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Abstract
Cannabinoid use and dependence are heritable 
traits controlled in part by genetic factors. 
Despite a high incidence of use worldwide, 
genes that contribute to the risk of problematic 
use and dependence remain enigmatic. Here 
we review human candidate gene association 
studies, family-based linkage studies, and 
genome-wide association studies completed 
within the last two decades. These studies 
have expanded the list of candidate genes and 
intervals. However, there is little overlap 
between studies and generally low reproduc-
ibility in independent samples. Reasons for 
this lack of coherence vary but may depend on 
low sample size and statistical power, and the 
fact that most studies leverage populations 
ascertained for drug dependence other than 
cannabis. However, recent well-powered stud-
ies on lifetime cannabis use demonstrate that 
the genetic architecture of cannabis use 
resembles that of other substance use disor-
ders and psychiatric disease in that many 
small effect genes contribute in an additive 
fashion. This finding suggests that increasing 
sample size and more focused recruitment of 
individuals based on cannabinoid use and 

dependence will identify more candidate 
genes. Follow-up of existing high priority can-
didates in preclinical model systems will facil-
itate better understanding of the genetic 
architecture and genetic risk factors for can-
nabis use and dependence.
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2-AG 2-arachidonoylglycerol
AA African American
AEA N-arachidonylethanolamide or 
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CADM2 cell adhesion molecule 2
CB1 cannabinoid receptor type 1
CB2 cannabinoid receptor type 2
CD cannabis dependence
CGAS candidate gene association 

studies
Chr chromosome
CNR1 gene encoding CB1
CUD cannabinoid use disorder
DAG 1,2-diacylglycerol
DSM Diagnostic and Statistical Manual 

of Mental Disorders
EA European Americans
FAAH fatty acid amide hydrolase
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FLS family-based linkage studies
GPCR G-protein coupled receptor
GTEx Genotype-Tissue Expression
GWAS genome-wide association studies
iPSYCH Initiative for Integrative 

Psychiatric Research
LD linkage disequilibrium
LOD logarithm of the odds
MGLL monoacylglycerol lipase
nAChR neuronal acetylcholine receptor
NAG Nicotine Addiction Genetics 

Program
NAPE-PLD  N-acylphosphatidylethanolamine-

specific phospholipase D
NCAM1 neural cell adhesion molecule 1
NRG1 neuregulin 1
PPAR peroxisome proliferator-act ivated 

receptor
SCOC short coiled-coil protein
SCOC-AS1 short coiled-coil protein anti-

sense RNA 1
SNP single nucleotide polymorphism
THC Δ9-tetrahydrocannabinol
TRP transient receptor potential (ion 

channel)

7.1  Introduction

Similar to other abused substances, genetic fac-
tors contribute substantially to cannabinoid use 
and dependence. Heritability for abuse of canna-
binoids, primarily cannabis and its derivatives, 
ranges from 30% to 80% [1, 2]. Heritability mea-
sures the contribution of segregating gene vari-
ants to the total variation in a trait or phenotype 
of interest. For substance use disorders heritabil-
ity has often been estimated from twin studies in 
which the concordance rate for cannabis- related 
traits is compared in monozygotic (genetically 
identical) and dizygotic (fraternal) twins. Higher 
concordance of a trait in monozygotic versus 
dizygotic twin pairs indicates a substantial con-
tribution of genetic factors relative to environ-
mental factors. Thus, high heritability is an 
indication that genetic factors contribute signifi-
cantly to cannabinoid use disorders (CUDs). 
However, few of these factors have been eluci-

dated. In this chapter we review the growing list 
of genes associated with CUDs based on recent 
candidate gene, linkage, and genome-wide asso-
ciation studies in humans. Finally, we discuss 
reasons for and possible solutions to address the 
paucity of known genetic factors contributing to 
CUDs.

7.1.1  What Is Cannabis Use 
Disorder?

The term “substance use disorder” is derived 
from the Diagnostic and Statistical Manual of 
Mental Disorders: DSM-5 [3]. This manual 
defines a set of criteria used to diagnose problem-
atic and recurrent use of drugs or alcohol that can 
impact health and social well-being. Symptoms 
of CUD include disruption in normal function 
caused by cannabis use and development of toler-
ance, craving, and/or withdrawal symptoms asso-
ciated with increased or continued use. A cluster 
of withdrawal symptoms, including sleep disrup-
tions, anxiety, anger, depression have been asso-
ciated with early abstinence from cannabis and 
may contribute to continued use. As of 2018, 
there are no FDA-approved treatments for CUD.

Cannabis is one of the most widely consumed 
psychoactive substances worldwide [4]. In the 
United States, policy changes in individual state 
legislature beginning in 1996 for medical use and 
continuing in 2012 for recreational use are likely 
to increase cannabis use in this country. As the 
number of users increases, so does the risk of 
CUDs. According to recent epidemiological 
studies in the United States, CUD impacts ~6% 
of the population [5]. Key to the identification of 
individuals at risk for CUD and development of 
pharmacological interventions for CUD is a bet-
ter understanding of the genetic factors contribut-
ing to the disease.

