
Chapter 7
Modelling the GNSS Time Series:
Different Approaches to Extract Seasonal
Signals
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Abstract Seasonal signatures observed within the Global Navigation Satellite Sys-
tem (GNSS) position time series are routinely modelled as annual and semi-annual
periodswith constant amplitudes over time. However, in this chapter, we demonstrate
that these amplitudes can vary significantly over time, by as much as 3 mm at some
stations. Different methods have been developed to estimate the time-varying curves.
The advantages and disadvantages of those methods are presented for synthetic data,
which mimic the real position time series, including their time-changeability and
noise properties. For these series, we conclude that the Kalman filter and an adapta-
tion of theWiener Filter give the best results. As the Earth’s lithosphere is seasonally
loaded and unloaded, we also account for the non-tidal atmospheric, oceanic and
continental hydrology loading effects, which contribute the most to the seasonal sig-
natures. We demonstrate that a direct removal of loading effects leads to the signifi-
cant change in the power of the GPS position time series, especially for frequencies
between 8 and 80 cpy; if the noise model is not adapted to this new situation, this
causes an underestimation of velocity uncertainty. Therefore, we recommend to use
the Kalman filter or adaptive Wiener filter methods instead to remove the seasonal
signal to ensure accurate estimates of the trend error.
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7.1 Introduction

Nowadays, most of the geophysical phenomena are studied using Global Naviga-
tion Satellite System (GNSS) position time series, for which Global Positioning
System (GPS) observations provide the longest observation span. Among others,
the vertical land motion at tide gauges, plate motion or lithospheric deformation
should be mentioned as the principal applications (Altamimi et al. 2016; King and
Santamaría-Gómez 2016; Karegar et al. 2017; Graham et al. 2018; Montillet et al.
2018); for these, the horizontal and vertical velocities along with their uncertainties
are employed. A secular motion is estimated from the GNSS position time series
simultaneously with seasonal signatures and offsets; these constitute a so-called
mathematical or deterministic model. The term ‘seasonal’ is to be understood as the
annual plus semi-annual signal. Once the deterministic model is removed from the
series, the residuals are examined with the optimal model of noise.

The noise content in the GNSS position time series has been already recognized to
be preferably characterized, for both regional and global networks, by the white and
power-law noises combination (among others, Mao et al. 1999; Williams et al. 2004;
Bos et al. 2010; Santamaría-Gómez et al. 2011; Wang et al. 2012; Klos et al. 2016
should be mentioned). The noise content is most often examined with the Maximum
Likelihood Estimation (MLE; see Langbein and Johnson 1997 or Langbein 2012)
which provides the optimal noise parameters basing on the log-likelihood function
values. The power-law behavior of the noise, observed for the low frequencies, is
parametrized by spectral indices varying for position time series from −2 to 0. A
random-walk noise with a spectral index of −2 arises from the geodetic monument-
specific instability or from the local multipath errors (Beavan 2005; King et al. 2012;
Klos et al. 2015). Then, a flicker noise already pointed out to be preferred for the
position time series has a spectral index of −1. It is transferred into the series from
large scale effects from hydrosphere or atmosphere which were mis- or un-modelled
at the stage of data processing. Also, the satellite clocks, phase center or orbital
errors are classified to the possible causes of flicker noise. A common influence
of those effects on the regional network is referred to as Common Mode Errors
(CME). CME has been already effectively modelled and removed from the position
time series using a wide range of spatio-temporal filtration techniques (Dong et al.
2006; Gruszczynski et al. 2018). Finally, a white noise with spectral index of 0, is
a temporally uncorrelated type of noise; it brings no correlation within the series.
A proper recognition and characterization of noise content is important, as it has a
direct impact on the uncertainty of velocity: its character assumed in a wrong way,
will lead to its under- or over-estimation (Williams 2003b; Williams et al. 2004;
Santamaría-Gómez et al. 2011; Klos and Bogusz 2017).

Improper modelling of the noise is however not the only cause leading to overes-
timation of uncertainties. If any of the time series components, i.e. long-term trend,
seasonal signatures or offsets, is assumed in a wrong way, this effect will be trans-
ferred to the residuals causing a change of its character (Williams 2003a; Bogusz
and Klos 2016). On the contrary, once too much autocorrelation is removed from
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the time series in a form of long term non-linear trend or seasonal components,
one would observe an artificial improvement in a velocity uncertainty of up to 56%
(Bogusz and Klos 2016). Blewitt and Lavallée (2002) were the first to demonstrate
that replacing the pure velocity model with velocity combined with seasonal signals
prolongs the time of the reliable velocity uncertainty estimation. This problem was
discussed further by Bos et al. (2010) who showed that assuming a white and power-
law noise combination leads to a decrease of the accuracy of the linear trend. This
is, however, as showed recently by Klos et al. (2018d), directly related to the type of
the power-law noise we add to the assumed combination.

