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Science is a way of thinking much more than
it is a body of knowledge.
—Carl Sagan
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Foreword: Welcome to the Not-So-Spherical
Cow

Students of high school physics often encounter a fictional flat Earth where objects
move without friction through a vacuum. As they grow in their understanding, the
complexities of sphericity and friction emerge; but gross simplifications often
remain of the real system being modelled. This is the world of the so-called—and
humorous—spherical cow—a visual metaphor for highly simplified models of
complex phenomena.

Students of geodesy will have been (or should have been) taught the comple-
mentarity of functional and stochastic models of a process—for any given problem,
any signal (including “noise”) must be considered appropriately in the functional
model or the stochastic model. Neglect of any component of the signal produces
erroneous and potentially misleading estimates of parameter values and their
uncertainties.

In the past, it was common in geodetic analysis to assume (usually untested) that
the functional model was complete, and the residual noise was white (temporally
uncorrelated) and could be treated as such in the stochastic model. A more robust
analysis of various geodetic signals has found that such time series normally
contain time-varying signal and noise is rarely white.

Because of these previous assumptions, there is little doubt that scientific con-
clusions have been reached that are not actually supported by the data: statistically
insignificant accelerations in ice sheets have been interpreted as significant; noise
has been interpreted as genuine strain in Earth’s crust; changes in linear rates of sea
level rise have been too confidently declared; seasonally varying deformation of the
solid Earth was approximated as time-constant annual harmonic. These
(not-entirely) hypothetical examples have major implications that extend well
beyond geodesy and geophysics and into society and policy. Spherical cows are not
sufficient.

In my own research field which focuses on geodesy in polar regions, the
developments summarised in this book have advanced our understanding tremen-
dously. New insights have been gained into the three-dimensional deformation of
Antarctica due to tectonics and surface loading changes over months to millennia,
while more robust estimates of ice mass change and their uncertainties have been
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X Foreword: Welcome to the Not-So-Spherical Cow

obtained from the Gravity Recovery and Climate Experiment (GRACE). And yet
much analysis remains overly simple—it is still common to adopt simple models of
linear or quadratic changes in ice mass or volume—and the residuals are often
treated as white noise or simple autoregressive processes both of which are typically
not realistic. There is still much to do although the growing body of excellent
software tools means that major advances in rigour are within reach.

The focus of this book is to synthesise recent progress in geodetic time series
analysis theory and approaches that represents a shift away from a spherical cow to
a not-so-spherical cow. This book is both theoretical and practical. It shines a light
on a new theory, explores different methodologies and, helpfully, showcases the
implementation of methodology into practical tools to assist the entire community
in undertaking more robust time series analysis.

While this book focuses on geodetic time series analysis, it offers important
lessons and practical tools for members of any other community working with time
series who need to consider robust time series analysis in the presence of potentially
time-varying signals and/or time-correlated noise. Those communities may well be
adopting simple—or worse—untested models of time series signal and noise. It
challenges us to stop doing what everyone else is doing and consider more
inconvenient truths which require forming deeper knowledge and exploring new
data analysis techniques. In doing so, we will produce better science for the good of
everyone.

Hobart, Australia Matt King
University of Tasmania



Preface

This topic of this book is the analysis of geodetic time series. As Torge (2001)
wrote: “The problem of geodesy is to determine the figure and external gravity field
of the Earth and of other celestial bodies as a function of time, from observations on
and exterior to the surfaces of these bodies”. While geodesy has a long history,
going back to surveyors in ancient Egypt, it has been revolutionised by the recent
developments of the Global Navigation Satellite Systems (GNSS). At the moment,
more than 15,000 permanent GNSS stations are fully operational and provide daily
positions with mm-level accuracy. The analysis of the variations of the position
over time provides important information about various geophysical processes.
Examples are the estimation of the motion of tectonic plates, the deflation/inflation
event of volcanos, the offsets produced by earthquakes, the vertical land motion of
continents induced by post-glacial rebound, the movement of glaciers and the
estimation of some particular transient signals (e.g. slow slip events and
post-seismic transients) which are sometimes precursors of natural hazards (e.g.
landslides and flooding).

In addition, sea level time series observed by tide gauges and satellite altimetry
provide information about the secular sea level rise, as a response to the melting of
large glaciers from the poles (Antarctica and Greenland) and produce accurate
flooding maps in densely populated coastal areas around the world. Next, the
Earth’s gravity field is not constant over time. The recent Gravity Recovery and
Climate Experiment (GRACE) satellite mission has produced maps of the global
gravity field from 2003 to 2017. The follow-on mission (GRACE-FO) will extend
this time series. The data has been used to detect the aforementioned ice and snow
melting on Greenland and Antarctica, drought cycles and the quantification of
groundwater storage variations. To emphasise its impact on the study of the Earth,
this area of research is called environmental geodesy.

The present book is dedicated to the art of fitting a trajectory model to those
geodetic time series in order to extract accurate geophysical information with
realistic error bars. In the vast amount of the literature published on this topic in the
past 25 years, we are specifically interested in parametric algorithms which are
estimating both functional and stochastic models using various Bayesian statistical
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Xii Preface

tools (maximum likelihood, Monte Carlo Markov chain, Kalman filter, least squares
variance component estimation, information criteria). Taking a pedagogical
approach, we introduce step by step the characteristics and properties intrinsic
of these time series using simulations and real data examples. The computing time
efficiency and accuracy of the estimated parameters from these various parametric
algorithms are compared with the performances of the “Hector” software package
(Bos et al. 2013). In addition, some discussions relate to the stochastic noise model
selection for various environmental applications. Thus, the first part of this book is
focused on the theory behind modelling the time series together with some para-
metric estimators. The second part of this book deals with various applications in
environmental geodesy and civil engineering.

Finally, this book is addressed to graduate students and professionals working
with geodetic time series and environmental geodesy, requiring an advanced
knowledge of Bayesian statistics. The reader will find the latest advances in
modelling geodetic time series together with some current applications.

Acknowledgements The editors would like to thank the authors for their contributions to this
book. Their involvement at all stages of the preparation has been great. The editors are also
grateful to the Springer Nature editorial team for the smooth interaction and the swift production.

Neuchatel, Switzerland Jean-Philippe Montillet
Covilha, Portugal Machiel S. Bos
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Chapter 1 ®)
The Art and Science of Trajectory s
Modelling

Michael Bevis, Jonathan Bedford and Dana J. Caccamise 11

Abstract Coordinate time series are, by definition, trajectories, so the kinematic
models that geodesists and geophysicists use to describe these time series are trajec-
tory models. We describe various classes of trajectory models, and present a dozen
case studies that illustrate the use of these models and also illuminate the diversity
of ways in which the Earth moves and deforms. We distinguish between the deter-
ministic approach to trajectory modelling, which emphasizes the physical meaning
of the various components of the trajectory, and a more automatic, autonomous and
heuristic approach to finding and fitting a trajectory model.

Keywords Trajectory model - Geodynamics + Geodesy - Transient deformation

1.1 Introduction

Bevis and Brown (2014) sought to codify a long-established, if slowly-developing
trend in crustal motion geodesy by suggesting that the equations used to describe
the motion of GPS or GNSS stations should be thought of as trajectory models.
They argued that the observed trajectories of the great majority of GNSS stations,
worldwide, could be well modelled using just two families of trajectory models. Their
third main thrust was that modern (i.e. more general) trajectory models should be
used to define geometrical reference frames, and not just model the displacement time
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series expressed in those frames. This paper describes some further developments in
trajectory modelling, and provides some examples of displacement time series that
exemplify some typical and unusual patterns of crustal motion and deformation.

Geodesists tend to value trajectory models mostly as geometrical, i.e. kinematic
descriptions of station displacement, and they have only a secondary interest in
the dynamics of motion and deformation. Improving trajectory models can help
geodesists to construct more stable and consistent reference frames—the frames in
which all displacement time series are expressed. The fundamental concern of the
geodesist is geometrical consistency, either in three dimensions or in four. In contrast,
geophysicists are more interested in what can be inferred about the physical processes
driving the motion and deformation of the solid Earth, by examining the trajectories
of geodetic stations or networks. These agendas tend to be mutually supportive, so
geophysically-inclined geodesists, and geodetically-inclined geophysicists, tend to
flip from one mindset to the other, according to their immediate needs.

We note that while station trajectory models are most commonly applied to geode-
tic coordinate or crustal displacement time series, the same formalisms can be applied
to vector or scalar measures of change in other geophysical contexts, such as mass
change time series estimated using the GRACE satellite mission (Bevis et al. 2019),
and the relative sea level (RSL) histories recorded by tide gauges (Caccamise 2018).
Because a tide gauge records the vertical motion of the sea surface relative to the
solid ground on which the gauge rests, RSL time series can record both coseismic
jumps and postseismic transients, but with the opposite sign of the signals recorded
by a co-located GPS or GNSS station.

The first author and his colleagues at Ohio State University normally take a ‘deter-
ministic’ approach to station trajectory modelling. For example, we use our computer
codes to estimate the sign and size of one or more jumps or discontinuities in a GPS
time series, but we determine (and assign) the number of jumps in each station tra-
jectory model, and the times of those jumps, based on prior knowledge of specific
physical events such as antenna changes, or earthquakes. We handle postseismic
transients in essentially the same way. But the second author often takes a far more
heuristic or ‘stochastic’ approach, in which the number and the onset times of tran-
sients are determined by his software, which is running in a less constrained, and
far more ‘automatic’ or ‘autonomous’ mode of operation (Bedford and Bevis 2018).
We write most of this article from the former, deterministic perspective, but we will
return to the topic of automatic signal decomposition in Sect. 4 of the paper.

1.2 Trajectory Models

The position vector of a station x(#) can be decomposed in a geocentric cartesian axis
system {X,Y,Z} or in a local or topocentric cartesian axis system {E,N,U} in which
the axes point east, north and up. The standard linear trajectory model (SLTM) is a
kinematic model which is the sum of three displacement modes, or distinct classes
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of motion, that describe the progressive trend of the trajectory, any instantaneous
jumps in position, and periodic or cyclical displacements:

X(f) = Xyend + Xjumps + Xeycle (L.1)

Jumps are described as linear combinations of Heaviside step functions at pre-
scribed jump times {#;}. The number of jumps, n;, may be zero, one or more. Jumps
include coseismic jumps, which are real movements of the ground, and ‘artificial’
jumps associated with changes in the GPS antenna and/or its radome, or changes
in the antenna monument, etc. Nearly all GPS time series exhibit a seasonal cycle
of displacement which can be modelled as a 4-term Fourier series with periodicities
of 1 year and 0.5 years. These cycles are caused by seasonal changes in the water,
snow and ice loads supported by the solid earth (Bevis and Brown 2014), or (less
commonly) by seasonal changes in atmospheric pressure.

The most common trajectory model invokes a constant velocity trend, in which
case the SLTM has the following form:

X(t) = Xg + V(t —tg) + »_bH(t — 1;)+ Y [se sin(wyt) + ¢ cos(axt)] (1.2)
j=1 k=1

where g is an arbitrary reference time, often set to the mean time of observation, Xg
=x(tR) is the reference position, and v is the station velocity vector, which is assumed
to be constant. The function H is the Heaviside or unit step function, and vector b;
describes the direction and magnitude of the jump which occurs at time ¢;, and n; is
the number of jumps. The 3-vectors s; and ¢; are the Fourier coefficients (one for
each component of the position vector) for the harmonic with angular frequency wy,
and np is the number of distinct frequencies. The angular frequency w; = 2m/14,
where t; is the corresponding period. To model annual displacement cycles, we
choose the fundamental period t; = 1 year, and the periods of the higher harmonics
T = 1/k years. This ensures that the cycle constructed from ny sines and ny cosines
(and a total of np frequencies or periods) repeats only once per year. Nearly always
it is adequate to set np = 2, specifying a 4-term Fourier series.

In the event that the station does not move with a constant velocity trend, we can
use a more general form of the SLTM in which the trend is polynomial in time, thus:

x(t) = Z it — tR)i_1+ Z ij(t — t_,~)+ Z [s sin(wgt) 4 ¢, cos(wyt)]
i=1 j=1 k=1
(1.3)

where np is the maximum order of the polynomial. If np = 1, then this model reduces
to the constant velocity model, with p; = xg and p, = v. If np = 2, it becomes the
quadratic trend or ‘constant acceleration’ model in which the acceleration vector a =
2 p3. No matter what the value of np, p; always corresponds to the reference position
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xr. In our experience it is only rarely necessary to set np > 3. For the large majority
of GPS stations, it is adequate to set np = 1.

The vector Eq. (1.3) can be thought of as a system of three scalar equations
describing the temporal evolution of the X, Y, and Z coordinates respectively. But it
can just as easily be used to describe the E, N, and U components of displacement.
That is, one could associate x3 with Z or U. Indeed, it is usually better to fit and
present displacement histories in E,N,U rather than X,Y,Z because the physical noise
processes affecting the vertical coordinate, U, are fundamentally distinct from those
affecting the horizontal coordinates, E and N. This distinction is lost or blurred when
examining displacement time series in X,Y,Z.

The SLTM cannot adequately describe postseismic transient displacements. This
can be done by augmenting the SLTM using one or more exponential or logarithmic
transients. A simple logarithmic transient displacement, d(At), has the form

d = Alog(1+ At/T) (1.4)

where A is the amplitude coefficient, T is the characteristic time scale of the transient
displacement, and At is the time since the earthquake occurred. Since this formula
applies only after the earthquake has occurred, we are restricted to the domain At >
0. The scalar d might refer to any one of the geocentric Cartesian coordinates (X, Y,
or Z) or topocentric Cartesian coordinates (E, N, and U) used to describe a geodetic
time series.

A common alternative for a decaying transient function is the exponential form

d = A(l —exp(—At/T)) (1.5)

This formula is often more attractive to theorists because it invokes a transient
that decays to zero as At tends to infinity. This seems physically reasonable. In con-
trast Eq. (1.4) does not have this asymptotic behaviour, and the cumulative transient
displacement grows indefinitely, though at a slower and slower rate as At increases.
This leads some to conclude that the logarithmic transient is physically unreason-
able. We suggest that a more nuanced and useful conclusion is that Eq. (1.4) is just
an approximation to reality—but often a very convincing, long-sustained and very
useful approximation. This logarithmic transient is favoured by some because it is
predicted by rate and state friction theory for the afterslip-driven component of post-
seismic deformation (Marone et al. 1991; Marone 1998; Perfettini and Avouac 2007;
Perfettini et al. 2010).

Those who insist on the rather ‘purist’ position of favouring Eq. (1.5) over
Eq. (1.4), based on its asymptotic behaviour, might reflect on the fact that nearly
all modern error analyses for GNSS station velocity estimates are dominated by
the assumption that positioning noise can be represented by a combination of white
noise and power law noise (Zhang et al. 1997; Mao et al. 1999; Williams et al. 2004),
most frequently a combination of white noise and flicker (or 1/f) noise. There are
dozens of examples of physical systems exhibiting flicker noise behaviour, and these
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characterizations often provide excellent fits to power spectra over many decades of
frequency. Nevertheless, flicker noise behaviour cannot be maintained for all frequen-
cies, because this would lead to a physically unreal situation in which the integral
of the power spectrum diverges at both the low and high frequency limits (Press
1978). Flicker noise behaviour has to be band-limited in practice, but because these
divergences are logarithmic, it is often perfectly reasonable to ignore this fact when
analyzing a specific data set. The choice of a flicker noise model is fundamentally
heuristic, as is, for many geodesists, the assumption of a logarithmic transient.

A better fit to an observed postseismic transient can be obtained using a double
transient in which there are two characteristic time scales, T and T,. If we prefer
logarithmic transients this leads us to

d = Ajlog(1+ At/Ti) + Aslog(1+ At/T>) (1.6)
whereas devotees of exponential transients prefer
d = A|(1 —exp(—At/T)) + Ay(1 — exp(—At/T?)) (1.7)

In both cases we adopt the convention that 7'} < T';. It is also possible to invoke
hybrid double transients that mix the logarithmic and exponential forms, thus

d = Alog(l + At/Ty) + Ax(1 — exp(—At1/Tr)) (1.8)

where T| < T, by design, and not just by convention. This variant is motivated by the
idea that early postseismic transients are dominated by afterslip, but later on these
transients are dominated by bulk viscoelastic relaxation of the stresses induced by the
earthquake. Viscoelasticity is often associated with exponential transient behaviour.
It is also possible to invoke multi-transients with three or more characteristic time
scales, though this is rarely done in the ‘deterministic’ school of trajectory modelling.
Although double transients always produce a better fit than do simple or single
transients, since they increase the number of adjustable parameters, they often lead
to inversions with considerably larger condition numbers, implying that the solution
is less stable and might lead to less reliable predictions of future behaviour, despite
producing a better fit to the data already in hand. This occurs because the double
transient model may start to model the ‘noise’ as well as the ‘signal’. In the first
author’s experience, daily GPS/GNSS positioning noise a/ways has a strong power
law component, and this leads to temporal structure in the noise, which often looks
like it includes a long period signal (Mandelbrot 1969; Press 1978). This pseudo-
signal may be ‘sucked up’ into a trajectory model during the estimation process.
For analysts working in a ‘deterministic’ mode, who assign physical significance
to the coefficients of the trajectory model, and/or wish to use the model to make pre-
dictions about the future position of the station, it is potentially dangerous to invoke
double transients (logarithmic or exponential) if the observations being modelled are
very noisy, and even more dangerous to involve multi-transients involving three or
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more characteristic time scales, particularly when the transient occurs near the end
of the time series. Suppose we have solved the standard least squares problem, Ax
= b, where x contains the coefficients of the trajectory model, and we are concerned
about the change Ax in the solution vector X, caused by a small fluctuation Ab in
the data vector b. We might view Ab as representing the (unknown) noise affect-
ing the ‘true’ b-vector. The relative change or uncertainty in the data vector can be
represented by the ratio of the norms IIAb I/l bll and the associated relative change
in the solution vector by IIAxII/IxII. If k is the condition number of matrix A, whose
columns are the basis functions of the trajectory model, then the sensitivity of the
solution to noise in the data is often approximated using the expression [[AxI/IIxII
= k lIAb /Il bll. Thus, we can view the condition number of the design matrix as
a relative error magnification factor (e.g. Forsythe et al. 1977). The lowest possible
condition number is 1. It is possible to encounter least squares problems in which k
~ 1 million, or even higher. When the condition number k is very large then a tiny
change in the noise affecting the data may produce a large relative change in the
solution. In this case, the least squares problem is said to be poorly posed. Clearly
this situation is very undesirable when we wish to assign physical significance to
the solution vector. (But if our only goal is obtaining a very good fit between model
and data, i.e. producing a very small RMS misfit, then very large k values might not
bother us at all!).

It is easily discovered via simple numerical experiments that the design matrix
for a linear trajectory model containing a double transient often has a much larger
condition number than does the design matrix for a model incorporating a simple
transient but is otherwise identical. The design matrix for a model that incorporates a
triple transient often has a very much larger condition number. A very large condition
number is particularly worrying when we suspect that our data is very noisy, so that
[IAb [I/libll, the relative measure of this noise, is unusually large, since the instability
in the solution increases with both k and IIAb I//libll. Therefore, we are reluctant to
use multi-transients unless we are analyzing long, fairly evenly spaced and fairly
high-quality displacement time series. For example, we almost never invoke double
transients when we are modelling postseismic transients in tide gauge observations
rather than GPS displacements. In the case of GPS or GNSS displacement time series
we normally invoke double transients when fitting long postseismic transients, but
we are then very careful not to use these models to predict station coordinates more
than a few months beyond the time range of the observations used to estimate the
parameters of the transient model. Increasing the number of degrees of freedom
available to a trajectory model always improves its fit to the observations, but it can
also lead to less accurate predictions of the trajectory beyond the time window of
observation. This is the famous trade-off between resolution and reliability.

It is well known that exponential and logarithmic transients can produce very
similar fits to GPS time series manifesting postseismic deformation, given equal
degrees of freedom, so the choice between them is hardly crucial for the geodesist
who simply wants a good fit between data and model. In some contexts, such as that
of empirical transient analysis (Bedford and Bevis 2018), the exponential form is
the more natural choice because of its asymptotic behaviour. But the space geodesy
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group at Ohio State University has convinced itself that double logarithmic transients
often provide slightly better fits than double exponential transients, and very slightly
better fits than composite logarithmic-exponential transients (Sobrero 2018), and as
a result we nearly always invoke logarithmic transients.

Bevis and Brown (2014) defined the extended trajectory model (ETM) as the
combination of a SLTM and one or more transients. For those preferring logarithmic
transients, the ETM is

Mp+1 ny nr
X() = > it —tp) T+ Y bH(r —1;) + Y [se sin(axt) + ¢ cos(wyr)]
i=1 j=1 k=1
nr
+ Y ajlog(l+ At/ Ty) (1.9)

i=1

where nr is the number of logarithmic transients. For each transient caused by an
earthquake at time fgq, we define At = 0 for r < tgg and At = (f — tgq) otherwise.
Note that we can invoke double transients by having the same value of ¢gq for two
of the At; vectors, but different values for the scale parameter 7';. Indeed, when our
emphasis is on fitting a time series rather than predicting the future position of a
station, we have occasionally invoked three transient time scale parameters, that is,
triple logarithmic transients.

One of the most attractive aspects of the SLTM is that this model is linear in
its coefficients, so the task of fitting an observed time series with this model, i.e.
solving for the coefficients or parameters of the trajectory model, reduces to solving
a linear least squares problem. This is not true for the ETM, but if the characteristic
time scales (7) of the logarithmic transients are assigned rather than estimated, then
the problem again becomes linear and the ETM is renamed the extended linear
trajectory model (ELTM). It is often reasonable to pre-assign the transient time scale
parameters, particularly when invoking a double logarithmic transient. In this case
we usually set 7 ;= 0.0523 years and T, = 1 year, because formally optimizing their
values very rarely leads to significant improvements in fit (Wang 2018). When the
displacement data are too noisy or too short to justify the use of a double transient,
then we will typically estimate the best single value for T using a non-linear least
squares process, particularly when we are more strongly focused on physical meaning
rather than geodetic utility.

1.3 A Gallery of Geodetic Trajectories

In this section we present examples of geodetic time series from around the world,
and use them to describe the art of trajectory modelling, and/or to illuminate the
character, and sometimes the complexities, of the Earth’s behaviour. Most of our
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Fig. 1.1 a The GRACE mass change solutions for Greenland fit in the reference period (ending
in 2013.4) with an SLTM composed of a quadratic trend and an annual cycle represented by a
4-term Fourier series. This model was projected forward after 2013.4. b The mass change solution
after the mean annual cycle was removed, compared to the quadratic trend component of the mass
trajectory model. This seasonally-adjusted mass change time series manifests the recent deglaciation
of Greenland. The remarkable change in behaviour that began in the summer of 2013, and its
implications, have been discussed by Bevis et al. (2019)

examples are drawn from crustal motion geodesy. But we begin with one of two case
studies involving a scalar time series.

