refinement Checking 189

Remark 1. The notions defined above appear in different formulations in [21].
Their stable failures refinement omits the clause for weak trace inclusion, and
their failures-divergences refinement replaces failures⊥ with failures. This yields
refinement relations different from the standard ones and neither relation seems
to appear in the literature [8].

We finish this section with a small example, illustrating the difference between
failures-divergences refinement and stable failures refinement.

Example 1. Consider the two transition systems (named after their initial states
s0 and t0) depicted below.

s0s1 s2 t0t1 t2

a

b

a
τ b

a

b

a
a b

Observe that we have s0 	fdr t0, but not s0 	sfr t0. The latter fails because aa is
a trace of t0, but not of s0; the same goes for the stable failure (a, {b}) of t0. The
failures-divergences refinement holds because the divergent trace a obfuscates
the observations of traces of the form aa+: since divergence is chaos, anything
is permitted. We do have t0 	sfr s0 but not t0 	fdr s0. The latter fails because
of the divergent trace a not being present in t0. Stable failures refinement holds
because all traces and stable failure pairs of s0 are included in those of t0; in
particular, the instability of state s1 causes s1 not to contribute to the stable
failures set of s0.
�

3 Refinement Checking

In general, the set of failures and divergences of an LTS can be infinite. Therefore,
checking inclusion of the set of failures or divergences is not viable. In [17,18],
an algorithm to decide refinement between two labelled transition systems is
sketched. As a preprocessing to this algorithm, all diverging states in both LTSs
are marked. The algorithm then relies on exploring the cartesian product of
the normal form representation of the specification, i.e., the LTS that is to be
refined, and the implementation. We remark that what we refer to as cartesian
product, defined in [17], is called a synchronous product in [21]. For each pair in
the product it checks whether it can locally decide non-refinement of the imple-
mentation state with the normal form state. A pair for which non-refinement
holds is referred to as a witness.

Following [18,21] and specifically the terminology of [17], we formalise the
cartesian product between LTSs that is explored by the procedure.

Definition 7. Let L1 = (S1, ι1, Σ,→1) and L2 = (S2, ι2,Act,→2) be LTSs. The
cartesian product of L1 and L2 is the LTS L1 × L2 = (S, ι,Act,→) satisfying
S = S1 × S2; ι = (ι1, ι2); and the transition relation → is the smallest relation
satisfying the following conditions for all s1, t1 ∈ S1, and s2, t2 ∈ S2 and e ∈ Σ:

190 M. Laveaux et al.

– If s2
τ−→2 t2 then (s1, s2)

τ−→ (s1, t2),
– If s1

e−→1 t1 and s2
e−→2 t2 then (s1, s2)

e−→ (t1, t2).

We remark that Σ is used in L1 to indicate that it has no transitions labelled
with τ , whereas, L2 might contain τ -transitions. A key property of the cartesian
product, provable by induction on the length of sequence σ, is the following:

Proposition 1. Let L1 = (S1, ι1, Σ,→1) and L2 = (S2, ι2,Act,→2) be LTSs,
and let L1 × L2 = (S, ι,Act,→) be their cartesian product. For all s1 ∈ S1,
s2 ∈ S2 and all σ ∈ Act∗, ι

σ� (s1, s2) iff ι1
σ�1 s1 and ι2

σ�2 s2.

The normal form LTS is obtained using a typical subset construction as is com-
mon when determinising a transition system. Although all states in an LTS in
normal form are stable, the states of the original LTS comprising a normal form
state may not be. To avoid confusion when we wish to reason about the stability
and divergences of states U in the LTS L underlying a normal form LTS, rather
than the state of the normal form LTS, we write [[U]]L to indicate we refer to the
set of states in L. Stable failures refinement and failures-divergences refinement
require different normal forms.

Definition 8. Let L = (S, ι,Act,→) be a labelled transition system. Set S′ =
P(S), ι′ = {s ∈ S | ι

ε� s}. The stable failures refinement normal form of L
is the LTS normsfr(L) = (S′, ι′, Σ,→′), where →′ is defined as U

e−→′ V if and
only if V = {t ∈ S | ∃s ∈ U : s

e� t} for all U, V ⊆ S and e ∈ Σ. The failures-
divergences refinement normal form of L is the LTS normfdr(L) = (S′, ι′, Σ,→′′)
where →′′ is defined as U

e−→′′ V if and only if U
e−→′ V and not div([[U]]L).

We remark that we deliberately permit the empty set to be a state in a normal
form LTS. Clearly, a normal form LTS satisfies ∅ e−→ ∅ for all actions e. Moreover,
note that a normal form LTS is deterministic; in particular, for all σ, and states
U, T, V of a normal form LTS U

σ−→→ T and U
σ−→→ V implies T = V .

The structure explored by the refinement checking procedure of [17,18] is
essentially the cartesian product normsfr(L1)×L2 in case of stable failures refine-
ment, or normfdr(L1) × L2 in case of failures-divergences refinement. For these
structures the related witnesses, where the reachability of such a witness indi-
cates non-refinement, are then as follows:

Definition 9. Let L1 and L2 be LTSs.

– A state (U, s) in normsfr(L1) × L2 is called an SFR-witness iff U = ∅; or
stable(s) and not refusals(s) ⊆ refusals([[U]]L1),

– a state (U, s) in normfdr(L1)×L2 is called an FDR-witness iff not div([[U]]L1),
and either div(s); or U = ∅; or stable(s) and not refusals(s) ⊆ refusals([[U]]L1).

The following statement formalises the insights of [17]; both results follow from
Proposition 1 and the characteristics of the normal form LTSs.

Theorem 1. Let L1 and L2 be LTSs. Then:

– L1 	sfr L2 iff no SFR-witness is reachable in normsfr(L1) × L2,
– L1 	fdr L2 iff no FDR-witness is reachable in normfdr(L1) × L2.

Correct and Efficient Antichain Algorithms for Refinement Checking 191

4 Antichain Algorithms for Refinement Checking

The normalisation of the specification LTS in refinement checking dominates the
theoretical worst-case run time complexity of refinement checking, which itself
is a PSPACE-hard problem. In practice, however, refinement checking can often
be done quite effectively. Nevertheless, as observed in [21], there is room for
improvement by exploiting an antichain approach to keep the size of the normal
form LTS of the specification in check.

An antichain is a set A ⊆ X of a partially ordered set (X,≤) in which
all distinct x, y ∈ A are incomparable: neither x ≤ y nor y ≤ x. Given a
partially ordered set (X,≤) and an antichain A, the operation � checks whether
A ‘contains’ an element x; that is, x � A holds true if and only if there is some
y ∈ A such that y ≤ x. We write Y �∀ A iff y � A for all y ∈ Y . Antichain A
can be extended by inserting an element x ∈ X, denoted A�x, which is defined
as the set {y | y = x ∨ (y ∈ A ∧ x �≤ y)}. Note that this operation only yields an
antichain whenever x �� A.

As [1,21] suggest, the state space of the cartesian product (S, ι,Act,→)
between the normal form of LTS L1 and the LTS L2 induces a partially
ordered set as follows. For (U, s), (V, t) ∈ S, define (U, s) ≤ (V, t) iff s = t and
[[U]]L1 ⊆ [[V]]L1 . Then the set (S,≤) is a partially ordered set. The fundamental
property underlying the reason why an antichain approach to refinement check-
ing works is expressed by the following proposition, stating that the traces of
any state (V, s) in the cartesian product can be executed from all states smaller
than (V, s). We remark that this is due to including the empty set as a state in
the normal form LTS.

Proposition 2. For all (U, s) ≤ (V, s) of a normal form LTS normsfr(L1) × L2

or normfdr(L1) × L2 and for every sequence σ ∈ Act∗ such that (V, s) σ−→→ (V ′, t),
there is some (U ′, t) such that (U, s) σ−→→ (U ′, t) and (U ′, t) ≤ (V ′, t).

The proof of this proposition proceeds by induction on the length of σ and is
routine.

The main idea of the antichain algorithm is now as follows: the set of states
of the cartesian product explored is recorded in an antichain. Whenever a new
state of the cartesian product is found that is already included in the antichain
(w.r.t. the membership test �), further exploration of that state is unnecessary,
thereby pruning the state space of the cartesian product. Note that it is not
immediate that doing so is also ‘safe’ for refusals and divergences. Algorithm 1 is
the pseudocode for checking stable failures refinement and failures-divergences
refinement as presented in [21, Algorithms 2 and 3]; we remark that we combined
these algorithms, as their check for failures-divergences refinement only requires
an additional check for divergences (enabled by the Boolean CheckDiv).

192 M. Laveaux et al.

Algorithm 1. Antichain-based refinement checking algorithm from [21]. The
algorithm is claimed to return true iff LTS L1 = (S1, ι1,Act1,→1) is refined
by L2 = (S2, ι2,Act2,→2). The refinement check conducted checks for stable
failures refinement when CheckDiv is false and failures-divergences refinement
otherwise.
1: procedure refines(L1, L2,CheckDiv)

2: let working be a stack containing a pair ({s | ι1
ε�1 s}, ι2)

3: let antichain := ∅
4: while working �= ∅ do
5: pop (spec, impl) from working
6: antichain := antichain � (spec, impl)
7: if CheckDiv and div(impl) then
8: if not div(spec) then
9: return false

10: else
11: if refusals(impl) �⊆ refusals(spec) then
12: return false
13: for impl

a−→2 impl ′ do
14: if a = τ then
15: spec′ := spec
16: else
17: spec′ := {s′ | ∃s ∈ spec : s

a�1 s′}
18: if spec′ = ∅ then
19: return false
20: if (spec′, impl ′) � antichain is not true then
21: push (spec′, impl ′) into working

22: return true

Let us first stress that the algorithm correctly decides stable failures refine-
ment but it fails to correctly decide failures-divergences refinement. Second, the
algorithm also fails to decide the non-standard relations used in [21], see also
Remark 1. All three issues are illustrated by the example below.

Example 2. Consider the four transition systems depicted below.

s0 s1 s2 t2 s3 t3

τ

a b

τ

a

a

τ

a

Let us first observe that the algorithm correctly decides that s1 	sfr s0 does
not hold, which follows from a violation of tracesw(s0) ⊆ tracesw(s1). Next,
observe that we have s0 	fdr s1, since the divergence of the root state s0 implies
chaotic behaviour of s0 and, hence, any system refines such a system. However,
Algorithm 1 returns false when CheckDiv holds.

With respect to the refinement relations defined in [21], we observe the fol-
lowing. Since s0 is not stable, we have failures(s0) = ∅ and hence failures(s0) ⊆
failures(s1). Consequently, stable failures refinement as defined in [21] should

Correct and Efficient Antichain Algorithms for Refinement Checking 193

hold, but as we already concluded above, the algorithm returns false when
checking for s1 	sfr s0. Next, observe that the algorithm returns true when
checking for s2 	fdr s3. The reason is that for the pair ({s2}, s3), it detects
that state s3 diverges and concludes that since also the normal form state of the
specification {s2} diverges, it can terminate the iteration and return true. This is
a consequence of splitting the divergence tests over two if -statements in lines 7
and 8. According to the failures-divergences refinement of [21], however, the algo-
rithm should return false, since failures(s3) ⊆ failures(s2) fails to hold: we have
(a, {a}) ∈ failures(s3) but not (a, {a}) ∈ failures(s2).
�
We note that the algorithm explores the cartesian product between the nor-
mal form of a specification, and an implementation in a depth-first, on-the-fly
manner. While depth-first search is typically used for detecting divergences, [17]
states a number of reasons for running the refinement check in a breadth-first
manner. A compelling argument in favour of using a breadth-first search is con-
ciseness of the counterexample in case of a non-refinement.

Algorithm 1 can be made to run in a breadth-first fashion simply by using a
FIFO queue rather than a stack as the data structure for working . However, our
implementation of this algorithm suffers from a severely degraded performance.
We can trace this back to the following three additional problems in the origi-
nal algorithm, which also are present (albeit less pronounced in practice) when
utilising a depth-first exploration:

1. The refusal check on line 11 is also performed for unstable states, which,
combined with the definition of refusals in [21] (see also our remark in Foot-
note 1 on page 4), results in a repeated, potentially expensive, search for
stable states;

2. Adding the pair (spec, impl) that is taken from working to antichain might
result in duplicate pairs in working since working is filled with all successors
of that pair in line 21, regardless of whether these pairs are already scheduled
for exploration, i.e., included in working , or not;

3. Contrary to the explicit claim in [21, Section 2.2], the set antichain is not
guaranteed to be an antichain.

The first problem is readily seen to lead to undesirable overhead. The second and
third problem are more subtle. We first illustrate the second problem: the follow-
ing pathological example shows that the algorithm stores an excessive number
of pairs in working .

Example 3. Consider the family of LTSs Lk
n = (Sn, ιn,Actk,→n) with states

Sn = {s1, . . . , sn}, event labels Actk = {e1, . . . , ek} and transitions si
ej−→n si−1

for all 1 ≤ j ≤ k, 1 < i ≤ n and ιn = sn; see also the transition system
depicted below. Note that each LTS that belongs to this family is completely
deterministic.

sn sn−1 . . . s2 s1

ek

.

.

.

e1

e1

.

.

.

ek

e1

.

.

.

ek

194 M. Laveaux et al.

Suppose one checks for refinement between an implementation and specification
both of which are given by Lk

n; i.e., we test for Lk
n 	sfr Lk

n. Then the stack
working will contain exactly i·(k−1)+1 pairs at the end of the i-th iteration
(when i ≤ n), resulting in a working stack size of O(n·k) entries. At the end of
the n-th iteration antichain contains all reachable pairs of the cartesian product,
i.e., antichain = {({sj}, sj) | 1 ≤ j ≤ n} at that point. Emptying working
after the n-th iteration will involve k antichain membership tests per entry.
Consequently, O(n·k2) antichain membership tests are required. A breadth-first
search strategy requires even more antichain membership tests, viz., O(kn).
�
The example below illustrates the third problem of the algorithm, viz., the vio-
lation of the antichain property.

Example 4. Consider the two left-most labelled transition systems depicted
below, along with the (normal form) cartesian product (the LTS on the right).

t0

t1 t2

a
b

b

s0

s1

a b

({t0}, s0)

({t1}, s1) ({t1, t2}, s1)

a b

Algorithm 1 starts with working containing pair ({t0}, s0) and antichain = ∅.
Inside the loop, the pair ({t0}, s0) is popped from working and added to
antichain. The successors of the pair ({t0}, s0) are the pairs ({t1}, s1) and
({t1, t2}, s1). Since antichain contains neither of these, both successors are added
to working in line 21. Next, popping ({t1}, s1) from working and adding this pair
to antichain results in antichain consisting of the set {({t0}, s0), ({t1}, s1)}. In
the final iteration of the algorithm, the pair ({t1, t2}, s1) is popped from working
and added to antichain, resulting in the set {({t0}, s0), ({t1}, s1), ({t1, t2}, s1)}.
Clearly, since ({t1}, s1) ≤ ({t1, t2}, s1), the set antichain no longer is a proper
antichain.
�

5 A Correct and Improved Antichain Algorithm

We address the identified performance problems by rearranging the computa-
tions that are conducted. Note that in order to solve the first performance prob-
lem, we only perform the check to compare the refusals of the implementation
and the normal form state of the specification in case the implementation state
is stable.

Solving the second performance problem is more involved. The essential
observation here is that in order for the information in antichain to be most
effective, states of the cartesian product must be added to antichain as soon
as these are discovered, even if these have not yet been fully explored. This is
achieved by maintaining, as an invariant, that working �∀ antichain; the states

Correct and Efficient Antichain Algorithms for Refinement Checking 195

in working then essentially compose the frontier of the exploration. We achieve
this by initialising working and antichain to consist of exactly the initial state
of the cartesian product, and by extending antichain with all (not already dis-
covered) successors for the state (spec, impl) that is popped from working . As a
side effect, this also resolves the third issue, as now both working and antichain
are only extended with states that have not yet been discovered, i.e., for which
the membership test in antichain fails, and for which insertion with such states
does not invalidate the antichain property.

Algorithm 2. The corrected antichain-based refinement checking algorithm.
The algorithm returns true iff LTS L1 = (S1, ι1,Act1,→1) is refined by
L2 = (S2, ι2,Act2,→2). The refinement check conducted checks for stable fail-
ures refinement when CheckDiv is false and failures-divergences refinement
otherwise.
1: procedure refinesnew(L1, L2,CheckDiv)

2: let working be a stack containing a pair ({s | ι1
ε�1 s}, ι2)

3: let antichain := ∅ � ({s | ι1
ε�1 s}, ι2)

4: while working �= ∅ do
5: pop (spec, impl) from working
6: if not div(spec) or not CheckDiv then
7: if CheckDiv and div(impl) then
8: return false
9: else

10: if stable(impl) then
11: if refusals(impl) �⊆ refusals(spec) then
12: return false
13: for impl

a−→2 impl ′ do
14: if a = τ then
15: spec′ := spec
16: else
17: spec′ := {s′ | ∃s ∈ spec : s

a�1 s′}
18: if spec′ = ∅ then
19: return false
20: if (spec′, impl ′) � antichain is not true then
21: antichain := antichain � (spec′, impl ′)
22: push (spec′, impl ′) into working

23: return true

Algorithm 2 shows the corrected antichain procedure for checking stable failures
refinement and failures-divergences refinement. Since the algorithm fundamen-
tally differs (in the relations that it computes) from the one in [21], we cannot
reuse their arguments in our proof of correctness, which are based on invariants
that do not hold in our case.

196 M. Laveaux et al.

In the remainder of this section, we sketch the proof of correctness of
Algorithm 2 as claimed below by Theorem 2. We focus on the proof of correctness
w.r.t. failures-divergences refinement; for stable failures refinement the proof is
almost the same except that it does not have to consider divergences.

Theorem 2. Let Li = (Si, ιi,Acti,→i) where i ∈ {1, 2} be two labelled transi-
tion systems. Then:

– refinesnew(L1,L2, false) returns true if and only if L1 	sfr L2;
– refinesnew(L1,L2, true) returns true if and only if L1 	fdr L2;

For the remainder of this section we fix the two LTSs Li = (Si, ιi,Acti,→i) where
i ∈ {1, 2}. First we show termination of Algorithm 2. A crucial observation of
the antichain operations is that adding elements to an antichain does not affect
the membership test of elements already included; see the lemma below.

Lemma 1. Let (X,≤) be a partially ordered set, A ⊆ X an antichain, and let
x, y ∈ X. If x � A and y �� A then x � (A � y).

Termination now follows from the observation that all states of the cartesian
product that have been processed occur in antichain and do not get added back
to working ; for this we rely on Lemma 1. To reason formally about the states that
have been processed, we introduce a ghost variable done; i.e., done is intialised
as the empty set and each pair (spec, impl) that is popped from working in line 5
is added to done after line 22. We have the following invariants.

Lemma 2. Let Ln = normfdr(L1) if CheckDiv holds and Ln = normsfr(L1)
otherwise. The while loop (lines 4–22) of Algorithm2 satisfies the following
invariants: done ∪ working ⊆ reachable(Ln × L2), done ∩ working = ∅,
done ∪ working �∀ antichain and working contains no duplicates.

Theorem 3. Algorithm2 terminates for finite state, finitely branching LTSs.

Proof. The total number of pairs present in normsfr(L1)×L2 and normfdr(L1)×L2

are finite since L1 and L2 are finite state. By Lemma 2 we find that, when not
CheckDiv, working ∪ done ⊆ reachable(normsfr(L1) × L2). Likewise, we conclude
working ∪ done ⊆ reachable(normfdr(L1) × L2) when CheckDiv. Furthermore,
as done ∩ working = ∅, done strictly increases in size each iteration and so
only a finite number of iterations of the outer for-loop are possible. Termination
of the inner for-loop follows from the assumption that L1 and L2 are finitely
branching.
�
The correctness of the algorithm requires a lemma that shows anti-monotonicity
of witnesses (cf. Definition 9); see below. Combined with Proposition 2 (see
page 7) this allows us to conclude that the distance (defined below) from a
state in the cartesian product to a witness is at least the distance to a witness
from smaller states.

Correct and Efficient Antichain Algorithms for Refinement Checking 197

Lemma 3. Let (U, s), (V, s) be states of normsfr(L1) × L2 satisfying (U, s) ≤
(V, s). If (V, s) is an SFR-witness then (U, s) is an SFR-witness. Likewise, if
(V, s) is an FDR-witness in normfdr(L1) × L2 and (U, s) ≤ (V, s) then (U, s) is
an FDR-witness.

For a set of states U in the cartesian product, let SFR(U) be a predicate that
is true if and only if U contains an SFR-witness; likewise, FDR(U) holds if and
only if U contains an FDR-witness. We denote the set of all reachable SFR-
witnesses in the cartesian product normsfr(L1) × L2 by S, and the set of all
reachable FDR-witnesses in normfdr(L1) × L2 by F . For a state (U, s) in the
cartesian product, we define the distance to a set U of the cartesian product
by DistU (U, s) as the shortest distance from state (U, s) to a state in U . If U
is unreachable, the distance is set to infinity. Formally, DistU (U, s) = min{|σ| |
∃(V, t) ∈ U : (U, s) σ−→→ (V, t)}. We generalise this to a set of states V as follows:
DistU (V) = min{DistU (U, s) | (U, s) ∈ V}.

Proposition 3. For (U, s), (V, s) in normsfr(L1) × L2 satisfying (U, s) ≤ (V, s)
we have DistS(U, s) ≤ DistS(V, s). Likewise, for (U, s), (V, s) in normfdr(L1)×L2

satisfying (U, s) ≤ (V, s) we have DistF (U, s) ≤ DistF (V, s).

Proof. Follows from Lemma 3 and Proposition 2.
�
We conclude with a sketch of the proof of correctness of the algorithm. The full
proof can be found in [14].

Proof (Theorem 2). We prove both implications, by contraposition, for the case
of failures-divergences refinement. The proof of correctness for stable failures
refinement proceeds along the same lines.

– Assume that Algorithm 2 returns false. This occurs when the pair (spec, impl)
satisfies the conditions of an FDR-witness, as follows from lines 7, 11 and 18 of
Algorithm 2. Since working ⊆ reachable(normfdr(L1) × L2) and (spec, impl) ∈
working , the FDR-witness is reachable. By Theorem 1 we find that L1 	fdr L2

fails to hold.
– Assume that an FDR-witness is reachable in normfdr(L1) × L2, i.e., F �= ∅.

Then the following invariant holds in the while loop (lines 4–22):

DistF (done) > DistF (working) and DistF (working) = DistF (antichain).

Towards a contradiction, assume Algorithm 2 returns true. This can only
be the case when working is empty. Upon termination of the while loop,
DistF (working) = DistF (∅) = ∞. By the above invariants, DistF (working) =
DistF (antichain). Since ι = ({s ∈ S1 | ι1

ε�1 s}, ι2) � antichain and
DistF (ι) < ∞, we also have DistF (antichain) < ∞. Contradiction.
�

We remark that the correctness of the algorithm is independent of the search
order that is used. That is, replacing the data structure for working with a
FIFO queue results in a breadth-first search strategy and does not impair the

198 M. Laveaux et al.

correctness of the algorithm. As explained in [17], breadth-first search has the
advantage to yield the shortest possible counterexamples. Reconstructing such
counterexamples can be done efficiently by recording, for each state stored in
working , its breadth-first search level. We close this section by briefly returning
to Example 3.

Example 5 Reconsider the family of transition systems of Example 3. Contrary
to the original algorithm, the improved algorithm will, in each iteration, only add
a single successor state to working , because every other successor will already
be part of antichain. This results in working containing O(1) entries; antichain
will be queried O(n·k) times. Compared to the original algorithm, this reduces
overhead for the depth-first search strategy by a factor n·k in the working stack
size and by a factor k in the number of antichain checks. For the breadth-first
search strategy, the working size is reduced by a factor kn and the antichain
checks by a factor kn/n.
�

6 Experimental Validation

We have conducted several benchmarks to compare the run time of both algo-
rithms to show that solving the identified issues actually improves the run time
performance in practice.

For this purpose we have implemented a depth-first and breadth-first variant
of both Algorithms 1 and 2 in a branch of the mCRL22 tool set [5] as part of
the ltscompare tool, which is implemented in C++. The implementation of
the working and antichain operations are the same. For the implementation of
refusals in Algorithm 1 we follow the definition of [21] (see also Footnote 1 on
page 4), implementing refusals for any state, whereas for Algorithm2 we follow
Definition 3. The source modifications and experiments can be obtained from
the downloadable package [15].

The experiments we consider are taken from three sources. First, Example 3
for exposing the performance overhead of the original algorithm. Second, several
linearisability tests of concurrent data structures for more practical benchmarks.
These models have been taken from [16], and consist of six implementations of
concurrent data types that, when trace-refining their specifications, are guar-
anteed to be linearisable. As in [21], we approximate trace-refinement by the
stronger stable failures refinement. For these models, the implementation and
specification pairs are based on the same descriptions; the difference between
the two is that the specification uses a simple construct to guarantee that each
method of the concurrent data structure executes atomically. This significantly
reduces the non-determinism and the number of transitions in the specification
models.

Finally, an industrial model of a control system modelled in the Dezyne
language [3] that first exposed the performance issues in practice. The industrial
example is of a more traditional flavour in which the specification is an abstract

2 www.mcrl2.org.

www.mcrl2.org

Correct and Efficient Antichain Algorithms for Refinement Checking 199

description of the behaviours at the external interface of a control system, and
the implementation is a detailed model that interacts with underlying services
to implement the expected interface. For reasons of confidentiality, the industrial
model cannot be made available.

All measurements have been performed on a machine with an Intel Core
i7-7700HQ CPU 2.80 Ghz and a 16 GiB memory limit imposed by ulimit -Sv
16777216.

6.1 Benchmarking Example 3

Example 3 has been benchmarked for all combinations of k, n ≤ 500, where k
and n are multiples of 10, checking stable failures refinement between equivalent
LTSs, i.e., Lk

n 	sfr Lk
n. Figure 1 shows the run time performance (in seconds) of

the depth-first variant of Algorithm1 on the left and Algorithm2 on the right.
The plots match the asymptotic growth as stated in Example 3, illustrating a

factor k speed-up of our algorithm compared to the original one. A comparison
of the performance of breadth-first search is infeasible as the original algorithm
already runs into the memory limit for small k and n, whereas for Algorithm 2
there is only little difference between the depth-first and breadth-first variants.

Note that due to the absence of τ -transitions, there is no performance dif-
ference in the computation of refusals in both algorithms. Consequently, the
difference in performance is entirely due to the different way of inspecting and
extending working .

100 200 300 400 500200

400

0

50

100

k
n

se
co
nd

s

100 200 300 400 500200

400

0

0.5

1

k
n

se
co
nd

s

Fig. 1. The run time performance (in seconds) of Example 3 for depth-first search (left:
original algorithm, right: our improved algorithm).

6.2 Benchmarking Practical Examples

Our next batch of experiments consists of more typical refinement checks,
assessing whether the behaviours of the implementations are in line with the
behaviours prescribed by their specifications. Characteristics of the state spaces
are listed in Table 1.

200 M. Laveaux et al.

Table 1. The size of the state space for each specification and associated implemen-
tation.

Model Ref. Specification 	sfr Implementation

#states #transitions #states #transitions

Coarse set [11] 50 488 64 729 Yes 55 444 145 043

Fine-grained set [11] 3 720 3 305 Yes 5 077 9 006

Lazy set [11] 3 565 3 980 Yes 24 496 41 431

Optimistic set [11] 25 435 28 154 Yes 234 332 389 344

Non-blocking queue [19] 1 248 1 473 No 3 030 5 799

Treiber stack [20] 87 389 124 740 Yes 205 634 564 862

Industrial 24 45 Yes 24 551 45 447

The run time performance of both algorithms (both depth-first and breadth-first)
can be found in Table 2. The run times we report are averages obtained from
five runs. As illustrated by the figures in that table, we see small improvements
of our algorithm over the original algorithm for depth-first search, whereas the
improvements for breadth-first search are dramatic.

Table 2. Run time comparison between Algorithms 1 and 2 using both a depth-first
and breadth-first search strategy. All run times are in seconds; † indicates an out-
of-memory issue indicating that the algorithm failed to complete within the imposed
16 GiB memory limit.

Model Depth-first (sec.) Breadth-first (sec.)

Alg. 1 Alg. 2 Alg. 1 Alg. 2

Coarse set 9.15 8.61 † 9.06

Fine-grained set 0.37 0.32 † 0.46

Lazy set 1.19 1.02 † 1.26

Optimistic set 16.96 14.13 † 22.67

Non-blocking queue 0.03 0.02 0.17 0.09

Treiber stack 148.39 137.52 † 352.59

Industrial 1.36 0.15 296.29 0.17

To better understand the reason behind the performance gains we obtain, we
report on the maximal size of working and antichain, and the number of suc-
cessful and unsuccessful antichain membership tests; see Table 3. We only report
on metrics for the breadth-first search strategy; the figures for the depth-first
search strategy for both algorithms are similar; see [14].

Correct and Efficient Antichain Algorithms for Refinement Checking 201

Table 3. Metrics for the breadth-first search strategy experiments. For the original
algorithm most of these figures are under-approximations due to the out-of-memory
issue. All values we report on are in thousands (i.e., the actual number is obtained by
multiplying with 103).

Model max size working max size antichain antichain-hits antichain-misses

Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

Coarse set 4 710.3 3.4 3.6 55.4 13.9 96.2 7 807.4 60.3

Fine-grained set 6 604.5 0.4 1.9 5.1 180.7 7.2 15 547.9 9.7

Lazy set 6 726.4 1.7 4.3 24.5 130.5 24.3 14 852.8 35.2

Optimistic set 6 366.5 15.2 4.4 234.4 38.7 292.5 14 238.0 434.2

Non-blocking queue 6.3 0.3 0.3 2.7 3.1 342.6 14.6 4.0

Treiber stack 5 829.9 139.2 4.8 214.8 76.1 2 411.6 8 340.6 1 523.8

Industrial 549.2 224.3 43.1 43.1 54 591.1 36.4 12 888.4 43.1

For the breadth-first search strategy, the fact that the original algorithm delays
adding state pairs to the antichain induces an enormous overhead in the size of
working due to the many failing antichain checks. This can be seen from the
large size of working and the small size of antichain. Because of these differ-
ences in size, most antichain membership tests fail in the original algorithm.
The situation is largely reversed in our improved algorithm, explaining the sub-
stantial performance improvements we observe. Since the original algorithm for
failures-divergences refinement is incorrect, we only compared the performance
of both algorithms for stable failures refinement. The performance of our failures-
divergences refinement algorithm is comparable to our stable failures refinement
algorithm; we refer to [14] for further details. In [14], we also performed additional
experiments which show that further run time improvements can be obtained
by applying divergence-preserving branching bisimulation [7] minimisation as a
preprocessing step to refinement checking.

7 Conclusions

Our study of the antichain-based algorithms for deciding stable failures refine-
ment and failures-divergences refinement presented in [21] revealed that the
failures-divergences refinement algorithm is incorrect; both algorithms perform
suboptimally when implemented using a depth-first search strategy and poorly
when implemented using a breadth-first search strategy. Moreover, both violate
the claimed antichain property. We have proposed alternative algorithms for
which we showed correctness and which utilise proper antichains. Our experi-
ments indicate significant performance improvements for deciding stable failures
refinement and a performance of deciding failures-divergences refinement that is
comparable to deciding stable failures refinement.

