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Science is a way of thinking much more than
it is a body of knowledge.
—Carl Sagan
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by researchers in the process of
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it, modelling the observations and discussing
the results.
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co-editor Machiel S. Bos for the efforts to
produce this book from the early ideas in late
2017. Now, looking back at the early
beginning of my career, I remember some of
my older colleagues and mentors who
inspired me to pursue a career in sciences.
Years after years, the motivation has kept
growing up in me with my various interests in
many areas. A career in science is unique and
exciting!

Like many other scientists, this work would
not be possible if I was not surrounded by
understanding and caring people who are
standing on my side. I dedicate this book to
my family and in particular to my parents



(Jean-Louis & Monique) for helping me over
so many decades and supporting me to
overcome life obstacles, to my wife (Alison)
with a deep understanding of my passion and
time that I spend alone in the corridors of
science, to my beloved sons Clovis & Henry
for the joy they bring to me and completing
my life.
—Jean-Philippe Montillet

For Sandra who had to put up with a
husband glued to his laptop.
—Machiel S. Bos



Foreword: Welcome to the Not-So-Spherical
Cow

Students of high school physics often encounter a fictional flat Earth where objects
move without friction through a vacuum. As they grow in their understanding, the
complexities of sphericity and friction emerge; but gross simplifications often
remain of the real system being modelled. This is the world of the so-called—and
humorous—spherical cow—a visual metaphor for highly simplified models of
complex phenomena.

Students of geodesy will have been (or should have been) taught the comple-
mentarity of functional and stochastic models of a process—for any given problem,
any signal (including “noise”) must be considered appropriately in the functional
model or the stochastic model. Neglect of any component of the signal produces
erroneous and potentially misleading estimates of parameter values and their
uncertainties.

In the past, it was common in geodetic analysis to assume (usually untested) that
the functional model was complete, and the residual noise was white (temporally
uncorrelated) and could be treated as such in the stochastic model. A more robust
analysis of various geodetic signals has found that such time series normally
contain time-varying signal and noise is rarely white.

Because of these previous assumptions, there is little doubt that scientific con-
clusions have been reached that are not actually supported by the data: statistically
insignificant accelerations in ice sheets have been interpreted as significant; noise
has been interpreted as genuine strain in Earth’s crust; changes in linear rates of sea
level rise have been too confidently declared; seasonally varying deformation of the
solid Earth was approximated as time-constant annual harmonic. These
(not-entirely) hypothetical examples have major implications that extend well
beyond geodesy and geophysics and into society and policy. Spherical cows are not
sufficient.

In my own research field which focuses on geodesy in polar regions, the
developments summarised in this book have advanced our understanding tremen-
dously. New insights have been gained into the three-dimensional deformation of
Antarctica due to tectonics and surface loading changes over months to millennia,
while more robust estimates of ice mass change and their uncertainties have been

ix



obtained from the Gravity Recovery and Climate Experiment (GRACE). And yet
much analysis remains overly simple—it is still common to adopt simple models of
linear or quadratic changes in ice mass or volume—and the residuals are often
treated as white noise or simple autoregressive processes both of which are typically
not realistic. There is still much to do although the growing body of excellent
software tools means that major advances in rigour are within reach.

The focus of this book is to synthesise recent progress in geodetic time series
analysis theory and approaches that represents a shift away from a spherical cow to
a not-so-spherical cow. This book is both theoretical and practical. It shines a light
on a new theory, explores different methodologies and, helpfully, showcases the
implementation of methodology into practical tools to assist the entire community
in undertaking more robust time series analysis.

While this book focuses on geodetic time series analysis, it offers important
lessons and practical tools for members of any other community working with time
series who need to consider robust time series analysis in the presence of potentially
time-varying signals and/or time-correlated noise. Those communities may well be
adopting simple—or worse—untested models of time series signal and noise. It
challenges us to stop doing what everyone else is doing and consider more
inconvenient truths which require forming deeper knowledge and exploring new
data analysis techniques. In doing so, we will produce better science for the good of
everyone.

Hobart, Australia Matt King
University of Tasmania
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Preface

This topic of this book is the analysis of geodetic time series. As Torge (2001)
wrote: “The problem of geodesy is to determine the figure and external gravity field
of the Earth and of other celestial bodies as a function of time, from observations on
and exterior to the surfaces of these bodies”. While geodesy has a long history,
going back to surveyors in ancient Egypt, it has been revolutionised by the recent
developments of the Global Navigation Satellite Systems (GNSS). At the moment,
more than 15,000 permanent GNSS stations are fully operational and provide daily
positions with mm-level accuracy. The analysis of the variations of the position
over time provides important information about various geophysical processes.
Examples are the estimation of the motion of tectonic plates, the deflation/inflation
event of volcanos, the offsets produced by earthquakes, the vertical land motion of
continents induced by post-glacial rebound, the movement of glaciers and the
estimation of some particular transient signals (e.g. slow slip events and
post-seismic transients) which are sometimes precursors of natural hazards (e.g.
landslides and flooding).

In addition, sea level time series observed by tide gauges and satellite altimetry
provide information about the secular sea level rise, as a response to the melting of
large glaciers from the poles (Antarctica and Greenland) and produce accurate
flooding maps in densely populated coastal areas around the world. Next, the
Earth’s gravity field is not constant over time. The recent Gravity Recovery and
Climate Experiment (GRACE) satellite mission has produced maps of the global
gravity field from 2003 to 2017. The follow-on mission (GRACE-FO) will extend
this time series. The data has been used to detect the aforementioned ice and snow
melting on Greenland and Antarctica, drought cycles and the quantification of
groundwater storage variations. To emphasise its impact on the study of the Earth,
this area of research is called environmental geodesy.

The present book is dedicated to the art of fitting a trajectory model to those
geodetic time series in order to extract accurate geophysical information with
realistic error bars. In the vast amount of the literature published on this topic in the
past 25 years, we are specifically interested in parametric algorithms which are
estimating both functional and stochastic models using various Bayesian statistical
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tools (maximum likelihood, Monte Carlo Markov chain, Kalman filter, least squares
variance component estimation, information criteria). Taking a pedagogical
approach, we introduce step by step the characteristics and properties intrinsic
of these time series using simulations and real data examples. The computing time
efficiency and accuracy of the estimated parameters from these various parametric
algorithms are compared with the performances of the “Hector” software package
(Bos et al. 2013). In addition, some discussions relate to the stochastic noise model
selection for various environmental applications. Thus, the first part of this book is
focused on the theory behind modelling the time series together with some para-
metric estimators. The second part of this book deals with various applications in
environmental geodesy and civil engineering.

Finally, this book is addressed to graduate students and professionals working
with geodetic time series and environmental geodesy, requiring an advanced
knowledge of Bayesian statistics. The reader will find the latest advances in
modelling geodetic time series together with some current applications.

Acknowledgements The editors would like to thank the authors for their contributions to this
book. Their involvement at all stages of the preparation has been great. The editors are also
grateful to the Springer Nature editorial team for the smooth interaction and the swift production.

Neuchâtel, Switzerland
Covilha, Portugal

Jean-Philippe Montillet
Machiel S. Bos
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Chapter 1
The Art and Science of Trajectory
Modelling

Michael Bevis, Jonathan Bedford and Dana J. Caccamise II

Abstract Coordinate time series are, by definition, trajectories, so the kinematic
models that geodesists and geophysicists use to describe these time series are trajec-
tory models. We describe various classes of trajectory models, and present a dozen
case studies that illustrate the use of these models and also illuminate the diversity
of ways in which the Earth moves and deforms. We distinguish between the deter-
ministic approach to trajectory modelling, which emphasizes the physical meaning
of the various components of the trajectory, and a more automatic, autonomous and
heuristic approach to finding and fitting a trajectory model.

Keywords Trajectory model · Geodynamics · Geodesy · Transient deformation

1.1 Introduction

Bevis and Brown (2014) sought to codify a long-established, if slowly-developing
trend in crustal motion geodesy by suggesting that the equations used to describe
the motion of GPS or GNSS stations should be thought of as trajectory models.
They argued that the observed trajectories of the great majority of GNSS stations,
worldwide, could bewellmodelled using just two families of trajectorymodels. Their
third main thrust was that modern (i.e. more general) trajectory models should be
used to define geometrical reference frames, and not justmodel the displacement time
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2 M. Bevis et al.

series expressed in those frames. This paper describes some further developments in
trajectory modelling, and provides some examples of displacement time series that
exemplify some typical and unusual patterns of crustal motion and deformation.

Geodesists tend to value trajectory models mostly as geometrical, i.e. kinematic
descriptions of station displacement, and they have only a secondary interest in
the dynamics of motion and deformation. Improving trajectory models can help
geodesists to construct more stable and consistent reference frames—the frames in
which all displacement time series are expressed. The fundamental concern of the
geodesist is geometrical consistency, either in three dimensions or in four. In contrast,
geophysicists aremore interested inwhat can be inferred about the physical processes
driving the motion and deformation of the solid Earth, by examining the trajectories
of geodetic stations or networks. These agendas tend to be mutually supportive, so
geophysically-inclined geodesists, and geodetically-inclined geophysicists, tend to
flip from one mindset to the other, according to their immediate needs.

We note that while station trajectorymodels aremost commonly applied to geode-
tic coordinate or crustal displacement time series, the same formalisms can be applied
to vector or scalar measures of change in other geophysical contexts, such as mass
change time series estimated using the GRACE satellite mission (Bevis et al. 2019),
and the relative sea level (RSL) histories recorded by tide gauges (Caccamise 2018).
Because a tide gauge records the vertical motion of the sea surface relative to the
solid ground on which the gauge rests, RSL time series can record both coseismic
jumps and postseismic transients, but with the opposite sign of the signals recorded
by a co-located GPS or GNSS station.

The first author and his colleagues at Ohio State University normally take a ‘deter-
ministic’ approach to station trajectorymodelling. For example, we use our computer
codes to estimate the sign and size of one or more jumps or discontinuities in a GPS
time series, but we determine (and assign) the number of jumps in each station tra-
jectory model, and the times of those jumps, based on prior knowledge of specific
physical events such as antenna changes, or earthquakes. We handle postseismic
transients in essentially the same way. But the second author often takes a far more
heuristic or ‘stochastic’ approach, in which the number and the onset times of tran-
sients are determined by his software, which is running in a less constrained, and
far more ‘automatic’ or ‘autonomous’ mode of operation (Bedford and Bevis 2018).
We write most of this article from the former, deterministic perspective, but we will
return to the topic of automatic signal decomposition in Sect. 4 of the paper.

1.2 Trajectory Models

The position vector of a station x(t) can be decomposed in a geocentric cartesian axis
system {X,Y,Z} or in a local or topocentric cartesian axis system {E,N,U} in which
the axes point east, north and up. The standard linear trajectory model (SLTM) is a
kinematic model which is the sum of three displacement modes, or distinct classes
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of motion, that describe the progressive trend of the trajectory, any instantaneous
jumps in position, and periodic or cyclical displacements:

x(t) = xtrend + xjumps + xcycle (1.1)

Jumps are described as linear combinations of Heaviside step functions at pre-
scribed jump times {tj}. The number of jumps, nJ , may be zero, one or more. Jumps
include coseismic jumps, which are real movements of the ground, and ‘artificial’
jumps associated with changes in the GPS antenna and/or its radome, or changes
in the antenna monument, etc. Nearly all GPS time series exhibit a seasonal cycle
of displacement which can be modelled as a 4-term Fourier series with periodicities
of 1 year and 0.5 years. These cycles are caused by seasonal changes in the water,
snow and ice loads supported by the solid earth (Bevis and Brown 2014), or (less
commonly) by seasonal changes in atmospheric pressure.

The most common trajectory model invokes a constant velocity trend, in which
case the SLTM has the following form:

x(t) = xR + v(t − tR) +
nJ∑

j=1

b jH
(
t − t j

)+
nF∑

k=1

[sk sin(ωk t) + ck cos(ωk t)] (1.2)

where tR is an arbitrary reference time, often set to the mean time of observation, xR
= x(tR) is the reference position, and v is the station velocity vector, which is assumed
to be constant. The function H is the Heaviside or unit step function, and vector bj
describes the direction and magnitude of the jump which occurs at time tj, and nJ is
the number of jumps. The 3-vectors sk and ck are the Fourier coefficients (one for
each component of the position vector) for the harmonic with angular frequency ωk ,
and nF is the number of distinct frequencies. The angular frequency ωk = 2π/τk ,
where τk is the corresponding period. To model annual displacement cycles, we
choose the fundamental period τ1 = 1 year, and the periods of the higher harmonics
τk = 1/k years. This ensures that the cycle constructed from nF sines and nF cosines
(and a total of nF frequencies or periods) repeats only once per year. Nearly always
it is adequate to set nF = 2, specifying a 4-term Fourier series.

In the event that the station does not move with a constant velocity trend, we can
use a more general form of the SLTM in which the trend is polynomial in time, thus:

x(t) =
np+1∑

i=1

pi (t − tR)i−1+
nJ∑

j=1

b jH
(
t − t j

)+
nF∑

k=1

[sk sin(ωk t) + ck cos(ωk t)]

(1.3)

where nP is the maximum order of the polynomial. If nP = 1, then this model reduces
to the constant velocity model, with p1 = xR and p2 = v. If nP = 2, it becomes the
quadratic trend or ‘constant acceleration’ model in which the acceleration vector a=
2 p3. No matter what the value of nP, p1 always corresponds to the reference position
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xR. In our experience it is only rarely necessary to set nP > 3. For the large majority
of GPS stations, it is adequate to set nP = 1.

The vector Eq. (1.3) can be thought of as a system of three scalar equations
describing the temporal evolution of the X, Y, and Z coordinates respectively. But it
can just as easily be used to describe the E, N, and U components of displacement.
That is, one could associate x3 with Z or U. Indeed, it is usually better to fit and
present displacement histories in E,N,U rather than X,Y,Z because the physical noise
processes affecting the vertical coordinate, U, are fundamentally distinct from those
affecting the horizontal coordinates, E and N. This distinction is lost or blurred when
examining displacement time series in X,Y,Z.

The SLTM cannot adequately describe postseismic transient displacements. This
can be done by augmenting the SLTM using one or more exponential or logarithmic
transients. A simple logarithmic transient displacement, d(�t), has the form

d = A log(1+ �t/T ) (1.4)

where A is the amplitude coefficient, T is the characteristic time scale of the transient
displacement, and �t is the time since the earthquake occurred. Since this formula
applies only after the earthquake has occurred, we are restricted to the domain �t >
0. The scalar d might refer to any one of the geocentric Cartesian coordinates (X, Y,
or Z) or topocentric Cartesian coordinates (E, N, and U) used to describe a geodetic
time series.

A common alternative for a decaying transient function is the exponential form

d = A (1− exp(−�t/T )) (1.5)

This formula is often more attractive to theorists because it invokes a transient
that decays to zero as �t tends to infinity. This seems physically reasonable. In con-
trast Eq. (1.4) does not have this asymptotic behaviour, and the cumulative transient
displacement grows indefinitely, though at a slower and slower rate as �t increases.
This leads some to conclude that the logarithmic transient is physically unreason-
able. We suggest that a more nuanced and useful conclusion is that Eq. (1.4) is just
an approximation to reality—but often a very convincing, long-sustained and very
useful approximation. This logarithmic transient is favoured by some because it is
predicted by rate and state friction theory for the afterslip-driven component of post-
seismic deformation (Marone et al. 1991; Marone 1998; Perfettini and Avouac 2007;
Perfettini et al. 2010).

Those who insist on the rather ‘purist’ position of favouring Eq. (1.5) over
Eq. (1.4), based on its asymptotic behaviour, might reflect on the fact that nearly
all modern error analyses for GNSS station velocity estimates are dominated by
the assumption that positioning noise can be represented by a combination of white
noise and power law noise (Zhang et al. 1997; Mao et al. 1999;Williams et al. 2004),
most frequently a combination of white noise and flicker (or 1/f) noise. There are
dozens of examples of physical systems exhibiting flicker noise behaviour, and these
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characterizations often provide excellent fits to power spectra over many decades of
frequency.Nevertheless, flicker noise behaviour cannot bemaintained forall frequen-
cies, because this would lead to a physically unreal situation in which the integral
of the power spectrum diverges at both the low and high frequency limits (Press
1978). Flicker noise behaviour has to be band-limited in practice, but because these
divergences are logarithmic, it is often perfectly reasonable to ignore this fact when
analyzing a specific data set. The choice of a flicker noise model is fundamentally
heuristic, as is, for many geodesists, the assumption of a logarithmic transient.

A better fit to an observed postseismic transient can be obtained using a double
transient in which there are two characteristic time scales, T 1 and T 2. If we prefer
logarithmic transients this leads us to

d = A1log(1+ �t/T1) + A2log(1+ �t/T2) (1.6)

whereas devotees of exponential transients prefer

d = A1(1− exp(−�t/T1)) + A2(1− exp(−�t/T2)) (1.7)

In both cases we adopt the convention that T 1 < T 2. It is also possible to invoke
hybrid double transients that mix the logarithmic and exponential forms, thus

d = A1log(1+ �t/T1) + A2(1− exp(−�t/T2)) (1.8)

where T1 < T2 by design, and not just by convention. This variant is motivated by the
idea that early postseismic transients are dominated by afterslip, but later on these
transients are dominated by bulk viscoelastic relaxation of the stresses induced by the
earthquake. Viscoelasticity is often associated with exponential transient behaviour.
It is also possible to invoke multi-transients with three or more characteristic time
scales, though this is rarely done in the ‘deterministic’ school of trajectorymodelling.

Although double transients always produce a better fit than do simple or single
transients, since they increase the number of adjustable parameters, they often lead
to inversions with considerably larger condition numbers, implying that the solution
is less stable and might lead to less reliable predictions of future behaviour, despite
producing a better fit to the data already in hand. This occurs because the double
transient model may start to model the ‘noise’ as well as the ‘signal’. In the first
author’s experience, daily GPS/GNSS positioning noise always has a strong power
law component, and this leads to temporal structure in the noise, which often looks
like it includes a long period signal (Mandelbrot 1969; Press 1978). This pseudo-
signal may be ‘sucked up’ into a trajectory model during the estimation process.

For analysts working in a ‘deterministic’ mode, who assign physical significance
to the coefficients of the trajectory model, and/or wish to use the model to make pre-
dictions about the future position of the station, it is potentially dangerous to invoke
double transients (logarithmic or exponential) if the observations being modelled are
very noisy, and even more dangerous to involve multi-transients involving three or
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more characteristic time scales, particularly when the transient occurs near the end
of the time series. Suppose we have solved the standard least squares problem, Ax
= b, where x contains the coefficients of the trajectory model, and we are concerned
about the change �x in the solution vector x, caused by a small fluctuation �b in
the data vector b. We might view �b as representing the (unknown) noise affect-
ing the ‘true’ b-vector. The relative change or uncertainty in the data vector can be
represented by the ratio of the norms ||�b ||/|| b|| and the associated relative change
in the solution vector by ||�x||/||x||. If κ is the condition number of matrix A, whose
columns are the basis functions of the trajectory model, then the sensitivity of the
solution to noise in the data is often approximated using the expression ||�x||/||x||
= κ ||�b ||/|| b||. Thus, we can view the condition number of the design matrix as
a relative error magnification factor (e.g. Forsythe et al. 1977). The lowest possible
condition number is 1. It is possible to encounter least squares problems in which κ

~ 1 million, or even higher. When the condition number κ is very large then a tiny
change in the noise affecting the data may produce a large relative change in the
solution. In this case, the least squares problem is said to be poorly posed. Clearly
this situation is very undesirable when we wish to assign physical significance to
the solution vector. (But if our only goal is obtaining a very good fit between model
and data, i.e. producing a very small RMS misfit, then very large κ values might not
bother us at all!).

It is easily discovered via simple numerical experiments that the design matrix
for a linear trajectory model containing a double transient often has a much larger
condition number than does the design matrix for a model incorporating a simple
transient but is otherwise identical. The design matrix for a model that incorporates a
triple transient often has a verymuch larger condition number. A very large condition
number is particularly worrying when we suspect that our data is very noisy, so that
||�b ||/||b||, the relative measure of this noise, is unusually large, since the instability
in the solution increases with both κ and ||�b ||/||b||. Therefore, we are reluctant to
use multi-transients unless we are analyzing long, fairly evenly spaced and fairly
high-quality displacement time series. For example, we almost never invoke double
transients when we are modelling postseismic transients in tide gauge observations
rather than GPS displacements. In the case of GPS or GNSS displacement time series
we normally invoke double transients when fitting long postseismic transients, but
we are then very careful not to use these models to predict station coordinates more
than a few months beyond the time range of the observations used to estimate the
parameters of the transient model. Increasing the number of degrees of freedom
available to a trajectory model always improves its fit to the observations, but it can
also lead to less accurate predictions of the trajectory beyond the time window of
observation. This is the famous trade-off between resolution and reliability.

It is well known that exponential and logarithmic transients can produce very
similar fits to GPS time series manifesting postseismic deformation, given equal
degrees of freedom, so the choice between them is hardly crucial for the geodesist
who simply wants a good fit between data and model. In some contexts, such as that
of empirical transient analysis (Bedford and Bevis 2018), the exponential form is
the more natural choice because of its asymptotic behaviour. But the space geodesy
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group at Ohio State University has convinced itself that double logarithmic transients
often provide slightly better fits than double exponential transients, and very slightly
better fits than composite logarithmic-exponential transients (Sobrero 2018), and as
a result we nearly always invoke logarithmic transients.

Bevis and Brown (2014) defined the extended trajectory model (ETM) as the
combination of a SLTM and one or more transients. For those preferring logarithmic
transients, the ETM is

x(t) =
np+1∑

i=1

pi (t − tR)i−1 +
nJ∑

j=1

b jH
(
t − t j

) +
nF∑

k=1

[sk sin(ωk t) + ck cos(ωk t)]

+
nT∑

i=1

ai log(1+ �ti/Ti ) (1.9)

where nT is the number of logarithmic transients. For each transient caused by an
earthquake at time tEQ, we define �t = 0 for t < tEQ and �t = (t – tEQ) otherwise.
Note that we can invoke double transients by having the same value of tEQ for two
of the �ti vectors, but different values for the scale parameter Ti. Indeed, when our
emphasis is on fitting a time series rather than predicting the future position of a
station, we have occasionally invoked three transient time scale parameters, that is,
triple logarithmic transients.

One of the most attractive aspects of the SLTM is that this model is linear in
its coefficients, so the task of fitting an observed time series with this model, i.e.
solving for the coefficients or parameters of the trajectory model, reduces to solving
a linear least squares problem. This is not true for the ETM, but if the characteristic
time scales (T ) of the logarithmic transients are assigned rather than estimated, then
the problem again becomes linear and the ETM is renamed the extended linear
trajectory model (ELTM). It is often reasonable to pre-assign the transient time scale
parameters, particularly when invoking a double logarithmic transient. In this case
we usually set T1= 0.0523 years and T2 = 1 year, because formally optimizing their
values very rarely leads to significant improvements in fit (Wang 2018). When the
displacement data are too noisy or too short to justify the use of a double transient,
then we will typically estimate the best single value for T using a non-linear least
squares process, particularlywhenwe aremore strongly focused on physicalmeaning
rather than geodetic utility.

1.3 A Gallery of Geodetic Trajectories

In this section we present examples of geodetic time series from around the world,
and use them to describe the art of trajectory modelling, and/or to illuminate the
character, and sometimes the complexities, of the Earth’s behaviour. Most of our
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Fig. 1.1 a The GRACE mass change solutions for Greenland fit in the reference period (ending
in 2013.4) with an SLTM composed of a quadratic trend and an annual cycle represented by a
4-term Fourier series. This model was projected forward after 2013.4. b The mass change solution
after the mean annual cycle was removed, compared to the quadratic trend component of the mass
trajectorymodel. This seasonally-adjustedmass change time seriesmanifests the recent deglaciation
of Greenland. The remarkable change in behaviour that began in the summer of 2013, and its
implications, have been discussed by Bevis et al. (2019)

examples are drawn from crustal motion geodesy. But we begin with one of two case
studies involving a scalar time series.

The GRACE time series shown in Fig. 1.1 is the mass change computed, for
Greenland as a whole, by Bevis et al. (2019). The original solutions are shown
using the blue circles in Fig. 1.1a. We used a least squares procedure to fit a SLTM
composed of a quadratic trend and a four-term Fourier Series, but only for those
mass solutions obtained before 2013.4. The resulting mass trajectory model was
then projected forward to the end of the time series, producing the solid red curve.
The trend component of the SLTM is shown by the dashed red curve in Fig. 1.1a.
One of the useful things that we can do with a trajectory model is to decompose the
trajectory. We frequently do this in order to seasonally adjust or “de-cycle” a time
series. We simply evaluate the cyclical component of the model at the observation
times, and remove this mean cycle from the data. This produces the blue circles in
Fig. 1.1b. We can then compare the de-cycled observations with a revised trajectory
model in which the cyclical component has been removed. Since there are no jumps
or transients in this SLTM, the resulting seasonally-adjusted trajectory model is
simply the quadratic trend—the solid red curve in Fig. 1.1b. Note that the mean
cycle was estimated using only the data before 2013.4, but was used to adjust all
the data, including the mass solutions obtained after that date. Because the mean
seasonal cycle in ice mass does not contribute to deglaciation, it is interesting to
remove it, and view what remains as the ‘deglaciation curve’, without the distraction
of seasonal variation. In this case we see that seasonally-adjusted ice loss integrated
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over Greenland very nearly followed a quadratic or ‘constant acceleration’ trend for
~10 years, but then the situation changed abruptly, and rather astonishingly, in the
summer of 2013, because of a change in the phase of the North Atlantic Oscillation,
as discussed by Bevis et al. (2019).

Many discontinuities or jumps observed in displacement time series are artificial
in the sense that the ground did not actually jump, but rather the phase center of the
antenna was abruptly displaced by an antenna change, a radome change, or by physi-
cal modification of the antenna monument. In non-seismogenic areas, such as Brazil,
essentially all observed jumps are artificial. Even so, each jump has to be accounted
for in any trajectory model used to realize a reference frame, because if the prior
coordinates assigned to the station do not reflect a jump, then that jump will appear
instead in the coordinates computed for any roving GPS/GNSS receiver referenced
to this station. Of course, if we wish to study the actual motion of the ground, for
the purpose of studying the physical causes of crustal motion or deformation, it is
possible to fit a trajectory model including jumps at the appropriate times, so as to
estimate their amplitudes, and then remove those jumps from the data, and from the
trajectory model. We have done this for the Brazilian GNSS station NAUS located
in the airport at Manaus, near the center of the Amazon basin (Fig. 1.2). It is a good
idea to mark the locations of removed jumps in time series plots using lines with a
distinct line style and/or color, so as to be reminded that jumps have been removed.
The annual cycle of displacement in Manaus is very large. Indeed, we are not aware
of a larger vertical displacement cycle anywhere else on Earth. We usually indicate
the values of the Fourier coefficients used to model displacement cycles on top of
each sub-plot, in the order s1, c1, s2 and c2, which are the sine (s) and cosine (c)
coefficients of periods τ1 = 1 year and τ2 = 0.5 years, respectively.

The displacement cycles observed at Manaus are not strictly periodic: there are
inter-annual variations in the water loads driving this deformation. The largest influ-
ence on the elastic displacements recorded by NAUS are the masses of the Rio Negro
and Amazon river systems. The average orientation of these rivers, close to Manaus,
is roughly east-west, and the airport is located north of the north bank of the Rio
Negro. So, when the converging rivers swell, increasing their mass, the ground at
NAUS is pulled down and towards the center of local mass change, which is nearly
to the south. This is why the N and U cycles appear to be nearly in phase (Fig. 1.2),
and why the cycle in E is much smaller than the cycle in N. The results obtained
at NAUS are very similar to those obtained at the older station MANA (Bevis et al.
2005), which NAUS replaced. MANA was located even closer to the north bank of
the Rio Negro. We can examine the correlations between the E and U components of
displacement, and the N and U components, by removing the polynomial trend and
the jump sub-models from the raw observations, so that what remains is the cyclical
component of the trajectory and the positioning noise (Fig. 1.3).

Bevis and Brown (2014) used an ELTM to model the trajectory of station AREQ
in Arequipa, Peru which recorded coseismic jumps due to the June 23, 2001 Mw 8.4
earthquake centered ~240 km from the GPS station, and a Mw 7.6 aftershock which
occurred about two weeks later at a distance of ~139 km. They used a jump and
a simple logarithmic transient with a (default) period of 1 year to model the main
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Fig. 1.2 The displacement time series at station NAUS, in Manaus, Brazil near the center of the
Amazon basin, expressed in a South America-fixed reference frame, and fit (using a robust least
squares algorithm) with a SLTM. The SLTM consisted of a linear trend (np = 1), five jumps
associated with antenna changes (nj = 5), and a 4-term Fourier series used to model the annual
displacement cycle. The five jumps, which are artificial in nature, were removed from the data and
the final trajectory model, so as not to distract from the real motion of the ground. The removed
jumps were located at the epochs indicated using the thin dashed purple lines. Note the difference
between the scales used to plot the E, N and U components of displacement. The yellow dots
represent measurements identified as outliers and down-weighted so as to prevent them biasing the
trajectory models

event, and simply a jump for the aftershock. Although their ELTM fit the observed
time series very well from late 2001 to 2013, it did not fit the first few months
of postseismic deformation (see their Fig. 1.9). We show here (Figs. 1.4 and 1.5)
that it is possible to fit the entire time series quite well when we invoke a double
logarithmic transient for both the main event and its aftershock. For both events we
invoked logarithmic time scale parameters of 0.0523 and 1.0 years so as to capture
both the short-term and the long-term transient response to each earthquake. Note
that the sign of the cumulative postseismic component in E and Nmatches the sign of
the corresponding coseismic jumps, which is almost universally true for megathrust
events. However, the signs of the jump and the postseismic transient often differ in
the U component, depending on the relative locations of the station, the coseismic
rupture area and the area of afterslip (which is commonly concentrated downdip from
the zone of seismic slip). In this case, the U jump and the U transient have opposite
signs, so the U coordinate tends to ‘recover’ as time since the earthquake increases.
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Fig. 1.3 The correlation
between the E, N and U
components of displacement
at NAUS, after the estimated
trends and jumps have been
removed. What remains is
the cyclical component of
displacement and the
positioning noise. A total of
28 outliers, constituting less
than 0.69% of the data, have
been removed from these
plots. The linear correlations
indicate that for each 10 mm
of cyclical displacement in U
there is nearly 0.30 mm of
displacement in E, and
nearly 1.15 mm of
displacement in N
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Some geologists, geophysicists and geodesists have the impression that only
‘major’ or ‘great’ earthquakes produce obvious and vigorous postseismic transients.
This is not true. Even modest earthquakes can produce quite dramatic transients at
nearby stations, as we illustrate in Fig. 1.6, showing the displacement time series at
GPS station VANU in Port Vila, Vanuatu in the Southwest Pacific. This station is
located quite close to the Southern New Hebrides trench and its seismically active
subduction zone. Note the distinct transient response caused by the July 12, 2011
Mw 4.4 event, which has an epicenter nominally located 13.8 km from VANU. In
reality, an event this small in a region with few seismic stations has a poorly con-
trolled epicenter, and a very poorly controlled focal depth (especially when the focal
depth is < 100 km). It might have been closer to VANU than any global catalog has
indicated.

In general, the likelihood of an earthquake generating a significant coseismic jump
and postseismic transient depends on the depth of the earthquake, its magnitude,
the distance between the earthquake’s hypocenter and the geodetic station, and the
orientation of the hypocenter to GPS station vector relative to the geometry of the
focalmechanism (the ‘beach ball’) for that seismic event. Themajority of earthquakes
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Fig. 1.4 Crustal motion at station AREQ in Arequipa, Peru, located about 120 km inland from the
Pacific coast. This station recorded coseismic jumps during theMw8.4megathrust earthquake of 23
June 2001 and its Mw 7.6 aftershock of 7 July 2001. Here the station trajectory is modelled using an
ELTM invoking a linear trend, twoHeaviside jumps, an annual cycle represented by a 4-termFourier
series, and transients. A double logarithmic transient (with T1 = 0.0523 years and T2 = 1 year)
is invoked both for the main shock and the aftershock. Note the sign change in the E component
of motion that occurred after the seismic events. The change in trajectory that occurred around the
time of the earthquakes can be seen in more detail in Fig. 1.5. The numbers above each subplot
indicate the velocity of the trend, the amplitudes of the two jumps, the four Fourier coefficients, and
the transient amplitude parameters (A1 and A2) for the main shock and the aftershock, respectively

are shallow, and for events with a magnitude >5, it is easy to construct a statistic
based on the epicenter-station distance and the magnitude of the earthquake that will
indicate if there is a significant chance that a jump and transient would occur. But
if the epicenter to station vector is parallel to the null axis of the focal mechanism,
there may be no effect. In contrast, if this vector is parallel to the seismic slip vector,
the chance of a jump and transient actually occurring is greatly increased.

Although earthquakes that produce large horizontal jumps at a GPS station nearly
always produce discernable postseismic transients at that station as well, this state-
ment does require some qualification. Consider the trajectory of station BORC at
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Fig. 1.5 The same information shown in Fig. 1.4, but ‘zoomed in’ on the time period in which the
main event and its aftershock occurred, allowing us to see the displacements that occurred between
these events

Base Orcadas in the South Orkney islands (Fig. 1.7). There have been two large,
shallow, transpressional earthquakes near BORC, both left-lateral events on or near
the plate boundary between the Scotia and the Antarctic plates (Ye et al. 2014). A
Mw 7.6 event occurred in 2003 and a Mw 7.8 event in 2013. The aftershock zones of
these events overlapped. Station BORC was in the near-field of both events. Large
coseismic jumps were recorded in both the E and N components of displacement
for both earthquakes. Obvious transients are seen in both E and N following the
2013 event, but in the case of the 2003 event a transient is evident in the E and U
components of displacement, but not in the N component. In our experience if an
earthquake produces a large displacement in one horizontal component, it nearly
always causes an obvious transient in that same component. This rule of thumb is
most frequently violated in the near-field of earthquakes, presumably because there
can be a significant difference in azimuth, as viewed from the GPS station, between
the effective center of seismic slip and the effective center of aseismic afterslip.

It is relatively easy to model station trajectory models dominated by plate motion
and the earthquake deformation cycle. It is much harder to model trajectories man-
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Fig. 1.6 GPS station VANU in Port Vila, Vanuatu, which was established in 2002.7. Here we show
the observations only after 2006.0, so as to better resolve the coseismic jumps and postseismic tran-
sients recorded by individual earthquakes since 2009. This time series has been modelled using an
ELTM. This includes a simple logarithmic transient associated with a 2002 earthquake that occurred
well before VANU became operational. An earthquake couplet occurred in 2011. It involved a Mw
7.2 and a Mw 7.1 event separated by about one hour. These earthquakes were modelled as a single
event, i.e. using one jump and one double logarithmic transient. Note that the Mw 4.4 event of
2011, located < 14 km from VANU, caused a distinct transient easily seen in the N component of
displacement

ifesting volcanic deformation. Figure 1.8 shows the displacement history of station
KAYT on Taal volcano in the Philippines. The reader can look it up on an internet
mapping application, by searching on its position (13.987 N, 120.978 E), to see its
extraordinary setting. Taal Lake is a large water-filled caldera. Taal island is a vol-
canic cone constructed in the center of that caldera. KAYT’s pattern of motion is so
irregular that the only recourse it to invoke a high order polynomial trend component.
But even anSLTMwith a 6th order polynomial trend, plus an annual cycle, does not fit
the observed trajectory very well (Fig. 1.8), particularly in the N and U components.
This use of high order trends is tantamount to creating a tautology, and it would be
extremely dangerous to use such a trajectory model to predict the future coordinates
of this station. Nevertheless, the trajectory model does work well enough to allow
KAYT to be used as a base station for engineering surveys of decimeter accuracy.
And fitting non-deterministic, highly heuristic trajectorymodels to stations recording
volcanic deformation occasionally provides some interesting insights, or provokes
interesting questions. In the case of KAYT, notice how the annual cycle component
of the SLTM really does seem to explain much of what happens in N component.
But if this were a hydrological phenomenon associated with the wet and dry seasons,
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Fig. 1.7 The coseismic jumps and postseismic transients recorded by GPS station BORC in Base
Orcadas in the South Orkney islands. Large coseismic jumps were recorded in the E and N com-
ponents of displacement for both the 2003 (Mw 7.6) and the 2013 (Mw 7.8) earthquakes. Vigorous
transients are evident in both E and N following the 2013 event, but in the case of the 2003 event a
transient is quite evident in the E and U components of displacement, but not in the N component.
The postseismic transients initiated by both earthquakes were modelled using a double logarithmic
transient
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Fig. 1.8 Volcanic deformation produces complex crustal motions at station KAYT near the south-
west corner of Taal Volcano, which forms an island in Taal Lake, in the Philippines. The trajectory
of this station has been modelled using an SLTM which incorporates a 6th order polynomial trend,
and an annual cycle consisting of a 6-term Fourier series. Even with many degrees of freedom, the
SLTM provides a poor fit to the N and U components of displacement. (It is possible to obtain a
much better fit to this displacement time series by invoking an ELTM). It is intriguing that there
does appear to be a strong annual cycle in N, but not in E or U

and not just a coincidental agreement with the displacements produced by volcanic
deformation, why does the cycle show up most clearly in the N component?

One of the reasons it is so hard to model vigorous volcanic deformation with
SLTMs, even when the polynomial degree is as high as 6, is that such trends are still
smooth enough that they simply cannot follow impulsive, i.e. very abrupt changes in
velocity. Look at what happens near the middle of 2001 in the N and U components
of displacement at KAYT (Fig. 1.8). To follow that kind of velocity change it is
necessary either to use very high degree polynomials (which would require us to use
Legendre polynomial series—or another orthogonal basis set—rather than regular
polynomial series, to avoid numerical instabilities in the least squares analysis), or to
switch to an ELTM, allowing us to invoke transients. We do this in our next example.

Experimental trajectory analysis of GPS stations located on active volcanoes does
seem to suggest (though not always convincingly) that the logarithmic transients
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predicted by rate and state friction models for afterslip, which have proven very
useful in modelling postseismic deformation, also seem able to mimic some aspects
of volcanic deformation, though often without an initial seismic slip event! That is,
a significant component of crustal motion observed at some active volcanoes can be
simulated using logarithmic transients, in some cases without the assistance of jumps
(either seismic or aseismic) at the start times of the transient. There is sometimes no
seismological evidence for an earthquake triggering these volcanic transients, though
we cannot rule out earthquakes too small to detect. These logarithmic transients are
sometimes characterized by much shorter time scale parameters than are those we
commonly invoke for postseismic deformation. Time scale parameters shorter than
1 day, or just a few days, for example.

Figure 1.9 shows the trajectory of station FRON located on El Hierro island in
the Canary Islands. This complex and jerky trajectory model invokes a 5th order
polynomial trend to account for slowly developing inflation and deflation of the
volcano, 5 jumps and 6 simple logarithmic transients, and an annual cycle represented
by the usual 4-termFourier series.Only one of the jumps is associatedwith a transient,
and only one of the transients is associated with a jump. This does equip the ELTM
with 21 coefficients, but since the time scale parameterswere adjusted too, each curve
in Fig. 1.9 has 27 degrees of freedom. Therefore, the goodness of fit attained could
be solely due to the extreme flexibility of the model—a numerical tautology of the
kind that can be constructed when the timing of jumps and transient initiation are not
constrained by objective facts such as the known source times of nearby earthquakes.
Even so, theWRMS scatter levels in E, N andU are 2.2, 2.4 and 6.9mm, respectively,
which constitute good fits for a sub-tropical ocean environment. And many of the
impulsive events in the time series really do seem to be transients with quite rapid
decay times (see the detail at the top right of Fig. 1.9). Notice how the trajectory
approaches a constant velocity trend after 2014.5. It might be interesting to see if
logarithmic or exponential transients provide the better fit in this unusual setting.
We speculate that transient slip might occur without a significant earthquake when
a locked fault is unzipped by the injection of magma, and the two walls of the fault
undergo shear without direct contact between them. However, since discretion is
the better part of valor, we suggest that this time series should be investigated by a
physical volcanologist!

Before leaving the topic of transient deformation in active volcanic settings, we
provide one more example of a station trajectory that can be modelled using loga-
rithmic transients, but in this case using time scale parameters comparable to those
associated with postseismic transients. This time series (Figs. 1.10 and 1.11) is for
station LKWY in Yellowstone National Park. The smooth displacement trends in E
and N are clearly not linear, but we can obtain a good fit by using an SLTM with
a quartic (np = 4) trend plus an annual cycle. But this SLTM did not provide an
adequate fit to the U component of displacement. Therefore, we attempted to fit the
LKWY trajectory using an ELTM with a quartic trend, an annual cycle, two jumps
and two simple logarithmic transients with start times near 2005.2 and 2014.1 (and
with default time scale parameters of 1 year). This ELTM provided a much improved
but still imperfect fit to the U component (Fig. 1.10), although the jump amplitudes
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Fig. 1.9 Crustal displacement of station FRON located on an active volcano on El Hierro, one
of the Canary Islands. This trajectory has been modelled in ad hoc fashion since there are no
earthquakes recorded at the times of the impulsive displacements seen above. Each coordinate time
series has been modelled using an ELTM consisting of a fifth order polynomial trend, five jumps,
six logarithmic transients and a 4-term Fourier series. Only one of the transients has a start time
that coincides with a jump. Only one of the jumps is associated with a logarithmic transient. The E
component of one of the transients is shown in detail at top right. Notice that there is no obvious
jump, and if there were a jump its amplitude would be far smaller than the cumulative displacement
associated with the transient
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Fig. 1.10 The observed trajectory of GPS station LKWY located on the banks of Yellowstone
Lake, expressed in ITRF, and an ELTM incorporating two simple logarithmic transients whose
initiation times were chosen ‘by eye’. Two jumps were assigned too, but their estimated amplitudes
were not significantly different from zero. Notice that the ELTM cannot follow the kink in the U
trajectory near 2009.0. The ELTM is modified to address this problem in Fig. 1.11

were not significantly different from zero. The model cannot fit the sharp kink in the
observedU trajectory (Fig. 1.10). To address themisfit near this kinkwemodified the
ELTM by adding a double logarithmic transient (with default time scale parameters
of 0.0523 and 1.0 years) with a start time of 2009.0. We also eliminated all jumps.
This produced an excellent fit to the observed trajectory (Fig. 1.10). Again, none of
the three transients were triggered by earthquakes large enough to be included in
a global seismicity catalog. Even if there were very small earthquakes at the start
times of these transients, the ratio of the total cumulative transient displacement to
the coseismic jump would have to be extremely high—well beyond what is normally
found in non-volcanic deformation zones. We saw this previously with FRON. The
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Fig. 1.11 Amodified ELTMfit to the LKWY time series. In this case a double logarithmic transient
is added to the two simple transients used in the ELTM shown in Fig. 1.10, but no jumps were
invoked. The number of degrees of freedom remain unchanged (relative to Fig. 1.10), but the fit is
significantly improved

suggestion is that many of the displacement transients observed in active volcanic
settings are ‘volcanic transients’ and not ‘postseismic transients.’

We return to a more conventional trajectory modelling problem, and our more
‘deterministic’ approach, in the final case study of this section, which addresses
the vertical motions produced in American Samoa by an unusual Mw 8.1 doublet
earthquake that occurred near the northern Tonga trench in 2009 (Beavan et al. 2010).
A coseismic jump and postseismic transient were recorded by the GPS station ASPA
in Pago Pago, and also by the nearby tide gauge PAGO (Fig. 1.12). Since tide gauges
record the motion of the sea surface relative to the ground on which the gauge sits,
they are said to measure relative sea level (RSL) change. If the ground jumps up in
response to an earthquake, then RSLwill jump down by the same amount. Caccamise
(2018) studied this event and these time series in considerable detail, and we repeat
only part of that work here. Early attempts to see if it was possible to infer similar
jumps and transients from the GPS and RSL time series were unsuccessful, because
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Fig. 1.12 Comparing a the vertical displacement time series, U(t), recorded by the GPS station
ASPA in Pago Pago, American Samoa and b the relative sea level (RSL) time series inferred from
the nearby tide gauge PAGO. The PAGO time series was corrected for dynamic sea surface height
variations driven by the global wind field using the model ORA (Caccamise 2018). Both time
series were affected by the Mw 8.1 earthquake which occurred near the Northern Tonga Trench on
September 29, 2009 (Beavan et al. 2010; Caccamise 2018). An ELTM featuring a constant velocity
trend, an annual cycle, a coseismic jump and a double logarithmic transient was fit to the observed
ASPA time series. The jump amplitude (J), the cumulative transient displacement (CTD) at the end
time of the RSL time series, and their sum (J+ CTD) are shown in mm above subplot (a). Because
the PAGO time series is much longer, and sea level rise is accelerating, we invoked a quadratic
trend for the ELTM used in plot (b). Also, because the RSL time series is much noisier than the
GPS time series, we invoked a simple logarithmic transient rather than a double transient. Even so,
the values for J, CTD and J + CTD are not significantly different at PAGO than at nearby ASPA
(Caccamise 2018), apart from the change in sign

the variability of the raw RSL time series at PAGO tends to be dominated by ocean
dynamics, including El Niño events, that can perturb sea level by decimeters, and
which produce fluctuations which are highly asymmetric about zero. Caccamise
(2018) addressed this problem by correcting the RSL time series using an ocean
dynamicsmodel (ORA) driven by oceanwindfields obtained fromaglobal numerical
weather model. This causes the RMS variability of RSL to drop by about one half,
and it is this refined RSL time series that we display and model in Fig. 1.12b.

We modelled the vertical displacement time series at ASPA using an ELTM
equipped with a linear trend, an annual cycle, and with a jump and a double loga-
rithmic transient at the time of the earthquake. The amplitude of correlated noise at
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PAGO is much higher than at ASPA, even after ocean dynamic signals have been
suppressed, so in this case we invoke a simple logarithmic transient, rather than a
double transient, for PAGO. The PAGO time series is also much longer than that
at ASPA, and long enough that we cannot ignore the fact that the rate of sea level
rise is known to have accelerated since 1980. Therefore we invoke a quadratic trend
at PAGO. We can compare the jump amplitudes (J) estimated at ASPA and PAGO
directly—they should be equal in magnitude and opposite in sign. The postseismic
transients recorded by ASPA and PAGO should also be equal, though opposite in
sign, but in this case we cannot directly compare the amplitudes since the ASPA
model invokes a double transient while the PAGO model invokes a simple transient.
So, instead we compare the cumulative transient displacements (CTDs) at a com-
mon epoch, 2015.8, which is close to the final epoch of the RSL time series. We
also compare the sum of these seismic perturbations, designated J+ CTD (all listed
above the subplots of Fig. 1.11). The standard errors we estimated for these quantities
take account of the temporally correlated noise. There is no statistically significant
difference between the J, CTD and J + CDT amplitudes inferred from ASPA and
PAGO. This is immediately obvious when we note that the standard errors for PAGO
are σJ = 20.5 mm, σCTD = 32.9 mm, and σJ+CTD = 27.6 mm.

1.4 Automatic Signal Decomposition Using GrAtSiD

Bedford and Bevis (2018) described an alternative methodology for trajectory mod-
elling, the Greedy Automatic Signal Decomposition (GrAtSiD) approach, which is
more ‘heuristic’ and less ‘deterministic’ than conventional approaches, in that GrAt-
SiD has a much lower reliance on a priori information on the timing of jumps, or the
initiation times of transients, and even the general structure or form of the trajectory
model is treated as an open question. The user can assign in advance the degree
of the polynomial used to represent the trend, the length of the truncated Fourier
series used to model seasonal cycles (including length zero, meaning no cycle at
all), and the jump times for known discontinuities in the time series associated with
known antenna changes, etc. The unexpected or non-assigned part of the trajectory
model is ‘designed’ and then utilized by the GrAtSiD code. It is assume that the
undetermined (i.e. the non-pre-determined) part of the trajectory model consists of
an unknown number of jumps and an unknown number of multi-transients (MT).
The MTs have exponential form and three pre-assigned time scale parameters (T1,
T2, T3) each. If the sampling interval of the observed time series is δt (in the absence
of data gaps), then GrAtSiD assigns and fixes the time scale parameters thus: T1

= 10 δt, T2 = 100 δt and T3= 1000 δt. These parameters are never adjusted, but
the number and the start times of the MTs are adjustable, as are the number and
jump times of unassigned jumps. The code seeks to invoke a minimum number of
jumps and MTs while achieving an excellent fit to the data. It does this iteratively,
by considering which of a huge number of candidate jumps and candidate MTs best
achieves its goals. Note that when dealing with a 3-D displacement time series, each
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component of that time series is modelled independently, and thus different numbers
of jumps or transients may be assigned to the E, N and U components (or the X,Y
and Z components) of displacement.

Operating in this extremely flexible framework is computationally expensive,
compared to the deterministic approach used in the previous section, because GrAt-
SiD searches a vast parameter space, and it does so exhaustively. The search for an
optimal solution is achieved using a ‘greedy’ algorithm (Needell et al. 2008). We
refer the reader to Bedford and Bevis (2018) for a more complete description of the
methodology, and limit ourselves to a brief discussion of the algorithms, and the
presentation of a single case study.

The GrAtSiD approach builds upon the sparse time series fitting of Riel et al.
(2014), wherein an SLTM was supplemented with a minimum number of B-spline
transients using L1 regularization. While similarly seeking to add a minimum num-
ber of transient functions to an SLTM, GrAtSiD differs from the Riel et al. method in
that it uses a more versatile function to model transients, and an alternative, greedy
approach to optimization. In the greedy algorithm, sparse time functions are itera-
tively added and removed according towhen they are deemed necessary or redundant.
The sparse function can be either a multi-transient (MT) or a Heaviside step function
(jump), mitigating the need to have a list of known jumps. Of course, jumps can still
be imposed, which often lessens the computational burden and improves the fit to the
true signal in synthetic testing. We chose the MT as the sparse function because of
its versatility. When we sum decay functions with different decay constants, we are
able to create an initial bump in the function if the signs of the MT coefficients are
different. When the algorithm encounters regular decays (such as postseismic decay
or a sudden volcanic inflationary event) the inversion will produce a decay function
similar to one that could be approximated with a single or simple transient. When
encountering a bump, jerk, or wobble in the time series, one or two MTs in series
can usually adequately approximate such shapes. When the change in background,
almost linear, velocity is subtle, the longer decay transient coefficient of the multi-
transient will be able to fit this trend. In fact, the adoption of the multi-transient can
eliminate the need for any terms of the polynomial higher than degree 0.

TheGrAtSiD approach ismost attractive in caseswhere the trajectory is very com-
plicated and there is little or no relevant a priori information available to constrain
the general form of the trajectory model. This is often the situation for displacement
time series acquired in active volcanic settings. The time series obtained from FRON
(Fig. 1.9), already discussed, provides a compelling example. In the last section we
used a conventional least squares computational approach, but deployed it heuristi-
cally and in an ad hoc manner. We now use GrAtSiD to analyze this data in an even
more heuristic way, but we now do so systematically, and in a far more exhaustive
way. The resulting trajectory model is shown in Fig. 1.13.

One danger of the GrAtSiD approach is that the code is given so much autonomy
that itmay sometimes equip its curveswith somany degrees of freedom that it starts to
model the structure in the colored (i.e. auto-correlated) noise andwell as the structure
in the signal. Currently, a tolerance hyper-parameter determines when the algorithm
gives up on trying to add more transient functions. If incorrectly tuned, the algo-
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Fig. 1.13 A re-analysis of the FRON time series (Fig. 1.9) using the GrAtSiD approach and soft-
ware. The number of steps indicated in each subplot refers to the number of jumps invoked for
that component of displacement. The model includes a seasonal or cyclical sub-model represented
by a 4-term Fourier series. Note that the RMS misfits achieved by GrAtSiD above (E: 1.4 mm, N:
1.7 mm, U: 5.3 mm) are considerably smaller than those associated with Fig. 1.9 (E: 2.3 mm, N:
2.4 mm, U: 6.9 mm). On the other hand, the total number of degrees of freedom for the curves
above are E: 62, N: 45, U: 40, whereas the E, N and U trajectory curves in Fig. 1.9 each have 27
degrees of freedom

rithm inevitably under- or over-fits the signal. This is a danger with the conventional
approach too, but, usually, to a lesser degree, since human visual ‘quality-control’
guides the inclusion of additional transient functions. Even so, the ELTM applied to
FRON (Fig. 1.9), though it nominally used the deterministic approach, was unguided
by seismicity catalogs, and thus was really an ad hoc treatment.

The outcomes of the GrAtSiD approach is quite distinct from those of the con-
ventional least squares or ‘deterministic’ approach to trajectory analysis in that the
general form of each GrAtSiD trajectory model will normally differ from one com-
ponent of displacement to the next. For example, the E, N and U curves in Fig. 1.13
include 2, 0 and 1 jumps respectively. In the conventional approach the amplitudes
of the various jumps and transients will differ between E, N and U but the number
of jumps and transients will not, nor will the timing of those jumps, nor the transient
initiation times. This usually makes more sense from the physical point of view, and
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an improvement of GrAtSidD would be to give the user the option of enforcing com-
mon jump times and common initiation times for the transients in all 3 directional
components of the data.

1.5 Conclusions

In principle, the deterministic approach to trajectory modelling starts with the form
of the trajectory model already established, and it merely estimates the coefficients
of that model via a least squares approach. (At OSU we use a robust least squares
method that automatically down-weights outliers). In contrast, theGrAtSiD approach
does allow some components of the trajectory model to be assigned and fixed, but its
central concern is the search for the best basis functions to be added to, or incorporated
within the final trajectory model. These basis functions are selected from a huge set
or ‘dictionary’ of possibly useful basis functions. The deterministic approach often
assigns some specific physical significance to its coefficients, because the associated
basis functions (model components) are endowed with a physical interpretation. In
the GrAtSiD approach much less emphasis is placed on the values of some (or even
all) of the coefficients, andmore significance is placed on themodel trajectory curves
themselves, and their fit with the observations. Using the deterministic approach, it
is often possible to make fairly reliable predictions for the future positions of the
station, by projecting the trajectory model forward in time, though this must always
be done with some care, particularly if the model has many degrees of freedom.
The GrAtSiD approach often produces trajectory models with so many degrees of
freedom, that extrapolating the model forward would result in highly unreliable
predictions. GrAtSiD is attractive to those who are more concerned with what has
happened within the time window of observation, and less concerned with what will
happen next.

There can be little doubt that new classes of ‘deterministic’ trajectory models will
be developed so as to mimic additional modes of crustal motion and deformation.
For example, neither the SLTM nor the ELTM is well equipped for reproducing
repeated transient displacements associated with episodic slip events. Sub-models
that can describe the surface displacement transients driven by episodic slip events
are already under development. These new sub-models would have to distinguish
between repeated aseismic slip events that occur at regular intervals, and those with
irregular intervals. It is also necessary to distinguish between episodic aseismic slip
events which always produce transient displacement curves that are special instances
of some general form or shape, versus trains of episodic slip events that can produce
transients of different functional form, not just different parameter values within the
same functional form. The greater the range of possible transient forms, the more
attractive the GrAtSiD approach becomes relative to the deterministic approach.

No matter whether we estimate the parameters associated with our trajectory
models using a deterministic approach, in which the design matrix for the least
square problem is prescribed, based on external (prior) information, or we estimate
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parameters in a much more autonomous way, in which the elements of the trajectory
model are chosen by an algorithm, it will always be necessary to perform a colored
noise analysis of the residuals, if wewish to supply confidence intervals to each of the
parameters we have estimated. This is particularly important when we are using the
deterministic approach and have selected the components of our trajectory models
on the basis of our physical intuition about the causes and character of these motions.

Acknowledgements We thank Dru Smith and Dan Roman of the National Geodetic Survey, our
editors, Machiel S. Bos and Jean-Philippe Montillet, and two anonymous reviewers for their many
useful comments, criticisms and suggestions.

References

Beavan, J., Wang, X., Holden, C., Wilson, K., Power,W., Prasetya, G., Bevis, M., Kautoke, R.
(2010), Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September
2009, Nature, 466, https://doi.org/10.1038/nature09292.

Bedford, J., and Bevis, M. (2018), Greedy automatic signal decomposition and its application to
daily GPS time series, Journal of Geophysical Research, Solid Earth, 123, https://doi.org/10.
1029/2017jb014765.

Bevis, M., Alsdorf, D., Kendrick, E., Fortes, L., Forsberg, B., Smalley, Jr., R., Becker, J. (2005),
Seasonal fluctuations in the weight of the Amazon River system and Earth’s elastic response,
Geophysical Research Letters, 32, L16308, https://doi.org/10.1029/2005GL023491.

Bevis,M., andBrown,A. (2014),Trajectorymodels and reference frames for crustalmotiongeodesy,
Journal of Geodesy, 88, 283, https://doi.org/10.1007/s00190-013-0685-5.

Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons,F., Willis, M., Fettweis, X., van den Broeke,
M., Madsen, F. B., Kendrick, E., Caccamise, D., van Dam, T., Knudsen, P., Nylen, T. (2019)
Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric
forcing, Proceedings of the National Academy of Sciences, 116, 1934–1939, https://doi.org/10.
1073/pnas.1806562116.

Caccamise II, D.J. (2018), Geodetic and Oceanographic Aspects of Absolute versus Relative Sea-
Level Change. The Ohio State University, Ph.D. thesis.

Forsythe, M., Malcom, M., Moler, C. (1977), Computer Methods for Mathematical Computations,
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 259 pp.

Mandlebrot, B.B., and Wallis, J.R. (1969), Computer experiments with fractional Gaussian noises.
Part 1, Averages and Variances.Water Resources Research, 5, 228–241.

Mao, A., Harrison, C.G.A., Dixon, T.H. (1999), Noise in GPS coordinate time series, Journal.
Geophysical Research, 104 (B2), 2797–2816.

Marone,C. (1998), Laboratory-derived friction laws and their application to seismic faulting,Annual
Reviews of Earth and Planetary Science, 26, 643–696.

Marone, C., Scholtz, C., and Bilham, R. (1991) On the mechanics of earthquake afterslip, Journal
of Geophysical Research, 96, 8441–8452.

Needell, D., Tropp, J., Vershynin, R. (2008) Greedy signal recovery review. In Signals, systems and
computers, 2008 42nd Asilomar Conference, IEEE, 1048–1050.

Perfettini, H., and Avouac, J.-P., (2007), Modeling afterslip and aftershocks following the 1992
Landers earthquake Journal of Geophysical Research, 112, B07409, https://doi.org/10.1029/
2006jb004399.

Perfettini, H., et al. (2010), Seismic and aseismic slip on the Central Peru megathrust, Nature, 465,
78–81.

https://doi.org/10.1038/nature09292
https://doi.org/10.1029/2017jb014765
https://doi.org/10.1029/2005GL023491
https://doi.org/10.1007/s00190-013-0685-5
https://doi.org/10.1073/pnas.1806562116
https://doi.org/10.1029/2006jb004399


1 The Art and Science of Trajectory Modelling 27

Press, W. (1978), Flicker noises in astronomy and elsewhere, Comments on Modern Physics, Part
C - Comments on Astrophysics, 7, 103–119.

Riel, B., Simons, M., Agram, P. and Zhan, Z. (2014), Detecting transient signals in geodetic time
series using sparse estimation techniques. Journal of Geophysical Research: Solid Earth, 119
(6), 5140–5160.

Sobrero, F.S. (2018), Logarithmic and Exponential Transients in GNSS Trajectory Models as Indi-
cators of Dominant Processes in Post-Seismic Deformation. The Ohio State University, M.S.
thesis.

Ye, L., Lay, T., Koper, K. D., Smalley, Jr., R., Rivera, L., Bevis, M., Zakrajsek, A. F., Teferle, F. N.
(2014), Complementary slip distributions of the August 4, 2003 Mw 7.6 and November 17, 2013
Mw 7.8 South Scotia Ridge earthquakes, Earth and Planetary Science Letters, 401, 215–226,
https://doi.org/10.1016/j.epsl.2014.06.007.

Wang, F. (2018), Multi-scale logarithmic transient models for postseismic displacements and the
physical causes of postseismic transient deformation. The Ohio State University, Ph.D. thesis.

Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., Miller,
M., Johnson, D. J. (2004), Error analysis of continuous GPS position time series, Journal of
Geophysical Research, 109, B03412.

Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., Wdowinski, S., Behr, J. (1997),
Southern California permanent GPS geodetic array: Error analysis of daily position estimates
and site velocities, Journal of Geophysical Research, 102, B8, 18035–18055.

Michael Bevis is a geodesist and geophysicist who uses geodetic tools and physical models to
study Earth system dynamics. His interests include crustal motion geodesy, tectonics, earthquakes,
gravity and gravity change, climate change, ice sheets, sea level, GPS meteorology, reference
frames, inverse theory and elasticity. He has built large geodetic networks in the Southwest Pacific,
the Andes, Antarctica and Greenland, and he led, with Ken Hudnut, the B4 Lidar survey of the
San Andreas and San Jacinto faults in California. Mike is the chair of the Division of Geodetic
Science in the School of Earth Sciences at Ohio State University. For fun, he reads novels and
poetry, takes long walks, and studies the history of science, the nature of technological transfor-
mation, and renewable energy.

Jonathan Bedford has just started his second postdoc at the Helmholtz Centre GFZ Potsdam,
Germany, where he also completed his Ph.D. (in conjunction with the Freie Universität, Berlin).
Prior to that, he completed an integrated Bachelor’s and Master’s degree in Geophysical Sciences
at the University of Leeds, UK, with his study abroad year in the Colorado School of Mines, USA.
Jonathan’s research interests include the modeling of subduction zone deformation processes, and
GPS time series analysis. For fieldwork, Jonathan contributes to the maintenance and expansion
of the IPOC continuous GPS network in Northern Chile.

Dana J. Caccamise is the NOAA/National Geodetic Survey’s (NGS) Pacific Southwest Region
Geodetic Advisor. He assists the geospatial community throughout California and Nevada, includ-
ing public- and private-sector surveyors, GIS professionals, engineers, and earth scientists, to
access the National Spatial Reference System, and he reports user community needs to the NGS.
Dana has two M.S. degrees (in Earth Science and in Geophysics), and a Ph.D. in Geodetic Science
from Ohio State University. He has been part of the NGS since 2014, and is located in the Califor-
nia Spatial Reference Center (CSRC), located at Scripps Institution of Oceanography (SIO) at the
University California San Diego. Dana holds a Research Associate position in the SIO’s Institute
of Geophysics and Planetary Physics (IGPP).

https://doi.org/10.1016/j.epsl.2014.06.007


Chapter 2
Introduction to Geodetic Time Series
Analysis

Machiel S. Bos, Jean-Philippe Montillet, Simon D. P. Williams and
Rui M. S. Fernandes

Abstract The previous chapter gave various examples of geophysical time series
and the various trajectory models that can be fitted to them. In this chapter we
will focus on how the parameters of the trajectory model can be estimated. It is
meant to give researchers new to this topic an easy introduction to the theory with
references to key books and articles where more details can be found. In addition,
we hope that it refreshes some of the details for the more experienced readers. We
pay special attention to the modelling of the noise which has received much attention
in the literature in the last years and highlight some of the numerical aspects. The
subsequent chapters will go deeper into the theory, explore different aspects and
describe the state of art of this area of research.
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analysis · Maximum likelihood estimation
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2.1 Gaussian Noise and the Likelihood Function

Geodetic time series consist out of a set observations at various epochs. These
observations, stored in a vector y, are not perfect but contain noise which can be
described as a set of multivariate random variables. Let us define this as the vec-
tor w = [W1,W2,W3, . . . ,WN ] where each Wi is a random variable. If f (w) is the
associated probability density function, then the first moment μ1, the mean of the
noise, is defined as Casella and Berger (2001):

μ1 = E[W ] =
∞∫

−∞
w f (w) dw (2.1)

where E is the expectation operator. It assigns to each possible value of random
variable w a weight f (w) over an infinitely small interval of dw, sums each of them
to obtain the mean expected value E[W ]. The second moment μ2 is defined in a
similar manner:

μ2 = E[W 2] =
∞∫

−∞
w2 f (w) dw =

∞∫

−∞
w2dF(w) (2.2)

The last term F is the cumulative distribution. For zero mean, the second moment
is better known as the variance. Since we have N random variables, we can compute
variances for E[WiWj ], where both i and j range from 1 to N . The result is called
the covariance matrix. In this book, the probability density function f (w) is assumed
to be a Gaussian:

f (w|μ1, σ ) = 1√
2πσ 2

exp

[
− (w − μ1)

2

2σ 2

]
(2.3)

where σ is the standard deviation, the square-root of the variance of random variable
w. This function is very well known and is shown in Fig. 2.1 for zero μ1.

The standard error is defined as the 1-σ interval and contains on average 68% of
the observed values of w. The reason why it is so often encountered in observations
is that the central limit theorem states that the sum of various continuous probability
distributions always tends to theGaussian one.An additional property of theGaussian
probability density function is that all its moments higher than two (μ3, μ4, . . .) are
zero. Therefore, the mean and the covariance matrix provide a complete description
of the stochastic properties. Actually, we will always assume that the mean of the
noise is zero and therefore only need the covariance matrix. The term in front of the
exponential is needed to ensure that the integral of f (x) from −∞ to ∞ produces
1. That is, the total probability of observing a value between these limits is 1, as it
should be. We have not one, but several observations with noise in our time series.
The probability density function of the multi-variate noise is:
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f (w|C) = 1√
(2π)N det(C)

exp
[− 1

2w
TC−1w

]
(2.4)

We assumed that the covariance matrix C is known. The expression f (w|C)

should be read as the probability density function f for variable w, for given and
fixed covariance matrix C. Next, we assume that our observations can be described
by our model g(x, t), where x are the parameters of the model and t the time. The
observations are the sum of our model plus the noise:

y = g(x, t) + w or w = y − g(x, t) (2.5)

The noise w is described by our Gaussian probability density function with zero
mean and covariance matrixC. The probability that we obtained the actual values of
our observations is:

f (y|x,C) = 1√
(2π)N det(C)

exp
[− 1

2 (y − g(x, t))TC−1(y − g(x, t))
]

(2.6)

However, we don’t know the true values of x or the covariance matrixC. We only
know the observations. Consequently, we need to rephrase our problem as follows:
what values of x andCwould produce the largest probability thatwe observe y?Thus,
we are maximising f (x,C|y) which we call the likelihood function L . Furthermore,
we normally work with the logarithm of it which is called the log-likelihood:
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ln(L) = −1

2

[
N ln(2π) + ln(det(C)) + (y − g(x, t))TC−1(y − g(x, t))

]
(2.7)

We need to find value of x to maximise this function and the method is there-
fore called Maximum Likelihood Estimation (MLE). The change from f (y|x,C) to
f (x,C|y) is subtle. Assume that the covariancematrixC also depends on parameters
that we store in vector x. In this way, we can simplify the expression f (y|x,C) to
f (y|x). Bayes’ Theorem, expressed in terms of probability distributions gives us:

f (x|y) = f (y|x) f (x)
f (y)

(2.8)

where f (y) and f (x) are our prior probability density function for the observations
y and parameters x, respectively. These represent our knowledge about what obser-
vations and parameter values we expect before the measurements were made. If
we don’t prefer any particular values, these prior probability density functions can
be constants and they will have no influence on the maximising of the likelihood
function f (x|y) = L .

Another subtlety is thatwe changed from randomnoise and fixed parameter values
of the trajectory model f (y|x) to fixed noise and random parameters of the trajectory
model f (x|y). If the trajectorymodel is for example a linear tectonic motion then this
is a deterministic, fixed velocity, not a random one. However, one should interpret
f (x|y) as our degree of trust, our confidence that the estimated parameters x are
correct. See also Koch (1990, 2007) and Jaynes (2003). The last one is particularly
recommended to learn more about Bayesian statistics.

2.2 Linear Models

So far we simply defined our trajectory model as g(x, t). An important class of
models that are fitted to the observations are linear models. These are defined as:

g(x, t) = x1g1(t) + x2g2(t) + · · · + xMgM(t) (2.9)

where x1 to xM are assumed to be constants. We can rewrite this in matrix form as
follows:

g(x, t) =

⎛
⎜⎜⎜⎝

g1(t1) g2(t1) . . . gM(t1)
g1(t2) g2(t2) gM(t2)

...
...

g1(tN ) g2(tN ) gM(tN )

⎞
⎟⎟⎟⎠

⎛
⎜⎝
x1
...

xM

⎞
⎟⎠ = Ax (2.10)

Matrix A is called the design matrix. From Chap.1 we know that tectonic motion
or sea level rise can be modelled by a linear trend (i.e. the Standard Linear Trajectory
Model). Thus g1(t) is a constant and g2(t) a linear trend. This can be extended to a

http://dx.doi.org/10.1007/978-3-030-21718-1_1
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higher degree polynomial to model acceleration for example. Next, in many cases an
annual and semi-annual signal is included as well. A periodic signal can be described
by its amplitude bk and its phase-lag ψk with respect to some reference epoch:

g(t) = bk cos(ωk t − ψk)

= bk cosψ cos(ωk t) + bk sinψk sin(ωk t)

= ck cos(ωk t) + sk sin(ωk t)

(2.11)

Since the unknown phase-lag ψk makes the function non-linear, one must almost
always estimate the amplitudes ck and sk , see Chap.1. These parameters are linear
with functions cos and sin, and derive from these values the amplitude bk and phase-
lag ψk .

Other models that can be included in g(t) are offsets and post-seismic relaxation
functions, see Chap.1. An example of a combination of all these models into a single
trajectory model is shown in Fig. 2.2.

For linear models, the log-likelihood can be rewritten as:

ln(L) = −1

2

[
N ln(2π) + ln(det(C)) + (y − Ax)TC−1(y − Ax)

]
(2.12)

This function must be maximised. Assuming that the covariance matrix is known,
then it is a constant and does not influence finding the maximum. Next, the term
(y − Ax) represent the observations minus the fitted model and are normally called
the residuals r. It is desirable to choose the parameters x in such a way to make these
residuals small. The last term can be written as rTC−1r and it is a quadratic function,
weighted by the inverse of matrix C.

http://dx.doi.org/10.1007/978-3-030-21718-1_1
http://dx.doi.org/10.1007/978-3-030-21718-1_1
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Now let us compute the derivative of ln(L):

d ln(L)

dx
= ATC−1y − ATC−1Ax (2.13)

The minimum of ln(L) occurs when this derivative is zero. Thus:

ATC−1Ax = ATC−1y → x = (
ATC−1A

)−1
ATC−1y (2.14)

This is the celebrated weighted least-squares equation to estimate the parameters
x. Most derivations of this equation focus on the minimisation of the quadratic
cost function. However, here we highlight the fact that for observations that contain
Gaussian multivariate noise, the weighted least-squares estimator is a maximum
likelihood estimator (MLE). From Eq. (2.14) it can also be deduced that vector x,
like the observation vector y, follows a multi-variate Gaussian probability density
function.

The variance of the estimated parameters estimated is:

var(x) = var
((
ATC−1A

)−1
ATC−1y

)

= (
ATC−1A

)−1
ATC−1var(y) C−1A

(
ATC−1A

)−1

= (
ATC−1A

)−1
ATC−1C C−1A

(
ATC−1A

)−1

= (
ATC−1A

)−1

(2.15)

Next, define the following matrix I(x):

I(x) = −E

[
∂2

∂x2
ln(L)

]
= −

∫ (
∂2

∂x2
ln( f )

)
f dx (2.16)

It is called the Fisher Information matrix. As in Eqs. (2.1) and (2.2), we use the
expectation operator E . Remember that we simply called f our likelihood L but
these are the same. We already used the fact that the log-likelihood as function of
x is horizontal at the maximum value. Let us call this x̂. The second derivative is
related to the curvature of the log-likelihood function. The sharper the peak near its
maximum, the more accurate we can estimate the parameters x and therefore the
smaller their variance will be.

Next, it can be shown that the following inequality holds:

1 ≤
∫

(x̂ − x)2 f dx
∫ (

∂ ln( f )

∂x

)2

f dx (2.17)

The first integral represents the variance of x, see Eq. (2.2). The second one, after
some rewriting, is equal to the Fisher information matrix. This gives us, for any
unbiased estimator, the following Cramér–Rao Lower Bound (Kay 1993):
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var(x̂) ≥ 1

I(x)
(2.18)

Equation (2.18) predicts the minimum variance of the estimated parameters x
for given probability density function f and its relation with the parameters x that
we want to estimate. If we use Eq. (2.13) to compute the second derivative of the
log-likelihood, then we obtain:

I(x) = ATC−1A (2.19)

Comparing this with Eq. (2.15), one can see that for the case of the weighted
least-square estimator, the Cramér–Rao Lower Bound is achieved. Therefore, it is an
optimal estimator. Because we also need to estimate the parameters of the covariance
matrix C, we shall use MLE which approximates this lower bound for increasing
number of observations. Therefore, one can be sure that out of all existing estimation
methods, none of them will produce a more accurate result than MLE, only equal or
worse. For more details, see Kay (1993).

2.3 Models for the Covariance Matrix

Least-squares andmaximum likelihood estimation are well known techniques in var-
ious branches of science. In recent years much attention has been paid by geodesists
to the structure of the covariance matrix. If there was no relation between each noise
value, then these would be independent random variables and the covariance matrix
C would be zero except for values on its diagonal. However, in almost all geodetical
time series these are dependent random variables. In statistics this is called temporal
correlation and we should consider a full covariance matrix:

C =

⎛
⎜⎜⎜⎝

σ 2
11 σ 2

12 . . . σ 2
1N

σ 2
21 σ 2

22 σ 2
2N

...
. . .

...

σ 2
N1 . . . σ 2

NN−1 σ 2
NN

⎞
⎟⎟⎟⎠ (2.20)

where σ 2
12 is the covariance between random variables w1 and w2. If we assume that

the properties of the noise are constant over time, then we have the same covariance
betweenw2 andw3,w3 andw4 and all other correlations with 1 time step separation.
As a result, σ 2

12, σ
2
23, . . ., σ

2
(N−1)N are all equal. A simple estimator for it is:

σ 2
12 = σ 2

23 = · · · = σ 2
(N−1)N = 1

N − 1

N−1∑
i=1

wiwi+1 (2.21)
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This is an approximation of the formula to compute the second moment, see
Eq. (2.2), and it called the empirical or sample covariance matrix. Therefore, one
could try the following iterate scheme: fit the linear model to the observations some
a priori covariance matrix, compute the residuals and use this to estimate a more
realistic covariance matrix using Eq. (2.20) and fit again the linear model to the
observations until all estimated parameters have converged.

The previous chapter demonstrated that one of the purpose of the trajectorymodels
is to estimate the linear or secular trend. For time series longer than 2years, the
uncertainty of this trend depends mainly on the noise at the lowest observed periods
(Bos et al. 2008;He et al. 2019). However, the empirical covariancematrix estimation
of Eq. (2.20) does not result in an accurate estimate of the noise at long periods
because only a few observations are used in the computation. In fact, only the first
and last observation are used to compute the variance of the noise at the longest
observed period (i.e. σ 2

1N ).
This problem has been solved by defining a model of the noise and estimating the

parameters of this noise model. The estimation of the noise model parameters can be
achieved using the log-likelihood with a numerical maximisation scheme but other
methods exist such as least-squares variance component estimation (see Chap. 6).

The development of a good noise model started with the paper of Hurst (1957)
who discovered that the cumulative water flow of the Nile river depended on the
previous years. The influence of the previous years decayed according a power-law.
This inspired Mandelbrot and van Ness (1968) to define the fractional Brownian
motion model which includes both the power-law and fractional Gaussian noises,
see also Beran (1994) andGraves et al. (2017).While this researchwaswell known in
hydrology and in econometry, it was not until the publication by Agnew (1992), who
demonstrated that most geophysical time series exhibit power-law noise behaviour,
that this type of noise modelling started to be applied to geodetic time series. In
hindsight, Press (1978) had already demonstrated similar results but this work has
not received much attention in geodesy. That the noise in GNSS time series also falls
in this category was demonstrated by Johnson and Agnew (1995). Power-law noise
has the property that the power spectral density of the noise follows a power-law
curve. On a log-log plot, it converts into a straight line. The equation for power-law
noise is:

P( f ) = P0 ( f/ fs)
κ (2.22)

where f is the frequency, P0 is a constant, fs the sampling frequency and the exponent
κ is called the spectral index.

Granger (1980), Granger and Joyeux (1980) and Hosking (1981) demonstrated
that power-law noise can be achieved using fractional differencing of Gaussian noise:

(1 − B)−κ/2v = w (2.23)

where B is the backward-shift operator (Bvi = vi−1) and v a vector with indepen-
dent and identically distributed (IID) Gaussian noise. Hosking and Granger used
the parameter d for the fraction −κ/2 which is more concise when one focusses on

http://dx.doi.org/10.1007/978-3-030-21718-1_6
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the fractional differencing aspect. It has been adopted by people studying general
statistics (Sowell 1992; Beran 1995). However, in geodesy the spectral index κ is
used in the equations. Hosking’s definition of the fractional differencing is:

(1 − B)−κ/2 =
∞∑
i=0

(−κ/2

i

)
(−B)i

= 1 − κ

2
B − 1

2

κ

2
(1 − κ

2
)B2 + · · ·

=
∞∑
i=0

hi

(2.24)

The coefficients hi can be viewed as a filter that is applied to the independent
white noise. These coefficients can be conveniently computed using the following
recurrence relation (Kasdin 1995):

h0 = 1

hi = (i − κ

2
− 1)

hi−1

i
for i > 0

(2.25)

One can see that for increasing i , the fraction (i − κ/2 − 1)/ i is slightly less than
1. Thus, the coefficients hi only decrease very slowly to zero. This implies that the
current noise value wi depends on many previous values of v. In other words, the
noise has a long memory. Actually, the model of fractional Gaussian noise defined
by Hosking (1981) is the basic definition of the general class of processes called
Auto Regressive Integrated moving Average (Taqqu et al. 1995). If we ignore the
Integrated part, thenwe obtain theAuto RegressiveMovingAverage (ARMA)model
(Box et al. 2015; Brockwell and Davis 2002) which are short-memory noise models.
The original definition of theARIMAprocesses only considers the value of the power
κ/2 in Eq. (2.24) as an integer value. Granger and Joyeux (1980) further extended the
definition to a class of fractionally integrated models called FARIMA or ARFIMA,
where κ is a floating value, generally in the range of −2 < i < 2. Montillet and Yu
(2015) discussed the application of the ARMA and FARIMA models in modelling
GNSS daily position time series and concluded that the FARIMA is only suitable in
the presence of a large amplitude coloured noise capable of generating a distribution
with large tails (i.e. random-walk, aggregations).

Equation (2.25) also shows thatwhen the spectral index κ = 0, then all coefficients
hi are zero except for h0. This implies that there is no temporal correlation between
the noise values. In addition, Eq. (2.22) shows that this corresponds to a horizontal
line in the power spectral density domain. Using the analogy of the visible light
spectrum, this situation of equal power at all frequencies produces white light and
it is therefore called white noise. For κ �= 0, some values have received a specific
colour. For example, κ = −1 is known as pink noise. Another name is flicker noise
which seems to have originated in the study of noise of electronic devices. Red noise
is defined as power-law noise with κ = −2 and produces hi = 1 for all values of i .
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Thus, this noise is a simple sum of all its previous values plus a new random step and
is better known as random walk (Mandelbrot 1999). However, note that the spectral
index κ does not need to be an integer value (Williams 2003).

One normally assumes that vi = 0 for i < 0.With this assumption, the unit covari-
ance between wk and wl with l > k is:

C(wk, wl) =
k∑

i=0

hihi+(l−k) (2.26)

Since κ = 0 produces an identity matrix, the associated white noise covariance
matrix is represented by unit matrix I. The general power-law covariance matrix is
represented by the matrix J. The sum of white and power-law noise can be written
as Williams (2003):

C = σ 2
plJ(κ) + σ 2

wI (2.27)

where σpl and σw are the noise amplitudes. It is a widely used combination of noise
models to describe the noise in GNSS time series (Williams et al. 2014). Besides
the parameters of the linear model (i.e. the trajectory model), maximum likelihood
estimation can be used to also estimate the parameters κ , σpl and σw. This approach
has been implemented various software packages such as CATS (Williams 2008),
est_noise (Langbein 2010) and Hector (Bos et al. 2013). In recent years one also has
detected randomwalk noise in the time series and this type has been included as well
in the covariance matrix (Langbein 2012; Dmitrieva et al. 2015).

We assumed that vi = 0 for i < 0 which corresponds to no noise before the first
observation. This is an important assumption that has been introduced for a practical
reason. For a spectral index κ smaller than −1, the noise becomes non-stationary.
That is, the variance of the noise increases over time. If it is assumed that the noise
was always present, then the variance would be infinite.

Most GNSS time series contain flicker noise which is just non-stationary. Using
the assumption of zero noise before the first observation, the covariance matrix still
increases over time but remains finite.

