
Chapter 2
Current Problems in the Quasi-elastic
Incoherent Neutron Scattering
and the Collective Drift of Molecules

Leonid A. Bulavin, N. P. Malomuzh and K. S. Shakun

Abstract The determination of the self-diffusion coefficientDs is one ofwell known
applications of the quasi-elastic incoherent neutron scattering. Here we will show
that the half-width of the neutron peak considered as a function of wave vector can
be used for the determination of (1) the residence time τ0 for water molecules and (2)
the very important ratio Dc/Ds where Dc is the collective part of the self-diffusion
coefficient, caused by its drift in the field of thermal hydrodynamic fluctuations.
The applicability region for the simplest diffusion approximation is discussed in
details. The influence of the rotational motion of water molecules on spectra of the
intermediate scattering function (ISF) is studied. A new type of the high-frequency
asymptote for the ISF-spectra is predicted.

2.1 Introduction

The quasi-elastic incoherent neutron scattering (QEINS) is usually applied for the
determination of the self-diffusion coefficient Ds [1–3]. In works [4, 5] it had been
shown that the half-width of the neutron peak considered as a function of wave vector
can be used for the determination of (1) the residence time τ0 for water molecules
[6–9] and (2) the rotational one τr for them. Unfortunately, the magnitude of the
last does not correlate with its estimate τd following from the dielectric relaxation
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experiments [10–13]. Therefore, the manifestation of rotational motion in spectra of
QEINS is needed in additional study.

The main goal of our work is to investigate the spectral properties of the interme-
diate scattering function (ISF):

Fs(�k, ω) = 1

π

∞∫

0

Fs(�k, t) cosωtdt, (2.1)

where

Fs(�k, t) =< ei
�k·��r(t) >, (2.2)

��r(t) = �r(t) − �r(0) is the displacement of a molecule during time t, �k is the
transferring wave vector. The behavior of Fs(�k, t) will be modeled with the help
of computer simulations. We will consider the peculiarities of the spectral density
Fs(�k, ω) in the three characteristic cases: (1) |�k|a � 1; (2) |�k|a ∼ 1 and |�k|a � 1,
where a is the average interparticle spacing. The special attentionwill be also focused
on the �k-dependence of the half-width γ (�k2) on the spectral peak on its half-height
of the:

Fs(�k, γ (�k2)) = 1

2
Fs(�k, ω)

∣∣∣
ω=0

. (2.3)

We will also show that the description of experimental data for the case |�k|a � 1
with the help of the diffusion approximation

Fs(�k, ω) ∼ Ds�k2

ω2 +
(
Ds�k2

)2 (2.4)

is quite correct only for 0 < ω ≤ Ds�k2, i.e. the applicability region of the diffusion
approximation is strongly restricted. The high-frequency asymptote of Fs(�k, ω) for
the same values of wave vectors is the more surprising:

Fs(�k, ω) ∼ exp
(−(ωτ(k))2/3

)
, ω � Ds�k2, |�k|a � 1, (2.5)

i.e. it is radically different from that, Fs(�k, ω) ∼ Ds�k2
ω2 , following from the diffusion

approximation.
Comparing the �k-dependence of the half-widths for water and argon for |�k|a > 1

we will be able to establish that the rotational motion of water molecules practically
does not influence on characteristic details of γ (�k2). This result is very important for
correct description of the role of molecular rotation.
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2.2 Cross-Section for the Quasi-elastic Incoherent Neutron
Scattering

In general the displacement ��r(t) of a molecule can be represented as the sum of
two terms

��r(t) = ��r(υ)(t) + ��r(d)(t), (2.6)

where the first of them is caused by vibrationmodes and the latter—by the irreversible
thermal drift from the one temporary equilibrium position to another. Since these
contributions are statistically independent, the intermediate function (2.2) transforms
to the product

Fs(�k, t) ≤ exp(i�k · ��r(υ)(t)) >< exp(i�k · ��r(d)(t)) > . (2.7)

Since vibration displacements ��r(υ)(t)) are limited: |��r(υ)(t))| < b � a

|�k|b � 1 (2.8)

we can write:

< exp(i�k · ��r(υ)(t)) ≥ exp(−2W ), W = 1

12
�k2 <

(
��r(υ)(t)

)2
>, (2.9)

i.e. they generate the standard Debye-Waller factor [1–3].
Now we pass to the consideration of < exp(i�k · ��r(d)(t)) > in the simplest case

of the diffusion approximation: |�k|a � 1 for argon (Sects. 2.1 and 2.2) and water
(Sects. 2.3 and 2.4).

2.2.1 Diffusion Approximation for Argon

In this case translational displacements ��r(d)(t) of a molecule are described by the
distribution function:

W
(
��rd (t)) =

(
3

2πΓ (t)

)3/2

exp
(
−3

(
��rd (t))2/(2Γ (t))

)
, (2.10)

which leads together with (2.7) and (2.9) to the result:

Fs(�k, t) = exp(−2W ) exp

(
−1

6
�k2Γ (t)

)
. (2.11)
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Here Γ (t) is the mean square displacement (MSD) of a molecule. In accordance
with [14, 15], Γ (t) can be represented as the sum:

Γ (t) = Γr(t) + Γc(t), (2.12)

where

Γr(t) = 6Drt + Cr (2.13)

is the contribution to the MSD caused by displacements on molecular scales
(nanoscales) and

Γc(t) = 6Dct − B
√
t + · · · , B = kBT

ρ(πν)3/2
(2.14)

is caused by the collective transport ofmolecules in the field of thermal hydrodynamic
fluctuations (meso-scales) [14–16]. Here kB is the Boltzmann constant, ρ is the mass
density, ν is the kinematic shear viscosity andDc is the collective part of self-diffusion
coefficient [16].