The GRACE time series shown in Fig. 1.1 is the mass change computed, for
Greenland as a whole, by Bevis et al. (2019). The original solutions are shown
using the blue circles in Fig. 1.1a. We used a least squares procedure to fit a SLTM
composed of a quadratic trend and a four-term Fourier Series, but only for those
mass solutions obtained before 2013.4. The resulting mass trajectory model was
then projected forward to the end of the time series, producing the solid red curve.
The trend component of the SLTM is shown by the dashed red curve in Fig. 1.1a.
One of the useful things that we can do with a trajectory model is to decompose the
trajectory. We frequently do this in order to seasonally adjust or “de-cycle” a time
series. We simply evaluate the cyclical component of the model at the observation
times, and remove this mean cycle from the data. This produces the blue circles in
Fig. 1.1b. We can then compare the de-cycled observations with a revised trajectory
model in which the cyclical component has been removed. Since there are no jumps
or transients in this SLTM, the resulting seasonally-adjusted trajectory model is
simply the quadratic trend—the solid red curve in Fig. 1.1b. Note that the mean
cycle was estimated using only the data before 2013.4, but was used to adjust all
the data, including the mass solutions obtained after that date. Because the mean
seasonal cycle in ice mass does not contribute to deglaciation, it is interesting to
remove it, and view what remains as the ‘deglaciation curve’, without the distraction
of seasonal variation. In this case we see that seasonally-adjusted ice loss integrated
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over Greenland very nearly followed a quadratic or ‘constant acceleration’ trend for
~10 years, but then the situation changed abruptly, and rather astonishingly, in the
summer of 2013, because of a change in the phase of the North Atlantic Oscillation,
as discussed by Bevis et al. (2019).

Many discontinuities or jumps observed in displacement time series are artificial
in the sense that the ground did not actually jump, but rather the phase center of the
antenna was abruptly displaced by an antenna change, a radome change, or by physi-
cal modification of the antenna monument. In non-seismogenic areas, such as Brazil,
essentially all observed jumps are artificial. Even so, each jump has to be accounted
for in any trajectory model used to realize a reference frame, because if the prior
coordinates assigned to the station do not reflect a jump, then that jump will appear
instead in the coordinates computed for any roving GPS/GNSS receiver referenced
to this station. Of course, if we wish to study the actual motion of the ground, for
the purpose of studying the physical causes of crustal motion or deformation, it is
possible to fit a trajectory model including jumps at the appropriate times, so as to
estimate their amplitudes, and then remove those jumps from the data, and from the
trajectory model. We have done this for the Brazilian GNSS station NAUS located
in the airport at Manaus, near the center of the Amazon basin (Fig. 1.2). It is a good
idea to mark the locations of removed jumps in time series plots using lines with a
distinct line style and/or color, so as to be reminded that jumps have been removed.
The annual cycle of displacement in Manaus is very large. Indeed, we are not aware
of a larger vertical displacement cycle anywhere else on Earth. We usually indicate
the values of the Fourier coefficients used to model displacement cycles on top of
each sub-plot, in the order sl, cl, s2 and c2, which are the sine (s) and cosine (c)
coefficients of periods t; = 1 year and 1, = 0.5 years, respectively.

The displacement cycles observed at Manaus are not strictly periodic: there are
inter-annual variations in the water loads driving this deformation. The largest influ-
ence on the elastic displacements recorded by NAUS are the masses of the Rio Negro
and Amazon river systems. The average orientation of these rivers, close to Manaus,
is roughly east-west, and the airport is located north of the north bank of the Rio
Negro. So, when the converging rivers swell, increasing their mass, the ground at
NAUS is pulled down and towards the center of local mass change, which is nearly
to the south. This is why the N and U cycles appear to be nearly in phase (Fig. 1.2),
and why the cycle in E is much smaller than the cycle in N. The results obtained
at NAUS are very similar to those obtained at the older station MANA (Bevis et al.
2005), which NAUS replaced. MANA was located even closer to the north bank of
the Rio Negro. We can examine the correlations between the E and U components of
displacement, and the N and U components, by removing the polynomial trend and
the jump sub-models from the raw observations, so that what remains is the cyclical
component of the trajectory and the positioning noise (Fig. 1.3).

Bevis and Brown (2014) used an ELTM to model the trajectory of station AREQ
in Arequipa, Peru which recorded coseismic jumps due to the June 23, 2001 My, 8.4
earthquake centered ~240 km from the GPS station, and a My, 7.6 aftershock which
occurred about two weeks later at a distance of ~139 km. They used a jump and
a simple logarithmic transient with a (default) period of 1 year to model the main
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Fig. 1.2 The displacement time series at station NAUS, in Manaus, Brazil near the center of the
Amazon basin, expressed in a South America-fixed reference frame, and fit (using a robust least
squares algorithm) with a SLTM. The SLTM consisted of a linear trend (np = 1), five jumps
associated with antenna changes (nj = 5), and a 4-term Fourier series used to model the annual
displacement cycle. The five jumps, which are artificial in nature, were removed from the data and
the final trajectory model, so as not to distract from the real motion of the ground. The removed
jumps were located at the epochs indicated using the thin dashed purple lines. Note the difference
between the scales used to plot the E, N and U components of displacement. The yellow dots
represent measurements identified as outliers and down-weighted so as to prevent them biasing the
trajectory models

event, and simply a jump for the aftershock. Although their ELTM fit the observed
time series very well from late 2001 to 2013, it did not fit the first few months
of postseismic deformation (see their Fig. 1.9). We show here (Figs. 1.4 and 1.5)
that it is possible to fit the entire time series quite well when we invoke a double
logarithmic transient for both the main event and its aftershock. For both events we
invoked logarithmic time scale parameters of 0.0523 and 1.0 years so as to capture
both the short-term and the long-term transient response to each earthquake. Note
that the sign of the cumulative postseismic component in E and N matches the sign of
the corresponding coseismic jumps, which is almost universally true for megathrust
events. However, the signs of the jump and the postseismic transient often differ in
the U component, depending on the relative locations of the station, the coseismic
rupture area and the area of afterslip (which is commonly concentrated downdip from
the zone of seismic slip). In this case, the U jump and the U transient have opposite
signs, so the U coordinate tends to ‘recover’ as time since the earthquake increases.
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Some geologists, geophysicists and geodesists have the impression that only
‘major’ or ‘great’ earthquakes produce obvious and vigorous postseismic transients.
This is not true. Even modest earthquakes can produce quite dramatic transients at
nearby stations, as we illustrate in Fig. 1.6, showing the displacement time series at
GPS station VANU in Port Vila, Vanuatu in the Southwest Pacific. This station is
located quite close to the Southern New Hebrides trench and its seismically active
subduction zone. Note the distinct transient response caused by the July 12, 2011
M,, 4.4 event, which has an epicenter nominally located 13.8 km from VANU. In
reality, an event this small in a region with few seismic stations has a poorly con-
trolled epicenter, and a very poorly controlled focal depth (especially when the focal
depth is < 100 km). It might have been closer to VANU than any global catalog has
indicated.

In general, the likelihood of an earthquake generating a significant coseismic jump
and postseismic transient depends on the depth of the earthquake, its magnitude,
the distance between the earthquake’s hypocenter and the geodetic station, and the
orientation of the hypocenter to GPS station vector relative to the geometry of the
focal mechanism (the ‘beach ball’) for that seismic event. The majority of earthquakes
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Fig. 1.4 Crustal motion at station AREQ in Arequipa, Peru, located about 120 km inland from the
Pacific coast. This station recorded coseismic jumps during the Mw 8.4 megathrust earthquake of 23
June 2001 and its Mw 7.6 aftershock of 7 July 2001. Here the station trajectory is modelled using an
ELTM invoking a linear trend, two Heaviside jumps, an annual cycle represented by a 4-term Fourier
series, and transients. A double logarithmic transient (with T; = 0.0523 years and T, = 1 year)
is invoked both for the main shock and the aftershock. Note the sign change in the E component
of motion that occurred after the seismic events. The change in trajectory that occurred around the
time of the earthquakes can be seen in more detail in Fig. 1.5. The numbers above each subplot
indicate the velocity of the trend, the amplitudes of the two jumps, the four Fourier coefficients, and
the transient amplitude parameters (A and A;) for the main shock and the aftershock, respectively

are shallow, and for events with a magnitude >5, it is easy to construct a statistic
based on the epicenter-station distance and the magnitude of the earthquake that will
indicate if there is a significant chance that a jump and transient would occur. But
if the epicenter to station vector is parallel to the null axis of the focal mechanism,
there may be no effect. In contrast, if this vector is parallel to the seismic slip vector,
the chance of a jump and transient actually occurring is greatly increased.
Although earthquakes that produce large horizontal jumps at a GPS station nearly
always produce discernable postseismic transients at that station as well, this state-
ment does require some qualification. Consider the trajectory of station BORC at
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Fig. 1.5 The same information shown in Fig. 1.4, but ‘zoomed in’ on the time period in which the
main event and its aftershock occurred, allowing us to see the displacements that occurred between
these events

Base Orcadas in the South Orkney islands (Fig. 1.7). There have been two large,
shallow, transpressional earthquakes near BORC, both left-lateral events on or near
the plate boundary between the Scotia and the Antarctic plates (Ye et al. 2014). A
Mw 7.6 event occurred in 2003 and a Mw 7.8 event in 2013. The aftershock zones of
these events overlapped. Station BORC was in the near-field of both events. Large
coseismic jumps were recorded in both the E and N components of displacement
for both earthquakes. Obvious transients are seen in both E and N following the
2013 event, but in the case of the 2003 event a transient is evident in the E and U
components of displacement, but not in the N component. In our experience if an
earthquake produces a large displacement in one horizontal component, it nearly
always causes an obvious transient in that same component. This rule of thumb is
most frequently violated in the near-field of earthquakes, presumably because there
can be a significant difference in azimuth, as viewed from the GPS station, between
the effective center of seismic slip and the effective center of aseismic afterslip.

It is relatively easy to model station trajectory models dominated by plate motion
and the earthquake deformation cycle. It is much harder to model trajectories man-
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Fig. 1.6 GPS station VANU in Port Vila, Vanuatu, which was established in 2002.7. Here we show
the observations only after 2006.0, so as to better resolve the coseismic jumps and postseismic tran-
sients recorded by individual earthquakes since 2009. This time series has been modelled using an
ELTM. This includes a simple logarithmic transient associated with a 2002 earthquake that occurred
well before VANU became operational. An earthquake couplet occurred in 2011. It involved a My,
7.2 and a M, 7.1 event separated by about one hour. These earthquakes were modelled as a single
event, i.e. using one jump and one double logarithmic transient. Note that the My, 4.4 event of
2011, located < 14 km from VANU, caused a distinct transient easily seen in the N component of
displacement

ifesting volcanic deformation. Figure 1.8 shows the displacement history of station
KAYT on Taal volcano in the Philippines. The reader can look it up on an internet
mapping application, by searching on its position (13.987 N, 120.978 E), to see its
extraordinary setting. Taal Lake is a large water-filled caldera. Taal island is a vol-
canic cone constructed in the center of that caldera. KAYT’s pattern of motion is so
irregular that the only recourse it to invoke a high order polynomial trend component.
Buteven an SLTM with a 6th order polynomial trend, plus an annual cycle, does not fit
the observed trajectory very well (Fig. 1.8), particularly in the N and U components.
This use of high order trends is tantamount to creating a tautology, and it would be
extremely dangerous to use such a trajectory model to predict the future coordinates
of this station. Nevertheless, the trajectory model does work well enough to allow
KAYT to be used as a base station for engineering surveys of decimeter accuracy.
And fitting non-deterministic, highly heuristic trajectory models to stations recording
volcanic deformation occasionally provides some interesting insights, or provokes
interesting questions. In the case of KAYT, notice how the annual cycle component
of the SLTM really does seem to explain much of what happens in N component.
But if this were a hydrological phenomenon associated with the wet and dry seasons,
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Fig. 1.7 The coseismic jumps and postseismic transients recorded by GPS station BORC in Base
Orcadas in the South Orkney islands. Large coseismic jumps were recorded in the E and N com-
ponents of displacement for both the 2003 (M,, 7.6) and the 2013 (M, 7.8) earthquakes. Vigorous
transients are evident in both E and N following the 2013 event, but in the case of the 2003 event a
transient is quite evident in the E and U components of displacement, but not in the N component.
The postseismic transients initiated by both earthquakes were modelled using a double logarithmic

transient
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Fig. 1.8 Volcanic deformation produces complex crustal motions at station KAYT near the south-
west corner of Taal Volcano, which forms an island in Taal Lake, in the Philippines. The trajectory
of this station has been modelled using an SLTM which incorporates a 6th order polynomial trend,
and an annual cycle consisting of a 6-term Fourier series. Even with many degrees of freedom, the
SLTM provides a poor fit to the N and U components of displacement. (It is possible to obtain a
much better fit to this displacement time series by invoking an ELTM). It is intriguing that there
does appear to be a strong annual cycle in N, but not in E or U

and not just a coincidental agreement with the displacements produced by volcanic
deformation, why does the cycle show up most clearly in the N component?

One of the reasons it is so hard to model vigorous volcanic deformation with
SLTMs, even when the polynomial degree is as high as 6, is that such trends are still
smooth enough that they simply cannot follow impulsive, i.e. very abrupt changes in
velocity. Look at what happens near the middle of 2001 in the N and U components
of displacement at KAYT (Fig. 1.8). To follow that kind of velocity change it is
necessary either to use very high degree polynomials (which would require us to use
Legendre polynomial series—or another orthogonal basis set—rather than regular
polynomial series, to avoid numerical instabilities in the least squares analysis), or to
switch to an ELTM, allowing us to invoke transients. We do this in our next example.

Experimental trajectory analysis of GPS stations located on active volcanoes does
seem to suggest (though not always convincingly) that the logarithmic transients
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predicted by rate and state friction models for afterslip, which have proven very
useful in modelling postseismic deformation, also seem able to mimic some aspects
of volcanic deformation, though often without an initial seismic slip event! That is,
a significant component of crustal motion observed at some active volcanoes can be
simulated using logarithmic transients, in some cases without the assistance of jumps
(either seismic or aseismic) at the start times of the transient. There is sometimes no
seismological evidence for an earthquake triggering these volcanic transients, though
we cannot rule out earthquakes too small to detect. These logarithmic transients are
sometimes characterized by much shorter time scale parameters than are those we
commonly invoke for postseismic deformation. Time scale parameters shorter than
1 day, or just a few days, for example.

Figure 1.9 shows the trajectory of station FRON located on El Hierro island in
the Canary Islands. This complex and jerky trajectory model invokes a 5th order
polynomial trend to account for slowly developing inflation and deflation of the
volcano, 5 jumps and 6 simple logarithmic transients, and an annual cycle represented
by the usual 4-term Fourier series. Only one of the jumps is associated with a transient,
and only one of the transients is associated with a jump. This does equip the ELTM
with 21 coefficients, but since the time scale parameters were adjusted too, each curve
in Fig. 1.9 has 27 degrees of freedom. Therefore, the goodness of fit attained could
be solely due to the extreme flexibility of the model—a numerical tautology of the
kind that can be constructed when the timing of jumps and transient initiation are not
constrained by objective facts such as the known source times of nearby earthquakes.
Even so, the WRMS scatter levels in E, N and U are 2.2, 2.4 and 6.9 mm, respectively,
which constitute good fits for a sub-tropical ocean environment. And many of the
impulsive events in the time series really do seem to be transients with quite rapid
decay times (see the detail at the top right of Fig. 1.9). Notice how the trajectory
approaches a constant velocity trend after 2014.5. It might be interesting to see if
logarithmic or exponential transients provide the better fit in this unusual setting.
We speculate that transient slip might occur without a significant earthquake when
a locked fault is unzipped by the injection of magma, and the two walls of the fault
undergo shear without direct contact between them. However, since discretion is
the better part of valor, we suggest that this time series should be investigated by a
physical volcanologist!

Before leaving the topic of transient deformation in active volcanic settings, we
provide one more example of a station trajectory that can be modelled using loga-
rithmic transients, but in this case using time scale parameters comparable to those
associated with postseismic transients. This time series (Figs. 1.10 and 1.11) is for
station LKWY in Yellowstone National Park. The smooth displacement trends in E
and N are clearly not linear, but we can obtain a good fit by using an SLTM with
a quartic (np = 4) trend plus an annual cycle. But this SLTM did not provide an
adequate fit to the U component of displacement. Therefore, we attempted to fit the
LKWY trajectory using an ELTM with a quartic trend, an annual cycle, two jumps
and two simple logarithmic transients with start times near 2005.2 and 2014.1 (and
with default time scale parameters of 1 year). This ELTM provided a much improved
but still imperfect fit to the U component (Fig. 1.10), although the jump amplitudes
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Fig. 1.9 Crustal displacement of station FRON located on an active volcano on El Hierro, one
of the Canary Islands. This trajectory has been modelled in ad hoc fashion since there are no
earthquakes recorded at the times of the impulsive displacements seen above. Each coordinate time
series has been modelled using an ELTM consisting of a fifth order polynomial trend, five jumps,
six logarithmic transients and a 4-term Fourier series. Only one of the transients has a start time
that coincides with a jump. Only one of the jumps is associated with a logarithmic transient. The E
component of one of the transients is shown in detail at top right. Notice that there is no obvious
jump, and if there were a jump its amplitude would be far smaller than the cumulative displacement
associated with the transient
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Fig. 1.10 The observed trajectory of GPS station LKWY located on the banks of Yellowstone
Lake, expressed in ITRF, and an ELTM incorporating two simple logarithmic transients whose
initiation times were chosen ‘by eye’. Two jumps were assigned too, but their estimated amplitudes
were not significantly different from zero. Notice that the ELTM cannot follow the kink in the U
trajectory near 2009.0. The ELTM is modified to address this problem in Fig. 1.11

were not significantly different from zero. The model cannot fit the sharp kink in the
observed U trajectory (Fig. 1.10). To address the misfit near this kink we modified the
ELTM by adding a double logarithmic transient (with default time scale parameters
of 0.0523 and 1.0 years) with a start time of 2009.0. We also eliminated all jumps.
This produced an excellent fit to the observed trajectory (Fig. 1.10). Again, none of
the three transients were triggered by earthquakes large enough to be included in
a global seismicity catalog. Even if there were very small earthquakes at the start
times of these transients, the ratio of the total cumulative transient displacement to
the coseismic jump would have to be extremely high—well beyond what is normally
found in non-volcanic deformation zones. We saw this previously with FRON. The
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Fig. 1.11 A modified ELTM fit to the LKWY time series. In this case a double logarithmic transient
is added to the two simple transients used in the ELTM shown in Fig. 1.10, but no jumps were
invoked. The number of degrees of freedom remain unchanged (relative to Fig. 1.10), but the fit is
significantly improved

suggestion is that many of the displacement transients observed in active volcanic
settings are ‘volcanic transients’ and not ‘postseismic transients.’

We return to a more conventional trajectory modelling problem, and our more
‘deterministic’ approach, in the final case study of this section, which addresses
the vertical motions produced in American Samoa by an unusual M,, 8.1 doublet
earthquake that occurred near the northern Tonga trench in 2009 (Beavan et al. 2010).
A coseismic jump and postseismic transient were recorded by the GPS station ASPA
in Pago Pago, and also by the nearby tide gauge PAGO (Fig. 1.12). Since tide gauges
record the motion of the sea surface relative to the ground on which the gauge sits,
they are said to measure relative sea level (RSL) change. If the ground jumps up in
response to an earthquake, then RSL will jump down by the same amount. Caccamise
(2018) studied this event and these time series in considerable detail, and we repeat
only part of that work here. Early attempts to see if it was possible to infer similar
jumps and transients from the GPS and RSL time series were unsuccessful, because
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Fig. 1.12 Comparing a the vertical displacement time series, U(t), recorded by the GPS station
ASPA in Pago Pago, American Samoa and b the relative sea level (RSL) time series inferred from
the nearby tide gauge PAGO. The PAGO time series was corrected for dynamic sea surface height
variations driven by the global wind field using the model ORA (Caccamise 2018). Both time
series were affected by the My, 8.1 earthquake which occurred near the Northern Tonga Trench on
September 29, 2009 (Beavan et al. 2010; Caccamise 2018). An ELTM featuring a constant velocity
trend, an annual cycle, a coseismic jump and a double logarithmic transient was fit to the observed
ASPA time series. The jump amplitude (J), the cumulative transient displacement (CTD) at the end
time of the RSL time series, and their sum (J 4+ CTD) are shown in mm above subplot (a). Because
the PAGO time series is much longer, and sea level rise is accelerating, we invoked a quadratic
trend for the ELTM used in plot (b). Also, because the RSL time series is much noisier than the
GPS time series, we invoked a simple logarithmic transient rather than a double transient. Even so,
the values for J, CTD and J 4+ CTD are not significantly different at PAGO than at nearby ASPA
(Caccamise 2018), apart from the change in sign

the variability of the raw RSL time series at PAGO tends to be dominated by ocean
dynamics, including El Nifio events, that can perturb sea level by decimeters, and
which produce fluctuations which are highly asymmetric about zero. Caccamise
(2018) addressed this problem by correcting the RSL time series using an ocean
dynamics model (ORA) driven by ocean wind fields obtained from a global numerical
weather model. This causes the RMS variability of RSL to drop by about one half,
and it is this refined RSL time series that we display and model in Fig. 1.12b.

We modelled the vertical displacement time series at ASPA using an ELTM
equipped with a linear trend, an annual cycle, and with a jump and a double loga-
rithmic transient at the time of the earthquake. The amplitude of correlated noise at
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PAGO is much higher than at ASPA, even after ocean dynamic signals have been
suppressed, so in this case we invoke a simple logarithmic transient, rather than a
double transient, for PAGO. The PAGO time series is also much longer than that
at ASPA, and long enough that we cannot ignore the fact that the rate of sea level
rise is known to have accelerated since 1980. Therefore we invoke a quadratic trend
at PAGO. We can compare the jump amplitudes (J) estimated at ASPA and PAGO
directly—they should be equal in magnitude and opposite in sign. The postseismic
transients recorded by ASPA and PAGO should also be equal, though opposite in
sign, but in this case we cannot directly compare the amplitudes since the ASPA
model invokes a double transient while the PAGO model invokes a simple transient.
So, instead we compare the cumulative transient displacements (CTDs) at a com-
mon epoch, 2015.8, which is close to the final epoch of the RSL time series. We
also compare the sum of these seismic perturbations, designated J + CTD (all listed
above the subplots of Fig. 1.11). The standard errors we estimated for these quantities
take account of the temporally correlated noise. There is no statistically significant
difference between the J, CTD and J 4+ CDT amplitudes inferred from ASPA and
PAGO. This is immediately obvious when we note that the standard errors for PAGO
are oy = 20.5 mm, ocrp = 32.9 mm, and oy,crp = 27.6 mm.

1.4 Automatic Signal Decomposition Using GrAtSiD

Bedford and Bevis (2018) described an alternative methodology for trajectory mod-
elling, the Greedy Automatic Signal Decomposition (GrAtSiD) approach, which is
more ‘heuristic’ and less ‘deterministic’ than conventional approaches, in that GrAt-
SiD has a much lower reliance on a priori information on the timing of jumps, or the
initiation times of transients, and even the general structure or form of the trajectory
model is treated as an open question. The user can assign in advance the degree
of the polynomial used to represent the trend, the length of the truncated Fourier
series used to model seasonal cycles (including length zero, meaning no cycle at
all), and the jump times for known discontinuities in the time series associated with
known antenna changes, etc. The unexpected or non-assigned part of the trajectory
model is ‘designed’ and then utilized by the GrAtSiD code. It is assume that the
undetermined (i.e. the non-pre-determined) part of the trajectory model consists of
an unknown number of jumps and an unknown number of multi-transients (MT).
The MTs have exponential form and three pre-assigned time scale parameters (7';,
T;, T;) each. If the sampling interval of the observed time series is 8t (in the absence
of data gaps), then GrAtSiD assigns and fixes the time scale parameters thus: T
= 10 8t, T, = 100 8t and T3= 1000 3t. These parameters are never adjusted, but
the number and the start times of the MTs are adjustable, as are the number and
jump times of unassigned jumps. The code seeks to invoke a minimum number of
jumps and MTs while achieving an excellent fit to the data. It does this iteratively,
by considering which of a huge number of candidate jumps and candidate MTs best
achieves its goals. Note that when dealing with a 3-D displacement time series, each
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component of that time series is modelled independently, and thus different numbers
of jumps or transients may be assigned to the E, N and U components (or the X,Y
and Z components) of displacement.