7.1.2  Introduction to Human 
Genetic Association Studies

Substance use disorders, like CUDs and other 
psychiatric diseases, are complex traits that are 
driven by the actions and interactions of multiple 
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genetic and environmental factors. In the case of 
genetic factors, variation in heritable traits is 
caused by inheritance of different gene alleles 
(e.g. polymorphisms or sequence variants) that 
confer differential gene regulation or function. 
Human genes often contain multiple polymor-
phisms which can impact a single base (single 
nucleotide polymorphism or SNP) or several 
(insertion or deletion). These polymorphisms are 
typically biallelic and exist in one of two forms 
that represent the ancestral sequence or the 
altered sequence. The frequency of each allele in 
the population being sampled is generally a major 
consideration. Alleles with a minor allele fre-
quency less than 1% will be difficult to study 
because few individuals with the minor allele 
exist in the population. In this case, detection of 
significant associations between inheritance of 
alleles and trait variation will be difficult even 
with moderate sample sizes. For this reason, the 
majority of associations identified between 
human disease and allelic variation involve com-
mon variants with relatively abundant allele fre-
quencies in most human populations. Although 
common, these variants typically have low pene-
trance (probability that inheritance of the variant 
will cause the phenotype being measured). 
Genetic studies of human disease over the past 
decade have revealed that most human diseases 
are complex polygenic traits that result from the 
inheritance of many small effect risk alleles act-
ing in an additive fashion [6]. These associations 
typically involve common variants, but rare 
alleles can also impact disease. Rare alleles are 
present at low frequency or only in specific 
human populations, and can only be identified 
using specialized study designs and populations. 
It is important to note that for CUDs, and most 
other complex diseases, the absolute number of 
risk alleles, their frequency in the population, and 
their individual contribution to disease risk 
(genetic architecture) in humans is unknown. 
Thus, the goal of human genetic association stud-
ies is to evaluate the genetic architecture of dis-
ease and identify risk genes and alleles in order to 
identify vulnerable individuals and design effec-
tive intervention or treatment strategies.

Three main approaches have been used 
towards the goal of identifying the genes and 
gene variants associated with CUDs in humans. 
These are candidate gene association studies 
(CGAS), family-based linkage studies (FLS), 
and genome-wide association studies (GWAS). 
In the first approach (CGAS), known allelic vari-
ants within a candidate gene are tested for an 
association with the disease. Often the candidate 
gene is selected based on a priori evidence 
regarding involvement in a disease related path-
way and/or the presence of known functional 
variants. In a typical CGAS, inheritance of candi-
date gene alleles are associated with disease risk 
using statistical models and a case-control or 
family- based study design. A benefit to CGAS is 
that only a few associations are tested at a time, 
resulting in less correction for multiple testing 
and more significant association scores. A caveat 
to CGAS is the biased and limited experimental 
design which may lead to inflation of the contri-
bution of the candidate gene to the disease phe-
notype. In contrast, FLSs and GWASs represent 
unbiased methods to identify gene variants con-
tributing to phenotypic variation or disease risk.

FLSs represent a genome-wide approach to 
identify loci that are associated with a trait or dis-
ease risk. FLSs compare pedigrees among fami-
lies to assess the likelihood that affected 
individuals share the same allele at a polymor-
phic marker more often than would be expected 
by chance when compared to unaffected rela-
tives. Markers found to be significantly linked to 
the disease or trait by FLS are postulated to be 
near the causal gene variant. However, the region 
of linkage in FLS is often quite large. Historically 
this has been due to smaller sample sizes and 
marker panels in the size range of hundreds to 
thousands. For these reasons, most FLS of CUDs 
typically result in the identification of large 
(~10 Mb) linked regions that contain hundreds of 
potential candidate genes. Resolution to a single 
candidate gene in the larger linked region is not 
possible.

In contrast, a typical GWAS tests the associa-
tion between a phenotype and allele frequency at 
hundreds of thousands or millions of individual 
polymorphisms (typically SNPs). Most mamma-
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lian genomes have been sequenced and there are 
many high-throughput sequencing and genotyp-
ing platforms available to identify the allelic vari-
ation (genotype) at each locus on a global scale 
for individuals in a population. Currently, the 
most cost-effective and high throughput strate-
gies include the use of genotyping microarrays 
that profile inheritance at millions of common 
variants. Due to linkage disequilibrium (LD), all 
variants do not need to be genotyped. LD occurs 
because regions of the genome are inherited as 
small blocks of DNA from either parent. 
Polymorphic genetic markers contained within 
each LD block will be highly correlated with one 
another because they are inherited as a unit. 
Polymorphisms in adjacent blocks will be less 
well correlated., Therefore, representative tag 
SNPs can be used as a proxy for all variants 
within a region of high LD (regions with high LD 
that are inherited together are referred to as hap-
lotype blocks). Genotypes for adjacent polymor-
phisms can be imputed later for individuals based 
on population haplotypes. Although it is assumed 
that genetic polymorphisms modulate gene func-
tion or expression, the causal gene variant is gen-
erally not known following a GWAS. It is 
important to remember that GWAS can identify 
candidate gene loci, but cannot generally identify 
causal variants, the impact of variants on gene 
function, or the biological mechanism by which 
the gene contributes to disease.

Relative to CGAS, FLS and GWAS are unbi-
ased approaches that can lead to the detection of 
multiple loci containing genes and alleles that 
contribute to risk. Each loci exerts a small effect 
on disease risk (i.e. CUDs) and the sum of all risk 
alleles, referred to as polygenic risk, is a better 
overall predictor of disease risk that captures 
more of the genetic variability or heritability of 
the disease. However, the large number of tests 
performed in FLS and GWAS requires correction 
for multiple testing and results in severe statisti-
cal penalties. To account for the many linkage or 
association tests performed for each marker and 
the phenotype of interest, empirical P-values 
adjusted for multiple test correction are com-
puted. Usually the adjustment is made following 
the results of hundreds to thousands of permuta-

tions of genotypes for individuals in a genetic 
study. The adjusted P-value is represented as the 
number of times a permuted logarithm of the 
odds (LOD) score for association is greater or 
equal to the maximum observed LOD score 
divided by the number of permutations plus one. 
The empirical adjusted P-value is also referred to 
as the genome-wide corrected P-value. For most 
GWAS studies this is set very low (P < E-09). For 
these reasons, the sample sizes and association 
scores required to reach statistical significance 
are much higher compared to CGAS. Increased 
sample sizes in recent GWAS has led to the iden-
tification of more candidate genes and better 
models of polygenic risk (for a review see [6]). In 
addition, genotyping a larger (or infinite) number 
of markers using microarray or next-generation 
DNA sequencing has the potential to resolve 
linkage region or loci down to a single gene.

7.2  Candidate Genes Identified 
Through Human Association 
Studies

Relative to alcohol and other drugs of abuse the 
number of association studies performed for 
CUDs and related traits remains relatively small. 
In this section candidate genes and the evidence 
supporting them will be reviewed.

