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Abstract The previous chapter gave various examples of geophysical time series
and the various trajectory models that can be fitted to them. In this chapter we
will focus on how the parameters of the trajectory model can be estimated. It is
meant to give researchers new to this topic an easy introduction to the theory with
references to key books and articles where more details can be found. In addition,
we hope that it refreshes some of the details for the more experienced readers. We
pay special attention to the modelling of the noise which has received much attention
in the literature in the last years and highlight some of the numerical aspects. The
subsequent chapters will go deeper into the theory, explore different aspects and
describe the state of art of this area of research.
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2.1 Gaussian Noise and the Likelihood Function

Geodetic time series consist out of a set observations at various epochs. These
observations, stored in a vector y, are not perfect but contain noise which can be
described as a set of multivariate random variables. Let us define this as the vec-
tor w = [W1,W2,W3, . . . ,WN ] where each Wi is a random variable. If f (w) is the
associated probability density function, then the first moment μ1, the mean of the
noise, is defined as Casella and Berger (2001):

μ1 = E[W ] =
∞∫

−∞
w f (w) dw (2.1)

where E is the expectation operator. It assigns to each possible value of random
variable w a weight f (w) over an infinitely small interval of dw, sums each of them
to obtain the mean expected value E[W ]. The second moment μ2 is defined in a
similar manner:

μ2 = E[W 2] =
∞∫

−∞
w2 f (w) dw =

∞∫

−∞
w2dF(w) (2.2)

The last term F is the cumulative distribution. For zero mean, the second moment
is better known as the variance. Since we have N random variables, we can compute
variances for E[WiWj ], where both i and j range from 1 to N . The result is called
the covariance matrix. In this book, the probability density function f (w) is assumed
to be a Gaussian:

f (w|μ1, σ ) = 1√
2πσ 2

exp

[
− (w − μ1)

2

2σ 2

]
(2.3)

where σ is the standard deviation, the square-root of the variance of random variable
w. This function is very well known and is shown in Fig. 2.1 for zero μ1.

The standard error is defined as the 1-σ interval and contains on average 68% of
the observed values of w. The reason why it is so often encountered in observations
is that the central limit theorem states that the sum of various continuous probability
distributions always tends to theGaussian one.An additional property of theGaussian
probability density function is that all its moments higher than two (μ3, μ4, . . .) are
zero. Therefore, the mean and the covariance matrix provide a complete description
of the stochastic properties. Actually, we will always assume that the mean of the
noise is zero and therefore only need the covariance matrix. The term in front of the
exponential is needed to ensure that the integral of f (x) from −∞ to ∞ produces
1. That is, the total probability of observing a value between these limits is 1, as it
should be. We have not one, but several observations with noise in our time series.
The probability density function of the multi-variate noise is:
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Fig. 2.1 The Gaussian probability density function, together with the 1, 2 and 3 σ intervals

f (w|C) = 1√
(2π)N det(C)

exp
[− 1

2w
TC−1w

]
(2.4)

We assumed that the covariance matrix C is known. The expression f (w|C)

should be read as the probability density function f for variable w, for given and
fixed covariance matrix C. Next, we assume that our observations can be described
by our model g(x, t), where x are the parameters of the model and t the time. The
observations are the sum of our model plus the noise:

y = g(x, t) + w or w = y − g(x, t) (2.5)

The noise w is described by our Gaussian probability density function with zero
mean and covariance matrixC. The probability that we obtained the actual values of
our observations is:

f (y|x,C) = 1√
(2π)N det(C)

exp
[− 1

2 (y − g(x, t))TC−1(y − g(x, t))
]

(2.6)

However, we don’t know the true values of x or the covariance matrixC. We only
know the observations. Consequently, we need to rephrase our problem as follows:
what values of x andCwould produce the largest probability thatwe observe y?Thus,
we are maximising f (x,C|y) which we call the likelihood function L . Furthermore,
we normally work with the logarithm of it which is called the log-likelihood:
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ln(L) = −1

2

[
N ln(2π) + ln(det(C)) + (y − g(x, t))TC−1(y − g(x, t))

]
(2.7)

We need to find value of x to maximise this function and the method is there-
fore called Maximum Likelihood Estimation (MLE). The change from f (y|x,C) to
f (x,C|y) is subtle. Assume that the covariancematrixC also depends on parameters
that we store in vector x. In this way, we can simplify the expression f (y|x,C) to
f (y|x). Bayes’ Theorem, expressed in terms of probability distributions gives us:

f (x|y) = f (y|x) f (x)
f (y)

(2.8)

where f (y) and f (x) are our prior probability density function for the observations
y and parameters x, respectively. These represent our knowledge about what obser-
vations and parameter values we expect before the measurements were made. If
we don’t prefer any particular values, these prior probability density functions can
be constants and they will have no influence on the maximising of the likelihood
function f (x|y) = L .

