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Abstract
The endocannabinoid (eCB) system com-
prises endogenously produced cannabinoids 
(CBs), enzymes of their production and degra-
dation, and CB-sensing receptors and trans-
porters. The eCB system plays a critical role 
in virtually all stages of animal development. 
Studies on eCB system components and their 
physiological role have gained increasing 
attention with the rising legalization and med-
ical use of marijuana products. The latter rep-
resent exogenous interventions that target the 
eCB system. This chapter summarizes knowl-
edge in the field of CB contribution to gameto-
genesis, fertilization, embryo implantation, 
fetal development, birth, and adolescence-
equivalent periods of ontogenesis. The mate-
rial is complemented by the overview of data 
from our laboratory documenting the func-
tional presence of the eCB system within cere-
bral arteries of baboons at different stages of 
development.
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Abbreviations

ABHD4	 α/β-hydrolase domain 4
AEA	 anandamide
CB	 cannabinoid
COX-2	 cyclooxygenase-2
CP55,940	 (-)-cis-3-[2-hydroxy-4-(1,1-

dimethylheptyl)phenyl]-trans-4-
(3-hydroxypropyl)cyclohexanol

DAGL	 diacylglycerol lipase
eCB	 endocannabinoid (system)
ERK	 extracellular-signal-regulated 

kinase
FAAH	 fatty acid amide hydrolase
GABA	 gamma aminobutyric acid
LTP	 long-term potentiation
MAPK	 mitogen-activated protein kinase
MAGL	 monoacylglycerol lipase
NAE	 N-acylethanolamine
NAPE	 N-acylphosphatidylethanolamine
NAPE-PLD   � N-acylphosphatidylethanolamine-

specific phospholipase D
PCR	 polymerase chain reaction
THC	 Δ9-tetrahydrocannabinol
TRP	 transient receptor potential (pro-

tein, channel)
VGAT	 vesicular GABA transporter
2-AG	 2-arachidonoylglycerol.
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2.1	 �Introduction

Humans have been consuming cannabis in the 
form of herbs since ancient times [1]. Although 
adverse reactions and high doses of cannabinoid 
preparations may trigger dysphoria [2], low-to-
moderate consumption confers analgesic, anxio-
lytic, and antiemetic properties [3–6]. The 
modern understanding of mechanisms that stand 
behind physiological effects of cannabis con-
sumption started to emerge in the middle of 
twentieth century with the isolation and charac-
terization of the main psychoactive substance in 
Cannabis sativa plant – Δ9-tetrahydrocannabinol 
(THC) [1]. These findings were followed by the 
discovery of the first cannabinoid receptor (CB1), 
also by structure elucidation and isolation of 
endogenously produced cannabinoids anan-
damide (AEA) and 2-arachidonoylglycerol 
(2-AG) [1]. Although cannabis preparations cur-
rently are used primarily for recreational pur-
poses, they are also consumed for medical 
reasons: to reduce nausea and vomiting, relieve 
symptoms associated with neurological disor-
ders, reduce intraocular pressure in glaucoma 
patients, and as an analgesic remedy [1, 7]. 
Moreover, CB-based preparations have been 
increasingly recognized as having therapeutic 
potential for treatment of numerous pathological 
conditions, including depression, epilepsy, anxi-
ety-related disorders, and obesity [8–12].

The endocannabinoid (eCB) system is com-
prised of endogenously produced CBs, their 
receptors, as well as eCB synthesis, degradation 
enzymes, and transporting molecules [13]. The 
eCB system plays a crucial role at all stages of 
human early development, stemming from the 
influence over gametogenesis and embryo 
implantation, spreading into control of nervous 
system development, peripheral organogenesis, 
and finishing with postnatal development [14]. 
Thus, studies of the eCB system help to delineate 
fundamentals of development and pinpoint 
potential sites of pharmacological interventions 
against prevalent developmental disorders. In 
addition, the understanding of mechanisms that 
govern eCB-mediated control over ontogenesis 
will help to expand our knowledge on the conse-
quences of prenatal exposure to marijuana. The 

latter is reported to affect 3.9–7% of pregnancies 
[15], reaching even higher numbers (13% of 
meconium samples) within high-risk populations 
[16].

Remarkably, there is no acute toxicity to the 
major psychoactive substance in marijuana  – 
THC [2]. Yet, THC consumption leads to a pleth-
ora of physiological and psychological effects [2, 
17, 18], reflecting the complexity of the eCB sys-
tem and its susceptibility to exogenous interven-
tions. Widening legalization of marijuana use, 
development of synthetic approaches to obtain a 
“transgenic pot,” and the growing number of 
pharmaceutical agents that target eCB signaling 
are reasons that call for comprehensive under-
standing of the side effects and risks associated 
with modifications of eCB function.

This chapter summarizes knowledge in the 
field of CB contribution into gametogenesis, fer-
tilization, embryo implantation, fetal develop-
ment, birth, and adolescence-equivalent periods 
of ontogenesis. The literature overview in each 
section starts with the data on rodents and then 
gradually shifts to humans. The material is com-
plemented by data from our laboratory docu-
menting the functional presence of the eCB 
system within cerebral arteries of baboons at dif-
ferent stages of development.

2.2	 �Brief Overview of eCB 
System: From Genes 
to Products

Upon demand, eCBs are synthesized de novo 
using hydrolyzed lipid precursors from cellular 
membrane [14]. The two most widely studied 
endogenously produced CBs are AEA and 
2-AG. AEA belongs to the N-acylethanolamine 
(NAE) family of lipid mediators that represent 
CB-related compounds. For instance, 
N-palmitoylethanolamine is able to activate 
cannabinoid receptors [19, 20]. The physiologi-
cal role of NAEs is being actively investigated 
[21–23]. AEA synthesis originates from the 
rate-limiting step of the N-acylation of phos-
phatidylethanolamine rendering 
N-acylphosphatidylethanolamine (NAPE) [24]. 
One of the major pathways in AEA synthesis is 
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mediated by N-acylphosphatidylethanolamine-
specific phospholipase D (NAPE-PLD) that 
hydrolyses NAPE into AEA [24]. Other path-
ways engage phosphatase PTPN22 [25], α,β-
hydrolase domain 4 (ABHD4) [26], and 
glycerophosphodiesterase (GDE1) [27].

The major synthetic pathway of 2-AG is pre-
sented as a two-step reaction. The first step is ini-
tiated upon phospholipase C activation and 
results in the generation of diacylglycerol from 
phosphatidylinositol. The second step, resulting 
in 2-AG release, is carried out by a membrane-
bound diacylglycerol lipase (DAGLα/β) [24, 28].

Cell types that are most actively involved with 
eCB production are still under investigation, but 
likely represent quite an exhaustive catalog [29]. 
Upon production and release, eCBs are quickly 
degraded by hydrolytic enzymes. Fatty acid 
amide hydrolase (FAAH) largely enables AEA 
degradation, with additional contribution from 
other enzymes such as cyclooxygenase-2 (COX-
2) [30–33]. 2-AG is largely processed by the 
monoacylglycerol lipase (MAGL) with addi-
tional contribution from α,β-hydrolases 6 and 12 
[34, 35]. The relative contribution of these 
enzymes into 2-AG catabolism is tissue/cell spe-
cific [34, 35].

