
Chapter 8
Stochastic Modelling of Geophysical
Signal Constituents Within a Kalman
Filter Framework

Olga Engels

Abstract Reliable trend estimation is of great importance while analyzing data.
This importance is even enhanced when using the estimated trends for forecasting
reasons in the context of climate change. While a constant trend might be a valid
assumption for describing some geophysical processes, such as the tectonic motion
or the evolution of Glacial Isostatic Adjustment (GIA) over very short geologic time
frames, it is often too strong of an assumption to describe climatological data that
might contain large inter-annual, multi-year variations or even large episodic events.
It is therefore suggested to consider signal as a stochastic process. Themain objective
of the work described in this chapter is to provide a detailed mathematical descrip-
tion of geodetic time series analysis which allows for physically natural variations
of the various signal constituents in time. For this purpose, state-space models are
defined and solved through the use of a Kalman Filter (KF). Special attention is paid
towards carefully estimating the noise parameters, which is an essential step in the
KF. It is demonstrated how the time-correlated observational noise can be classi-
fied and handled within the state-space framework. The suggested methodology is
applied to the analysis of real Gravity Recovery And Climate Experiment (GRACE),
Global Positioning System (GPS), SurfaceMassBalance (SMB) and globalmean sea
level time series. The latter is derived based on different satellite altimetry missions.
The examples are illustrative in showing how the outlined technique can be used
for estimating time-variable rates from different geodetic time-series with different
stochastic properties.
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8.1 Introduction

Geodetic observations such as from GPS, GRACE or altimetry is indispensable tool
for variety of applications, in particular for those related to climate change. When
analyzing geodetic data and making projections into the future, we usually rely on
a rate which describes with which speed a process is changing. This rate is usually
seen as a constant value and is estimated using a classical Least-Squares Adjustment
(LSA). This interpretation of changes might be misleading if we are dealing with
climate-related measurements that might include deviations from the deterministic
linear trend assumption as well as from the constant seasonal amplitudes and phases.
One example isAntarcticawith its high inter-annual variations and very high episodic
accumulation anomalies which are also called climate noise (Wouters et al. 2013).
The question is whether these variations should be better modeled in the functional
or in stochastic model. If we for instance use GPS to constrain Antarctic GIA, which
is any viscoelastic response of the solid earth to changing ice loads and the most
uncertain signal in Antarctica, we should correct GPS for elastic uplift. Elastic uplift
is an immediate reaction of the solid earth to the contemporaneousmass changes. The
contemporaneous mass changes contain interannual variations, multi-year variations
or even large episodic events. The assumption of the deterministic trend might not
capture all the variability and yield erroneous correction for elastic uplift that, in
turn, yields erroneous constraint on GIA which is required for most techniques when
estimating ice mass balance. Reliable estimation of ice mass balance is required,
among others, for estimating sea level rise. The goal is therefore to estimate the
changes as accurate as possible. For this, we model signal constituents stochastically
using a state space model. The state space model includes an observation and a state
process and can be written as

yt = Ztαt + εt, εt ∼ N (0,H ), (8.1)

αt+1 = Ttαt + Rtηt, ηt ∼ N (0,Q), t = 1, . . . , n, (8.2)

α1 ∼ N (a1,P1), (8.3)

The Eq. (8.1) is called observation equation with yt being an observation vector at
time t, αt being an unknown state vector at time t and εt the irregular term with
H = Iσ2

ε . The design matrix Zt links yt to αt . The observation equation has the
structure of a linear regression model where the unknown state vector αt varies over
time. The Eq. (8.2) represents a first order vector autoregressive model and consists
of a transition matrix Tt , which describes how the state changes from one time step
to the next, and the process noise ηt with Q = Iσ2

η . Process noise variance Q is
assumed to be independent from H . The matrix Rt determines which components of
the state vector αt have the non-zero process noise. The initial state α1 is N (a1,P1)

with a1 and P1 assumed to be known. Since we will restrict ourselves to data that
are evently spaced in time, the index t for the system matrices in Eqs. (8.1), (8.2)
will be skipped hereafter.
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Modeling signal constituents stochastically while representing them in state space
form and using a KF framework to estimate the state parameters is a well-established
methodology for treating different problems in econometrics as described in Durbin
and Koopman (2012) and Harvey (1989). Durbin and Koopman (2012, Chap.4.3)
formulated theKF recursion to sequentially solve the linear state spacemodel defined
in Eqs. (8.1)–(8.3) using following equations:

vt = yt − Zat, Ft = ZPtZ
T + H ,

at|t = at + PtZ
TF−1

t vt, Pt|t = Pt − PtZ
TF−1

t ZPt,

at+1 = Tat + Ktvt, Pt+1 = TPt(T − KtZ)
T + RQRT .

(8.4)

The Kt = TPtZTF−1
t is the so-called Kalman gain and vt is the innovation with

variance Ft . After computing at|t and Pt|t , the state vector and its variance matrix can
be predicted using

at+1 = Tat|t, Pt+1 = TPt|tT T + RQRT . (8.5)

By taking the entire time series y1 . . . , yn for t = 1, . . . , n into account, the state
smoothing α̂t and its error variance Vt can be computed in a backward loop for
t = n, . . . , 1 initialized with rn = 0 and Nn = 0 according to Durbin and Koopman
(2012, Chap.4.4):

rt−1 = ZTF−1
t vt + LTt rt, Nt−1 = ZTF−1

t Z + LTt NtLt,

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt .
(8.6)

The matrix Lt is given by Lt = T − KtZ . The smoothing yields in general a smaller
mean squared error than filtering, since the smoothed state is based on more infor-
mation compared to the filtered state.