7.2.1  Candidate Gene Association 
Studies

For CUD most CGAS have focused on gene vari-
ants within the endocannabinoid system. 
Endocannabinoid signaling is critical for modu-
lation of numerous biological processes includ-
ing, response to natural rewards, learning and 
memory, emotional processing, motor coordina-
tion, pain, energy metabolism, fertility, develop-
ment, and immune response. Major endogenous 
lipid ligands of the endocannabinoid system 
include N-arachidonylethanolamide (AEA or 
anandamide) and 2-arachidonoylglycerol 
(2-AG). Both are synthesized from membrane 
precursors by N-acylphosphatidylethanolamine-
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specific phospholipase D (NAPE-PLD) in the 
case of AEA, and by 1,2-diacylglycerol (DAG) 
lipases DAGLα and DAGLβ in the case of 
2-AG. Both endocannabinoids are catabolized by 
one of two enzymes—fatty acid amide hydrolase 
(FAAH) for AEA and monoacylglycerol lipase 
(MGLL) for 2-AG.  Both ligands (AEA and 
2-AG) act as agonists primarily at two G-protein 
coupled receptors (GPCRs), cannabinoid recep-
tor type 1 (CB1) and type 2 (CB2), although they 
can also activate other receptors including 
GPCRs 55 and 119, and peroxisome proliferator-
activated receptor (PPARs). AEA also acts as an 
agonist at transient receptor potential ion chan-
nels (TRPs). Note that each member of the endo-
cannabinoid system is encoded by genes located 
in distinct genomic regions as opposed to local-
ization within several gene clusters.

Of the known endocannabinoid signaling 
genes, variants in two—cannabinoid receptor 
type 1 (CNR1) and FAAH—have repeatedly been 
tested for associations with CUDs and related 
traits (Table 7.1). It is unknown whether variants 
in CNR1 influence CB1 expression or function, 
however several variants have been associated 
with cannabis use or dependence [7, 8]. In par-
ticular the minor G allele of the rs806380 SNP is 
thought to exert a protective effect. A common 
missense variant (rs324420; C/A) that results in 
substitution of the amino acid threonine for pro-

line in the FAAH enzyme has also been associ-
ated with CUDs and related traits.

In contrast to variants in CNR1, the missense 
mutation in FAAH has an impact on enzyme sta-
bility and function. Inheritance of both copies of 
the minor A allele (A/A homozygous genotype) 
results in lower expression and activity of the 
enzyme due to decreased stability and increased 
proteolysis [9, 10]. Of interest, the major allele 
associated with normal enzymatic activity is more 
frequently associated with risk or problematic 
cannabis use [11]. For example, inheritance of the 
major allele (C/C genotype) has been associated 
with CUD [12] and high cannabis withdrawal 
symptoms and craving [13, 14]. Although associ-
ations between traits related to CUD and variants 
in CNR1 and FAAH have been reported, there are 
several studies for which these associations were 
not replicated [15] and overall there is no consen-
sus regarding the involvement of these mutations 
in cannabis intake, withdrawal, and dependence.

Gene variants that impact the function of key 
enzymes involved in drug metabolism can also 
influence drug use and risk of developing use dis-
orders. An example of this are functional variants 
in genes involved in alcohol metabolism (alcohol 
dehydrogenase and aldehyde dehydrogenase) 
which are among the strongest protective factors 
against development of alcohol dependence 
(reviewed in [16]). Functional variants in canna-
binoid metabolizing genes exist but have not yet 
been associated with CUD. In the liver, the cyto-
chrome P450 family of enzymes plays a role in 
processing cannabinoids. There are several func-
tional variants that modulate expression or enzy-
matic activity of family members, in particular, 
polymorphisms in the P450 family member 
CYP2C9 were found to influence metabolism of 
the synthetic cannabinoid JWH-018 that is a high 
affinity agonist at cannabinoid receptors [17]. 
Two mutations CYP2C9∗2 (cysteine substitution 
for arginine at amino acid residue 144) and 
CYP2C9∗3 (leucine substitution for isoleucine at 
amino acid residue 359) were found to increase 
or decrease metabolism of the synthetic cannabi-
noid, respectively. However, the impact of these 
variants on synthetic cannabinoid or cannabis use 
and dependence is not known.

Table 7.1 Results from candidate gene association 
studies

Phenotype Genes Effect
Study 
reference

Problematic 
use

CNR1 
(A/G; 
rs806380)

Minor 
allele G 
protective

[8]

Dependence CNR1 
(A/G; 
rs806380)

Minor allele 
G protective

[7]

Withdrawal 
severity and 
craving

FAAH 
(C/A; 
rs324420)

Minor allele 
A protective

[13]

Withdrawal 
severity and 
craving

FAAH 
(C/A; 
rs324420)

Minor allele 
A protective

[14]

Dependence FAAH 
(C/A; 
rs324420)

Minor allele 
A protective

[12]
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7.2.2  Family-Based Linkage Studies

The first FLS was performed for adolescent can-
nabis use and dependence by Hopfer and col-
leagues [18]. The population used in this study 
included adolescents (ethnic distribution roughly 
8% African American or AA, 37% Hispanic, 
52% European American or EA, and 4% other) in 
a substance abuse treatment program in Denver 
and their genetically related siblings. Participants 
were part of a larger Colorado Center on 
Antisocial Drug Dependence study [19]. In total, 
324 adolescent sibling pairs from 192 families 
were included. Cannabis use was also measured 
in an age-matched control sample drawn from the 
same population (community sample) consisting 
of 4843 individuals. The community sample was 
used to standardize cannabis dependence (CD) 
scores in the treatment samples. Repeated can-
nabis use was defined as using cannabis at least 
six times and CD was measured as the number of 
lifetime symptoms based on DSM-IV criteria. 
Cannabis use and dependence were much higher 
(99% and 59%, respectively) in the adolescent 
treatment probands relative to their siblings (55% 
and 14%, respectively) and compared to the com-
munity sample (5% prevalence of CD in age-
matched controls). Parents and sibling pairs were 
genotyped for 374 markers covering the 22 auto-
somal chromosomes (the X and Y sex chromo-
somes were excluded). Two linkage regions were 
identified that met the criterion for suggestive 
linkage (P = 0.0004, LOD > 2.5) between inheri-
tance of parental alleles at a marker and 
CD. Suggestive linkage regions were located on 
Chrs 3 (3q21 near marker D3S1267) and 9 (9q34 
near marker D9S1826). No significant loci were 
found. The interval for linkage on Chr 3 was 
located roughly between markers D3S1271 and 
D3S1292 (101 to 132  Mb using the GRCh38/
hg38 human genome assembly) and the interval 
for Chr 9 was located between marker D9S290 to 
the end of the chromosome (128.6 to 138 Mb). 
Because of the small number of markers used in 
the analysis, many genes (376 for Chr 3 and 305 
for Chr 9) were located in each linkage interval. 
Although the Chr 3 suggestive linkage region 
includes MGLL, the gene encoding the major 