It is clear from (2.12)–(2.14) that the Debye-Waller factor takes the form:

exp(−2W ) = exp

(
−1

6
�k2Cr

)
(2.15)

that allows to estimate exp(−2W ) with the help of computer simulations.
As it had been shown in [15] the collective contribution to the self-diffusion

coefficient Dc is determined by the expression:

Dc = kBT

10πη
√

ντM
, (2.16)

where τM is the Maxwell relaxation time. The last is determined by the equation:

∂�u
∂t

+ τM
∂2�u
∂t2

= ν��u (2.17)

for the transversal hydrodynamic velocity field (see details in [17]).
One can show [18] that the MSD of a molecule can be represented in the form:

Γ (t) = Cr + 6Dst

[
1 − 10

3π1/2

Dc

Ds

(τM

t

)1/2 + · · ·
]
, (2.18)

where the self-diffusion coefficient Ds is the sum of Dc and Dr:

Ds = Dc + Dr. (2.19)



2 Current Problems in the Quasi-elastic Incoherent … 45

If we will use in (2.18) the MSD obtained with the help of computer simulations,
we can estimate the relative value of the collective self-diffusion coefficient:

Dc

Ds
= 3π1/2

10
x1/2

[
1 − Γ̃ (x) − c̃

x

]
+ o(1/x1/2), (2.20)

where x = t/τM, Γ̃ (x) = Γ (t)/6DsτM and c̃ = Cr/6DsτM. Since the inequality
x1/2 � 1 is consistent with Γ̃ (x) � c̃, the last equation can be simplified:

Dc

Ds
= FMD(x), (2.21)

where FMD(x) = 3π1/2

10 x1/2
[
1 − <Γ̃MD(x)>

x

]
and Γ̃MD(x) is the MSD determined in

computer experiments. The angular brackets in < Γ̃MD(x) > denote the averaging
operation on different realizations of Γ̃MD(x) over 6 different initial configurations.
Here it is supposed that x satisfies the inequality: 1 � x � xu, where xu is the upper
limit for the applicability of computer simulation modeling. The reliability of such
an estimate for the ratio Dc

Ds
is naturally verified by its comparison with that calculated

as the ratio of Dc given by (2.16) to Ds that is determined experimentally.
Using the Einstein formula for the self-diffusion coefficient: Ds = kBT

6πηrp
, we can

attach the ratio Dc/Ds the following view:

Dc

Ds
= 3

5

rp√
ντM

, (2.22)

where rp is the effective radius for a molecule.
To find the ratio Dc

Ds
according to (2.20) it is necessary to find (1) the time depen-

dence of the MSD and (2) the Maxwell relaxation time.

2.2.2 The Spectrum of the ISF for |�k|a � 1

From (2.11) it follows that the spectral density for the ISF is determined by the
expression:

Fs(�k, ω) = 1

π
exp

(
−1

6
�k2C

) ∞∫

0

exp

(
−1

6
�k2Γ (t)

)
cosωt dt, (2.23)

where Γ (t) in accordance with (2.12)–(2.14) and (2.19) equals to

Γ (t) = 6Dst − B
√
t + · · · . (2.24)
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Since the first term in (2.24) plays the leading role for all t > t0, where t0 =(
B
6Ds

)2 ∼ 10−13 s, the spectral density of the ISF can be represented in the form (see

[19]):

Fs(�k, ω) = exp

(
−1

6
�k2C

)
1

π
Re

1

−iω + γ (�k2, ω)
, (2.25)

where the half-width reduces to

γ (�k2, ω) = Ds�k2
(
1 + γ1(�k2, ω)

)
(2.26)

and

γ1(�k2, ω) = −b

2

√
π(1 − iω̃), ω̃ = ω

Ds�k2
, b = B

6
√
Ds

∣∣∣�k
∣∣∣. (2.27)

In low-frequency limit (ω̃ � 1) the half width tends to the value:

γ (�k2, ω̃) = Ds�k2
(
1 − (b/2)

√
π)

)
, (2.28)

i.e. the correction term is proportional to the cubic degree of the wave vector. In the
opposite case let us introduce the function:

I(ω̃, b) = Re
ω̃2

−iω̃ + 1 + γ1(�k2, ω̃)
− 1, (2.29)

having the following high-frequency asymptote:

I(ω̃, b)
ω̃�1

⇒ b

2
√
2

√
πω̃. (2.30)

Taking into account the expression (2.27) for b and using the equality B =
20

π1/2Dc
√

τM, from (2.30) we get:

Dc

Ds
= RD(ω̃)

ω̃�1
, (2.31)

where

RD(ω̃) = 6

5

(
2

τMDs�k2
)1.2 I(ω̃, b)√

ω̃
. (2.32)
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Equation (2.31) has the very important value since it allows us to determine
in principle the relative value of the collective self-diffusion coefficient using the
incoherent neutron scattering data for ω̃ � 1.

2.2.3 The Spectrum of the ISF for Water

The thermal motion of molecules in water essentially differ from that in argon due
to clusterization effects. Near the triple point of water it can be represented as the
vibrational motion during the residence time τ0 and the consequent movement during
time τ1 to a new temporary equilibriumposition.Byorder ofmagnitude: τ1 ∼ a/υT ≈
3 · 10−13 s, where υT is the average value of the thermal velocity of a molecule. If
τ1 � τ0 it is accepted to say that the thermal motion has the crystal-like character. It
is necessary to note that the residence time takes the same order of magnitude as the
life time τH for an H-bond. In accordance with [20–22] τH ~ several ps at the room
temperature.

The characteristic change of the ISF is occurred during time τ0 + τ1 ≈ τ0
therefore we can write:

∂Fs(�k, t)
∂t

= 1

τ0

(
Fs(�k, t + τ0) − Fs(�k, t)

)
. (2.33)

In order to find the difference: Fs(�k, t + τ) − Fs(�k, t) as a function of t, τ0 and�k2, let us represent the displacement ��r(t) of a molecule as the sum:

��r(t) = ��r(t1,2) + ��r(t2,3) + . . . + ��r(tN−1,N ) (2.34)

of consecutive displacements: ��r(ti−1,i) = �r(ti) − �r(ti−1) during τ0 considered also
as a time of an elementary diffusion act. Taking into account that:

��r(ti−1,i) = ��r(υ)(ti−1,i) + ��r(d)(ti−1,i) (2.35)

and supposing that displacements ��r(ti−1,i) and ��r(tj−1,j) for j �= i are statistically
independent we obtain for the ISF the following equation:

Fs(�k, tN ) ⇒ exp(−2W )Fd (�k, tN ), (2.36)

where

Fd(�k, tN ) =
(
f1(�k2)

)N
, f1(�k2) =< exp

(
i�k · ��r(d)(t1,2)

)
> . (2.37)