For some geodetic time series, such as tide gauge observations, the power-law
behaviour in the frequency domain shows a flattening below some threshold fre-
quency. To model such behaviour, Langbein (2004) introduced the Generalised
Gauss–Markov (GGM) noise model which is defined as:

(1 − φB)−κ/2v = w (2.28)

The only new parameter is φ. The associated recurrence relation to compute the
new coefficients hi is:

h0 = 1

hi = (i − κ

2
− 1)φ

hi−1

i
for i > 0

(2.29)
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If φ = 1, then we obtain again our pure power-law noise model. For any value of
φ slightly smaller than one, this term helps to shorten the memory of noise which
makes it stationary. That is, the temporal correlation decreases faster to zero for
increasing lag between the noise values. The power-spectrum of this noise model
shows aflatteningbelowsome threshold frequencywhichguarantees that the variance
is finite and that the noise is stationary. Finally, it is even possible to generalise this
a bit more to a fractionally integrated generalised Gauss–Markov model (FIGGM):

(1 − φB)−κ1/2(1 − B)κ2/2v = w

(1 − φB)−κ1/2u = w
(2.30)

This is just a combination of the two previous models. One can first apply the
power-law filter to v to obtain u and afterwards apply the GGM filter on it to obtain
w. Other models will be discussed in this book, such as ARMA (Box et al. 2015;
Brockwell and Davis 2002), but the power-law, GGM and FIGGM capture nicely
the long memory property that is present in most geodetic time series. A list of all
these noise models and their abbreviation is given in Table 2.1.

2.4 Power Spectral Density

Figure2.3 shows examples ofwhite, flicker and randomwalk noise for a displacement
time series. One can see that the white noise varies around a stable mean while the
random walk is clearly non-stationary and deviates away from its initial position.

In the previous section we mentioned that power-law noise has a specific curve
in the power spectral density plots. Methods to compute those plots are given by
Buttkus (2000). A simple but effective method is based on the Fourier transform that
states that each time series with finite variance can be written as a sum of periodic
signals:

Table 2.1 Common
abbreviation of noise models

Noise model Abbreviation

Auto-Regressive Moving Average ARMA

Auto-Regressive Fractionally
Integrated Moving Average

ARFIMA or FARIMA

Flicker Noise FN

Fractionally Integrated GGM FIGGM

Generalised Gauss Markov GGM

Power-Law PL

Random Walk RW

White Noise WN
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yn = 1

N

N/2∑
k=−N/2+1

Yk · ei2πkn/N for n = [0, . . . , N − 1] (2.31)

Actually, this is called the inverse discrete Fourier transform. Yk are complex
numbers, denoting the amplitude and phase of the periodic signalwith period k/(NT )

where T is the observation span. An attentive reader will remember that flicker and
random walk noise are non-stationary while the Fourier transform requires time
series with finite variance. However, we never have infinitely long time series which
guarantees the variance remains within some limit. The coefficients can be computed
as follows:

Yk =
N−1∑
n=0

yn · e−i2πkn/N for k = [−N/2 + 1, . . . , N/2] (2.32)

The transformation to the frequency domain provides insight which periodic sig-
nals are present in the signal and in our case, insight about the noise amplitude at the
various frequencies. This is a classic topic andmore details can be found in the books
by Bracewell (1978) and Buttkus (2000). The one-sided power spectral density Sk is
defined as:

S0 = |Y0|2/ fs
SN/2 = |YN/2|2/ fs
Sk = 2|Yk |2/ fs for k = [1, . . . , N/2 − 1]

(2.33)

The frequency fk associated to each Sk is:
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Fig. 2.3 Examples of white, flicker and random walk noise
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fk = k fs
N

for k = [0, . . . , N/2] (2.34)

The highest frequency is half the sampling frequency, fs/2, which is called the
Nyquist frequency. The power spectral density (PSD) computed in this manner is
called a periodogram. There are many refinements, such as applying window func-
tions and cutting the time series in segments and averaging the resulting set of PSD’s.
However, a detail that normally receives little attention is that the Fourier transform
produces positive and negative frequencies. Time only increases and there are no neg-
ative frequencies. Therefore, one always uses the one-sided power spectral density.
Another useful relation is that of Parseval (Buttkus 2000):

1

N

N−1∑
n=0

|yn|2 = 1

N 2

N/2∑
k=−N/2+1

|Yk |2 (2.35)

Thus, the variance of the noise should be equal to the sum of all Sk values (and
an extra fs/N 2 scale). The one-sided power spectral density of the three time series
of Fig. 2.3 are plotted in Fig. 2.4. It shows that power-law noise indeed follows a
straight line in the power spectral density plots if a log-log scale is used. In fact, the
properties of the power-law noise can also be estimated by fitting a line to the power
spectral density estimates (Mao et al. 1999; Caporali 2003).

The PSD of power-law noise generated by fractionally differencedGaussian noise
is Kasdin (1995):

S( f ) = 2σ 2

fs
(2 sin(π f/ fs))

κ

≈ 2σ 2

fs
(π f/ fs))

κ = P0( f/ fs)
κ for f 	 fs

(2.36)
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are the computed periodogram (Welch’s method) while the solid red line is the fitted power-law
model
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For small value of f , this approximates P0( f/ fs)κ . The sine function is the result
of having discrete data (Kasdin 1995). The PSD for GGM noise is:

S( f ) = 2σ 2

fs

[
1 + φ2 − 2φ cos(2π f/ fs)

]κ/2
(2.37)

For φ = 1, it converts to the pure power-law noise PSD. The Fourier transform,
and especially the Fast Fourier Transform, can also be used to filter a time series.
For example, Eqs. (2.23) and (2.24) represent a filtering of white noise vector v to
produce coloured noise vector w:

wi =
i−1∑
j=0

hi− j v j (2.38)

Let us nowextend the time seriesy and thevectorh containing thefilter coefficients
with N zeros. This zero padding allows us to extend the summation to 2N . Using
Eq. (2.32), their Fourier transforms, Yk and Hk , can be computed. In the frequency
domain, convolution becomes multiplication and we have Press et al. (2007):

Wk = Hk Yk for k = [−N , . . . , N ] (2.39)

UsingEq. (2.31) andonly using thefirst N elements, the vectorwwith the coloured
noise can be obtained.

2.5 Numerical Examples

To explain the principle of maximum likelihood, this section will show some exam-
ples of the numerical method using Python 3. For some years Matlab has been the
number one choice to analyse and visualise time series. However, in recent years
Python has grown in popularity, due to the fact that it is open source and has many
powerful libraries. The following examples aremade in IPython (https://ipython.org),
using the Jupyter notebook webapplication. How to install this program is described
on the afore mentioned website. The examples shown here can be downloaded from
the publisher website. The first step is to import the libraries:

import math
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import minimize
from numpy.linalg import inv

Next step is to create some data which we will store in Numpy arrays. As in
Matlab, the ‘linspace’ operator creates a simple array on integers. Furthermore, as

https://ipython.org
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Fig. 2.5 Our synthetic time series containing a simple line plus flicker noise

the name implies ’random.normal’ creates an array of Gaussian distributed random
numbers. We create a line y with slope 2 and offset 6 on which we superimpose
the noise w that were created using a standard deviation σpl = 0.5 for vector v, see
Eq. (2.23). This time series is plotted in Fig. 2.5.

N = 500 # Number of daily observations
t = np.linspace(0,N/365.25,N) # time in years
np.random.seed(0) # Assure we always get the same noise

kappa = -1 # Flicker noise
h = np.zeros(2*N) # Note the size : 2N
h[0] = 1 # Eq. (25)
for i in range(1,N):

h[i] = (i-kappa/2-1)/i * h[i-1]

v = np.zeros(2*N) # Again zero-padded N:2N
v[0:N] = np.random.normal(loc = 0.0, scale = 0.5, size = N)

w = np.real(fft.ifft(fft.fft(v) * fft.fft(h))) # Eq. (39)

y = (6 + 3*t) + w[0:N] # trajectory model + noise

plt.plot(t, y, ’b-’) # plot the time series

Of course the normal situation is that we are given a set observations and that we
need to estimate the parameters of the trajectory model y(t) = a + bt . However, cre-
ating synthetic time series is a very goodmethod to test if your estimation procedures
are correct.

First we will estimate the trajectory assuming white noise in the data:

#--- The design matrix
A = np.empty((N,2))
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for i in range(0,N):
A[i,0] = 1
A[i,1] = t[i]

#--- Old white noise method
C = np.identity(N)
x = inv(A.T @ inv(C) @ A) @ (A.T @ inv(C) @ y) # Eq. (14)
y_hat = A @ x
r = y - y_hat # residuals
C_x = np.var(r)* inv(A.T @ inv(C) @ A) # Eq. (15)
print(’White noise approximation’)
print(’a = {0:6.3f} +/- {1:5.3f} mm’.format(x[0],\

math.sqrt(C_x[0,0])))
print(’b = {0:6.3f} +/- {1:5.3f} mm/yr’.format(x[1],\

math.sqrt(C_x[1,1])))

The result should be:

White noise approximation
a = 6.728 +/- 0.064 mm
b = 1.829 +/- 0.080 mm/yr

What we have done here is using weighted least-squares with a white noise model
that has unit variance. The real variance of the noise has been estimated from the
residuals and the uncertainty of the estimated parameters x have been scaled with it.

At this point the reader will realise that this approach is not justified because the
noise is temporally correlated. It will be convenient to define the following two func-
tions that will create the covariance matrix for power-law noise and apply weighted
least-squares (Williams 2003; Bos et al. 2008):

#--- power-law noise covariance matrix
def create_C(sigma_pl,kappa):

U = np.identity(N)
h_prev = 1
for i in range(1,N):

h = (i-kappa/2-1)/i * h_prev # Eq. (25)
for j in range(0,N-i):

U[j,j+i] = h
h_prev = h

U *= sigma_pl # scale noise
return U.T @ U # Eq. (26)

#--- weighted least-squares
def leastsquares(C,A,y):

U = np.linalg.cholesky(C).T
U_inv = inv(U)
B = U_inv.T @ A
z = U_inv.T @ y
x = inv(B.T @ B) @ B.T @ z # Eq. (14)

#--- variance of the estimated parameters
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C_x = inv(B.T @ B) # Eq. (15)

#--- Compute log of determinant of C
ln_det_C = 0.0
for i in range(0,N):

ln_det_C += 2*math.log(U[i,i])

return [x,C_x,ln_det_C]

The function that creates the covariance matrix for power-law noise has been
discussed in Sect. 2.3 and uses Eqs. (2.25) and (2.26). The weighted least-squares
function contains somenumerical tricks. First, theCholesky decomposition is applied
to the covariance matrix (Bos et al. 2008):

C = UTU (2.40)

where U is an upper triangle matrix. That is, only the elements above the diagonal
are non-zero. A covariance matrix is a positive definite matrix which ensures that the
Cholesky decomposition always exists. The most important advantage it that one can
compute the logarithm of the determinant of matrixC by just summing the logarithm
of each element on the diagonal of matrixU. The factor two is needed because matrix
C is the product of UTU. Using these two functions, we can compute the correct
parameters x:

#--- The correct flicker noise covariance matrix
sigma_pl = 4
kappa = -1
C = create_C(sigma_pl,kappa)
[x,C_x,ln_det_C] = leastsquares(C,A,y)
print(’Correct Flicker noise’)
print(’a = {0:6.3f} +/- {1:5.3f} mm’.format(x[0],\

math.sqrt(C_x[0,0])))
print(’b = {0:6.3f} +/- {1:5.3f} mm/yr’.format(x[1],\

math.sqrt(C_x[1,1])))

The result is:

Correct Flicker noise
a = 6.854 +/- 2.575 mm
b = 1.865 +/- 4.112 mm/yr

If one compares the two estimates, one assumingwhite noise and the other assum-
ing flicker noise, then one can verify that the estimates themselves are similar. The
largest difference occurs for the estimated errors which are 5 times larger for the
latter. This also happens in real geodetic time series. Mao et al. (1999) concluded
that the velocity error in GNSS time-series could be underestimated by factors of
5–11 if a pure white noise model is assumed. Langbein (2012) demonstrated that an
additional factor of two might be needed if there is also random walk noise present.
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For sea level time series (Bos et al. 2014) obtained a more moderate factor of 1.5–
2 but still, white noise underestimates the true uncertainty of the estimated linear
trend. Williams et al. (2014) estimated a factor 6 for the GRACE gravity time series.
As discussed in Sect. 2.3, most geodetic time series are temporally correlated and
therefore one nowadays avoids the white noise model.

So far we have assumed that we knew the true value of the spectral index κ and the
noise amplitude σpl . Using MLE, we can estimate these parameters from the data:

#--- Log-likelihood (with opposite sign)
def log_likelihood(x_noise):

sigma_pl = x_noise[0]
kappa = x_noise[1]
C = create_C(sigma_pl,kappa)
[x,C_x,ln_det_C] = leastsquares(C,A,y)
r = y - A @ x # residuals

#--- Eq. (12)
logL = -0.5*(N*math.log(2*math.pi) + ln_det_C \

+ r.T @ inv(C) @ r)
return -logL

x_noise0 = np.array([1,1]) # sigma_pl and kappa guesses
res = minimize(log_likelihood, x_noise0, \

method=’nelder-mead’, options={’xatol’:0.01})

print(’sigma_pl={0:6.3f}, kappa={1:6.3f}’.\
format(res.x[0],res.x[1]))

Note that we inverted the sign of the log-likelihood function because most soft-
ware libraries provide minimization subroutines, not maximisation. In addition, it is
in this function that we need the logarithm of the determinant of matrixC. If one tries
to compute it directly from matrix C, then one quickly encounters too large num-
bers that create numerical overflow. This function also shows that we use weighted
least-squares to estimate the parameters of the trajectory model while the numeri-
cal minimization algorithm (i.e. Nelder–Mead), is only used the compute the noise
parameters. The reason for using weighted least-squares, also a maximum likelihood
estimator as we have shown in Sect. 2.2, is solely for speed. Numerical minimization
is a slow process which becomes worse for each additional parameter we need to
estimate. The results is:

sigma_pl= 0.495, kappa=-1.004

These values are close to the true values of σpl = 0.5 and κ = −1. The following
code can be used to plot the log-likelihood as function of κ and σpl :

S = np.empty((21,21))
for i in range(0,21):

sigma_pl = 1.2 - 0.05*i
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for j in range(0,21):
kappa = -1.9 + 0.1*j
x_noise0 = [sigma_pl,kappa]
S[i,j] = math.log(log_likelihood(x_noise0))

plt.imshow(S,extent=[-1.9,0.1,0.2,1.2], cmap=’nipy_spectral’, \
aspect=’auto’);

plt.colorbar()
plt.ylabel(’sigma_pl’)
plt.xlabel(’kappa’)
plt.show()

The result is shown in Fig. 2.6 which indeed shows a minimum around σpl = 0.5
and κ = −1. Depending on the computer power, it might take some time to produce
the values for this figure.

In Sect. 2.3 we noted that for GNSS time series the power-law plus white noise
model is common. Thus, one must add the covariance matrix for white noise, σ 2

wI, to
the covariance matrix we discussed in the examples. In addition, it is more efficient
to write the covariance matrix of the sum of power-law and white noise as follows:

C = σ 2
plJ(κ) + σ 2

wI = σ 2 (φ J(κ) + (1 − φ)I ) (2.41)

where σ can be computed using:

σ =
√
rTC−1r

N
(2.42)

Fig. 2.6 The log of the log(L) function as function of κ and σpl
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Since σ can be computed from the residuals, we only use our slow numerical
minimization algorithm need to find the value of φ (Williams 2008).

Note that we only analysed 500 observations while nowadays time series with
7000 observations are not uncommon. If one tries to rerun our examples for this
value of N , then one will note this takes an extremely long time. The main reason
is that the inversion of matrix C requires O(N 3) operations. Bos et al. (2008, 2013)
have investigated how the covariance matrix C can be approximated by a Toeplitz
matrix. This is a special type of matrix which has a constant value on each diagonal
and one can compute its inverse using onlyO(N 2) operations. This method has been
implemented in the Hector software package that is available from http://segal.ubi.
pt/hector.

The Hector software was used to create time series with a length of 5000 daily
observations (around 13.7years) for 20 GNSS stations which we will call the Bench-
mark Synthetic GNSS (BSG). This was done for the the horizontal and vertical com-
ponents, producing 60 time series in total. Each contains a linear trend, an annual
and a semi-annual signal. The sum of flicker and white noise, wi , was added to these
trajectory models:

wi = σ

⎡
⎣√

φ

i−1∑
j=0

hi− jv j + √
1 − φ ui

⎤
⎦ (2.43)

with both ui and vi are Gaussian noise variables with unit variance. The factor φ was
defined in Eq. (2.41). To create our BSG time series we used σ = 1.4mm, φ = 0.6
and horizontal components and σ = 4.8mm, φ = 0.7 for the vertical component.

It is customary to scale the power-law noise amplitudes by ΔT−κ/4 where ΔT is
the sampling period in years. For the vertical flicker noise amplitude we obtain:

σpl = σ
√

φ

ΔT κ/4
= 4.8 × √

0.7

(1/365.25)1/4
= 17.6 mm/yr0.25 (2.44)

The vertical white noise amplitude is 2.6 mm. For the horizontal component these
values are σpl = 4.7mm/yr0.25 and σw = 0.9mm respectively. The BGS time series
can be found on the Springer website for this book, and can be used to verify the
algorithms developed by the reader. These series will also be compared with other
methods in the following chapters.

2.6 Discussion

In this chapter we have given a brief introduction to the principles of time series anal-
ysis. We paid special attention to the maximum likelihood estimation (MLE) method
and the modelling of power-law noise. We showed that with our assumptions on the
stochastic noise properties, the estimated parameters have their variance bounded

http://segal.ubi.pt/hector
http://segal.ubi.pt/hector


2 Introduction to Geodetic Time Series Analysis 49

by the Cramer Rao lower bound. Therefore the MLE is an optimal estimator in the
sense of asymptotically unbiased and efficient (minimum variance).

In this bookwewill present other estimators such as the Kalman filter, theMarkov
Chain Monte Carlo Algorithm and the Sigma-method. All have their advantages and
disadvantages and to explain them was one of the reasons for writing this book.
The other reason was to highlight the importance of temporal correlated noise. This
phenomenon has been known for a long time but due to increased computer power,
it has now become possible to include it in the analysis of geodetic time series. We
illustrated how this can be done by various examples in Python 3 that highlighted
some numerical aspects that will help the reader to implement their own algorithms.
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Chapter 3
Markov Chain Monte Carlo
and the Application to Geodetic Time
Series Analysis

German Olivares-Pulido, Felix Norman Teferle and Addisu Hunegnaw

Abstract The time evolution of geophysical phenomena can be characterised by
stochastic time series. The stochastic nature of the signal stems from the geophysical
phenomena involved and any noise, whichmay be due to, e.g., un-modelled effects or
measurement errors. Until the 1990s, it was usually assumed that white noise could
fully characterise this noise. However, this was demonstrated to not be the case
and it was proven that this assumption leads to underestimated uncertainties of the
geophysical parameters inferred from the geodetic time series. Therefore, in order to
fully quantify all the uncertainties as robustly as possible, it is imperative to estimate
not only the deterministic but also the stochastic model parameters of the time series.
In this regard, theMarkovChainMonte Carlo (MCMC)method can provide a sample
of the distribution function of all parameters, including those regarding the noise,
e.g., spectral index and amplitudes. After presenting the MCMC method and its
implementation in our MCMC software we apply it to synthetic and real time series
and perform a cross-evaluation using Maximum Likelihood Estimation (MLE) as
implemented in the CATS software. Several examples as to how the MCMCmethod
performs as a parameter estimation method for geodetic time series are given in this
chapter. These include the applications to GPS position time series, superconducting
gravity time series and monthly mean sea level (MSL) records, which all show very
different stochastic properties. The impact of the estimated parameter uncertainties
on sub-sequentially derived products is briefly demonstrated for the case of plate
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motion models. Finally, an evaluation of the MCMC method against the Hector
method using weekly downsampled versions of the Benchmark Synthetic GNSS
(BSG) time series as provided in Chap.2 is presented separately in an appendix.

Keywords Time series analysis · Stochastic properties · Random-walk
metropolis-hasting · Parameter estimation · Parameter uncertainties · Geodesy and
geophysics · Gravity time series · Coloured noise

3.1 Introduction

The dynamics of different geophysical phenomena can be inferred by means of data
provided by space-geodetic techniques as, e.g., Doppler Orbitography and Radiopo-
sitioning Integrated by Satellite (DORIS) (Cazenave et al. 1992; Lefebvre et al. 1996;
Willis et al. 2010), Satellite Laser Ranging (SLR) (Pearlman et al. 2002; Bloßfeld
et al. 2018), Very Long Baseline Interferometry (VLBI) (Schlüter et al. 2002;
Nothnagel et al. 2017), and Global Navigation Satellite Systems (GNSS) such as
the Global Positioning System (GPS) (Beutler et al. 1999; Dow et al. 2009; Teferle
et al. 2009; Klos et al. 2018a). These techniques are usually used along with others
such as, for example, continuous measurements of near surface movements from
strainmeters (Wyatt 1982, 1989; Langbein et al. 1993), and gravity measurements
(Van Camp et al. 2005; Van Camp et al. 2017). They provide data that allow scientists
to constrain geophysical models and, in turn, help to better understand phenomena
such as, tectonic plate motions (Larson and Agnew 1991; Fernandes et al. 2004),
glacial isostatic adjustments (GIA) (Milne et al. 2001; Bradley et al. 2009), seismic
and inter-seismic crustal movements (Prawirodirdjo et al. 1997; Argus et al. 2005),
hydrological processes (van Camp et al. 2006; Nahmani et al. 2012) and atmospheric
dynamics (Virtanen 2004; Teke et al. 2011).

In all the above applications it is essential to analyse time series of observations
or some kind of derived quantities, such as position estimates from GNSS. While
for some applications it is the linear long-termmovement derived from position time
series that is of interest (Fernandes et al. 2004; Bradley et al. 2009), for others it
is the non-linear and periodic displacements that want to be studied (Khan et al.
2008; Nielsen et al. 2013). Nevertheless, since the late 1990s it has become clear that
geodetic time series need to be described by both deterministic and stochastic models
in order to obtain the best parameter estimates and avoid overly optimistic parameter
uncertainties (Langbein and Johnson 1997; Zhang et al. 1997; Mao et al. 1999;
Caporali 2003; Williams 2003a; Langbein 2004; Williams et al. 2004; Williams and
Willis 2006; Langbein 2008; Teferle et al. 2008; Bos et al. 2010, 2012; Santamaría-
Gómez et al. 2012; Klos et al. 2018b). The latter, in particular, may affect studies
of long-term changes due to, e.g., geodynamic processes or climate change, where
only small changes, e.g., at the millimetre per year level, are expected over many

http://dx.doi.org/10.1007/978-3-030-21718-1_2
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years. Over the last two decades the field of geodetic time series analysis has evolved
substantially which is reflected in many publications and motivates the need for
this book. The GPS Coordinate Time Series Analysis software (CATS) (Williams
2008), using Maximum Likelihood Estimation (MLE), has been widely used within
the community to fit both deterministic and stochastic models to GPS position time
series (Teferle et al. 2002, 2008), gravity time series (VanCamp et al. 2005) andmean
sea level records (Hughes andWilliams 2010; Burgette et al. 2013). Here we develop
a Markov Chain Monte Carlo (MCMC) method with similar applications in mind
and investigate its benefits and drawbacks when compared to MLE as implemented
in CATS.

3.2 Markov Chain Monte Carlo as a Parameter
Estimation Method

3.2.1 Fundamentals

Statistical analysis of geophysical data can be performed in two different ways: from
a full knowledge of the parameter space,which is equivalent to having the distribution
function, or from a data sample that accounts for the estimation of the distribution
function.

A full computation of the parameter space can be performed by mesh-like explo-
ration methods. However, when the number of parameters is high, the computational
loading can be overwhelming. Under such circumstances, methods that estimate the
distribution function are better than the mesh-like ones. One of such methods is the
Markov Chain Monte Carlo (MCMC) method. The theory of Markov chains is well
developed and further information can be found in Gilks et al. (1996).

A Markov chain is a series of random variables X (0), X (1), X (2), …, in which the
influence of the values of X (0), X (1), X (2), …,X (n) on the distribution of X (n+1) is
mediated by the value of X (n). More formally,

P(X (n+1)|X (0), X (1), X (2), . . . , X (n)) = P(X (n+1)|X (n)) , (3.1)

where P(X) denotes the probability of X , i.e. the probability that the value for the
state variable x is X .

A Markov chain can be specified by giving the marginal distribution for X (0)—
the initial probabilities of the various variables—and the conditional distributions for
X (n+1) given the possible values of X (n)—the transition probabilities for one state
to follow another state. Henceforth, we will write the initial probability of state x
as p0(x), and the transition probability for state x ′ at time n + 1 to follow state x at
time n as Tn(x, x ′). In our case the transition probabilities do not depend on time (as
we shall see later), so we will simply write T (x, x ′).



56 G. Olivares-Pulido et al.

Using the transition probabilities, one can find the probability of state x occurring
at time n + 1, denoted by pn+1(x), from the corresponding probabilities at time n,
as follows:

pn+1(x) =
∑

x ′
pn(x

′)T (x ′, x) , (3.2)

where the summation goes over all possible states x ′ at time n. Given the initial
probabilities, p0, this determines the behaviour of the chain at all times.

Weare interested in constructingMarkov chains ofwhich the distribution function,
given by π , is invariant. For this, we will use time reversible homogeneous Markov
chains that satisfy the more restrictive condition of detailed balanced—that if a
transition occurs from a state picked according the probabilities given by π , then the
probability of that transition being from state x to state x ′ is the same probability of
it being from state x ′ to state x . In other words, for all x and x ′,

π(x)T (x, x ′) = π(x ′)T (x ′, x) , (3.3)

which implies that π is an invariant distribution, since

∑

x ′
π(x ′)T (x ′, x) =

∑

x ′
π(x)T (x, x ′) = π(x)

∑

x ′
T (x, x ′) = π(x) , (3.4)

where we have assumed that T (x, x ′) = 1.
For our purposes, it is not enough tofind aMarkov chain ofwhich the distribution is

invariant. We also require that theMarkov chain to be ergodic—that the probabilities
at time n, pn(x), converge to this invariant distribution as n → ∞, regardless of the
choice of the initial probabilities p0(x). Clearly, an ergodic Markov chain can have
only one invariant distribution,which is also referred to as its equilibriumdistribution.

Though we make use of an ergodic Markov chain there is no way to know how
long it takes to reach the equilibrium state. Nevertheless, we can employ various
criteria to judge when the process is very close to such an equilibrium state, which
will be discussed below.

3.2.2 The Random-Walk Metropolis-Hasting Algorithm

One of the simplestMCMC is the so-calledMetropolis-Hasting algorithm (Metropo-
lis et al. 1953), where starting at a point x of the Markov chain, a new one x ′ is then
accepted with probability α(x, x ′) given by

α(x, y) =
⎧
⎨

⎩
min

{
π(y)

π(x)

T (y, x)

T (x, y)
, 1

}
π(x)T (x, y) > 0

1, π(x)T (x, y) = 0 ,

(3.5)
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where min(a, b) stands for the lowest number of the pair (a, b).
One special case is the Random-Walk Metropolis-Hastings (RWMH) algorithm.

In this case, the Markov chain depends on T (x, x ′) = T (x − x ′) and it behaves
as a random-walk process as it only depends on the the difference between two
consecutive points of the chain. Thus, Eq. (3.5) simplifies to

α(x, y) = min

{
π(y)

π(x)
, 1

}
. (3.6)

Defining the acceptance rate (AR) of anyMarkov chain as the ratio of the number
of accepted points (those from the sample of π(x)) and the length of the chain, and
following Roberts and Rosenthal (2001), it can be proved that, as the dimension of
the space wherein the RWMH chain lies increases, the optimal step size steers the
AR to asymptotically converge to ∼0.234. While some argue that the optimal AR
of 0.234 may only be valid for Gaussian densities and not for non-linear models, we
find that in all the below applications we generally obtained good results.

TheAR is a logistic function of the step size (ss), which is proportional to
(
x − x ′).

Indeed, as the step size goes to zero all the proposed values of the chain can be
accepted, i.e. AR ∼ 1, whereas for step sizes too long, the new state x may lie too
far away from the maxima of the distribution function, hence it is not accepted, or, in
other words, AR ∼ 0. Consequently, a linear fit of log(AR) and log(ss) can provide
the optimal value of the latter in order to get AR ∼ 0.234. With that automatic
estimate of the step size we can improve efficiency and save a lot of time, as the
amount and variability of the time series to be analysed can be huge, and for each of
them, the ss can be quite different.

3.2.3 The Markov Chain Monte Carlo Algorithm

The expected values of the estimated parameters are conditioned to the observational
data. Note that there is only one data set per station as we can not replicate the
observations, but it is possible to simulate as many parameter values as needed. So
actually, it is the probability function of recovering the observational data given a
parameter set that can be sampled. According to the Bayes theorem the former is
related with the probability function of the parameters set of dimension N , θ ≡
(θ1, . . . θN ), given an observational data set, Mobs , as follows:

P(θ |Mobs) = L(Mobs |Mth(θ))P(θ) , (3.7)

whereM th(θ) is the theoreticalmagnitude that depends on the value of the parameters
set θ ,L is the Likelihood and it yields the probability of the data given the parameters,
and, finally, P(θ) is the a priori probability function of the parameters.
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Once the likelihood is well determined, along with the priors, the posterior dis-
tribution, P(α|Mobs), can be computed. Then the expected values of the parameters
of the model can be estimated by means of Monte Carlo integration as follows:

< θi >=
∫

L(θ)θi dθ j =
∑

t=1,T

θt,i

T
,∀ j �= i , (3.8)

whereT is the number of points in the chain andαt,i denotes the value of the parameter
αi at the t th step of the chain. The 100(1 − 2p)% confidence interval

[
cp, c1−p

]
for

a parameter is estimated by setting cp to the pth quantile of αt,i , t = 1, . . . , T and
c1−p to the (1 − p)th quantile.

The algorithm that steers the MCMC through the posterior distribution surface is
summarised below:

1. Start with a set of parameters {αi }, compute the trend (linear and seasonal) and
the likelihood Li = L(yi |yobs), where yi is the i th model, and yobs the observed
data.

2. Take a random step in parameter space to obtain a new set of parameters {αi+1}.
The probability distribution of the step is taken to be Gaussian in each direction i
with the r.m.s given by σi . We will refer to σi as the step size. The choice of this
step size is important in order to optimise the chain efficiency.

3. Compute the yi+1 model for the new set of parameters {αi+1} and their likelihood
Li+1.

4. If Li+1/Li > 1, take the step, i.e. save the new set of parameters {αi+1} as part
of the chain, then go to step 2 after the substitution {αi } → {αi+1}.

5. If Li+1/Li < 1, draw a random number x from a uniform distribution from 0 to
1. If x > Li+1/Li do not take the step, i.e. save the parameter set {αi } as part of
the chain and return to step 2. If x < Li+1/Li take the step, i.e. do as in 4.

6. When the Markov chain achieves the equilibrium state (explained in Sect. 3.3.1)
and the chains have enough points to provide reasonable samples from the pos-
terior distributions, i.e. enough points to reconstruct the 1σ and 2σ levels of the
marginalised likelihood for all the parameters, the chains are stopped.

This algorithm admits values for which Li+1/Li < 1 provided the condition x <

Li+1/Li holds.Therefore, as it does not guarantee convergence towards themaximum
value of the likelihood but rather to a region wherein the maximum lies. It is not an
asymptotically consistent maximum likelihood estimator. Consequently, with the
fifth condition of the algorithm the MCMC method is not a Maximum Likelihood
Estimation (MLE) method.
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3.3 General Considerations for Markov Chain Monte Carlo

Let us consider a general power-law spectrum such as (Agnew 1992)

P( f ) = P0

(
f0
f

)−κ

, (3.9)

where P0 and f0 are constant, f is the frequency and −κ the spectral index.
We note here that throughout this chapter, the spectral index has different sign

with respect to other chapters of this book, i.e. Flicker noise corresponds to −κ = 1.
As Hosking (1981) showed that all times series with −κ > 1 are non-stationary,

thus there is not an uniqueness relationship between the covariance matrix and any
sample vector of length T . In other words, the zeroth and first statistical moments
(i.e. the mean and the covariance) are not the only non-zero moments. Moreover, the
covariance may evolve in time.

In Fig. 3.1 the spectral index −κ , the power-law amplitude σpl,0, the linear trend
V0 and the ordinate y0 of two time series are the same (all in arbitrary units), hence
they have the same covariance matrix, though their evolutions are quite dissimilar.
Therefore, an estimation of the velocities by means of the sample recovery of the
posterior distribution function would yield different values.

This is observed in Fig. 3.2, where the histogram for every parameter is shown.
In Fig. (3.2d), there are several local maxima for the velocity. As a consequence, the
estimation of the linear trend might not be uniquely determined for non-stationary
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Fig. 3.1 Two non-stationary time series generated with the same model parameters: −κ0 = 2.3,
σpl,0 = 4.5 and V0 = 3.1
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Fig. 3.2 Histograms of the estimated parameters with−κ0 = 2.3, σpl,0 = 4.5 and V0 = 3.1 as true
values

processes. Nevertheless, by computing the first difference any non-stationary time
series (provided −κ < 2) can be transformed into a stationary one, thus the slope
would come exclusively from non-stochastic processes.

A similar bias effect on the slope estimation due to seasonal processes was already
noticed by Blewitt and Lavallée (2002). The difference is that the seasonal bias effect
decreases as the time series length increases, whereas it does not for non-stationary
stochastic processes unless they have been differenced beforehand.

3.3.1 The Equilibrium State

The equilibrium or stationary state of the MCMC method implies that the estimates
of the parameters can not be significantly improved (from the statistical standpoint
by obtaining more points of the distribution function). There are some common
characteristics of the stationary state to take into account:

• For a RWMH algorithm the acceptance rate (AR) or sample density should be
∼0.234 (Roberts and Rosenthal 2001).

• The spectrum of the Markov chain at low frequency should be flat, meaning that
there are no correlations or these are damped enough for the points to be considered
independent of each other, thus minimising any bias on the estimates.
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3.3.2 The Acceptance Rate

The AR, which is defined as the ratio between the points from the sample and all the
points tried by the Markov chain, depends mainly on the step size. If the step size is
too long, it could yield a low acceptance rate; if it is too short, the sample data would
not be well mixed, i.e. they might have a big correlation, though the acceptance rate
would be high. So, good convergence and good mixing is achieved with a trade off
on the step size.

The AR is a logistic function of the inverse of the step size 1/ss:

AR(s) = 1

1 + γ e−1/ss
, (3.10)

with γ being a non-dimensional parameter that controls the transition from low to
high values of the argument of the logistic function. Indeed, Fig. 3.3 shows that for
small step sizes, i.e. big 1/ss values, most of the the proposed values of the chain are
accepted, i.e. AR ∼ 1, whereas for step sizes too long (small 1/ss values) AR ∼ 0.
According to that, a linear fit of log(AR) and log(ss) can estimate the optimal value
for the latter in order to get AR ∼ 0.234 (horizontal vertical line in Fig. 3.3), which
is a necessary condition for an optimal performance of the MCMC method so as to
obtain an unbiased sample of the parameters distribution.
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Fig. 3.3 Logistic function for AR versus the inverse of the step size 1/ss (in AU). Black solid lines
correspond to AR = 0.234 (horizontal) and optimal step size ss = 0.30 AU (vertical)
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3.3.3 The Spectrum of the Markov Chain

At small scale, the Markov chain is mainly a random-walk process, therefore the
points therein are correlated and any estimate for the parameters at that scale will
be biased. In order to get a non-biased estimate, the Markov chain has to reach
the stationary state and a good mixing. By the ergodic theorem (Gilks et al. 1996),
the Markov chain at long-scale provides a homogeneous sample of the distribution
function, i.e. when its length is long enough it yields a white-noise-like spectrum.
Following Dunkley et al. (2005) this spectrum can be written as

P(k) = P0
(k∗/k)β

(k∗/k)β + 1
, (3.11)

where β > 0 is the spectral index of the spectrum of theMarkov chain (it has nothing
to do with the spectral index −κ of the time series itself), k = j (2π/M) is the scale
(with j ∈ N), M the length of the chain, k∗ the cross-over scale, i.e. the inverse of
the length for which two points of the Markov chain that distance apart (at least) are
uncorrelated, and P0 = P(k → 0).

Figure 3.4 shows the theoretical spectrum for a long Markov chain obtained
from a Random-Walk Metropolis-Hasting algorithm. The values of the parameters
are P0 = 100, β = 2 and k∗ = 1 (all in AU). At low frequency (k < k∗) there is a
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Fig. 3.4 Power spectrum for longMarkov chains of Random-WalkMetropolis-Hasting algorithms
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plateau, meaning that points in the Markov chain at distances longer than 1/k∗ are
uncorrelated. On the other hand, at high frequency (k > k∗) the points are correlated,
giving rise to biased parameter estimates. Therefore, the spectral analysis of the
Markov chain provides a tool to estimate the length forwhich the bias on the estimated
parameters is minimised.

According to Dunkley et al. (2005), the Markov chain has a good mixing when
kmin ≡ 1/M is in the white noise regime, i.e. kmin < k∗, as it guarantees that the
chain is long enough to minimize correlations between Markov chain points, hence
obtaining unbiased estimates.

Finally, as it takes some time for the chain to achieve the stationary state which
guarantees the ergodic theorem to hold (Gilks et al. 1996), ∼33% of the first points
are usually burned.

3.4 Applications

In this section, time series from different geodetic data sets were analysed using
the MCMC method described previously and implemented in our in-house MCMC
software. The data sets comprise a set of synthetic time series aswell asmeasurements
and solutions from three different geodetic techniques:GPS, superconducting gravity
and tide gauge records.

The synthetic time series were generated in order to assess the MCMC method
through investigating the ability of the algorithm to recover the input values when
generating the time series. Aspects of this analysis were published in Olivares and
Teferle (2013).

The analysis of the first real data set consists in applying the MCMC method
to GPS position time series from the Jet Propulsion Laboratory (JPL). Moreover,
plate motion models were computed using the velocities and uncertainties obtained
from the MCMC and MLE methods, the latter as implemented in CATS (Williams
2008), in order to assess their differences and the impact on the plate-motion model
parameter estimates.

The second real data set comprises gravity measurements from the superconduct-
ing gravimeter at Membach, Belgium, which are analysed in order to estimate the
noise and the trend (Van Camp et al. 2005; 2016). These gravity time series show
largely different characteristics from the position estimates derived from continuous
GPS measurements.

Finally, the third real data set comprises tide gauge records from the Permanent
Service of Mean Sea Level (PSMSL) as archived in its Revised Local Reference
(RLR) database (Holgate et al. 2013). Again the characteristics of this data set are
significantly different from the other two sets. Furthermore, until recently the PSMSL
only provided trend estimates based on a white noise only stochastic model.
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Table 3.1 True values (in
AU) of the parameters of the
synthetic time series

Parameter True value

−κ 1.10

σpl 1.00

σwn 0.20

v 20.00

y0 0.00

Ac 10.00

As 5.00

3.4.1 Position Time Series

In this section we employ daily position time series that were (1) synthetically gen-
erated and (2) obtained from the Jet Propulsion Laboratory (JPL) GPS time series
website.1

Synthetic Data

Firstly, 100 synthetic time series with different real parameters are analysed with
our MCMC software and CATS (using CATS v3.1.2). Thus we can investigate and
describe their common features and differences. We used CATS as the benchmark
for the performance of the MCMC method.

A combination of linear and periodic terms, and time-correlated noise with length
N = 500 is considered in order to assess the performance of the newMCMCmethod:

y(t) = y0 + v (t − t0) +
k=H∑

k=1

(Ac
k cos(2π fk t) + As

k sin(2π fk t)) + r(t) , (3.12)

where the parameters to be estimated are the ordinate y0, the velocity v, the periodic
amplitudes Ac

k and As
k of the kth harmonic, and the stochastic noise r(t) components:

the spectral index −κ , the power amplitude of the power-law process σpl and that
of the white noise σwn , all of them in artificial units (AU). The frequencies fk of
the harmonics, the number of harmonics H and the initial epoch t0 are input values.
Table 3.1 shows the true values of the parameters, which are typical of real GPS time
series (Zhang et al. 1997; Mao et al. 1999; Williams et al. 2004; Hackl et al. 2011).

Then, another set of 100 synthetic time series is analysed with MCMC and CATS
in order to assess the performance of both, thus highlighting their differences and
similarities. For this case, semi-annual terms were also included in Eq. 3.12. The first
time series was generated with the initial true values listed in the second column of
Table 3.2. Then, for the other 99 time series, their true values were generated with

1http://sideshow.jpl.nasa.gov/post/series.html.

http://sideshow.jpl.nasa.gov/post/series.html
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Table 3.2 Initial true values and Gaussian generators of the parameters of the 100 synthetic time
series data set. All parameters are in AU

Parameter Initial true value Gaussian generator

−κi 1.10 N (−κi−1, 0.1)

σpl,i 2.30 N (σpl,i−1, 0.01)

σwn,i 2.00 N (σwn,i−1, 0.01)

vi 20.00 N (vi−1, 10)

y0,i 0.00 N (y0,i−1, 0.02)

Ac
1 yr,i 1.00 N (Ac

1 yr,i−1, 0.1)

As
1 yr 5.00 N (As

1 yr,i−1, 0.1)

Ac
0.5 yr 1.00 N (Ac

0.5 yr,i−1, 0.1)

As
0.5 yr 2.00 N (As

0.5 yr,i−1, 0.1)

2000 2002 2004 2006 2008 2010
−0.02
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Epoch (yr)
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Fig. 3.5 Synthetic data generated with parameters from Table3.2

a random-walk process starting at the initial true values with Gaussian generators
listed in the third column of Table 3.2.

Figure 3.5 shows a synthetic time series representative of the data set. For all of
them the period spans around 10 years. The periodic amplitudes have been enhanced
(compared, for example, with those in Fig. 3.11) in order to assess the robustness of
both methods.

Parameter Estimates

The analysis carried out on the synthetic time series shows that the model parameter
estimates frombothmethods agree verywell,with somedifferences in their stochastic



66 G. Olivares-Pulido et al.

parameters. Ideally, as both implementations assume a Gaussian likelihood, they
should lead to equivalent results. Nevertheless, in general, the MCMC software
estimates larger −κ and σwn , and slightly smaller σpl than the MLE implementation
in CATS. As for the model parameters, the MCMC method yields larger values for
all of them.

The correlation plots in Fig. 3.6 show the estimates for−κ (a), σpl (b) and σwn (c).
The −κ estimates from MCMC are larger than for CATS, whereas Fig. 3.6b shows
larger σpl estimates from CATS. Figure 3.6a indicates a systematic bias between the
−κ estimates of both implementations. These differences are further investigated
later in the analysis with real GPS position time series.

A Linear Least Squares (LLS) fit estimates the correlation (the slope of the fit)
and the bias (the ordinate of the fit). Thus the following linear relationship between
estimates and uncertainties of both methods is assumed

parMCMC = a × parCAT S + b , (3.13)

where parMCMC (parCAT S ) is either an estimated parameter or its uncertainty from
the MCMC (CATS) method, a is the slope, and b the bias. This formula allows
transformation of all the analysis carried out with CATS into MCMC values.

Table 3.3 summarises the results for all parameters but σwn . For −κ , the values of
the slope (a = 0.78) and the bias (b = 0.37) account for the disagreement between
both methods at low values of the spectral index, whereas the estimates meet at
high values. To further investigate this, we also generated a different data set of 100
synthetic time series for which we varied the true value of the spectral index from 0 to
5, the latter being a rather high value for the index beyond that of random Brownian-
Motion (Mandelbrot and Ness 1968) for which the Gauss-Markov behaviour can no
longer be assumed automatically. Without mathematical proof the analysis of these
time series supports the above value of 0.78 for the slope (Olivares and Teferle 2013).

Figure 3.7 shows the estimates for −κ from the MCMC versus CATS methods of
this last synthetic data set. The figure suggests that the estimates agree much better at
high values for the index. In this case, a = 0.91 and b = 0.28. The better correlation
shown at high values in Fig. 3.7 suggests that, like the MCMCmethod, CATS is also
a good estimator of the spectral index for non-stationary time series (Olivares and
Teferle 2013).

The red-circled points in Fig. 3.7 are estimates for which CATS sets σwn = 0. The
fact that they cluster at low value suggests that these discrepancies of −κ stem from
the way CATS deals with low spectral index values. When these are too small, CATS
considers there is only power-law noise, thus setting the white noise amplitude equal
to zero2 (red-circled points along the vertical axis in Fig. 3.6c). Consequently, the
spectral index is whitened in order to account for the amplitude of the white noise
process, hence the larger positive bias (marked as red-circled points) in Fig. 3.6a.
Moreover, the power-law amplitude from CATS is shifted up to include the power

2Simon D. P. Williams, personal communication, 2012.
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Table 3.3 Table of LLS fit parameters, as defined in Eq. 3.13 (synthetic data)

Parameter a b

−κ 0.78 0.37

σpl 0.75 0.46

v 1.00 −0.03

y0 0.96 0.14

Ac
1 yr 1.01 0.00

As
1 yr 0.92 0.32

Ac
0.5 yr 0.97 0.02

As
0.5 yr 0.93 0.12

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

−κ

M
C

M
C

MLE

Fig. 3.7 Parameter estimates for −κ . Red circles are time series for which CATS sets σwn = 0

from the white noise process, thus introducing larger (more negative) bias between
both estimates at high values as it is observed in Fig 3.6b (red-circled points).

As for the model parameters, the correlation plots in Fig. 3.8 show that the esti-
mates from both methods agree very well. Apart from a few outliers (any point
beyond 3 σ confidence level), which come either from a Markov chain that did not
achieve the stationary state, or from numerical issues in CATS, the data cluster along
the diagonal. Their values for the LLS fit parameters in Table 3.3 also show good
agreement with a ∼ 1 for all and, in general, small biases, except for As

1 yr .
In order to numerically assess their agreements, the RMS with respect to the true

value was computed for both methods. Table 3.4 summarises the RMS in AU for the
estimates from both methods as implemented inMCMC and CATS. It shows that the
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Table 3.4 RMS values (in AU) for parameter estimates from the MCMC and CATS methods

Method −κ σpl σwn v y0 Ac
1 yr As

1 yr Ac
0.5 yr As

0.5 yr

MCMC 0.20 0.44 0.47 0.41 1.76 0.52 0.59 0.30 0.30

CATS 0.22 0.51 1.01 0.40 1.61 0.44 0.39 0.30 0.32

RMS for the −κ estimates are in good agreement: RMS = 0.20 and RMS = 0.22
for the estimate fromMCMC and CATS, respectively. Nevertheless, the values from
the σpl estimates differ further: RMS = 0.44 and RMS = 0.51, i.e. an improvement
of 14%by theMCMCmethod.And, due to thewayCATS setsσwn = 0 for lowvalues
of σpl , the RMS from both methods are even more different: RMS = 0.47 for the
MCMC, and RMS = 1.01 for the CATS method, i.e. 53% smaller for the MCMC
than for the CATS method.

On the other hand, the values of the RMS of the estimates of the model parameters
shown in Table 3.4 do not differ that much with RMS = 0.41, 0.30, 0.30 for the
estimates of v, Ac

0.5 yr and As
0.5 yr , respectively, from theMCMCmethod; and RMS =

0.40, 0.30, 0.32 for their CATS counterparts. The other three model estimates from
CATS, though, show better fit, with RMS = 1.61, 0.44, 0.39, for y0, Ac

1 yr , A
s
1 yr ,

respectively; whereas the estimates from the MCMC are larger, namely RMS =
1.76, 0.52, 0.59.

To summarise, according to the results for the RMS, both methods perform alike,
except for the estimate of the amplitude of the white noise, which is clearly under-
estimated by the CATS method.

Uncertainties

Figure3.9 shows the correlation of the uncertainties for the model parameters, i.e.
σv, σy0 , σAc

1 yr
, σAs

1 yr
, σAc

0.5 yr
and σAs

0.5 yr
, from both methods. In general, the velocity

(Fig. 3.9a) and periodic terms (Fig. 3.9b, c, e, f) uncertainties align along and above
the diagonal, meaning that they clearly correlate with larger values from the MCMC
method. The exception is σy0 , in Fig. 3.9d, for which the uncertainties from the CATS
method are larger than from the MCMCmethod. Besides showing a low correlation,
Fig. 3.9d also indicates that for large σy0 values, the difference between these from
the CATS and MCMC methods increases.

Table 3.5 summarises the values of the LLS fit that transforms the values from the
CATSmethod. The uncertainties σv, σAs

1 yr
, σAc

0.5 yr
and σAs

0.5 yr
are well correlated along

the diagonal with a = 1.22, 1.01, 0.95, and 0.96, respectively, with small biases,
namely b = 0.11, 0.03, 0.06, and 0.05. Though a = 0.16 for σy0 , its bias is larger,
b = 1.41. The outliers at the head and tail of Fig. 3.9b lead to a smaller slope,
a = 0.62, and higher bias, b = 0.40, on σAc

1 yr
.

As the parameter space is wider for the MCMCmethod, it explores the surround-
ings of the maximum of the likelihood for all parameters, including −κ , hence the
larger uncertainties for all parameters except for y0. The stochastic amplitudes −κ ,
σpl and σwn estimated from MCMC reduce the RMS (see Table 3.4), therefore the
estimated uncertainties, though larger, provide a more comprehensive estimate of
the noise.
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Table 3.5 Table of LLS fit parameters, as defined in Eq. 3.13, for uncertainties (synthetic data).
All parameters are in AU

Parameter

a b

σv 1.22 0.11

σy0 0.16 1.41

σAc
1 yr

0.62 0.40

σAs
1 yr

1.01 0.03

σAc
0.5 yr

0.95 0.06

σAs
0.5 yr

0.96 0.05

Table 3.6 Values in AU of the median of the ratio of the uncertainties Rp , and the median of the
differences 	p (synthetic data)

Uncertainty Rp 	p

σv 1.40 0.23

σy0 0.69 −0.88

σAc
1 yr

1.08 0.06

σAs
1 yr

1.07 0.06

σAc
0.5 yr

1.04 0.02

σAs
0.5 yr

1.03 0.02

Other statistic variables that provide a comprehensive analysis of both methods
are the median of the ratio of the uncertainties from both methods of the estimate of
p, i.e.

Rp ≡ median

(
σ MCMC
p

σCAT S
p

)
, (3.14)

and the median of the differences, namely

	p ≡ median (pMCMC − pCAT S) . (3.15)

These are listed in Table 3.6 for the synthetic data. Concerning the ratios (second
column in Table 3.6), the largest absolute median is that for σv, namely Rv = 1.40,
whereas the smallest is for y0: Ry0 = 0.69. On the other hand, the uncertainties of
the periodic terms from both methods are quite similar ranging from 1.03 to 1.08.
As for the differences (third column in Table 3.6), the largest one is for the ordinate
uncertainty, namely −0.88. This also makes the largest difference between the bias
(third column in Table 3.5) and 	y0 . For the other parameters their 	p values are of
the same order of magnitude as their ratio counterparts.
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Fig. 3.10 Map of the GPS stations of the IGS core network

Although Rp (	p) and a (b) (see Table 3.5) for the velocity and periodic terms
estimates are similar, the latter is less robust with outliers, as the large difference
between Ry0 = 0.69 (	y0 = −0.88) and a = 0.16 (b = 1.41) indicates. Therefore,
in order to provide a more robust assessment it is advised to use Rp and 	p rather
than a and b for rescaling from CATS onto MCMC values, as the former provide
more robust statistical information.

Real Data

At the time of this study JPL provided 2381 daily position time series processed
using the Precise Point Position (PPP) strategy in the GIPSY-OASIS II software3

(Zumberge et al. 1997). Out of them, 90 GPS stations (shown in Fig. 3.10) from
the International GNSS Service (IGS) have been selected in order to perform the
analysis. Figure 3.11 shows the North, East and Up components of station ALIC
as a representative GPS position time series from this data set. Also shown are the
root mean square (RMS) values, which are 1.26 and 1.25mm for the North and East
components, respectively; whereas for the Up component it is 3.66mm. These are
typical values of the RMS of GPS time series and in this case, but also in general,
the RMS for the Up component is ∼3 times larger than the RMS for the North and
East components.

Alongside the trended (and detrended) time series, JPL also provides the epochs
of the discontinuities within the time series. In total JPL reported 4078 offsets for
this data set, meaning 1.7 offsets per station on average. As such offsets introduce
additional coloured noise (Williams 2003b), the time series were corrected before

3The software is available in http://sideshow.jpl.nasa.gov/post/series.html.

http://sideshow.jpl.nasa.gov/post/series.html
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Fig. 3.11 GPS time series for ALIC. From top to bottom: North, East and Up components

the analysis of the stochastic properties. Furthermore, discontinuities in the position
time series may have significant affects on the parameter estimates (Williams 2003b;
Gazeaux et al. 2013).

Figure 3.12a shows the spans of the weekly time series. Note than the spans of JPL
time series range from over 6 years to about 19 years. In Fig. 3.12b the histograms of
the gaps in the time series show short periods of gaps as more than 87% of them have
less than 25% of epoch discontinuities, i.e. gaps. Gaps introduce zeroes in the inverse
of the covariance matrix thereby making it sparser and shifting the spectral index
estimate. The problem with a sparse matrix is that it may have a high conditioning
number, thus leading to a biased likelihood when its inverse (i.e. the covariance
matrix) is computed.

These 90 daily position time series from the IGS core network were converted
into weekly series by averaging over each week in order to boost the computational
speed. Although this conversion might modify the stochastic characteristics of the
series and hence of the stochastic model parameter estimates (Kirchner 2005), it does
not affect the comparison between the MCMC and CATS methods, as long as the
time series are the same for both.

Parameter Estimates. The results for the analysis of the JPL data set are similar
to those for the synthetic data set. In general, −κ for the MCMC method is larger
than for CATS, whereas the estimated model parameters for both methods agree very
well.
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Fig. 3.12 Histograms for time series (JPL): Time series lengths (a) and % of gaps (b)

On the other hand, σpl for the CATS method is larger than for MCMC, in good
agreement with the results for the synthetic time series.

Regarding σwn , most of the values for CATS (82%, 77%, 70%, for the North, East
and Up components, respectively) are set to zero.

According to Fig. 3.13a–c, the estimates of the spectral index −κ for all three
components are above the diagonal, i.e. the MCMC method yields larger estimates
for this parameter than CATS. On the other hand, Fig. 3.14a–c show that σpl for all
three components are larger for CATS than for MCMC, also in good agreement with
the results obtained for the synthetic time series shown in Fig. 3.6. Nevertheless, as
the noise depends geometrically on −κ (only linearly on σpl ), and it is larger for
MCMC, the uncertainties of the estimates from the MCMC method are expected to
be larger.

Figure 3.14d–f show the difference of MCMC and CATS estimating the white
noise amplitude σwn . For some time series where the estimated σwn is very small,
CATS considers it to be null, i.e. all the noise is a pure power-law process. These are
the points aligned at the vertical axis in all three Fig. 3.14d–f.

SometimeswhenCATS sets σwn to zero, it yields NaN values for the uncertainties
as it happens for the estimated East component velocity of THU3. The cause for this
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is a bad numerical behaviour of the computed Fisher matrix.4 Another consequence
of setting σwn = 0 is that it shifts −κ towards smaller values, thus diminishing the
correlation within the noise and underestimating the uncertainties of all parameters
of the model. Moreover, it makes σpl larger, as the results for the synthetic data
set suggested. As MCMC does not deal with derivatives these numerical issues are
avoided, and it performs well even with a combination of power-law and white noise.

Finally, Figs. 3.15, 3.16, and 3.17, which correspond to the correlation between
estimates for both methods, i.e. v, y0, Ac

1 yr , A
s
1 yr , A

c
0.5 yr and As

0.5 yr , respectively,
show that both methods are in good agreement.

As the aforementioned figures suggest, estimates from bothmethods seem to align
linearly, hence the consideration of a linear least-squares fit. Table 3.7 summarises
the fit of the points (after removing outliers beyond 3σ ) showing the slope and the
ordinate for each parameter and all three components.

The slopes for v, σpl , Ac
1 yr , A

s
1 yr , A

c
0.5 yr and As

0.5 yr are a ∼ 1 which proves that
both methods perform alike at estimating these parameters. Their ordinate values are
at submillimetre level: b ∼ 10−2 mm/yr and b ∼ 10−2 mm, respectively.

The estimates of y0, though a ∼ 1, show differences at mm (North component in
Table 3.7) and sub-mm levels (East and Up components in Table 3.7).

The major differences are found among the−κ estimates. The slopes for−κ in all
components are a < 1, though the estimates fromMCMC are larger. This is because
at lowvalues, the differences are larger. Thiswas found in the analysis of the synthetic
data set as well (see Figs. 3.6a and 3.7). Though it might be related to the way CATS
estimates the white noise, in this case this was not possible to confirm because there
were zero-white-noise values all along the diagonal of Figs. 3.13 and 3.14.

Uncertainties. The differences between both methods are shown in Fig. 3.18 for the
uncertainties of the estimates of v and y0, and Figs. 3.19 and 3.20 for the uncertainties
in the annual (σAc

1 yr
and σAs

1 yr
) and semi-annual (σAc

0.5 yr
and σAs

0.5 yr
) periodic terms,

respectively.
The uncertainties of the estimated spectral index −κ are not computed by the

public code of CATS, therefore they are not shown here. Similarly, as CATS yields
σσwn = NaN when σwn = 0 for some GPS time series, they are not plotted either.

In general, most of the uncertainties of v and the periodic terms are larger for
MCMC than for CATS. Figs. 3.18a–c, 3.19 and 3.20, show a linear correlation with
most of the values fromMCMCabove the diagonal. Only σy0 gets larger uncertainties
for CATS than for the MCMC method, as Fig. 3.18d–f show.

Table 3.8 summarises the values for the parameters of the LLS fit. The variety
of values for the slope a, indicates less agreement between the uncertainties of both
methods than their respective parameters had. The slope ranges from a = 0.51 for
the North component of σy0 , up to a = 1.35 (for the East component of σv).

The bias values range from 0.56mm for the y0 Up component to 0.01mm/yr for
velocity East component.

Table 3.9 shows the median of the ratio and the difference of the uncertainties
for the JPL data set. The values for the ratios are quite similar to those obtained

4Simon D. P. Williams, personal communication, 2013.
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Table 3.7 Parameter estimates for the LLS fit, as defined in Eq.3.13, between MCMC and CATS
results for the estimates parameters (JPL data)

Parameter N E U

a b a b a b

−κ 0.94 0.16 0.85 0.25 0.80 0.26

σpl (mm) 0.99 −0.02 0.93 0.06 0.97 −0.03

v (mm/yr) 1.00 0.01 1.00 0.01 1.00 0.03

y0 (mm) 0.98 1.14 0.97 0.72 0.96 −0.35

Ac
1 yr (mm) 1.04 −0.01 0.98 0.01 1.00 0.01

As
1 yr (mm) 1.03 −0.02 1.00 −0.02 1.00 0.03

Ac
0.5 yr (mm) 0.97 0.01 1.02 0.00 0.99 0.01

As
0.5 yr (mm) 1.06 0.02 1.03 0.01 0.99 0.00

for the synthetic time series (see Table 3.6), with Rv = 1.40 being the biggest value
(North and East components) and Ry0 = 0.63 the smallest one (Up component). The
periodic terms are also quite similar as their values range from 1.06 up to 1.11. The
most noticeable is that the median of the ratio of the velocities and periodic terms
are larger than 1 for all three components, meaning that, unlike the results for a,
the uncertainty estimates from MCMC are larger than those from CATS, namely
40% larger for the North and East components, and 18% for the Up component, thus
showing good agreement with the results for the synthetic data set.

The uncertainty of the estimated spectral index, σ−κ , is not computed by CATS.
This entails that CATS performs with one less parameter than the MCMC method,
therefore, smaller uncertainties for the velocity estimates are expected from CATS.
It is possible to check out this statement by setting −κ as an input for both methods.

Therefore, it is reasonable to state that the main difference in the velocity uncer-
tainties between both methods stems from the fact that CATS does not estimate the
uncertainty of the spectral index, and, by doing so, the velocity uncertainties for all
components are underestimated.

On the other hand, CATS offers a quicker method than MCMC to estimate the
model parameters and their uncertainties: CATS is around one order of magnitude
faster than the MCMC method, therefore, if the difference in these uncertainties is
not measurable, i.e. (so far) at sub-millimetre level, CATS is more time-efficient than
MCMC.

Another argument in favour of the spectral index estimate (and its uncertainty)
is provided by the Bayesian Information Criterion (BIC) (Schwarz 1978). This cri-
terion states the following: Given two models with different amount of parameters
to estimate, the BIC favours the one with the largest maximum likelihood estimate
(Lmax ) and penalises the amount of parameters k, or, equivalently:

BIC = −2 log(Lmax ) + k ln(N ) (3.16)
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Table 3.8 Parameter estimates of LLS fit, as defined in Eq. 3.13, for the MCMC and CATS results
for the parameter uncertainties (JPL data)

N E U

a b a b a b

σv (mm/yr) 1.00 0.09 1.35 0.01 0.93 0.16

σy0 (mm) 0.51 0.30 0.54 0.30 0.51 0.56

σAc
1 yr

(mm) 0.93 0.06 1.04 0.03 0.72 0.35

σAs
1 yr

(mm) 0.85 0.11 1.00 0.05 1.00 0.10

σAc
0.5 yr

(mm) 0.54 0.15 0.80 0.09 0.71 0.32

σAs
0.5 yr

(mm) 0.53 0.17 0.60 0.15 0.67 0.34

Table 3.9 Values of the medians of the ratio Rp (Eq. 3.14) and the difference 	p (Eq. 3.15) of the
uncertainties (JPL data)

Parameter N E U

Rp 	p Rp 	p Rp 	p

σv (mm/yr) 1.40 0.08 1.40 0.08 1.18 0.08

σy0 (mm) 0.70 −0.43 0.72 −0.40 0.63 −1.34

σAc
1 yr

(mm) 1.07 0.02 1.06 0.02 1.06 0.05

σAs
1 yr

(mm) 1.09 0.03 1.09 0.03 1.07 0.06

σAc
0.5 yr

(mm) 1.11 0.03 1.08 0.02 1.06 0.05

σAs
0.5 yr

(mm) 1.09 0.03 1.09 0.02 1.06 0.05

where N is the amount of data. According to Eq. 3.16, the smaller the BIC value,
the better the model.

Several studies, such as He et al. (2017) and He et al. (2019), have recently
investigated the use of various information criteria, e.g., BIC, Akaike information
criterion, to select the optimal stochastic noisemodel in geodetic time series. He et al.
(2019) proposed to use a modified BIC in order to take into account the influence
of the length of the time series in the selection of the stochastic noise model which
requires to include new information about the noise at overflow frequency for long
time series (>15 years).

The BIC parameter here is computed using Eq. 3.16 (firstly CATS, then MCMC)
on the JPL data set for two models: One that estimates −κ , and another one that
consider the spectral index as an input, namely, Flicker noise, i.e. −κ = 1. Table
3.10 summarises the results for 	 BIC = BICpl − BICFlicker , i.e. the difference
between the BIC value from the power-law model and that from the Flicker-noise
model. The second column shows that for 5% of the stations, in the North and
East components the power-law model provides a smaller BIC than the Flicker-
noise model. For the Up component 7% of the stations are better modelled with
Flicker noise, whereas for 30% of the stations both models are equivalent, i.e.
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−2 < 	 BIC < 0. A positive evidence, i.e. −6 < 	 BIC < −2, (third column)
is shown for 54% of the stations in the North component, and 55% of them in the
East component. Again, the Up component shows a smaller percentage of 45%.
Finally, a strong evidence is found in the fourth column of Table 3.10 for 41%, 40%
and 28% of the stations for the North, East and Up components, respectively.

For the MCMC method it is assumed that the likelihood is Gaussian, then the
mean and the maximum of the likelihood would be similar and the BIC criterion can
be applied too. Table 3.11 shows the results for 	 BIC for the power-law model
and the Flicker-noise model. For 2% and 1% of the stations in the North and East
components, respectively, the power-law and the Flicker-noise model are considered
equivalent (−2 < 	BIC < 0, second column). There is positive evidence for 7%,
4% and 4%, and strong evidence for 80%, 82% and 81% of the stations for the North,
East and Up components, respectively. The Flicker-noise model is better considered
for 11, 13 and 15% of the stations for the North, East and Up components. The
results summarised in Tables 3.10 and 3.11 are in good agreement, denoting that
for the majority of the stations there is positive evidence in favour of the power-law
model for the MCMC and CATS methods.

To summarise:

• Both methods estimate parameters in good agreement as Tables 3.3 and 3.7 show.
• As the MCMC method simultaneously estimates all parameters, including the
spectral index, it yields [1.18 − 1.40] times larger uncertainties for the model
parameters than CATS (see Table 3.8).

• According to Tables 3.3, 3.7, and 3.6, 3.8, estimated parameters and their uncer-
tainty ratios for real data sets show great consistency with those for the synthetic
data.

• The BIC criterion denotes that the power-lawmodel is better than the Flicker-noise
model for most of the stations analysed with the MCMC and CATS methods.

Table 3.10 Values of 	 BIC ≡ BICpl for the North, East and Up components for a power-law
model and a Flicker-noise model using CATS (JPL data set)

−2 < 	BIC < 0 (%) −6 < 	BIC < −2 (%) 	BIC < −6 (%)

N 5 54 41

E 5 55 40

U 30 45 28

Table 3.11 Values of 	 BIC ≡ BICpl for the North, East and Up components for a power-law
model and a Flicker-noise model using MCMC (JPL data set)

−2 < 	BIC < 0 (%) −6 < 	BIC < −2 (%) 	BIC < −6 (%)

N 2 7 80

E 1 4 82

U 0 4 81
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• As a consequence of the BIC results, it is necessary to compute the spectral index
estimate uncertainty in order to getmore realistic uncertainties for allmodel param-
eters.

Computational Time

CATS computes the covariance matrix just once, and its computation is the most
memory-demanding computational process, thus slowing down the estimation pro-
cess. On the other hand, theMCMCmethod computes the covariance matrix for each
value of α within the Markov chain. Therefore, the MCMC method requires more
computational time. Indeed, Fig. 3.21 shows the difference between the CPU time
needed for the MCMC (red points) and the CATS (blue points) methods. These are
CPU times for each of GPS position time series from the JPL data set.

Both methods scale with the number of epochs as N−κ , where −κ = 2.5 for
MCMC, and −κ = 2.8 for CATS. CATS is around one order of magnitude faster
than the MCMC method. Therefore, if the difference in these uncertainties is not
measurable (at sub-millimetre level), CATS would be more time-efficient than the
MCMC method.

With the development of faster implementations of the MLE method in more
recent versions of CATS or the Hector software (Bos et al. 2012), the computational
time is reduced even further than when we carried out this analysis. It is apparent that
the time requirement for the MCMCmethod in its current implementation would be
prohibitive for many applications.

3.4.2 Plate Motion Models

The analysis with MCMC and CATS carried out on the JPL position time series was
repeated on 171 GPS stations from JPL in order to estimate an absolute plate motion
model (PMM) for each method (MCMC-PMM and CATS-PMM for the MCMC and
CATS methods, respectively), thus assessing the performance of both methods and
how their differences would affect the constraints on plate motion models.

A comprehensive analysis on plate motion is beyond the scope of this chapter,
and the following subsections just show how the differences of these two statistical
methods lead to different constraints on any geophysical model, e.g. plate motion.

Station Selection

Following Altamimi et al. (2012) for the station selection criteria only those stations
far away from the plate boundaries andwithout significant glacial isostatic adjustment
were used. Listed in the second column in Tables 3.15 and 3.16, 171 stations were
used to estimate the PMM for each method.
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Fig. 3.21 Computational time of the estimation of parameters with the MCMC method (red) and
CATS (blue) for the JPL data set

Unlike Altamimi et al. (2012), where GPS, SLR, DORIS and VLBI techniques
were considered, only GPS stations were analysed herein, therefore some differences
are expected with respect to their results. Another consequence of not using the
same techniques is that the number of stations is different to Altamimi et al. (2012),
wherein 206 sites were analysed. Therefore small differences in the derived plate
motion models are expected.

Plate Motion Model Results

Station velocities and their 2σ uncertainties (black ellipses showing 95% confidence
level) frombothmethods are shown in Fig. 3.22. Bothmethods are in good agreement
with the North American plate moving westwards and Eurasia moving eastwards.
These two plates contain around 57% of sites. The Nubia and Somalia plates jointly
move north-eastwards. The South American plate has eight sites moving northwards
and Antartica shows more stability than the other plates, though the directions of the
vector velocities are more varied. The largest velocities are those on the Australian
(moving north-eastwards) and the Pacific (moving north-westwards) plates.

Tables 3.12 and 3.13 summarise the results for the PMM from the MCMC and
CATS methods, respectively. The first column in both Tables stands for the code
of the plates as it follows: AMUR for Amurian; ANTA for Antartica; ARAB for
Arabia; AUST for Australia; CARB for Caribbean; EURA for Eurasia; INDI for



90 G. Olivares-Pulido et al.

Fig. 3.22 Site velocities from the MCMC (top panel) and CATS (bottom panel) methods

India; NAZC for Nazca; NOAM for North America; NUBI for Nubia; PCFC for
Pacific; SOAM for South America; SOMA for Somalia, and SUND for Sunda.

The second column shows the number of stations (NS) on each plate, whereas the
next three columns summarise the results for angular velocities in the three directions
of the coordinate axes ωx , ωy and ωz .

TheEuler pole components are in the sixth and seventh columns, respectively,with
the Euler pole angular velocity in the eighth column. Finally, the last two columns
summarise the weighted root mean square (WRMS) of the residuals for each plate.
The last line shows the global WRMS of the PMM considered for each method.
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Concerning the global WRMS, CATS-PMM gives 0.72 and 0.80mm/yr for the
North and East components, respectively; whereas MCMC-PMM gives 0.73 and
0.76mm/yr for the North and East components, respectively.

Taking into account all nine parameters involved, the RMS computed for the
MCMC is usually smaller than that for CATS as Fig. 3.23 shows for all components.
In this figure, the differences between theRMS for theMCMCand theCATSmethods
for all three components are shown. Systematically, for most of the stations analysed,
MCMC provides slightly better estimated parameters, though the differences for the
North and East components are at sub-millimetre level. As for the Up components,
there is almost no difference, as the histogram is centred around 0mm with ∼90%
of the stations being in the range from −0.002 to 0.002mm.

In general, the cartesian components of the angular velocities (3rd–5th columns)
for both methods are similar. Angular velocities for AMUR, ANTA, AUST, CARB,
INDI, NAZC, NUBI, SOAM and SOMA plates show good agreement at 1σ confi-
dence level. For EURA only ωy from both methods agree at 1σ , whereas for SUND
ωx and ωy agree at the 1σ confidence level. Only for three plates, ARAB, NOAM
and PCFC, the estimated angular velocities disagree at 1σ .

In general, the uncertainties for the MCMC method are larger than for CATS.
This is consistent with previous results concerning the linear velocities obtained for
the synthetic and JPL time series. There are though, some exceptions, namely for
the AUST, EURA (all three components) and SUND (x and z components) plates.
These three plates also showed disagreements at the 1σ confidence level concerning
their angular velocities.

As for the Euler poles, all the previous plates which were in good agreement for
the angular velocities at the 1σ confidence level, show the same agreement for the
Euler pole coordinates and angular velocities, except for the SUNDplate. Concerning
ARAB, NOAM and PCFC, once more, they do not agree at 1σ confidence level.

Results for the angular velocity from the MCMC method are in good agreement
with the ITRF2008-PMM from Altamimi et al. (2012) (see Table 3.3 therein). All
three components of the angular velocities for the following plates are consistent with
each other at the 2σ (95%) confidence level: AMUR, ANTA, ARAB, AUST, NAZC,
NOAM, NUBI, PCFC, SOAM and SOMA. For the other plates, i.e. CARB, EURA,
INDI and SUND, at least two out of three components showed good agreement at
the 2σ confidence level.

The CATS-PMM showed larger differences than the MCMC-PMM with the
ITRF2008-PMM: only results for AMUR, ANTA, AUST, NAZC and SOAM agreed
at the 2σ confidence level. The uncertainties of MCMC-PMM, CATS-PMM and
ITRF2008-PMMwere at the same level of magnitude but those from the former two
methods showed more discrepancies with those from ITRF2008-PMM. The reason
for this is that ITRF2008 stems from the composition of different geodetic techniques
and uses a different number of sites.

In general, the reduced chi-square χ2
red = r ′ Cvv r/ f is computed as a tool to

compare models, where f = NS − N P is the number of degrees of freedom, with
N P being the number of plates.
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Fig. 3.23 Differences inmmbetweenRMS forMCMCandCATSmethods for all three components

For MCMC, χ2
red ∼ 501; whereas for CATS, χ2

red ∼ 802. The best model should
be that closer to the ideal value, i.e. χ2

red = 1, thus each degree of freedom would
contribute with the same amount of uncertainty. In order to get a better model, i.e.
with more realistic uncertainties, the covariance matrix is rescaled in such a way
that χ2

red = 1. Considering the χ2 values above for each model, uncertainties from
the MCMC method should be 22.4 times larger, and 28.3 times larger for the CATS
method. This would suggest that the uncertainties from the MCMC method are less
underestimated than those from CATS. The ratio of these two scale factors is ∼1.30,
which is consistent with the ratio of the uncertainties for the estimated velocities
from the synthetic and JPL data sets.

3.4.3 Gravity Time Series

Superconducting gravimeter data are measurements of the local relative variations of
the gravity field. These variations are derived from vertical displacements of a hollow
superconducting sphere that levitates in a persistent magnetic field (Goodkind 1999).
The gravity measurements at Membach, Belgium, provided by Olivier Francis and
Michel van Camp, are shown in Fig. 3.24. The time series of the drift-corrected
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Fig. 3.24 Gravity field measurements at Membach

Table 3.14 Parameter estimates and uncertainties for the superconducting gravity measurements
at Membach station, Belgium

−κ σpl (nm/s2) v (nm/s2/yr) y0 (nm/s2)

2.24 ± 0.02 3.40 ± 0.02 0.81 ± 0.12 3.72+0.64
−0.68

data spans from August 1995 until October 2011. For further details concerning the
measurements, please see Van Camp et al. (2005, 2016).

The trend of the time series provides information about changes in the gravity field
due to mass displacements, e.g. hydrological flows, and vertical displacements. This
time series is a good example of highly time-correlated noise (Random-Walk process
with −κ = 2 or above) and its influence on estimating the trend and its uncertainty
(Van Camp et al. 2006; 2016; Van Camp and Francis 2007). Compared to the position
time series from GPS the variability in the gravity series relative to the magnitude of
the trend is significantly different. Therefore it provides an independent data set to
evaluate the MCMC method.

The analysis performedwithMCMCyielded the results summarised inTable 3.14.
The model assumed was a linear combination of linear trend plus a time-correlated
noise process (Tables3.15 and 3.16).