enzyme responsible for catabolism of the endog-
enous cannabinoid 2-AG, the precise genes con-
tributing to trait variation in this first study of CD 
remain elusive.

Following closely behind the first linkage 
analysis for CD were several larger FLS. Agrawal 
and colleagues [20] leveraged data from the 
Collaborative Study on the Genetics of 
Alcoholism (COGA; [21]) to perform a linkage 
analysis based on DSM-IV criteria for CD. The 
COGA population was unique because it con-
sisted of many generations of families (~90% EA 
and ~10 AA) at high risk for alcoholism. 
Genotyping was performed for 1364 individuals 
with genetic high-risk for alcoholism using a 
microarray platform consisting of 1717 SNPs. A 
community sample of 984 individuals was not 
genotyped but used to address and correct for 
possible confounds associated with linkage anal-
ysis (e.g. gender, race, age). A suggestive locus 
(adjusted p = 0.71, LOD = 1.9) on Chr 14 span-
ning ~14 Mb from markers rs759364 to rs872945 
(89.3 to 103 Mb and containing 311 gene mod-
els) was associated with CD in the mostly EA 
COGA cohort carrying risk alleles for alcohol 
dependence.

Agrawal and colleagues [22] performed link-
age analysis for CD based on DSM-IV require-
ments on 3431 individuals from 289 Australian 
families comprising the Nicotine Addiction 
Genetics Program (NAG) [23]. These families 
(>90% Anglo-Celtic or Northern European eth-
nic origin) included siblings and parents with a 
lifetime history of heavy smoking (40 cigarettes 
in a 24 h period or 20 cigarettes per day during 
periods of heavy smoking). A community-based 
control sample of 5776 individuals was used to 
standardize phenotypes and correct for possible 
confounds associated with linkage analysis in the 
NAG cohort. The NAG cohort was genotyped for 
a panel of 381 autosomal markers. Factor analy-
sis was performed on the abuse and dependence 
criteria to create a single cannabis problems fac-
tor score which accounted for the majority of the 
variance (>60%) among measures. Suggestive 
linkage regions for the cannabis problems factor 
score were identified on Chr 1 (~10 cM interval 
centered on marker D1S2841 located at 78.9 Mb) 
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and Chr 4 (~25 cM interval centered on marker 
D4S419 located at 18.7 Mb). Note that the cM is 
a unit of genetic distance measured in map units. 
This unit of measure has historically been used in 
association studies where 1 cM corresponds to a 
recombination frequency of 1%. In humans, 
1 cM is roughly equivalent to 1200 kb, but this 
varies between sexes and physical location on the 
chromosome. Again, linkage intervals identified 
in this study were too large to nominate single 
candidate genes.

In a separate and larger family study Agrawal 
and colleagues [24] performed linkage analysis 
for lifetime cannabis use, early-onset cannabis 
use, and frequency of cannabis use. The 
Australian cohort consisted of 5600 adult 
Australian twins, parents, and siblings from 2352 
families genotyped at 1461 markers per individ-
ual. No markers passed the threshold for genome-
wide significance. A suggestive linkage region 
(P  ≈  0.65) on distal Chr 18 near marker 
D18S1360/GATA129F05 was identified for can-
nabis initiation (LOD = 1.97) and frequency of 
use (LOD = 2.14). A suggestive region was also 
located on proximal Chr 19 for early-onset can-
nabis use (LOD = 1.92). Marker position was not 
provided for all traits in the study so approximate 
linkage regions for this study are included in 
Table  7.2. Similar to previous FLS, relatively 
small sample sizes and marker panels provided 
low statistical power to detect linkage regions as 
well as poor resolution within suggestive linkage 
regions (hundreds of candidate genes located 
within large regions of linkage).

Ehlers and colleagues [25] analyzed a sepa-
rate cohort of 1647 adults (92% Caucasian) from 
families with a history of alcoholism in order to 
identify loci associated with CD, craving, and 
withdrawal (feeling nervous, tense, restless, or 
irritable during abstinence from cannabis use). 
The probands were genotyped for 811 markers 
and a control sample of 147 individuals was used 
to access baseline phenotype rates. For CD, two 
suggestive loci were identified on Chrs 1 
(LOD = 2.1, 17 cM interval near marker D1S498) 
and 2 (LOD = 2.6, 22 cM interval near marker 
D2S2361). Five loci were identified for craving 
on Chrs 7 (LOD  =  5.7, 13  cM interval near 

D7S502), 3 (LOD  =  4.4, 12  cM interval near 
D3S1279), Chr 1 (LOD  =  3.6, 12  cM interval 
near D1S199), and 6 (LOD = 3.2, 7 cM interval 
near D6S281). An additional two suggestive loci 
for craving were identified on Chrs 9 (LOD = 2.6, 
19 cM interval near D9S157) and 15 (LOD = 2.3, 
9  cM interval near D15S127). For withdrawal, 
the strongest linkage region was identified on Chr 
9 (LOF  =  3.6, 10  cM interval near D9S1838). 
Additional suggestive loci for withdrawal were 
identified on Chrs 3 (LOD = 2.5, 13 cM interval 
near D3S1566) and 7 (LOD = 2.2, 25 cM interval 
near D7S506). The withdrawal loci on Chrs 9 and 
3 also demonstrated evidence of linkage for a 
phenotype related to sleep disruptions (“sleep-
lessness”). Because the population under study 
was recruited based on a family history of alco-
holism, Ehlers and colleagues examined whether 
linkage regions for alcohol overlapped with CD 
and associated traits. None of the linkage regions 
identified for CD or craving and withdrawal phe-
notypes had previously been associated with 
alcohol related traits measured in the same 
cohort.