It is not difficult to verify that Fd(�k, tm), 1 ≤ m ≤ N , satisfies the equation:
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∂Fd(�k, t)
∂t

∣∣∣∣∣
t=tm

= − 1

τ0
Fd(�k, tm)(1 − f1(�k2)), (2.38)

which leads to the solution:

Fd(�k, t) = exp

(
− (1 − f1(�k2))

τ0
t

)
. (2.39)

From (2.36)–(2.39) it follows that the spectral density of the ISF equals to

Fs(�k, ω) = exp(−2W )
1

π

γ (�k2)
ω2 + γ 2(�k2) , (2.40)

where the half-width of the Lorentzian takes the value:

γ (�k2) = 1 − f1(�k2)
τ0

. (2.41)

To construct the evident view of f1(�k2) we take into account that the shift ��r(d)
m

of a molecule during the time τ0 can be represented as the sum of two independent
contributions:

��r(d)
m = ��r(c)

m + ��r(r)
m , (2.42)

where the first of them describes the collective drift of a molecule in the velocity
field of thermal hydrodynamic fluctuations and the second—the displacement of
a molecule about its nearest neighbors [18, 23]. This displacement has also the
collective character and it arises due to small displacements of the nearest neighbors.
In other words the first displacements are characterized by meso-scales and the
second—by nano-scales. As a result we can write:

f1(�k2)) = f (c)
1 (�k2) · f (r)

1 (�k2), (2.43)

where

f (c)
1 (�k2) =< exp(i�k��r(c)

m ) >, f (r)
1 (�k2) =< exp(i�k��r(r)

m ) > . (2.44)

In accordancewith [14–16, 24] the collective transport is caused by the transversal
modes in liquids and it has the diffusion character. Due to this the main contribution
to f (c)

1 (�k2) can be written in the view:

f (c)
1 (�k2) = exp(−6Dc�k2τ0), (2.45)
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where Dc is the collective contribution to the self-diffusion coefficient [14–16].
Writing the function f (r)

1 (�k2) in the equivalent form:

f (r)
1 (�k2) =

〈
sin k|��rm|
k|��rm|

〉
(2.46)

and averaging ��rm by the Gaussian:

W (��rm) =
(γ

π

)3/2
exp(−γ (��rm)2), γ = 1

4l20
, (2.47)

where l0 is the typical displacement of a molecule during τ0 + τ1 ≈ τ0, we get:

f (r)
1 (�k2) = exp

(
−�k2l20

)
. (2.48)

In [25] it had been shown that l0 ≈ a. Since |�k| l0 ∼ |�k| a � 1 the function is
very close to

f (r)
1 (�k2) ≈ 1

1 + �k2l20
(2.49)

characteristic for the model of the jump-like diffusion [22]. Here we should stress
that the model of the jump-like self-diffusion is incorrect in water as well as in argon
near their triple points since the structural voids in them are absent. Elementary
displacements of molecules are mainly caused by circulator motions (see [18]).

The final result for f (r)
1 (�k2) becomes equal to:

γ (�k2) = 1

τ0

(
1 − exp(−Dc�k2τ0)

1 + τ0Dr�k2
)

, (2.50)

where we use the change �k2l20 → τ0Dr�k2 consistent with our reasons presented
above.

This expression is close to that:

γ
(SS)
D (�k2) = 1

τ0

(
1 − exp(−2W )

1 + τ0Ds�k2
)

, (2.51)

obtained in [8, 26]. However main assumptions made in [8] cannot be justified from
the physical point of view.

The applicability region of our results is restricted by the inequality τ0Dr�k2 � 1,
or l20 �k2 � 1, therefore the half-width (2.50) of the diffusion peak can be expanded
in the series:
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γ (�k2) ≈ Ds�k2 − τ0Dr�k4 + τ 2
0D

3
r
�k6 + · · · . (2.52)

where Ds = Dr + Dc is the full self-diffusion coefficient.
It is necessary to note, that the representation of γ (�k2) by the expansion of type

(2.52) is only correct from the mathematical point of view. Therefore, the expression
for γ (�k2) in [8] is not quite satisfactory and can be lead to considerable errors.

Thus, remaining within the framework of the diffusion approximation, a2�k2 � 1
and fitting experimental data for the half-width with the help of (2.52), we can
determine the self-diffusion coefficient Ds, its collective part Dr caused by local
chaotic displacements and the residence time τ0. Their temperature dependences are
very important especially of the residence time. They had been in details investigated
for water in [4, 5, 15]. Values of Dc = Ds − Dr satisfy the inequality Dc < (�)Ds

that is one of criteria testifying in the favor of the proposed approach.
Here we add that the crystal-like character of thermal motion in water leading to

(2.52) is only observed for T ≤ TH = 315K. For higher temperatures it becomes
inapplicable and the thermal motion in water approaches to argon-like one. Some
important details will be presented in the Discussion.

2.3 Modeling of the VACF According to Computer
Simulations

In order to construct the VACF for a molecule of argon and water were used the
NVT-ensemble including 1 · 106 argon atoms and NVT-ensemble of 512,000 water
molecules. In the second case the realistic flexible TIP4P/F water model [27] was
used. In a case of argon atoms ensemble particles interacting bymeans of the Lenard-
Jones potential

U (r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

(2.53)

with parameters σ = 0.3409 nm and ε/kB = 120.04 K [28].
Molecules in water ensemble interacting via potential:

U (r, θ) = ULJ (r) + Uc(r) + Uintra(r, θ), (2.54)

Uintra(r, θ) =
∑
i=1,2

dr
(
1 − exp

[−β
(
rOHi − r0

)])2 + 1

2
Kθ (θ − θ0)

2, (2.55)

where ULJ(r)—Lenard-Jones contribution, Uc(r) = kq1q2
/
r2—component, that

describes coulomb interaction and Uintra(r, θ)—the part describing intramolecular
interaction, taking into account the OH length and HOH angle vibrations. Here
ε/kB = 93.2 K, σ = 0.3164 nm, qH = 0.5564e, r0 = 0, 0942 nm, β = 22.8 nm−1,
dr = 432.6 kJ/mol, θ0 = 107.4◦, Kθ = 367.8 kJ/

(
mol rad2

)
[27].
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For all molecular dynamic tasks, the Gromacs 5.13 software environment [29, 30]
was used.