202 M. Laveaux et al.

References

1. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets
antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
158–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2 14

2. Bergstra, J.A., Klop, J.W., Olderog, E.: Failures without chaos: a new process
semantics for fair abstraction. In: Wirsing, M. (ed.) IFIP TC 2/WG 2.2 1986, pp.
77–104, North-Holland (1987)

3. van Beusekom, R., et al.: Formalising the Dezyne modelling language in mCRL2.
In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS/AVoCS -2017. LNCS,
vol. 10471, pp. 217–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67113-0 14

4. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating pro-
cesses. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY 1984.
LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985). https://doi.org/10.1007/
3-540-15670-4 14

5. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

6. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

7. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009). https://doi.org/10.3233/FI-
2009-109

8. van Glabbeek, R.J.: Personal Communication, 7 January 2019
9. Glabbeek, R.: A branching time model of CSP. In: Gibson-Robinson, T., Hopcroft,

P., Lazić, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol. 10160, pp.
272–293. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51046-0 14

10. Gomes, A.O., Butterfield, A.: Modelling the haemodialysis machine with Circus.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 409–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 34

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

12. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

13. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990). https://doi.org/10.
1016/0890-5401(90)90025-D

14. Laveaux, M., Groote, J.F., Willemse, T.A.C.: Correct and efficient antichain algo-
rithms for refinement checking. CoRR abs/1902.09880 (2019)

15. Laveaux, M.: Downloadable sources and benchmarks for the experimental valida-
tion (2019). https://doi.org/10.5281/zenodo.2573095

16. Paval, R.: Modeling and verifying concurrent data structures. Master’s thesis, Eind-
hoven University of Technology (2018). https://research.tue.nl/files/93882157/
Thesis Roxana Paval.pdf

https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.1007/3-540-15670-4_14
https://doi.org/10.1007/3-540-15670-4_14
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.1007/978-3-319-51046-0_14
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.5281/zenodo.2573095
https://research.tue.nl/files/93882157/Thesis_Roxana_Paval.pdf
https://research.tue.nl/files/93882157/Thesis_Roxana_Paval.pdf

Correct and Efficient Antichain Algorithms for Refinement Checking 203

17. Roscoe, A.W.: Model-checking CSP. In: Roscoe, A.W. (ed.) A Classical Mind:
Essays in Honour of C.A.R. Hoare, Chap. 21, pp. 353–378. Prentice Hall Interna-
tional (UK) Ltd. (1994)

18. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

19. Shann, C., Huang, T., Chen, C.: A practical nonblocking queue algorithm using
compare-and-swap. In: ICPADS 2000, pp. 470–475. IEEE Computer Society
(2000). https://doi.org/10.1109/ICPADS.2000.857731

20. Treiber, R.K.: Systems programming: coping with parallelism. International Busi-
ness Machines Incorporated. Thomas J. Watson Research (1986)

21. Wang, T., et al.: More anti-chain based refinement checking. In: Aoki, T., Taguchi,
K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 364–380. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34281-3 26

https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1109/ICPADS.2000.857731
https://doi.org/10.1007/978-3-642-34281-3_26

Towards Verified Blockchain
Architectures: A Case Study on

Interactive Architecture Verification

Diego Marmsoler(B)

Technische Universität München, Munich, Germany
diego.marmsoler@tum.de

Abstract. With the emergence of cryptocurrencies, Blockchain archi-
tectures have become more and more important. In such architectures,
components maintain and exchange a list of records in a way which
makes the entries persistent, i.e., resistant to modifications. Thereby, the
architecture is dynamic in the sense that components may join or leave
the network and connections between them may change over time. The
dynamic nature of Blockchain architectures makes their verification a
challenge, since it involves reasoning about potentially unbounded num-
ber of components. To this end, we developed FACTum, an approach
for the specification and interactive verification of dynamic architectures
based on the interactive theorem prover Isabelle. In this paper we report
on the outcome of applying the approach to formally specify a version
of Blockchain architectures and verify that the list entries of such archi-
tectures are indeed persistent.

Keywords: Blockchain · Interactive theorem proving ·
Dynamic architectures · Factum · Isabelle

1 Introduction

The concept of Blockchain was first introduced with the invention of the Bitcoin
cryptocurrency by a person (or group) known as Nakamoto in 2008 [1]. Since
then, the technology found several other applications, especially in the domain
of cryptocurrencies [2]. However, the technology seems promising also for other
domains, such as the medical [3], land management [4], business process man-
agement [5], or even identity management [6]. Usually, the term “blockchain”
refers to a list of records, so-called blocks, which contain actual data elements.
A Blockchain architecture, on the other hand, consists of a network of so-called
nodes, in which every node maintains a copy of the blockchain and continu-
ously exchanges its copy with other nodes. Thereby, blockchains are required to
be persistent, i.e., entries should be resistant to modifications. To achieve this,
nodes are required to follow a certain protocol consisting of several, so-called,
consensus rules.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 204–223, 2019.
https://doi.org/10.1007/978-3-030-21759-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_12

Towards Verified Blockchain Architectures 205

Blockchain architectures are an instance of a more general class of architec-
tures called dynamic architectures [7]. In such architectures, components may
join or leave the architecture and connections between components can change
over time. This dynamics makes the verification of such architectures a challenge,
since it involves reasoning about an unbounded number of components.

In an attempt to address this problem, we developed FACTum [8], an app-
roach for the specification and verification of such architectures. A FACTum
specification consists of three main parts:

– A specification of the involved data types in terms of abstract datatypes.
– A specification of the involved types of components in terms of interfaces and

corresponding assertions about the behavior of components of a certain type.
– A set of architectural assertions to specify component activation and recon-

figuration of connections between components.

A FACTum specification can be systematically transferred to a corresponding
Isabelle [9] theory where it is subject to interactive verification.

While the general FACTum approach was already introduced in [8], the focus
of [8] was the presentation and discussion of the specification techniques and the
algorithm to map a FACTum specification to a corresponding Isabelle locale.
To this end, we demonstrated the algorithm by means of three simple examples:
a Singleton architecture, a Publisher-Subscriber architecture, and a Blackboard
architecture, amounting up to 500 lines of Isabelle code. With this paper, we
build on the work described in [8] and evaluate the approach on a larger case
study. To this end, we applied the approach to specify Blockchain architectures
based on the description provided in [1] and verify persistency of confirmed
blocks. With this paper, we report on the outcome of applying FACTum for the
specification and verification of Blockchain architectures according to [1]. Thus,
the contribution of the paper is twofold:

– It describes a case study for FACTum, which reveals important insights about
the use of FACTum for the verification of dynamic architectures.

– It provides a formal specification of Blockchain architectures, which is guar-
anteed to resist double spend attacks.

In total, the specification consists of 12 assumptions for Blockchain architectures
and verification required roughly 3500 lines of Isabelle/HOL code.

In the next section, we provide some background on Blockchains (Sect. 2)
and the FACTum approach (Sect. 3). We then present a possible specification
of Blockchain architectures (Sect. 4) and describe our formalization and verifica-
tion of the persistence property for blockchain entries (Sect. 5). We continue with
a discussion of related work (Sect. 7) in the area of formalizations of blockchain-
related concepts and verification of consensus algorithms. We conclude our pre-
sentation with a summary of major results and a discussion of its implications
as well as directions for future work (Sect. 8).

206 D. Marmsoler

2 Blockchain Architectures

Blockchain architectures were first introduced with the invention of the Bitcoin
cryptocurrency [1]. In cryptocurrencies, a digital coin is usually passed from one
owner to the next one by digitally signing an electronic transaction. To ensure
that coins are only spent once, a payee has to know whether a received coin
is already spent or not at the time he receives it. This problem is known as
the double spend problem and before the invention of Blockchain, it was solved
using a central, trusted identity, which knew every transaction of the system and
confirmed that a coin was not already spent. In an attempt to avoid such central
authorities, Bitcoin proposed a system called Blockchain to solve the double
spend problem in a distributed, peer-to-peer network. To this end, the network
stores a continuously growing list of persistent entries, which contain the actual
money transactions. The list is shared among all participants of the network and
by inspecting it, a node can independently verify that a coin was not already
spent. In this paper, we call such a network a Blockchain architecture and in the
following we summarize some basic concepts of such architectures. Thereby, we
follow the informal description provided in [1].

Blockchain. The term “blockchain” usually refers to the major data structure
involved in a Blockchain architecture: a list of records aka. blocks. Blocks, on the
other hand, contain the actual data elements, for example, money transactions
in cryptocurrency applications. Blocks can be added on top of the chain and ver-
ified by a process known as mining. In Bitcoin, for example, mining involves the
guessing of a random number (a so-called nonce), adding it to a candidate block
and checking whether the corresponding hash exhibits a certain form (starting
with a certain number of zeros). This makes mining of a new block computation-
ally expensive, since it usually requires many guesses (and subsequent hashings)
to find a number which produces the right hash. On the other hand, ensuring
that a given block was indeed successfully mined remains computationally cheap
(it only requires a single hashing).

Consensus. In a Blockchain architecture, every node maintains a local copy of
the blockchain, which it exchanges with its peers. Due to the distributed nature,
it may happen that two different blocks are added concurrently, resulting in two
different versions of the blockchain available in the network. In order to reach a
consensus on which version is the “right” one, a Blockchain architecture usually
comes with a strategy of how to select the right version from a set of competing
blockchains. This rule is applied by every honest node of the network and should
guarantee that the nodes eventually reach a consensus.

Consensus Rules. There are several different types of strategies used to reach
consensus, such as proof-of-work [1] or proof-of-stake [2]. In the proposed spec-
ification, we rely on the proof-of-work concept also used by Bitcoin and related
applications. It is based on the observation that the number of blocks in a
blockchain usually represents the amount of computing power involved to build

Towards Verified Blockchain Architectures 207

this chain. Thus, the largest chain from a set of competing blockchains must be
the one accepted by the majority of the network. Thus, if a honest node is facing
two versions of a blockchain, it is required to always choose the longer one.

Confirmation Blocks. In a proof-of-work network, every CPU gets one vote and
majority decisions can usually only be manipulated if one entity owns more than
50% of the computing power of the network. This might not be true, however,
for blocks added to the blockchain only recently. A single node may just be lucky
and guess the right nonce fast, without investing a lot of computational power.
To cope with such lucky guesses, one usually waits for some blocks to be mined
on top of the block containing a certain transaction, to accept this transaction
as completed. These blocks are called confirmation blocks and in Bitcoin, for
example, it is suggested to wait for at least six confirmation blocks to accept a
transaction as completed [10].

3 Factum

FACTum [8] is an approach for the formal specification and interactive verifica-
tion of dynamic architectures. It consists of a formal system model for dynamic
architectures, techniques to specify architectures over this model, an algorithm
to map the specification to a corresponding Isabelle theory, and an Isabelle-based
framework to support the interactive verification of architecture specifications.
FACTum is also implemented in terms of an Eclipse/EMF application called
FACTum Studio [11] which supports a user in the development of architecture
specifications.

3.1 System Model

In Factum, an architecture is modeled in terms of sets of so-called architecture
traces [7,12], i.e., streams [13] of architecture snapshots. Thereby, an architec-
ture snapshot consists of a set of (active) components with their ports valuated
by messages and connections between the ports of the components. Moreover,
components of a certain type may be parameterized by a set of messages.

c1o0M3

i0M4 o1

M5

o2 M1

c2〈q=M2〉i0M1

o0M6 i1

M5

i2 M3

c3〈p=M〉
i0 M2

o0 M1i1

M1

o1

M3

k0

,

c1o0M4

i0M3 o1

M1

o2 M2

c4i0M2
i1

M1

o0 M3

k1

,

c1o0
M3

i0M2 o1

M4

o2 M1

c4i0M6
i1

M1

o0 M2

c3〈p=M〉
i0 M5

o0 M4i1

M3

o1
M6

k2

,

Fig. 1. Architecture trace with its first three architecture snapshots.

208 D. Marmsoler

Example 1 (Architecture trace). Assuming that M1, M2, . . . are sets of messages.
Figure 1 depicts an architecture trace t with corresponding architecture snap-
shots t(0) = k0, t(1) = k1, and t(2) = k2. Architecture snapshot k0, for example,
consists of three active components: c1, c2, and c3. Component c3 is parameter-
ized with a parameter p with value M. It has two input ports i0 and i1, valuated
with messages M2 and M1, respectively. Moreover, it has two output ports o0 and
o1, valuated with messages M1 and M3, respectively. ��

Note that the model allows components to be valuated by a set of messages,
rather than just a single message, at each point in time. Moreover, components
can be activated and deactivated and connections between them may change over
time. The model of architecture traces is also implemented by a corresponding
Isabelle/HOL theory, which is described in [14].

3.2 Specifying Dynamic Architectures

FACTum provides several techniques to support the formal specification of
dynamic architectures [8]:

– First, the data types involved in an architecture are specified in terms of
algebraic specifications [15].

– Then, a set of interfaces is specified graphically using architecture diagrams.
– Component types are then created by adding constraints about component

behavior to the corresponding interfaces.
– Finally, a set of architectural assertions is added to specify constraints about

component activation and deactivation as well as interconnection.

A FACTum specification comes with a formal semantics in a denotational style,
which is described in [16]. To this end, each specification is interpreted by a
corresponding set of architecture traces.

Constraints about component behavior are specified in terms of behavior
trace assertions, i.e., first order linear temporal logic formulæ using ports of the
interfaces as free variables. Architectural constraints are specified in terms of
architecture trace assertions. These are also a type of first order linear temporal
logic formulæ, with variables denoting components and some special terms and
predicates:

– With c.p, for example, we denote the valuation of port p of a component c.
– With c we denote that component c is currently active.
– With c.o � c′.i we denote that output port o of component c is connected to

input port i of component c′.

Architecture diagrams are a graphical formalism to specify interfaces for com-
ponent types. To this end, component types are represented by rectangles with
their ports denoted by empty (input) and filled (output) circles. Architecture
diagrams may be annotated to easily express common architectural constraints:

Towards Verified Blockchain Architectures 209

Activation annotations can be added to component types, to specify upper
and lower bounds for the number of active components of the corresponding
type.

Connection annotations are expressed in terms of annotated lines between the
ports of component types, to express upper and lower bounds for connections
between the ports of corresponding components.

Note that activation and connection annotations are actually just synonyms for
certain architectural assertions and may also be expressed using architecture
trace assertions described above.

3.3 Verifying Dynamic Architectures

FACTum comes with an algorithm to map a given specification to a corre-
sponding Isabelle theory, where it is subject to formal verification. To support
the verification, FACTum provides a framework for the interactive verification of
architecture specifications in Isabelle/HOL [14]. Among other things, the frame-
work implements a calculus to support reasoning about component behavior in
a dynamic environment [17].

4 Formalizing Blockchain Architectures

In the following, we present our formalization of Blockchain architectures in
FACTum.

4.1 Data Types and Ports

As described in Sect. 2, a key data type for Blockchain architectures is the
blockchain itself. In the following, we first formalize a blockchain data struc-
ture by means of algebraic datatypes. Then, we specify two types of ports to
send and receive blockchains, respectively.

Blockchains. A blockchain is modeled as a parametric list, in which the nature
of the list entries (the blocks) depends on the concrete application context of the
pattern. In cryptocurrency applications, for example, a block is usually a set of
transactions. In other applications, however, blocks could be of a different type.

Figure 2a depicts a specification of blockchains by means of an abstract data
type specification. First, a parametric sort 〈B〉BC is introduced as a synonym for
a corresponding list. Thereby, the type of blocks is denoted with type param-
eter B. In addition, we specify a function symbol MAX for blockchains, which
takes a set of blockchains, and returns a blockchain with maximal length. Thus,
we require two characteristic properties for MAX : Eq. (1) requires that a max-
imal blockchain of a set of blockchains BC is part of BC itself. In addition,
Eq. (2) requires that MAX is indeed maximal, i.e., that the length of every
other blockchain of the corresponding set BC is less or equal to the length of
MAX . Note that MAX (BC) is guaranteed to exist, whenever BC �= ∅ and BC
is finite.

210 D. Marmsoler

Port Types. Figure 2b specifies two types of ports which can be used to
exchange blockchains: pin for input ports and pout for output ports. They will
be used later on for the specification of component type interfaces.

DTSpec Blockchain imports 〈B〉LIST as 〈B〉BC
MAX : ℘(〈B〉BC) 〈B〉BC
flex BC : ℘(〈B〉BC)

bc : BC

MAX (BC) ∈ BC (1)

∀bc ∈ BC : #bc ≤ #MAX (BC) (2)

(a) Data type specification.

PSpec BPort

pin : 〈B〉BC
pout : 〈B〉BC

(b) Port specification.

Fig. 2. Data types and ports for Blockchain architectures.

4.2 Component Types

As described in Sect. 2, the components involved in a Blockchain architecture are
called nodes. In the following, we first describe the syntactic interface of such
a node component. Then, we introduce some auxiliary definitions for nodes.
Finally, we provide a set of characteristic properties for a node’s behavior.

Interfaces. The architecture diagram depicted in Fig. 3 is parameterized by
a number of confirmation blocks cb and specifies the syntactic interface of
Blockchain nodes. Actually, the diagram also contains a graphical representation
of a connection constraint as well as the definition of three auxiliary definitions
for nodes. For now, we may just ignore these additional aspects and focus on the
description of the interface. We will, however, come back to the auxiliary defini-
tions in the next section and we will discuss the connection constraint later on
in Sect. 4.3.

Diagram Blockchain〈cb : NAT〉

Node〈honest : bool〉
bc : 〈B〉BC
mining : boolpin pout

�ndhn ,nd ′
hn′ : hn ∧ hn ′	 var hn : Node[honest]

dn : Node[¬honest]

PoW
def= LEAST x : ∀hn : hn #hn.bc≤x

hmining
def= ∃hn : hn ∧ hn.mining

dmining
def= ∃dn : dn ∧ dn.mining

Fig. 3. Architecture diagram for Blockchain architectures.

Towards Verified Blockchain Architectures 211

Recall that a node in a Blockchain may either be honest or dishonest. Thus,
a node is parameterized by a boolean value honest , which means that every
component of type node is associated with a boolean value, which determines
its trustworthiness. In addition, a node has two state variables: variable bc keeps
a local copy of the blockchain and variable mining signals the mining of a new
block. Finally, a node may exchange blockchains via its input port pin and output
port pout .

Auxiliary Definitions. To support subsequent development, the right hand
side of Fig. 3 introduces three auxiliary definitions for nodes: honest proof-of-
work and honest/dishonest mining.

Honest Proof-of-Work. Honest proof-of-work (PoW) represents the maximal
proof-of-work, currently available in the honest community. Since proof-of-work
corresponds to the length of a blockchain (Sect. 2), honest proof-of-work is
defined as the least upper bound for the length of honest blockchains, i.e.
blockchains of active (hn) and honest (Node[honest]) nodes. Note the use of
the definite description operator LEAST to denote the least element x which
satisfies a certain condition.

Honest and Dishonest Mining. Honest mining (hmining) is a predicate to
denote the successful mining by some honest node. Similarly, dishonest mining
(dmining) signals the mining by some dishonest node. Both predicates are inter-
preted over an architecture state and require the existence of a honest/dishonest
node, which currently finished mining. Honest and dishonest mining play an
important role for the formalization of a fundamental assumption for Blockchain
architectures later on.

Behavior. The behavior of nodes is formalized in terms of behavior trace asser-
tions (described in Sect. 3).

Honest Nodes. The behavior of honest nodes is specified in Fig. 4 (with ©P and
�P we denote taht P is true in the next state or in all future states, respec-
tively). First, we introduce several variables to denote single blocks (b) and
blockchains (c and c′). Note the distinction between “flexible” and “rigid” vari-
ables: while “flexible” variables may be newly interpreted at each point in time,
“rigid” variables keep their value over time. Then, we require three assertions
for a honest node’s behavior: Eq. (3) requires that a new node is initialized by
the empty blockchain while Eq. (4) requires that every honest node always for-
wards a copy of its local blockchain to the network through its output port pout .
Equation (5) formalizes the consensus rule for honest nodes, which (according to
Sect. 2) requires that a honest node always takes the blockchain with maximal
proof-of-work as the current one, i.e, if a honest node receives a blockchain on
its input with more proof-of-work than its own blockchain, then it will accept

212 D. Marmsoler

that blockchain as the current one. Its formalization consists of two parts: The
antecedent characterizes the blockchain taken by a honest node:

c =

{
MAX (pin) if ∃c′ ∈ pin : #c′ > #bc,
bc else.

Since the proof-of-work for a blockchain is given by its length, the property
fixes a blockchain c, which is either a maximal blockchain from its input port
pin (for the case that it is strictly longer than its own blockchain), or its own
blockchain bc (for the case that no blockchain from its input is longer than its
own blockchain). The consequent formalizes the mining process:

©(¬mining ∧ bc = c ∨ mining ∧ ∃b : bc = c@b
)
.

Thereby, a honest node may either mine a new block (mining), append it to c
and take the resulting chain as its current blockchain bc, or it may not mine any
new block (¬mining) and just set c as its current blockchain bc.

Fig. 4. Specification of behavior for honest nodes.

Dishonest Nodes. The attacker model is given by the specification of the behav-
ior for dishonest nodes in Fig. 5. Similar as for honest nodes, Eq. (6) requires
that a new node is initialized by the empty blockchain. Additional behavior is
characterized by Eq. (7). Note that, compared to honest nodes, dishonest nodes
may not follow the consensus rules. Thus, while honest nodes always take the
blockchain with the most proof-of-work as their current blockchain, dishonest
nodes may take every blockchain from its input as their current one. Moreover,
in contrast to honest nodes, dishonest nodes may also drop elements from a
blockchain, thus trying to modify a blockchain’s history. The formalization con-
sists of two parts. The antecedent first characterizes a blockchain c:

c ∈ (pin ∪ {bc})

Towards Verified Blockchain Architectures 213

The consequent is similar to the one for honest nodes:

©(¬mining ∧ bc � c ∨ mining ∧ ∃b : bc = c@b
)

Note that, due to computing restrictions, even dishonest nodes may at most
mine one single block at a time. Thus, the mining case is indeed the same as
for honest nodes. The difference, however, comes with the case in which no new
block is mined. While, for such a case, honest nodes are required to take c as
their current blockchain, dishonest nodes may take an arbitrary prefix of c as
their current blockchain.

Fig. 5. Specification of behavior for dishonest nodes.

4.3 Architectural Constraints

Architectural constraints restrict activation and deactivation of components and
connections between component ports [7,12]. They are mainly formulated in
terms of architecture trace assertions, i.e., linear temporal logic formulæ, for-
mulated over component ports1. Certain constraints, however, can be expressed
more easily in a graphical manner, by annotating the pattern’s architecture dia-
gram. In the following, we first discuss connection constraints for Blockchain
architectures. Then, we present some basic activation constraints for such archi-
tectures. Finally, we conclude the section with a description of a fundamental
constraint for Blockchain architectures, which is essential to guarantee persis-
tence of blockchain entries.

Connection Constraints. Connection constraints restrict connections
between component ports and therefore they affect the topology of an architec-
ture. For our pattern of Blockchain architectures, we require a single connection
constraint, which is expressed graphically by an annotation of the architecture
diagram, depicted in Fig. 3. The dashed connection between a nodes input and
output ports expresses a conditional connection between ports pout and pin of

1 Architecture trace assertions are summarized in Sect. 3.

214 D. Marmsoler

two (possible different) components of type node. The minimal condition for the
connection to happen is expressed by the annotation

�ndhn ,nd ′
hn′ : hn ∧ hn ′�.

The condition essentially requires the ports to be connected, whenever two com-
ponents are honest . Roughly speaking, the constraint requires that every honest
node is connected to every other honest node of the network. While this con-
straint is indeed a strong requirement, it is necessary to guarantee persistence
of blockchain entries.

Fig. 6. Basic activation constraints for Blockchain architectures.

Basic Activation Constraints. Activation constraints affect the activation
and deactivation of components of a certain type. We require four basic activation
constraints for Blockchain architectures, summarized in Fig. 6 (with ©– P we
denote that P was true in the previous state) and explained in more detail in
the following. Finite number of active nodes. Our first activation property for
Blockchain architectures is more of technical nature and restricts the number of
active components at each point in time. By Eq. (8), we require that at each point
in time, only a finite number of node components can be active. The property
should be satisfied by every architecture found in practice. However, it is needed
to guarantee that at every point in time, a node component receives only a finite
number of blockchains which, in turn, is required to guarantee the existence of
a maximal blockchain for a component’s input port.

Keeping the Honest Blockchain. The second activation property we require for
Blockchain architectures is needed to guarantee that the honest blockchain, i.e.,
the blockchain accepted by honest nodes as the “correct” one, is not lost. It is
formalized by Eq. (9) and requires that at every point in time, there exists an

Towards Verified Blockchain Architectures 215

active and honest node, which stays active for at least one time step. Thus, it is
guaranteed that the current honest blockchain is stored by the honest network
and does not get lost.

Mining on Most Recent Blockchain. Another basic activation property for
Blockchain architectures is needed to ensure that the honest network indeed
collaborates in the mining process. The property is formalized by Eq. (10) using
the previous operator: it requires that whenever a honest node is mining a new
block, this node was active at the time point right before the mining happened.
This ensures that the node had indeed access to the most recent version of the
honest blockchain and works on extending this version instead of an older one.

Closed Architecture. The last basic activation property for Blockchain architec-
tures requires such an architecture to be closed. Equation (11) formalizes the
property and requires that for every blockchain available at the input of any
active node component at any point in time, there exists a corresponding active
node component which provides the blockchain at its output. In other words, the
property guarantees that every blockchain available in the architecture was build
up by the network via the mining process and not injected from the outside.

A Fundamental Assumption for Blockchain Architectures. In the fol-
lowing section, we present a fundamental constraint for Blockchain architectures.
Since its specification requires to express mining frequencies, we first introduce
an operator to express such frequencies in LTL. The operator can be used to
express statements of the form: “for every time span in which at least x states
can be observed which satisfy a certain property ϕ, at least y states can be
observed to satisfy a certain property ϕ′”.

Definition 1 (Weak until for relative frequencies). A trace t satisfies
ϕ �x�W �y� ϕ′, for state predicates ϕ and ϕ′, at time point n, iff

∃n′ ≥ n : cc(t, n, n′, ϕ′) ≥ y ∧ (∀n ≤ i < n′ : cc(t, n, i, ϕ) ≤ x)
∨ (∀n′ ≥ n : cc(t, n, n′, ϕ) ≤ x),

with cc(t, n, n′, p)
def
= |{i | i > n ∧ i ≤ n′ ∧ p(t(i))}|.

Fig. 7. Fundamental assumption for Blockchain architectures.

In Fig. 7 we use the newly introduced operator to formalize a fundamen-
tal requirement for Blockchain architectures. Roughly speaking, the property

216 D. Marmsoler

requires that for every time span in which we can observe a number of dishonest
minings which is greater or equal to the number of confirmation blocks cb, then
we can also observe a number of honest minings which is greater than the num-
ber of confirmation blocks. Note that this is an important requirement needed
to guarantee persistence of blockchain entries.

5 Verifying Blockchain Architectures

We verified an important property for Blockchain architectures which ensures
persistence of blockchain entries.

5.1 Persistence of Blockchain Entries

As described in the introduction, Blockchain architectures were invented to solve
the double spend problem in a distributed peer-to-peer network. In order to do
so, blockchain entries, once accepted by the network, must be resistant to future
modifications. This property is summarized by the following theorem:

Theorem 1 (Persistence of blockchain entries). In a Blockchain architec-
ture, the entries of honest blockchains, which are confirmed by a number of blocks
greater or equal to the number of confirmation blocks, are resistant to future
modifications.

The theorem is formally specified by the architectural assertion depicted in Fig. 8
(with �– P we denote that P was true in all previous states). To this end, sbc
denotes a blockchain which contains the entries supposed to be persistent and
Eqs. (13)–(16) characterize a time point ns, for which the property actually holds.

Fig. 8. Specification of persistence property for Blockchain architectures.

Towards Verified Blockchain Architectures 217

Equation (13) requires that sbc is indeed a prefix of the blockchain of every
honest node hn ′ at hn ′’s first activation after ns. It basically ensures that the
honest network is initialized with blockchains extending sbc.

Equation (14) requires the proof-of-work at time point ns to be greater or equal
to the length of sbc, increased by the number of confirmation blocks cb. This
equation is required to provide the honest network with some lead over a
potential attacker, which might want to change sbc. Note, however, that the
assumption is indeed feasible, since Theorem 1 ensures persistence only of
entries which were confirmed by cb number of blocks.

Equation (15) requires the length of the blockchain of every active and dishonest
node dn to be less than the length of sbc. Together with Eq. (16), this equation
ensures that a potential attacker did not prepare a “false” blockchain before
time point ns, which he could then use later on to cheat the honest network.

Equation (16) requires for every node’s blockchain nd .bc, at every time point
before ns, that sbc is either a prefix of nd .bc or that the length of nd .bc is
smaller than the length of sbc.

For every time point ns, for which the above conditions hold, the property
depicted in Fig. 8 guarantees that sbc will always be a prefix of every honest
node’s blockchain (formalized by Eq. (17)).

5.2 Verification Effort

The pattern’s specification (as presented in Sect. 4) was formalized in three differ-
ent Isabelle/HOL theories, which are available via the Archive of Formal Proofs
in [18]:

– a theory Auxiliary, which contains some auxiliary results, such as custom
induction rules;

– a theory RF_LTL, which contains a calculus for Blockchain architectures, based
on counting LTL;

– a theory Blockchain, which is the main theory containing the actual formal-
ization of the pattern.

Theorem 1 was then formalized as theorem blockchain-save in theory
Blockchain and mechanically verified in Isabelle. Its proof consists of roughly
3 500 lines of Isabelle/Isar code and required an effort of roughly three person
months (by a person with around two years of experience in using Isabelle).

6 Discussion

We admit that the specification presented in Sect. 4 is somehow idealized and
some of the assumptions may not always hold. Thus, to better understand when
the results can be applied, we discuss some of these assumptions in more detail.

218 D. Marmsoler

Cryptographic Aspects. Cryptography is an important aspect when it comes to
Blockchain. For example, some Blockchain implementations make extensive use
of Merkle tree’s [19] to ensure integrity of blockchains. With the work presented
in this paper, we abstracted from cryptographic aspects. Rather, we assumed
integrity of blockchains and focused on the problem of building consensus in a
way to resist double spend attacks. Of course, flaws in the implementation of the
integrity mechanism might lead to situations in which the results presented in
this paper are not valid anymore. Thus, for such applications, one first needs to
verify correctness of the employed integrity mechanism. Only then, our results
can be applied to support the verification.

Probabilistic Aspects. In Blockchain, the process of mining new blocks is usually
of probabilistic nature and thus, it is actually difficult to provide any “hard”
guarantees. The reason why we could provide such a guarantee here, is the prob-
abilistic nature of the assumption provided by Eq. (12). In a real-world setting,
the assumption is usually only valid with a certain probability. Thus, also the
corresponding guarantee, provided by Theorem 1, is only valid with a certain
probability. Hence, to use the results presented in this paper for a concrete set-
ting, one first needs to verify (or estimate) the probability of Eq. (12) to be true
in this setting. This is then also the probability of Theorem 1 to be true in this
setting.