A common practice is to remove the seasonal signals using the Least-Squares
Estimation (LSE) approach, assuming the time-constancy of their parameters (Ble-
witt and Lavallée 2002). Annual and semi-annual signals (periods of 365.25 and
182.63 days) impacting the positions of the GNSS permanent station are broadly
modelled (Blewitt et al. 2001; Collilieux et al. 2007) as these are mostly induced by
geophysical sources and errors. Tides and transportation ofmasswithin the Earth sys-
tem modelled in a form of atmospheric, oceanic and hydrological effects (Tregoning
et al. 2009; van Dam et al. 2012; Dill and Dobslaw 2013) influence seasonal signa-
tures the most. Other contributors are thermal expansion of ground and monuments,
or multi-path variations (King et al. 2008; Yan et al. 2009). Besides, systematic errors
of numeric origin aliased into a GNSS solution (Penna and Stewart 2003) are also
observed in the position time series; their contribution to seasonal signatures is some-
times as large as the loading effects. Beyond the annual and semi-annual signals, a
draconitic year (Agnew and Larson 2007) with a period of 351.6 (Amiri-Simkooei
2013) days being an artefact of a GPS solution has to be also included in the GNSS
time series modelling. Latest researches proved that its amplitudes are significant up
to its eight harmonic (Amiri-Simkooei et al. 2017).

A direct approach to remove the impact the loadings might have on the posi-
tion time series is to subtract them directly from these series. This has two effects.
First, it reduces the root-mean-square value of the corrected GNSS position time
series (Santamaría-Gómez and Mémin 2015). Secondly, the annual and semi-annual
amplitudes change compared to those of original GNSS series. A combination of
non-tidal atmospheric, ocean and continental hydrological loadings can explain as
much as 40% of the observed annual signal or reduce the root-mean-square error of
the GNSS position time series by 30% (Dong et al. 2002;Williams and Penna 2011);
both values are valid for the vertical component.When removed separately, non-tidal
ocean loading causes a peak-to-peak variation up to 5 mm (van Dam et al. 1997), the
hydrological loading may explain half of the annual signal observed in the position
time series (van Dam et al. 2001), while atmospheric loading causes deformations
up to 20 mm (Petrov and Boy 2004). A direct subtraction of the environmental load-
ings was questioned by Santamaría-Gómez and Mémin (2015) who stated that this
approach reduces a white noise component of the GPS position time series and has
little in common with the real impact the loadings may have on the series.

Klos et al. (2018a) proved that parameters describing the seasonal signals derived
from the crustal loadings are not constant over time. For this reason, the GPS-derived
seasonal factors might be also time-variable and the commonly employed least-
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squares approach might not provide the most reliable description. Therefore, these
mis-modelled curvesmight produce larger residuals, implying increased noise levels.
To meet the requirements of reliable modelling, several methods have been already
developed by the geodetic community to fit the seasonal signatures into GNSS posi-
tion time series. The Singular SpectrumAnalysis (SSA) algorithmwas firstly applied
by Chen et al. (2013), followed byXu andYue (2015) and Gruszczynska et al. (2016)
to deliver the time-varying signals present in the GNSS observations. The authors
cross-compared the SSA-derived curves to the Kalman Filter (KF) approach; it was
proved that both seasonal estimates are very close to each other. The latter was also
employed by Didova et al. (2016) to estimate the time-varying trends and seasonal
signals in the GNSS position time series which were then compared to the ones
derived for the Gravity Recovery and Climate Experiment (GRACE) data.

Noise level present in the position time series may have a significant impact on
the effectiveness and accuracy of the seasonal signatures estimated with various
approaches. Klos et al. (2018b) addressed this problem; they examined the Wavelet
Decomposition (WD), Chebyshev Polynomials (CP), KF and SSA approaches and
stated that their effectiveness is directly related to the noise level characterizing indi-
vidual time series. They also emphasized that a good approximation of seasonal sig-
natures might be delivered only if the optimal separation between noise and seasonal
curves is provided; no power transfer is observed between stochastic and determinis-
tic part. A completely new solution to this problem was given by Klos et al. (2018c)
who introduced the Adaptive Wiener Filter (AWF) to the geodetic community. This
filter is based on the classical Wiener Filter (WF) and then adapted to the noise level
present within individual series. To adapt this filter, the first-order autoregressive
process is employed to model the time-varying curves, which are then refined by the
level of noise.

In the following chapter, we present the comprehensive analysis of the seasonal
signatures characterizing the GNSS position time series twofold. We start from the
station-by-station modelling of the time-series-specific curves. In this approach, no
attention is paid to the reason specific curve is caused by. Here, the simplest assump-
tion of the time-constancy is cross-compared to the time-changeability of seasonal
parameters. Then, we change the approach and account for different loading models
proving their impact on the position time series. Also, we present the influence that
different approaches have on the noise content. The entire analyses are presented for
the vertical changes of the global set of GNSS stations.