CB receptors are presented by canonical 
receptors of type 1 (CB1) and 2 (CB2) that are 
Gi/o protein-coupled receptors exhibiting consti-
tutive activity [36–41].

CB1 receptors are widely expressed in numer-
ous neuronal populations [42], within glia [43, 
44], and are also found in peripheral organs such 
as adrenal gland, heart, lung, prostate, uterus, 
ovary, testis, bone marrow, thymus, and tonsils 
[45, 46]. Presence of a “pre-nervous” eCB sys-
tem operating via transient receptor potential 
(TRP) protein orthologs has been proposed in 
invertebrate echinoderms (sea urchin, starfish) 
[47]. However, mammalian CB1 receptor ortho-
log-coding genes are absent in commonly studied 
nonvertebrate species such as Drosophila mela-
nogaster and Caenorhabditis elegans [48]. To 
some extent, the lack of a CB1 receptor ortholog 
in invertebrate species poses limitations on the 
choice of animal models for CB-related studies. 
However, human CB1 ortholog-coding genes are 
described in a variety of vertebrates including 

fish, amphibians, avian species, and nonhuman 
primates [48–50].

Although CB2 receptors have been detected in 
glia [51, 52] and in specific areas of the brain 
[52–55], they are also attributed as CB receptors 
of predominantly peripheral tissue locations that 
play a central role in immunity [42, 45, 46, 56].

Stimulation of CB receptors results in a num-
ber of signaling events, including inhibition of 
adenylate cyclase, activation of mitogen-acti-
vated protein kinase (MAPK) signaling, and 
modulation of ion channels’ activity [36, 37, 57–
65]. For instance, CBs target calcium, potassium, 
and TRP channel families [66, 67], either directly 
or via secondary signaling events. Besides canon-
ical CB receptors, G protein-coupled receptors 
GPR55 and GPR119 are advanced as eCB sen-
sors [68].

One must recognize that the eCB system is 
under constant control from various physiologi-
cal stimuli, such as hormonal levels. For exam-
ple, progesterone and estrogen regulate AEA 
level and expression of FAAH [69]. Also, FAAH 
in human lymphocytes is upregulated by proges-
terone [70]. Neither AEA nor THC modifies the 
level of follicle stimulating hormone; however, 
AEA decreases while THC increases growth hor-
mone production [71]. In rats, prolonged gluco-
corticoid treatment decreases CB1 receptor 
density in the hippocampus [72].

ECB controls a wide range of physiological 
processes that include, but are not limited to, 
energy metabolism, inflammation, cardiovascu-
lar function, etc. [11, 12]. Thus, it comes as no 
surprise that a dysfunctional eCB system fre-
quently underlies common human pathologies. 
The search for mechanisms of prevalent disor-
ders, and studies of novel medications, both feed 
interest in eCB system functions, including its 
role in ontogenesis.

2.3	 �Cannabinoids in Fertility 
and Gametogenesis

ECB system components are present in virtually 
any reproductive tissue/organ [13, 73]. Early 
work described the ability of AEA to diminish 
sperm fertilizing capacity in sea urchins by inhib-
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iting the acrosome reaction [74]. The CB2 recep-
tor is detected in mouse Sertoli cells [75]. In 
human oocytes, both CB1 and CB2 receptors 
have been detected by means of reverse transcrip-
tion polymerase chain reaction (PCR) and 
Western blotting [76].

The selective activation of the CB2 receptor 
induces progression of spermatogonia towards 
meiosis, and thus plays a critical role in sper-
matogenesis [77]. Notably, a mouse study reports 
a high amount of 2-AG in the caput (head) of the 
epididymis [78]. In this compartment, sperm 
cells are immobile or do not possess consistent 
motility. However, in the epididymis tail, 2-AG 
amount is lower, and such a gradient in 2-AG lev-
els is believed to empower caudal spermatozoa 
with physiologically necessary motility via a 
CB1 receptor-mediated mechanism that involves 
the CB1 receptor on the sperm cell membrane 
[78]. In humans, reduction in viability character-
istics and acrosome reaction of mature sperm is 
documented in response to AEA and is mediated 
by the CB1 receptor [69, 79].

Plasma levels of AEA fluctuate with the 
female cycle. The highest levels are observed 
during ovulation and follicular phase, while the 
lowest are reported during luteal phase [80–82]. 
ECB activity exerts an effect on hormonal pro-
duction, as reported for AEA- and THC-driven 
downregulation of luteinizing hormone and pro-
lactin levels in ovariectomized rats [71]. THC, 
however, has been found to inhibit ovulation by 
suppressing the plasma levels of follicle-stimu-
lating hormone and luteinizing hormone in rats 
when animals were exposed to THC on the day of 
proestrus [83].

Clinical observations in human population 
concur on the risks of CB exposure during peri-
conception [84, 85]. In particular, heavy use of 
marijuana and cannabis-derived psychoactive 
products is associated with decreased female fer-
tility, loss of pregnancy, and embryotoxicity [86, 
87]. Chronic marijuana use also decreases male 
fertility in humans and in animal models due to 
reduced testosterone production, sperm mobility 
and viability [88–90]. Linkage between the phe-
nomenology of CB’s effect on fertility and 
molecular players that enable such action repre-
sents an area of active investigation [84, 85].

2.4	 �Embryonic Development

Zebrafish Danio rerio has been emerging as an 
important model for studying the role of eCB and 
consequences of environmental CB exposure in 
development [91, 92]. Use of this model allows 
tracing of eCB system gene expression using 
qPCR in zebrafish embryos throughout 1–120 h 
post-fertilization. Analysis reveals diverse pat-
terns of eCB system gene expression [91]. For 
example, low levels of cnr1, gpr55a, and abhd6 
expression are detected throughout development 
[91]. In contrast, expression levels of cnr2, 
cnrip1a and dagl family are relatively high [91]. 
Expression levels of naaa1a and abhd12 are pro-
gressively decreased, while expression of ptgs2a 
and mgll is increased throughout development 
[91].

A whole-mount in situ hybridization study on 
chick embryos detects the presence of CB1 gene 
expression within the first-appeared neurons of 
the central nervous system (within hindbrain, as 
early as stage 10  in the chick), followed by 
appearance within the peripheral nervous system 
(ophthalmic trigeminal placode) at stage 11 [93]. 
After these early milestones, CB1 expression is 
detected in other neuronal populations, such as 
within vestibuloacoustic, epibranchial ganglions 
and dorsal root ganglia. Notably, CB1 expression 
is not uniquely present in neurons. For example, 
CB1 expression is detected in the ventral fore-
brain that does not produce neurons in early 
development [93]. In addition, CB1 expression is 
detected in the mesoderm. Although neurons are 
showing CB1 expression very early on, the 
expression disappears at later stages of chick 
development [93]. Expression of CB2, TRPV1 
and GPR55 is not apparent in chick embryonic 
central nervous system during development [94]. 
At early stages of nervous system establishment, 
eCB system is believed to play a critical role in 
axonal growth and formation of synaptic connec-
tions. Indeed, treatment of chick embryo central 
nervous system explants with CB1 receptor 
antagonist  AM251 results in defective axonal 
growth and fasciculation [94]. With regards to 
other component of the eCB system, DAGL α 
and β isoforms are widely expressed throughout 
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the embryonic chicken brain, while MAGL is 
only expressed at later stages [94].