The covariance matrix for the smoothed state α̂t can be computed according to
Durbin and Koopman (2012, Chap.4.7):

Cov(αt − α̂t,αj − α̂j) = PtL
T
t L

T
t+1 · · · LTj−1(I − Nj−1Pj) (8.7)

with j = t + 1, . . . , n. If j = t + 1, LTt+1 . . . L
T
t is replaced by the identity matrix I ,

which has a dimension of the estimated state vector.
In the next section, different time seriesmodels applicable to the analysis of geode-

tic data are summarized and put into the state space form defined in Eqs. (8.1)–(8.3).



242 O. Engels

8.2 Time Series Models

Different time series models exist as can be found in e.g., Harvey (1989), Durbin and
Koopman (2012), Peng and Aston (2011). Here, we provide a detailed description
of those models that are usually used to parameterize geodetic time series: trend,
harmonic terms, step-like offsets, and coloured noise.

8.2.1 Trend Modelling

To fit a trend to time series, usually a deterministic function is used

yt = μt + εt, t = 1, . . . , n,

εt ∼ N (0,σ2
ε )

(8.8)

with observation vector yt at time t = 1, . . . , n. The linear trend is μt = α + β · t
with an intercept α and a slope β. The unmodeled signal and measurement noise in
the time series is stored in the error term εt and is often assumed to be an independent
and identically distributed (iid) random variable with zero mean and variance σ2

ε .
By obtaining μt recursively from

μt+1 = μt + β, with μ0 = α (8.9)

and generating βt by random walk process, yields

μt+1 = μt + βt + ξt, ξt ∼ N (0,σ2
ξ ),

βt+1 = βt + ζt, ζt ∼ N (0,σ2
ζ ).

(8.10)

This can be regarded as a local approximation to a linear trend. The trend is linear
if σ2

ξ = σ2
ζ = 0. If σ2

ζ > 0, the slope βt , is allowed to change in time. The larger the
variance σ2

ζ , the greater the stochastic movements in the trend, the more the slope
is allowed to change from one time step to the next. Please note that any changes
in slope is acceleration. Since there is no physical reason for the intercept to change
over time, we model it deterministically by setting σ2

ξ = 0; this leads to a stochastic
trend model called an integrated random walk (Harvey 1989; Durbin and Koopman
2012; Didova et al. 2016).

Representing the state vector in the state space form yields

αt = [
μt βt

]T
. (8.11)

The observation equation reads
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yt = [
1 0

]
αt + εt (8.12)

with

Z =
[
1
0

]
(8.13)

and remaining state space matrices being

T =
[
1 1
0 1

]
, R =

[
0
1

]
, Q = σ2

η, H = σ2
ε . (8.14)

8.2.2 Modelling Harmonic Terms

Harmonic terms are important signal constituents in geodetic time series that are
usually co-estimated with the trend. For this, the Eq. (8.8) is extended with a deter-
ministic harmonic term

ct = c · cosωt + s · sinωt, (8.15)

yielding

yt = μt +
2∑

i=1

(ci · cosωit + si · sinωit) + εt, t = 1, . . . , n, (8.16)

with angular frequency

ωi = 2π

Ti
Ts, (8.17)

where T1 = 1 for an annual signal, and T2 = 0.5 for a semi-annual signal; Ts is the
averaged sampling period

Ts = tn − t1
n − 1

. (8.18)

To allow harmonic terms to evolve in time, they can be built up recursively similar
to the linear trend in the previous section, leading to the stochastic model

ct = ct−1 · cosω + st−1 · sinω + ςt,

st = −ct−1 · sinω + st−1 · cosω + ς∗
t ,

(8.19)

where ςt and ς∗
t are white-noise disturbances that are assumed to have the same

variance (i.e., ςt ∼ N (0,σ2
ς )) and to be uncorrelated. These stochastic components

allow the parameters c and s and in turn the corresponding amplitude At and phase
φt to evolve over time
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At =
√
c2t + s2t

φt = − tan−1(st/ct) − τω) mod 2π, with τ = t − t1
Ts

(8.20)

Inserting the stochastic trend and stochastic harmonic models into Eq. (8.8) yields

yt = μt + c1,t + c2,t + εt, εt ∼ N (0,σ2
ε ) (8.21)

with c1,t and c2,t being annual and semi-annual terms, respectively. Please note that
Eq. (8.21) can be easily extended by additional harmonic terms using the stochas-
tic model of Eq. (8.19) with the corresponding angular frequencies (Harvey 1989;
Durbin and Koopman 2012; Didova et al. 2016).

The state vector becomes

α[b]
t = [

μt βt c1,t s1,t c2,t s2,t
]T

(8.22)

with index b emphasizing that the integrated random walk along with the annual
and semiannual components represent a basic model for geodetic time series. The
observation equation gets the form

yt = [
1 0 1 0 1 0

]
αt + εt (8.23)

with

Z [b] =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
0
1
0
1
0

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (8.24)

The remaining state space matrices can be written as

T [b] =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 1 0 0 0 0
0 1 0 0 0 0
0 0 cosω1 sinω1 0 0
0 0 − sinω1 cosω1 0 0
0 0 0 0 cosω2 sinω2

0 0 0 0 − sinω2 cosω2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (8.25)

R[b] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, Q[b] =

⎡

⎢⎢
⎢⎢
⎣

σ2
ζ 0 0 0 0
0 σ2

ς1
0 0 0

0 0 σ2
ς1

0 0
0 0 0 σ2

ς2
0

0 0 0 0 σ2
ς2

⎤

⎥⎥
⎥⎥
⎦
, H = σ2

ε .
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8.2.3 Modelling Coloured Noise