The velocity Verlet algorithm for integration of Newton’s equations was used.
The time step is 4 · 10−16 s. For Van der Waals and electrostatic interaction calcula-
tions the PME method [31] was applied. At the beginning of calculations molecules
are arranged within a cell with interparticle spacing corresponding to a considered
density. The periodic boundary conditions are applied. The following requirements
are carried out in our calculation procedure:

• the cell edge length (le) is much greater than the doubled radius (rI ) of the inter-
molecular interaction (le � 2rI );

• the characteristic time τc = le/c, where c is the longitudinal sound velocity, is
greater than the simulation time τs (τc > τs);

• the cut-off distance is rI = 9σ ;
• the equilibrium value of pressure at given density and temperature is close to the
experimental one;

• values of the self-diffusion coefficients obtained from the study of mean square
displacement of a molecule and from the expression of the Green-Kubo type are
close to each other.

At the initial simulation stage (up to 120 ps), a system is considered as NVE
ensemble. After this a system is described as NPT ensemble using the chain of Nose-
Hoover thermostats [32, 33] andMTTK barostat [34, 35]. To avoid large oscillations
of pressure the high value of “time constant for coupling” [36] is used. As a result,
the temperature and pressure of a system are supported to be consistent with their
initial values.

The time dependence of the velocity autocorrelation function (VACF) φV (t) ≤
�v(t)�v(0) > for a molecule is constructed with the help of simulation data on the last
stage. Values of the VACF are obtained by averaging over 1.5 · 106 time steps and
6 independent initial configurations. The relative error of MD calculations averaged
over [3 ÷ 8] ps ε = 0.168 (the relative error for two different initial configurations

(i and j) is determined as ε = 2 average
( |φi(t)−φj(t)|

|φi(t)+φj(t)|
)
. For larger time intervals the

relative error significantly increases, for example, ε = 0.363 for (20 ÷ 30) ps.
The dynamic memory time (τd) [37, 38] in our simulation procedure is about

23 ps for argon and 16 ps for water ensemble. For times that are t > τd parasitic
noise contributions to the VACF become comparable with useful signal. In order to
overcome partially this problem the Savitzky-Golay spline filter [39] is used (the
window width takes 80 points).

2.4 The Determination of the MRT

In this Sectionwe consider some general requirementsmade for theMRT and present
a new method for its determination.
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2.4.1 General Requirements for the MRT

In this subsection we establish the important inequality for the MRT. We start from
the standard Maxwell definition:

τM = η/G∞, (2.56)

where η is the dynamic shear viscosity and G∞ is the high-frequency shear modulus
for liquid system. Value of G∞ are well known for crystal and amorphous phase of
many systems [40]. Therefore the approximate value of the MRT can be estimated
as

τM = η/Gcr or τM = η/Gam. (2.57)

The value for the amorphous phase is preferable since structures of a system in
its amorphous and liquid states are closer to each other.

However, the elastic properties of a system essentially change at the melting and
consequent its heating that is connected with decrease of the density. The first fact
is clearly illustrated on the example of the longitudinal sound velocity cl for water.
In this case, according to [41, 42] near the melting point we have:

c(cr)
l = 3.84 · 105cm/s and c(liq)

l ≈ 1.4 · 105 cm/s . (2.58)

So noticeable change is also expected for high-frequency transversal sound veloc-
ity, although the corresponding estimates for c(liq)

t are absent.
It is evident that (2.57) can be rewritten in the form:

τM(T ) = ν(T )/c2t (T ), c2t (T ) = Gam/ρam, (2.59)

where ν(T ) is the kinematic shear viscosity: ν(T ) = η/ρ. Since the high-frequency
transversal and longitudinal sound velocities satisfy the inequality: ct < cl, we
conclude that the MRT should obey the inequality:

τM > ν/c2l . (2.60)

Comparative values of the MRT for Argon taken from several sources and its
lower limit τ (l)

M = ν/c2l are presented in the Table 2.1.
Unfortunately, only values of the MRT from [45] satisfy to the inequality (2.60).

It is clear that such distinctions of numerical values for the MRT reflects defects of
methods used for the determination of τM.

The MRT should also satisfy the second inequality:

ζ(T ) > 1, ζ(T ) = 2
√

ν(T )τM(T )/σp, (2.61)
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Table 2.1 Values of the MRT for liquid Argon on its coexistence curve

T (K) 90 100 110 120 130 140 150

τM · 1013 (s) [43] ≈2.28 – – – – – –

τM · 1013 (s) [44] 1.68 – 1.58 1.57 1.66 1.73 –

τM · 1013 (s) [45] – – ≈21 ≈22 – – –

τ
(l)
M · 1013 (s) 2.68 2.51 2.45 2.75 3.3 4.85 –

where σp is the molecular diameter. Here we take into account that the combination
2
√

ντM has meaning of the suitable radius for the Lagrange particle [15, 24]. In
other words it is the size of a liquid particle drifting in the fluctuation hydrodynamic
velocity field. It is clear that this size should exceed the molecular size and the
interparticle spacing having the same order of magnitude.

The characteristic temperature T∗, higher which the MRT loses its meaning, is
determined by the equation:

ζ(T∗) = 1. (2.62)

2.4.2 MRT for Water

The general view of the VACF for water molecule at T = 274K is presented in the
Fig. 2.1.

One can show that (1) the small peak centered at td = 0.15 ps corresponds to the
dimer longitudinal vibrations, only observed for T < 400K; (2) the more large and
deep oscillation is genetically connected with elastic transversal and longitudinal

Fig. 2.1 The time
dependence of the VACF for
a water molecule at 274 K
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modes of the hydrodynamic velocity field. This range of negative values for the
VACF disappears later, for T > 450K.

In [14, 15, 24] it had been shown that the low-frequency asymptote for the spectral
density of the VACF for T > 450K is determined by diffusion transversal modes
and it is described by the expression:

φ
(D)

�V (ω) = 3Dc

[
1 − 4

3

√
2πωτM

(
1 − 3

2
ωτM + 3

8
(ωτM)2

)
+ · · ·

]
. (2.63)

The full correspondence of the last to the VACF-spectrum for T > 450K is
demonstrated in the Fig. 2.2.