7.2 Methods to Extract Seasonal Signals

In the following paragraph, we present the methodology to extract seasonal sig-
nals from the GNSS position time series. A time-constancy of parameters is being
compared to their time-changeability.
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7.2.1 Least-Squares Estimation

The position time series of the GNSS station can be mathematically described by
fitting the following model into the time series:

y(t) = y0 + vy(t − t0) +
2∑

i=1

[ai sin(ωi (t − t0)) + bi cos(ωi (t − t0))] + ε(t)

(7.1)

where y0 and vy are initial position of each (North, East and Up) type and velocity,
respectively. ai and bi are constants representing the sine and cosine terms of the
periodic signal of ωi angular velocity. The reference epoch is contained in the t0
term. A sum of all above constitute a deterministic part of the time series. The ε

term represents the stochastic part. It is worth noting, that the time series have to be
pre-processed before Eq. (7.1) is employed. In the following research, the outliers
were removed using the Interquartile Range rule (IQR), assuming values larger than
3 times the IQR value as outliers. Offsets were removed using epochs defined by
the International GNSS Service (IGS), but also supported by the manual inspection.
Equation (7.1) accounts only for the annual and semi-annual seasonal signatures by
setting the maximum i to 2. If any other seasonal term is to be modelled, then i has
to increase. Vector of time series parameters constructed as:

x = [
y0, vy, a1, b1, a2, b2

]T
(7.2)

is most often resolved using the simplest least-squares approach. In this case, the
solution is given by:

x = [
ATC−1

y A
]−1

ATC−1
y y (7.3)

where A is the design matrix for the time series model defined, y is the vector
with input data, while Cy is the covariance matrix of noise in the observations. If
the covariance matrix differs from the identity matrix, i.e. the errors of individual
observations are included, the least-squares approach is changed to the Weighted
Least-Squares (WLS) estimation. The uncertainties of parameters contained in x are
estimated using:

Cx = [
ATC−1

y A
]−1

(7.4)

Then, the amplitude of the seasonal signal is computed as:

A =
√
a2 + b2 (7.5)

with its uncertainty estimated using, e.g. Rice distribution (Rice 1944).
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With this approach, the determined amplitudes are time constant, which means
that no variability is estimated within the vector x. Basing on that, if the parameters
describing the seasonal signatures were characterized by any time variability, this
mismodelled effect will be transferred to the stochastic part. The construction of the
covariance matrix has always been a difficulty. To keep it simple, one can put the
uncertainty of the observations on the diagonal of this matrix which corresponds to
white noise. However, this leads to an underestimation of the error in the estimated
parameters in vector x. A great alternative, which helps to account for the power-law
noise, has been introduced to geodetic community in 90’s in a form of Maximum
Likelihood Estimation (MLE).Within this method, the preferred time series model is
chosen, including the stochastic part character, basing on the values of log-likelihood
function. The result is a realistic covariance matrix. It has been already implemented
in the Hector (Bos et al. 2013) and CATS (Williams 2008) software and broadly
used when the position time series are examined. The assumption of the white-
noise-only causes that the covariance matrix of observations is constructed basing
on the observation errors with no correlation between individual observations being
included, as in:

Cy = a2 · I (7.6)

where term a is the amplitude of white noise and I is the identity matrix. Accounting
for a power-law noise using MLE, the covariance matrix is re-constructed to a form
of:

Cy = a2 · I + b2κ · Jκ (7.7)

where bκ is the amplitude of the power-law noise and Jκ is the power-law noise
matrix. Both are estimated for a power-law noise described by spectral index κ .
Now, the estimates of x and Cx are provided with the MLE algorithm assuming the
combination of power-law and white noises.

Figure 7.1 presents the amplitudes of annual and semi-annual signals estimated
with MLE, assuming their time-constancy. The estimates are provided for the IGS
stations contributing to ITRF2014 (Altamimi et al. 2016) in the vertical direction.
The time series were reprocessed within the second reprocessing campaign, called
repro-2 (Rebischung et al. 2016). We removed outliers using 3-times-IQR criterion.
The offsets were assumed using the epochs reported by IGS and supported bymanual
identification. Annual amplitudes range between 0.3 and 11.3mm. The largest values
were noticed for Asia and South America. Semi-annual amplitudes are few times
lower than those for annual signatures, between 0.1 and 2.5 mm in the most extreme
cases. Along with the deterministic model, the stochastic part character is also exam-
ined. Figure 7.2 presents three parameters of the power-law noise: spectral index,
amplitude and fraction, being the percentage contribution of noise within the white
plus power-law noise combination; all, combined together, allow to identify and
reconstruct the noise. Spectral indices are close to −1 for the majority of stations,
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Fig. 7.1 Amplitudes of annual (top) and semi-annual (bottom) seasonal signatures constant over
time and estimated with the MLE approach for a set of global (left) and European (right) ITRF2014
stations. The estimates are provided for the vertical component. The uncertainties of amplitudes,
estimated assuming a combination of power-law and white noise, are not higher than 0.5 mm

indicating a flicker noise present in most observations. Amplitudes of power-law
noise are much higher for the northern part of North America and Central Europe,
than they are for any other part of the World. Also, a clear latitudinal dependence
of the percentage contribution of power-law noise is observed. White noise outruns
the power-law noise within the equatorial area, while the power-law noise dominates
over white noise in higher latitudes.