If the observations are close together, they may contain temporally correlated, so-
called coloured noise. Here, we aim at co-estimating the coloured noise within the
described state spacemodel solvedwithin theKF framework as described in Sect. 8.1.
When not modeling the coloured noise in observations such as from GPS, the solu-
tions for the noise parameters might be outside a reasonable range (e.g., zero noise
variance or noise variance exceeding a reasonable limit). For this, a so-called shap-
ing filter developed by Bryson and Johansen (1965) is used. Since the KF requires
a time-independent noise input, the observational noise εt is parameterized in such
a way that the process noise matrix consists of a time-independent noise while the
output, the state vector forming εt , is time-dependent. This is done by extending
the state vector αt in Eq. (8.22) with the noise. For purposes of modeling tempo-
rally correlated noise in the geodetic time series within the state space framework,
an Autoregressive Moving Average (ARMA) model that subsumes Autoregressive
(AR) and Moving Average (MA) models can be utilized (Didova et al. 2016).

An ARMA model of order (p, q) is defined as

εt =
l∑

j=1

φjεt−j + κt +
l−1∑

j=1

θjκt−j, t = 1, . . . , n, (8.26)

with l = max(p, q + 1), autoregressive parameters φ1, . . . ,φp and moving average
parameters θ1, . . . , θq. κt is a serially independent series of N (0,σ2

κ
) disturbances.

Some parameters of an ARMAmodel can be zero, which provides two special cases:
(i) if q = 0, it is an autoregressive process AR(p) of order p and (ii) if p = 0, it is a
moving-average process MA(q) of order q.

Coloured noise εt can be put into state space form as:

α[ε]
t =

⎡

⎢⎢
⎢⎢⎢
⎣

εt
φ2εt−1 + · · · + φlεt−l+1 + θ1κt + · · · + θl−1κt−l+2

φ3εt−1 + · · · + φlεt−l+2 + θ2κt + · · · + θl−1κt−l+3
...

φlεt−1 + θl−1κt

⎤

⎥⎥
⎥⎥⎥
⎦

(8.27)

with η[ε] = κt+1. The index ε emphasizes that the system matrices are attributed to
the coloured noise that is modeled using an ARMA-process:

T [ε] =

⎡

⎢⎢⎢
⎣

φ1 1 0
...

. . .

φl−1 0 1
φl 0 · · · 0

⎤

⎥⎥⎥
⎦
, R[ε] = [

1 θ1 · · · θl−1
]T

, Z [ε] = [
1 0 0 · · · 0] .

(8.28)
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Combining the basic time series model with ARMA-model yields

αt = (α[ε]
t ,α[b]

t ) (8.29)

with the system matrices

Zt = (Z [ε],Z [b]), T = diag(T [ε],T [b]),

R = diag(R[ε],R[b]),

Q = diag(
[
σ2

κt+1
σ2

ζ σ2
ς1

σ2
ς1

σ2
ς2

σ2
ς2

]
).

(8.30)

Detecting p and q for ARMA(p, q)

The (p, q) of the ARMAmodel define the amount ofφ and θ coefficients necessary to
parameterize coloured noise εt in Eq. (8.27). That means that we first need to know
how large p and q have to be chosen. To get an idea about the appropriate (p, q)
we can (i) follow Didova et al. (2016) and perform a power density function (PSD)
analysis or (ii) we can analyze usually used criteria to identify which model provides
the ‘best’ fit to the given time series.

PSD Analysis

When using a PSD analysis, the idea is that the residuals, obtained after fitting a
deterministic function to the given time series, represent an appropriate approxima-
tion of the noise contained in the time series. For this, we first set the process noise
variance σ2

η to zero andσ2
ε to one, which is equivalent to the commonly used LSA.We

then estimate the state vector using filtering and smoothing recursions described in
Sect. 8.1. The state vector can for instance consist of the components contained in the
basic model described in Eq. (8.22). We estimate the state vector by KF considering
quantities introduced in Sect. 8.1

ε̂t = H (F−1
t vt − KT

t rt). (8.31)

The KF is used instead of LSA, because KF allows the residuals to be computed at
each time step t = n, . . . , 1 regardless possibly existing data gaps in the time series.
The postfit residuals obtained after fitting a deterministic model to the observations
represent an approximation of the observational noise. In the next step, we compute
the PSD function of the approximate coloured noise. Then, using this PSD function
we estimate the parameters of the pure recursive (MA) and non-recursive (AR) part
of the ARMA filter by applying the standard Levinson–Durbin algorithm (Farhang-
Boroujeny 1998) to p, q ∈ {0, . . . , 5}. We limit the order to 5 to keep the dimension
of the state vector αt relatively short. The estimated parameters are then used to
compute the PSD function of the combined ARMA(p, q) solution. Finally, we use
Generalized Information Criterion (GIC) to select the PSD of the ARMAmodel that
best fits the PSD of the approximate coloured noise. The (p, q) of this ARMAmodel



8 Stochastic Modelling of Geophysical Signal Constituents … 247

define the amount of φ and θ coefficients necessary to parameterize coloured noise
εt in Eq. (8.27).

Criteria for ‘best’ fit

It is important to understand that the residuals, obtained after fitting a deterministic
function to the given time series,may still contain unmodeled time-dependent portion
of the signal. That means that these residuals are only an approximation of the
observational noise.

To get an idea about which ARMA(p, q)model is the most appropriate to param-
eterize the observational noise of a particular time series, we can compare the log-
likelihood value of a particular fitted model. Since the loglikelihood value is usually
larger for larger number of parameters (for larger p and/or q), we also need a crite-
rion that can deal with different amount of parameters. For this, Akaike Information
Criterion (AIC) and the Bayessian Information Criterion (BIC) can be used (Harvey
1989).