Broadcast. Another limitation of the specification presented in this paper is
the connection constraint provided by Fig. 3, which requires honest nodes to
be always connected. While this may seem too strict, it indeed reflects a real
problem in Blockchain networks, such as Bitcoin, in which “resilience to the
double spending attack relies strongly on the assumption that Bitcoin’s P2P
network is connected, and that honest nodes are able to communicate” [20]. Thus,
to ensure that Theorem 1 holds, and thus the corresponding Blockchain network
indeed resists double spend attacks, the network needs to employ mechanisms
to ensure a high degree of connectivity for the honest sub-network.

The Attacker Model. The attacker model presented in Fig. 5 does not allow the
instantaneous modification of blocks within a blockchain. Rather, modifying an
entry can only be done by first removing corresponding entries from the top of
the blockchain and then to add new blocks over time. This assumption is based
on two fundamental design decisions inherent in bitcoin-like Blockchain appli-
cations: First, as already discussed above, such Blockchain applications usually
employ Merkle tree’s to ensure integrity of blockchains. Second, adding new
blocks to a blockchain is done through mining, which usually requires some time
and cannot happen instantaneous.

7 Related Work

This paper provides a formalization of Blockchain architectures and a mecha-
nized proof of an important safety property regarding integrity of blockchain

Towards Verified Blockchain Architectures 219

entries. Thus, related work can be found in formalizations of Blockchain archi-
tectures in general, as well as verification of consensus algorithms, specifically.

7.1 Formalizations of Blockchain Concepts

There has been some work in formalizing and investigating different aspects of
Blockchain technologies. A lot of research in this area is devoted to the formaliza-
tion of concrete technological implementations. The Ethereum Virtual Machine
and its contract language Solidity, for example, are formalized in Coq [21] and
Isabelle/HOL [22], respectively. Another interesting branch of research in this
area concerns the study of so-called smart contracts. Such contracts can be
used to associate transactions with code, which execution is triggered by certain
events. A proposal to formalize such contracts is provided by Bhargavan [23].
Approaches for their verification were made based on behavior models [24], Finite
State Machines [25], or interactive theorem proving [26].

Relation to Our Work: The studies described so far report on the formalization
of various types of concepts found in Blockchain technology. Thus, they provide
many insights into the formalization and even mechanization of various concepts
used in Blockchain. The main difference to our work lies in the scope of these
studies: while they focus on the details of these different concepts, we try to
integrate them at a more abstract level in a so-called Blockchain architecture.
One exception here is Pirlea’s recent work [27] which goes in a similar direction
to our work. The authors try to come up with an abstract model of Blockchain,
which we would consider a Blockchain architecture, in Coq. What is interesting
is that they identify important aspects of Blockchain architectures and provide
abstract notions for them. Specifically, they introduce an abstract notion of
proof object and a so-called validator acceptance function, which is used to
ensure validity of a block w.r.t. a specific proof object. Moreover, they abstract
from the concrete consensus agreement, called Fork Choice Rule in an abstract
function, which they require to form a total order between blockchains. These
abstractions allow their model to be applied to various scenarios. While, with our
work, we follow a similar approach, there are some notable differences: (i) First,
with our implementation in Isabelle/HOL we provide an alternative framework
for Isabelle/HOL users. (ii) A more important difference, however, concerns the
scope of the proved property: In their work, the authors verified that a Blockchain
architecture, in a consistent state, will eventually reach a consistent state again.
In our work, we were rather interested in blockchain integrity, i.e., that additions
to the blockchain are guaranteed to be persistent. (iii) Finally, in their work, they
do not consider possible attackers. As shown in this work, these nodes may have
different behavior and we were interested whether this could influence integrity.

7.2 Verification of Consensus Algorithms

Consensus mechanisms for Blockchain architectures are actually an instance
of more traditional, distributed fault tolerance protocols. Such protocols were

220 D. Marmsoler

intensively studied over the last decades and mechanical verifications exist, for
example, for Paxos [28,29], Raft [30,31], and the classical Two-Phase Com-
mit [32]. More recently, work in this area focuses on the verification of more
Blockchain-specific protocols. Kiayias [33], for example, proposes a verified con-
sensus protocol based on proof-of-stake.

Relation to Our Work: The work discussed so far provides formalizations of
various protocols, useful for the implementation of distributed trust. The pattern
proposed and verified in this paper, however, uses a mechanism called “proof-
of-work”. Thus, approaches using proof-of-work are most closely related to our
work and are discussed in more detail. The idea of applying proof-of-work to the
problem of establishing distributed trust goes back to Nakamoto in its original
bitcoin paper [1]. Here the author provides a mathematical description of the
theory behind Blockchain technology and provides probabilistic bounds about
certain security concerns. Garay [34,35] and Pass [36] elaborate on these ideas
and identify and verify two properties of proof-of-work: common prefix and chain
quality. The former is actually similar to Theorem1 proved in this paper. While
these works provide similar results to ours, there are two notable differences
to our work: (i) First, the above approaches exclusively focus on probabilistic
boundaries. While such boundaries are important in the area of Blockchain, we
try to identify the preconditions which are required in order to establish these
properties. (ii) Second, the above works were not mechanized, so far.

8 Conclusion

In this paper, we reported on the outcome of applying FACTum to specify a
variant of Blockchain architectures [1] and verify that blockchains are guaranteed
to be persistent for architectures implementing the specification:

– The blockchain itself is modeled as a parametric list over blocks.
– Nodes represent the types of components. They either keep a blockchain and

forward copies to other nodes or they may add at most one new block through
mining. Thereby, we distinguish between two types of nodes: Honest nodes
strictly follow the consensus rules and when faced with different copies of a
blockchain, they always take the longest one (containing the most amount
of work) as the “correct” one. Dishonest nodes on the other hand, do not
necessarily follow the consensus rules and may also remove blocks from any
blockchain they receive, in order to attempt to modify a certain entry.

– A Blockchain architecture is parameterized by a number of confirmation
blocks, i.e., a value which determines the number of blocks which need to
be mined on top of a block in order to consider this block to be save.

We also propose a formalization of a desired safety property: persistence of
blockchain entries. Finally, we (mechanically) verified the property from the
specification.

Towards Verified Blockchain Architectures 221

Throughout the paper, we describe 11 characteristic properties for Blockchain
architectures and one fundamental assumption about relative mining frequen-
cies, which guarantee persistence of blockchain entries. The properties can be
used to support the verification of Blockchain architectures. To this end, an
architecture specification is verified to satisfy the properties and in return, per-
sistence of blockchain entries is guaranteed by Theorem 1. For the case that nodes
are implemented by means of statemachines, this step could even be automated
using model checking techniques. In addition, the paper presents a case study
about the use of FACTum for the verification of dynamic architectures. Thereby
it reveals interesting insights to direct future research. On the positive side, it
shows feasibility of verifying properties for dynamically evolving architectures,
even if we need to reason about unbounded number of components. On the neg-
ative side, we discovered two main weaknesses: Since the approach is based on
interactive theorem proving, the effort required to verify an architecture is still
relatively high. For example, the verification of the property presented in this
paper required a total effort of roughly three person months. Another weak-
ness concerns the usability of the approach in practice since verification requires
expertise in interactive theorem proving, which is not always available.

Based on the outcome of this study, we derive two directions for future
work: (i) One direction should focus on extending the preliminary analysis of
Blockchain architectures presented in this paper. To this end it should mainly
address the limitations identified in Sect. 6: partial broadcasts, cryptographic
aspects, explicit consideration of probabilities. (ii) Another direction should
address to extend the FACTum approach based on the lessons learned from
this case study. In particular possibilities for proof automation and proof mod-
eling should be investigated.

Acknowledgments. We would like to thank Manfred Broy, Alexander Knapp, Max-
imilian Junker, and Andreas Lochbihler for their comments and helpful suggestions on
earlier versions of this paper. In addition, we are grateful to all the anonymous review-
ers of FORTE 2019 for suggesting many improvements to the presentation. Parts of
the work on which we report in this paper was funded by the German Federal Ministry
of Education and Research (BMBF) under grant no. 01Is16043A.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:

Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4_10

3. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: International Conference on
Open and Big Data (OBD), pp. 25–30. IEEE (2016)

4. Chavez-Dreyfuss, G.: Sweden tests blockchain technology for land reg-
istry. http://web.archive.org/web/20161024065806/www.reuters.com/article/us-
sweden-blockchain-idUSKCN0Z22KV

https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
http://web.archive.org/web/20161024065806/www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
http://web.archive.org/web/20161024065806/www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV

222 D. Marmsoler

5. Mendling, J., et al.: Blockchains for business process management-challenges and
opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)

6. Yurcan, B.: How blockchain fits into the future of digital identity. http://web.
archive.org/web/20170119054131/https://www.americanbanker.com/news/how-
blockchain-fits-into-the-future-of-digital-identity

7. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures using
configuration traces. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 235–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4_14

8. Marmsoler, D.: Hierarchical specification and verification of architectural design
patterns. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 149–
168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1_9

9. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

10. The Bitcoin Community: The bitcoin wiki. http://web.archive.org/web/
20181106124036/https://en.bitcoin.it/wiki/Confirmation

11. Marmsoler, D., Gidey, H.K.: FACTum studio: a tool for the axiomatic specification
and verification of architectural design patterns. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 279–287. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7_14

12. Marmsoler, D., Gleirscher, M.: On activation, connection, and behavior in dynamic
architectures. Sci. Ann. Comput. Sci. 26(2), 187–248 (2016)

13. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

14. Marmsoler, D.: A framework for interactive verification of architectural design
patterns in Isabelle/HOL. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol.
11232, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02450-5_15

15. Wirsing, M.: Algebraic specification. In: van Leeuwen, J., (ed.): Handbook of The-
oretical Computer Science, vol. B, pp. 675–788. MIT Press, Cambridge, MA, USA
(1990)

16. Marmsoler, D.: Axiomatic specification and interactive verification of architec-
tural design patterns in FACTum. Dissertation, Technische Universität München,
München (2019)

17. Marmsoler, D.: Towards a calculus for dynamic architectures. In: Hung, D.V.,
Kapur, D. (eds.) ICTAC 2017. LNCS, vol. 10580, pp. 79–99. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-67729-3_6

18. Marmsoler, D.: A theory of architectural design patterns. Archive of Formal Proofs,
March 2018. Formal proof development. http://isa-afp.org/entries/Architectural_
Design_Patterns.html

19. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

20. Zohar, A.: Bitcoin: under the hood. Commun. ACM 58(9), 104–113 (2015)
21. Hirai, Y.: Ethereum virtual machine for Coq (v0. 0.2). Published online on, 5

March 2017
22. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.

In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

http://web.archive.org/web/20170119054131/https://www.americanbanker.com/news/how-blockchain-fits-into-the-future-of-digital-identity
http://web.archive.org/web/20170119054131/https://www.americanbanker.com/news/how-blockchain-fits-into-the-future-of-digital-identity
http://web.archive.org/web/20170119054131/https://www.americanbanker.com/news/how-blockchain-fits-into-the-future-of-digital-identity
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-89363-1_9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://web.archive.org/web/20181106124036/https://en.bitcoin.it/wiki/Confirmation
http://web.archive.org/web/20181106124036/https://en.bitcoin.it/wiki/Confirmation
https://doi.org/10.1007/978-3-030-02146-7_14
https://doi.org/10.1007/978-3-030-02146-7_14
https://doi.org/10.1007/978-3-030-02450-5_15
https://doi.org/10.1007/978-3-030-02450-5_15
https://doi.org/10.1007/978-3-319-67729-3_6
http://isa-afp.org/entries/Architectural_Design_Patterns.html
http://isa-afp.org/entries/Architectural_Design_Patterns.html
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-319-70278-0_33

Towards Verified Blockchain Architectures 223

23. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96. ACM (2016)

24. Abdellatif, T., Brousmiche, K.: Formal verification of smart contracts based on
users and blockchain behaviors models. In: 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pp. 1–5, February 2018

25. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS,
vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6_11

26. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 66–77. ACM
(2018)

27. Pîrlea, G., Sergey, I.: Mechanising blockchain consensus. In: Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
78–90. ACM (2018)

28. Drăgoi, C., Henzinger, T.A., Zufferey, D.: PSYNC: a partially synchronous lan-
guage for fault-tolerant distributed algorithms. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, pp. 400–415. ACM, New York (2016)

29. Jaskelioff, M., Merz, S.: Proving the correctness of disk Paxos. The Archive of
Formal Proofs (2005). http://afp.sf.net/entries/DiskPaxos.shtml

30. Wilcox, J.R., et al.: Verdi: a framework for formally verifying distributed system
implementations. In: Proceedings of the 2015 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), Portland, OR (2015)

31. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the raft consensus protocol. In: Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pp.
154–165. ACM (2016)

32. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL), 28 (2017)

33. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

34. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_10

35. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_10

36. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-319-89722-6_11
http://afp.sf.net/entries/DiskPaxos.shtml
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

Unfolding-Based Dynamic Partial Order
Reduction of Asynchronous Distributed

Programs

The Anh Pham , Thierry Jéron(B) , and Martin Quinson

Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
{the-anh.pham,thierry.jeron}@inria.fr,

martin.quinson@irisa.fr

Abstract. Unfolding-based Dynamic Partial Order Reduction
(UDPOR) is a recent technique mixing Dynamic Partial Order Reduc-
tion (DPOR) with concepts of concurrency such as unfoldings to effi-
ciently mitigate state space explosion in model-checking of concurrent
programs. It is optimal in the sense that each Mazurkiewicz trace, i.e. a
class of interleavings equivalent by commuting independent actions, is
explored exactly once. This paper shows that UDPOR can be extended
to verify asynchronous distributed applications, where processes both
communicate by messages and synchronize on shared resources. To do
so, a general model of asynchronous distributed programs is formalized in
TLA+. This allows to define an independence relation, a main ingredient
of the unfolding semantics. Then, the adaptation of UDPOR, involving
the construction of an unfolding, is made efficient by a precise analysis of
dependencies. A prototype implementation gives promising experimental
results.

Keywords: Partial order · Unfolding · Distributed program ·
Asynchronous

1 Introduction

Developing distributed applications that run on parallel computers and commu-
nicate by message passing is hard due to their size, heterogeneity, asynchronicity
and dynamicity. Besides performance, their correction is crucial but very chal-
lenging due to the complex interactions of parallel components.

Model-checking (see e.g. [4]) is a set of techniques allowing to verify automat-
ically and effectively some properties on models of such systems. The principle
is usually to explore all possible behaviors (states and transitions) of the system
model. However, state spaces increase exponentially with the number of concur-
rent processes. Unfoldings and Partial order reduction (POR) are two candidate

This work has been supported by INRIA collaborative project IPL HAC-SPECIS
(http://hacspecis.gforge.inria.fr/).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 224–241, 2019.
https://doi.org/10.1007/978-3-030-21759-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_13&domain=pdf
http://orcid.org/0000-0002-0674-8066
http://orcid.org/0000-0002-9922-6186
http://orcid.org/0000-0001-7408-054X
http://hacspecis.gforge.inria.fr/
https://doi.org/10.1007/978-3-030-21759-4_13

UDPOR of Asynchronous Distributed Programs 225

alternative techniques born in the 90’s to mitigate this state space explosion and
scale to large applications.

Unfoldings (see e.g. [6]) is a concept of concurrency theory providing a repre-
sentation of the behaviors of a model in the form of an event structure aggregat-
ing causal dependencies or concurrency between events (occurrence of actions),
and conflicts that indicate choices in the evolution of the program. This repre-
sentation may be exponentially more compact than an interleaving semantics,
while still allowing to verify some properties, such as safety.

POR comprises a set of exploration techniques (see e.g. [8]), sharing the idea
that, to detect deadlocks (and, by extension, for checking safety properties) it is
sufficient to cover each Mazurkiewicz trace, i.e. a class of interleavings equivalent
by commutation of consecutive independent actions. This state space reduction
is obtained by choosing at each state, based on the independence of actions, only
a subset of actions to explore (ample, stubborn or persistent sets, depending on
the method), or to avoid (sleep set). Dynamic partial order reduction (DPOR) [7]
was later introduced to combat state space explosion for stateless model-checking
of software. In this context, while POR relies on a statically defined and impre-
cise independence relation, DPOR may be much more efficient by dynamically
collecting it at run-time. Nevertheless, redundant explorations, named sleep-set
blocked (SSB) [1], may still exist that would lead to an already visited interleav-
ing, and detected by using sleep sets.

In the last few years, two research directions were investigated to improve
DPOR. The first one tries to refine the independence relation: the more precise,
the less Mazurkiewicz traces exist, thus the more efficient could be DPOR. For
example [2] proposes to consider conditional independence relations where com-
mutations are specified by constraints, while in [3] independence is built lazily,
conditionally to future actions called observers. The other direction proposes
alternatives to persistent sets, in order to minimize the number of explored inter-
leavings. Optimality is obtained when exactly one interleaving per Mazurkiewicz
trace is built. In [1] authors propose source sets that outperform DPOR, but
optimality requires expensive computations of wake-up trees to avoid SSB explo-
rations. In [16] the authors propose unfolding-based DPOR (UDPOR), an opti-
mal DPOR method combining the strengths of PORs and unfoldings with the
notion of alternatives. The approach is generalized [13] with a notion of k-partial
alternative allowing to balance between optimal DPOR and sometimes more effi-
cient sub-optimal DPOR.

Some approaches already try to use DPOR techniques for the verification of
asynchronous distributed applications, such as MPI programs (Message Passing
Interface). In the absence of model, determining global states of the system and
checking equality [15] are already challenging. In [14], an approach is taken that
is tight to MPI. A significant subset of MPI primitives is considered, formally
specified in order to define the dependency relation, and then to use the DPOR
technique of [7]. In [18], the efficiency is improved by focusing on particular
deadlocks, but at the price of incompleteness.

226 T. A. Pham et al.

We propose first steps to adapt UDPOR for asynchronous distributed appli-
cations. In [17] authors proposed an abstract model of distributed applications
with a small set of primitives, sufficient to express most communication actions.
We revise and extend this model with synchronization primitives and formally
specify it in TLA+ [11]. A clear advantage of this model is its abstraction: it
remains concise, but its generality allows e.g. the encoding of MPI primitives.
Already defining a correct independence relation from this formal model is dif-
ficult, due to the variety and complex semantics of actions. In addition, making
UDPOR and in particular the computation of unfoldings and extensions effi-
cient cannot directly rely on solutions of [13], which are tuned for concurrent
programs with only mutexes, thus clever algorithms need to be designed. For
now we prototyped our solutions in a simplified context, but we target the Sim-
Grid tool which allows to run HPC code (in particular MPI) in a simulation
environment [5]. The paper is organized as follows. Section 2 recalls notions of
interleaving and concurrency semantics, and how a transition system is unfolded
into an event structure with respect to an independence relation. In Sect. 3 the
programming model is presented together with a sketch of the independence
relation. Section 4 presents the UDPOR algorithm, its adaptation to our pro-
gramming model, and how to make it efficient. Finally we present a prototype
implementation and its experimental evaluation.

2 Interleaving and Unfolding Semantics

The behaviors of a distributed program can be described in an interleaving
semantics by a labelled transition system, or in a true concurrency semantics
by an event structure. An LTS equipped with an independence relation can be
unfolded into an event structure [16]. This is a main step for UDPOR.

Definition 1 (Labelled transition system). A labelled transition system
(LTS) is a tuple T = 〈S , s0, Σ,→〉 where S is the set of states, s0 ∈ S the initial
state, Σ is the alphabet of actions, and →⊆ S ×Σ ×S is the transition relation.

We note s a−→ s ′ when (s, a, s ′) ∈ → and extend the notation to execution
sequences: s a1·a2···an−−−−−−→ s ′ if ∃s0 = s, s1, . . . sn = s ′ with si−1

a−→i si for i ∈ [1,n].
For a state s in S , we denote by enabled(s) = {a ∈ Σ : ∃s ′ ∈ S , s a−→ s ′} the set
of actions enabled at s.

Independence is a key notion in both POR techniques and unfoldings, linked
to the possibility to commute actions:

Definition 2 (Commutation and independence). Two actions a1, a2 of an
LTS T = 〈S , s0, Σ,→〉 commute in a state s if they satisfy the two conditions:

– executing one action does not enable nor disable the other one:

a1 ∈ enabled(s) ∧ s a1−→ s ′ =⇒ (a2 ∈ enabled(s) ⇔ a2 ∈ enabled(s ′)) (1)

UDPOR of Asynchronous Distributed Programs 227

– their execution order does not change the overall result:

a1, a2 ∈ enabled(s) =⇒ (s a1·a2−−−→ s ′ ∧ s a2·a1−−−→ s ′′ =⇒ s ′ = s ′′) (2)

A relation I ⊆ Σ × Σ is a valid independence relation if it under-approximates
commutation, i.e. ∀a1, a2, I (a1, a2) implies that a1 and a2 commute in all states.
Conversely a1 and a2 are dependent and we note D(a1, a2) when ¬(I (a1, a2)).

A Mazurkiewicz trace is an equivalence class of executions (or interleavings) of
an LTS T obtained by commuting adjacent independent actions. By the second
item of Definition 2, all these interleavings reach a unique state. The principle
of all DPOR approaches is precisely to reduce the state space exploration while
covering at least one execution per Mazurkiewicz trace. If a deadlock exists, a
Mazurkiewicz trace leads to it and will be discovered. More generally, safety
properties are preserved.

The UDPOR technique that we consider also uses concurrency notions. A
classical model of true concurrency is prime event structures:

Definition 3 (Prime event structure). Given an alphabet of actions Σ, a
Σ-prime event structure (Σ-PES) is a tuple E = 〈E , <,#, λ〉 where E is a set of
events, < is a partial order relation on E, called the causality relation, λ : E →
Σ is a function labelling each event e with an action λ(e), # is an irreflexive
and symmetric relation called the conflict relation such that, the set of causal
predecessors or history of any event e, �e = {e ′ ∈ E : e ′ < e} is finite, and
conflicts are inherited by causality: ∀e, e ′, e ′′ ∈ E , e#e ′ ∧ e ′ < e ′′ =⇒ e#e ′′.

Intuitively, e < e ′ means that e must happen before e ′, and e#e ′ that
those two events cannot belong to the same execution. Two distinct events that
are neither causally ordered nor in conflict are said concurrent. The set [e] :=
�e ∪ {e} is called the local configuration of e. An event e can be characterized
by a pair < λ(e),H > where λ(e) is its action, and H = �e its history.

We note conf (E) the set of configurations of E , where a configuration is a set
of events C ⊆ E that is both causally closed (e ∈ C =⇒ �e ⊆ C) and conflict
free (e, e ′ ∈ C =⇒ ¬(e#e ′)). A configuration C is characterized by its causally
maximal events maxEvents(C) = {e ∈ C : �e ′ ∈ C , e < e ′}, since it is exactly
the union of local configurations of these events: C =

⋃
e ∈ maxEvents(C)[e]; con-

versely a conflict free set K of incomparable events for < defines a configuration
config(K) and C = config(maxEvents(C)).

A configuration C , together with the causal and independence relations
defines a Mazurkiewicz trace: all interleavings are obtained by causally order-
ing all events in the configuration C but commuting concurrent ones. The state
of a configuration C denoted by state(C) is the state in T reached by any of
these executions, and it is unique as discussed above. We write enab(C) =
enabled(state(C)) ⊆ Σ for the set of actions enabled at state(C), while
actions(C) denotes the set of actions labelling events in C , i.e. actions(C) =
{λ(e) : e ∈ C}.

The set of extensions of C is ex (C) = {e ∈ E \ C : �e ⊆ C}, i.e. the
set of events not in C but whose causal predecessors are all in C . When

228 T. A. Pham et al.

appending an extension to C , only resulting conflict-free sets of events are
indeed configurations. These extensions constitute the set of enabled events
en(C) = {e ∈ ex (C) : �e ′ ∈ C , e#e ′} while the other ones are conflicting exten-
sions cex (C) := ex (C) \ en(C).

Parametric Unfolding Semantics. Given an LTS T and an independence relation
I , one can build a prime event structure E such that each linearization of a max-
imal (for inclusion) configuration represents an execution in T , and conversely,
to each Mazurkiewicz trace in T corresponds a configuration in E [13].

Definition 4 (Unfolding). The unfolding of an LTS T under an independence
relation I is the Σ-PES E = 〈E , <,#, λ, 〉 incrementally constructed from the
initial Σ-PES 〈∅, ∅, ∅, ∅〉 by the following rules until no new event can be created:

– for any configuration C ∈ conf (E), any action a ∈ enabled(state(C)), if for
any e ′ ∈ maxEvents(C), ¬I (a, λ(e ′)), add a new event e = 〈a,C 〉 to E;

– for any such new event e = 〈a,C 〉, update <, # and λ as follows: λ(e) := a
and for every e ′ ∈ E \ {e}, consider three cases:
(i) if e ′ ∈ C then e ′ < e,
(ii) if e ′ /∈ C and ¬I (a, λ(e ′)), then e#e ′,
(iii) otherwise, i.e. if e ′ /∈ C and I (a, λ(e ′)), then e and e ′ are concurrent.

A0

A1

An-1

An

Mailbox0

Mailboxm

Mutex0

Mutexk

Action

Action

Action

Action

paired comm

paired com Commmunications

Synchronization
 Subsystem

Network
 Subsystem

Actors

Fig. 1. Main elements of the model: Actors, Network and Synchronization

3 Programming Model and Independence Relation

In this section we introduce the abstract model of asynchronous distributed
systems that we consider. While abstract, this model is sufficient to represent
concrete MPI programs, as it encompasses all building blocks of the SMPI imple-
mentation of the standard [5]. We formalized this model in the specification
language TLA+ [11], to later infer an independence relation (Fig. 1).

UDPOR of Asynchronous Distributed Programs 229

3.1 Abstract Model

In our model an asynchronous distributed system P consists in a set of n
actors Actors = {A1,A2, ...An} that perform local actions, communicate asyn-
chronously with each others, and share some resources. We assume that the
program is terminating, which implies that all actions are terminating. All local
actions are abstracted into a unique one LocalComp. Communication actions
are of four types: AsyncSend , AsyncReceive, TestAny , and WaitAny . Actions
on shared resources called synchronizations are of four types: AsyncMutexLock ,
MutexUnlock, MutexTest and MutexWait.

At the semantics level, P is a tuple P = 〈Actors,Network,Synchronization〉
where Network and Synchronization respectively describe the abstract objects,
and the effects on these of the communication and synchronizations actions.
The Network subsystem provides facilities for the Actors to asynchronously com-
municate with each others, while the subsystem Synchronization allows the syn-
chronization of actors on access to shared resources.

Network Subsystem. The state of the Network subsystem is defined as a pair
〈Mailboxes,Communications〉, where Mailboxes is a set of mailboxes storing
unpaired communications, while Communications stores only paired ones. Each
communication c has a status in {send , receive, done}, ids of source and desti-
nation actors, data addresses for those. A mailbox is a rendez-vous point where
send and receive communications meet. It is modelled as an unbounded FIFO
queue that is either empty, or stores communications with all same send or
receive status, waiting for a matching opposite communication. When match-
ing occurs, this paired communication gets a done status and is appended to the
set Communications. We now detail the effect in actor Ai of the communication
actions on Mailboxes and Communications:

– c = AsyncSend(m, data) drops an asynchronous send communication c to
the mailbox m. If pending receive communications exist in the mailbox, c is
paired with the oldest one c′ to form a communication with done status in
Communications, the receive communication is removed from m and the data
is copied from the source to the destination. Otherwise, a pending communi-
cation with send status is appended to m.

– c = AsyncReceive(m, d) drops an asynchronous receive communication to
mailbox m; the way a receive communication is processed is similar to send .
If pending send communications exist, c is paired with the oldest one c′ to
form a communication with done status in Communications, the send com-
munication is removed from m, and the data of the send is copied to d .
Otherwise, a pending communication with receive status is appended to m.

– TestAny(Com) tests a set of communications Com of Ai . It returns a boolean,
true if and only if some communication in Com with done status exists.

– WaitAny(Com) waits for a set of communications Com of Ai . The action is
blocking until at least one communication in Com has a done status.

230 T. A. Pham et al.

Synchronization Subsystem. The Synchronization subsystem consists in a pair
〈Mutexes,Requests〉 where Mutexes is a set of asynchronous mutexes used to
synchronize the actors, and Requests is a vector indexed by actors ids of sets
of requested mutexes. Each mutex mj is represented by a FIFO queue of
actors ids i who declared their interest on a mutex mj by executing the action
AsyncMutexLock(mj). A mutex mj is free if its queue is empty, busy otherwise.
The owner is the actor whose id is the first in the queue. In actor Ai , the effect
of the synchronization actions on Mutexes and Requests is as follows:

– AsyncMutexLock(mj) requests a mutex mj with the effect of appending the
actor id i to mj ’s queue and adding j to Requests[i]. Ai is waiting until owning
mj but, unlike classical mutexes, waiting is not necessarily blocking.

– MutexUnlock(mj) removes its interest to a mutex mj by deleting the actor id
i from the mj ’s queue and removing j from Requests[i].

– MutexTest(M) returns true if actor Ai owns some previously requested mutex
mj in M (i is first in FIFO mj ∈ M s.t. j in Requests[i]).

– MutexWait(M) blocks until Ai owns some mutex mj in M . Note that Mutex-
Test (resp. MutexWait) are similar to TestAny (resp. WaitAny) and could be
merged. We keep them separate here for simplicity of explanations.

Beside those actions, a program can have local computations named Local-
Comp actions. Such actions do not intervene with shared objects (Mailboxes,
Mutexes and Communications), and they can be responsible for I/O tasks.

We specified our model of asynchronous distributed systems in the formal
language TLA+ [11]. Our TLA+ model1 focuses on how actions transform the
global state of the system. An instance P of a program is described by a set of
actors and their actions (representing their source code). Following the semantics
of TLA+, and since programs are terminating, the interleaving semantics of a
program P can be described by an acyclic LTS representing all its behaviors.
Formally, the LTS of P is a tuple TP = 〈S , s0, Σ,→〉 where Σ represent the
actions of P ; a state s =< l , g > in S consists of the local state l of all actors
(i.e. local variables, Requests) and g the state of all shared objects including
Mutexes, Mailboxes and Communications; in the initial state s0 all actors are in
their initial local state, sets and FIFO queues are empty; a transition s a−→ s ′ is
defined if, according to the TLA+ model, the action encoded by a is enabled at
s and executing a transforms the state from s to s ′.

Notice that when verifying a real program, we only observe its actions and
assume that they respect the proposed TLA+ model and the independence rela-
tion discussed below. These assumptions are necessary to suppose that the LTS
correctly models the actual program behaviors.

3.2 Additional Property of the Model

The model presented in the previous section may appear unusual, because the
lock action on mutexes is split into an AsyncMutexLock and a MutexWait while
1 https://github.com/pham-theanh/simixNetworks.

https://github.com/pham-theanh/simixNetworks

UDPOR of Asynchronous Distributed Programs 231

most works in the literature consider atomic locks. Our model does not induce
any loss of generality, since synchronous locks can trivially be simulated with
asynchronous locks. One reason to introduce this specificity is that this entails
the following lemma, that is the key to the efficiency of UDPOR in our model.

Lemma 1 (Persistence). Let u be a prefix of an execution v of a program in
our model. If an action a is enabled after u, it is either executed in v or still
enabled after v.