Another subtlety is thatwe changed from randomnoise and fixed parameter values
of the trajectory model f (y|x) to fixed noise and random parameters of the trajectory
model f (x|y). If the trajectorymodel is for example a linear tectonicmotion then this
is a deterministic, fixed velocity, not a random one. However, one should interpret
f (x|y) as our degree of trust, our confidence that the estimated parameters x are
correct. See also Koch (1990, 2007) and Jaynes (2003). The last one is particularly
recommended to learn more about Bayesian statistics.

2.2 Linear Models

So far we simply defined our trajectory model as g(x, t). An important class of
models that are fitted to the observations are linear models. These are defined as:

g(x, t) = x1g1(t) + x2g2(t) + · · · + xMgM(t) (2.9)

where x1 to xM are assumed to be constants. We can rewrite this in matrix form as
follows:

g(x, t) =

⎛
⎜⎜⎜⎝

g1(t1) g2(t1) . . . gM(t1)
g1(t2) g2(t2) gM(t2)

...
...

g1(tN ) g2(tN ) gM(tN )

⎞
⎟⎟⎟⎠

⎛
⎜⎝
x1
...

xM

⎞
⎟⎠ = Ax (2.10)

Matrix A is called the design matrix. From Chap.1 we know that tectonic motion
or sea level rise can be modelled by a linear trend (i.e. the Standard Linear Trajectory
Model). Thus g1(t) is a constant and g2(t) a linear trend. This can be extended to a

http://dx.doi.org/10.1007/978-3-030-21718-1_1
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Fig. 2.2 Sketch of a trajectory model containing common phenomena

higher degree polynomial to model acceleration for example. Next, in many cases an
annual and semi-annual signal is included as well. A periodic signal can be described
by its amplitude bk and its phase-lag ψk with respect to some reference epoch:

g(t) = bk cos(ωk t − ψk)

= bk cosψ cos(ωk t) + bk sinψk sin(ωk t)

= ck cos(ωk t) + sk sin(ωk t)

(2.11)

Since the unknown phase-lag ψk makes the function non-linear, one must almost
always estimate the amplitudes ck and sk , see Chap.1. These parameters are linear
with functions cos and sin, and derive from these values the amplitude bk and phase-
lag ψk .

Other models that can be included in g(t) are offsets and post-seismic relaxation
functions, see Chap.1. An example of a combination of all these models into a single
trajectory model is shown in Fig. 2.2.

For linear models, the log-likelihood can be rewritten as:

ln(L) = −1

2

[
N ln(2π) + ln(det(C)) + (y − Ax)TC−1(y − Ax)

]
(2.12)

This function must be maximised. Assuming that the covariance matrix is known,
then it is a constant and does not influence finding the maximum. Next, the term
(y − Ax) represent the observations minus the fitted model and are normally called
the residuals r. It is desirable to choose the parameters x in such a way to make these
residuals small. The last term can be written as rTC−1r and it is a quadratic function,
weighted by the inverse of matrix C.

http://dx.doi.org/10.1007/978-3-030-21718-1_1
http://dx.doi.org/10.1007/978-3-030-21718-1_1
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Now let us compute the derivative of ln(L):

d ln(L)

dx
= ATC−1y − ATC−1Ax (2.13)

The minimum of ln(L) occurs when this derivative is zero. Thus:

ATC−1Ax = ATC−1y → x = (
ATC−1A

)−1
ATC−1y (2.14)

This is the celebrated weighted least-squares equation to estimate the parameters
x. Most derivations of this equation focus on the minimisation of the quadratic
cost function. However, here we highlight the fact that for observations that contain
Gaussian multivariate noise, the weighted least-squares estimator is a maximum
likelihood estimator (MLE). From Eq. (2.14) it can also be deduced that vector x,
like the observation vector y, follows a multi-variate Gaussian probability density
function.

The variance of the estimated parameters estimated is:

var(x) = var
((
ATC−1A

)−1
ATC−1y

)

= (
ATC−1A

)−1
ATC−1var(y) C−1A

(
ATC−1A

)−1

= (
ATC−1A

)−1
ATC−1C C−1A

(
ATC−1A

)−1

= (
ATC−1A

)−1

(2.15)

Next, define the following matrix I(x):

I(x) = −E

[
∂2

∂x2
ln(L)

]
= −

∫ (
∂2

∂x2
ln( f )

)
f dx (2.16)

It is called the Fisher Information matrix. As in Eqs. (2.1) and (2.2), we use the
expectation operator E . Remember that we simply called f our likelihood L but
these are the same. We already used the fact that the log-likelihood as function of
x is horizontal at the maximum value. Let us call this x̂. The second derivative is
related to the curvature of the log-likelihood function. The sharper the peak near its
maximum, the more accurate we can estimate the parameters x and therefore the
smaller their variance will be.