Operating in this extremely flexible framework is computationally expensive,
compared to the deterministic approach used in the previous section, because GrAt-
SiD searches a vast parameter space, and it does so exhaustively. The search for an
optimal solution is achieved using a ‘greedy’ algorithm (Needell et al. 2008). We
refer the reader to Bedford and Bevis (2018) for a more complete description of the
methodology, and limit ourselves to a brief discussion of the algorithms, and the
presentation of a single case study.

The GrAtSiD approach builds upon the sparse time series fitting of Riel et al.
(2014), wherein an SLTM was supplemented with a minimum number of B-spline
transients using L1 regularization. While similarly seeking to add a minimum num-
ber of transient functions to an SLTM, GrAtSiD differs from the Riel et al. method in
that it uses a more versatile function to model transients, and an alternative, greedy
approach to optimization. In the greedy algorithm, sparse time functions are itera-
tively added and removed according to when they are deemed necessary or redundant.
The sparse function can be either a multi-transient (MT) or a Heaviside step function
(jump), mitigating the need to have a list of known jumps. Of course, jumps can still
be imposed, which often lessens the computational burden and improves the fit to the
true signal in synthetic testing. We chose the MT as the sparse function because of
its versatility. When we sum decay functions with different decay constants, we are
able to create an initial bump in the function if the signs of the MT coefficients are
different. When the algorithm encounters regular decays (such as postseismic decay
or a sudden volcanic inflationary event) the inversion will produce a decay function
similar to one that could be approximated with a single or simple transient. When
encountering a bump, jerk, or wobble in the time series, one or two MTs in series
can usually adequately approximate such shapes. When the change in background,
almost linear, velocity is subtle, the longer decay transient coefficient of the multi-
transient will be able to fit this trend. In fact, the adoption of the multi-transient can
eliminate the need for any terms of the polynomial higher than degree 0.

The GrAtSiD approach is most attractive in cases where the trajectory is very com-
plicated and there is little or no relevant a priori information available to constrain
the general form of the trajectory model. This is often the situation for displacement
time series acquired in active volcanic settings. The time series obtained from FRON
(Fig. 1.9), already discussed, provides a compelling example. In the last section we
used a conventional least squares computational approach, but deployed it heuristi-
cally and in an ad hoc manner. We now use GrAtSiD to analyze this data in an even
more heuristic way, but we now do so systematically, and in a far more exhaustive
way. The resulting trajectory model is shown in Fig. 1.13.

One danger of the GrAtSiD approach is that the code is given so much autonomy
that it may sometimes equip its curves with so many degrees of freedom that it starts to
model the structure in the colored (i.e. auto-correlated) noise and well as the structure
in the signal. Currently, a tolerance hyper-parameter determines when the algorithm
gives up on trying to add more transient functions. If incorrectly tuned, the algo-
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Fig. 1.13 A re-analysis of the FRON time series (Fig. 1.9) using the GrAtSiD approach and soft-
ware. The number of steps indicated in each subplot refers to the number of jumps invoked for
that component of displacement. The model includes a seasonal or cyclical sub-model represented
by a 4-term Fourier series. Note that the RMS misfits achieved by GrAtSiD above (E: 1.4 mm, N:
1.7 mm, U: 5.3 mm) are considerably smaller than those associated with Fig. 1.9 (E: 2.3 mm, N:
2.4 mm, U: 6.9 mm). On the other hand, the total number of degrees of freedom for the curves
above are E: 62, N: 45, U: 40, whereas the E, N and U trajectory curves in Fig. 1.9 each have 27
degrees of freedom

rithm inevitably under- or over-fits the signal. This is a danger with the conventional
approach too, but, usually, to a lesser degree, since human visual ‘quality-control’
guides the inclusion of additional transient functions. Even so, the ELTM applied to
FRON (Fig. 1.9), though it nominally used the deterministic approach, was unguided
by seismicity catalogs, and thus was really an ad hoc treatment.

The outcomes of the GrAtSiD approach is quite distinct from those of the con-
ventional least squares or ‘deterministic’ approach to trajectory analysis in that the
general form of each GrAtSiD trajectory model will normally differ from one com-
ponent of displacement to the next. For example, the E, N and U curves in Fig. 1.13
include 2, 0 and 1 jumps respectively. In the conventional approach the amplitudes
of the various jumps and transients will differ between E, N and U but the number
of jumps and transients will not, nor will the timing of those jumps, nor the transient
initiation times. This usually makes more sense from the physical point of view, and
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an improvement of GrAtSidD would be to give the user the option of enforcing com-
mon jump times and common initiation times for the transients in all 3 directional
components of the data.

1.5 Conclusions

In principle, the deterministic approach to trajectory modelling starts with the form
of the trajectory model already established, and it merely estimates the coefficients
of that model via a least squares approach. (At OSU we use a robust least squares
method that automatically down-weights outliers). In contrast, the GrAtSiD approach
does allow some components of the trajectory model to be assigned and fixed, but its
central concern is the search for the best basis functions to be added to, or incorporated
within the final trajectory model. These basis functions are selected from a huge set
or ‘dictionary’ of possibly useful basis functions. The deterministic approach often
assigns some specific physical significance to its coefficients, because the associated
basis functions (model components) are endowed with a physical interpretation. In
the GrAtSiD approach much less emphasis is placed on the values of some (or even
all) of the coefficients, and more significance is placed on the model trajectory curves
themselves, and their fit with the observations. Using the deterministic approach, it
is often possible to make fairly reliable predictions for the future positions of the
station, by projecting the trajectory model forward in time, though this must always
be done with some care, particularly if the model has many degrees of freedom.
The GrAtSiD approach often produces trajectory models with so many degrees of
freedom, that extrapolating the model forward would result in highly unreliable
predictions. GrAtSiD is attractive to those who are more concerned with what has
happened within the time window of observation, and less concerned with what will
happen next.

There can be little doubt that new classes of ‘deterministic’ trajectory models will
be developed so as to mimic additional modes of crustal motion and deformation.
For example, neither the SLTM nor the ELTM is well equipped for reproducing
repeated transient displacements associated with episodic slip events. Sub-models
that can describe the surface displacement transients driven by episodic slip events
are already under development. These new sub-models would have to distinguish
between repeated aseismic slip events that occur at regular intervals, and those with
irregular intervals. It is also necessary to distinguish between episodic aseismic slip
events which always produce transient displacement curves that are special instances
of some general form or shape, versus trains of episodic slip events that can produce
transients of different functional form, not just different parameter values within the
same functional form. The greater the range of possible transient forms, the more
attractive the GrAtSiD approach becomes relative to the deterministic approach.

No matter whether we estimate the parameters associated with our trajectory
models using a deterministic approach, in which the design matrix for the least
square problem is prescribed, based on external (prior) information, or we estimate
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parameters in a much more autonomous way, in which the elements of the trajectory
model are chosen by an algorithm, it will always be necessary to perform a colored
noise analysis of the residuals, if we wish to supply confidence intervals to each of the
parameters we have estimated. This is particularly important when we are using the
deterministic approach and have selected the components of our trajectory models
on the basis of our physical intuition about the causes and character of these motions.
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Chapter 2 ®)
Introduction to Geodetic Time Series g
Analysis

Machiel S. Bos, Jean-Philippe Montillet, Simon D. P. Williams and
Rui M. S. Fernandes

Abstract The previous chapter gave various examples of geophysical time series
and the various trajectory models that can be fitted to them. In this chapter we
will focus on how the parameters of the trajectory model can be estimated. It is
meant to give researchers new to this topic an easy introduction to the theory with
references to key books and articles where more details can be found. In addition,
we hope that it refreshes some of the details for the more experienced readers. We
pay special attention to the modelling of the noise which has received much attention
in the literature in the last years and highlight some of the numerical aspects. The
subsequent chapters will go deeper into the theory, explore different aspects and
describe the state of art of this area of research.

Keywords GNSS time series * Linear model - Power-law noise * Bayesian
analysis + Maximum likelihood estimation

The original version of this chapter was revised: Electronic Supplementary Materials have been
added. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-21718-1_14

Electronic supplementary material
The online version of this chapter (https://doi.org/10.1007/978-3-030-21718-1_2) contains
supplementary material, which is available to authorized users.

M. S. Bos (<) - R. M. S. Fernandes
Instituto Dom Luiz, Universidade da Beira Interior, Covilha, Portugal
e-mail: machiel @segal.ubi.pt

R. M. S. Fernandes
e-mail: rui@segal.ubi.pt

J.-P. Montillet

Space and Earth Geodetic Analysis Laboratory, Universidade da Beira Interior,
Covilha, Portugal

e-mail: jpmontillet@segal.ubi.pt

Institute of Earth Surface Dynamics, University of Lausanne, Neuchatel, Lausanne, Switzerland

S. D. P. Williams
National Oceanographic Centre, Liverpool, United Kingdom
e-mail: sdwil@noc.ac.uk

© Springer Nature Switzerland AG 2020 29
J.-P. Montillet and M. S. Bos (eds.), Geodetic Time Series

Analysis in Earth Sciences, Springer Geophysics,

https://doi.org/10.1007/978-3-030-21718-1_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21718-1_2&domain=pdf
mailto:machiel@segal.ubi.pt
mailto:rui@segal.ubi.pt
mailto:jpmontillet@segal.ubi.pt
mailto:sdwil@noc.ac.uk
https://doi.org/10.1007/978-3-030-21718-1_2

30 M. S. Bos et al.

2.1 Gaussian Noise and the Likelihood Function

Geodetic time series consist out of a set observations at various epochs. These
observations, stored in a vector y, are not perfect but contain noise which can be
described as a set of multivariate random variables. Let us define this as the vec-
torw = [Wy, W, W3, ..., Wy] where each W, is a random variable. If f(w) is the
associated probability density function, then the first moment ., the mean of the
noise, is defined as Casella and Berger (2001):

o0

w1 = E[W] = / wf(w) dw 2.1)

—0Q

where E is the expectation operator. It assigns to each possible value of random
variable w a weight f(w) over an infinitely small interval of dw, sums each of them
to obtain the mean expected value E[W]. The second moment u, is defined in a
similar manner:

w, = E[W?] = / w? f(w) dw = / w2d F (w) (2.2)

The last term F is the cumulative distribution. For zero mean, the second moment
is better known as the variance. Since we have N random variables, we can compute
variances for E[W;W;], where both i and j range from 1 to N. The result is called
the covariance matrix. In this book, the probability density function f (w) is assumed
to be a Gaussian:

792 (2.3)

1 _ 2
Fwlpr, o) = exp [—(w ) ]
2mo?

where o is the standard deviation, the square-root of the variance of random variable
w. This function is very well known and is shown in Fig.2.1 for zero u;.

The standard error is defined as the 1-o interval and contains on average 68% of
the observed values of w. The reason why it is so often encountered in observations
is that the central limit theorem states that the sum of various continuous probability
distributions always tends to the Gaussian one. An additional property of the Gaussian
probability density function is that all its moments higher than two (u3, t4, ...) are
zero. Therefore, the mean and the covariance matrix provide a complete description
of the stochastic properties. Actually, we will always assume that the mean of the
noise is zero and therefore only need the covariance matrix. The term in front of the
exponential is needed to ensure that the integral of f(x) from —oo to co produces
1. That is, the total probability of observing a value between these limits is 1, as it
should be. We have not one, but several observations with noise in our time series.
The probability density function of the multi-variate noise is:
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Fig. 2.1 The Gaussian probability density function, together with the 1, 2 and 3 ¢ intervals

f(w|C) = exp[—iw'C7'w] 2.4

1
J@2m)N det(C)

We assumed that the covariance matrix C is known. The expression f(w|C)
should be read as the probability density function f for variable w, for given and
fixed covariance matrix C. Next, we assume that our observations can be described
by our model g(x, #), where x are the parameters of the model and ¢ the time. The
observations are the sum of our model plus the noise:

y=gx,t)+w or w=y—g(Xx,1) (2.5)

The noise w is described by our Gaussian probability density function with zero
mean and covariance matrix C. The probability that we obtained the actual values of
our observations is:

fylx,C) = exp[-3(y—gx. 1) C'(y—gx.1)] (2.6

1
v 2m)N det(C)

However, we don’t know the true values of x or the covariance matrix C. We only
know the observations. Consequently, we need to rephrase our problem as follows:
what values of x and C would produce the largest probability that we observe y? Thus,
we are maximising f (x, C|y) which we call the likelihood function L. Furthermore,
we normally work with the logarithm of it which is called the log-likelihood:
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1
In(L) = -3 [N In@27) + In(det(C)) + (y — g(x, 1) C ' (y —gx, 1))] (2.7

We need to find value of x to maximise this function and the method is there-
fore called Maximum Likelihood Estimation (MLE). The change from f(y|x, C) to
f(x, Cly) is subtle. Assume that the covariance matrix C also depends on parameters
that we store in vector X. In this way, we can simplify the expression f(y|x, C) to
f(y|x). Bayes’ Theorem, expressed in terms of probability distributions gives us:

X)) f(x)
= LA 2.8
fxly) I (2.8)

where f(y) and f(x) are our prior probability density function for the observations
y and parameters X, respectively. These represent our knowledge about what obser-
vations and parameter values we expect before the measurements were made. If
we don’t prefer any particular values, these prior probability density functions can
be constants and they will have no influence on the maximising of the likelihood
function f(x]y) = L.

Another subtlety is that we changed from random noise and fixed parameter values
of the trajectory model f(y|x) to fixed noise and random parameters of the trajectory
model f (x]y). If the trajectory model is for example a linear tectonic motion then this
is a deterministic, fixed velocity, not a random one. However, one should interpret
f(x|y) as our degree of trust, our confidence that the estimated parameters x are
correct. See also Koch (1990, 2007) and Jaynes (2003). The last one is particularly
recommended to learn more about Bayesian statistics.

2.2 Linear Models

So far we simply defined our trajectory model as g(x, ). An important class of
models that are fitted to the observations are linear models. These are defined as:

g(x,1) = x181(¢) +x282(t) + -+ + xpgm(t) (2.9)

where x| to x,, are assumed to be constants. We can rewrite this in matrix form as
follows:

gi1(t) &(t) ... gu(t)
g1() g2(n) gu(t2)

g(x, 1) = — Ax (2.10)

81(.IN) g (ty) - gm(tn) e

Matrix A is called the design matrix. From Chap. 1 we know that tectonic motion
or sea level rise can be modelled by a linear trend (i.e. the Standard Linear Trajectory
Model). Thus g;(¢) is a constant and g»(¢) a linear trend. This can be extended to a
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Fig. 2.2 Sketch of a trajectory model containing common phenomena

higher degree polynomial to model acceleration for example. Next, in many cases an
annual and semi-annual signal is included as well. A periodic signal can be described
by its amplitude by and its phase-lag v, with respect to some reference epoch:

g(1) = by cos(wxt — Vi)
= by cos ¥ cos(wyt) + by sin Yy sin(wyt) (2.11)

= ¢ cos(wyt) + s sin(wyt)

Since the unknown phase-lag ¥ makes the function non-linear, one must almost
always estimate the amplitudes c; and s, see Chap. 1. These parameters are linear
with functions cos and sin, and derive from these values the amplitude b; and phase-
lag .

Other models that can be included in g(¢) are offsets and post-seismic relaxation
functions, see Chap. 1. An example of a combination of all these models into a single
trajectory model is shown in Fig.2.2.

For linear models, the log-likelihood can be rewritten as:

In(L) = —% [N In@27) + In(det(C)) + (y — Ax)" C™ ' (y — Ax)] (2.12)

This function must be maximised. Assuming that the covariance matrix is known,
then it is a constant and does not influence finding the maximum. Next, the term
(y — Ax) represent the observations minus the fitted model and are normally called
the residuals r. It is desirable to choose the parameters x in such a way to make these
residuals small. The last term can be written as r” C~'r and itis a quadratic function,
weighted by the inverse of matrix C.
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Now let us compute the derivative of In(L):

dIn(L)

e ATCly — ATC'Ax (2.13)
X

The minimum of In(L) occurs when this derivative is zero. Thus:
ATC'Ax=ATCly - x=(ATC'A)'ATC Yy (2.14)

This is the celebrated weighted least-squares equation to estimate the parameters
x. Most derivations of this equation focus on the minimisation of the quadratic
cost function. However, here we highlight the fact that for observations that contain
Gaussian multivariate noise, the weighted least-squares estimator is a maximum
likelihood estimator (MLE). From Eq.(2.14) it can also be deduced that vector X,
like the observation vector y, follows a multi-variate Gaussian probability density
function.

The variance of the estimated parameters estimated is:

var(x) = var ((AC™'A) "' ATC"ly)

— (ATC'A) ' ATC var(y) CT'A (ATCT'A)
= (ATC'A)'ATC'Cc CT'A(ATCT'A)T!
— (ATC'A)”

(2.15)

Next, define the following matrix Z(x):

92 92
I(x) = —E [—ln(L)} = —/ <—21n(f)> f dx (2.16)
0x

ox2

It is called the Fisher Information matrix. As in Egs.(2.1) and (2.2), we use the
expectation operator E. Remember that we simply called f our likelihood L but
these are the same. We already used the fact that the log-likelihood as function of
X is horizontal at the maximum value. Let us call this X. The second derivative is
related to the curvature of the log-likelihood function. The sharper the peak near its
maximum, the more accurate we can estimate the parameters x and therefore the
smaller their variance will be.

Next, it can be shown that the following inequality holds:

2
15/(ﬁ—x)2fdx/<algif)> £ dx 2.17)

The first integral represents the variance of x, see Eq. (2.2). The second one, after
some rewriting, is equal to the Fisher information matrix. This gives us, for any
unbiased estimator, the following Cramér—Rao Lower Bound (Kay 1993):
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. 1
var(X) > m (2.18)

Equation (2.18) predicts the minimum variance of the estimated parameters x
for given probability density function f and its relation with the parameters x that
we want to estimate. If we use Eq. (2.13) to compute the second derivative of the
log-likelihood, then we obtain:

I(x) =ATC'A (2.19)

Comparing this with Eq.(2.15), one can see that for the case of the weighted
least-square estimator, the Cramér—Rao Lower Bound is achieved. Therefore, it is an
optimal estimator. Because we also need to estimate the parameters of the covariance
matrix C, we shall use MLE which approximates this lower bound for increasing
number of observations. Therefore, one can be sure that out of all existing estimation
methods, none of them will produce a more accurate result than MLE, only equal or
worse. For more details, see Kay (1993).

2.3 Models for the Covariance Matrix

Least-squares and maximum likelihood estimation are well known techniques in var-
ious branches of science. In recent years much attention has been paid by geodesists
to the structure of the covariance matrix. If there was no relation between each noise
value, then these would be independent random variables and the covariance matrix
C would be zero except for values on its diagonal. However, in almost all geodetical
time series these are dependent random variables. In statistics this is called temporal
correlation and we should consider a full covariance matrix:

2 2 2
of1 Oy ... Ofy
o2 o2 o
21 O 2N
C= ; ] ) (2.20)
2 2 2
ON1 -+ ONN—1 ONN

where o, is the covariance between random variables w; and w,. If we assume that
the properties of the noise are constant over time, then we have the same covariance
between w, and w3, w3 and wy and all other correlations with 1 time step separation.

Asaresult, 0%, 0%, ..., cr(szl) v are all equal. A simple estimator for it is:
| N
2 2 2
oh=oh= =0k =y > wiwig (2.21)

i=1
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This is an approximation of the formula to compute the second moment, see
Eq.(2.2), and it called the empirical or sample covariance matrix. Therefore, one
could try the following iterate scheme: fit the linear model to the observations some
a priori covariance matrix, compute the residuals and use this to estimate a more
realistic covariance matrix using Eq.(2.20) and fit again the linear model to the
observations until all estimated parameters have converged.

The previous chapter demonstrated that one of the purpose of the trajectory models
is to estimate the linear or secular trend. For time series longer than 2years, the
uncertainty of this trend depends mainly on the noise at the lowest observed periods
(Bosetal. 2008; He et al. 2019). However, the empirical covariance matrix estimation
of Eq.(2.20) does not result in an accurate estimate of the noise at long periods
because only a few observations are used in the computation. In fact, only the first
and last observation are used to compute the variance of the noise at the longest
observed period (i.e. UIZN).

This problem has been solved by defining a model of the noise and estimating the
parameters of this noise model. The estimation of the noise model parameters can be
achieved using the log-likelihood with a numerical maximisation scheme but other
methods exist such as least-squares variance component estimation (see Chap. 6).

The development of a good noise model started with the paper of Hurst (1957)
who discovered that the cumulative water flow of the Nile river depended on the
previous years. The influence of the previous years decayed according a power-law.
This inspired Mandelbrot and van Ness (1968) to define the fractional Brownian
motion model which includes both the power-law and fractional Gaussian noises,
see also Beran (1994) and Graves et al. (2017). While this research was well known in
hydrology and in econometry, it was not until the publication by Agnew (1992), who
demonstrated that most geophysical time series exhibit power-law noise behaviour,
that this type of noise modelling started to be applied to geodetic time series. In
hindsight, Press (1978) had already demonstrated similar results but this work has
not received much attention in geodesy. That the noise in GNSS time series also falls
in this category was demonstrated by Johnson and Agnew (1995). Power-law noise
has the property that the power spectral density of the noise follows a power-law
curve. On a log-log plot, it converts into a straight line. The equation for power-law
noise is:

P(f) = Po (f/f)" (2.22)

where f is the frequency, Py is a constant, f; the sampling frequency and the exponent
k is called the spectral index.

Granger (1980), Granger and Joyeux (1980) and Hosking (1981) demonstrated
that power-law noise can be achieved using fractional differencing of Gaussian noise:

(1-B)’v=w (2.23)
where B is the backward-shift operator (Bv; = v;_;) and v a vector with indepen-

dent and identically distributed (IID) Gaussian noise. Hosking and Granger used
the parameter d for the fraction —« /2 which is more concise when one focusses on
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the fractional differencing aspect. It has been adopted by people studying general
statistics (Sowell 1992; Beran 1995). However, in geodesy the spectral index « is
used in the equations. Hosking’s definition of the fractional differencing is:

(1-B)*2=3%" (_';/ 2)(—3)!‘

i=0

K 1« K
=1 —=-B——-"(1=-)B%>+... 2.24
2 22( 2) + (2.24)

The coefficients /#; can be viewed as a filter that is applied to the independent
white noise. These coefficients can be conveniently computed using the following
recurrence relation (Kasdin 1995):

ho =1

hi_ (2.25)
m:a—g—nfl fori > 0
l

One can see that for increasing 7, the fraction (i — x/2 — 1)/i is slightly less than
1. Thus, the coefficients /; only decrease very slowly to zero. This implies that the
current noise value w; depends on many previous values of v. In other words, the
noise has a long memory. Actually, the model of fractional Gaussian noise defined
by Hosking (1981) is the basic definition of the general class of processes called
Auto Regressive Integrated moving Average (Taqqu et al. 1995). If we ignore the
Integrated part, then we obtain the Auto Regressive Moving Average (ARMA) model
(Box et al. 2015; Brockwell and Davis 2002) which are short-memory noise models.
The original definition of the ARIMA processes only considers the value of the power
k/21n Eq. (2.24) as an integer value. Granger and Joyeux (1980) further extended the
definition to a class of fractionally integrated models called FARIMA or ARFIMA,
where « is a floating value, generally in the range of —2 < i < 2. Montillet and Yu
(2015) discussed the application of the ARMA and FARIMA models in modelling
GNSS daily position time series and concluded that the FARIMA is only suitable in
the presence of a large amplitude coloured noise capable of generating a distribution
with large tails (i.e. random-walk, aggregations).