ARMA and Long-Range Dependency

ARMA, as a high-frequency noise model, is known to describe a short-range depen-
dency (have a short memory). The noise in GPS time series, however, is believed
to contain long-range dependency (have a long memory). Therefore, a power law
model is usually used to model GPS noise. According to Plaszczynski (2007), power
law noise, which has a form 1

f α , is a stochastic process with a spectral density having
a power exponent 0 < α ≤ 2. For GPS time series analysis, the power law model
with α = 1 and α = 2 is usually used. In case of α = 2, we are talking about a ran-
dom walk noise, which is an analogue of the Gaussian random walk we employed to
model time-varying signal constituents. Plaszczynski (2007) has shown that ARMA
models can be used to generate random walk noise. This can be immediately seen
from the mathematical description of the random walk process

εt = εt−1 + κt (8.32)

with εt being the observation at time t. The Eq. (8.26) is equivalent to Eq. (8.32) in
case q = 0, p = 1 and φ1 = 1. That means that AR(1), which is a special case of
ARMA, can represent random walk noise.

In case ofα = 1, we are talking about a flicker noise, which is difficult to represent
within the state space model and therefore, can be only approximated. On the one
hand, flicker noise can be approximated by a linear combination of independent
first-order Gauss-Markov processes, as it has been shown by Dmitrieva et al. (2015).
On the other hand, Didova et al. (2016) have shown that also ARMA models can
approximate flicker noise, when a special ARMA case—AR(p)—is used. In their
supplement, Didova et al. (2016) demonstrated that an infinite number of parameters
pwould be required to exactly describe flicker noise.However, limiting themaximum
order p to 5 to control the dimension of the state vector α[ε]

t would still be sufficient
to approximate flicker noise within the state space formalism.
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8.2.4 Modelling of Offsets

Some geodetic data, such as GPS observations might include offsets that must be
parameterized to avoid additional errors in the estimated trends (Williams 2003). If
the offsets are related to hardware changes, they are step-like and easy to include
into the state space model. For this, a variable wt is defined as:

wt =
{
0, t < τe,

1, t ≥ τe.
(8.33)

Including this in the observation equation Eq. (8.21) gives

yt = μt + c1,t + c2,t + δ wt + εt, t = 1, . . . , n, (8.34)

with δ measuring the change in the offset at a known epoch τe. For k offsets, the state
vector can be written as

α[δ]
t = [δ1 . . . δk ]T . (8.35)

Wecannowcombine the differentmodels: (i) the basicmodel defined inEq. (8.22),
(ii) the coloured noise from Eq. (8.27) modeled here using an ARMA-process, and
(iii) the model for k offsets from Eq. (8.35)

αt = (α[ε]
t ,α[b]

t ,α[δ]
t ), (8.36)

with the system matrices

Z = (Z [ε],Z [b], Ik), T = diag(T [ε],T [b], Ik),

R = diag(R[ε],R[b], 0k),

Q = diag(
[
σ2

κt+1
σ2

ζ σ2
ς1

σ2
ς1

σ2
ς2

σ2
ς2

]
),

(8.37)

where Z , T and R with corresponding indices have been defined in Sects. 8.2.2 and
8.2.3.

8.2.5 Hyperparameters

The parameters that build the system matrices Q and H decide about the variability
of the estimated signal constituents (the variability of the parameters stored in the
state vector α). For instance, the larger is σ2

ζ , the more the slope is allowed to change
from one time step to the next; the larger is σ2

ς1
, the more variability is allowed for the

corresponding harmonic term. That means that if we chose one of these parameters
too large, it will absorb variations possibly originating from other signal components.
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There parameters, therefore, govern the estimates of the state vector and are called
hyperparameters. These parameters are stored in vector ψ

ψ = [
ψε ψη

]T
(8.38)

and can be either assumed to have a certain value, as it was done byDavis et al. (2012),
or they can be estimated based on the Kalman filter. Because we do not have any a
priori information regarding the process noise, we estimate the hyperparameters. One
way to do so is bymaximizing likelihood. If a process is governed by hyperparameters
ψ, which generate observations yt , the likelihood L of producing the yt for known ψ
is according to Harvey (1989)

L(Yn|ψ) = p(y1, . . . , yn) = p(y1)
n∏

t=2

p(yt |Yt−1). (8.39)

The p(yt|Yt−1) represents the distribution of the observations yt conditional on the
information set at time t − 1, that is Yt−1 = {yt−1, yt−2, . . . , y1}. In praxis, we usually
work with loglikelihood logL instead of the likelihood L

logL(Yn|ψ) =
n∑

t=1

p(yt |Yt−1). (8.40)

The hyperparametersψ are regarded as optimal if the logL ismaximized or the−logL
is minimized. Since the E(yt|Yt−1) = Ztat , the innovation vt = yt − Ztat (Sect. 8.1)
with the variance Ft = Var(yt|Yt−1), inserting N (Ztat,Ft) into Eq. (8.40) yields

log L(Yn|ψ) = −n

2
log(2π) − 1

2

n∑

t=1

(log |Ft| + vTt F
−1
t vt), (8.41)

which is computed from the Kalman filter output (Eq. (8.4)) following Durbin and
Koopman (2012, Chap.7). Harvey and Peters (1990) refer to obtaining the logL in
such a way as via the prediction error decomposition.