Next, it can be shown that the following inequality holds:

1 ≤
∫

(x̂ − x)2 f dx
∫ (

∂ ln( f )

∂x

)2

f dx (2.17)

The first integral represents the variance of x, see Eq. (2.2). The second one, after
some rewriting, is equal to the Fisher information matrix. This gives us, for any
unbiased estimator, the following Cramér–Rao Lower Bound (Kay 1993):
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var(x̂) ≥ 1

I(x)
(2.18)

Equation (2.18) predicts the minimum variance of the estimated parameters x
for given probability density function f and its relation with the parameters x that
we want to estimate. If we use Eq. (2.13) to compute the second derivative of the
log-likelihood, then we obtain:

I(x) = ATC−1A (2.19)

Comparing this with Eq. (2.15), one can see that for the case of the weighted
least-square estimator, the Cramér–Rao Lower Bound is achieved. Therefore, it is an
optimal estimator. Because we also need to estimate the parameters of the covariance
matrix C, we shall use MLE which approximates this lower bound for increasing
number of observations. Therefore, one can be sure that out of all existing estimation
methods, none of them will produce a more accurate result than MLE, only equal or
worse. For more details, see Kay (1993).

2.3 Models for the Covariance Matrix

Least-squares andmaximum likelihood estimation are well known techniques in var-
ious branches of science. In recent years much attention has been paid by geodesists
to the structure of the covariance matrix. If there was no relation between each noise
value, then these would be independent random variables and the covariance matrix
C would be zero except for values on its diagonal. However, in almost all geodetical
time series these are dependent random variables. In statistics this is called temporal
correlation and we should consider a full covariance matrix:

C =

⎛
⎜⎜⎜⎝

σ 2
11 σ 2

12 . . . σ 2
1N

σ 2
21 σ 2

22 σ 2
2N

...
. . .

...

σ 2
N1 . . . σ 2

NN−1 σ 2
NN

⎞
⎟⎟⎟⎠ (2.20)

where σ 2
12 is the covariance between random variables w1 and w2. If we assume that

the properties of the noise are constant over time, then we have the same covariance
betweenw2 andw3,w3 andw4 and all other correlations with 1 time step separation.
As a result, σ 2

12, σ
2
23, . . ., σ

2
(N−1)N are all equal. A simple estimator for it is:

σ 2
12 = σ 2

23 = · · · = σ 2
(N−1)N = 1

N − 1

N−1∑
i=1

wiwi+1 (2.21)
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This is an approximation of the formula to compute the second moment, see
Eq. (2.2), and it called the empirical or sample covariance matrix. Therefore, one
could try the following iterate scheme: fit the linear model to the observations some
a priori covariance matrix, compute the residuals and use this to estimate a more
realistic covariance matrix using Eq. (2.20) and fit again the linear model to the
observations until all estimated parameters have converged.

The previous chapter demonstrated that one of the purpose of the trajectorymodels
is to estimate the linear or secular trend. For time series longer than 2years, the
uncertainty of this trend depends mainly on the noise at the lowest observed periods
(Bos et al. 2008;He et al. 2019). However, the empirical covariancematrix estimation
of Eq. (2.20) does not result in an accurate estimate of the noise at long periods
because only a few observations are used in the computation. In fact, only the first
and last observation are used to compute the variance of the noise at the longest
observed period (i.e. σ 2

1N ).
This problem has been solved by defining a model of the noise and estimating the

parameters of this noise model. The estimation of the noise model parameters can be
achieved using the log-likelihood with a numerical maximisation scheme but other
methods exist such as least-squares variance component estimation (see Chap. 6).

The development of a good noise model started with the paper of Hurst (1957)
who discovered that the cumulative water flow of the Nile river depended on the
previous years. The influence of the previous years decayed according a power-law.
This inspired Mandelbrot and van Ness (1968) to define the fractional Brownian
motion model which includes both the power-law and fractional Gaussian noises,
see also Beran (1994) andGraves et al. (2017).While this researchwaswell known in
hydrology and in econometry, it was not until the publication by Agnew (1992), who
demonstrated that most geophysical time series exhibit power-law noise behaviour,
that this type of noise modelling started to be applied to geodetic time series. In
hindsight, Press (1978) had already demonstrated similar results but this work has
not received much attention in geodesy. That the noise in GNSS time series also falls
in this category was demonstrated by Johnson and Agnew (1995). Power-law noise
has the property that the power spectral density of the noise follows a power-law
curve. On a log-log plot, it converts into a straight line. The equation for power-law
noise is:

P( f ) = P0 ( f/ fs)
κ (2.22)

where f is the frequency, P0 is a constant, fs the sampling frequency and the exponent
κ is called the spectral index.