Near the triple point the important details of theVACF-spectrumare determined by
elastic transversal and longitudinalmodes. In accordancewith [24] their contributions
are determined by the formulas:

φV (ω) = 1

2π

∞∫

0

dteiωt
(
φ

(t)
V (t) + φ(l)

s (t)
)
, (2.64)

where

φ
(t)
V (t) = 3

π2

kBT

mL

∞∫

0

du

u2

(
cos u − sin u

u

)2

×
[
e

t
2τM

√
p + e− t

2τM

√
p + e

t
2τM

√
p − e− t

2τM

√
p

√
p

]
, (2.65)

Fig. 2.2 The fitting of the
VACF-spectrum (circles)
with a help of asymptotic
expansion (2.63) at 550 K
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φ(l)
s (t) = 3

π

kBT

mL

∞∫

0

du

u2

(
cos u − sin u

u

)2

e−σθ(u) u2t/r2L cos

(
c
u

rL
t

)
(2.66)

and p = 1−u2, rL = 2
√

ντM is the suitable radius of the Lagrange particle (see [15,
24]), σ = 1

2

[
ν + λ(γ − 1)

]
, λ = χ/ρCP, γ = CP/CV , where CP,CV are isobaric

and isochoric heat capacities and χ is the thermoconductivity coefficient, θ(u) is the
step function.

The comparison of φV (ω) given by the formulas (2.64)–(2.66) with the VACF-
spectrum constructed with the help of MD-simulations is presented in the Fig. 2.3.

Trying for the best fitting of the low frequency part for the VACF-spectrum in the
Fig. 2.3 we can determine the MRT for water. Obtained in such a way values of the
MRT are gathered in the Table 2.2.

It is necessary to stress here that the values of the MRT satisfying to inequalities
(2.60) and (2.62) in fact correspond to that temperature interval where the low-
frequency VACF-spectra are determined by quasi-elastic transversal modes.

Fig. 2.3 The comparison of
the VACF-spectrum (solid
line) and that calculated
according to (2.64)–(2.66) at
274 K (dashed line)

Table 2.2 Values of τM and
the right boundary tosc for the
VACF oscillation region

P (MPa) T (K) τM (ps) tosc (ps)

0.001 274 0.98 1.96

0.0035 300 0.866 1.45

0.042 350 0.612 0.97

0.128 380 0.489 0.744

0.93 450 –
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Table 2.3 Values of τM, ζ(T ), tosc and Ds for argon as functions of temperature

T (K) τM (ps) ζ(T ) tosc (ps) DMD
s ( 10−5cm2/s)

85 0.838 2.61 3.08 1.91

90 0.682 2.16 2.28 2.31

100 0.565 1.83 1.48 3.41

110 0.312 1.1 0.64 4.69

2.4.3 The MRT for Argon

In this case all main details of the procedure for the determination of the MRT are
the same as for water. Corresponding values of τM, ζ(T ), determined by (2.61), tosc
and Ds are gathered in the Table 2.3.

As we see from the Table 2.3 the characteristic temperature T∗ for argon, deter-
mined by (2.60) and (2.62), is close to 110K. For higher temperatures the MRT for
argon loses its physical meaning, i.e. the elastic transversal modes disappear in a
system.

2.5 Determination of the Ratio Dc
Ds

for Argon and Water

In this section we present results of our investigation of the ratio Dc
Ds

for argon and
water.

2.5.1 The Ratio Dc
Ds

for Argon

In this subsection we present our results of determination of the ratio according to
(2.21) and calculated immediately using Dc according to (2.16) and the MRT from
the previous Section as well as experimental values for Ds.

Let us consider some details of determination of the ratio Dc
Ds

according to (2.21).
The averaging of FMD(x) is carried out within time interval: xl < x < xu, where the
lower limit satisfies the inequality: xl > 1 and the upper limit—the one: xu < xd,
where xd determined by dynamic memory time. The behavior of FMD(x) inside such
intervals for several temperatures is presented in the Fig. 2.4.

We see that the plateau in the behavior of FMD(x) is only observed for T < 120K
that is consistent with the existence of the MRT namely for these temperatures.
Values of the ratio Dc

Ds
obtained in such a way are collected in the second column of

the Table 2.4. Values of Dc
Ds

calculated immediately are placed in the third column.
Thus, the collective part of the self-diffusion coefficient (1) reaches approximately

10% at the triple point of argon; (2) increases with temperature taking its maximal
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Fig. 2.4 Behavior of FMD(x) for large enough x at several temperatures: T = 85, 100, 110, 120 K
(a, b, c, d correspondingly)

Table 2.4 Comparative
values of the ratio Dc/Ds
obtained according to (2.21)
and calculated immediately.
Experimental values of Ds
barrowed from [46, 47]

T (K) Dc/Ds (2.21) Dc/Ds (immed.)

85 0.138 0.095

90 0.151 0.121

100 0.182 0.166

110 0.192 0.28

value at 110 K (about 25%) and (3) tends to zero with consequent increase of temper-
ature. The last assertion reflects that fact that theMRT for argon becomes its incorrect
characteristics for T > 120 K. There is a quite satisfactory correlation between values
of Dc/Ds, obtained according to (2.21) and calculated immediately.

2.5.2 The Ratio Dc
Ds

for Water

In the Table 2.5 results of our calculations of Ds and Dc/Ds for water are presented.
They are obtained with the same procedure as for argon in Sect. 2.5.1.

Table 2.5 Values of Ds and Dc/Ds for several temperatures. Experimental values taken from [48,
49]

T (K) DMD
s Dexp

s Dc/Ds (2.21) Dc/Ds (immed)

274 1.529 1.18 0.022 0.036

300 2.779 2.41 0.081 0.076

350 7.04 6.28 0.157 0.133

380 11.07 9.33 0.243 0.182
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2.6 MD-Modeling of the Spectrum for the ISF for Argon

In this Section we consider the applicability region of the diffusion approximation
for the spectral density of the ISF.

2.6.1 Fitting of Computer Simulation Data with the Help
of Diffusion Lorentzians

The behavior of the spectral density for the ISF for Argon in a low-frequency interval
0 < ω̃ < 3, where ω̃ = ω/Ds�k2 and a2�k2 � 1, is presented in the Fig. 2.5.