Because the hyperparameters represent standard deviations that cannot be nega-
tive, they are defined for our basic state space vector from Eq. (8.22) as

ψ = 0.5 log
[
σ2

ε σ2
η

]T = 0.5 log
[
σ2

ε σ2
ζ σ2

ς1
σ2

ς2

]T
. (8.42)

We are numerically searching for the optimal hyperparameters ψ that minimize
the −logL(Yn|ψ) (the negative logL is called objective function). The lower the
dimension of the hyperparameters vector, the faster an optimization algorithm might
converge. However, this does not guarantee that the optimal solution will be found
if the optimization problem is non-convex. An optimization problem is non-convex,
if additionally to the global minimum (that we are aiming at to find), several local
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minimum points exist. At these local minimum points, the value of the objective
function −logL is different than at the global minimum. That means that if we
start searching for the global minimum in the proximity of a local minimum, the
optimization algorithm will suggest the local minimum as the optimal solution. It
follows fromhere that the starting point (also called initial guess) is crucial for finding
the optimal set of hyperparameters and in turn, reliable parameters stored in the state
vector α that are the signal constituents we are interested in to estimate.

In other words, if the problem is non-convex, there is no guarantee of finding
a global minimum. Depending on the initial guess, the solution might be a local
minimum meaning that there is non unique solution. The preferred solution is sig-
nificantly depending on the length of the state space vector, on the length of the time
series (the longer the better), on the noise content and kind, on the non-convexity of
the problem, etc. What exactly causes the non-convexity and to which extent (data,
definition of the transition matrix, or of the state vector, or of the hyperparameters
vector, ormost likely the interaction of all aforementioned components) is a challeng-
ing topic that needs to be investigated, but is out of the scope of this study. Therefore,
we recommend to always check the spectral representation of the estimated signal
constituents (Sect. 8.3.4) and if independent observations are available, to use them
for validation (Sect. 8.3.3).

There are, however, tools to increase the chance of finding the optimal solution
by limiting the parameter search space and/or by applying explicit constraints on
the hyperparameters (Didova et al. 2016). Yet, we first should decide on which
optimization algorithm to use. Since the problem we are dealing with is non-convex,
we use an Interior-Point (IP) algorithm as described in Byrd et al. (1999) to find
hyperparameters that minimize our objective function. This algorithm is a gradient-
based solver, which means that the gradient of the objective function is required.
According to Durbin and Koopman (2012, Chap.7), the gradient of the objective
function can be analytically computed using the quantities calculated in Sect. 8.1:

∂ log L(Yn|ψ)
∂ψ

= 1

2

n∑

t=1

tr
{
(utuTt − Dt)

∂Ht
∂ψ

}
+ 1

2

n∑

t=2

tr
{
(rt−1rTt−1 − Nt−1)

∂RtQtRTt
∂ψ

}
,

(8.43)
where ut = F−1

t vt − KT
t rt and Dt = F−1

t + KT
t NtKt .

To increase the likelihood of getting the optimal solution, we start the IP algorithm
for different starting points. The larger the amount of starting points the higher the
probability of finding the global minimum, the longer the execution time of the algo-
rithm. One should however ensure that after each run numerically the same optimal
solution is obtained. From all the different solutions, the solution is used to estimate
the state vector α that provides the smallest objective function value (Anderssen and
Bloomfield 1975). The uniformly distributed starting points are randomly generated.

To further increase the likelihood of getting the optimal solution, we generate the
starting pointswithin a finite search space. For this, we define lower and upper bounds
for our hyperparameters. The lower bounds are set equal to zero, as the standard
deviations can not be less than zero. To define upper bound, the traditional LSA is
utilized. We first fit a basic deterministic model (trend, annual, semiannual terms) to
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the analyzed time series. Thevarianceof the postfit residuals is used as anupper bound
for the σ2

ε . The variance of the postfit residuals obtained after fitting the deterministic
model is larger than the σ2

ε , as it contains additionally to the unmodeled signal and
measurement noise, possible fluctuations in the modeled trend, annual and semi-
annual components. The σ2

ε in Eq. (8.23) does not contain possible fluctuations in
the modeled terms, since we model them stochastically as described in Sect. 8.2. The
upper bounds for harmonic terms are defined in similar way. Deterministic harmonic
terms are simultaneously estimated using LSA within a sliding window of minimum
two years. The maximum size of the sliding window corresponds to the length of
the analyzed time series. In this way, a sufficient amount of for instance annual
amplitudes is estimated for different time periods. The variance computed based on
the multiple estimates is regarded as the upper bound for σ2

ς1
. This is an upper bound,

since the standard deviations computed for different time intervals indicate possible
signal variations within the considered time span and contain possible variations
within the trend component. These standard deviations are always larger than the
process noise of the corresponding signal, which only represents the variations from
one time step to the next. The upper bound for other harmonic terms are defined
in the same way. The search space associated with the trend component σ2

ζ is only
limited through the lower bound.

The importance of limiting the parameter search space within a non-convex opti-
mization problem is demonstrated in Didova et al. (2016). As already mentioned,
the reliability of the estimated hyperparameters can be verified by investigating the
amplitude spectrum of the estimated signal constituents. As there is no recipe for
solving a non-linear problem that has several local minima (or maxima), any prior
knowledge which might be available should be used. This can be easily done by
setting explicit constrains for instance on the noise parameter σ2

ε . However, before
introducing a constraint, it should be verified that this constraint is indeed supported
by the data (for more details the reader is reffed to Didova et al. 2016).