The first thing to note is the high value of the spectral index, −κ = 2.24. This
clearly indicates that the gravity time series contains a non-stationary process. A
similar result (−κ = 2.4) was already obtained from a shorter sample of the time
series which spanned to 2004 (Van Camp et al. 2005). It is a Random-Walk process,
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Table 3.15 Station information and velocity estimates from the MCMC method

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Amurian CHAN 125.44 43.79 −12.71 26.24 1.22 0.33 1.81 0.97

Amurian KHAJ 135.05 48.52 −13.63 21.65 0.29 0.14 1.08 0.02

Antartica SYOG 39.58 −69.01 2.89 −4.04 0.07 0.08 −0.03 0.04

Antartica DAV1 77.97 −68.58 −5.29 −3.10 0.07 0.21 −0.19 0.11

Antartica CAS1 110.52 −66.28 −10.03 1.86 0.14 0.13 0.26 0.07

Antartica DUM1 140.00 −66.67 −11.42 9.54 0.39 1.06 0.82 2.45

Antartica VESL −2.84 −71.67 10.28 −0.30 0.09 0.06 0.09 0.01

Arabia HALY 36.10 29.14 22.59 26.73 0.79 0.57 −1.77 1.07

Arabia BHR2 50.61 26.21 30.04 31.39 0.14 0.21 0.39 0.62

Arabia YIBL 56.11 22.19 31.57 32.97 0.21 0.30 0.39 −1.24

Australia YAR1 115.35 −29.05 57.30 39.02 0.31 0.50 −1.19 −0.83

Australia NNOR 116.19 −31.05 57.94 38.41 0.54 0.16 −0.73 −0.72

Australia KARR 117.10 −20.98 58.36 38.93 0.20 0.12 −0.53 −0.89

Australia DARW 131.13 −12.84 59.28 36.23 0.14 0.20 −0.60 −0.40

Australia CEDU 133.81 −31.87 58.81 29.08 0.18 0.20 −0.81 −0.28

Australia ALIC 133.89 −23.67 59.67 32.11 0.32 0.11 0.03 −0.54

Australia ADE1 138.65 −34.73 58.35 24.98 0.18 0.21 −0.53 −0.24

Australia TOW2 147.06 −19.27 55.77 28.86 0.14 0.11 −0.90 −0.89

Australia HOB2 147.44 −42.80 55.70 14.40 0.34 0.05 −0.77 −0.24

Australia PARK 148.26 −33.00 52.97 18.92 0.41 0.45 −3.24 −1.98

Australia TIDB 148.98 −35.40 55.26 18.26 0.13 0.11 −0.68 −0.62

Australia STR1 149.01 −35.32 55.31 18.65 0.18 0.10 −0.62 −0.27

Australia SYDN 151.15 −33.78 54.27 18.06 0.42 0.22 −0.82 −0.76

Australia SUNM 153.04 −27.48 54.06 21.91 0.34 0.50 −0.23 −0.44

Australia KOUC 164.29 −20.56 47.73 22.75 0.21 0.30 −0.58 −0.74

Australia NOUM 166.41 −22.27 45.77 20.57 0.29 0.18 −1.19 −0.85

Australia AUCK 174.83 −36.60 39.74 4.52 0.11 0.14 −1.23 −0.32

Caribbean CRO1 −64.58 17.76 13.57 10.79 0.10 0.33 0.04 −1.69

Eurasia HERS 0.34 50.87 16.41 16.50 0.17 0.17 −0.04 −0.36

Eurasia EBRE 0.49 40.82 15.81 19.84 0.14 0.08 −0.64 0.66

Eurasia SHEE 0.74 51.45 16.65 16.71 0.29 0.09 0.23 −0.09

Eurasia BELL 1.40 41.60 15.79 19.56 0.29 0.10 −0.60 0.35

Eurasia TOUL 1.48 43.56 16.85 20.01 0.49 0.44 0.47 1.19

Eurasia OPMT 2.33 48.84 15.72 18.15 0.13 0.10 −0.59 0.35

Eurasia MALL 2.62 39.55 16.21 19.82 0.19 0.23 −0.09 0.00

Eurasia SJDV 4.68 45.88 16.06 19.47 0.09 0.09 −0.06 0.52

Eurasia REDU 5.14 50.00 15.57 18.29 0.12 0.14 −0.51 0.17

Eurasia MARS 5.35 43.28 15.96 20.07 0.08 0.09 −0.11 0.45

Eurasia KOSG 5.81 52.18 16.04 17.96 0.08 −0.00 0.02 0.22

(continued)
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Table 3.15 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Eurasia WSRT 6.60 52.91 16.41 17.64 0.10 0.06 0.48 −0.09

Eurasia BORK 6.75 53.56 15.22 17.58 0.25 0.10 −0.71 −0.03

Eurasia WAB2 7.46 46.92 15.84 19.87 0.12 0.13 −0.02 0.57

Eurasia ZIMM 7.47 46.88 16.23 19.59 0.10 0.05 0.37 0.29

Eurasia IENG 7.64 45.02 15.44 20.47 0.15 0.13 −0.40 0.75

Eurasia HELG 7.89 54.17 15.89 17.57 0.09 0.14 0.08 −0.14

Eurasia AJAC 8.76 41.93 16.42 21.44 0.10 0.30 0.69 0.93

Eurasia PTBB 10.46 52.30 15.55 18.81 0.11 0.08 0.02 0.08

Eurasia WARN 12.10 54.17 15.58 18.32 0.11 0.08 0.25 −0.32

Eurasia BUDP 12.50 55.74 14.92 18.05 0.16 0.07 −0.36 −0.30

Eurasia WTZR 12.88 49.14 15.56 20.39 0.07 0.08 0.32 0.46

Eurasia POTS 13.07 52.38 15.57 19.16 0.23 0.11 0.36 −0.09

Eurasia SASS 13.64 54.51 14.65 19.02 0.20 0.08 −0.48 0.13

Eurasia GOPE 14.79 49.91 15.10 19.99 0.15 0.12 0.11 −0.16

Eurasia GRAZ 15.49 47.07 15.38 21.74 0.11 0.00 0.49 0.90

Eurasia WROC 17.06 51.11 14.69 20.18 0.10 0.07 0.02 −0.17

Eurasia BOR1 17.07 52.28 14.58 20.01 0.06 0.08 −0.08 −0.10

Eurasia PENC 19.28 47.79 14.67 22.15 0.16 0.07 0.34 0.73

Eurasia LAMA 20.67 53.89 14.26 20.10 0.56 0.08 0.16 −0.38

Eurasia JOZE 21.03 52.10 14.39 21.03 0.10 0.07 0.34 0.10

Eurasia BOGO 21.04 52.48 14.42 20.47 0.15 0.02 0.38 −0.38

Eurasia KLPD 21.12 55.72 13.36 20.11 0.48 0.53 −0.67 −0.06

Eurasia UZHL 22.30 48.63 13.90 21.84 0.10 0.13 0.06 0.02

Eurasia SULP 24.01 49.84 13.96 21.45 0.13 0.14 0.41 −0.47

Eurasia RIGA 24.06 56.95 13.44 20.17 0.09 0.00 −0.09 −0.31

Eurasia GLSV 30.50 50.36 12.83 22.38 0.11 0.12 0.51 −0.57

Eurasia MIKL 31.97 46.97 12.03 23.53 0.19 0.15 0.01 −0.17

Eurasia CRAO 33.99 44.41 11.43 24.00 0.22 0.67 −0.17 −0.32

Eurasia KHAR 36.24 50.01 11.93 24.25 0.23 0.25 0.83 0.35

Eurasia MOBN 36.57 55.11 11.83 22.77 0.16 0.24 0.81 −0.32

Eurasia ZECK 41.57 43.79 11.72 26.00 0.08 0.17 1.84 0.62

Eurasia ARTU 58.56 56.43 6.23 24.97 0.10 0.18 0.80 −0.52

Eurasia NVSK 83.24 54.84 −1.44 25.80 1.12 0.95 0.30 −0.60

Eurasia KSTU 92.79 55.99 −4.68 25.43 0.53 0.00 −0.18 −0.38

Eurasia CASC −9.42 38.69 16.78 17.85 0.08 0.09 −0.09 0.05

Eurasia TORS −6.76 62.02 17.62 10.43 0.33 0.64 0.83 −1.45

Eurasia NEWL −5.54 50.10 16.46 15.76 0.15 0.13 −0.30 0.01

Eurasia BRST −4.50 48.38 16.82 16.77 0.13 0.09 0.10 0.33

Eurasia MADR −4.25 40.43 16.08 18.33 0.23 0.28 −0.63 −0.05

(continued)
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Table 3.15 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Eurasia VILL −3.95 40.44 16.41 18.64 0.14 0.00 −0.29 0.20

Eurasia CANT −3.80 43.47 16.17 18.39 0.01 0.08 −0.52 0.60

Eurasia YEBE −3.09 40.52 16.28 18.72 0.09 0.15 −0.38 0.14

Eurasia MORP −1.69 55.21 16.92 15.35 0.23 0.24 0.35 0.12

Eurasia NSTG −1.44 55.01 16.18 17.30 0.13 0.59 −0.38 1.96

Eurasia HRM1 −1.28 51.45 16.44 16.34 0.12 0.00 −0.11 −0.01

Eurasia LROC −1.22 46.16 16.26 18.09 0.38 0.10 −0.30 0.41

Eurasia ALAC −0.48 38.34 16.74 21.43 0.15 0.59 0.22 1.94

Eurasia CHIZ −0.41 46.13 16.25 18.36 0.07 0.12 −0.26 0.50

Eurasia NPLD −0.34 51.42 15.92 17.07 0.22 0.14 −0.58 0.50

Eurasia VALE −0.34 39.48 16.09 19.82 0.09 0.13 −0.41 0.52

India MALD 73.53 4.19 34.05 42.92 0.35 0.59 0.17 −0.62

India HYDE 78.55 17.42 34.32 41.04 0.24 0.38 0.00 −0.01

Nazca EISL −109.38 −27.15 −6.74 67.09 0.35 0.32 −1.05 −1.09

Nazca GALA −90.30 −0.74 10.86 51.30 0.64 0.48 −0.31 −0.12

Nazca GALA −90.30 −0.74 10.86 51.30 0.64 0.48 −0.31 −0.12

N. America PUC1 −110.81 39.60 −8.30 −14.13 0.09 0.11 −0.03 −0.18

N. America NISU −105.26 40.00 −5.97 −14.97 0.36 0.45 0.39 −0.48

N. America AMC2 −104.52 38.80 −5.69 −14.39 0.11 −0.00 0.41 −0.14

N. America MDO1 −104.01 30.68 −5.75 −11.98 0.18 0.14 0.17 0.13

N. America SUM1 −102.51 34.83 −6.00 −13.06 1.36 0.28 −0.61 0.27

N. America AUS5 −97.76 30.31 −2.72 −11.44 0.25 0.26 0.96 0.83

N. America PATT −95.72 31.78 −2.54 −12.75 0.10 0.19 0.40 0.01

N. America ANG1 −95.49 29.30 −1.76 −11.71 0.20 0.61 1.10 0.32

N. America WNFL −92.78 31.90 −1.86 −12.20 0.17 0.11 0.01 0.65

N. America NLIB −91.57 41.77 −1.33 −15.23 0.13 0.09 0.10 0.30

N. America MIL1 −87.89 43.00 0.10 −14.97 0.04 0.25 0.18 0.90

N. America MLF1 −87.39 32.09 0.45 −13.03 0.24 0.37 0.35 −0.08

N. America STB1 −87.31 44.80 −1.02 −16.13 0.19 0.10 −1.16 0.17

N. America UNIV −84.39 42.29 1.02 −15.61 0.12 0.12 −0.18 0.06

N. America LEBA −84.28 39.43 1.58 −14.85 0.10 0.14 0.34 0.10

N. America BAYR −83.89 43.45 0.87 −16.10 0.10 0.14 −0.52 −0.16

N. America MCN1 −83.56 32.70 1.76 −13.23 0.16 0.14 0.25 −0.14

N. America ASHV −82.55 35.60 2.15 −14.13 0.18 0.15 0.27 −0.24

N. America MCD1 −82.53 27.85 1.20 −10.98 0.29 0.24 −0.69 0.67

N. America SAV1 −81.70 32.14 2.42 −12.62 0.12 0.13 0.23 0.29

N. America CCV3 −80.55 28.46 2.98 −12.48 0.26 0.31 0.37 −0.69

N. America CHA1 −79.84 32.76 3.28 −12.93 0.19 0.43 0.41 0.11

(continued)
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Table 3.15 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

N. America PSU1 −77.85 40.81 3.66 −15.18 0.17 0.08 0.07 −0.06

N. America GODE −76.83 39.02 4.07 −14.68 0.06 0.08 0.11 −0.05

N. America GLPT −76.50 37.25 4.00 −14.36 0.32 0.16 −0.08 −0.21

N. America HNPT −76.13 38.59 4.54 −14.66 0.42 0.66 0.32 −0.17

N. America DUCK −75.75 36.18 4.25 −13.93 0.19 0.30 −0.09 −0.09

N. America VIMS −75.69 37.61 4.82 −14.00 0.08 0.08 0.45 0.22

N. America DNRC −75.52 39.16 4.05 −15.19 0.11 0.25 −0.38 −0.58

N. America CHL1 −75.09 38.78 4.02 −14.63 0.19 0.20 −0.57 −0.15

N. America WES2 −71.49 42.61 5.40 −15.12 0.14 0.07 −0.46 0.09

N. America NPRI −71.33 41.51 5.67 −15.09 0.10 0.11 −0.25 −0.15

N. America BARH −68.22 44.40 6.72 −15.22 0.08 0.09 −0.28 0.14

N. America EPRT −66.99 44.91 7.26 −15.42 0.08 0.06 −0.17 −0.05

N. America UNB1 −66.64 45.95 7.13 −15.78 0.42 0.40 −0.42 −0.22

N. America BRMU −64.70 32.37 8.85 −11.81 0.20 0.37 0.63 0.33

N. America HLFX −63.61 44.68 8.67 −15.22 0.10 0.16 0.09 −0.23

Nubia WIND 17.09 −22.57 19.98 18.73 0.37 0.19 0.72 −1.26

Nubia SIMO 18.44 −34.19 19.40 16.56 0.20 0.38 0.23 −0.43

Nubia SUTH 20.81 −32.38 19.11 16.76 0.11 0.18 0.10 −0.29

Nubia LPAL −17.89 28.76 16.99 16.50 0.34 0.33 −0.60 0.41

Nubia DAKA −17.47 14.68 14.12 21.38 0.58 0.85 −3.54 1.27

Nubia MAS1 −15.63 27.76 17.63 16.65 0.16 0.17 −0.28 −0.08

Nubia GOUG −9.88 −40.35 18.72 21.37 0.82 0.26 0.14 0.04

Pacific MCIL 153.98 24.29 24.19 −71.71 0.30 0.37 0.57 −0.05

Pacific POHN 158.21 6.96 25.46 −70.19 0.30 0.41 −0.01 −0.77

Pacific NAUR 166.93 −0.55 30.02 −67.01 0.14 0.22 1.22 −0.18

Pacific KWJ1 167.73 8.72 29.17 −68.59 0.35 0.74 0.09 0.59

Pacific KIRI 172.92 1.35 31.07 −67.69 0.23 0.23 0.35 −0.29

Pacific TUVA 179.20 −8.53 32.45 −63.91 0.13 0.25 0.10 0.44

Pacific CHAT −176.57 −43.96 33.21 −40.59 0.13 0.15 0.02 0.29

Pacific FALE −172.00 −13.83 33.26 −63.48 0.08 0.23 −0.74 −0.31

Pacific SAMO −171.74 −13.85 33.43 −64.29 0.16 0.33 −0.61 −1.09

Pacific ASPA −170.72 −14.33 34.15 −63.16 0.11 0.27 −0.02 −0.01

Pacific CKIS −159.80 −21.20 35.40 −62.74 0.18 0.54 0.46 −0.49

Pacific KOK1 −159.76 21.98 33.52 −61.97 0.87 0.51 −1.41 0.49

Pacific KOKB −159.66 22.13 34.63 −62.28 0.13 0.20 −0.31 0.11

Pacific LHUE −159.34 21.98 35.50 −61.52 1.49 0.52 0.56 0.84

Pacific HNLC −157.86 21.30 34.84 −62.52 0.41 0.17 −0.10 −0.20

Pacific UPO1 −155.88 20.25 35.69 −67.78 0.51 0.80 0.79 −5.43

Pacific MKEA −155.46 19.80 34.86 −62.19 0.10 0.15 −0.06 0.30

Pacific HILO −155.05 19.72 38.72 −62.45 0.68 0.46 3.84 −0.04

(continued)
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Table 3.15 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Pacific THTI −149.61 −17.58 34.42 −65.40 0.18 0.29 −0.10 0.16

Pacific GUAX −118.29 28.88 26.05 −47.68 0.74 0.69 −0.60 0.20

S. America BUE2 −58.52 −34.57 12.48 −0.65 1.51 0.23 1.05 1.17

S. America LPGS −57.93 −34.91 11.76 −0.95 0.10 0.13 0.29 0.90

S. America LKTH −57.85 −51.70 12.33 0.34 0.51 0.38 0.86 0.32

S. America KOUR −52.81 5.25 12.62 −5.21 0.12 0.08 0.81 0.14

S. America UEPP −51.41 −22.12 12.76 −3.22 0.35 0.24 0.89 0.47

S. America PARA −49.23 −25.45 12.16 −3.54 0.19 0.34 0.19 0.08

S. America NEIA −47.92 −25.02 12.71 −2.38 0.24 0.20 0.69 1.39

S. America BRAZ −47.88 −15.95 12.61 −4.22 0.13 0.17 0.59 0.13

S. America FORT −38.43 −3.88 12.35 −4.21 0.16 0.30 0.15 0.88

S. America ASC1 −14.41 −7.95 11.15 −5.21 0.20 0.26 0.01 0.51

Somalia MALI 40.19 −3.00 16.31 26.78 0.20 0.26 −0.65 1.83

Somalia REUN 55.57 −21.21 12.51 16.59 0.18 0.31 −0.99 −1.89

Sunda NTUS 103.68 1.35 −5.24 30.76 0.14 0.18 −0.00 0.01

meaning that the gravity field is randomly evolving in time due to stochastic changes
of mass distribution.

Figure 3.25 shows the histogram of the estimated parameters. Figure 3.25a, b
show that −κ and σpl , respectively, have Gaussian distributions.

The velocity although it does not seem Gaussian has an absolute maximum.
On the other hand, the ordinate y0 is multimodal. This is typical of non-stationary

stochastic processes, where the noise adds some velocity into the trend. This feature
could be difficult to detect with an optimisation method as, for example, MLE as
implemented in CATS, as it could have ended up at any of the maxima, and not
necessarily at the absolute one.

For the Hector software (Bos et al. 2012), another MLE implementation, it is
clearly stated that the approximation of the noise covariance matrix does not hold
for high amplitude non-stationary noise such as Random-Walk. In comparison to
GPS time series, gravity series do not seem to contain any white noise. Therefore
the Random-Walk is high amplitude.

The MCMC analysis of the time series of the superconducting gravity measure-
ments has shown another advantage of using an integrator method such as MCMC
rather than an optimisation method such as MLE. Due to the characteristics of the
algorithm, it explores the surrounding areas of a maximum, thereby spotting other
local maxima. This is the case for the ordinate parameter y0 (see Fig. 3.25d). This is
typical of non-stationary stochastic processes, where the noise adds some velocity
into the trend. Therefore, it is advisable to use theMCMCmethod for time series with
high spectral index, e.g. −κ ∼ 2. It has to be mentioned here that even the MCMC
may need some tuning in order to not get stuck in a local maxima.
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Table 3.16 Station information and velocity estimates from the CATS method

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Amurian CHAN 125.44 43.79 −11.67 26.12 0.56 0.19 2.43 1.24

Amurian KHAJ 135.05 48.52 −13.62 21.66 0.22 0.09 1.14 0.04

Antartica SYOG 39.58 −69.01 2.90 −4.05 0.06 0.06 −0.02 −0.04

Antartica DAV1 77.97 −68.58 −5.26 −3.06 0.06 0.13 −0.25 0.10

Antartica CAS1 110.52 −66.28 −9.99 1.85 0.08 0.11 0.16 0.08

Antartica DUM1 140.00 −66.67 −11.41 8.52 0.32 1.04 0.67 1.52

Antartica VESL −2.84 −71.67 10.27 −0.25 0.08 0.07 0.19 0.00

Arabia HALY 36.10 29.14 22.96 26.81 0.17 0.28 −2.07 −0.04

Arabia BHR2 50.61 26.21 30.25 31.25 0.08 0.13 1.57 −0.37

Arabia YIBL 56.11 22.19 31.37 33.40 0.11 0.26 1.77 −1.12

Australia YAR1 115.35 −29.05 57.31 39.12 0.24 0.25 −0.87 −0.13

Australia NNOR 116.19 −31.05 57.92 38.41 0.07 0.09 −0.43 −0.12

Australia KARR 117.10 −20.98 58.38 38.92 0.08 0.06 −0.18 −0.32

Australia DARW 131.13 −12.84 59.22 35.91 0.10 0.30 −0.25 −0.20

Australia CEDU 133.81 −31.87 58.78 29.11 0.09 0.10 −0.41 0.28

Australia ALIC 133.89 −23.67 59.10 32.10 0.06 0.07 −0.11 −0.00

Australia ADE1 138.65 −34.73 58.38 24.95 0.11 0.13 −0.05 0.24

Australia TOW2 147.06 −19.27 55.73 28.85 0.06 0.06 −0.46 −0.41

Australia HOB2 147.44 −42.80 55.63 14.18 0.74 0.08 −0.36 −0.00

Australia PARK 148.26 −33.00 53.07 18.92 0.31 0.30 −2.65 −1.50

Australia TIDB 148.98 −35.40 55.25 18.29 0.06 0.07 −0.20 −0.12

Australia STR1 149.01 −35.32 55.35 18.65 0.08 0.07 −0.10 0.20

Australia SYDN 151.15 −33.78 54.35 18.06 0.15 0.15 −0.25 −0.30

Australia SUNM 153.04 −27.48 53.95 21.95 0.24 0.20 0.15 0.06

Australia KOUC 164.29 −20.56 47.58 22.47 0.17 0.25 −0.22 −0.58

Australia NOUM 166.41 −22.27 45.79 20.57 0.14 0.14 −0.66 −0.43

Australia AUCK 174.83 −36.60 39.74 4.50 0.07 0.11 −0.72 −0.00

Caribbean CRO1 −64.58 17.76 13.54 11.04 0.08 0.19 0.06 −0.83

Eurasia HERS 0.34 50.87 16.47 16.50 0.25 0.13 −0.20 −0.51

Eurasia EBRE 0.49 40.82 15.82 19.84 0.12 0.04 −0.85 0.25

Eurasia SHEE 0.74 51.45 16.57 16.70 0.27 0.08 −0.08 −0.24

Eurasia BELL 1.40 41.60 15.96 19.56 0.17 0.09 −0.66 −0.03

Eurasia TOUL 1.48 43.56 16.81 20.06 0.25 0.27 0.20 0.91

Eurasia OPMT 2.33 48.84 15.79 18.15 0.09 0.06 −0.76 0.14

Eurasia MALL 2.62 39.55 16.29 19.80 0.09 0.15 −0.25 −0.46

Eurasia SJDV 4.68 45.88 16.05 19.45 0.08 0.06 −0.35 0.20

Eurasia REDU 5.14 50.00 15.59 18.28 0.09 0.11 −0.77 −0.03

(continued)
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Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Eurasia MARS 5.35 43.28 15.96 20.05 0.06 0.06 −0.39 0.07

Eurasia KOSG 5.81 52.18 16.01 18.05 0.08 0.06 −0.29 0.16

Eurasia WSRT 6.60 52.91 16.41 17.64 0.07 0.05 0.17 −0.22

Eurasia BORK 6.75 53.56 15.22 17.59 0.18 0.08 −1.01 −0.13

Eurasia WAB2 7.46 46.92 15.84 19.85 0.08 0.09 −0.33 0.28

Eurasia ZIMM 7.47 46.88 16.22 19.60 0.07 0.04 0.05 0.01

Eurasia IENG 7.64 45.02 15.40 20.48 0.09 0.09 −0.75 0.43

Eurasia HELG 7.89 54.17 15.93 17.63 0.09 0.07 −0.19 −0.18

Eurasia AJAC 8.76 41.93 15.75 21.35 0.10 0.21 −0.30 0.44

Eurasia PTBB 10.46 52.30 15.55 18.81 0.07 0.06 −0.33 −0.07

Eurasia WARN 12.10 54.17 15.58 18.32 0.09 0.06 −0.12 −0.44

Eurasia BUDP 12.50 55.74 14.94 18.01 0.07 0.05 −0.71 −0.41

Eurasia WTZR 12.88 49.14 15.55 20.39 0.06 0.04 −0.07 0.22

Eurasia POTS 13.07 52.38 15.12 19.16 0.08 0.05 −0.47 −0.27

Eurasia SASS 13.64 54.51 14.66 19.00 0.16 0.06 −0.87 −0.00

Eurasia GOPE 14.79 49.91 15.10 19.99 0.13 0.10 −0.29 −0.40

Eurasia GRAZ 15.49 47.07 15.38 21.93 0.07 0.06 0.08 0.78

Eurasia WROC 17.06 51.11 14.63 20.17 0.09 0.06 −0.47 −0.40

Eurasia BOR1 17.07 52.28 14.58 20.01 0.06 0.07 −0.51 −0.29

Eurasia PENC 19.28 47.79 14.66 22.15 0.13 0.05 −0.13 0.41

Eurasia LAMA 20.67 53.89 14.36 20.10 0.15 0.05 −0.22 −0.56

Eurasia JOZE 21.03 52.10 14.38 21.03 0.09 0.07 −0.14 −0.12

Eurasia BOGO 21.04 52.48 14.44 20.57 0.12 0.10 −0.09 −0.49

Eurasia KLPD 21.12 55.72 13.43 20.06 0.24 0.30 −1.08 −0.25

Eurasia UZHL 22.30 48.63 13.89 21.83 0.08 0.10 −0.44 −0.30

Eurasia SULP 24.01 49.84 13.95 21.47 0.10 0.09 −0.10 −0.74

Eurasia RIGA 24.06 56.95 13.44 20.21 0.07 0.08 −0.60 −0.40

Eurasia GLSV 30.50 50.36 12.84 22.37 0.09 0.07 −0.06 −0.90

Eurasia MIKL 31.97 46.97 12.07 23.52 0.12 0.11 −0.55 −0.60

Eurasia CRAO 33.99 44.41 11.50 23.73 0.16 0.29 −0.71 −1.08

Eurasia KHAR 36.24 50.01 11.91 24.20 0.17 0.17 0.18 −0.09

Eurasia MOBN 36.57 55.11 11.74 22.77 0.38 0.16 0.07 −0.59

Eurasia ZECK 41.57 43.79 11.72 26.02 0.06 0.12 1.16 0.08

Eurasia ARTU 58.56 56.43 6.23 24.98 0.08 0.12 0.02 −0.99

Eurasia NVSK 83.24 54.84 −0.93 25.78 1.12 0.79 −0.00 −1.42

Eurasia KSTU 92.79 55.99 −4.53 25.68 0.36 0.25 −0.81 −1.00

Eurasia CASC −9.42 38.69 16.79 17.85 0.05 0.07 −0.16 −0.39

Eurasia TORS −6.76 62.02 17.57 10.63 0.23 0.60 0.67 −1.11

(continued)
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Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Eurasia NEWL −5.54 50.10 16.36 15.75 0.17 0.06 −0.53 −0.16

Eurasia BRST −4.50 48.38 16.84 16.77 0.09 0.07 −0.02 0.12

Eurasia MADR −4.25 40.43 16.03 18.38 0.17 0.20 −0.84 −0.41

Eurasia VILL −3.95 40.44 16.42 18.73 0.12 0.08 −0.43 −0.11

Eurasia CANT −3.80 43.47 16.45 18.41 0.07 0.06 −0.40 0.29

Eurasia YEBE −3.09 40.52 16.29 18.72 0.05 0.12 −0.54 −0.26

Eurasia MORP −1.69 55.21 16.79 15.30 0.19 0.26 0.03 0.04

Eurasia NSTG −1.44 55.01 16.24 16.25 0.07 0.19 −0.51 0.87

Eurasia HRM1 −1.28 51.45 16.44 16.41 0.08 0.05 −0.30 −0.08

Eurasia LROC −1.22 46.16 16.32 18.10 0.06 0.06 −0.43 0.15

Eurasia ALAC −0.48 38.34 16.67 20.21 0.07 0.13 −0.05 0.26

Eurasia CHIZ −0.41 46.13 16.25 18.35 0.05 0.09 −0.46 0.22

Eurasia NPLD −0.34 51.42 15.94 17.03 0.14 0.08 −0.76 0.32

Eurasia VALE −0.34 39.48 16.09 19.75 0.06 0.09 −0.62 0.01

India MALD 73.53 4.19 34.04 43.30 0.24 0.49 0.25 −0.61

India HYDE 78.55 17.42 34.25 41.06 0.24 0.17 −0.11 −0.02

Nazca EISL −109.38 −27.15 −6.78 67.07 0.28 0.29 −0.70 −0.77

Nazca GALA −90.30 −0.74 10.45 51.37 0.17 0.13 −0.10 −0.04

Nazca GALA −90.30 −0.74 10.45 51.37 0.17 0.13 −0.10 −0.04

N. America PUC1 −110.81 39.60 −8.30 −14.12 0.07 0.09 −1.21 0.12

N. America NISU −105.26 40.00 −5.98 −15.00 0.24 0.18 −0.64 −0.29

N. America AMC2 −104.52 38.80 −5.69 −14.45 0.08 0.10 −0.59 0.05

N. America MDO1 −104.01 30.68 −5.81 −12.01 0.10 0.10 −0.87 0.68

N. America SUM1 −102.51 34.83 −5.76 −13.06 0.80 0.21 −1.31 0.67

N. America AUS5 −97.76 30.31 −2.74 −11.46 0.18 0.19 0.15 1.35

N. America PATT −95.72 31.78 −2.55 −12.73 0.08 0.13 −0.33 0.49

N. America ANG1 −95.49 29.30 −1.78 −11.73 0.13 0.38 0.36 0.88

N. America WNFL −92.78 31.90 −1.85 −12.20 0.14 0.08 −0.61 1.10

N. America NLIB −91.57 41.77 −1.30 −15.24 0.11 0.08 −0.46 0.31

N. America MIL1 −87.89 43.00 −0.06 −15.04 0.17 0.19 −0.45 0.76

N. America MLF1 −87.39 32.09 0.37 −12.97 0.19 0.26 −0.18 0.39

N. America STB1 −87.31 44.80 −0.93 −16.12 0.15 0.08 −1.51 0.03

N. America UNIV −84.39 42.29 1.03 −15.61 0.08 0.09 −0.52 0.01

N. America LEBA −84.28 39.43 1.59 −14.85 0.08 0.10 0.00 0.17

N. America BAYR −83.89 43.45 0.88 −16.11 0.08 0.09 −0.84 −0.27

N. America MCN1 −83.56 32.70 1.78 −13.23 0.12 0.10 −0.05 0.24

N. America ASHV −82.55 35.60 2.09 −14.14 0.12 0.11 −0.08 −0.00

N. America MCD1 −82.53 27.85 1.26 −10.99 0.20 0.17 −0.91 1.24

N. America SAV1 −81.70 32.14 2.39 −12.63 0.08 0.11 −0.06 0.66

(continued)
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Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

N. America CCV3 −80.55 28.46 2.88 −12.30 0.14 0.10 0.05 0.05

N. America CHA1 −79.84 32.76 3.28 −12.90 0.17 0.19 0.22 0.50

N. America PSU1 −77.85 40.81 3.68 −15.19 0.15 0.06 −0.04 −0.07

N. America GODE −76.83 39.02 4.07 −14.68 0.06 0.07 0.02 0.03

N. America GLPT −76.50 37.25 4.08 −14.35 0.06 0.12 −0.08 −0.04

N. America HNPT −76.13 38.59 4.54 −14.44 0.37 0.54 0.26 0.14

N. America DUCK −75.75 36.18 4.24 −13.96 0.15 0.22 −0.16 0.08

N. America VIMS −75.69 37.61 4.75 −14.06 0.08 0.05 0.33 0.29

N. America DNRC −75.52 39.16 4.02 −15.17 0.09 0.20 −0.46 −0.49

N. America CHL1 −75.09 38.78 3.99 −14.61 0.15 0.13 −0.63 −0.04

N. America WES2 −71.49 42.61 5.41 −15.12 0.12 0.07 −0.36 0.01

N. America NPRI −71.33 41.51 5.66 −15.06 0.07 0.06 −0.16 −0.16

N. America BARH −68.22 44.40 6.73 −15.23 0.06 0.05 −0.07 −0.02

N. America EPRT −66.99 44.91 7.25 −15.42 0.07 0.04 0.07 −0.23

N. America UNB1 −66.64 45.95 7.30 −15.87 0.24 0.27 0.01 −0.54

N. America BRMU −64.70 32.37 8.87 −11.97 0.18 0.38 0.98 0.56

N. America HLFX −63.61 44.68 8.67 −15.21 0.06 0.05 0.45 −0.38

Nubia WIND 17.09 −22.57 19.54 19.00 0.11 0.14 0.30 −1.05

Nubia SIMO 18.44 −34.19 19.43 16.68 0.14 0.31 0.29 −0.33

Nubia SUTH 20.81 −32.38 19.10 16.86 0.09 0.11 0.11 −0.23

Nubia LPAL −17.89 28.76 17.17 16.13 0.11 0.09 −0.44 −0.06

Nubia DAKA −17.47 14.68 14.16 21.02 0.43 0.39 −3.52 0.82

Nubia MAS1 −15.63 27.76 17.57 16.62 0.15 0.13 −0.36 −0.22

Nubia GOUG −9.88 −40.35 18.80 21.36 0.20 0.19 0.21 0.02

Pacific MCIL 153.98 24.29 24.13 −71.71 0.21 0.12 −1.40 −1.17

Pacific POHN 158.21 6.96 25.61 −70.10 0.20 0.11 −1.62 −1.30

Pacific NAUR 166.93 −0.55 30.05 −67.00 0.10 0.10 −0.20 −0.53

Pacific KWJ1 167.73 8.72 29.32 −68.90 0.12 0.12 −1.17 −0.45

Pacific KIRI 172.92 1.35 31.09 −67.75 0.15 0.08 −0.82 −0.79

Pacific TUVA 179.20 −8.53 32.43 −63.88 0.06 0.13 −0.85 0.44

Pacific CHAT −176.57 −43.96 33.21 −40.58 0.08 0.11 −0.73 1.77

Pacific FALE −172.00 −13.83 33.26 −63.55 0.06 0.12 −1.27 −0.14

Pacific SAMO −171.74 −13.85 33.47 −64.09 0.09 0.23 −1.09 −0.65

Pacific ASPA −170.72 −14.33 34.16 −63.24 0.07 0.16 −0.49 0.17

Pacific CKIS −159.80 −21.20 35.35 −62.49 0.11 0.13 0.45 0.35

Pacific KOK1 −159.76 21.98 35.13 −62.21 0.11 0.13 0.22 −1.11

Pacific KOKB −159.66 22.13 34.64 −62.24 0.07 0.12 −0.26 −1.21

Pacific LHUE −159.34 21.98 34.93 −61.45 1.71 0.29 0.04 −0.44

(continued)
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Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

ID λ (deg) φ (deg) VN VE σVN σVE N E

Pacific HNLC −157.86 21.30 34.62 −62.54 0.05 0.06 −0.20 −1.54

Pacific UPO1 −155.88 20.25 35.39 −67.33 0.33 0.49 0.69 −6.26

Pacific MKEA −155.46 19.80 34.85 −62.23 0.06 0.08 0.17 −1.00

Pacific HILO −155.05 19.72 35.44 −63.02 0.07 0.38 0.81 −1.88

Pacific THTI −149.61 −17.58 34.46 −65.44 0.08 0.11 0.44 0.53

Pacific GUAX −118.29 28.88 25.33 −46.99 0.20 0.22 0.47 −0.40

S. America BUE2 −58.52 −34.57 12.46 0.00 0.99 0.01 1.21 1.91

S. America LPGS −57.93 −34.91 11.77 −0.95 0.09 0.10 0.48 0.98

S. America LKTH −57.85 −51.70 12.29 0.38 0.17 0.20 1.00 0.38

S. America KOUR −52.81 5.25 12.63 −5.21 0.10 0.07 1.00 0.31

S. America UEPP −51.41 −22.12 12.82 −3.29 0.18 0.24 1.12 0.50

S. America PARA −49.23 −25.45 12.18 −3.53 0.14 0.26 0.38 0.18

S. America NEIA −47.92 −25.02 12.74 −2.45 0.19 0.15 0.89 1.41

S. America BRAZ −47.88 −15.95 12.59 −4.29 0.11 0.13 0.73 0.18

S. America FORT −38.43 −3.88 12.33 −4.26 0.14 0.27 0.27 0.97

S. America ASC1 −14.41 −7.95 11.04 −5.24 0.11 0.16 −0.04 0.62

Somalia MALI 40.19 −3.00 16.34 26.75 0.14 0.20 −0.31 1.75

Somalia REUN 55.57 −21.21 12.43 16.89 0.10 0.20 −0.97 −1.90

Sunda NTUS 103.68 1.35 −5.26 30.27 0.18 0.24 0.01 0.28

3.4.4 Mean Sea Level Time Series

The third real data set to be analysed with the MCMC method were the monthly
mean sea level (MSL) records from the Revised Local Reference (RLR) data base
provided by the Permanent Service for Mean Sea Level (PSMSL)5 (Holgate et al.
2013).

For example, Fig. 3.26a shows the monthly MSL in mm from the tide gauge
at Andreia in the Russian Federation. While it is easily noticed that the time series
differs fromaGPSposition time series, this difference is less evidentwhen comparing
it to the gravity time series in Fig. 3.24. This comparison suggests the presence of
time-correlated noise also in theMSL record which is confirmed when looking at the
power spectrum inFig. 3.26b, showing a power-law spectrum.However, at the time of
this study the PSMSL did not provide a full stochastic analysis of the MSL records
and only considered white noise when estimating the parameters and associated
uncertainties. As this spectrum is not an isolated case, rather it is representative of
many stations in the PSMSL database, the PSMSL has updated its analysis strategy

5Data available at http://www.psmsl.org/.

http://www.psmsl.org/
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Fig. 3.25 Histograms for −κ , σpl , v and y0

recently, see https://www.psmsl.org/products/trends/methods.php. Nevertheless, for
demonstration purposes only we will use here the trend estimates from the PSMSL
assuming randomness.

Figure 3.27 shows the distribution of all tide gauges contributing to the PSMSL
as in 2014. The differences in coverage between the Northern and Southern Hemi-
spheres are clearly evident. Furthermore, it is known that most of the long MSL
records (40+years) are located around Northern Europe and the Baltic Sea with a
few stations in North America, Asia and Australia.

In order to construct time series of sea level measurements at each station, the
monthly means have to be reduced to a common datum. This reduction is performed
by the PSMSLmaking use of the tide gauge datum history provided by the supplying
authority. To date, approximately two thirds of the stations in the PSMSL database
have had their data adjusted in this way, forming the RLR dataset. Only the RLR
data set was used in this analysis as suggested by the PSMSL.

The histogram of the time series lengths in Fig. 3.28 shows they span from a few
months to around 200 years, although the mode is suggested to be centred around
20 years.

Besides the annual and semi-annual periodic terms observed in GPS time series,
the MSL records are also influenced by other time-scale phenomena, some of them
spanning several years like theRossbywavepropagation fromopenocean towards the
shore (Douglas et al. 2001; Holgate andWoodworth 2004), the El Niño phenomenon
in the Pacific Ocean (White et al. 2005; Church and White 2006) or the 18.6year
Lunar Nodal Cycle (Baart et al. 2012).

https://www.psmsl.org/products/trends/methods.php
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Fig. 3.26 Monthly mean sea level at Andreia, Russian Federation

There are few sea level studies which have considered time-correlation within the
noise of theMSL records (Harrison 2002;Mazzotti et al. 2008; Hughes andWilliams
2010; Burgette et al. 2013; Montillet et al. 2018), hence the interest of the MCMC
analysis on these time series.

Besides a purely scientific goal, sea-level rise is of importance nowadays due
to the socio-economic impact it will have on millions of people who live in coastal
regions around the world. Projections of sea level for the 21st century help to prepare
governments and people in these regions. The projections have uncertainties which
depend to a degree on the noise within the time series, therefore, it is necessary to
understand the nature of this noise.

Like other geophysical time series, MSL records have a power-law spectrum
(Agnew 1992; Harrison 2002; Mazzotti et al. 2008). Nevertheless, so far it has not
been common to use models of white noise plus power-law in the analyses of MSL
records, with a few exceptions (Mazzotti et al. 2008; Hughes and Williams 2010;
Burgette et al. 2013; Montillet et al. 2018). In order to estimate the spectral index
and its effect on the estimated parameters and their uncertainties, an analysis using
the MCMC method implemented has been carried out on the MSL records provided
by the PSMSL. As in Hughes and Williams (2010), the chosen deterministic model
includes linear plus annual and semi-annual terms.
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Fig. 3.27 Distribution of PSMSL tide gauge stations as in 2014. (Reproduced from https://www.
psmsl.org)
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Fig. 3.28 Histograms for all the monthly RLR MSL records from PSMSL

As Zhang et al. (1997); Mao et al. (1999) and Williams et al. (2004) showed
for GPS position time series, the hypothesis of a pure white noise process clearly
underestimates the uncertainties of the parameters. Moreover, unlike white noise,
long memory processes have a power-law spectrum and, consequently, as the ampli-
tude changes in time, even the estimated parameters themselves may be different
(Harrison 2002).

https://www.psmsl.org
https://www.psmsl.org
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Fig. 3.29 Estimates for −κ for monthly MSL records from the PSMSL RLR data base

Therefore, differences coming from this analysis on the MSL time series are
expected, and they may affect conclusions of other applications where their trends
are used, as, for example, the computation of vertical landmovements fromGPS time
series for the correction of tide gauge records in sea level studies, e.g. Wöppelmann
et al. (2007).

Figure 3.29 shows the distribution of the spectral index −κ for the MSL data
set. Clearly, most of their values do contain coloured noise. They are centred near
−κ = 1 (i.e. Flicker noise) and, in general, the value of−κ ranges from∼0 to above
2, spanning the stationary and non-stationarity regimes. This is in good agreement
with Burgette et al. (2013) where they carried out an analysis on MSL records from
Australia with CATS, and found that most of the MSL spectrums fit either a combi-
nation of white noise and power-law, or a First Order Gauss Markov process (which
is equivalent to a Random-Walk at middle frequency).

The empirical cumulative density function (ECDF) of −κ is shown in Fig. 3.30.
Most remarkable is that 99% of the MSL records have an −κ > 0.5, with 56% in
the interval [0.5 − 1) (stationary regimes) and 44% in the non-stationary regimes,
i.e. with −κ ≥ 1.

In order to estimate the trends, only monthly MSL records longer than 30 years
were analysed, assumingmost of the seasonal effects are sub-monthly (therefore they
are filtered out), semi-annual and annual, though there are still some discrepancies
about oscillations of longer periods within the time series (Chambers et al. 2012).
According to Woodworth et al. (1999, 2009) and cites therein, this is the length
required to estimate sea level trends with a standard error of the order of 0.5mm/yr
or less.
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A histogram of the estimated velocity v is shown in Fig. 3.31. Although most
of the estimated values are centered around v = 1mm/yr, they range from −10 to
10mm/yr, with some extreme cases at −20 and 20mm/yr. The median is vmed =
1.26mm/yr and vmed = 1.41mm/yr for theMCMC and PSMSL cases, respectively.
Their differences in their standard deviation are also sub-millimetre per year, namely
σv = 3.21mm/yr and σv = 2.83mm/yr for MCMC and PSMSL, respectively. As
these values are corresponding to sea level variations potentially affected by vertical
land movements, they cannot be compared with a globally averaged sea level rise
estimate.

Finally, the uncertainties of the estimated v from the MCMC method are shown
in Fig. 3.32. Although the estimates range from 0 to 35mm/yr, they cluster at the
few millimetre per year level, mainly between 0 and 5mm/yr.

In order to compare the results from the MCMC analysis with the values from
PSMSL (white noise model), the same stations for which the trends are given in the
PSMSL web page6 were selected. Figure3.33 shows the differences. In the vertical
axis, the estimates from MCMC (coloured noise hypothesis); in the horizontal axis,
white noise model is assumed. Although most of them align along the diagonal,
there are some noticeable differences with some points around (5,−17)mm/yr
and (5,−20)mm/yr. It is worth mentioning that most of the distant points from the
diagonal have−κ ≥ 1 (red-circled points in Fig. 3.33), i.e. indicating non-stationary
processes. This is in good agreement with the fact that such processes, i.e. those for
which −κ ≥ 1, contribute to the velocity. This could be the reason for those extreme

6Data available at http://www.psmsl.org/.

http://www.psmsl.org/
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Fig. 3.31 Estimates of v for monthly MSL records from the PSMSL RLR data base
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Fig. 3.32 Estimates of σv for monthly MSL records from the PSMSL RLR data base

values below the diagonal, as the velocity from the long-memory process could be
negative. Moreover, as it was explained in Harrison (2002), due to the power-law
spectrum, as the perturbations at low-frequency are included with longer time series,
they naturally contribute to increase the estimated velocity.
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Fig. 3.33 Estimates for v (mm/yr) from MCMC versus PSMSL models. Red-circled points stem
from MSL records with −κ ≥ 1

The uncertainties from both methods are compared in Fig. 3.34. In general, as
expectedwith a few exceptions, the estimates fromMCMCare larger than those from
the PSMSL model, i.e. they are well above the diagonal. A plot of the ECDF of the
ratio of both uncertainties Rσv ≡ σv(MCMC)/σv(PSMSL) in Fig. 3.35 provides
more information. Around 87% of the uncertainties estimated by theMCMCmethod
are larger than those from the PSMSL model. Moreover, 86% of the uncertainties
estimated with the MCMC method are [1 − 10] times larger than those obtained
with a pure white-noise model.

According to these results, to consider a coloured noise instead of white noise
model, and analyse the monthly MSL records with the MCMCmethod, yields some
quantitative differences, namely:

• Due to the contribution of the non-stationary noise to the trend of some MSL
records larger absolute velocities are estimated (see Fig. 3.33).

• 86% of the stations have uncertainties which are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] times
larger than those from the white noise model.

The uncertainties here just consider the effect from the coloured noise. Corrections
with GPS velocities would increase the uncertainty of any “averaged” sea level
change estimate (Wöppelmann et al. 2007, 2009; Santamaría-Gómez et al. 2012).

The MCMC analysis carried out on the monthly MSL records available in the
PSMSL RLR data base confirms that the assumption of white noise, as it was con-
sidered in the past, does not hold for these either.Most of the time series have−κ ∼ 1
(see Fig. 3.29), and around 3% of them have−κ ≥ 2 (see Fig. 3.30). Moreover, 44%
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of them are non-stationary as their spectral indices are −κ ≥ 1. Consequently, dif-
ferent velocities were found with the coloured noise model (see red-circled points in
Fig. 3.33). The contribution of the non-stationary processes to the trend is also known
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as leakage. Indeed, if the model used to fit the records does not contain any velocity
term that comes from the noise it will yield an underestimated spectral index.

Actually, around 86% of the MSL records analysed with MCMC have uncertain-
ties [1,2,3,4,5,6,7,8,9,10] times larger than for the white noise-only model.

As the analysis of the MSL records has shown that a pure white noise model
underestimates the uncertainties, unlike for the analysis of the GPS time series, the
range of the ratio for the uncertainties between the models is very wide. Hence we
do not provide a transformation method for the results from the white noise only to
the coloured noise model.

Bearing these findings in mind, the authors suggest to analyse all MSL records
using a coloured noise model and to employ the MCMC method due to the large
number of records with non-stationary processes.

3.5 Summary

In order to better constrain geophysical models using time series of geodetic obser-
vations, e.g., GPS-derived positions, superconducting gravity and mean sea level, it
is necessary to have an estimate of the stochastic properties of the series. Due to the
long-term correlation characteristics of the coloured noise of different geophysical
phenomena (Agnew 1992; Mandelbrot 1982), both the deterministic and stochastic
models have to be estimated and the a priori assumption of white noise is for many
cases no longer valid. Doing so would underestimate the uncertainties of the param-
eter estimates (Zhang et al. 1997; Mao et al. 1999; Williams 2003a; Williams and
Willis 2006) while the trend of the time series could be affected (leakage when mul-
tiple parameters are estimated) should the noise be non-stationary (Harrison 2002).

In this regardmethods, such as the presentedMarkovChainMonteCarlo (MCMC)
method, that provide a sample of the distribution function of the deterministic and
stochastic parameters are good estimators for geodetic time series, which contain
long-term correlation in the form of coloured noise.

In this chapter several examples as to how to implement statistical analysis of
geodetic time series by means of the MCMC method have been presented, namely,
GPS position time series (with synthetic and real data sets), superconducting gravity
time series and mean sea level records. Furthermore, the impact of the MCMC-
derivedGPS station velocities and uncertainties on constraints of platemotionmodels
was demonstrated.

The results from synthetic data prove that the MCMC method performs well. In
general, the true values are within the 1σ confidence level. It can also be stated from
those results that the wider the parameter space, i.e. the more parameters, the larger
the uncertainties.

The MCMC method provides samples of the distributions of the estimates, thus
through histograms it is easy to obtain statistical information about them as, for
example, the mean, the median, the uncertainties at different confidence levels, and
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the cross-correlation between them. It is also possible to distinguish local maxima
in case of multi-modality as a consequence of non-stationary processes.

It has also been noted that the MCMC method seems to be a good estimator for
non-stationary time series, though without giving a mathematical proof for this in
this study.

According to Fig. 3.7, MLE as implemented in CATS performs alike in the non-
stationary regime, though at low values provides biased −κ estimates as a conse-
quence of setting σwn to zero when it is difficult for the estimator to distinguish one
noise source from the other.

Another advantage of MCMC upon CATS is that the former does not deal with
derivatives of the covariance matrix as, for example, the Fisher matrix, thus avoiding
numerical issues present in some results from CATS (e.g. a NaN for the uncertainty
of the East component velocity for THU3).

The analysis carried out on the synthetic data leads to the following conclusions:

• Overall, the model parameter estimates from both methods are in good agreement.
• The MCMC method estimates similar σpl and larger −κ , σwn with smaller RMS
than CATS.

• The MCMC method provides larger uncertainties for the model parameters, e.g.
σv(MCMC) ∼ 1.40 × σv(CAT S).

• The correlation parameters a and b are useful to transform estimates from one
method into the other, in order to compare both methods. It is evident from the
data that it is more robust to compute themedian than themean in the comparisons,
due to the latter being more easily corrupted by the presence of outliers.

The larger estimates for the spectral index −κ from MCMC than from CATS
indicate that, according to the MCMCmethod, there is more time-correlation within
the noise thanwhatCATS suggests.On the other hand, the values ofσpl obtained from
CATS are overestimated, for, even though they are larger than those from MCMC,
the RMS for σpl from CATS is ∼20% larger than that for the MCMC estimate.

Finally, the RMS of the estimates of the white noise amplitude σwn from the
MCMC method is around half the value of its counterpart from CATS. CATS sets
σwn to zero for low values of−κ (red-circled points in various figures), thus underes-
timating the coloured noisewithin the time series and, consequently, underestimating
the uncertainties of the model parameters as well. Despite of the larger values for
σpl from CATS than from MCMC, as the uncertainties for the velocity estimate σv

increases geometrically with larger −κ and linearly with the power amplitude, the
larger −κ estimates from MCMC lead to larger σv.

Concerning the uncertainties for the other model parameters, y0 is smaller Ry0 =
0.70 for MCMC than for CATS, and the periodic terms have uncertainties that range
between 1.03 and 1.08 times larger for theMCMC than for the CATSmethod. Except
for σv and σy0 with 	v = 0.23mm/yr and 	y0 = −0.88mm, the differences of the
periodic terms are sub-millimetre.

Results obtained from the JPL data set are in good agreement with those for
the synthetic data. As the estimated −κ are larger for the MCMC method than for
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CATS, the former method yields larger uncertainties for the parameters of the model.
Namely, for the uncertainties of the estimated velocity of the JPL data sets

• σv(MCMC) ∼ [1.18 − 1.40] × σv(CAT S), which is in good agreement with the
results for the synthetic data set.

Similar results are obtained for the estimates of the amplitudes of the periodic
terms in the JPL time series. All the uncertainties are larger for the MCMC than
for the CATS method. In general, the uncertainties are 1.03 − 1.11 times larger for
MCMC than for CATS. This is consistent with the results from the synthetic data set
too.

As the estimates of both methods cluster along a straight line, the same method
as for the synthetic data to transform the parameter estimates and uncertainties from
CATS to MCMC has been introduced. Again, it is more robust to use the median of
the ratio and of the differences instead of the mean.

The impact of the parameter estimates and uncertainties is investigatedwhen using
the GPS station velocities and the associated uncertainties as constraints during the
estimation of Plate Motion Models. Both methods, i.e. MCMC and CATS, yield
results with differences at the 1σ confidence level. Such differences may imply
different values for the constraints in geophysical models. Moreover, according to
the reduced χ2, the MCMC method yields less underestimated uncertainties than
CATS, as the uncertainties of the former should be 22.4 times larger, whereas for the
latter they should be 28.3 larger, in order to get the best fit possible, i.e. χ2 = 1.

The MCMC analysis of the time series of the superconducting gravity measure-
ments has shown another advantage of using an integrator method such as MCMC.
Due to the characteristics of the algorithm, it explores the surrounding areas of a
maximum, thereby spotting other local maxima. This is the case for the ordinate
parameter y0 of the gravity time series. This is typical of non-stationary stochastic
processes, where the noise adds some velocity into the trend (leakage phenomenon).
Therefore, it is suggested to use the MCMCmethod in time series with high spectral
index, e.g. −κ > 1.

The analysis of mean sea level records has confirmed other findings that in order
to take into account the coloured noise within these series, it is necessary to estimate
the spectral index and its uncertainty, otherwise it may yield biased trend estimates
and underestimated uncertainties in sea level studies. This is of particular interest due
to the socio-economic impact of present-day global sea level rise as a consequence
of human-induced climate change.

Finally, it must be mentioned that despite the advantages of the MCMC method
over, e.g., MLE as implemented in CATS, the real disadvantage stems from the
computational time required by the current implementation of the MCMC. While
for some applications this may not be an issue and the computational resources are
likely to increase in future, using this method would not be feasible for time-critical
monitoring with high or regular update rates for the parameter estimates for large
numbers of time series.
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Appendix

The appendix presents a cross-evaluation of the MCMC and Hector methods using
the Benchmark Synthetic GNSS (BSG) time series (Chap.2 of this book).

An Evaluation of MCMC Using Hector and the Benchmark Synthetic
GNSS Time Series

Herewe provide an evaluation of theMCMCmethod as implemented byOlivares and
Teferle (2013) using Hector and the Benchmark Synthetic GNSS (BSG) time series.
While providing the results from MCMC by themselves, we also carry out a basic
comparison with the results provided and computed in-house with Hector. We have
computed our own Hector parameter estimates since MCMC is a computationally
intensive method and we have down–sampled the daily time series into weekly ones
for all BSG series, see Fig. 3.36 for an example showing both original and down–
sampled time series. Figure 3.37 shows the differences in the trend estimates 	v
between the two methods. Overall the parameter estimates (trend, amplitude of the
annual term and phase-lag, white and power-low noise amplitudes as well as spectral
index) are in good agreement between MCMC and Hector. A detailed comparison is
shown in Tables 3.17, 3.18, and 3.19 for the deterministic parameter estimates, and
in Tables 3.20, 3.21 and 3.22 for the stochastic parameter estimates.

Gaussian Properties of Parameters Estimates from MCMC

The parameters estimated from MCMC follow in general a Gaussian distribution.
While these histograms can provide valuable additional information it is clear that
in several cases the MCMC method has failed to provide converged results. This is
most likely due to instabilities in the variance/covariance matrix within the MCMC
method. Figure 3.38 shows the histograms for the Up trend components for the 20
time series.

Further we have tested the Gaussian properties of the parameter estimates from
the MCMC method by constructing the histograms for the amplitude estimates of
the annual terms as shown in Figs. 3.39, 3.40, and 3.41 for the North, East and Up
components, respectively.

We have also compared themean andmedian trend estimates for all the time series
considered in this analysis. The mean and median values show a similar magnitude.
An indication that the estimates from MCMC exhibit unbiased and uncorrelated
properties. A further test for the Skewness and the Kurtosis (“tailedness” of the
probability distribution) for the trends again show the majority of the estimates
indeed follow a Gaussian distribution, see Tables3.23, 3.24, and 3.25. Formally, the
Skewness of a Gaussian distribution is 0 while the Kurtossis is 3.

http://dx.doi.org/10.1007/978-3-030-21718-1_2
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Table 3.20 Hector and MCMC stochastic parameter estimates for North component time series
compared: spectral index κ , power–law σpl and white σwn noise amplitude
Name Hector MCMC

κ σpl [mm] σwn [mm] κ σpl [mm] σwn [mm]

Station 1 −0.68±0.16 3.12 0.70 ± −0.86 0.18 1.43 0.86

Station 2 −0.71±0.16 3.10 0.64 ± −0.97 0.16 1.22 1.04

Station 3 −0.71±0.15 3.20 0.68 ± −0.90 0.21 1.42 0.85

Station 4 −0.81±0.15 3.28 1.02 ± −1.17 0.17 1.11 1.32

Station 5 −0.57±0.18 3.02 0.14 ± −0.82 0.19 1.40 0.84

Station 6 −0.95±0.07 2.85 1.20 ± −1.52 0.21 0.68 1.42

Station 7 −0.62±0.00 2.96 0.00 ± −0.96 0.24 1.21 0.90

Station 8 −0.65±0.00 3.24 0.00 ± −0.74 0.08 1.67 0.34

Station 9 −0.71±0.17 3.30 0.53 ± −0.92 0.15 1.40 0.89

Station 10 −0.72±0.17 3.07 0.93 ± −1.05 0.19 1.12 1.28

Station 11 −0.82±0.13 3.41 0.79 ± −1.00 0.00 2.10 2.10

Station 12 −0.64±0.00 3.02 0.00 ± −0.90 0.15 1.33 0.81

Station 13 −0.92±0.10 2.70 1.28 ± −1.22 0.15 0.84 1.41

Station 14 −0.67±0.00 3.30 0.00 ± −0.88 0.11 1.44 0.81

Station 15 −0.88±0.12 2.99 0.99 ± −1.21 0.16 0.96 1.22

Station 16 −0.89±0.11 2.88 1.24 ± −1.41 0.13 1.79 1.22

Station 17 −0.54±0.06 2.76 0.00 ± −0.70 0.13 1.43 0.64

Station 18 −0.84±0.14 3.04 1.05 ± −1.13 0.18 1.06 1.26

Station 19 −0.87±0.11 3.18 0.87 ± −1.04 0.15 1.21 0.97

Station 20 −0.81±0.16 2.70 1.03 ± −1.40 0.07 0.79 1.31

Table 3.21 Hector and MCMC stochastic parameter estimates for East component time series
compared: spectral index κ , power–law σpl and white σwn noise amplitude
Name Hector MCMC

κ σpl [mm] σwn [mm] κ σpl [mm] σwn [mm]

Station 1 −0.52±0.00 2.87 0.00 −0.88±0.21 1.26 1.00

Station 2 −0.55±0.00 2.88 0.00 −0.72±0.15 1.46 0.67

Station 3 −0.63±0.18 2.89 0.69 −0.92±0.22 1.24 1.02

Station 4 −0.72±0.17 2.82 1.12 −1.05±0.13 1.02 1.40

Station 5 −0.71±0.16 3.00 0.70 −1.00±0.15 1.20 1.04

Station 6 −0.63±0.19 2.49 0.91 −1.14±0.18 0.82 1.33

Station 7 −0.76±0.16 2.92 1.15 −1.01±0.18 1.12 1.34

Station 8 −0.94±0.07 2.82 1.21 −1.36±0.14 0.76 1.41

Station 9 −0.69±0.17 3.06 0.60 −0.84±0.14 1.41 0.78

Station 10 −0.64±0.17 3.05 0.29 −0.82±0.15 1.42 0.71

Station 11 −0.74±0.13 3.16 0.64 −0.82±0.08 1.48 0.66

Station 12 −0.79±0.16 2.64 1.24 −1.02±0.22 1.01 1.35

Station 13 −0.90±0.10 3.42 0.82 −1.11±0.18 1.23 0.98

Station 14 −0.80±0.16 2.71 1.04 −0.90±0.18 1.22 0.98

Station 15 −0.80±0.14 2.89 1.00 −0.87±0.13 1.33 0.92

Station 16 −0.79±0.15 2.70 0.95 −1.60±0.08 0.63 1.35

Station 17 −0.94±0.08 2.93 1.18 −1.26±0.19 0.89 1.34

Station 18 −0.65±0.17 2.93 0.63 −0.95±0.11 1.15 1.13

Station 19 −0.73±0.17 2.83 0.96 −1.05±0.24 1.02 1.26

Station 20 −0.66±0.18 2.79 0.94 −0.86±0.17 1.25 1.14
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Fig. 3.37 Trend differences between Hector andMCMC for the 20 weekly BSG time series. North,
East, and Up components are displayed in green, red, and blue, respectively. A box whisker plot
showing minimum, 25th percentile, median, 75th percentile and maximum values is to the right

Table 3.22 Hector and MCMC stochastic parameter estimates for Up component time series com-
pared: spectral index κ , power–law σpl and white σwn noise amplitude
Name Hector MCMC

κ σpl [mm] σwn [mm] κ σpl [mm] σwn

Station 1 −0.64±0.18 9.39 2.53 −0.80±0.14 4.48 3.14

Station 2 −0.73±0.15 10.04 2.74 −0.89±0.16 4.31 3.24

Station 3 −0.80±0.16 10.30 3.50 −1.00±0.22 4.09 3.94

Station 4 −0.81±0.14 10.20 3.41 −0.96±0.20 4.24 3.52

Station 5 −0.84±0.13 10.32 3.59 −1.15±0.17 3.37 4.46

Station 6 −0.56±0.06 10.13 0.00 −0.70±0.12 5.20 2.16

Station 7 −0.90±0.11 10.27 3.78 −1.14±0.17 3.52 4.28

Station 8 −0.74±0.16 9.56 3.41 −0.88±0.20 4.28 3.36

Station 9 −0.72±0.15 10.88 2.20 −1.01±0.12 4.21 3.71

Station 10 −0.67±0.17 9.91 2.39 −0.84±0.18 4.55 2.95

Station 11 −0.95±0.06 11.03 3.92 −1.31±0.11 3.61 4.48

Station 12 −0.61±0.17 9.51 2.52 −0.77±0.17 4.63 3.05

Station 13 −0.87±0.11 11.71 3.21 −1.07±0.16 4.24 3.89

Station 14 −0.83±0.13 11.56 2.49 −0.92±0.12 4.89 2.67

Station 15 −0.73±0.14 11.44 2.38 −0.84±0.14 5.20 2.67

Station 16 −0.83±0.14 11.68 3.00 −1.02±0.18 4.55 3.54

Station 17 −0.95±0.07 10.18 4.19 −1.36±0.20 2.78 4.87

Station 18 −0.78±0.12 12.23 1.89 −0.92±0.11 5.10 2.73

Station 19 −0.91±0.10 11.69 3.59 −1.18±0.18 3.89 4.25

Station 20 −0.85±0.14 11.23 3.67 −1.14±0.21 3.90 4.39
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Fig. 3.38 Histograms of the trend estimates of the Up component, continued on next page
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Fig. 3.38 (continued)
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Fig. 3.39 Histograms for the annual term amplitude of the North component, continued on next
page
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Fig. 3.39 (continued)
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Fig. 3.40 Histograms for the annual term amplitude of the East component, continued on next page
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Fig. 3.40 (continued)
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Fig. 3.41 Histograms for the annual term amplitude of the Up component, continued on next page
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Table 3.23 Statistics for the Gaussian distributions of the North component time series MCMC
results: trend v, amplitude of the annual term A1yr , phase–lag φ, Skewness and Kurtosis
Name vMean

[mm/yr]
vMedian
[mm/yr]

A1yr [mm] φ [deg] Skewness Kurtosis

Station 0 11.06 ±0.12 11.06 ±0.15 1.55 ±0.27 −71.32 −0.12 4.07

Station 1 15.62 ±0.13 15.62 ±0.17 2.21 ±0.27 −143.36 0.12 3.70

Station 2 19.82 ±0.16 19.82 ±0.20 1.94 ±0.30 −168.70 0.98 12.00

Station 3 17.72 ±0.20 17.72 ±0.25 1.25 ±0.29 −107.09 0.12 4.95

Station 4 9.56 ±0.12 9.56 ±0.15 0.23 ±0.27 135.18 0.77 7.13

Station 5 26.67 ±0.39 26.67 ±0.49 1.22 ±0.29 165.32 0.06 5.45

Station 6 26.75 ±0.14 26.75 ±0.18 1.33 ±0.26 173.75 0.29 5.60

Station 7 30.02 ±0.10 30.02 ±0.13 1.42 ±0.28 173.79 −0.07 3.19

Station 8 4.96 ±0.13 4.97 ±0.16 1.11 ±0.28 131.50 −0.14 4.36

Station 9 9.87 ±0.16 9.87 ±0.20 1.90 ±0.29 144.99 0.04 3.92

Station 10 5.26 ±0.00 5.26 ±0.00 0.13 ±0.00 −45.00 0.47 1.83

Station 11 24.90 ±0.14 24.89 ±0.18 0.12 ±0.29 176.52 −0.06 3.47

Station 12 4.63 ±0.15 4.63 ±0.18 0.83 ±0.24 −77.55 −0.10 3.69

Station 13 29.68 ±0.13 29.67 ±0.16 0.94 ±0.28 −70.39 0.10 3.13

Station 14 15.70 ±0.20 15.70 ±0.25 1.39 ±0.27 −164.63 0.15 4.51

Station 15 0.89 ±0.06 0.89 ±0.07 3.32 ±0.70 −47.11 0.16 1.75

Station 16 9.62 ±0.08 9.62 ±0.10 0.76 ±0.23 −125.80 0.17 3.38

Station 17 14.83 ±0.18 14.83 ±0.22 0.47 ±0.28 160.76 0.05 4.15

Station 18 12.17 ±0.16 12.17 ±0.20 1.15 ±0.29 −106.28 0.12 3.96

Station 19 27.68 ±0.23 27.70 ±0.29 0.81 ±0.24 −151.22 −0.24 3.10

Table 3.24 Statistics for the Gaussian distributions of the East component time series MCMC
results: trend v, amplitude of the annual term A1yr , phase–lag φ, Skewness and Kurtosis
Name vMean

[mm/yr]
vMedian
[mm/yr]

A1yr [mm] φ [deg] Skewness Kurtosis

Station 0 17.47 ±0.12 17.46 ±0.15 0.09 ±0.25 140.94 0.61 4.58

Station 1 4.64 ±0.08 4.64 ±0.10 0.92 ±0.24 −117.68 0.24 3.94

Station 2 14.24 ±0.13 14.24 ±0.16 0.69 ±0.26 178.34 −0.14 5.31

Station 3 12.64 ±0.13 12.64 ±0.16 0.95 ±0.26 −85.88 −0.11 3.63

Station 4 18.33 ±0.16 18.33 ±0.20 1.62 ±0.29 153.89 0.14 3.78

Station 5 28.93 ±0.14 28.94 ±0.18 0.21 ±0.23 −13.58 −0.06 5.06

Station 6 11.96 ±0.14 11.96 ±0.17 1.32 ±0.26 179.91 0.12 4.45

Station 7 24.43 ±0.27 24.43 ±0.34 0.40 ±0.29 167.44 0.02 3.74

Station 8 23.49 ±0.13 23.50 ±0.17 1.81 ±0.27 −108.61 −0.31 3.50

Station 9 9.91 ±0.11 9.91 ±0.14 0.60 ±0.26 −136.01 0.10 4.03

Station 10 18.23 ±0.12 18.23 ±0.15 1.13 ±0.28 −148.38 0.04 2.98

Station 11 8.65 ±0.13 8.65 ±0.16 0.25 ±0.23 −26.77 0.05 4.66

Station 12 1.92 ±0.18 1.92 ±0.22 2.00 ±0.30 −128.67 0.07 3.96

Station 13 19.73 ±0.11 19.73 ±0.14 0.03 ±0.25 88.15 −0.30 5.27

Station 14 26.88 ±0.11 26.88 ±0.14 1.51 ±0.26 −91.60 −0.16 3.71

Station 15 29.34 ±0.33 29.34 ±0.42 0.97 ±0.29 −103.50 −0.34 4.14

Station 16 0.19 ±0.18 0.20 ±0.23 1.09 ±0.26 −66.74 0.63 5.62

Station 17 15.11 ±0.11 15.11 ±0.13 0.65 ±0.24 −98.18 −0.04 3.41

Station 18 5.51 ±0.15 5.51 ±0.19 0.72 ±0.24 108.84 0.27 5.40

Station 19 27.73 ±0.12 27.74 ±0.15 1.16 ±0.26 −112.14 −0.27 3.67
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Table 3.25 Statistics for theGaussian distributions of theUp component time seriesMCMCresults:
trend v, amplitude of the annual term A1yr , phase–lag φ, Skewness and Kurtosis
Name vMean [mm/yr] vMedian [mm/yr] A1yr [mm] φ [deg] Skewness Kurtosis

Station 0 20.25 ±0.31 20.24 ±0.39 1.68 ±0.82 149.77 0.35 3.68

Station 1 17.10 ±0.37 17.10 ±0.46 1.41 ±0.86 103.05 −0.02 4.44

Station 2 25.43 ±0.49 25.43 ±0.61 0.92 ±0.94 2.18 0.10 5.37

Station 3 2.26 ±0.48 2.30 ±0.60 0.86 ±0.91 −166.34 −0.33 2.82

Station 4 17.98 ±0.56 18.01 ±0.70 1.37 ±0.94 −122.27 −0.34 4.44

Station 5 9.25 ±0.26 9.25 ±0.32 2.40 ±0.83 −168.73 0.22 3.73

Station 6 10.49 ±0.59 10.49 ±0.74 1.50 ±0.90 −52.13 0.01 4.54

Station 7 13.29 ±0.39 13.28 ±0.48 1.71 ±0.85 −133.25 0.53 5.65

Station 8 27.08 ±0.46 27.06 ±0.57 2.10 ±0.94 120.03 0.20 3.53

Station 9 8.66 ±0.36 8.67 ±0.45 1.43 ±0.89 −152.12 −0.44 5.21

Station 10 10.77 ±0.87 10.76 ±1.10 1.28 ±2.65 141.80 −0.12 2.92

Station 11 3.43 ±0.31 3.42 ±0.39 2.49 ±0.77 168.46 0.50 6.58

Station 12 30.00 ±0.57 29.99 ±0.72 1.97 ±1.01 −94.87 0.05 4.21

Station 13 8.88 ±0.43 8.88 ±0.54 0.31 ±0.96 −91.82 −0.06 3.40

Station 14 3.20 ±0.38 3.18 ±0.47 1.12 ±1.01 −81.15 0.24 3.65

Station 15 5.52 ±0.52 5.54 ±0.65 1.39 ±1.02 −133.40 −0.10 3.41

Station 16 6.30 ±0.90 6.30 ±1.12 1.81 ±0.92 176.41 0.03 4.40

Station 17 27.39 ±0.45 27.37 ±0.57 3.21 ±1.05 154.00 0.15 3.40

Station 18 9.19 ±0.71 9.18 ±0.89 1.67 ±1.06 171.94 −0.00 4.71

Station 19 15.26 ±0.73 15.20 ±0.91 1.41 ±1.02 −78.54 0.91 7.92
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Chapter 4
Introduction to Dynamic Linear Models
for Time Series Analysis

Marko Laine

Abstract Dynamic linear models (DLM) offer a very generic framework to analyse
time series data. Many classical time series models can be formulated as DLMs,
includingARMAmodels and standardmultiple linear regressionmodels. Themodels
can be seen as general regression models where the coefficients can vary in time. In
addition, they allow for a state space representation and a formulation as hierarchical
statisticalmodels,which in turn is the key for efficient estimation byKalman formulas
and by Markov chain Monte Carlo (MCMC) methods. A dynamic linear model can
handle non-stationary processes, missing values and non-uniform sampling as well
as observations with varying accuracies. This chapter gives an introduction to DLM
and shows how to build various useful models for analysing trends and other sources
of variability in geodetic time series.

Keywords DLM · MCMC · State space model · Kalman filter · Kalman
smoother · Hierarchical statistical model · Seasonal variability · Seasonal signal

4.1 Introduction to Dynamic Linear Models

Statistical analysis of time series data is usually faced with the fact that we have only
one realization of a process whose properties might not be fully understood.We need
to assume that some distributional properties of the process that generate the obser-
vations do not change with time. In linear trend analysis, for example, we assume
that there is an underlying change in the background mean that stays approximately
constant over time. Dynamic regression avoids this by explicitly allowing temporal
variability in the regression coefficients and by letting some of the system properties
to change in time. Furthermore, the use of unobservable state variables allows direct
modelling of the processes that are driving the observed variability, such as seasonal
variation or external forcing, and we can explicitly allow some modelling error.
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Dynamic regression can be formulated in very general terms by using a state
space representation of the observations and the hidden state of the system. With
sequential definition of the processes, having conditional dependence only on the
previous time step, the classical recursive Kalman filter algorithms can be used to
estimate the model states given the observations. When the operators involved in the
definition of the system are linear we have so called dynamic linear model (DLM).

A basic model for time series in geodetic or more general environmental appli-
cations consists of four elements: a slowly varying background level, a seasonal
component, external forcing from known processes modelled by proxy variables,
and stochastic noise. The noise component might contain an autoregressive structure
to account for temporally correlated model residuals. As we see, the basic compo-
nents have some physical justification andwemight be interested in their contribution
to the overall variability and their temporal changes. These components are hidden
in the sense that we do not observe them directly and each individual component is
masked by various other sources of variability in the observations.

Below, we briefly describe the use of dynamic linear models in time series analy-
sis. The examples deal with univariate time series, i.e. the observation at a singe time
instance is a scalar, but the framework and the computer code can handle multivari-
ate data, too. All the model equations are written in way that support multivariate
observations. In the presented applications we are mostly interested in extracting the
components related to the trends and using these to infer about their magnitude and
the uncertainties involved. However, these models might not be so good for produce
predictions about the behaviour of the system in the future, although understanding
the system is a first step to be able to make predictions.

The use ofDLMs in time series analysis iswell documented in statistical literature,
but they might go by different terminology and notation. In Harvey (1991) they
are called structural time series, Durbin and Koopman (2012) uses the state space
approach, and the acronym DLM is used in Petris et al. (2009).

4.2 State Space Description

The state space description offers a unified formulation for the analysis of dynamic
regression models. The same formulation is used extensively in signal processing
and geophysical data assimilation studies, for example. A general dynamic linear
model with an observation equation and a model equation is

yt = Ht xt + εt , εt ∼ N (0,Rt ), (4.1)

xt = Mt xt−1 + Et , Et ∼ N (0,Qt ). (4.2)

Above yt is a vector of length k of observations at time t , with t = 1, . . . , n.
Vector xt of lengthm contains the unobserved states of the system that evolve in time
according to a linear system operator Mt (am × m matrix). In time series settings xt
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will have elements corresponding to various components of the time series process,
like trend, seasonality, etc. We observe a linear combination of the states with noise
εt , and matrix Ht (k × m) is the observation operator that transforms the model
states into observations. Both observations and the system states can have additive
Gaussian errors with covariance matrices Rt (k × k) and Qt (m × m), respectively.
In univariate time series analysis we will have k = 1. With multivariate data, the
system matrices Mt , Ht , Rt and Qt can be used to define correlations between the
observed components.

This formulation is quite general and flexible as it allows handling of many time
series analysis problems in a single framework. Moreover, a unified computational
tool can be used, i.e. a single DLM computer code can be used for various purposes.
Below we give examples of different analyses. As we are dealing with linear models,
we assume that the operators Mt and Ht are linear. However, they can change with
the time index t and we will drop the time index in the cases where the matrices
are assumed static in time. The state space framework can be extended to non-linear
model and non-Gaussian errors, and to spatial-temporal analyses as well, see, e.g.,
Cressie and Wikle (2011), Särkkä (2013). However, as can be seen in the following
example, already the dynamic linear Gaussian formulation provides a large class of
models for time series trend analyses.

4.2.1 Example: Spline Smoothing

A simple local level and local trend model can be used as a basis for many trend
related studies. Consider a mean level processμt which is changing smoothly in time
and which we observe with additive Gaussian noise. We assume that the change in
the mean, μt+1 − μt , is controlled by a trend process αt and the temporal change in
these processes is assumed to be Gaussian with given variances σ 2

level and σ 2
trend. This

can be written as

yt = μt + εobs, εobs ∼ N (0, σ 2
obs), observations, (4.3)

μt = μt−1 + αt−1 + εlevel, εlevel ∼ N (0, σ 2
level), local level, (4.4)

αt = αt−1 + εtrend, εtrend ∼ N (0, σ 2
trend), local trend, (4.5)

which in state space representation transfers simply into

xt = [
μt αt

]T
, H = [

1 0
]
, M =

[
1 1
0 1

]
, (4.6)

Q =
[
σ 2
level 0
0 σ 2

trend

]
, and R = diag

([
σ 2
obs . . . σ 2

obs

])
, (4.7)

with three parameters for the error variances
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Fig. 4.1 DLM smoother fit to synthetic data set using a local trend model. In this example σobs =
0.3, σlevel = 0.0, and σtrend = 0.01, with time interval equal to one unit

θ = [
σ 2
obs σ 2

level σ 2
trend

]T
. (4.8)

We have dropped the time index t from those elements that do not depend on time.
It is interesting to note, that if we set σ 2

level = 0, we have a second difference
process for μt as

Δ2μt = μt−1 − 2μt + μt+1 = Δαt = εtrend, (4.9)

and it can be shown (Durbin and Koopman 2012) that this is equivalent to cubic
spline smoothing with smoothing parameter λ = σ 2

trend/σ
2
obs > 0.

Figure4.1 shows simulated observations with a true piecewise trend and the fitted
mean processμt , t = 1, . . . , n together with its 95% uncertainty limits. In this exam-
ple, the observation uncertainty standard deviation (σobs = 0.3) as well as the level
and trend variability standard deviations (σlevel = 0.0, σtrend = 0.01) are assumed to
be known. In the later examples these values are estimated from the data.

4.3 DLM as Hierarchical Statistical Model

The DLM formulation can be seen as a special case of a general hierarchical statisti-
cal model with three levels: data, process and parameters (see e.g. Cressie andWikle
2011), with corresponding conditional statistical distributions. First, the observation
uncertainty p(yt |xt , θ) described by the observation equation and forming the sta-
tistical likelihood function, second, the process uncertainty of the unknown states
xt and their evolution given by the process equations as p(xt |θ) or p(xt |xt−1, θ),
and third, the unconditional prior uncertainty for the model parameters p(θ). This
formulation allows both an efficient description of the system and computational
tools to estimate the components. It also combines different statistical approaches,
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as we can have full prior probabilities for the unknowns (the Bayesian approach),
estimate them by maximum likelihood and plug them back (frequentistic approach),
or even fix the model parameters by expert knowledge (a non-statistical approach).
By the Bayes formula, we can write the state and parameter posterior distributions
as a product of the conditional distributions

p(xt , θ |yt ) ∝ p(yt |xt , θ)p(xt |θ)p(θ), (4.10)

which is the basis for full Bayesian estimation procedures. Next we will describe
the steps needed for Bayesian DLM estimation of model states, parameters and their
uncertainties.

4.4 State and Parameter Estimation

To recall the notation, yt are the observations and xt are the hidden system states
for time indexes t = 1, . . . , n. In addition, we have a static vector θ that contains
auxiliary parameters needed in defining the systemmatricesMt andHt and themodel
and observation error covariance matrices Qt and Rt . For dynamic linear models
we have efficient and well founded computational tools for all relevant statistical
distributions of interest. For the state estimation assuming a known parameter vector
θ the assumptions on linearity and Gaussian errors allows us to estimate the model
states by classical recursive Kalman formulas. The variance and other structural
parameters appear in non-linear way and their estimation can be done either by
numerical optimization or byMarkov chainMonte Carlo (MCMC)methods.MCMC
allows for a full Bayesian statistical analysis for the joint uncertainty in the dynamic
model states and the static structural parameters (Gamerman 2006). Table4.1 relates

Table 4.1 Conditional DLM distributions and the corresponding algorithms. The variables used
are: xt for the time varying state of the system (e.g. trend), yt for the observations at each time t ,
and θ for structural parameters used in the model and covariance matrices. Notation x1:n means all
time instances for 1, . . . , n

Distribution Meaning Algorithm

p(xt |xt−1, y1:t−1, θ) One step prediction Kalman filter

p(xt |y1:t , θ) Filter solution Kalman filter

p(xt |y1:n, θ) Smoother solution Kalman smoother

p(x1:n |y1:n, θ) Full state given parameters Simulation smoother

p(y1:t |θ) Marginal likelihood for
parameters

Kalman filter likelihood

p(x1:n, θ |y1:n) Full state and parameter MCMC

p(θ |y1:n) Marginal for parameter MCMC

p(x1:n |y1:n) Marginal for full state MCMC



144 M. Laine

the different statistical distributions to the algorithms, which are outlined later. The
notation y1:t , x1:t , etc. means the collection of observations or states from time 1 to
time t .

4.5 Recursive Kalman Formulas

Below we give the relevant parts of the recursive formulas for Kalman filter and
smoother to estimate the conditional distributions of DLM states given the observa-
tions and static parameters. For more details, see Rodgers (2000), Laine et al. (2014).
A notable feature of the linear Gaussian case is that the formulas below are exact and
easily implemented in computer as long as the model state dimension or the number
of observations at one time is not too large.

To start the calculations, we assume that the initial distribution of x0 at t = 0
is available. The first step in estimating the states is to use Kalman filter forward
recursion to calculate the distribution of the state vector xt given the observations up
to time t , p(xt |y1:t , θ) = N (�xt ,�Ct ), which is Gaussian by the linearity assumptions.
At each time t this step consists of first calculating, as prior, the mean and covariance
matrix of one-step-ahead predicted states p(xt |xt−1, y1:t−1, θ) = N (̂xt , Ĉt ) and the
covariance matrix of the predicted observations Ĉy,t as

x̂t = Mt�xt−1 prior mean for xt , (4.11)

Ĉt = Mt�Ct−1MT
t + Qt prior covariance for xt , (4.12)

Ĉy,t = Ht ĈtHT
t + Rt covariance for predicting yt . (4.13)

Then the posterior state mean and its covariance are calculated using the Kalman
gain matrix Gt as

Gt = ĈtHT
t Ĉ

−1
y,t Kalman gain, (4.14)

rt = yt − Ht x̂t prediction residual, (4.15)

�xt = x̂t + Gtrt posterior mean for xt , (4.16)

�Ct = Ĉt − GtHt Ĉt posterior covariance for xt . (4.17)

These equations are iterated for t = 1, . . . , n and the values of�xt and �Ct are stored
for further calculations. As initial values, we can use �x0 = 0 and �C0 = κI, i.e. a
vector of zeros and a diagonal matrix with some large value κ in the diagonal. Note
that the only matrix inversion required in the above formulas is the one related to
the observation prediction covariance matrix Ĉy,t , which is of size 1 × 1 when we
analyse univariate time series.

The Kalman filter provides distributions of the states at each time t given the
observations up to the current time. As we want to do retrospective time series
analysis that accounts for all of the observations, we need to have the distributions
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of the states for each time, given all the observations y1:n . By the linearity of the
model, these distributions are again Gaussian, p(xt |y1:n, θ) = N (̃xt , C̃t ). Using the
matrices generated by theKalman forward recursion, theKalman smoother backward
recursion gives us the smoothed states for t = n, n − 1, . . . , 1. There are several
equivalent versions of the backward recursion algorithm. Belowwe show the Rauch-
Tung-Striebel recursion (Särkkä 2013) for illustration. For alternatives, see Durbin
and Koopman (2012):

C+
t = Mt�CtMT

t + Qt propagated covariance, (4.18)

Gt = �CtMT
t

(
C+

t

)−1
smoother gain, (4.19)

x̃t−1 = �xt + Gt (̃xt − �xt ) smoothed state mean, (4.20)

C̃t−1 = �Ct − Gt
(
C̃t − C+

t

)
GT

t smoothed state covariance. (4.21)

In smoother recursion we are dealing with several matrix vector computations
and one matrix inversion of size m × m and these formulas can be implemented
quite efficiently in any general numerical analysis software. As a note, we see that
the algorithms work with missing observations, too. If some observations at a time
t are missing, the corresponding columns of the gain matrix Eq. (4.14) will be zero.
If all are missing, the filter posterior will be equal to the prior. Note that the above
smoother recursion does not refer to the observations. All the Kalman formulas
given above are for observations with uniform sampling in time, for non-uniform
temporal sampling, the propagation of uncertainty to the next observation time has
to be handled differently, see Harvey (1991), Durbin and Koopman (2012).

4.6 Simulation Smoother

The Kalman smoother algorithm provides the distributions p(xt |y1:n, θ) for each t ,
which are all Gaussian. However, for studying trends and other dynamic features in
the system, we are interested in the joint distribution spanning the whole time range
p(x1:n|y1:n, θ). Note that we are still conditioning on the unknown parameter vector
θ and will account for it later. This high dimensional joint distribution is not easily
accessible directly. As in many cases, instead of analytic expressions, it is more
important to be able to draw realizations from the distribution and use the sampling
distribution for statistical analysis. This has several benefits. One important is that
by comparing simulated realizations to the observations, we see how realistic the
model predictions are, which can reveal if the modelling assumptions are not valid.
Also, we can study the distributions of model outputs directly from the samples and
do not need to resolve to approximate statistics.

A simple simulation algorithm by Durbin and Koopman (2012) is the following.
The state space system equations provide a direct way to recursively sample realiza-
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tions of both the states x1:n and the observations y1:n , but the generated states will
be independent of the original observations. However, it can be shown (Durbin and
Koopman 2012, Sect. 4.9) that the distribution of the residual process of generated
against smoothed state does not depend on y1:n . This means that if we add simu-
lated residuals over the original smoothed state x̃1:n , we get a new realization that
is conditional on the original observations y1:n . A procedure to sample a realization
x∗
1:n ∼ p(x1:n|y1:n, θ) is thus:

1. Generate a sample using the state space system equations, Eqs. (4.1) and (4.2)
to get x̌1:n and y̌1:n .

2. Smooth y̌1:n to get x̆1:n according to formulas in Sect. 4.5.
3. Add the residuals from step 2 to the original smoothed state:

x∗
1:n = x̌1:n − x̆1:n + x̃1:n . (4.22)

This simulation smoother can be used in trend studies and as a part ofmore general
MCMC simulation algorithm that will sample from the joint posterior distribution
p(x1:n, θ |y1:n) and by marginalization argument also from p(x1:n|y1:n) where the
uncertainty in θ has been integrated out (Laine et al. 2014).

4.7 Estimating the Static Structural Parameters

In the first examples, the variance parameters defining the model error covariance
matrixQt were assumed to be known. In practice we need some estimation method-
ology for them. Basically there are three alternatives. The first one uses subject level
knowledge with trial and error to fix the parameters without any algorithmic tuning.
The second one use the marginal likelihood function with a numerical optimization
routine to find the maximum likelihood estimate of the parameter θ and plug the
estimate back to the equations and re-fit the DLM model. The third one use MCMC
algorithm to sample from the posterior distribution of the parameters to estimate the
parameters and to integrate out their uncertainty.

To estimate the free parameters θ in the model formulation by optimization or
by MCMC we need the marginal likelihood function p(y1:n|θ). By the assumed
Markov properties of the system, this can be obtained sequentially as a byproduct of
the Kalman filter recursion (Särkkä 2013),

− 2 log (p(y1:n |θ)) = constant +
n∑

t=1

[
(yt − Ht x̂t )

T Ĉ−1
y,t (yt − Ht x̂t ) + log(|Ĉy,t |)

]
.

(4.23)
On the right hand side, the parameter θ will appear in themodel predictions x̂t as they
depend on the matrix Mt as well as on the model error Qt . For the same reason we
need the determinant of the model prediction covariance matrix |Ĉy,t |. A fortunate
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property is that this likelihood can be calculated along the DLM filter recursion
without much extra effort.