Finally, Han and colleagues [26] used a multi-
stage design to identify gene variants associated 
with CD. Linkage analysis was first performed in 
two different ethnic study cohorts—AA (1022 
individuals from 384 families) and EA (874 indi-
viduals from 355 families). Both cohorts were 
ascertained for cocaine and opioid dependence 
and selected families included at least two 
affected siblings for opioid or cocaine depen-
dence based on DSM-IV criteria. Linkage was 
performed in each ethnic sample separately. The 
strongest linkage peak was identified on Chr 8 
(8p2.11, LOD  =  2.9) for the AA samples and 
another suggestive peak for these samples was 
also detected on Chr 14 (LOD = 2.26). In the EA 
samples, a suggestive linkage peak was detected 
on Chr 7 (LOD = 1.85). In the next stage of the 
analysis the authors used an independent data set 
from the Study of Addiction: Genetics and 
Environment (SAGE) that included 4036 unre-
lated individuals (275 AA cases and 401 controls 
and 422 EA cases and 1049 controls). GWAS 
was performed dependent on ethnic background 
for the strongest suggestive linkage peak identi-
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fied on Chr 8  in the FLS. A SNP (rs17664708) 
located in a candidate gene for schizophrenia 
risk, NRG1, was modestly associated with CD in 
both AAs and EAs. The association between CD 
and genotype at rs17664708 was replicated in an 
independent sample of AAs (758 dependent cases 
and 280 controls) but was not able to be repli-
cated in an independent sample of EAs (568 
dependent cases and 318 controls). Of interest, 
the NRG1 variant is common in EA samples but 
rare in AA samples and was primarily associated 
with CD in AA samples. The variant in NRG1 
may also be associated with drug dependence in 
general as it was also associated with opioid 
dependence in the original AA study cohort 
ascertained for cocaine and opioid dependence.

Some of the first genetic studies for CUD and 
related traits involved FLS that included less than 
10,000 individuals, less than 3000 families, and 
less than 2000 markers. These studies were not 
well-powered to identify individual candidate 
genes. However, they were able to identify 
genomic regions that might harbor genes related 
to initial cannabis use and dependence. The one 
exception was the multistage analysis performed 
by Han and colleagues [26] which used FLS, 
GWAS, and independent replication cohorts to 
nominate variants in NRG1 as possible genetic 
risk factor for cannabis and opioid dependence, 
particularly in AAs. Taken together, these FLS 
were able to demonstrate that the high heritabil-
ity for CUDs ascertained from twin studies trans-
lated into the detection of large linkage regions 
possibly harboring gene variants mediating CUD 
and cannabis use traits. Few of these regions pass 
stringent genome-wide correction and most were 
not replicated in separate cohorts. Thus, we can-
not exclude the possibility that some of these 
suggestive loci represent false positives. Of note, 
some of these suggestive regions overlap among 
studies. Genetic maps cannot be translated 
directly into physical maps, but in general 1 cM 
is roughly equivalent to 1.2  Mb. Approximate 
linkage regions were determined for studies that 
provided marker information and/or the cM inter-
val for linkage regions by using the physical 
marker locations as an anchor on the physical 
map (human genome assembly GRCh/hg38). 

Genetic distances in cM were then converted into 
physical map distances. Approximate linkage 
regions are provided in Table 7.2. Although these 
intervals are a rough estimate, they provide sup-
port for possible overlapping linkage regions 
containing gene variants that may modulate 
CUDs. This includes a region on Chr 9 from 128 
to 144  Mb that is associated with both depen-
dence and withdrawal in two different cohorts 
[18, 25]. A region on Chr 7 from ~38 to 75 Mb 
was associated with cannabis withdrawal and 
craving. However, both traits were collected from 
the same cohort [25]. It is important to note that 
comparing overlapping linkage intervals is not a 
robust comparison method across studies. The 
appropriate comparison between studies would 
be a meta-analysis using summary scores associ-
ated with linkage between markers and traits in 
both studies. However, this information was not 
provided in some of the FLSs. Another possible 
reason for the general lack of replication across 
studies could arise from differences in how each 
cohort was ascertained (e.g. adolescent cannabis 
dependence versus lifetime use or genetic risk for 
alcohol or nicotine dependence) and these loci 
may confer risk of CUD or related traits only dur-
ing specific developmental periods or popula-
tions (e.g. NRG1).

7.2.3  Genome-Wide Association 
Studies

Although the number of cannabis use and related 
GWAS is still relatively small, several large stud-
ies have identified genome-wide significant and 
suggestive loci containing candidate genes 
(Tables 7.3 and 7.4). These studies provide evi-
dence that CUD is a polygenic disease and that 
increasing the GWAS sample sizes should 
increase the number of candidate genes and gen-
erate better genetic predictors to evaluate risk, the 
relationship to other diseases or behavior traits, 
and the role of environmental factors.