A combination of qPCR, mass spectroscopy, 
immunohistochemistry and Western blotting 
detects the presence of eCB system components 
in chick and mouse embryos at stages 9–11 and 
E8.75, respectively [41]. These time points cor-
respond to the pre-neuronal phase of early devel-
opment [95] and represent post-coital days 22–26 
of human gestation [41]. An additional study uti-
lizing an agonist-stimulated [35S]GTPγS binding 
assay documents G protein activation in the brain 
primordium of chick embryos at stages 9 to 11 in 
presence of CB1 receptor agonist CP-55,940 
[41]. This activation vanishes following pre-
treatment of samples with the inverse agonist of 
CB1 receptor SR141716A [41].

In mammals, a balanced eCB system is crucial 
for successful early pregnancy. At this stage, syn-
chronization of embryo development with uter-
ine receptivity for implantation is central for 
maintaining viable pregnancy. The eCB system 
has been shown to play a critical role at all stages 
of such synchronization, starting from the devel-
opment of the preimplantation embryo, its move-
ment through oviduct, throughout implantation 
and placenta development. AEA synthesis and 
degradation enzymes NAPE-PLD and FAAH, 
respectively, are expressed at the two-cell stage 
of embryonic development [69, 96]. While the 
CB1 receptor is detected from the four-cell stage, 
CB2 is found as early as the one-cell stage of 
embryonic development [69, 96]. Systematic 
studies point at the CB1 receptor and CB1-
mediated signaling as critical players in early 
development. In the mouse model, only CB1 
receptor is present in the maternal oviduct and 
uterus, while both CB1 and CB2 receptors are 
detected in preimplantation embryo [86, 87, 97]. 
Cross-talk between maternal and embryonic CB 
systems is at the center of successful early preg-
nancy and development. Indeed, CB1, CB2, or 
double knock-out mice show asynchronous 
embryo development during early pregnancy [86, 
87, 97]. Remarkably, the development is rescued 
when knock-out females are mated with wild-
type males, pointing at the ability of heterozy-
gous embryos to navigate the proper timing of 

development and disregard the abnormal mater-
nal CB knock-out environment [86, 87, 97].

Movement of the preimplantation embryo 
through the maternal oviduct ensures a path to 
implantation. CB1 knock-out mice show 40% 
pregnancy loss at this stage [86, 87, 97]. Unlike 
embryo development, movement along the ovi-
duct cannot be restored by mating CB1 knock-
out females with wild type males [86, 87, 97]. 
Thus, at this stage, maternal factors gain critical 
weight over embryonic characteristics of the CB 
system. It is noted that embryos that fail to move 
to implantation site, still retain their quality, as 
they could be implanted into pseudopregnant 
recipient uteri [86, 87, 97]. Implantation of nor-
mal embryos into pseudopregnant recipient uteri 
of CB1 knock-out mice also renders non-devel-
oping pregnancies [86, 87, 97]. This finding pro-
vides independent verification of the critical role 
of maternal CB characteristics in controlling 
embryo movement through the oviduct.

Mechanistic studies reveal a closely coordi-
nated cross-talk between CB1-mediated and 
adrenergic signaling in control of oviduct motil-
ity. Loss of CB1 function increases noradrenaline 
release from adrenergic nerve terminals and 
increases smooth muscle contractility via alpha-
adrenergic receptor (α-AR) preventing embryo 
movement. In contrast, CB1 receptor stimulation 
relaxes oviduct muscle and promotes embryo 
movement [97]. Consistent with observations in 
animal models, reduced CB1 expression in 
Fallopian tubes is detected during ectopic preg-
nancy in humans [98].

Last but not least, CB tone is central for 
embryo implantation. This process is tightly con-
trolled by hormonal release of estrogens and pro-
gesterone. While progesterone primes the uterus 
for implantation, estradiol and its metabolite 
4-hydroxy-17β-estradiol, produced in the uterus, 
mediate blastocyst activation for implantation 
[87, 99]. It has been well established that lower 
levels of CB1 receptors in the blastocyst and a 
decrease in uterine AEA levels are crucial for 
sustaining the “window” of uterine receptivity 
[86, 87, 97–100]. In the blastocyst, CB1 expres-
sion is lower during the activated state when 
compared to the dormant blastocyst [101]. In 
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uterus, higher levels of AEA, NAPE-PLD activ-
ity, and NAPE-PLD mRNA are detected in non-
receptive uterine states compared to receptive 
uteri [102, 103]. Of note, AEA levels in the 
uterus, similar to other organs (see below), are 
dramatically lower than those of 2-AG [13].

Studies in animal models are closely corre-
lated with findings in humans: elevated plasma 
AEA levels are detected in women with nonvia-
ble pregnancies, while lower AEA is associated 
with positive pregnancy outcome [82, 104–106]. 
Moreover, decreased FAAH activity is detected 
in peripheral lymphocytes of women with preg-
nancy failure [82, 104, 105]. Low activity of pla-
cental FAAH, together with elevated CB1 levels, 
characterize human miscarriages, while higher 
FAAH activity is detected in placentas during 
normal pregnancies [107].

Notably, NAPE-PLD has been shown to play a 
critical role in maintaining uterine AEA levels 
[103] despite the fact that NAPE-PLD knock-out 
mice are characterized by near-normal AEA lev-
els [108]. In the uterus, the implanting blastocyst 
exerts an inhibitory effect on NAPE-PLD activity 
[103], ensuring coordination in CB signaling 
between embryonic and maternal sites. NAPE-
PLD has also been identified in human placental 
tissue and is believed to mediate AEA production 
in the placenta [105].

Further on in the process, successful implanta-
tion relies on the differentiation and invasion of a 
trophoblast originating from the blastocyst troph-
ectoderm during early stages of pregnancy [109]. 
Low levels of AEA promote trophoblast growth, 
while elevated AEA inhibits the development of 
embryos [14]. Exploration of potential mecha-
nisms that underlie the dual role of AEA in early 
pregnancy suggests two distinct pathways. In the 
murine model, low concentrations of AEA acti-
vate blastocyst extracellular-signal-regulated 
kinase (ERK) signaling and promote implanta-
tion [87, 99]. In the murine model and sheep 
pregnancy, higher levels of AEA inhibit calcium 
mobilization, induce cell apoptosis, and inhibit 
blastocyst cell proliferation thereby precluding 
successful implantation [87, 99, 110]. In a rat 
model, CB1 receptor activation results in 
ceramide release and p38 MAPK-mediated mito-
chondrial stress, leading to production of reactive 

oxygen species and apoptosis of uterine decidual 
cells [111]. MAPK triggers the COX-2 oxidative 
metabolism of AEA.  Such metabolic pathways 
result in the formation of prostaglandin-like com-
pounds termed “prostamides” [112]. The COX-2 
metabolic pathway for AEA is competing with 
the conventional FAAH pathway [113]. In addi-
tion to COX-2-mediated oxidative metabolism 
resulting in oxidative stress, AEA-induced apop-
totic effect is also associated with NF-kB activa-
tion [112].

When compared to CB1, the role of the CB2 
receptor in early stages of pregnancy is less 
established. However, CB2 receptor transcript 
has been identified in both placenta and tropho-
blasts [114]. During hematopoietic differentia-
tion of murine embryonic stem cell-derived 
embryoid bodies, CB1 and CB2 antagonists 
(AM251 and AM630, respectively) induce stem 
cell death and inhibition of cannabinoid agonist-
induced chemotaxis [115].