7.2.2 Moving Ordinary Least-Squares (MOLS)

Toprovide an insight on the variability of the annual and semi-annual amplitudes over
time we split the time series into segments of 3 years, each separated by 1 year. Thus,
each segment overlaps the next one by 2 years. Now, the annual and semi-annual
amplitudes are estimated separately for each segment with the constant-amplitude
approach (previous equations) with a linear interpolation to generate a single time-
varying seasonal signal. Thismethod is named as theMovingOrdinaryLeast-Squares
(MOLS). It is easy to implement, allows to estimate the time-varying signals, deals
well with offsets and missing data.
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Fig. 7.2 Parameters of power-law noise characterizing theGNSS position time series; the estimates
are provided with the MLE approach for a set of global ITRF2014 stations. Spectral indices (top),
power-law noise amplitude (middle) and power-law noise contribution into a white plus power-law
noise combination (bottom) are plotted. These three parameters allow to explicitly identify the
power-law noise. Also, a power-law noise can be re-built basing on them, see further description
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Fig. 7.3 Standard deviations (mm) of the annual amplitudes estimated with the MOLS approach
for the vertical component. Two stations, for which extreme values were obtained are marked. The
HNPT (USA) station is characterized by the minimum standard deviation of the annual amplitudes
equal to 0.24 mm. For the LHAZ (China) station, the maximum changes of the annual curve were
noticed with their standard deviation of 2.75 mm

Figure 7.3 presents the standard deviation of the annual amplitude, estimated
with MOLS, for the GPS stations spanning at least 13 years. The largest variations
of the annual amplitude are noticed for Asian and Eastern European stations. The
greatest standard deviation of annual amplitudes equal to 2.75 mm is found for the
Chinese LHAZGPS station. For about 15%and 30%of stations, the value of standard
deviation is, respectively, larger than 1.0 mm and smaller than 0.5 mm.

7.2.3 Wavelet Decomposition (WD)

Wavelet Decomposition (WD) enables to reliably capture the time-varying seasonal
signatures upon the different resolution levels (Fig. 7.4). These are estimated basing
on the sampling interval of data and the type of mother-wavelet employed. The
seventh and eighth levels of Meyer’s wavelet (Meyer 1990) are appropriate for daily
observations to sufficiently capture annual and semi-annual signals by modelling all
changes with periods between 128 and 512 days (Table 7.1). However, no separation
between signal and noise is provided; with a use of wavelet decomposition one
models all changes in the assumed frequency band, meaning both a signal and a
noise.

7.2.4 Singular Spectrum Analysis (SSA)

Singular SpectrumAnalysis (SSA;Broomhead andKing 1986) allows tomodel time-
varying signals basing on theEmpiricalOrthogonal Functions (EOFs) (Fig. 7.5). This
works because the annual and semi-annual are normally above the noise level in the
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Fig. 7.4 Seasonal signatures, i.e. annual and semi-annual periods, derived by the WD for two
ITRF2014 stations: RAMO (Israel) and MAS1 (Spain). Time-variability of both amplitudes may
be noticed

Table 7.1 Periods determined with wavelet decomposition by various decomposition levels for
daily observations. We employ details 7th and 8th to capture annual and semi-annual time-varying
seasonal signals

Description From To

A8 1.1 years Infinity

D8 7 months 1.4 years

D7 4 months 9 months

D6 2 months 5 months

D5 24 days 3 months

D4 12 days 37 days

D3 6 days 18 days

D2 3 days 10 days

D1 2 days 5 days

time series and well defined. As a result, these signals are part of the first set of
EOFs. Note that if the noise also contains an annual or semi-annual component,
this will be included in the EOFs. There is no separation of signal and noise. Its
performance is strictly linked to the length of the time window employed, with the
3-year length being applied the most often. Chen et al. (2013) examined the impact
that different lengths may have on the SSA-derived curves, but they did not quantify
the noise which may be absorbed at the same time. Also, the absorption of noise has
been mentioned lately by Xu and Yue (2015), but no specific numbers have been
provided. Klos et al. (2018b) analyzed 2-, 3- and 4-year windows and proved that
longer window lengths perform better for higher noise amplitudes.
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Fig. 7.5 Seasonal signatures, i.e. annual and semi-annual periods, derived by SSA for two
ITRF2014 stations: RAMO (Israel) and MAS1 (Spain). Time-variability of both amplitudes may
be noticed. No separation between signal and noise is provided

7.2.5 Kalman Filter (KF)

Kalman filter (KF; Kalman 1960) is employed to provide the estimates of y0, vy, ai
and bi fromEq. (7.1). However, as shown byDavis et al. (2012), the ai(t) and bi(t) are
becoming now instantaneous amplitudes, consisting of a mean value and a random
walk component:

y(t) = y0 + vy(t − t0) +
2∑

i=1

[ai (t) sin(ωi (t − t0)) + bi (t) cos(ωi (t − t0))] (7.8)