The first GWAS for CD based on DSM-IV cri-
teria was published by Agrawal and colleagues 
[27]. A panel of 948,142 SNP markers was geno-
typed in a case-control study design with 708 
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dependent cases and 2346 non-dependent con-
trols (66% EA and 34% AA). Similar to many of 
the FLS, the population of cases and controls for 
which CD was assessed were originally ascer-
tained for alcohol dependence. A caveat of mea-
suring cannabis or other drug-related traits in 
these populations is highly comorbid polydrug 
dependence. However, at the time no populations 
recruited exclusively for cannabis-related traits 
existed and populations ascertained for alcohol 
dependence were readily available. As expected 
based on the small sample size (<10,000 individ-
uals), no markers met genome-wide significance. 
However, the large number of genotyped markers 
resulted in suggestive associations for markers 
tagging individual genes or intergenic regions. 
These suggestive associations were located on 
Chrs 1 (UCHL5), 2 (LINC01122, KYNU), 3 
(intergenic), 6 (CRYBG1, RPS6KA2), 9 (inter-
genic), 10 (STAM), 11 (MICAL2), 12 (CHST11, 
LGR5, CCDC91, ACADS), 13 (LINC00362, 
KATNAL1), 14 (intergenic), 16 (FTO), 17 
(ANKFN1), 19 (intergenic), and 22 (intergenic) 
(Table  7.4). The first GWAS for CUDs lacked 
statistical power and did not follow-up their sug-
gestive loci in an independent replication cohort. 
However, it identified the first putative candidate 
genes for CD.

Later GWAS [28–33] were able to increase 
the number of candidate gene associations for 
CUDs and related traits by increasing the sample 
size of the discovery cohort. This was achieved 
primarily by combining results from smaller 
GWAS studies using meta-analysis (metaG-
WAS). Individually, each study may be under-
powered to detect small effect alleles due to small 
sample sizes. However, when each study is com-
bined the detection of small effect loci becomes 
possible due to the increased sample size. In 
metaGWAS summary statistics (effect size, stan-
dard error, and/or p-values) for associations 
between SNPs and phenotypes from multiple 
population studies comprised of unique individu-
als are combined to generate new association 
scores, effect estimates, and evaluate data set het-
erogeneity (differences in methodology between 
studies that could impact results). For a review of 
the metaGWAS approach, see [34]. As a note of 

caution, metaGWAS can increase sample size 
and power, but inclusion of samples ascertained 
for substance dependence other than cannabis 
can introduce heterogeneity and has the potential 
to confound results or limit reproducibility.

Several groups, starting with Verweij and col-
leagues [33], were able to increase the number of 
subjects beyond 10,000 through the use of 
metaGWAS and by selecting a dichotomous can-
nabis-related trait (yes or no to cannabis use) that 
could easily be assessed on a large-scale. 
However, few markers passed the criterion for 
genome-wide significance at sample sizes of 
20,000 to 30,000 individuals. For example, 
Verweij and colleagues densely genotyped over 
two million SNPs from families in Australia and 
the United Kingdom (10,091 related-individuals) 
that were part of the Australia and UK twin regis-
tries (Spector & Williams 2006). Associations 
between SNPs and initiation of cannabis use 
were assessed in the Australian and UK cohort 
separately using family-based association tests 
followed by meta-analysis. Suggestive associa-
tions were observed for markers on Chrs 6, 13, 
11, and 17, but no SNPs reached genome-wide 
significance (Table  7.4). Likewise, Stringer and 
colleagues [32] examined 32,330 subjects 
(European ancestry) for lifetime cannabis use 
and failed to identify any SNP associations reach-
ing genome-wide significance. This was despite 
tripling the sample size used by Verweij and col-
leagues [33] by combining 13 discovery samples 
collected from around the world (International 
Cannabis Consortium data sets) and performing 
meta-analysis. Nevertheless, suggestive associa-
tions were identified on Chrs 1, 2, 3, 5, 11, 12, 15 
(Table 7.4) and a less stringent gene-based analy-
sis of 24,576 genes/genetic regions identified sig-
nificant associations for the genes NCAM1 
(neural cell adhesion molecule 1, Chr11), 
CADM2 (cell adhesion molecule 2, Chr3), 
SCOC-AS1 (short coiled-coil protein anti-sense 
RNA 1, Chr4), SCOC (short coiled-coil protein, 
Chr4), and KCNT (Chr1) following multiple test 
correction (Table  7.4). The top SNP and gene 
associations identified in the discovery cohorts 
failed to replicate in an independent samples con-
sisting of 5627 individuals (53% European and 
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47% AA), with the exception of suggestive asso-
ciations for SCOC-AS1 and SCOC in one of the 4 
replication samples (AA). SNP heritability based 
on common SNPs in the Stringer study was esti-
mated at 13–20% for lifetime cannabis use, 
which was an improvement over the 6% SNP 
heritability computed for Verweij and colleagues 
[33]. Both studies included discovery cohorts 
with different recruitment strategies and subse-
quent wide variation in the prevalence of lifetime 
cannabis use among cohorts may have deflated 
heritability estimates in both studies. 
Nevertheless, improvements in SNP heritability 
with larger samples sizes in the Verweij study 
confirmed that lifetime use of cannabis is a heri-
table trait contributed to by many loci of small 
effect. Thus, further increases in sample size 
should result in identification of more significant 
loci.

As proof of this concept, Pasman and col-
leagues [29] published the largest metaGWAS of 
lifetime cannabis use (184,765 individuals) and 
identified eight genome-wide significant inde-
pendent SNPs in six regions (Chrs 3, 7, 8, 11, 16, 
and 17). Altogether, the identified SNPs 
accounted for 11% of the individual variance in 
lifetime use of cannabis. Using gene-based tests 
they identified 35 genes significantly associated 
with lifetime cannabis use (Table 7.4). Replication 
in an independent cohort was not performed, 
likely because the replication cohort would be 
much smaller and less well-powered than the dis-
covery cohort. There was also substantial hetero-
geneity among cohorts used in the meta-analysis 
that might have limited power in some analyses 
and/or reproducibility or generalizability. Despite 
some limitations of the study, Pasman and col-
leagues were able to identify multiple significant 
loci and genes for lifetime cannabis use using a 
massive cohort of nearly 200,000 individuals. 
This study provides more evidence that the 
genetic architecture of lifetime cannabis use is 
complex and involves many small effect genes. 
Importantly, most of the loci identified in the 
study were novel and had not been identified 
previously.