As we see, (1) the spectral density of the ISF deviates from the Lorentzian already
at ω̃ ∼ 1 or (ω ∼ Ds�k2) and (2) the contribution of the root square term in (2.25)
is negligibly small, as it should be for small frequencies. The first fact is rather
surprising and it should be taken into account at fitting experimental data with the
help of Lorentzian. Below we will also give a rigorous theoretical substantiation of
the restricted applicability of Lorentzian.

From the Table 2.6 it follows that the optimal fitting of the computer simulation
data for the spectrum with the help of Lorentzian is observed for k̃l < k̃ < k̃u and
0 < ω̃ < ω̃u, where the limit values of k̃l, k̃u and ω̃u are depending on density ρ.
Speaking about the optimal fitting we suppose that values for the calculated self-
diffusion coefficients DMD

s are the closest to corresponding experimental data Dexp
s .

The density dependence of k̃u, presented in the Fig. 2.6, is close to the rectilinear
one. The values of ω̃u < 1.7.

Fig. 2.5 The spectral density of the normalized ISF F̃(�k, ω̃) = F(�k, ω)/F(�k, 0) for argon as a
function of frequency ω̃ at ρ = 1.0 g/cm3 and T = 90K: dashed line correspond to computer
simulation data (CSD); open circles and points are the result of calculation according (2.25) at
b = 0 and b = 0.03 (a), as well as b = 0 and b = 0.1 (b); solid curve corresponds to the
Lorentzian: F̃L(�k, ω̃) = 1

ω̃2+1
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Table 2.6 Values of Ds and the upper limit frequency ω̃u for the applicability of Lorentzian for

various densities and wave vectors k̃ = ak
2π at T = 135 K. Experimental values Dexp

s taken from
[46, 47]

ρ = 0.8 g/cm3 k̃ 0.10 0.22 0.24 0.28

DMD
s · 105 (cm/s) 15.7 13.85 12.0 11.2

Dexp
s · 105 (cm/s) 14.27

ω̃u – 1.65 1.5 –

ρ = 1.0 g/cm3 k̃ 0.13 0.214 0.252 0.29

DMD
s · 105 (cm/s) 10.61 9.97 8.81 8.3

Dexp
s · 105 (cm/s) 9.88

ω̃u – 1.55 1.4 –

ρ = 1.2 g/cm3 k̃ 0.17 0.26 0.29 0.32

DMD
s · 105 (cm/s) 7.76 5.92 5.34 4.9

Dexp
s · 105 (cm/s) 6.02

ω̃u – 1.5 1.3 –

ρ = 1.4 g/cm3 k̃ 0.22 0.27 0.325 0.35

DMD
s · 105 (cm/s) 4.71 3.53 3.14 2.88

Dexp
s · 105 (cm/s) 3.56

ω̃u – 1.5 1.3 –

Fig. 2.6 The upper limit for
wave vectors as a function of
density

As it follows from the Table 2.7, the optimal fitting of experimental data with
the help of Lorentzians becomes better for smaller wave vectors. At the same time
values of ω̃u a few increase.
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Table 2.7 Values of Ds for water and the upper limit frequencies ω̃u for different temperatures.
Experimental values of Dexp

s barrowed from [48, 49]

T = 278K k̃ 0.15 0.165 0.237 0.316

DMD
s · 105 (cm/s) 1.47 1.22 1.17 1.1

Dexp
s · 105 (cm/s) 1.324

ω̃u 2.3 1.7 1.5 –

T = 293K k̃ 0.157 0.209 0.25

DMD
s · 105 (cm/s) 2.072 1.864 1.51

Dexp
s · 105 (cm/s) 2.02

ω̃u 2 1.6 –

T = 350K k̃ 0.073 0.11 0.146

DMD
s · 105 (cm/s) 7.2 5.845 5.5

Dexp
s · 105 (cm/s) 6.41

ω̃u 2.4 1.6 –

2.6.2 The Applicability Region of the Diffusion
Approximation for Liquids

In order to establish the value of high frequency limit for description of the ISF
spectrum with the help of Lorentzian

fs(�k, ω) = 1

π

γ (�k2)
ω2 + γ 2(�k2) (2.67)

let us apply to the inequality:

1

2
− 1

1 + ω2/ω2
m

≤ 1

m0

ω∫

0

IA(ω
′)dω′ ≤ 1

2
, ω2

m = m2

m0
, (2.68)

havingplace in the spectral theory ofmoments [50–52].Here, IA(ω) ≤ A+(t)A(0) >ω

is the spectrum for the correlation function < A+(t)A(0) >, where the symbol “+”
denotes the operation for Hermitian conjugation,

mn =
∞∫

−∞
IA(ω)ωndω, n = 1, 2, . . . . (2.69)

are the frequency moments for the spectral density IA(ω). If IA(ω) ≤ A+(t)A(0) >ω,
only even moments are different on zero: m2n �= 0, m2n+1 = 0. If we will take
into account greater number of even moments, the inequality (2.68) becomes more
complicated [51, 52]. In accordance with [53, 54]:
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m2n = < A(n)(t)A(n)(t) >
∣∣
t=0, (2.70)

where A(n)(t) is the n-th time derivative from A(t).
In our case Fs(�k, ω) = e2WFd(�k, ω), so A(t) = exp(i�k�rd(t)) and the zero-th

frequency moments is equal to

m0 = 1. (2.71)

In order to find the second frequency moment let us define the averaged velocity
�̇rd(t) of a molecule during the time tD = 1/Ds�k2 characteristic for the diffusion
motion:

�̇rD(t) = 1

tD

t+tD/2∫

t−tD/2

�υ(t′)dt′, (2.72)

where �υ(t) is the usual velocity of a molecule. From here it follows that the second
moment equals to

m2 =< �̇r2D > �k2 ∼ 6Ds�k2/tD. (2.73)

In accordance with (2.71) and (2.73) the characteristic frequency ωm takes the
value:

ω(dif)
m ∼ √

2ωD, ωD = Ds�k2, (2.74)

As a result the inequality (2.68) with IA(ω) = Fs(�k, ω) transforms to

1

2
− 1

1 + (1/2)ω̃2
≤ arctg ω̃ ≤ 1

2
, ω̃ = ω/ωD. (2.75)

If ω̃ ≥ 1 the inequality (2.75) can be simplified:

1

2
− 1

1 + (1/2)ω̃2
≤ 1

2
− 1

πω̃
+ 1

3πω̃
2 + · · · ≤ 1

2
. (2.76)

The left inequalities is only correct for frequencies ω̃ < ω̃∗ where

ω̃∗ ≈ 2 or ω∗ ≈ 2 γ (�k2). (2.77)

Thus, our analysis allows us to conclude that the fitting ofFs(�k, ω) by the diffusion
Lorentzian (2.67) is satisfactory only for frequencies ω̃ < ω̃∗ that is quite consis-
tent with results of the Sect. 2.6.1. This circumstance is necessary to remember at
processing of experimental data [55–60].
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2.6.3 Low Frequency Properties of the ISF-Spectrum
for Water

The thermal motion in water is more complicated in comparison with that in argon.
In particular, here it is necessary to take into account the rotation of water molecules.
At that, from the consideration [10–13] of the dipole relaxation in water it follows
that this rotation is close to be quasi-free in the greater part of temperature interval
for its liquid states: 0.49Tc < T < Tc, Tc = 649K.

Only in the narrow interval of liquid states: 0.42Tc < T < 0.49Tc and for super-
cooled ones the orientation correlations become essential. In connection with this
we expect that the behavior of kinetic coefficients for water, in particular the self-
diffusion coefficient, should noticeably change at TH ∼ 0.49Tc. At the same time,
the structure of the diffusion peak should remain changeless. The last conclusion is
fully supported by the Fig. 2.7.

The wave vector dependence for the half-width of diffusion peaks for water is
presented in the Fig. 2.8. It is rectilinear as it should be.

Fig. 2.7 The spectral density F̃s(k, ω̃) of the ISF as a function of ω̃ atρ = 0.997g/cm3,T = 293K:
points correspond to computer simulation data at k̃ = 0.1 (a) and k̃ = 0.16 (b), the solid curves
correspond to the Lorentzian: F̃L(k, ω̃) = 1

ω̃2+1

Fig. 2.8 The half-width of
the diffusion peak for water
as a function of k2 at
T = 365K and small
transferring wave vectors:
open circles present values
of γ (�k2) obtained with the
help of MD-simulations, the
solid line corresponds to the
equation: γ (�k2) = Ds�k2
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According to Fig. 2.8 the self-diffusion coefficient of water molecules equals to
Ds = 9.5 ·10−5 cm2/s that is close to its experimental value:Ds = 8.48 ·10−5 cm2/s
at T = 365K.

Thus the similarity between argon and water spectra as well as the applicability
of diffusion Lorentzian for their description is apparent. Therefore, in the following
we will focus our attention on the character of wave vector dependence for the half-
widths of the incoherent neutron scattering peaks (Fig. 2.9). This question had been
experimentally studied in [55–59].

The curves for argon in the Fig. 2.9 correspond to temperatures TAr and densities
nAr connected with those for water (Tw, nw) by the similarity relations:

TAr = TW
T (Ar)
c

T (W)
c

, nAr = nW
n(Ar)
c

n(W)
c

, (2.78)

i.e. computer simulation data are compared for so called corresponding states [61].
Here T (Ar)

c , T (W)
c and n(Ar)

c , n(W)
c are the critical temperatures and densities for water

Fig. 2.9 The MD-calculated half-widths of the ISF spectra for water and argon as functions of
k2: open circles and solid lines correspond to argon, dark circles and dashed lines—to water. The
curves are constructed at: TAr = 59K, Tw = 253 K—(a), TAr = 64.7K, Tw = 278K—(b),
TAr = 68.2 K, Tw = 293 K—(c), TAr = 84.5K, Tw = 365 K—(d)
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and argon correspondingly. Note, that modeled argon andwater remain stable in their
supercooled states (see [62]).

Since values of wave vectors in the Fig. 2.9 change in wide limits, including
k̃2 � (>)1, shapes of the ISF spectra are very different from Lorentzians. In this
case the half-width of peaks are determined by the equation:

F̃s(�k, γ̃ (�k2)) = 1

2
, γ̃ (�k2) = γ (�k2)

Ds�k2
. (2.79)

As we see the half-widths of the ISF peaks for water and argon are practically
identical at TAr = 68.2K, Tw = 298K , where the last is close to the characteristic
temperature TH ∼ 0.485Tc = 315K for water. For temperatures smaller and greater
than TH argon and water curves in Fig. 2.9 differ noticeably from each other. Due to
clusterization ofwater for T < TH (see [10]) its self-diffusion coefficient additionally
diminishes and the water curve in the Fig. 2.9a is shifted down relatively the argon
one. If T > TH the situation is opposite since the self-diffusion coefficient of water
is expected to be greater than that in argon. These reasons are also supported by the
temperature dependence of the ratio rD(Tw) = D(w)

s (Tw)/D(Ar)
s (TAr) presented in the

Fig. 2.10.
Now we briefly concern an attempt in [3, 55, 56] to explain the �k2-dependence

of the half-width γ (�k2) for water on the base of hypothesis of rotational motion of
molecules. The dotted line in the Fig. 2.11 presents the rotational contribution to the
half-width.

It is clear that identical �k2-dependences for γAr(�k2) and γw(�k2) are not possible to
explain assuming that �k2-dependence of γw(�k2) for water is caused by another mech-
anism of thermal motion than in argon, in particular, by rotation of water molecules.

Moreover, (1) the use of the expression: γ (�k2) = Ds�k2
1+τrDs�k2 is incorrect in the diffu-

sion approximation—in this case it is necessary to transform it to the expansion into
series with respect to degrees of τrDs�k2 similarly to (2.52) and (2) the numerical
value of τr is too large. Thus, the nonlinear dependence of γw(�k2) on �k2 is caused by
translational motions of water molecules similarly to that in argon.