The scaled one-step prediction residuals

r∗
t = Ĉ−1/2

y,t (yt − Ht x̂t ) (4.24)

can be used to check the goodness of fit of the model. In order of the DLM model
to be consistent with the observations these residuals should be approximately inde-
pendent, N (0, I) Gaussian and without serial autocorrelation. Later in the GNSS
time series example, we will do model diagnostics by residual quantile-quantile and
autocorrelation function plots.

4.8 Analysing Trends

In general terms, trend is a change in the distributional properties, such as in the
mean, of the process generating the observations. We are typically interested in
slowly varying changes in the background level, i.e. in the mean process after the
known sources of variability, such as seasonality, has been accounted for. A common
way to explore trends is to fit some kind of a smoother, such as a moving average,
over the time series. However, many standard smoothing methods do not provide
statistical estimates of the smoothness parameters or asses the uncertainty related to
the level of smoothing.

In typical DLM trend analyses, a slowly varying (relative to the time scale we
are interested in) background level of the system is modelled as a first or higher
order random walk process with variance parameters that determine the time wise
smoothness of the level. These variance parameters must be estimated and their
uncertainty accounted for proper uncertainty quantification. In an optimal case, the
data provides information on the smoothness of the trend component, but typicallywe
need to use subject level prior information to decide the time scale of the changes we
want to extract. In the GNSS application example in Sect. 4.10 we assume a global
linear trend and the local non-stationary fluctuations are modelled using a local
random walk model with autocorrelated residuals. A Bayesian DLM model offers
means to provide qualitative prior information in the form of the model equations
and quantitative information by prior distributions on the variance parameters, see
e.g. Gamerman (2006).

For statistical analysis we need to estimate the full state as either p(x1:n|y1:n, θ̂ ),
where we plug in some estimates of the auxiliary parameters θ̂ , (the maximum
likelihood approach) or by p(x1:n|y1:n) = ∫

p(x1:n, θ |y1:n) dθ where the uncertainty
of auxiliary parameter θ is integrated out. The latter is the Bayesian approach and
calculations can be done, e.g., by Markov chain Monte Carlo (MCMC) simulation
(Gamerman 2006; Laine et al. 2014). A procedure to account the uncertainty in a
DLM model and its structural parameters and to study DLM output will contain the
following steps:
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1. Formulate the DLM model and its marginal likelihood p(y1:n|θ) by Kalman
filter.

2. Use MCMC to sample from the posterior distribution p(θ |y1:n) with a suitable
prior distribution p(θ) for the structural parameters and with the likelihood of
step 1.

3. Generate a sample from the marginal posterior p(x1:n|y1:n) using the simulation
smoother (Sect. 4.6) and for each sample use a different θ from theMCMC chain
from the previous step.

4. For each state realization, x∗
1:n ∼ p(x1:n|y1:n), from step 3., calculate a trend

related or any other statistics of interest and use this sample for the estimates
and their uncertainties.

4.9 Examples of Different DLMModels

In the following, we give several useful DLM formulations for model components
that are typically used in geodetic or in more general environmental analyses. They
have been used in existing applications for stratospheric ozone (Laine et al. 2014),
ionosonde analysis (Roininen et al. 2015) and for station temperature records (Mikko-
nen et al. 2015). In Sect. 4.10, we will show analysis for synthetic GNSS station
positioning time series.

4.9.1 The Effect of Level and Trend Variance Parameters

In the first example in Sect. 4.2.1 the variance σ 2
trend was assumed to be known and

fixed. Altering the variance affects the smoothness of the fit. In Fig. 4.2 the effect
of different variance parameters are shown for the same data. Note that by setting
both σ 2

level and σ 2
trend to zero results in classical linear regression without dynamical

evolution of the regression components. In this case, the 95%probability limits for the
level obtained from the smoother covariance matrix C̃t coincide with the classical
confidence intervals for the mean. In classical non-dynamic linear regression the
modelling error is included in the residual term, whereas in DLM we can include it
in the model definition by allowing temporal change in model parameters.

If we estimate the parameters by the likelihood approach and MCMC outlined in
Sect. 4.7, we get the values in the last panel of Fig. 4.2 corresponding to the posterior
mean. Figure4.3 shows MCMC chain histograms together with estimated marginal
posterior densities. It also has the point values obtained by likelihood optimization.
Note by optimization we get an estimate for σlevel which is very close to zero rela-
tively to the MCMC solution, which tries to find all values of the parameter that are
consistent with the data.
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Fig. 4.2 DLM smoother fit for synthetic data set with different smoothing levels. The dots are the
observations and solid blue line is the mean DLM fit. The grey area corresponds to 95% probability
limit from the Kalman smoother. The last panel uses the parameter obtained by MCMC

4.9.2 Seasonal Component

Seasonal variability can be modelled by adding extra state components for the effect
of each season. A common description of seasonality uses trigonometric functions
and is achieved by using two model states for each harmonic component. Monthly
data with annual and semiannual cycles would use four state components and the
following model and observation matrices

Mseas =

⎡

⎢⎢
⎣

cos(π/6) sin(π/6) 0 0
− sin(π/6) cos(π/6) 0 0

0 0 cos(π/3) sin(π/3)
0 0 − sin(π/3) cos(π/3)

⎤

⎥⎥
⎦ (4.25)

and
Hseas = [

1 0 1 0
]
. (4.26)
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Fig. 4.3 Two variance parameters of example 4.9.1 estimated byMCMC. Histogram is theMCMC
chain histogram.The solid line is a kernel estimate for themarginal posterior probability distribution.
Dotted vertical line is obtained by numerical minimization of the log likelihood

In addition, a corresponding part or the model error covariance matrix Qseas has
to be set up to define the allowed variability in the seasonal amplitudes. A sim-
ple approach is to use a diagonal matrix with equal values for each component as
diag(Qseas) = [σ 2

seas, σ
2
seas, σ

2
seas, σ

2
seas]T . If we set these variances to zero, the DLM

algorithm will fit a temporally fixed seasonal amplitude.
For illustration we use a simulated monthly data with yearly variation that has

some randomness in the amplitude. The observations have a piecewise linear trend
similar to example in Sect. 4.2.1 and some values as missing to see the effect on
the uncertainties. We fit a seasonal component with one harmonic function, but we
allow somevariability in the amplitude and trend,withσtrend = 0.005 andσseas = 0.4.
Figure4.4 shows the generated data together with both the fitted mean process and
the fitted seasonal component. A similar example was also used in Roininen et al.
(2015).

4.9.3 Autoregressive Process

Autoregressive processes have serial dependence between the observations. A gen-
eral AR(p) process is defined by p coefficients [ρ1, . . . , ρp] and an independent
innovation term ε as
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Fig. 4.4 DLM smoother fit to synthetic data in Sect. 4.9.2 with seasonal variation, piecewise linear
trend, and missing observations

yt = ρ1yt−1 + ρ2yt−2 + · · · + ρp yt−p + ε, ε ∼ N (0, σ 2
AR) (4.27)

For including an autoregressive component into the state space formulation we
need to use state variables that “remember” their previous values. This can be
achieved by suitable evolution operator MAR. For example, AR(3) process with
coefficients [ρ1, ρ2, ρ3], will have three extra states with

MAR =
⎡

⎣
ρ1 1 0
ρ2 0 1
ρ3 0 0

⎤

⎦ , HAR = [
1 0 0

]
, QAR =

⎡

⎣
σ 2
AR 0 0
0 0 0
0 0 0

⎤

⎦ . (4.28)

A pure AR(3) process would then be obtained by setting the observation error
σ 2
obs in Eq. (4.1) to zero and the model error component equal to the innovation

variance σ 2
AR. If we, in addition, have σ 2

obs > 0, it will result to an ARMA. In fact all
ARMA and ARIMA models can be represented as DLM models (Petris et al. 2009,
Sect. 3.2.5) and many ARIMA estimation software implementations use the Kalman
filter likelihood Eq. (4.23) to formulate the cost function for estimation.

4.9.4 Regression Covariates and Proxy Variables

In many applications the variability in the observations is affected by some known
external factors, such as temperature, air pressure or solar activity. Sometimes these
variables can be measured directly, as for the temperature, and sometimes their effect
is modelled via a proxy, such as a radio fluxes for the solar effect. As an example,
assume an observations model



152 M. Laine

yt = μt + γt + βtZt + εobs, (4.29)

where μt and γt are the mean level and the seasonal components, Zt is a row matrix
of the values of the regression variables at time t , and βt is a vector of time-varying
regression coefficients. The effect of the covariates can be formulated by having the
coefficients as extra states, xproxy,t = βt , using an identity model operator, and by
adding the covariate values to the observation operator Ht as

Hproxy(t) = Zt = [
Zt,1, . . . , Zt,p

]
, (4.30)

Mproxy = Ip = diag(1, . . . , 1), (4.31)

Qproxy = diag
([

σ 2
proxy,1, . . . , σ

2
proxy,2

])
. (4.32)

The DLM model for equation Eq. (4.29) is then build up as diagonal block matrix
combination of the components:

xt = [
xtrend,t xseas,t xproxy,t

]T
, (4.33)

Mt =
⎡

⎣
Mtrend 0 0
0 Mseas 0
0 0 Mproxy

⎤

⎦ , (4.34)

Ht = [
Htrend Hseas Hproxy(t)

]
, (4.35)

Qt =
⎡

⎣
Qtrend 0 0
0 Qseas 0
0 0 Qproxy

⎤

⎦ . (4.36)

The covariate variances σ 2
proxy control the allowed temporal variability in the

coefficients βt and their values can be estimated or set to some prior value. By setting
the variances to zero, turns this model into classical multiple linear regression.

4.10 Synthetic GNSS Example

Next we estimate trends in synthetic GNSS time series provided by Machiel S. Bos
and Jean-Philippe Montillet. In this application, the trend estimated in the GNSS
time series represents the tectonic rate on the East and North components and the
vertical land motion on the Up coordinate. The characteristics of the GNSS time
series are discussed in details in Chaps. 1 and 2. We select data for one of the stations
(labeled station n:o 3 in the figures) with the three components (East, North, Up)
shown in Fig. 4.5, top left panel. The time series are simulated using linear trend,
yearly seasonal variation and a combination of coloured and i.i.d Gaussian noise.
We assume that we do not know the noise structure a priori. We are interested in the
(non-local) linear trend and we need a model component for the local fluctuations
seen in the data. This chosen data sets does not contain any sudden jumps in the

http://dx.doi.org/10.1007/978-3-030-21718-1_1
http://dx.doi.org/10.1007/978-3-030-21718-1_2
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Table 4.2 Parameter estimates from DLM/MCMC estimation for the synthetic GNSS time series
example. The uncertainty value is one-sigma posterior standard deviation. The true values for trends
were 12.59, 17.64, and 2.778 mm/yr. The true seasonal amplitude was 1 mm

Data Trend [mm/yr] Seasonal
[mm]

σlevel σAR ρAR

East 12.62 ± 0.61 0.93 ± 0.15 0.20 ± 0.024 0.85 ± 0.024 0.62 ± 0.03

North 17.76 ± 0.69 1.19 ± 0.16 0.22 ± 0.02 0.86 ± 0.024 0.64 ± 0.29

Up 2.22 ± 1.00 0.74 ± 0.29 0.34 ± 0.07 2.00 ± 0.075 0.87 ± 0.016

measured position. Modelling offset changes would require a different strategy, with
some iterative estimate of the jump locations, which we will not consider here. We
use a DLM approach, where we assume that the non-stationary part can be modelled
by local polynomials and the stochastic stationary part can be described as an AR
or ARMA process in addition to the i.i.d. Gaussian observation uncertainty. See
Dmitrieva et al. (2015) for a somewhat similar approach, which uses state space
representation and Kalman filter likelihood to model flicker and random walk type
noise in several stations at the same time.

So, in contrast to the spline smoothing example in Sect. 4.2.1, which had σ 2
level = 0

and σ 2
trend > 0, wewill extract a non-local linear trend, σ 2

trend = 0, andmodel the local
non-stationary fluctuations as a local level model with σ 2

level > 0. In addition, we use
a yearly seasonal component for the daily observations and an autoregressive AR(1)
noise component to account for the possible residual correlation. The observation
error is assumed Gaussian and to have known standard deviation, σobs = 1mm for
components “East” and “North” and σobs = 4mm for the “Up” component. The
AR(1) innovation variance σAR as well as the AR coefficient ρAR will be estimated
from the data. We use Kalman filter likelihood to estimate the 2 variance parameters
and the AR(1) coefficient byMCMC.We analyse the three components (East, North,
Up) separately.

The true trend coefficients used in the simulation for the three data setswere give as
12.59, 17.64, and 2.778 mm/yr. The estimates obtained for them were 12.62 ± 0.61,
17.76 ± 0.69 and 2.22 ± 1.00 mm/yr, with one-sigma posterior standard deviations
after±. Table4.2 shows the parameter estimates obtained by combination of Kalman
simulation smoother for the linear slope and seasonal amplitude, and MCMC for
θ = [σlevel, σAR, ρAR]T . Figures4.5 and 4.6 visualise the results graphically. There
is a hint of negative autocorrelation in the ACF plot for the East components in
Fig. 4.5, but otherwise the residuals, obtained from the scaled prediction residuals,
equation Eq. (4.24), look veryGaussian. In overall, the selectedDLMmodel seems to
provide statistically consistent fit and reproduce the true trends within the estimated
uncertainty.
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Fig. 4.5 GNSS example data set and the DLM fit. Top left: three data components. Top right:
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4.11 Computer Implementation

The examples and code to fit DLM models described here are available from a
Github repository at https://github.com/mjlaine/dlm. The code is written in Matlab
and it contains a reference implementation of Kalman filter, smoother and simulator
algorithms as well as optimization and MCMC for the structural parameters. Other
software implementations for DLM include state space models toolbox for Matlab
described in Peng andAston (2011), a R package dlm described in Petris et al. (2009)
and python implementations in the statsmodes package (Seabold and Perktold
2010).

4.12 Conclusions

DLMprovides a general framework for modellingmany kinds of environmental time
series, including geodetic ones. Some features of GNSS time series, such as the often
assumed flicker noise and handling of offsets and data jumps might still require more
special treatments.However, theDLMapproachprovides a very useful generalization
to the ordinary linear regressionmodel. Its strengths include the ability tomodel non-
stationary processes by allowing temporal change in the model coefficients and the
direct modelling of the processes that generate the observed variability. By guiding
the analysis in terms of the generating processes and their uncertainties it provides
a good basis for Bayesian statistical inference. If there is prior knowledge about
the changes, such as known change points in the data, they can be included in the
model. By using simulation based Bayesian DLM analysis, your prior and posterior
model simulations can be checked to be consistent with physical constrains and the
observations.
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Chapter 5
Fast Statistical Approaches to Geodetic
Time Series Analysis

Michael A. Floyd and Thomas A. Herring

Abstract We present fast algorithms for estimating common parameters in geodetic
time series based on statistical approaches to assess the impact of temporal correla-
tions. One such assessment is based on the characteristics of the time series residuals
averaged over different durations and with the statistical characteristics extrapolated
with a first-order Gauss–Markov process to infinite averaging time. This approach
circumvents a limitation of spectral methods, which cannot reliably account for the
impact of temporal correlations over periods longer than the length of a given time
series. The subsequent fast approach is the use of a Kalman filter with process noise
values determined from the first-order Gauss–Markov characteristics to estimate all
parameters. These methods are particularly useful for assessing long and numerous
geodetic time series, which are nowadays ubiquitous, because they are much less
computationally intensive than comprehensive methods, such as maximum likeli-
hood estimators. Our approaches are compared to other commonly used programs,
such as Hector, to understand the speed and impact of outliers on the algorithms,
and to provide advice and suggestions on the uses of such algorithms in operational
geodetic processing.

Keywords First-order Gauss–Markov · FOGMEX · Time series statistics ·
Correlation time · GAMIT/GLOBK · tsfit

5.1 Introduction

Time series from observation sites continuously recording data from Global Naviga-
tion Satellite Systems (GNSS), such as the Global Positioning System (GPS), exhibit
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temporally correlated noise characteristics (e.g. Zhang et al. 1997). The most fun-
damental (and common) quantity that geophysicists wish to measure from repeated
geodetic observations is the secular (tectonic) velocity, which is the linear trend of a
time series in three components (local east, north and up). The main effect of tempo-
rally correlated noise on the secular rate is to decrease the formal precision (increase
the formal uncertainties) when estimating a trend. Time series parameters of inter-
est to geophysicists, in addition to the secular rates, are seasonal cycles, offsets due
to earthquakes or equipment changes, and transient (non-secular) motions, such as
volcanic inflation and deflation or fault creep episodes.

Common estimation methods, such as minimization of time series residuals in a
least-squares sense, often include an associated covariance matrix that is constructed
by neglecting off-diagonal (correlation) terms, resulting in an implicit assumption
that all observations are independent. Algorithms have been developed based on
maximum likelihood estimation to accommodate the estimation of common time
series parameters in the presence of temporally correlated noise. Here we present
our statistical approach, which circumvents the need for computationally expensive
maximum likelihood estimatormethods and the use of full temporal covariancematri-
ces. The approach is primarily designed to approximate the increase in uncertainty
of the estimated parameters due to temporal correlations. We extend our method by
incorporating an equivalent random walk process noise, derived from the statistical
estimation of the increase in parameter uncertainty due to temporally correlated noise,
into a Kalman filter, which then estimates simultaneously all the chosen parameters
to fit the time series and their more realistic uncertainties.

First, we describe the motivations for using a statistical, rather than maximum
likelihood estimator, technique for time series analysis in geodesy and geophysics.
Next, we introduce our algorithm by explaining how deviation from this expectation
informs us about the influence of temporal correlations within the time series. We
also describe the implementation of the Kalman filter extension, which we consider
to be our ultimate method, and demonstrate it in comparison to the basic statistical
method and other algorithms, which employ the maximum likelihood methods men-
tioned briefly, above, and in detail in other chapters of this book. Then we test the
performance of our algorithm, against Hector (Bos et al. 2013), using simulated time
series with known parameters and real time series with unknown parameters from
sites in the Plate Boundary Observatory (PBO).

5.2 Motivation and Statistical Impact of Temporal
Correlations

It is most often the case that geodetic time series analysis seeks to estimate param-
eters of a geophysical nature for interpretation. Such parameters include the secular
velocity (linear trend), seasonal terms and offsets at the epochs of discontinuities
due to events such as earthquakes and equipment changes. The determination of the
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uncertainties of the estimated parameters is as critical as the parameter estimation
itself if the parameter estimates are to be used to differentiate between different phys-
ical models that explain the observations. The character and magnitude of the noise
itself is often a secondary consideration for more detailed research. Therefore, we
wish to have a fast algorithm that simply produces a reasonable estimate of the trend
sigma (i.e. secular velocity uncertainty), in addition to the other common parameters.

In order to characterize the statistical properties of a time series we note the
following properties that can be exploited. We assume that a reasonable number
of values are in the time series and, for geodetic time series, the spacing between
the values will be constant but that there can be missing data. We also assume that
each data point in the time series has an estimated standard deviation generally
derived from the large estimator used to process the raw GNSS data. These standard
deviations typically vary frompoint-to-point andwe assume their relative sizes reflect
the quality of the time series estimates at each time. Our algorithm necessarily uses
data weighted by the inverse of these variances. As is often the case for GNSS time
series, the magnitude of the standard deviations may not fully represent the errors in
each data point andwewill assume that values can be scaled to better approximate the
scatter in the time series, i.e. for some processing packages, the standard deviations
may be too small and for other packages theymay be too large. The latter case applies
typically to the short-term scatter of time series generated by GAMIT (Herring et al.
2018).

A common measure for the appropriateness of the size of the standard deviations
of the points in a time series is the chi-squared per degree of freedom (χ2/f ) of the
residual values after estimating parameters to fit the time series. χ2 is the sum of the
squared residuals weighted by the inverse of the variance of the data point, i.e.

χ2 =
N∑

i=1

(xi − x̄i )
2

σ 2
i

(5.1)

where xi is the value of the ith data point, x̄i is the model value of the ith data point
and σ 2

i is the standard deviation of the ith data point. The degree of freedom, f,
is the difference between the number of data points, N, and number of parameters
estimated, p, to fit the time series.We define the normalized root-mean-square misfit,
for weighted data, as the square root of the χ2 misfit (sum of the weighted squared
residuals) per degree of freedom, i.e.

NRMS =
√√√√ 1

(N − p)

N∑

i=1

(xi − x̄i )
2

σ 2
i

(5.2)

The factor by which this NRMS value deviates from unity is an indication of how
much the data uncertainties should be scaled to adequately describe the scatter in
the data or, more usually, treated as an a posteriori scaling factor for the parameter
sigmas. The NRMS can therefore be used to re-scale the estimates of the standard
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deviations of the parameters such that the standard deviations are consistent with the
scatter of the residuals. If the time series contained only white noise, the estimated
standard deviations would reflect the uncertainties in the parameter estimates. If the
noise is Gaussian and the estimator linear, the noise in the parameter estimates will
also be Gaussian.

To better understand the nature of time series residuals, we examine the charac-
teristics of mean values of either the original time series values themselves or of the
residuals. For most time series where the changes in the time series due to estimated
parameters vary slowly (e.g. linear trends and annual signals for daily sampled time
series), the mean of the data can be calculated and removed first, then the parameters
fit to the residual values. If the time series consists of statistically independent data
points, it is said to exhibit white noise and the scatter of the residuals relative to the
mean value should be

√
N smaller than the scatter of the original data, whereN is the

number of values used to calculate each mean. That is, if a mean is calculated from
four times as many data points as another estimate of the mean, the scatter should be
reduced by two. The weighted mean, w, for any given interval of data, j, containing
n data points is expressed as

w j =
∑n

i=1
(xi−x̄i )

2

σ 2
i∑n

i=1
1
σ 2
i

(5.3)

and the variance, σ 2
j , associatedwith this weightedmeans is the inverse of the denom-

inator.
If the χ2/f is computed using the standard deviations of such mean values, calcu-

lated over many intervals within the complete time series, it should remain constant.
This type of behavior is rarely (if ever) seen in GNSS time series. For time series with
large temporal correlations, the scatter of the mean values would be very close to the
scatter of the original data; the χ2/f would increase linearly with the number of data
in the mean rather than remaining constant. The behavior of χ2/f with increasing
numbers of values in the means informs us about any temporal correlations in the
time series. The mean values do not need to be used in the parameter estimates; the
means and χ2/f values can be computed from the residuals to the fit of the origi-
nal data, which makes the algorithm fast and rapid changes due to offsets, which
might otherwise affect the mean value for that window of data, can be included in
the parameter estimates. The χ2/f of these weighted means per window of data is
expressed as

χ2/ f =
∑m

j=1
w j

σ 2
j

m
(5.4)

wherem is the number of means (i.e. number of averaging windows, of length n data
points, within the time series). Given N data points in the entire time series, m <=
N /n.
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To exploit the behavior of the means of the time series residuals, we go back
to ideas that have been used since the 1930s (Bartlett 1935). Bartlett proposed the
idea that in the presence of correlated noise, results obtained using data separated by
twice the correlation time,where the correlation time is the 1/e value of the correlation
function (e.g. Eq. 5.5), would yield estimates and standard deviations that accounted
for the correlation. A first-order Gauss–Markov process, for example, exhibits a
correlation function, r, that is as a function of data separation, �t, and correlation
time, τ , i.e.

R(�t) = σ 2 exp

(
−�t

τ

)
(5.5)

Leith (1973) reviewed this type of approach andmethods for computing the effec-
tive number of data accounting for temporal correlations.

In our fast algorithm, introduced and briefly described by Herring (2003) and
Reilinger et al. (2006), we assess the effective number of data by looking at the
behavior of χ2/f for time series residuals after parameter estimation over varying
durations of averaging. If the correlations between points drop to zero after a specific
number of data, n, are included in calculating the means, wj, for a given window
interval, the χ2/f of the means of the residuals would remain constant for means
taken with more than that number of data of points. Our “First-Order Gauss–Markov
Extrapolation” algorithm (FOGMEX), which is an option for the GLOBK (Herring
et al., 2015) program tsfit and was previously referred to as the “RealSigma” option
by Herring (2003), uses this principle to estimate standard deviations of velocity
parameter estimates that account for the correlations between data points. Based
on the behavior of χ2/f with increasing number of values used in calculating the
means of the residuals, the algorithm tries to compute the effective number of data
at which the χ2/f of the means would stop increasing as more data are used in
computing the means of the residuals. In Fig. 5.1, we show an example of this type
of behavior for a triangular correlation function (i.e. correlation decreases linearly)
where the correlation goes to zero after 32 days of separation between data points.
Part (a) of the figure shows one realization of a 20-year daily sampled time series
where the time series has white Gaussian noise with 1 mm standard deviation and
triangular correlation function noise with 1 mm standard deviation. The total RMS
scatter of the time series is

√
2 mm. A realization of the correlated time series is

generated by multiplying the eigenvectors of the covariance matrix of the time series
with Gaussian white noise generated with variances given by the eigenvalues of
the covariance matrix. This technique can be used to generate realization of time
series with any covariance matrix. For each realization, we compute the χ2/f of
the means of the residuals averaged over different averaging times. The maximum
averaging time is set so that there are at least m = 10 data windows providing mean
values to compute χ2/f, i.e. the longest averaging time is one tenth of the duration
of the time series. The white noise standard deviation is used to compute χ2/f (see
discussion in Sect. 5.3.1 for treatment when real data are analyzed). Since each
realization is a random process, we average the results over 1000 realizations to see
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Fig. 5.1 a Example synthetic time series of daily time series values for 20-years of data with
1 mm standard deviation of white noise and 1 mm standard deviation noise with a 32-day duration
triangular correlation function; b Behavior of the χ2/f of the means of residuals averaged over
different durations from n = 7 days up to n = 732 days. The black curve with error bars is the
average of the χ2/f behavior for 1000 realizations. The error bars are the root-mean-square (RMS)
scatters about the mean for different averaging times. The blue line is the FOGMEX algorithm fit
discussed in the text

the average behavior, as shown in part (b) of the figure. As expected, with averaging
intervals greater than approximately 32 days the χ2/f flattens to a constant value.
The FOGMEX algorithm looks for this type of asymptotic behavior with real data.

The functional formwe fit is based on the behavior of a first-order Gauss–Markov
process and is given by

χ2(tav)/ f = α
(
1 − e−tav/τ

)
(5.6)

where χ2(tav)/f is the chi-squared per degree of freedom (f ) for averaging time tav.
We estimate the scaling factor α and the correlation time τ in for the χ2(tav)/f with
a non-linear least-squares estimator. The

√
α is the scale factor we multiply the rate

standard deviations from thewhite noise weighted least squares estimator to generate
a more realistic estimate of the standard deviation. The blue line in Fig. 5.1b is the
fit of Eq. (5.5) to the averaged χ2(tav)/f values.
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5.3 The First-Order Gauss–Markov Extrapolation
(FOGMEX) Algorithm

5.3.1 Weighted Least-Squares Algorithm

The implementation of the FOGMEX (First-Order Gauss–Markov Extrapolation)
algorithm for real data has several elements. First, we estimate the white noise level
of the data by computing χ2/f of the differences between adjacent residuals (first dif-
ference) to a parametric fit to the time series data, including one’s choice of common
geophysical parameters such as seasonal signals, discontinuities and earthquakes.
This calculation allows us to scale the standard deviations of the data points to be
consistent with the short period scatter. The assumption here is that the correlated
part of the noise model will not contribute significantly to the first difference between
days of the residuals.We use the re-scaled standard deviations to compute the χ2/f of
the residuals for different averaging times starting at n = 7 days and progressing to a
duration that has at least 10 mean values being used to compute the χ2/f, as described
previously. If there were no data gaps, this duration will be one tenth the duration
of the time series. In order to extrapolate the χ2/f behavior of the mean values to
the long-term constant value we assume the noise process is a first-order Gauss—
Markov (FOGM), or autoregressive order 1 process, and we estimate the correlation
time and the scale level of the FOGM process using Eq. (5.6). Once the correlation
time and scale level are computed, we use the scale value, α, to compute a rescal-
ing of the standard deviations at, effectively, infinite-averaging time. For a FOGM
process this value is well defined and this is the primary reason we use this class of
noise process. The basic FOGMEX algorithm applies this re-scaling to the standard
deviations of the parameters estimates from a weighted least-squares estimate with
the initially rescaled standard deviations to reflect the short period noise in the data
(determined from the daily differences). We refer to this method as WLS FOGMEX
because the estimator is weighted least-squares (diagonal covariance matrix) and we
only change the estimated standard deviations based on the FOGMEX algorithm.
We show an example of this procedure in Fig. 5.2. The synthetic data in this case
are generated from a FOGM process with 1 mm standard deviation and a correlation
time of 210 days, and 1 mm standard deviation white noise. Since the signals here
are random processes, again there is noise in the estimates and we average over 1000
realizations to reduce the impact of these random variations. These 1000 realizations
allow us also to compute the variations between the realizations and we are thus
able to compute the standard deviations of the estimates of the standard deviations.
As can be seen in Fig. 5.2c the mean behavior of the averaged residuals χ2/f very
closely follows the expected behavior. There is a subtlety in this analysis. To ini-
tially test the algorithm, we used just the simulated noise data with no parameters
estimated. As we discuss below, the averaged results from this approach match the
FOGMmodel predictions for the rate uncertainties. However, in practice, additional
parameters always need to be estimated and this estimation affects the nature of the
statistics of the residuals. Figure 5.2 and the results shown here use residuals after
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Fig. 5.2 a One realization of a FOGM process with 1 mm standard deviation and a correlation
time of 210 days added to 1 mm standard deviation white noise. The total duration is 20 years; b the
χ2/f of the means of the residuals averaged over different durations for one time series realization
(black circles) and the fit of a scale and correlation time the mean χ2/f values (blue line); and c the
mean of the χ2/f plots averaged over 1000 realizations. The black line is the averaged values and the
blue is the fit. The error bars show the RMS scatters of the mean value χ2/f for different averaging
times

two parameters (reference position and rate) have been estimated. The summary of
the nature of the algorithm estimates are given in Tables 5.1 and 5.2. Some of the
analysis types in the tables are described below.

For the 20-year time series, the standard deviation of the rate estimate is
0.038 mm/yr computed from the correct covariance matrix for the data. The aver-
age FOGMEX computed standard deviation was 0.037 ± 0.011 mm/yr (about 3%
smaller than the correct value) when using the noise itself to compute the changes in
χ2/f with increasing averaging times (FOGM plus white noise process). If however
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Table 5.1 Comparison of the estimates of the velocity standard deviations from the analysis of
20-years data spans with either FOGM plus white noise (WN), each with 1 mm standard deviation,
or flicker noise (FN) plus white noise, again each with 1 mm standard deviation. The “Actual”
column is computed from the full covariance matrices and represents the true standard deviation;
WLS FOGMEX estimate is the average of 1000 realization with the ratio in the following column
being the ratio to the actual estimate. KF RW is the Kalman filter estimate (see Sect. 5.3.2) with
the ratio to the actual in the following column. The process types either use the simulated noise
(“Noise” label) or the residual after estimating an offset and linear trend from the data. All units
are mm/yr

Process Actual WLS FOGMEX Ratio KF RW Ratio

FOGM + WN Noise 0.038 0.037 1.03 0.038 1.00

FOGM + WN Residual 0.038 0.031 1.23 0.032 1.19

FN + WN Noise 0.043 0.032 1.36 0.033 1.33

FN + WN Residual 0.043 0.022 1.97 0.023 1.92

Table 5.2 Root mean square
(RMS) scatters of the velocity
estimates from the 1000
realizations used to generate
Table 5.1. When the full
covariance matrix (“Actual”
column) is used the RMS
scatter matches the estimated
standard deviations. For the
WLS and KF estimators, the
scatter is larger than the
estimated standard deviations

Process Actual WLS
FOGMEX
RMS

KF RW RMS

FOGM + WM
Noise

0.038 0.040 0.061

FOGM + WM
Residual

0.038 0.039 0.055

FN + WN
Noise

0.043 0.049 0.047

FN + WN
Residual

0.043 0.047 0.047

the residuals, after removing a reference position and trend, are used to compute
the changes in χ2/f with increasing averaging times, the average estimated standard
deviation drops to 0.031 ± 0.008 which is 23% less than actual uncertainty. Remov-
ing the trend reduces the amount of power in the noise spectrum at long periods and
has a corresponding impact on large duration averaged χ2/f values. The uncertainty
values on the standard deviations, above, are computed from the RMS scatter of the
standard deviation estimates, which correspond to the error bars in Fig. 5.2c.

From the 1000 realizations, we are able to compute the RMS scatter of the velocity
estimates. The RMS scatter of the 1000 rate estimates when the weighted least-
squares solution uses the correct (full) data covariance matrix matches the estimated
standard deviation of 0.038 mm/yr as should be expected. The RMS scatter of the
WLS FOGMEX estimates is between 0.039 and 0.040 mm/yr. (Table 5.2). The
small variation reflects the “noise” in the ensemble average from 1000 realizations.
The value is larger than the scatter using the correct covariance matrix because
the weighting of the data as a function of time in determining the rate estimate is
different between the full covariance matrix and the diagonal white noise covariance
matrix. This topic is discussed in more detail in Sect. 5.3.3. In these simulations, the
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estimated rate standard deviations are 19 times larger than would be computed using
white noise with the scatter of the residuals.

This FOGMEX algorithm using an extrapolation to infinite time is designed to
determine the standard deviation of the velocity estimates taking into account the
correlations in the time series residuals. The basic algorithm is referred to as WLS
FOGMEXbecause the velocity estimate is basedon aweighted least-squares estimate
assuming white data noise.

5.3.2 Kalman Filter Extension

Anextension to theWLSFOGMEXalgorithm is to use the correlated noise properties
from the FOGMEX algorithm in a Kalman filter estimator. For this application we
use a random walk plus white noise model where the random walk (RW) process
noise level is set to generate the same velocity uncertainty as predicted by the WLS
FOGMEXmodel. The RW process noise value is computed simply as the FOGMEX
estimate of the variance of the rate multiplied by the data duration (e.g. Zhang et al.
1997, Eq. 2). This value is appropriate when the rate noise is dominated by the
correlated noise process and there is little missing data. This algorithm we refer to
as the Kalman Filter Random Walk (KF RW) method.

The motivations for this extension are two-fold. The FOGMEX algorithm sets
a white noise level in the least-squares solution at a value to represent the lowest
frequencies. The estimates of the standard deviations of parameters that represent
higher frequency terms such as seasonal and offset terms are greatly overestimated
in the WLS FOGMEX algorithm (see examples in Sect. 5.5). The second motivation
is improved offset estimates. In a WLS solution, the overall WRMS scatter of the
residuals is minimized and when there are systematic deviations in the residuals,
offset estimates that minimize the overall WRMS scatter, will often leave a residual
discontinuity at the times of breaks in the time series. The Kalman filter estimator,
which will track the systematics of the residuals provided the process noise level is
correct and the time series noise is stationary, will generate an offset estimate which
better match the discontinuities in the time series (Wang and Herring 2019).

In Tables 5.1 and 5.2 we also show the results for the estimates of velocity using
the KF RW algorithm. When the a FOGM + WN process is simulated and the χ2/f
is computed using the process noise itself, the KF RW algorithm generates the same
estimate of the rate standard deviation as the rigorous solution. When residuals are
used, the algorithm underestimates the standard deviation by 19% which is similar
to theWLS FOGMEX algorithm. The RMS scatter of the velocity estimates is larger
than the computed standard deviations. When the residuals are used to compute the
process noise, the RMS scatter of the estimates is reduced (from 0.061 mm/yr to
0.055 mm/yr) and this reduction is likely associated with the changing the relative
magnitudes of the random walk and white noise components in the Kalman filter
analysis. Data weighting is discussed in more detail below.
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5.3.3 Impact of Flicker Noise

FOGM processes are stationary and can be easily incorporated into Kalman filter
type estimators. By taking the limit as the correlation time in a FOGM process
goes to infinity, they can represent random walk processes which are strictly non-
stationary. However, most analyses of geodetic time series suggest that flicker noise
(power spectral index -1) combined with white noise is a better representation of the
noise characteristics of GNSS time series. To evaluate how the FOGMEX algorithm
behaves in the presence of flicker plus white noise, we ran a series of simulations
with flicker and white noise. We generated realizations of flicker noise by creating
a covariance function from the inverse Fourier transform of a 1/frequency power
spectral density function. Since a mean will always be removed from the data, we set
the spectral density to be zero at zero frequency. The covariance function depends
on the duration of data processed. Similar to Figs. 5.2, 5.3 shows the same type of
analyses but using flicker noise plus white noise each with equal standard deviations
of 1 mm.

The behavior when flicker plus white noise is used for the simulation shows small
systematic deviations from the FOGM fit to the flicker noise behavior (Fig. 5.3b).
These deviations are likely to affect the projection to long averaging times. As we
did with FOGM simulations, we compared the FOGMEX error estimates with the
true values computed from the full flicker-plus-white noise covariance function for
the 20-year simulations. These results are given in Tables 5.1 and 5.2 along with
the FOGM values for comparison. We also ran these tests fitting the FOGMEX χ2/f
dependence to the noise itself and to the residuals after removing offsets and linear
trends. When the full covariance matrix is used, the standard deviation of the rate
estimate is 0.043 mm/yr. The RMS scatter of estimates using the full covariance
matrix in the estimator is 0.043 mm/yr with repeats of the 1000 sample simula-
tions generating values between 0.042 and 0.044 mm/yr. The small differences from
0.043 mm/yr are due to the statistical variations expected when only 1000 simula-
tions are used. (An approximate noise estimate is the inverse of the square root of
half the number of samples, or ~5% in our case). The FOGMEX noise estimate of
the standard deviation is 0.032 mm/yr when the noise itself is used and 0.022 mm/yr
when residuals are used. These values are 1.4 and 2.0 times smaller than the actual
standard deviation of the velocity estimate. So when the noise in the time series is
flicker noise, our FOGM extrapolation to long averaging times underestimates the
rate uncertainties; a cross-over where the blue line (FOGM fit) falls below the black
line (flicker noise simulations) can be seen in Fig. 5.3 at long averaging times. The
KF RW rate estimates, using the FOGMEX rate sigmas, generated an average stan-
dard deviation of 0.033 mm/yr when the noise itself is used and 0.023 mm/yr when
the residuals are used, and thus have a similar level of underestimation. The RMS
scatter of the estimates for both WLS FOGMEX and KF RW varies between 0.047
and 0.050 mm/yr. Again, the algorithm underestimates the scatter in the estimates.
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Fig. 5.3 Similar to Fig. 5.2 except the simulated process is flicker noise with 1 mm standard
deviation and 1 mm white noise

5.3.4 Dependence of Results on Data Duration and Noise
Ratios

We investigated the underestimation of the standard deviations by running a series of
simulations with different durations of data, from 6 months to 20 years, and different
mixes of white noise to flicker noise for a 10-year time series. The flicker noise and
FOGM standard deviations were varied from 0.5 mm to 5.0 mm while the white
noise was kept constant with a 1 mm standard deviation. The simulations were each
repeated 1000 times and the values averaged. Again, we ran these simulations with
the statistics computed from the noise itself and from the residuals. The results are
shown in Figs. 5.4 and 5.5 for both these cases. When modeling a process with
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Fig. 5.4 Behavior of the FOGMEX algorithm for different durations of data for theWLS estimator
(black) and KF RW estimator (red) for equal proportions of flicker noise and white noise, and for
equal proportions of 210 day FOGM process noise and white noise (blue). The top figure a shows
results when the noise itself is used to compute the statistics; the bottom figure b shows results when
residuals are used. Some of the variations are due to random variations in the 1000 realizations used
to generate these results. The impact of using residuals is mostly evident for the FOGM + WN
model

flicker noise and white noise, the conclusion from Figs. 5.4 and 5.5 is the FOGMEX
algorithm in both the WLS and KF forms underestimates the standard deviations the
rates estimated by a factor 2.0 when residuals are used and 1.4 when the noise itself
is used, independent of the data duration and the mix of white noise to flicker noise.
When the data noise is simulatedwith FOGMnoise, the algorithm correctly estimates
the sigma of the rate estimates when the noise itself is used but can underestimate
the station deviations when the data durations are short compared to the correlation
time of the FOGM model.

The factor of 2.0 is an average value of the scaling needed for flicker plus white
noise when residuals are used. There is also ~33% variation of the sigma estimates
from realization to realization. The factor does not depend strongly on data duration.
This variation occurs because of variations in the power of the low frequency part
of the spectrum. The noise in a periodogram estimate of the power spectral density
(PSD) is the PSD value itself for white noise and for most stochastic processes this
relationship is valid. In a single realization of a time series there are a limited number
of low frequency estimates and hence there are variations in the estimates of the low
frequency power. Estimating a linear trend from the data also reduces the power at
low frequencies.
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Fig. 5.5 Similar to Fig. 5.4, showing the sensitivity of the FOGMEX algorithm to different ratios
of correlated noise to white noise for the WLS estimator (black) and Kalman filter random walk
estimator (red) for a duration of 10 years, and for a FOGM processes with a correlation time of
210 days (blue). The top figure shows the results when the noise itself is used to compute the
statistics, the bottom figure shows the results when residuals are used

5.3.5 Time Series Data Weighting

The other aspect of using a time correlated noise model is the sensitivity of the
parameter estimates to individual data points. For uniformly spaced, constant stan-
dard deviation white noise, the sensitivity of the rate estimate is linear with the
maximum sensitivities at the beginnings and ends of the data. For positive temporal
correlations, the sensitivities increase at the ends of data relative to the points in the
middle. This behavior is shown in Fig. 5.6a, b where the sensitivity of a flicker noise
model, a FOGM model with correlation time 210 days and a random walk, each
with the same variance as an added white noise component, is shown. The lower
part of Fig. 5.6b shows a zoom in the y-direction to highlight the differences in the
intermediate time regimes. The sensitivity to the data at the edges of the time interval
is most extreme for a pure randomwalk model (with no white noise component). For
this model, the rate is determined simply from the difference between the first and
last data points divided by the time between them. One of the potential problems of
using temporally correlated noise models that do not match the true statistical prop-
erties is therefore the extreme sensitivity of the rate estimates to values at the ends
of the data. The difference between estimates using a white noise estimator and the
correlated noise estimator would give an indication of the possible magnitude of this
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effect. With our FOGMEX algorithm, the white noise and Kalman filter estimates
should be compared. Large differences in the estimated rates could indicate that one
or both of the estimates might have errors larger than implied by the estimates of the
standard deviation.

Adding discontinuity estimates and periodic parameters to the estimates also
changes the sensitivity. As might be expected, adding a discontinuity breaks the
sensitivity at that time. For white noise only, when only a break is estimated, the
sensitivity is linear on either side of the break with the magnitudes depending on
where the break occurs in the times series. We show an example in Fig. 5.6c, d where
both a break and annual sine and cosine periodic terms are estimated. The break is a
third of the way through the data spans. The characteristics are as expected with the
periodic term causing an oscillation in the sensitivity and the break causing a clear
offset. The correlated noise models have higher sensitivities to data near the breaks
and the ends of the time series. In these sensitivity curves, the flicker plus white noise
model, tends to lie between the KF RW and WLS estimators.

5.4 Comparisons to Hector Results

Two sets of simulated data with a combination of flicker noise and white noise were
generated to test different algorithms accounting for temporal correlations in time
series data. One of these sets simply had white and flicker noise, linear rates and
seasonal signals. The other data set had breaks of different sizes and locations. The
data sets supplied had Hector analyses of both data sets. For the dataset with breaks,
the epochs of the breaks detected with Hector as well as the actual epochs of the
breaks were given. Our algorithm has no automatic break detection code and for
these comparisons we processed the data with the Hector detected breaks, the actual
breaks, and our visually detected breaks. The comparison with the Hector results
compares solutions which used the same break epochs.

5.4.1 Comparison for Time Series with no Breaks

The comparison of the errors in the rate estimates with the estimated standard devi-
ations of the rate estimates for the simulated data set with no breaks is shown in
Fig. 5.7 for the 20 simulated stations. The weighted root-mean-square (WRMS)
and normalized root-mean-square (NRMS) differences for the combined north and
east estimates and the up estimates are given Table 5.3 (along with results from the
analysis of simulated data with breaks). The north and east components are plotted
separately to the height (up) component because of the differences in the levels of
noise between the simulated horizontal and vertical components. The characteristics
of the comparison are (1) in general, the results from the three analysis methods
compared here vary similarly to each other from station to station; (2) the fast algo-
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Fig. 5.6 a Sensitivity of rate estimates to noise in time series. The values at each time show the
change in rate estimate for 1 mm change in the data value at that time. b y-axis zoom of (a) which
shows the sensitivity for middle portion of the data. The white noise sensitivity is linear while the
correlated noise models given greater sensitivity to data at the ends of the time series. c Similar
to (a) except now an offset a third of the way through the time span and an annual periodic (sine
and cosine) terms are estimated. Adding the break increased the white noise rate standard deviation
by 66% while for correlated noise models, the increase was between 13 and 16%. d Zoom in the
y-direction of (c) to show details of the sensitivity
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Fig. 5.7 Comparison of errors in the velocity estimates for Hector, Kalman filter random walk
(KF RW) and weighted least squares with FOGMEX error bars (WLS FOGMEX) analyses of the
Flicker noise plus white noise simulated data set with no breaks in the time-series

rithm methods, WLS FOGMEX and KF RW have smaller error bars than the Hector
analyses; and (3) the Hector error in the velocity estimates tend to fall between the
two fast algorithm results. The statistics of the errors in the velocity estimates are
given in Table 5.3. The characteristics of these comparisons are similar to our own
flicker noise plus white noise simulations presented in Sect. 5.3. As summarized in
Sect. 5.3.3, our analyses showed an underestimate by a factor of 2.0 but in Table 5.3,
the factor compared to the Hector estimate is ~2.5 (with only 20 samples, the random
noise in this estimate due to variations between individual realizations is quite large).
The KF RW scale factor for the horizontal components is 1.74 but this lower value
results from for our use of a minimum value of the random walk process noise. With
this minimum removed, the factor would be closer to the vertical estimate and the
WLS FOGMEX estimates. The actual RMS errors between the methods are sim-
ilar, with Hector having the smallest values of 0.14 and 0.44 mm/yr, and the fast
algorithms having values of 0.15 and 0.53−0.56 mm/yr. This type of deviation is
expected because both KF RW and WLS FOGMEX are using the wrong covariance
matrix and therefore their weighting of the data at different times in the time series
is not consistent with the actual weighting that should be used given the flicker noise
plus white noise model.

An interesting observation about the results plotted in Fig. 5.7 is that the KF RW
and WLS FOGMEX estimates tend to straddle the Hector estimate. As noted in
Sect. 5.3.5, the data weighting as a function of time for KF RW and WLS methods
lie on either side of the flicker noise model and the bounding of the estimates is
consistent with this behavior. Taking the average of the KF RW andWLS FOGMEX
estimates could provide a more robust fast estimate of the velocities. The difference
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Table 5.3 Comparison betweenHector and theWLSFOGMEXandKFRWestimates of velocities
for the simulation data sets

Analysis NE RMS
(mm/yr)

NE NRMS U RMS
(mm/yr)

Up NRMS

Hector 0.14 1.16 0.44 1.07

KF RW 0.15 1.74 0.56 2.57

WLS FOGMEX 0.15 2.83 0.53 2.68

Hector breaks

Hector 0.30 2.07 0.61 1.39

KF RW 0.27 2.16 0.64 2.28

WLS FOGMEX 0.34 3.39 0.73 2.85

Actual breaks

KF RW 0.28 1.74 0.93 1.77

WLS FOGMEX 0.31 2.33 1.04 2.11

Visual breaks

KF RW 0.25 1.98 0.75 2.60

WLS FOGMEX 0.32 3.14 0.76 2.84

between the two estimates could also be used as an indicator of the realism of the
error estimates from the methods.

5.4.2 Comparison for Time Series with Breaks

For the case of the simulated data sets with data breaks included, we repeated our
analyses using this data set as well. To be consistent with the Hector results, we ran
our processing using WLS and KF RW using the same breaks detected by Hector.
These results are shown in Fig. 5.8. We also ran our analyses with the actual break
epochs and epoch chosen based on visual inspection of the time series. There were
115 breaks inserted and many of these were small with amplitudes less than a few
millimeters. Hector detected 28 breaks and generally these had amplitude of order
10 mm or greater in the offset files. The visual detection found 33 breaks which
largely corresponded to the ones detected by Hector with a few additional ones
with amplitudes between 5–10 mm being detected visually. The visual detection
sensitivity did depend on the noise level in the time series.

When breaks are added, the errors in the velocity estimates grew again, with all of
the methods generating similar RMS fits. The NRMS values ranged from 1.4 (Hector
vertical) to 3.4 (WLS FOGMEX) when the Hector breaks were used. The KF RW
algorithm had NRMS values of ~2.2, similar to the value when there were no breaks.
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Fig. 5.8 Similar to Fig. 5.7 except the simulated data set contained breaks. For the results shown
here the same break epochs as used in the Hector analysis were used

5.5 Performance Using Real Data

We have presented the theoretical basis for our FOGMEX algorithm, with synthetic
examples and tests using a small number of simulated time series. Finally, we present
the performance of the algorithms using real-world data to provide guidance and
advice to the reader regarding the functionality and limitations of our algorithm. We
analyse 820 time series from the Plate Boundary Observatory (PBO), now incor-
porated into the Network of the Americas (NOTA), using both implementations of
our FOGMEX algorithm compared to Hector (Bos et al. 2013). These time series
are available from ftp://data-out.unavco.org/pub/products/position/ and we specifi-
cally use all “PNNN” sites, where NNN is “001” to “820”. In the case of FOGMEX
KF, the value of random walk noise used is that estimated from an initial weighted
least-squares, as described in Sect. 5.3.2.

We use the same definitions of discontinuities for all algorithms, which are not
allowed to be altered, due to equipment changes and earthquakes, including loga-
rithmic decay functions for some larger earthquakes. Both algorithms are able to
fit logarithmic decay functions for post-earthquake deformation, and this is impor-
tant when considering time series from a tectonically active region, as we are here.
Time series points with sigma greater than 1 cm in either horizontal component or
3 cm in the vertical component are excluded preliminarily. We test speed, agree-
ment between parameter estimates and the effect of preliminary cleaning, which
is available in both algorithms, although based on slightly different criteria, which
is worthy of note: Hector employs an inter-quartile range definition for detecting
outliers whereas tsfit, the GAMIT/GLOBK program that implements FOGMEX if

ftp://data-out.unavco.org/pub/products/position/
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selected, uses an n-sigma criterion. During our testing, we convert the n-sigma crite-
rion to inter-quartile range (IQR) for Hector using the definition IQR = 1.349n. Our
testing was done on a machine running Linux (Ubuntu 14.04.5 LTS) with Intel Xeon
2.60 GHz CPUs, using the pre-compiled binary for Hector (version 1.7.2) available
from http://segal.ubi.pt/hector/.

5.5.1 Comparison of Least-Squares and Kalman Filter
Estimates

When the estimates of equivalent random walk noise are incorporated into a Kalman
filter approach, there will be a difference between the parameters estimates from the
original least-squares approach and the Kalman filter, as described in Sects. 5.3 and
5.4. Figure 5.9 shows comparisons of the four commonly estimated parameters of
geophysical interest: linear trend (a, b); seasonal signals (c, d); discontinuities (e, f);
and logarithmic decay functions for post-earthquake deformation (g, h). Figure 5.9(a)
shows that the algorithm, as demonstrated with synthetic tests in Sect. 5.3, provides
rate estimates derived from the WLS FOGMEX and KF RW implementations that
agree well, although there is some scatter around zero, where velocities are very
small (likely most vertical time series; the figure shows all components together).
Figure 5.9(b) demonstrates that, in general, the algorithm is consistent enough that
WLS FOGMEX and KF RW rate uncertainties agree, although there is a secondary
trend where KF RW rate uncertainty estimates are approximately three times the
WLS FOGMEX estimate, indicating that there are circumstances under which the
WLS FOGMEX method underestimates the rate uncertainty.

Figures 5.9(c–h) shows significant differences are demonstrated in the other
parameters estimated, however. As alluded to in Sect. 5.3.2, the WLS FOGMEX
estimator is likely to overestimate the uncertainties associated with seasonal sig-
nals and steps (equipment changes or earthquakes), by several times in the case of
seasonal signals shown in Fig. 5.9(c). However, almost all parameter estimates them-
selves are in good agreement. We therefore consider the Kalman filter approach to
be superior to the scaled weighted least-squares approach due to the former handling
the uncertainties associated with seasonal signals and discontinuities better than the
latter.

5.5.2 Comparison of FOGMEX and Hector

Finally, we now compare our preferred Kalman filter implementation of our FOG-
MEX algorithm with Hector, which employs a maximum likelihood analysis to esti-
mate the noise characteristics and model parameters. We first test the agreement
between parameters estimates and their associated uncertainties. Figure 5.10 shows

http://segal.ubi.pt/hector/
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Fig. 5.9 Comparison of
parameters estimates (left
column) and associated
uncertainties (right column)
for linear trend (a, b),
seasonal signals (c, d; red
dots for annual amplitudes
and blue for semi-annual),
discontinuities (e, f; red dots
for non-geophysical
discontinuities, such as
equipment changes, and blue
for earthquakes). All
parameters estimates for all
three components of the time
series are plotted.
One-to-one ratio lines are
plotted, as are three-to-one
ratios lines in (b), (f) and (h),
and a nine-to-one ratio in (d)
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the results of these for tectonically meaningful uncertainties (sigma <= 1 mm/yr).
Figure 5.11 shows the distribution of uncertainties associated with Fig. 5.10.

Figure 5.11 shows the general properties of rate uncertainties arising from dif-
ferences in the approaches presented. First, we note that the uncertainties reported
by Hector are, in many cases, spread over a much wider range compared to those
from KF RW. This is particularly true in the case of white plus random walk noise,
for which Hector often reports very large uncertainties. We suggest from this that
random walk noise is rarely a suitable choice for noise in GNSS time series when
performing power-law analyses. Flicker noise (and power-law noise) are mostly con-
sistent with each other, suggesting that when the exponent of power-law noise is left
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Fig. 5.10 Comparison of velocity (rate) estimates using our KF RW algorithm versus Hector with
a white plus flicker noise model. Only points with sigma <= 1 mm/yr in the horizontal components
and <= 2 mm/yr in the vertical component are plotted, given that these are tectonically useful
estimates of linear trend

as a free parameter it is often estimated as being close to -1 (flicker noise). The great
majority of rate uncertainties using flicker (and power-law) noise lie between the one-
to-one and three-to-one ratio lines, meaning that KF RW potentially underestimates
rate uncertainty by between one and three times compared to Hector’s maximum
likelihood estimator approach. This was also a result from the synthetic tests in
Sect. 5.3.4, where it was determined that the FOGMEX algorithms underestimate
rate uncertainty compared to a flicker noise model by about a factor of two, with a
variation of about a 33%. Although the tests with real data show an unsurprising vari-
ation about this factor, as was the case in the many individual simulations performed
in Sect. 5.3.4, this fundamental observation about our algorithm is supported.

It is also clear in these plots that FOGMEX incorporates a minimum noise level in
the Kalman filter. By default, this is set to 0.05 mm2/yr but can be tuned by the user.
This results in rate uncertainties that are all greater than about 0.05 mm/yr in the hor-
izontal components and about 0.1 mm/yr in the vertical component. We consider this
floor to be both realistic and important in the implementation of time series analyses.
Hector, on the other hand, reports rate uncertainties as low as 0.02 mm/yr (flicker
noise) or even 0.01mm/yr (power-lawnoise) in the horizontal components. In the ver-
tical component,Hector’s floor ismuchhigher thanKFRW, about 0.35mm/yr (flicker
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Fig. 5.11 Comparison of velocity (rate) standard deviations reported KF RW and Hector using
several different noise models: white plus flicker noise (red); white plus random walk noise (blue);
white plus power-law noise, where power is a free parameter (black); and white plus flicker plus
random walk noise (orange). Dashed gray lines represent one-to-one, two-to-one and three-to-one
ratios, and their inverses

noise) or 0.20 mm/yr (power-law noise). These floors in the statistical uncertainties
are not to be overlooked because increasing lengths of time series and numbers of
data points, which can now be 20 or more years and several thousand data points,
tend to force down the uncertainties, even when accounting for the presence of tem-
porally correlated noise. As noted at the beginning of this chapter, one inescapable
limitation of any spectral method is fully assessing the noise over periods longer than
the time series itself; FOGMEX circumvents this notion by attempting to extrapolate
the temporal pattern shown within the time series to its asymptote, effectively as if
the analysis is done on a time series of infinite length. Even compared to maximum
likelihood estimators, it is not clear whether uncertainties reported by FOGMEX
or Hector, given any chosen noise model, are more “realistic”. However, it is clear
that FOGMEX and Hector do agree well for the most part, and factors of two when
uncertainties are already fractions of a mm/yr becomes a negligible distinction for
tectonic purposes.
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5.5.3 Comparison of Run Times

One of the most significant hurdles today for any analysis is the proliferation of
continuous GNSS sites, whose time series get longer each day. The amount of data
that is required to be analysed has become so large that as fast an approach as possible
is useful and sought for operational processing and product generation on a regular
basis. Figure 5.12 shows the time taken by tsfit, employing KF RW, and Hector to
analyze each (three-component) time series. For reference, most time series in this
real-world analysis are between about 14.5 and 10.0 years long with daily data. As
shown by the grey dashed lines, tsfit generally runs approximately 10 to 40 times
faster than the equivalent Hector run, with a minimum run time of between 0.7 and
0.8 s per site and most runs finishing in 1–2 s. Hector generally takes at least 10–20 s
per site for fixed-power (flicker and random walk) noise, 15–30 s for free power-law
noise and over 25 s for a combination of flicker and random walk noises. This varies
slightly with whether or not outlier detection is performed (cf. Fig. 5.13). For tsfit,
the time taken to do this preliminary step is a greater proportion of the total time than
for Hector, therefore outlier detection has the impact of spreading the point cloud
shown in Fig. 5.12 along the horizontal axis. Figure 5.13 shows this effect for a fairly
aggressive 2.5-sigma criterion. In general, outlier detection and removal appears to
have a negligible effects on the agreement of parameter estimates and uncertainties
between the two algorithms.

5.6 Conclusions

This analysis of the WLS FOGMEX and KF RW algorithms has shown that if the
noise in the time series is composed of first-order Gauss–Markov and white noise,
and the noise itself is used to compute the statistics, the average behavior of the algo-
rithm performs as expected, i.e. when averaged over many realizations, the estimated
rate uncertainties match the values that are derived from a full variance-covariance
matrix inversion. However, then time series residuals are used, as is needed in any
practical implementation, the algorithm underestimates the standard deviations of
the rate estimates by ~25% for data durations that are long compared to the cor-
relation time and by larger amounts for shorter durations of data. In addition, for
individual realizations the standard deviation of the estimated rate sigma is about
33% so the sigma may be under- or over-estimated in individual cases. The rescaling
of the WLS solution estimates of the standard deviations of the periodic and discon-
tinuity estimates are far too great and for these parameters the KF RW solution will
give a more reasonable estimate of the standard deviations but this estimate may be
underestimated if the random walk variance contribution is less than the white noise
contribution.

For flicker noise plus white noise, the algorithm consistently underestimates the
standard deviation of the rate estimates for both theWLS and KF versions. Applying
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Fig. 5.12 Comparison of run times per site (all three components) using all available data (no
cleaning using an n-sigma outlier criteria) between the KF RW algorithm and Hector. Dashed gray
lines define an approximate envelope showing the number of times faster KF RW performs relative
to Hector

a multiplying factor of 2.0 would seem to remedy this problem in our simulations
in which only a mean value and rate is estimated and there are no missing data. The
factor does not seem to depend on duration of data or on the ratio of flicker noise to
white noise.

Finally, the sensitivity to data at the edges of the data span and around the times
of breaks depends on the correlated noise models. The KF RW estimates are more
sensitive to data in these regions than the WLS estimates. The rigorous flicker noise
estimates of the sensitivity fall between the WLS and KF RW sensitivities. The
comparison of estimates of the rates from the WLS and KF algorithms will give
some indication of the impacts on the rate estimates from this change in sensitivity.

We note that our implementation of the KF RW algorithm and our use of random
walks in the GLOBK Kalman filter puts a (user-defined) minimum value on the
randomwalk process noise value. The default minimum is 0.05mm2/yr which places
a lower limit on the estimates of the standard deviation of the velocity estimates. For
a 10-year time series, this limit is 0.07 mm/yr. For a 20-year series, the limit is
0.05 mm/yr corresponding to an accumulated 1 mm of random walk noise over the
20-year time span.
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Fig. 5.13 Same as for Fig. 5.12 except a preliminary 2.5-sigma outlier detection and removal is
performed in both cases (tsfit and Hector) prior to ultimate estimation of parameters

Our algorithm shows comparable results when tested on real data, showing a
consistent replication of parameter estimates but a significant difference for other
geophysical parameters, such as seasonal signals and discontinuities. The algorithm
runs between about 8 and 40 times faster than Hector, depending on the noise model
and preliminary cleaning (e.g. n-sigma) cleaning criteria. The FOGMEX algorithm
is especially useful in operational situations where large amounts of data need to
be quickly analyzed on a regular basis without the need for significant computing
resources.

The program tsfit, which implements the FOGMEXoption for time series analysis,
is available as part of the GAMIT/GLOBK GNSS processing software package. A
MATLAB-based graphical user interface (e.g. Herring 2003) is also available at
http://geoweb.mit.edu/~tah/GGMatlab/.

http://geoweb.mit.edu/%7etah/GGMatlab/
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Chapter 6
Least Squares Contribution to Geodetic
Time Series Analysis

Alireza Amiri-Simkooei

Abstract This chapter introduces the least squares framework to the analysis of
geodetic time series. The geodetic time series analysis is based on the correct for-
mulation of both functional and stochastic models. The ultimate goal of all geodetic
time series studies is to discriminate between the functional and the stochastic effects
in the series. Both effects are relevant in geodetic and geophysical phenomena and
hence the subject of discussion in this contribution. Functional effects, such as a
linear trend, offsets, and potential periodicities, can be well explained by a deter-
ministic model, while the remaining unmodeled effects can be described by a proper
stochastic model. Both models should optimally be selected and analyzed for proper
analysis of the time series. This can be implemented both for a single and multiple
time series, resulting in the univariate and multivariate time series analysis. The first
part of the chapter is devoted to the functional model identification in which the
presence and identification of outlying observations, offsets, and possible periodic
signals in the series will be discussed. The second part deals with the parameter
estimation in the stochastic model. Identification and estimation of different noise
components in GNSS time series analysis will be discussed. A few simulated time
series are used to illustrate the theory.
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Keywords Least squares variance component analysis · Least squares harmonic
estimation · Multivariate geodetic time series analysis · Functional and stochastic
model identification

6.1 Introduction and Background

Geodetic time series analysis has been the subject of intensive research in the last
decades. Along with the development of space-based methods, proper analysis tech-
niques have been accordingly developed. We may at least refer to the parametric
techniques such as maximum likelihood estimation (MLE) method implemented by
Zhang et al. (1997), Williams et al. (2004), Bos et al. (2008, 2013), and the least
squares (LS) method (Amiri-Simkooei et al. 2007, 2017a, b; Amiri-Simkooei 2009,
2013, 2016). The methods can also be classified as non-parametric methods such
as singular spectrum analysis (SSA) method, see Chen et al. (2013), Gruszczynska
et al. (2016), Klos et al. (2018), Walwer et al. (2016), Wang et al. (2016), Xu (2016).
This contribution addresses the LS contribution to the analysis of time series.

The ultimate goal of the geodetic time series studies is to discriminate between the
functional and the stochastic effects in the series. Both effects are relevant in geode-
tic and geophysical phenomena and hence the subject of discussion in the present
contribution. Our contribution to the use of the least squares method is twofold. As a
single estimation principle, the least squares method is applied to identify misspec-
ifications and to estimate parameters in both the functional and stochastic models.
The least squares method can be applied to a variety range of geodetic applications
including, (1) analysis of GNSS position time series applicable to plate tectonics,
glacial isostatic rebound, crustal deformation and earthquake dynamics (Segall and
Davis 1997; Argus et al. 2010; Johansson et al. 2002; King et al. 2010), (2) analy-
sis of sea level height time series to extract tidal frequencies and predict sea level
variations (Amiri-Simkooei et al. 2014; Mousavian andMashhadi-Hossainali 2012),
(3) application to ionospheric time series such as total electron contents (TEC) time
series to model regular ionospheric variations (Amiri-Simkooei and Asgari 2012;
Sharifi et al. 2012).

The analysis of time series can be performed in a univariate andmultivariate form.
Analysis of a single time series leads to univariate analysis. There are also multiple
time series that are to be analyzed in a multivariate form to tackle the interaction
among different series in an appropriate manner. For example, the correlation among
different time series can be taken into consideration in the multivariate analysis. The
LS framework on time series analysis can also address the multivariate analysis.

A correctly selected functional model of geodetic time series usually consists of
a linear trend, possible periodic signals (mainly annual and semi-annual signals),
and probabilistic offsets. Identification and estimation of such deterministic effects
is addressed in the functional model. Among such deterministic effects we may refer
to GPS draconitic year (351.4 days) signals present in GPS position time series.
Another example is the presence of probabilistic offsets, which are to be detected
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and compensated for in the functional model. Other unmodeled effects, not of deter-
ministic nature, can best be described in the stochastic model. Proper identification
and estimation of noise components is also the task of the least squares principle
in this chapter. Different noise structures have been identified and estimated in time
series analysis. Among them the most commonly used noise model in geodetic time
series is known to be a combination of white noise and power-law noise—flicker
noise and random walk noise for instance.

Without the loss of the generality, in this contribution we only deal with GNSS
position time series. However, the presented theory can accordingly be applied to
other geodetic time series. The functional model of an individual coordinate compo-
nent, namely any of the north, east or up components, is of the form

E(y) = Ax, D(y) = Qy (6.1)

where E and D are the expectation and dispersion operators, respectively, y is the
m-vector of time series observations, e.g. daily GNSS position of one component,
x is the n-vector of the unknown parameters, A is the m × n design matrix and Qy

is the m × m covariance matrix. The observation vector is usually denoted by y(t)
where t refers to the time instant. The simplest functional model may only include a
linear trend in its functional part of the model

E(y(t)) = y0 + vt (6.2)

where y0 and v are the intercept and the slope (site velocity or rate) of the line fitted to
the series, respectively. Identification and incorporation of other possible parameters
is the task of model identification. Having all the above elements available, one can
use the least squares principle to estimate the unknown parameters x

x̂ = (
AT Q−1

y A
)−1

AT Q−1
y y (6.3)

The least squares estimates of the observations and residuals in the linear model
y = Ax + e can be obtained as

{
ŷ = PAy
ê = P⊥

A y
(6.4)

where PA = A
(
AT Q−1

y A
)−1

AT Q−1
y and P⊥

A = I − PA = I −
A
(
AT Q−1

y A
)−1

AT Q−1
y are two m × m orthogonal projectors (Teunissen 2000).

The above formula can simply be used when the design matrix A and the covari-
ance matrix Qy have been correctly specified. The linear regression model presented
in Eq. (6.2) is mostly too simple to describe the observations. Therefore, some other
signals such as seasonal signals or offset are to be detected and included in the
functional model. This will refer to the functional model identification. Appropriate
stochastic model identification and estimation is another issue to be addressed. The
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following two sections address the above two issues for the univariate and multivari-
ate analysis.

6.2 Univariate Geodetic Time Series Analysis

For the univariate analysis of time series, we usually deal with only one observation
vector such as a daily GNSS position time series of one component, any of the
north, east or up. For our application, the univariate time series analysis consists of
the following two steps: (1) Functional model identification and estimation, and (2)
Stochastic model identification and estimation.

6.2.1 Functional Model

For an appropriate geodetic position time series analysis, the functionalmodel should
be correctly specified. We briefly explain the identification of the functional and
stochastic model for a single geodetic time series. Identification of other parameters
contribution on the deterministic model can be at least of the following forms

1. Identification of q periodic sinusoidal signals
∑q

k=1 (ak cosωk t + bk sinωk t).
The two trigonometric terms cos and sin together represent a sinusoidal wave
with, in general, a non-zero initial phase. Examples of such periodic patterns
include annual and semi-annual signals and the GPS draconitic periodic signal
and its higher harmonics. We may at least refer to Ray et al. (2008), Collilieux
et al. (2007), Amiri-Simkooei et al. 2007), King and Watson (2010), Rodriguez-
Solano et al. (2012), Ostini (2012) and Santamaría-Gómez et al. (2011).

2. Identification of possible time-varying (modulated) signals. Examples of such
signals includes the daily signal harmonics of the total electron contents (TEC)
time series modulated with the annual harmonics ωi jM = 2π i(1 ± j/365.25i),
where i refers to the harmonics of the daily signal and j refers to those of the
annual signal (see Amiri-Simkooei and Asgari 2012).

3. Identification of undetected offsets in geodetic time series. Such offsets are in
the form

∑q
j=1 Hj (t), where Hj (t) is the Heaviside step function, see Williams

(2003a), Perfetti (2006), Borghi et al. (2012), Vitti (2012), Gazeaux et al. (2013),
Montillet et al. (2015), Amiri-Simkooei et al. (2019).

The identification of the above deterministic effects is the task of least-squares har-
monic estimation introduced to geodetic time series by Amiri-Simkooei et al. (2007).
After identifying the most recent functional model (starting for model in Eq. 6.2),
we may now employ (new) statistical tests to detect any of the above unspecified
effects. We may deal with two hypotheses testing on the functional model. In the
null hypothesis, we assume that there is no uncounted effect, whereas in the alterna-
tive hypothesis there is at least one. This idea originates from the works of Baarda
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(1968), Teunissen (2000) in which some misspecifications in the functional model
were detected using the statistical tests. Such misspecifications are considered to
have deterministic effects. Later, this idea was used in many geodetic data sets (Per-
fetti 2006; Amiri-Simkooei et al. 2017a, b). It is noted that the classical method for
identification of model misspecifications is formulated when the estimation and test-
ing are treated individually. A new and more advanced Detection, Identification and
Adaptation (DIA) estimator combines estimation with testing (Teunissen 2018). The
DIA estimator introduces a unifying framework that captures the combined estima-
tion and testing schemes of the DIA method. The DIA method can also have a wide
range of geodetic applications. Functional model identifications can be considered
as an important application of this theory.

In the current contribution, we restrict ourselves to the original DIA method
proposed by Baarda (1968). In this representation of DIA, the two functional models
under the above two hypotheses are defined as

Model 1(H0) : E(y) = Ax (6.5)

versus

Model 2(Ha) : E(y) =
[
A
...Ak

][
x
xk

]
= Ax + Akxk (6.6)

expressing that in the null hypothesis all functional effects have been adequately
specified throughA, whereas in the alternative hypothesis there is somethingmissing,
specified through the m × q augmenting matrix Ak . The problem is then to identify
the correct Ak under the null hypothesis.

Starting from the most recent design matrix A, we thus try to improve it by adding
the Ak matrix under the alternative hypothesis. Depending on the application at hand,
Ak can have different columns and structures. Table 6.1 provides the structure of this
matrix for different cases. For example in identification of a periodic signal, the
frequency of the signal of interest is subject of question, whereas in offset detection
a specific observation epoch is to be identified. The null hypothesis that powerfully
tends to be rejected indicates the presence a misspecification in the time series. That
needs thus to be included to the design matrix to make an updated design matrix A.
Therefore identifying appropriate augmenting matrices Ak is subject of discussion
in the present section.

The detection and validation of any misspecification in the linear model is com-
pleted through the following two steps:

Step I. The goal is to find the frequency ωk or time instant tk (and correspondingly
augmenting matrix Ak) by solving the following minimization problem:

(ωk or tk) = arg min
(ω j or t j )

∥∥
∥P⊥

[A A j ]y
∥
∥∥
2

Q−1
y

= arg min
(ω j or t j )

∥∥êa
∥∥2
Q−1

y
(6.7)
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Table 6.1 Structure of augmenting matrix A j for functional model identification in three cases

Case Structure of A j q Remarks

1

A j =

⎡

⎢
⎢⎢
⎣

cosω j t1 sinω j t1
.
.
.

.

.

.

cosω j tm sinω j tm

⎤

⎥
⎥⎥
⎦

2 ω j is frequency of signal of interest

2 A j =⎡

⎢
⎢⎢
⎣

cosωs
j t1 sinωs

j t1 cosωd
j t1 sinωd

j t1
.
.
.

.

.

.
.
.
.

.

.

.

cosωs
j tm sinωs

j tm cosωd
j tm sinωd

j tm

⎤

⎥
⎥⎥
⎦

4 ωs
j = ω j2 + ω j1 and ωd

j = ω j2 − ω j1

3

A j = a j =

⎡

⎢
⎢⎢
⎣

Hj (t1)
.
.
.

Hj (tm)

⎤

⎥
⎥⎥
⎦

1 Hj (ti ) is step function as

Hj (ti ) =
{
0 ti < t j

1 ti ≥ t j , i = 1, . . . ,m

where ‖.‖2
Q−1

y
= (.)Q−1

y (.) and êa is the least squares residuals under the alternative
hypothesis. The matrix A j has the same structure as Ak in Table 6.1; the one that
minimizes the preceding criterion is set to be Ak . Considering the least squares theory
on partitioned model, the above minimization problem is equivalent to the following
maximization problem (Teunissen 2000, p. 96):

(ωk or tk) = arg max
(ω j or t j )

∥∥∥PAj
y
∥∥∥
2

Q−1
y

,with A j = P⊥
A A j (6.8)

where PAj
= A j

(
A
T
j Q

−1
y A j

)−1
A
T
j Q

−1
y is an orthogonal projector. A j contains the

proposed extension of the design matrix A but projected to the orthogonal comple-
ment of the current design matrix A. In this way, one can fit A j to the observations
y without influencing the fit of A. Equation (6.8) states that we are maximising the
size of the fitted A j model, maximising its variance. The preceding maximization
problem can further be developed as

(ωk or tk) = arg max
(ω j or t j )

P(ω j or t j ) (6.9)

where P(ω j or t j ), called the power spectrum, is obtained for the frequency/epoch
j, with j = 1, . . . , s, from the following equation

P(ω j or t j ) = êT0 Q
−1
y A j

(
AT

j Q
−1
y P⊥

A A j
)−1

AT
j Q

−1
y ê0 (6.10)
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where ê0 = P⊥
A y denotes the m-vector of the least squares residuals under the null

hypothesis. The above maximization problem has to be performed in a discrete form.
This indicates that the power spectrum is computed as a (discrete) function of the
m × q matrix A j . The maximum value is supposed to be obtained at Ak . Note that
Eq. (6.10) has similarities with the periodogram presented in Chap. 2. First, it uses
the residuals ê0. Secondly, the A j model contains sine and cosines that are fitted to the
residuals. Thus, instead of using the inverse Fourier transform, one uses leas-squares
to estimate the amplitude of the periodic signals. Finally, the term P⊥

A A j ensures
that no periodic signals are fitted to the trajectory model.

The maximum power is then tested through the hypothesis testing to see whether
or not the calculated power at this frequency/epoch is statistically significant. The
frequency/epoch at which P(ω j or t j ) of Eq. (6.10) gets its maximum value, say
P(ωk or tk), is recognized as a candidate atwhich possibly an under-parameterization
has occurred (undetected signal). The power at this epoch/frequency is then

Tq = P(ωk or tk) = êT0 Q
−1
y Ak

(
AT
k Q

−1
y P⊥

A Ak
)−1

AT
k Q

−1
y ê0 (6.11)

Step II. In the second step, we need to validate the detected signal of the time series.
We thus have to test whether or not the detected signal is statistically significant.
To test the null hypothesis against the alternative hypothesis, information on the
structure of the covariance matrix Qy is required. We assume Qy to be known. To
test H0 against Ha , given in Eqs. (6.5) and (6.6) respectively, the test statistic in
Eq. (6.11) can be used (Teunissen 2000). Under the null hypothesis the test statistics
has a central Chi-squared distribution with q degree of freedom (q is the columns of
Ak ; seeTable 6.1), i.e., Tq∼χ2(q, 0).With the significance levelα, the null hypothesis
is accepted if P(ωk or tk) < χ2

α(q, 0). This indicates that the signal detected above
is not statistically significant. If the test statistic exceeds the critical value of the
Chi-squared distribution, the null hypothesis is rejected in the significance level α

(i.e., Tq > χ2
α(q, 0)). This is then an indication of a significant signal existing at this

frequency/epoch.
The above distributional assumption holds true when the covariance matrix Qy

of observables is completely known. When the covariance matrix is unknown, it
is usually expressed as a linear combination of some cofactor matrices. Its vari-
ance components are then to be estimated by the least squares variance component
estimation (see next subsection). When there exists only one variance component,
known also as the variance factor of unit weight, the Chi-squared distributionmust be
replaced by a Fisher distribution. When there exist at least two variance components,
the distribution of the above test statistic has a rather complicated form. In case of
GPS time series when the number of observations is much larger than the number
of unknowns, i.e. m � n the above distributional assumption is still valid to a good
approximation.

If the result of the testing was to reject the null hypothesis (Ak was identified
to consist of significant signal), it should be included to make a new design matrix
A. This is accomplished by adding new columns Ak to the matrix A. The previous
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design matrix A should then be replaced with an updated one as A ←
[
A
...Ak

]
.

The previous steps can then be repeated to find yet new signals (if there is any) by
employing the new design matrix A. A new frequency/time instant of other possible
signals can then be detected and tested. The above steps are repeated until the null
hypothesis is accepted.

6.2.2 Stochastic Model

All unmodeled effects, not accounted for in the functional model, should be taken
into consideration in the stochastic model. It describes the statistical properties of
observable vector y by means of a covariance matrix. A correct covariance matrix
will lead to the best linear unbiased estimation (BLUE) of the unknown parameters.
In a series of geodetic applications, however, the covariance matrix of observables
is only partly known. Such a covariance matrix can be written as an unknown linear
combination of a few known cofactor matrices

D(y) = Qy =
p∑

k=1

σk Qk (6.12)

where D is the dispersion operator, σk, k = 1, . . . , p are the unknown variance
components, and Qk, k = 1, . . . , p are some known m × m cofactor matrices. The
estimation of these unknown variance components is the task of variance compo-
nent estimation methods. For this purpose, we employ the least squares variance
component estimation (LS-VCE) proposed originally by Teunissen (1988), and fur-
ther developed and elaborated by Teunissen and Amiri-Simkooei (2008) and Amiri-
Simkooei (2007).

For GNSS position time series, the covariance matrix Qy is assumed to have
white noise plus power-law colored noise—flicker noise and random walk noise for
instance. In this case, the covariance matrix is

Qy = σ 2
wQw + σ 2

f Q f + σ 2
rwQrw (6.13)

where the white noise cofactor matrix Q1 = Qw = Im is an identity matrix of sizem
and Q2 = Q f and Q3 = Qrw are the cofactor matrices of flicker noise and random
walk noise, respectively. They are based on the Hosking noise structure introduced to
GNSS time series byWilliams (2003b), Langbein (2004), andWilliams et al. (2004).
The LS-VCE method can be used to estimate the noise amplitudes of the GNSS
position time series in an iterative manner. LS-VCE has many attractive features
for which we refer to Teunissen (1988), Teunissen and Amiri-Simkooei (2008), and
Amiri-Simkooei (2007). The variance components are estimated as σ̂ = N−1l, where
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N is a p × p normal matrix, l is a p-vector and σ̂ = [
σ̂1, σ̂2, . . . , σ̂p

]T
is a p-vector

of unknown variances to be estimated. The entries of N and l are

ni j = 1

2
tr
(
Qi Q

−1
y P⊥

A Q j Q
−1
y P⊥

A

)
(6.14)

and

li = 1

2
êT Q−1

y Qi Q
−1
y ê (6.15)

where i and j run from 1 to p, P⊥
A = I − A

(
AT Q−1

y A
)−1

AT Q−1
y is again the

orthogonal projector (Teunissen 2000) and ê = P⊥
A y denotes the m-vector of the

least squares residuals. An important feature of the LS-VCE is that it automatically
provides the covariance matrix Qσ̂ of the estimated variances, i.e. Qσ̂ = N−1. Note
that Eqs. (6.14) and (6.15) include Qy which is not known because it requires the
values of σ̂ that we need to estimate. Thus, it is an iterative process. First, guess some
values for σ̂ , construct matrix Qy , estimate new values for σ̂ using Eqs. (6.14) and
(6.15) and repeat until their values have converged.

There can be a complication regarding the simultaneous estimation of the above
three variance components. The problem of negative variance components is proba-
ble to occur in the above application. This problem can be avoided if non-negativity
constraints on variance components are introduced to the stochastic model. This
problem can be handled by a non-negative variant of LS-VCE (NNLS-VCE), pro-
posed by Amiri-Simkooei (2016). This method has been applied to the position time
series of the permanent GPS stations to simultaneously estimate the amplitudes of
different noise components such aswhite noise, flicker noise, and randomwalk noise.
If a noise model is unlikely to be present, its amplitude is automatically estimated to
be zero.