No estimates of noise term ε(t) is provided in Eq. (7.8) (compare to Eq. (7.1)),
resulting in a flat power spectrum of the GPS position time series below the annual
frequency. Didova et al. (2016) proved that adding the noise term in a form of
third-order autoregressive process (AR(3)) to Eq. (7.8) may help to mimic a power-
law noise present in the GPS position time series well. The authors showed, that
a proper tuning of standard deviations of both ai(t) and bi(t) provides no power
leakage between low and high frequencies. Klos et al. (2018b) assumed different
values for the changes of ai(t) and bi(t) variances in the consecutive time steps.
Then, they implemented both the Davis et al. (2012) and Didova et al. (2016) filters,
proving that for a normal noise level of 10mm/yr0.25, using the former produces large
misfits of even 1.15 mm between synthetic and KF-derived seasonal signature. The
authors advised to use the third-order autoregressive process to mimic the power-law
noise with its coefficients being estimated by its fitting to a pure flicker noise. This
implementation of Kalman Filter is also used in this research (Fig. 7.6).Worth noting
is the fact, that letting the ai(t) and bi(t) variances to change too much, the method-
derived seasonal signal will contain also a part of the noise, leading to underestimates
of trend uncertainty.



222 A. Klos et al.

Fig. 7.6 Seasonal signatures, i.e. the annual and semi-annual periods, derived by the Kalman Filter
for two ITRF2014 stations: RAMO (Israel) andMAS1 (Spain). Time-variability of both amplitudes
may be noticed. A separation between seasonal signal and a noise is provided by a proper tuning
of ai(t) and bi(t) (Eq. 7.8) variances and by adding a third-order autoregressive noise (AR(3)) to
mimic a power-law noise present in the GPS position time series

7.2.6 Adaptive Wiener Filter (AWF)

TheAdaptiveWiener Filter (AWF)has been introduced lately byKlos et al. (2018c) to
model seasonal signals with the time-varying amplitudes. It is based on adapting the
Wiener Filter (WF), according to the noise type and level found in the observations.
In this way, the time-varying part which is greater than the assumed noise level is
being found as significant and modelled. This provides a proper separation between
seasonal signal and noise level.

To understand the Adaptive Wiener Filter properly, one should start from the
Davis et al. (2012) filter, i.e. Eq. (7.8), and describe the seasonal signature using a
time-constant sconsti and a random srandi signals:

stotali = (a + δai ) cos(ω0ti ) + (b + δbi ) sin(ω0ti )

= [a cos(ω0ti ) + b sin(ω0ti )] + [δai cos(ω0ti ) + δbi sin(ω0ti )]

= sconsti + srandi (7.9)

where a and b are constant values. The angular velocity of the annual signal is pro-
vided within ω0 parameter. The random signal srandi is characterized by the random
variables δai and δbi. These may be estimated using the Gaussian variables vi and
wi of known standard deviation σ using:

δai = φ · δai−1 + vi
δbi = φ · δbi−1 + wi (7.10)
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Theφ parameter is the first-order autoregressive coefficient (AR(1)),which should
be slightly lower than 1 so an not to allow the time-varying seasonal signal to increase
over time.

The time-constant part of Eq. (7.9) can be reliably estimated using WLS, and
removed from the seasonal signatures. Now, the random part is estimated. Let us
assume that δbi = 0, so the estimates of the srandi autocovariance are provided as:

γ
(
srandi , srandi+k

) = cov(δai · δai+k cos(ω0ti ) cos(ω0ti+k))

= cov

(
δai · δai+k

1

2

[
cos(ω0(ti + ti+k)) + cos(ω0k)

])
(7.11)

The AR(1) process is employed to let the seasonal signatures to vary over time
is invariant. The variability of the seasonal signal srandi is however ensured by the
modulation within the cosine function. Now, the average autocovariance function is
employed to estimate the one-sided spectral density function S(ω), as:

S(ω) = 2σ 2
v

π

[
1(

1 − 2φ cos(ω + ω0) + φ2
) + 1(

1 − 2φ cos(ω − ω0) + φ2
)
]

(7.12)

where ω = 2π f/ fs with f being the frequency and fs the sampling frequency. So
far, it was assumed that σw = 0. To also include the σw, we can easily replace σ 2

v
with σ 2

v + σ 2
w.

Now, the Wiener filter is constructed using all the information provided above.
Firstly, the Fourier transform Y (ωi ) of time series yi is computed as:

Y (ωi ) = F(yi ) (7.13)

From this Fourier transform we can compute the power spectral density S(ωi ) by
computing the periodogram as explained in Chap. 2. Then, we define the optimal
filter 
(ωi ) in the frequency domain as:



(
ω j

) = S
(
ω j

)

S
(
ω j

) + W
(
ω j

) (7.14)

whereW
(
ω j

)
is the power spectral density of noise as function of the angular velocity.

This power spectral density is employed to adapt the Wiener Filter to the noise level
and type the time series are characterized by. For the pure power-law noise which
characterizes the GPS position time series, the estimates of W

(
ω j

)
are given as:

W
(
ω j

) = σ 2
pl

π

(
2 sin

ω j

2

)κ ≈ σ 2
pl

π
ωκ (7.15)
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where κ is the spectral index of noise. The parameter σ 2
pl is the standard deviation

of the power-law noise, given in mm. This noise model, employed to construct the
optimal filter, ensures obtaining the best separation between signal and noise. To
model each individual series, the estimates of spectral indices, standard deviations
of noise and its fraction delivered with MLE, should be previously performed, as
shown in Fig. 7.2.