Intuitively, persistence says that once enabled, actions are never disabled by
any subsequent action, thus remain enabled until executed. Persistence does not
hold for classical synchronous locks, as some enabled lock(m) action of an actor
may become disabled by the lock(m) of another actor. This persistence property
has been early introduced by Karp and Miller [9], and later studied for Petri
Nets [12]. It should not be confused with the notion of persistent set used in
DPOR2. Persistent sets are linked to independence, while persistence is not.

Proof. When a is a LocalComp, AsyncSend , AsyncReceive, TestAny , AsyncMutex-
Lock, MutexUnlock, or MutexTest action, a cannot be disabled by any new action.
Indeed, these actions are never blocking (e.g. AsyncMutexLock comes down to
the addition of an element in a FIFO, which is always enabled) and only depend
on the execution of the action right before them by the same actor.

WaitAny and MutexWait may seem more complex. If a is a WaitAny , being
enabled after u means that one communication it refers to was paired. Similarly,
if a is a MutexWait, being enabled after u means that the corresponding actor
is first in the FIFO of a mutex it refers to. In both cases these facts cannot be
modified by any subsequent action, so a remains enabled until executed.

3.3 Independence Theorems

In order to use DPOR algorithms for our model of distributed programs, and in
particular UDPOR that is based on the unfolding semantics, we need to define
a valid independence relation for this model. Intuitively, two actions in distinct
actors are independent when they do not compete on shared objects, namely
Mailboxes, Communications, or Mutexes. This relation is formally expressed in
TLA+ as so-called “independence theorems”. We use the term “theorem” since
the validity of the independence relation with respect to commutation should
be proved. We proved them manually and implemented them as rules in the
model-checker. These independence theorems are as follows3:

2 A set of transitions T is called persistent in a state s if all transitions not in T
and, either enabled in T or enabled in a state reachable by transitions not in T , are
independent with all transitions in T . As a consequence, exploring only transitions
in persistent sets is sufficient to detect all deadlocks.

3 Some independence theorems could be enlarged but we give these ones for simplicity.

232 T. A. Pham et al.

1. A LocalComp is independent with any other action of another actor.
2. Any synchronization action is independent of any communication action of

a distinct actor.
3. Any pair of communication actions in distinct actors concerning distinct

mailboxes are independent.
4. An AsyncSend is independent of an AsyncReceive of another actor.
5. Any pair of actions in {TestAny ,WaitAny} in distinct actors is independent.
6. Any action in {TestAny(Com),WaitAny(Com)} is independent with any

action of another actor in {AsyncSend ,AsyncReceive} as soon as they do not
both concern the first paired communication in the set Com4.

7. Any pair of synchronization actions of distinct actors concerning distinct
mutexes are independent.

8. An AsyncMutexLock is independent with a MutexUnlock of another actor.
9. Any pair of actions in {MutexWait,MutexTest} of distinct actors is indepen-

dent.
10. A MutexUnlock is independent of a MutexWait or MutexTest of another

actor, except if the same mutex is involved and one of the two actors owns
it.

11. An AsyncMutexLock is independent of any MutexWait and MutexTest of
another actor.

4 Adapting UDPOR

This section first recalls the UDPOR algorithm of [16] and then explains how it
may be adapted to our context, in particular how the computation of extensions,
a key operation, can be made efficient in our programming model.

4.1 The UDPOR Algorithm

Algorithm 1 presents the UDPOR exploration algorithm of [16]. Like other
DPOR algorithms, it explores only a part of the LTS of a given terminating
distributed program P according to an independence relation I , while ensur-
ing that the explored part is sufficient to detect all deadlocks. The particularity
of UDPOR is to use the concurrency semantics explicitly, namely unfoldings,
which makes it both complete and optimal: it explores exactly one interleaving
per Mazurkiewicz trace, never reaching any sleep-set blocked execution.

The algorithm works as follows. Executions are represented by configura-
tions, thus equivalent to their Mazurkiewicz traces. The set U , initially empty,
contains all events met so far in the exploration. The procedure Explore has
three parameters: a configuration C encoding the current execution; a set D
(for disabled) of events to avoid (playing a role similar to a sleep set in [8]), thus
preventing revisits of configurations; a set A (for add) of events conflicting with
4 Intuitively, WaitAny(Com) needs only one done communication (the first paired

(AsyncSend ,AsyncReceive)) in Com to become enabled. Similarly, the effect of
TestAny(Com) only depends on this first done communication.

UDPOR of Asynchronous Distributed Programs 233

Algorithm 1. Unfolding-based POR exploration
1 Set U := ∅
2 call Explore(∅, ∅, ∅)
3 Procedure Explore(C ,D ,A)
4 Compute ex (C), and add all events in ex (C) to U
5 if en(C) ⊆ D then
6 Return
7 if (A = ∅) then
8 chose e from en(C) \ D
9 else

10 choose e from A ∩ en(C)
11 Explore(C ∪ {e},D ,A \ {e})
12 if ∃J ∈ Alt(C ,D ∪ {e}) then
13 Explore(C ,D ∪ {e}, J \ C)
14 U := U ∩ QC ,D

D and used to guide the search to events in conflicting configurations in cex (C)
to explore alternative executions.

First, all extensions of C are computed and added to U (line 4). The search
backtracks (line 6) in two cases: when C is maximal (en(C) = ∅), i.e. a deadlock
(or the program end) is reached, or when all events enabled in C should be
avoided (en(C) ⊆ D), which corresponds to a redundant call, thus a sleep-
set blocked execution. Otherwise, an enabled event e is chosen (line 7–10), in
A if this guiding information is non empty (line 10), and a “left” recursive
exploration Explore(C ∪ {e},D ,A \ {e}) is called (line 11) from this extended
configuration C ∪ {e}, it continues trying to avoid D , but e is removed from
A in the guiding information. When this call is completed, all configurations
containing C and e have been explored, thus it remains to explore those that
contain C but not e. In this aim alternatives are computed (line 12) with the
function call Alt(C ,D ∪ {e}). Alternatives play a role similar to “backtracking
sets” in the original DPOR algorithm, i.e. sets of actions that must be explored
from the current state. Formally, an alternative to D ′ = D ∪{e} after C in U is
a subset J of U that, does not intersect D ′, forms a configuration C ∪J after C ,
and such that all events in D ′ conflict with some event in J . If an Alternatives
J exists, a right “recursive” exploration is called Explore(C ,D ∪ {e}, J \C): C
is still the configuration to extend, but e is now also to be avoided, thus added
to D , while events in J \ C are used as guides. Upon completion (line 14), U
is intersected with QC ,D which includes all events in C and D as well as every
event in U conflicting with some events in C ∪ D .

In order to avoid sleep-set blocked executions (SSB) and obtain the optimality
of DPOR, the function Alt(C ,D∪{e}) has to solve an NP-complete problem [13]:
find a subset J of U that can be used for backtracking, conflicts with all D ∪{e}
thus necessarily leading to a configuration C∪J that is not already visited. In this
case en(C) ⊆ D can then be replaced by en(C) = ∅ in line 5. Note that with a
different encoding, Optimal DPOR must solve the same problem [1] as explained

234 T. A. Pham et al.

in [13]. In [13], a variant of the algorithm is proposed for the function Alt that
computes k-partial alternatives rather than alternatives, i.e. sets of events J
conflicting with only k events in D , not necessarily all of them. Depending on
k , (e.g. k = ∞ (or k = |D | + 1) for alternatives, k = 1 for source sets of [1])
this variant allows to tune between an optimal or a quasi-optimal algorithm that
may be more efficient.

4.2 Computing Extensions Efficiently

Computing the extensions ex (C) of a configuration C may be costly in general. It
is for example an NP-complete problem for Petri Nets since all sub-configurations
must be enumerated. Fortunately this algorithm can be specially tuned for sub-
classes. In particular for the programming model of [13,16] it is tuned in an
algorithm working in time O(n2log(n)), using the fact that events have a maxi-
mum of two causal predecessors, thus limiting the subsets to consider.

This section tunes the algorithm to our more complex model, using the fact
that the amount of causal predecessors of events is also bounded. Next section
shows how to incrementally compute ex (C) to avoid recomputations. Figure 2
illustrates some aspects of an extension.

Fig. 2. A configuration C , extended by event e, its history H and maximal events K .

This section mandates some additional notations. Given a configuration C
and an extension with action a, let pre(a) denote the action right before a in the
same actor, while preEvt(a,C) denotes the event in C associated with pre(a)
(formally e = preEvt(a,C) ⇐⇒ e ∈ C , λ(e) = pre(a)). Given a set F of events
F ⊆ E , Depend(a,F) means that a depends on all actions labeling events in F .

The definition of ex (C) (set of extensions of a configuration C) {e ∈ E \C :
�e ⊆ C} can be rewritten using the definitions of Sect. 2 as follows: {e =
〈a,H 〉 ∈ E \ C : a = λ(e) ∧ H = �e ∧ H ∈ 2C ∩ conf (E) ∧ a ∈ enab(H)}.

Fortunately, it is not necessary to enumerate all subsets H of C , that are in
exponential numbers, to compute this set. According to the unfolding construc-
tion in Definition 4, an event e = 〈a,H 〉 only exists in ex (C) if the action a
is dependant with the actions of all maximal events of H . This gives: ex (C) =
{e = 〈a,H 〉 ∈ E \C : a = λ(e)∧H = �e∧H ∈ 2C ∩ conf (E)∧ a ∈ enab(H)∧
Depend(a,maxEvents(H))}. Now ex (C) can be simplified and decomposed by

UDPOR of Asynchronous Distributed Programs 235

enumerating Σ, yielding to: ex (C) =
⋃

a ∈ Σ{〈a,H 〉 : H ∈ Sa,C} \ C where
Sa,C = {H ∈ conf (E) : H ⊆ C ∧ a ∈ enab(H) ∧ Depend(a,maxEvents(H))}.

The above formulation of ex (C) iterates on all actions in Σ. However, inter-
preting the persistence property (Lemma 1) for configurations entails that for
two configurations H and C with H ⊆ C , an action a in enab(H) is either in
actions(C) or enab(C).

Therefore, ex (C) can be rewritten by restricting a to actions(C)∪enab(C) :

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)

{〈a,H 〉 : H ∈ Sa,C}) \ C (3)

Now, instead of enumerating possible configurations H ∈ Sa,C , we can enu-
merate their maximal sets K = maxEvents(H). Hence,

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)

{〈a, config(K)〉 : K ∈ Smax
a,C }) \ C (4)

with Smax
a,C = {K ∈ 2C : K is maximal ∧a ∈ enab(config(K))∧Depend(a,K))}

and K is maximal if (�e, e ′ ∈ K : e < e ′ ∨ e#e ′).
One can then specialize the computation of ex (C) according to the type of

action a. Due to space limitations, we only detail the computation for AsyncSend
actions, the other ones being similar.

Computing Extensions for AsyncSend Actions. Let C be a configuration,
and a an action of type c = AsyncSend(m,) of an actor Ai . We want to compute
the set Smax

a,C of sets K of maximal events from which a depends.
According to independence theorems (see Sect. 3.3), a only depends on the

following actions: pre(a), all AsyncSend(m,) actions of distinct actors Aj which
concern the same mailbox m, and all WaitAny (resp. TestAny) actions that
wait (resp. test) a AsyncReceive which concerns the same communication c.
Considering this, we now examine the composition of maximal events sets K in
Smax
a,C .

First, two events labelled by AsyncSend(m,) actions cannot co-exist in K ,
formally �e, e ′ ∈ K : λ(e), λ(e ′) in AsyncSend(m,): indeed, if two such events
exist in a configuration, they are dependent but cannot conflict, thus are causal-
ity related and cannot be both maximal.

Second, if a WaitAny(Com) action concerns communication c, there are
two cases: (i) either c is not the first done communication in Com, then
WaitAny(Com) and the action a are independent. (ii) or c is the first done com-
munication in Com and WaitAny is enabled only after a. Thus the only possibility
for a maximal event to be labelled by a WaitAny is when pre(a) is a WaitAny of
the same actor. We can then write: �e ∈ K : λ(e) in WaitAny ∧λ(e) �= pre(a).

Third, all AsyncReceive events for the mailbox m are causally related in
configuration C , and c can only be paired with one of them, say c′. Thus a
can only depend on actions TestAny(Com ′) such that c′ ∈ Com ′ and c and c′

form the first done communication in Com ′, and all those TestAny events are

236 T. A. Pham et al.

ordered. Thus, there is at most one event e labelled by TestAny in K such that
λ(e) �= pre(a).

To conclude, K contains at most three events: preEvt(a,C), some event
labelled with an action AsyncSend on the same mailbox, and some TestAny for
some matching AsyncReceive communication. There is thus only a cubic number
of such sets, which is the worse case among considered action types. Algorithm 2
generates all events in ex (C) labelled by an AsyncSend action a.

Algorithm 2. createAsyncSendEvt(a, C)
1 create e ′ = < a, config(preEvt(a,C)) >, and ex (C) := ex (C) ∪ {e ′}
2 foreach e ∈ C s.t. λ(e) ∈ {AsyncSend(m,),TestAny(Com)}
3 where Com contains a matching c′ = AsyncReceive(m,) with a do
4 K := ∅
5 - if ¬(e < preEvt(a,C) then K := K ∪ {e}
6 - if ¬(preEvt(a,C) < e) then K := K ∪ {preEvt(a,C)}
7 if D(a, λ(e)) then
8 create e ′ = < a, config(K) > and ex (C) := ex (C) ∪ {e ′}
9 foreach es ∈ C s.t. λ(es) = AsyncSend(m,) do

10 foreach et ∈ C s.t. λ(et) = TestAny(Com)
11 where Com contains a matching c′ = AsyncReceive(m,) with a do
12 K := ∅
13 - if ¬(es < preEvt(a,C)) and ¬(es < et) then K := K ∪ {es}
14 - if ¬(et < preEvt(a,C) and ¬(et < es) then K := K ∪ {et}
15 - if ¬(preEvt(a,C) < es) and ¬(preEvt(a,C) < et) then

K := K ∪ {preEvt(a,C)}
16 if D(a, λ(et)) then
17 create e ′ = < a, config(K) >, and ex (C) := ex (C) ∪ {e ′}

Example 1. We illustrate the Algorithm 2 by the example of Fig. 3. Suppose we
want to compute the extensions of C = {e1, e2, e3, e4, e5} associated with a, the
action c2 = AsyncSend(m,) of Actor2. First e6 =< AsyncSend , {2} > ∈ ex (C)
because preEvt(a,C) = e2 (line 1). We then iterate on all AsyncSend events in
C , combining them with e2 to create maximal event sets K (lines 2–8). We only
have one AsyncSend event e3. Since ¬(e2 < e3) and ¬(e3 < e2), we form a first
set K = {e2, e3}, and add e7 =< AsyncSend , {e2, e3} > to ex (C). Next all Test-
Any events that concern the mailbox m should be considered. Events e2 and e5
can be combined to form a new maximal event set K = {e2, e5}, but since a and
λ(e5) are not related to the same communication, D(a, λ(e5)) is not satisfied and
no event is created. Finally combinations of e2 with an AsyncSend event and a
TestAny event are examined (lines 9–17). We then get K = {e2, e5, e3}, and e8 is
added to ex (C) since D(a, λ(e5)) holds in the configuration config({e2, e5, e3}).

UDPOR of Asynchronous Distributed Programs 237

Fig. 3. The pseudo-code of a distributed program (left) and the configuration C .

4.3 Computing Extensions Incrementally

In the UDPOR exploration algorithm, after extending a configuration C ′ by
adding a new event e, one must compute the extensions of C = C ′ ∪ {e}, thus
resulting in redundant computations of events. The next theorem improves this
by providing an incremental computation of extensions.

Theorem 1. Suppose C = C ′ ∪{e} where e is the last event added to C by the
Algorithm 1. We can compute ex (C) incrementally as follows:

ex (C) = (ex (C ′) ∪
⋃

a ∈ enab(C)

{< a,H >: H ∈ Sa,C}) \ {e} (5)

where Sa,C = {H ∈ 2C ∩ conf (E) : a ∈ enab(H) ∧Depend(a,maxEvents(H))}.

Proof. With the definition of Sa,C as above, recall that

ex (C) = (
⋃

a ∈ actions(C)∪enab(C)

{〈a,H 〉 : H ∈ Sa,C}) \ C (6)

Applying the same Eq. (6) to C ′ we get:

ex (C ′) = (
⋃

a ∈ actions(C ′)∪enab(C ′)

{〈a,H ′〉 : H ′ ∈ Sa,C ′}) \ C ′

Now, exploring e from C ′ leads to C , which entails that λ(e) belongs to enab(C ′)
and actions(C ′) ∪ λ(e) = actions(C), thus the range of a in ex (C ′) which is
actions(C ′) ∪ enab(C ′) can be rewritten actions(C) ∪ (enab(C ′) \ λ(e)).

First, separating action(C) from the rest in both ex (C) and ex (C ′) we prove:
⋃

a ∈ actions(C)

{< a,H >: H ∈ Sa,C} =
⋃

a ∈ actions(C)

{< a,H ′ >: H ′ ∈ Sa,C ′}

(7)
(⊇) This inclusion is obvious since C ⊇ C ′, and thus Sa,C ⊇ Sa,C ′ .

238 T. A. Pham et al.

(⊆) Suppose there exists some event en =< a,H > belonging to the left but
not the right set. If a = λ(en) = λ(e), then H ∈ Sa,C∩Sa,C ′ , so en is in both sets,
resulting in a contradiction. If a = λ(en) �= λ(e), there are two cases: (i) either
e /∈ H then H ∈ Sa,C ′ and en belongs to the right set, a contradiction. (ii) or
e ∈ H , then λ(en) ∈ actions(C) \ {λ(e)} = actions(C ′), thus there is another
event e ′ ∈ C ′ such that λ(e ′) = λ(en), then e ′ cannot belong to H (one action
a cannot appear twice in �en). Besides, e is the last event explored in C , thus
a depends on λ(e) by Definition 4. Then, e ′ conflicts with e, contradicting their
membership to the same configuration C . This proves (7).

Second, since C ′ ⊆ C , according to persistence of the programming model
(Lemma 1), (enab(C ′) \ {λ(e)}) ⊆ enab(C). We thus have:

⋃

a ∈ enab(C ′)\{λ(e)}
{< a,H ′ >| H ′ ∈ Sa,C ′} ⊆

⋃

a ∈ enab(C)

{< a,H >| H ∈ Sa,C}

(8)
Now, using Eqs. (7) and (8), ex (C) can be rewritten as follows:

ex (C) = (
⋃

a ∈ actions(C)∪(enab(C ′)\λ(e))

{〈a,H ′〉 : H ′ ∈ Sa,C ′}

∪
⋃

a ∈ enab(C)

{〈a,H 〉 : H ∈ Sa,C}) \ (C ′ ∪ {e})
(9)

But since no event in
⋃

a ∈ enab(C){〈a,H 〉 : H ∈ Sa,C} is in (C ′ ∪ {e}), Eq. (9)
can be rewritten as Eq. (5) in Theorem 1.

4.4 Experiments

We implemented the quasi-optimal version of UDPOR with k -partial alter-
natives [13] in a prototype adapted to the distributed programming model of
Sect. 3, i.e. with its independence relation. The computation of k -partial alter-
natives is essentially inspired by [13]. Recall the algorithm reaches optimality
when k = |D | + 1, while k = 1 corresponds to Source DPOR [1]. The prototype
is still limited, not connected to the SimGrid environment, thus can only be
experimented on simple examples.

We first compare optimal UDPOR with an exhaustive stateless search on
several benchmarks (see Table 1). The first five benchmarks come from Umpire
Tests5, while DTG and RMQ-receiving belong to [10] and [17], respectively.
The last benchmark is an implementation of a simple Master-Worker pattern.
We expressed them in our programming model and explored their state space
with our prototype. The experiments were performed on an HP computer, Intel
Core i7-6600U 2.60 GHz processors, 16 GB of RAM, and Ubuntu version 18.04.1.
Table 1 presents the number of explored traces and running time for both an
exhaustive search and optimal UDPOR. In all benchmarks UDPOR outperforms
the exhaustive search. For example, for RMQ-receiving with 4 processes, the

5 http://formalverification.cs.utah.edu/ISP-Tests/.

http://formalverification.cs.utah.edu/ISP-Tests/

UDPOR of Asynchronous Distributed Programs 239

exhaustive search explores more than 20000 traces in around 8 s, while UDPOR
explores only 6 traces in 0.2 s. Besides, UDPOR is optimal, exploring only one
trace per Mazurkiewicz trace. For example in RMQ-receiving with 5 processes,
with only 4 AsyncSend actions that concern the same mailbox, UDPOR explores
exactly 24 (=4!) non-equivalent traces. Similarly, the DTG benchmark has only
two dependent AsyncSend actions, thus two non-equivalent traces. Furthermore,
deadlocks are also detected in the prototype.

We also tried to vary the value of k . When k is decreased, one gains in
efficiency in computing alternatives, but looses optimality by producing more
traces. It is then interesting to analyse, whether this can be globally more efficient
than optimal UDPOR. Similar to [13], we observed that in some cases, fixing
smaller values of k may improve the efficiency. For example with RMQ-receiving,
k = 7 is optimal, but reducing to k = 4 still produces 24 traces (thus is optimal)
a bit more quickly (2.3 s), while for k = 3 the number of traces and time diverge.
We have to analyse this more precisely on more examples in the future.

Note that with our simple prototype, we do not yet make experiments with
concrete programs (e.g. MPI programs), for which running time may somehow
diverge. We expect to make it in the next months and then experiment the algo-
rithms in more depth. However, we believe that the results are already significant
and that UDPOR is effective for asynchronous distributed programs.

Table 1. Comparing exhaustive exploration and UDPOR. TO: timeout after 30 min;
#P: number of processes; Deadlock: deadlock exists; #Traces: number of traces

Benchmarks #P Deadlock Exhaustive search UDPOR

#Traces Time (second) #Traces Time (second)

Wait-deadlock 2 Yes 2 <0.01 1 <0.01

Complex-deadlock 3 Yes 36 0.03 1 <0.01

Waitall-deadlock 3 Yes 1458 1.2 1 <0.01

No-error-wait-any src 3 No 21 0.02 1 0.01

Any-src-can-deadlock3 3 Yes 999 0.65 2 0.03

DTG 5 Yes - TO 2 0.07

RMQ-receiving 4 No 20064 8.15 6 0.2

5 No - TO 24 2.52

Master-worker 3 No 1356444 1038 2 0.2

4 No - TO 6 2.5

5 Conclusion and Future Work

The paper adapts the unfolding-based dynamic partial order reduction
(UDPOR) approach [16] to the verification of asynchronous distributed pro-
grams. The programming model we consider is generic enough to properly model
a large class of asynchronous distributed systems, including e.g. MPI applica-
tions, while exhibiting some interesting properties. From a formal specification of

240 T. A. Pham et al.

this model in TLA+, an independence relation is built, that is used by UDPOR
to partly build the unfolding semantics of programs. We show that, thanks to the
properties of our model, some usually expensive operations of UDPOR can be
made efficient. A prototype of UDPOR has been implemented and experimented
on some benchmarks, gaining promising first results.

In the future we aim at extending our model of asynchronous distributed
systems, while both preserving good properties, getting a more precise indepen-
dence relation, and implementing UDPOR in the SimGrid model-checker and
verify real MPI applications. Once done, we should experiment UDPOR more
deeply, and compare it with state of the art tools on more significant bench-
marks, get a more precise analysis about the efficiency of UDPOR compared to
simpler DPOR approaches, analyse the impact of quasi-optimality on efficiency.

Acknowledgement. We wish to thank the reviewers for their constructive comments
to improve the paper.

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: 41st Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2014, San Diego, CA, USA, pp. 373–384,
January 2014. https://doi.org/10.1145/2535838.2535845

2. Albert, E., Gómez-Zamalloa, M., Isabel, M., Rubio, A.: Constrained dynamic par-
tial order reduction. In: 30th International Conference on Computer Aided Verifi-
cation, CAV 2018, Oxford, UK, pp. 392–410, July 2018. https://doi.org/10.1007/
978-3-319-96142-2 24

3. Aronis, S., Jonsson, B., L̊ang, M., Sagonas, K.: Optimal dynamic partial order
reduction with observers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10806, pp. 229–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89963-3 14

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Degomme, A., Legrand, A., Markomanolis, G.S., Quinson, M., Stillwell, M., Suter,

F.: Simulating MPI applications: the SMPI approach. IEEE Trans. Parallel Distrib.
Syst. 28(8), 2387–2400 (2017). https://doi.org/10.1109/TPDS.2017.2669305

6. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-
ing. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77426-6

7. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2005, Long Beach, California, USA, pp. 110–121, January
2005. https://doi.org/10.1145/1040305.1040315

8. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

9. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1109/TPDS.2017.2669305
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1016/S0022-0000(69)80011-5

UDPOR of Asynchronous Distributed Programs 241

10. Khanna, D., Sharma, S., Rodŕıguez, C., Purandare, R.: Dynamic symbolic verifi-
cation of MPI programs. In: 22nd International Symposium on Formal Methods,
FM 2018, Oxford, UK, pp. 466–484, July 2018. https://doi.org/10.1007/978-3-319-
95582-7 28

11. Lamport, L.: Specifying Systems. The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

12. Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri
Nets. J. ACM 25(3), 352–364 (1978). https://doi.org/10.1145/322077.322079

13. Nguyen, H.T.T., Rodŕıguez, C., Sousa, M., Coti, C., Petrucci, L.: Quasi-optimal
partial order reduction. In: 30th International Conference on Computer Aided
Verification, CAV 2018, Oxford, UK, pp. 354–371, July 2018. https://doi.org/10.
1007/978-3-319-96142-2 22

14. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics driven dynamic partial-
order reduction of MPI-based parallel programs. In: Proceedings of the 2007 ACM
Workshop on Parallel and Distributed Systems: Testing and Debugging, PADTAD
2007, pp. 43–53. ACM (2007)

15. Pham, A., Jéron, T., Quinson, M.: Verifying MPI applications with SimGridMC.
In: Proceedings of the 1st International Workshop on Software Correctness for HPC
Applications, CORRECTNESS@SC 2017, Denver, CO, USA, pp. 28–33, November
2017. https://doi.org/10.1145/3145344.3145345

16. Rodŕıguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial
order reduction. In: 26th International Conference on Concurrency Theory, CON-
CUR 2015, Madrid, Spain, pp. 456–469, September 2015. https://doi.org/10.4230/
LIPIcs.CONCUR.2015.456

17. Rosa, C.D., Merz, S., Quinson, M.: A simple model of communication APIs -
application to dynamic partial order reduction. In: 10th International Workshop
on Automated Verification of Critical Systems, AVOCS 2010, Düsseldorf, Germany,
September 2010. http://journal.ub.tu-berlin.de/eceasst/article/view/562

18. Sharma, S., Gopalakrishnan, G., Bronevetsky, G.: A sound reduction of persistent-
sets for deadlock detection in MPI applications. In: Gheyi, R., Naumann, D. (eds.)
SBMF 2012. LNCS, vol. 7498, pp. 194–209. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33296-8 15

https://doi.org/10.1007/978-3-319-95582-7_28
https://doi.org/10.1007/978-3-319-95582-7_28
https://doi.org/10.1145/322077.322079
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1145/3145344.3145345
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
http://journal.ub.tu-berlin.de/eceasst/article/view/562
https://doi.org/10.1007/978-3-642-33296-8_15
https://doi.org/10.1007/978-3-642-33296-8_15

Encapsulation and Sharing in Dynamic
Software Architectures: The Hypercell

Framework

Jean-Bernard Stefani(B) and Martin Vassor(B)

Univ. Grenoble-Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{jean-bernard.stefani,martin.vassor}@inria.fr

Abstract. We present in this paper a novel framework for the defini-
tion of formal software component models, called the Hypercell frame-
work. Models in this framework (hypercell models) allow the definition of
dynamic software architectures featuring shared components, and differ-
ent forms of encapsulation policies. Encapsulation policies in an hypercell
model are enforced by means of runtime checks that prevent a compo-
nent, in a given context, to evolve in violation of these policies. We
present the main elements of the framework, its operational semantics
and the first elements of its behavioral theory. We give some results con-
cerning its ability to express different forms of composition, and show by
means of examples its ability to deal with sharing and different forms of
encapsulation.

1 Introduction

Motivations. How do we formally model dynamic software architectures featur-
ing both encapsulation and sharing? Can we define an operational semantics
and behavioral theory for these architectures? These are the questions we deal
with in this paper. By dynamic software architectures, we understand struc-
tured collections of software components and their inter-relations [3], that can
evolve over time, either spontaneously, for instance to adapt to changing oper-
ating conditions, or following external intervention, for instance for purposes of
fault correction or functional update. By encapsulation, we understand forms
of confinement and isolation between components, typically coupled with infor-
mation hiding and abstraction, that ensure capabilities offered, and information
maintained by a component, can only be accessed through designated interaction
points or interfaces. Examples include the many forms of encapsulation that have
been studied under the topic of aliasing control and ownership types in object-
oriented programming [14]. By architectures with sharing, we understand archi-
tectures where components can take part in different ensembles, compositions
or aggregations, possibly with different attendant properties, e.g. in terms of
encapsulation, lifetime and existential dependencies [2]. Examples include archi-
tectures featuring common services, such as databases or logs, that can be used
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 242–260, 2019.
https://doi.org/10.1007/978-3-030-21759-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_14

Encapsulation and Sharing in Dynamic Software Architectures 243

C

C1

C2

L1

L

L2

Fig. 1. Architecture with sharing: shared log service

by software components at different levels in a software structure, and architec-
tures featuring shared resources such as virtual machines or operating system
processes.

An example can illustrate the questions we are concerned with. Consider the
architecture depicted in Fig. 1. In the figure, a composite component C has two
subcomponents, C1 and C2, equipped with private log subcomponents L1 and L2,
that are provided as client-specific logs by a composite log service component L
(in the picture, components are depicted as circles, and an arrow from component
X to component Y can be read as X contains Y , or Y is a subcomponent of
X). The log service L is shared among the two subcomponents C1 and C2.
One can argue that each private log component Li (i = 1, 2) is participating to
three different ensembles, Ci, C and L. Ci, because Li is existentially dependent
on Ci, and is partially encapsulated in Ci as only updates originating from
Ci are possible (it is a partial encapsulation because not all communication
between a component Li and its environment is mediated or controlled by Ci).
C because each Ci is a subcomponent of C, and C is supposed to encapsulate
its subcomponents. L, because Li is existentially dependent on L, has the same
lifetime as L (if L is deleted so are L1 and L2), and relies on private functions (e.g.
data storage) provided by L. These ensembles also correspond to encapsulation
scopes, whose meaning is, roughly, that no communication outside the scope
is possible without explicitly passing through the top component of each scope
(C,L,C1 or C2), except for the communications between Ci and Li.