Fig. 2.10 The ratio
rD(Tw/T (tr)

w ) versus the
normalized temperature:
Tw/T (tr)

w , where T (tr)
w is the

temperature for the water
triple point. Experimental
values of the self-diffusion
coefficients for water are
taken from [48, 49], argon
values are calculated
according to the similarity
principle
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Fig. 2.11 The half-widths of the ISF spectra for water and argon versus �k2: dark and open circles
correspond to γ (�k2) at Tw = 278 K, TAr = 64.7K, the solid and dashed curves are fitted

with the help of the least-squares method. The dotted line corresponds to γ (�k2) = Ds�k2
1+τrDs�k2 with

τr = 2.93 · 10−12 s, triangles—to experimental data from [55, 56]

Now let us discuss the behavior of the half-width for 1 < k̃2 < 10. As it has
been shown in [22] the half-width γ (k̃) is a quasi-linear function of the wave vector
in this range (see the Fig. 2.12a, b). At that, the ISF is represented by Gaussian:

F̃(k̃, ω̃) ∼ exp
(
−ω̃2/γ 2(k̃)

)
. As we see, the numerical values of γ (k̃)/k̃ on the

plateau (b) are close to 3 · 104 cm/s, that coincides with good accuracy with the
average thermal velocity of a water molecule: υT≈ 2.91 · 104 cm/s. It means, that
main peculiarities of the ISF-spectra in the range: 1 < k̃2 < 10, are caused by quasi-
free motion of water molecules. The similar behavior is also expected for argon and
argon-like liquids, i.e. having the averaged potentials of argon-like type. As it had

Fig. 2.12 The MD-calculated half-width of the incoherent neutron scattering peak for argon as
function of k at T = 64.7K (a) and the ratio γ (k)/k (b)
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Fig. 2.13 The frequency
dependence of RD(ω̃) for
liquid argon at
k = 0.25A−1, and
T = 100K, ρ = 1.3 g/cm3

been shown in [63, 64] themajority of low-molecular liquids, includingwater, belong
to this class of similarity.

2.6.4 Estimate of Dc/Ds for Argon According to Spectral
Peculiarities

In this subsection we will discuss peculiarities of frequency dependence for the ISF
spectra at 50 < ω̃ < 100 andwave vectors from the diffusion diapason. The behavior
of the function RD(ω̃) connected with the spectral density of the ISF by the relations
(2.30)–(2.32) is presented in the Fig. 2.13.

We see that RD(ω̃) monotonously increases although the consideration in the
Sect. 2 allowed us to conclude that RD(ω̃) should be quasi-constant for 50 < ω̃ <

100. In fact, one can say about the point of inflection near ω̃I ∼ 70, where RD(ω̃I ) ≈
0.2. At that, the estimate for Dc/Ds:

Dc/Ds ∼ RD(ω̃I ) ≈ 0.2 (2.80)

is quite consistent with that obtained in the Sect. 2.5 from the analysis of the VACF
behavior. The absence of plateau in the behavior of RD(ω̃) near ω̃I ∼ 70 is natu-
rally explained by the taking into account of contributions caused by hard collisions
between molecules (see details in [65–68]). These contributions, manifested in the
ISF spectra, have high-frequency asymptote:

Fs(�k, ω) ∼ exp

(
−

(
τ(�k2)ω

)2/3
)

(2.81)

for all wave vectors: k̃ � 1 and k̃ � 1 (see Fig. 2.14). The physical nature of this
new phenomenon is not fully clear.

2.7 Discussion of the Questions Presented

In the present work we have consider the main peculiarities of the IFS-spectra for
water and argon in the applicability region of the diffusion approximation as well as
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Fig. 2.14 ln lnFs(�k, ω)

versus ln(ωn), where
ωn = ω/ωH, ωH = kBT/�

outside it. At that, the determination of the self-diffusion coefficient Ds is regarded
by us as well approved.

We have established that the quasi elastic incoherent neutron scattering can be
used for the determination of

1. the residence time τ0 and the collective part Dr for the self-diffusion coefficient
caused by local displacements of small molecular groups. They can be found
from the analysis of �k2- dependence for the half-width of the diffusion peak (see
the formula (2.52));

2. the collective contributionDc to the self-diffusion coefficient caused bymolecular
drift in the field of velocity hydrodynamic fluctuations according to: Dc = Ds −
Dr, as well as the ratio Dc/Ds from the analysis FMD(x) (2.21) and frequency
dependence of RD(ω̃) (the formula (2.32));

3. applicability region of the MRT. At that, it necessary to take into account that τM
has only clear physical meaning for temperatures corresponding to the existence
of quasi-elastic transversal modes. In fact, such a situation is only realized in a
narrow temperature interval adjoining to the triple point of liquids.

It had been also shown that the investigation of the ISF-spectra for �k2a2 � 1, i.e.
outside of the diffusion approximation, give us an important information about τ(�k2)
determining the high-frequency asymptotes for Fs(�k, ω). This question is especially
important for establishment of peculiarities caused by hard interparticle collisions in
molecular systems [65–67].

Using experimental results from [55–57] it had been shown in [4, 5, 15] that the
ratio τ0/τf , where τf ∼ a/υT, has very surprising temperature dependence (see the
Fig. 2.15).

As we see, the inequality τ0/τf > (�)1 takes only place for super-cooled states
of ordinary water and its normal ones within the interval:

Tm < T < TH, Tm = 273K, TH ≈ 315K. (2.82)
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Fig. 2.15 The temperature
dependence of the ratio τ0

τf
,

where τf ≈ 5 · 10−13 s

Thus the crystal-like representation for water is only correct for normal and super-
cooled states corresponding to T < TH. The importance of this result for alive matter
is discussed in [69, 70].

It is necessary to stress that our conclusion about the argon-like thermal motion in
water forT > TH is also supported by the temperature dependence of the ratio τ̃d(t) =
τd(t)/τr, where τd(t) is the dipole relaxation time and τr is the period of free rotational
motion. It is clear that τr ∼ 2π/ωT, where ωT ∼ √

kBT/I is the characteristic value
for angular velocity, I ∼ mHr2OH is the inertia moment for water molecule (mH is
the mass of hydrogen atom and rOH is the distance between hydrogen and oxygen in
water molecule). As it had been shown in [71] the nontrivial temperature dependence
of τ̃d(t) is only observed for T < TH (see the Fig. 2.16).

Thus, the quasi-free motion of water molecules is only observed for T > TH
corresponding to destructed crystal-like structure in liquid water.

Fig. 2.16 Values of τ̃d(t) as
a function of dimensionless
temperature: t = T/Tc,
where Tc is the critical
temperature. Experimental
data are taken from the
works: +—[10], �—[11], ×
—[12], ♦—[13]. The dot
line corresponds to
exponential dependence
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