Granger (1980), Granger and Joyeux (1980) and Hosking (1981) demonstrated
that power-law noise can be achieved using fractional differencing of Gaussian noise:

(1 − B)−κ/2v = w (2.23)

where B is the backward-shift operator (Bvi = vi−1) and v a vector with indepen-
dent and identically distributed (IID) Gaussian noise. Hosking and Granger used
the parameter d for the fraction −κ/2 which is more concise when one focusses on

http://dx.doi.org/10.1007/978-3-030-21718-1_6
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the fractional differencing aspect. It has been adopted by people studying general
statistics (Sowell 1992; Beran 1995). However, in geodesy the spectral index κ is
used in the equations. Hosking’s definition of the fractional differencing is:

(1 − B)−κ/2 =
∞∑
i=0

(−κ/2

i

)
(−B)i

= 1 − κ

2
B − 1

2

κ

2
(1 − κ

2
)B2 + · · ·

=
∞∑
i=0

hi

(2.24)

The coefficients hi can be viewed as a filter that is applied to the independent
white noise. These coefficients can be conveniently computed using the following
recurrence relation (Kasdin 1995):

h0 = 1

hi = (i − κ

2
− 1)

hi−1

i
for i > 0

(2.25)

One can see that for increasing i , the fraction (i − κ/2 − 1)/ i is slightly less than
1. Thus, the coefficients hi only decrease very slowly to zero. This implies that the
current noise value wi depends on many previous values of v. In other words, the
noise has a long memory. Actually, the model of fractional Gaussian noise defined
by Hosking (1981) is the basic definition of the general class of processes called
Auto Regressive Integrated moving Average (Taqqu et al. 1995). If we ignore the
Integrated part, thenwe obtain theAuto RegressiveMovingAverage (ARMA)model
(Box et al. 2015; Brockwell and Davis 2002) which are short-memory noise models.
The original definition of theARIMAprocesses only considers the value of the power
κ/2 in Eq. (2.24) as an integer value. Granger and Joyeux (1980) further extended the
definition to a class of fractionally integrated models called FARIMA or ARFIMA,
where κ is a floating value, generally in the range of −2 < i < 2. Montillet and Yu
(2015) discussed the application of the ARMA and FARIMA models in modelling
GNSS daily position time series and concluded that the FARIMA is only suitable in
the presence of a large amplitude coloured noise capable of generating a distribution
with large tails (i.e. random-walk, aggregations).

Equation (2.25) also shows thatwhen the spectral index κ = 0, then all coefficients
hi are zero except for h0. This implies that there is no temporal correlation between
the noise values. In addition, Eq. (2.22) shows that this corresponds to a horizontal
line in the power spectral density domain. Using the analogy of the visible light
spectrum, this situation of equal power at all frequencies produces white light and
it is therefore called white noise. For κ �= 0, some values have received a specific
colour. For example, κ = −1 is known as pink noise. Another name is flicker noise
which seems to have originated in the study of noise of electronic devices. Red noise
is defined as power-law noise with κ = −2 and produces hi = 1 for all values of i .
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Thus, this noise is a simple sum of all its previous values plus a new random step and
is better known as random walk (Mandelbrot 1999). However, note that the spectral
index κ does not need to be an integer value (Williams 2003).

One normally assumes that vi = 0 for i < 0.With this assumption, the unit covari-
ance between wk and wl with l > k is:

C(wk, wl) =
k∑

i=0

hihi+(l−k) (2.26)

Since κ = 0 produces an identity matrix, the associated white noise covariance
matrix is represented by unit matrix I. The general power-law covariance matrix is
represented by the matrix J. The sum of white and power-law noise can be written
as Williams (2003):

C = σ 2
plJ(κ) + σ 2

wI (2.27)

where σpl and σw are the noise amplitudes. It is a widely used combination of noise
models to describe the noise in GNSS time series (Williams et al. 2014). Besides
the parameters of the linear model (i.e. the trajectory model), maximum likelihood
estimation can be used to also estimate the parameters κ , σpl and σw. This approach
has been implemented various software packages such as CATS (Williams 2008),
est_noise (Langbein 2010) and Hector (Bos et al. 2013). In recent years one also has
detected randomwalk noise in the time series and this type has been included as well
in the covariance matrix (Langbein 2012; Dmitrieva et al. 2015).

We assumed that vi = 0 for i < 0 which corresponds to no noise before the first
observation. This is an important assumption that has been introduced for a practical
reason. For a spectral index κ smaller than −1, the noise becomes non-stationary.
That is, the variance of the noise increases over time. If it is assumed that the noise
was always present, then the variance would be infinite.

Most GNSS time series contain flicker noise which is just non-stationary. Using
the assumption of zero noise before the first observation, the covariance matrix still
increases over time but remains finite.