Equation (2.25) also shows that when the spectral index « = 0, then all coefficients
h; are zero except for hy. This implies that there is no temporal correlation between
the noise values. In addition, Eq. (2.22) shows that this corresponds to a horizontal
line in the power spectral density domain. Using the analogy of the visible light
spectrum, this situation of equal power at all frequencies produces white light and
it is therefore called white noise. For ¥ # 0, some values have received a specific
colour. For example, k = —1 is known as pink noise. Another name is flicker noise
which seems to have originated in the study of noise of electronic devices. Red noise
is defined as power-law noise with k = —2 and produces &; = 1 for all values of i.
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Thus, this noise is a simple sum of all its previous values plus a new random step and
is better known as random walk (Mandelbrot 1999). However, note that the spectral
index x does not need to be an integer value (Williams 2003).

One normally assumes that v; = Ofori < 0. With this assumption, the unit covari-
ance between wy and w; with [ > k is:

k

C(wg, wy) = Zhihiﬂlfk) (2.26)
i—0

Since k¥ = 0 produces an identity matrix, the associated white noise covariance
matrix is represented by unit matrix I. The general power-law covariance matrix is
represented by the matrix J. The sum of white and power-law noise can be written
as Williams (2003):

C=0,J) +0,1 2.27)

where o,; and o,, are the noise amplitudes. It is a widely used combination of noise
models to describe the noise in GNSS time series (Williams et al. 2014). Besides
the parameters of the linear model (i.e. the trajectory model), maximum likelihood
estimation can be used to also estimate the parameters «, 0}, and o,,. This approach
has been implemented various software packages such as CATS (Williams 2008),
est_noise (Langbein 2010) and Hector (Bos et al. 2013). In recent years one also has
detected random walk noise in the time series and this type has been included as well
in the covariance matrix (Langbein 2012; Dmitrieva et al. 2015).

We assumed that v; = 0 for i < 0 which corresponds to no noise before the first
observation. This is an important assumption that has been introduced for a practical
reason. For a spectral index « smaller than —1, the noise becomes non-stationary.
That is, the variance of the noise increases over time. If it is assumed that the noise
was always present, then the variance would be infinite.

Most GNSS time series contain flicker noise which is just non-stationary. Using
the assumption of zero noise before the first observation, the covariance matrix still
increases over time but remains finite.

For some geodetic time series, such as tide gauge observations, the power-law
behaviour in the frequency domain shows a flattening below some threshold fre-
quency. To model such behaviour, Langbein (2004) introduced the Generalised
Gauss—Markov (GGM) noise model which is defined as:

(1—¢B) *v=w (2.28)

The only new parameter is ¢. The associated recurrence relation to compute the
new coefficients A; is:

ho=1

. K hi—l X (229)
h,-:(z—a—l)qbf fori >0
i



2 Introduction to Geodetic Time Series Analysis 39

If ¢ = 1, then we obtain again our pure power-law noise model. For any value of
¢ slightly smaller than one, this term helps to shorten the memory of noise which
makes it stationary. That is, the temporal correlation decreases faster to zero for
increasing lag between the noise values. The power-spectrum of this noise model
shows a flattening below some threshold frequency which guarantees that the variance
is finite and that the noise is stationary. Finally, it is even possible to generalise this
a bit more to a fractionally integrated generalised Gauss—Markov model (FIGGM):

(1-¢B) ™ 21— B *v=w

(1 — 6By u = w (2.30)

This is just a combination of the two previous models. One can first apply the
power-law filter to v to obtain u and afterwards apply the GGM filter on it to obtain
w. Other models will be discussed in this book, such as ARMA (Box et al. 2015;
Brockwell and Davis 2002), but the power-law, GGM and FIGGM capture nicely
the long memory property that is present in most geodetic time series. A list of all
these noise models and their abbreviation is given in Table 2.1.

2.4 Power Spectral Density

Figure 2.3 shows examples of white, flicker and random walk noise for a displacement
time series. One can see that the white noise varies around a stable mean while the
random walk is clearly non-stationary and deviates away from its initial position.

In the previous section we mentioned that power-law noise has a specific curve
in the power spectral density plots. Methods to compute those plots are given by
Buttkus (2000). A simple but effective method is based on the Fourier transform that
states that each time series with finite variance can be written as a sum of periodic
signals:

Table 2.1 Common

ot ) Noise model Abbreviation

abbreviation of noise models - -
Auto-Regressive Moving Average | ARMA
Auto-Regressive Fractionally ARFIMA or FARIMA
Integrated Moving Average
Flicker Noise FN
Fractionally Integrated GGM FIGGM
Generalised Gauss Markov GGM
Power-Law PL
Random Walk RW
White Noise WN
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N/2
1 .
Vo = — § Y - 7N forn =10,...,N — 1] (2.31)
k=—N/2+1

Actually, this is called the inverse discrete Fourier transform. Y; are complex
numbers, denoting the amplitude and phase of the periodic signal with period k /(N T)
where T is the observation span. An attentive reader will remember that flicker and
random walk noise are non-stationary while the Fourier transform requires time
series with finite variance. However, we never have infinitely long time series which
guarantees the variance remains within some limit. The coefficients can be computed
as follows:

N—1
Yo = Z Ve RN fork =[=N/2+1,...,N/2] (2.32)
n=0

The transformation to the frequency domain provides insight which periodic sig-
nals are present in the signal and in our case, insight about the noise amplitude at the
various frequencies. This is a classic topic and more details can be found in the books
by Bracewell (1978) and Buttkus (2000). The one-sided power spectral density Sy is
defined as: )

So = |Y 0| / fs
Sn2 = Yup /s (2.33)
S = 2|1V ?/fy fork=[1,...,N/2—1]

The frequency f; associated to each Sy is:

white noise

il
™ WWMMWW& noise ‘m
i \‘MAM H“w»w

\M\W\ﬂ“ﬂw\* random walk noise
20| WWWWN
A

> M,

i

-40 I I I I I I I I J
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Years

Fig. 2.3 Examples of white, flicker and random walk noise
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fi= % fork =[0,...,N/2] (2.34)

The highest frequency is half the sampling frequency, f;/2, which is called the
Nyquist frequency. The power spectral density (PSD) computed in this manner is
called a periodogram. There are many refinements, such as applying window func-
tions and cutting the time series in segments and averaging the resulting set of PSD’s.
However, a detail that normally receives little attention is that the Fourier transform
produces positive and negative frequencies. Time only increases and there are no neg-
ative frequencies. Therefore, one always uses the one-sided power spectral density.
Another useful relation is that of Parseval (Buttkus 2000):

1 N—-1 1 N/2
= == > In? (2.35)
Nn:o N k=—N/2+1

Thus, the variance of the noise should be equal to the sum of all S; values (and
an extra f;/N? scale). The one-sided power spectral density of the three time series
of Fig.2.3 are plotted in Fig.2.4. It shows that power-law noise indeed follows a
straight line in the power spectral density plots if a log-log scale is used. In fact, the
properties of the power-law noise can also be estimated by fitting a line to the power
spectral density estimates (Mao et al. 1999; Caporali 2003).

The PSD of power-law noise generated by fractionally differenced Gaussian noise
is Kasdin (1995):

202 .
S(f) = 2sin(z f/f))"
s (2.36)
202 « «
A 7 (T = Po(f/fs) for f K fs
0 White noise ' Flicker noise 10'g Random Walk noise

Power (mm 2/cpy)
3

S
&

Il Il Il
10° 10" 10?
Frequency (cpy) Frequency (cpy) Frequency (cpy)

Il Il Il Il Il Il
10° 10’ 10? 10° 10' 102

Fig. 2.4 One-sided power spectral density for white, flicker and random walk noise. The blue dots
are the computed periodogram (Welch’s method) while the solid red line is the fitted power-law
model
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For small value of f, this approximates Py(f/f;)*. The sine function is the result
of having discrete data (Kasdin 1995). The PSD for GGM noise is:

20’2 K/2

S(f) = [14¢> —2¢ cos@nf/f,)]

(2.37)

N

For ¢ = 1, it converts to the pure power-law noise PSD. The Fourier transform,
and especially the Fast Fourier Transform, can also be used to filter a time series.
For example, Eqgs. (2.23) and (2.24) represent a filtering of white noise vector v to
produce coloured noise vector w:

i—1
w; = Zhi,j Vj (238)
Jj=0

Letus now extend the time series y and the vector h containing the filter coefficients
with N zeros. This zero padding allows us to extend the summation to 2N. Using
Eq. (2.32), their Fourier transforms, Y; and Hj, can be computed. In the frequency
domain, convolution becomes multiplication and we have Press et al. (2007):

We=H, Y, fork=[-N,...,N] (2.39)

Using Eq. (2.31) and only using the first N elements, the vector w with the coloured
noise can be obtained.

2.5 Numerical Examples

To explain the principle of maximum likelihood, this section will show some exam-
ples of the numerical method using Python 3. For some years Matlab has been the
number one choice to analyse and visualise time series. However, in recent years
Python has grown in popularity, due to the fact that it is open source and has many
powerful libraries. The following examples are made in IPython (https://ipython.org),
using the Jupyter notebook webapplication. How to install this program is described
on the afore mentioned website. The examples shown here can be downloaded from
the publisher website. The first step is to import the libraries:

import math

import numpy as np

from matplotlib import pyplot as plt
from scipy.optimize import minimize
from numpy.linalg import inv

Next step is to create some data which we will store in Numpy arrays. As in
Matlab, the ‘linspace’ operator creates a simple array on integers. Furthermore, as


https://ipython.org
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Fig. 2.5 Our synthetic time series containing a simple line plus flicker noise

1.4

the name implies ‘random.normal’ creates an array of Gaussian distributed random
numbers. We create a line y with slope 2 and offset 6 on which we superimpose
the noise w that were created using a standard deviation o,,; = 0.5 for vector v, see

Eq.(2.23). This time series is plotted in Fig.2.5.

N = 500 # Number of daily observations

t = np.linspace(0,N/365.25,N) # time in years

np.random.seed (0) # Assure we always get the same noise
kappa = -1 # Flicker noise
h = np.zeros (2*N) # Note the size : 2N
h[0] =1 # Eg. (25)
for i in range(1l,N):

hl[i] = (i-kappa/2-1)/1i * h[i-1]
A% = np.zeros (2*N) # Again zero-padded N:2N
v[0:N] = np.random.normal (loc = 0.0, scale = 0.5, size = N)
w = np.real (fft.ifft(fft.fft(v) * fft.fft(h))) # Eg. (39)
v = (6 + 3*t) + w[0:N] # trajectory model + noise
plt.plot(t, y, 'b-") # plot the time series

Of course the normal situation is that we are given a set observations and that we
need to estimate the parameters of the trajectory model y(¢) = a + bt. However, cre-
ating synthetic time series is a very good method to test if your estimation procedures

are correct.

First we will estimate the trajectory assuming white noise in the data:

#--- The design matrix
A = np.empty((N,2))
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for i in range(0,N) :

A[i,0] =1

Ali,1] = t[i]
#--- 0ld white noise method
C = np.identity (N)
X = inv(A.T @ inv(C) @ A) @ (A.T @ inv(C) @ y) # Eg. (14)
v_hat = A @ x
r =y - y_hat # residuals
C_x = np.var(r)* inv(A.T @ inv(C) @ A) # Eg. (15)

print (‘White noise approximation’)
print(’a = {0:6.3f} +/- {1:5.3f} mm’.format(x[0],\
math.sqgrt (C_x[0,0])))
print (‘b = {0:6.3f} +/- {1:5.3f} mm/yr’.format(x[1],\
math.sqgrt (C_x[1,11)))

The result should be:

White noise approximation
a= 6.728 +/- 0.064 mm
b= 1.829 +/- 0.080 mm/yr

What we have done here is using weighted least-squares with a white noise model

that has unit variance. The real variance of the noise has been estimated from the
residuals and the uncertainty of the estimated parameters x have been scaled with it.

At this point the reader will realise that this approach is not justified because the

noise is temporally correlated. It will be convenient to define the following two func-
tions that will create the covariance matrix for power-law noise and apply weighted
least-squares (Williams 2003; Bos et al. 2008):

#--- power-law noise covariance matrix
def create_C(sigma_pl, kappa) :
8] = np.identity (N)
h_prev =1
for i in range(1l,N):
h = (i-kappa/2-1)/i * h_prev # Eqg. (25)
for j in range(0,N-i):
Ulj,j+i]l = h
h_prev = h
U *= sigma_pl # scale noise
return U.T @ U # Eg. (26)

#--- weighted least-squares
def leastsquares(C,A,y):
= np.linalg.cholesky(C).T
U_inv = inv(U)

B = U_inv.T @ A
z = U_inv.T @ y
x = inv(B.T @ B) @ B.T @ z # Eg. (14)

#--- variance of the estimated parameters



2 Introduction to Geodetic Time Series Analysis 45

C_x = inv(B.T @ B) # Eg. (15)

#--- Compute log of determinant of C
In_det_C = 0.0
for i in range(0,N) :

In_det_C += 2*math.log(U[i,1])

return [x,C_x,1ln_det_C]

The function that creates the covariance matrix for power-law noise has been
discussed in Sect.2.3 and uses Eqgs.(2.25) and (2.26). The weighted least-squares
function contains some numerical tricks. First, the Cholesky decomposition is applied
to the covariance matrix (Bos et al. 2008):

c=U"U (2.40)

where U is an upper triangle matrix. That is, only the elements above the diagonal
are non-zero. A covariance matrix is a positive definite matrix which ensures that the
Cholesky decomposition always exists. The most important advantage it that one can
compute the logarithm of the determinant of matrix C by just summing the logarithm
of each element on the diagonal of matrix U. The factor two is needed because matrix
C is the product of UTU. Using these two functions, we can compute the correct
parameters X:

#--- The correct flicker noise covariance matrix
sigma_pl =4

kappa = -1

C = create_C(sigma_pl, kappa)
[x,C_x,1n_det_C] = leastsquares(C,A,vy)

print ('Correct Flicker noise’)
print(’a = {0:6.3f} +/- {1:5.3f} mm’.format(x[0],\
math.sqgrt (C_x[0,0])))
print(‘'b = {0:6.3f} +/- {1:5.3f} mm/yr’.format(x[1],\
math.sqgrt (C_x[1,1])))

The result is:

Correct Flicker noise
a= 6.854 +/- 2.575 mm
b= 1.865 +/- 4.112 mm/yr

If one compares the two estimates, one assuming white noise and the other assum-
ing flicker noise, then one can verify that the estimates themselves are similar. The
largest difference occurs for the estimated errors which are 5 times larger for the
latter. This also happens in real geodetic time series. Mao et al. (1999) concluded
that the velocity error in GNSS time-series could be underestimated by factors of
5-11 if a pure white noise model is assumed. Langbein (2012) demonstrated that an
additional factor of two might be needed if there is also random walk noise present.
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For sea level time series (Bos et al. 2014) obtained a more moderate factor of 1.5—
2 but still, white noise underestimates the true uncertainty of the estimated linear
trend. Williams et al. (2014) estimated a factor 6 for the GRACE gravity time series.
As discussed in Sect.2.3, most geodetic time series are temporally correlated and
therefore one nowadays avoids the white noise model.

So far we have assumed that we knew the true value of the spectral index « and the
noise amplitude o,;. Using MLE, we can estimate these parameters from the data:

#--- Log-likelihood (with opposite sign)
def log_likelihood(x_noise):
sigma_pl = x_noise[0]
kappa = x_noise[1]
C = create_C(sigma_pl, kappa)
[x,C_x,1n_det_C] = leastsquares(C,A,y)
r =y - A @x # residuals
#--- Eg. (12)
logL = -0.5*(N*math.log(2*math.pi) + 1ln_det_C \

+ r.T @ inv(C) @ r)
return -logL

x_noise0 = np.array([1,1]) # sigma_pl and kappa guesses
res = minimize(log_likelihood, x_noise0O, \
method='nelder-mead’, options={’xatol’:0.01})

print(’sigma_pl={0:6.3f}, kappa={1:6.3f}".\
format (res.x[0],res.x[1]))

Note that we inverted the sign of the log-likelihood function because most soft-
ware libraries provide minimization subroutines, not maximisation. In addition, it is
in this function that we need the logarithm of the determinant of matrix C. If one tries
to compute it directly from matrix C, then one quickly encounters too large num-
bers that create numerical overflow. This function also shows that we use weighted
least-squares to estimate the parameters of the trajectory model while the numeri-
cal minimization algorithm (i.e. Nelder—-Mead), is only used the compute the noise
parameters. The reason for using weighted least-squares, also a maximum likelihood
estimator as we have shown in Sect. 2.2, is solely for speed. Numerical minimization
is a slow process which becomes worse for each additional parameter we need to
estimate. The results is:

sigma_pl= 0.495, kappa=-1.004

These values are close to the true values of o,; = 0.5 and ¥ = —1. The following
code can be used to plot the log-likelihood as function of ¥ and o ;:

S = np.empty((21,21))
for i in range(0,21):
sigma_pl = 1.2 - 0.05*1
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for j in range(0,21):

kappa = -1.9 + 0.1%*j
x_noise0 = [sigma_pl, kappal
S[i,j] = math.log(log_likelihood(x_noise0))

plt.imshow(S,extent=[-1.9,0.1,0.2,1.2], cmap='nipy_spectral’, \
aspect='auto’) ;

plt.colorbar ()

plt.ylabel ('sigma_pl’)

plt.xlabel (’'kappa’)

plt.show()

The result is shown in Fig. 2.6 which indeed shows a minimum around o,,; = 0.5
and « = —1. Depending on the computer power, it might take some time to produce
the values for this figure.

In Sect. 2.3 we noted that for GNSS time series the power-law plus white noise
model is common. Thus, one must add the covariance matrix for white noise, auz)I, to
the covariance matrix we discussed in the examples. In addition, it is more efficient
to write the covariance matrix of the sum of power-law and white noise as follows:

C=0,J() +o,I=0" (¢ J) + (1 —P)I) (2.41)

where o can be computed using:

o= — (2.42)

-1.75-1.50 -1.25 -1.00 —-0.75 -0.50 —0.25 0.00
kappa

Fig. 2.6 The log of the log(L) function as function of x and o
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Since o can be computed from the residuals, we only use our slow numerical
minimization algorithm need to find the value of ¢ (Williams 2008).

Note that we only analysed 500 observations while nowadays time series with
7000 observations are not uncommon. If one tries to rerun our examples for this
value of N, then one will note this takes an extremely long time. The main reason
is that the inversion of matrix C requires O(N?) operations. Bos et al. (2008, 2013)
have investigated how the covariance matrix C can be approximated by a Toeplitz
matrix. This is a special type of matrix which has a constant value on each diagonal
and one can compute its inverse using only O(N?) operations. This method has been
implemented in the Hector software package that is available from http://segal.ubi.
pt/hector.

The Hector software was used to create time series with a length of 5000 daily
observations (around 13.7 years) for 20 GNSS stations which we will call the Bench-
mark Synthetic GNSS (BSG). This was done for the the horizontal and vertical com-
ponents, producing 60 time series in total. Each contains a linear trend, an annual
and a semi-annual signal. The sum of flicker and white noise, w;, was added to these
trajectory models:

i—1
wi=0 |V hijvi+1—¢u (2.43)
j=0

with both &; and v; are Gaussian noise variables with unit variance. The factor ¢ was
defined in Eq.(2.41). To create our BSG time series we used 0 = 1.4mm, ¢ = 0.6
and horizontal components and o = 4.8 mm, ¢ = 0.7 for the vertical component.

It is customary to scale the power-law noise amplitudes by AT ~*/4 where AT is
the sampling period in years. For the vertical flicker noise amplitude we obtain:

B o _ 48x 07 0.25
Op1 = AT = (1365257 17.6 mm/yr (2.44)

The vertical white noise amplitude is 2.6 mm. For the horizontal component these
values are o) = 4.7 mm/yro'25 and o, = 0.9 mm respectively. The BGS time series
can be found on the Springer website for this book, and can be used to verify the
algorithms developed by the reader. These series will also be compared with other
methods in the following chapters.

2.6 Discussion

In this chapter we have given a brief introduction to the principles of time series anal-
ysis. We paid special attention to the maximum likelihood estimation (MLE) method
and the modelling of power-law noise. We showed that with our assumptions on the
stochastic noise properties, the estimated parameters have their variance bounded
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by the Cramer Rao lower bound. Therefore the MLE is an optimal estimator in the
sense of asymptotically unbiased and efficient (minimum variance).

In this book we will present other estimators such as the Kalman filter, the Markov
Chain Monte Carlo Algorithm and the Sigma-method. All have their advantages and
disadvantages and to explain them was one of the reasons for writing this book.
The other reason was to highlight the importance of temporal correlated noise. This
phenomenon has been known for a long time but due to increased computer power,
it has now become possible to include it in the analysis of geodetic time series. We
illustrated how this can be done by various examples in Python 3 that highlighted
some numerical aspects that will help the reader to implement their own algorithms.