A final remark on the optimal properties of LS-VCE is in order. LS-VCE pro-
vides an unbiased estimator of variance components, which is independent of the
probability density function of the observables. Most of the efforts in the field of
variance component estimation is restricted to the normal (i.e. Gaussian) distribution
assumption of observations. There are two methods of maximum likelihood (ML),
namely ML and restricted ML (REML). The maximum likelihood estimator (MLE)
of variance components is known to be biased downwards because it does not account
for the degrees of freedom lost when estimating the unknown parameters x in the
linear model. This bias can be neglected when m � n, which is usually the case
in time series analysis. REML corrects this problem by maximizing the likelihood
of a set of residual contrasts and is generally considered superior. It can be proved
that the least-squares variance estimators are identical to the REML estimators if
the observables are normally distributed. These estimators are therefore unbiased, of
minimum variance (best), and restrictedly of maximum likelihood.
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6.3 Multivariate Geodetic Time Series Analysis

When dealing with one observation vector, the univariate analysis of the previous
section can be used. In geodetic time series analysis there are possibly multiple time
series, which are to be analysed together. This will enhance the detection power of the
available signals in multiple series. This is the case for example when analysing the
daily GNSS time series of the three coordinate components of north, east and up of a
station, simultaneously. This will lead to multivariate analysis. A multivariate linear
model, also known as a repeated linear model, is in fact an extension of the univariate
linear model. The analysis of multiple observation vectors, having identical design
and covariance matrices, is the subject of discussion in this section. The multivariate
analysis of the GPS time series is also divided into two steps: (1) functional model
and (2) stochastic model.

6.3.1 Functional Model

For r time series, the multivariate functional model of the series is of the form

E(vec(Y )) = (Ir ⊗ A)vec(X) (6.16)

with the multivariate stochastic model characterized as Amiri-Simkooei (2009)

D(vec(Y )) = � ⊗ Q (6.17)

whereY andX are respectively them×r and n×r matrices of time series observations
and unknown parameters, vec is the vector operator, and⊗ is the Kronecker product.
The m × n matrix A is the design matrix of a single time series obtained from
Eqs. (6.1) and (6.2). This matrix is thus assumed to be identical for all series. The
r × r matrix � expresses the correlation among the series, while the m × m matrix
Q characterizes the temporal correlation of the series. To illustrate the Kronecker
product, we consider the three coordinate components of a GNSS station (r = 3).
In this case, the design and covariance matrices of Eqs. (6.16) and (6.17) are of the
form

I3 ⊗ A =
⎛

⎝
A 0 0
0 A 0
0 0 A

⎞

⎠, � ⊗ Q =
⎛

⎝
σNN Q σNE Q σNU Q
σEN Q σEE Q σEU Q
σUN Q σUE Q σUU Q

⎞

⎠ (6.18)

where I3 is an identity matrix of size 3, σNN , σEE and σUU are the variances of the
north, east and up components, respectively, and σNE = σEN , σNU = σUN , and
σEU = σUE are the covariances among the three coordinate components.
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The goal is to improve the functional model of Eq. (6.16). Implementation of
the multivariate signal detection method requires the most recent functional model.
Again the following twohypotheses testing on two functionalmodels are put forward.
Under the null hypothesis all deterministic effects have been captured by model in
Eq. (6.16), whereas under the alternative one this model requires improving. There-
fore, in the null hypothesis we assume that there is no significant signal, whereas in
the alternative hypothesis there should be at least one to be detected. Such a signal is
assumed to be available at the same frequency/time instant for multiple time series.
The two functional models of the two hypotheses are then

Model 1 : E(vec(Y )) = (Ir ⊗ A)vec(X) (6.19)

versus

Model 2 : E(vec(Y )) = (Ir ⊗ A)vec(X) + (Ir ⊗ Ak)vec(Xk) (6.20)

The q × r matrix Xk = [
x1k , . . . , x

r
k

]
consists of the q-vector xik, i = 1, . . . , r of

unknown parameters of the ith time series. Depending on the application at hand, the
corresponding designmatrix Ak can be derived from those provided in Table 6.1. The
Kronecker structure introduced in the augmenting matrix Ir ⊗ Ak indicates that the
signal frequency/epoch is the same for all series. However, the signals magnitudes,
expressed in elements of Xk , are assumed to be different for different time series.
Here, again, we aim at identifying the frequency/epoch at which the signal power
becomes maximum. The same procedure as the one used in the univariate analysis
is also employed here. We use the following maximization problem

(ωk or tk) = arg max
(ω j or t j )

P(ω j or t j ) (6.21)

where P(ω j or t j ), called the multivariate signal power, is obtained for each of the
frequencies/epochs (i.e., j = 1, . . . , s) from the following equation (Amiri-Simkooei
2013):

P
(
ω j or t j

) = tr(E
∧T

0 Q
−1A j

(
AT

j Q
−1P⊥

A A j
)−1

AT
j Q

−1E
∧

0�
−1) (6.22)

where E
∧

0 = P⊥
A Y is them×r least-squares residualmatrix under the null hypothesis,

and P⊥
A = I − A

(
AT Q−1A

)−1
AT Q−1 is an orthogonal projector.

Again, the above maximization problem should be performed numerically. That
is, we need to compute the design matrix A j presented in Table 6.1 at all possi-
ble frequencies/epochs. One can therefore obtain the power for different alterna-
tive hypotheses (i.e., j = 1, . . . , s) by employing Eq. (6.22). The epoch at which
P(ω j or t j ) becomes maximum, say epoch/frequency k, is recognized as a candidate
at which possibly a signal is present. The power at this epoch/frequency becomes
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T r×q = P(ωk or tk) = tr(E
∧T

0 Q
−1Ak

(
AT
k Q

−1P⊥
A Ak

)−1
AT
k Q

−1E
∧

0�
−1) (6.23)

As a second step, we must validate the detected signal of the multivariate analysis. It
is tested to see whether or not the detected signal is statistically significant. Under the
null hypothesis the test statistics has a central Chi-squared distribution with rq (the
columns of I ⊗ Ak) degrees of freedom, i.e., T r×q∼χ2(rq, 0). With the significance
level α, the null hypothesis is accepted if T r×q < χ2

α(rq, 0). This indicates that the
signal detected is not significant. If the test statistic exceeds the critical value of the
Chi-squared distribution, the hypothesis will be rejected in the significance level α

(i.e., T r×q > χ2
α(rq, 0)). This indicates that there is a significant signal occurred at

this frequency/epoch. Its corresponding design matrix is then to be included to the
previous design matrix to make an updated matrix. This procedure can be repeated
for identifying other possible signals.

6.3.2 Stochastic Model

So far we assumed that the elements of the covariancematrix D(vec(Y )) in Eq. (6.17)
is known. In many practical applications, including geodetic time series analysis,
such matrices are not available a priori. The � and Q are thus to be estimated
using the LS-VCE method. In case of geodetic time series analysis � expresses the
correlation among different time series (e.g. spatial correlation), whereas Q consists
of temporal correlation information. The structure of these two matrices determine
how to proceed to estimate their underlying unknowns. We hereinafter assume that
all elements of � are unknown, but the structure of Q is of the form

Q =
p∑

k=1

sk Qk (6.24)

where Qk, k = 1, . . . , p are some known cofactor matrices and sk are their unknown
corresponding variance factors to be estimated. For geodetic time series analysis we
may employ the structure introduced in Eq. (6.13) for Q as Q = s1Qw + s2Q f +
s3Qrw. The unknown� alongwith the variance factors sk are estimated in an iterative
algorithm. The variance factors are estimated as ŝ = N−1l, whereN is a p× pmatrix,
l is a p-vector and ŝ = [

ŝ1, ŝ2, . . . , sp
]T

is a p-vector of unknown variances to be
estimated. The entries of N and l are given as Amiri-Simkooei (2009)

lk = 1

2
tr
(
E
∧T

Q−1QkQ
−1E

∧

�
∧−1)

(6.25)

and

ni j = r

2
tr
(
Q−1P⊥

A Qi Q
−1P⊥

A Q j
)

(6.26)
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Because Q = ∑p
k=1 sk Qk is unknown a priori, the unknown factors sk should be

obtained through an iterative procedure. Through the iterations the unknown � is
updated as

�
∧

= E
∧T

Q−1E
∧

m − n
(6.27)

Further information on the implementation of the multivariate noise assessment can
be found in Amiri-Simkooei (2009).

6.4 Simulated Results on GPS Time Series

This section presents some results on simulated GPS position time series both for
univariate and multivariate analysis. Two issues are highlighted as follows. (1) The
impact of an appropriate stochastic model of the series on the signal detection algo-
rithm. (2) The superiority of the multivariate analysis over its univariate counterpart.
The second part of this section provides some results on the Benchmark Synthetic
GNSS (BSG) time series generated by the Hector software.

6.4.1 Simulating Three Coordinate Components of a GPS
Station

To investigate the performance of the presented least squares theory, three coordinate
components of a permanent GPS station were simulated. The data consist of time
series spanning 10 years of daily coordinate positions. The original data consist only
of a linear trend plus white and flicker noise. The parameter settings characterizing
the simulated data are summarized in Table 6.2. The matrix � in Eq. (6.18) can
in principle be a fully populated matrix expressing that the multivariate analysis
can handle the mutual correlation among the three coordinate components. In real
GPS position time series, however, such correlations are not significantly present
and hence it was ignored in the present contribution (see Amiri-Simkooei et al.
2007). Therefore only was the temporal correlation of the time series considered.
The covariance matrix of the series was constructed based on the white and flicker
noise amplitudes provided in Table 6.2. Random errors of normal distribution, having
the constructed covariance matrix, were then simulated by employing the Cholesky
decomposition of the covariance matrix. The simulated error, consisting of both
white and colored noise, was then added up to the linear regression model explained
above. We then introduced the annual and semi-annual signals. The amplitudes of
the annual and semi-annual signals ranges from

√
2 to 4

√
2 mm (Table 6.2). These

signals will be detected in the multivariate variant of the least squares harmonic
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Table 6.2 Parameter settings
of simulated data sets
employed in functional and
stochastic models

Parameter Component

North East Up

WN amplitude (mm) 1.5 1.5 3

FN amplitude (mm/yr1/4) 3 3 6

Annual amplitude (mm) 2
√
2 2

√
2 4

√
2

Semi-annual amplitude (mm)
√
2

√
2 2

√
2

v (mm/yr) 5 5 1

y0 (mm) 10 10 10

Fig. 6.1 Synthetic time series simulated for three coordinate components with settings described
in Table 6.1

estimation presented in Sect. 6.3. Figure 6.1 illustrates the simulated time series of
the three coordinate components.

The goal now is to estimate the amplitudes of twonoise components and to identify
the annual and semi-annual signals included intentionally in the time series. The
results are presented in four cases explained in Table 6.3. In Case I, the univariate
analysis is individually applied to each of the three coordinate components. For
this application, the covariance matrix of the series is supposed to be only white
noise. This is however a simple and in fact inappropriate covariance matrix because
the simulated time series contain both white and flicker noise. Case II is similarly
performed by the univariate analysis, but now with the realistic stochastic model
consisting of both white and flicker noise models. Cases III and IV match with
Cases I and II, respectively, but now for the multivariate analysis. The significance
level of the hypothesis testing is assumed to be α = 0.01. This will then result in
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Table 6.3 Four cases of
noise assessment and annual
and semi-annual signal
detection: univariate versus
multivariate analysis; simple
stochastic model versus
realistic stochastic model

Case Type of analysis Stochastic model

Univariate Multivariate White Flicker

I ✓ – ✓ –

II ✓ – ✓ ✓

III – ✓ ✓ –

IV – ✓ ✓ ✓

Table 6.4 Estimated noise
amplitudes in four cases
presented in Table 6.3

Case Component σw(mm) σ f (mm/yr1/4)

I N 2.71 –

E 2.73 –

U 5.02 –

II N 1.50 3.07

E 1.53 2.90

U 3.08 5.69

III N 2.71 –

E 2.73 –

U 5.02 –

IV N 1.54 2.97

E 1.52 2.92

U 3.02 5.83

the critical values of the univariate and multivariate test χ2
α(q = 2) = 9.21 and

χ2
α(rq = 6) = 16.81, respectively.
The results of the noise assessments for the four cases in Table 6.3 are presented

in Table 6.4. When the correct structure of the noise model is introduced (Cases II
and IV), the estimated noise amplitudes closely follow their simulated values. This
is however not the case for Cases I and III in which the correct noise model is not
used. The estimated white noise amplitudes are overestimated in this case. A correct
noise model has a direct impact on the realistic estimation of the rate uncertainties.
Another important impact of a correct noise model structure is on the identification
of the signals of the time series, which is explained in the following.

Figure 6.2 shows the univariate power spectra of the simulated data set when
taking white noise only in the stochastic model. Figure 6.3 shows the spectra for
the white plus flicker noise model. Figure 6.4 shows the multivariate power spectra
for the above two choices of the stochastic model. When data contain only white
noise, and a white noise model is used in the analysis, the power spectrum becomes
flat, which indicates that the spectrum has a constant power at different frequencies.
This situation also holds when the (correct) covariance matrix of the time series
is used in estimating the power spectrum. The flatness of the power spectrum (in
case of white plus flicker noise compared to white noise only) is thus due to the
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Fig. 6.2 Univariate least-squares power spectrum on three coordinate components of simulated
data having an annual and semi-annual signal with white noise stochastic model; north (top), east
(middle), up (bottom)

use of the correct covariance matrices Q and �. This flat spectrum indicates that
the signals at higher frequencies can statistically be significant through the statistical
hypothesis testing, which is due to a precise estimate of the detected signals at higher
frequencies. With an immature stochastic model (i.e., uncorrelated series with white
noise structure), some peaks at lower frequencies can also likely be identified as
statistically significant, while they are not. The correct stochastic model handles this
problem.

Table 6.5 provides the detected annual and semi-annual periods of the simulated
signals. They closely follow their simulated values. The results for Cases II and IV
seem to be superior to those for Cases I and III. It is also observed that the results of
the multivariate analysis outperform those of the univariate analysis. The above dis-
cussions indicate that a reliable signal detection method should take an appropriate
noise model into consideration. For GPS position time series, the noise characteris-
tics are best described as a combination of white plus flicker noise. Therefore, such
a method should estimate the amplitudes of different noise components prior to the
signal detection. In addition, if a signal is present in multiple time series a properly
performed algorithm should take this advantage into account. The multivariate anal-
ysis can thus provide higher detection ability than the univariate analysis because it
considers the contribution of the simultaneous signals of the multiple time series.
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Fig. 6.3 Univariate least-squares power spectrum on three coordinate components of simulated
data having an annual and semi-annual signal with white plus flicker noise stochastic model; north
(top), east (middle), up (bottom)

Fig. 6.4 Multivariate least-squares power spectrum of three coordinate components of simulated
data having an annual and semi-annual signal detected by two clear peaks. White noise only (top),
white plus flicker noise (bottom)
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6.4.2 BSG Time Series Generated by Hector Software

We now apply LS-VCE to the Benchmark Synthetic GNSS (BSG) time series gen-
erated by the Hector software. Time series of 60 components (20 stations) were used
(see Chap. 2).We used the cleaned data to estimate the two noise amplitudes of white
and flicker noise using the LS-VCE. Further the multivariate power spectra of all 60
components were calculated to detect the annual and semi-annual signals.

Table 6.6 presents the results of the noise assessment using LS-VCE. The average
amplitudes along with their standard error of white and flicker noise are presented for
the three coordinate components separately. The results are also compared to their
actual BSG time series generated by the Hector software. As indicated the results
closely follow their actual values within their standard errors. This confirms our
previous statement that the LS-VCE estimates are unbiased. This property is however
independent of the distribution of the observables, which is usually assumed to be
normal.

Figure 6.5 shows the multivariate power spectra for two choices of the stochas-
tic model, namely white noise only, and white plus flicker noise. These results also
confirm our previous conclusion that common mode signals can better be detected
using the multivariate than the univariate analysis (univariate results not presented).
Further, the slope of the spectrum, in case of white noise only model, indicates the
flicker noise having the spectral index of κ = −1 (top frame). When the correct
stochastic model is used (bottom frame), power spectrum becomes flat, which indi-

Table 6.5 Extracted annual and semi-annual signals in four cases presented in Table 6.3

Case Component Semi-annual (day) Annual (day)

I N 182.9 363.1

E 182.2 363.7

U 182.0 365.8

II N 183.1 364.1

E 182.5 365.6

U 182.3 366.7

III NEU 182.4 364.2

IV NEU 182.7 365.5

Table 6.6 Estimated LS-VCE noise amplitudes compared to their actual values using benchmark
synthetic GNSS (BSG) time series generated by Hector software

Component LS-VCE results BSG of Hector software

WN (mm) FN (mm1/4) WN (mm) FN (mm1/4)

North 0.88 ± 0.04 4.74 ± 0.18 0.9 4.7

East 0.89 ± 0.04 4.74 ± 0.16 0.9 4.7

UP 2.71 ± 0.14 17.36 ± 0.63 2.6 17.6
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Fig. 6.5 Multivariate least-squares power spectrum of 60 coordinate components (20 stations) of
Benchmark Synthetic GNSS (BSG) time series generated using Hector software consisting of a
linear trend, an annual and a semi-annual signal; White noise only (top), white plus flicker noise
(bottom)

cates that the spectrum has a constant power at different frequencies. This is known
as ‘whitening’ or ‘flattening’ of time series and highlights the importance of using
a correct stochastic model when calculating the power spectrum and signal detec-
tion. Amiri-Simkooei et al. (2019) show that a correct stochastic model can lead to a
higher power detection of offsets in GPS time series. As also indicated above, a flat
power spectrum can have a better statistical interpretation when testing the detected
signals.

6.5 Python Script to Illustrate LS-VCE

To further illustrate the LS-VCE method, we have written a small Python 3 script
that shows how it can be used to estimate the flicker and white noise amplitude of
the BSG time series presented in Chap. 2. The script can be downloaded from the
Springer website for this book. Here you can also find additional scripts to read the
time series and to create the design matrix and power-law covariance matrix. Next,
one must by start by importing the following libraries and scripts:
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Next, we will just estimate the standard linear trajectory model to this time series,
assumingwe thatwe know the correct values for the flicker andwhite noise amplitude
which were discussed in Chap. 2.

When you run this code, the output should be:

The observations y and the fitted model y_hat are shown in Fig. 6.6.
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Fig. 6.6 The observations in blue from the file ‘station0_2.mom’ of the set of BSG time series.
The red line represents the fitted SLTM
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The output of this script is:

The true values are 2.63 mm and 17.56 mm/yrˆ0.25 respectively.

6.6 Conclusions

This chapter addressed the analysis of geodetic time series using the least squares
method. The analysis of geodetic time series concerns analysis of both functional
model and stochastic model. All deterministic effects such as a linear trend, seasonal
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signals and probabilistic offsets should be taken into account in the functional part
of the time series model. Other unmodeled effects can be handled in the stochastic
model. The ultimate goal of all geodetic time series studies is to discriminate between
the functional and the stochastic effects in the series. Both models should optimally
be selected and analyzed for proper analysis of the time series. This was achieved by
using the least squaresmethod, leading to least squares harmonic estimation and least
squares variance component estimation. The least squares method was applied to a
single andmultiple time series, resulting in the univariate andmultivariate time series
analysis. The superiority of the multivariate over univariate analysis was highlighted
by implementing the method to a few simulated time series.

Acknowledgements I would like to acknowledge Machiel S. Bos and Jean-Philippe Montillet,
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corrections on earlier versions of this chapter is greatly acknowledged.
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Chapter 7
Modelling the GNSS Time Series:
Different Approaches to Extract Seasonal
Signals

Anna Klos, Janusz Bogusz, Machiel S. Bos and Marta Gruszczynska

Abstract Seasonal signatures observed within the Global Navigation Satellite Sys-
tem (GNSS) position time series are routinely modelled as annual and semi-annual
periodswith constant amplitudes over time. However, in this chapter, we demonstrate
that these amplitudes can vary significantly over time, by as much as 3 mm at some
stations. Different methods have been developed to estimate the time-varying curves.
The advantages and disadvantages of those methods are presented for synthetic data,
which mimic the real position time series, including their time-changeability and
noise properties. For these series, we conclude that the Kalman filter and an adapta-
tion of theWiener Filter give the best results. As the Earth’s lithosphere is seasonally
loaded and unloaded, we also account for the non-tidal atmospheric, oceanic and
continental hydrology loading effects, which contribute the most to the seasonal sig-
natures. We demonstrate that a direct removal of loading effects leads to the signifi-
cant change in the power of the GPS position time series, especially for frequencies
between 8 and 80 cpy; if the noise model is not adapted to this new situation, this
causes an underestimation of velocity uncertainty. Therefore, we recommend to use
the Kalman filter or adaptive Wiener filter methods instead to remove the seasonal
signal to ensure accurate estimates of the trend error.
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7.1 Introduction

Nowadays, most of the geophysical phenomena are studied using Global Naviga-
tion Satellite System (GNSS) position time series, for which Global Positioning
System (GPS) observations provide the longest observation span. Among others,
the vertical land motion at tide gauges, plate motion or lithospheric deformation
should be mentioned as the principal applications (Altamimi et al. 2016; King and
Santamaría-Gómez 2016; Karegar et al. 2017; Graham et al. 2018; Montillet et al.
2018); for these, the horizontal and vertical velocities along with their uncertainties
are employed. A secular motion is estimated from the GNSS position time series
simultaneously with seasonal signatures and offsets; these constitute a so-called
mathematical or deterministic model. The term ‘seasonal’ is to be understood as the
annual plus semi-annual signal. Once the deterministic model is removed from the
series, the residuals are examined with the optimal model of noise.

The noise content in the GNSS position time series has been already recognized to
be preferably characterized, for both regional and global networks, by the white and
power-law noises combination (among others, Mao et al. 1999; Williams et al. 2004;
Bos et al. 2010; Santamaría-Gómez et al. 2011; Wang et al. 2012; Klos et al. 2016
should be mentioned). The noise content is most often examined with the Maximum
Likelihood Estimation (MLE; see Langbein and Johnson 1997 or Langbein 2012)
which provides the optimal noise parameters basing on the log-likelihood function
values. The power-law behavior of the noise, observed for the low frequencies, is
parametrized by spectral indices varying for position time series from −2 to 0. A
random-walk noise with a spectral index of −2 arises from the geodetic monument-
specific instability or from the local multipath errors (Beavan 2005; King et al. 2012;
Klos et al. 2015). Then, a flicker noise already pointed out to be preferred for the
position time series has a spectral index of −1. It is transferred into the series from
large scale effects from hydrosphere or atmosphere which were mis- or un-modelled
at the stage of data processing. Also, the satellite clocks, phase center or orbital
errors are classified to the possible causes of flicker noise. A common influence
of those effects on the regional network is referred to as Common Mode Errors
(CME). CME has been already effectively modelled and removed from the position
time series using a wide range of spatio-temporal filtration techniques (Dong et al.
2006; Gruszczynski et al. 2018). Finally, a white noise with spectral index of 0, is
a temporally uncorrelated type of noise; it brings no correlation within the series.
A proper recognition and characterization of noise content is important, as it has a
direct impact on the uncertainty of velocity: its character assumed in a wrong way,
will lead to its under- or over-estimation (Williams 2003b; Williams et al. 2004;
Santamaría-Gómez et al. 2011; Klos and Bogusz 2017).

Improper modelling of the noise is however not the only cause leading to overes-
timation of uncertainties. If any of the time series components, i.e. long-term trend,
seasonal signatures or offsets, is assumed in a wrong way, this effect will be trans-
ferred to the residuals causing a change of its character (Williams 2003a; Bogusz
and Klos 2016). On the contrary, once too much autocorrelation is removed from
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the time series in a form of long term non-linear trend or seasonal components,
one would observe an artificial improvement in a velocity uncertainty of up to 56%
(Bogusz and Klos 2016). Blewitt and Lavallée (2002) were the first to demonstrate
that replacing the pure velocity model with velocity combined with seasonal signals
prolongs the time of the reliable velocity uncertainty estimation. This problem was
discussed further by Bos et al. (2010) who showed that assuming a white and power-
law noise combination leads to a decrease of the accuracy of the linear trend. This
is, however, as showed recently by Klos et al. (2018d), directly related to the type of
the power-law noise we add to the assumed combination.

A common practice is to remove the seasonal signals using the Least-Squares
Estimation (LSE) approach, assuming the time-constancy of their parameters (Ble-
witt and Lavallée 2002). Annual and semi-annual signals (periods of 365.25 and
182.63 days) impacting the positions of the GNSS permanent station are broadly
modelled (Blewitt et al. 2001; Collilieux et al. 2007) as these are mostly induced by
geophysical sources and errors. Tides and transportation ofmasswithin the Earth sys-
tem modelled in a form of atmospheric, oceanic and hydrological effects (Tregoning
et al. 2009; van Dam et al. 2012; Dill and Dobslaw 2013) influence seasonal signa-
tures the most. Other contributors are thermal expansion of ground and monuments,
or multi-path variations (King et al. 2008; Yan et al. 2009). Besides, systematic errors
of numeric origin aliased into a GNSS solution (Penna and Stewart 2003) are also
observed in the position time series; their contribution to seasonal signatures is some-
times as large as the loading effects. Beyond the annual and semi-annual signals, a
draconitic year (Agnew and Larson 2007) with a period of 351.6 (Amiri-Simkooei
2013) days being an artefact of a GPS solution has to be also included in the GNSS
time series modelling. Latest researches proved that its amplitudes are significant up
to its eight harmonic (Amiri-Simkooei et al. 2017).

A direct approach to remove the impact the loadings might have on the posi-
tion time series is to subtract them directly from these series. This has two effects.
First, it reduces the root-mean-square value of the corrected GNSS position time
series (Santamaría-Gómez and Mémin 2015). Secondly, the annual and semi-annual
amplitudes change compared to those of original GNSS series. A combination of
non-tidal atmospheric, ocean and continental hydrological loadings can explain as
much as 40% of the observed annual signal or reduce the root-mean-square error of
the GNSS position time series by 30% (Dong et al. 2002;Williams and Penna 2011);
both values are valid for the vertical component.When removed separately, non-tidal
ocean loading causes a peak-to-peak variation up to 5 mm (van Dam et al. 1997), the
hydrological loading may explain half of the annual signal observed in the position
time series (van Dam et al. 2001), while atmospheric loading causes deformations
up to 20 mm (Petrov and Boy 2004). A direct subtraction of the environmental load-
ings was questioned by Santamaría-Gómez and Mémin (2015) who stated that this
approach reduces a white noise component of the GPS position time series and has
little in common with the real impact the loadings may have on the series.

Klos et al. (2018a) proved that parameters describing the seasonal signals derived
from the crustal loadings are not constant over time. For this reason, the GPS-derived
seasonal factors might be also time-variable and the commonly employed least-
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squares approach might not provide the most reliable description. Therefore, these
mis-modelled curvesmight produce larger residuals, implying increased noise levels.
To meet the requirements of reliable modelling, several methods have been already
developed by the geodetic community to fit the seasonal signatures into GNSS posi-
tion time series. The Singular SpectrumAnalysis (SSA) algorithmwas firstly applied
by Chen et al. (2013), followed byXu andYue (2015) and Gruszczynska et al. (2016)
to deliver the time-varying signals present in the GNSS observations. The authors
cross-compared the SSA-derived curves to the Kalman Filter (KF) approach; it was
proved that both seasonal estimates are very close to each other. The latter was also
employed by Didova et al. (2016) to estimate the time-varying trends and seasonal
signals in the GNSS position time series which were then compared to the ones
derived for the Gravity Recovery and Climate Experiment (GRACE) data.

Noise level present in the position time series may have a significant impact on
the effectiveness and accuracy of the seasonal signatures estimated with various
approaches. Klos et al. (2018b) addressed this problem; they examined the Wavelet
Decomposition (WD), Chebyshev Polynomials (CP), KF and SSA approaches and
stated that their effectiveness is directly related to the noise level characterizing indi-
vidual time series. They also emphasized that a good approximation of seasonal sig-
natures might be delivered only if the optimal separation between noise and seasonal
curves is provided; no power transfer is observed between stochastic and determinis-
tic part. A completely new solution to this problem was given by Klos et al. (2018c)
who introduced the Adaptive Wiener Filter (AWF) to the geodetic community. This
filter is based on the classical Wiener Filter (WF) and then adapted to the noise level
present within individual series. To adapt this filter, the first-order autoregressive
process is employed to model the time-varying curves, which are then refined by the
level of noise.

In the following chapter, we present the comprehensive analysis of the seasonal
signatures characterizing the GNSS position time series twofold. We start from the
station-by-station modelling of the time-series-specific curves. In this approach, no
attention is paid to the reason specific curve is caused by. Here, the simplest assump-
tion of the time-constancy is cross-compared to the time-changeability of seasonal
parameters. Then, we change the approach and account for different loading models
proving their impact on the position time series. Also, we present the influence that
different approaches have on the noise content. The entire analyses are presented for
the vertical changes of the global set of GNSS stations.

7.2 Methods to Extract Seasonal Signals

In the following paragraph, we present the methodology to extract seasonal sig-
nals from the GNSS position time series. A time-constancy of parameters is being
compared to their time-changeability.
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7.2.1 Least-Squares Estimation

The position time series of the GNSS station can be mathematically described by
fitting the following model into the time series:

y(t) = y0 + vy(t − t0) +
2∑

i=1

[ai sin(ωi (t − t0)) + bi cos(ωi (t − t0))] + ε(t)

(7.1)

where y0 and vy are initial position of each (North, East and Up) type and velocity,
respectively. ai and bi are constants representing the sine and cosine terms of the
periodic signal of ωi angular velocity. The reference epoch is contained in the t0
term. A sum of all above constitute a deterministic part of the time series. The ε

term represents the stochastic part. It is worth noting, that the time series have to be
pre-processed before Eq. (7.1) is employed. In the following research, the outliers
were removed using the Interquartile Range rule (IQR), assuming values larger than
3 times the IQR value as outliers. Offsets were removed using epochs defined by
the International GNSS Service (IGS), but also supported by the manual inspection.
Equation (7.1) accounts only for the annual and semi-annual seasonal signatures by
setting the maximum i to 2. If any other seasonal term is to be modelled, then i has
to increase. Vector of time series parameters constructed as:

x = [
y0, vy, a1, b1, a2, b2

]T
(7.2)

is most often resolved using the simplest least-squares approach. In this case, the
solution is given by:

x = [
ATC−1

y A
]−1

ATC−1
y y (7.3)

where A is the design matrix for the time series model defined, y is the vector
with input data, while Cy is the covariance matrix of noise in the observations. If
the covariance matrix differs from the identity matrix, i.e. the errors of individual
observations are included, the least-squares approach is changed to the Weighted
Least-Squares (WLS) estimation. The uncertainties of parameters contained in x are
estimated using:

Cx = [
ATC−1

y A
]−1

(7.4)

Then, the amplitude of the seasonal signal is computed as:

A =
√
a2 + b2 (7.5)

with its uncertainty estimated using, e.g. Rice distribution (Rice 1944).
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With this approach, the determined amplitudes are time constant, which means
that no variability is estimated within the vector x. Basing on that, if the parameters
describing the seasonal signatures were characterized by any time variability, this
mismodelled effect will be transferred to the stochastic part. The construction of the
covariance matrix has always been a difficulty. To keep it simple, one can put the
uncertainty of the observations on the diagonal of this matrix which corresponds to
white noise. However, this leads to an underestimation of the error in the estimated
parameters in vector x. A great alternative, which helps to account for the power-law
noise, has been introduced to geodetic community in 90’s in a form of Maximum
Likelihood Estimation (MLE).Within this method, the preferred time series model is
chosen, including the stochastic part character, basing on the values of log-likelihood
function. The result is a realistic covariance matrix. It has been already implemented
in the Hector (Bos et al. 2013) and CATS (Williams 2008) software and broadly
used when the position time series are examined. The assumption of the white-
noise-only causes that the covariance matrix of observations is constructed basing
on the observation errors with no correlation between individual observations being
included, as in:

Cy = a2 · I (7.6)

where term a is the amplitude of white noise and I is the identity matrix. Accounting
for a power-law noise using MLE, the covariance matrix is re-constructed to a form
of:

Cy = a2 · I + b2κ · Jκ (7.7)

where bκ is the amplitude of the power-law noise and Jκ is the power-law noise
matrix. Both are estimated for a power-law noise described by spectral index κ .
Now, the estimates of x and Cx are provided with the MLE algorithm assuming the
combination of power-law and white noises.

Figure 7.1 presents the amplitudes of annual and semi-annual signals estimated
with MLE, assuming their time-constancy. The estimates are provided for the IGS
stations contributing to ITRF2014 (Altamimi et al. 2016) in the vertical direction.
The time series were reprocessed within the second reprocessing campaign, called
repro-2 (Rebischung et al. 2016). We removed outliers using 3-times-IQR criterion.
The offsets were assumed using the epochs reported by IGS and supported bymanual
identification. Annual amplitudes range between 0.3 and 11.3mm. The largest values
were noticed for Asia and South America. Semi-annual amplitudes are few times
lower than those for annual signatures, between 0.1 and 2.5 mm in the most extreme
cases. Along with the deterministic model, the stochastic part character is also exam-
ined. Figure 7.2 presents three parameters of the power-law noise: spectral index,
amplitude and fraction, being the percentage contribution of noise within the white
plus power-law noise combination; all, combined together, allow to identify and
reconstruct the noise. Spectral indices are close to −1 for the majority of stations,
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Fig. 7.1 Amplitudes of annual (top) and semi-annual (bottom) seasonal signatures constant over
time and estimated with the MLE approach for a set of global (left) and European (right) ITRF2014
stations. The estimates are provided for the vertical component. The uncertainties of amplitudes,
estimated assuming a combination of power-law and white noise, are not higher than 0.5 mm

indicating a flicker noise present in most observations. Amplitudes of power-law
noise are much higher for the northern part of North America and Central Europe,
than they are for any other part of the World. Also, a clear latitudinal dependence
of the percentage contribution of power-law noise is observed. White noise outruns
the power-law noise within the equatorial area, while the power-law noise dominates
over white noise in higher latitudes.

7.2.2 Moving Ordinary Least-Squares (MOLS)

Toprovide an insight on the variability of the annual and semi-annual amplitudes over
time we split the time series into segments of 3 years, each separated by 1 year. Thus,
each segment overlaps the next one by 2 years. Now, the annual and semi-annual
amplitudes are estimated separately for each segment with the constant-amplitude
approach (previous equations) with a linear interpolation to generate a single time-
varying seasonal signal. Thismethod is named as theMovingOrdinaryLeast-Squares
(MOLS). It is easy to implement, allows to estimate the time-varying signals, deals
well with offsets and missing data.
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Fig. 7.2 Parameters of power-law noise characterizing theGNSS position time series; the estimates
are provided with the MLE approach for a set of global ITRF2014 stations. Spectral indices (top),
power-law noise amplitude (middle) and power-law noise contribution into a white plus power-law
noise combination (bottom) are plotted. These three parameters allow to explicitly identify the
power-law noise. Also, a power-law noise can be re-built basing on them, see further description
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Fig. 7.3 Standard deviations (mm) of the annual amplitudes estimated with the MOLS approach
for the vertical component. Two stations, for which extreme values were obtained are marked. The
HNPT (USA) station is characterized by the minimum standard deviation of the annual amplitudes
equal to 0.24 mm. For the LHAZ (China) station, the maximum changes of the annual curve were
noticed with their standard deviation of 2.75 mm

Figure 7.3 presents the standard deviation of the annual amplitude, estimated
with MOLS, for the GPS stations spanning at least 13 years. The largest variations
of the annual amplitude are noticed for Asian and Eastern European stations. The
greatest standard deviation of annual amplitudes equal to 2.75 mm is found for the
Chinese LHAZGPS station. For about 15%and 30%of stations, the value of standard
deviation is, respectively, larger than 1.0 mm and smaller than 0.5 mm.

7.2.3 Wavelet Decomposition (WD)

Wavelet Decomposition (WD) enables to reliably capture the time-varying seasonal
signatures upon the different resolution levels (Fig. 7.4). These are estimated basing
on the sampling interval of data and the type of mother-wavelet employed. The
seventh and eighth levels of Meyer’s wavelet (Meyer 1990) are appropriate for daily
observations to sufficiently capture annual and semi-annual signals by modelling all
changes with periods between 128 and 512 days (Table 7.1). However, no separation
between signal and noise is provided; with a use of wavelet decomposition one
models all changes in the assumed frequency band, meaning both a signal and a
noise.

7.2.4 Singular Spectrum Analysis (SSA)

Singular SpectrumAnalysis (SSA;Broomhead andKing 1986) allows tomodel time-
varying signals basing on theEmpiricalOrthogonal Functions (EOFs) (Fig. 7.5). This
works because the annual and semi-annual are normally above the noise level in the
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Fig. 7.4 Seasonal signatures, i.e. annual and semi-annual periods, derived by the WD for two
ITRF2014 stations: RAMO (Israel) and MAS1 (Spain). Time-variability of both amplitudes may
be noticed

Table 7.1 Periods determined with wavelet decomposition by various decomposition levels for
daily observations. We employ details 7th and 8th to capture annual and semi-annual time-varying
seasonal signals

Description From To

A8 1.1 years Infinity

D8 7 months 1.4 years

D7 4 months 9 months

D6 2 months 5 months

D5 24 days 3 months

D4 12 days 37 days

D3 6 days 18 days

D2 3 days 10 days

D1 2 days 5 days

time series and well defined. As a result, these signals are part of the first set of
EOFs. Note that if the noise also contains an annual or semi-annual component,
this will be included in the EOFs. There is no separation of signal and noise. Its
performance is strictly linked to the length of the time window employed, with the
3-year length being applied the most often. Chen et al. (2013) examined the impact
that different lengths may have on the SSA-derived curves, but they did not quantify
the noise which may be absorbed at the same time. Also, the absorption of noise has
been mentioned lately by Xu and Yue (2015), but no specific numbers have been
provided. Klos et al. (2018b) analyzed 2-, 3- and 4-year windows and proved that
longer window lengths perform better for higher noise amplitudes.
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Fig. 7.5 Seasonal signatures, i.e. annual and semi-annual periods, derived by SSA for two
ITRF2014 stations: RAMO (Israel) and MAS1 (Spain). Time-variability of both amplitudes may
be noticed. No separation between signal and noise is provided

7.2.5 Kalman Filter (KF)

Kalman filter (KF; Kalman 1960) is employed to provide the estimates of y0, vy, ai
and bi fromEq. (7.1). However, as shown byDavis et al. (2012), the ai(t) and bi(t) are
becoming now instantaneous amplitudes, consisting of a mean value and a random
walk component:

y(t) = y0 + vy(t − t0) +
2∑

i=1

[ai (t) sin(ωi (t − t0)) + bi (t) cos(ωi (t − t0))] (7.8)

No estimates of noise term ε(t) is provided in Eq. (7.8) (compare to Eq. (7.1)),
resulting in a flat power spectrum of the GPS position time series below the annual
frequency. Didova et al. (2016) proved that adding the noise term in a form of
third-order autoregressive process (AR(3)) to Eq. (7.8) may help to mimic a power-
law noise present in the GPS position time series well. The authors showed, that
a proper tuning of standard deviations of both ai(t) and bi(t) provides no power
leakage between low and high frequencies. Klos et al. (2018b) assumed different
values for the changes of ai(t) and bi(t) variances in the consecutive time steps.
Then, they implemented both the Davis et al. (2012) and Didova et al. (2016) filters,
proving that for a normal noise level of 10mm/yr0.25, using the former produces large
misfits of even 1.15 mm between synthetic and KF-derived seasonal signature. The
authors advised to use the third-order autoregressive process to mimic the power-law
noise with its coefficients being estimated by its fitting to a pure flicker noise. This
implementation of Kalman Filter is also used in this research (Fig. 7.6).Worth noting
is the fact, that letting the ai(t) and bi(t) variances to change too much, the method-
derived seasonal signal will contain also a part of the noise, leading to underestimates
of trend uncertainty.
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Fig. 7.6 Seasonal signatures, i.e. the annual and semi-annual periods, derived by the Kalman Filter
for two ITRF2014 stations: RAMO (Israel) andMAS1 (Spain). Time-variability of both amplitudes
may be noticed. A separation between seasonal signal and a noise is provided by a proper tuning
of ai(t) and bi(t) (Eq. 7.8) variances and by adding a third-order autoregressive noise (AR(3)) to
mimic a power-law noise present in the GPS position time series

7.2.6 Adaptive Wiener Filter (AWF)

TheAdaptiveWiener Filter (AWF)has been introduced lately byKlos et al. (2018c) to
model seasonal signals with the time-varying amplitudes. It is based on adapting the
Wiener Filter (WF), according to the noise type and level found in the observations.
In this way, the time-varying part which is greater than the assumed noise level is
being found as significant and modelled. This provides a proper separation between
seasonal signal and noise level.

To understand the Adaptive Wiener Filter properly, one should start from the
Davis et al. (2012) filter, i.e. Eq. (7.8), and describe the seasonal signature using a
time-constant sconsti and a random srandi signals:

stotali = (a + δai ) cos(ω0ti ) + (b + δbi ) sin(ω0ti )

= [a cos(ω0ti ) + b sin(ω0ti )] + [δai cos(ω0ti ) + δbi sin(ω0ti )]

= sconsti + srandi (7.9)

where a and b are constant values. The angular velocity of the annual signal is pro-
vided within ω0 parameter. The random signal srandi is characterized by the random
variables δai and δbi. These may be estimated using the Gaussian variables vi and
wi of known standard deviation σ using:

δai = φ · δai−1 + vi
δbi = φ · δbi−1 + wi (7.10)
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Theφ parameter is the first-order autoregressive coefficient (AR(1)),which should
be slightly lower than 1 so an not to allow the time-varying seasonal signal to increase
over time.

The time-constant part of Eq. (7.9) can be reliably estimated using WLS, and
removed from the seasonal signatures. Now, the random part is estimated. Let us
assume that δbi = 0, so the estimates of the srandi autocovariance are provided as:

γ
(
srandi , srandi+k

) = cov(δai · δai+k cos(ω0ti ) cos(ω0ti+k))

= cov

(
δai · δai+k

1

2

[
cos(ω0(ti + ti+k)) + cos(ω0k)

])
(7.11)

The AR(1) process is employed to let the seasonal signatures to vary over time
is invariant. The variability of the seasonal signal srandi is however ensured by the
modulation within the cosine function. Now, the average autocovariance function is
employed to estimate the one-sided spectral density function S(ω), as:

S(ω) = 2σ 2
v

π

[
1(

1 − 2φ cos(ω + ω0) + φ2
) + 1(

1 − 2φ cos(ω − ω0) + φ2
)
]

(7.12)

where ω = 2π f/ fs with f being the frequency and fs the sampling frequency. So
far, it was assumed that σw = 0. To also include the σw, we can easily replace σ 2

v
with σ 2

v + σ 2
w.

Now, the Wiener filter is constructed using all the information provided above.
Firstly, the Fourier transform Y (ωi ) of time series yi is computed as:

Y (ωi ) = F(yi ) (7.13)

From this Fourier transform we can compute the power spectral density S(ωi ) by
computing the periodogram as explained in Chap. 2. Then, we define the optimal
filter 
(ωi ) in the frequency domain as:



(
ω j

) = S
(
ω j

)

S
(
ω j

) + W
(
ω j

) (7.14)

whereW
(
ω j

)
is the power spectral density of noise as function of the angular velocity.

This power spectral density is employed to adapt the Wiener Filter to the noise level
and type the time series are characterized by. For the pure power-law noise which
characterizes the GPS position time series, the estimates of W

(
ω j

)
are given as:

W
(
ω j

) = σ 2
pl

π

(
2 sin

ω j

2

)κ ≈ σ 2
pl

π
ωκ (7.15)
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where κ is the spectral index of noise. The parameter σ 2
pl is the standard deviation

of the power-law noise, given in mm. This noise model, employed to construct the
optimal filter, ensures obtaining the best separation between signal and noise. To
model each individual series, the estimates of spectral indices, standard deviations
of noise and its fraction delivered with MLE, should be previously performed, as
shown in Fig. 7.2.

Now, the time-varying seasonal signal ŝ is estimated using the inverse Fourier
transform:

ŝi = F−1(
(ωi )Y (ωi )) (7.16)

To obtain a total time-varying seasonal signal estimated with AWF, the estimates
of varying seasonal signal computed with Eq. (7.16) should be added to the time-
constant seasonal signal estimates provided by the weighted least-squares approach.

The exemplary one-sided spectral density function estimated for annual and semi-
annual signatures is shown in Fig. 7.7. In addition to S( f ), we also provided a plot
of W ( f ), being a power spectral density of the power-law noise process. The closer
φ is to 1, the sharper peaks of annual and semi-annual signals will be observed.

Figure 7.8 presents theAWF estimates of seasonal signals of vertical position time
series for two ITRF2014 stations. A clear time-variability of seasonal amplitudes
is observed for both, with a separation between signal and noise, guaranteed by
the proper assumption of noise model during the construction of Wiener Filter in

Fig. 7.7 The one-sided
power spectral density
function of annual and
semi-annual signatures S( f ),
plotted in yellow solid line,
along with the estimates of
the power spectral density of
the power-law noise process,
W ( f ), plotted in dashed-blue
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Fig. 7.8 Seasonal signatures, i.e. the annual and semi-annual periods, derived by the Adaptive
Wiener Filter for two ITRF2014 stations: RAMO (Israel) and MAS1 (Spain). Time-variability of
both amplitudes may be noticed. A separation between seasonal signal and a noise is provided by
assuming a power spectral density of the noise model which characterizes the individual time series
during the construction of the filter, see Eq. (7.14)

Eq. (7.14). It is worth noting that the noise model is being assumed and constructed
separately for each individual station.

7.3 Comparison of Algorithms for the Synthetic Dataset

To mimic the GPS observations, we synthetized a number of 500 time series of
a length of 16 years. A pure flicker noise was assumed with amplitudes varying
between 7 and 21 mm/yr0.25 from series to series. This range of amplitudes covers
all values met in the GPS position time series: from low to high noise levels. To the
noise content, annual and semi-annual signals were added with mean amplitudes of
3 and 1 mm, respectively, and of phase lags between January and June. The annual
and semi-annual amplitudes were allowed to vary over time with a standard devi-
ation of 1 and 0.5 mm, respectively. The synthetic time series were then modelled
with methods presented in the previous paragraph. Each of the curves we delivered
with different methods is characterized by its ‘misfit’, meaning a standard deviation
between synthetic and estimated seasonal signal (Table 7.2). The larger the misfit
value, the worse is the fit of the estimated curve with respect to the synthetic sea-
sonal. Having estimated the curves, we removed them and examined the character of
residuals. All methods are being compared to the ‘no seasonal assumed’ case, which
means that the seasonal signal was not modelled.

For the low noise level we synthetized, assuming no seasonal signal caused a
misfit between simulated and estimated curves of 2.39 mm (Table 7.2). The WLS
approach, which allows to estimate time-constant seasonal signals, produces a misfit
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Table 7.2 An average
misfit between synthetic and
method-derived seasonal
curve for a number of 500
simulations. Results are
presented for low and high
noise levels

Method Misfit (mm)

Low noise level

No seasonal assumed 2.39

WLS 0.56

MOLS 0.24

WD 0.24

KF 0.16

SSA 0.16

AWF 0.17

High noise level

No seasonal assumed 2.44

WLS 1.11

MOLS 1.31

WD 1.53

KF 0.73

SSA 1.08

AWF 0.67

of 0.56 mm. MOLS as well as WD, both result in 0.24 mm misfit, while KF, SSA
and newly introduced AWF, all produce the smaller misfit of 0.16–0.17 mm.

For the high noise level, assuming no seasonal signals results in a largest misfit of
2.44 mm. The WLS, MOLS, WD and SSA, all produce misfits larger than 1.0 mm.
KF and AWF, both result in a similar misfit value lower than 0.8 mm, proving their
appropriateness to model the time-varying curves.

The WLS approach, as expected, provides the worst estimates of synthetic time-
varying curves for the series affected by low noise level. The performance of other
algorithms is comparable. Changing the low into the high noise level, the synthetic
time-varying curves cannot be separated from the noise as precisely as they are for
the low noise level. In this case, WD performs the worst, followed by MOLS and
WLS approaches. The best estimates of varying seasonal signatures are provided by
KF, SSA and AWF.

The numbers presented in Table 7.3 prove that allowing the seasonal curve to
vary over time always results in the underestimates of spectral indices and power-
law noise amplitudes comparing to ‘actual’ value, which was synthetized. For high
noise level, this reduction is caused by part of the noise from seasonal frequency
band incorrectly absorbed in the estimates of seasonal varying curves. All methods
are being compared to the ‘no seasonal assumed’ case, whichmeans that the seasonal
signalwas notmodelled. This causes an overestimation of spectral index and too large
trend uncertainty estimates.

WLS provides comparablyworse results, being unable to cover the entire seasonal
peaks (Fig. 7.9), which is clearly observed for the low noise level. WD absorbs too
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Table 7.3 Noise character derived with MLE for a number of 500 simulations after the seasonal
curves were modelled and removed from the series. Results are presented for low and high noise
levels for spectral index, amplitude and trend uncertainty, respectively. The amplitude and spectral
index, which were synthetized, are shown in ‘Actual’ row. Also, the expected trend uncertainty for
this noise level is given under the ‘Trend uncertainty’ label. This value is estimated using Eq. (29)
of Bos et al. (2008) paper

Method Spectral index κ Amplitude (mm/yr−κ/4) Trend uncertainty
(mm/yr)

Low noise level

No seasonal
assumed

−1.76 3.39 0.475

WLS −1.23 1.47 0.061

MOLS −1.05 1.08 0.027

WD −1.07 1.07 0.030

KF −0.96 0.96 0.020

SSA −0.98 0.98 0.021

AWF −0.99 0.96 0.022

Actual −1.00 1.00 0.022

High noise level

No seasonal
assumed

−1.07 11.18 0.294

WLS −1.00 9.95 0.221

MOLS −0.98 9.63 0.205

WD −0.94 9.00 0.175

KF −0.98 9.71 0.209

SSA −0.96 9.35 0.191

AWF −1.00 9.92 0.224

Actual −1.00 10.00 0.222

much power from the seasonal frequency band for both low and high noise levels.
Othermethods behave in similar way – they are able to cover the time-variability with
only small reduction in power. If the amplitude of the seasonal signal change over
time, WLS will always provide the largest misfit between synthetized and estimated
seasonal curve than any of the method presented here. Then, SSA, KF and AWF,
all have excellent performance for low noise levels. For high noise levels, however,
KF- and AWF-derived curves are the closest to the synthetic seasonal signatures.
Although the fit of both methods is comparable, their real impact on the observations
is seen through analysis of noise parameters. KF-subtracted curve causes a slight
underestimation of the power-law noise amplitude and an overestimation of spectral
index, while AWF-based provides the best separation between signal and noise,
keeping the noise content intact.
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Fig. 7.9 Power Spectral Densities (PSDs) estimates provided for two noise levels synthetized
within this analysis. Left: the low noise level case is shown, i.e. 1 mm/yr0.25. Right: the high
noise level is presented (10 mm/yr0.25). For those two noise levels, seasonal curves are estimated
and removed from the series with a range of methods presented above. Then, residuals are being
examined to provide the efficient assessment of noise and seasonal signal separation

7.4 Estimating the Environmental Impact

In the previous paragraphs, we presented the estimates of time-varying seasonal
signatures; annual and semi-annual curves were accounted for. Though the impact
the environment has on the GPS position time series is widely acknowledged at the
moment, until now, we did not consider phenomena seasonal curves are caused by.
We only employed methods which allow the seasonal curve to vary over time to
model them in the most reliable way. Otherwise, the uncertainty of velocity might
be greatly affected and misestimated.

In the following paragraph, we prove that the non-tidal atmospheric, non-tidal
oceanic and continental hydrospheric loadings, all contribute significantly into the
position time series (Fig. 7.10), with annual amplitudes being mostly influenced
by above. The most common approach to consider the environmental impact is to
directly subtract the environmental loadingmodels from theGPS position time series
for corresponding epochs. In this way, the annual amplitudes are reduced when the
environmental loading models are accounted for. This approach also causes the root-
mean-square value reduction (Fig. 7.11).

For this research we used Environmental Loading Models (ELM) provided by
the EOST Loading Service (http://loading.u-strasbg.fr/). Among others, we chose
ERA (ECMWF Re-Analysis) Interim (Dee et al. 2011), MERRA (Modern Era-
Retrospective Analysis) land (Reichle et al. 2011) and ECCO2 (Estimation of the
Circulation and Climate of the Ocean version 2) (Menemenlis et al. 2008). All load-
ing models were decimated into daily sampling rate to correspond to position time
series. For a set of the ITRF2014 vertical position time series, a mean reduction of
the root-mean-square value of vertical component is larger than 20% for non-tidal
atmospheric loading (ERAIN), larger than 5% for continental hydrology loading
(MERRA) and almost insignificant when non-tidal ocean loading (ECCO2) is con-

http://loading.u-strasbg.fr/
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Fig. 7.10 Top: Detrended GPS vertical position time series for two ITRF2014 GNSS stations
of different locations, along with Environmental Loading Models: the non-tidal oceanic (ECCO2),
atmospheric (ERAIN) and continental hydrology (MERRA) loadingmodel are plotted, respectively,
in blue, red and brown. Worth noting are different root-mean-square values of loading effects,
depending on the station’s location. Bottom: the power spectral density estimates of the above. The
annual and semi-annual curves are the most energetic ones

sidered. Atmospheric loading affects mainly Asian, European and Canadian areas,
hydrospheric loading significantly contributes to position time series for east Euro-
pean, south Asian and Brazilian stations, while ocean loading is significant only for
the Northern Sea coastal stations. Once the loading effects are summed and removed
from the position time series, the mean reduction of the root-mean-square value is
larger than 40% for the global set of stations, induced mostly by atmospheric load-
ing, which contributes the most to this combination. However, as emphasized by
Santamaría-Gómez and Mémin (2015), this reduction is only related to the reduc-
tion of white noise component, having nothing in common with a real impact the
environmental loadings may have on the position time series.

Lately, Klos et al. (2018a) noticed that environmental loadings are characterized
by various types of noises. From Fig. 7.10, we can notice that hydrospheric and
oceanic loadings are characterized by power-law noise, with spectral indices slightly
different from those of the position time series. Atmospheric loading, which pre-
dominates in the ELM, has autoregressive properties. Therefore, a direct removal
of loading effects may cause a significant change of noise character of the GPS
position time series, underestimating the velocity uncertainty at the same time if the
noise model is not adapted accordingly. Wherefore, we propose a completely new
approach to include the impact the environment has on the position time series. We
model the superposition of environmental loadings using the SSA approach to deliver



230 A. Klos et al.

Fig. 7.11 The
root-mean-square (RMS)
reduction of the GPS
position time series after
individual loading models
are removed. The non-tidal
atmospheric (ERAIN),
continental hydrology
(MERRA) and ocean
(ECCO2) loadings are
presented. The RMS
reduction after subtraction of
the superposition of loadings
is presented at the bottom.
Please note, that mass is not
conserved during a simple
summing of models.
Reductions are presented for
the ITRF2014 position time
series in a vertical direction
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Fig. 7.12 Contribution of annual signal into the superposition of environmental loading models,
presenting the total variance of signal explained by the annual signal

the time-varying seasonal changes. Due to significant changes in the standard devi-
ation of individual loading models depending on the station’s location, the annual
signal contributes differently to the entire loading signal (Fig. 7.12). The most sig-
nificant amplitudes of annual signal are found for Asian, Pacific and South American
stations. These are followed by eastern European andAustralian andNorthAmerican
sites. Annual signal contributes little to the seasonal deformations of Earth’s crust in
Europe, Greenland, Antarctica and Canada.

Now, this SSA-derived seasonal curve can be subtracted from the vertical position
time series. In this way, the impact that the environment has on the station’s position
is reduced with no influence on the noise properties (Fig. 7.13). This implies that the
afore mentioned power-law plus white noise model is still an adequate noise model
in the analysis of the GPS time series. Direct removal of environmental loadings
causes a reduction in a position time series power for frequencies between 8 and
80 cpy. This reduction will directly affect the uncertainties of velocity, leading to
their underestimation. The reason is that the reduction of power in this specific
frequency band results in a too low value of the spectral index of the fitted power-
law noise. Using the seasonal curve with time-varying amplitudes estimated using
SSA, KF or AWF, seasonal peaks are reduced significantly, with almost no influence
on power estimates. Therefore, the approach presented by Klos et al. (2018a) can
be recommended to account for the environmental loading effects and remove their
impact on the position time series.
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Fig. 7.13 Power spectral density estimate provided for GUAT (Guatemala), IRKT (Russia), and
VARS (Norway) stations. The power of vertical GPS position time series (in red) is plotted against
the residuals after loading models were subtracted directly from series (in green). The residuals
were also examined after the SSA-derived seasonal-loading-curve was subtracted (in blue). An
absorption in power is observed in the first case, especially for frequencies between 8 and 80 cpy.
In the latter, seasonal peaks are reduced, with no significant influence on residuals

7.5 Summary

Geodetic observations are characterized by different types of noise affecting the
estimates. Beyond noise, also seasonal signatures are present, which causes are not
entirely recognized. Whether they arise from real geodynamic phenomena, system-
atic errors or numerical artefacts, they should be modelled and removed before the
velocity and its uncertainty is being estimated. We deliver a comprehensive descrip-
tion of mathematical methods employed to model the seasonal curves within the
GNSS position time series. Both time-constancy and time-changeability of ampli-
tudes of seasonal signals are considered.

Singular Spectrum Analysis, Kalman Filter, Wavelet Decomposition and Adap-
tiveWiener Filter were examined basing on the synthetic time series. Primarily, it was
proven that Wavelet Decomposition subtracts lots of the power from the modelled
frequency band. Singular Spectrum Analysis performance is better, but its effective-
ness is related to the length of the time window we use (Klos et al. 2018b). Kalman
Filter gives the most appropriate estimates of seasonal curves, but only Adaptive
Wiener Filter maintains the noise properties intact. The latter is provided as filter is
constructed basing on the noise properties of data we examine.

Methods mentioned above provide an accurate modelling of seasonal curves on
a station-by-station basis, with no research on their origin. To do so, the non-tidal
atmospheric, ocean and continental hydrology loadings should be accounted for. We
showed how this should be performed, so as not to influence the stochastic part of
position time series. The common approach here is to directly subtract the loading
models from the series. However, this causes a change in a type of noise, position
time series are characterized by, especially for frequencies between 8 and 80 cpy. To
remove the impact environment has on the GNSS-observed seasonal curves, an alter-
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native approach should be then employed. We presented that modelling a seasonal
curve directly for loading models and then removing this curve from position time
series helps to account for the environmental impact, keeping the noise properties of
position time series intact.

Acknowledgements We would like to thank the IGS service for providing the ITRF2014 position
time series at http://itrf.ensg.ign.fr/ITRF_solutions/2014/, and the EOST service for providing the
environmental loading models at http://loading.u-strasbg.fr/.
This research is financed by the National Science Centre, Poland. The grant was received within
the SONATA-12 call, no. UMO-2016/23/D/ST10/00495. Anna Klos is supported by the Foun-
dation for Polish Science (FNP). Machiel S. Bos was sponsored by national Portuguese funds
through FCT in the scope of the Project IDL-FCT-UID/GEO/50019/2019 and Grant Number
SFRH/BPD/89923/2012.

References

Agnew D.C., Larson K.M. (2007): Finding the repeat times of the GPS constellation. GPS Solut.,
11(1): 71–76, https://doi.org/10.1007/s10291-006-0038-4.

Altamimi Z., Rebischung P., Métivier L., Collilieux X. (2016): ITRF2014: A new release of the
International Terrestrial Reference Frame modelling nonlinear station motions. J. Geophys. Res.:
Solid Earth, 121: 6109–6131, https://doi.org/10.1002/2016jb013098.

Amiri-Simkooei, A. R. (2013): On the nature of GPS draconitic year periodic pattern in multivariate
position time series, J. Geophys. Res. Solid Earth, 118, 2500–2511, https://doi.org/10.1002/jgrb.
50199.

Amiri-Simkooei A.R., Mohammadloo T.H., Argus D.F. (2017): Multivariate analysis of GPS posi-
tion time series of JPL second reprocessing campaign. J. Geod., 91: 685–704, https://doi.org/10.
1007/s00190-016-0991-9.

Beavan J. (2005):Noise properties of continuousGPSdata from concrete pillar geodeticmonuments
in New Zealand and comparison with data fromU.S. deep drilled bracedmonuments. J. Geophys.
Res., 110, B08410, https://doi.org/10.1029/2005jb003642.

Blewitt G., Lavallée D. (2002): Effect of annual signals on geodetic velocity. J. Geophys. Res., 107,
B7,2145, https://doi.org/10.1029/2001jb000570.

Blewitt G., Lavallée D., Clarke P., Nurutdinov K. (2001): A new global mode of Earth deforma-
tion: seasonal cycle detected. Science, 294(5550): 2342–2345, https://doi.org/10.1126/science.
1065328.

Bogusz J., Klos A. (2016): On the significance of periodic signals in noise analysis of GPS station
coordinates time series. GPSSolut., 20(4): 655–664, https://doi.org/10.1007/s10291-015-0478-9.

Bos M.S., Bastos L., Fernandes R.M.S. (2010): The influence of seasonal signals on the estimation
of the tectonic motion in short continuous GPS time-series. J. Geodyn., 49: 205–209, https://doi.
org/10.1016/j.jog.2009.10.005.

Bos M.S., Fernandes R.M.S., Williams S.D.P., Bastos L. (2008): Fast error analysis of continuous
GPS observations. J. Geod. 82(3): 157–166, https://doi.org/10.1007/s00190-007-0165-x.

Bos M.S., Fernandes R.M.S., Williams S.D.P., Bastos L. (2013): Fast error analysis of continuous
GNSS observations with missing data. J. Geod., 87: 351–360, https://doi.org/10.1007/s00190-
012-0605-0.

Broomhead D.S., King G.P. (1986): Extracting qualitative dynamics from experimental data. Phys
Nonlinear Phenom, 20(2–3): 217-236, https://doi.org/10.1016/0167-2789(86)90031-x.

Chen Q., van Dam T., Sneeuw N., Collilieux X., Weigelt M., Rebischung P. (2013): Singular
spectrum analysis for modeling seasonal signals from GPS time series. J. Geodyn., 72:25–35,
https://doi.org/10.1016/j.jog.2013.05.005.

http://itrf.ensg.ign.fr/ITRF_solutions/2014/
http://loading.u-strasbg.fr/
https://doi.org/10.1007/s10291-006-0038-4
https://doi.org/10.1002/2016jb013098
https://doi.org/10.1002/jgrb.50199
https://doi.org/10.1007/s00190-016-0991-9
https://doi.org/10.1029/2005jb003642
https://doi.org/10.1029/2001jb000570
https://doi.org/10.1126/science.1065328
https://doi.org/10.1007/s10291-015-0478-9
https://doi.org/10.1016/j.jog.2009.10.005
https://doi.org/10.1007/s00190-007-0165-x
https://doi.org/10.1007/s00190-012-0605-0
https://doi.org/10.1016/0167-2789(86)90031-x
https://doi.org/10.1016/j.jog.2013.05.005


234 A. Klos et al.

Collilieux X., Altamimi Z., Coulot D., Ray J., Sillard P. (2007): Comparison of very long baseline
interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral
and correlation methods. J. Geophys. Res., 112, B12403, https://doi.org/10.1029/2007jb004933.

Davis J.L., Wernicke B.P., Tamisiea M.E. (2012): On seasonal signals in geodetic time series. J.
Geophys. Res., 117, B01403, https://doi.org/10.1029/2011jb008690.

Dee D.P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., et al. (2011). The ERA-
Interim reanalysis: configuration and performance of the data assimilation system. Quarterly
Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828.

Didova O., Gunter B., Riva R., Klees R., Roese-Koerner L. (2016): An approach for estimating
time-variable rates from geodetic time series. J. Geod., 90(11): 1207–1221, https://doi.org/10.
1007/s00190-016-0918-5.

Dill R., Dobslaw H. (2013): Numerical simulations of global-scale high-resolution hydrological
crustal deformations. J. Geophys. Res.: Solid Earth, 118: 5008–5017, https://doi.org/10.1002/
jgrb.50353.

Dong D., Fang P., Bock Y., Cheng M.K., Miyazaki S. (2002): Anatomy of apparent seasonal
variations from GPS-derived site position time series. J. Geophys. Res., 107, B4, 2075, https://
doi.org/10.1029/2001jb000573.

Dong D., Fang P., Bock Y., Webb F., Prawirodirdjo L., Kedar S., Jamason P. (2006): Spatiotem-
poral filtering using principal component analysis and Karhunen-Loeve expansion approaches
for regional GPS network analysis. J. Geophys. Res., 111, B03405, https://doi.org/10.1029/
2005jb003806.

Graham S.E., Loveless, J.P., Meade B.J. (2018): Global plate motions and earthquake cycle effects.
Geochem. Geophys. Geosyst. 19: 2032–2048, https://doi.org/10.1029/2017gc007391.

Gruszczynska M., Klos A., Gruszczynski M., Bogusz J. (2016): Investigation of time-changeable
seasonal components in GPS height time series: a case study for central Europe. Acta Geodyn.
Geomater., 13(3): 281–289, https://doi.org/10.13168/agg.2016.0010.

Gruszczynski M., Klos A., Bogusz J. (2018): A filtering of incomplete GNSS position time series
with probabilistic Principal Component Analysis. Pure Appl. Geophys., 175: 1841–1867, https://
doi.org/10.1007/s00024-018-1856-3.

Kalman R.E. (1960): A new approach to linear filtering and prediction problems. J Basic Eng-Trans
ASME 82: 35–45, https://doi.org/10.1115/1.3662552.

Karegar M.A., Dixon T.H., Malservisi R., Kusche J., Engelhart S.E. (2017): Nuisance flooding and
relative sea-level rise: the importance of present-day land motion. Scientific Reports, 7:11197,
https://doi.org/10.1038/s41598-017-11544-y.

King M.A., Bevis M., Wilson T., Johns B., Blume F. (2012): Monument-antenna effects on GPS
coordinate time series with application to vertical rates in Antarctica. J. Geod., 86(1): 53–63,
https://doi.org/10.1007/s00190-011-0491-x.

King, M.A., Santamaría-Gómez A. (2016): Ongoing deformation of Antarctica following recent
Great Earthquakes, Geophys. Res. Lett., 43, https://doi.org/10.1002/2016gl067773.

King M.A., Watson C.S., Penna N.T., Clarke P.J. (2008): Subdaily signals in GPS observations
and their effect at semiannual and annual periods. Geophys. Res. Lett., 35, L03302, https://doi.
org/10.1029/2007gl032252.

Klos A., Bogusz J. (2017): An evaluation of velocity estimates with a correlated noise: case study
of IGS ITRF2014 European stations. Acta Geodynamica et Geomaterialia, Vol. 14, No. 3 (187),
255–265, 2017. https://doi.org/10.13168/agg.2017.0009.

Klos A., Bogusz J., Figurski M., Kosek W. (2015): Noise analysis of continuous GPS time series
of selected EPN stations to investigate variations in stability of monument types. Springer IAG
Symposium Series volume 142, proceedings of the VIII Hotine Marussi Symposium, pp. 19–26,
https://doi.org/10.1007/1345_2015_62.

Klos A., Bogusz J., Figurski M., Gruszczynski M. (2016): Error analysis for European IGS stations.
Stud. Geophys., Geod., 60(1): 17–34, https://doi.org/10.1007/s11200-015-0828-7.

https://doi.org/10.1029/2007jb004933
https://doi.org/10.1029/2011jb008690
https://doi.org/10.1002/qj.828
https://doi.org/10.1007/s00190-016-0918-5
https://doi.org/10.1002/jgrb.50353
https://doi.org/10.1029/2001jb000573
https://doi.org/10.1029/2005jb003806
https://doi.org/10.1029/2017gc007391
https://doi.org/10.13168/agg.2016.0010
https://doi.org/10.1007/s00024-018-1856-3
https://doi.org/10.1115/1.3662552
https://doi.org/10.1038/s41598-017-11544-y
https://doi.org/10.1007/s00190-011-0491-x
https://doi.org/10.1002/2016gl067773
https://doi.org/10.1029/2007gl032252
https://doi.org/10.13168/agg.2017.0009
https://doi.org/10.1007/1345_2015_62
https://doi.org/10.1007/s11200-015-0828-7


7 Modelling the GNSS Time Series: Different Approaches … 235

Klos A., Gruszczynska M., Bos M.S., Boy J.-P., Bogusz J. (2018a): Estimates of vertical velocity
errors for IGS ITRF2014 stations by applying the improved Singular Spectrum Analysis Method
and environmental loading models. Pure Appl. Geophys., 175: 1823–1840, https://doi.org/10.
1007/s00024-017-1494-1.

Klos A., Bos M.S., Bogusz J. (2018b): Detecting time-varying seasonal signal in GPS position time
series with different noise levels. GPS Solut., 22:21, https://doi.org/10.1007/s10291-017-0686-6.

Klos A., Bos M.S. Fernandes R.M.S., Bogusz J. (2018c): Noise dependent adaption of the Wiener
Filter for the GPS position time series. Math. Geosci., https://doi.org/10.1007/s11004-018-9760-
z.

Klos A., Olivares G., Teferle F.N., Hunegnaw A., Bogusz J. (2018d): On the combined effect of
periodic signals and colored noise on velocity uncertainties. GPS Solut., 22:1, https://doi.org/
10.1007/s10291-017-0674-x.

Langbein J. (2012): Estimating rate uncertainty with maximum likelihood: differences between
power-law and flicker-random-walk models. J. Geod., 86: 775–783, https://doi.org/10.1007/
s00190-012-0556-5.

Langbein J., Johnson H. (1997): Correlated errors in geodetic time series: Implications for time-
dependent deformation. J. Geophys. Res., 102, B1, 591–603, https://doi.org/10.1029/96jb02945.

Mao A., Harrison Ch.G.A., Dixon T.H. (1999): Noise in GPS coordinate time series. J. Geophys.
Res., 104, B2, 2797–2816, https://doi.org/10.1029/1998jb900033.

MenemenlisD., Campin J., HeimbachP., Hill C., LeeT.,NguyenA., et al. (2008): ECCO2:High res-
olution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13–21.

Meyer Y. (1990): Ondelettes et Opérateurs, vol I–III, Hermann, Paris, 1990.
Montillet J.-P., Melbourne T.I., Szeliga W.M. (2018): GPS vertical land motion corrections to
sea-level rise estimates in the Pacific Northwest. J. Geophys. Res.: Oceans, 123: 1196–1212,
https://doi.org/10.1002/2017jc013257.

Penna N.T., Stewart M.P. (2003): Aliased tidal signatures in continuous GPS height time series.
Geophys. Res. Lett., 30, 2184, https://doi.org/10.1029/2003GL018828.

Petrov L., Boy J.-P. (2004): Study of the atmospheric pressure loading signal in very long
baseline interferometry observations. J. Geophys. Res., 109, B03405, https://doi.org/10.1029/
2003jb002500.

Rebischung P., Altamimi Z., Ray J., Garayt, B. (2016): The IGS contribution to ITRF2014. J.
Geod., 90: 611–630, https://doi.org/10.1007/s00190-016-0897-6.

Reichle R. H., Koster, R. D., De Lannoy G. J. M., Forman B. A., Liu Q., Mahanama S. P. P., et al.
(2011): Assessment and enhancement of MERRA land surface hydrology estimates. J. Clim.,
24, 6322–6338. https://doi.org/10.1175/jcli-d-10-05033.1.

Rice S.O. (1944): Mathematical Analysis of RandomNoise. Bell Systems Tech. J., 23(3): 282–332,
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x.

Santamaría-Gómez A., Bouin M.-N., Collilieux X., Wöppelmann G. (2011): Correlated errors in
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Chapter 8
Stochastic Modelling of Geophysical
Signal Constituents Within a Kalman
Filter Framework

Olga Engels

Abstract Reliable trend estimation is of great importance while analyzing data.
This importance is even enhanced when using the estimated trends for forecasting
reasons in the context of climate change. While a constant trend might be a valid
assumption for describing some geophysical processes, such as the tectonic motion
or the evolution of Glacial Isostatic Adjustment (GIA) over very short geologic time
frames, it is often too strong of an assumption to describe climatological data that
might contain large inter-annual, multi-year variations or even large episodic events.
It is therefore suggested to consider signal as a stochastic process. Themain objective
of the work described in this chapter is to provide a detailed mathematical descrip-
tion of geodetic time series analysis which allows for physically natural variations
of the various signal constituents in time. For this purpose, state-space models are
defined and solved through the use of a Kalman Filter (KF). Special attention is paid
towards carefully estimating the noise parameters, which is an essential step in the
KF. It is demonstrated how the time-correlated observational noise can be classi-
fied and handled within the state-space framework. The suggested methodology is
applied to the analysis of real Gravity Recovery And Climate Experiment (GRACE),
Global Positioning System (GPS), SurfaceMassBalance (SMB) and globalmean sea
level time series. The latter is derived based on different satellite altimetry missions.
The examples are illustrative in showing how the outlined technique can be used
for estimating time-variable rates from different geodetic time-series with different
stochastic properties.
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8.1 Introduction

Geodetic observations such as from GPS, GRACE or altimetry is indispensable tool
for variety of applications, in particular for those related to climate change. When
analyzing geodetic data and making projections into the future, we usually rely on
a rate which describes with which speed a process is changing. This rate is usually
seen as a constant value and is estimated using a classical Least-Squares Adjustment
(LSA). This interpretation of changes might be misleading if we are dealing with
climate-related measurements that might include deviations from the deterministic
linear trend assumption as well as from the constant seasonal amplitudes and phases.
One example isAntarcticawith its high inter-annual variations and very high episodic
accumulation anomalies which are also called climate noise (Wouters et al. 2013).
The question is whether these variations should be better modeled in the functional
or in stochastic model. If we for instance use GPS to constrain Antarctic GIA, which
is any viscoelastic response of the solid earth to changing ice loads and the most
uncertain signal in Antarctica, we should correct GPS for elastic uplift. Elastic uplift
is an immediate reaction of the solid earth to the contemporaneousmass changes. The
contemporaneous mass changes contain interannual variations, multi-year variations
or even large episodic events. The assumption of the deterministic trend might not
capture all the variability and yield erroneous correction for elastic uplift that, in
turn, yields erroneous constraint on GIA which is required for most techniques when
estimating ice mass balance. Reliable estimation of ice mass balance is required,
among others, for estimating sea level rise. The goal is therefore to estimate the
changes as accurate as possible. For this, we model signal constituents stochastically
using a state space model. The state space model includes an observation and a state
process and can be written as

yt = Ztαt + εt, εt ∼ N (0,H ), (8.1)

αt+1 = Ttαt + Rtηt, ηt ∼ N (0,Q), t = 1, . . . , n, (8.2)

α1 ∼ N (a1,P1), (8.3)

The Eq. (8.1) is called observation equation with yt being an observation vector at
time t, αt being an unknown state vector at time t and εt the irregular term with
H = Iσ2

ε . The design matrix Zt links yt to αt . The observation equation has the
structure of a linear regression model where the unknown state vector αt varies over
time. The Eq. (8.2) represents a first order vector autoregressive model and consists
of a transition matrix Tt , which describes how the state changes from one time step
to the next, and the process noise ηt with Q = Iσ2

η . Process noise variance Q is
assumed to be independent from H . The matrix Rt determines which components of
the state vector αt have the non-zero process noise. The initial state α1 is N (a1,P1)

with a1 and P1 assumed to be known. Since we will restrict ourselves to data that
are evently spaced in time, the index t for the system matrices in Eqs. (8.1), (8.2)
will be skipped hereafter.
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Modeling signal constituents stochastically while representing them in state space
form and using a KF framework to estimate the state parameters is a well-established
methodology for treating different problems in econometrics as described in Durbin
and Koopman (2012) and Harvey (1989). Durbin and Koopman (2012, Chap.4.3)
formulated theKF recursion to sequentially solve the linear state spacemodel defined
in Eqs. (8.1)–(8.3) using following equations:

vt = yt − Zat, Ft = ZPtZ
T + H ,

at|t = at + PtZ
TF−1

t vt, Pt|t = Pt − PtZ
TF−1

t ZPt,

at+1 = Tat + Ktvt, Pt+1 = TPt(T − KtZ)
T + RQRT .

(8.4)

The Kt = TPtZTF−1
t is the so-called Kalman gain and vt is the innovation with

variance Ft . After computing at|t and Pt|t , the state vector and its variance matrix can
be predicted using

at+1 = Tat|t, Pt+1 = TPt|tT T + RQRT . (8.5)

By taking the entire time series y1 . . . , yn for t = 1, . . . , n into account, the state
smoothing α̂t and its error variance Vt can be computed in a backward loop for
t = n, . . . , 1 initialized with rn = 0 and Nn = 0 according to Durbin and Koopman
(2012, Chap.4.4):

rt−1 = ZTF−1
t vt + LTt rt, Nt−1 = ZTF−1

t Z + LTt NtLt,

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt .
(8.6)

The matrix Lt is given by Lt = T − KtZ . The smoothing yields in general a smaller
mean squared error than filtering, since the smoothed state is based on more infor-
mation compared to the filtered state.

The covariance matrix for the smoothed state α̂t can be computed according to
Durbin and Koopman (2012, Chap.4.7):

Cov(αt − α̂t,αj − α̂j) = PtL
T
t L

T
t+1 · · · LTj−1(I − Nj−1Pj) (8.7)

with j = t + 1, . . . , n. If j = t + 1, LTt+1 . . . L
T
t is replaced by the identity matrix I ,

which has a dimension of the estimated state vector.
In the next section, different time seriesmodels applicable to the analysis of geode-

tic data are summarized and put into the state space form defined in Eqs. (8.1)–(8.3).
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8.2 Time Series Models

Different time series models exist as can be found in e.g., Harvey (1989), Durbin and
Koopman (2012), Peng and Aston (2011). Here, we provide a detailed description
of those models that are usually used to parameterize geodetic time series: trend,
harmonic terms, step-like offsets, and coloured noise.

8.2.1 Trend Modelling

To fit a trend to time series, usually a deterministic function is used

yt = μt + εt, t = 1, . . . , n,

εt ∼ N (0,σ2
ε )

(8.8)

with observation vector yt at time t = 1, . . . , n. The linear trend is μt = α + β · t
with an intercept α and a slope β. The unmodeled signal and measurement noise in
the time series is stored in the error term εt and is often assumed to be an independent
and identically distributed (iid) random variable with zero mean and variance σ2

ε .
By obtaining μt recursively from

μt+1 = μt + β, with μ0 = α (8.9)

and generating βt by random walk process, yields

μt+1 = μt + βt + ξt, ξt ∼ N (0,σ2
ξ ),

βt+1 = βt + ζt, ζt ∼ N (0,σ2
ζ ).

(8.10)

This can be regarded as a local approximation to a linear trend. The trend is linear
if σ2

ξ = σ2
ζ = 0. If σ2

ζ > 0, the slope βt , is allowed to change in time. The larger the
variance σ2

ζ , the greater the stochastic movements in the trend, the more the slope
is allowed to change from one time step to the next. Please note that any changes
in slope is acceleration. Since there is no physical reason for the intercept to change
over time, we model it deterministically by setting σ2

ξ = 0; this leads to a stochastic
trend model called an integrated random walk (Harvey 1989; Durbin and Koopman
2012; Didova et al. 2016).

Representing the state vector in the state space form yields

αt = [
μt βt

]T
. (8.11)

The observation equation reads
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yt = [
1 0

]
αt + εt (8.12)

with

Z =
[
1
0

]
(8.13)

and remaining state space matrices being

T =
[
1 1
0 1

]
, R =

[
0
1

]
, Q = σ2

η, H = σ2
ε . (8.14)

8.2.2 Modelling Harmonic Terms

Harmonic terms are important signal constituents in geodetic time series that are
usually co-estimated with the trend. For this, the Eq. (8.8) is extended with a deter-
ministic harmonic term

ct = c · cosωt + s · sinωt, (8.15)

yielding

yt = μt +
2∑

i=1

(ci · cosωit + si · sinωit) + εt, t = 1, . . . , n, (8.16)

with angular frequency

ωi = 2π

Ti
Ts, (8.17)

where T1 = 1 for an annual signal, and T2 = 0.5 for a semi-annual signal; Ts is the
averaged sampling period

Ts = tn − t1
n − 1

. (8.18)

To allow harmonic terms to evolve in time, they can be built up recursively similar
to the linear trend in the previous section, leading to the stochastic model

ct = ct−1 · cosω + st−1 · sinω + ςt,

st = −ct−1 · sinω + st−1 · cosω + ς∗
t ,

(8.19)

where ςt and ς∗
t are white-noise disturbances that are assumed to have the same

variance (i.e., ςt ∼ N (0,σ2
ς )) and to be uncorrelated. These stochastic components

allow the parameters c and s and in turn the corresponding amplitude At and phase
φt to evolve over time
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At =
√
c2t + s2t

φt = − tan−1(st/ct) − τω) mod 2π, with τ = t − t1
Ts

(8.20)

Inserting the stochastic trend and stochastic harmonic models into Eq. (8.8) yields

yt = μt + c1,t + c2,t + εt, εt ∼ N (0,σ2
ε ) (8.21)

with c1,t and c2,t being annual and semi-annual terms, respectively. Please note that
Eq. (8.21) can be easily extended by additional harmonic terms using the stochas-
tic model of Eq. (8.19) with the corresponding angular frequencies (Harvey 1989;
Durbin and Koopman 2012; Didova et al. 2016).