For some geodetic time series, such as tide gauge observations, the power-law
behaviour in the frequency domain shows a flattening below some threshold fre-
quency. To model such behaviour, Langbein (2004) introduced the Generalised
Gauss–Markov (GGM) noise model which is defined as:

(1 − φB)−κ/2v = w (2.28)

The only new parameter is φ. The associated recurrence relation to compute the
new coefficients hi is:

h0 = 1

hi = (i − κ

2
− 1)φ

hi−1

i
for i > 0

(2.29)
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If φ = 1, then we obtain again our pure power-law noise model. For any value of
φ slightly smaller than one, this term helps to shorten the memory of noise which
makes it stationary. That is, the temporal correlation decreases faster to zero for
increasing lag between the noise values. The power-spectrum of this noise model
shows aflatteningbelowsome threshold frequencywhichguarantees that the variance
is finite and that the noise is stationary. Finally, it is even possible to generalise this
a bit more to a fractionally integrated generalised Gauss–Markov model (FIGGM):

(1 − φB)−κ1/2(1 − B)κ2/2v = w

(1 − φB)−κ1/2u = w
(2.30)

This is just a combination of the two previous models. One can first apply the
power-law filter to v to obtain u and afterwards apply the GGM filter on it to obtain
w. Other models will be discussed in this book, such as ARMA (Box et al. 2015;
Brockwell and Davis 2002), but the power-law, GGM and FIGGM capture nicely
the long memory property that is present in most geodetic time series. A list of all
these noise models and their abbreviation is given in Table 2.1.

2.4 Power Spectral Density

Figure2.3 shows examples ofwhite, flicker and randomwalk noise for a displacement
time series. One can see that the white noise varies around a stable mean while the
random walk is clearly non-stationary and deviates away from its initial position.

In the previous section we mentioned that power-law noise has a specific curve
in the power spectral density plots. Methods to compute those plots are given by
Buttkus (2000). A simple but effective method is based on the Fourier transform that
states that each time series with finite variance can be written as a sum of periodic
signals:

Table 2.1 Common
abbreviation of noise models

Noise model Abbreviation

Auto-Regressive Moving Average ARMA

Auto-Regressive Fractionally
Integrated Moving Average

ARFIMA or FARIMA

Flicker Noise FN

Fractionally Integrated GGM FIGGM

Generalised Gauss Markov GGM

Power-Law PL

Random Walk RW

White Noise WN
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yn = 1

N

N/2∑
k=−N/2+1

Yk · ei2πkn/N for n = [0, . . . , N − 1] (2.31)

Actually, this is called the inverse discrete Fourier transform. Yk are complex
numbers, denoting the amplitude and phase of the periodic signalwith period k/(NT )

where T is the observation span. An attentive reader will remember that flicker and
random walk noise are non-stationary while the Fourier transform requires time
series with finite variance. However, we never have infinitely long time series which
guarantees the variance remains within some limit. The coefficients can be computed
as follows:

Yk =
N−1∑
n=0

yn · e−i2πkn/N for k = [−N/2 + 1, . . . , N/2] (2.32)

The transformation to the frequency domain provides insight which periodic sig-
nals are present in the signal and in our case, insight about the noise amplitude at the
various frequencies. This is a classic topic andmore details can be found in the books
by Bracewell (1978) and Buttkus (2000). The one-sided power spectral density Sk is
defined as:

S0 = |Y0|2/ fs
SN/2 = |YN/2|2/ fs
Sk = 2|Yk |2/ fs for k = [1, . . . , N/2 − 1]

(2.33)

The frequency fk associated to each Sk is:
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Fig. 2.3 Examples of white, flicker and random walk noise
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fk = k fs
N

for k = [0, . . . , N/2] (2.34)

The highest frequency is half the sampling frequency, fs/2, which is called the
Nyquist frequency. The power spectral density (PSD) computed in this manner is
called a periodogram. There are many refinements, such as applying window func-
tions and cutting the time series in segments and averaging the resulting set of PSD’s.
However, a detail that normally receives little attention is that the Fourier transform
produces positive and negative frequencies. Time only increases and there are no neg-
ative frequencies. Therefore, one always uses the one-sided power spectral density.
Another useful relation is that of Parseval (Buttkus 2000):

1

N

N−1∑
n=0

|yn|2 = 1

N 2

N/2∑
k=−N/2+1

|Yk |2 (2.35)

Thus, the variance of the noise should be equal to the sum of all Sk values (and
an extra fs/N 2 scale). The one-sided power spectral density of the three time series
of Fig. 2.3 are plotted in Fig. 2.4. It shows that power-law noise indeed follows a
straight line in the power spectral density plots if a log-log scale is used. In fact, the
properties of the power-law noise can also be estimated by fitting a line to the power
spectral density estimates (Mao et al. 1999; Caporali 2003).