Now, the time-varying seasonal signal ŝ is estimated using the inverse Fourier
transform:

ŝi = F−1(
(ωi )Y (ωi )) (7.16)

To obtain a total time-varying seasonal signal estimated with AWF, the estimates
of varying seasonal signal computed with Eq. (7.16) should be added to the time-
constant seasonal signal estimates provided by the weighted least-squares approach.

The exemplary one-sided spectral density function estimated for annual and semi-
annual signatures is shown in Fig. 7.7. In addition to S( f ), we also provided a plot
of W ( f ), being a power spectral density of the power-law noise process. The closer
φ is to 1, the sharper peaks of annual and semi-annual signals will be observed.

Figure 7.8 presents theAWF estimates of seasonal signals of vertical position time
series for two ITRF2014 stations. A clear time-variability of seasonal amplitudes
is observed for both, with a separation between signal and noise, guaranteed by
the proper assumption of noise model during the construction of Wiener Filter in

Fig. 7.7 The one-sided
power spectral density
function of annual and
semi-annual signatures S( f ),
plotted in yellow solid line,
along with the estimates of
the power spectral density of
the power-law noise process,
W ( f ), plotted in dashed-blue
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Fig. 7.8 Seasonal signatures, i.e. the annual and semi-annual periods, derived by the Adaptive
Wiener Filter for two ITRF2014 stations: RAMO (Israel) and MAS1 (Spain). Time-variability of
both amplitudes may be noticed. A separation between seasonal signal and a noise is provided by
assuming a power spectral density of the noise model which characterizes the individual time series
during the construction of the filter, see Eq. (7.14)

Eq. (7.14). It is worth noting that the noise model is being assumed and constructed
separately for each individual station.

7.3 Comparison of Algorithms for the Synthetic Dataset

To mimic the GPS observations, we synthetized a number of 500 time series of
a length of 16 years. A pure flicker noise was assumed with amplitudes varying
between 7 and 21 mm/yr0.25 from series to series. This range of amplitudes covers
all values met in the GPS position time series: from low to high noise levels. To the
noise content, annual and semi-annual signals were added with mean amplitudes of
3 and 1 mm, respectively, and of phase lags between January and June. The annual
and semi-annual amplitudes were allowed to vary over time with a standard devi-
ation of 1 and 0.5 mm, respectively. The synthetic time series were then modelled
with methods presented in the previous paragraph. Each of the curves we delivered
with different methods is characterized by its ‘misfit’, meaning a standard deviation
between synthetic and estimated seasonal signal (Table 7.2). The larger the misfit
value, the worse is the fit of the estimated curve with respect to the synthetic sea-
sonal. Having estimated the curves, we removed them and examined the character of
residuals. All methods are being compared to the ‘no seasonal assumed’ case, which
means that the seasonal signal was not modelled.

For the low noise level we synthetized, assuming no seasonal signal caused a
misfit between simulated and estimated curves of 2.39 mm (Table 7.2). The WLS
approach, which allows to estimate time-constant seasonal signals, produces a misfit
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Table 7.2 An average
misfit between synthetic and
method-derived seasonal
curve for a number of 500
simulations. Results are
presented for low and high
noise levels

Method Misfit (mm)

Low noise level

No seasonal assumed 2.39

WLS 0.56

MOLS 0.24

WD 0.24

KF 0.16

SSA 0.16

AWF 0.17

High noise level

No seasonal assumed 2.44

WLS 1.11

MOLS 1.31

WD 1.53

KF 0.73

SSA 1.08

AWF 0.67

of 0.56 mm. MOLS as well as WD, both result in 0.24 mm misfit, while KF, SSA
and newly introduced AWF, all produce the smaller misfit of 0.16–0.17 mm.

For the high noise level, assuming no seasonal signals results in a largest misfit of
2.44 mm. The WLS, MOLS, WD and SSA, all produce misfits larger than 1.0 mm.
KF and AWF, both result in a similar misfit value lower than 0.8 mm, proving their
appropriateness to model the time-varying curves.

The WLS approach, as expected, provides the worst estimates of synthetic time-
varying curves for the series affected by low noise level. The performance of other
algorithms is comparable. Changing the low into the high noise level, the synthetic
time-varying curves cannot be separated from the noise as precisely as they are for
the low noise level. In this case, WD performs the worst, followed by MOLS and
WLS approaches. The best estimates of varying seasonal signatures are provided by
KF, SSA and AWF.

The numbers presented in Table 7.3 prove that allowing the seasonal curve to
vary over time always results in the underestimates of spectral indices and power-
law noise amplitudes comparing to ‘actual’ value, which was synthetized. For high
noise level, this reduction is caused by part of the noise from seasonal frequency
band incorrectly absorbed in the estimates of seasonal varying curves. All methods
are being compared to the ‘no seasonal assumed’ case, whichmeans that the seasonal
signalwas notmodelled. This causes an overestimation of spectral index and too large
trend uncertainty estimates.