A study on rat species utilizing RT-PCR, 
Western blot, and immunohistochemistry docu-
ments the presence of CB1 and CB2 receptors, 
TRPV1 transcripts, and protein products of cor-
responding encoding genes in rat mesometrial 
decidua [116]. While transcripts and protein 
products for CB1, CB2, and TRPV1 decrease 
throughout pregnancy overall, the CB1 protein 
amount shows a remarkable spike during day 12 
of rat pregnancy. The spike is not detected in the 
CB1 transcript [116]. This fact underscores the 
importance of post-transcriptional regulatory 
mechanisms in maintaining optimal levels of key 
players within the eCB system.

In addition to direct targeting of eCB recep-
tors within embryonic and maternal tissues, the 
eCB system has been proposed as exerting a 
modulatory effect on early pregnancy outcome 
via immunity [24]. Indeed, eCB system compo-
nents are present in immune cells [117]; interest-
ingly, immune response has been put forth as an 
important player in pregnancy initiation and 
maintenance [118, 119]. Possible cross-talk 
between the eCB system, immune cells, and 
reproductive success resulting in a formation of 
an “endocannabinoid-immune-reproductive 
axis” requires multifaceted experimental valida-
tion [24].
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2.5	 �Midgestation

AEA and 2-AG are produced throughout the pre-
natal period, but their amounts are not constant 
[43, 120]. AEA levels in rat brain remain low 
throughout perinatal period, but then gradually 
increase as animals reach adulthood [120]. In 
contrast, changes in 2-AG level show a different 
time course. They remain relatively constant with 
the exception of a significant spike at day 21 of 
rat gestation [43, 120]. This is a full-term preg-
nancy in rats and in terms of brain development 
milestones, corresponds to approximately 
23 weeks of pregnancy in humans [121].

The CB1 receptor is critical for placental 
development, as Cnr knock-out mice have 
smaller placentas and higher resorption rate at 
mid gestation when compared to their wild-type 
(CB1 receptor-containing) counterparts [122]. 
With regards to fetal tissue, CB1 receptor tran-
script is detected in rat embryo neural tube struc-
tures at E11 [114]. CB2 receptor messenger RNA 
is detected in rat embryonic liver as early as at 
E13 [114].

The occurrence and functional characteriza-
tion of the eCB system has been actively studied 
within the developing nervous system [55, 123]. 
Establishment of critical structural components 
and connectivity within neuronal networks relies 
on several critical events, such as neuronal pro-
genitor cell proliferation and differentiation, neu-
ronal migration to target regions, and formation 
of synapses. All aforementioned events are con-
nected with the functionality of eCB system 
components at various levels of resolution as 
shown in different experimental models [124].

Immunofluorescence labeling of rat fetuses 
detects the presence of CB1 receptors in 
E12.5-16.5  in migrating post-mitotic neurons 
during corticogenesis [125, 126]. Moreover, pre-
natal exposure to CB1 receptor agonist WIN 
55,212-2 (0.75  mg/kg) via daily subcutaneous 
(s.c.) delivery to pregnant dams results in signifi-
cant increases in the number of post-mitotic neu-
rons [126]. However, this increase is not 
accompanied by a corresponding increase in 
gamma-aminobutyric acid (GABA)-positive 
immunostaining. In contrast, WIN 55,212-2 

exposure increases immunofluorescence associ-
ated with T-box transcription factor Tbr2 that is 
characteristic of progenitor cells destined for glu-
tamatergic development [126]. In contrast, the 
marker of post-mitotic glutamatergic neurons 
Tbr1 responds with transient decreases at E12.5 
and E14.5  in brain samples from WIN 
55,212-2-exposed fetuses [126]. Thus, the CB1 
receptor plays a critical role in neuronal migra-
tion and corticogenesis. Variations in fetal CB1 
receptor activity and functioning of the eCB sys-
tem result in a complex reshaping of neuronal 
development, thus affecting formation of neuro-
nal networks [127]. Studies in knock-out mouse 
lines demonstrate that lack of CB1 and CB2 
receptors leads to impairment of neural progeni-
tor cell proliferation [128, 129]. Mice lacking the 
CB1 receptor are characterized by diminished 
cortical progenitor cell proliferation and astro-
gliogenesis [128, 130]. Notably, work on cul-
tured cell lines indicates that CB1 receptor 
activation can induce either neurite growth or 
retraction, depending on the CB1 receptor activa-
tion-triggered downstream signaling pathway 
[55, 131, 132]. Despite the fact that experimental 
probing of the CB1 receptor impact on the direc-
tion of neuronal development renders somewhat 
conflicting results, the overall picture seems to 
support positive correlations between CB1 recep-
tor activation and neuronal cell proliferation and 
migration [124]. Yet, diminished CB1 receptor 
activity would likely favor cell differentiation, 
formation of a neuronal phenotype, and synapto-
genesis [124].

Analysis of the CB1 receptor expression pat-
tern in human fetuses during midgestation (17–
22  weeks) reveals region-specific presence of 
CB1 receptor mRNA: while CB1 receptor 
expression is high in limbic structures, only mod-
erate levels are detected in cerebral cortex, thala-
mus, medial/ventral striatum, and subventricular 
zone [133]. This expression profile remains unal-
tered by cannabis exposure in utero [133]. 
However, maternal cannabis use is associated 
with a significant decrease in dopamine receptor 
subtype 2 (D2) mRNA in the amygdala of male, 
but not female fetuses [133, 134]. D2 mRNA 
decrease is also detected in striatum; however, 
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dopamine receptor subtype 1 (D1) expression 
remains unchanged [133, 134]. In addition, pre-
natal rat THC exposure leads to fluctuations in 
brain mRNA levels of the enzyme tyrosine 
hydroxylase that represents a rate-limiting step in 
dopamine synthesis [135]. This effect exhibits 
marked sexual dimorphism, the latter being char-
acteristic of alterations in dopaminergic system 
by prenatal exposure to cannabinoids [43].

With regards to the opioid system, prenatal 
cannabis exposure is associated with increased 
mu opioid receptor expression in amygdala 
[133]. Yet, proenkephalin RNA levels are 
decreased in fetal striatum from cannabis-using 
mothers, while prodynorphin levels remain 
unchanged [133].

In addition to alterations in dopaminergic and 
opioid systems, prenatal and postnatal exposure 
to THC in a rat model (from gestational day 5 to 
postnatal day 20) is reported to result in a 
decreased immunoreactivity against the GluR1 
subunit in Bergmann glial cells and the GluR2/3 
subunit in Purkinje neurons when evaluated at 
postnatal day 20 [136]. These changes persist 
after THC withdrawal at postnatal days 30 and 70 
[136]. Moreover, the expression of glial (GLAST) 
and neuronal (EAAC1) glutamate transporters in 
astroglial cells and Purkinje neurons, respec-
tively, is decreased in THC-exposed rat offspring 
compared to saline-treated controls [137].