The PSD of power-law noise generated by fractionally differencedGaussian noise
is Kasdin (1995):

S( f ) = 2σ 2

fs
(2 sin(π f/ fs))

κ

≈ 2σ 2

fs
(π f/ fs))

κ = P0( f/ fs)
κ for f 	 fs

(2.36)
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Fig. 2.4 One-sided power spectral density for white, flicker and random walk noise. The blue dots
are the computed periodogram (Welch’s method) while the solid red line is the fitted power-law
model
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For small value of f , this approximates P0( f/ fs)κ . The sine function is the result
of having discrete data (Kasdin 1995). The PSD for GGM noise is:

S( f ) = 2σ 2

fs

[
1 + φ2 − 2φ cos(2π f/ fs)

]κ/2
(2.37)

For φ = 1, it converts to the pure power-law noise PSD. The Fourier transform,
and especially the Fast Fourier Transform, can also be used to filter a time series.
For example, Eqs. (2.23) and (2.24) represent a filtering of white noise vector v to
produce coloured noise vector w:

wi =
i−1∑
j=0

hi− j v j (2.38)

Let us nowextend the time seriesy and thevectorh containing thefilter coefficients
with N zeros. This zero padding allows us to extend the summation to 2N . Using
Eq. (2.32), their Fourier transforms, Yk and Hk , can be computed. In the frequency
domain, convolution becomes multiplication and we have Press et al. (2007):

Wk = Hk Yk for k = [−N , . . . , N ] (2.39)

UsingEq. (2.31) andonly using thefirst N elements, the vectorwwith the coloured
noise can be obtained.

2.5 Numerical Examples

To explain the principle of maximum likelihood, this section will show some exam-
ples of the numerical method using Python 3. For some years Matlab has been the
number one choice to analyse and visualise time series. However, in recent years
Python has grown in popularity, due to the fact that it is open source and has many
powerful libraries. The following examples aremade in IPython (https://ipython.org),
using the Jupyter notebook webapplication. How to install this program is described
on the afore mentioned website. The examples shown here can be downloaded from
the publisher website. The first step is to import the libraries:

import math
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import minimize
from numpy.linalg import inv

Next step is to create some data which we will store in Numpy arrays. As in
Matlab, the ‘linspace’ operator creates a simple array on integers. Furthermore, as

https://ipython.org
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Fig. 2.5 Our synthetic time series containing a simple line plus flicker noise

the name implies ’random.normal’ creates an array of Gaussian distributed random
numbers. We create a line y with slope 2 and offset 6 on which we superimpose
the noise w that were created using a standard deviation σpl = 0.5 for vector v, see
Eq. (2.23). This time series is plotted in Fig. 2.5.

N = 500 # Number of daily observations
t = np.linspace(0,N/365.25,N) # time in years
np.random.seed(0) # Assure we always get the same noise

kappa = -1 # Flicker noise
h = np.zeros(2*N) # Note the size : 2N
h[0] = 1 # Eq. (25)
for i in range(1,N):

h[i] = (i-kappa/2-1)/i * h[i-1]

v = np.zeros(2*N) # Again zero-padded N:2N
v[0:N] = np.random.normal(loc = 0.0, scale = 0.5, size = N)

w = np.real(fft.ifft(fft.fft(v) * fft.fft(h))) # Eq. (39)

y = (6 + 3*t) + w[0:N] # trajectory model + noise

plt.plot(t, y, ’b-’) # plot the time series

Of course the normal situation is that we are given a set observations and that we
need to estimate the parameters of the trajectory model y(t) = a + bt . However, cre-
ating synthetic time series is a very goodmethod to test if your estimation procedures
are correct.

First we will estimate the trajectory assuming white noise in the data:

#--- The design matrix
A = np.empty((N,2))
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for i in range(0,N):
A[i,0] = 1
A[i,1] = t[i]

#--- Old white noise method
C = np.identity(N)
x = inv(A.T @ inv(C) @ A) @ (A.T @ inv(C) @ y) # Eq. (14)
y_hat = A @ x
r = y - y_hat # residuals
C_x = np.var(r)* inv(A.T @ inv(C) @ A) # Eq. (15)
print(’White noise approximation’)
print(’a = {0:6.3f} +/- {1:5.3f} mm’.format(x[0],\

math.sqrt(C_x[0,0])))
print(’b = {0:6.3f} +/- {1:5.3f} mm/yr’.format(x[1],\

math.sqrt(C_x[1,1])))

The result should be:

White noise approximation
a = 6.728 +/- 0.064 mm
b = 1.829 +/- 0.080 mm/yr

What we have done here is using weighted least-squares with a white noise model
that has unit variance. The real variance of the noise has been estimated from the
residuals and the uncertainty of the estimated parameters x have been scaled with it.