WLS provides comparablyworse results, being unable to cover the entire seasonal
peaks (Fig. 7.9), which is clearly observed for the low noise level. WD absorbs too
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Table 7.3 Noise character derived with MLE for a number of 500 simulations after the seasonal
curves were modelled and removed from the series. Results are presented for low and high noise
levels for spectral index, amplitude and trend uncertainty, respectively. The amplitude and spectral
index, which were synthetized, are shown in ‘Actual’ row. Also, the expected trend uncertainty for
this noise level is given under the ‘Trend uncertainty’ label. This value is estimated using Eq. (29)
of Bos et al. (2008) paper

Method Spectral index κ Amplitude (mm/yr−κ/4) Trend uncertainty
(mm/yr)

Low noise level

No seasonal
assumed

−1.76 3.39 0.475

WLS −1.23 1.47 0.061

MOLS −1.05 1.08 0.027

WD −1.07 1.07 0.030

KF −0.96 0.96 0.020

SSA −0.98 0.98 0.021

AWF −0.99 0.96 0.022

Actual −1.00 1.00 0.022

High noise level

No seasonal
assumed

−1.07 11.18 0.294

WLS −1.00 9.95 0.221

MOLS −0.98 9.63 0.205

WD −0.94 9.00 0.175

KF −0.98 9.71 0.209

SSA −0.96 9.35 0.191

AWF −1.00 9.92 0.224

Actual −1.00 10.00 0.222

much power from the seasonal frequency band for both low and high noise levels.
Othermethods behave in similar way – they are able to cover the time-variability with
only small reduction in power. If the amplitude of the seasonal signal change over
time, WLS will always provide the largest misfit between synthetized and estimated
seasonal curve than any of the method presented here. Then, SSA, KF and AWF,
all have excellent performance for low noise levels. For high noise levels, however,
KF- and AWF-derived curves are the closest to the synthetic seasonal signatures.
Although the fit of both methods is comparable, their real impact on the observations
is seen through analysis of noise parameters. KF-subtracted curve causes a slight
underestimation of the power-law noise amplitude and an overestimation of spectral
index, while AWF-based provides the best separation between signal and noise,
keeping the noise content intact.
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Fig. 7.9 Power Spectral Densities (PSDs) estimates provided for two noise levels synthetized
within this analysis. Left: the low noise level case is shown, i.e. 1 mm/yr0.25. Right: the high
noise level is presented (10 mm/yr0.25). For those two noise levels, seasonal curves are estimated
and removed from the series with a range of methods presented above. Then, residuals are being
examined to provide the efficient assessment of noise and seasonal signal separation

7.4 Estimating the Environmental Impact

In the previous paragraphs, we presented the estimates of time-varying seasonal
signatures; annual and semi-annual curves were accounted for. Though the impact
the environment has on the GPS position time series is widely acknowledged at the
moment, until now, we did not consider phenomena seasonal curves are caused by.
We only employed methods which allow the seasonal curve to vary over time to
model them in the most reliable way. Otherwise, the uncertainty of velocity might
be greatly affected and misestimated.

In the following paragraph, we prove that the non-tidal atmospheric, non-tidal
oceanic and continental hydrospheric loadings, all contribute significantly into the
position time series (Fig. 7.10), with annual amplitudes being mostly influenced
by above. The most common approach to consider the environmental impact is to
directly subtract the environmental loadingmodels from theGPS position time series
for corresponding epochs. In this way, the annual amplitudes are reduced when the
environmental loading models are accounted for. This approach also causes the root-
mean-square value reduction (Fig. 7.11).

For this research we used Environmental Loading Models (ELM) provided by
the EOST Loading Service (http://loading.u-strasbg.fr/). Among others, we chose
ERA (ECMWF Re-Analysis) Interim (Dee et al. 2011), MERRA (Modern Era-
Retrospective Analysis) land (Reichle et al. 2011) and ECCO2 (Estimation of the
Circulation and Climate of the Ocean version 2) (Menemenlis et al. 2008). All load-
ing models were decimated into daily sampling rate to correspond to position time
series. For a set of the ITRF2014 vertical position time series, a mean reduction of
the root-mean-square value of vertical component is larger than 20% for non-tidal
atmospheric loading (ERAIN), larger than 5% for continental hydrology loading
(MERRA) and almost insignificant when non-tidal ocean loading (ECCO2) is con-

http://loading.u-strasbg.fr/
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Fig. 7.10 Top: Detrended GPS vertical position time series for two ITRF2014 GNSS stations
of different locations, along with Environmental Loading Models: the non-tidal oceanic (ECCO2),
atmospheric (ERAIN) and continental hydrology (MERRA) loadingmodel are plotted, respectively,
in blue, red and brown. Worth noting are different root-mean-square values of loading effects,
depending on the station’s location. Bottom: the power spectral density estimates of the above. The
annual and semi-annual curves are the most energetic ones

sidered. Atmospheric loading affects mainly Asian, European and Canadian areas,
hydrospheric loading significantly contributes to position time series for east Euro-
pean, south Asian and Brazilian stations, while ocean loading is significant only for
the Northern Sea coastal stations. Once the loading effects are summed and removed
from the position time series, the mean reduction of the root-mean-square value is
larger than 40% for the global set of stations, induced mostly by atmospheric load-
ing, which contributes the most to this combination. However, as emphasized by
Santamaría-Gómez and Mémin (2015), this reduction is only related to the reduc-
tion of white noise component, having nothing in common with a real impact the
environmental loadings may have on the position time series.