The GWAS discussed thus far took advantage 
of samples recruited based on different criteria to 

identify loci associated with lifetime cannabis 
use. However, there is some debate over how life-
time use is related to development of problematic 
use and dependence. Early use has been associ-
ated with progression to problematic cannabis 
use and susceptibility for other substance use dis-
orders [1, 35–37]. Early use may also interact 
with environmental and social factors. For exam-
ple, the age at which individuals begin to use can-
nabis may depend on the overall prevalence of 
use within a country. Higher prevalence has been 
related to younger ages of initiation [38].To begin 
to address this issue, Minică and colleagues [30] 
used GWAS to identify loci associated with early 
cannabis use. The authors performed metaGWAS 
on a discovery cohort of 24,953 individuals with 
replication in a sample of 3735 individuals. This 
study also estimated heritability for age of initia-
tion at 39% based on three cohorts consisting of 
8055 twins (European descent). SNPs in the 
ATP2C2 gene reached genome-wide significance 
(Table 7.4). However, they failed to replicate in 
the independent cohort, and SNP-based heritabil-
ity for age of initiation was not significant. Note 
that in both metaGWAS studies with replication 
examined thus far [30, 32] the replication cohort 
was much smaller than the discovery cohort 
which may have limited the power for replication 
in the discovery cohort.

Only three metaGWAS studies [28, 31, 39] 
examined CUD directly. In the first study, Sherva 
and colleagues [31] identified loci associated 
within CD severity based on DSM-IV criteria 
using metaGWAS and replication across three 
independent cohorts consisting of 14,754 indi-
viduals (AA and EA). Each cohort was ascer-
tained separately for drug dependence as part of 
the Yale-Penn Study on the genetics of substance 
use [40], the SAGE Study on the genetics of alco-
hol, nicotine, and cocaine use [41], and the 
International Consortium on the Genetics of 
Heroin Dependence [42]. SNPs tagging several 
independent loci met the criteria for genome-
wide significance (P  <  E−7) in the AA samples 
alone or in the combined metaGWAS (Table 7.4). 
These SNPs were upstream of the gene for S1000 
calcium binding protein (S100B) and within the 
gene for CUB and Sushi multiple domains 1 
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(CSMD1). Secondary analysis using a replication 
cohort found additional support for the depen-
dence severity association score and SNPs in 
CSMD1 and the drug/metabolite transporter 
superfamily gene solute carrier family 35 mem-
ber G1 (SLC35G1). Potential limitations of the 
study were that CD severity was significantly 
correlated with dependence for other drugs of 
abuse (alcohol, nicotine, opioids, and cocaine) 
and there was high heterogeneity among the sam-
ple cohorts included in metaGWAS and used for 
replication.

The second metaGWAS for CD relied on 8515 
individuals of European descent and was drawn 
from five different cohorts, four of which were 
ascertained for substance use, including COGA, 
SAGE, and the Comorbidity and Trauma Study 
[43]. Agrawal and colleagues [28] analyzed 2080 
dependent and 6435 non-dependent cannabis-
using controls from this cohort using metaG-
WAS.  The selection of non-dependent controls 
(based on DSM-IV criterion) with at least one 
reported use of cannabis was a unique aspect of 
the study. SNPs on Chr 10 were identified as 
genome-wide significant and there was modest 
evidence for replication of this association in AA 
(but not EA) individuals in a small independent 
replication sample (896 AA cases and 1591 con-
trols). These SNPs were not associated with 
genes but the authors provided some evidence 
that one SNP in the Chr 10 region (rs1409568) 
may be located within an active enhancer. A sug-
gestive association between dependence severity 
(cannabis dependence symptoms counts based on 
DSM-IV criteria) and SNPs on Chr 2 around 
marker rs2287641 was also identified but did not 
replicate in the independent cohort.

Finally, Demontis and colleagues [39] identi-
fied an association between SNPs located in a 
cluster on Chr 8 (rs56372821 index SNP) and 
CD using a data set consisting of 2387 depen-
dent cases and 48,985 controls. The cohort used 
in this analysis differed from most of the previ-
ous studies in that it was ascertained for major 
mental illness (schizophrenia, bipolar disorder, 
attention deficit hyperactivity disorder, anorexia 
nervosa and autism spectrum disorder) and not 
drug use or dependence. All individuals were 

part of the Lundbeck Foundation Initiative for 
Integrative Psychiatric Research (iPSYCH) 
Danish nation-wide cohort [44]. Significant rep-
lication was observed in a replication sample of 
5501 cases and 301,041 controls. Of note, 
expression of the neuronal acetylcholine recep-
tor (nAChR) alpha-2 subunit gene, CHRNA2, in 
human cerebellum was found to be controlled by 
the variants at the Chr 8 locus using the 
Genotype-Tissue Expression (GTEx) dataset 
[45]. Taken together these results provide a pos-
sible causal mechanism by which variants at the 
Chr8 locus regulate CHRNA2 brain expression 
and possible risk of CD.

7.3  Limitations and Future 
Directions

Increasing the sample size of GWAS for cannabi-
noid use has dramatically increased the number 
of markers that pass the criteria for genome-wide 
significance. This was clearly demonstrated by 
Pasman and colleagues [29] following identifica-
tion of 8 independent genome-wide significant 
markers on Chrs 3, 7, 8, 11, 16, and 17 for life-
time cannabis use in a cohort of 184,765 individ-
uals. Another large case-control study of 51,372 
individuals identified one genome- wide signifi-
cant loci on Chr 8 that replicated in an equally 
sized replication cohort [39]. However, these suc-
cesses are modest compared with recent large 
GWAS studies for other diseases. For example, 
over 100 risk loci for Schizophrenia have been 
identified in GWAS combining ~50,000 individ-
uals [6].