The eCB system in the developing brain also 
represents a target for a drug of abuse other than 
cannabis itself  – alcohol [138, 139]. Data from 
our laboratory show alcohol-induced decreases 
in blood velocity in the fetal middle cerebral 
artery during baboon maternal alcohol intoxica-
tion during second trimester-equivalent of human 
pregnancy [50, 140]. This drop is consistent with 
fetal cerebral artery dilation, and the latter is rep-
licated using in vitro pressurized arteries from 
fetal baboons [50]. Notably, alcohol-induced 
(63 mg/dL ethyl alcohol) dilation of fetal cerebral 
arteries is blocked in the presence of AM251 in a 
mixture with AM630 (Fig. 2.1) [50]. The fact that 
an alcohol effect in vitro is sensitive to CB recep-
tor block, and is mimicking the in vivo scenario, 
strongly suggests an active eCB system within 
fetal cerebral arteries of nonhuman primates.

In human brain, the CB1 receptor is immune-
detected in the cortical plate as early as gesta-
tional week 9 [141]. It is notable that in the case 
of brain malformation, CB1 receptors are still 
present in dysplastic neurons [141]. By the sec-
ond trimester (20 weeks of human gestation), the 
CB1 receptor mRNA is spiked within hippocam-
pal CA region and basal nuclear group of the 
amygdaloid complex [142]. Notably, the adult 
brain, cerebral cortex, caudate nucleus, putamen 
and cerebellar cortex are also characterized by 
high mRNA levels of CB1, in addition to high 
levels in hippocampus and amygdala [142]. Thus, 
CB1 receptor occurrence is brain 
region-specific.

With regards to the relative distribution of 
CB1 and CB2 receptors across cell types, a dif-
ferential expression pattern is documented at 
early stages of development. For example, while 
CB1 receptors are traced to astrocytes, CB2 
receptors are present in microglia [141].

Prenatal marijuana use in humans does not 
alter fetal growth rates, evident from the analysis 
of human fetuses aborted at midgestation (17–
22 weeks of pregnancy) [143]. However, there is 
a significant reduction in fetal foot length and 
body weight in the group of marijuana-exposed 
fetuses when compared to controls. Moreover, 
fetal foot length growth is inversely correlated 
with the amount and frequency of marijuana use 
reported by the mothers [143]. The consequences 
of maternal marijuana use are long-lasting. For 
instance, prenatal marijuana exposure signifi-
cantly correlates with the age of onset and fre-
quency of marijuana use among 14-year-old 
teens [144]. Overall, the early appearance, wide 
distribution, differential expression pattern, and 
physiological function of eCB system compo-
nents support the hypothesis of a critical role of 
eCB signaling in physiology and pathology dur-
ing midgestation.

2.6	 �Neonatal and Postnatal 
Development

At birth, eCB system components are widely dis-
tributed in maternal and fetal tissues [14, 49, 
145]. While AEA remains low during normal 
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pregnancy [82], its level increases dramatically 
as labor approaches [14]. Upon delivery, eCBs 
continue to play a central role in maternal-fetal 
interaction, as 2-AG is present in maternal milk 
[13]. 2-AG in milk exceeds that of AEA by 100–
1000-fold and serves as a critical contributor into 
the initiation of milk suckling [146, 147]. Indeed, 
injections of CB1 receptor antagonist SR141716 
(5–20  mg/kg s.c.) into newborn but not older 
mouse pups drastically reduces milk ingestion 
and pup growth [146]. This effect is not specific 
to the particular antagonist, as it has been repli-
cated by another CB receptor antagonist VCHSR 
[13]. Interestingly, when CB receptor antagonist-

treated mouse pups are introduced to a dish with 
a milk/cream mixture, they are able to lick and 
ingest this food [13]. Thus, CB1 receptor block is 
specifically altering suckling behavior, presum-
ably via alterations in synaptogenesis required 
for neuromuscular coupling within tongue tissue 
[13].

Around early postnatal development (postna-
tal day 5), a peak in rat brain 2-AG level is 
observed when compared to prenatal and adult 
2-AG content [13, 148]. In contrast to the bell-
shaped ontogeny of 2-AG, AEA levels in rat 
brain progressively increase from birth into 
adulthood [13, 148]. Levels of 2-AG detected in 

Fig. 2.1  Ethanol-
induced dilation of 
fetal cerebral arteries 
is mediated by CB 
receptors. (a) Original 
diameter trace showing 
fetal cerebral artery 
dilation in response to 
63 mg/dL ethanol. (b) 
Averaged data showing 
diminished ethanol-
induced dilation of fetal 
cerebral arteries in 
presence of CB1 and 
CB2 receptor blockers 
AM251 and AM630, 
respectively. 
∗Statistically significant 
difference (P < 0.05 by 
t-test). With 
modifications from [50]
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rat brain are much higher than those of AEA in 
rat brain: 2000–8000  pmol/g of tissue versus 
3–6  pmol/g of tissue, respectively [43, 120]. 
However, regional  patterns of 2-AG and AEA 
ontogeny do not always follow net levels, this 
variability being further complicated by a gen-
der-specific component [42].

With regard to CB receptors, rodent and 
human brain CB1 receptor levels in fetal and 
juvenile tissues are generally higher than in adult-
hood [42, 120, 149, 150]. Yet, CB1 receptor dis-
tribution also shows region-specific variability 
with the predominant location within fetal white 
matter [148, 149], while CB1 expression in adult-
hood is predominantly located within grey matter 
[42, 148].

In a study utilizing C57BL/6 mouse strain, it 
was shown that the amount of CB1 receptor and 
its co-localization with GABA and glutamatergic 
synapses in the visual cortex is modulated by 
developmental plasticity and by visual input 
[151]. In particular, immunostaining against CB1 
receptor reveals differential distribution of this 
protein across various layers of mouse visual cor-
tex. The highest intensity of anti CB1 receptor 
staining is detected in layers II/III and 
VI. Moreover, CB1 receptor co-localization with 
presynaptic GABA transporter is detected by 
vesicular GABA transporter (VGAT)-positive 
staining and with vesicular glutamate transporter 
(VGluT)-positive staining. The former is attrib-
uted to localization of CB1 receptor within nerve 
terminals of inhibitory neurons, while the latter is 
associated with excitatory neurotransmission 
[151]. Dark rearing of mouse pups up to P30 
results in the overall decrease of CB1 receptor-
associated staining, decrease in co-localization of 
CB1 receptor with VGluT in deep layer of visual 
cortex, but produces an increase in co-localiza-
tion of CB1 receptor with VGAT in this layer 
[151]. Notably, naturally uneven distribution of 
immunostaining signal among visual cortex lay-
ers remains unaltered by rearing conditions. 
Moreover, dark rearing until P50 does not modify 
the overall level of CB1 receptors, suggesting 
that visual input only exerts a modulatory role in 
the developmentally-programmed trajectory of 
CB1 receptor amounts in the deep layer of visual 

cortex [151]. At postnatal day 100, the overall 
amount of CB1 receptor in mouse primary visual 
cortex as detected by Western blotting, is signifi-
cantly higher than the amount at an earlier post-
natal age (P20) [151].

Targeting of the eCB system by administra-
tion of five daily AEA injections (20 mg/kg s.c.) 
to newborn mice from day 6 of age does not 
result in any effects on open field performance of 
the progeny until 4 weeks of age [152]. However, 
from 40 days of age, the offsprings from AEA-
treated dams are characterized by a decrease in 
open field activity, catalepsy, and hypothermia 
[152]. It is noteworthy that a fully functional eCB 
system does not seem to emerge until adulthood, 
as acute challenge of mouse pups with AEA 
(20  mg/kg i.p.) does not produce anticipated 
analgesia and motor depression [152]. This out-
come could be explained by the fact that the 
effects of CB challenge require complex inter-
play between several components of the eCB sys-
tem that are only reaching their final levels and 
patterns of distribution in adulthood [42, 43].