Related Work. Over the past three decades, an abundant literature has devel-
oped that aims at formally modeling distributed, component-based, dynamic and
adaptive software architectures, systems and services. One can cite notably: pro-
cess calculi for distributed systems, such as π-calculi with localities [12,22,31],
Ambient Calculi and their variants [10,11], and Milner’s bigraphs [28,35]; process
calculi and formal models for service-oriented computing and adaptive systems
[9,17,19,20,37]; formal software component models such as BIP [6], Ptolemy [18],

244 J.-B. Stefani and M. Vassor

Reo [23], Community [40], and several others [24,25]; formal software architec-
ture description languages [26,32]. However, to the best of our knowledge, none
of these previous works provide satisfactory support to model architectures fea-
turing a combination of dynamicity, sharing and encapsulation. Synchronized
Hyperedge Replacement (SHR) systems and location graphs constitute a direct
inspiration for the work in this paper, but they do not allow the definition of
encapsulation scopes with sharing. Ownership types allow the enforcement of
encapsulation scopes in object-oriented programs, typically at the expense of
restrictions in inter-object communication, but do not allow overlapping encap-
sulation scopes. Bigraphs with sharing [35] support the definition of nodes with
overlapping containment scopes, but, as far as we are aware, it is not possible to
use bigraph nodes to enforce the encapsulation policies considered in this paper.
The Fractal component model [8] is one of the rare software component models
that allows the description of component configurations with sharing, and that
has been formally defined [27]. The architecture in Fig. 1 can readily be described
in Fractal, with encapsulation scopes captured by Fractal composites. But we do
not have a formal operational semantics for Fractal that would allow us to define
the exact semantics of these scopes, nor do we have a proper behavioral theory
for Fractal architectures. Interesting approaches to enforcing encapsulation poli-
cies are works that rely on dynamic access protection instead of aliasing control.
These include notably the Siaam actor abstract machine [15], which relies on
runtime checks to enforce actor encapsulation in a Java virtual machine, and
access contracts [39] which provide dynamic access protection to Java objects
that can support a wide range of encapsulation policies, including encapsulation
policies with sharing as in the small architecture depicted in Fig. 1. However,
Siaam and access contracts do not come with a formal behavioral theory, and
the question of program equivalence in concurrent languages with Siaam-like or
access contracts-like access protection mechanisms remains open.

Contributions. In this paper, we combine ideas from SHR systems [19], from
location graphs [36], as well as Siaam [15] and access contracts [39] dynamic
approaches to encapsulation enforcement, to define a formal operational frame-
work, called the Hypercell framework. This framework allows the definition of dif-
ferent software component models (hypercell models), that support the modelling
of dynamic component ensembles (hypercells) with sharing and encapsulation.
The Hypercell framework can be seen as a conservative extension and general-
ization of the BIP and Fractal components models [6,8]. A main contribution
of the Hypercell framework is how it handles encapsulation policies: to allow for
maximum flexibility, they are enforced by runtime checks (authorizations), that
prevent transitions of component ensembles that would violate the chosen poli-
cies. Defining a proper notion of authorization is not trivial however. In order
to obtain a proper component theory (e.g. in the sense of [4]), we need a notion
of hypercell equivalence that is a congruence for hypercell composition, and it is
not clear how such a result can be obtained in presence of authorizations. The
idea is to have authorizations operate only at the level of individual components
(cells): this allows us to define a notion of hypercell bisimilarity where we can

Encapsulation and Sharing in Dynamic Software Architectures 245

decouple the contribution of authorizations from the classical bisimulation game,
which in turn allows us to obtain the required congruence result. However, this
local form of authorization raises another problem: encapsulation policies are
not local in nature, so how can we enforce them via such local checks, notably in
presence of evolving component ensembles? We show, by means of examples, how
this can be done via a combination of local but context-dependent authorization
predicates and dynamic component types (cell sorts).

Outline. The paper is organized as follows. Section 2 is a brief informal introduc-
tion to hypercells. Section 3 presents the hypercell framework, and preliminary
elements of a behavioral theory for hypercell models. Section 4 shows, by means
of examples, how to enforce different forms of encapsulation using sorts and
authorizations. Section 5 concludes the paper.

2 Informal Introduction

A hypercell is a finite set of cells. A cell has (we also say “offers”) roles (a term
we borrow from location graphs). A role is a point of attachment for cells, as well
as a point of interaction between cells. A hypercell, much like a SHR system,
constitutes a hypergraph, where the roles are vertices, and cells are the edges
of the hypergraph. A role corresponds to a point of attachment and interaction
between cells, and may be offered at most by two distinct cells. Hypercells are
thus limited forms of hypergraphs, where hyperedges can connect any number
of vertices, but a given vertex can only be connected by at most two edges.
As in standard software component model ontology [16], roles are classified as
provided or required : a provided role in a cell signals some service offered by the
cell, whereas a required role signals some expected service. When a role belongs
to two cells in a given hypercell (in required position in one cell, and in provided
position in the other cell), we say that the role is bound, and that it binds the
two cells that offer it. Otherwise, we say that the role is unbound.

A cell is a locus of computation, as are localities in process calculi such as the
Distributed π-calculus [31], and Klaim [29]. One can understand a cell as a basic
software component or as a connector, as in the component-and-connector view
of software architecture [3] and in software component models [16]. A hypercell
can be understood as a composite software component or component ensemble.
In this sense, the hypercell concepts align well with the standard concepts of
software component models [16] and software architecture, as present e.g. in the
ACME [21] and Fractal [8] component models (cells and hypercells correspond
to ACME and Fractal components, roles to ACME ports and Fractal interfaces,
bound roles to Fractal primitive bindings).

Figure 1 depicts a small hypercell with roles drawn as black dots (or arrows
when bound) and cells as ellipses. Interactions in a hypercell take the form of
simple point-to-point bidirectional interactions between pairs of cells bound by
some role. In Fig. 1, cells C1 and L1 can interact directly because they are bound,
but C2 cannot directly interact with C1, nor C with L. In the architecture

246 J.-B. Stefani and M. Vassor

depicted in Fig. 1, the scopes discussed in the introduction are manifested by
bound roles and the sorts adorning the different cells (hinted at by arrows).

The behavior of a hypercell is the result of the composition of the behavior
of its cells. A cell evolves by transforming into some hypercell, in the process
possibly interacting with, or removing, cells it is bound to. The evolution of a
hypercell corresponds to the parallel firing of a number of such cell transitions.
An interaction between two cells bound at a role r amounts to several binary
rendez-vous on communication channels succeeding at role r. An interaction will
typically result in the simultaneous exchange of values at each of the channels
participating in the interaction.

For instance, a client-server interaction at role r between a client cell C and
a server cell S, may, on the server side, take the form r : {op〈v, resp〉, resp〈w〉},
where r is the role which appears in provided position in the server (hence
the overline r), op is the channel on which the value v is sent, along with the
return channel resp, and w is the value which is (instantly) returned by the
server, in response to the request op〈v, resp〉, on the requested return chan-
nel resp. On the client side, the interaction would take the conjugate form
r : {op〈v, resp〉, resp〈w〉}. Notice that we use an early form for interactions:
this allows us, in the operational semantics of hypercell models, to abstract from
syntactic details such as a distinction between sent values and receiving param-
eters (the latter typically under the scope of some binding constructs). Our
operational semantics thus has no mention of substitution of values to formal
parameters, but we do distinguish with channels between originating side (e.g.
op, on the client side) and receiving side (e.g. op, on the server side).

Interactions between cells can be higher-order. In particular cells can be
exchanged as values on channels during interactions. This allows the removal or
passivation of cells as in the Kell calculus [34], which in turns allows to model
objective reconfigurations in software architectures, where certain components
can exercize explicit control over other ones.

Interactions between bound cells in a hypercell can be guarded by priorities.
Priorities are crucial for the expressive power of the framework and the definition
of different forms of composition operators as cells or hypercells. A priority
allows a cell to check for the presence or absence of a signal from another cell
it is bound to, in the form of the ability or inability to communicate on a given
channel. For instance the client side communication above could be guarded by
the absence of communication on channel sig on role s, which we would write
thus: 〈{s : ¬sig} · r : {op〈v, resp〉, resp〈w〉}〉. In effect, the possible emission of
signal sig on role s preempts (takes priority over) the emission of the request
op on role r.

Individual cell transitions are also guarded by authorizations. An authoriza-
tion is a runtime check that determines whether a cell transition is licit or not.
Authorizations rely on the hypercell context of an individual cell to make this
determination. For instance, a cell within an encapsulation scope can be pre-
vented from making a transition that would allow it to bind to a cell outside
this scope, whereas the same transition of the cell outside of such a scope can
be allowed to proceed.

Encapsulation and Sharing in Dynamic Software Architectures 247

3 The Hypercell Framework

We define in this section our Hypercell framework. This framework can be instan-
tiated to yield different hypercell models. Each hypercell model must define the
following sets: a set P of processes; a set S of sorts; an infinite set R of roles; a
set V of values; an infinite set A of names; an infinite set Ch of channels; a set Tu

of unconstrained transitions; and an authorization predicate Auth. We require
R ⊂ A, Ch ⊂ A, and that the sets P, S, and A be mutually disjoint. Values
can comprise processes, sorts, and names as well as elements of other datatypes
(booleans, integers, etc). Values can be exchanged between cells on channels at
bound roles. We require that the set Ch contain the special channel rmv, which is
used in hypercell models with objective cell removal. We require the set of names
A to be equipped with an involution, called the conjugate operation, which sends
a name a to its conjugate a. By definition, we have a = a, and we write â to
denote a or its conjugate a.

We require that each of the sets above be equipped with an operation for
swapping names: for any element x of the above sets, (r s) · x yields an element
of the same set where names r and s have been permuted, i.e. where r is replaced
by s. (in the long version of this paper, we require the datatypes above to be
nominal sets [30], but for lack of space we do not go into details here). We also
require the existence of an operation supp that extracts from an element the set
of names it contains, and we write a#X for a �∈ supp(X).

Formally, a cell in a hypercell model is a 4-tuple of the form [P : s � p • r],
where P is the process of the cell, s is the sort of the cell, p and r are the sets
of provided and required roles of the cell, respectively. If C = [P : s � p • r],
we have C.process = P , C.sort = s, C.prov = p, and C.req = r. Any cell
C must meet the following constraints: C.prov ∩ C.req = ∅. The set of cells in
a hypercell model is noted C. The process of a cell embodies its behavior; the
fact that a process can be a value means that cells can potentially update their
behavior dynamically. The sort of a cell is a dynamic type associated with the
cell; sorts are used to enforce runtime constraints on cells, as is shown in Sect. 4.

A hypercell G is just a set of cells that meets the following constraints: for
any partition G1, G2 of G (G = G1 ∪ G2 and G1 ∩ G2 = ∅), one must have
G1.prov ∩ G2.prov = ∅ and G1.req ∩ G2.req = ∅, where the set G.prov of
provided roles of hypercell G is defined as

⋃

C∈G C.prov (and likewise for the
set G.req of required roles of G). We note 0 the empty hypercell, and H the set
of hypercells in a hypercell model. We define the set of roles, of bound roles and
unbound roles of a hypercell G:

G.roles
Δ= G.prov ∪ G.req G.bound

Δ= G.prov ∩ G.req

G.unbound
Δ= G.roles \ G.bound

When G and G′ are two disjoint hypercells, we write G ‖ G′ to denote G ∪
G′ when G ∪ G′ is indeed a hypercell (i.e. a set of cells meeting the above
constraints).

248 J.-B. Stefani and M. Vassor

3.1 Operational Semantics of a Hypercell Model

The operational semantics of a hypercell model is defined as a set T of labelled
(contextual) transitions. A transition is an element of T = E × H × ˜ × H,
where E is the set of environments, and ˜ is the set of labels. A transition
t = 〈Γ,G,Λ,G′〉 ∈ T is noted Γ � G

Λ−→ G′, with Γ ∈ E the environment t.env
of the transition, G ∈ H the initial hypercell t.init of the transition, Λ ∈ ˜
the label t.label of the transition, and G′ ∈ H the final hypercell t.final of
the transition. Intuitively, if Γ � G

Λ−→ G′, then hypercell G, when placed in
environment Γ , can evolve into hypercell G′ provided the synchronizations in
label Λ are met. The environment in a transition represents both the set of
known names prior to the transition, and the hypercell context in which the
initial hypercell of the transition is placed.

A label Λ is a pair 〈π ·σ〉, where π is a finite set of priorities, and σ is a finite
set of interactions. We note ε the empty set of priorities or interactions. and we
set 〈π · σ〉.prior = π, 〈π · σ〉.sync = σ.

An interaction corresponds to an exchange of a value V on a channel c at
a role r. An interaction takes the form r : ĉ〈V 〉 if the role r is provided, and
r : ĉ〈V 〉 if the role is required. An interaction r̂ : c〈V 〉 corresponds to a receipt
on channel c at role r of value V , whereas an interaction r̂ : c〈V 〉 corresponds to
the emission of value V on channel c at role r. An interaction r̂ : ĉ〈V 〉 succeeds
when matched with its conjugate interaction r̂ : ĉ〈V 〉. Notice that the value V
in a successful interaction must be the same on both emitter and receiver sides.
For this reason, our presentation of an hypercell model transition relation can
be said to follow an early style [33]. This allows us in the presentation of the
hypercell framework to abstract away from syntactic details of interactions in
hypercell models. We set (r : ĉ〈V 〉).prov = {r}, (r : ĉ〈V 〉).req = ∅, and the dual
for r : ĉ〈V 〉. We set (r̂ : ĉ〈V 〉).roles = {r} and (r̂ : ĉ〈V 〉).channels = {c}. The
set of interactions in a hypercell model is noted I.

A priority takes the following form: r̂ : ¬c, where r is a role and c is a channel.
Intuitively, a contraint r̂ : ¬c stipulates that the cell bound at role r is not ready
to perform an interaction on channel c. The set of priorities is noted ˝. Priorities
are inherited from location graphs and provide hypercell models with significant
expressive power (see Proposition 1 below). We set (r̂ : ¬c).roles = {r}.

An environment Γ is a pair Δ ·Σ comprising a set of known names (roles or
channels) Δ ⊆ A = R∪Ch, and a skeleton hypercell (or skeleton, for brevity) Σ.
For Γ = Δ·Σ we define Γ.names = Δ and Γ.graph = Σ. The set of known names
in an environment corresponds intuitively to the set of already generated names
during a hypercell execution. New names created in a transition are names that
do not belong to this set. The skeleton in an environment gathers information
about the hypercell that surrounds the initial hypercell in a transition. It is used
in determining authorizations for individual cell transitions (see rule Trans
below). A skeleton cell is a triplet [s � p • r]. The set of skeleton cells in a
hypercell model is noted Cs. The set of skeleton hypercells in a hypercell model
is noted Hs. Essentially, a skeleton is a hypercell where one has erased all the

Encapsulation and Sharing in Dynamic Software Architectures 249

Trans
Γ.names · 0 Λ

G Σ(C) ∈ Γ.graph Auth(Γ, C, Λ, G)

Γ C
Λ

G

(Comp)

Γ G1
π1·σ1

G1

Γ G2
π2·σ2

G2 CondP (s, π, π1, π2, Γ, C1, C2)
CondI(σ, σ1, σ2, G1 G2) Cond(Γ, G1 G2)

Γ G1 G2
π·σ

G1 G2

(Ctx)

Γ G
·σ

G
IndP () IndI(σ, E) Cond(Γ, G E, G E)

Γ G E
π·σ

G E

Fig. 2. Transition rules for a hypercell model

processes. The skeleton Σ(G) of a hypercell G is defined inductively as follows:

Σ(0) = 0 Σ([P : s � p • r]) = [s � p • r] Σ(G1 ∪ G2) = Σ(G1) ∪ Σ(G2)

We denote by 0 the empty skeleton, and by E the set of environments in a
hypercell model. We define Δ1 · Σ1 ⊆ Δ2 · Σ2

Δ= Δ1 ⊆ Δ2 ∧ Σ1 ⊆ Σ2, and
Δ1 · Σ1 ∪ Δ2 · Σ2

Δ= Δ1 ∪ Δ2 · Σ1 ∪ Σ2.
An hypercell model must define the set Tu of unconstrained transitions of its

individual cells, i.e. transitions that do not rely on any knowledge of the execution
context of individual cells. This fits with the idea that software components can
be reused in different contexts (in our case, hypercells), and that their behavior
should be defined as independently as possible from their context of use. We write
Γ
C

Λ−→ G for Γ, C, Λ, G Tu . Environments in unconstrained transitions are
of the form Δ · 0. An unconstrained transition Δ · 0
 C

Λ−→ G for an individual
cell C must obey the following conditions: (i) names in the support of C must be
known names, i.e. names in Δ: supp(C) ⊆ Δ; (ii) interactions and priorities in
Λ = 〈π · σ〉 must be offered at roles from C: σ.prov ⊆ C.prov ∧ σ.req ⊆ C.req
and π.roles ⊆ C.roles. In addition, we require Tu to be insensitive to name

changes, namely: ∀t ∈ Tu, n, m ∈ , (n m) · t ∈ Tu. An hypercell model can
define cells that allow their removal by other cells they are bound to. A cell C
that allows its removal on some role r must provide an unconstrained transition

of the form Δ · 0
 C
〈ε·{r̂:rmv〈C〉}〉−−−−−−−−−→ 0.

A hypercell model must define an authorization predicate Auth. Predicate
Auth ⊆ E × C × ˜ × H determines whether an individual cell transition is pos-
sible in a given context (a surrounding hypercell). We require Auth to be name
insensitive, namely: for all n,m ∈ A, and cell transition t ∈ E × C × ˜ × H, we
have Auth(t) ⇐⇒ Auth((n m) · t).

250 J.-B. Stefani and M. Vassor

Using terminology from [38], the operational semantics of a hypercell model
is defined as the set of transitions that is the least well-suported model of
the rules in Fig. 2.

Rule Trans turns an unconstrained transition into a regular transition, pro-
vided that it be authorized in the current context.

The predicates Cond, CondI , IndI in the premises of rules Comp and Ctx are
defined as follows:

Cond(Γ, G)
Δ
= supp(G) · Σ(G) ⊆ Γ

CondI(σ, σ1, σ2, G)
Δ
= σ = seval(σ1 ∪ σ2) ∧ σ.roles ⊆ G.unbound

IndI(σ, E)
Δ
= σ.roles ∩ E.roles = ∅

seval(σ) = if σ = {r̂ : ĉ〈V 〉, r̂ : ĉ〈V 〉} ∪ σ′ then seval(σ′) else σ

If C is a hypercell with r ∈ C.roles, such that there is a single cell L ∈ C
with r ∈ L.roles, then we note �C�s

r the hypercell (s r) · C. For ρ = r̂ : ¬a, we
define ρ.r = r. We say that hypercell C, in environment Γ , satisfies the priority
constraint ρ = r̂ : ¬a, noted C |=Γ ρ, if the following conditions hold:

Σ(C) ⊆ Γ.graph ∧ r ∈ C.unbound

¬(∃D ∈ H, V ∈ V, Λ ∈ ˜, Γ � C
Λ−→ D ∧ r̂ : â〈V 〉 ∈ Λ.sync)

The predicates CondP and IndP in the premises of the rules Comp and Ctx
are defined as follows:

CondP (s, π, π1, π2, Γ, C1, C2)
Δ
= s#Γ.names

∧ π = {ρ ∈ π1 ∪ π2 | ρ.r ∈ (C1 ‖ C2).unbound}
∧

∧

ρ∈π1\π

�C1�s
ρ.r ‖ C2 |=Γ ρ ∧

∧

ρ∈π2\π

C1 ‖ �C2�s
ρ.r |=Γ ρ

IndP (s, π, �, Γ, C, E)
Δ
= s#Γ.names

∧ π = {ρ ∈ � | ρ.r ∈ (C ‖ E).unbound}
∧

∧

ρ∈�\π

�C�s
ρ.r ‖ E |=Γ ρ

The predicate CondP expresses the fact that priorities that appear on roles
that bind the hypercells C1 and C2 together must be verified. Priorities on
roles that bind hypercells C1 and C2 are exactly those constraints ρ in the set
(π1 \ π) ∪ (π2 \ π), where π is the set of priorities that appear on roles not
bound in C1 ‖ C2 (since priorities that appear in a transition of a hypercell C
are expected to adorn unbound roles in C). To check whether a priority ρ is
satisfied, one considers a variant of configuration C1 ‖ C2 where the role ρ.r, in
the hypercell from which the priority originates, is replaced by a fresh role. In
effect, this replacement amounts to severing the binding ρ.r between C1 and C2.

Remark 1. The definition of satisfaction for a priority by a hypercell is not
entirely trivial because of cycles of constraints that may occur. As a sanity
check, consider the two following examples, depicted in Fig. 3.

Encapsulation and Sharing in Dynamic Software Architectures 251

L

M N

A B
p : ¬a q

p : ¬a

q : ¬b

Fig. 3. Two hypercells with priorities

On the left, we are considering a hypercell M ‖ L ‖ N , and a transition from

L of the form Γ � L
〈p:¬a·q:b〉−−−−−−→ C, where L can interact with N on channel b,

provided M is not able to interact on a. Verifying the satisfaction of the priority
on role p consists in checking whether M ‖ �L�s

p ‖ N , where s is fresh, can
interact on channel a on role p, which amounts to check that M can interact on
channel a on role p.

On the right, we are considering a hypercell A ‖ B, with the following tran-
sitions:

tA = Γ � A
〈q:¬b·{p:c,q:c}〉−−−−−−−−−−→ A′ t′A = Γ � A

〈ε·p:a〉−−−−→ A′

tB = Γ � B
〈p:¬a·{p:c,q:c}〉−−−−−−−−−−→ B′ t′B = Γ � B

〈ε·q:b〉−−−−→ B′

In other terms, A can interact on channel c on roles p and q, provided B
cannot interact on channel b on role q, and B can interact on channel c on roles
p and q, provided A cannot interact on a on role p. To verify the satisfaction
of the priority from A on role q, we have to check whether the graph �A�s

q ‖ B,
where s is fresh, can interact on channel b on role q, which amounts to check
that B can interact on channel b on role q. This is the case because of transition
t′B. The priority from A on role q is thus not verified, and transition tA cannot
fire in this configuration. Likewise, the priority from B on role p is not satisfied
and transition tB cannot fire in this configuration.

In both examples, our rules give results that match the intuition: in the first
case, we expect the priority on p to be satisfied merely if M cannot interact on
channel a on role p, and in the second case we expect the hypercell A ‖ B to
deadlock.

Rule Comp stipulates that a hypercell G1 ‖ G2 can evolve by combining a
transition from G1 and a transition from G2. The combination involves synchro-
nizing interactions on roles that bind G1 and G2 (condition CondI) and verifying
priorities on the roles that bind G1 and G2 (condition CondP). Rule Ctx stip-
ulates that in a hypercell G ‖ E, hypercell G can evolve independently of E,
provided G’s interactions and priorities do not involve roles from E (conditions

252 J.-B. Stefani and M. Vassor

IndI , IndP). Notice that both rules Comp and Ctx require the results of the
transitions in their conclusion (G′

1 ‖ G′
2 and G′ ‖ E) to be hypercells. Note that

both rules are stratified by the number of bound roles in a hypercell: the number
of bound roles in C1 ‖ C2 is one less than in �C1�

s
ρ.r ‖ C2.

Notice that, in contrast to other process calculi frameworks such as the ψ-
calculus [5] and SHR systems [19], hypercell models do not have a restriction
operator á la π-calculus. In hypercells, events taking place at a role binding two
cells are not visible outside of the two cells. This hiding provided by bound roles
is actually enough to encode restriction as in the π-calculus. Our handling of
name creation via environments is also unusual, again compared to the use of a
restriction operator á la π-calculus. It is related to the nominal presentation of
the π-calculus in [13], but relies on name insensitivity instead of α-conversion.
This is no way a limitation on the expressive power of the hypercell framework
for the restriction operator, as well as any other composition operator definable
by means of GSOS rules, i.e. structured operational semantics rules obeying
the general format defined in [7]. More generally we can prove that any GSOS
language (as defined in [7]) can be encoded as a hypercell model:

Proposition 1. For any GSOS language L, there exists a hypercell model and
an encoding , such that for any P,Q ∈ L, a ∈ A, u ∈ R,
we have P

a−→ Q if and only if there exist Δ ⊆ A, Λ ∈ ˜ with u : a ∈ Λ.sync,
C ∈ �P �u, and D ∈ �Q�u, such that Δ � C

Λ−→ D.

Similarly, we can prove that the π-calculus can be encoded as a hypercell model.

3.2 Behavioral Equivalence for Hypercell Models

We define in this section a strong notion of behavioral equivalence for hypercell
models, in the form of a bisimilarity relation.

Definition 1 (Environment equivalence). Two environments Γ, Γ ′ are said
to be equivalent, noted Γ � Γ ′, if for all Υ ∈ E such that Γ ∪ Υ ∈ E and
Γ ′ ∪ Υ ∈ E, for all C ∈ C, Λ ∈ ˜, G ∈ H, we have Auth(Γ ∪ Υ,C,Λ,G) =
Auth(Γ ′ ∪ Υ,C,Λ,G). Two hypercells G and F are said to be environmentally
equivalent, also noted G � F , if supp(G) · Σ(G) � supp(F) · Σ(F).

Definition 2 (Strong simulation). A name insensitive binary relation on
hypercells R ⊆ H×H is a strong simulation if, for all 〈G,F 〉 ∈ R, G′′ ∈ H, Λ ∈ ˜,
the following properties hold:

1. G � F and the unbound provided (resp. required) roles of G and F coincide.
2. For all Γ ∈ E such that Γ ∪Σ(G) ∈ E, Γ ∪Σ(F) ∈ E, if Γ ∪Σ(G) � G

Λ−→ G′,
then there exists F ′ ∈ H such that Γ ∪ Σ(F) � D

Λ−→ F ′ with 〈G′, F ′〉 ∈ R.

The main difference compared to the usual notion of strong simulation on
labelled transition systems is the quantification on environments, which is nec-
essary to take into account the effect of authorization functions. Note also that

Encapsulation and Sharing in Dynamic Software Architectures 253

we require that a transition be simulated by a transition with the exact same
label. This is a strong requirement but which can only be relaxed if one knows
more about actions hypercells can take on values (e.g. if processes can only be
exchanged and run – placed in a cell –, one may require only that they be similar,
as in higher-order simulations).

Definition 3 (Strong bisimulation and bisimilarity). A binary relation
R ⊆ H2 is a strong bisimulation if both it and its inverse relation R−1 are
strong simulations.

Strong bisimilarity, noted ∼, is defined by ∼ Δ=
⋃

R∈S R, where is
the set of all strong bisimulations.

Crucially, in any hypercell model strong bisimilarity is a congruence (meaning
our notion of bisimilarity is a reasonable notion of behavioral equivalence for
hypercells):

Theorem 1. In any hypercell model, for all G,F ∈ H, if G ∼ F , then for all
E ∈ H such that G ‖ E ∈ H and F ‖ E ∈ H, we have G ‖ E ∼ F ‖ E.

The proof of this is left out for lack of space but it proceeds by showing, by
induction on the maximum number of bound names in G ‖ E and F ‖ E, that
the relation R = {(G ‖ E,F ‖ E | G ∼ F)} is a strong bisimulation.

4 Encapsulation Policies

We show in this section how to enforce different encapsulation policies in hyper-
cell models. Specifically, we present a form of strict encapsulation, inspired by
owner-as-dominator policies studied in ownership types [14], and a weaker vari-
ant that allows software architectures with overlapping encapsulation scopes
as in Fig. 1. The challenge is of course to enforce these policies in the highly
dynamic and concurrent setting of hypercell evolutions. Some notations first.
For L,M ∈ C ∪ Cs, we write L � M to mean L and M are bound, i.e.
(L.prov ∩ M.req) ∪ (L.req ∩ M.prov) �= ∅. For F,G ∈ H ∪ Hs, we write F � G
to mean F.roles ∩ G.roles = ∅.

4.1 Strict Encapsulation

In this form of encapsulation, cells come in three disjoint categories: owner cells,
owned cells, and free cells. Owner cells can be understood as composite compo-
nents. The cells they own – their owned cells – are their subcomponents. Free
cells are neither owner nor owned. The encapsulation policy we consider here
takes the form of a structural invariant which ensures an owned cell cannot
directly interact with cells which do not belong to its owner’s group - made by
this owner cell and all its owned cells. For simplicity, we have only a single level
of ownership (owner cells cannot be owned). It is relatively straightforward to
extend this policy to allow multiple levels of ownerhsip.

254 J.-B. Stefani and M. Vassor

To capture this, we consider a hypercell model (actually a class of models)
with sorts that take the form of 4-tuples 〈k,p,o, r〉, where k ∈ {�,⊥} is a
flag and . We set: s.flag = k, s.fprov = p, s.owned = o,
s.freq = r, and write C.fprov for C.sort.fprov, C.owned for C.sort.owned,
C.freq for C.sort.freq, C.flag for C.sort.flag. Flags in sorts are used to
avoid race conditions in the parallel evolution of owner and owned cells in a
owner group, which would break the global structural invariant (for instance
two owned cells being bound, while their owner is splitting itself in two).

A cell C in this model is assumed to maintain the following invariant:

C.prov = C.fprov ∧ C.req = C.owned ∪ C.freq ∧ C.owned ∩ C.freq = ∅ (1)

We also require to identify in a transition label Λ the roles that are sent by the
initial cell in the transition. We note Λ.sent the set of sent roles in Λ.

We define the following (these definitions apply to skeletons as well). For
L,M ∈ C, we write L � M for L.owned∩ M.prov �= ∅ (intuitively, L owns M),
and M.upL for L.owned ∩ M.prov when L � M . If G ∈ H, we write L � G to
mean that, for all M ∈ G, L � M . For G ∈ H, L ∈ C, we define scopeG(L) =
{M ∈ G | L � M} (the set of cells owned by L), and groupG(L) = {L} ∪
scopeG(L). We write scopeΓ (L) for scopeΓ.graph(L). We drop the subscript G
to write scope(L) and group(L) when the hypercell or skeleton context G is
clear. An owner is a cell L such that L.owned �= ∅ and we write L owner. We
define: G.owners

Δ= {M ∈ G | M.owned �= ∅}. An owned cell L in a hypercell
G is a cell such that there exists M ∈ G with M � L. A free cell in a hypercell
G is a cell which is neither owner nor owned.

The structural properties we expect are defined as follows. For any G∈H∪Hs:

∀L, M ∈ G, L �= M =⇒ scopeG(L) � scopeG(M) ∧ L.owned ∩ M.owned = ∅ (2)
∀L, M ∈ G, L � M =⇒ M.owned = ∅ (3)
∀L, M, N ∈ G, L � M ∧ M � N =⇒ L � M ∨ L = N (4)

Property (2) states that the encapsulation scopes of two owners L and M in the
same hypercell are necessarily distinct and they are bound by no role. Prop-
erty (3) states that there is only a single level of ownership: an owner cannot be
owned. Property (4) states that cells in the encapsulation scope of an owner can
only be bound to cells in the same scope or to the owner itself. We write Inv(G)
if properties (2), (3), and (4) hold for G (hypercell or skeleton).