There are several possible reasons for the pau-
city of strong candidates in human association 
studies of cannabis use and dependence. The first 
reason is that the genetic architecture of cannabis 
use and dependence may be difference than that 
of other substance use disorders and psychiatric 
diseases. Most GWAS for substance use disor-
ders and psychiatric diseases demonstrate a large 
genomic target associated with disease risk. In 
other words, many biological pathways and 
genes contribute a small amount to overall risk. 
Thus, many genes of small effect combine in an 
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additive fashion to influence disease risk. This 
type of genetic architecture typically results in a 
positive linear relationship between sample size 
and identification of genome-wide significant 
associations. However, it is possible that the 
genetic architecture of cannabis use and depen-
dence is different and that rare variants and non-
additive interactions or environmental 
interactions drive the disease more than the com-
bined actions of many small effect loci. However, 
this hypothesis seems at odds with recent large 
GWAS for cannabis use and dependence [29, 39] 
and for GWAS results for other drugs of abuse, 
which likely share some common underlying 
biological and genetic mechanisms.

Perhaps a more likely explanation for the 
small number of high-confidence candidates is 
the type of data sets used in recent GWAS. For 
cannabis research, there is a lack of large popula-
tion-based data sets for which individuals were 
ascertained primarily for cannabinoid or canna-
bis-related traits. Combining data sets ascer-
tained for psychiatric disease or dependence for 
other drugs of abuse can lead to heterogeneity 
among samples that can actually decrease power. 
This may explain why so few loci were identified 
as genome-wide significant level for association 
with lifetime cannabis use in a massive data set of 
nearly 200,000 individuals [29].

Yet another issue with association studies over 
the past two decades is the lack of replication 
among data sets. Only a single linkage region 
overlapped among FLS (Table  7.2). Of all the 
suggestive and significant associations identified 
in GWAS (Table 7.4), only two genes (CADM2 
and NCAM1) were identified by different studies 
[29, 32]. However, it is important to note that 
both studies that identified NCAM1 and CADM2 
included the same set of ~30,000 individuals 
from the International Cannabis Consortium.

Association studies in humans have the capa-
bility to identify genes and risk alleles. As the 
sample sizes for GWAS studies increase, so does 
the number of associations. If these alleles can be 
identified directly in humans, why the need for 
testing in preclinical animal models? The answer 
depends on biological systems and causality. 
Preclinical genetic animal models (specifically 

rodents) offer the ability to directly test the role 
of genes in CUDs and explore the underlying 
biology in ways that would be impossible in 
humans. Environmental factors can also be con-
trolled and manipulated in preclinical studies in 
ways that are not possible in studies involving 
human subjects. Bi-directional translation 
between association studies in humans and pre-
clinical models is essential for identifying the 
environmental, genetic, and molecular mecha-
nisms contributing to disease and for design of 
effective therapeutics.

One of the simplest ways in which genetic 
preclinical models support association studies is 
through reverse genetic engineering. In this case, 
candidate genes are manipulated in the preclini-
cal model to evaluate their role in disease. It is 
even possible to introduce the precise human 
genetic variant into a preclinical model to evalu-
ate its impact. Such humanized mice have been 
used to evaluate the role of common functional 
variants in the catechol-O- methyltyransferase 
gene [46] and to model the role of alleles involved 
in risk of familial Alzheimer’s disease [47]. Thus, 
genetic engineering approaches in preclinical 
rodent models can be used to directly evaluate the 
role of candidate genes evaluated in human asso-
ciation studies. However, relatively few genes 
have been evaluated for a role in cannabis or 
cannabinoid- related traits in rodent models. The 
only gene identified from human association 
studies that has also been independently evalu-
ated for cannabinoid-related traits is the NRG1 
gene. Of interest, mice heterozygous for deletion 
of murine Nrg1 show enhanced sensitivity to the 
main psychoactive cannabinoid in cannabis, 
Δ9-tetrahydrocannabinol or THC [48–51]. 
Recent advances in genetic engineering, includ-
ing CRISPR/Cas9 mediated genetic engineering 
[52] should facilitate functional evaluation of 
genes and gene variants such as CADM2 and the 
schizophrenia susceptibility gene, NCAM1, asso-
ciated with cannabis use, dependence, and/or 
withdrawal in humans.

Preclinical genetic models can also be used 
for unbiased genome-wide linkage or association 
studies to identify genes and gene variants that 
contribute to disease variation. Examples of these 
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include rodent genetic models in which two or 
more inbred progenitor strains are crossed repeat-
edly and then inbred (recombinant inbred lines 
such as the BXD panel or collaborative cross 
panel in mice) or outcrossed repeatedly (diversity 
outcross and heterogenous stock mice) to create 
genetic panels segregating millions of variants 
[53–56]. For a review see [57]. As of 2018, traits 
related to CUD in humans (initial sensitivity, tol-
erance and dependence, withdrawal severity, and/
or self- administration) have not been profiled in 
genetic rodent populations in order to identify 
candidate genes. A single study attempted a 
short-term selection in an F2 cross between 
C57BL/6J and DBA/2J inbred strains in order to 
determine if locomotor sensitivity to THC was 
heritable and could be selected for in order to 
produce progeny that carry sensitive or resistant 
alleles for later genetic dissection [58]. As in all 
systems, preclinical models have some advan-
tages and disadvantages. The clear advantage is 
the ability to manipulate all aspects of preclinical 
studies and derive causality from these controlled 
manipulations. The main disadvantage is that 
preclinical models are not identical to humans at 
all levels of behavior and physiology and, as a 
result, there will always be some controversy 
regarding translatability.

7.4  Conclusions

Association studies for cannabis use and depen-
dence over the past two decades have identified 
candidate linkage regions (FLS, Table  7.2) and 
genes (primarily through GWAS, Table 7.4). In 
contrast, CGAS have yielded inconsistent results. 
Over the next two decades, it is likely that more 
GWAS containing 50,000 to 1000,000 individu-
als will be performed for cannabis use, depen-
dence, and withdrawal. Recruiting samples 
directly for these traits along with other methods 
to reduce heterogeneity among cohorts can be 
expected to increase the number of genome-wide 
significant associations. This should lead to a 
larger and more reproducible list of candidates 
and a better assessment of polygenic risk and 
genetic architecture. It is also important to 

remember that, despite some of the current issues 
with power and reproducibility, human associa-
tion studies have identified candidate genes and 
mechanisms that should be evaluated to deter-
mine how and how much they contribute to dis-
ease risk. The stage is already set for this type of 
translational research in preclinical animal 
models.
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