THC exposure during the perinatal period 
(2.5–5 mg/kg per os, from gestational day 15 to 
postnatal day 9) results in an increased rate of 
vocalization in 12-day-old rat pups [153, 154]. 
However, acute treatment of 11–13-day-old rat 
pup with CB receptor agonist (-)-cis-3-[2-
hydroxy-4-(1,1-dimethylheptyl) phenyl]-trans-
4-(3-hydroxypropyl)cyclohexanol (CP 55,940) 
shows a dose-dependent decrease in ultrasonic 
vocalizations, with a 1000-μg/kg CP55,940 caus-
ing an almost complete shutdown of vocalized 
calls [155]. CB receptor antagonist SR 141716A 
(20 mg/kg) reverses this effect [155]. Thus, there 
are critical windows of vulnerability to eCB sys-
tem targeting that enable differential outcomes of 
eCB challenge on physiology/behavior.

In addition to nearly immediate effects, target-
ing of eCB system during in utero development 
has long-lasting consequences on developmental 
trajectories [156–159]. For example, treatment of 
rats with cannabinoid receptor agonist HU-210 
(25  μg/kg throughout gestation and lactation) 
results in decreased corticosterone levels in adult 
male progeny [160].
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Altered gene expression in progeny born to 
THC-treated rat dams has been described for 112 
brain genes [161], including elevated pre-proen-
kephalin mRNA expression in the nucleus 
accumbens and central and medial amygdala 
[162], as well as modifications of cortical genes 
related to glutamatergic system and also to nor-
adrenergic transmission [163]. Alterations in 
gene expression are associated with a decrease in 
the cortical extracellular levels of both neu-
rotransmitters [163]. Within the serotoninergic 
system, perinatal THC exposure (5 mg/kg body 
weight from gestational day 5 through postnatal 
day 24) leads to a reduced serotonin level in rat 
brain samples [164].

Prenatal exposure to CB1 receptor agonist 
WIN55,212-2 (0.5 mg/kg s.c.) disrupts memory 
retention in 40- and 80-day-old rat progeny [165]. 
This memory impairment is correlated with alter-
ations of hippocampal long-term potentiation 
(LTP) and glutamate release. LTP in hippocam-
pal CA3-CA1 synapses decays faster in brain 
slices of progeny that was prenatally exposed to 
WIN55,212-2 when compared to a control group 
[165]. The effect is specific to a particular param-
eter of LTP, as post-tetanic and short-term poten-
tiation is similar in WIN55,212-2-exposed and 
control groups [165]. In vivo microdialysis stud-
ies detect a decrease in basal and potassium-
induced glutamate levels in the cerebral cortex of 
adolescent and adult rats born to WIN55,212-2-
treated dams (0.5 mg/kg s.c.) when compared to 
a vehicle-treated group [166]. This decrease is 
reported to be associated with a WIN55,212-2-
triggered increase in glutamate uptake through 
overexpression of GLT1 and EAAC1 glutamate 
transporter subtypes, as demonstrated in rat fron-
tal cerebral cortex [167]. Moreover, while 
WIN55,212-2 treatment (0.1 mg/kg i.p.) increases 
dialysate glutamate levels in adult rats, blockade 
of the CB1 receptors with the selective antagonist 
SR141716A only ablates the WIN55,212-2-
induced increase of glutamate in a control group 
of rats, but not in rats that were prenatally exposed 
to WIN55,212-2 [166]. It is noteworthy that, 
while prenatal stimulation of eCB system does 
not generally result in severe fetal malformations 
or exert apparent toxicity, prenatal exposure to 

WIN55,212-2 is reported to be associated with 
impaired neuronal growth/neurite branching 
[168]. In synthesis, in utero exposure to exoge-
nous cannabinoids reshapes the eCB system and 
its communication with major neurotransmission 
systems [163, 168, 169].

Outside the central nervous system, conse-
quences of exposure to cannabinoids during the 
perinatal period include long-term alterations in 
cytochrome P-450 levels [170], enkephalin and 
norepinephrine sensitivity in vas deferens [171], 
and neurochemical response to stress [43, 172].

Behavioral consequences of prenatal THC 
exposure may last into adulthood. Following 
THC exposure (2 mg/kg twice daily, s.c. gesta-
tional days 1-22, postnatal days 2–10), adult 
(90-day-old) male progeny exhibits decreased 
time in the inner part of the open field and 
increased investigation time in the test of social 
interaction [173]. Moreover, rats that were 
exposed to THC (0.15  mg/kg, from gestational 
day 5 to postnatal day 2) exhibit higher heroin-
seeking activity at postnatal day 62 [162]. 
Likewise, daily oral THC administration (5 mg/
kg, starting from gestational day 5 throughout 
postnatal day 24 at weaning) modifies rat brain 
mu opioid receptor density in a region- and gen-
der-specific manner and facilitates morphine 
self-administration behavior [162, 174].

Alterations in the eCB system during neonatal 
and perinatal periods can be achieved not only by 
exposure to cannabinoids, but also by common 
stressors such as maternal deprivation. For exam-
ple, maternal deprivation of neonatal rat pups 
leads to increased 2-AG content in male hippo-
campus [175]. Maternal deprivation for 24 h at 
postnatal day 9 induces a significant increase in 
DAGLα but not DAGLβ levels upon immunos-
taining of hippocampi from rat male and female 
progeny (13-day-old pups) [176]. Maternal 
deprivation also decreases CB1 receptor expres-
sion while CB2 receptor levels are increased 
[177]. The former phenomenon (decreased CB1 
receptor expression and lack of CB1 receptor 
function) in turn increases progeny’s susceptibil-
ity to stress [178]. MAGL protein and mRNA 
levels are decreased in deprived males [176]. A 
similar paradigm of maternal deprivation (24 h, 
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postnatal days 9–10) renders increased expres-
sion of eCB system component-coding genes in 
frontal cortex and hippocampus of adolescent 
(postnatal day 46) male and female rat progeny, 
respectively [179]. Sexual dimorphisms observed 
within eCB system distribution and function has 
been extensively discussed in recent literature 
[180–184]. Based on studies showing a link 
between stress and the eCB system, it has been 
proposed that cannabinoids serve as modulators 
of the hypothalamic-pituitary-adrenal axis; this 
modulatory effect may be critical in shaping 
brain maturation during development [185].