We assume the existence of a predicate with
the following properties (New can be defined constructively but we eschew this
definition here for lack of space):

New(Δ,A,B) =⇒ B ∩ (Δ ∪ A) = ∅
New(Δ,A,B) ∧ New(Δ,A′, B′) ∧ A �= A′ =⇒ B ∩ B′ = ∅

We define the following predicates, which are used in the definition of the
authorization predicate. Predicate Safe ⊆ E×C×H is such that Safe(Γ,M,G)
holds if roles of G are new roles or are roles already used in the scope of M in
the context Γ . It is defined as follows:

Encapsulation and Sharing in Dynamic Software Architectures 255

Predicate Incl ⊆ Hs × Cs is such that Incl(G,M) holds if M shares a role
with a skeleton cell in G. It is defined as follows:

Incl(G,M) Δ= M.prov ∩ G.prov �= ∅ ∨ M.req ∩ G.req �= ∅

We now define the authorization predicate for our class of hypercell models
with strict encapsulation. Predicate Auth is defined as follows. Auth(Γ,L,Λ,G)
is true exactly in the cases below:

1. If ∃M ∈ Γ, M � Σ(L) ∧ M.flag = �, G.owned = ∅ ∧ M � Σ(G) ∧
Safe(Γ,M,G), and Λ.sent ⊆ supp(L). If the flag of its owner is up, an
owned cell can reconfigure into an hypercell G provided all the cells in G
remain owned by the same owner, and the roles of G are either existing roles
of cells in the owner scope, or brand new ones. If a cell is owned, the only
constraint on its transitions labels is that sent roles in a label be roles already
known by L (i.e. new roles created during a transition cannot be immediately
sent).

2. If L owner ∧ L.flag = ⊥, Inv(H(Γ,L,G)) ∧ Osafe(Γ,L,G) with:

H(Γ,L,G) Δ= Σ(G) ∪ (scopeΓ (L) \ {M ∈ scopeΓ (L) | Incl(Σ(G),M)})

Osafe(Γ,L,G) Δ=
∧

K∈G.owners

Safe(Γ,L, scopeH(Γ,L,G)(K))

and Λ.sent ⊆ supp(L) ∧ rmv �∈ Λ.sync.channels. If its flag is down, an
owner L can reconfigure into an hypercell G, provided G and the cells in L’s
scope remaining after the transition (those such that incl(Σ(G),M) have
been removed) respect the global invariant Inv, and the roles in the scope of
owners in G are either ones already in its scope, or brand new ones. If a cell
is an owner, the same constraint as above on sent roles apply, but in addition
it cannot be removed by any other cell.

3. If L owner ∧ L.flag = �, L.owned ⊆ G.owned, G ∈ C, and Λ.sent ⊆
supp(L) ∧ rmv �∈ Λ.sync.channels. If its flag is up, an owner can only
change into a single owner cell, not losing any owned role, possibly adding
some (e.g. to allow the reconfiguration of cells it owns).

4. If L free, Inv(G) ∧ Fsafe(Γ,L,G) where:

Fsafe(Γ,G) Δ= G.roles ∩ Γ.owned = ∅ ∧
∧

K∈G.owners

Safe(Γ,L, scopeG(K))

and Λ.sent ⊆ supp(L). A free cell can reconfigure into a hypercell G provided
it respects the global invariant Inv, it does not insert new cells in the scope
of existing owners, and the roles of cells in the scope of new owners in G
are safe. Also, since it is not an owner, new roles created during a transition
cannot be immediately sent.

256 J.-B. Stefani and M. Vassor

Note that, with the above definition of Auth, in an environment Γ where cell
L is owned and the flag of its owner M is down, i.e. ∃M ∈ Γ, M � L∧M.flag =
⊥, then L cannot evolve in environment Γ .

The authorization predicate is quite permissive in the kinds of evolutions
owner cells can perform. Notice in particular that owner cells may split or dis-
solve during execution, allowing e.g. for the transfer of owned cells from one
owner to another. Likewise, owned cells can be freed by their owner and become
owner cells later on. The dynamicity and concurrency in the class of hypercell
models obeying strict encapsulation is much bigger than that allowed in the
computational models underlying ownership types (either strictly sequential or
actor like).

Predicate Inv is indeed an invariant for the class of hypercell models equipped
with these sorts and authorization functions:

Proposition 2 (Inv is an invariant). For all Γ ∈ E, G,G′ ∈ H, Λ ∈ ˜, if
Inv(Γ), Inv(G) and Γ � G

Λ−→ G′, then Inv(G′).

4.2 Selective Encapsulation

We extend the strict encapsulation policy of the previous section with a notion of
weak ownership. Briefly, owner scopes of strict encapsulation are now allowed to
include weakly owned cells. A cell may belong to only one owner, as previously,
but may also belong to several weak owners. A cell can be weakly owned only if
it has identified specific provided roles for this purpose (wprov roles below).

We extend sorts to 6-tuples 〈k,p,o, r,q,w〉 with . We set
s.wowned = w and s.wprov = q. We write

C.wowned for C.sort.wowned, and C.wprov for C.sort.wprov. C.wowned are
required roles for binding to a weakly owned cell. C.wprov are provided roles for
binding to a weak owner.

We adapt the invariant (1) as follows:

C.prov = C.fprov ∪ C.wprov ∧ C.fprov ∩ C.wprov = ∅
∧ C.req = C.owned ∪ C.wowned ∪ C.freq

∧ C.owned, C.wowned, C.freqmutually disjoint
(5)

For L,M ∈ C (or Cs), we write L ⇀ M for L.wowned ∩ M.wprov �= ∅.
Writing now G.(roles − wroles) for G.roles \ (G.wowned ∪ G.wprov), and
F � G for F.(roles− wroles) ∩ G.(roles− wroles) = ∅ he global structural

invariant is now the conjunction of the following properties:

∀L, M ∈ G, L �= M =⇒ scopeG(L) � scopeG(M) ∧ L.owned ∩ M.owned = ∅ (6)
∀L, M ∈ G, L � M =⇒ M.owned = ∅ (7)
∀L, M, N ∈ G, L � M ∧ M � N =⇒ L � N ∨ L = N ∨ M ⇀ N ∨ N ⇀ M (8)

Notice how the invariant (8) changes from the strict encapsulation policy. Cells
in an owner scope are now allowed to bind to cells they weakly own, i.e. the
weak ownership relation allows cells to bind roles across group boundaries.

Encapsulation and Sharing in Dynamic Software Architectures 257

The authorization predicate for this new policy is defined as in the previous
section, with just a change in the definition of the Safe predicate. Safe is now
defined as follows:

Using this policy, we can describe the architecture described in Fig. 1 as a
hypercell with cells C,C1, C2, L, L1, L2, where C and L are owners of cells C1, C2

and L1, L2, respectively, and where C1 and C2 are weak owners of L1 and L2,
respectively.

As it is, the selective encapsulation policy just allows for specifically identi-
fied roles to break the encapsulation policy, and for weakly owned cells to act
as shared internal means of communication between different owner scopes. It is
possible, however, to enforce additional constraints on weak ownership to reflect
different aggregation semantics. For instance, one could enforce a lifetime depen-
dency between weak owner and weak owned cell, preventing the removal of a
weak owner if its weakly owned cells are still in place, or, one could ensure a cell
has a single weak owner. We do not present these examples here, but our two
examples in this section should provide a good taste of the possibilities offered.

5 Conclusion

We have presented the Hypercell framework for defining software component
models (hypercell models). The basic ontology of any hypercell model agrees with
the classical elements of software component models [16,21], but the combination
of dynamicity, sharing and encapsulation an hypercell model can offer is, to
the best of our knowledge, unique. The key points to retain are the following:
(i) this combination is made possible by the use of contextual transitions, cell
sorts and context dependent runtime checks that enforce encapsulation policies;
(ii) a proper notion of equivalence between hypercells is obtained thanks to
authorizations at the level of individual cells and a notion of bisimulation that
decouples the effect of authorizations from the classical bisimulation game.

Our runtime approach to enforcing encapsulation policies seems more per-
missive, and able to express more forms of policies and aggregations semantics
than possible with ownership types, as our examples suggest. However, we have
at this time no formal proof of this. Also, how our approach compares with those
combining static ownership discipline with dynamic ownership tests, as in the
Mezzo permission-based language [1], remains to be seen. It is worth pointing
out that in defining encapsulation policies in the Hypercell framework, we do
have a choice between imposing static constraints on unconstrained transitions,
and imposing dynamic constraints via authorization predicates. In this paper, we

258 J.-B. Stefani and M. Vassor

have opted in our examples for an approach that made maximal use of autho-
rization, but other options are available that combine both. For expressivity,
however, we believe some amount of run-time checking is inescapable.

A crucial question is of course whether our abstract Hypercell framework can
be efficiently implemented and supported. An implementation of an abstract
machine for object-based hypercells is currently under way, but is clear that
enforcing encapsulation constraints via runtime checks is a viable option, as
demonstrated by the work on Siaam [15]. This work showed, in the simpler
context of the actor model, that the overhead of such checks can largely be
mitigated by means of static analyses that can safely remove most unnecessary
ones.

References

1. Balabonski, T., Pottier, F., Protzenko, J.: The design and formalization of Mezzo, a
permission-based programming language. ACM Trans. Program. Lang. Syst. 38(4),
14 (2016)

2. Barbier, F., Henderson-Sellers, B., Le Parc, A., Bruel, J.M.: Formalization of the
whole-part relationship in the unified modeling language. IEEE Trans. Softw. Eng.
29(5), 459–470 (2003)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice SEI Series
in Software Engineering, 3rd edn. Addison-Wesley, Boston (2013)

4. Bauer, S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 3

5. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Log. Methods Comput. Sci. 7(1),
1–44 (2011)

6. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
508–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 39

7. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),
232–268 (1995)

8. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: The fractal
component model and its support in Java. Softw. Pract. Exp. 36(11–12), 1257–
1284 (2006)

9. Bruni, R., Montanari, U., Sammartino, M.: Reconfigurable and software-defined
networks of connectors and components. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 73–106. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16310-9 2

10. Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: the calculus
of boxed ambients. ACM. Trans. Program. Lang. Syst. 26(1), 57–124 (2004)

11. Cardelli, L., Gordon, A.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

12. Castellani, I.: Process algebras with localities. In: Bergstra, J., Ponse, A., Smolka,
S. (eds.) Handbook of Process Algebra, Elsevier (2001)

https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-540-85361-9_39
https://doi.org/10.1007/978-3-540-85361-9_39
https://doi.org/10.1007/978-3-319-16310-9_2
https://doi.org/10.1007/978-3-319-16310-9_2

Encapsulation and Sharing in Dynamic Software Architectures 259

13. Cattani, G.L., Sewell, P.: Models for name-passing processes: interleaving and
causal. Inf. Comput. 190(2), 136–178 (2004)

14. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: a survey. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification. LNCS, vol. 7850, pp. 15–58. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36946-9 3

15. Claudel, B., Sabah, Q., Stefani, J.B.: Simple isolation for an actor abstract machine.
In: Graf, S., Viswanathan, M. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems, FORTE 2015. Lecture Notes in Computer Science, vol.
9039. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19195-9 14

16. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 599–615
(2011)

17. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
7 (2014)

18. Eker, J., et al.: Taming heterogeneity-the Ptolemy approach. Proc. IEEE 91(1),
127–144 (2003)

19. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hyper-
edge replacement as a model for service oriented computing. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
22–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 2

20. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented
architectures. Softw. Syst. Model. 12(2), 349–367 (2013)

21. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-
based systems. Foundations of Component-Based Systems. Cambridge University
Press (2000)

22. Hennessy, M., Rathke, J., Yoshida, N.: SAFEDPI: a language for controlling mobile
code. Acta Inf. 42(4–5), 227–290 (2005)

23. Jongmans, S.S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo.
Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)

24. Leavens, G., Sitaraman, M. (eds.): Foundations of Component-Based Systems.
Cambridge University Press (2000)

25. Zhiming, L., He, J. (eds.): Mathematical Frameworks for Component Software -
Models for Analysis and Synthesis. World Scientic (2006)

26. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: 4th ACM
symposium on Foundations of Software Engineering (FSE-4). ACM (1995)

27. Merle, P., Stefani, J.B.: A formal specification of the fractal component model in
alloy. Research Report RR-6721, INRIA, France (2008)

28. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

29. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

30. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

31. Riely, J., Hennessy, M.: A typed language for distributed mobile processes. In: 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM (1998)

32. Sanchez, A., Barbosa, L.S., Riesco, D.: Bigraphical modelling of architectural pat-
terns. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 313–
330. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35743-5 19

https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-319-19195-9_14
https://doi.org/10.1007/11804192_2
https://doi.org/10.1007/978-3-642-35743-5_19

260 J.-B. Stefani and M. Vassor

33. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

34. Schmitt, A., Stefani, J.-B.: The kell calculus: a family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31794-
4 9

35. Sevegnani, M., Calder, M.: Bigraphs with sharing. Theor. Comput. Sci. 577, 43–73
(2015)

36. Stefani, J.-B.: Components as location graphs. In: Lanese, I., Madelaine, E. (eds.)
FACS 2014. LNCS, vol. 8997, pp. 3–23. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-15317-9 1

37. Tutu, I., Fiadeiro, J.L.: Service-oriented logic programming. Log. Methods Com-
put. Sci. 11(3), 1–37 (2015)

38. van Glabbeek, R.J.: The meaning of negative premises in transition system
specifications II. J. Log. Algebraic Program. 60–61, 229–258 (2004). https://
www.sciencedirect.com/journal/the-journal-of-logic-and-algebraic-programming/
vol/60/suppl/C

39. Voigt, J.: Access contracts: a dynamic approach to object-oriented access protec-
tion. Technical report UCAM-CL-TR-880, University of Cambridge (2016)

40. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software
architecture reconfiguration. Sci. Comput. Program. 44(2), 133–155 (2002)

https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-540-31794-4_9
https://doi.org/10.1007/978-3-319-15317-9_1
https://doi.org/10.1007/978-3-319-15317-9_1
https://www.sciencedirect.com/journal/the-journal-of-logic-and-algebraic-programming/vol/60/suppl/C
https://www.sciencedirect.com/journal/the-journal-of-logic-and-algebraic-programming/vol/60/suppl/C
https://www.sciencedirect.com/journal/the-journal-of-logic-and-algebraic-programming/vol/60/suppl/C

Decentralized Real-Time Safety
Verification for Distributed
Cyber-Physical Systems

Hoang-Dung Tran1(B), Luan Viet Nguyen2, Patrick Musau1, Weiming Xiang1,
and Taylor T. Johnson1

1 Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

trhoangdung@gmail.com
2 Department of Computer and Information Science,

University of Pennsylvania, Philadelphia, PA, USA

Abstract. Safety-critical distributed cyber-physical systems (CPSs)
have been found in a wide range of applications. Notably, they have
displayed a great deal of utility in intelligent transportation, where
autonomous vehicles communicate and cooperate with each other via
a high-speed communication network. Such systems require an ability to
identify maneuvers in real-time that cause dangerous circumstances and
ensure the implementation always meets safety-critical requirements. In
this paper, we propose a real-time decentralized safety verification app-
roach for a distributed multi-agent CPS with the underlying assumption
that all agents are time-synchronized with a low degree of error. In the
proposed approach, each agent periodically computes its local reachable
set and exchanges this reachable set with the other agents with the goal
of verifying the system safety. Our method, implemented in Java, takes
advantages of the timing information and the reachable set information
that are available in the exchanged messages to reason about the safety
of the whole system in a decentralized manner. Any particular agent can
also perform local safety verification tasks based on their local clocks
by analyzing the messages it receives. We applied the proposed method
to verify, in real-time, the safety properties of a group of quadcopters
performing a distributed search mission.

1 Introduction

The emergence of 5G technology has inspired a massive wave of the research
and development in science and technology in the era of IoT where the commu-
nication between computing devices has become significantly faster with lower
latency and power consumption. The power of this modern communication tech-
nology influences and benefits all aspects of Cyber-Physical Systems (CPSs) such
as smart grids, smart homes, intelligent transportation and smart cities. In par-
ticular, the study of autonomous vehicles has become an increasingly popular
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 261–277, 2019.
https://doi.org/10.1007/978-3-030-21759-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_15

262 H.-D. Tran et al.

research field in both academic and industrial transportation applications. Auto-
motive crashes pose significant financial and life-threatening risks, and there is
an urgent need for advanced and scalable methods that can efficiently verify a
distributed system of autonomous vehicles.

Over the last two decades, although many methods have been developed
to conduct reachability analysis and safety verification of CPS, such as the
approaches proposed in [1,4,10,11,13,15,18], applying these techniques to real-
time distributed CPS remains a big challenge. This is due to the fact that, (1) all
existing techniques have intensive computation costs and are usually too slow
to be used in a real-time manner and, (2) these techniques target the safety
verification of a single CPS, and therefore they naturally cannot be applied
efficiently to a distributed CPS where clock mismatches and communication
between agents (i.e., individual systems) are essential concerns. Since the future
autonomous vehicles systems will work distributively involving effective commu-
nication between each agent, there is an urgent need for an approach that can
provide formal guarantees of the safety of distributed CPS in real-time. More
importantly, the safety information should be defined based on the agents local
clocks to allow these agents to perform “intelligent actions” to escape from the
upcoming dangerous circumstances. For example, if an agent A knows based
on its local clock that it will collide with an agent B in the next 5 s, it should
perform an action such as stopping or quickly finding a safe path to avoid the
collision.

In this paper, we propose a decentralized real-time safety verification app-
roach for a distributed CPS with multiple agents. We are particularly interested
in two types of safety properties. The first one is a local safety property which
specifies the local constraints of the agent operation. For example, each agent is
only allowed to move within a specific region, does not hit any obstacles, and
its velocity needs to be limited to specific range. This type of property does not
require the information of other agents and can be verified locally at run-time.
The second safety property is a global safety property in which we want to check
if there are any potential collision occurring between the agents.

Our decentralized real-time safety verification approach works as follows.
Each agent locally and periodically computes the local reachable set from the
current local time to the next T seconds, and then encodes and broadcasts its
reachable set information to the others via a communication network. When the
agent receives a reachable set message, it immediately decodes the message to
read the reachable set information of the sender, and then performs peer-to-peer
collision checking based on its current state and the reachable set of the sender.
Additionally, the local safety property of the agent is verified simultaneously
with the reachable set computation process at run-time. The proposed verifi-
cation approach is based on an underlying assumption that is, all agents are
time-synchronized to some level of accuracy. This assumption is reasonable as it
can be achieved by using existing time synchronization protocols such as the Net-
work Time Protocol (NTP). Our approach has successfully verified in real-time
the local safety properties and collision occurrences for a group of quadcopters
conducting a search mission.

Decentralized Real-Time Safety Verification for Distributed CPSs 263

2 Problem Formulation

In this paper, we consider a distributed CPS with N agents that can communi-
cate with each other via an asynchronous communication channel.

Communication Model. The communication between agents is implemented by
the actions of sending and receiving messages over an asynchronous communica-
tion channel. We formally model this communication model as a single automa-
ton, Channel, which stores the set of in-flight messages that have been sent,
but are yet to be delivered. When an agent sends a message m, it invokes a
send(m) action. This action adds m to the in-flight set. At any arbitrary time,
the Channel chooses a message in the in-flight set to either delivers it to its
recipient or removes it from the set. All messages are assumed to be unique and
each message contains its sender and recipient identities. Let M be the set of
all possible messages used in communication between agents. The sending and
receiving messages by agent i are denoted by Mi,∗ and M∗,i, respectively.

Agent Model. The ith agent is modeled as a hybrid automaton [12,22] defined
by the tuple 〈Ai = Vi, Ai,Di, Ti〉, where:

(a) Vi is a set of variables consisting of the following: (i) a set of continuous
variables Xi including a special variable clk i which records the agent’s local
time, and (ii) a set of discrete variables Yi including the special variable
msghist i that records all sent and received messages. A valuation vi is a
function that associates each vi ∈ Vi to a value in its type. We write val(Vi)
for the set of all possible valuations of Vi. We abuse the notion of vi to
denote a state of Ai, which is a valuation of all variables in Vi. The set
Qi

Δ= val(Vi) is called the set of states.
b) Ai is a set of actions consisting of the following subsets: (i) a set

{sendi(m) | m ∈ Mi,∗} of send actions (i.e., output actions), (ii) a set
{receivei(m) | m ∈ M∗,i} of receive actions (i.e., input actions), and
(iii) a set Hi of other, ordinary actions.

(c) Di ⊆ val(Vi) × Ai × val(Vi) is called the set of transitions. For a transi-
tion (vi, ai,v′

i) ∈ Di, we write vi
ai→ v′

i in short. (i) If ai = sendi(m) or
receivei(m), then all the components of vi and v′

i are identical except that
m is added to msghist in v′

i. That is, the agent’s other states remain the
same on message sends and receives. Furthermore, for every state vi and
every receive action ai, there must exist a v′

i such that vi
ai→ v′

i, i.e., the
automaton must have well-defined behavior for receiving any message in any
state. (ii) If ai ∈ Hi, then vi.msghist = v′

i.msghist .
(d) Ti is a collection of trajectories for Xi. Each trajectory of Xi is a function

mapping an interval of time [0, t], t ≥ 0 to val(Vi), following a flow rate
that specifies how a real variable xi ∈ Xi evolving over time. We denote the
duration of a trajectory as τdur, which is the right end-point of the interval t.

264 H.-D. Tran et al.

Agent Semantics. The behavior of each agent can be defined based on the concept
of an execution which is a particular run of the agent. Given an initial state v0

i ,
an execution αi of an agent Ai is a sequence of states starting from v0

i , defined
as αi = v0

i ,v
1
i , . . ., and for each index j in the sequence, the state update from

vj
i to vj+1

i is either a transition or trajectory. A state vj
i is reachable if there

exists an executing that ends in vj
i . We denote Reach(Ai) as the reachable set

of agent Ai.

System Model. The formal model of the complete system, denoted as System, is
a network of hybrid automata that is obtained by parallel composing the agent’s
models and the communication channel. Formally, we can write, System

Δ=
A1‖ . . . AN‖Channel. Informally, the agent Ai and the communication channel
Channel are synchronized through sending and receiving actions. When the agent
Ai sends a message m ∈ Mi,j to the agent Aj , it triggers the sendi(m) action.
At the same time, this action is synchronized in the Channel automaton by
putting the message m in the in-flight set. After that, the Channel will trigger
(non-deterministically) the receivej(m) action. This action is synchronized in the
agent Aj by putting the message m into the msghistj .

In this paper, we investigate two real-time safety verification problems for
distributed cyber-physical systems as defined in the following.

Problem 1 (Local safety verification in real-time). The real-time local safety ver-
ification problem is to compute online the reachable set Reach(Ai) of the agent
and verify if it violates the local safety property, i.e., checking Reach(Ai) ∩ Ui =
∅?, where Ui � Cixi ≤ di, xi ∈ Xi is the unsafe set of the agent.

Problem 2 (Decentralized real-time collision verification). The decentralized
real-time collision verification problem is to reason in real-time whether an agent
Ai will collide with other agents from its current local time tic to the computable,
safe time instance in the future Tsafe based on (i) the clock mismatches, and
(ii) the exchanging reachable set messages between agents. Formally, we require
that ∀ tic ≤ t ≤ Tsafe, dij(t) ≥ l, where dij(t) is the distance between agents
Ai and Aj at the time t of the agent Ai local clock, and l is the allowable safe
distance between agents.

3 Real-Time Local Safety Verification

The first important step in our approach is, each agent Ai computes forwardly its
reachable set of states from the current local time ti to the next (ti +T) seconds
which is defined by Ri[ti, ti+T]. Since there are many variables used in the agent
modeling that are irrelevant in safety verification, we only need to compute the
reachable set of state that is related to the agent’s physical dynamics (so called
as motion dynamics) which is defined by a nonlinear ODE ẋi = f(xi, ui), where
xi ∈ R

n is state vector and ui ∈ R
m is the control input vector. The agent can

switch from one mode to the another mode via discrete transitions, and in each
mode, the control law may be different. When the agent computes its reachable

Decentralized Real-Time Safety Verification for Distributed CPSs 265

set, the only information it needs are its current set of states xi(ti) and the
current control input ui(ti). It should be clarified that although the control law
may be different among modes, the control signal ui is updated with the same
control period T i

c . Consequently, ui is a constant vector in each control period.
Assuming that the agent’s current time is tij = j × Tc, using its local sensors

and GPS, we have the current state of the agent xi. Note that the local sensors
and the provided GPS can only provide the information of interest to some
accuracy, therefore the actual state of the agent is in a set xi ∈ Ii. The control
signal ui is computed based on the state xi and a reference signal, e.g., a set
point denoting where the agent needs to go to, and then computed control signal
is applied to the actuator to control the motion of the agent. From the current
set of states Ii and the control signal ui, we can compute the forward reachable
set of the agent for the next tij +T seconds. This reachable set computation needs
to be completed after an amount of time T i

runtime < T i
c because if T i

runtime ≥ T i
c ,

a new ui will be updated. The control period T i
c is chosen based on the agent’s

motion dynamics, and thus to control an agent with fast dynamics, the control
period T i

c needs to be sufficiently small. This is the source of the requirement
that the allowable run-time for reachable set computation be small.

To compute the reachable set of an agent in real-time, we use the well-known
face-lifting method [3,6] and a hyper-rectangle to represent the reachable set.
This method is useful for short-time reachability analysis of real-time systems.
It allows users to define an allowable run-time T i

runtime, and has no dynamic
data structures, recursion, and does not depend on complex external libraries as
in other reachability analysis methods. More importantly, the accuracy of the
reachable set computation can be iteratively improved based on the remaining
allowable run-time.

Algorithm 3.1 describes the real-time reachability analysis for one agent. The
Algorithm works as follows. The time period [ti, ti + T] is divided by M steps.
The reach time step is defined by hi = T/M . Using the reach time step and
the current set Ii, the face-lifting method performs a single-face-lifting opera-
tion. The results of this step are a new reachable set and a remaining reach
time T i

remainReachTime < T . This step is iteratively called until the reachable
set for the whole time period of interest [ti, ti + T] is constructed completely,
i.e., the remaining reach time is equal to zero. Interestingly, with the reach time
step size hi defined above, the face-lifting algorithm may be finished quickly
after an amount of time which is smaller than the allowable run-time T i

runtime

specified by user, i.e., there is still an amount of time called remaining run
time T i

remainRunTime < T i
runtime that is available for us to recall the face-lifting

algorithm with a smaller reach time step size, for example, we can recall the
face-lifting algorithm with a new reach time step hi/2. By doing this, the con-
servativeness of the reachable set can be iteratively improved. The core step of
face-lifting method is the single-face-lifting operation. We refer the readers to [3]
for further detail. As mentioned earlier, the local safety property of each agent
can be verified at run-time simultaneously with the reachable set computation
process. Precisely, let Ui � Cixi ≤ di be the unsafe region of the ith agent, the

266 H.-D. Tran et al.

Algorithm 3.1. Real-time reachability analysis for agent Ai.
Input: Ii, ui, ti, T , hi, T i

runtime, Ui

Output: Ri[t
i, ti + T], safe = true or safe = uncertain

1: procedure Initialization
2: step = hi % Reach time step
3: T i

1 = T i
runtime % Remaining run-time

4: procedure Reachability Analysis
5: while (T i

1 > 0) do
6: CR = Ii % Current reachable set
7: safe = true
8: T i

2 = T % Remaining reach time
9: while T i

2 > 0 do
10: % Do Single Face Lifting
11: R, T ′ = SFL(CR, step, T i

2 , ui)
12: CR = R % Update reach set
13: T i

2 = T ′ % Update remaining reach time
14: if (CR ∩ Ui �= ∅) then: safe = uncertain

15: Ri[t
i, ti + T] = CR

16: % Update remaining runtime
17: T i

1 = T i
1 − (Ai.currentT ime() − ti)

18: if T i
1 ≤ 0 then break

19: else
20: step = hi/2 % Reduce reach time step

21: return Ri[t
i, ti + T] = CR, safe

agent is said to be safe from ti to ti + t ≤ ti + T if Ri[ti, ti + t] ∩ Ui = ∅. Since
the reachable set Ri[ti, ti + t] is given by the face-lifting method at run-time,
the local safety verification problem for each agent can be solved at run-time.
Since the Algorithm 3.1 computes an over-approximation of the reachable set of
each agent in a short time interval, it guarantees the soundness of the result as
described in the following lemma.

Lemma 1 [3,6]. The real-time reachability analysis algorithm is sound, i.e., the
computed reachable set contains all possible trajectories of agent Ai from ti to
ti + T .

4 Decentralized Real-Time Collision Verification

Our collision verification scheme is performed based on the exchanged reachable
set messages between agents. For every control period Tc, each agent executes
the real-time reachability analysis algorithm to check if it is locally safe and to
obtain its current reachable set with respect to its current control input. When
the current reachable set is available, the agent encodes the reachable set in a
message and then broadcasts this message to its cooperative agents and listens to

Decentralized Real-Time Safety Verification for Distributed CPSs 267

Fig. 1. Timeline for reachable set computing, encoding, transferring, decoding and
collision checking.

the upcoming messages sent from these agents. When a reachable set message
arrives, the agent immediately decodes the message to construct the current
reachable set of the sender and then performs peer-to-peer collision detection.
The process of computing, encoding, transferring, decoding of the reachable set
along with collision checking is illustrated in Fig. 1 based on the agent’s local
clock.

Let tirs, tie, titf , tid, and tic respectively be the instants that we compute,
encode, transfer, decode the reachable set and do collision checking on the agent
Ai. Note that these time instants are based on the agent Ai’s local clock. The
actual run-times are defined as follows.

τ i
rs = tie − tirs,% reachablet set computation time,

τ i
e = titf − tie,% encoding time,

τ i
tf ≈ tjd − titf ,% transferring time,

τ i
d = tic − tid,% decoding time.

Note that we do not know the exact transfer time τ i
tf since it depends on

two different local time clocks. The above transfer time formula describes its
approximate value when neglecting the mismatch between the two local clocks.
The actual reachable set computation time is close to the allowable run-time
chosen by user, i.e., τ i

rs ≈ T i
runtime. We will see later that the encoding time

and decoding time are fairly small in comparison with the transferring time, i.e.,
τ i
e ≈ τ i

d � τ i
tf . All of these run-times provide useful information for selecting an

appropriate control period Tc for an agent. However, for collision checking pur-

268 H.-D. Tran et al.

Fig. 2. Useful reachable set.

pose, we only need to consider the time instants that an agent starts computing
reachable set tirs and checking collision tic.

A reachable set message contains three pieces of information: the reachable
set which is a list of intervals, the time period (based on the local clock) in
which this reachable set is valid, i.e., the start time tirs and the end time tirs +T
and the time instant that this message is sent. Based on the timing information
of the reachable set and the time-synchronization errors, an agent can examine
whether or not a received reachable set contains information about the future
behavior of the sent agent which is useful for checking collision. The usefulness
of the reachable sets used in collision checking is defined as follows.

Definition 1 (Useful reachable sets). Let δi and δj respectively be the time-
synchronization errors of agent Ai and Aj in comparison with the virtual global
time t, i.e, t − δi ≤ ti ≤ t + δi and t − δj ≤ tj ≤ t + δj, where ti and tj are
current local times of Ai and Aj respectively. The reachable sets Ri[tirs, t

i
rs + T]

and Rj [tjrs, t
j
rs + T] of the agent Aj that are available at the agent Ai at time tic

are useful for checking collision between Ai and Aj if:

tic < tjrs + T − δi − δj ,

tic < tirs + T.
(1)

Assume that we are at a time instant where the agent Ai checks if a collision
occurs. This means that the current local time is tic. Note that agent Ai and
Aj are synchronized to the global time with errors δi and δj respectively. The
reachable set Rj [tjrs, t

j
rs +T] is useful if it contains information about the future

behavior of agent Aj under the view of the agent Ai based on its local clock. This
can be guaranteed if we have: tjrs + T ≥ tirs − δj + T > tic + δi. Additionally, the
current reachablet set of agent Ai contains information about its future behavior
if tic < tirs+T as depicted in Fig. 2. We can see that if tic > tjrs+T+δi+δj , then the
reachable set of Aj contains a past information, and thus it is useless for checking
collision. One interesting case is when tjrs + T − δi − δj < tic < tjrs + T + δi + δj .
In this case, we do not know whether the received reachable set is useful or not.