The state vector becomes

α[b]
t = [

μt βt c1,t s1,t c2,t s2,t
]T

(8.22)

with index b emphasizing that the integrated random walk along with the annual
and semiannual components represent a basic model for geodetic time series. The
observation equation gets the form

yt = [
1 0 1 0 1 0

]
αt + εt (8.23)

with

Z [b] =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
0
1
0
1
0

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (8.24)

The remaining state space matrices can be written as

T [b] =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 1 0 0 0 0
0 1 0 0 0 0
0 0 cosω1 sinω1 0 0
0 0 − sinω1 cosω1 0 0
0 0 0 0 cosω2 sinω2

0 0 0 0 − sinω2 cosω2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (8.25)

R[b] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, Q[b] =

⎡

⎢⎢
⎢⎢
⎣

σ2
ζ 0 0 0 0
0 σ2

ς1
0 0 0

0 0 σ2
ς1

0 0
0 0 0 σ2

ς2
0

0 0 0 0 σ2
ς2

⎤

⎥⎥
⎥⎥
⎦
, H = σ2

ε .
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8.2.3 Modelling Coloured Noise

If the observations are close together, they may contain temporally correlated, so-
called coloured noise. Here, we aim at co-estimating the coloured noise within the
described state spacemodel solvedwithin theKF framework as described in Sect. 8.1.
When not modeling the coloured noise in observations such as from GPS, the solu-
tions for the noise parameters might be outside a reasonable range (e.g., zero noise
variance or noise variance exceeding a reasonable limit). For this, a so-called shap-
ing filter developed by Bryson and Johansen (1965) is used. Since the KF requires
a time-independent noise input, the observational noise εt is parameterized in such
a way that the process noise matrix consists of a time-independent noise while the
output, the state vector forming εt , is time-dependent. This is done by extending
the state vector αt in Eq. (8.22) with the noise. For purposes of modeling tempo-
rally correlated noise in the geodetic time series within the state space framework,
an Autoregressive Moving Average (ARMA) model that subsumes Autoregressive
(AR) and Moving Average (MA) models can be utilized (Didova et al. 2016).

An ARMA model of order (p, q) is defined as

εt =
l∑

j=1

φjεt−j + κt +
l−1∑

j=1

θjκt−j, t = 1, . . . , n, (8.26)

with l = max(p, q + 1), autoregressive parameters φ1, . . . ,φp and moving average
parameters θ1, . . . , θq. κt is a serially independent series of N (0,σ2

κ
) disturbances.

Some parameters of an ARMAmodel can be zero, which provides two special cases:
(i) if q = 0, it is an autoregressive process AR(p) of order p and (ii) if p = 0, it is a
moving-average process MA(q) of order q.

Coloured noise εt can be put into state space form as:

α[ε]
t =

⎡

⎢⎢
⎢⎢⎢
⎣

εt
φ2εt−1 + · · · + φlεt−l+1 + θ1κt + · · · + θl−1κt−l+2

φ3εt−1 + · · · + φlεt−l+2 + θ2κt + · · · + θl−1κt−l+3
...

φlεt−1 + θl−1κt

⎤

⎥⎥
⎥⎥⎥
⎦

(8.27)

with η[ε] = κt+1. The index ε emphasizes that the system matrices are attributed to
the coloured noise that is modeled using an ARMA-process:

T [ε] =

⎡

⎢⎢⎢
⎣

φ1 1 0
...

. . .

φl−1 0 1
φl 0 · · · 0

⎤

⎥⎥⎥
⎦
, R[ε] = [

1 θ1 · · · θl−1
]T

, Z [ε] = [
1 0 0 · · · 0] .

(8.28)
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Combining the basic time series model with ARMA-model yields

αt = (α[ε]
t ,α[b]

t ) (8.29)

with the system matrices

Zt = (Z [ε],Z [b]), T = diag(T [ε],T [b]),

R = diag(R[ε],R[b]),

Q = diag(
[
σ2

κt+1
σ2

ζ σ2
ς1

σ2
ς1

σ2
ς2

σ2
ς2

]
).

(8.30)

Detecting p and q for ARMA(p, q)

The (p, q) of the ARMAmodel define the amount ofφ and θ coefficients necessary to
parameterize coloured noise εt in Eq. (8.27). That means that we first need to know
how large p and q have to be chosen. To get an idea about the appropriate (p, q)
we can (i) follow Didova et al. (2016) and perform a power density function (PSD)
analysis or (ii) we can analyze usually used criteria to identify which model provides
the ‘best’ fit to the given time series.

PSD Analysis

When using a PSD analysis, the idea is that the residuals, obtained after fitting a
deterministic function to the given time series, represent an appropriate approxima-
tion of the noise contained in the time series. For this, we first set the process noise
variance σ2

η to zero andσ2
ε to one, which is equivalent to the commonly used LSA.We

then estimate the state vector using filtering and smoothing recursions described in
Sect. 8.1. The state vector can for instance consist of the components contained in the
basic model described in Eq. (8.22). We estimate the state vector by KF considering
quantities introduced in Sect. 8.1

ε̂t = H (F−1
t vt − KT

t rt). (8.31)

The KF is used instead of LSA, because KF allows the residuals to be computed at
each time step t = n, . . . , 1 regardless possibly existing data gaps in the time series.
The postfit residuals obtained after fitting a deterministic model to the observations
represent an approximation of the observational noise. In the next step, we compute
the PSD function of the approximate coloured noise. Then, using this PSD function
we estimate the parameters of the pure recursive (MA) and non-recursive (AR) part
of the ARMA filter by applying the standard Levinson–Durbin algorithm (Farhang-
Boroujeny 1998) to p, q ∈ {0, . . . , 5}. We limit the order to 5 to keep the dimension
of the state vector αt relatively short. The estimated parameters are then used to
compute the PSD function of the combined ARMA(p, q) solution. Finally, we use
Generalized Information Criterion (GIC) to select the PSD of the ARMAmodel that
best fits the PSD of the approximate coloured noise. The (p, q) of this ARMAmodel
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define the amount of φ and θ coefficients necessary to parameterize coloured noise
εt in Eq. (8.27).

Criteria for ‘best’ fit

It is important to understand that the residuals, obtained after fitting a deterministic
function to the given time series,may still contain unmodeled time-dependent portion
of the signal. That means that these residuals are only an approximation of the
observational noise.

To get an idea about which ARMA(p, q)model is the most appropriate to param-
eterize the observational noise of a particular time series, we can compare the log-
likelihood value of a particular fitted model. Since the loglikelihood value is usually
larger for larger number of parameters (for larger p and/or q), we also need a crite-
rion that can deal with different amount of parameters. For this, Akaike Information
Criterion (AIC) and the Bayessian Information Criterion (BIC) can be used (Harvey
1989).

ARMA and Long-Range Dependency

ARMA, as a high-frequency noise model, is known to describe a short-range depen-
dency (have a short memory). The noise in GPS time series, however, is believed
to contain long-range dependency (have a long memory). Therefore, a power law
model is usually used to model GPS noise. According to Plaszczynski (2007), power
law noise, which has a form 1

f α , is a stochastic process with a spectral density having
a power exponent 0 < α ≤ 2. For GPS time series analysis, the power law model
with α = 1 and α = 2 is usually used. In case of α = 2, we are talking about a ran-
dom walk noise, which is an analogue of the Gaussian random walk we employed to
model time-varying signal constituents. Plaszczynski (2007) has shown that ARMA
models can be used to generate random walk noise. This can be immediately seen
from the mathematical description of the random walk process

εt = εt−1 + κt (8.32)

with εt being the observation at time t. The Eq. (8.26) is equivalent to Eq. (8.32) in
case q = 0, p = 1 and φ1 = 1. That means that AR(1), which is a special case of
ARMA, can represent random walk noise.

In case ofα = 1, we are talking about a flicker noise, which is difficult to represent
within the state space model and therefore, can be only approximated. On the one
hand, flicker noise can be approximated by a linear combination of independent
first-order Gauss-Markov processes, as it has been shown by Dmitrieva et al. (2015).
On the other hand, Didova et al. (2016) have shown that also ARMA models can
approximate flicker noise, when a special ARMA case—AR(p)—is used. In their
supplement, Didova et al. (2016) demonstrated that an infinite number of parameters
pwould be required to exactly describe flicker noise.However, limiting themaximum
order p to 5 to control the dimension of the state vector α[ε]

t would still be sufficient
to approximate flicker noise within the state space formalism.
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8.2.4 Modelling of Offsets

Some geodetic data, such as GPS observations might include offsets that must be
parameterized to avoid additional errors in the estimated trends (Williams 2003). If
the offsets are related to hardware changes, they are step-like and easy to include
into the state space model. For this, a variable wt is defined as:

wt =
{
0, t < τe,

1, t ≥ τe.
(8.33)

Including this in the observation equation Eq. (8.21) gives

yt = μt + c1,t + c2,t + δ wt + εt, t = 1, . . . , n, (8.34)

with δ measuring the change in the offset at a known epoch τe. For k offsets, the state
vector can be written as

α[δ]
t = [δ1 . . . δk ]T . (8.35)

Wecannowcombine the differentmodels: (i) the basicmodel defined inEq. (8.22),
(ii) the coloured noise from Eq. (8.27) modeled here using an ARMA-process, and
(iii) the model for k offsets from Eq. (8.35)

αt = (α[ε]
t ,α[b]

t ,α[δ]
t ), (8.36)

with the system matrices

Z = (Z [ε],Z [b], Ik), T = diag(T [ε],T [b], Ik),

R = diag(R[ε],R[b], 0k),

Q = diag(
[
σ2

κt+1
σ2

ζ σ2
ς1

σ2
ς1

σ2
ς2

σ2
ς2

]
),

(8.37)

where Z , T and R with corresponding indices have been defined in Sects. 8.2.2 and
8.2.3.

8.2.5 Hyperparameters

The parameters that build the system matrices Q and H decide about the variability
of the estimated signal constituents (the variability of the parameters stored in the
state vector α). For instance, the larger is σ2

ζ , the more the slope is allowed to change
from one time step to the next; the larger is σ2

ς1
, the more variability is allowed for the

corresponding harmonic term. That means that if we chose one of these parameters
too large, it will absorb variations possibly originating from other signal components.
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There parameters, therefore, govern the estimates of the state vector and are called
hyperparameters. These parameters are stored in vector ψ

ψ = [
ψε ψη

]T
(8.38)

and can be either assumed to have a certain value, as it was done byDavis et al. (2012),
or they can be estimated based on the Kalman filter. Because we do not have any a
priori information regarding the process noise, we estimate the hyperparameters. One
way to do so is bymaximizing likelihood. If a process is governed by hyperparameters
ψ, which generate observations yt , the likelihood L of producing the yt for known ψ
is according to Harvey (1989)

L(Yn|ψ) = p(y1, . . . , yn) = p(y1)
n∏

t=2

p(yt |Yt−1). (8.39)

The p(yt|Yt−1) represents the distribution of the observations yt conditional on the
information set at time t − 1, that is Yt−1 = {yt−1, yt−2, . . . , y1}. In praxis, we usually
work with loglikelihood logL instead of the likelihood L

logL(Yn|ψ) =
n∑

t=1

p(yt |Yt−1). (8.40)

The hyperparametersψ are regarded as optimal if the logL ismaximized or the−logL
is minimized. Since the E(yt|Yt−1) = Ztat , the innovation vt = yt − Ztat (Sect. 8.1)
with the variance Ft = Var(yt|Yt−1), inserting N (Ztat,Ft) into Eq. (8.40) yields

log L(Yn|ψ) = −n

2
log(2π) − 1

2

n∑

t=1

(log |Ft| + vTt F
−1
t vt), (8.41)

which is computed from the Kalman filter output (Eq. (8.4)) following Durbin and
Koopman (2012, Chap.7). Harvey and Peters (1990) refer to obtaining the logL in
such a way as via the prediction error decomposition.

Because the hyperparameters represent standard deviations that cannot be nega-
tive, they are defined for our basic state space vector from Eq. (8.22) as

ψ = 0.5 log
[
σ2

ε σ2
η

]T = 0.5 log
[
σ2

ε σ2
ζ σ2

ς1
σ2

ς2

]T
. (8.42)

We are numerically searching for the optimal hyperparameters ψ that minimize
the −logL(Yn|ψ) (the negative logL is called objective function). The lower the
dimension of the hyperparameters vector, the faster an optimization algorithm might
converge. However, this does not guarantee that the optimal solution will be found
if the optimization problem is non-convex. An optimization problem is non-convex,
if additionally to the global minimum (that we are aiming at to find), several local
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minimum points exist. At these local minimum points, the value of the objective
function −logL is different than at the global minimum. That means that if we
start searching for the global minimum in the proximity of a local minimum, the
optimization algorithm will suggest the local minimum as the optimal solution. It
follows fromhere that the starting point (also called initial guess) is crucial for finding
the optimal set of hyperparameters and in turn, reliable parameters stored in the state
vector α that are the signal constituents we are interested in to estimate.

In other words, if the problem is non-convex, there is no guarantee of finding
a global minimum. Depending on the initial guess, the solution might be a local
minimum meaning that there is non unique solution. The preferred solution is sig-
nificantly depending on the length of the state space vector, on the length of the time
series (the longer the better), on the noise content and kind, on the non-convexity of
the problem, etc. What exactly causes the non-convexity and to which extent (data,
definition of the transition matrix, or of the state vector, or of the hyperparameters
vector, ormost likely the interaction of all aforementioned components) is a challeng-
ing topic that needs to be investigated, but is out of the scope of this study. Therefore,
we recommend to always check the spectral representation of the estimated signal
constituents (Sect. 8.3.4) and if independent observations are available, to use them
for validation (Sect. 8.3.3).

There are, however, tools to increase the chance of finding the optimal solution
by limiting the parameter search space and/or by applying explicit constraints on
the hyperparameters (Didova et al. 2016). Yet, we first should decide on which
optimization algorithm to use. Since the problem we are dealing with is non-convex,
we use an Interior-Point (IP) algorithm as described in Byrd et al. (1999) to find
hyperparameters that minimize our objective function. This algorithm is a gradient-
based solver, which means that the gradient of the objective function is required.
According to Durbin and Koopman (2012, Chap.7), the gradient of the objective
function can be analytically computed using the quantities calculated in Sect. 8.1:

∂ log L(Yn|ψ)
∂ψ

= 1

2

n∑

t=1

tr
{
(utuTt − Dt)

∂Ht
∂ψ

}
+ 1

2

n∑

t=2

tr
{
(rt−1rTt−1 − Nt−1)

∂RtQtRTt
∂ψ

}
,

(8.43)
where ut = F−1

t vt − KT
t rt and Dt = F−1

t + KT
t NtKt .

To increase the likelihood of getting the optimal solution, we start the IP algorithm
for different starting points. The larger the amount of starting points the higher the
probability of finding the global minimum, the longer the execution time of the algo-
rithm. One should however ensure that after each run numerically the same optimal
solution is obtained. From all the different solutions, the solution is used to estimate
the state vector α that provides the smallest objective function value (Anderssen and
Bloomfield 1975). The uniformly distributed starting points are randomly generated.

To further increase the likelihood of getting the optimal solution, we generate the
starting pointswithin a finite search space. For this, we define lower and upper bounds
for our hyperparameters. The lower bounds are set equal to zero, as the standard
deviations can not be less than zero. To define upper bound, the traditional LSA is
utilized. We first fit a basic deterministic model (trend, annual, semiannual terms) to
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the analyzed time series. Thevarianceof the postfit residuals is used as anupper bound
for the σ2

ε . The variance of the postfit residuals obtained after fitting the deterministic
model is larger than the σ2

ε , as it contains additionally to the unmodeled signal and
measurement noise, possible fluctuations in the modeled trend, annual and semi-
annual components. The σ2

ε in Eq. (8.23) does not contain possible fluctuations in
the modeled terms, since we model them stochastically as described in Sect. 8.2. The
upper bounds for harmonic terms are defined in similar way. Deterministic harmonic
terms are simultaneously estimated using LSA within a sliding window of minimum
two years. The maximum size of the sliding window corresponds to the length of
the analyzed time series. In this way, a sufficient amount of for instance annual
amplitudes is estimated for different time periods. The variance computed based on
the multiple estimates is regarded as the upper bound for σ2

ς1
. This is an upper bound,

since the standard deviations computed for different time intervals indicate possible
signal variations within the considered time span and contain possible variations
within the trend component. These standard deviations are always larger than the
process noise of the corresponding signal, which only represents the variations from
one time step to the next. The upper bound for other harmonic terms are defined
in the same way. The search space associated with the trend component σ2

ζ is only
limited through the lower bound.

The importance of limiting the parameter search space within a non-convex opti-
mization problem is demonstrated in Didova et al. (2016). As already mentioned,
the reliability of the estimated hyperparameters can be verified by investigating the
amplitude spectrum of the estimated signal constituents. As there is no recipe for
solving a non-linear problem that has several local minima (or maxima), any prior
knowledge which might be available should be used. This can be easily done by
setting explicit constrains for instance on the noise parameter σ2

ε . However, before
introducing a constraint, it should be verified that this constraint is indeed supported
by the data (for more details the reader is reffed to Didova et al. 2016).

8.3 Application to Real Data

In this section, we show how the time-varying trends can be estimated from different
geodetic time series that feature different stochastic properties. For this, we estimate
time-variable rates from GPS and GRACE at the GPS stations in Antarctica that are
located in regions where (i) a high signal-to-noise ratio is expected and (ii) an apri-
ori information regarding the geophysical processes exists. For monthly available
GRACE time series, a white noise assumption is used. In contrast to that, for daily
GPS observations we co-estimate coloured noise using the procedure described in
Sect. 8.2.3. If time-varying rates derived from GRACE and GPS exhibit the same
behavior, we interpret the estimated variations as a signal and not as noise. To
strengthen this interpretation, we derive time-varying rates utilizing monthly SMB
data fromRegionalAtmosphericClimateModel (RACMO) at the sameGPS stations.
The hypothesis is that (i) all three techniques (RACMO, GRACE, and GPS) should
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capture small-scale accumulation variability present in SMB and (ii) this variability
can be detected using the described state space framework solved by KF.

Moreover, we analyze the Global Mean Sea Level (GMSL) time series which has
a temporal resolution of 10 days. The time series is derived using a combination of
different altimetry products over 25 years.

8.3.1 Pre-processing of GRACE and SMB

GRACEandSMB time series aremonthly available. GRACE time series are obtained
using unconstrained DMT2 monthly GRACE solutions completed to degree n and
order m 120 (Farahani et al. 2016). Degree-1 coefficients were added using values
generated from the approach of Swenson et al. (2008), and the C20 harmonics were
replaced with those derived from satellite laser ranging (Cheng and Tapley 2004).
Since DMT2 solutions are available starting from February 2003 to December 2011,
we focus on analyzing this time span.

SMB is the sum of mass gain (precipitation) and mass loss (e.g., surface runoff)
provided at the spatial resolution of 27km. SMB reflects mass changes within the firn
layer only. GRACE signal over Antarctica also reflects mass changes within the firn
layer, but additionally it contains changes due to GIA and ice dynamics. We remove
the GIA-inducedmass changes from the total GRACE signal usingGIA rates derived
in Engels et al. (2018).

To ensure a fair comparison between GRACE and SMB data in terms of spatial
resolution, the dynamic patch-approach described in Engels et al. (2018) is applied
to retrieve surface densities from both, GRACE and SMB data.

To enable a direct comparison between the GRACE, SMB and GPS data, we con-
vert GRACE and SMBderivedmonthly surface densities into vertical deformation as
observed by GPS. For this, derived surface densities are first converted into spherical
harmonic representation of the surface mass Cq

nm, S
q
nm according to Sneeuw (1994).

In the next step, these spherical harmonics are converted into spherical harmonics in
terms of vertical deformation Ch

nm, S
h
nm following Kusche and Schrama (2005) as

Ch
nm

Sh
nm

}
= 3ρw

ρe

h′
n

2n + 1

{
Cq
nm

Sq
nm

}
(8.44)

using the density of water ρw, the density of Earth ρe, and Load Love numbers h′
n.

Finally,monthly spherical harmonics in terms of vertical deformation are synthesized
at the locations of GPS stations resulting in a time series of vertical deformation.

The resulting monthly time series derived based on GRACE and SMB data are
used to estimate time-varying rates along with stochastically modeled known har-
monics (annual and semiannual components for GRACE and SMB data, and addi-
tionally tidal S2 periodic term for GRACE). For both datasets, a constant intercept
is co-estimated. The state vector has the form as described in Eq. (8.22) with an
additional tidal S2 harmonic term (161 days) to parameterize GRACE time series.
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8.3.2 Pre-processing of GPS

We use daily GPS-derived vertical displacements at two permanent GPS stations in
Antarctica: (i) at VESL station that is located in QueenMaud Land of East Antarctica
and (ii) atCAS1GPSstation that is located inWilkesLand.Theprocessing of theGPS
displacements followed that ofThomas et al. (2011), althoughGPSobservationswere
intentionally not corrected for non-tidal atmospheric loading. To be more consistent
with GRACE-derived data, we corrected the GPS data using the Atmospheric and
Oceanic De-aliasing (AOD) product (Flechtner 2007).

The GPS observations contain step-like offsets within the analyzed time period:
at the CAS1 station two offsets occurred (in Oct. 2004 and Dec. 2008) and at the
VESL station one (in Jan. 2008). Moreover, GPS time series might contain outliers
that should be removed from the data prior applying KF to it. This is because KF
is not robust against outliers. We used Hampel filter to detect the outliers (Pearson
2011) and removed the observations from the time series even if the outliers were
detected only in the horizontal or vertical component.

Another issue when dealing with GPS data is that the observations might be
not evently spaced in time, partially yielding relatively large data gaps. In gen-
eral, KF can easily deal with irregularly distributed observations. However, we need
equally spaced data to be able to model temporally correlated noise of higher orders
(Sect. 8.2.3) within the state space framework. For this, we fill short gaps with inter-
polated values. Long gaps are filled with NAN values. For the daily GPS data, we
defined a gap to be long if more than one week of data is missing (seven consecutive
measurements).

To estimate time-varying rates from GPS time series, slope, annual and semi-
annual signal constituents are allowed to change in time. The state vector has the
form as described in Eq. (8.36) containing step-like offsets and an ARMA-process
to parameterize the coloured noise. The order p and q of the ARMA-process was
detected by performing the PSD analysis as described in Sect. 8.2.3. Figures8.1a and
b demonstrate the estimated time-varying slope along with the time-varying annual
signal for both analyzed GPS sites.

8.3.3 GRACE-SMB-GPS

When comparing the time-varying rates of vertical deformations obtained from the
three independent techniques, three important aspects should be considered. First,
GPS observations are discrete point measurements that are sensitive to local effects
and GRACE and SMB results are spatially smoothed over the patches defined by
Engels et al. (2018). Second, the GPS observations used here are global. They refer
to a reference framewith origin in the Center-of-Mass (CM) of the total Earth system
while the vertical deformations we obtained from GRACE and SMB are regional.
To enable a fair comparison of GRACE and SMB time series with those of GPS,
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Fig. 8.1 Time-varying slope (top) and annual signal (bottom, dashed line) along with the time-
varying annual amplitude (bottom, solid line) for GPS vertical site displacements at the a CAS1
and b VESL station (without any corrections applied)

we should ‘regionalize’ GPS observation to Antarctica. For this, we should reduce
the signal originating from non-Antarctic sources from the GPS signal. Third, GPS
observations contain global GIA whereas GRACE and SMB are GIA-free assuming
that a correct GIA signal is subtracted from GRACE data. GIA contaminates the
GPS secular trend at very low degrees, mostly driven by GIA in the Northern Hemi-
sphere (Klemann and Martinec 2011) and the leakage from non-Antarctic sources is
alsomostly originating fromchanges in the spherical harmonic coefficients of degree-
one and C20. We therefore remove the time-varying slope obtained from degree-one
and C20 time series from the time-varying slope obtained from GPS observations.
The assumption is here that these low-degree coefficients are a sufficient first-order
approximation of the non-Antarctic leakage.

Figures8.2 and 8.3 show three time-varying rates estimated using GRACE, SMB,
and GPS time series for the VESL and CAS1 station, respectively. In these figures,
GPS-derived time-varying rates are corrected for degree-one, C20, and atmospheric
non-tidal variations. There is a high correlation of 0.9 and 0.7 between the SMB- and
GRACE-derived time-varying rates for the CAS1 and VESL station, respectively.
The correlation between GPS- and GRACE-derived time-varying rates is slightly
lower: 0.6 for the CAS1, and 0.8 for the VESL station. Although the correlation
is generally high, a systematic bias between the three estimates might exist. This
bias can be explained by geophysical processes. The bias between the SMB- and
GRACE-derived time-varying rates would most likely be due to the fact that SMB
data contain variations within the firn layer and GRACE-derived rates represent
variations within the firn and ice layer after being corrected for GIA. That means that
after subtracting SMB fromGRACE rates, the remainder should represent variations
mostly associated with ice dynamics. We therefore subtract the mean slope of SMB
from the mean slope of GRACE, assuming the difference is representative for ice
dynamics. In this way computed bias between the SMB- and GRACE-derived time-
varying rates is added to the time-varying SMB rates resulting in the shift of the
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Fig. 8.2 Time-varying slope
for GRACE (blue), GPS
(green), and SMB (red) time
series at the geolocation of
the VESL site in Queen
Maud Land, East Antarctica.
a Original time-varying rates
and b shifted time-varying
rates (blue: GRACE+GIA,
red: SMB+ice
dynamics+GIA).
Time-varying error bars are
1σ

Fig. 8.3 Time-varying slope
for GRACE (+GIA) (blue),
GPS (green), and SMB (+ice
dynamics+GIA) (red) time
series at the geolocation of
the CAS1 site in Wilkes
Land, East Antarctica.
Time-varying error bars are
1σ
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SMB-derived time-varying rates towards the GRACE-derived time-varying rates
(Fig. 8.2b). The mean rate for ice dynamics is estimated to be 0.3 ± 0.09 and−0.5 ±
0.08mm for CAS1 and VESL station, respectively. Please note that we do not show
the original plot of the three time series for the CAS1 station, as the difference
between the ‘shifted’ and ‘unshifted’ version is small and cannot be detected by
visual inspection.

The bias between the GPS- and GRACE-derived time-varying rates would most
likely be due to the fact that GPS data contain variations due to both surface processes
(firn, ice) andGIAwhereasGRACE-derived rates areGIA-free, sincewe removed the
GIA rates from them in the pre-processing step as described in Sect. 8.3.1. It follows
that the difference between the mean slope of GPS and the mean slope from GRACE
shouldmainly represent the solid-earth deformation associated with GIA. In this way
computed bias between the GRACE- and GPS-derived time-varying rates is added
to the time-varying GRACE rates resulting in the shift of the GRACE-derived time-
varying rates towards the GPS-derived time-varying rates (Figs. 8.2b, 8.3). Please
note that the bias attributed to GIA is also added to the time-varying rates derived
from SMB allowing a direct comparison between the three independent techniques.
The mean rate for GIA is estimated to be −0.2 ± 0.8 and 1.3 ± 0.4mm for CAS1
and VESL station, respectively.

After correcting the SMB- andGRACE-derived time-varying rates for ice dynam-
ics and GIA, respectively we can compute the agreement between SMB/GRACE and
GRACE/GPS time-varying rates in terms of Weighted Root Mean square Residual
(WRMS) reduction in percent following Tesmer et al. (2011). This quantity takes
into account the magnitude and behavior of the time-varying rates estimated from
two different time series as well their uncertainties. For ice dynamics corrected SMB
time-varying rates explain 49 and 27% of the GRACE slope WRMS for CAS1 and
VESL GPS stations, respectively. For GIA corrected GRACE time-varying rates
explain 21 and 40% of the GPS slope WRMS for CAS1 and VESL GPS stations,
respectively. Please note the improved agreement between themagnitude of the peaks
derived from GRACE and GPS rates at the CAS1 station compared to the results
shown in Didova et al. (2016) (their Fig. 9). The better agreement is mainly caused by
the dynamic patch approach applied to the GRACE data, which localizes the signal
and thus, improves its recovery (Engels et al. 2018).

Despite the visual inspection of Figs. 8.2 and 8.3 the WRMS reduction in per-
cent confirms a good agreement between the temporal variations derived from three
independent techniques. If we only compared the deterministic trends fromGRACE,
SMB and GPS, we would not be able to get any insights into the geophysical pro-
cesses. Analyzing the time-varying rates allows us to state that all three techniques
capture small-scale accumulation variability modeled by SMB at the two GPS loca-
tion. In particular, both GRACE and GPS seem to observe the same geophysical
processes with similar magnitude. We interpret these geophysical processes as sig-
nal and not as noise. Under some assumptions as described above, we are even able
to separate different signals. We could go further an compare the GIA from this
analysis with for instance the GIA used to correct GRACE data, however this is out
of the scope of this chapter.
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As stated at the beginning of this section, we have chosen the CAS1 and the VESL
GPS stations because of existing prior knowledge about the geophysical process that
took place there. Lenaerts et al. (2013) reported strong accumulation events in 2009
and 2011 in Dronning Maud Land, EA where the VESL GPS stations is located. As
we performed the comparison in terms of vertical deformation, the time-varying rates
in Fig. 8.2 contain a clear subsidence of the solid Earth as an immediate response
to the high accumulation anomaly in both years. This subsidence is detected by all
three independent techniques as well as the subsidence at the CAS1 GPS station in
2009 reported by Luthcke et al. (2013).

8.3.4 Global Mean Sea Level Time Series

We analyze GMSL time series1 over the last 25 years that are derived using a com-
bination of different altimetry products. GMSL time series has a repeat cycle of 10
days, which is a different sampling characteristic compared to daily GPS- or monthly
GRACE-observations. Since the time seriesmight contain irregularly spaced data,we
fill short gaps with interpolated values. Long gaps are filled with NAN values as for
GPS time series. Here, we define a gap to be long if three consecutive measurements
are missing (i.e., one month of altimetry observations).

While analyzing the LSA residuals of GMSL time series, a temporally correlated
noise is detected. We model this coloured noise as AR-process within the Kalman
Filter (Sect. 8.2.3). To get an idea about which AR(p) model is the most appropriate
to parameterize the observational noise of the GMSL time series, we compared the
loglikelihood values, AIC, and BIC for AR(p) with p = 1 . . . 9. That means that the
time series is parameterized using different AR(p), bias alongwith slope, annual, and
semiannual components that are allowed to change in time. The corresponding state
space model is solved by Kalman Filter. The AR(5) is determined to be a preferred
parameterization for the temporally correlated noise in the GMSL time series, as for
thismodelweget theminimumAICandBIC, and themaximum logL fromall the nine
different solutions. Figure8.4 shows the deterministic slope estimated by commonly
used LSA with its formal errors rescaled by the a posteriori variance. Figure8.4 also
contains the time-varying slope. From the time-varying slopewe computemean slope
to allow both estimates (from LSA and KF) to be directly compared. As can be seen
in Fig. 8.4, the results of two techniques agree very well. The advantage of having
derived the time-varying trend for the GMSL is that we can immediately see that the
acceleration is not constant over the analyzed time span, since any change in slope
term in Fig. 8.4 reflects acceleration. When computing the acceleration between the
2007 and the begin of the time series, we get an insignificant number of 0.04 ±
0.08mm/y2, between 2007 and 2015 there is a significant average acceleration of
0.27 ± 0.09mm/y2 and over the entire analyzed time period the average acceleration

1http://sealevel.colorado.edu/content/2018rel1-global-mean-sea-level-time-series-seasonal-
signals-retained, last access on 09.07.2018.

http://sealevel.colorado.edu/content/2018rel1-global-mean-sea-level-time-series-seasonal-signals-retained
http://sealevel.colorado.edu/content/2018rel1-global-mean-sea-level-time-series-seasonal-signals-retained
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Fig. 8.4 Slope estimates in
mm/year: the time-varying
slope derived using the
Kalman Filter (KF)
framework (black); the mean
slope derived from the KF
time-varying slope (red); the
slope estimated using the
least-squares adjustment
with formal LSA errors
rescaled by the a posteriori
variance (blue). Error bars
are 1σ

Fig. 8.5 Amplitude
spectrums of the estimated
slope (top), annual (middle)
and semi-annual (bottom)
components for the GMSL
time series in mm
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is estimated to be 0.1 ± 0.06mm/y2 (not significant at the 95% confidence level).
It should be noted, however, that we utilized the GMSL time series as it is, without
removing signals, such as eruption or El Niño Southern Oscillation (ENSO) effects
(Nerem et al. 2018), from the time series prior to estimating time-varying rates.

The reliability of the estimated hyperparameters and, in turn, of the different
signal constituents is verified using spectral analysis. Figure8.5 demonstrates that
the amplitude spectrums of the estimated slope, annual and semiannual components
show significant peaks over the expected frequencies without existing significant
peaks elsewhere.

8.4 Conclusions

We estimated time-varying rates from four different time series: GPS, GRACE,
SMB, amdGMSL. For each time series, different parameters are estimated. Common
to all of them is that along with time-varying rates we also allowed the harmonic
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signals to change in time. In this way we avoid the contamination of the time-
varying rates by the variability in harmonic terms. The variability of the derived
rates, which is governed by hyperparameters, is validated using the inter-comparison
of time-varying rates derived from GPS, GRACE and SMB data at the locations
of two permanent GPS stations. All three independent techniques capture small-
scale accumulation variability present in SMB at these two locations. Such an inter-
comparison of time-varying rates that are derived using the described state space
framework solved by KF can help decide whether the observed power in the GPS
time series at the low frequencies is caused by inaccurately modeled colored noise or
is due to geophysical variations. Moreover, any change in the derived time-varying
rates reflects an acceleration. The analysis of the GMSL time series over the 25 years
suggests the absence of a significant constant acceleration for this time period.
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Chapter 9
Filtering of GPS Time Series Using
Geophysical Models and Common Mode
Error Analysis

Xiaoxing He, Jean-Philippe Montillet, Machiel S. Bos, Rui M. S. Fernandes,
Weiping Jiang and Kegen Yu

Abstract In the previous chapters we have discussed various methods to estimate
the parameters of the trajectory models for geodetic time series. The observations
were written as the sum of a signal plus noise and we emphasized in particular the
modelling of the temporal correlated noise in these analyses. In most cases we are
interested in the secular motion which is modelled by a linear trend. However, the
observations can contain other geophysical signals which need to be included in the
trajectory model as well. In this chapter we explain the most common ones such as
offsets, seasonal variations and post-seismic relaxation. In addition, in many situa-
tions it is beneficial to pre-process the time series before the analysis is performed.
We show how the output of various surface loading models can be used to reduce the
scattering of the time series. Furthermore, CommonMode and Principal Component
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Analysis may be applied which again causes a further reduction of the noise and in
this way could produce a more accurate estimate of the trajectory model parameters.

Keywords Filter · Geophysical signal · Coloured noise · Power-law noise ·
White noise · Surface loading · Tidal/non-tidal variations · Wiener filter ·
ITRF2014 · FODITS · TSOFT · iGPS · Common mode error

9.1 Introduction

GNSS receivers have been installed worldwide to provide continuous position infor-
mation with sub-centimetre level accuracy. Several geodetic research groups release
periodically new daily position time series. Examples are the MIT Plate Boundary
Observatory (Herring et al. 2016), the Nevada Geodetic Laboratory (Blewitt et al.
2018) and the Crustal Movement Observation Network of China (Wang et al. 2012).
The long-term position of these stations changes over time due to tectonic plate
motion, post-glacial rebound, snow and ice melting and other geophysical processes.

However, the trajectory model of a linear rate plus annual and semi-annual sig-
nals can only model part of all geophysical processes. The remaining signals in
the GNSS time series, mostly with pseudo-periodic signals, can induce biases in
estimating true periodic seasonal variations. In general, one can classify in three
groups the remaining geophysical signals such as gravitational excitation (displace-
ments due to solid Earth, ocean tides, and atmospheric tides) (Dong et al. 2002;
Yuan et al. 2008); thermal origin together with hydrodynamics or climate change
effect (e.g., water ground levels, deformations from atmospheric pressure, non-tidal
sea surface fluctuations) (Tregoning and Watson 2009; Jiang et al. 2013; Bogusz
and Klos 2015). The third category regroup the spurious signals and other residual
errors which induce pseudo-periodic variations (e.g., draconitic signal resulting from
mis-modelling satellite orbits) (Ray et al. 2008; Tregoning and Watson 2009; Davis
et al. 2012; Amiri-Simkooei 2013). In this chapter, we describe these three groups
of geophysical processes and how they can be modelled and included into the trajec-
tory model or subtracted from the time series a priori to obtain cleaned observations.
The last section presents a description of the Common Mode Errors (CME) analysis
technique.

9.2 Tidal Effects

As explained in the previous section, the first group of geophysical processes have
a gravitational origin. They are better known as tides which have their main periods
around 12 and 24h and can be modelled to sub-mm level accuracy in most cases. The
gravitational attractions of theMoon and Sun deform the solid Earth which are called
the solid Earth tides, reaching a few tens of centimetres, and can be well determined
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and removed with models such as IERS2003 solid Earth tide model (McCarthy et al.
2003). The ocean tides represent a varying distribution of water mass which causes
additional deformation of the ocean floor that propagates onto the surrounding land
masses. In some locations this effect can reach a few centimetres. Global ocean
tide models such as GOT00.2 and FES2004, or the more recent models TPXO9
and FES2014b can be used, together with an elastic model of the solid Earth, to
model the associated loading deformations. The weight of the ocean tides is written
as a sum of discrete point loads and the deformation of each of them is computed
by convolving the load with a Green’s function (Farrell 1972). A vertical point load
causes the surface to depress but also produces a horizontal deformation of the surface
towards the point load. The total deformation is the sum of all individual deformation
contributions. This scheme has been implemented at the free ocean tide loading
provider (http://holt.oso.chalmers.se/loading/) where ocean tide loading corrections
can be obtained. In addition, Bos et al. (2015) showed also that at some coastal
sites the elastic Earth models need further improvement since affects the ocean tide
loading by1–2mm.Both the solidEarth and the ocean tide loading deformations have
been implemented inmostGNSSpost-processing software packages. Therefore, they
should not appear in the time series unless there are errors in the ocean tide models
near the stations under investigation.

9.3 Surface Loading

The second group of geophysical processes have a thermal origin. The Sun causes
variations in surface pressure, hence creating variations in sea level (non-tidal),
ground water, snow and ice levels. All these signals cause surface loading which
deform the solid Earth in a similar way as ocean tide loading (Farrell 1972).

To compute atmospheric pressure loading (ATML), one can use the 6-hourly
global grids of surface pressure fields from the National Centers for Environmen-
tal Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis
project (Kalnay et al. 1996). It is a global spatial coverage with a grid resolution of
2.5◦ by 2.5◦. Note that the the diurnal and semi-diurnal atmospheric tides have been
removed from these data. In most cases ATML has its largest effect at the annual
period.

In addition, seasonal variations can also be generated due to the Non-Tidal Ocean
Loading (NTOL) at places where the variation of sea level and/or the ocean bottom
pressure is important (e.g., near the coast). These displacements can be computed
using the bottom pressure observations from JPL ECCO Ocean Data Assimilation.
It is a combination of the data output from model kf080 and the oceanic general cir-
culation model run at JPL (ECCO consortium Stammer et al. 2002). Using a Kalman
filter, the sea level data provided by satellite altimetry can be incorporated within the
model. Together with the wind stress, surface heat flux and evaporation-precipitation
parameters, the sea level data are included in the NCEP/NCAR reanalysis (Van Dam
et al. 2012).

http://holt.oso.chalmers.se/loading/
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One can refer to the model of NCEP/Department of Energy (DOE) Atmospheric
Model Intercomparison Project (AMIP)-II Reanalysis (http://www.cdc.noaa.gov/
cdc/data.ncep.reanalysis2.gaussian.html) to get an estimate of parameters such as
the snow depth and soil moisture. Using the surface pressure and oceanic bottom
pressure data, one can first calculate the mass loading displacement for each nomi-
nated sitewith a temporal resolution of a fewhours. The site displacement corrections
are then averaged to provide daily loading values (Dong et al. 2002; Yuan et al. 2008).

Among the various existing software estimating the mass loading at each site, we
emphasize the Quasi-Observation Combination Analysis (QOCA), and in particular
the sub-module ‘mload’. It outputs the so-called QOCA Loading maps (QLM). Note
that the Global Geophysical Fluid Center (GGFC) also provides surface loading
maps (http://geophy.uni.lu). GGFC products are given on a regular grid and onemust
interpolate the value to the exact location of the station under investigation. One can
also compute the loading using the CGFC surface models directly for the location
of the station and in this case the results are called Optimal Model Data (OMD).

A study of Jiang et al. (2013) showed that there is an important reduction of
the scatter in the vertical component up to 74% using OMD, 64% with GGFC and
41% with QLM software. The variance of the scatter is a combination of various
geophysical sources and loading models (e.g., water storage); computation approx-
imation such as the interpolation of the grids and global convolution; choice of the
parameters in the GNSS data processing (e.g., use atmospheric corrections He et al.
2017). Note that GGFC provides regularly new loading models, used in environmen-
tal loading corrections in the processing of GNSS time series. For more information,
one can refer to the International Mass Loading Service at http://massloading.net
(Petrov 2015). They provide 3D displacements due to surface geophysical fluids
(atmosphere, oceans, continental hydrology).

The computed loading signals can be subtracted from the observations in order
to produce cleaned time series that will reveal the trajectory model better. Another
approach is to improve the trajectory model to capture the surface loading models.
The inclusion of an annual and semi-annual signal in the estimation process is only
a first step. Geophysical loading signals are never perfect sine or cosine signals
but contain for some part a random character. That is why the time-variability of
the seasonal signal properties (i.e. amplitude and phase) has been studied thoroughly
(e.g. Davis et al. 2012; Chen et al. 2013) which resulted in various algorithms such as
those based on a Kalman filter (Davis et al. 2012), singular spectrum analysis (SSA)
(Chen et al. 2013), wavelet transform (Klos et al. 2015b) and Wiener filter (Klos
et al. 2019). Furthermore, spurious pseudo-periodic signals with central frequencies
very close to the seasonal signal signature can degrade its estimation. One of them is
the so-called draconitic signal with central frequency around 351.6 ± 0.2 days (Ray
et al. 2008; Amiri-Simkooei 2013), originating from the time lapse required for a
GPS orbit to repeat its inertial orientation with respect to the Sun. If not properly
accounted for, it can generate modulations in the seasonal signal estimate. It has
been conjectured that with time series longer than about 20 years, we may be able
to separate the seasonal variations from the draconitic signal and one should include
the latter in the trajectory model.

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis2.gaussian.html
http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis2.gaussian.html
http://geophy.uni.lu
http://massloading.net
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9.4 Non-deterministic Signals

The third group of geophysical signals are those which are not periodic. There are
generally the transient signals of non-linear characteristics related to the nature of
the crustal deformation at local or regional scale after geophysical events. For exam-
ple, post-seismic relaxations are generally modelled as logarithmic or exponential
function in the GNSS time series. Often, it is not easy to find a post-seismic deforma-
tion when the duration of the transient response is either limited in time or of small
amplitude. Thus, one may use the F-test as a statistical measure to discriminate the
absence of such signal in the nominated time series (Webb 2010).

Another important type of signal in geodetic time series analysis is the discon-
tinuities which can affect the estimation of the other parameters (e.g., velocity and
stochastic model). If not properly included in the analysis. Those discontinuities are
generally caused by either equipment changes for a specific station or a coherent
spatially response to a geophysical phenomena (e.g., earthquakes) (e.g. Wdowinski
et al. 1997; Williams 2003b, 2008). It has also been recently proposed that some
small offsets are of stochastic nature such as in the random-walk noise. Those offsets
are defined as Markov jumps (Montillet and Yu 2018; He et al. 2019).

The investigation of the origin of the offsets, their (mis)detection and the error
introduce in mismodelling them in the trajectory model have been a very prolific
research area over the past decades (e.g., Williams 2003b; Perfetti 2006; Gazeaux
et al. 2013; Montillet et al. 2015). An important study, Gazeaux et al. (2013), has
concluded that only two thirds of the offsets can be related to geophysical events
or station handling (e.g., equipment changes like antenna and/or radome replace-
ments, firmware updates, ...). It is assumed that he remaining offsets may be due to
unrecorded changes at the station (i.e. human induced), or GNSS processing models
and parameters (e.g., cut-off angle) (Nikolaidis 2002; Williams 2003b; Griffiths and
Ray 2016). The same authors concluded that the best methods to detect the offsets
remains the visual examination of the time series.

A step function is generally inserted in the trajectory model in order to estimate
a discontinuity. Furthermore, the tectonic rate is modelled simply as a linear trend
(Williams 2003b; Montillet et al. 2015) with parameters y0 and r fitted through a
time series y(ti ) of length N such as:

y(ti ) = y0 + r ti + εy(ti ) (9.1)

where εy is the stochastic noise intrinsic to the time series y(ti ) as introduced in the
first chapters. If we assume that an offset occurred at toff with t1 < toff < tN , then
Eq.9.1 is modified accordingly:

y(ti ) = y0 + r ti + pi yoff + εy(ti ) (9.2)

where pi is the Heaviside step function. Missmodeling the offsets will affect the
accuracy of other estimated parameters such as the tectonic rate and seasonal signal,
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hence the realisation of the terrestrial reference frames (Griffiths and Ray 2016).
Moreover, taking into account too many offsets, in long time series and for stations
located in active tectonic areas, will also affect the accuracy of other estimated geo-
physical signals. For example, stations installed in the Cascadia subduction zone
record frequently (14 months) ETS events which are a combination of an offset and
a post-seismic relaxation (Melbourne et al. 2005). Note that large GNSS databases
provide known offsets due to station handling and co-seismic offsets due to geophys-
ical events (see SOPAC archive, http://sopac.ucsd.edu/).

Theproliferationof algorithms to detect automatically discontinuities in theGNSS
time series in the last two decades showhow important this topic is for the community
when looking at the volume of GNSS observations recorded every day by the stations
around the world. He et al. (2017) gives a comprehensive review of those algorithms.
To name a few, the reader can refer to the Detection Identification and Adaptation
(DIA) (Perfetti 2006), Sequential t-test Analysis of Regime Shifts (STARS) (Huber
1964; Rodionov 2004; Bruni et al. 2014), FODITS (Ostini et al. 2009), TSOFT
(Van Camp and Vauterin 2005), iGPS (Tian et al. 2011), Sigseg (Vitti 2012). More
recently, Blewitt et al. (2016) developed theMedian Interannual Difference Adjusted
for Skewness (MIDAS) method. Note that the software Hector also includes an
algorithm based on the maximum likelihood estimation of the discontinuities (Bos
et al. 2008; He et al. 2019). A more traditional approach is to average data before and
after an earthquake in order to do an estimation of the offset (Blewitt 1993; Bock et al.
1997; Montillet et al. 2015). Moreover, some methods include small undetectable
offsets in the estimation of the linear rate assuming that they result from the variations
of the coloured noise stochastic properties ( Wang et al. 2016). Note that undetected
offsets can produce errors of 0.2–0.3mm/year (Gazeaux et al. 2013). Finally, recent
studies (Langbein et al. 2019; He et al. 2019) are showing that random-walk noise
could be taken into account in the stochastic noise model of long GNSS time series
which represents the undetectable transient signals including the very small offsets.

9.5 The Common Mode Error

So far, we have looked at individual time series. However, the standard situation is
that we have a network of GNSS stations and therefore multiple time series. If the
distance between these stations is not too large, roughly less than 100–1000km, then
some of the error sources in all these time series are similar. A simple approach to
estimate these common errors is by stacking the time series (Wdowinski et al. 1997;
Nikolaidis 2002; Dong et al. 2006) and computing their mean.

Common Mode Error (CME) is the sum of environmental and technique-
dependent systematic errors that are present in a network of GNSS daily position
time series that spans hundreds of kilometres (Wdowinski et al. 1997; Nikolaidis
2002; Dong et al. 2006). This type of error may arise from omitting or mismodelling
different phenomena (Dong et al. 2006) such as satellite orbits, satellite antenna

http://sopac.ucsd.edu/
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phase center, large-scale atmospheric and hydrosphere effects, or systematic errors
caused by software and mismodelled effects.

Therefore various studies have developed algorithms to constrain or to totally
mitigate CME based on removing some of the noise sources (Wdowinski et al.
1997; Nikolaidis 2002; Dong et al. 2006; Forootan and Kusche 2013; Shen et al.
2013; He et al. 2015; Tian and Shen 2016). Amid all these methods, the Principal
ComponentAnalysis (PCA) is a standardmathematical tool that transforms a number
of different, but possibly correlated, variables into a smaller number of uncorrelated
variables called principal components (PCs, Amiri-Simkooei 2011).

LetXbe the original data set in amatrix form [xi ]with i = [1, ..., p] as observation
vectors, and n is the number of samples for each variable, such as: xi = [x ji ] and
j = [1, ..., n]. The basic principle of PCA is to transform the original p observed
vectors into p new vectors through orthogonal transformation after mean centering
and standardization (variance scaling) of a data set for each attribute. PCA involves
the eigenvalues decomposition of the data covariance matrix. The new vectors in the
matrix F = [f]i are linear combination of the original vectors in X:

fi =
p∑

k=1

aikxk, i ∈ [1, ..., p] (9.3)

The new vectors fi are arranged in decreasing order based on the amount of
variations of the data they represent. Therefore the first PC (f1) associated with the
largest eigenvalue has the largest variance of the data, following f2 with the second
highest variance together with the second largest eigenvalue. The same rule can be
applied to the subsequent PCs associatedwith the remaining eigenvalues. In addition,
the correlation of the PC with the dataset (original feature) decreases following the
order of the eigenvalues (Amiri-Simkooei 2011). That is why the first k (k ≤ p) PCs
describemost of the variations of the original data, and called “principal components”
(PCs). The remaining PCs have smaller variances. Those remaining PCs are probably
the mixture of unmodelled signals, local effects and noise.

Dong et al. (2006) developed a general spatio-temporal filtering approach using
PCA and Karhunen–Loeve expansion in order to filter CME from GNSS time series.
The algorithm is defined as follows:

εi (ti ) =
p∑

k=1

ak(ti )Vk(x), i ∈ [1, ..., p] (9.4)

where p is the identified common mode PC number, ak is the temporal amplitude of
the kth PC, and Vk(x) is its corresponding eigenvector. A vast literature describes
various algorithms based on PCA filtering CMEs from the GNSS time series (Shen
et al. 2013), or weighted filter (Tian and Shen 2016) and other spatial filter such as in
(Nikolaidis 2002). A comprehensive discussion of various methods to extract CMEs
are described in He et al. (2017).
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The general approach to “small scale filtering” assumes that the CME is spatially
uniform, which is a good approximation for regional networks (up to hundreds of
kilometers), but the assumption breaks down with larger networks. For a global
GNSS network, the CME is also not uniform since the solutions are usually more
accurate in winter (Li et al. 2015; Klos et al. 2015b).

Yuan et al. (2008) implemented spatial filtering algorithmwith PCA, and indicated
that annual (1.0 cpy) and semi-annual signals (0.5 cpy) can clearly be seen for the
North and vertical components of the power spectra of the CME time series. He
et al. (2015) took into account the spatial scale and the periodicity of CME and
proposed a PCA-based spatial filter. Results can be enhanced by dividing a mid-size
network into small sub-networks. Klos et al. (2015a) estimated the power spectral
densities for CME values to analyse the existence of some periodicities in CME
series. However, since the physical origin and spatial distribution (response) of CME
is unclear or undetermined (with no real value or a priori information), it is difficult
to accurately and reliably extract the correct CME, which is the current bottle neck
among PCA based spatio-temporal filtering methods. Further studies need to be
conducted to determine appropriate evaluation system/factor (empirical value) in

Fig. 9.1 A General flow chart for spatial filtering of CME (He et al. 2017)
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order to identify the origin of CME, e.g., spatial distribution and distance of the
stations, WRMS of each station (to remove local effect with large WRMS value),
correction between each station, contribution rate of the total eigenvalues of the top
four principle components of the residual series (Dong et al. 2006; He et al. 2015), or
even analysis the noise characteristic of the pre-extracted CME to determine whether
the separated CME component is the real CME (He et al. 2015; Bogusz and Klos
2015; Tian and Shen 2016). Additional studies decomposed the CMEs into several
pseudo-periodic components and try to look at possible relationshipwith geophysical
signals in order to keep only the components with meaningful information (Pan et al.
2015; Ming et al. 2016).

Finally, our discussionon themitigationofCMEconcludes that there is no efficient
filter or method to extract those errors properly. A general flow chart summarising
the various approaches is drawn in Fig. 9.1. In this spatial filter, we emphasize several
parameters such as the correlation coefficient, distance, latitude and longitude, local
sites effect (e.g., siteswith largeWRMS), environmental loading effect and stochastic
noise properties of the time series. The filtering/extraction of the CME remains an
active research area.

9.6 An Example of Filtering CME with the PCA

In order to show the effect of the CME, and how tomitigate them using PCA analysis,
we are now showing a brief example with 22 GNSS stations located in the Cascadia
and California regions on the west coast of the USA. These area will be called Block
1 and Block 2 respectively. We have selected the stations with more than 2.5 years
of recorded data and a low missing data percentage (lower than 1.57%) based on
the recommendations from Blewitt and Lavallée (2002) and Tregoning and Watson
(2009). The GNSS time series are obtained by processing the GNSS observations
with GAMIT/GLOBK (Herring et al. 2010). According to the previous sections, we
then use the QOCA software (see ‘STFilter’ module) to combine the GAMIT loosely
constrained solutions together with the JPL daily estimations. Note that the influence
of the errors like local multipath and random walk noise are reduced with the use
of choke-ring antenna and the bedrock location of those selected stations. The daily
time series of BAMF station are shown in Fig. 9.2.

The BAMF station in Fig. 9.2a displays a long-term trend, moving southwest. The
estimation of the tectonic rate can be potentially impacted by the episodic tremor and
slip (ETS) which has a period of around 14 months, and spatially correlated between
adjacent stations in the Cascadia region. Those events are modelled with a slow slip
(exponential relaxation) (Melbourne et al. 2005). In order to remove the tectonic
rate, i.e. detrending the time series, we use the QOCA software including known
jumps, offsets and other parameters used in the logarithmic decays retrieved from the
SOPAC database (see ftp://sopac-ftp.ucsd.edu/pub/gamit/setup/siteOffsets.txt). The

ftp://sopac-ftp.ucsd.edu/pub/gamit/setup/siteOffsets.txt
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Fig. 9.2 Daily position time series of BAMF station with some examples (ellipses) of slow slip
events (a. raw time series; b. residual time series)

resulting time series are shown in Fig. 9.2b. The residual time series are dominated
by the high amplitude seasonal variations.

Now, looking at the California region known for regular earthquakes of high
magnitude, Fig. 9.3 displays the co-seismic and post-seismic effects on GNSS time
series for the Parkfield earthquake of Mw 6.0 on September 28, 2004 (Langbein
et al. 2005). The co-seismic offsets in Fig. 9.3a is associated with a jump up to the
centimetre level, whereas Fig. 9.3b shows an offset together with an exponential
relaxation (see afterslip phenomenon described in Freed 2007). The time series in
Fig. 9.3c exhibit only a small displacement with no postseismic relaxation. Note that
some other events (e.g., 2003 San Simeon earthquake) have been taken into account
in a preliminary step with estimating and removing the offsets in order to produce
these residual time series.

We are here interested in estimating the site displacements from surface mass
loading using the Green’s function approach (elastic Earth). Correlating various
sources of satellite data and geophysical models, we can estimate the deformations
caused by atmospheric, nontidal oceanic, snow depth and soil moisturemass loading.
(Farrell 1972; Van Dam et al. 2012; Jiang et al. 2013). Using again the QOCA
software (see the module ‘mload’), Fig. 9.4 displays the mean absolute displacement
values caused by environmental loading on North, East, Up (NEU) coordinates of
the station’s position. Block 1 and Block 2 refer to the stations located in Cascadia
and California respectively. The results show that effects of atmospheric pressure
and soil moisture are larger than the other parameters. The maximum displacement
variations is observed in the Up direction. However, a few differences between Block
1 and Block 2 can be observed, for example on the mean vertical values of the 8
sites in Block 1 with 1.8, 1.5, 0.3, 0.2mm for atmospheric pressure, soil moisture,



9 Filtering of GPS Time Series Using Geophysical Models … 271

−16
−12
−8
−4

0
4

−7

0

7

21

−18

−9

0

9

18

−6
−3

0
3
6
9

−8
−6
−4
−2

0
2
4

−18

−9

0

9

18

Time/year

-40
-32
-24
-16
-8

−12

0

12

36

-18

-9`

0

9

18

East (mm)

2004.0 2004.5  2005.0 2004.0 2004.5  2005.0 2004.0 2004.5  2005.0

2004.0 2004.5  2005.0

2004.0 2004.5  2005.0

2004.0 2004.5  2005.0

2004.0 2004.5  2005.0

2004.0 2004.5  2005.0

2004.0 2004.5  2005.0
Time/year

North (mm)

Up (mm)

East (mm) East (mm)

North (mm) North (mm)

Up (mm) Up (mm)

Time/year

(a) (b) (c)

Fig. 9.3 Coseismic and Postseismic effects on GPS time series with relaxation model (black curve)

Fig. 9.4 Mean absolute values of the ENU components caused by environmental loading (He et al.
2015)

snow depth and non-tidal ocean respectively, while for Block 2 over the 14 sites, we
estimate 0.9, 1.1, 0.1, and 0.2mm respectively. Thus, we conjecture that the spatial
distribution of the residual CMEmay be varying in time and in space over the whole
area (not homogeneous).
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Fig. 9.5 Residual time series produced by block filtering and overall filtering

Based on the description of the PCA analysis in previous sections, He et al. (2015)
developed an algorithm to extract CME. Varying the PCs and taking into account
the associated eigen values, one can adapt the algorithm to avoid filtering too much
of the noise and transient signals. As an example of filtering CME, one can look
at Fig. 9.5 where the residual time series of the BAMF stations are displayed. Two
kinds of filters are applied: block and overall. The difference is the use of all the
stations corresponding to one Block or combining both Block 1 and Block 2. He
et al. (2015) shows in their study that it is preferable to use the Block filter in order
to reduce regional effects (i.e. correlated spurious signals).

9.7 Conclusions

Thepurpose of this chapter is to discuss somecurrentmethodologies to analyseGNSS
time series. Offsets and post-seismic deformation can be included into the trajectory
model by using Heaviside step functions and various exponential and/or logarithmic
functions. Most other geophysical processes are periodic in character. Examples are
tidal phenomena, but these are normally corrected for during the analysis of the raw
GNSS data and don’t appear in the GNSS daily time series. Other surface loading
effects, such as atmospheric, non-tidal, hydrological ice and snow loading, have
their largest amplitude at the annual period. For that reason, most trajectory models
contain an annual and semi-annual signal. However, these surface loads contain
a random/stochastic part which can also be included in the trajectory model and
estimated using, for example, a Kalman filter. Another approach presented in this
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chapter is to compute their effect on the station positions before hand and subtract
the resulting displacements from the observations to produce cleaned time series.

Finally, time series in a regional network ofGNSS stations contain commonerrors.
These Common Mode Errors (CME) can cause a significant effect on the precision
of GNSS velocity estimates. In many cases it is desirable to remove these common
errors. Ongoing work investigates the use of blind source separation, Independent
Component Analysis (or ICA) or general PCA algorithms to remove the pseudo
periodic components of the CMEs.
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Chapter 10
Comparison of Spacewise and Timewise
Methods for GRACE Gravity Field
Recovery

Neda Darbeheshti, Florian Wöske, Matthias Weigelt, Hu Wu
and Christopher Mccullough

Abstract Historically, there have been two fundamental views, timewise and
spacewise, to recover the Earth’s gravity field using satellite observations. This has
resulted in different temporal gravity field solutions using the Gravity Recovery
and Climate Experiment (GRACE) observations. In this chapter, we compare time-
wise batch processor algorithm for solving variational equations with spacewise
energy balance approach using simulated GRACE observations. When using error
free simulated observations, both approaches perform similarly well. Energy balance
approach has the advantage of using less data storage and less computational time.
With error contaminated observations, energy balance approach performsworse than
variational equations. Because the noise in orbital velocity corrupts the potential dif-
ference observables, and respectively the estimate of the gravity field. Although,
variational equations perform better, it is important that both positions and range
rates are combined and they are properly weighted in solving normal equations.
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Keywords GRACE time series · Gravity field recovery

10.1 Introduction

There are two fundamental views on the Earth’s gravity field recovery approaches
using satellite observations (Rummel et al. 1998); satellite geodesy addresses the
Earth’s gravity field estimation from the solution of the equations of the motion,
while physical geodesy solves the Earth’s gravity field in the form of boundary value
problem related to the Earth’s surface.

Although the estimated gravity fields based on these two views are similar, the
differences in processing strategies and tuning the parameters result in solutions
with regionally specific variations and error patterns. In other words, all GRACE
data processing centers, start from the same set of instrument observations level 1B
data (Case et al. 2010), but the gravity field solutions in terms of spherical harmonics
coefficients or level 2 data are slightly different; Let’s look closer at the differences
in river basins scale. Figure 10.1 shows the locations of the selected basins.

Figure 10.2 shows time series of two GRACE gravity field solutions in terms of
geoid height for four basins: The Amazon basin covers roughly forty percent of the
South American continent. Yangtze basin is one-fifth of the land area of the People’s
Republic of China. Murray-Darling basin drains around one-seventh of the Aus-

Fig. 10.1 Selected river basins around the world, made by EGSIEM plotter
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Fig. 10.2 Time series of GRACE gravity field in terms of geoid height for selected basins, made
by EGSIEM plotter

Table 10.1 Overview of linear trends in terms of geoid height for selected basins from http://www.
plot.egsiem.eu

Basin Area (103km2) GFZ trend (cm/year) JPL trend (cm/year)

Amazon 6191 0.027 0.024

Yangtze 1789 0.015 0.013

Volga 1443 0.001 –0.011

Murray 1119 0.001 0.002

tralian land mass, and is one of the most significant agricultural areas in Australia.
Volga is Europe’s largest river in terms of discharge and drainage basin. The Volga
river flows through central Russia and into the Caspian Sea. The GRACE time series
are made with the European Gravity Service for Improved Emergency Manage-
ment (EGSIEM) plotter (http://www.plot.egsiem.eu). Figure 10.2 shows although
GeoForschungsZentrum (GFZ) and Jet Propulsion Laboratory (JPL) use the same
observations (GRACE level 1B data), same gravity field recovery method (varia-
tional equations), and same filter (DDK5, Kusche et al. 2009), there are differences
in gravity field solutions over each basin. The differences for smaller river basins
are bigger; For example, Table10.1 shows JPL estimated linear trends for Volga and
Murray are very different from GFZ estimated linear trends.

Several studies have compared different gravity solutions by different methods
statistically and quantitatively (e.g., Sakumura et al. 2014 for GRACE and Baur
et al. 2014 for Gravity and Steady-State Ocean Circulation Explorer (GOCE)).
Our aim is comparing gravity field recovery methods, in GRACE context,
qualitatively and algorithmically. To understand the machinery of different gravity
field recovery methods, we initiated two platforms:

http://www.plot.egsiem.eu
http://www.plot.egsiem.eu
http://www.plot.egsiem.eu
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• generating simulated GRACE level 1B instrument observations;
• developing open source MATLAB code for different gravity field recovery
methods.

In this chapter, we look behind the scenes of two gravity field recovery meth-
ods: Batch processor algorithm for solving variational equations which is a timewise
approach; and spacewise energy balance approach. First we describe how these two
approaches construct normal equations using range rate observations to recover the
gravity field. Then we test the performance of two methods using simulated obser-
vations, meaning comparing the estimated gravity field by each method with the true
gravity field. For this reason the stochastic modeling, like full variance covariance of
observations and formal errors are not discussed in this chapter. We refer readers on
this subject toWu (2016). All simulatedGRACEobservations and open sourceMAT-
LAB code for both approaches are available at https://www.geoq.uni-hannover.de/
gracetools. Section 10.2 describes the fundamentals of variational equations, and the
batch processor algorithm to solve the variational equations. Section 10.3 explains
the basics and an algorithm of energy balance approach. Section 10.4 outlines differ-
ent numerical experiments with variational equations and energy balance approach
using two sets of simulated GRACE level 1B data; and Sect. 10.5 summarizes the
results of the numerical experiments for two methods.

10.2 Variational Equations

Two main mathematical models are required for orbit determination and gravity
field recovery resulting in variational equations. First, equations describing the satel-
lite dynamics are necessary to represent the current, best knowledge of the space
environment, Earth’s processes, and the satellite’s behavior. In addition, an observa-
tion model is required to relate the evolution of the satellite’s state to the measured
observable (s). This section summarizes a solution to the variational equations that
relates the equation of motion to the observation model. The content of this section
is mainly borrowed from Gunter (2000), Tapley et al. (2004), McCullough (2017)
and Darbeheshti et al. (2018).

10.2.1 Equations of Motion and Observation Models

We begin by representing the dynamic and observation models as functions of the
state vector,X(t). As usual in parameter estimation, it not only contains the satellites
states position and velocity, but additionally all model parameters to be estimated
such as geopotential coefficients. The equations of motion for two GRACE satellites
can be generally written as a system of first order ordinary differential equations
(ODE)

https://www.geoq.uni-hannover.de/gracetools
https://www.geoq.uni-hannover.de/gracetools
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Ẋ(t) = F(X(t), t). (10.1)

The observations Y can be expressed with the state vector X(t) and a suitable
function G

Y = G(X(t), t) + ε, (10.2)

whereε represents the observation errors. Thedynamics of orbitmechanics, described
by Eqs. (10.1) and (10.2), are generally highly nonlinear. In orbit determination
or gravity field recovery, the equations of dynamic and observation models are
linearized at a reference, or nominal trajectory that is close enough to the true tra-
jectory to allow linearization. We are not directly estimating the values of the model
coefficients, X(t), but rather the deviation between the true and nominal values.
These deviations of the state and observations are defined as

x = X − X∗ (10.3)

y = Y − Y∗, (10.4)

where the ∗ denotes the nominal values. Since we have assumed that the nominal
trajectory is within close proximity to the true solution, we can expand y and x about
X∗ via Taylor expansion.

Ẋ(t) = F(X, t) = F(X∗, t) +
[∂F(X(t), t)

∂X(t)

]
X=X∗

(X − X∗) + O(x2, t) (10.5)

with

A(t) =
[∂F(X(t), t)

∂X(t)

]
X=X∗

(10.6)

thus, resulting in
ẋ = A(t)x. (10.7)

The same can be done for the observation Eq. (10.2)

y = H̃(t)x(t) + ε (10.8)

with

H̃(t) =
[∂G(X(t), t)

∂X(t)

]
X=X∗

. (10.9)

The general solution to the system of differential equations in Eq. (10.7) can be
expressed as

x(t) = �(t, t0)x(t0) (10.10)



284 N. Darbeheshti et al.

where t0 is some specified epoch and� is called the state transitionmatrix. It satisfies
the following conditions

�̇(t, t0) = A(t)�(t, t0), �(t0, t0) = I. (10.11)

The state transitionmatrix maps deviations in the state vector from a time t0 to t . It
relates all observations in Eq. (10.8) to one epoch, and thus reduces the unknowns to
the states x at t = t0. With a given matrix A, the differential equation can be solved,
at least numerically, and �(t, t0) can be computed for every epoch.

The state transition matrix is valid as long as it stays within the linear regime or
(t − t0) is small enough (i.e. small arc length). Thus the precision of the reference
orbit, used as linearization point, has an important effect on the validity for longer
arcs. In the case of GRACE real data processing, staying within linearity is highly
dependent on the accuracy of the background force models. The accuracy of the
numerical integration has a minor effect on the state transition matrix accuracy,
implying state-of-the-art numerical integration and appropriate step sizes.

10.2.2 The Normal Equations

The primary functions of least squares estimation is to fit a model to a set of obser-
vations. For example, given the following system

y = Hx, (10.12)

we would like to find the parameters, x, which come closest to representing the
observed measurements in y. One way to accomplish this is to treat the system as an
optimization problem and define a performance index that can then be minimized.
For the least squares method, the performance index is chosen to be the sum of
squares of the residuals, or observation errors. Therefor, with the observation error
ε in Eq. (10.12),

y = Hx + ε, (10.13)

the performance index becomes

J (x) = εT ε. (10.14)
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For the case of weighted least squares, we can introduce the weight matrix

W =

⎡
⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...

0 0 · · · wm

⎤
⎥⎥⎥⎦ , (10.15)

into Eq. (10.14) to obtain
J (x) = εTWε. (10.16)

Minimizing the performance index is done by taking the 1st derivation of the
performance index (i.e., setting ∂ J (x)

∂x = 0), which results into

(HTWH)x = HTWy. (10.17)

The result, Eq. (10.17), is commonly referred to as the normal equations. If H
consists of at least n linearly independent observations (n is the number of parameters
to be estimated), then the normal matrix, HTWH , is both symmetric and positive
definite. The condition also implies that the inverse HTWH exists, allowing us to
solve for x. A good approximation of the weight matrix W can be derived from post
fit residuals (Wu 2016). The algorithm for implementing the normal equations using
the diagonal matrix forW involves the accumulation of m rank-one updates, one for
each observation:

HTWH =
m∑
i=1

HT
i Wi Hi , (10.18)

HTWy =
m∑
i=1

HT
i Wi yi . (10.19)

Once the contributions from all observations have been accumulated, the result-
ing normal matrix can be inverted via Cholesky decomposition, or other adequate
methods, to get the solution for x.

10.2.3 Partitioned Normal Equations

The parameters to be estimated for GRACE variational equations are categorized
into two different groups, or levels (Gunter 2000):

• Local: Parameters that are valid for only one arc, such as initial position and
velocity for each arc, or instrument calibration parameters.

• Global: Parameters that are valid across all arcs, such as monthly spherical har-
monics coefficients
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Consider the following partitioning of the generalized state vector z, and
observation-state mapping matrix H

z =
[
x
c

]
, Hz = [Hx Hc], (10.20)

where Hx is the local contribution and Hc is the global contribution. To solve such a
system, we need to divide, or partition, the local and global parameters so that each
group may be solved for separately. Taking the matrix from Eq. (10.20) and inserting
into Eq. (10.17), we obtain

⎡
⎣
HT

x WHx HT
x W Hc

HT
c W Hx HT

c W Hc

⎤
⎦

⎡
⎣
x̂

ĉ

⎤
⎦ =

⎡
⎣
HT

x Wy

HT
c Wy

⎤
⎦ . (10.21)

From this, we define the following

Mxx = HT
x WHx ,

Mxc = HT
x WHc,

Mcx = MT
xc,

Mcc = HT
c WHc,

Nx = HT
x Wy,

Nc = HT
c Wy.

Inserting these expressions into Eq. (10.21), we have

⎡
⎣
Mxx Mxc

Mcx Mcc

⎤
⎦

⎡
⎣
x̂

ĉ

⎤
⎦ =

⎡
⎣
Nx

Nc

⎤
⎦ . (10.22)

Multiplying the above equations, we get

Mxx x̂ + Mxcĉ = Nx , (10.23)

Mcx x̂ + Mccĉ = Nc. (10.24)

Solving for x̂ in Eq. (10.23)

x̂ = M−1
xx Nx − M−1

xx Mxcĉ, (10.25)
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and inserting this result into Eq. (10.24) gives us an expression for the global esti-
mates:

ĉ =
(
Mcc − McxM

−1
xx Mxc

)−1(
Nc − McxM

−1
xx Nx

)
. (10.26)

The above scenario applied only to a single arc, but it is not difficult to extend the
idea to incorporate any number of arcs, each with their own set of local parameters.
Hz would look like

Hz =

⎡
⎢⎢⎢⎣

(Hx )1 0 · · · 0 (Hc)1
0 (Hx )2 · · · 0 (Hc)2
...

...
. . .

...
...

0 0 · · · (Hx )k (Hc)k

⎤
⎥⎥⎥⎦ . (10.27)

k is the number of arcs, or days. Again, the local contributions are independent
of other parameters, and this explains their location along the diagonal. Inserting
Eq. (10.27) into Eq. (10.17), we obtain an expression for the generalized partitioned
normal equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(HT
x WHx )1 0 · · · 0 (HT

x WHc)1

0 (HT
x WHx )2 · · · 0 (HT

x WHc)2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · (HT
x WHx )k (HT

x WHc)k

(HT
c WHx )1 (HT

c WHx )2 · · · (HT
c WHx )k

∑
k(H

T
c WHc)k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂1

x̂2

.

.

.

x̂k

ĉ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(HT
x Wy)1

(HT
x Wy)2

.

.

.

(HT
x Wy)k

∑
k(H

T
c Wy)k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10.28)

These can be arranged in a similar fashion as the single arc case to solve for the
global parameters:

ĉ =
( ∑

k

(Mcc)k −
∑
k

(McxM
−1
xx Mxc)k

)−1( ∑
k

(Nc)k −
∑
k

(McxM
−1
xx Nx )k

)
.

(10.29)
While the partitioned normal equation method is slightly challenging to imple-

ment, it takes advantage of the structure of the matrix in Eq. (10.27) and avoids
unnecessary operations with zeros.

10.2.4 Regularization

The normal equations assembled from satellite data are usually ill-conditioned,
meaning the rows of the normal matrix are nearly linear combinations of each
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other; and small changes of the observations result in large changes of the estimated
parameters, thus it is not possible to determine all parameters uniquely. If the observ-
able is not sensitive to the parameters to be estimated, or the noise level is too high,
that buries the parameters to be estimated, the resulting normal equations are often
ill-conditioned. Then, it is necessary to use regularization techniques to get reason-
able results or to improve the gravity field solution. For GRACE, this has mainly two
implications:

• The relative inter-satellite range rate measurement is not sensitive to the abso-
lute satellite’s position and velocity. Therefore, the determination of the initial
satellite’s states is inaccurate.

• The determination of high order harmonics is also not precise because the gravi-
tational signal is attenuated and the signal to noise ratio is low.

These problems can be reduced and the performance of the estimation can be
increased by using Tikhonov regularization (Save 2009).Mathematically, the normal
equations are extended by prior information resulting in the following form of the
normal equations

(HTWH + αRreg)x = HTWy (10.30)

with regularization parameter α and regularization matrix Rreg , respectively. Often
the identity matrix is used for regularization matrix. The regularization matrix and
parameter needs to be known from experience or other information (cf. Save 2009
and Wu 2016 on regularization techniques for GRACE and GOCE).

10.2.5 Variational Equations Batch Processor Algorithm

In the following, details of the batch processor algorithm for solving variational
equation are given. This is a basic algorithm that is used in Sect. 10.4 for numerical
experiments with simulated GRACE observations.

(1) Initialize at t0

• Read the initial state vector (X∗
0), i.e. position and velocity of two GRACE

satellites (rA, ṙA, rB, ṙB). They are the first rows from two GPS navigation
level 1B (GNV1B) daily files; Note that real GRACE level 1B orbits are given
in an Earth-fixed frame and they need to be transformed to the inertial frame.

• Read a-priori gravity model in terms of spherical harmonic coefficients (K∗
lm).

• Set
�(t0, t0) = I. (10.31)

• Set regularization parameter α and regularization matrix Rreg , if using only
KBR1B data as observations.
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(2) Read position observations of twoGRACE satellites (rA, rB) fromGNV1Bdaily
files; and range rate observations (ρ̇) from theK-band ranging level 1B (KBR1B)
daily files.

(3) Supply the numerical integrator with the following vector at each time point

[
ṙA r̈A ṙB r̈B �̇

]T
. (10.32)

Note that, the derivatives of the state vector (velocity and acceleration along the
orbit) and the derivative of the state transition matrix (�̇(t, t0) = A(t)�(t, t0))
are supplied to the numerical integrator and integrated simultaneously. The first
four elements in Eq. (10.32) provide the reference orbit X∗(t), and the last one
yield the elements of�(t, t0). The reference orbit is used to evaluate A(t), which
is needed to evaluate �̇(t, t0).

(4) Accumulate current observation.

• Calculate the observation deviation.

yi = Yi − G(X∗
i , ti ). (10.33)

(i is the observation number).
• Build H̃i , and then

Hi = H̃i �. (10.34)

• Partition Hi into (Hx )i for initial state and (Hc)i for spherical harmonics
coefficients.

• Accumulate
Mxx =

∑
i

(Hx )
T
i Wi (Hx )i ,

Mxc =
∑
i

(Hx )
T
i Wi (Hc)i ,

Mcc =
∑
i

(Hc)
T
i Wi (Hc)i ,

Nx =
∑
i

(Hx )
T
i Wi yi ,

Nc =
∑
i

(Hc)
T
i Wi yi .

(5) Repeat for each day and save Mxx , Mxc, Mcc, Nx , Nc for each day. Save y, Hx ,
Hc for each day, to plot daily post fit range rate residuals.
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(6) Solve normal equations.
First, for global parameters, spherical harmonics coefficients

ĉ =
( ∑

k

(Mcc)k −
∑
k

(McxM
−1
xx Mxc)k

)−1( ∑
k

(Nc)k −
∑
k

(McxM
−1
xx Nx )k

)
,

(10.35)
and then for local daily parameters, initial state of the two satellites for each day

(x̂0)k = (Mxx )
−1
k (Nx )k − (Mxx )

−1
k (Mxc)k ĉ. (10.36)

(k is the day number).
(7) Estimate post fit range rate residuals for each day

ε = y − Hx x̂0 − Hcĉ. (10.37)

(8) Update the initial state of both satellites for each day

(X̂
∗
0)k = (X∗

0)k + (x̂0)k, (10.38)

and gravity field coefficients:

K̂
∗
lm = K∗

lm + ĉ. (10.39)

(9) Repeat from the initialization step (1), until the least squares estimation is con-
verged or it is below an accepted error tolerance.

10.3 Energy Balance Approach

Energy balance approach makes use of the principle of energy conservation for the
satellites orbiting the Earth. This approach has been explained extensively in Jekeli
(2017) with focus on implementation for GRACE gravity field recovery. Here, we
summarize this approach to the necessary formulas to reach a basic algorithm for
numerical experiments with simulated GRACE observations in Sect. 10.4.

For two co-orbiting satellites A and B, position and velocity vector differences
are:

rAB = rB − rA,

ṙAB = ṙB − ṙA.
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Accordingly range and range rate can be expressed as:

ρ = √
rAB · rAB, (10.40)

ρ̇ = rAB
ρ

· ṙAB, (10.41)

where · is the vector dot product, and for the potential scalar difference of satellites
A and B we have:

VAB = V (rB) − V (rA).

We assume potential difference between satellite A and B just consists of kinetic
energy (K ) and rotation potential (R) terms and ignore other terms (Jekeli 2017):

VAB = V (K )
AB − V (R)

AB . (10.42)

The kinetic energy part of the potential difference is

V (K )
AB = 1

2
· ṙAB · (ṙA + ṙB). (10.43)

Let eaAB , e
c
AB and erAB be unit vectors form a right-handed orthogonal triad,

eaAB = rB − rA
|rB − rA| ,

ecAB = rA × rB
|rA × rB | ,

erAB = eaAB × ecAB,

where × is the vector cross product. eaAB is the unit vector from the first to the
second satellite, and is called here the along-track unit vector; the unit vector, ecAB ,
is orthogonal to the plane defined by the instantaneous position vectors of the two
satellites; it is called here the cross-trackunit vector. The third vector, erAB , is called the
radial unit vector, being roughly in that direction; Decomposing ṙAB into components
along eaAB , e

c
AB and erAB , we have

ṙAB = eaAB · ṙAB · eaAB + ecAB · ṙAB · ecAB + erAB · ṙAB · erAB (10.44)

and for range rate

ρ̇ = eaAB · ṙAB, (10.45)
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and then by replacing (10.44) and (10.45) into (10.43), we have

V (K )
AB = 1

2
· (ρ̇ · eaAB + ecAB · ṙAB · ecAB + erAB · ṙAB · erAB) · (ṙA + ṙB). (10.46)

The rotation potential part of the potential difference (in the Earth-fixed frame) is

V (R)
AB = ω2

E

2
· (|e3 × rB |2 − |e3 × rA|2), (10.47)

where
e3 = [0 0 1],

and ωE is the mean Earth rotation rate.
So far, we can calculate the potential difference observable VAB at the satellite

altitude, at each time epochwithGRACEKBR1B range andGNV1BGPSnavigation
products using Eqs. (10.46) and (10.47).

The potential difference observable VAB relates to the spherical harmonic coeffi-
cients Klm of the Earth’s gravity field by

VAB = GM

a

l̄∑
l=0

l∑
m=0

Klm

((
a

rB

)l+1

Ȳlm(φB,λB) −
(
a

rA

)l+1

Ȳlm(φA,λA)

)
+ ΔE

(10.48)
Equation (10.48) represents the balance in energy in the Earth-fixed frame, where
ΔE is the energy constant, and VAB is expressed as a series of spherical harmonics
functions Ȳlm using the spherical coordinates (r,φ,λ); GM and a are the Earth’s
gravitational constant and mean radius respectively.

Equation (10.48) can be written as a linear observation equation of

VAB = (HB − HA)Klm + ΔE = HABKlm + ΔE, (10.49)

where HA and HB are design matrices corresponding to the satellite A and B, in the
form of

HA = GM

a

⎡
⎢⎢⎣

(
a

(rA)1

)1
Ȳ00((φA)1, (λA)1) · · · (

a
(rA)1

)l̄+1
Ȳl̄l̄(φA)1, (λA)1)

... · · · ...(
a

(rA)p

)1
Ȳ00((φA)p, (λA)p) · · · (

a
(rA)p

)l̄+1
Ȳl̄l̄((φA)p, (λA)p)

⎤
⎥⎥⎦ .

(10.50)
which is a (p × n) matrix, assuming there are p potential difference observables
(VAB) and n spherical harmonic coefficients (Klm) to be estimated (cf. Kusche and
Springer 2017). (For HB , the A and B indices should be exchanged.) Comparing
with (10.12), we have
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y =
⎡
⎢⎣

(VAB)1
...

(VAB)p

⎤
⎥⎦ , H = [

HAB 1
]
, x =

⎡
⎢⎢⎢⎣

K00
...

Kl̄l̄
ΔE

⎤
⎥⎥⎥⎦ , (10.51)

which means, we can estimate x including spherical harmonics coefficients and the
energy constant by solving normal equations in the form of (10.17).