The role of nutrition as another environmental 
factor that shapes eCB system development has 
been studied in a model of variable postnatal 
nutrition in cross-fostering mouse dams [186]. In 
this study, mouse pups are assigned to new moth-
ers upon birth, and different pup-to-mother ratios 
are used to regulate nutritional intake (3, 6, or 10 
pups per mother). Conceivably, groups with 3 
pups per mother show higher growth measures 
when compared to 6 and 10 pups/mother groups 
[186]. ECB system components evaluated at 
postnatal day 50 show progressive decreases in 
FAAH and MAGL gene expression in liver as 
pup-to-mother ratio was increased [186]. Visceral 
adipose tissue does not render significant changes 
in FAAH gene expression level as a function of 
early postnatal nutrition, yet MAGL expression 
level is decreased with increased pup-to-mother 
ratio. Moreover, expression of NAPE-PLD and 
DAGLα in visceral adipose tissue is also progres-
sively decreased as pup-to-mother ratio is 
increased [186]. This study promotes the periph-
eral eCB system as a sensor of early postnatal 
nutrition. Conceivably, maternal high-fat diet 
(≈29% of calories from fat) in a rat model results 
in profound modification of the eCB system pro-
tein levels of progeny [187, 188]. In particular, 
male offspring of mothers subjected to high-fat 
diet exhibit significant increase in hypothalamus 
CB1 receptor protein level, while females show 
increased CB2 receptor protein level in this brain 
region when evaluated at birth [188]. In brown fat 
tissue, a maternal high-fat diet results in increased 
FAAH level in male and increased CB2 receptor 
protein level in female progeny, respectively 

[188]. However, unlike the hypothalamic CB1 
receptor, the brown fat tissue CB1 receptor is 
decreased in male progeny from mothers fed a 
high-fat diet [188]. These findings reiterate the 
tissue- and gender-specific nature of the eCB sys-
tem, showing sensitivity to modulation by exog-
enous interventions.

In addition to nutrition, alcohol exposure in 
rodent models emerges as another critical modu-
lator of eCB system function during perinatal/
early postnatal development. Indeed, ethyl alco-
hol treatment of C57BL/6J mice at postnatal day 
7 (2.5  g/kg s.c. twice) increases AEA levels 
[189]. Unlike AEA, 2-AG level remains 
unchanged due to alcohol-induced up-regulation 
of both DAGLβ and MAGL activities [190]. 
Alcohol treatment also results in up-regulated 
CB1 receptor protein expression in the cortex and 
hippocampus [189]. Moreover, such alcohol 
treatment triggers neurodegeneration that is 
absent in CB1 receptor knock-out mice [189]. 
These findings reinforce the concept of a cross-
talk between the eCB system and the molecular 
targets of another drug of abuse, alcohol [138, 
139].

Data from nonhuman primates are consistent 
with reports on predominant abundance of 2-AG 
over AEA: mass spectroscopy analyses of baboon 
samples from our laboratory show ≈30 times 
higher 2-AG levels when compared to AEA in 
the blood circulation of near-term fetuses and 
their corresponding mothers (Fig. 2.2). Similarly, 
the relative abundance of 2-AG in baboon cere-
bral arteries is higher than AEA in both mothers 
and near-term fetuses (Fig. 2.2). Data from our 
laboratory also present evidence of dynamic 
changes in CB1 receptor function within baboon 
cerebral arteries during development. In particu-
lar, application of AM251 (1  μM) to in vitro-
pressurized branches of middle cerebral arteries, 
harvested from fetal baboons at the end of second 
trimester equivalent of human pregnancy, renders 
artery constriction (Fig. 2.3) [50]. However, iden-
tical pharmacological probing results in artery 
dilation in near-term fetal and their maternal 
cerebral artery segments (Fig. 2.3).

With regards to other nutritional interventions, 
maternal high-fat diet (12% fat) during preg-
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nancy leads to decreased fetal baboon circulating 
2-AG levels near–term, independent of fetal gen-
der [191]. Interestingly, maternal baboon circu-
lating 2-AG levels are increased by high-fat diet. 
In addition to modification of fetal circulating 
2-AG level, fetal hepatic CB2 receptor, FAAH, 
and COX-2 expression values are lower in fetuses 
of both genders from the high-fat group. Within 
this group, DAGLα expression is selectively 
decreased in male fetuses [191].

In humans, a qPCR study on post-mortem 
samples from the middle frontal gyrus area of the 
donors between 39 days and 49 years of age 
unveils complex developmental trajectories for 
critical players within the eCB system [192]. In 
particular, expression of the CB1 receptor is pro-
gressively decreasing from infancy into adult-
hood with a slight local peak at toddler age. A 
similar profile is followed by MAGL [192]. In 
sharp contrast, NAPE-PLD, FAAH, and ABHD6 
are progressively increased from infancy into 

Fig. 2.2  Blood and tissue eCB levels in baboon (Papio 
spp.). (a) AEA levels in circulating blood of near-term 
fetal baboons and their corresponding mothers. Here and 
in B-D, data from a given fetus-mother pair are connected 
by a solid line. Different symbols correspond to data-
points from separate fetus-mother pairs. (b) Circulating 
2-AG levels in near-term fetal baboons and their corre-

sponding mothers. (c) AEA levels in cerebral artery 
lysates of near-term fetal baboons and their corresponding 
mothers. Here and in D, the eCB reading within each 
sample was normalized to protein amount. (d) 2-AG lev-
els in cerebral artery lysates of near-term fetal baboons 
and their corresponding mothers
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adulthood. Finally, DAGLα mRNA shows a bell-
shaped pattern with the peak around school age 
[192].

Consequences of in utero cannabis exposure 
on developmental trajectories in humans have 
been studied in several longitudinal cohort stud-
ies, and are found to be long-lasting. Several 
early reports describe increased tremors, startle 
response, and poor visual responsiveness of can-
nabis-exposed infants [193]. These characteris-
tics are apparent in the absence of effect on 
morphometric (growth) parameters, such as 
weight and head circumference [194]. Notably, 
characteristics of infants born to cannabis users 
disappear by 30 days of age [193], demonstrating 
a remarkable plasticity that allows the develop-
ment of compensatory measures in response to 
cannabis-driven alterations in physiological pro-
cesses. Later in childhood, however, prenatal 
cannabis exposure negatively reflects on atten-
tion processes [195] and cognitive performance 
within executive function [154, 196]. In utero CB 
exposure leads to more aggressive behavior and 
attention problems in 18-month-old girls [17]. 
Moreover, maternal light-to-moderate marijuana 

use during pregnancy is associated with deficits 
in Wide Range Achievement Test-Revised read-
ing and spelling scores and a lower rating on the 
teachers’ evaluations of the children’s perfor-
mance in 10-year-olds [197]. Functional mag-
netic resonance imaging on eighteen-to-twenty 
two-year-old adults that were prenatally exposed 
to cannabis demonstrates alteration in visuospa-
tial working memory processing [198]. Increased 
impulsive behavior has also been reported as a 
consequence of prenatal cannabis exposure [133, 
199]. Yet, maternal marijuana use does not affect 
growth parameters of the progeny in puberty 
[200].

2.7	 �Adolescence

Although exact age limits of the adolescent 
period are poorly defined, adolescence usually 
refers to as a period of pubertal maturation [201]. 
Adolescence is a period of active brain develop-
ment, representing the transition between child-
hood and adulthood [201, 202]. It is also often 
characterized by cannabis use [202, 203]. 
Considering that eCB system controls several 
fundamental processes of neuronal and glial 
development, such as cell proliferation, migra-
tion, and differentiation [1, 204, 205], alterations 
in the eCB system during adolescence are 
expected to impact neuronal maturation.