References

Agnew DC (1992) The time-domain behaviour of power-law noises. Geophys Res Letters
19(4):333-336, https://doi.org/10.1029/91GL02832

Beran J (1994) Statistics for long-memory processes. Monographs on statistics and applied proba-
bility, Chapman & Hall, New York

Beran J (1995) Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short
and Long Memory Autoregressive Integrated Moving Average Models. Journal of the Royal Sta-
tistical Society Series B (Methodological) 57(4):659—672, http://www.jstor.org/stable/2345935

Bos MS, Williams SDP, Aratjo IB, Bastos L (2008) Fast error analysis of continuous GPS obser-
vations. J Geodesy 82:157-166, https://doi.org/10.1007/s00190-007-0165-x

Bos MS, Williams SDP, Aratijo IB, Bastos L (2013) Fast error analysis of continuous GNSS obser-
vations with missing data. J Geodesy 87:351-360, https://doi.org/10.1007/s00190-012-0605-0

Bos MS, Williams SDP, Aratijo IB, Bastos L (2014) The effect of temporal correlated noise on
the sea level rate and acceleration uncertainty. Geophys J Int 196:1423-1430, https://doi.org/10.
1093/gji/ggt481

Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2015) Time Series Analysis, Forecasting and
Control, 5th edn. Wiley

Bracewell R (1978) The Fourier Transform and its Applications, 2nd edn. McGraw-Hill Kogakusha,
Ltd., Tokyo

Brockwell P, Davis RA (2002) Introduction to Time Series and Forecasting, second edition edn.
Springer-Verlag, New York

Buttkus B (2000) Spectral Analysis and Filter Theory in Applied Geophysics. Springer-Verlag
Berlin Heidelberg

Caporali A (2003) Average strain rate in the Italian crust inferred from a permanent GPS network -
I. Statistical analysis of the time-series of permanent GPS stations. Geophys J Int 155:241-253,
https://doi.org/10.1046/j.1365-246X.2003.02034.x

Casella G, Berger R (2001) Statistical Inference, 2nd edn. Duxbury Resource Center

Dmitrieva K, Segall P, DeMets C (2015) Network-based estimation of time-dependent noise in GPS
position time series. J Geodesy 89:591-606, https://doi.org/10.1007/s00190-015-0801-9

Granger C (1980) Long memory relationships and the aggregation of dynamic models. Journal of
Econometrics 14(2):227 — 238, https://doi.org/10.1016/0304-4076(80)90092-5

Granger CWJ, Joyeux R (1980) An Introduction to Long-Memory Time Series Models and Frac-
tional Differencing. Journal of Time Series Analysis 1(1):15-29, https://doi.org/10.1111/j.1467-
9892.1980.tb00297.x

Graves T, Gramacy R, Watkins N, Franzke C (2017) A Brief History of Long Memory: Hurst,
Mandelbrot and the Road to ARFIMA, 1951-1980. Entropy 19(9), https://doi.org/10.3390/
€19090437, http://www.mdpi.com/1099-4300/19/9/437


https://doi.org/10.1029/91GL02832
http://www.jstor.org/stable/2345935
https://doi.org/10.1007/s00190-007-0165-x
https://doi.org/10.1007/s00190-012-0605-0
https://doi.org/10.1093/gji/ggt481
https://doi.org/10.1093/gji/ggt481
https://doi.org/10.1046/j.1365-246X.2003.02034.x
https://doi.org/10.1007/s00190-015-0801-9
https://doi.org/10.1016/0304-4076(80)90092-5
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.3390/e19090437
https://doi.org/10.3390/e19090437
http://www.mdpi.com/1099-4300/19/9/437

50 M. S. Bos et al.

He X, Bos MS, Montillet JP, Fernandes RMS (2019) Investigation of the noise properties at low
frequencies in long GNSS time series. Journal of Geodesy https://doi.org/10.1007/s00190-019-
01244-y

Hosking JRM (1981) Fractional differencing. Biometrika 68:165-176

Hurst HE (1957) A Suggested Statistical Model of some Time Series which occur in Nature. Nature
180:494, https://doi.org/10.1038/180494a0

Jaynes ET (2003) Probability theory: The logic of science. Cambridge University Press, Cambridge

Johnson HO, Agnew DC (1995) Monument motion and measurements of crustal velocities. Geophys
Res Letters 22(21):2905-2908, https://doi.org/10.1029/95GL02661

Kasdin NJ (1995) Discrete simulation of colored noise and stochastic processes and 1/f“ power-law
noise generation. Proc IEEE 83(5):802-827

Kay SM (1993) Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA

Koch KR (1990) Bayesian Inference with Geodetic Applications. Lecture Notes in Earth Sciences,
Springer-Verlag, https://doi.org/10.1007/BFb0048699

Koch KR (2007) Introduction to Bayesian Statistics, 2nd edn. Springer-Verlag, Berlin Heidelberg

Langbein J (2004) Noise in two-color electronic distance meter measurements revisited. J Geophys
Res 109:B04406, https://doi.org/10.1029/2003JB002819

Langbein J (2010) Computer algorithm for analyzing and processing borehole strainmeter data.
Comput Geosci 36(5):611-619, https://doi.org/10.1016/j.cageo.2009.08.011

Langbein J (2012) Estimating rate uncertainty with maximum likelihood: differences between
power-law and flicker-random-walk models. J Geodesy 86:775-783, https://doi.org/10.1007/
s00190-012-0556-5

Mandelbrot BB (1999) Multifractals and 1/ f Noise. Springer, https://doi.org/10.1007/978-1-4612-
2150-0

Mandelbrot BB, van Ness JW (1968) Fractional Brownian motions, fractional noises and applica-
tions. SIAM Review 10:422-437

Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J] Geophys Res
104(B2):2797-2816, https://doi.org/10.1029/1998JB900033

Montillet JP, Yu K (2015) Modeling Geodetic Processes with Levy «-Stable Distribution and
FARIMA. Mathematical Geosciences 47(6):627-646

Press WH (1978) Flicker noises in astronomy and elsewhere. Comments on Astrophysics 7:103—119

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes 3rd Edition: The
Art of Scientific Computing, 3rd edn. Cambridge University Press, New York, NY, USA

Sowell F (1992) Maximum likelihood estimation of stationary univariate fractionally integrated
time series models. J Econom 53:165-188

Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: An empirical
study. Fractals 3:785-798

Williams SDP (2003) The effect of coloured noise on the uncertainties of rates from geodetic time
series. J Geodesy 76(9-10):483-494, https://doi.org/10.1007/s00190-002-0283-4

Williams SDP (2008) CATS : GPS coordinate time series analysis software. GPS Solut 12(2):147—
153, https://doi.org/10.1007/s10291-007-0086-4

Williams SD, Moore P, King MA, Whitehouse PL (2014) Revisiting grace antarctic ice mass
trends and accelerations considering autocorrelation. Earth and Planetary Science Letters 385:12
— 21, https://doi.org/10.1016/j.epsl.2013.10.016, http://www.sciencedirect.com/science/article/
pii/S0012821X 13005797


https://doi.org/10.1007/s00190-019-01244-y
https://doi.org/10.1007/s00190-019-01244-y
https://doi.org/10.1038/180494a0
https://doi.org/10.1029/95GL02661
https://doi.org/10.1007/BFb0048699
https://doi.org/10.1029/2003JB002819
https://doi.org/10.1016/j.cageo.2009.08.011
https://doi.org/10.1007/s00190-012-0556-5
https://doi.org/10.1007/s00190-012-0556-5
https://doi.org/10.1007/978-1-4612-2150-0
https://doi.org/10.1007/978-1-4612-2150-0
https://doi.org/10.1029/1998JB900033
https://doi.org/10.1007/s00190-002-0283-4
https://doi.org/10.1007/s10291-007-0086-4
https://doi.org/10.1016/j.epsl.2013.10.016
http://www.sciencedirect.com/science/article/pii/S0012821X13005797
http://www.sciencedirect.com/science/article/pii/S0012821X13005797

2 Introduction to Geodetic Time Series Analysis 51

Machiel S. Bos obtained in 1996 his M.Sc. from the Delft Uni-
versity of Technology. In 2001, he received his Ph.D. from the
University of Liverpool. Afterward, he held various post-doc
positions in Sweden, the Netherlands, and Portugal. Currently,
he is a post-doc at Instituto Dom Luiz. His scientific interests
include ocean tide loading, GPS time series analysis, and geoid
computations.

Jean-Philippe Montillet (MS’03 (Aalborg), PhD’08 (Notting-
ham), SMIEEE’14) is a geoscientist working in GNSS tech-
nology with applications in mathematical geodesy, geophysics
and civil engineering. His latest research projects include crustal
deformation and sea-level rise in the Pacific Northwest. He has
also been involved in the analysis of Earth observations (i.e.,
GRACE, Satellite altimetry) and climate change monitoring and
climate of the past simulations (TRACE21K, PMIP). The past 5
years, he has extensively worked on geodetic time series analy-
sis, including signal processing techniques to extract geophysi-
cal and transient signals, and several works on the stochastic and
functional modeling. His work is generally funded by govern-
ments (EPSRC, Australia RC, NASA, Swiss CTI) and collabo-
ration with safety authorities or government agencies.

Simon D. P. Williams has worked on sea and land level mea-
surements in the Marine Physics and Ocean Climate Group at
the National Oceanography Centre in Liverpool since 1999 and
prior to that spent 4 years at the Scripps Institute of Oceanogra-
phy, La Jolla in California. He received his PhD from Durham
University on “Current Motion on Faults of the San Andreas
System in Central California Inferred from Recent GPS and Ter-
restrial Survey Measurements”. He has particular expertise in
the area of stochastic modelling and uncertainty analysis of geo-
physical series including sea level, GNSS and gravity data. He is
the author of the CATS software, which is used by researchers
worldwide to analyse geophysical time series and several sem-
inal papers on stochastic noise analysis of geophysical time
series.




52

M. S. Bos et al.

Rui M. S. Fernandes (male), has a doctoral degree in Earth and
Space Sciences by Technical University of Delft (The Nether-
lands). He is Assistant Professor in the University of Beira
Interior (UBI), Covilha, Portugal and Associated Researcher of
Institute Geophysical Infante D. Luiz (IDL), Lisbon, Portugal.
He is the coordinator of C4G (Colaboratory For Geosciences),
the research infrastructure for Geosciences in Portugal and Pres-
ident of the Interim Governing Board of the GNSS EPOS-ERIC
(European Plate Observing System). His main areas of research
are related with application to geosciences of rigorous position-
ing using space-geodetic techniques.



Chapter 3 M)
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Series Analysis

German Olivares-Pulido, Felix Norman Teferle and Addisu Hunegnaw

Abstract The time evolution of geophysical phenomena can be characterised by
stochastic time series. The stochastic nature of the signal stems from the geophysical
phenomena involved and any noise, which may be due to, e.g., un-modelled effects or
measurement errors. Until the 1990s, it was usually assumed that white noise could
fully characterise this noise. However, this was demonstrated to not be the case
and it was proven that this assumption leads to underestimated uncertainties of the
geophysical parameters inferred from the geodetic time series. Therefore, in order to
fully quantify all the uncertainties as robustly as possible, it is imperative to estimate
not only the deterministic but also the stochastic model parameters of the time series.
In this regard, the Markov Chain Monte Carlo (MCMC) method can provide a sample
of the distribution function of all parameters, including those regarding the noise,
e.g., spectral index and amplitudes. After presenting the MCMC method and its
implementation in our MCMC software we apply it to synthetic and real time series
and perform a cross-evaluation using Maximum Likelihood Estimation (MLE) as
implemented in the CATS software. Several examples as to how the MCMC method
performs as a parameter estimation method for geodetic time series are given in this
chapter. These include the applications to GPS position time series, superconducting
gravity time series and monthly mean sea level (MSL) records, which all show very
different stochastic properties. The impact of the estimated parameter uncertainties
on sub-sequentially derived products is briefly demonstrated for the case of plate
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motion models. Finally, an evaluation of the MCMC method against the Hector
method using weekly downsampled versions of the Benchmark Synthetic GNSS
(BSG) time series as provided in Chap. 2 is presented separately in an appendix.

Keywords Time series analysis - Stochastic properties - Random-walk
metropolis-hasting + Parameter estimation + Parameter uncertainties - Geodesy and
geophysics + Gravity time series + Coloured noise

3.1 Introduction

The dynamics of different geophysical phenomena can be inferred by means of data
provided by space-geodetic techniques as, e.g., Doppler Orbitography and Radiopo-
sitioning Integrated by Satellite (DORIS) (Cazenave et al. 1992; Lefebvre et al. 1996;
Willis et al. 2010), Satellite Laser Ranging (SLR) (Pearlman et al. 2002; Bloffeld
et al. 2018), Very Long Baseline Interferometry (VLBI) (Schliiter et al. 2002;
Nothnagel et al. 2017), and Global Navigation Satellite Systems (GNSS) such as
the Global Positioning System (GPS) (Beutler et al. 1999; Dow et al. 2009; Teferle
et al. 2009; Klos et al. 2018a). These techniques are usually used along with others
such as, for example, continuous measurements of near surface movements from
strainmeters (Wyatt 1982, 1989; Langbein et al. 1993), and gravity measurements
(Van Camp et al. 2005; Van Camp et al. 2017). They provide data that allow scientists
to constrain geophysical models and, in turn, help to better understand phenomena
such as, tectonic plate motions (Larson and Agnew 1991; Fernandes et al. 2004),
glacial isostatic adjustments (GIA) (Milne et al. 2001; Bradley et al. 2009), seismic
and inter-seismic crustal movements (Prawirodirdjo et al. 1997; Argus et al. 2005),
hydrological processes (van Camp et al. 2006; Nahmani et al. 2012) and atmospheric
dynamics (Virtanen 2004; Teke et al. 2011).

In all the above applications it is essential to analyse time series of observations
or some kind of derived quantities, such as position estimates from GNSS. While
for some applications it is the linear long-term movement derived from position time
series that is of interest (Fernandes et al. 2004; Bradley et al. 2009), for others it
is the non-linear and periodic displacements that want to be studied (Khan et al.
2008; Nielsen et al. 2013). Nevertheless, since the late 1990s it has become clear that
geodetic time series need to be described by both deterministic and stochastic models
in order to obtain the best parameter estimates and avoid overly optimistic parameter
uncertainties (Langbein and Johnson 1997; Zhang et al. 1997; Mao et al. 1999;
Caporali 2003; Williams 2003a; Langbein 2004; Williams et al. 2004; Williams and
Willis 2006; Langbein 2008; Teferle et al. 2008; Bos et al. 2010, 2012; Santamaria-
Goémez et al. 2012; Klos et al. 2018b). The latter, in particular, may affect studies
of long-term changes due to, e.g., geodynamic processes or climate change, where
only small changes, e.g., at the millimetre per year level, are expected over many
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years. Over the last two decades the field of geodetic time series analysis has evolved
substantially which is reflected in many publications and motivates the need for
this book. The GPS Coordinate Time Series Analysis software (CATS) (Williams
2008), using Maximum Likelihood Estimation (MLE), has been widely used within
the community to fit both deterministic and stochastic models to GPS position time
series (Teferle et al. 2002, 2008), gravity time series (Van Camp et al. 2005) and mean
sea level records (Hughes and Williams 2010; Burgette et al. 2013). Here we develop
a Markov Chain Monte Carlo (MCMC) method with similar applications in mind
and investigate its benefits and drawbacks when compared to MLE as implemented
in CATS.

3.2 Markov Chain Monte Carlo as a Parameter
Estimation Method

3.2.1 Fundamentals

Statistical analysis of geophysical data can be performed in two different ways: from
a full knowledge of the parameter space, which is equivalent to having the distribution
function, or from a data sample that accounts for the estimation of the distribution
function.

A full computation of the parameter space can be performed by mesh-like explo-
ration methods. However, when the number of parameters is high, the computational
loading can be overwhelming. Under such circumstances, methods that estimate the
distribution function are better than the mesh-like ones. One of such methods is the
Markov Chain Monte Carlo (MCMC) method. The theory of Markov chains is well
developed and further information can be found in Gilks et al. (1996).

A Markov chain is a series of random variables X©@, X, X® ___in which the
influence of the values of X©, X x®  xX® on the distribution of X®*V is
mediated by the value of X, More formally,

P(X"HD | x©O x O x@ L xWy = px"tDx™), 3.1

where P(X) denotes the probability of X, i.e. the probability that the value for the
state variable x is X.

A Markov chain can be specified by giving the marginal distribution for X ©—
the initial probabilities of the various variables—and the conditional distributions for
X@*D given the possible values of X" —the transition probabilities for one state
to follow another state. Henceforth, we will write the initial probability of state x
as po(x), and the transition probability for state x’ at time n + 1 to follow state x at
time n as 7, (x, x). In our case the transition probabilities do not depend on time (as
we shall see later), so we will simply write T (x, x”).
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Using the transition probabilities, one can find the probability of state x occurring
at time n + 1, denoted by p,+;(x), from the corresponding probabilities at time 7,
as follows:

Pri () =Y )T (X', x) (32)

where the summation goes over all possible states x’ at time n. Given the initial
probabilities, py, this determines the behaviour of the chain at all times.

We are interested in constructing Markov chains of which the distribution function,
given by 7, is invariant. For this, we will use time reversible homogeneous Markov
chains that satisfy the more restrictive condition of detailed balanced—that if a
transition occurs from a state picked according the probabilities given by 7, then the
probability of that transition being from state x to state x’ is the same probability of
it being from state x’ to state x. In other words, for all x and x’,

a7(x)T(x,x)=a("NT, x), (3.3)

which implies that 77 is an invariant distribution, since

D AT, x) =) a@Tx.x) =) ) TE.x)=r@x), (34)

where we have assumed that 7'(x, x") = 1.

For our purposes, it is not enough to find a Markov chain of which the distribution is
invariant. We also require that the Markov chain to be ergodic—that the probabilities
at time n, p,(x), converge to this invariant distribution as n — oo, regardless of the
choice of the initial probabilities py(x). Clearly, an ergodic Markov chain can have
only one invariant distribution, which is also referred to as its equilibrium distribution.

Though we make use of an ergodic Markov chain there is no way to know how
long it takes to reach the equilibrium state. Nevertheless, we can employ various
criteria to judge when the process is very close to such an equilibrium state, which
will be discussed below.

3.2.2 The Random-Walk Metropolis-Hasting Algorithm

One of the simplest MCMC is the so-called Metropolis-Hasting algorithm (Metropo-
lis et al. 1953), where starting at a point x of the Markov chain, a new one x’ is then
accepted with probability «(x, x’) given by

{ﬂ(y) T(y,x)
n
alx,y) =

%T(x,y)’ l} 7(x)T(x,y) > 0 (3.5)
1, m(x)T(x,y) =0,
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where min(a, b) stands for the lowest number of the pair (a, b).

One special case is the Random-Walk Metropolis-Hastings (RWMH) algorithm.
In this case, the Markov chain depends on 7 (x,x’) = T(x — x’) and it behaves
as a random-walk process as it only depends on the the difference between two
consecutive points of the chain. Thus, Eq. (3.5) simplifies to

7 (y) 1}'

e (3.6)

a(x,y) = min{

Defining the acceptance rate (AR) of any Markov chain as the ratio of the number
of accepted points (those from the sample of 7 (x)) and the length of the chain, and
following Roberts and Rosenthal (2001), it can be proved that, as the dimension of
the space wherein the RWMH chain lies increases, the optimal step size steers the
AR to asymptotically converge to ~0.234. While some argue that the optimal AR
of 0.234 may only be valid for Gaussian densities and not for non-linear models, we
find that in all the below applications we generally obtained good results.

The AR is alogistic function of the step size (ss), which is proportional to (x — x’).
Indeed, as the step size goes to zero all the proposed values of the chain can be
accepted, i.e. AR ~ 1, whereas for step sizes too long, the new state x may lie too
far away from the maxima of the distribution function, hence it is not accepted, or, in
other words, AR ~ 0. Consequently, a linear fit of log(AR) and log(ss) can provide
the optimal value of the latter in order to get AR ~ 0.234. With that automatic
estimate of the step size we can improve efficiency and save a lot of time, as the
amount and variability of the time series to be analysed can be huge, and for each of
them, the ss can be quite different.

3.2.3 The Markov Chain Monte Carlo Algorithm

The expected values of the estimated parameters are conditioned to the observational
data. Note that there is only one data set per station as we can not replicate the
observations, but it is possible to simulate as many parameter values as needed. So
actually, it is the probability function of recovering the observational data given a
parameter set that can be sampled. According to the Bayes theorem the former is
related with the probability function of the parameters set of dimension N, 0 =
(61, ...0§), given an observational data set, M 9bs " as follows:

PO|M) = LM | Mth(0))P(®6), 3.7)
where Mth(#) is the theoretical magnitude that depends on the value of the parameters

set @, L is the Likelihood and it yields the probability of the data given the parameters,
and, finally, P(0) is the a priori probability function of the parameters.



58 G. Olivares-Pulido et al.

Once the likelihood is well determined, along with the priors, the posterior dis-
tribution, P (| M°**), can be computed. Then the expected values of the parameters
of the model can be estimated by means of Monte Carlo integration as follows:

Ori
<0 >= /c(o)e,-dej => %,Vj £i, (3.8)
=1,T

where T is the number of points in the chain and «; ; denotes the value of the parameter
«; at the rth step of the chain. The 100(1 — 2p)% confidence interval [cp, cl— p] for
a parameter is estimated by setting ¢, to the pth quantile of o ;, t =1, ..., T and
ci—p to the (1 — p)th quantile.

The algorithm that steers the MCMC through the posterior distribution surface is
summarised below:

1. Start with a set of parameters {«;}, compute the trend (linear and seasonal) and
the likelihood £; = L(y|y°*), where y' is the ith model, and y°** the observed
data.

2. Take a random step in parameter space to obtain a new set of parameters {o; 1 }.
The probability distribution of the step is taken to be Gaussian in each direction i
with the r.m.s given by o;. We will refer to o; as the step size. The choice of this
step size is important in order to optimise the chain efficiency.

3. Compute the y;;; model for the new set of parameters {c;;} and their likelihood
Lit.

4. If L;11/L; > 1, take the step, i.e. save the new set of parameters {«; 1} as part
of the chain, then go to step 2 after the substitution {o;} — {&;11}.

5. If £i11/L; < 1, draw a random number x from a uniform distribution from 0 to
1.If x > £;41/L; do not take the step, i.e. save the parameter set {¢;} as part of
the chain and return to step 2. If x < £;41/L; take the step, i.e. do as in 4.

6. When the Markov chain achieves the equilibrium state (explained in Sect.3.3.1)
and the chains have enough points to provide reasonable samples from the pos-
terior distributions, i.e. enough points to reconstruct the 1o and 2o levels of the
marginalised likelihood for all the parameters, the chains are stopped.

This algorithm admits values for which £;1;/L; < 1 provided the condition x <
L;+1/L; holds. Therefore, as it does not guarantee convergence towards the maximum
value of the likelihood but rather to a region wherein the maximum lies. It is not an
asymptotically consistent maximum likelihood estimator. Consequently, with the
fifth condition of the algorithm the MCMC method is not a Maximum Likelihood
Estimation (MLE) method.
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3.3 General Considerations for Markov Chain Monte Carlo

Let us consider a general power-law spectrum such as (Agnew 1992)

P(f)= P (%) ; (3.9)

where Pj and fj are constant, f is the frequency and —« the spectral index.

We note here that throughout this chapter, the spectral index has different sign
with respect to other chapters of this book, i.e. Flicker noise corresponds to —«x = 1.

As Hosking (1981) showed that all times series with —« > 1 are non-stationary,
thus there is not an uniqueness relationship between the covariance matrix and any
sample vector of length 7. In other words, the zeroth and first statistical moments
(i.e. the mean and the covariance) are not the only non-zero moments. Moreover, the
covariance may evolve in time.

In Fig. 3.1 the spectral index —«, the power-law amplitude o o, the linear trend
Vo and the ordinate y, of two time series are the same (all in arbitrary units), hence
they have the same covariance matrix, though their evolutions are quite dissimilar.
Therefore, an estimation of the velocities by means of the sample recovery of the
posterior distribution function would yield different values.

This is observed in Fig. 3.2, where the histogram for every parameter is shown.
In Fig. (3.2d), there are several local maxima for the velocity. As a consequence, the
estimation of the linear trend might not be uniquely determined for non-stationary
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Fig. 3.1 Two non-stationary time series generated with the same model parameters: —«o = 2.3,
Opl,0 = 4.5 and Vo =3.1
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Fig.3.2 Histograms of the estimated parameters with —kg = 2.3, 0,0 = 4.5and V = 3.1 as true
values

processes. Nevertheless, by computing the first difference any non-stationary time
series (provided —x < 2) can be transformed into a stationary one, thus the slope
would come exclusively from non-stochastic processes.