At this point the reader will realise that this approach is not justified because the
noise is temporally correlated. It will be convenient to define the following two func-
tions that will create the covariance matrix for power-law noise and apply weighted
least-squares (Williams 2003; Bos et al. 2008):

#--- power-law noise covariance matrix
def create_C(sigma_pl,kappa):

U = np.identity(N)
h_prev = 1
for i in range(1,N):

h = (i-kappa/2-1)/i * h_prev # Eq. (25)
for j in range(0,N-i):

U[j,j+i] = h
h_prev = h

U *= sigma_pl # scale noise
return U.T @ U # Eq. (26)

#--- weighted least-squares
def leastsquares(C,A,y):

U = np.linalg.cholesky(C).T
U_inv = inv(U)
B = U_inv.T @ A
z = U_inv.T @ y
x = inv(B.T @ B) @ B.T @ z # Eq. (14)

#--- variance of the estimated parameters
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C_x = inv(B.T @ B) # Eq. (15)

#--- Compute log of determinant of C
ln_det_C = 0.0
for i in range(0,N):

ln_det_C += 2*math.log(U[i,i])

return [x,C_x,ln_det_C]

The function that creates the covariance matrix for power-law noise has been
discussed in Sect. 2.3 and uses Eqs. (2.25) and (2.26). The weighted least-squares
function contains somenumerical tricks. First, theCholesky decomposition is applied
to the covariance matrix (Bos et al. 2008):

C = UTU (2.40)

where U is an upper triangle matrix. That is, only the elements above the diagonal
are non-zero. A covariance matrix is a positive definite matrix which ensures that the
Cholesky decomposition always exists. The most important advantage it that one can
compute the logarithm of the determinant of matrixC by just summing the logarithm
of each element on the diagonal of matrixU. The factor two is needed because matrix
C is the product of UTU. Using these two functions, we can compute the correct
parameters x:

#--- The correct flicker noise covariance matrix
sigma_pl = 4
kappa = -1
C = create_C(sigma_pl,kappa)
[x,C_x,ln_det_C] = leastsquares(C,A,y)
print(’Correct Flicker noise’)
print(’a = {0:6.3f} +/- {1:5.3f} mm’.format(x[0],\

math.sqrt(C_x[0,0])))
print(’b = {0:6.3f} +/- {1:5.3f} mm/yr’.format(x[1],\

math.sqrt(C_x[1,1])))

The result is:

Correct Flicker noise
a = 6.854 +/- 2.575 mm
b = 1.865 +/- 4.112 mm/yr

If one compares the two estimates, one assumingwhite noise and the other assum-
ing flicker noise, then one can verify that the estimates themselves are similar. The
largest difference occurs for the estimated errors which are 5 times larger for the
latter. This also happens in real geodetic time series. Mao et al. (1999) concluded
that the velocity error in GNSS time-series could be underestimated by factors of
5–11 if a pure white noise model is assumed. Langbein (2012) demonstrated that an
additional factor of two might be needed if there is also random walk noise present.
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For sea level time series (Bos et al. 2014) obtained a more moderate factor of 1.5–
2 but still, white noise underestimates the true uncertainty of the estimated linear
trend. Williams et al. (2014) estimated a factor 6 for the GRACE gravity time series.
As discussed in Sect. 2.3, most geodetic time series are temporally correlated and
therefore one nowadays avoids the white noise model.

So far we have assumed that we knew the true value of the spectral index κ and the
noise amplitude σpl . Using MLE, we can estimate these parameters from the data:

#--- Log-likelihood (with opposite sign)
def log_likelihood(x_noise):

sigma_pl = x_noise[0]
kappa = x_noise[1]
C = create_C(sigma_pl,kappa)
[x,C_x,ln_det_C] = leastsquares(C,A,y)
r = y - A @ x # residuals

#--- Eq. (12)
logL = -0.5*(N*math.log(2*math.pi) + ln_det_C \

+ r.T @ inv(C) @ r)
return -logL

x_noise0 = np.array([1,1]) # sigma_pl and kappa guesses
res = minimize(log_likelihood, x_noise0, \

method=’nelder-mead’, options={’xatol’:0.01})

print(’sigma_pl={0:6.3f}, kappa={1:6.3f}’.\
format(res.x[0],res.x[1]))

Note that we inverted the sign of the log-likelihood function because most soft-
ware libraries provide minimization subroutines, not maximisation. In addition, it is
in this function that we need the logarithm of the determinant of matrixC. If one tries
to compute it directly from matrix C, then one quickly encounters too large num-
bers that create numerical overflow. This function also shows that we use weighted
least-squares to estimate the parameters of the trajectory model while the numeri-
cal minimization algorithm (i.e. Nelder–Mead), is only used the compute the noise
parameters. The reason for using weighted least-squares, also a maximum likelihood
estimator as we have shown in Sect. 2.2, is solely for speed. Numerical minimization
is a slow process which becomes worse for each additional parameter we need to
estimate. The results is:

sigma_pl= 0.495, kappa=-1.004

These values are close to the true values of σpl = 0.5 and κ = −1. The following
code can be used to plot the log-likelihood as function of κ and σpl :