8.3 Application to Real Data

In this section, we show how the time-varying trends can be estimated from different
geodetic time series that feature different stochastic properties. For this, we estimate
time-variable rates from GPS and GRACE at the GPS stations in Antarctica that are
located in regions where (i) a high signal-to-noise ratio is expected and (ii) an apri-
ori information regarding the geophysical processes exists. For monthly available
GRACE time series, a white noise assumption is used. In contrast to that, for daily
GPS observations we co-estimate coloured noise using the procedure described in
Sect. 8.2.3. If time-varying rates derived from GRACE and GPS exhibit the same
behavior, we interpret the estimated variations as a signal and not as noise. To
strengthen this interpretation, we derive time-varying rates utilizing monthly SMB
data fromRegionalAtmosphericClimateModel (RACMO) at the sameGPS stations.
The hypothesis is that (i) all three techniques (RACMO, GRACE, and GPS) should
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capture small-scale accumulation variability present in SMB and (ii) this variability
can be detected using the described state space framework solved by KF.

Moreover, we analyze the Global Mean Sea Level (GMSL) time series which has
a temporal resolution of 10 days. The time series is derived using a combination of
different altimetry products over 25 years.

8.3.1 Pre-processing of GRACE and SMB

GRACEandSMB time series aremonthly available. GRACE time series are obtained
using unconstrained DMT2 monthly GRACE solutions completed to degree n and
order m 120 (Farahani et al. 2016). Degree-1 coefficients were added using values
generated from the approach of Swenson et al. (2008), and the C20 harmonics were
replaced with those derived from satellite laser ranging (Cheng and Tapley 2004).
Since DMT2 solutions are available starting from February 2003 to December 2011,
we focus on analyzing this time span.

SMB is the sum of mass gain (precipitation) and mass loss (e.g., surface runoff)
provided at the spatial resolution of 27km. SMB reflects mass changes within the firn
layer only. GRACE signal over Antarctica also reflects mass changes within the firn
layer, but additionally it contains changes due to GIA and ice dynamics. We remove
the GIA-inducedmass changes from the total GRACE signal usingGIA rates derived
in Engels et al. (2018).

To ensure a fair comparison between GRACE and SMB data in terms of spatial
resolution, the dynamic patch-approach described in Engels et al. (2018) is applied
to retrieve surface densities from both, GRACE and SMB data.

To enable a direct comparison between the GRACE, SMB and GPS data, we con-
vert GRACE and SMBderivedmonthly surface densities into vertical deformation as
observed by GPS. For this, derived surface densities are first converted into spherical
harmonic representation of the surface mass Cq

nm, S
q
nm according to Sneeuw (1994).

In the next step, these spherical harmonics are converted into spherical harmonics in
terms of vertical deformation Ch

nm, S
h
nm following Kusche and Schrama (2005) as

Ch
nm

Sh
nm

}
= 3ρw

ρe

h′
n

2n + 1

{
Cq
nm

Sq
nm

}
(8.44)

using the density of water ρw, the density of Earth ρe, and Load Love numbers h′
n.

Finally,monthly spherical harmonics in terms of vertical deformation are synthesized
at the locations of GPS stations resulting in a time series of vertical deformation.

The resulting monthly time series derived based on GRACE and SMB data are
used to estimate time-varying rates along with stochastically modeled known har-
monics (annual and semiannual components for GRACE and SMB data, and addi-
tionally tidal S2 periodic term for GRACE). For both datasets, a constant intercept
is co-estimated. The state vector has the form as described in Eq. (8.22) with an
additional tidal S2 harmonic term (161 days) to parameterize GRACE time series.
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8.3.2 Pre-processing of GPS

We use daily GPS-derived vertical displacements at two permanent GPS stations in
Antarctica: (i) at VESL station that is located in QueenMaud Land of East Antarctica
and (ii) atCAS1GPSstation that is located inWilkesLand.Theprocessing of theGPS
displacements followed that ofThomas et al. (2011), althoughGPSobservationswere
intentionally not corrected for non-tidal atmospheric loading. To be more consistent
with GRACE-derived data, we corrected the GPS data using the Atmospheric and
Oceanic De-aliasing (AOD) product (Flechtner 2007).

The GPS observations contain step-like offsets within the analyzed time period:
at the CAS1 station two offsets occurred (in Oct. 2004 and Dec. 2008) and at the
VESL station one (in Jan. 2008). Moreover, GPS time series might contain outliers
that should be removed from the data prior applying KF to it. This is because KF
is not robust against outliers. We used Hampel filter to detect the outliers (Pearson
2011) and removed the observations from the time series even if the outliers were
detected only in the horizontal or vertical component.

Another issue when dealing with GPS data is that the observations might be
not evently spaced in time, partially yielding relatively large data gaps. In gen-
eral, KF can easily deal with irregularly distributed observations. However, we need
equally spaced data to be able to model temporally correlated noise of higher orders
(Sect. 8.2.3) within the state space framework. For this, we fill short gaps with inter-
polated values. Long gaps are filled with NAN values. For the daily GPS data, we
defined a gap to be long if more than one week of data is missing (seven consecutive
measurements).

To estimate time-varying rates from GPS time series, slope, annual and semi-
annual signal constituents are allowed to change in time. The state vector has the
form as described in Eq. (8.36) containing step-like offsets and an ARMA-process
to parameterize the coloured noise. The order p and q of the ARMA-process was
detected by performing the PSD analysis as described in Sect. 8.2.3. Figures8.1a and
b demonstrate the estimated time-varying slope along with the time-varying annual
signal for both analyzed GPS sites.