10.3.1 Energy Balance Approach Algorithm

In the following, details of a basic algorithm for energy balance approach are given:

(1) Read positions and velocities of two GRACE satellites (rA, ṙA, rB, ṙB) from
GNV1B daily files; and range rates (ρ̇) from KBR1B daily files.

(2) Calculate the potential difference observable VAB for each day:

VAB = 1

2
· (ρ̇ · eaAB + ecAB · ṙAB · ecAB + erAB · ṙAB · erAB) · (ṙA + ṙB)

− ω2
E

2
· (|e3 × rB |2 − |e3 × rA|2). (10.52)

(3) Build daily design matrix (Hk):

Hk = [
HAB 1

]
(10.53)

(4) Accumulate for daily normal equations:

HT H =
∑
k

HT
k Hk, (10.54)

HT y =
∑
k

HT
k yk . (10.55)

(k is the day number).
(5) Solve normal equations for spherical harmonic coefficients and the the energy

constant
⎡
⎢⎢⎢⎣

K00
...

Kl̄l̄
ΔE

⎤
⎥⎥⎥⎦ = (HT H)−1HT y. (10.56)
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10.4 Numerical Experiments with GRACE Simulated
Observations

Two sets of GRACE simulated data were generated, to test the performance of vari-
ational equations and energy balance approach. The first data set is the error free
GRACE observations to validate the functionality of each method. The second data
set, includes realistic error on observations to test how each method performs with
realistic observations.

For the error free data set, we integrate the orbital trajectories with initial states
of GRACE A and GRACE B for 4 days, and with Global Gravity Model (GGM05S)
(Ries et al. 2016), degree and order 10, as the true field.WeuseGRACEdata sampling
of five seconds. The observations (positions, velocities and range rates) are in the
form of GRACE GNV1B and KBR1B data files.

The orbits (positions and velocities) are output of the numerical integrator in the
inertial frame and range rates are computed from Eq. (10.41).

The rotation matrix for the transformation between the inertial and Earth-fixed
frames is the simplified only z-rotation:

Ri→e =
⎡
⎣

cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

⎤
⎦ .

The rotation angle θ is:

θ [rad] = (t jd − 2453491.5) × 86400 [s] × ωE

[
rad

s

]
− 2.46276246875459 [rad],

t jd is the time in Julian date and ωE is the mean Earth rotation rate. The Julian date
for 2005.05.01 at 00 : 00 : 00 is 2453491.5. To convert the GRACE seconds into
Julian date the following relation is used:

t jd = tGRACE

86400 [s] + 2451545.

For the second data set, we integrate the orbital trajectories with initial states of
GRACE A and GRACE B for 12 days, and with GGM05S, degree and order 20, as
the true field. Then, white noise with a level of a few cm√

Hz
and mm/s√

Hz
are generated

along x , y and z axes independently, and added respectively to each satellite positions
and velocities:

rGNV 1B = r + δrGNV 1B,

ṙGNV 1B = ṙ + δṙGNV 1B .
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Fig. 10.3 (Left) ASD of KBR system and oscillator noise for range (top) and range rate (bottom).
(right) Time series of KBR oscillator and system noise for range (top) and range rate (bottom)

The following amplitude spectral density (ASD)model was used to generate KBR
range system and oscillator noise (δρSO ):

δ̃ρSO( f ) = 10−6 ·
√
1 +

(
0.0018Hz

f

)4 m√
Hz

10−5 ≤ f ≤ 10−1 (10.57)

This ASD model is in agreement with the system and oscillator KBR noise for
the satellite pair separation of 238 km in Kim (2000). Figure 10.3 illustrates the
ASD model. Based on this model, time series of the range noise for 12 days was
generated. The LISA Technology Package Data Analysis (LTPDA) toolbox (https://
www.elisascience.org/ltpda/) for MATLAB was used for generation of time series
based on KBR noise model given in terms of ASD. LTPDA uses Franklin’s random
noise generator method (Franklin 1965) to generate arbitrarily long time series with
a prescribed spectral density. Then numerical differentiation was used to generate
range rate noise from the range noise time series (cf. Fig. 10.3) and it was added to
the error-free range rates:

ρ̇K BR1B = ρ̇ + δρ̇SO . (10.58)

10.4.1 Variational Equations Batch Processor Algorithm

Generally, the variational equations can be solved with any kind of observations.
The normal equations can be set up with just one kind of observations, or different
ones. If different observations are used together, a proper weighting strategy should
be used. For the case of GRACE, mainly two kind of observations exists: kinematic
positions and velocities (GNV1B) and range, range rate and range accelerations
(KBR1B). Both types of observations have different strength and weaknesses: The
KBR instrument has much higher accuracy, but the measurement is relative and has

https://www.elisascience.org/ltpda/
https://www.elisascience.org/ltpda/
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always one dedicated direction (along-track). In contrast, the GNV1B observations
have a lower accuracy, but are absolute measurements and nearly isotropic. In this
section, the effects of these properties on the gravity field recovery with variational
equations will be demonstrated.

For solving variational equations, we always need an a-priori gravity field.
Throughout this section, the Earth Gravitational Model 1996 (EGM96) (Lemoine
et al. 1998) has been used as an a-priori. All simulated observations are generated
with GGM05S (true field). In the following plots, the difference between EGM96
and GGM05S is the initial error, and the estimated fields are compared with the
GGM05S, to represent the error of the gravity field recovery. For errors in terms of
degree difference geoid height

σl = a

√√√√ l∑
m=0

(ΔC2
lm + ΔS2lm), (10.59)

where

ΔClm = Ctruth
lm − Cestimated

lm

ΔSlm = Struthlm − Sestimated
lm ,

or

ΔClm = Ctruth
lm − Ca−priori

lm

ΔSlm = Struthlm − Sa−priori
lm ,

and for errors in spatial domain in terms of geoid height

ΔN (φ,λ) = a
l̄∑

l=0

l∑
m=0

(ΔClm cosmλ + ΔSlm cosmλ)Plm(sin φ), (10.60)

where Clm and Slm are the spherical harmonic coefficients, and Plm is the fully
normalized associate Legendre function.

Error Free Observations

We start with the error free set of observations. To recover the true gravity field
(GGM05S) of degree and order 10, we use 4 days of error free simulated daily range
rates as observations, and initial positions and velocities of each day as a-priori initial
states, and EGM96, degree and order 10, as a-priori gravity field. Figure 10.4 shows
the differences between GGM05S and EGM96 in spatial domain, up to degree and
order 10.
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Fig. 10.4 Difference between GGM05S (true) and EGM96 (a-priori), up to degree and order 10

Fig. 10.5 Difference between GGM05S and the estimated field in spatial domain using range rates

Figure 10.5 shows the difference between the final estimated gravity field (from
the last iteration) in spatial domain. Comparing Figs. 10.4 and 10.5 shows that the
estimated field (after 16 iterations) with variational equations is very close to the true
field.
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Fig. 10.6 Degree difference between GGM05S (true) gravity field and estimated field using range
rates
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Fig. 10.7 (Left) Corrections to the initial position (right) and initial velocity

In Fig. 10.6 the results are shown as in form of degree difference between the
estimated and true gravity field after each iteration. It demonstrates howeach iteration
improves spherical harmonics coefficients. After the 16th iteration the solution has
converged because the difference of the coefficients is in the range of the double data
type precision.

Figure 10.7 shows the corrections to the initial state (x̂) for day 4 as an example
(for other days the plots look similar). As expected, the corrections to the initial states
are very little, because the observations, initial states and the range rates, are error
free; also because we use the same numerical integrator to produce the simulated
orbit and recover the gravity field, the only remaining error is, wrong guessing of the
a-priori gravity field, using EGM96 as an a-priori instead of GGM05s (true field).

Figure 10.8 shows the post fit range rate residuals and the ASD for day 4 as an
example. The residual range rates are in the order of 10−10 m/s which is the numerical
double precision limit for relative velocities for low Earth orbit satellites.
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Fig. 10.8 (Left) Time series of range rate residuals for day4 after the last iteration. (right)Amplitude
spectral density of range rate residuals for day 4 after the last iteration

Erroneous Observations

In the next experiment, the performance of variational equations is tested by error
contaminated set of observations.

Using Range Rates

To recover the true gravity field (GGM05S) of degree and order 20, we use 12 days of
erroneous simulated daily range rates as observations, and erroneous initial positions
and velocities of each day as a-priori initial states, and EGM96, degree and order 20,

as a-priori gravity field. When using range rates as observations, H̃ has the form of

H̃ =
[

∂ρ̇
∂rA

∂ρ̇
∂ṙA

∂ρ̇
∂rB

∂ρ̇
∂ṙB

∂ρ̇
∂Klm

]
, (10.61)

which is a (6 + 6 + n) vector, assuming that there are n spherical harmonics coef-
ficients to be estimated. Figure 10.9 shows the differences between GGM05S and
EGM96 in spatial domain, up to degree and order 20.

Figure 10.10 shows the difference between the final estimated gravity field (from
the last iteration) in spatial domain. Comparing Figs. 10.9 and 10.10 shows that the
estimated field (after 12 iterations) with erroneous range rates becomes worse than
the initial error (the difference between true and a-priori fields).

In Fig. 10.11 the convergence is shown as degree difference. It is visible, that the
degrees above 10 improve slightly with the iterations, but lower degrees are staying
above the initial error. This shows the erroneous initial states are not sensitive to
the KBR1B range rates and are not improving in the estimation process. This is
also visible in Fig. 10.12, where the corrections to the initial states for each iteration
are shown. It is obvious, that the initial states (with cm level white noise) are not
improving. This results in a reference orbit that is too bad to be used as linearization
point for the gravity field recovery, explaining the bad gravity field results.
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Fig. 10.9 Difference between GGM05S (true) and EGM96 (a-priori), up to degree and order 20

Fig. 10.10 Difference between GGM05S and the estimated field in spatial domain using erroneous
range rates

Figure 10.13 shows the post fit range rate residuals and the ASD for day 12
as an example. The residual spectrum of the low frequencies is determined by the
bad reference orbit. For higher frequencies, above the jump in the ASD (at about
1/700Hz), the post fit residual ASD reveals the system and oscillator noise that has
been added to the range rate observations (compare to Fig. 10.3).
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Fig. 10.11 Degree difference between GGM05S (true) gravity field and estimated field using
erroneous range rates
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Fig. 10.12 (Left) Correction to the initial position (right) correction to the initial velocity (using
erroneous range rates)
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Fig. 10.13 (Left) Time series of range rate residuals for day 12 after the last iteration. (right)
Amplitude spectral density of range rate residuals for day 12 after the last iteration (using erroneous
range rates)
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Fig. 10.14 Difference between GGM05S and the estimated field in spatial domain using erroneous
range rates with regularization

Using Range Rates with Regularization

The problems in the previous experiment can be reduced by using regularization.
When dealing with partitioned normal equations, it is advantageous to use a diagonal
regularization matrix, or separate matrices for local and global parameters, to reduce
the complexity of partitioning Eq. (10.30). When using a diagonal regularization
matrix, the partitioning results in regularization matrices Rreg,xx which are added to
all Mxx matrices and Rreg,cc which is added to the Mcc matrix. Previous experiment
highlighted the problem with the estimation of satellites’ initial states. Therefor
we use Tikhonov regularization just for the local parameters. Consequently we set
Rreg,cc = 0, because we do not want to regularize the gravity field coefficients. For
Rreg,xx we use

αRreg,xx = diag(drA , drA , drA , dṙA , dṙA , dṙA , drB , drB , drB , dṙB , dṙB , dṙB )

with drA = drB = 10−6 and dṙA = dṙB = 10−1 and diag stands for diagonal matrix.
The results are shown in Fig. 10.14 in the spatial domain and in Fig. 10.15 in terms
of degree differences. The result is much better than before for all degrees. In the
spatial plot, there is a distinct oscillation pattern. This is probably the result of the
regularization matrix, which can be optimized for this specific observation data and
parameters.
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Fig. 10.15 Degree difference between GGM05S (true) gravity field and estimated field using
erroneous range rates with correct regularization
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Fig. 10.16 (Left) Correction to the initial position (right) correction to the initial velocity (using
erroneous range rates with correct regularization)

Figure 10.16 shows the corrections to the initial states. Compared to the previous
experimentwithout regularization (compare to Fig. 10.12), it is obvious that the initial
states are changing and being improved.

Figure 10.17 shows the post fit range rate residuals and the ASD for day 12 as an
example. Now, the post fit residual ASD reveals the system and oscillator noise that
has been added to the range rate observations (compare to Fig. 10.3).

Using Positions

The two above experiments show, the importance of a proper estimation of the initial
states for the gravity field recovery problem and the weakness of the erroneous
KBR1B range rate measurement for that purpose. Therefor, in the next experiment,
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Fig. 10.17 (Left) Time series of range rate residuals for day 12 after the last iteration. (right)
Amplitude spectral density of range rate residuals for day 12 after the last iteration (using erroneous
range rates with correct regularization)

we perform the batch processor algorithm using GNV1B positions as observations.
The absolute position measurement is very sensitive to the initial states and the low
order gravity field harmonics, but not to the higher ones because it is not accurate
enough. For position observations, H̃ has the following form

H̃ =
⎡
⎣

∂rA
∂rA

∂rA
∂ṙA

∂rA
∂rB

∂rA
∂ṙB

∂rA
∂Klm

∂rB
∂rA

∂rB
∂ṙA

∂rB
∂rB

∂rB
∂ṙB

∂rB
∂Klm

⎤
⎦ =

⎡
⎣
I3×3 03×3 03×3 03×3

∂rA
∂Klm

03×3 03×3 I3×3 03×3
∂rB
∂Klm

⎤
⎦ , (10.62)

which is a 6 × (6 + 6 + n) matrix.
Figure 10.18 shows the difference between the final estimated gravity field (from

the last iteration) in spatial domain. Comparing Figs. 10.9 and 10.18 shows that the
estimated field (after 12 iterations) with erroneous positions improves compared to
the initial error (the difference between true and a-priori fields).

Looking at the degree difference in Fig. 10.19, we see an improvement of the grav-
ity field over all degrees with subsequent iterations. Furthermore, after six iterations,
the solution is converged, especially for the higher degrees. As expected, the GNV1B
observations are especially sensitive to the lower degrees of the gravity field.

Figure 10.20 shows the corrections to the initial states. They are converged after
the first iteration and not changing much further.

Figure 10.21 shows the post fit position residuals and the ASD for day 12 as an
example. The post fit residual ASD reveal the white noise that has been added to the
position observations.
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Fig. 10.18 Difference between GGM05S and the estimated field in spatial domain using erroneous
positions
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Fig. 10.19 Degree difference between GGM05S (true) gravity field and estimated field using
erroneous positions

Using Range Rates and Positions

The previous experiments show that the combination of both measurements is desir-
able. In next experiment, we combine GNV1B positions and KBR1B range rate
observations to perform the batch processor algorithm. Thus, H̃ has the form of
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Fig. 10.20 (Left) Correction to the initial position (right) correction to the initial velocity (using
erroneous positions)
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Fig. 10.21 (Left) Time series of position residuals for day 12 after the last iteration. (right) Ampli-
tude spectral density of position residuals for day 12 after the last iteration (using erroneous posi-
tions)

H̃ =

⎡
⎢⎢⎢⎢⎢⎣

∂ρ̇
∂rA

∂ρ̇
∂ṙA

∂ρ̇
∂rB

∂ρ̇
∂ṙB

∂ρ̇
∂Klm

∂rA
∂rA

∂rA
∂ṙA

∂rA
∂rB

∂rA
∂ṙB

∂rA
∂Klm

∂rB
∂rA

∂rB
∂ṙA

∂rB
∂rB

∂rB
∂ṙB

∂rB
∂Klm

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

∂ρ̇
∂rA

∂ρ̇
∂ṙA

∂ρ̇
∂rB

∂ρ̇
∂ṙB

∂ρ̇
∂Klm

I3×3 03×3 03×3 03×3
∂rA
∂Klm

03×3 03×3 I3×3 03×3
∂rB
∂Klm

⎤
⎥⎥⎥⎥⎥⎦

, (10.63)

which is 7 × (6 + 6 + n) matrix, and the weight matrix is not a unit matrix and has
the diagonal form of

W =

⎡
⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...

0 0 · · · w7

⎤
⎥⎥⎥⎦ , (10.64)

where w1 = 1
(σρ)2

= (107)2 corresponds to the rough estimate of the standard devia-
tion of the colored noise on the simulated range rates (cf. Fig. 10.3).w2 = w3 · · ·w7 =
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Fig. 10.22 Difference between GGM05S and the estimated field in spatial domain using erroneous
positions and range rates

1
(σr)2

= (102)2 correspond to the standard deviation of white noise on the simulated
positions. Figure 10.22 shows the difference between the final estimated gravity field
(from the last iteration) in spatial domain. Comparing Figs. 10.9 and 10.22 shows that
the estimated field (after 12 iterations) with combination of positions and range rates
is very close to the true field. Additionally, the typical GRACE error pattern with the
north-south stripes, related to the directional range rate measurement, is visible. In
comparison to the results from position observations in Fig. 10.18, the spatial error
pattern looks completely different.

Looking at the degree differences in Fig. 10.23, we see an improvement of the
gravity field over all degrees with subsequent iterations. Compared to the range rate
only solution with regularization (Fig. 10.15) the estimated coefficients are slightly
better, especially for the degree 2. Additionally it suppresses the oscillations in the
last iterations for the higher degrees.

Figure 10.24 shows the corrections to the initial states, which also converge very
fast, as for the position only solution.

In Fig. 10.25 the post fit range rate residuals and the ASD for day 12 are shown.
As for the regularized solution, the post fit residual ASD reveals the implied noise
curve (compare to Fig. 10.3).

Figure 10.26 shows the post fit position residuals and the ASD for day 12. It
reveals the white noise that has been added to the positions observations as well.
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Fig. 10.23 Degree difference between GGM05S (true) gravity field and estimated field using
erroneous positions and range rates
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Fig. 10.24 (Left) Correction to the initial position (right) correction to the initial velocity (using
erroneous positions and range rates)
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Fig. 10.25 (Left) Time series of range rate residuals for day 12 after the last iteration. (right)
Amplitude spectral density of range rate residuals for day 12 after the last iteration (using erroneous
positions and range rates)
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Fig. 10.26 (Left) Time series of position residuals for day 12 after the last iteration. (right) Ampli-
tude spectral density of position residuals for day 12 after the last iteration (using erroneous positions
and range rates)

10.4.2 Energy Balance Approach

In this section, first, the performance of energy balance approach is tested by an error
free set of observations.

Error Free Observations

To recover the gravity field of degree and order 10, we use 4 days of error free
simulated observations. Figures 10.27 and 10.28 display difference of the estimated
gravity field with the true field in terms of degree difference and in spatial domain
respectively. The energy balance solution in Fig. 10.28 is similar to variational equa-
tions solution in Fig. 10.6. Although errors for both solutions are in the same range,
but comparing Figs. 10.27 and 10.5 shows different error spatial patterns for two
gravity field recovery methods. In Fig. 10.27 the typical GRACE error pattern with
the north-south stripes is obvious.

The potential difference observable residuals for Day 4, in time and frequency
domain, are shown in Fig. 10.29.

Erroneous Observations

The energy balance approach is tested with an erroneous set of observations, as
well. To recover the gravity field of degree and order 20, we use the same set of
simulated erroneous GNV1B and KBR1B data from 12 days. Figures 10.30 and
10.31 display difference of the estimated gravity field with the true field in terms
of degree difference and in spatial domain, respectively. Comparing Figs. 10.30 and
10.31 with the similar plots in section“Erroneous Observations”, shows that the
energy balance approach performs better than variational equations just for the case
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Fig. 10.27 Difference between GGM05S (true) and the estimated field using energy balance
approach
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Fig. 10.28 Degree difference between true gravity field and estimated field from energy balance
approach
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Fig. 10.29 (Left) Time series of potential difference observable residuals for day 4. (right) Ampli-
tude spectral density of potential difference observable for day 4

Fig. 10.30 Difference between GGM05S (true) and the estimated field using energy balance
approach

of using range rates only without regularization. Although the computation time is
very short for the energy balance approach, less than a minute for 12 days of data, it
does not perform well with erroneous observations, because it is extremely sensitive
to velocity errors, which can be seen from the quadratic term of velocity in the kinetic
energy part of Eq. (10.46). Shang et al. (2015) addresses this problemwith alignment
equation that improves energy balance approach for GRACE gravity field recovery.

For this case, the potential difference observable residuals for Day 12, in time and
frequency domain, are shown in Fig. 10.32.



312 N. Darbeheshti et al.

2 4 6 8 10 12 14 16 18 20

Spherical harmonic degree

10-3

10-2

10-1

100

101

102

103

104

[m
] o

f g
eo

id
truth
error

Fig. 10.31 Degree difference between true gravity field and estimated field from energy balance
approach
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Fig. 10.32 (Left) Time series of potential difference observable residuals for day 12. (right) Ampli-
tude spectral density of potential difference observable for day 12

10.5 Conclusion

In this chapter we presented two approaches to recover gravity field from GRACE
type observations: variational equations and energy balance approach. When using
error free 4 days of simulated observations to estimate gravity spherical harmonics
coefficients of degree and order 10, both approaches perform similarly well. Energy
balance approach has the advantage of using less data storage and less computational
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time. The total computation time for energy balance approach for this experimentwas
about 10 s while for variational equations batch processor algorithm, each iteration
took about 10min. With error contaminated 12 days of simulated observations to
estimate gravity spherical harmonics coefficients of degree and order 20, energy
balance approach performs worse than variational equations. Because the noise in
orbital velocity corrupts the potential difference observables, and respectively the
estimate of the gravity field. Although, variational equations perform better, it is
important to use some kind of regularization with KBR1B only solutions and a
properweightingwhen combiningGNV1B andKBR1Bobservations. The combined
GNV1B and KBR1B weighted solution performs slightly better than the regularized
KBR1B only solution. In this chapter, the gravity field recovery experiments are
implemented with the most basic forms of each methodology to understand the
machinery of each method and highlight the steps that could be improved; the more
sophisticated algorithms for bothmethodswill be added to the on-going development
of GRACETOOLS.
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Chapter 11
Estimation of the Vertical Land Motion
from GNSS Time Series and Application
in Quantifying Sea-Level Rise

Jean-Philippe Montillet, Machiel S. Bos, Timothy I. Melbourne,
Simon D. P. Williams, Rui M. S. Fernandes and Walter M. Szeliga

Abstract Sea-level rise observed at tide gauges must be corrected for vertical land
motion, observed with GNSS, to obtain the absolute sea-level rise with respect to
the centre of the Earth. Both the sea-level and vertical position time series contain
temporal correlated noise that need to be taken into account to obtain the most
accurate rate estimates and to ensure realistic uncertainties. Satellite altimetry directly
observes absolute sea-level rise but these time series also exhibit colored noise. In this
chapter we present noise models for these geodetic time series such as the commonly
used first order Auto Regressive (AR), the General Gauss Markov (GGM) and the
ARFIMAmodel. The theory is applied to GNSS and tide gauge data from the Pacific
Northwest coast.
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11.1 Introduction

One of the greatest consequences of climate change is rising the sea level. Due to
thermal expansion, the sea level is expected to increase by a third of a meter by 2100.
The exchange of water between the continents and the oceans has the potential to
cause asmuch as twometers of sea-level change by 2100,mainly due to themelting of
ice on the land and the subsequent oceanic runoff. Greenland and Antarctica contain
enough ice to raise global mean sea-level by 7 m and 55 m respectively. Therefore,
even the melting of only a fraction of those large ice sheets can cause significant sea-
level rise. Mountain glaciers and other ice fields contain another meter of potential
sea-level change. According to recent studies (Church andWhite 2011; IPCC 2013),
sea-level rise will not be uniform around the world, due to spatial variations in ocean
density and due to change in gravity and ocean floor deformation associated with
the redistribution of this extra mass of water. Some ocean regions might even see
sea-level fall but on average sea-level is expected to rise significantly in response
to climate change. The melting of large bodies of ice causes distinct patterns or
fingerprints in the regional distribution of sea-level change (Davis et al. 2012).

Regional sea-level can bemonitoredwith tide gauges. However, these instruments
only measure the relative sea-level and the vertical land motion at the tide gauges
needs to be observed to convert the relative sea-level observations into absolute
ones (Church et al. 2010). If these tide gauge records are used to make historical
reconstructions of global sea-level rise, then the uncertainty in the spatial covariance
is another source of error (Christiansen et al. 2010). As a result, careful modeling
has to be applied before processing tide gauge data taking into account stochastic
processes and the correction with vertical land motion.

Stochastic processes in tide gaugedata are generally defined as temporal correlated
noiseswhich can affect the estimation of the rate uncertainty rather than the estimated
rate, also called relative sea-level rise (Montillet et al. 2018). Temporal correlations
are known to exist in many different types of climatological and geophysical time-
series (Press 1978; Agnew 1992; Beran 1992). Temporally correlated noise means
that each observation is not completely independent of the previous observations and
effectively provides less information than an independent or non-correlated observa-
tion. Several models have been used to model those correlations (Church and White
2011), including a fifth-order auto regressive (Hughes and Williams 2010; Hay et al.
2013). However, Agnew (1992) pointed out that the power spectral density (PSD) of
sea-level variations may be better described by a power-law stochastic model. This
stochastic model is generally described as a colored noise. The colored noise can
be defined in the frequency domain as a 1/ f α noise, with α varying between [0, 2].
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When the exponent of the colored noise is set to 0, the noise is called white noise, at
1 it is defined as Flicker noise, whereas at 2 it corresponds to a random-walk. More
details can be found in Chap.2 of this book.

Along the coast, a combination of various geophysical processes generates the
vertical land motion (VLM) either regionally or locally near the tide gauge. The
nature of these geophysical processes can be from natural or anthropogenic origins,
creating linear or transient non-linear signals. In particular, the study of long tide
gauge (TG) records are impacted by glacial isostatic adjustment (GIA) due to late
Pleistocene deglaciation and interseismic tectonic strain accumulation without local
earthquakes (Lambeck and Johnston 1995; Mitrovica and Davis 1995). Non-linear
processes include earthquakes, annual hydrological oscillations either stationary or
non-stationary in amplitude or phase, time-dependent anthropogenic aquifer deple-
tion or other resource extraction signals, soil compaction, climatic and ocean loading
signals. These signals must be taken into account when studying local and regional
sea-level rise due to the same order of magnitude (mm/yr) (Bos et al. 2014; Ham-
lington et al. 2016; Montillet et al. 2018).

Fortunately, precise vertical land motion rates relative to the Earth’s reference
frame can be estimated due to the availability of a dense network of GPS stations
generating a coastal profile. It then provides local and regional corrections of solid-
Earth processes that could potentially bias sea-level risemeasurements. Furthermore,
this smooth regional VLM profile around the coast resulting from the vast number of
permanently installed coastal GPS stations (e.g., Meertens et al. 2015; Blewitt et al.
2016), can be used by climate scientists studying regional and global variations of
the sea-level rise, without requiring any GPS expert knowledge.

In the next section,wewill discuss functional and stochastic noisemodels involved
in an accurate estimation of relative sea-level rise (SLR) from tide gauges, and
in particular the correction with vertical land motion (VLM) using near-by GNSS
stations in order to obtain an absolute SLR. Section11.3 is an application of this
methodology in the estimation of sea-level rise in the pacific northwest (USA). This
example shows how to model GNSS time series and tide gauges in order to produce
reliable estimates. We emphasize the various sources of error. The last section is
a general discussion on the estimation of global mean sea-level with the current
research topics.

11.2 Estimation of Sea-Level Rise

11.2.1 Relative Sea-Level Observed with Tide Gauges

The oldest measuring technique to observe the sea level has been tide gauges. These
have been installed in almost any harbor around the world to, as the name implies,
observe the local tides to ensure the safe entering and leaving of ships. The earliest tide
gauges were nothing more than a marked staff in the water that was read at regular

http://dx.doi.org/10.1007/978-3-030-21718-1_2
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intervals. The float tide gauge was an improvement together with the automatic
recording of the sea level on paper rolls that made it possible to produce very long
and accurate time series such as those observed in Honolulu, Hawaii, (Colosi et al.
2006) and Boston, USA, (Talke et al. 2018).

The Permanent Service forMean Sea Level (PSMSL) has been collectingmonthly
and yearly sea level data from tide gauges around the world (Holgate et al. 2013)
and this data set has been used in many sea level studies. The trajectory model that
is fitted to the observations is in most cases a simple linear trend plus an annual
and semi-annual signal although a tri-annual signal is needed in some cases as well.
Church et al. (2004) used simple weighted least-squares and a simple first order
autoregressive noise model, AR(1), which is defined as:

wi = φ wi−1 + vi (11.1)

where wi is the noise in the time series at time ti , φ a constant between –1 and
1 and vi a Gaussian random variable. Bos et al. (2014) have verified that this works
well for yearly data but not so much for monthly data. The reason is that the AR(1)
only needs to represent the noise for periods of 2 to around 100 years. When monthly
data is used, then this increases from 2 months to 100 years and AR(1) has trouble
to correctly describe the stochastic properties for this wider frequency range.

In Chap.2, we rewrote Eq. (11.1) in terms of a filter h that was applied to the
vector v with Gaussian random variables:

wi =
i∑

j=0

h j vi− j (11.2)

For the AR(1) noise model we have h0 = 1 and h1 = φ. In matrix notation this
becomes:

w =

⎛

⎜⎜⎜⎝

h0 0 . . . 0
h1 h0 0
...

. . .
...

hN−1 . . . h1 h0

⎞

⎟⎟⎟⎠ v = L v (11.3)

Here L is a lower triangle matrix (only values on and below the diagonal) and it is
Toeplitz. The covariance matrixC is equal to σ 2LLT . Langbein (2017) demonstrates
that the inverse of matrix L is again a lower triangle matrix and also Toeplitz:

L−1 =

⎛

⎜⎜⎜⎝

h′
0 0 . . . 0

h′
1 h′

0 0
...

. . .
...

h′
N−1 . . . h′

1 h′
0

⎞

⎟⎟⎟⎠ (11.4)
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The new elements h′
i of the inverse of matrix L can be computed as follows:

h′
0 = 1/h0 for i = 0

h′
i = −1/h0

i−1∑

j=0

h′
j hi− j for i > 1

(11.5)

Note that h0 = 1. Therefore, if the standard deviation of the Gaussian variable v is
σ , then the logarithm of the determinant of the covariance matrix C is 2N ln σ . Fur-
thermore, ifA and y are the design matrix and the vector containing the observations,
then it is convenient to define the following variables:

B = 1

σ
L−1A

z = 1

σ
L−1y

(11.6)

The weighted least-squares estimation now becomes:

x = (
BTB

)−1
BT y (11.7)

Introducing residuals r = z − Bx, the log-likelihood function can be written as:

ln(L) = −1

2

[
N ln(2π) + 2N ln σ + rT r

]
(11.8)

By choosing the values for the parameters of the noise model, the coefficients
hi can be computed. Together with the noise amplitude σ , the covariance can be
constructed which, using Eqs. (11.5) to (11.7) can be used to fit the trajectory model
using weighted least-squares. These noise parameters and the noise amplitude must
vary until the maximum log-likelihood value, Eq. (11.8), has been found. This max-
imum likelihood scheme has been implemented in the Hector software (Bos et al.
2013). Figure11.1 shows the monthly sea level of the tide gauge at Seattle which is
one of the gauges discussed in Sect. 11.3. Using Eqs. (11.4) to (11.8), a linear trend
plus annual and semi-annual signal has been fitted to the observations which is also
shown in Fig. 11.1. The power spectral density of the residuals is plotted in Fig. 11.2
together with the fitted noise model AR(1). Equation (11.1) can be extended to be
dependent on the last five noise values which is called a fifth order autoregressive
model, AR(5). This is also shown in Fig. 11.2 together with the Generalised Gauss
Markov noise model of Langbein (2004). The latter noise model fits better to the
observed power spectra at the lowest frequencies. Other possible noise models are
ARMA and ARIMA which work well for time series with short-term correlations.
On the other hand the FARIMA model is more suited in the presence of long-term
correlations due to the versatility of modeling colored noise and other non-stationary
stochastic processes (e.g., Panas 2001; Montillet and Yu 2014). Studies, such as Bos
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Fig. 11.1 Monthly tide
gauge data from Seattle
(source PSMSL) with the
fitted trajectory model
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Fig. 11.2 Power spectral
density plot of the residuals
for the Seattle monthly tide
gauge data. Fitted are the
power spectra using an
AR(1), AR(5) and GGM
noise model
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et al. (2014), estimate optimally the lags p and q in the ARMA(p,q), ARIMA(p,d,q)
and the FARIMA(p,d,q) models using information criteria (e.g., Akaike Informa-
tion Criterion or AIC Akaike 1974 or the Bayesian Criterion (BIC) Schwarz 1978)
following Burnham and Anderson (2002). AIC and BIC are defined as follows:

AIC = −2 ln(L) + 2k

B IC = −2 ln(L) + k ln(N )
(11.9)

Thus, they are –2 times the log-likelihood plus a penalty term. The penalty term
corrects for the fact that amore flexible noisemodelwill inmost cases fit the observed
power spectrum better. By using a penalty term the more flexible model will only be
chosen if this model is significantly better. Due to the minus sign of −2 ln(L), the
best model is the one that has the lowest AIC or BIC value. Note that the parameter
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d in the ARIMA model is an integer value (in Z,d > 0), whereas it is a real (in
R,d > 0) in the FARIMA model. These noise models are explained in more detail
in Chap.2. Bos et al. (2014) demonstrated that sea level observations show weaker
power-law noise at the very low frequencies compared to GNSS data. As a result, the
effect on the uncertainty of the estimated linear trend, compared to a simple white
noise model, is less than that for GNSS time series.

Besides linear sea-level rise, there have been various studies that estimate sea-
level acceleration using tide gauge data (Jevrejeva et al. 2008) and satellite altimetry
(Church and White 2006; Yi et al. 2017; Nerem et al. 2018). It is the acceleration
which is mainly responsible for the large sea-level rise of 0.3–1 m mentioned in the
introduction at the end of this century. To estimate this acceleration, the first order
polynomial in the trajectory model is replaced by a second order one:

y(ti ) = a + b(ti − t0) + c(ti − t0)
2 (11.10)

The acceleration is defined as twice the value of c (Bos et al. 2014).
Figure11.1 shows a clear linear rise but the acceleration is more difficult to distin-

guish. We estimate it to be 0.005 ± 0.002 mm/yr2, which is thus indeed very small
but significant at the two sigma level. An advantage of estimating accelerations is
that vertical land motion due to post-glacial rebound, which can for time spans of
space geodetic data be considered to be a linear motion, and therefore no longer
a source of error. However, tide gauges are historically most common in harbors
which over the years get dredged or extended which has an unknown influence on
the mean sea-level due to changes in mean ocean currents, see for example (Araújo
et al. 2013).

11.2.2 Absolute Sea-Level Observed with Satellite Altimetry

Nowadays sea level can also be measured from space using satellite altimetry. The
GEOSAT was the first satellite altimetry satellite that provided sea level maps from
1985–1990.Othermissions followed such asTOPEX/Poseidon and Jason1&2. In all
cases the sea level is given with respect to a frame connected to the centre of the Earth
and is therefore absolute. The time series now span over 30 years and the most recent
estimate of the acceleration based on satellite altimetry is 0.084 ± 0.025mm/yr2 for
1993–2018, without various geophysical corrections applied (Nerem et al. 2018).
These authors used a simple AR(1) noise model to compute the uncertainty of their
estimate. They define their ‘noise’ as the difference between the altimetry and tide
gauge observations instead of the difference with their fitted model. To study this
error estimate, we use the global mean sea-level time series provided by AVISO as
shown in Fig. 11.3. This figure clearly shows a secular sea-level rise which appears
linear. The acceleration is harder to detect. Also note the large effect of the El Niño
Southern Oscillation on sea level in 2012. The power spectral density of the original
time series together with the fitted white and AR(1) noise models are shown in

http://dx.doi.org/10.1007/978-3-030-21718-1_2
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Fig. 11.3 AVISO Global
Mean Sea Level (GMSL)
derived from satellite
altimetry together with the
fitted standard trajectory
model which includes
acceleration
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Fig. 11.4 Power spectral
density plot of the AVISO
GSML data together with
fitted AR(1) and White noise
models
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Table 11.1 Estimated
accelerations using various
noise models

Noise model Acceleration mm/yr2

White noise 0.060 ±0.008

AR(1)/ARFIMA(1,d,0)/GGM 0.058 ±0.020

Fig. 11.4. At around a period of 30 days, the power drops several orders of magnitude
suggesting a low-pass filter has been applied. Therefore, to ensure that this does not
influence our results, we averaged sets of 4 consecutive values to form a new time
series with a sampling period of approximately 40 days. The corresponding modeled
AR(1) noise model is shown as the dotted red line in Fig. 11.4. This helps to verify
that the influence of the high frequency filtering is minimal.

The estimated accelerations are listed in Table11.1 using aWhite, AR(1), a GGM
and an ARFIMA(1,d,0) noise model. The last three models gave nearly identical
results of 0.058 ± 0.020 mm/yr2.



11 Estimation of the Vertical Land Motion from GNSS Time Series … 325

These values fall between the result of 0.041mm/yr2 for the period 1993–2014
of Chen et al. (2017) and the value of 0.084 ± 0.025mm/yr2 for 1993–2018 of
Nerem et al. (2018). Note that the 0.025mm/yr2 uncertainty of Nerem et al. (2018)
is the sum of various error sources. What interests us here is their uncertainty of
0.011mm/yr2 associated to the estimation process, using an AR(1) noise model,
which is half of our value of 0.020mm/yr2. As explained before, they defined their
residuals as the difference between altimetry data and tide gauge data and call it the
tide gauge validation error. It might be that these residuals underestimate the real
uncertainty of the estimation process or that the AR(1) noise model is too simplistic.

Nevertheless, one must add to this uncertainty various systematic errors such as
mismodeling of the orbit and drift of the altimetry amongst others (Ablain 2009).
For satellite altimetry data, these systematic errors are larger than the uncertainties
associated with the estimation process. One of the strengths of the results of Nerem
et al. (2018) is their reduction of these systematic errors. This fact might also explain
why the simple AR(1) is still widely used in sea-level research. As shown in previous
chapters, in GNSS time series the situation is reversed, with estimation errors being
larger than the systematic ones and dominating the total uncertainty.

Another aspect which has received little attention is the choice of reference epoch
t0. If one chooses this to be the middle of the segment, then one allows a good
separation of the estimation of the bias, linear trend and acceleration. The separation
is perfect in case of no missing data. However, if one chooses another date, the
parameters that are to be estimated are correlated, see also Williams (2014). Using
our satellite Global Mean Sea Level (GMSL) example, for a t0 of 1993, the linear
trend is 2.6 mm/yr instead of 3.3mm/yr while the acceleration remains the same.

Next, note that in the literature significant different values of the global mean
sea-level accelerations can be found, depending on the length of the time series
that has been analysed. For example, Yi et al. (2017) presented an acceleration
of 0.27 ± 0.17mm/yr2 for the period 2005–2015 while Church and White (2011)
obtained an acceleration of 0.013 ± 0.007mm/yr2 for the period 1870–2004. Cli-
mate change is a highly non-linear process and a simple constant acceleration might
be too simple model due to various decadal variations that are superimposed on the
secular motions. A linear sea-level rise describes well the tide gauge observations
of the last century, but one should be cautious with the interpretation of quadratic
sea-level rise. In contrast to post-glacial rebound and tectonic motion, which are
very slow geophysical processes that can be accurately described by linear motions
in GNSS time series, secular sea-level variations are much more difficult to capture
with a low order polynomial. A good review of the difficulties of fitting a trend to
sea-level observations has been published in Visser et al. (2015). For that reason,
some researchers dismiss fitting a polynomial and apply other techniques such as
wavelet filtering.
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11.2.3 Reference Frame and Vertical Land Motion

So far we have dealt with changes in the sea level. However, as we noted in the
Introduction, relative sea-level needs to be converted into absolute sea-level using
VLMobservations. The first step tomeasureVLMregionally is to create an internally
consistent, hemisphere-scale reference frame. Some studies, such as Mazzotti et al.
(2007) in the Pacific Northwest, circumvented this problem by defining a small
network. Mazzotti et al. (2007) defined for their study a local network in the east of
Vancouver Island and holding a single inland station (DRAO) fixed. However, large
regional or continental scale analyses require a different approach, due to the rates
amplitude of ubiquitous and readily measured continental deformation rivalling with
coastal VLM rates (Herring et al. 2016). In ITRF08, for instance, the reference station
DRAOused byMazzotti et al. (2007) has a radial velocity of 0.7 ± 0.01mm/yr based
on 27 years of continuous measurements.

In sea-level studies, the estimated VLM relative to Earth’s center of mass should
ideally be associated with a standard error of approximately an order of magnitude
lower than the contemporary climate signals ( i.e. 1–3mm/yr) recorded on average
in sea-level time series at tide gauges or in satellite observations (Wöppelmann and
Marcos 2016). Moreover, tight constraints on the rate of offset between Earth’s
center of mass and Earth’s center of figure are required, as defined by those GPS
stations used to realize the reference frame. In other words, a correlated bias can be
produced by any nonzero rate over hemisphere spatial scales in inferred sea-level rise
rates. Recent studies, such as Santamaría-Gómez et al. (2017), have addressed this
issue to conclude that Earth’s center of figure is drifting 0.0 ± 0.3mm/yr along the
Earth’s rotation axis. A latitude dependent bias can be produced by a nonzero motion
between tide gauge SLR rates and their VLM correction using GPS (within the ITRF
reference frame). However, one of the geodesy Grand Challenge (Davis et al. 2012)
is our current limitation in the realization of the terrestrial reference frame with a
combination of observations from multiple techniques including VLBI, SLR, and
GPS (e.g., Altamimi et al. 2011, 2016).

11.2.4 Estimation of Vertical land Motion

VLM at tide gauges is observed with GPS and is modeled by a linear motion. In
addition, the trajectory model should account for offsets introduced by hardware
changes or seismic events. All these parameters have a significant influence on the
estimated rate (Gazeaux et al. 2013). Transient tectonic processes such as slow slip
events also can have an impact on the estimated motions, requiring ideally a proper
modeling with a slip inversion for each event. In Montillet et al. (2018), the authors
postulated a constant contribution of the slow slip events to VLM over long periods,
together with a model of the linear process which includes both slow earthquake
offsets and long-term interseismic strain.
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Here, the functional model used tomodel daily positions GPS time series includes
a linear trend, a seasonal variation with periods fixed to annual and semi-annual and
constant phase and amplitude, along with step functions at hardware changes and
known seismic events greater than Mw 5.6. Bevis and Brown (2014) calls this the
Standard Linear Trajectory Model which is also discussed in Chap. 1. To separate
the annual signal from the linear trend, one requires to record observations for a
minimum of approximately 2.5 years at any station (Blewitt and Lavallée 2002).

GPS time series contain correlated noise which can be described by a white plus
power-law noise model (Williams 2004). This is slightly different from the case of
sea-level time series where only one type of correlated noise was present. The fact
that we now need to sum two different noise models, white and power-law, makes it
difficult to decompose the covariancematrix directly into two lower trianglesL using
the equation of the previous section (Langbein 2017). The traditional approach is
therefore to sum the white and power-law noise covariance matrices and afterwards
perform a Cholesky decomposition to obtain the lower triangle L. For the rest the
maximum likelihood estimation scheme remains the same.

11.3 Application to the Estimation of Sea-Level Rise in the
Pacific Northwest

11.3.1 VLM and Tectonic Pattern of the Cascadia Region

The first step is to establish a VLM profile for the stations located on the coast in the
Pacific Northwest (Vancouver Island to Northern California). The continuous VLM
profile is generated by using 100 permanent GPS stations from the Pacific North-
west Geodetic Array (PANGA) (Miller et al. 1998) and EarthScope Plate Boundary
Observatory (UNAVCO 2009), computed within the ITRF 2008 reference frame
(e.g., Altamimi et al. 2011). These stations are continuously operating and blanket
Cascadia, from northern California throughOregon,Washington State, southwestern
British Columbia and Vancouver Island. In order to estimate a smooth VLM profile
in the Pacific Northwest, we have selected 47 stations located on or within 10 km
of the coast boarding the Pacific ocean, Puget Sound and Salish Sea east of Vancou-
ver Island. Most selected GPS stations have been continuously operating between
10 to over 20 years. Thus, the estimation of the functional model described in the
previous section together with the stochastic noise model for these very long time
series, allows calculating an accurate long-term vertical land motion rate at an order
of magnitude of a few tenths of mm/yr (Montillet et al. 2018).

For GPS data processing, raw GPS phase and code observations were point-
positioned with ambiguity resolution using GIPSY/OASIS I I , the GPS Inferred
PositioningSystem/OrbitAnalysis andSimulation software developed and supported
by NASA Jet Propulsion Laboratory (JPL) (Zumberge 1997). Satellite ephemerides,

http://dx.doi.org/10.1007/978-3-030-21718-1_1
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clock corrections, andwide-lane phase bias estimateswere provided by JPL (Bertiger
et al. 2010).

We choose in our processing that the station positions are loosely constrained dur-
ing initial estimation and subsequently transformed into the ITRF08 (e.g., Altamimi
et al. 2011) using only the translation and rotation, but not scale, components of
the JPL-provided Helmert transformations. The use or omission of the scale term
in reference frame realization is a matter of debate in the community (see Herring
et al. 2016; He et al. 2017 and Montillet et al. 2018 for a comprehensive discussion).
According to Montillet et al. (2018), depending on how the scale term is included in
the Helmet transformation, subtle differences arise in the reference frame definition
that can also have first-order impacts on vertical rate estimates.

The tectonic pattern of the Cascadia region has been intensively studied with GPS
measurements in the early 90s’ (e.g., Hyndman and Wang 1995; McCaffrey et al.
2007, 2013; Melbourne et al. 2005; Miller et al. 2002). The primary tectonic signal
stems from subduction of the Juan de Fuca plate beneath North America at roughly
40mm/yr (Wilson 1993). Figure11.5 shows the vertical land motion varying region-
ally but smoothly, from the Brooks Peninsula of Vancouver Island at the northern end
of the Cascadia margin southward to the southern terminus of the Cascadia margin
at Cape Mendocino, California.

Overall, the VLM in the Cascadia fore arc is separated into three regions. All
of Vancouver Island and the Olympic peninsula (Cascadia’s northern half) display
high uplift rates of almost 5 mm/yr at Woss, BC and Quadra Island, BC, and with a
mean uplift of around 2mm/yr. The large uplift values estimated onVancouver Island
originates from the superposition of subduction interseismic strain and postglacial
rebound. These results agree with Mazzotti et al. (2007). Furthermore, large uplift
rates of approximately 4mm/yr are observed along the western Olympic Peninsula
of northwestern Washington State. The values tend to diminish southward to almost
zero south of central coastal Washington and remain near zero to near the latitude
of Cape Blanco, Oregon. The mean uplift estimates increase again South of Cape
Blanco (about 1–2mm/yr), reaching a maximum value of 4mm/yr at Crescent City,
California, then dropping again to zero at Cape Mendocino, California. In contrast,
the inland waterways of the Puget Sound are characterized by subsidence at rates of
20mm/yr while the Salish Sea region east of Vancouver Island is marked by uplift
ranging from 1 to 4mm/yr (e.g., Fig. 11.7).

The PANGA and Mazzotti et al. (2007) uplift estimates are listed in Table 11.2.
67% of the stations processed with the PANGA methodology, show the same rates
within 1 sigma, whereas 97% are within 2 sigma. Looking at this table, the mean
values estimated using the first eight stations, are 1.34 ±1.07mm/yr for PANGA,
whereas the mean value is equal to 1.62 ± 1.20mm/yr using the estimates from
Mazzotti et al. (2007),which is 23% larger on average.Note thatMazzotti et al. (2007)
utilized shorter time series (<7yrs)modeledwith least squares in the IGS08 reference
frame, thus impacting the noise properties of the time series compared to ITRF08.
Therefore the difference in processing methodology should explain the results. Also,
looking at the large discrepancy of the uplift estimates at some stations (e.g., PTRF,
BLYN), we cannot exclude possible outliers or mismodeling the stochastic processes
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(a)

(b) (d)

(c)

Fig. 11.5 Vertical land motion of the Cascadia subduction zone including British Columbia [A],
British Columbia and Washington [B], Oregon [C], Oregon and Northern California [D]. Only
coastal stations are used to derive the vertical land motion profiles shown in Figs. 11.6 and 11.7.
Note the change of length of 2mm/yr scale bar between different boxes (Montillet et al. 2018)
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Table 11.2 GPS-derived vertical land motion rate estimates for reference stations included in
PANGA, PBO, and Mazzotti et al. (2007) processing (Montillet et al. 2018)

(continued)
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Table 11.2 (continued)

μ is the estimated velocity, σ is the associated uncertainty. Uncertainties are one sigma. PANGA
and PBO-NMT results are computed using Hector. NaN means that the station was not available

with our choice of the stochastic noisemodel for theGPS time series (i.e. Flicker noise
with white noise). While the VLM rates are measured along the coast at 47 disparate
GPS stations that their inferred rates are smoothly varying allows their interpolation
to generate continuous VLM profiles. Note that in Figs. 11.6 and 11.7, the VLM
profile is obtained by linear interpolation of the uplift estimates. This continuous
profile can be utilized for SLR adaptation planning by communities where local
GPS is not available in order to correct observations recorded by tide gauges.

11.3.2 Estimation of the Relative Sea-Level Rise

We selected 18 stations along the Pacific Northwest coast in order to estimate the
relative sea-level rise (RSLR) rates uncorrected for VLM. These stations are located
between the latitudes 40◦ and 51◦. At each tide gauge, monthly records were down-
loaded from the Permanent Service for Mean Sea Level [PSMSL] (Holgate et al.
2013), which in some cases have nearly 115 years of measurements (e.g., Seattle).
The RSLR rates are estimated taking into account the presence of colored and other
noise sources as described in the previous sections. Table11.3 shows different esti-
mates of the uncorrected RSLR for five tide gauges along coastal Pacific Northwest,
Puget Sound, and Salish Sea. As shown in Tables11.3 and 11.4, our RSLR results
are generally closer to the values estimated from the NRC group (NRC 2015). The
FARIMA model seems to produce smaller uncertainties (using the AIC). Assuming
that the AIC selects the lags more optimally than the BIC, it may suggest the pres-
ence of long memory processes (i.e., power-law noise) in the TG time series, which
should be better accounted for using this stochastic model than using a model such as
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Table 11.3 Estimated relative sea-level rise (RSLR) around Pacific Northwest at selected stations.
Note for each noise model (ARMA(p,q), ARFIMA(p,d,q), GGM), the optimum lags p and q are
selected either by minimizing the AIC or BIC (Burnham and Anderson 2002). Our results are
comparedwith previous studies (Douglas 1991;Mazzotti et al. 2007;Wöppelmann et al. 2009; Sweet
et al. 2014; NRC 2015). μ is the estimated RSLR with σ the associated uncertainty. Uncertainties
are one sigma (Montillet et al. 2018)

(continued)
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Table 11.3 (continued)

the ARMA. Even though we have circumvented the bias due to mismodeling the TG
measurements using information criteria, we acknowledge that estimatedRSL values
are sensitive to the choice of record length of the tide gauges selected following pre-
vious studies (Douglas 1991) and that unmodeled multidecade transients will impact
rate estimates differently based on both the time series duration and the structure of
any known long-term transients. Note that the optimality of model selection using
information criteria is an active research area within the geophysical community (He
et al. 2017). RSLR (red) is displayed in Fig. 11.8 as a function of latitude, estimated
from the tide gauge uncorrected for VLM. RSLR values are scattered along coastal
Cascadia, between−2 and+5mm/yr. This result is expected due to the combination
of various geophysical processes, in particular the highly variable tectonic and GIA
activity together with the intrinsic scatter of average sea-level itself due to the various
hydrodynamic processes controlling yearly regional variations (Church et al. 2004).
These RSLR estimates agree with previous studies (e.g., Mazzotti et al. 2007; Sweet
et al. 2014; NRC 2015). Thus, their dependence on the choice of the stochastic noise
model using the AIC or BIC criteria is relatively minor (at ∼ 0.1 sigma confidence
level). Uncertainties are computed using the MLE as implemented in the Hector
software (Bos et al. 2013b), producing realistic values less sensitive to anomalies
(i.e. estimates produced during windy or stormy time periods). Note that at Astoria
(Oregon), the RSLR estimate can be assimilated as an outliers, because of the uncer-
tainties larger than the computed linear trend. The station lies 10 km from the coast
up the Columbia River estuary. Therefore, we infer that the river itself likely controls
much of apparent sea-level fluctuation, consistent with Mazzotti et al. (2007) and
Sweet et al. (2014). Also the tide gauge closed to the GPS station CHZZ has not
been used, due to the overall low quality of the raw observations.



11 Estimation of the Vertical Land Motion from GNSS Time Series … 335

Ta
bl
e
11
.4

E
st
im

at
io
n
of

th
e
R
el
at
iv
e
SL

R
(R

SL
R
)
an
d
co
rr
ec
te
d
R
SL

R
w
ith

in
te
rp
ol
at
ed

G
PS

up
lif
tv

el
oc
iti
es

(M
on

til
le
te
ta
l.
20
18
)

U
nc
er
ta
in
tie
s
(g
re
y)

ar
e
on
e
si
gm

a.
T
he

fie
ld

ID
re
fe
rs
to

th
e
nu
m
be
rs
la
be
lin

g
th
e
tid

e
ga
ug
es

in
Fi
g.
11
.4
.A

ll
ra
te
s
an
d
un

ce
rt
ai
nt
ie
s
ar
e
in

m
m
/y
r



336 J.-P. Montillet et al.

BOX A

ZOOM OF BOX A

Fig. 11.8 Red: uncorrected (biased by vertical land motion) Cascadia sea-level rise (SLR) rates
estimated from long-term (∼50–100 yr) tide gaugemeasurements; Blue: after correction for interpo-
lated GPS-measured vertical land motion (absolute) at 18 tide gauges around the Pacific Northwest.
Note that the full name of the tide gauges are displayed in Table11.4. We display a zoom of the
main figure (i.e., zoom of box A) due to a visual issue to separate the ones with close latitudes.
The black line is the ensemble of GIA models from NRC (2015). Tide gauge trends estimated with
GGM noise model (Montillet et al. 2018)

11.3.3 Discussion on the Absolute Sea-Level Rise and
Sources of Error

The absolute sea-level rise (ASLR) is defined as the sum of uncorrected sea-level
rise or RSLR, estimated at each tide gauge, with the addition of the VLM mea-
surements inferred from the daily position GPS time series. We use the interpolated
value from the VLM coastal profile closest to each of the 18 tide gauges in order to
compute the ASLR. The PANGAGPS uplift velocities is chosen because of the large
number of stations. In addition, the permanent stations included in both PANGA and
PBO processing systems show no significant differences at the one sigma confidence
interval. Figure11.8 displays the RSLR and the ASLR in the Pacific Northwest. The
figure also includes a measure of the Glacial Isostatic Adjustment (GIA) using an
ensemble of models. The VLM correction to the RSLR estimates includes both GIA
and tectonic strain accumulation. However, it is difficult to accurately isolate the two
sources of uplift with imperfect knowledge of mantle viscosity, recent glaciation his-
tory, and interseismic coupling along the Cascadia megathrust fault. The GIAmodels
come from NRC (2015), and include various contributions such as the changes in
geocentric (absolute) sea-level and VLM.
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Finally, the figure also shows that the large scattering of the RSLRmeasurements,
is reduced after correction for VLM, to a cluster around 2mm/yr of ASLR. Prior to
correction the mean of the RSLR measurements are 0.526 ± 1.59mm/yr, whereas
after correction they 1.996 ± 1.18mm/yr. These values are consistent with other
studies of the SLRmeasurements in the northeastern Pacific (e.g., Church et al. 2004;
Wöppelmann et al. 2009; NRC 2015). Regionally based on the ARMA estimates,
along the outer Pacific coast of Washington State the ASLR rate is 1.366 ± 0.76 and
2.406 ± 1.41mm/yr on Vancouver Island. These values are in the high end of the
interval defined by the estimates fromprevious studies of the twentieth century global
mean sea-level rise (Church andWhite 2011). Along coastal Oregon ASLR averages
1.666 ± 0.97mm/yr, and for northern California 1.996 ± 1.14 mm/yr. This drop in
uncertaintymay suggest that theVLMcorrection absorbsmuch of the regional scatter
in tide gauge SLR estimates. Also the study profiles expected rebound associated
with GIA, drawn from an ensemble of models computed in NRC (2015), which
suggest that roughly half the VLM on Vancouver Island arise from GIA and the rest
from subduction-related strain accumulation.

11.4 Conclusions on Global Mean Sea-Level

In this chapter we have shown that also tide gauge and satellite altimetry time series
contain correlated noise. Since this noise can be described by a single noise model,
not a sum of various models, we presented the recent efficient maximum likelihood
method of Langbein (2017) to estimate the noise parameters and the sea-level rate.
Furthermore, we emphasised that in contrast to linear sea-level rise, sea-level accel-
eration is much harder to detect. In addition, the estimated acceleration seems to
depend on the time span used which might indicate that a simple acceleration is
not an adequate model for the highly nonlinear processes that take place within the
ocean.

Tide gauges only observe relative sea level and GPS derived vertical motion is
needed to convert these values into absolute sea level rise. To illustrate this process,
we presented tide gauge and GPS time series from the Northwest Pacific. In this
region the rates are more similar to twenty first century global rates (3.16 ± 0.7
mm/yr), whereas eastern Pacific satellite rates are significantly lower than the global
mean value. Much of the west coast of the Americas actually show an apparent
decrease in satellite geocentric sea surface height over the last 20 years (Church
and White 2011). For tide gauge measurements, many studies have also underlined
how they are impacted by many processes that can vary from hemispherical, most
notably the Pacific decadal oscillation, to spatially localized, and which may act
over timescales over roughly a year to several decades. Such processes alter surface
winds, ocean currents, temperature, and salinity, and, in turn sea-level, all super-
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imposed on long-term background sea-level rise (e.g., Church et al. 2004; Nicholls
and Cazenave 2010; Church and White 2011; Cazenave and Le Cozannet 2013;
IPCC 2013; Cazenave et al. 2014; Hay et al. 2015). Therefore tide gauges-based
mean sea-level exhibits large interannual variability compared with the global mean
value estimated from satellite altimetry. However, the values are the same order of
magnitude to regional measurements reported by satellite altimetry (Prandi et al.
2009). In the Pacific Northwest, ASLR mean reported here of 1.36 ± 0.75mm/yr
is ∼20% smaller than the 1.7mm/yr global mean SLR from 1901 to 2010 (IPCC
2013). However, if we take into account Vancouver Island, the ASLR is around
1.99 ± 1.18mm/yr and thus ∼17% higher than the global mean SLR.

Finally, coastal communities facing the risk of rapid sea-level rise should utilize
sea-level projections and flooding maps to develop with local authorities a strategy
for long-term adaptation imposed by the effects of climate change. In the Pacific
Northwest, the average absolute SLR obtained after accounting for VLM yields, for
coastal Cascadia, roughly 2mm/yr, very similar to the 2mm/yr previously described
with other global observations (e.g., Church et al. 2004; NRC 2015). Within Puget
Sound widespread subsidence identified with GPS shows that rate of SLR will be
exacerbated.

Thus, themethodology developed inMontillet et al. (2018) by estimating a smooth
VLM profile along the coast with the large number of permanent GPS stations avail-
able in the Cascadia region, and then interpolating the value to correct the RSLR at
each tide gauge, can be replicated around the world, knowing the sheer numbers of
GPS stations now available (over 16, 000 globally Blewitt et al. 2016) and leaving
just a few coastlines unmeasured.
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Chapter 12
Time Series Analysis of Rapid GNSS
Measurements for Quasi-static
and Dynamic Bridge Monitoring

Gethin Wyn Roberts, Xiaolin Meng, Panos Psimoulis
and Christopher J. Brown

Abstract Since 1996, GPS and GNSS have been used to measure position and
time on large structures, notably long span bridges. Receivers act simultaneously as
dynamic deformation sensors. The use of high rate GNSS receivers to generate time
displacement series—typically 10 Hz or greater—provides improvements in accu-
racy through both processing techniques and the use ofmulti GNSS. Filter techniques
to isolate noise effects, and especially the treatment of multipath errors is presented.
The use of other sensors such as accelerometers, pseudolites, Locatalites and total
stations used to augment and verify the GNSS data is explained. Data analysis gives
position and frequency that may be used in conjunction with appropriate models, and
correlation to other sensor data to assess structural characteristics giving engineers
extensive information for the assessment of structures. Case studies of extensive
bridge campaigns are presented. Future developments in the technology of both data
generation and application are discussed in the context of needs for real time alarms
and assessment of engineering structures.
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12.1 Part A—Introduction to Bridge Monitoring

The use of GNSS to monitor the displacements of bridges, and in particular large
suspension bridges, has been ongoing for over 20 years (Ashkenazi and Roberts
1997; Roberts et al. 2014). Some of the early work was conducted on the Humber
Bridge in the UK, whereby Ashtech ZXII GPS antennas and receivers were used
to simply gather data at a rate of typically 5 Hz, and post-processed in order to
see if any interesting movements were detected. At that time, the Humber Bridge
held the title of the longest suspended main span in the world; today the Humber
Bridge is ranked 8th in the world. There has been a rapid development of structures
in Asia and specifically in China over the past 20 years. 32 of the top 100 longest
suspension bridge spans are now in China, and only 4 of these were completed before
the year 2000. A further 23 are under construction. Such structures are very costly
to build—for example the Storebæltsbroen (Great Belt Bridge) in Denmark is the
largest construction project in Danish history, at an estimated DKK 21.4 billion at
1988 costs.

Further to this, bridges are built with an expected life span. However, with the
increase in traffic, and possible environment changes, these life spans will sometimes
change. The Forth Road Bridge, for example, was completed in 1964, and during its
first year of operation 4 million vehicles passed over it. This increased to 23 million
vehicles in 2002. In addition towhich, the size of trucks in theUKhas almost doubled
during this time.

Today, most of the large bridges constructed in Asia incorporate extensive moni-
toring systems including GNSS, accelerometers, tilt meters, anemometers and ther-
mometers. The use of GNSS for displacement monitoring of such large structures
can enhance the knowledge and understanding of the real behavioural characteris-
tics of the bridge, both in terms of time series in 3D and also in terms of frequency
responses. Such measurements can also aid the early detection of faults in bridge
structures.

This Chapter is presented in three parts:

(a) Background to GPS and GNSS systems and their basis for use, how we get the
data

(b) Case studies that develop methods and results in the form of time series, and
what we can do with it

(c) Future perspectives.

Part (a) outlines the background to the use of GPS as part of a health monitoring
system, demonstrating the principles involved and describing some of the fundamen-
tal studies that lead to the possibility of required accuracy with Global Positioning
System (GPS) andGlobalNavigation Satellite System (GNSS) as displacementmon-
itoring devices. The fact that displacement/time series data is available at 10 Hz or
greater leads to further analysis, which in turn leads to the effective use of GPS to
give frequency responses.
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Case studies of the application are presented in part (b), demonstrating any limita-
tions that have been overcome (and in some cases how), but also some of the results
that lead to significant confidence in the methods employed. The methods that have
been used to analyse the specific time series are explained in detail—particularly
for the Severn Bridge—where subsequent work, and in particular the correlation
analysis—has progressed since the field trials.

Part (c) of the Chapter deals with ongoing trials, and perspectives for the future.
The authors are exploring the increased availability of satellites to enhance data from
systems, and to integrate the GNSS data with other systems to form Structural Health
Monitoring (SHM) systems.

GNSS data processing in this chapter is typically carried out using Leica GeoOf-
fice commercial software, or RTKLIB (Takasu 2013), which is a free open source
software. The data analysis on the processedGNSS results are carried out using excel
or MATLAB. Where possible, the routines used in MATLAB are referred to.

12.1.1 The Development and Use of GNSS for Deflection
Monitoring

In the late 1980s, the ambiguity resolution ofGPSdatawas one of themain subjects of
research in the society of satellite geodesy. This resulted in the development of novel
methods of carrier phase ambiguity resolution and led to the improved accuracy of
positioning solution at a few centimetre-level (Dong and Bock 1989; Blewitt 1989).
The first approach of the ambiguity resolution method is based on a network of GPS
stations, where the position of the GPS stations are computed with respect to at
least one reference GPS station that is assumed fixed. One of the first applications
of this approach was for the determination of long baselines (even up to 1,000 km)
and the monitoring of tectonic plates (Billiris et al. 1991; Freymueller et al. 1993),
crustal deformation (Dong and Bock 1989) and the determination of the permanent
static (co-seismic) displacements for the modelling of seismic faults (Hudnut et al.
1994). In those applications, the GPS network stations recorded simultaneously with
a sampling-rate of a measurement per 15 or 30 s for time interval ranging between
few hours up to a day, during which the GPS stations were considered as static (i.e.
GPS static measurements), without any motion affecting their position.

The aim in ground deformation monitoring applications is to identify and define
the ground displacement related to (i) very slow motion of the tectonic plates (e.g.
a few mm/year-level; Clarke et al. 1998), (ii) ground co-seismic displacement as
the result of earthquakes (Hudnut et al. 1996), (iii) land subsidence due to mining,
water pumping (Teferle et al. 2002; Psimoulis et al. 2007), (v) landslides (Kondo
and Cannon 1995), and (v) mean-sea-level changes (Ashkenazi et al. 1993). A study
(Montillet et al. 2016) of an elevated freeway viaduct (Seattle Harbour, Washington
State) focused on a long-term deformation resulting from a slow subsidence of the
structure.
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Following a similar approach, one of the first deformationmonitoring applications
in civil engineering structure was the monitoring of Pacoima dam, where six GPS
stations were installed on the crest of the dam recording simultaneously with two
reference GPS stations at the abutments of the reservoir. The aim was to derive daily
GPS solutions of the six control points and correlate the dam response with the
temperature and water level variations (Hudnut and Behr 1998). Recently, a detailed
study (Montillet et al. 2016) showed the deformation response of an earth-filled dam
(Tolt Dam, Washington State) and daily position time series revealed the annual
deformations of the structure due to the annual snow-melt-driven lake water level
rise.

The further development of GPS data processing methods and the availability of
GNSS receivers with sampling-rates higher than 1 Hz made monitoring the dynamic
response of flexible civil engineering structures possible. The double difference kine-
matic processing approach has been adopted for GPS structural monitoring applica-
tions, where at least one GPS station is fixed and used as reference (usually defined
as base station) and GPS stations are installed on the control points (usually defined
as rover station(s)) of the structure, considered that they are moving with the struc-
ture (kinematic station). The main criterion for the deployment of the GPS receivers
is the baseline length defined by base-rover(s) GPS station—which needs to be
short enough—in order to minimise adequately the common errors between the GPS
receivers, such as troposphere and ionosphere effect, satellite errors, clock errors,
etc. (Cannon et al. 1992). Practically, baselines of up to 1 km-order length are con-
sidered to limit the impact of errors on the GPS solutions significantly. In addition,
the method of on-the-fly ambiguity resolution, made possible rapid ambiguity reso-
lution (e.g. <1 min) for kinematic applications reaching an accuracy of 1 cm (Leick
et al. 2015).

All the above advances led to the first GPS structural monitoring application,
where the response of the Calgary Tower due to wind was measured by using 1 Hz
GPS. By applying the on-the-fly kinematic double difference mode for the GPS data
processing and forming a baseline approximately 1 km long, the amplitude of the
response of the Tower (±16 mm) and the main modal frequency (0.36 Hz) were esti-
mated (Lovse et al. 1995). Likewise, by following the same approach Ashkenazi and
Roberts (1997) used GPS receivers to monitor the response of the suspension bridge
across the Humber in the UK. However, in that application a real-time kinematic
processing model was applied, where a GPS base station was installed on a known
control point (the bridge’s control tower) which has been surveyed in advance by
using GPS static processing, and a GPS rover station was installed at the deck on
the mid span of the bridge (see Case Studies below). Considering the relatively short
baseline between GPS base and rover stations (<1.5 km) and the same impact on the
base and rover GPS station of common error sources (Leick et al. 2015; Hoffman-
Welenhof et al. 2001), led to the estimation of the positioning of theGPS rover station
with an accuracy of 5 mm-level. For the first time through using GPS, the amplitude
of the vertical response of a suspension bridge caused by heavy vehicles, and the
lateral response due to strong wind load producing displacement was measured. This
was the first use of GPS on bridges to measure structural response.



12 Time Series Analysis of Rapid GNSS Measurements … 349

Thus, advances in GPS processing methods and achieving high accuracy through
the double-difference solution and a baseline of length not more than about 1.5 km,
broadened the application field of GPS in structural monitoring. In addition, the
development of the Precise Point Positioning (PPP) method (Zumberge et al. 1997)
permitted the GPS monitoring of motion without the need for reference stations, by
using a GPS standalone station installed at the controlled point. The only weakness
of the GPS PPP solution was the required time period for the ambiguity resolution,
which has now been reduced significantly through the use of network solution (Tang
et al. 2017, 2018) and the contribution of other satellite systems (GLONASS,Galileo,
BeiDou;Geng andShi 2017). Further to this, the use ofNetworkRealTimeKinematic
(RTK) has also been investigated as a means of measuring the displacements of
locations on bridges (Yu et al. 2018).

The introduction of GPS was made at a time when structural monitoring became
a significant contribution to the safe operation of major civil engineering structures.
The need for structural monitoring became evident due to (i) the extreme loading of
the structures which in some cases exceeds the initial design loads of the structure,
(ii) the aging of structures which increases the risk of their potential malfunction and
(iii) the efficient maintenance based on asset-management methods.

The main advantages of GPS monitoring against other traditional monitoring
techniques is the direct estimation of the 3D-displacement of the structure in an
independent global coordinate system (Psimoulis and Stiros 2008). Until the devel-
opment of GPS, techniques commonly adopted could estimate the relative displace-
ment between parts of the structures. GPSmonitoring can be used to monitor a broad
range of structural responses, from the very slow structural responses due to tem-
perature and solar radiation variations, to dynamic responses due to wind and traffic
load.

Accelerometers, which have been traditionally used tomonitor structural response
have two main limitations. First, accelerometers cannot detect very low-frequencies
responses (diurnal fluctuations and wind-induced oscillations) due to their functional
parameters (Clough and Penzien 1993). Second, the displacement can be computed
through double-integration which leads to significant errors and bias (Stiros 2008),
making necessary the high-pass filtering of the displacement and the loss of signifi-
cant information of lower frequencies, especially for major flexible civil engineering
structures.

The main questions which arise with the accuracy and limitations of GPS in
monitoring structural response are: (i) what is the range of accuracy of the amplitude
response and the frequencies determined by theGPS records and (ii) how can theGPS
data be analysed to further improve the GPS monitoring application. Several experi-
mental investigations aimed to define the limitations of the GPS monitoring in deter-
mining the characteristics of the response (amplitude and frequency) and developing
methods for the enhancement of the accuracy of GPS time-series. Celebi et al. (1999)
assessed the accuracy of GPS monitoring in determining the dynamic characteristics
of a flexible structure, simulated by steel bars. By analysing the GPS displacement
time-series, the amplitude (up to 5 cm), the modal frequency (~0.25 Hz), and the
damping ratio of the structure (~2%) were accurately determined. Ge et al. (2000)
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assessed high-sampling rate GPS measurements (up to 20 Hz) against accelerom-
eter for monitoring vibrations, which expressed seismic motions of amplitude of
the order of 50 mm. Likewise, Nickitopoulou et al. (2006) assessed the accuracy of
GPS in monitoring periodic motion of 400 mm amplitude. Roberts and Tang (2017a)
have used a rotating rig to measure the performance of both GPS and BeiDou in a
controlled dynamic environment.

More recent studies have focused on dynamic motion and whether the accuracy
of the GPS measurements depends on the frequency/amplitude of the response. Psi-
moulis et al. (2008) and Psimoulis and Stiros (2008) proved that GPS monitoring
can be used to define frequency of motions even up to 4 Hz reliably, regardless of the
amplitude of the motion. Even though the error of the estimated amplitude increases
with the motion frequency, for motions of amplitude smaller than 10 mm it seems
that the waveform of motion is recorded reliably resulting in accurate estimation of
the frequency. Also, from an experiment of excitation of ranging frequency the appli-
cation of wavelet transform analysis on GPS records revealed the variations of the
frequency during the excitation, reinforcing the fact that GPS can accurately recover
the motion waveform, regardless of the motion amplitude. One of the main weak-
ness of GPS records, which is the occurrence of data gaps such as those generated by
cycle slips (see below). Best solutions may be obtained by applying spectral analysis
techniques suitable for non-equidistant data, such as Lomb-periodogram (Pytharouli
and Stiros 2008) and Least Square Spectral Analysis (LSSA; Pagiatakis 1999).

The development of GPS receivers capable of sampling data at 100 Hz raises the
need to examine how the performance of GPS monitoring depends on the sampling-
rate. Initially, Moschas and Stiros (2014) examined the accuracy of GPS measure-
ments of 100 Hz sampling rate, for different Phase-Locked Loops (PLL) bandwidth
(ranging between 25−100 Hz). The analysis of dynamic motion experiments based
on spectral and correlation analysis revealed that the GPS measurements for 25 Hz
PLL bandwidth are strongly correlated but with low noise level, while by increasing
the PLL bandwidth to 50 or 100 Hz, the GPS measurements become less correlated
(and completely uncorrelated for 100 Hz) but of higher noise level. Häberling et al.
(2015) conducted experiments of dynamicmotion of up to 20Hz excitation frequency
and proved that the accuracy of the estimated displacement is strongly dependent
on the settings of the GPS receivers (phase-tracking loop) and the frequency of
the input motion (for frequency larger than 1 Hz), as they proved that significant
errors might be introduced in the amplitude and the phase of the GPS coordinates.
However, the GPS coordinates can be corrected by applying an appropriate transfer
function, designed according to the baseband parameters of the receiver’s PLL, on
the estimated displacement time series.
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12.1.2 GNSS Error Sources

These and other experimental studies have proved that GPS measurements are very
effective in determining the characteristics of dynamic motion and especially the
motion frequency. However, a variety of error sources exist when using GNSS,
including satellite clock and ephemeris errors, ionosphere and troposphere errors,
as well as errors at the receiver such as receiver clock errors (Leick et al. 2015).
Many of these errors can be mitigated through using relative positioning approaches.
However, some errors are location dependent, such as multipath errors and cycle
slip errors. Care in choosing the location of the GNSS antenna can help to overcome
these, but due to the typical nature of bridge infrastructure, this is not always possible.
Multipath error occurs when the GNSS station receives a mixture of the direct signal
and reflections of the satellite signal from surfaces and obstructions surrounding
the control point. Techniques and methods have been developed to overcome those
weaknesses and improve the GPS monitoring performance (Quan et al. 2018; Lau
2017). Cycle slips or loss of lock occur when there is a jump in the carrier phase
readings, caused by a temporary physical obstruction between the satellite andGNSS
antenna, or due to electromagnetic interference, or even due to high ionospheric
activities. Further to this, the physical location of the antenna can cause errors.
One example is if the reference station and bridge antennas are located at different
altitudes, then even if the baseline length is relatively short, residual tropospheric
errors will still start to propagate. Another error source could be introduced through
the way the antenna is attached to the structure. Initial work by the authors involved
attaching the antenna to the bridge deck by placing the antenna on the top of a pole
and connecting the pole to the bridge deck hand rail. The pole could be 0.5 m higher
than the handrail, and would have its own horizontal oscillations that are independent
of the bridge. However, these would not affect the height component.

The number of satellites used, as well as the geometry of the satellite constellation
can affect the precision of the position. The increase in the number of GNSS satellites
available, and research into the combination of these is helping these phenomena,
as well as helping to accelerate the ambiguity search. Furthermore, newer genera-
tions of satellites and GNSS receivers have improved carrier phase and pseudorange
observation resolution, again helping to improve the precision of the position.

12.1.3 Multi-GNSS Approach for Quicker Ambiguity
Resolution and Better Satellite Constellation

Apart from thewell-establishedGPS in thepositioning applications, the improvement
of GLONASS and the development of other satellite systems, such as Galileo and
BeiDou, led to the formation of the Global Navigation Satellite System (GNSS)
technology. The application ofGNSS in deformationmonitoring application by using
combination of two ormore satellite systems, aimsmainly to improve the availability
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and accuracy of the position solution by limiting the impact of the error sources.
The main expected impacts of combining two or more satellite systems are (i) to
increase the number of the satellites, which can improve the conditioning for the
positioning solution, and (ii) to enhance the geometry of the satellite constellation
which increases the accuracy of the positioning solution. However, using two ormore
satellite systemsmay introduce further limitations in theGNSSmeasurements or even
reduce the positioning accuracy due to different noise level of the satellite systems.
For instance, Inter-Satellite-Type Biases (ISTBs) due to the BeiDou satellites occur
for the BeiDou measurements if different type of GNSS receivers are used for GNSS
recording (Nadarajah et al. 2013). Likewise, the Inter-Frequency Bias (IFB) of the
GLONASS measurements require the use of the same type of receivers to resolve
ambiguities in Double-Difference mode (Al-Shaery et al. 2013).

Recent studies have proved that multi-GNSS measurements, by adding any of the
GLONASS, BeiDou and Galileo to GPS constellation, shorten the time-interval for
fixing carrier phase integer ambiguities, which limits significantly the convergence
of positioning solution in PPP-mode of GNSS measurements (Wang and Feng 2012;
Geng et al. 2018). Furthermore, the availability and accuracyof theGPS-only solution
is significantly improved by the addition of other satellite constellations, especially
for geographic locations of high latitude (Msaewe et al. 2017) or for high cut-off
elevation angles (i.e. >30°), which is commonly the case for urban applications (Li
et al. 2015). Even though, the accuracy of GPS solutions is strongly related with
the geometry of the GPS satellite constellation (expressed through the GDOP—
Geometrical Dilution of Precision), the contribution of other satellite systems will
be beneficial mainly for the periods of weak GPS satellite constellations or poor
quality of specific GPS satellite(s) which could lead to cycle slips or higher noise
level (Msaewe et al. 2017). For periods ofwell-formedGPS satellite constellation, the
contribution of other satellite systems may not enhance the accuracy of GPS solution
or even reduce the positioning solution accuracy due to introduction of additional
noise. Representative example of the latter case is the contribution of the BeiDou
satellite systems, which is also receiver-dependent.

This section has shown that the use of GPS and more recently GNSS has seen
improvements over the past two decades in terms of signal availability, the rate of
signal acquisition as well as quality. There are still a number of application dependent
errors that need to be aware of and addressed, such as multipath and cycle slips.
In addition, the physical location and method of attachment of the antenna to the
structure has to be well thought through.
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12.2 Part B—Several Case Studies

12.2.1 The Severn Suspension Bridge Case Study

This case study details the processing and analysis of data from trials conducted
on the Severn suspension bridge. The section explains the various approaches and
techniques currently used to analyse and interpret the GNSS data. The coordinate
transformation approach used in order to change the GNSS coordinates into coor-
dinates that are more appropriate to the bridge is explained. The analysis includes
simple filtering such as using a moving average filter to extract various frequencies
from the data. Other approaches include the use of frequency analysis tools, such
as Fast Fourier Transforms (FFT) and Power Spectral Density (PSD) analysis. Fur-
ther to this, the comparison of the GNSS coordinates and hence displacements are
illustrated through using a correlation coefficient approach. In addition, the compar-
ison of the GNSS positions to other data sources, such as ambient temperature and
the temperature of the steel structure are examined and compared with a Weigh In
Motion (WIM) sensor in the road, and with wind speed and direction data. Details
of the surveys used are given in the appendix.

GNSS Data Processing

The GNSS data are gathered at high rates, typically 10 Hz or 20 Hz, and processed in
anOn-the-Fly (OTF)manner (Leick et al. 2015;Hoffman-Welenhof et al. 2001) using
both Leica GeoOffice and RTKLIB (Takasu 2013). Alternative processing methods,
including using network RTK and PPPGNSS processing have also been investigated
(Tang et al. 2017, 2018). When using a traditional OTF processing approach, care
needs to be taken with the location of the reference station. If possible, two reference
stations placed some distance apart should be used. The second one acts as a backup
as well as being able to position the two reference stations relative to each other in
order to measure any relative movements. While some reference station locations
may seem to be appropriate, any structure they are located on may not be stable.
Any long term surveying should investigate the stability of the reference station in
detail before any bridgemeasurements are taken and also periodically once the bridge
survey is underway, otherwise anymovements at the reference stationmay propagate
into the results, making the bridge appear to move.

Reference station movements can be long term deformations or settlement of the
structure that the GNSS antenna is placed upon, or shorter term movements such as
movements caused by thermal expansion. The authors conducted some field trials on
the Avonmouth M5 motorway crossing in 2007, whereby five GPS receivers were
placed upon the 173.7 m long four lane viaduct crossing (Ogundipe et al. 2014).
Two reference GPS receivers were set up; one set up at ground level in the adjacent
harbour, some 1.5 km away, and the second on top of a disused granary building also
at the harbour. The granary building was chosen as the height was at a similar level
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to the viaduct. However, the resulting processing indicated that the reference station
placed on top of the granary building moved in a circular manner throughout the day.
This is thought to be due to the heating effect by the sun on the building.

Coordinate Transformation

In order to obtain coordinates that relate to the movements of the bridge, the GNSS
coordinates are transformed into coordinates related to the axes of the bridge i.e.
one axis along the length of the bridge (longitudinal axis) and one axis normal
to the bridge’s length (lateral axis). In order to do this, the bearing of the bridge
must be measured and calculated. For the Severn Bridge experiments, the bearing
was calculated through taking the bearing between GNSS antennas located on the
bridge’s suspension cable, i.e. locations A, B, C and D (appendix Fig. 12.37). All
these locations are attached to the cables in the same manner, and therefore they are
positioned in the same vicinity relative to the suspension cable. The bearing from A
to D should give the most accurate bearing as any differences in the location related
to the cable will make a smaller error in the bearing compared to using other pairs
of locations.