Decentralized Real-Time Safety Verification for Distributed CPSs 269

Algorithm 4.2. Decentralized Real-Time Collision Verification at Agent Ai.
Input: l, % safe distance between agents
Output: collision, Tsafe % collision flag and safe time interval in the future

1: procedure Peer-to-Peer Collision Detection
2: if new message Rj [t

j
rs, t

j
rs + T] arrive then

3: decode message
4: ti

c = Ai.current time() % current time
5: ti

rs = Ri.t
i
rs % current reachable set start time

6: if ti
c < tj

rs + T − δi − δj and ti
c < ti

rs + T then % check usefulness
7: compute possible minimum distance dmin between two agents
8: if dmin > l then
9: Collision = false

10: Tsafe = min(tj
rs + T − δi − δj , t

i
rs + T)

11: else
12: Collision = uncertain, Tsafe = []

13: store the message

Remark 1. We note that the proposed approach does not rely on the concept
of Lamport happens-before relation [17] to compute the local reachable set of
each agent. If the agent could not receive reachable messages from others until
a requested time-stamp expires, it still calculates the local reachable set based
on its current state and the state information of other agents in the messages it
received previously. In other words, our method does not require the reachable
set of each agent to be computed corresponding to the ordering of the events
(sending or receiving a message) in the system, but only relies on the local clock
period and the time-synchronization errors between agents. Such implementation
ensures that the computation process can be accomplished in real-time, and is
not affected by the message transmission delay.

The peer-to-peer collision checking procedure depicted in Algorithm4.2
works as follows: when a new reachable set message arrives, the receiving agent
decodes the message and checks the usefulness of the received reachable set and
its current reachable set. Then, the agent combines its current reachable set and
the received reachable set to compute the minimum possible distance between
two agents. If the distance is larger than an allowable threshold l, there is no
collision between two agents in some known time interval in the future, i.e.,
Tsafe.

Lemma 2. The decentralized real-time collision verification algorithm is sound.

Proof. From Lemma1, we know that the received reachable set Rj [tjrs, t
j
rs + T]

contains all possible trajectories of the agent Aj from tjrs to tjrs + T . Also, the
current reachable set of the agent Ai, Ri[tirs, t

i
rs + T], contains all possible tra-

jectories of the agent from tirs to tirs + T . If those reachable sets are useful,
then they contains all possible trajectories of two agents from tic to sometime
Tsafe = min(tjrs + T − δi − δj , t

i
rs +T) in the future based on the agent Ai clock.

270 H.-D. Tran et al.

Fig. 3. Distributed search application using quadcopters.

Therefore, the minimum distance dmin between two agents computed from two
reachable sets is the smallest distance among all possible distances in the time
interval [tic, Tsafe]. Consequently, the collision free guarantee is sound in the time
interval [tic, Tsafe].

5 Case Study

The decentralized real-time safety verification for distributed CPS proposed in
this paper is implemented in Java as a package called drreach. This pack-
age is currently integrated as a library in StarL, which is a novel platform-
independent framework for programming reliable distributed robotics applica-
tions on Android [19]. StarL is specifically suitable for controlling a distributed
network of robots over WiFi since it provides many useful functions and sophisti-
cated algorithms for distributed applications. In our approach, we use the reliable
communication network of StarL which is assumed to be asynchronous and peer-
to-peer. There may be message dropouts and transmission delays; however, every
message that an agent tries to send is eventually delivered with some time guar-
antees. All experimental results of our approach are reproducible and available
online at: https://github.com/trhoangdung/starl/tree/drreach.

We evaluate the proposed approach via a distributed search application using
quadcopters1 in which each quadcopter executes its search mission provided
by users as a list of way-points depicted in Fig. 3. These quadcopters follow
the way-points to search for some specific objects. For safety reasons, they are
required to work only in a specific region defined by users. In this case study, the
quadcopters are controlled to operate at the same constant altitude. It has been
1 A video recording is available at: https://youtu.be/YC 7BChsIf0.

https://github.com/trhoangdung/starl/tree/drreach
https://youtu.be/YC_7BChsIf0

Decentralized Real-Time Safety Verification for Distributed CPSs 271

shown from the experiments that the proposed approach is promisingly scalable
as it works well for a different number of quadcopters. We choose to present in
this section the experimental results for the distributed search application with
eight quadcopters.

The first step in our approach is locally computing the reachable set of
each quadcopter using face-lifting method. The quadcopter has nonlinear motion
dynamics given in Eq. 2 in which θ, φ, and ψ are the pitch, roll, and yaw angles,
f = Σ4

i=1Ti is the sum of the propeller forces, m is the mass of the quadcopter
and g = 9.81m/s2 is the gravitational acceleration constant. As the quadcopter
is set to operate on a constant altitude, we have z̈ = 0 which yields the follow-
ing constraint: f = mg

cos(θ)cos(φ) . Let vx and vy be the velocities of a quadcopter
along with x- and y- axes. Using the constraint on the total force, the motion
dynamics of the quadcopter can be rewritten as a 4-dimensional nonlinear ODE
as depicted in Eq. 3.

ẍ =
f

m
(sin(ψ)sin(φ) + cos(ψ)sin(θ)cos(φ)),

ÿ =
f

m
(sin(ψ)sin(θ)cos(φ) − sin(φ)cos(ψ)),

z̈ =
f

m
cos(θ)cos(φ) − g,

(2)

ẋ = vx,

v̇x = gtan(θ),
ẏ = vy,

v̇y = g
tan(φ)
cos(θ)

.

(3)

A PID controller is designed to control the quadcopter to move from its cur-
rent position to desired way-points. Details about the controller parameters can
be found in the available source code. The PID controller has a control period
of Tc = 200 ms. In every control period, the control inputs pitch (θ) and roll (φ)
are computed based on the current positions of the quadcopter and the current
target position (i.e., the current way-point it needs to go). Using the control
inputs, the current positions and velocities given from GPS and the motion
dynamics of the quadcopter, the real-time reachable set computation algorithm
(Algorithm 3.1) is executed inside the controller. This algorithm computes the
reachable set of a quadcopter from its current local time to the next T = 2 s. The
allowable run-time for this algorithm is Truntime = 10 ms. The local safety prop-
erty is verified by the real-time reachable set computation algorithm at run-time.
The computed reachable set is then encoded and sent to another quadcopter.
When a reachable set message arrives, the quadcopter decodes the message to
reconstruct the current reachable set of the sender. The GPS error is assumed
to be 2%. The time-synchronization error between the quadcopters is δ = 3 ms.
We want to verify in real-time: (1) local safety property for each quadcopter; (2)
collision occurrence. The local safety property is defined by vx ≤ 500, i.e., the
maximum allowable velocities along the x-axis of two arbitrary quadcopters are
not larger than 500 m/s. The collision is checked using the minimum allowable
distance between two arbitrary quadcopters dmin = 100.

272 H.-D. Tran et al.

Fig. 4. A sample of events.

Figure 4 presents a sample of a sequence of events happening in the dis-
tributed search application. One can see that each quadcopter can determine
based on its local clocks if there is no collision to some known time in the
future. In addition, the local safety property can also be verified at run-time.
For example, in the figure, the quadcopter 1 receives a reachable set message
from the quadcopter 0 which is valid from 17 : 29 : 49.075 to 17 : 29 : 51.074
of the quadcopter 0’s clock. After decoding this message, taking into account
the time-synchronization error δ, quadcopter 1 realizes that the received reach-
able set message is useful for checking collision for the next 1.645 s of its clock.
After checking collision, quadcopter 1 knows that it will not collide with the
quadcopter 0 in the next 1.645 s (based on its clock).

It should be noted that we can intuitively verify the collision occurrences by
observing the intermediate reachable sets of all quadcopters and their interval
hulls. The intermediate reachable sets of the quadcopters in every [0, 2 s] time
interval computed by the real-time reachable set computation algorithm (i.e.,
Algorithm 3.1) is described in Fig. 5. The zoom plot within the figure presents
a very short-time interval reachable set of the quadcopters. We note that the

Decentralized Real-Time Safety Verification for Distributed CPSs 273

Fig. 5. One sample of the reachable sets of eight quadcopters in [0, 2 s] time interval
and their interval hulls.

intermediate reachable set of a quadcopter is represented as a list of hyper-
rectangles and is used for verifying the local safety property at run-time. The
reachable set that is sent to another quadcopter is the interval hull of these
hyper-rectangles. The intermediate reachable set cannot be transferred via a
network since it is very large (i.e., hundreds of hyper-rectangles). The interval
hull of all hyper-rectangles contained in the intermediate reachable set covers all
possible trajectories of a quadcopter in the time interval of [0, 2 s]. Therefore, it
can be used for safety verification. One may question why we use the interval
hull instead of using the convex hull of the reachable set since the former one
results in a more conservative result. The reason is that we want to perform the
safety verification online, convex hull of hundreds of hyper-rectangles is a time-
consuming operation. Therefore, in the real-time setting, interval hull operation
is a suitable solution. From the figure, we can see that the interval hulls of the
reachable set of all quadcopters do not intersect with each other. Therefore, there
is no collision occurrence (in the next 2 s of global time).

Table 1. The average encoding time τe, decoding time τd, transferring time τtf , colli-
sion checking time τc and total verification time V T of the quadcopters.

Time Quad. 1 Quad. 2 Quad. 3 Quad. 4 Quad. 5 Quad. 6 Quad. 7 Quad. 8

Ecoding time τe (ms) 0.058 0.055 0.0553 0.0525 0.0557 0.0583 0.0584 0.0597

Decoding time τd (ms) 0.0169 0.0193 0.0197 0.019 0.0210 0.0181 0.0177 0.022

Transferring time τtf (ms) 2.64 2.48 1.42 1.11 1.12 1.08 1.05 1.13

Collision checking time τc (ms) 0.04 0.05 0.07 0.05 0.03 0.07 0.07 0.14

Total verification time V T (ms) 28.9363 27.9 20.6232 18.3055 18.2527 18.235 18.0223 19.1037

274 H.-D. Tran et al.

Since we implement the decentralized real-time safety verification algorithm
inside the quadcopter’s controller, it is important to analyze whether or not
the verification procedure affects the control performance of the controller. To
reason about this, we measure the average encoding, decoding, transferring and
collision checking times for all quadcopters using 100 samples which are pre-
sented in Table 1. We note that the transferring time τtf is the average time
for one message transferred from other quadcopters to the ith quadcopter. It
can be seen that the encoding, decoding and collision checking times at each
quadcopter constitute a tiny amount of time. The total verification time is the
sum of the reachable set computation, encoding, transferring, decoding and col-
lision checking times. Note that the allowable runtime for reachable set com-
putation algorithm is specified by users as Truntime = 10 ms. Therefore, the
(average) total time for the safety verification procedure on each quadcopter is
V Ti = Truntime + τ i

e + (N − 1) × (τ i
tf + τ i

d + τ i
c), where i = 1, 2, . . . , N , and N is

the number of quadcopters. As shown in the Table, the (average) total verifica-
tion time for each quadcopter is small (<30 ms), compared to the control period
Tc = 200 ms. Besides, from the experiment, we observe that the computation
time for the control signal of the PID controller τ i

control (not presented in the
table) is also small, i.e., from 5 to 10 ms. Since V Ti + τ i

control < Tc/4 = 50 ms,
we can conclude that the verification procedure does not affect the control per-
formance of the controller.

Interestingly, from the verification time formula, we can estimate the range
of the number of agents that the decentralized real-time verification procedure
can deal with. The idea is that, in each control period Tc, after computing
the control signal, the remaining time bandwidth Tc − τcontrol can be used for
verification. Let τ̄e(τ e), τ̄tf (τ tf), τ̄d(τd), τ̄c(τ c) be the maximum (minimum)
encoding, transferring, decoding and collision checking times on a quadcopter,
τ̄control(τ control) be the maximum (minimum) control signal computation time
for each control period Tc, then the number of agents that the decentralized
real-time safety verification procedure can deal with (with assumption that the
communication network works well) satisfies the following constraint:

Tc − τ̄control − Truntime − τ̄e

τ̄tf + τ̄d + τ̄c
+ 1 ≤ N ≤ Tc − τ control − Truntime − τ e

τ tf + τd + τ c

+ 1. (4)

Let consider our case study, from the Table, we assume that τ̄e = 0.0597,
τe = 0.0525, τ̄tf = 2.64, τ tf = 1.05, τ̄d = 0.022, τd = 0.0169, τ̄c = 0.14,
τ c = 0.03 ms. Also, we assume that τ̄control = 10 and τ control = 5 ms. We can
estimate theoretically the number of quadcopters that our verification approach
can deal with is 64 ≤ N ≤ 168.

6 Related Work

Our work is inspired by the static and dynamic analysis of timed distributed
traces [8] and the real-time reachability analysis for verified simplex design [3].
The former one proposes a sound method of constructing a global reachable set

Decentralized Real-Time Safety Verification for Distributed CPSs 275

for a distributed CPS based on the recorded traces and time synchronization
errors of participating agents. Then the global reachable set is used to verify a
global property using Z3 [7]. This method can be considered to be a centralized
analysis where the reachable set of the whole system is constructed and verified
by one analyzer. Such a verification approach is offline which is fundamentally
different from our approach as we deal with online verification in a decentralized
manner. Our real-time verification method borrows the face-lifting technique
developed in [3] and applies it to a distributed CPS.

Another interesting aspect of real-time monitoring for linear systems was
recently published in [5]. In this work, the authors proposed an approach that
combines offline and online computation to decide if a given plant model has
entered an uncontrollable state which is a state that no control strategy can be
applied to prevent the plant go to the unsafe region. This method is useful for a
single real-time CPS, but not a distributed CPS with multiple agents.

Additionally, there has been other significant works for verifying distributed
CPS. Authors of [9,23,24] presented a real-time software for distributed CPS
but did not perform a safety verification of individual components and a whole
system. The works presented in [2,14,16] can be used to verify distributed CPS,
but they do not consider a real-time aspect. An interesting work proposed in [21]
can formally model and verify a distributed car control system against several
safety objectives such as collision avoidance for an arbitrary number of cars.
However, it does not address the verification problem of distributed CPS in a
real-time manner. The novelty of our approach is that it can over-approximate
of the reachable set of each agent whose dynamics are non-linear with a high
precision degree in real-time.

The most related work to our scheme was recently introduced in [20]. The
authors proposed an online verification using reachability analysis that can guar-
antee safe motion of mobile robots with respective to walking pedestrians mod-
eled as hybrid systems. This work utilizes CORA toolbox [1] to perform reach-
ability analysis while our work uses a face-lifting technique. However, this work
does not consider the time-elapse for encoding, transferring and decoding the
reachable set messages between each agent, which play an important role in
distributed systems.

7 Conclusion and Future Work

We have proposed a decentralized real-time safety verification method for dis-
tributed cyber-physical systems. By utilizing the timing information and the
reachable set information from exchanged reachable set messages, a sound guar-
antee about the safety of the whole system is obtained for each participant
based on its local time. Our method has been successfully applied for a dis-
tributed search application using quadcopters built upon StarL framework. The
main benefit of our approach is that it allows participants to take advantages of
formal guarantees available locally in real-time to perform intelligent actions in
dangerous situations. This work is a fundamental step in dealing with real-time

276 H.-D. Tran et al.

safe motion/path planing for distributed robots. For future work, we seek to
deploy this method on a real-platform and extend it to distributed CPS with
heterogeneous agents where the agents can have different motion dynamics and
thus they have different control periods. In addition, the scalability of the pro-
posed method can be improved by exploiting the benefit of parallel processing,
i.e., each agent handles multiple reachable set messages and checks for collision
in parallel.

Acknowledgments. The material presented in this paper is based upon work sup-
ported by the Air Force Office of Scientific Research (AFOSR) through contract num-
ber FA9550-18-1-0122 and the Defense Advanced Research Projects Agency (DARPA)
through contract number FA8750-18-C-0089. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of AFOSR or DARPA.

References

1. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (2015)

2. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying dis-
tributed cyber-physical systems using multirate PALS: an airplane turning control
system case study. Sci. Comput. Program. 103, 13–50 (2015)

3. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: 2014 IEEE Real-Time Systems Symposium (RTSS), pp. 138–
148. IEEE (2014)

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

5. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of lin-
ear systems. In: 2017 IEEE Real-Time Systems Symposium (RTSS), pp. 297–306.
IEEE (2017)

6. Dang, T., Maler, O.: Reachability analysis via face lifting. In: Henzinger, T.A.,
Sastry, S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-64358-3 34

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Duggirala, P.S., Johnson, T.T., Zimmerman, A., Mitra, S.: Static and dynamic
analysis of timed distributed traces. In: 2012 IEEE 33rd Real-Time Systems Sym-
posium (RTSS), pp. 173–182. IEEE (2012)

9. Eidson, J.C., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed real-time
software for cyber-physical systems. Proc. IEEE 100(1), 45–59 (2012)

10. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/3-540-64358-3_34
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-22110-1_30

Decentralized Real-Time Safety Verification for Distributed CPSs 277

11. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of
linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006). https://
doi.org/10.1007/11730637 21

12. Henzinger, T.A.: The theory of hybrid automata. In: IEEE Symposium on Logic
in Computer Science (LICS), p. 278. IEEE Computer Society, Washington, DC
(1996)

13. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 48

14. Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical
systems: an aircraft landing protocol case study. In: 2012 IEEE/ACM Third Inter-
national Conference on Cyber-Physical Systems (ICCPS), pp. 161–170. IEEE
(2012)

15. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

16. Kumar, P., Goswami, D., Chakraborty, S., Annaswamy, A., Lampka, K., Thiele,
L.: A hybrid approach to cyber-physical systems verification. In: Proceedings of
the 49th Annual Design Automation Conference, pp. 688–696. ACM (2012)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

18. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

19. Lin, Y., Mitra, S.: StarL: towards a unified framework for programming, simulating
and verifying distributed robotic systems. CoRR abs/1502.06286 (2015). http://
arxiv.org/abs/1502.06286

20. Liu, S.B., Roehm, H., Heinzemann, C., Lütkebohle, I., Oehlerking, J., Althoff, M.:
Provably safe motion of mobile robots in human environments. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1351–
1357. IEEE (2017)

21. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21437-0 6

22. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.B.: Hybrid I/O automata.
In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1996. LNCS, vol. 1066, pp.
496–510. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020971

23. Tang, Q., Gupta, S.K., Varsamopoulos, G.: A unified methodology for scheduling
in distributed cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS)
11(S2), 57 (2012)

24. Zhang, Y., Gill, C., Lu, C.: Reconfigurable real-time middleware for distributed
cyber-physical systems with aperiodic events. In: The 28th International Confer-
ence on Distributed Computing Systems, ICDCS 2008, pp. 581–588. IEEE (2008)

https://doi.org/10.1007/11730637_21
https://doi.org/10.1007/11730637_21
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
http://arxiv.org/abs/1502.06286
http://arxiv.org/abs/1502.06286
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/BFb0020971

Short and “Journal First” Papers

On Certifying Distributed Algorithms:
Problem of Local Correctness

Kim Völlinger(B)

Humboldt University of Berlin, Berlin, Germany
voellinger@hu-berlin.de

Abstract. A certifying distributed algorithm (CDA) is a runtime ver-
ification method for distributed systems. Additionally to each output,
a CDA computes a witness – a correctness argument for the particular
output. If the witness is verified at runtime, the output is correct. The
output is distributed over the system with each component holding its
part of the distributed output.

In this paper, we investigate the case where the verification at runtime
fails. Assume one component computes its part of the distributed output
incorrectly. As a consequence, the distributed output is incorrect and the
verification fails. Some components may still hold a correct part of the
output. That is why we introduce the problem of local correctness of a
component: Is a component’s part of the output correct? As a case study,
we investigate local correctness for a CDA computing shortest paths as
used in distance-vector routing.

1 Introduction

A major problem in software engineering is assuring the correctness of a dis-
tributed system. A distributed algorithm runs on a distributed system where
components communicate with each other in order to solve a common problem.
The correctness of a distributed algorithm and of its implementation is crucial
for the correctness of a distributed system. While formal verification is often
too costly, testing is not sufficient if the system is of critical importance. Run-
time verification tries to bridge this gap; it is not complete since verification at
runtime can fail but it is a formal method based on mathematical reasoning.

Certifying Distributed Algorithms. A certifying distributed algorithm
(CDA) is a runtime verification method. In order to verify its input-output pair
(i, o), a CDA additionally computes a witness w such that if a witness predi-
cate holds for the triple (i, o, w), the input-output pair (i, o) is correct [10]. A
distributed checker algorithm decides the witness predicate at runtime [9]. To
enable distributed checking, the witness predicate is distributable, i.e. a property
in the system is expressed by stating properties for each component [7]. As an
example of a witness, consider a distributed algorithm where the components of

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 281–288, 2019.
https://doi.org/10.1007/978-3-030-21759-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_16

282 K. Völlinger

a network decide whether the network graph itself is bipartite. In case of a non-
bipartite network graph, an odd cycle in the graph is a witness since an odd cycle
is not bipartite itself. The witness predicate states that an odd cycle exists in
the network. A distributable variant of this witness is given in [7]. With a CDA,
a user does not have to trust the distributed algorithm, its implementation or
execution but only the checker. With a well-chosen witness, the checker is simple
and its verification feasible [8,9]. The idea of a CDA is to adapt the underlying
algorithm of a program at design-time such that it verifies its input-output pair
at runtime. In the typical setup of runtime verification, a system is instrumented
to send outputs to a trusted monitor which decides if a given property holds [3].
Analogously, a CDA is instrumented to compute a witness and send it to the
checker which decides if the input-output pair is correct.

Contribution of this Paper. The input, output and witness of a CDA are
distributed over the system with each system’s component holding its part. In
this paper, we assume that one component computes its part of the output incor-
rectly. As a consequence, the distributed output is incorrect and verification fails
at runtime, i.e. the checker rejects. However, the outputs of some components
computed may still be correct. That is why we introduce the problem of local
correctness of a component: Is a component’s part of the output correct? As a
case study, we investigate local correctness for a CDA computing shortest paths
[10] as used in distance-vector routing [6].

Related Work. Certifying sequential algorithms are well established [5] but
there is little work on certifying distributed algorithms [1,7–10]. However, CDAs
can be classified as a distributed and choreographed runtime verification app-
roach since the checker is a distributed algorithm, as well as a synchronous
runtime verification approach since the system waits for the checker to accept
[2]. To our knowledge, there is no work on the problem of local correctness.

2 Preliminaries: Certifying Distributed Algorithms

As distributed systems, we consider networks that are asynchronous (i.e. no
global clock), static (i.e. unchanged topology) and id-based (i.e unique iden-
tifiers). We model the communication topology of a network as a connected
undirected graph N = (V,E): a vertex represents a component, an edge a chan-
nel. A distributed algorithm describes for each component a reactive algorithm
such that all components together solve one problem (e.g. leader election or
coloring) [4,6]. The input i of a distributed algorithm is distributed such that
each component v ∈ V has its input iv and i = ∪v∈V iv; analogously for the
output. A CDA computes a distributed witness w additionally to its input-
output pair (i, o) such that if a predicate (the witness predicate) holds for the
triple (i, o, w), the pair (i, o) is correct [10]. We call a predicate that is defined
over a component’s input, output and witness a local predicate. A predicate

On Certifying Distributed Algorithms: Problem of Local Correctness 283

Γ is universally distributable with a local predicate γ if for all triples (i, o, w)
holds (∀v ∈ V : γ(iv, ov, wv)) −→ Γ(i, o, w), and existentially distributable if
(∃v ∈ V : γ(iv, ov, wv)) −→ Γ(i, o, w). A predicate is distributable if one of the
former applies, or if the predicate is implied by conjuncted and/or disjuncted
universally/existentially distributable predicates [7]. The witness predicate is dis-
tributable, and can be decided by a distributed checker algorithm at runtime.
Each component v has a checker algorithm that decides all local predicates over
(iv, ov, wv). Using a spanning tree, the checkers of the components aggregate the
evaluated local predicates upwards and combine them by logical conjunction or
disjunction depending on whether the according predicate is universally or exis-
tentially distributable; the root decides the witness predicate by combining the
evaluated distributable predicates [9]. Hence, if the distributed checker accepts,
the distributed input-output pair (i, o) is correct. The user of a CDA does not
have to trust the actual algorithm but the distributed checker. The simplicity of
the checker depends on the choice of the witness. Using the framework proposed
in [8,9], an implemented distributed checker can be verified.

Certifying Distributed Shortest Path Computation. A certifying variant
of the distributed Bellman-Ford Algorithm computing shortest paths in a net-
work is described in [10]. We assume a network N = (V,E) where the channels
have positive costs cost : E → R>0. The length of a path is the sum of the costs
of its edges. We assume one special vertex, the source s. The length of a shortest
path from the source to a vertex v is the distance of v. A function Ds : V → R≥0

is a distance function for s iff [5]:

Ds(s) = 0 (1)
for each (u, v) ∈ E : Ds(v) ≤ Ds(u) + cost(u, v) (2)

for each v ∈ V, v �= s there exists (u, v) ∈ E : Ds(v) = Ds(u) + cost(u, v) (3)

The distributed Bellman-Ford algorithm [6] solves the shortest path problem;
each component v computes its distance vDs to the source s. Note that we
distinguish the computed distance vDs from the actual distance Ds(v) since the
computed distance could be incorrect. In the certifying variant, each component
v additionally computes its part of the witness: the computed distances of its
neighbors, and a neighbor with which the property (3) holds – its parent in the
shortest path tree. The witness predicate is satisfied iff the properties (1)–(3)
hold. The checker of each component v decides the properties (1)–(3) as local
predicates for v. The witness predicate is universally distributable. Hence, if
the checker of each component accepts, the distributed checker accepts and all
computed distances are correct.

3 Problem: Local Correctness of a Component

We assume a CDA with a distributed checker for some problem. We know if the
distributed checker accepts, the particular distributed input-output pair is cor-
rect. We assume that one component is faulty and computes its part of the output

284 K. Völlinger

incorrectly. As a consequence, the distributed output is incorrect. Thereby, the
witness predicate does not hold and the distributed checker rejects. Hence, the
verification at runtime fails. A solution could be to repeat the whole computation
or to use another distributed algorithm. However, while the output of some com-
ponents may be affected by the incorrect output of the faulty component, other
components may still hold a correct part of the output. That is why we introduce
the problem of local correctness of a component: Is the output of a component
correct? In some scenarios, it might be interesting to identify and keep correct
parts of the output rather than repeating the computation. Hence, we think local
correctness is worth to investigate. Note that local correctness requires that we
know what correctness of a part of the distributed output means.

3.1 Case Study: Local Correctness in Shortest Paths Computation

We conduct a case study on local correctness for certifying shortest path com-
putation as introduced in Sect. 2. We elaborate whether witness and checker are
helpful in deciding local correctness. We assume that a component v �= s com-
putes its output vDs incorrectly but with the right type (i.e. a positive number).
Hence, vDs �= Ds(v), vDs ≥ 0 and v �= s. Each component u �= v computes its
output uDs logically consistent to the faulty output vDs. Logically consistent
means that for each component u �= v holds

uDs = 0 if u is the source (4)
uDs ≤ wDs + cost(u,w) for all neighbors w of u (5)
uDs = wDs + cost(u,w) for at least one neighbor w (6)

The properties (4)–(6) are equal to the properties (1)–(3) characterizing the
distance function except that we are stating them for the computed outputs
and only for the non-faulty components. The computed distances represent the
distance function Ds iff the characterization properties hold for all components.
Since v’s output is incorrect, the output uDs can be correct (uDs = Ds(u)) or
incorrect (uDs �= Ds(u)) even though the properties (4)–(6) hold for u.

Identifying the Faulty Component Using the Checker. Since the witness
predicate is universally distributable, the distributed checker rejects iff at least
one checker of a component rejects. The checker of the faulty component v
rejects. If vDs > Ds(v), the inequality (5) does not hold. There exists a neighbor
w of v such that Ds(v) = Ds(w) + cost(v, w). Hence, vDs > Ds(w) + cost(v, w).
In case of vDs < Ds(v), the equality (6) does not hold.

For each component u �= v, the checker of u accepts. Since u’s output is
logically consistent, the properties (4)–(6) hold for u. We can identify the faulty
component by the rejection pattern of the distributed checker since exactly the
checker of v rejects. Moreover, the checker of v can even decide whether v com-
puted its distance too great or too small.

On Certifying Distributed Algorithms: Problem of Local Correctness 285

Fault Propagation. In the following, we investigate the local correctness of
a component by studying fault propagation into several subnetworks. To exem-
plify, we consider the network N and a partitioning in the subnetworks I-VI
highlighted in gray boxes as shown in Fig. 1. For simplicity, we omit the cost of
a channel in the illustration. We argue under which circumstances the compo-
nents of a subnetwork hold a correct part of the output. For our reasoning, we
use arguments about the checker, witness and topology. We chose the topology of
the network such that we can illustrate all topology-based arguments. However,
arguments depending on the checker and witness are topology independent.

s

v

IV II
I

V VI
III

a)

b)

Network N with
subnetworks I-VI:

s is the source.
v is the faulty component.
 shows the parent relation
(only in subnetwork VI)
with the arrow pointing to a child.

x

Fig. 1. Example network to illustrate fault propagation into subnetworks. Costs of
channels are omitted. The parent relation is shown only in subnetwork VI.

Subnetwork I and II. Subnetwork I contains only the faulty component v, and
by assumption, v’s output is incorrect. Moreover, v is not the source s which is
the only component in subnetwork II. The source’s output is logically consistent,
and therefore the Eq. 4 holds. As a consequence, the source’s output sDs = 0 is
correct.

Subnetwork III. For each component u of the subnetwork III, the output
uDs is incorrect since each path from s to u has to contain v. More precisely,
a component u computes its distance to v correctly as Dv(u). Hence, uDs =
Dv(u)+vDs. If the output uDs would be correct, then uDs = Dv(u)+Ds(v), and
since each path from s to u contains v, it follows vDs = Ds(v). A contradiction
to our assumption vDs �= Ds(v). Thus, uDs �= Ds(u) for all components u of
subnetwork III.

Subnetwork IV. For each component u of the subnetwork IV, the output uDs

is correct. The output uDs could be only affected by the faulty output vDs if
the shortest path from s to u would contain v. Such an s-u path would contain
s at least twice. Since all costs of the channels and the faulty output vDs are
positive, such a path would never be computed as a shortest path. Hence, the
fault of v does not propagate into the subnetwork IV.

286 K. Völlinger

Subnetwork V. For each component u of the subnetwork V, its output uDs is
correct if the component v computed its distance too great: vDs > Ds(v). Note
that Ds(v) = Dx(v) + Ds(x), and hence, vDs > Dx(v) + Ds(x). Moreover, for
each component u holds Ds(u) ≤ Ds(x) due to the positive costs of channels.