8.3.3 GRACE-SMB-GPS

When comparing the time-varying rates of vertical deformations obtained from the
three independent techniques, three important aspects should be considered. First,
GPS observations are discrete point measurements that are sensitive to local effects
and GRACE and SMB results are spatially smoothed over the patches defined by
Engels et al. (2018). Second, the GPS observations used here are global. They refer
to a reference framewith origin in the Center-of-Mass (CM) of the total Earth system
while the vertical deformations we obtained from GRACE and SMB are regional.
To enable a fair comparison of GRACE and SMB time series with those of GPS,
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Fig. 8.1 Time-varying slope (top) and annual signal (bottom, dashed line) along with the time-
varying annual amplitude (bottom, solid line) for GPS vertical site displacements at the a CAS1
and b VESL station (without any corrections applied)

we should ‘regionalize’ GPS observation to Antarctica. For this, we should reduce
the signal originating from non-Antarctic sources from the GPS signal. Third, GPS
observations contain global GIA whereas GRACE and SMB are GIA-free assuming
that a correct GIA signal is subtracted from GRACE data. GIA contaminates the
GPS secular trend at very low degrees, mostly driven by GIA in the Northern Hemi-
sphere (Klemann and Martinec 2011) and the leakage from non-Antarctic sources is
alsomostly originating fromchanges in the spherical harmonic coefficients of degree-
one and C20. We therefore remove the time-varying slope obtained from degree-one
and C20 time series from the time-varying slope obtained from GPS observations.
The assumption is here that these low-degree coefficients are a sufficient first-order
approximation of the non-Antarctic leakage.

Figures8.2 and 8.3 show three time-varying rates estimated using GRACE, SMB,
and GPS time series for the VESL and CAS1 station, respectively. In these figures,
GPS-derived time-varying rates are corrected for degree-one, C20, and atmospheric
non-tidal variations. There is a high correlation of 0.9 and 0.7 between the SMB- and
GRACE-derived time-varying rates for the CAS1 and VESL station, respectively.
The correlation between GPS- and GRACE-derived time-varying rates is slightly
lower: 0.6 for the CAS1, and 0.8 for the VESL station. Although the correlation
is generally high, a systematic bias between the three estimates might exist. This
bias can be explained by geophysical processes. The bias between the SMB- and
GRACE-derived time-varying rates would most likely be due to the fact that SMB
data contain variations within the firn layer and GRACE-derived rates represent
variations within the firn and ice layer after being corrected for GIA. That means that
after subtracting SMB fromGRACE rates, the remainder should represent variations
mostly associated with ice dynamics. We therefore subtract the mean slope of SMB
from the mean slope of GRACE, assuming the difference is representative for ice
dynamics. In this way computed bias between the SMB- and GRACE-derived time-
varying rates is added to the time-varying SMB rates resulting in the shift of the
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Fig. 8.2 Time-varying slope
for GRACE (blue), GPS
(green), and SMB (red) time
series at the geolocation of
the VESL site in Queen
Maud Land, East Antarctica.
a Original time-varying rates
and b shifted time-varying
rates (blue: GRACE+GIA,
red: SMB+ice
dynamics+GIA).
Time-varying error bars are
1σ

Fig. 8.3 Time-varying slope
for GRACE (+GIA) (blue),
GPS (green), and SMB (+ice
dynamics+GIA) (red) time
series at the geolocation of
the CAS1 site in Wilkes
Land, East Antarctica.
Time-varying error bars are
1σ
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SMB-derived time-varying rates towards the GRACE-derived time-varying rates
(Fig. 8.2b). The mean rate for ice dynamics is estimated to be 0.3 ± 0.09 and−0.5 ±
0.08mm for CAS1 and VESL station, respectively. Please note that we do not show
the original plot of the three time series for the CAS1 station, as the difference
between the ‘shifted’ and ‘unshifted’ version is small and cannot be detected by
visual inspection.

The bias between the GPS- and GRACE-derived time-varying rates would most
likely be due to the fact that GPS data contain variations due to both surface processes
(firn, ice) andGIAwhereasGRACE-derived rates areGIA-free, sincewe removed the
GIA rates from them in the pre-processing step as described in Sect. 8.3.1. It follows
that the difference between the mean slope of GPS and the mean slope from GRACE
shouldmainly represent the solid-earth deformation associated with GIA. In this way
computed bias between the GRACE- and GPS-derived time-varying rates is added
to the time-varying GRACE rates resulting in the shift of the GRACE-derived time-
varying rates towards the GPS-derived time-varying rates (Figs. 8.2b, 8.3). Please
note that the bias attributed to GIA is also added to the time-varying rates derived
from SMB allowing a direct comparison between the three independent techniques.
The mean rate for GIA is estimated to be −0.2 ± 0.8 and 1.3 ± 0.4mm for CAS1
and VESL station, respectively.

After correcting the SMB- andGRACE-derived time-varying rates for ice dynam-
ics and GIA, respectively we can compute the agreement between SMB/GRACE and
GRACE/GPS time-varying rates in terms of Weighted Root Mean square Residual
(WRMS) reduction in percent following Tesmer et al. (2011). This quantity takes
into account the magnitude and behavior of the time-varying rates estimated from
two different time series as well their uncertainties. For ice dynamics corrected SMB
time-varying rates explain 49 and 27% of the GRACE slope WRMS for CAS1 and
VESL GPS stations, respectively. For GIA corrected GRACE time-varying rates
explain 21 and 40% of the GPS slope WRMS for CAS1 and VESL GPS stations,
respectively. Please note the improved agreement between themagnitude of the peaks
derived from GRACE and GPS rates at the CAS1 station compared to the results
shown in Didova et al. (2016) (their Fig. 9). The better agreement is mainly caused by
the dynamic patch approach applied to the GRACE data, which localizes the signal
and thus, improves its recovery (Engels et al. 2018).