Using similar triangles, it is possible to see how the values for Lat and Lon are
derived using Fig. 12.1. The bridge coordinates are derived in Eq. (12.1) (lateral)
and Eq. (12.2) (longitudinal).

Fig. 12.1 Illustration of the E-N coordinates of P and the desired Lat-Lon bridge-coordinates of P
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Lat = Nsin α − E cos α (12.1)

Lon = E sin α + Ncos α (12.2)

These equations are applied to all the east and north components of the GNSS
coordinates. For the Severn Bridge, a bearing of 121° 56’ was calculated.

Frequency Analysis

The plan coordinates and heights resulting from processing the GNSS data and
converting into the bridge coordinates are now ready for subsequent analysis.Herewe
discuss the use of frequency analysis in order to extract the fundamental frequencies
from the GNSS coordinates. The amount of data resulting from the surveys carried
out in 2010 and 2015 is vast, and therefore selected examples are used for illustrative
purposes. Typically, 9 GNSS receivers gathering data at 10 Hz will produce nearly
8 million 3D coordinates every 24 h.

Two frequency analysis approaches are illustrated here; these are a simple Fast
Fourier Transform (FFT) (Frigo and Johnson 1998) and the Welch Power Spectral
Density (PSD) (Fulop and Fits 2006) estimate. Both these functions are found in
MATLAB and are relatively straightforward to use.

The code for the FFT in MATLAB is simply Y = fft(X), which computes the
discrete Fourier transform of X using a FFT algorithm. Full details of the use of
the function can be found in MATLAB. Similarly, the Welch PSD estimate pxx =
pwelch(X) returns the PSD estimate, pxx. The input signal, X, is that of the lateral,
longitudinal or vertical components of the bridge’smovements. The results can either
be plotted on a log scale or a linear scale. In this chapter, we are using the frequency
analysis approach to analyse the frequency of the signal i.e. the movement of the
bridge. The typical frequencies obtained for this type of movement is or the order of
0.1 Hz or larger (quicker). This is different to the previous chapters that are looking
at long term movements, typically over periods of days or years, and frequency
analysis is used to identify coloured noise in the data, at much lower frequencies
than the analysis in this chapter. To this extent, most of the frequency domain plots
in this chapter are drawn using linear scales in order to highlight the peaks, which
correspond to the frequency of the signal.

Suppose we look at some GNSS processing results for location B, at a 10 Hz
epoch interval. The data was processed using RTKLIB. The resulting coordinates
are given as a vector of east, north and vertical components of the distance between
the reference station used and the rover station in the case of location B. These data
are then transformed into the bridge coordinates, and analysed.

By taking a 30-min sample, a FFT analysis can be carried out on the resulting
bridge coordinate data. Figure 12.2 (left) illustrates the displacements in the three
components of the bridge, and Fig. 12.2 (right) illustrates the corresponding frequen-
cies observed in these data.
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Fig. 12.2 aLateral, longitudinal andvertical displacement time series (left) andb the corresponding
FFT analysis at location B of the Severn Bridge (right)

The three plots in Fig. 12.2b have been drawn at the same scale, illustrating the
comparative power of the frequencies observed in each of the three components. It
can be seen that the vertical component has the most powerful signal at 0.1472 Hz,
which is the fundamental frequency in the vertical direction at this location. The lower
frequency values seen in the figures are due to the GPS noise as well as multipath,
and also the slow displacements of the bridge, such as slower movements due to
ambient temperature changes. According to the Nyquist theorem (Weik 2000) the
10 Hz GNSS data is able to pick up frequencies of 5 Hz or slower. If we wanted to
investigate higher frequencies, thenwewould need to sample the data at a higher rate.
However, due to the size and nature of the bridge, the main frequencies of movement
are relatively slow, and they can be picked up by GNSS sampling at 10 Hz. The
vertical component consists of four discrete frequencies, and the lateral component
has five. The longitudinal component, however, has two very weak signals. This is all
as expected, as the cable swings back and forth in the lateral direction, as well as in
the vertical, mainly due towind and traffic loading. Themovement in the longitudinal
direction will not be as free as in the other two components as there is damping from
the supports at the towers. Nevertheless, longitudinal movement is clearly identified
in the time series, Fig. 12.2a, but in a more sporadic manner rather than a periodic
manner as in the case of the lateral and vertical displacement time series.

If we examine the same results when sampled at 1 Hz rather than 10 Hz, we can
see that the vertical time series look similar for 18,000 epochs of 10 Hz data and
filtered down to 1,800 epochs of 1 Hz data, Fig. 12.3a, c respectively. The detail
is lacking in the 1 Hz data, Fig. 12.3d, when compared to the original 10 Hz data,
Fig. 12.3b. In the frequency domain, Fig. 12.4, not all the natural frequencies are
seen when the FFT is conducted on the 1 Hz data, Fig. 12.4 (bottom), compared to
the 10 Hz data, Fig. 12.4 (top), and those that are seen are not as pronounced.

For the vertical time series at location B over a longer period, gathered in 2010,
the data consists of 24 h of 10 Hz data. The integer ambiguities were fixed throughout
and the resulting GNSS analysis is acceptable. GPS alone was used to process the
data.
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Fig. 12.3 Illustration of the different vertical time series plots resulting from the same data sampled
at 10 Hz (top) and 1 Hz (bottom) over a 1,800 s period (left) and 100 s period (right)
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Fig. 12.4 Illustration of the different FFT plots for the same data sampled at 10 Hz (top) and 1 Hz
(bottom) for location B in the vertical component on the Severn Bridge, 2010

Figure 12.5 illustrates the initial vertical time series for location B. There are some
slips in the data at around 02:20, 09:24 and 15:21. If we eliminate these obvious
jumps in the data, simply by deleting the vertical component and corresponding time
in the data file, then Fig. 12.5d is obtained. Figure 12.5b, c, e, f illustrate the FFT and
Welch PSD results for both the original data and the clean data. It can be seen that the
original results do indeed pick out discrete frequencies. However, it can also be seen
that when the slips are eliminated, the observed frequencies are more pronounced,
furthermore a couple of less powerful frequencies are now observed, not seen in the
original data. It is also possible to calculate the frequencies using shorter ranges of
data. Figure 12.6 illustrates the FFT results for three 10 min sections within the data
used in Fig. 12.5, as well as the corresponding vertical time series. Here again it
can be seen that the frequencies observed are similar in nature. However, results in
Fig. 12.6c are not as pronounced as the other two, and indeed it can be seen that
here is a small jump at around 13:32:38. Again, if we fix this jump, the frequencies
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become more pronounced and less noisy, Fig. 12.7a, d. However, if we look at the
second half of the data, Fig. 12.7d, after the slip, it can be seen that it appears noisier
than the first. If we split the 3,500 epochs into two sections, around where the slip
occurred, the resulting vertical time series and FFT can be seen in Fig. 12.7. Here
it can be seen that Fig. 12.7b is more pronounced than Fig. 12.7c. This suggests
that the data is noisy in Fig. 12.7a, c possibly due to the integer ambiguities having
been resolved to the incorrect values. This also suggests that a frequency analysis
approach such as this could be used to detect noisy GNSS data, or even when the
integer ambiguities have been incorrectly fixed when analysing GNSS data that has
been processed such as in Fig. 12.7.

Differential Movements

The individual frequency responses at locations C and E as well as the frequency
responses of the change in the relative vertical and position time series of the two
locations reveal the twisting movements of the bridge about its longitudinal axis.

Figure 12.8 illustrates the simultaneous lateral, longitudinal and vertical displace-
ment time series for locations C and E, as well as the differences in the movements
for 143,454 epochs (3 h 59 min) in 2010 at a sampling frequency of 10 Hz. The red
lines represent the moving average values over a ±120 s period around the epoch.
Figure 12.9 illustrates the corresponding frequency domain.

The types of movements in the time domain can be seen in Fig. 12.8. Over this 3 h
and 59min of data, the displacements at both C and E are visually similar in nature in
the 3 components. The overall moving average displacements at C and E (red lines,
±120 s moving average filter) are 32.1 and 43.37 mm in the lateral direction and
63.75 and 54.12 mm in the vertical component respectively, illustrating a gradual
overall long term displacement in addition to the more rapid displacements.

If we zoom in on these results and look at a sample of 1,075 epochs (107.5 s)
during a relatively quiet and busy periods, Figs. 12.10, 12.11, 12.12 and 12.13, we
can see more of the detail. The difference in the longitudinal component is at the
millimetre level (Fig. 12.11h). The torsional results, Figs. 12.10 and 12.11 illustrate
that there is a frequency of 0.3346 Hz in the lateral component, and 0.3532 Hz in
the vertical components due to the twisting of the bridge about a longitudinal axis. It
also illustrates that the frequencies seen at both C and E (Figs. 12.10 and 12.11) are
similar in nature, and that the bridge moves in the three directional components at
both C and E in a similar manner, and also experiences a periodic twistingmovement.

By comparing the pairs of figures, Figs. 12.10 and 12.11 with Figs. 12.12 and
12.13, we can see that the characteristics of the displacement time series and corre-
sponding frequency domains differ. Whilst the bridge experiences light traffic load-
ing, during the quiet period (Figs. 12.10 and 12.11) the individual vertical frequencies
(Fig. 12.10c, f) are weaker than the busy period (Fig. 12.12c, f). Conversely, the lat-
eral frequencies are stronger during the quiet period (Fig. 12.10a, d) when compared
to the lateral frequencies during the busy period (Fig. 12.12a, d). The differential
frequencies are stronger during the quiet period (Fig. 12.10g, i) when compared to
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the busy period (Fig. 12.12g, i). These suggest that there is less of a differential
movement during this particular busy period compared to the quiet period, but more
vertical displacements. These differential movements have been picked up through
this approach, and illustrate how such movements can be measured on a complex
system such as a large bridge.

Moving Average Filtering

A simple moving average filter can be a very effective way to separate various types
of frequencies form the data. In Eq. (12.3),MAi represents the moving average value
at time i of the period ±N/2 epochs around the time (i), x j represents the coordinate
value at epoch j, which has a range of − N

2 < i < N
2 .

MAi = 1

N

N
2∑

j=− N
2

x j (12.3)

For example, Fig. 12.14 illustrates the vertical time series for location A over a
24 h period on the 11th March 2010, sampled at 20 Hz. This equates to 1,701,054
epochs of data. It can be seen that the bridge experiences rapid movements due to
variable traffic loading, and that the peak movements increase in value in the middle
of the afternoon. In addition to this, if we look at the moving average results, location
A is seen to start at a height of 3.1 mm, drops to−19.7 mm at 01:10:59.15, gradually
rises to a peak of 50.8 mm at 06:38:16 then drops down to −135.7 at 15:49:08. The
bridge then gradually raises in height to a maximum of 13.0 mm at 22:10:04 then
drops somewhat to 5.6 mm at 23:26:13.5. This gradual change in vertical component
is due to the sagging effect of the suspension cables as the ambient temperature
fluctuates by up to 6.7 °C, with a corresponding steel temperature fluctuation of 6.8
°C over the same 24 h period.

Themoving average approach is a goodway to demonstrate long termmovements
such as this, and also a good way to then be able to plot figures such as Fig. 12.15,
illustrating the displacements relative to the moving average values, and hence illus-
trating the rapid displacements without the long term movements. Here it is easier
to see the maximum displacement from the time series due to the traffic loading is
316.8 mm at 16:40:56.5. It is also easier to visualise the increased traffic loading
during rush hour as well as just before noon, which is not as visible when looking at
Fig. 12.14.
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Correlation Coefficient

Acorrelation coefficient is ameasure of the correlation between twodatasets (Roberts
et al. 2018). Figure 12.16 illustrates a four hour (left) and a ten minute (right) vertical
displacement time series for locations A, B, C and D on the 10th March 2010.

The movements at the four locations along the cable look very similar to each
other—as one would expect. In the same way, the displacement versus time series of
the tower tops in the longitudinal direction over 1 h (left) and 10 min (right) periods,
Fig. 12.17 show marked agreement.

From Fig. 12.17 (right), it can be seen that the pairs of towers T1, T2 and T3, T4
move in a similar manner to each other. There are times when the two pairs of towers
move in opposite directions. Figure 12.17 (left) at around 11:10, 11:24 and again at
11:38 tower pairs T3 and T4 move in a negative longitudinal direction, whilst the T1
and T2 pair of towers move in the positive direction. This suggests that at these times,
there was a loading on the bridge causing the two sets of towers to sway towards the
centre of the bridge. One approach to quantify the similarities is to use a correlation
coefficient function to compare two time series. A correlation coefficient function
is available in MATLAB, ‘xcorr’. This can be used to calculate the correlation of
any of the 3D components’ time series at any location with another, Fig. 12.18. This
can be in terms of the initial output at 10 Hz or 20 Hz, or even the resulting time
series after a moving average filter has been applied. The correlation coefficient of
the GNSS results with other types of data can also be found in order to investigate
the influence of these external data on the GNSS. Such examples can include the
ambient temperature, the steel temperature, the wind speed and direction, and even
the loading on the bridge due to traffic flow through using a WIM sensor.
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Fig. 12.14 24 h of vertical time series at location A on the 11th March 2011 at a sampling rate of
20 Hz (blue) and a 24,000 epoch moving average (red)
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Fig. 12.15 24 of vertical time series rapid movements, with the longer term movements having
been taken away using the moving average filter used in Fig. 12.14
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Fig. 12.16 Vertical displacement time series for locations A, B, C and D over a four hour period
(left) and a ten minute sub-set (right), data gathered on the 10 March 2010
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a four one period (left) and a ten minute sub-set (right), data gathered on the 11th March 2010
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Fig. 12.18 Auto correlation coefficients for on 18th March 2010 11:29:46 to 15.29.45 at cable
pairs B, C, D and E time series in the vertical direction

Table 12.1 Average
correlation coefficient values
including and excluding the
problematic GPS data
samples

Correlated pair Original average
correlation
coefficient (%)

Adjusted average
correlation
coefficient (%)

T3lon: T4lon 91.9 93.5

T1lon: T2lon 86.3 93.0

T4lon: Dvert 84.3 87.2

T4lon: Cvert 78.4 81.2

T4lon: Bvert 71.1 73.9

T4lon: Avert 54.3 57.6

Table 12.1 illustrates some results in the bridge coordinate system for various
pairs of GNSS data. The results show how these pairs of data are well-correlated. It
illustrates that by comparing the tower longitude displacement time series to the cable
vertical displacement time series that the correlation is related to the distance between
the tower—in this case T4—and each suspension cable location (Fig. 12.19). The
results also show that the tower top pairs are also highly correlated in the longitudinal
direction.

Figure 12.18 illustrates the correlation of pairs of GNSS antenna movements on
the cables. Here it can be seen that there is a high correlation in the movements.
Further to this, the approach can also be used to identify movements that are not
correlated, such as the pairs of data compared at the bottom half of Fig. 12.20.
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Fig. 12.19 Autocorrelation
coefficient values for the
10th and 18th March 2010
for the tower longitudinal
and cable vertical
displacement time series for
various pair combinations
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Fig. 12.20 Auto correlation coefficients on the 18th March 2010 11:29:46 to 15.29.45 for tower
top time series in the bridge’s longitudinal direction

Comparison of GNSS Time Series Displacements with Temperature
Time Series Data

Throughout this section, the focus has been mainly on the short-term displacement
time series, looking at relatively high frequencies in the order of 0.1 Hz. These are
mainly caused by traffic and wind loading. In this section, temperature fluctuations
throughout the day measured using GNSS are examined (Roberts et al. 2017b). Both
the ambient air temperature and the steel temperature measured at the bridge’s abut-
ment at the Aust end of the bridge are recorded as part of the operational monitoring
system on the Severn Bridge. Both temperature values are recorded at 10 min inter-
vals—significant changes in temperature over that period would be unusual. In order
to be able to make a comparison the GPS coordinates were filtered using a 10 min
moving average filter, centred on the time that the temperature values were collected.
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Fig. 12.21 Comparison of the lateral, longitudinal and vertical time series, filtered using a ten-
minutemoving average filter, with the air and steel temperature data gathered at ten-minute intervals

Figure 12.21 illustrates the temperature time series as well as the lateral, longitudinal
and vertical filtered displacement time series at location A over a 24 h period on the
11th March 2010.

Visual inspection of Fig. 12.21 suggests a correlation between the vertical and
lateral time series filtered displacements with the temperature values. Figure 12.22
illustrates the relationship between the two temperature sources and the vertical
displacement, demonstrating a trend. Such information is an essential part of any
knowledge base of the bridge to assess structural information and characteristics.

The steel temperature is collected from the Aust abutment, and not the steel
cable which is where the GNSS measurements were taken. Previous research has
shown that the temperatures at two such locations can vary (Westgate et al. 2014).
Correlation of the temperature with the GNSS displacements is difficult to relate, due
to the different locations and properties of the steel at these locations. However, it is
clear that there is a relationship. An in-service system could gather the temperature
values at more relevant locations if it were to be compared with the GNSS.

Comparison of GNSS Time Series Displacements with Wind Vector Time
Series Data

Finally,we can look at the effects that thewindhas on the structure, and the correlation
between the wind force and the lateral movements of the bridge in particular. Wind
speed and direction are gathered on the bridge as part of the ongoing monitoring
scheme. These time series data were gathered at four diverse locations ranging from
the top of one of the towers to a bridge abutment. The wind speed data gathered



374 G. W. Roberts et al.

-140 -120 -100 -80 -60 -40 -20 0 20 40 60

Ver cal Displacement (mm)

-2

-1

0

1

2

3

4

5

6

7
Te

m
pe

ra
tu

re
 (°

C)

Fig. 12.22 Relationship between the change in temperature and the change in the vertical time
series on the 11th March at location A

every 10 min at the four anemometers’ locations were transformed into the vectors
in the bridge coordinate system along and across the bridge deck. If we consider the
wind vector (�w), which consists of the wind speed (w) and direction (β) recorded in
the data file. We can convert the vector into the north and east components, w cosβ
and w sinβ respectively.

By also considering the transformation of east and north directions into bridge
coordinates, Fig. 12.1, we can obtain Eqs. (12.4) and (12.5) for the bridge lateral
and longitudinal components of the wind vector. Through expansion and the use
of product to sum formulae, we obtain Eqs. (12.6) and (12.7) for the Lateral and
Longitudinal components of the wind vector time series.

Lat = W cosβ sin α − W sin β cosα (12.4)

Lat = W [cosβ sin α − sin β cosα] (12.5)

Lat = −W sin(β − α) (12.6)

Lon = W cos(β − α) (12.7)

The comparison between the bridge lateral displacement time series and the lateral
wind vector time series are shown (Fig. 12.23). In addition, the raw lateral displace-
ment time series is shown as well as the 10 min moving average time series for the
lateral displacements. All these data are for a duration of 24 h.
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Fig. 12.23 Wind information time series at four locations on the bridge taken at 10 min intervals,
as well as the raw and moving average filtered time series in the lateral direction over a 24 h period

Comparison of the GPS Time Series Displacements with Weigh
in Motion Data

Known loading enables a comparison of measured displacements to the predicted
performance of a structure (see Humber Bridge Case Study). During the Severn
Bridge surveys, the data from an operational WIM system was available to pro-
vide traffic loads and this gave an opportunity to make further comparisons between
measured loads and measured displacements. WIM sensors are part of a permanent
monitoring system adjacent to the Severn Bridge. They are embedded into the high-
way to the west of the bridge, at a distance of 1,522 m away from the Beachley
support towers. All traffic on the bridge passes over them either entering (eastbound)
or leaving (westbound) the bridge. Normally, the primary function ofWIM is tolling,
load estimation and service life prediction.

The system on the Severn Bridge is an Applied Traffic ViperWim high speed
weigh-in-motion classifier with piezo electric in-road sensors that records data
including the speeds and direction of travel, and the mass of the individual vehi-
cles with corresponding time, all of which enable an estimation of the location and
magnitude of vehicle loads on the bridge at any given time.

The key assumption needed to assess the position of vehicles is that they travel
over the bridge with an average speed which is the speed recorded at the WIM
sensor. The Severn Bridge is an open highway, and traffic is generally free-flowing
with little acceleration or deceleration. During the survey period there were no speed
restrictions on the bridge, and the traffic flowed freely. There are no toll booths
on the WIM-side approach to the bridge, and going westwards the vehicles would
have travelled 0.9 km before they reached the Aust suspension towers after leaving
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the toll booths. By assuming that the vehicles travelling westbound stop at the toll
booths (initial speed = 0 m/s), and that an approximation for the acceleration of a
loaded HGV is 0–80 km/h in 60 s, an acceleration of 0.3704 m/s2 is found. From the
equations of motion, the distance that an HGV would require to achieve. 80 km/h
is 667 m. It might therefore be expected that almost all of the accelerating vehicles
could reach their cruising speed by the time they reach the main-span at the Aust
suspension towers, when travelling in a westbound direction. It should be noted
that the tolls are only collected from westbound traffic, and therefore that the traffic
travelling eastbound may slow down slightly when passing the toll booths, but will
not stop. To assess the load on the bridge at any instant, the time of travel between the
WIM stations and the selected locations is added to (or subtracted from) the vehicle
crossing time at the WIM station.

Analysis of the WIM data for the 18th March 2010 shows that on this day, 19,527
vehicles crossed over the bridge.

The overall data set is very large, and so 10 min long portions of the dataset are
used to highlight detail. Figure 12.24 (top) shows the relationship between the total
mass on the main span derived from the WIM data and the GPS derived movements
at mid span (position B). The split between the total loading on the main-span in
the eastbound and westbound directions is also calculated (Fig. 12.24 (bottom)) and
compared to the C-E lateral, longitudinal and vertical time series.

In the selected period, there are times where there are up to 142.15 tonnes of
vehicles distributed on the main-span, and there are also relatively quiet periods in
this dataset. For example, there are a few minutes when there are only around 7.3
tonnes total vehicle load on the main-span.

The presence of the 142.15 tonnes can be seen in Fig. 12.24 at around 11:55:20,
with around one third of this on the westbound carriageways and two thirds on the
eastbound carriageways. The largest displacements experienced at location B in the
three bridge coordinates are 389.2mm in the vertical direction, 30.1mm in the lateral
direction (i.e. normal to the bridge E-W direction), and 65.3 mm in the longitudinal
direction. These all occur at around 11:55:50.

Even though both locations C and E experience lateral movements of up to 30mm
and longitudinal movements of up to 69 mm, the magnitude and timing of these
movements is coincident between locations C and E, and the resulting differential
movements between C and E (Fig. 12.24 bottom) are insignificant in these two
components. The vertical component, however, is a different matter. The relative
vertical movement between locations C and E can be over 100 mm (106.8 mm at
11:55:39), and this illustrates the considerable twistingmovement of the bridge across
its longitudinal axis. The traffic is mainly on the eastbound carriageway during this
period, and in Fig. 12.24 (bottom) it can be seen that location C moves downwards
further than location E.

The comparisons above have been shown in a qualitative way. The movement of
the cables is governed not only by the total load and its distribution on the main span,
but also by loads in the side spans. It would be possible to make estimates of load
distributions onboth themain span and the side spans at any time, and tousenumerical
models to compute consequent cable displacement profiles. Alternatively, an inverse
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Fig. 12.24 Lateral, longitudinal and vertical displacement time series of location B (mid span)
compared to the total load of traffic on the main-span (top) and the C-E lateral, longitudinal and
vertical time series compared to the difference in mass between the eastbound and west bound
traffic (bottom)
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approach to estimate loads given sufficient displacement data is also possible, and
this may be a more fruitful approach for GPS data.

12.2.2 Humber Bridge Case Study

There have been a number of “campaigns” tomeasure the displacements of the Hum-
ber Bridge (Brownjohn et al. 1994; Ashkenazi et al. 1996; Ashkenazi and Roberts
1997; Karuna et al. 1997, 1998), including the use of GPS, but the work carried out
in 1998 (Brown et al. 1999) is described below, as it demonstrates not only a simple
principle, but also the way in which GNSS data can be linked to predictive models
of performance to give an engineering assessment of structures. Details about the
surveying involved are given in the appendix. Figure 12.25 illustrates the vertical
displacement time series (left) and corresponding PSD frequency analysis (right).
Similarly, Fig. 12.26 illustrates the lateral time series (left) and PSD frequency anal-
ysis (right) for the Humber Bridge. The GPS antenna was located a quarter of the
way along the mid span, gathering data at 10 Hz.

Figure 12.27 shows the plots of displacement at the mid span monitored posi-
tion against the movement of lorries in a traverse from Barton to Hessle. Details
of the configuration can be found in the appendix. As the lorries load approaches
the Barton tower, the upward vertical displacement at the centre of the main span
caused by tension in the main cable from the loaded side-span decreases back to
zero from a hogging (vertical upwards) value, while the horizontal movement of the
deck goes from positive to zero. When the load is in the main span, this span sags;
again horizontal movement is evident. Finally as the load moves into the Hessle side
span the mid span of the main cable hogs again. The maximum downward vertical
displacement predicted for this load case was 519 mm, and the maximum measured
was 530 mm—an extremely good correlation.

Figure 12.28 shows a typical set of mid span vertical displacement measurements
over a period of just over 4 min, from which the passage of singular large vehicles
is apparent. Previous published work (Brownjohn et al. 1994) had identified natural
frequencies from accelerometers. Data analysis of the GPS signals also showed
good agreement with these pre-existing tests—Table 12.2, and this acted as a further
validation of the FE model.

Figure 12.29 shows similar GPS data plotted over a very short time frame using
the Microsoft Excel built-in smoothing plot function from point data—i.e. with no
additional data processing. Even from this, the cyclical nature of the data is evident
and the vertical frequencies present in the general trends of displacement data can be
observed. Similar plots can be made for the sideways motion of the bridge—this is
actually the lowest natural frequency. Again comparisons with available data show
good agreement.
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Fig. 12.27 Vertical and
horizontal displacements
related to the location of the
moving load on the bridge
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Fig. 12.28 Vertical
displacements at the mid
span time series during the
maneuverer of the moving
load over the bridge
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Table 12.2 Natural
frequency values (Hz) from
F.E. analysis and
measurements

FE model Published GPS

Vertical mode 0.108 0.116 0.116

Lateral mode 0.054 0.056 0.052

12.2.3 Forth Road Bridge Case Study

Details of the GNSS surveys carried out on the Forth Road Bridge can be found in the
appendix. The GPS data were collected over 46 h at 10 Hz for seven GPS receivers
on the bridge, relative to two reference GPS receivers adjacent to the bridge; this
resulted in some 11 million data values. Wind speed, wind direction, temperature
and relative humidity were also measured at 1 Hz. For the displacements, the datum
used was the average of the measurements over the two days.

Figure 12.30 shows the time series of the lateral movement at mid span Site F
during 46-h trial. As it can be found that when the wind speed reached to 22 m/s, the
lateral movement can be as large as 1.2 m.
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Fig. 12.29 Displacements
plotted over a 10 s interval
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Fig. 12.30 Mean lateral displacements of the bridge Site F (West) over the 46-h trial in the Bridge
Coordinate System (BCS)

Measured Quasi-static Displacements: Vertical Load

During the second night, two 40 tonne lorries were hired by Forth Estuary Transport
Authority (FETA), accurately weighed and used as a controlled loading of the struc-
ture. These trials were carried out a couple of hours after the high winds experienced
(see below) had subsided slightly. The trials were carried out in the early hours of
the morning, when the traffic flow was at a minimum, and the bridge closed to other
traffic while the control lorries passed over and re-opened while they turned around
before subsequent crossings. The lorries started the trials at the north end of the
bridge, and travelled at 32 km/h. The manoeuvres were as follows:
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Fig. 12.31 (Left), Vertical displacements time series of the bridge during the 40 tonne lorry trials.
(Right), Vertical displacements averaged time series during the passing of two 40 tonne lorries over
the bridge side by side

(a) one lorry moved from north to south
(b) one lorry moved from south to mid span on the west side, stopped then the other

lorry moved north to south
(c) one lorry moved from north to south and stopped at mid span, while the other

moved south to north
(d) one lorry moved from south to north, and then both moved side by side north

to south.

The overall time series movements experienced by the GPS receivers at different
bridge sites in the vertical component time series for the whole trials are illustrated
in Fig. 12.31 (left), while Fig. 12.31 (right) illustrates the final manoeuvre d. The
reader should note that vehicles travel on the left-hand side of the road in the UK.
The graph also shows the position of the lorries at any time—for example, mid span,
north tower, etc.

Three main phenomena are evident in Fig. 12.31 (right). First, the displacements
at each GPS receiver site are offset from each other. Second, the GPS receivers
located at sites D and F, both at mid span, deflect by different magnitudes, even
though they start off at a similar height. This is due to the torsional movement of the
bridge. The lorries, travelling on the left-hand side of the carriageway from north to
south, were in fact travelling on the east side of the bridge. Hence, the eastern side
(site D) deflects more than the western side (site F). Third, the reader should note
that the bridge consists of three separate spans, each connected through two cables
that pass over the top of the towers. As the lorries pass over the northern side span,
the loaded hanger cables pull down on the suspension cables, which results in the
suspension cables pulling up on the main span. This is evident in Fig. 12.31 (right)
at approximately 2,800 s. The lorries pass into the main span, and their passage over
the measured positions is shown in Fig. 12.31 (right) with downward displacement
of the main span point D. As the lorries pass into the southerly side span, upward
movement of the main span—described above—is observed.

The results are also compared with those predicted by an existing FEM of the
bridge (Roberts et al. 2012). The FEM used predicted a displacement of 280 mm
under the loading of the two 40 tonne lorries. The mean displacement of the GPS
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Fig. 12.32 Vertical displacement time series compared with predictions from the finite element
model

receiver located at point D can be seen to match this prediction extremely well in
Fig. 12.31 (right). Further to this, Fig. 12.32 compares the actual measurements at
location D, as well as a filtered version of the GPS results using a moving average
filter of 100 samples, as well as the FEM results. The moving average filters the
higher frequency vibrations, leaving the deformations caused by the lorries. Again,
it is evident from Fig. 12.32 that there is a very good correlation between the actual
and predicted data.

Other Measured Displacements

During the trial period a 100 tonne lorry passed over the bridge. The lorry was pre-
cisely weighed and this section of the data was analysed in more detail. Figure 12.33
illustrates the vertical component time series of all the bridge deck GPS receivers. It
can be seen that the bridge deflects by approximately 400mm, and that the maximum
displacements at each point are offset from each other along the bridge.

Measured Frequencies

The position of a structure in 3D coordinates at precise and synchronised times is
available from the GPS results, mainly measured at frequencies of at least 10 Hz in
this trial. It is thus possible to extract structural frequencies below 5 Hz. Figure 12.34
shows the natural frequencies extracted from relative vertical coordinates between



12 Time Series Analysis of Rapid GNSS Measurements … 385

0 50 100 150 200 250 300 350 400 450

Si
te

 E

-0.5

0

0.5
Mean Vertical Movement Caused by 100T Lorry Passing (m)

0 50 100 150 200 250 300 350 400 450

Si
te

 D

-0.5

0

0.5

0 50 100 150 200 250 300 350 400 450

Si
te

 F

-0.5

0

0.5

0 50 100 150 200 250 300 350 400 450

Si
te

 B

-0.5

0

0.5

Sample Number (s)
0 50 100 150 200 250 300 350 400 450

Si
te

 C

-0.5

0

0.5

Fig. 12.33 Vertical movement due to 100 tonne lorry passage

Table 12.3 Frequencies (Hz)
detected for ‘quiet’ and
‘busy’ periods

Data from Mode 02:00–03:30
(quiet period)
(Hz)

07:30–09:00
(busy period)
(Hz)

Mid span E Vertical 0.1041 0.1026

Mid span W Vertical 0.1041 0.1026

Mid span E-W Torsional 0.2699 0.2684

3/8 span Vertical 0.1041 0.1027

1/4 span Vertical 0.1041 0.1027

Sites D and F, mid span east and west using a MATLAB code. The first row of the
plot is relative vertical displacement between Sites D and F. The second row in the
plot is the time series that was filtered with a high-pass filter to remove site multipath.
The frequency response is significant at 0.2689 Hz, the lowest torsional frequency.
A similar approach has been applied to extract other frequencies.

A detailed assessment has focused on the different time periods for which data
were collected and any changes in observed behaviour (Roberts et al. 2012). A
summary of the data for natural frequency is shown in Table 12.3, and shows a
very good correlation between the different sites, but significantly different natural
frequencies for busy and quiet periods. This is to be expected for such suspension
structures, as the mass of vehicles traversing the bridge during a busy period will add
significantly to the vibrating mass while having no effect on the structural stiffness.
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Fig. 12.34 Relative vertical movement, high-pass filtered time series and the torsional frequency
response

12.2.4 The London Millennium Bridge Case Study

Details about the GNSS survey conducted on the Millennium Bridge can be found
in the appendix. Figures 12.35 and 12.36 illustrates the movements and the derived
frequencies in the lateral direction at the midpoint at site B and the midpoint on the
south side span, respectively. The modelled frequencies of the bridge were known
to be 0.5 and 0.95 Hz for the lateral movements of the mid span, and 0.77 Hz for the
south side span. It is evident from Figs. 12.35 and 12.36 that there are spikes in the
frequency results that relate well with the modelled results.

The London Millennium Bridge is orientated in a north to south direction, as are
the Humber and Forth Bridges, but magnitude of the displacement on the London
Millennium Bridge is far smaller than the other two, and close to the noise level of
the GPS carrier phase derived positions. Therefore, the resulting noise in the GPS
solution, due to the resolution of the carrier phase signal, any additional multipath,
as well as satellite geometry induced noise, resulted in a solution whose noise was
in the same level as the magnitude of the movement. Further analysis of this data
and general satellite geometry showed that due to the GPS satellite geometry, there
is always a “hole” where one would never see a GPS satellite in the sky at latitudes
such as the UK. This led to more research into this area, including using pseudolites
and Locatalites (Meng et al. 2004). Further details about methods used to improve
the GNSS data can be found in the appendix.
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12.3 Concluding Comments and Future Directions

The projects described in this chapter have outlined techniques that have been suc-
cessfully developed for the measurement of deformations of structures. The work
has been mainly applied to bridges and the use of GNSS systems is ideal because
of the difficulties of distance, line of sight and fundamental geometry of these struc-
tures. The primary reason for most of the GNSS surveying campaigns has been other
than structural health assessments. In the case of the Humber Bridge however, the
measured deformations were used to check and validate a substantial finite element
model that had been developed for the bridge; the principal use of the numerical
model was to assess the effects of the increased vehicle loadings that were predicted
under BSALL (Bridge Specific Assessment of Live Loading). Such good agreement
between the predicted and measured deformations under a known load was initially
somewhat surprising, but gave great confidence in the capability of the complex
model for predicting global performance.

The measurement of deformations is probably not the preferred option for most
engineers assessing structures. The measurement of stress (actually, usually the mea-
surement of strain and the application of the laws of elasticity) gives more readily
accessible data for monitoring purposes. Subsequent use of equilibrium relationships
between the applied loads and the stresses deduced from strains gives results that
can be interpreted by most engineers.

In order for deformation data to be usable for SHM purposes a more complex
model is required. In the case of older infrastructure where the original designs
were not computer-based, the generation of non-trivial models ab initio requires
considerable effort—as in the case of the Humber Bridge model. However, most

Fig. 12.35 Lateral movement time series and vibration frequencies at mid span B
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Fig. 12.36 Lateral movement time series and vibration frequencies at south side span E

modern structures are designed using numerical models as an integral part of the
process, and so the use of deformation data becomes a more tractable option; simple
inverse procedures can enable engineers to take data from measured deflections to
deduce applied loads.

GNSS analysis has proved that natural frequencies can be obtained. In many
cases they are clearly defined and represent the expected response of the structure.
The key parameters are stiffness and mass; it has also been shown (Roberts et al.
2012) that changes in mass through stagnant diurnal traffic flows can be identified
on the Forth Road Bridge through changes in its natural frequency characteristics.
It can be postulated that some loss of stiffness might also be identified in the same
way—though thankfully none of the campaigns on live structures has had data to
demonstrate this.

Throughout this chapter, the size of the data files or the number of 3D coordinates
produced when using rapid GNSS has been highlighted. The data in this chapter
typically range from a few minutes to a few hours, or even 24 h or data. These
are relatively short time periods compared to measuring GNSS data from up to 50
satellites at any instance, at a rate of up to 20 Hz or even 100 Hz. 24 h of 20 Hz data
would result in 1,728,000 3D coordinates every 24 h per GNSS station on a bridge.
Typically a long term monitoring scheme would gather a vast amount of data, and
expert data mining approaches would be required in order to be able to make full use
of such data.

The remaining question is therefore how GNSS can be effectively used for SHM
systems. This chapter has demonstrated that developed understanding of GNSS lim-
itations has reduced some errors; the increase of available satellites will help that as
well. On its own and in the sorts of campaigns that have been funded GNSS data is
of limited use; if enough points can be monitored however then it may be possible
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to use inverse principles to obtain good data sets, but this is currently prohibitively
expensive—although developmentswith single frequency receiversmay reduce costs
significantly. In conjunction with existing technologies (e.g. accelerometers) better
quality data will be achieved but this is also limiting. In this respect the time-stamped
data is important.

Some potential conjugate technologies, such as laser scanning, take a finite time
to implement so that the advantages of simultaneous measurement would be lost.
One technique shows promise however—the integration of GNSS and ground-based
radar systems. The use of Ground Based Radar (GBR) has been trialled for a number
of deformation monitoring applications (Ochieng et al. 2018; Luzi and Crosetto
2014; Marchisio et al. 2014) including displacement monitoring of bridges (Dei
et al. 2009; Zhang et al. 2018). One possible way forward is to use GNSS to measure
at key locations on the bridge, and then to use GBR to densify these measurements
on the bridge.

This chapter has shown that GNSS can be an effective way of generating time
series of displacements on such structures, and real information on engineering struc-
tures. Future technologies andGNSS processingwill only improve these approaches.
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Appendix

Severn Bridge GNSS Surveys

The Severn suspension bridge connects SouthWales with the south west of England.
It is a 1.6 km long suspension bridge, consisting of three sections carrying 4 lanes
of the M48 motorway. The mid-section, being the longest, is 988 m long, and has
a clearance of 47 m. The support towers are 136 m high. The bridge was opened
on the 8th September 1966. After the discovery of significant corrosion within the
suspension cables of a number of bridges in the USA, a guide was established by the
US Transport Research Board, known as NCHRP Report 534 (Mayrbaurl and Camo
2004). The guide was subsequently used on a number of suspension bridges in the
UK, including the Humber, Forth and Severn. Significant and more than expected
corrosion was detected (Colford 2010). In addition to this, the wire strands that made

http://saegnss2.curtin.edu.au/ldc/
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Fig. 12.37 Schematic bridge GNSS layout, 2010 survey (top), 2015 survey (bottom), includeWIM

up the suspension cables were also experiencing breakages (Cocksedge et al. 2010).
Ongoing remedial engineering work was underway during the period of the 2010
survey conducted by the authors, and the remedial work had been completed by the
time the 2015 survey took place; both of these surveys are described below.

Two surveys were carried out, one each in 2010 and 2015. Both surveys consisted
of placing between 9 and 12 GNSS antennas at specific locations on the bridge’s
suspension cables, support towers and bridge deck. Data were gathered at either
10 Hz or 20 Hz over 3 or 4 day periods. The antennas on the tower tops and on the
suspension cables were put in position by staff from the bridge authority, and they
trailed the antenna cables down into the void within the towers or to the footpath on
the bridge in order to allow the authors to gain easy and safe access.

The survey in 2010 took place from around midday on the 10th March 2010 to
approximately the same time on the 12th March, and again between 10 am to 4 pm
on the 18th March. Figure 12.37 (top) illustrates the location of the various GNSS
antennas used. Due to the limited number of GPS receivers available, locations D and
E had to share a receiver. Leica SR530 dual frequencyGPS receiverswere used on the
tower tops, with AT504 choke ring antennas, and Leica series 1200 GNSS receivers
on the cable locations. Two GNSS receivers were located as reference stations, Leica
1200 units. One as the main reference station and one as a backup, as well as used in
order to check the quality of the main reference station. Locations C and E were used
for the torsional movement analysis. It wasn’t possible to place a GPS antenna on the
middle of the mid span on the south side of the bridge, due to ongoing maintenance
work. Therefore, locations C and E were used.



12 Time Series Analysis of Rapid GNSS Measurements … 391

Fig. 12.38 Locations of some of the GNSS antennas, clockwise from top left Tower top T3 (top
left), Clamped onto the hand rail location G (top right), Location A (bottom right), Reference
receiver on the roof of a toll building (bottom left)

During the 2015 survey, the GNSS antennas were placed in approximately the
same location as the 2010 survey, Fig. 12.37 (bottom). The survey took place from
3 pm on the 20 July 2015 to 4 pm on the 23 July 2015, gathering data continuously
apart from downloading the data every couple of hours. Trimble NETR9 GNSS
receivers were used at locations T1 and T2, Javad Delta receivers at locations A and
D, Leica GS10 receivers at locations B, F, T3 and T4, as well as at the two reference
stations, and a roving Leica 1200 receiver was used at locations A1, B1, D1 and G
for set periods. Figure 12.38 illustrates example locations.

Humber Bridge GNSS Surveys

The Humber Estuary is located in the north-east of England, and as it runs eastwards
into the North Sea becomes a wide expanse of water, separating towns of Hull and
Grimsby that were originally major fishing ports. While traffic flow between the two
towns was not excessive prior to the bridge’s construction the inland route to the
nearest inland crossing point involved a journey of some 125 km taking approxi-
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mately 90 min. Journey times are now halved and the distance is reduced to about
50 km.

The Humber Bridge is a single-span suspension bridge with associated side spans
from Barton on the south side (530 m) and Hessle on the north (280 m). It was
completed in 1981 and has a main span of 1,410 m. The streamlined low drag
closed box-girder steel decks exhibit “negative lift” in wind conditions. The concrete
towers are relatively flexible while the inclined hangers are thought to have been
designed to provide additional longitudinal stiffening. The total deck width is 28.5 m
and the depth of the box deck is 4.5 m. The box deck was formed from 18.1 m
long prefabricated sections with four equi-spaced transverse diaphragms to improve
torsional stiffness. The total deck weight is approximately 17,000 tonnes.

The bridge has been in continuous satisfactory operation since opening. TheHum-
ber BridgeBoard, responsible for the operation of the bridge, commissioned a numer-
ical (finite element) model of the structure that was completed in 1997; full details
are presented elsewhere (Karuna et al. 1997, 1998). The computer-based modelling
technology was not available at the time the bridge was designed and built, and while
it now enables rapid prediction of behaviour under “what if” scenarios, it needs to
be validated to ensure full confidence; GPS data were used to compare predicted
displacements (Brown et al. 1999) against measured under known load conditions
to achieve the validation. Attempts to measure movements using optical methods
proved less productive (Brownjohn et al. 1994).

In the monitoring exercise of 1998, most of the available GPS antennas were
placed along the eastern edge of the bridge on the handrail, with one on the western
side, and a further reference station placed at a static site whose position was known.
The GPS system consisted of Ashtech ZXII 5 Hz dual frequency receivers, Racal
Delta Link II UHF telemetry links, Ashtech’s signal processing software, and post-
processing using specialist software developed at the University of Nottingham.

The key element of validation was the measurement of behaviour under known
loads. A planned single 180 tonne lorry passage had been due for the late
evening/early morning of 15/16 February 1998, but this was cancelled at the last
minute and so five lorries, each approximately 32 tonnes, were used in convoy. The
bridge was temporarily closed to other traffic. Weather conditions were quite calm
when the equipment was being set up, but by the time the tests commenced, the
temperature had dropped to 9 °C, and south-westerly winds had increased to approx-
imately 14.8 m/s with peaks of 19.6 m/s.

The lorry convoy initially ran from north to south at a constant speed (about
7.5 m/s) taking some 180 s to complete the traverse of the main span. The process
was repeated for south to north. Finally 4 lorries (128 tonnes) were stationed at mid
span and static measurements taken. A full description is given elsewhere (Brown
et al. 1999).
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Fig. 12.39 Forth Road Bridge in the UK, with two Leica SR530 dual frequency GPS receivers
utilising AT503 lightweight choke ring antennas acting as the reference stations. (Note the queuing
traffic on the southbound carriageway)

Forth Road Bridge Surveys

The Forth Road Bridge crosses the Firth of Forth and links the north of Scotland with
Edinburgh and the south of the A90 road. The bridge length is 2.5 km and the main
span length is 1,006m. It opened in 1964 and the traffic volume has already surpassed
24million vehicles per annum, around 11 times more than the traffic volume in 1965.
Figure 12.39 is a picture of the Forth Road Bridge.

Before the opening of the Queensferry Crossing in September 2017, the Forth
Road Bridge (FRB) was the major road link across the Fifth of Forth, Scotland;
a single-lane closure of the FRB was estimated to cause a loss of £650,000 daily.
The direct cost for the closure of the FRB in December 2015 was estimated at
£65 m. Since 2005, episodic campaigns have been carried out on the FRB. Now
a permanent system called GeoSHM has been set up on the FRB by a consortium
consisting of UbiPOSUKLtd., the University of Nottingham, Leica Geosystems and
GVL supported by Amey, Transport Scotland, China Railway and other GeoSHM
stakeholders. The following sections include some snapshots of our work.

Data were gathered continuously from GPS receivers located on the bridge as
shown in Fig. 12.40 (left). To ensure continuity of data two reference GPS stations
were used, located on the southern end viewing platformof the north–south orientated
bridge. A further five GPS receivers were fixed to the bridge deck and two GPS
receivers were located on top of the southern support tower. This limited number was
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Fig. 12.40 GPS sites on the Forth Road Bridge (left). A Leica AT504 choke-ring antenna located
on the bridge handrail using a dedicated clamp (right)

governed by the resources available for the trial. The majority of the GPS receivers
used were Leica SR530 dual frequency receivers, with AT503 and AT504 choke
ring antennas. A Leica SR510 single frequency receiver with a AT501 lightweight
antenna were placed on the tower east (location A1) and a Leica GX1230 dual
frequency GPS/GLONASS receiver and AT504 antenna were placed at location F.
In addition, a high accuracy INS, POS-RS inertial measurement unit manufactured
by Applanix (Richmond Hill, Canada) was also installed upon the bridge. The use
of INS (inertial navigation systems) for bridge deformation monitoring has been
presented elsewhere (Hide et al. 2005).

All the GPS receivers gathered data for the test period at a minimum rate of 10 Hz.
Data collection was interrupted only to download data from storage cards, when they
reached their data limit—a process that took approximately 1 min. AC power was
supplied at each receiver site. Figure 12.40 (right) illustrates a Leica Geosystem’s
AT504 choke- ring antenna attached to the bridge handrail. All antennas at locations
B–Fon the bridgewere fixed to the outer handrail in thismanner (Roberts et al. 2006a,
2012). The frequency of the handrail was much higher than anything measureable.

A number of GPS antennas were used to investigate various aspects of antenna
performance, particularly to understand multipath effects. These include the Leica
AT 501 single frequency antenna, AT 503; a dual frequency lightweight choke-ring
antenna, a Leica AT 504; a dual frequency heavy-weight choke-ring antenna as well
as the NovAtel GPS 600 series antenna. A weather station was installed at mid span
on the western footway to gather the temperature, relative humidity, wind speed and
wind direction continuously.

During the trials, wind gusts of up to 22 m/s were experienced. Traffic loading
could be very heavy, especially at rush hour times in the early morning and evening
when tidal traffic flow was evident. In addition, coincidentally during the trials, a
single approximately 100 tonne lorry passed over the bridge.

The data were processed in an on-the-fly manner using Leica GeoOffice 3.0.
Once processed, the resulting files consisted of 3D coordinate data at a rate of 10 Hz,
in WGS84 (GPS coordinates) with the corresponding precise time. The data were
converted into a coordinate system relative to the bridge—Bridge Coordinate System
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(BCS), giving lateral (approximately E–W), longitudinal (along the direction of the
bridge equals direction of travel) and vertical displacements.

Millennium Bridge Surveys

The London Millennium Bridge is a pedestrian bridge linking the City of London at
St Paul’s Cathedral with the new Tate Gallery at Bankside. The bridge’s structural
diagram is that of a shallow suspension bridge, where the cables are as much as
possible below the bridge deck to free the views from the deck. Two groups of four
120 mm diameter locked coil cables span from bank to bank over two river piers.
The lengths for the three spans are 81 m for the north span, 144 m for the main span
between the piers and 108 m for the south span with a 4 m wide bridge deck. The sag
of the cable profile is 2.3 m in the mid span, around 6 times shallower than a more
conventional suspension bridge structure.

Itwas estimated that between80,000 and100,000people crossed the bridge during
its opening day on 10 June 2000. Analysis of the video footage showed a maximum
of 2,000 people on the deck at any time, resulting in a maximum density of between
1.3 and 1.5 people per square metre. When large groups of people were crossing the
bridge, greater than expected movement was experienced, mainly excessive lateral
vibration. There was amplitude of 50 mm movement with a vibration frequency of
about 0.77 Hz on the south span (the first south lateral mode), between Bankside and
the first river pier. Up to 70 mm movements at frequencies of 0.5 and 0.95 Hz (the
first and second lateral modes respectively) were experienced on the centre span.
More rarely, movement occurred on the north span at a vibration frequency of just
over 1.0 Hz. From the amplitude of movements on the south and central spans, the
maximum lateral accelerationwas between 200 and 250mg. At this level of vibration
acceleration, a significant number of pedestrians began to have difficulty in walking
and used balustrades for support. No excessive vertical vibration was observed.

The bridge was closed on 12 June 2000 to fully investigate the cause of the
movements. An extra £5 M was then spent to fit anti-wobble dampers and bracing
into London’s £18.2 M Millennium Bridge (BBC 2019).

From 22 to 24 November 2000, a three-day viability study was carried out by
the team from the Universities of Nottingham and Brunel University London on the
London Millennium Bridge with the permission of Arup, the engineers of the bridge
(Roberts et al. 2006b). Leica dual frequency GPS receivers were used on the bridge
during its closure for retrofitting. The main objective was to validate the use of GPS
to measure the deformation and vibration of the structure. The other objectives of
this trial were to collect data from a new type of suspension bridge with an integrated
GPS/accelerometer monitoring system and to test the system configuration and data
logging software package.

Four sets of Leica SR530 dual frequency GPS receivers and associated AT504
choke ring antennas were used for the trial. This configuration pushed the capabilities
of GPS to the forefront of current technology. One Kistler triaxial accelerometer,
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Fig. 12.41 One observation site on the bridge

Fig. 12.42 Layout of the observation sites on the London Millennium Bridge

housed underneath the GPS antenna on point B (Fig. 12.41), with a dedicated laptop
for data logging was also employed. Meteorological meters, such as a thermometer,
barometer and hygrometer were used to record climate parameters when the tests
were under way.

In total 11 h GPSmeasurements at a sample rate of 10 Hz and 4 h raw acceleration
data at 200 Hz were taken, giving approximately 1.98 million 3D GPS points and
2.88 million 3D acceleration points.

The data gathering trials were conducted over five sessions during the three days.
Each session had the GPS antennas located at three of the 5 observation sites. The
reason to sub-divide a whole day’s measurement into sessions is due to the limitation
of the receivers’ SD cards. At the time of the trial conducted, only 8 Mb cards were
available to log the raw data, which can store about 3 h of 10 Hz data. Figure 12.42
illustrates the locations of the GPS antennas for the various sessions. One reference
GPS receiver was set up on the roof of a nearby building. The survey points on the
bridge were carefully located on the bridge’s handrail using clamps that were espe-
cially fabricated for this trial to fit the ellipse shape of bridge handrail (Fig. 12.41).
The various sessions saw the antennas located at 3 of the 5 survey points per session.
Point B, however, was occupied during all the sessions.
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Fig. 12.43 Number of GNSS satellites seen above Curtin University on the 8 November 2018

Improving Data Using Multi GNSS

The use of GPS alone for measuring displacements on a large bridge has been shown
to be successful most of the time. The case studies in this chapter illustrate the field
tests and results obtained from a number of bridges. However, there are instances
where GPS alone is not very effective. Such instances include those where the result-
ing GPS constellation is poor, or where multipath noise at either the reference station
or bridge station affects the results, causing the integer ambiguity resolution and
resulting positioning to either fail or to contain errors.

In order to improve the availability and reliability, as well as the precision of
the GPS derived position, studies have been carried out investigating the integration
of kinematic GPS with other sensors. Sometimes, such surveys are conducted in
difficult environments to obtain fullGNSScoverage.Alongwith physical constraints,
the spread of satellites seen at any instant may result in poor satellite constellation
geometry for the resulting position.

Today, there are around one hundred GNSS satellites transmitting data. These
consist of mainly MEO (Mid Earth Orbiting) satellites, such as GPS, GLONASS,
Galileo, and part of the BeiDou constellation, but there are other types such as SBAS
(Space Based Augmentation Systems) GEO (Geosynchronous) orbits, Japan’s Quazi
Zenith Satellite System (QZSS) IGSO (Inclined Geosynchronous Orbits) orbits, and
also both GEO and IGSO orbits in addition to the MEO orbits used in the BeiDou
constellation. Figure 12.43 illustrates the total number of GNSS satellites observed
over Curtin University in Australia, on the 8th November 2018, ranging from 37 to
50 satellites at any one time. Considering that only a minimum of 5 GPS satellites
are required to conduct an On-The-Fly ambiguity resolution, the question is which
satellites are the optimum combination for real time positioning. Certainly, the use
of 37–50 satellites to process kinematic data at a rate of 10 Hz or even 20 Hz would
require tremendous processing power.
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Fig. 12.44 GPS satellite skyplot (left) andGPS/GLONASS skyplot (right) over a 24 h period above
Holyhead, UK

The nature of the GNSS MEO orbits results in circular shaped ‘gaps’ in the sky
where there will never be any GNSS satellites seen. The location of the gaps depend
on the latitude of the user. At the poles, the gap of MEO GNSS satellites will be
directly overhead and at the equator there will be two semi-circular gaps at the north
and south poles.

Figure 12.44 (left) illustrates the sky view over a 24 h period for GPS at Holyhead,
in the UK. Holyhead has coordinates of 53° 19’ N 04° 39’ W. Figure 12.44 (right)
illustrates a 24 h skyplot (a plot showing the satellites’ track in the sky overhead) for
GPS and GLONASS at Holyhead gathered on the 8 November 2018. Here it appears
that there is a good satellite coverage; however, the circular gap in the constellation
can be seen due north where there will be no satellites seen. Due to the nature of the
satellite orbits in the UK there are no GPS satellites to be seen anywhere from the
zenith to the horizon in the northerly direction.

Figure 12.45 (left) illustrates the same hole in the GPS data gathered at the IGS
station (Dow et al. 2009) at Papua New Guinea (2° 03’ S, 147° 22’ E), which lies
close to the equator. Here it can be seen that the hole exists in two halves over the
north and south poles. Figure 12.45 (right) illustrates the same phenomenon at Curtin
University’s GNSS data centre. The coordinates of this point are 32° 00’ S 115° 54’
E.

By looking at these 24-h skyplots, it seems that there is an abundance of GPS
and GNSS satellites. However, if we examine specific instances this is not always
the case. Figure 12.46 (left) illustrates the Dilution of Precision (DOP) values and
corresponding number of GPS satellites seen over Curtin during a 24 h period, and
there is a “spike” at around 06:10. Figure 12.46 (right) illustrates the number ofGNSS
satellites (GPS,GLONASS;BeiDou,Galileo, SBAS,QZSS) and correspondingDOP
values. Here it can be seen that there are no spikes. Figure 12.47 (left) illustrates the
GPS satellites in view over a 2 min period when the GPS DOP values in Fig. 12.46
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Fig. 12.45 GPS satellite skyplot above Papua New Guinea (left) and Curtin, Australia (right) over
a 24 h period

(left) reach a peak. Here we see that there are only 5 GPS satellites in view above 15°,
two of which (G12 and G02) are almost co-located, leading to poor conditioning.
By examining the multi-GNSS scenario, Fig. 12.47 (right) we can see that there is a
much better spread of satellites as well as a far increased number. However, the gap
still exists in the constellation towards the south of the plot.

GPS alone has its downfalls in terms of satellite availability aswell as DOP values,
resulting in noisy results in mainly the height and the north-south component of the
resulting coordinates. In fact, during the research carried out in measuring the dis-
placements of the Millennium Bridge in London (see case studies), this phenomena
clearly affected the results.

Traditional static GPS processing, over 40 min duration of more would have
averaged out some of this noise, but for bridge monitoring work, very fast GNSS
data and unique coordinates from one epoch to the next are required, therefore such
noise averaging is not appropriate for short termmovements.Anumber of approaches
have been adopted in order to improve the availability of the GPS constellation, and
also to improve the precision of the final coordinates. These include the integration
of GPS with external ranges measured using pseudolites and Locatalites, as well as
integrating GPS with other GNSS.

Pseudolites

Pseudolites are terrestrial based GPS signal transmitters (Wang et al. 2001). A pseu-
dolite consists of a directional transmitting antenna, and a signal generator. The
antenna is placed upon a tripod located over a point with a known coordinate. The
pseudolite transmits a signal on the L1 carrier frequency, and modulates an unused
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Fig. 12.47 Sky plot over Curtin University 06:10–06:12 with GPS only (left) and multi GNSS
(right)

portion of the C/A code. Research into the use of pseudolites to enhance and plug any
gaps in GPS constellation data was underway in the late 1990s (Choi et al. 2000), and
applications such as aircraft landing (Holden and Morley 1997; Hein et al. 1997),
and deformation monitoring (Barnes et al. 2003) were studied.

Compared with satellites in space, pseudolites can be optimally located, and this
can significantly improve the geometric precision of positioning solutions, particu-
larly for the height component. However, due to the comparatively small separation
between pseudolites and user receivers, there are still some challenging modelling
issues such as nonlinearity, pseudolite location errors, tropospheric delays, multipath
and noise. In addition, not all GPS receivers can track pseudolite signals and there
are near-far signal strength issues.

Following the Millennium Bridge field tests (see this chapter), the GPS data
were re-created through simulation (Meng et al. 2002, 2004), and then simulated
pseudolite data were added to the simulated GPS data to be able to process the two
sets of simulated data, and compare the GPS only data with the original survey data,
and then to compare the simulated data with the pseudolite simulation. Field trials
were conducted with colleagues at the University of New SouthWales on the Parsley
Bay suspension footbridge in Sydney (Barnes et al. 2004a). Allstar GPS receivers
were used for reference and rover stations. These GPS receivers allow individual
channels to be assigned to track particular pseudorange number codes, and this is
an essential requirement when using pseudolites (Barnes et al. 2003; Roberts et al.
2002).

At the time, the pseudolite data were not so easy to include in the GPS solution.
Specially designed software at the University of New South Wales (UNSW) was
used for the processing, that would incorporate the GPS data and ephemeris, as well
as creating an ephemeris from the pseudolites based around their static position. The



402 G. W. Roberts et al.

Allstar GPS receivers could gather both GPS and pseudolite data, but careful fitting
of signal actuators was necessary as the strength of the pseudolite signal was far
greater than that of the GPS.

Pseudolites if used incorrectly, could jam GPS signals and over time the use of
pseudolites transmitting GPS signals on restricted frequencies became prohibited.
Other alternative transmitting systems were investigated, and colleagues at UNSW
were already investigating a relatively new system called Locatalites, produced by
an Australian company called Locata (Barnes et al. 2003; Barnes et al. 2006).

Locatalites

Locatalites are transceivers, whereby a network of Locatalites are set up, which
communicate to each other, and synchronise their times, using one master Locatalite
as the master clock (Montillet et al. 2007, 2008). A rover unit is then positioned
by measuring the ranges from the network, located on known positions. Locatalites
transmit on the 2.4 GHz Industrial Scientific Medical (ISM) band (Prasad 1998),
which has the advantage of being open access. Initially thesewere used independently
of GPS, as they transmit data on non-GPS frequencies. Various experiments were
conducted, including work on the Parsley Bay Bridge (Barnes et al. 2004b). Further
research has been completed to integrate the Locatalite ranges with GPS, allowing a
combined system that can be used for positioning in difficult environments for GPS
alone (Roberts et al. 2007, 2009).

Integration of GNSS with Other Sensors

GNSS observations can serve as the spatial reference frame for other types of mea-
surements such as those from accelerometers, tiltmeters and strain gauges. GNSS can
be integrated with these terrestrial sensors to form a totally automated and continu-
ously operating system. However, relatively low data rates offered by GNSS could
not meet the requirements to monitor higher structural dynamics.

Accelerometers have been used extensively in bridge dynamics. Triaxial
accelerometersmeasure three orthogonal accelerations simultaneously (Meng 2002).
The sampling rate can be up to 200 Hz and this can be a very important characteristic
whenmonitoring a bridgewith high dynamics, such as short span bridges with higher
stiffness and smaller movements. Triaxial accelerometers are not dependent on prop-
agation of electromagnetic waves, and therefore avoid the problems of refraction,
line of sight connections to the terrestrial or space objects, and do not have visibility
problems caused by weather conditions. An accelerometer could form a completely
self-contained system, utilising only measurements of accelerations to infer the posi-
tions of the system, through integration based on the laws of motion.
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However, the positional drift of an accelerometer grows extremely rapidly with
time and can reach hundreds of metres after intervals of a few minutes. The main
error sources include instrumental biases and scale factor offsets. In normal applica-
tions, continuous updating is used to avoid error accumulation. These are operations
that allow the errors to be either directly measured or modelled. The most common
update is the Zero Velocity Update (ZUPT). Another method is the Coordinates
Update (CUPT). It is the need to update that has severely restricted the widespread
application of accelerometer technology as a standalone positioning method in sur-
veying. In bridge deflection monitoring, it is impossible to conduct ZUPT. Only
CUPT aided with GNSS fixes could be a realistic option to overcome the drift prob-
lem of accelerometers.

Integration Methods

In GNSS and accelerometer signal processing, both frequency-domain and time-
domain approaches are used. Frequency-domain spectral approaches are used by
engineers to identify the distribution of frequencies fromacquired structural vibration
time series (coordinates or acceleration). The frequencies detected from both data
sets that are collected at the same time by GNSS and accelerometers are compared
between them orwith the baseline parameters to confirm that the real bridge vibration
characteristics and. The noise of each individual sensor could also be separated from
this procedure if correct noise cancellation algorithms, such as Adaptive Filtering
(AF) are utilised. If the measurements are higher than the set threshold, alerts will
be issued after a series of verifications. For bridge monitoring, ideally a real-time
frequency-time domain method should be employed to observe how the individual
mode frequencies change over time (ESA-GeoSHM Demo website 2019).

The aim of spectral analysis on the measurements is to clean the time series data
sets. This is realized by digital filters. Three types of filters of low pass, high pass,
or band pass characteristics are widely used in the data processing of time-domain
sequences (Meng et al. 2007).

A software package (Meng 2002) has been further enhanced to conduct spec-
tral analysis, filtering and data fusion of GNSS and accelerometers based on Dis-
crete Fourier Transform (DFT) and inverse DFT (IDFT) approaches as shown in
Fig. 12.48. Through selecting suitable parameters such as the sample length, win-
dows, amount of overlap, and data rate, spectral analysis was used for isolating and
detecting the dominant structural vibration amplitudes and frequencies from GNSS
and accelerometer data.Whilst the vibration frequencies can be easily identified from
the spectrum of 3D accelerations, it is very difficult to detect these from the GNSS
spectrum since most of the frequency signatures are covered by the same band noise
signatures and also because of a relatively slow sampling rate of GNSS positioning.
In most spectrums of GNSS positions, very low frequencies characterise high levels
of multipath.

According to this analysis, it is apparent that the spectrum method can be used to
clean or suppress higher frequency noise based on the structure type, material etc.
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Fig. 12.48 The Flowchart of
GPS and accelerometer data
integration (Meng 2002)

Algorithm for GPS/Accelerometer Integration

Output Velocity, Position Solutions
Further Structural Dynamic Analysis

Synchronisation of GPS and Accelerometer Data Sets
Single Acceleration Integral for Velocity Corrected by GPS Velocity
Single Velocity Integral for Poisition Fixes Corrected by GPS Fixes

AF Approach for Random Noise Suppression
Multipath Mitigation, Tropospheric Delay Correction

DFT Spectral Analysis of GPS and Accelerometer Data
Low Pass Filtering for Accelerations Using IDFT

Coordinate Transformations/Projections: WGS84 To BCS via OSGB
Pitch, Roll and Yaw from Measurements of Three GPS Sites

Calculation of Direct Cosine Matrix
Instant Accelerations in BCS

Start
Initialisation (Time Reset)

Align Accelerometer to One Axis of BCS Using Cage

Fig. 12.49 Vertical time
series of an accelerometer on
the Wilford Footbridge in
Nottingham, UK
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Analysis of both the GNSS and the accelerometer data can supply mutual checks
to ensure further data processing is correctly applied. The spectrum approach is
sometimes not applicable for extracting the frequencies in these bands. Without
the support from a triaxial accelerometer, it is impossible to select suitable cut-off
frequencies in 3D deflection directions.

Figure 12.49 shows a measured vertical acceleration time series (Meng 2002). In
Fig. 12.49 the peaks were when the bridge was excited by the team members who
created forced vibrations.
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Fig. 12.50 Epoch by epoch comparison of the relative displacements from GNSS and accelerom-
eter data

Since GPS receivers were also used to gather the data sets Fig. 12.50 shows
epoch by epoch comparison between relative displacements calculated from GPS
and accelerometer measurements. This is the approach used to check for the time
synchronisation and effects of using double integration of acceleration to attain rel-
ative displacement. It can be found that both time series match very well in terms of
amplitude and vibration cycle.

Figure 12.51 illustrates the results of spectral analysis to the vertical components of
one of the peaks inFig. 12.49. It shows the limitation of the 10HzGNSSmeasurement
since it cannot identify any frequencies higher than 5 Hz but the accelerometer has
detected the frequencies up to 50 Hz.

Figure 12.51 illustrates the results from spectral analysis of the data sets gathered
from the Forth Road Bridge with a GPS receiver and a triaxial accelerometer collo-
cated at a quarter span site. The data rate of the accelerometer is 100 Hz and the GPS
is set to 10 Hz. It can be seen that on the lower part (<1 Hz) of both spectrums the 3D
vibration frequenciesmatch verywell but on the higher part (5Hz) this accelerometer
has identified more frequencies which cannot be achieved with the GPS receiver.

Adaptive Filtering for Time Series Degradation Due to Multipath

In a GNSS-based bridge monitoring system, multipath is one of the major error
sources induced by the observation environment. Since the reference stations used
for deformationmonitoring purposes are setup close to the bridge and short baselines
of less than 3 km are processed to obtain positioning solutions, ionospheric delay
is not a major error source, but since multipath changes its phase and amplitude all
the time with the changes of GNSS satellite constellation and fully depends on the
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Fig. 12.51 Comparison of spectra of the vertical dynamic response by an accelerometer and the
vertical displacement by a GNSS receiver

ambient environment of a monitoring site, it is very difficult to use mathematical
models to quantify multipath signature and reduce its influence (Dodson et al. 2001).
In many engineering applications, multipath becomes a very troublesome factor
(Barnes et al. 1998).

Research reveals that the amplitude of carrier phase multipath can reach several
centimetres in extreme situations and typically has a period of a fewminutes (Langley
1998) but the period depends on the spatial relationship of the antenna, satellites and
a reflecting object. The multipath caused by a passing vehicle can be less than 1 s
duration. It can become the dominant error source and cause measurability problems
whenGNSS is employed to detect the same vibration frequencies. Due to its practical
and academic importance, many research projects have been conducted onto the
multipath mitigation techniques.

For mitigatingmultipath at the reference stations, a closely setupmultiple antenna
array was proposed by the University of Calgary in Canada (Ray 1999). A Kalman
filter-based algorithm was developed to use multipath corrupted measurements from
these antennas to estimate the multipath and geometric parameters, from which the
multipath signatures in the code and carrier phase measurements at each antenna can
be estimated. This has the potential to be used in a real-timemode at reference stations
to generate corrections for kinematic applications. To realise the above procedure is
far from an easy task. It involves specific receiver hardware design as well as receiver
firmware development before it can be applied in practical applications. A day-to-
day method is adopted to mitigate GPS multipath by using multipath characteristics
of repeating signature within two sidereal days. This approach can improve accuracy
of the GPS time series by about 50% (Bock et al. 2000). Moving average (MA) is an
alternative method used to reduce multipath effects when the real bridge vibration
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frequencies are known (Dodson et al. 2001). However, as it has been pointed out this
approachwill not be efficientwhen the vibration frequencies of the bridgemovements
are at the same frequency band as multipath. It is not possible to isolate them from
each other.

New types of antennas can greatly reduce or remove multipath effects and these
include various choke ring antennas available on the market, but using a new type of
antenna means an increase in the instrument investment.

In structural deflection monitoring, the complexity of the surveying environment
and the surrounding infrastructure aswell as the limitations in surveying site selection
make multipath an unavoidable error source and even a dominant component in the
time series of the final coordinates. Very strict requirements on the measurement
accuracy, and deformation ranges varying from several millimetres up to several
metres, and real-time kinematic surveying mode challenge the application of GNSS
technology to structural deflection monitoring. Research into the effective multipath
reduction is of great practical importance.

Simulation reveals the efficiency of an adaptive filtering (AF) approach largely
depends on the degree of correlation of the two time series (Meng 2002). The higher
the correlation, the better the AF technique is able to strip out the noise from the
positioning solutions.

The time series as the inputs to an AF system can be the processed coordinates,
or raw GPS measurements such as pseudorange and carrier phases as well as the
correlated data sets from other sensors collected simultaneously with GPS. Suppose
two time series di and xi, which could be the coordinate time series at one observation
site or the raw pseudorange measurements on two consecutive days. di and xi could
be vectors of same length or vectors of different lengths. In the AF approach, only
vectorswith the same length are considered as the desired and reference input signals.

Figure 12.52 shows the fundamental of the application ofAF algorithm for extract-
ing multipath signature from a short span bridge in Nottingham. The time series are
gathered from two consecutive days (Day1 and Day2). The first row of this figure is
the vertical movement time series for the first day and the second row is the data for
the second day but shifted by 4 min to consider GPS constellation repeatability. The
third row is isolated time series only relevant to the first day that consists of random
noise (Rdm) and real bridge movement (Dfm) detected for Day1 and the fourth row
is the common part of the first day and second day which is the site-related multipath
signature. To test the effectiveness of this method, spectral analysis is carried out on
individual time series and the results are included in Fig. 12.53. After applying the
AF method, the multipath signature has been completely removed from the first day
time series (the flat spectrum of Rdm + Dfm time series is the indication for this
claim since this is the spectrum of the third row of Fig. 12.52).
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Fig. 12.52 AF results from normally aligned data
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Fig. 12.53 AF results from exactly aligned data

Current Implementation

GNSS is being implemented on many bridges, in particular in Asia, as part dis-
placement monitoring system, feeding into a Structural Health Monitoring system.
The cost of such a scheme compared to the cost of a major suspension or cable
stayed bridge is small, but the benefits could include the better understanding of the
characteristics of such a structure, extension of the structure’s life, early warning of
deterioration or failures on the structure.
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Current Work on the Forth Road Bridge

Under the Integrated Application Promotion (IAP) scheme of the European Space
Agency (ESA), the GeoSHM consortium, led by the University of Nottingham, was
awarded a feasibility study grant in 2013 to investigate how to use integrated GNSS
and Earth Observation technologies for the structural health monitoring of large
bridges. During the GeoSHM FS period a small monitoring system was installed
on the Forth Road Bridge and the consortium have gathered huge data sets and
rich experience regarding the design and implementation of GeoSHM according to
essential user needs. The GeoSHM FS was chosen by ESA as a showcase project
due to its significant potential for monitoring large bridges and beyond through
interpreting key parameters for assessing the operational status. To fully explore the
opportunities of the GeoSHM FS project ESA further sponsored its second phase
of development of 2.3 million Euros which is led by UbiPOS UK Ltd., together
with its key partners and users—Transport Scotland and China Railway, through
expanding the GeoSHM FS system and installing a modified GeoSHM system onto
three demonstration bridges in the UK and China. The GeoSHM Demo Project
began in March 2016 and will last for three years. It focuses on addressing the major
drawbacks of the GeoSHM FS Project and developing a smart data strategy to fully
reflect the end user needs. It also aims to promote its new uses for other structures
such as high-rise buildings, dams, etc.

Overall GeoSHM System Architecture

The main aim of structural health monitoring of bridges is to use different kinds
of sensors to measure and quantify the induced excitation and its corresponding
response, and make comparisons with theoretically designed thresholds or models
of the structure for the evaluation of the health condition of bridges. The overall
GeoSHM system architecture for the FRB is shown in Fig. 12.54, which can be
divided into five sub-systems: the sensor module, data collection and transmission
module, data processing and monitoring module, bridge structure evaluation and
early warning module and data management module.

The sensor module comprises a range of different sensors to monitor not only
the structural responses of the bridge (displacement, acceleration, inclination and
stresses) but also external loads applied on the bridge (wind load and traffic weight)
and the short- and long-term environmental effects (temperature, weather conditions
and ground movements).

Results and Discussion

The GeoSHM system has been running since September 2014 and the team has
gathered more than 6 Tb worth of data during the incremental sensor installations,
not only from on-site sensors but also from processing remote sensing data sets to
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understand the land movements of surrounding areas of the bridge and its impact on
the stability to the bridge. The sensor installations will be completed by the end of
2018 and the system will then run in its full status of operation. The current focus
of the GeoSHM Demo Project is on the development of data strategy but a further
grant awarded jointly by Innovate UK and China will focus more on pattern recog-
nition using machine learning and big data analytics. Table 12.4 lists the vibration
frequencies through processing the data sets gathered at the mid span site SHM3 in
July 2017 when an extensive modal test was carried out.

The GeoSHM system has the ability to conduct real-time loading and response
analysis, especially wind and deformation analysis, based on the huge data gathered
over the past 4 years. This makes the GeoSHM system able to issue real-time alerts
to the current bridge contractor Amey if any changes are identified.

Fig. 12.54 Overall GeoSHM system architecture
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Table 12.4 Vibrational
modes of the FRB

Mode Frequency (Hz)

1st Sym Lateral 0.0682

1st Sym Vertical 0.1023

2nd Asym Vertical 0.1322

3rd Asym Vertical 0.1493

2nd Asym Lateral 0.1754

4th Sym Vertical 0.2009

1st Sym Torsional 0.2677

3rd Sym Lateral 0.3382

3rd Asym Torsional 0.4081
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Chapter 13
Conclusions and Future Challenges in
Geodetic Time Series Analysis

Jean-Philippe Montillet and Machiel S. Bos

As stated in the preface, the primary aim of this book is to show various methods
of fitting trajectory models to geodetic time series. Chapters1 and 2 lay the foun-
dations of this parametric approach. These trajectory models are relatively simple
linear models involving low degree polynomials, a few periodic signals, offsets and
in some cases exponential/logarithmic functions to model post-seismic transients.
Nevertheless, they successfully characterize many types of geodetic observations—
from GNSS networks, tide gauges, GRACE and other satellite missions. In addition,
we used the probabilistic approach by assuming that the observations can be written
as the sum of our trajectory model plus a random component. The latter was as-
sumed to follow a Gaussian probability density function, a condition that is almost
always met in practise with different assumptions on the property of the random
noise variables (i.e. Gauss–Markov, wide-sense stationary). To recall Chap.2, we
paid special attention to the fact that the noise in most geodetic time series exhibits
temporal correlation (coloured noise) that should be taken into account in the analysis
to ensure realistic error bars for the estimated parameters. Yet many articles are still
publishedwithout proper error bars or where the confidence intervals have been com-
puted using an ad hoc method. We hope that this book can convince the reader how
crucial it is to produce reliable uncertainty estimates (confidence intervals) when
dealing with geodetic time series. Furthermore, in Chaps. 3, 4, 5, 6, 7 and 8, the
trajectory models approach together with one of the parameter estimation methods
(Maximum likelihood, Monte Carlo Markov Chain, Dynamic Linear Model, Least
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Squares Variance Component Estimation, Kalman filter) should convince the most
reluctant professionals to follow our approach.

The Chap.3, 6, 8, 9 and in particular Chapter 7 dealt with the estimation of the
seasonal signal present in many geodetic time series for some applications in Earth
sciences (e.g., estimation of seasonal deformations of the Earth crust, continental
hydrology loading effects). On the one hand they mask the underlying secular trend,
on the other hand they provide interesting information about surface loading due
to variations in atmospheric pressure, ground water, soil moisture and snow-melt
driven local/regional fluctuations. In Chap. 9, we emphasized the limits of modelling
the seasonal signal with constant amplitude and phase in very longGNSS time series.
In many cases, pseudo-periodic signals (i.e. Draconitic signals) with large amplitude
are still remaining and hence biasing the estimates of other geophysical signals (e.g.,
offsets, tectonic rate). The sources of these pseudo-periodic signals are manifold
ranging from mis-modelling GNSS satellite orbits to large scale atmospheric effects
(Tregoning andWatson 2009). These phenomena are not exactly the same from year
to year but show some random variations. For that reason, alternative methods such
as the Kalman filter (Chaps. 7 and 8) and theWiener filter (Chap. 7) have been used to
describe the varying seasonal signals. Both methods still follow the probabilistic ap-
proach but allow the modelling of random signals as well. Alternative methods based
on higher-order statistics (e.g., blind source separation) have also been implemented
to decorrelate the seasonal signal with other pseudo-periodic sources. Nevertheless,
the availability of longer and longer geodetic time series should allowwithin the next
decade the decorrelation of the pseudo-periodic signals.

Moreover, we briefly mention techniques using wavelet and singular spectrum
analysis method. However, these methods do not separate the observations into a
trajectory model and noise and are therefore not discussed at length. Non-parametric
methods belong to the branch of statistics which does not assume any specific un-
derlying probability density distributions, therefore are not taken into account in this
book. Recently, several algorithms have been developed including theMIDAS robust
trend estimator (Blewitt et al. 2016). They need to multiply their trend uncertainties
by an empirical factor of three to be in agreement with the results of methods pre-
sented in this book. MIDAS only estimates the tectonic rate but it is extremely fast
and provides accurate results. Furthermore, this method is not sensitive to offsets.
Blewitt et al. (2016) write:

“Least squares estimation predominates in geodesy; indeed, it has been argued
that least squares was invented for geodesy by Gauss [...] The almost complete
dependence of geodetic practice on least squares estimation is hard to justify con-
sidering that least squares (alone) is not robust and that a large body of research has
revolutionized robust estimation theory and practice over the last few decades.”

The excellent results presented in this book should have convinced the reader that
the least squares method is still the method of choice for many geodetic problems.
Chapter10 shows its usefulness for computing the Earth’s gravity field from the
GRACE satellite mission. However, the method suffers from unreliable uncertainties
if no statistical measures of the noise stochastic properties are included (e.g., noise
covariance matrix).
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Furthermore, geodesy is, like other areas of science, entering in the era of “Big
Data” with the ever-increasing amount of data permanently recorded by satellites
and terrestrial-based arrays. The unprecedented scale of these data sets should drive
greater understanding and to some extent,more detailed forecasting of the Earth’s dy-
namic behavior. Thus, new techniques and approaches are required to assimilate and
process this vast amount of data, which will revolutionise our current methodologies.
For example, Gazeaux et al. (2013) have shown that despite many algorithms to au-
tomatically detect offsets in geodetic time series, none of themwere as good in terms
of detection rate as visually by eye with a proper training. Processing frequently vast
amount of data renders it virtually impossible to inspect every time series visually.
In Hector, the software used to compare the performances of the various algorithms
presented throughout the book, there is a routine performing an automatic offsets
detection. In Chap.1 an automatic model selection method was presented. Therefore
we suspect that the coming years this is a topic where we will see more develop-
ments with the use of various methods such as neural networks and machine learning
algorithms. Some recent articles are already proposing such algorithms such as Wu
et al. (2018) and Amiri-Simkooei et al. (2019).

In practice, geodetic time series analysis is involved in the Intergovernmental
Panel on Climate Change (IPCC) report in order to assess the science related to
climate change and realistic error bars are therefore of the utmost importance. For
example, we emphasized in Chap.11 the use of Bayesian statistics (information crite-
ria) to model properly the stochastic processes in the time series in order to estimate
accurately the sea level rise and potentially its acceleration due to melting of the
glaciers in the polar regions. The same holds true for surface displacements time
series near volcanoes and fault zones. Again, it is important to determine if swelling
of a volcano due to magma activity is significant in order to decide evacuation of
the nearby population. Near fault zones it is important to know if there is signifi-
cant differential surface displacement that could indicate the build-up of stress that
eventually could lead to an earthquake. Beyond environmental geodesy, Chap. 12
showed that the same methodology can be used to monitor heavy-civil engineering
structures (bridges) which could turn out to be critical for the response time in case of
anomalous deformations potentially jeopardising public safety. This work imposes
to look at both phenomena at local and global scale using various sources of data.
Environmental geodesy is leading the path of combining various sources of data,
mainly satellite data, to monitor and establish models of the changes in Earth natural
phenomena.

Finally, in a fast-changing world, stressing and imposing strong constrains on
Earth natural resources with dangerous consequences for the biodiversity and our
habitat, current works in Earth sciences focus on helping societies at risk and pro-
viding solution to adapt to the new challenges imposed by the climate change and
building a sustainable world for the future generations.
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