Studies in rat species describe a peak of CB1 
receptor expression in prefrontal cortex, limbic, 
striatal, and midbrain areas during adolescence 
(postnatal days 25–29  in rats), this peak later 
declines to adult levels [185, 206, 207]. Consistent 
with this peak in CB1 receptor expression, stud-
ies in rodent models show that the adolescent 
brain is particularly vulnerable to CB stimulation 
when compared to adults. Rats that were exposed 
to THC (1.5 mg/kg i.p. every third day) at postna-
tal days 28 (early adolescence) to 49 (late adoles-
cence) show profound alterations in the 
endocannabinoid levels in prefrontal cortex and 
nucleus accumbens regions [208]. Adolescent 
rats that were repeatedly exposed to THC (5 mg/
kg i.p. starting from postnatal day 28) show less 
vocalization during the THC administration pro-

Fig. 2.3  Averaged Changes in cerebral artery diameter 
were assessed by probing of in vitro pressurized branches 
of fetal and maternal middle cerebral arteries harvested 
from baboons (Papio spp.). Effect of AM251 (1 μM) is 
presented as a percent change in artery diameter from pre-
AM251 level. ∗Statistically significant difference 
(P < 0.05 by one-way ANOVA with Tukey post-test). dGa: 
days of gestational age
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cedure when compared to adults (starting from 
postnatal day 60) [209]. This result suggests that 
THC is less aversive to adolescent rats. Also, 
after THC withdrawal, THC-exposed adolescent 
rats exhibit impaired object recognition memory. 
Proteomics analysis of hippocampal samples 
detects significant changes in 27 proteins follow-
ing THC exposure in adolescence, compared to 
only 10 proteins in adults. The former are repre-
sented by oxidative stress/mitochondrial and 
cytoskeletal targets [209]. This finding confirms 
the greater vulnerability of the adolescent brain 
to cannabis exposure compared to the adult brain. 
Similarly, synthetic cannabinoid agonist WIN 
55,212-2 (1.2  mg/kg i.p.) treatment of pubertal 
rats results in poorer recognition memory when 
compared to identical treatment of adult rats 
[210]. Also, working memory impairment and a 
significant decrease in social interaction is 
reported in female rats in response to CB receptor 
agonist CP 55,940 administered daily for 21 days 
at 150, 200, and 300 μg/kg i.p. for 3, 8 and 10 
days, respectively [211]. In addition, in a study 
on rats using eCB system stimulation with CP 
55,940, it is concluded that chronic CB exposure 
leads to long-term memory impairments and 
increased anxiety, irrespective of the age at which 
drug exposure occurs (either at the perinatal 
period, adolescence, or young adulthood) [212].

In a different experimental paradigm, adoles-
cent male rats were administered AEA hydrolysis 
inhibitor URB597 (0, 0.1, or 0.5  mg/kg/day at 
postnatal days 38–43) [213]. Following this treat-
ment, a decrease in CB1 receptor is detected in 
caudate-putamen, nucleus accumbens, ventral 
tegmental area, and hippocampus, while an oppo-
site effect is observed in the locus coeruleus 
[213]. Similar treatment with FAAH inhibitor 
URB597 (0.3 mg/kg i.p.) reverts depressive-like 
symptoms induced by adolescent exposure to 
THC in female rats [214]. Moreover, MAGL 
inhibitor JZL 184 ameliorates a deficit in presyn-
aptic long-term plasticity triggered by exposure 
of adolescent mice to WIN 55,212-2 [215]. These 
findings demonstrate the possibility of persistent 
attenuation in AEA and 2-AG levels as an under-
lying cause of neuronal deficits associated with 
adolescent THC exposure.

In addition to alterations within the eCB sys-
tem, adolescent exposure to CB stimulation inter-
feres with sensitivity to other drugs of abuse. For 
example, exposure of adolescent rats to THC 
(1.5 mg/kg i.p., every third day during postnatal 
days 28–49) results in increased sensitivity to 
opiates and heroin self-administration in adult-
hood (postnatal days 57 and 102) [216]. Mu opi-
oid receptor GTP-coupling is potentiated in 
mesolimbic and nigrostriatal brainstem regions 
in THC-exposed animals, with mu opioid recep-
tor function in the nucleus accumbens shell being 
specifically correlated with heroin intake [216]. 
Thus, the consequences of eCB alteration during 
adolescence are likely region-specific.

There is also a gender-specific component in 
responses of the adolescent brain to eCB stimula-
tion. THC administration to rats twice a day 
(2.5 mg/kg at postnatal days 35–37, 5 mg/kg at 
postnatal days 38–41, and 10 mg/kg at postnatal 
days 42–45, i.p) results in significant decreases 
of CB1 receptor level and CB1/G-protein cou-
pling in the amygdala, ventral tegmental area, 
and nucleus accumbens in females [217]. 
However, males only exhibit these alterations in 
the amygdala and hippocampus. Additional neu-
ronal consequences of adolescence THC expo-
sure include dendritic atrophy and decreases in 
markers of neuroplasticity [218, 219]. At the 
behavioral level, females present behavioral 
despair in a forced swim test, which is accompa-
nied by anhedonia in a sucrose preference test 
[217]. Males only present anhedonia [217].

Ontogeny of CB1 receptor expression in 
humans somewhat differs from that of rats. In 
particular, a gradual increase in CB1 expression 
in the human brain towards adulthood is reported 
[149]. The function of these receptors is success-
fully assessed by [35S]GTPγS autoradiography. 
Moreover, high levels of CB receptors are 
detected during prenatal development in fiber-
enriched areas, these areas being devoid of CB 
receptor signal in adulthood [149]. Several other 
reports on human dorsolateral prefrontal cortex 
samples also fail to detect a rodent-characteristic 
peak in brain CB1 receptor level in adolescence 
[192, 220]. While species-specific expression 
pattern of the CB1 receptor and, perhaps, eCB 
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system function, should be considered as a pri-
mary cause for such discrepancy, it has been pro-
posed that such inconsistency between reports 
might reflect overall instability of the developing 
eCB system [42].

Computer-assisted attention testing that 
addresses visual scanning, alertness, divided 
attention, flexibility, and working memory in 
humans detects a significant impairment in visual 
scanning reaction times in early-onset (before 
age 16) cannabis users but not in late-onset (after 
age 16) users [221]. This outcome suggests that 
the brain in early adolescence is particularly vul-
nerable to alterations in the eCB system upon 
exposure to exogenous cannabis. Adolescent can-
nabis use has also been suggested to exert a mod-
ulatory effect over anxiety-related behaviors and 
depression [154]. In the latter case, a link between 
adolescent cannabinoid exposure and serotoner-
gic hypoactivity has been proposed [222].

2.8	 �Concluding Remarks

Ample data from invertebrate and vertebrate spe-
cies, including humans, document the complex 
roles of the eCB system in development. Gender, 
timing, and pharmacological routes of eCB chal-
lenge are all-important in establishing the final 
trajectory of eCB ontogenesis and its role in 
physiology and pathology.

Continuous growth in proposed CB-based 
pharmacological remedies and increasing THC 
content in recreational cannabis preparations 
[223, 224] call for concerns over incomplete 
understanding of eCB function. Despite the fact 
that the eCB system represents an attractive ther-
apeutics target for various conditions that repre-
sent developmental pathology, the major 
difficulty in developing eCB-targeting pharma-
cotherapy arises from the complexity of the eCB 
system. We are far from finalizing complete char-
acterization of all eCB components, therefore the 
process of fully characterizing the eCB system 
continues.
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