A similar bias effect on the slope estimation due to seasonal processes was already
noticed by Blewitt and Lavallée (2002). The difference is that the seasonal bias effect
decreases as the time series length increases, whereas it does not for non-stationary
stochastic processes unless they have been differenced beforehand.

3.3.1 The Equilibrium State

The equilibrium or stationary state of the MCMC method implies that the estimates
of the parameters can not be significantly improved (from the statistical standpoint
by obtaining more points of the distribution function). There are some common
characteristics of the stationary state to take into account:

e For a RWMH algorithm the acceptance rate (AR) or sample density should be
~0.234 (Roberts and Rosenthal 2001).

e The spectrum of the Markov chain at low frequency should be flat, meaning that
there are no correlations or these are damped enough for the points to be considered
independent of each other, thus minimising any bias on the estimates.
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3.3.2 The Acceptance Rate

The AR, which is defined as the ratio between the points from the sample and all the
points tried by the Markov chain, depends mainly on the step size. If the step size is
too long, it could yield a low acceptance rate; if it is too short, the sample data would
not be well mixed, i.e. they might have a big correlation, though the acceptance rate
would be high. So, good convergence and good mixing is achieved with a trade off
on the step size.

The AR is a logistic function of the inverse of the step size 1/ss:

1

with y being a non-dimensional parameter that controls the transition from low to
high values of the argument of the logistic function. Indeed, Fig. 3.3 shows that for
small step sizes, i.e. big 1/ss values, most of the the proposed values of the chain are
accepted, i.e. AR ~ 1, whereas for step sizes too long (small 1/ss values) AR ~ 0.
According to that, a linear fit of log(AR) and log(ss) can estimate the optimal value
for the latter in order to get AR ~ 0.234 (horizontal vertical line in Fig.3.3), which
is a necessary condition for an optimal performance of the MCMC method so as to
obtain an unbiased sample of the parameters distribution.

0.9 b

0.8 J

0.6 1
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0.4 :

0.3 ]
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Fig. 3.3 Logistic function for AR versus the inverse of the step size 1/ss (in AU). Black solid lines
correspond to AR = 0.234 (horizontal) and optimal step size ss = 0.30 AU (vertical)
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3.3.3 The Spectrum of the Markov Chain

At small scale, the Markov chain is mainly a random-walk process, therefore the
points therein are correlated and any estimate for the parameters at that scale will
be biased. In order to get a non-biased estimate, the Markov chain has to reach
the stationary state and a good mixing. By the ergodic theorem (Gilks et al. 1996),
the Markov chain at long-scale provides a homogeneous sample of the distribution
function, i.e. when its length is long enough it yields a white-noise-like spectrum.
Following Dunkley et al. (2005) this spectrum can be written as

(k*/ k)P

R,

@3.11)

where 8 > 0 1is the spectral index of the spectrum of the Markov chain (it has nothing
to do with the spectral index —« of the time series itself), k = j(27/M) is the scale
(with j € N), M the length of the chain, k* the cross-over scale, i.e. the inverse of
the length for which two points of the Markov chain that distance apart (at least) are
uncorrelated, and Py = P(k — 0).

Figure 3.4 shows the theoretical spectrum for a long Markov chain obtained
from a Random-Walk Metropolis-Hasting algorithm. The values of the parameters
are Pp = 100, B =2 and k* = 1 (all in AU). At low frequency (k < k*) there is a

10
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Markov chain at k>>k*
2
10 B
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10'}F Uncorrelated points of the B
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-3 -2 —1 0 1
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Fig. 3.4 Power spectrum for long Markov chains of Random-Walk Metropolis-Hasting algorithms
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plateau, meaning that points in the Markov chain at distances longer than 1/k* are
uncorrelated. On the other hand, at high frequency (k > k*) the points are correlated,
giving rise to biased parameter estimates. Therefore, the spectral analysis of the
Markov chain provides a tool to estimate the length for which the bias on the estimated
parameters is minimised.

According to Dunkley et al. (2005), the Markov chain has a good mixing when
kmin = 1/M is in the white noise regime, i.e. ky;;, < k*, as it guarantees that the
chain is long enough to minimize correlations between Markov chain points, hence
obtaining unbiased estimates.

Finally, as it takes some time for the chain to achieve the stationary state which
guarantees the ergodic theorem to hold (Gilks et al. 1996), ~33% of the first points
are usually burned.

3.4 Applications

In this section, time series from different geodetic data sets were analysed using
the MCMC method described previously and implemented in our in-house MCMC
software. The data sets comprise a set of synthetic time series as well as measurements
and solutions from three different geodetic techniques: GPS, superconducting gravity
and tide gauge records.

The synthetic time series were generated in order to assess the MCMC method
through investigating the ability of the algorithm to recover the input values when
generating the time series. Aspects of this analysis were published in Olivares and
Teferle (2013).

The analysis of the first real data set consists in applying the MCMC method
to GPS position time series from the Jet Propulsion Laboratory (JPL). Moreover,
plate motion models were computed using the velocities and uncertainties obtained
from the MCMC and MLE methods, the latter as implemented in CATS (Williams
2008), in order to assess their differences and the impact on the plate-motion model
parameter estimates.

The second real data set comprises gravity measurements from the superconduct-
ing gravimeter at Membach, Belgium, which are analysed in order to estimate the
noise and the trend (Van Camp et al. 2005; 2016). These gravity time series show
largely different characteristics from the position estimates derived from continuous
GPS measurements.

Finally, the third real data set comprises tide gauge records from the Permanent
Service of Mean Sea Level (PSMSL) as archived in its Revised Local Reference
(RLR) database (Holgate et al. 2013). Again the characteristics of this data set are
significantly different from the other two sets. Furthermore, until recently the PSMSL
only provided trend estimates based on a white noise only stochastic model.
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Table 3.1 True values (in

N Parameter True value

AU) of the parameters of the
synthetic time series K 1.10

opl 1.00

Own 0.20

v 20.00

Yo 0.00

A€ 10.00

A 5.00

3.4.1 Position Time Series

In this section we employ daily position time series that were (1) synthetically gen-
erated and (2) obtained from the Jet Propulsion Laboratory (JPL) GPS time series
website.!

Synthetic Data

Firstly, 100 synthetic time series with different real parameters are analysed with
our MCMC software and CATS (using CATS v3.1.2). Thus we can investigate and
describe their common features and differences. We used CATS as the benchmark
for the performance of the MCMC method.

A combination of linear and periodic terms, and time-correlated noise with length
N = 500 is considered in order to assess the performance of the new MCMC method:

k=H

V() = yo+v(t —10) + Y (Af cosQmfict) + A} sinQ@ufi ) +r(t). (3.12)
k=1

where the parameters to be estimated are the ordinate yy, the velocity v, the periodic
amplitudes A} and Aj of the kth harmonic, and the stochastic noise 7 () components:
the spectral index —«, the power amplitude of the power-law process o,; and that
of the white noise o,,,, all of them in artificial units (AU). The frequencies f; of
the harmonics, the number of harmonics H and the initial epoch # are input values.
Table 3.1 shows the true values of the parameters, which are typical of real GPS time
series (Zhang et al. 1997; Mao et al. 1999; Williams et al. 2004; Hackl et al. 2011).

Then, another set of 100 synthetic time series is analysed with MCMC and CATS
in order to assess the performance of both, thus highlighting their differences and
similarities. For this case, semi-annual terms were also included in Eq. 3.12. The first
time series was generated with the initial true values listed in the second column of
Table 3.2. Then, for the other 99 time series, their true values were generated with

Uhttp://sideshow.jpl.nasa.gov/post/series.html.
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Table 3.2 Initial true values and Gaussian generators of the parameters of the 100 synthetic time
series data set. All parameters are in AU

Parameter Initial true value Gaussian generator
—Ki 1.10 N(—ki-1,0.1)
Opl,i 2.30 N(opi,i-1,0.01)
Own,i 2.00 N(awn,i—l ,0.01)
Vi 20.00 N(vi_1, 10)
0,i 0.00 N(¥0,i-1,0.02)
Aiw 1.00 N(Af),r,ifl,o.l)
Al 5.00 N (4] o1 0-1)
A8.5 yr 1.00 N(ASAS yri—1’ 0.1)
Af s v 2.00 N(A] s iz 0-D
0.12 —
0.1 -
0.08 1
5 0.06 1
<
>
0.04 1
0.02 4
0 ".’ 1
-0.02
2000 2002 2004 2008 2010
Epoch (yr)

Fig. 3.5 Synthetic data generated with parameters from Table 3.2

a random-walk process starting at the initial true values with Gaussian generators
listed in the third column of Table 3.2.

Figure 3.5 shows a synthetic time series representative of the data set. For all of
them the period spans around 10 years. The periodic amplitudes have been enhanced
(compared, for example, with those in Fig. 3.11) in order to assess the robustness of
both methods.

Parameter Estimates

The analysis carried out on the synthetic time series shows that the model parameter
estimates from both methods agree very well, with some differences in their stochastic
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parameters. Ideally, as both implementations assume a Gaussian likelihood, they
should lead to equivalent results. Nevertheless, in general, the MCMC software
estimates larger —« and o, and slightly smaller o,,; than the MLE implementation
in CATS. As for the model parameters, the MCMC method yields larger values for
all of them.

The correlation plots in Fig. 3.6 show the estimates for —« (a), o, (b) and o,,,, ().
The —« estimates from MCMC are larger than for CATS, whereas Fig. 3.6b shows
larger o ; estimates from CATS. Figure 3.6a indicates a systematic bias between the
—k estimates of both implementations. These differences are further investigated
later in the analysis with real GPS position time series.

A Linear Least Squares (LLS) fit estimates the correlation (the slope of the fit)
and the bias (the ordinate of the fit). Thus the following linear relationship between
estimates and uncertainties of both methods is assumed

par =a Xx par.,,.,+Db, (3.13)

mMcmc
where par,,.,. (par.,,) is either an estimated parameter or its uncertainty from
the MCMC (CATS) method, a is the slope, and b the bias. This formula allows
transformation of all the analysis carried out with CATS into MCMC values.

Table 3.3 summarises the results for all parameters but o,,,,. For —«, the values of
the slope (a = 0.78) and the bias (b = 0.37) account for the disagreement between
both methods at low values of the spectral index, whereas the estimates meet at
high values. To further investigate this, we also generated a different data set of 100
synthetic time series for which we varied the true value of the spectral index from O to
5, the latter being a rather high value for the index beyond that of random Brownian-
Motion (Mandelbrot and Ness 1968) for which the Gauss-Markov behaviour can no
longer be assumed automatically. Without mathematical proof the analysis of these
time series supports the above value of 0.78 for the slope (Olivares and Teferle 2013).

Figure 3.7 shows the estimates for —« from the MCMC versus CATS methods of
this last synthetic data set. The figure suggests that the estimates agree much better at
high values for the index. In this case, a = 0.91 and b = 0.28. The better correlation
shown at high values in Fig. 3.7 suggests that, like the MCMC method, CATS is also
a good estimator of the spectral index for non-stationary time series (Olivares and
Teferle 2013).

The red-circled points in Fig. 3.7 are estimates for which CATS sets o,,,, = 0. The
fact that they cluster at low value suggests that these discrepancies of —« stem from
the way CATS deals with low spectral index values. When these are too small, CATS
considers there is only power-law noise, thus setting the white noise amplitude equal
to zero® (red-circled points along the vertical axis in Fig. 3.6c). Consequently, the
spectral index is whitened in order to account for the amplitude of the white noise
process, hence the larger positive bias (marked as red-circled points) in Fig. 3.6a.
Moreover, the power-law amplitude from CATS is shifted up to include the power

2Simon D. P. Williams, personal communication, 2012.
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Table 3.3 Table of LLS fit parameters, as defined in Eq. 3.13 (synthetic data)

Parameter a b
—K 0.78 0.37
opl 0.75 0.46
v 1.00 —0.03
Yo 0.96 0.14
Afyr 1.01 0.00
Aj v 0.92 0.32
A s o 0.97 0.02
AQ s W 0.93 0.12
-K
al ]
35 b
3l |
25 b
O -,
=
g 2t :
1 5 L . L] ° © .
¢
® . ¥
1 - 0 .
X ®:@"@
- .@ .®‘O
0.5®e B
®
0.5 1 1.5 2 2.5 3 3.5 4
MLE

Fig. 3.7 Parameter estimates for —«. Red circles are time series for which CATS sets oy, = 0

from the white noise process, thus introducing larger (more negative) bias between
both estimates at high values as it is observed in Fig 3.6b (red-circled points).

As for the model parameters, the correlation plots in Fig. 3.8 show that the esti-
mates from both methods agree very well. Apart from a few outliers (any point
beyond 3 o confidence level), which come either from a Markov chain that did not
achieve the stationary state, or from numerical issues in CATS, the data cluster along
the diagonal. Their values for the LLS fit parameters in Table 3.3 also show good
agreement with a ~ 1 for all and, in general, small biases, except for A} re

In order to numerically assess their agreements, the RMS with respect to the true
value was computed for both methods. Table 3.4 summarises the RMS in AU for the
estimates from both methods as implemented in MCMC and CATS. It shows that the
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Table 3.4 RMS values (in AU) for parameter estimates from the MCMC and CATS methods
Method | —« Opl Own v Yo Ai yr Ai yr A6.5 yr A(Y)S yr
MCMC | 0.20 0.44 0.47 0.41 1.76 0.52 0.59 0.30 0.30

CATS [0.22 0.51 1.01 0.40 1.61 0.44 0.39 0.30 0.32

RMS for the —« estimates are in good agreement: RM S = 0.20 and RM S = 0.22
for the estimate from MCMC and CATS, respectively. Nevertheless, the values from
the o estimates differ further: RM S = 0.44 and RM S = 0.51, i.e. an improvement
of 14% by the MCMC method. And, due to the way CATS sets o,,,, = 0 for low values
of op;, the RMS from both methods are even more different: RM S = 0.47 for the
MCMC, and RM S = 1.01 for the CATS method, i.e. 53% smaller for the MCMC
than for the CATS method.

On the other hand, the values of the RMS of the estimates of the model parameters
shown in Table 3.4 do not differ that much with RM S = 0.41, 0.30, 0.30 for the
estimates of v, Aj 5 |, and Ay 5 ., respectively, from the MCMC method; and RM S =
0.40, 0.30, 0.32 for their CATS counterparts. The other three model estimates from
CATS, though, show better fit, with RMS = 1.61, 0.44, 0.39, for yo, A{,,, A],,.
respectively; whereas the estimates from the MCMC are larger, namely RM S =
1.76,0.52, 0.59.

To summarise, according to the results for the RMS, both methods perform alike,
except for the estimate of the amplitude of the white noise, which is clearly under-
estimated by the CATS method.

Uncertainties

Figure 3.9 shows the correlation of the uncertainties for the model parameters, i.e.
Ovs Oygs OAS. 5 OAY 5 OASS and oA, from both methods. In general, the velocity
(Fig. 3.9a) and periodic terms (Fig. 3.9b, c, e, f) uncertainties align along and above
the diagonal, meaning that they clearly correlate with larger values from the MCMC
method. The exception is oy, in Fig. 3.9d, for which the uncertainties from the CATS
method are larger than from the MCMC method. Besides showing a low correlation,
Fig. 3.9d also indicates that for large o, values, the difference between these from
the CATS and MCMC methods increases.

Table 3.5 summarises the values of the LLS fit that transforms the values from the
CATS method. The uncertainties o,, /TN T and o Ay, are well correlated along
the diagonal with @ = 1.22, 1.01, 0.95, and 0.96, respectively, with small biases,
namely b = 0.11, 0.03, 0.06, and 0.05. Though a = 0.16 for oy, its bias is larger,
b = 1.41. The outliers at the head and tail of Fig. 3.9b lead to a smaller slope,
a = 0.62, and higher bias, b = 0.40, on oA -

As the parameter space is wider for the MCMC method, it explores the surround-
ings of the maximum of the likelihood for all parameters, including —«, hence the
larger uncertainties for all parameters except for yy. The stochastic amplitudes —«,
oy and o, estimated from MCMC reduce the RMS (see Table 3.4), therefore the
estimated uncertainties, though larger, provide a more comprehensive estimate of
the noise.
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Table 3.5 Table of LLS fit parameters, as defined in Eq. 3.13, for uncertainties (synthetic data).

All parameters are in AU

Parameter
a b
oy 1.22 0.11
Oy 0.16 1.41
oac, 0.62 0.40
o 1.01 0.03
OASs,, 0.95 0.06
oas 0.96 0.05

Table 3.6 Values in AU of the median of the ratio of the uncertainties R, and the median of the

differences A, (synthetic data)

G. Olivares-Pulido et al.

Uncertainty R, Ay

oy 1.40 0.23
Oy 0.69 —0.88
ox 1.08 0.06
oA, 1.07 0.06
TAGs 1.04 0.02
oas, 1.03 0.02

Other statistic variables that provide a comprehensive analysis of both methods
are the median of the ratio of the uncertainties from both methods of the estimate of

p,ie.
0_MCMC
R, = median (ﬁ) , (3.14)

p

and the median of the differences, namely

A, = median (pycmc — Pcars) - (3.15)

These are listed in Table 3.6 for the synthetic data. Concerning the ratios (second
column in Table 3.6), the largest absolute median is that for o,, namely R, = 1.40,
whereas the smallest is for yo: Ry, = 0.69. On the other hand, the uncertainties of
the periodic terms from both methods are quite similar ranging from 1.03 to 1.08.
As for the differences (third column in Table 3.6), the largest one is for the ordinate
uncertainty, namely —0.88. This also makes the largest difference between the bias
(third column in Table 3.5) and A . For the other parameters their A, values are of
the same order of magnitude as their ratio counterparts.
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Fig. 3.10 Map of the GPS stations of the IGS core network

Although R, (A,) and a (b) (see Table 3.5) for the velocity and periodic terms
estimates are similar, the latter is less robust with outliers, as the large difference
between R, = 0.69 (A, = —0.88) and a = 0.16 (b = 1.41) indicates. Therefore,
in order to provide a more robust assessment it is advised to use R, and A, rather
than a and b for rescaling from CATS onto MCMC values, as the former provide
more robust statistical information.

Real Data

At the time of this study JPL provided 2381 daily position time series processed
using the Precise Point Position (PPP) strategy in the GIPSY-OASIS II software?
(Zumberge et al. 1997). Out of them, 90 GPS stations (shown in Fig. 3.10) from
the International GNSS Service (IGS) have been selected in order to perform the
analysis. Figure 3.11 shows the North, East and Up components of station ALIC
as a representative GPS position time series from this data set. Also shown are the
root mean square (RMS) values, which are 1.26 and 1.25 mm for the North and East
components, respectively; whereas for the Up component it is 3.66 mm. These are
typical values of the RMS of GPS time series and in this case, but also in general,
the RMS for the Up component is ~3 times larger than the RMS for the North and
East components.

Alongside the trended (and detrended) time series, JPL also provides the epochs
of the discontinuities within the time series. In total JPL reported 4078 offsets for
this data set, meaning 1.7 offsets per station on average. As such offsets introduce
additional coloured noise (Williams 2003b), the time series were corrected before

3The software is available in http://sideshow.jpl.nasa.gov/post/series.html.
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Fig. 3.11 GPS time series for ALIC. From top to bottom: North, East and Up components

the analysis of the stochastic properties. Furthermore, discontinuities in the position
time series may have significant affects on the parameter estimates (Williams 2003b;
Gazeaux et al. 2013).

Figure 3.12a shows the spans of the weekly time series. Note than the spans of JPL
time series range from over 6 years to about 19 years. In Fig. 3.12b the histograms of
the gaps in the time series show short periods of gaps as more than 87% of them have
less than 25% of epoch discontinuities, i.e. gaps. Gaps introduce zeroes in the inverse
of the covariance matrix thereby making it sparser and shifting the spectral index
estimate. The problem with a sparse matrix is that it may have a high conditioning
number, thus leading to a biased likelihood when its inverse (i.e. the covariance
matrix) is computed.

These 90 daily position time series from the IGS core network were converted
into weekly series by averaging over each week in order to boost the computational
speed. Although this conversion might modify the stochastic characteristics of the
series and hence of the stochastic model parameter estimates (Kirchner 2005), it does
not affect the comparison between the MCMC and CATS methods, as long as the
time series are the same for both.

Parameter Estimates. The results for the analysis of the JPL data set are similar
to those for the synthetic data set. In general, —« for the MCMC method is larger
than for CATS, whereas the estimated model parameters for both methods agree very
well.
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Fig. 3.12 Histograms for time series (JPL): Time series lengths (a) and % of gaps (b)

On the other hand, o, for the CATS method is larger than for MCMC, in good
agreement with the results for the synthetic time series.

Regarding o,,,, most of the values for CATS (82%, 77%, 70%, for the North, East
and Up components, respectively) are set to zero.

According to Fig. 3.13a—c, the estimates of the spectral index —« for all three
components are above the diagonal, i.e. the MCMC method yields larger estimates
for this parameter than CATS. On the other hand, Fig. 3.14a—c show that o, for all
three components are larger for CATS than for MCMC, also in good agreement with
the results obtained for the synthetic time series shown in Fig. 3.6. Nevertheless, as
the noise depends geometrically on —« (only linearly on o), and it is larger for
MCMC, the uncertainties of the estimates from the MCMC method are expected to
be larger.

Figure 3.14d—f show the difference of MCMC and CATS estimating the white
noise amplitude o,,,. For some time series where the estimated o,,, is very small,
CATS considers it to be null, i.e. all the noise is a pure power-law process. These are
the points aligned at the vertical axis in all three Fig. 3.14d—{.

Sometimes when CATS sets o, to zero, it yields Na N values for the uncertainties
as it happens for the estimated East component velocity of THU3. The cause for this
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is a bad numerical behaviour of the computed Fisher matrix.* Another consequence
of setting o,,, = 0 is that it shifts —« towards smaller values, thus diminishing the
correlation within the noise and underestimating the uncertainties of all parameters
of the model. Moreover, it makes o, larger, as the results for the synthetic data
set suggested. As MCMC does not deal with derivatives these numerical issues are
avoided, and it performs well even with a combination of power-law and white noise.

Finally, Figs. 3.15, 3.16, and 3.17, which correspond to the correlation between
estimates for both methods, i.e. v, yp, A§ oo Aj oo Afs r and Aj s o respectively,
show that both methods are in good agreement.

As the aforementioned figures suggest, estimates from both methods seem to align
linearly, hence the consideration of a linear least-squares fit. Table 3.7 summarises
the fit of the points (after removing outliers beyond 3¢) showing the slope and the
ordinate for each parameter and all three components.

The slopes for v, o,,;, A{ yro Aj yro Af s Vr and Aj s yarea ~ 1 which proves that
both methods perform alike at estimating these parameters. Their ordinate values are
at submillimetre level: 5 ~ 1072 mm/yr and b ~ 10~2 mm, respectively.

The estimates of yy, though a ~ 1, show differences at mm (North component in
Table 3.7) and sub-mm levels (East and Up components in Table 3.7).

The major differences are found among the —« estimates. The slopes for —« in all
components are a < 1, though the estimates from MCMC are larger. This is because
at low values, the differences are larger. This was found in the analysis of the synthetic
data set as well (see Figs. 3.6a and 3.7). Though it might be related to the way CATS
estimates the white noise, in this case this was not possible to confirm because there
were zero-white-noise values all along the diagonal of Figs. 3.13 and 3.14.