Lately, Klos et al. (2018a) noticed that environmental loadings are characterized
by various types of noises. From Fig. 7.10, we can notice that hydrospheric and
oceanic loadings are characterized by power-law noise, with spectral indices slightly
different from those of the position time series. Atmospheric loading, which pre-
dominates in the ELM, has autoregressive properties. Therefore, a direct removal
of loading effects may cause a significant change of noise character of the GPS
position time series, underestimating the velocity uncertainty at the same time if the
noise model is not adapted accordingly. Wherefore, we propose a completely new
approach to include the impact the environment has on the position time series. We
model the superposition of environmental loadings using the SSA approach to deliver
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Fig. 7.11 The
root-mean-square (RMS)
reduction of the GPS
position time series after
individual loading models
are removed. The non-tidal
atmospheric (ERAIN),
continental hydrology
(MERRA) and ocean
(ECCO2) loadings are
presented. The RMS
reduction after subtraction of
the superposition of loadings
is presented at the bottom.
Please note, that mass is not
conserved during a simple
summing of models.
Reductions are presented for
the ITRF2014 position time
series in a vertical direction
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Fig. 7.12 Contribution of annual signal into the superposition of environmental loading models,
presenting the total variance of signal explained by the annual signal

the time-varying seasonal changes. Due to significant changes in the standard devi-
ation of individual loading models depending on the station’s location, the annual
signal contributes differently to the entire loading signal (Fig. 7.12). The most sig-
nificant amplitudes of annual signal are found for Asian, Pacific and South American
stations. These are followed by eastern European andAustralian andNorthAmerican
sites. Annual signal contributes little to the seasonal deformations of Earth’s crust in
Europe, Greenland, Antarctica and Canada.

Now, this SSA-derived seasonal curve can be subtracted from the vertical position
time series. In this way, the impact that the environment has on the station’s position
is reduced with no influence on the noise properties (Fig. 7.13). This implies that the
afore mentioned power-law plus white noise model is still an adequate noise model
in the analysis of the GPS time series. Direct removal of environmental loadings
causes a reduction in a position time series power for frequencies between 8 and
80 cpy. This reduction will directly affect the uncertainties of velocity, leading to
their underestimation. The reason is that the reduction of power in this specific
frequency band results in a too low value of the spectral index of the fitted power-
law noise. Using the seasonal curve with time-varying amplitudes estimated using
SSA, KF or AWF, seasonal peaks are reduced significantly, with almost no influence
on power estimates. Therefore, the approach presented by Klos et al. (2018a) can
be recommended to account for the environmental loading effects and remove their
impact on the position time series.
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Fig. 7.13 Power spectral density estimate provided for GUAT (Guatemala), IRKT (Russia), and
VARS (Norway) stations. The power of vertical GPS position time series (in red) is plotted against
the residuals after loading models were subtracted directly from series (in green). The residuals
were also examined after the SSA-derived seasonal-loading-curve was subtracted (in blue). An
absorption in power is observed in the first case, especially for frequencies between 8 and 80 cpy.
In the latter, seasonal peaks are reduced, with no significant influence on residuals

7.5 Summary

Geodetic observations are characterized by different types of noise affecting the
estimates. Beyond noise, also seasonal signatures are present, which causes are not
entirely recognized. Whether they arise from real geodynamic phenomena, system-
atic errors or numerical artefacts, they should be modelled and removed before the
velocity and its uncertainty is being estimated. We deliver a comprehensive descrip-
tion of mathematical methods employed to model the seasonal curves within the
GNSS position time series. Both time-constancy and time-changeability of ampli-
tudes of seasonal signals are considered.

Singular Spectrum Analysis, Kalman Filter, Wavelet Decomposition and Adap-
tiveWiener Filter were examined basing on the synthetic time series. Primarily, it was
proven that Wavelet Decomposition subtracts lots of the power from the modelled
frequency band. Singular Spectrum Analysis performance is better, but its effective-
ness is related to the length of the time window we use (Klos et al. 2018b). Kalman
Filter gives the most appropriate estimates of seasonal curves, but only Adaptive
Wiener Filter maintains the noise properties intact. The latter is provided as filter is
constructed basing on the noise properties of data we examine.

Methods mentioned above provide an accurate modelling of seasonal curves on
a station-by-station basis, with no research on their origin. To do so, the non-tidal
atmospheric, ocean and continental hydrology loadings should be accounted for. We
showed how this should be performed, so as not to influence the stochastic part of
position time series. The common approach here is to directly subtract the loading
models from the series. However, this causes a change in a type of noise, position
time series are characterized by, especially for frequencies between 8 and 80 cpy. To
remove the impact environment has on the GNSS-observed seasonal curves, an alter-
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native approach should be then employed. We presented that modelling a seasonal
curve directly for loading models and then removing this curve from position time
series helps to account for the environmental impact, keeping the noise properties of
position time series intact.
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