Despite the visual inspection of Figs. 8.2 and 8.3 the WRMS reduction in per-
cent confirms a good agreement between the temporal variations derived from three
independent techniques. If we only compared the deterministic trends fromGRACE,
SMB and GPS, we would not be able to get any insights into the geophysical pro-
cesses. Analyzing the time-varying rates allows us to state that all three techniques
capture small-scale accumulation variability modeled by SMB at the two GPS loca-
tion. In particular, both GRACE and GPS seem to observe the same geophysical
processes with similar magnitude. We interpret these geophysical processes as sig-
nal and not as noise. Under some assumptions as described above, we are even able
to separate different signals. We could go further an compare the GIA from this
analysis with for instance the GIA used to correct GRACE data, however this is out
of the scope of this chapter.
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As stated at the beginning of this section, we have chosen the CAS1 and the VESL
GPS stations because of existing prior knowledge about the geophysical process that
took place there. Lenaerts et al. (2013) reported strong accumulation events in 2009
and 2011 in Dronning Maud Land, EA where the VESL GPS stations is located. As
we performed the comparison in terms of vertical deformation, the time-varying rates
in Fig. 8.2 contain a clear subsidence of the solid Earth as an immediate response
to the high accumulation anomaly in both years. This subsidence is detected by all
three independent techniques as well as the subsidence at the CAS1 GPS station in
2009 reported by Luthcke et al. (2013).

8.3.4 Global Mean Sea Level Time Series

We analyze GMSL time series1 over the last 25 years that are derived using a com-
bination of different altimetry products. GMSL time series has a repeat cycle of 10
days, which is a different sampling characteristic compared to daily GPS- or monthly
GRACE-observations. Since the time seriesmight contain irregularly spaced data,we
fill short gaps with interpolated values. Long gaps are filled with NAN values as for
GPS time series. Here, we define a gap to be long if three consecutive measurements
are missing (i.e., one month of altimetry observations).

While analyzing the LSA residuals of GMSL time series, a temporally correlated
noise is detected. We model this coloured noise as AR-process within the Kalman
Filter (Sect. 8.2.3). To get an idea about which AR(p) model is the most appropriate
to parameterize the observational noise of the GMSL time series, we compared the
loglikelihood values, AIC, and BIC for AR(p) with p = 1 . . . 9. That means that the
time series is parameterized using different AR(p), bias alongwith slope, annual, and
semiannual components that are allowed to change in time. The corresponding state
space model is solved by Kalman Filter. The AR(5) is determined to be a preferred
parameterization for the temporally correlated noise in the GMSL time series, as for
thismodelweget theminimumAICandBIC, and themaximum logL fromall the nine
different solutions. Figure8.4 shows the deterministic slope estimated by commonly
used LSA with its formal errors rescaled by the a posteriori variance. Figure8.4 also
contains the time-varying slope. From the time-varying slopewe computemean slope
to allow both estimates (from LSA and KF) to be directly compared. As can be seen
in Fig. 8.4, the results of two techniques agree very well. The advantage of having
derived the time-varying trend for the GMSL is that we can immediately see that the
acceleration is not constant over the analyzed time span, since any change in slope
term in Fig. 8.4 reflects acceleration. When computing the acceleration between the
2007 and the begin of the time series, we get an insignificant number of 0.04 ±
0.08mm/y2, between 2007 and 2015 there is a significant average acceleration of
0.27 ± 0.09mm/y2 and over the entire analyzed time period the average acceleration

1http://sealevel.colorado.edu/content/2018rel1-global-mean-sea-level-time-series-seasonal-
signals-retained, last access on 09.07.2018.

http://sealevel.colorado.edu/content/2018rel1-global-mean-sea-level-time-series-seasonal-signals-retained
http://sealevel.colorado.edu/content/2018rel1-global-mean-sea-level-time-series-seasonal-signals-retained
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Fig. 8.4 Slope estimates in
mm/year: the time-varying
slope derived using the
Kalman Filter (KF)
framework (black); the mean
slope derived from the KF
time-varying slope (red); the
slope estimated using the
least-squares adjustment
with formal LSA errors
rescaled by the a posteriori
variance (blue). Error bars
are 1σ

Fig. 8.5 Amplitude
spectrums of the estimated
slope (top), annual (middle)
and semi-annual (bottom)
components for the GMSL
time series in mm
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is estimated to be 0.1 ± 0.06mm/y2 (not significant at the 95% confidence level).
It should be noted, however, that we utilized the GMSL time series as it is, without
removing signals, such as eruption or El Niño Southern Oscillation (ENSO) effects
(Nerem et al. 2018), from the time series prior to estimating time-varying rates.

The reliability of the estimated hyperparameters and, in turn, of the different
signal constituents is verified using spectral analysis. Figure8.5 demonstrates that
the amplitude spectrums of the estimated slope, annual and semiannual components
show significant peaks over the expected frequencies without existing significant
peaks elsewhere.

8.4 Conclusions

We estimated time-varying rates from four different time series: GPS, GRACE,
SMB, amdGMSL. For each time series, different parameters are estimated. Common
to all of them is that along with time-varying rates we also allowed the harmonic
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signals to change in time. In this way we avoid the contamination of the time-
varying rates by the variability in harmonic terms. The variability of the derived
rates, which is governed by hyperparameters, is validated using the inter-comparison
of time-varying rates derived from GPS, GRACE and SMB data at the locations
of two permanent GPS stations. All three independent techniques capture small-
scale accumulation variability present in SMB at these two locations. Such an inter-
comparison of time-varying rates that are derived using the described state space
framework solved by KF can help decide whether the observed power in the GPS
time series at the low frequencies is caused by inaccurately modeled colored noise or
is due to geophysical variations. Moreover, any change in the derived time-varying
rates reflects an acceleration. The analysis of the GMSL time series over the 25 years
suggests the absence of a significant constant acceleration for this time period.
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