Uncertainties. The differences between both methods are shown in Fig. 3.18 for the
uncertainties of the estimates of v and y, and Figs. 3.19 and 3.20 for the uncertainties
in the annual (UA;},, and o4; ) and semi-annual (UAS.sw and o4, ) periodic terms,
respectively.

The uncertainties of the estimated spectral index —« are not computed by the
public code of CATS, therefore they are not shown here. Similarly, as CATS yields
05,, = NaN when o,,, = 0 for some GPS time series, they are not plotted either.

In general, most of the uncertainties of v and the periodic terms are larger for
MCMC than for CATS. Figs. 3.18a—c, 3.19 and 3.20, show a linear correlation with
most of the values from MCMC above the diagonal. Only o, gets larger uncertainties
for CATS than for the MCMC method, as Fig. 3.18d—f show.

Table 3.8 summarises the values for the parameters of the LLS fit. The variety
of values for the slope a, indicates less agreement between the uncertainties of both
methods than their respective parameters had. The slope ranges from a = 0.51 for
the North component of o, up to a = 1.35 (for the East component of o).

The bias values range from 0.56 mm for the yo Up component to 0.01 mm/yr for
velocity East component.

Table 3.9 shows the median of the ratio and the difference of the uncertainties
for the JPL data set. The values for the ratios are quite similar to those obtained

4Simon D. P. Williams, personal communication, 2013.
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Table 3.7 Parameter estimates for the LLS fit, as defined in Eq.3.13, between MCMC and CATS
results for the estimates parameters (JPL data)

Parameter N E U
a b a b a b

—K 0.94 0.16 0.85 0.25 0.80 0.26
op; (mm) 0.99 —-0.02 0.93 0.06 0.97 —0.03
v (mm/yr) 1.00 0.01 1.00 0.01 1.00 0.03
yo (mm) 0.98 1.14 0.97 0.72 0.96 —0.35
Afyr (mm) |1.04 —0.01 0.98 0.01 1.00 0.01
A} v (mm) |1.03 —0.02 1.00 —0.02 1.00 0.03
Af s W (mm) |0.97 0.01 1.02 0.00 0.99 0.01
Aj sy, (mm) | 1.06 0.02 1.03 0.01 0.99 0.00

for the synthetic time series (see Table 3.6), with R, = 1.40 being the biggest value
(North and East components) and R,, = 0.63 the smallest one (Up component). The
periodic terms are also quite similar as their values range from 1.06 up to 1.11. The
most noticeable is that the median of the ratio of the velocities and periodic terms
are larger than 1 for all three components, meaning that, unlike the results for a,
the uncertainty estimates from MCMC are larger than those from CATS, namely
40% larger for the North and East components, and 18% for the Up component, thus
showing good agreement with the results for the synthetic data set.

The uncertainty of the estimated spectral index, o_,, is not computed by CATS.
This entails that CATS performs with one less parameter than the MCMC method,
therefore, smaller uncertainties for the velocity estimates are expected from CATS.
It is possible to check out this statement by setting —« as an input for both methods.

Therefore, it is reasonable to state that the main difference in the velocity uncer-
tainties between both methods stems from the fact that CATS does not estimate the
uncertainty of the spectral index, and, by doing so, the velocity uncertainties for all
components are underestimated.

On the other hand, CATS offers a quicker method than MCMC to estimate the
model parameters and their uncertainties: CATS is around one order of magnitude
faster than the MCMC method, therefore, if the difference in these uncertainties is
not measurable, i.e. (so far) at sub-millimetre level, CATS is more time-efficient than
MCMC.

Another argument in favour of the spectral index estimate (and its uncertainty)
is provided by the Bayesian Information Criterion (BIC) (Schwarz 1978). This cri-
terion states the following: Given two models with different amount of parameters
to estimate, the BIC favours the one with the largest maximum likelihood estimate
(Lmax) and penalises the amount of parameters k, or, equivalently:

BIC = —21og(Lyax) + kIn(N) (3.16)
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Table 3.8 Parameter estimates of LLS fit, as defined in Eq. 3.13, for the MCMC and CATS results
for the parameter uncertainties (JPL data)

N E U

a b a b a b
o, (mm/yr) | 1.00 0.09 1.35 0.01 0.93 0.16
oy, (mm) 0.51 0.30 0.54 0.30 0.51 0.56
oAc, (mm) |0.93 0.06 1.04 0.03 0.72 0.35
o (mm) |0.85 0.11 1.00 0.05 1.00 0.10
T (mm) | 0.54 0.15 0.80 0.09 0.71 0.32
UAS_S;'_ (mm) | 0.53 0.17 0.60 0.15 0.67 0.34

Table 3.9 Values of the medians of the ratio R, (Eq. 3.14) and the difference A, (Eq. 3.15) of the
uncertainties (JPL data)

Parameter N E U
R, Ay R, A, R, Ay

oy (mm/yr) | 1.40 0.08 1.40 0.08 1.18 0.08
oy, (mm) 0.70 —0.43 0.72 —0.40 0.63 —1.34
oA, (mm) |1.07 0.02 1.06 0.02 1.06 0.05
oar (mm) |1.09 0.03 1.09 0.03 1.07 0.06
oA (mm) | 1.11 0.03 1.08 0.02 1.06 0.05
T (mm) | 1.09 0.03 1.09 0.02 1.06 0.05

where N is the amount of data. According to Eq. 3.16, the smaller the BIC value,
the better the model.

Several studies, such as He et al. (2017) and He et al. (2019), have recently
investigated the use of various information criteria, e.g., BIC, Akaike information
criterion, to select the optimal stochastic noise model in geodetic time series. He et al.
(2019) proposed to use a modified BIC in order to take into account the influence
of the length of the time series in the selection of the stochastic noise model which
requires to include new information about the noise at overflow frequency for long
time series (> 15 years).

The BIC parameter here is computed using Eq. 3.16 (firstly CATS, then MCMC)
on the JPL data set for two models: One that estimates —k, and another one that
consider the spectral index as an input, namely, Flicker noise, i.e. —« = 1. Table
3.10 summarises the results for A BIC = BICp; — BICFpjicger, 1.€. the difference
between the BIC value from the power-law model and that from the Flicker-noise
model. The second column shows that for 5% of the stations, in the North and
East components the power-law model provides a smaller BIC than the Flicker-
noise model. For the Up component 7% of the stations are better modelled with
Flicker noise, whereas for 30% of the stations both models are equivalent, i.e.
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—2 < ABIC < 0. A positive evidence, i.e. —6 < A BIC < —2, (third column)
is shown for 54% of the stations in the North component, and 55% of them in the
East component. Again, the Up component shows a smaller percentage of 45%.
Finally, a strong evidence is found in the fourth column of Table 3.10 for 41%, 40%
and 28% of the stations for the North, East and Up components, respectively.

For the MCMC method it is assumed that the likelihood is Gaussian, then the
mean and the maximum of the likelihood would be similar and the BIC criterion can
be applied too. Table 3.11 shows the results for A BIC for the power-law model
and the Flicker-noise model. For 2% and 1% of the stations in the North and East
components, respectively, the power-law and the Flicker-noise model are considered
equivalent (—2 < ABIC < 0, second column). There is positive evidence for 7%,
4% and 4%, and strong evidence for 80%, 82% and 81% of the stations for the North,
East and Up components, respectively. The Flicker-noise model is better considered
for 11, 13 and 15% of the stations for the North, East and Up components. The
results summarised in Tables 3.10 and 3.11 are in good agreement, denoting that
for the majority of the stations there is positive evidence in favour of the power-law
model for the MCMC and CATS methods.

To summarise:

Both methods estimate parameters in good agreement as Tables 3.3 and 3.7 show.

e As the MCMC method simultaneously estimates all parameters, including the
spectral index, it yields [1.18 — 1.40] times larger uncertainties for the model
parameters than CATS (see Table 3.8).

e According to Tables 3.3, 3.7, and 3.6, 3.8, estimated parameters and their uncer-

tainty ratios for real data sets show great consistency with those for the synthetic

data.

The BIC criterion denotes that the power-law model is better than the Flicker-noise

model for most of the stations analysed with the MCMC and CATS methods.

Table 3.10 Values of A BIC = BICy for the North, East and Up components for a power-law
model and a Flicker-noise model using CATS (JPL data set)

—2 < ABIC <0 (%) —6 <ABIC <—-2(%) |ABIC < —6 (%)
N 5 54 41
E 5 55 40
U 30 45 28

Table 3.11 Values of A BIC = BICy for the North, East and Up components for a power-law
model and a Flicker-noise model using MCMC (JPL data set)

—2 < ABIC <0 (%) —6 < ABIC <-2(%) |ABIC < —6 (%)
N 2 7 80
E 1 4 82
U 0 4 81
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e As a consequence of the BIC results, it is necessary to compute the spectral index
estimate uncertainty in order to get more realistic uncertainties for all model param-
eters.

Computational Time

CATS computes the covariance matrix just once, and its computation is the most
memory-demanding computational process, thus slowing down the estimation pro-
cess. On the other hand, the MCMC method computes the covariance matrix for each
value of o within the Markov chain. Therefore, the MCMC method requires more
computational time. Indeed, Fig. 3.21 shows the difference between the CPU time
needed for the MCMC (red points) and the CATS (blue points) methods. These are
CPU times for each of GPS position time series from the JPL data set.

Both methods scale with the number of epochs as N7, where —« = 2.5 for
MCMC, and —« = 2.8 for CATS. CATS is around one order of magnitude faster
than the MCMC method. Therefore, if the difference in these uncertainties is not
measurable (at sub-millimetre level), CATS would be more time-efficient than the
MCMC method.

With the development of faster implementations of the MLE method in more
recent versions of CATS or the Hector software (Bos et al. 2012), the computational
time is reduced even further than when we carried out this analysis. It is apparent that
the time requirement for the MCMC method in its current implementation would be
prohibitive for many applications.

3.4.2 Plate Motion Models

The analysis with MCMC and CATS carried out on the JPL position time series was
repeated on 171 GPS stations from JPL in order to estimate an absolute plate motion
model (PMM) for each method (MCMC-PMM and CATS-PMM for the MCMC and
CATS methods, respectively), thus assessing the performance of both methods and
how their differences would affect the constraints on plate motion models.

A comprehensive analysis on plate motion is beyond the scope of this chapter,
and the following subsections just show how the differences of these two statistical
methods lead to different constraints on any geophysical model, e.g. plate motion.

Station Selection

Following Altamimi et al. (2012) for the station selection criteria only those stations
far away from the plate boundaries and without significant glacial isostatic adjustment
were used. Listed in the second column in Tables 3.15 and 3.16, 171 stations were
used to estimate the PMM for each method.
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Fig. 3.21 Computational time of the estimation of parameters with the MCMC method (red) and
CATS (blue) for the JPL data set

Unlike Altamimi et al. (2012), where GPS, SLR, DORIS and VLBI techniques
were considered, only GPS stations were analysed herein, therefore some differences
are expected with respect to their results. Another consequence of not using the
same techniques is that the number of stations is different to Altamimi et al. (2012),
wherein 206 sites were analysed. Therefore small differences in the derived plate
motion models are expected.

Plate Motion Model Results

Station velocities and their 20 uncertainties (black ellipses showing 95% confidence
level) from both methods are shown in Fig. 3.22. Both methods are in good agreement
with the North American plate moving westwards and Eurasia moving eastwards.
These two plates contain around 57% of sites. The Nubia and Somalia plates jointly
move north-eastwards. The South American plate has eight sites moving northwards
and Antartica shows more stability than the other plates, though the directions of the
vector velocities are more varied. The largest velocities are those on the Australian
(moving north-eastwards) and the Pacific (moving north-westwards) plates.

Tables 3.12 and 3.13 summarise the results for the PMM from the MCMC and
CATS methods, respectively. The first column in both Tables stands for the code
of the plates as it follows: AMUR for Amurian; ANTA for Antartica; ARAB for
Arabia; AUST for Australia; CARB for Caribbean; EURA for Eurasia; INDI for
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Fig. 3.22 Site velocities from the MCMC (top panel) and CATS (bottom panel) methods

India; NAZC for Nazca; NOAM for North America; NUBI for Nubia; PCFC for
Pacific; SOAM for South America; SOMA for Somalia, and SUND for Sunda.

The second column shows the number of stations (N §) on each plate, whereas the
next three columns summarise the results for angular velocities in the three directions
of the coordinate axes w,, w, and w;.

The Euler pole components are in the sixth and seventh columns, respectively, with
the Euler pole angular velocity in the eighth column. Finally, the last two columns
summarise the weighted root mean square (WRMS) of the residuals for each plate.
The last line shows the global WRMS of the PMM considered for each method.
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Concerning the global WRMS, CATS-PMM gives 0.72 and 0.80 mm/yr for the
North and East components, respectively; whereas MCMC-PMM gives 0.73 and
0.76 mm/yr for the North and East components, respectively.

Taking into account all nine parameters involved, the RMS computed for the
MCMC is usually smaller than that for CATS as Fig. 3.23 shows for all components.
In this figure, the differences between the RMS for the MCMC and the CAT'S methods
for all three components are shown. Systematically, for most of the stations analysed,
MCMC provides slightly better estimated parameters, though the differences for the
North and East components are at sub-millimetre level. As for the Up components,
there is almost no difference, as the histogram is centred around O mm with ~90%
of the stations being in the range from —0.002 to 0.002 mm.

In general, the cartesian components of the angular velocities (3rd—5th columns)
for both methods are similar. Angular velocities for AMUR, ANTA, AUST, CARB,
INDI, NAZC, NUBI, SOAM and SOMA plates show good agreement at 1o confi-
dence level. For EURA only w, from both methods agree at 1o, whereas for SUND
w, and w, agree at the 1o confidence level. Only for three plates, ARAB, NOAM
and PCFC, the estimated angular velocities disagree at lo.

In general, the uncertainties for the MCMC method are larger than for CATS.
This is consistent with previous results concerning the linear velocities obtained for
the synthetic and JPL time series. There are though, some exceptions, namely for
the AUST, EURA (all three components) and SUND (x and z components) plates.
These three plates also showed disagreements at the 1o confidence level concerning
their angular velocities.

As for the Euler poles, all the previous plates which were in good agreement for
the angular velocities at the 1o confidence level, show the same agreement for the
Euler pole coordinates and angular velocities, except for the SUND plate. Concerning
ARAB, NOAM and PCFC, once more, they do not agree at 1o confidence level.

Results for the angular velocity from the MCMC method are in good agreement
with the ITRF2008-PMM from Altamimi et al. (2012) (see Table 3.3 therein). All
three components of the angular velocities for the following plates are consistent with
each other at the 20 (95%) confidence level: AMUR, ANTA, ARAB, AUST, NAZC,
NOAM, NUBI, PCFC, SOAM and SOMA. For the other plates, i.e. CARB, EURA,
INDI and SUND, at least two out of three components showed good agreement at
the 20 confidence level.

The CATS-PMM showed larger differences than the MCMC-PMM with the
ITRF2008-PMM: only results for AMUR, ANTA, AUST, NAZC and SOAM agreed
at the 20 confidence level. The uncertainties of MCMC-PMM, CATS-PMM and
ITRF2008-PMM were at the same level of magnitude but those from the former two
methods showed more discrepancies with those from ITRF2008-PMM. The reason
for this is that ITRF2008 stems from the composition of different geodetic techniques
and uses a different number of sites.

In general, the reduced chi-square x?2, = r' Cyyr/f is computed as a tool to
compare models, where f = NS — N P is the number of degrees of freedom, with
N P being the number of plates.
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Fig.3.23 Differences in mm between RMS for MCMC and CAT'S methods for all three components

For MCMC, x2, ~ 501; whereas for CATS, x?2,, ~ 802. The best model should
be that closer to the ideal value, i.e. xfed = 1, thus each degree of freedom would
contribute with the same amount of uncertainty. In order to get a better model, i.e.
with more realistic uncertainties, the covariance matrix is rescaled in such a way
that sze + = 1. Considering the x? values above for each model, uncertainties from
the MCMC method should be 22.4 times larger, and 28.3 times larger for the CATS
method. This would suggest that the uncertainties from the MCMC method are less
underestimated than those from CATS. The ratio of these two scale factors is ~1.30,
which is consistent with the ratio of the uncertainties for the estimated velocities
from the synthetic and JPL data sets.

3.4.3 Gravity Time Series

Superconducting gravimeter data are measurements of the local relative variations of
the gravity field. These variations are derived from vertical displacements of a hollow
superconducting sphere that levitates in a persistent magnetic field (Goodkind 1999).
The gravity measurements at Membach, Belgium, provided by Olivier Francis and
Michel van Camp, are shown in Fig. 3.24. The time series of the drift-corrected



3 Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis 95

50

40 1

30 [ 1

20 r b

10 t

or i

g (mm/sz)

—40 } ]

-50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
yr

Fig. 3.24 Gravity field measurements at Membach

Table 3.14 Parameter estimates and uncertainties for the superconducting gravity measurements
at Membach station, Belgium

—« opt (nm/s?) v (nm/s?/yr) Yo (nm/s?)
2.24 40.02 3.40 £ 0.02 0.81+0.12 372

data spans from August 1995 until October 2011. For further details concerning the
measurements, please see Van Camp et al. (2005, 2016).

The trend of the time series provides information about changes in the gravity field
due to mass displacements, e.g. hydrological flows, and vertical displacements. This
time series is a good example of highly time-correlated noise (Random-Walk process
with —x = 2 or above) and its influence on estimating the trend and its uncertainty
(Van Camp et al. 2006; 2016; Van Camp and Francis 2007). Compared to the position
time series from GPS the variability in the gravity series relative to the magnitude of
the trend is significantly different. Therefore it provides an independent data set to
evaluate the MCMC method.

The analysis performed with MCMC yielded the results summarised in Table 3.14.
The model assumed was a linear combination of linear trend plus a time-correlated
noise process (Tables 3.15 and 3.16).

The first thing to note is the high value of the spectral index, —k = 2.24. This
clearly indicates that the gravity time series contains a non-stationary process. A
similar result (—k = 2.4) was already obtained from a shorter sample of the time
series which spanned to 2004 (Van Camp et al. 2005). It is a Random-Walk process,
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Table 3.15 Station information and velocity estimates from the MCMC method

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Vi ovy ovg N E
Amurian | CHAN 125.44 43.79 | —12.71 26.24 | 1.22 0.33 1.81 0.97
Amurian | KHAJ 135.05 48.52 | —13.63 | 21.65 |0.29 0.14 1.08 0.02
Antartica | SYOG 39.58 | —69.01 2.89 | —4.04 |0.07 0.08 |—0.03 0.04
Antartica | DAV 7797 | —68.58 | —5.29 | —3.10 |0.07 0.21 |—-0.19 0.11
Antartica | CAS1 110.52 | —66.28 | —10.03 1.86 |0.14 0.13 0.26 0.07
Antartica | DUM1 140.00 | —66.67 | —11.42 9.54 10.39 1.06 0.82 2.45
Antartica | VESL —2.84 | -71.67 10.28 | —0.30 |0.09 0.06 0.09 0.01
Arabia | HALY 36.10 29.14 | 2259 | 26.73 |0.79 0.57 |—-1.77 1.07
Arabia | BHR2 50.61 26.21 30.04 | 31.39 |0.14 0.21 0.39 0.62
Arabia | YIBL 56.11 22.19 | 31.57 | 3297 |0.21 0.30 0.39 |—1.24
Australia | YARI 115.35 | =29.05 | 57.30 | 39.02 |0.31 0.50 |-1.19 |—-0.83
Australia | NNOR 116.19 | —=31.05 | 57.94 | 38.41 |0.54 0.16 |—-0.73 |-0.72
Australia | KARR 117.10 | —-20.98 | 58.36 | 38.93 |0.20 0.12 |—-0.53 | —-0.89
Australia | DARW 131.13 | —12.84 | 59.28 | 36.23 |0.14 0.20 |—0.60 |—0.40
Australia | CEDU 133.81 | —31.87 | 58.81 29.08 |0.18 0.20 |—-0.81 |—0.28
Australia | ALIC 133.89 | —23.67 | 59.67 | 32.11 |0.32 0.11 0.03 |—-0.54
Australia | ADE1 138.65 | —34.73 58.35 | 24.98 |0.18 0.21 |—-0.53 |-0.24
Australia | TOW2 147.06 | —19.27 | 55.77 | 28.86 |0.14 0.11 |—0.90 |—-0.89
Australia | HOB2 147.44 | —42.80 | 55.70 14.40 | 0.34 0.05 |—-0.77 |—-0.24
Australia | PARK 148.26 | —33.00 | 52.97 18.92 | 0.41 045 |-3.24 |—-1.98
Australia | TIDB 148.98 | —35.40 | 55.26 18.26 |0.13 0.11 |—0.68 |—0.62
Australia | STR1 149.01 | —-35.32 | 55.31 18.65 | 0.18 0.10 |—-0.62 |—-0.27
Australia | SYDN 151.15 | —=33.78 | 54.27 18.06 |0.42 022 |—-0.82 |-0.76
Australia | SUNM 153.04 | —27.48 | 54.06 | 21.91 |0.34 0.50 |—-0.23 | -0.44
Australia | KOUC 164.29 | —20.56 | 47.73 | 22.75 |0.21 0.30 |—-0.58 |—-0.74
Australia | NOUM 166.41 | —22.27 | 45.77 | 20.57 |0.29 0.18 |—1.19 |—-0.85
Australia | AUCK 174.83 | —36.60 | 39.74 4.52 10.11 0.14 |—-1.23 |-0.32
Caribbean CROI —64.58 17.76 | 13.57 10.79 |0.10 0.33 0.04 | —1.69
Eurasia | HERS 0.34 50.87 | 16.41 16.50 |0.17 0.17 |—0.04 |—-0.36
Eurasia | EBRE 0.49 40.82 | 15.81 19.84 |0.14 0.08 |—0.64 0.66
Eurasia | SHEE 0.74 51.45 | 16.65 16.71 | 0.29 0.09 0.23 | —0.09
Eurasia | BELL 1.40 41.60 | 15.79 19.56 |0.29 0.10 |—0.60 0.35
Eurasia | TOUL 1.48 43.56 | 16.85 20.01 | 0.49 0.44 0.47 1.19
Eurasia | OPMT 2.33 48.84 | 15.72 18.15 | 0.13 0.10 | —0.59 0.35
Eurasia | MALL 2.62 39.55 | 16.21 19.82 |0.19 0.23 | —0.09 0.00
Eurasia | SIDV 4.68 45.88 | 16.06 19.47 |0.09 0.09 |—0.06 0.52
Eurasia | REDU 5.14 50.00 | 15.57 18.29 |0.12 0.14 | —-0.51 0.17
Eurasia | MARS 5.35 43.28 | 15.96 20.07 |0.08 0.09 |—-0.11 0.45
Eurasia | KOSG 5.81 52.18 | 16.04 17.96 |0.08 —0.00 0.02 0.22