Subnetwork VI. For the subnetwork VI, we additionally consider the com-
puted shortest path tree indicated by the computed parent relation. Using the
parent relation, we distinguish components which are non-descendants of com-
ponent v from components which are descendants of v.

Subnetwork VI a. The subnetwork VI (a) contains the non-descendants of v
of the subnetwork VI. If the component v computed its output vDs too small
(vDs < Ds(v)), then all components of subnetwork VI (a) have the correct
output. The reason is that these components did not choose the component v as
ancestor even though v offered an even smaller distance than it actually has.

Subnetwork VI b. The subnetwork VI (b) contains the descendants of v.
Hence, a component u of the subnetwork VI (b) has the output uDs = Dv(u) +
vDs. Hence, the output uDs is potentially faulty. In contrast to the outputs
of the components of the subnetwork III, uDs = Ds(u) could still hold since
there could be an s-u path without v which is a shortest and has the same sum
uDs. Furthermore, note that, in the case of vDs > Ds(v), the parent relation in
subnetwork VI (b) is part of an actual shortest path tree since these components
chose v as an ancestor even though v offered a greater distance than it actually
has.

Cut Vertices. For the example network (Fig. 1), we draw some conclusions
based on the topology. The components s, v and x are cut vertices, i.e. their
removal increases the number of connected components. Those cut vertices are
particularly interesting for fault propagation in our case study. Arguments using
cut vertex x work for any cut vertex that separates the source and faulty com-
ponent into different connected components. There are algorithms to detect cut
vertices in a network [11]. However, for a static network, cut vertices could be
known by initialization.

Arbitrary Topology. Some networks have no cut vertices. The arguments
based on the computed parent relation are independent of the topology. The par-
ent relation is part of the distributed witness. Moreover, the distributed checker
identifies the faulty component v, and indicates whether v computed its distance
too great or too small – both independent of the topology. Hence, the witness
and the checker help in deciding local correctness for some components.

On Certifying Distributed Algorithms: Problem of Local Correctness 287

4 Discussion

We introduced the problem of local correctness of a component. We investigated
local correctness in the context of a CDA where the runtime verification of a
distributed input-output pair fails due to a faulty component. In particular, we
conducted a case study of a CDA computing shortest paths, as for example used
in distance-vector routing. In order to tackle local correctness, we investigated
how a fault propagates through a network. We decided local correctness in sub-
networks using the distributed checker, the distributed witness and the topology.
We consider investigating local correctness in the context of a CDA promising
since the distributed witness gives additional insight, being an argument for the
correctness of an input-output pair.

Future Work. The case study could be extended by allowing the source to
be faulty or by having several faulty components. Another direction is to study
other problems. To study local correctness for a problem, there has to be a speci-
fication about the correctness of a component’s output. Such a specification does
not always come as natural as for the shortest path computation. Assume the
problem of leader election where the components elect a unique leader among
them. It is not straightforward what a correct leader election of a single com-
ponent is since agreement on a leader is part of the problem. By relaxing local
correctness of a component’s output to the correctness of the outputs of a sub-
network, local correctness would be probably interesting for more problems.

References

1. Akili, S., Völlinger, K.: Case study on certifying distributed algorithms: reduc-
ing intrusiveness. In: Lecture Notes in Computer Science: 8th IPM International
Conference on Fundamentals of Software Engineering. Springer (2019, to appear)

2. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

3. Hallé, S.: When RV meets CEP. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 68–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 6

4. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

5. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5, 119–161 (2011)

6. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38123-2

7. Völlinger, K.: Verifying the output of a distributed algorithm using certification.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 424–430. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 29

https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-642-38123-2
https://doi.org/10.1007/978-3-319-67531-2_29

288 K. Völlinger

8. Völlinger, K., Akili, S.: Verifying a class of certifying distributed programs. In:
Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 373–
388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 27

9. Völlinger, K., Akili, S.: On a verification framework for certifying distributed algo-
rithms: distributed checking and consistency. In: Baier, C., Caires, L. (eds.) FORTE
2018. LNCS, vol. 10854, pp. 161–180. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-92612-4 9

10. Völlinger, K., Reisig, W.: Certification of distributed algorithms solving problems
with optimal substructure. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 190–195. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22969-0 14

11. Xiong, S., Li, J.: An efficient algorithm for cut vertex detection in wireless sensor
networks. In: Proceedings of the 2010 IEEE 30th International Conference on Dis-
tributed Computing Systems, ICDCS 2010, pp. 368–377. IEEE Computer Society,
Washington, DC (2010). https://doi.org/10.1109/ICDCS.2010.38

https://doi.org/10.1007/978-3-319-57288-8_27
https://doi.org/10.1007/978-3-319-92612-4_9
https://doi.org/10.1007/978-3-319-92612-4_9
https://doi.org/10.1007/978-3-319-22969-0_14
https://doi.org/10.1007/978-3-319-22969-0_14
https://doi.org/10.1109/ICDCS.2010.38

On a Higher-Order Calculus
of Computational Fields

Giorgio Audrito1 , Mirko Viroli2 , Ferruccio Damiani1(B) ,
Danilo Pianini2 , and Jacob Beal3

1 Dipartimento di Informatica, University of Turin, Turin, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it

2 DISI, University of Bologna, Cesena, Italy
{mirko.viroli,danilo.pianini}@unibo.it

3 Raytheon BBN Technologies, Cambridge, MA, USA
jakebeal@ieee.org

Abstract. Computational fields have been proposed as an effective
abstraction to fill the gap between the macro-level of distributed systems
(specifying a system’s collective behaviour) and the micro-level (individ-
ual devices’ actions of computation and interaction to implement that
collective specification), thereby providing a basis to better facilitate the
engineering of collective APIs and complex systems at higher levels of
abstraction. This approach is particularly suited to complex large-scale
distributed systems, like the Internet-of-Things and Cyber-Physical Sys-
tems, where new mechanisms are needed to address composability and
reusability of collective adaptive behaviour. This work introduces a full
formal foundation for field computations, in terms of a core calculus
equipped with typing, denotational, and operational semantics. Criti-
cally, we apply techniques for formal programming languages to collec-
tive adaptive systems: we provide formal establishment of a link between
the micro- and macro-levels of collective adaptive systems, via a result
of computational adequacy and abstraction for the (aggregate) denota-
tional semantics with respect to the (per-device) operational semantics.

Keywords: Distributed computing · Core calculus · Type system ·
Denotational semantics · Operational semantics ·
Computational adequacy

1 Background

Aggregate computing [6] is a paradigm aiming to address the complexity of large-
scale distributed systems, by means of the notion of computational field [15] (or
simply field): this is a collective, distributed map from computational events
(when and where a device executes a computational action, also called a round)
to computational objects (data values of any sort, including higher-order objects
such as functions and processes) representing the result of computation at that
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 289–292, 2019.
https://doi.org/10.1007/978-3-030-21759-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_17&domain=pdf
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0003-2702-5702
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-8392-5409
http://orcid.org/0000-0002-1663-5102
https://doi.org/10.1007/978-3-030-21759-4_17

290 G. Audrito et al.

event. Computing with fields means computing such global data structures, and
defining a reusable block of behaviour means to define a reusable computation
from fields to fields. This functional view holds at any level of abstraction, from
low-level mechanisms of the language up to whole applications, which ultimately
work by getting input fields from sensors and processing them to produce out-
put fields for actuators. Most importantly, computing with fields is functional
and hence declarative: (i) the designer focusses on the intended global goal of
system behaviour, while the dynamics of interactions is left to the underlying
platform (i.e., semantics); and (ii) one can scale with complexity by relying on
functional composition: libraries of reusable building blocks can be constructed,
and successive layering can be used to bottom-up derive whole applications.

The field calculus [11] is a tiny functional language providing basic con-
structs to work with fields.1 It provides a unifying approach to understanding
and analysing the wide range of approaches to distributed systems engineering
that make use of computational fields [5,21]. The operational semantics of field
calculus [11] can act as a blueprint for actual implementations where myriad
devices interact via proximity-based broadcasts. More recently, the field calcu-
lus has been used to investigate formal properties of resiliency to environment
changes [18,20] and to device distribution [7]. Its expressiveness has been inves-
tigated by introducing the cone Turing Machine [1].

The higher-order field calculus [12] combines self-organisation and code
mobility by extending the field calculus with a semantics for distributed first-
class functions. It allows self-organisation code to be naturally handled like any
other data, e.g., dynamically constructed, compared, spread across devices, and
executed in safely encapsulated distributed scopes. Ultimately, this calculus pro-
vides programmers with a novel first class abstraction, a “distributed function
field”. This is a dynamically evolving map from a network of devices to a set of
executing distributed processes: in each space-time region where the proces is the
same, devices form a coalition collectively carrying on that process in isolation.

2 Contributions of [3]

This paper presents syntax and operational semantics of the higher-order field
calculus together with new contributions: a type system for the higher-order
version of the calculus, a denotational semantics, and associated properties. The
new, enhanced syntax is parametric in the set of the modeled data values (in [12]
Booleans, numbers, and pairs were explicitly modeled). Moreover, the if con-
struct has been removed by encapsulating its branching capability into function
calls, which now take the form of a function field applied to arguments, implic-
itly enacting branching. Then, a novel key insight and technical result of this
paper is that the notoriously difficult problem of reconciling local and global
behaviour in a complex adaptive system [20] can be connected to a well-known
problem in programming languages: correspondence between denotational and
1 Much as λ-calculus [9] captures the essence of functional computation and FJ [14]

the essence of class-based object-oriented programming.

On a Higher-Order Calculus of Computational Fields 291

operational semantics. On the one hand, denotational semantics can be used to
characterise computations in terms of their collective effect across space (avail-
able devices) and time (device computation events)—i.e., the macro level. On
the other hand, operational semantics gives a transition system dictating each
device’s individual and local computing/interactive behaviour—i.e., the micro
level. Correspondence between the two, formally proved in this paper via com-
putational adequacy and a form of abstraction (c.f. [10,19]) that we call compu-
tational abstraction, thus provides a formal micro–macro connection: one designs
a system considering the denotational semantics of programming constructs, and
an underlying platform running the distributed interpreter defined by the oper-
ational semantics guarantees a consistent execution. This is a significant step
towards effective methods for the engineering of self-adaptive systems, achieved
thanks to the standard theory and framework of programming languages.

3 Conclusions, Related and Future Work

The work presented in this paper builds on a sizable body of prior work, for which
the field calculus can somewhat act as a lingua franca: foundational approaches
to group interaction (ambients [8], shared-spaces [22]), device abstraction lan-
guages (TOTA [15], Hood [23]), pattern languages [16], information movement
languages [17], and spatial computing languages (MGS [13] and Proto [4]).
Accordingly, future plans include consolidation of this work to investigate vari-
ants of the field calculus [2], to support an analytical methodology and a practical
toolchain for system development, and to isolate fragments of the calculus that
satisfy behavioural properties such as self-stabilisation developed in [20].

References

1. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field
calculus. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018.
LNCS, vol. 10852, pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92408-3 1

2. Audrito, G., Damiani, F., Viroli, M., Casadei, R.: Run-time management of com-
putation domains in field calculus. In: 2016 IEEE 1st International Workshops
on Foundations and Applications of Self* Systems (FAS*W), pp. 192–197. IEEE
(2016). https://doi.org/10.1109/FAS-W.2016.50

3. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus of
computational fields. ACM Trans. Comput. Logic 20(1), 5:1–5:55 (2019). https://
doi.org/10.1145/3285956

4. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous space programs for
robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, chap. 16, pp. 436–501. IGI
Global (2013). https://doi.org/10.4018/978-1-4666-2092-6.ch016

6. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Comput. 48(9) (2015). https://doi.org/10.1109/MC.2015.261

https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1109/FAS-W.2016.50
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261

292 G. Audrito et al.

7. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution
in the internet of things. ACM Trans. Auton. Adapt. Syst. 12(3), 12:1–12:29 (2017).
https://doi.org/10.1145/3105758

8. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000). https://doi.org/10.1016/S0304-3975(99)00231-5

9. Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2),
346–366 (1932). https://doi.org/10.2307/1968337

10. Curien, P.: Definability and full abstraction. Electromic Notes Theorerical Comput.
Sci. 172, 301–310 (2007). https://doi.org/10.1016/j.entcs.2007.02.011

11. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields.
Sci. Comput. Program. 117, 17–44 (2016). https://doi.org/10.1016/j.scico.2015.
11.005

12. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 113–128. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19195-9 8

13. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for
integrative and developmental biology. Technical report, 72-2002, Univerite d’Evry,
LaMI (2002)

14. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001). https://
doi.org/10.1145/503502.503505

15. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56
(2009). https://doi.org/10.1145/1538942.1538945

16. Nagpal, R.: Programmable self-assembly: constructing global shape using
biologically-inspired local interactions and origami mathematics. Ph.D. thesis,
MIT, Cambridge, MA, USA (2001)

17. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: Workshop on Data Management for Sensor Networks, pp. 78–87.
ACM, August 2004. https://doi.org/10.1145/1052199.1052213

18. Nishiwaki, Y.: Digamma-calculus: a universal programming language of self-
stabilizing computational fields. In: 2016 IEEE 1st International Workshops on
Foundations and Applications of Self* Systems (FAS*W). IEEE (2016). https://
doi.org/10.1109/FAS-W.2016.51

19. Stoughton, A.: Fully abstract models of programming languages. Research Notes
in Theoretical Computer Science, Pitman (1988)

20. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16:1–16:28 (2018). https://doi.org/10.1145/3177774

21. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From field-
based coordination to aggregate computing. In: Di Marzo Serugendo, G., Loreti,
M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 252–279. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92408-3 12

22. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of per-
vasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt.
Syst. 6(2), 14:1–14:24 (2011). https://doi.org/10.1145/1968513.1968517

23. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services. ACM Press (2004). https://doi.org/
10.1145/990064.990079

https://doi.org/10.1145/3105758
https://doi.org/10.1016/S0304-3975(99)00231-5
https://doi.org/10.2307/1968337
https://doi.org/10.1016/j.entcs.2007.02.011
https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1016/j.scico.2015.11.005
https://doi.org/10.1007/978-3-319-19195-9_8
https://doi.org/10.1007/978-3-319-19195-9_8
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1109/FAS-W.2016.51
https://doi.org/10.1109/FAS-W.2016.51
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1145/1968513.1968517
https://doi.org/10.1145/990064.990079
https://doi.org/10.1145/990064.990079

Semantically Sound Analysis of Content
Security Policies

Stefano Calzavara(B), Alvise Rabitti, and Michele Bugliesi

Università Ca’ Foscari Venezia, Venice, Italy
{stefano.calzavara,alvise.rabitti,michele.bugliesi}@unive.it

Abstract. Content Security Policy (CSP) is a W3C standard designed
to prevent and mitigate the impact of content injection vulnerabilities
on websites. CSP is supported by all major web browsers and routinely
used by thousands of web developers in the world to improve the security
of their web applications. In this paper we review our formalization of
a core fragment of CSP, which we fruitfully employed to reason on the
security import of flawed CSP implementations and deployments, as well
as to perform a longitudinal analysis of how existing policies are evolving
as the result of maintenance operations.

Keywords: Content Security Policy · Formal methods · Web security

1 Introduction

Content injection is arguably one of the most severe threats on the Web. In a
content injection attack, a malicious user manages to craft an attack payload,
typically a script, which gets injected into a benign web application and becomes
indistinguishable from legitimate web contents, thus inheriting their privileges.
This way, the attack payload can steal confidential information from the web
application or redress the user interface to fool the victim into unknowingly
performing security-sensitive operations.

Content injection can be prevented by means of safe coding practices [4], yet
it is now widely acknowledged that this is difficult in practice and thus secu-
rity practitioners rely on a defense-in-depth approach against content injection,
where protection is achieved by implementing mitigation at several different lay-
ers. One such layer is Content Security Policy (CSP), which is now supported
by all major web browsers and routinely used by thousands of web developers in
the world to improve the security of their web applications. CSP has undergone
several authoritative studies as of now [2,5,6], with our article Semantics-Based
Analysis of Content Security Policy Deployment being the latest research work
on the topic [3]. The distinctive trait of our approach with respect to previous
studies is the use of formal methods techniques to tackle a rigorous investiga-
tion of CSP. Specifically, we defined the denotational semantics of a significant

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 293–297, 2019.
https://doi.org/10.1007/978-3-030-21759-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_18

294 S. Calzavara et al.

fragment of CSP, called CoreCSP, which we fruitfully employed to reason on the
security import of flawed CSP implementations and deployments, as well as to
perform a longitudinal analysis of how existing policies are evolving as the result
of maintenance operations.

2 Background on Content Security Policy

A content security policy is a list of directives, restricting content inclusion for
web pages by means of a white-listing mechanism. Directives bind content types
to lists of sources from which a CSP-protected web page is allowed to include
resources of that type. For instance, the directive img-src https://a.com spec-
ifies that the web page is allowed to load images just from the host a.com using
the HTTPS protocol. CSP is a client-server defense mechanism: content security
policies are sent from the server to the browser by means of HTTP headers or
<meta> elements in HTML pages, while their enforcement is performed at the
browser side on a per-page basis. If a content security policy does not include an
explicit directive for a given content type, the default-src directive is applied
as a fallback. Allowed sources for content inclusion are defined using source
expressions, a sort of regular expressions used to express sets of web origins in a
convenient way. Content inclusion from a given URL is only allowed if the URL
matches any of the source expressions specified for the appropriate content type.

To exemplify how CSP works, we show a very simple policy below:

script-src https://www.unive.it;
img-src https://*.unive.it;
default-src https://*

The policy above states that scripts can only be loaded from www.unive.it,
images can be loaded from any sub-domain of unive.it and all the other con-
tents, e.g., style-sheets, can be loaded from everywhere; in all cases, the HTTPS
protocol must be used. Moreover, the policy automatically disables the execu-
tion of inline scripts, which are the most dangerous threats for content injection.
This default restriction can be voided by including the ‘unsafe-inline’ source
expression in the script-src directive.

3 Research Summary

We used our CoreCSP model of the CSP semantics to:

1. reveal a wrong implementation of the CSP specification in Microsoft Edge,
which was deemed dangerous and fixed after our report (CVE-2017-11863).
Moreover, we identified a subtle quirk in all browser implementations, which
deserved a careful security analysis using our semantics to be shown secure;

2. automatically analyze the security of existing content security policies against
script injection. Our analysis showed that 91.6% of the existing policies are
trivially bypassable and provide no protection at all ;

Semantically Sound Analysis of Content Security Policies 295

3. automatically track which changes to deployed content security policies have
been performed in the name of security (more restrictive policies), to pre-
serve compatibility (more permissive policies) and for maintenance reasons
(unrelated policies). Our analysis showed that less than 3% of policies changes
were done to improve security, which confirms that CSP is failing as a security
mechanism against content injection.

In the next section, we provide an overview of our technical treatment.

4 Technical Overview

4.1 Syntax and Semantics of CoreCSP

We let str range over a denumerable set of strings. The syntax of policies is
shown in Table 1, where we use dots (. . .) to denote additional omitted elements
of a syntactic category. A policy p is either a single list of directives d1, . . . , dn
or the conjunction of two policies p1 + p2, which requires both p1 and p2 to be
enforced. Directives, in turn, bind content types t to directive values v; their
syntax includes a default directive, applied to all the contents not restricted by
other directives. Directive values are sets of source expressions {se1, . . . , sen}.

Table 1. Syntax of CoreCSP (excerpt)

The formal semantics of CoreCSP is defined on top of three main entities:
locations l are uniquely identifiable sources of contents, e.g., URLs; subjects s
are HTTP(S) web pages enforcing the content security policy; and objects o are
contents available to subjects for inclusion, e.g., images hosted at a given URL.
The semantics follows the denotational style and is based on judgements like:

p � s �t O,

reading as: the policy p allows the subject s to include as content of type t the
set of objects O. It is possible to order policies using a subject-indexed binary
relation ≤s such that, for all policies p1 and p2, we have p1 ≤s p2 if and only if
p1 is no more permissive than p2 when deployed at s. More formally, this means
that p1 � s �t O1 and p2 � s �t O2 imply O1 ⊆ O2 for all the content types t.

296 S. Calzavara et al.

4.2 Applications of CoreCSP

Wrong Implementations of CSP. We empirically observed a few inaccurate
implementations of the CSP specification in major browsers by means of a set
of test cases we manually crafted. To formally reason on the security import of
such cases, we defined policy-to-policy compilations which embed the inaccurate
behaviors of the browsers directly in the CoreCSP semantics. For example, we
defined a compilation | · | which removes all the conjunctions (+) from policies,
which captures the incorrect CSP implementation provided by Microsoft Edge.
It is possible to prove that, for all policies p and subjects s, we have p ≤s |p|,
which formally shows that the CSP implementation of Microsoft Edge can only
make policies more permissive than intended (and it actually does).

Vulnerability to Script Injection. We defined syntactic conditions on poli-
cies which capture their vulnerability to script injection and proved that such
conditions are both sound and complete, i.e., they capture all and only the ways
script injection might happen when CSP is deployed. We used such conditions
to implement an automated security checker for existing content security poli-
cies, which we employed to show the insecurity of the very large majority of the
policies deployed in the wild (91.6%).

Policy Changes. Since p1 ≤s p2 if and only p1 is no more permissive than p2
when deployed at s, we can use the ≤s relation to capture the nature of policy
changes in the wild, i.e., to understand whether observed policy changes lead to
more restrictive or more permissive policies. We automated such analysis and
performed it on a large scale, showing that only a tiny fraction of changes (less
than 3%) is intended to improve security by making policies more restrictive.

5 Conclusion

Formal methods hold promise to support a more principled and rigorous analysis
of the web platform, as shown by our analysis of the current CSP deployment.
We encourage interactions between the formal methods community and the web
security community on challenging research problems, which require both theo-
retical foundations and a practical point of view. We refer the interested readers
to an extensive survey on formal methods for web security [1].

References

1. Bugliesi, M., Calzavara, S., Focardi, R.: Formal methods for web security. J. Log.
Algebr. Method Program. 87, 110–126 (2017)

2. Calzavara, S., Rabitti, A., Bugliesi, M.: Content security problems? evaluating the
effectiveness of content security policy in the wild. In: CCS, pp. 1365–1375 (2016)

3. Calzavara, S., Rabitti, A., Bugliesi, M.: Semantics-based analysis of content security
policy deployment. TWEB 12(2), 10:1–10:36 (2018)

Semantically Sound Analysis of Content Security Policies 297

4. OWASP: XSS prevention cheat sheet (2017). https://www.owasp.org/index.php/
XSS (Cross Site Scripting) Prevention Cheat Sheet

5. Weichselbaum, L., Spagnuolo, M., Lekies, S., Janc, A.: CSP is dead, long live CSP!
on the insecurity of whitelists and the future of Content Security Policy. In: CCS,
pp. 1376–1387 (2016)

6. Weissbacher, M., Lauinger, T., Robertson, W.: Why is CSP failing? trends and
challenges in CSP adoption. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID
2014. LNCS, vol. 8688, pp. 212–233. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11379-1 11

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://doi.org/10.1007/978-3-319-11379-1_11
https://doi.org/10.1007/978-3-319-11379-1_11

Author Index

Altisen, Karine 21
Åman Pohjola, Johannes 3
André, Étienne 39
Attiogbe, Christian 57
Audrito, Giorgio 289

Bao, Ran 57
Beal, Jacob 289
Bhardwaj, Chandrika 75
Bugliesi, Michele 293

Calzavara, Stefano 293
Carbone, Marco 129
Corbineau, Pierre 21

Damiani, Ferruccio 289
Debois, Søren 129
Delahaye, Benoît 57
Devismes, Stéphane 21

Ene, Cristian 93

Fournier, Paulin 57

Graf-Brill, Alexander 111
Groote, Jan Friso 185

Hermanns, Holger 111
Hildebrandt, Thomas T. 129
Hüls, Jannik 148

Jéron, Thierry 224
Johnson, Taylor T. 261

Lanese, Ivan 167
Laveaux, Maurice 185

Lime, Didier 39, 57
López, Hugo A. 129

Marmsoler, Diego 204
Mounier, Laurent 93
Musau, Patrick 261

Nguyen, Luan Viet 261

Palacios, Adrián 167
Pham, The Anh 224
Pianini, Danilo 289
Potet, Marie-Laure 93
Prasad, Sanjiva 75

Quinson, Martin 224

Rabitti, Alvise 293
Ramparison, Mathias 39
Remke, Anne 148

Slaats, Tijs 129
Stefani, Jean-Bernard 242

Tran, Hoang-Dung 261

Vassor, Martin 242
Vidal, Germán 167
Viroli, Mirko 289
Völlinger, Kim 281

Willemse, Tim A. C. 185

Xiang, Weiming 261

	Foreword
	Preface
	Organization
	Security Protocols: Model Checking Standards (Invited Talk)
	Contents
	Full Papers
	Psi-Calculi Revisited: Connectivity and Compositionality
	1 Introduction
	2 Definitions
	3 Meta-theory
	3.1 Bisimulation
	3.2 Validation

	4 Expressiveness
	4.1 Pi-Calculus with Preorders
	4.2 Mixed Choice

	5 Conclusion and Related Work
	References

	Squeezing Streams and Composition of Self-stabilizing Algorithms
	1 Introduction
	2 Streams and Self-stabilization in the PADEC Library
	2.1 Streams
	2.2 Self-stabilization: Model and Semantics

	3 Composition
	3.1 The Composite Algorithm in Coq
	3.2 Correctness of the Composition

	4 Squeezing Streams and Convergence of Composition
	4.1 Squeezing
	4.2 Preserving Properties by Simulation
	4.3 Proof of Claim (1)

	5 Conclusion
	References

	Parametric Updates in Parametric Timed Automata
	1 Introduction
	2 Preliminaries
	3 A Decidable Subclass of U2P-PTAs
	3.1 Operations on p–PDBMs
	3.2 Parametric Region Automaton
	3.3 Decidability of EF-emptiness and Synthesis

	4 Case Study
	5 Conclusion and Perspectives
	References

	Parametric Statistical Model Checking of UAV Flight Plan
	1 Introduction
	2 Building a Formal Model of UAV
	2.1 Safety Zones
	2.2 Drone Components
	2.3 Formal Model of the UAV in Its Environment
	2.4 Resulting Global Model

	3 Parametric Statistical Model Checking
	3.1 Standard Statistical Model Checking
	3.2 Parametric Markov Chains (pMC)
	3.3 Parametric SMC

	4 Implementation, Experimentations and Results
	5 Conclusion and Future Work
	References

	Only Connect, Securely
	1 Introduction
	2 Lagois Connections and All that
	3 An Operational Model
	3.1 Computational Model
	3.2 Typing Rules
	3.3 Soundness

	4 Related Work
	5 Conclusions and Future Work
	References

	Output-Sensitive Information Flow Analysis
	1 Introduction
	2 Output-Sensitive Non-interference
	2.1 The While Language and Output-Sensitive Noninterference
	2.2 Typing Rules
	2.3 Soundness w.r.t. to Output-Sensitive Non-interference

	3 Output-Sensitive Constant-Time
	4 Application to Low-Level Code
	4.1 LLVM-IR
	4.2 Type System
	4.3 Well Typed LLVM Programs Are Output-Sensitive Constant-Time
	4.4 Implementation

	5 Related Work
	6 Conclusion and Perspectives
	References

	Component-aware Input-Output Conformance
	1 Introduction
	2 Preliminaries
	3 Conformance and Component Behaviour
	4 A Component-Aware Theory
	5 A Practical Theory
	6 Conclusion
	References

	Declarative Choreographies and Liveness
	1 Introduction
	2 Interactions and Dynamic Condition Response Graphs
	2.1 Interactions
	2.2 DCR Graphs

	3 DCR Choreographies
	4 Conclusion and Related Work
	References

	Model Checking HPnGs in Multiple Dimensions: Representing State Sets as Convex Polytopes
	1 Introduction
	2 Hybrid Petri Nets with General Transitions
	3 State Space Representation Using HyPro
	4 Stochastic Time Logic
	5 Model Checking STL
	5.1 Model Checking Algorithms per Operator
	5.2 Computing Satt'() for nested formula and complexity

	6 Conclusions
	References

	Causal-Consistent Replay Debugging for Message Passing Programs
	1 Introduction
	2 The Language
	3 Logging Computations
	4 A Causal-Consistent Replay Semantics
	5 Controlled Replay Semantics
	6 Related Work and Conclusion
	References

	Correct and Efficient Antichain Algorithms for Refinement Checking
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems

	3 Refinement Checking
	4 Antichain Algorithms for Refinement Checking
	5 A Correct and Improved Antichain Algorithm
	6 Experimental Validation
	6.1 Benchmarking Example3
	6.2 Benchmarking Practical Examples

	7 Conclusions
	References

	Towards Verified Blockchain Architectures: A Case Study on Interactive Architecture Verification
	1 Introduction
	2 Blockchain Architectures
	3 Factum
	3.1 System Model
	3.2 Specifying Dynamic Architectures
	3.3 Verifying Dynamic Architectures

	4 Formalizing Blockchain Architectures
	4.1 Data Types and Ports
	4.2 Component Types
	4.3 Architectural Constraints

	5 Verifying Blockchain Architectures
	5.1 Persistence of Blockchain Entries
	5.2 Verification Effort

	6 Discussion
	7 Related Work
	7.1 Formalizations of Blockchain Concepts
	7.2 Verification of Consensus Algorithms

	8 Conclusion
	References

	Unfolding-Based Dynamic Partial Order Reduction of Asynchronous Distributed Programs
	1 Introduction
	2 Interleaving and Unfolding Semantics
	3 Programming Model and Independence Relation
	3.1 Abstract Model
	3.2 Additional Property of the Model
	3.3 Independence Theorems

	4 Adapting UDPOR
	4.1 The UDPOR Algorithm
	4.2 Computing Extensions Efficiently
	4.3 Computing Extensions Incrementally
	4.4 Experiments

	5 Conclusion and Future Work
	References

	Encapsulation and Sharing in Dynamic Software Architectures: The Hypercell Framework
	1 Introduction
	2 Informal Introduction
	3 The Hypercell Framework
	3.1 Operational Semantics of a Hypercell Model
	3.2 Behavioral Equivalence for Hypercell Models

	4 Encapsulation Policies
	4.1 Strict Encapsulation
	4.2 Selective Encapsulation

	5 Conclusion
	References

	Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems
	1 Introduction
	2 Problem Formulation
	3 Real-Time Local Safety Verification
	4 Decentralized Real-Time Collision Verification
	5 Case Study
	6 Related Work
	7 Conclusion and Future Work
	References

	Short and “Journal First” Papers
	On Certifying Distributed Algorithms: Problem of Local Correctness
	1 Introduction
	2 Preliminaries: Certifying Distributed Algorithms
	3 Problem: Local Correctness of a Component
	3.1 Case Study: Local Correctness in Shortest Paths Computation

	4 Discussion
	References

	On a Higher-Order Calculus of Computational Fields
	1 Background
	2 Contributions of AudritospseEtAl:TOCLsps2019
	3 Conclusions, Related and Future Work
	References

	Semantically Sound Analysis of Content Security Policies
	1 Introduction
	2 Background on Content Security Policy
	3 Research Summary
	4 Technical Overview
	4.1 Syntax and Semantics of CoreCSP
	4.2 Applications of CoreCSP

	5 Conclusion
	References

	Author Index