S = np.empty((21,21))
for i in range(0,21):

sigma_pl = 1.2 - 0.05*i
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for j in range(0,21):
kappa = -1.9 + 0.1*j
x_noise0 = [sigma_pl,kappa]
S[i,j] = math.log(log_likelihood(x_noise0))

plt.imshow(S,extent=[-1.9,0.1,0.2,1.2], cmap=’nipy_spectral’, \
aspect=’auto’);

plt.colorbar()
plt.ylabel(’sigma_pl’)
plt.xlabel(’kappa’)
plt.show()

The result is shown in Fig. 2.6 which indeed shows a minimum around σpl = 0.5
and κ = −1. Depending on the computer power, it might take some time to produce
the values for this figure.

In Sect. 2.3 we noted that for GNSS time series the power-law plus white noise
model is common. Thus, one must add the covariance matrix for white noise, σ 2

wI, to
the covariance matrix we discussed in the examples. In addition, it is more efficient
to write the covariance matrix of the sum of power-law and white noise as follows:

C = σ 2
plJ(κ) + σ 2

wI = σ 2 (φ J(κ) + (1 − φ)I ) (2.41)

where σ can be computed using:

σ =
√
rTC−1r

N
(2.42)

Fig. 2.6 The log of the log(L) function as function of κ and σpl
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Since σ can be computed from the residuals, we only use our slow numerical
minimization algorithm need to find the value of φ (Williams 2008).

Note that we only analysed 500 observations while nowadays time series with
7000 observations are not uncommon. If one tries to rerun our examples for this
value of N , then one will note this takes an extremely long time. The main reason
is that the inversion of matrix C requires O(N 3) operations. Bos et al. (2008, 2013)
have investigated how the covariance matrix C can be approximated by a Toeplitz
matrix. This is a special type of matrix which has a constant value on each diagonal
and one can compute its inverse using onlyO(N 2) operations. This method has been
implemented in the Hector software package that is available from http://segal.ubi.
pt/hector.

The Hector software was used to create time series with a length of 5000 daily
observations (around 13.7years) for 20 GNSS stations which we will call the Bench-
mark Synthetic GNSS (BSG). This was done for the the horizontal and vertical com-
ponents, producing 60 time series in total. Each contains a linear trend, an annual
and a semi-annual signal. The sum of flicker and white noise, wi , was added to these
trajectory models:

wi = σ

⎡
⎣√

φ

i−1∑
j=0

hi− jv j + √
1 − φ ui

⎤
⎦ (2.43)

with both ui and vi are Gaussian noise variables with unit variance. The factor φ was
defined in Eq. (2.41). To create our BSG time series we used σ = 1.4mm, φ = 0.6
and horizontal components and σ = 4.8mm, φ = 0.7 for the vertical component.

It is customary to scale the power-law noise amplitudes by ΔT−κ/4 where ΔT is
the sampling period in years. For the vertical flicker noise amplitude we obtain:

σpl = σ
√

φ

ΔT κ/4
= 4.8 × √

0.7

(1/365.25)1/4
= 17.6 mm/yr0.25 (2.44)

The vertical white noise amplitude is 2.6 mm. For the horizontal component these
values are σpl = 4.7mm/yr0.25 and σw = 0.9mm respectively. The BGS time series
can be found on the Springer website for this book, and can be used to verify the
algorithms developed by the reader. These series will also be compared with other
methods in the following chapters.

2.6 Discussion

In this chapter we have given a brief introduction to the principles of time series anal-
ysis. We paid special attention to the maximum likelihood estimation (MLE) method
and the modelling of power-law noise. We showed that with our assumptions on the
stochastic noise properties, the estimated parameters have their variance bounded

http://segal.ubi.pt/hector
http://segal.ubi.pt/hector
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by the Cramer Rao lower bound. Therefore the MLE is an optimal estimator in the
sense of asymptotically unbiased and efficient (minimum variance).

In this bookwewill present other estimators such as the Kalman filter, theMarkov
Chain Monte Carlo Algorithm and the Sigma-method. All have their advantages and
disadvantages and to explain them was one of the reasons for writing this book.
The other reason was to highlight the importance of temporal correlated noise. This
phenomenon has been known for a long time but due to increased computer power,
it has now become possible to include it in the analysis of geodetic time series. We
illustrated how this can be done by various examples in Python 3 that highlighted
some numerical aspects that will help the reader to implement their own algorithms.
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