(continued)
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Table 3.15 (continued)
Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Vi ovy ovg N E
Eurasia | WSRT 6.60 |52091 16.41 17.64 | 0.10 0.06 0.48 | —0.09
Eurasia | BORK 6.75 |53.56 1522 | 17.58 |0.25 0.10 |—0.71 |—0.03
Eurasia | WAB2 7.46 |46.92 15.84 | 19.87 |0.12 0.13 | —0.02 0.57
Eurasia | ZIMM 747 |46.88 16.23 | 19.59 |0.10 0.05 0.37 0.29
Eurasia |IENG 7.64 |45.02 15.44 | 2047 |0.15 0.13 | —0.40 0.75
Eurasia | HELG 7.89 |54.17 1589 | 17.57 |0.09 0.14 0.08 | —0.14
Eurasia | AJAC 8.76 | 41.93 16.42 | 21.44 |0.10 0.30 0.69 0.93
Eurasia |PTBB 10.46 |52.30 15,55 | 18.81 |0.11 0.08 0.02 0.08
Eurasia | WARN 12.10 | 54.17 15.58 | 18.32 |0.11 0.08 0.25 |—-0.32
Eurasia | BUDP 12.50 |55.74 14.92 | 18.05 |0.16 0.07 |—-0.36 |—0.30
Eurasia | WTZR 12.88 |49.14 15.56 | 20.39 |0.07 0.08 0.32 0.46
Eurasia | POTS 13.07 |52.38 15.57 | 19.16 |0.23 0.11 0.36 | —0.09
Eurasia | SASS 13.64 |54.51 14.65 | 19.02 |0.20 0.08 | —0.48 0.13
Eurasia | GOPE 1479 | 49.91 15.10 | 19.99 |0.15 0.12 0.11 |—0.16
Eurasia | GRAZ 15.49 | 47.07 15.38 | 21.74 |0.11 0.00 0.49 0.90
Eurasia | WROC 17.06 |51.11 14.69 | 20.18 |0.10 0.07 0.02 | —0.17
Eurasia | BORI1 17.07 |52.28 14.58 | 20.01 |0.06 0.08 |—0.08 |—0.10
Eurasia | PENC 19.28 | 47.79 14.67 | 22.15 |0.16 0.07 0.34 0.73
Eurasia | LAMA 20.67 |53.89 14.26 | 20.10 | 0.56 0.08 0.16 | —0.38
Eurasia |JOZE 21.03 |52.10 1439 | 21.03 |0.10 0.07 0.34 0.10
Eurasia | BOGO 21.04 5248 14.42 | 2047 |0.15 0.02 0.38 | —0.38
Eurasia | KLPD 21.12  |55.72 13.36 | 20.11 |0.48 0.53 | —0.67 |—0.06
Eurasia | UZHL 2230 |48.63 13.90 | 21.84 |0.10 0.13 0.06 0.02
Eurasia | SULP 24.01 |49.84 13.96 | 21.45|0.13 0.14 0.41 | —047
Eurasia | RIGA 24.06 | 56.95 13.44 | 20.17 |0.09 0.00 |—-0.09 |-0.31
Eurasia | GLSV 30.50 |50.36 12.83 | 22.38 |0.11 0.12 0.51 |—0.57
Eurasia | MIKL 3197 | 46.97 12.03 | 23.53 |0.19 0.15 0.01 | —0.17
Eurasia | CRAO 33.99 | 44.41 11.43 | 24.00 | 0.22 0.67 |—0.17 |—0.32
Eurasia | KHAR 36.24 | 50.01 11.93 | 2425 |0.23 0.25 0.83 0.35
Eurasia | MOBN 36.57 |55.11 11.83 | 22.77 |0.16 0.24 0.81 |—0.32
Eurasia | ZECK 41.57 |43.79 11.72 | 26.00 | 0.08 0.17 1.84 0.62
Eurasia | ARTU 58.56 |56.43 6.23 | 24.97 |0.10 0.18 0.80 |—0.52
Eurasia | NVSK 83.24 54.84 —1.44 25.80 | 1.12 0.95 0.30 | —0.60
Eurasia | KSTU 9279 |55.99 —4.68 | 25.43 |0.53 0.00 |—0.18 |—0.38
Eurasia | CASC —9.42  |38.69 16.78 | 17.85 |0.08 0.09 | —0.09 0.05
Eurasia | TORS —6.76 | 62.02 17.62 | 10.43 |0.33 0.64 0.83 | —145
Eurasia | NEWL —5.54 |50.10 16.46 | 15.76 |0.15 0.13 | —0.30 0.01
Eurasia |BRST —4.50 |48.38 16.82 | 16.77 |0.13 0.09 0.10 0.33
Eurasia |MADR | —4.25 |40.43 16.08 | 18.33 |0.23 0.28 |—0.63 |—0.05

(continued)
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Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vi Vi ovy ovg N E
Eurasia VILL —3.95 40.44| 16.41| 18.64|0.14 0.00 | —0.29 0.20
Eurasia CANT —3.80 43.47| 16.17| 18.39|0.01 0.08 | —0.52 0.60
Eurasia YEBE -3.09 40.52| 16.28| 18.72/0.09 0.15 | —0.38 0.14
Eurasia MORP —1.69 5521 16.92| 15.35|0.23 0.24 0.35 0.12
Eurasia NSTG —1.44 55.01| 16.18| 17.30(0.13 0.59 | —0.38 1.96
Eurasia HRM1 —1.28 51.45| 16.44| 16.34|0.12 0.00 | —0.11 —0.01
Eurasia LROC —-1.22 46.16| 16.26| 18.090.38 0.10 | —0.30 0.41
Eurasia ALAC —0.48 38.34| 16.74| 21.43|0.15 0.59 0.22 1.94
Eurasia CHIZ —0.41 46.13| 16.25| 18.36|0.07 0.12 | —0.26 0.50
Eurasia NPLD —0.34 51.42| 15.92| 17.07|0.22 0.14 | —0.58 0.50
Eurasia VALE —-0.34 39.48| 16.09| 19.82|0.09 0.13 | —0.41 0.52
India MALD 73.53 4.19| 34.05| 4292/0.35 0.59 0.17 —0.62
India HYDE 78.55 17.42| 34.32| 41.04/0.24 0.38 0.00 —0.01
Nazca EISL —109.38 | —27.15| —6.74| 67.09|0.35 0.32 | —1.05 —-1.09
Nazca GALA | —-90.30 | —0.74| 10.86| 51.30|0.64 0.48 | —0.31 —0.12
Nazca GALA | -90.30 | —0.74| 10.86| 51.30|0.64 0.48 | —0.31 —0.12
N. America |PUC1 | —110.81 39.60| —8.30| —14.13|0.09 0.11 | —0.03 —0.18
N. America | NISU | —105.26 40.00| —5.97|—-14.97|0.36 0.45 0.39 —0.48
N. America | AMC2 | —104.52 38.80| —5.69|—14.39/0.11 —0.00 0.41 —0.14
N. America | MDOI1 | —104.01 30.68| —5.75|—-11.98|0.18 0.14 0.17 0.13
N. America | SUMI | —102.51 34.83| —6.00| —13.06|1.36 0.28 | —0.61 0.27
N. America | AUSS -97.76 30.31| —2.72| —11.44|0.25 0.26 0.96 0.83
N. America | PATT —95.72 31.78| —2.54|-12.75|0.10 0.19 0.40 0.01
N. America | ANG1 —95.49 29.30| —1.76|—11.71|0.20 0.61 1.10 0.32
N. America | WNFL | —92.78 31.90| —1.86|—12.20|0.17 0.11 0.01 0.65
N. America | NLIB —91.57 41.77| —1.33|—15.23|0.13 0.09 0.10 0.30
N. America | MIL1 —87.89 43.00 0.10| —14.97|0.04 0.25 0.18 0.90
N. America | MLF1 —87.39 32.09 0.45|—13.03|0.24 0.37 0.35 —0.08
N. America | STB1 —87.31 44.80| —1.02|—16.13/0.19 0.10 | —1.16 0.17
N. America | UNIV —84.39 42.29 1.02| —15.610.12 0.12 | —0.18 0.06
N. America | LEBA —84.28 39.43 1.58 | —14.85|0.10 0.14 0.34 0.10
N. America | BAYR —83.89 43.45 0.87| —16.10|0.10 0.14 | —0.52 —0.16
N. America | MCN1 —83.56 32.70 1.76 | —13.23|0.16 0.14 0.25 —0.14
N. America | ASHV —82.55 35.60 2.15|—14.13]0.18 0.15 0.27 —0.24
N. America | MCD1 —82.53 27.85 1.20| —10.98 | 0.29 0.24 | —0.69 0.67
N. America | SAVI —81.70 32.14 242|—-12.62|0.12 0.13 0.23 0.29
N. America | CCV3 —80.55 28.46 2.98| —12.480.26 0.31 0.37 —0.69
N. America | CHA1 —79.84 32.76 3.28|—12.93/0.19 0.43 0.41 0.11

(continued)
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Table 3.15 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

D A(deg) | ¢ (deg) | Vy Ve ovy ovy N E

N. America | PSUI —77.85 40.81 3.66| —15.180.17 0.08 0.07 | —0.06
N. America | GODE | —76.83 39.02 4.07 | —14.68 | 0.06 0.08 0.11 | —-0.05
N. America | GLPT —76.50 37.25 4.00| —14.36 | 0.32 0.16 | —0.08 | —0.21
N. America | HNPT —76.13 38.59 4.54 | —14.66 | 0.42 0.66 032 |-0.17
N. America | DUCK | —75.75 36.18 4.25|-13.93/0.19 0.30 | —0.09 | —0.09
N. America | VIMS —75.69 37.61 4.82| —14.00 | 0.08 0.08 0.45 0.22
N. America | DNRC | —75.52 39.16 4.05|-15.190.11 0.25 | —0.38 | —0.58
N. America | CHL1 —75.09 38.78 4.02 | —14.63|0.19 0.20 |-0.57 |—0.15
N. America | WES2 —71.49 42.61 5.40| —15.12|0.14 0.07 | —0.46 0.09
N. America | NPRI —71.33 41.51 5.67|—15.09|0.10 0.11 | -0.25 | -0.15
N. America | BARH | —68.22 44.40 6.72 | —15.22 | 0.08 0.09 |—0.28 0.14
N. America | EPRT —66.99 4491 7.26 | —15.42{0.08 0.06 | —0.17 | —0.05
N. America | UNB1 —66.64 45.95 7.13| —15.78 | 0.42 040 | —0.42 | -0.22
N. America | BRMU | —64.70 32.37 8.85| —11.810.20 0.37 0.63 0.33
N. America | HLFX —63.61 44.68 8.67| —15.22/0.10 0.16 0.09 |—-0.23
Nubia WIND 17.09 | —22.57| 19.98| 18.73|0.37 0.19 0.72 | -1.26
Nubia SIMO 18.44 | —=34.19| 19.40| 16.56|0.20 0.38 0.23 | -0.43
Nubia SUTH 20.81 |—32.38| 19.11| 16.76|0.11 0.18 0.10 |—-0.29
Nubia LPAL —17.89 2876 | 16.99| 16.50|0.34 0.33 | —0.60 0.41
Nubia DAKA | —17.47 14.68 | 14.12| 21.38|0.58 0.85 | —3.54 1.27
Nubia MASI —15.63 27776 | 17.63| 16.65|0.16 0.17 | —0.28 | —0.08
Nubia GOUG —9.88 | —40.35| 18.72| 21.37/0.82 0.26 0.14 0.04
Pacific MCIL 153.98 2429 | 24.19|-71.710.30 0.37 0.57 | —0.05
Pacific POHN 158.21 6.96| 25.46|—70.19|0.30 041 | —-0.01 |—-0.77
Pacific NAUR 166.93 | —0.55| 30.02|—67.01|0.14 0.22 1.22 | -0.18
Pacific KWIJ1 167.73 8.72| 29.17| —68.59 | 0.35 0.74 0.09 0.59
Pacific KIRI 172.92 1.35| 31.07|—67.69|0.23 0.23 0.35 | -0.29
Pacific TUVA 179.20 | —8.53| 32.45|-63.91|0.13 0.25 0.10 0.44
Pacific CHAT | —176.57 |—43.96| 33.21|—40.590.13 0.15 0.02 0.29
Pacific FALE | —172.00 |—13.83| 33.26|—63.480.08 0.23 | —-0.74 | —0.31
Pacific SAMO | —171.74 | —13.85| 33.43|—-64.29|0.16 0.33 | —-0.61 | —1.09
Pacific ASPA | —170.72 | —14.33| 34.15|—63.16|0.11 0.27 |—0.02 |-0.01
Pacific CKIS | —159.80 |—21.20| 35.40|—62.74|0.18 0.54 0.46 | —0.49
Pacific KOK1 | —159.76 21.98| 33.52|-61.97|0.87 0.51 | —1.41 0.49
Pacific KOKB | —159.66 22.13| 34.63|—62.28|0.13 0.20 | —0.31 0.11
Pacific LHUE | —159.34 21.98| 35.50|—61.52|1.49 0.52 0.56 0.84
Pacific HNLC | —157.86 21.30| 34.84|—62.52|0.41 0.17 | —0.10 | -0.20
Pacific UPO1 | —155.88 20.25| 35.69 | —67.78 | 0.51 0.80 0.79 | -5.43
Pacific MKEA | —155.46 19.80 | 34.86|—62.190.10 0.15 | —0.06 0.30
Pacific HILO | —155.05 19.72| 38.72 | —62.45|0.68 0.46 3.84 | —0.04

(continued)
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Table 3.15 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Ve oYy oV N E
Pacific THTI —149.61 | —17.58| 34.42|—-65.40/0.18 0.29 | —-0.10 0.16
Pacific GUAX | —118.29 28.88 | 26.05| —47.68|0.74 0.69 | —0.60 0.20
S. America | BUE2 —58.52 | —34.57| 12.48| —0.65|1.51 0.23 1.05 1.17
S. America | LPGS —57.93 |-3491| 11.76| —0.95|0.10 0.13 0.29 0.90
S. America | LKTH —57.85 | =51.70 | 12.33 0.34]0.51 0.38 0.86 0.32
S. America | KOUR —52.81 525 12.62| —5.21(0.12 0.08 0.81 0.14
S. America | UEPP —51.41 |-22.12| 12.76| —3.22|0.35 0.24 0.89 0.47
S. America | PARA —49.23 | =2545| 12.16| —3.54|0.19 0.34 0.19 0.08
S. America | NEIA —47.92 | -25.02| 12.71| —-2.38|0.24 0.20 0.69 1.39
S. America | BRAZ —47.88 |—15.95| 12.61| —4.22|0.13 0.17 0.59 0.13
S. America | FORT —38.43 —3.88| 12.35| —4.21|0.16 0.30 0.15 0.88
S. America | ASC1 —14.41 —795| 11.15| —=5.21|0.20 0.26 0.01 0.51
Somalia MALI 40.19 —3.00| 16.31| 26.78|0.20 0.26 | —0.65 1.83
Somalia REUN 55.57 | —=21.21| 12.51| 16.59/0.18 0.31 |—0.99 | —1.89
Sunda NTUS 103.68 135 —5.24| 30.76|0.14 0.18 | —0.00 0.01

meaning that the gravity field is randomly evolving in time due to stochastic changes
of mass distribution.

Figure 3.25 shows the histogram of the estimated parameters. Figure 3.25a, b
show that —« and o, respectively, have Gaussian distributions.

The velocity although it does not seem Gaussian has an absolute maximum.

On the other hand, the ordinate y is multimodal. This is typical of non-stationary
stochastic processes, where the noise adds some velocity into the trend. This feature
could be difficult to detect with an optimisation method as, for example, MLE as
implemented in CATS, as it could have ended up at any of the maxima, and not
necessarily at the absolute one.

For the Hector software (Bos et al. 2012), another MLE implementation, it is
clearly stated that the approximation of the noise covariance matrix does not hold
for high amplitude non-stationary noise such as Random-Walk. In comparison to
GPS time series, gravity series do not seem to contain any white noise. Therefore
the Random-Walk is high amplitude.

The MCMC analysis of the time series of the superconducting gravity measure-
ments has shown another advantage of using an integrator method such as MCMC
rather than an optimisation method such as MLE. Due to the characteristics of the
algorithm, it explores the surrounding areas of a maximum, thereby spotting other
local maxima. This is the case for the ordinate parameter yy (see Fig. 3.25d). This is
typical of non-stationary stochastic processes, where the noise adds some velocity
into the trend. Therefore, it is advisable to use the MCMC method for time series with
high spectral index, e.g. —« ~ 2. It has to be mentioned here that even the MCMC
may need some tuning in order to not get stuck in a local maxima.
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Table 3.16 Station information and velocity estimates from the CATS method

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Vg oyy oV N E
Amurian | CHAN 125.44 43.79 | —11.67 | 26.12 | 0.56 0.19 2.43 1.24
Amurian | KHAJ 135.05 48.52 | —13.62 | 21.66 |0.22 0.09 1.14 0.04
Antartica | SYOG 39.58 | —69.01 2.90 | —4.05 |0.06 0.06 —-0.02 | -0.04
Antartica | DAV1 77.97 | —68.58 | —5.26 —3.06 | 0.06 0.13 —-0.25 0.10
Antartica | CAS1 110.52 | —66.28 | —9.99 1.85 [ 0.08 0.11 0.16 0.08
Antartica | DUM1 140.00 | —66.67 | —11.41 8.52 10.32 1.04 0.67 1.52
Antartica | VESL —2.84 | -71.67 10.27 | —0.25 | 0.08 0.07 0.19 0.00
Arabia HALY 36.10 29.14 | 2296 | 26.81 |0.17 0.28 —-2.07 | -0.04
Arabia BHR2 50.61 26.21 30.25 | 31.25 |0.08 0.13 1.57 | —-0.37
Arabia YIBL 56.11 22.19 | 31.37 | 33.40 |0.11 0.26 1.77 | —1.12
Australia | YAR1 115.35 | —29.05 | 57.31 39.12 |1 0.24 0.25 -0.87 | —-0.13
Australia | NNOR 116.19 | -31.05 | 57.92 | 3841 0.07 0.09 —-0.43 | -0.12
Australia | KARR 117.10 |—20.98 | 58.38 | 38.92 |0.08 0.06 —-0.18 | —0.32
Australia | DARW 131.13 | —12.84 | 59.22 | 35091 |0.10 0.30 —-0.25 | -0.20
Australia | CEDU 133.81 |—31.87 | 58.78 | 29.11 |0.09 0.10 —0.41 0.28
Australia | ALIC 133.89 | —-23.67 | 59.10 | 32.10 | 0.06 0.07 —-0.11 | —-0.00
Australia | ADEI 138.65 | —34.73 | 58.38 | 24.95 |0.11 0.13 —0.05 0.24
Australia | TOW2 147.06 | —19.27 | 55.73 | 28.85 |0.06 0.06 —0.46 | —0.41
Australia | HOB2 147.44 | —42.80 | 55.63 14.18 | 0.74 0.08 —-0.36 | —-0.00
Australia | PARK 148.26 | —33.00 | 53.07 18.92 | 0.31 0.30 —2.65 | —1.50
Australia | TIDB 148.98 | —35.40 | 55.25 18.29 | 0.06 0.07 —-0.20 |-0.12
Australia | STR1 149.01 | —-35.32 | 55.35 18.65 | 0.08 0.07 —0.10 0.20
Australia | SYDN 151.15 | —33.78 | 54.35 18.06 | 0.15 0.15 -0.25 | -0.30
Australia | SUNM 153.04 | —27.48 | 53.95| 21.95|0.24 0.20 0.15 0.06
Australia | KOUC 164.29 | —20.56 | 47.58 | 22.47 |0.17 0.25 —-0.22 | -0.58
Australia | NOUM 166.41 | —22.27 | 4579 | 20.57 |0.14 0.14 —0.66 | —0.43
Australia | AUCK 174.83 | —=36.60 | 39.74 4.50 | 0.07 0.11 —-0.72 | —0.00
Caribbean| CRO1 —64.58 17.76 13.54 11.04 | 0.08 0.19 0.06 |—0.83
Eurasia | HERS 0.34 50.87 16.47 16.50 | 0.25 0.13 —-0.20 | -0.51
Eurasia | EBRE 0.49 40.82 15.82 19.84 | 0.12 0.04 —0.85 0.25
Eurasia | SHEE 0.74 51.45 16.57 16.70 | 0.27 0.08 —0.08 | —0.24
Eurasia | BELL 1.40 41.60 15.96 19.56 | 0.17 0.09 —0.66 | —0.03
Eurasia | TOUL 1.48 43.56 16.81 20.06 | 0.25 0.27 0.20 0.91
Eurasia | OPMT 2.33 48.84 15.79 18.15 | 0.09 0.06 —0.76 0.14
Eurasia | MALL 2.62 39.55 16.29 19.80 | 0.09 0.15 —-0.25 | —0.46
Eurasia | SJDV 4.68 45.88 16.05 19.45 | 0.08 0.06 —0.35 0.20
Eurasia |REDU 5.14 50.00 15.59 18.28 | 0.09 0.11 —-0.77 | —0.03

(continued)
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Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Vg oyy oV N E
Eurasia | MARS 5.35 |43.28 15.96 | 20.05 | 0.06 0.06 —0.39 0.07
Eurasia | KOSG 5.81 52.18 16.01 | 18.05 |0.08 0.06 —0.29 0.16
Eurasia | WSRT 6.60 5291 16.41 | 17.64 | 0.07 0.05 0.17 |-0.22
Eurasia | BORK 6.75 |53.56 15.22 | 17.59 | 0.18 0.08 —-1.01 |-0.13
Eurasia | WAB2 7.46 |46.92 15.84 | 19.85 |0.08 0.09 —0.33 0.28
Eurasia | ZIMM 747 |46.88 16.22 | 19.60 | 0.07 0.04 0.05 0.01
Eurasia | IENG 7.64 |45.02 15.40 | 20.48 |0.09 0.09 —-0.75 0.43
Eurasia | HELG 7.89 |54.17 15.93 | 17.63 | 0.09 0.07 —-0.19 | -0.18
Eurasia | AJAC 8.76 | 41.93 15.75 |21.35 |0.10 0.21 —0.30 0.44
Eurasia |PTBB 10.46  |52.30 15.55 | 18.81 0.07 0.06 -0.33 | -0.07
Eurasia | WARN 12.10 | 54.17 15.58 | 18.32 | 0.09 0.06 —-0.12 | -0.44
Eurasia | BUDP 12.50 |55.74 14.94 | 18.01 0.07 0.05 —-0.71 | -0.41
Eurasia | WTZR 12.88 |49.14 15.55 120.39 | 0.06 0.04 —0.07 0.22
Eurasia | POTS 13.07 |52.38 15.12 | 19.16 | 0.08 0.05 —-0.47 | -0.27
Eurasia | SASS 13.64 |54.51 14.66 | 19.00 | 0.16 0.06 —-0.87 | —0.00
Eurasia | GOPE 1479 4991 15.10 | 19.99 |0.13 0.10 —-0.29 | -0.40
Eurasia | GRAZ 15.49 |47.07 15.38 1 21.93 | 0.07 0.06 0.08 0.78
Eurasia | WROC 17.06 |51.11 14.63 | 20.17 | 0.09 0.06 —-0.47 | —0.40
Eurasia | BORI1 17.07 |52.28 14.58 | 20.01 0.06 0.07 -0.51 | —-0.29
Eurasia | PENC 19.28 |47.79 14.66 | 22.15 |0.13 0.05 —0.13 0.41
Eurasia |LAMA 20.67 |53.89 14.36 | 20.10 |0.15 0.05 —-0.22 | -0.56
Eurasia |JOZE 21.03 |52.10 14.38 | 21.03 | 0.09 0.07 —-0.14 | -0.12
Eurasia | BOGO 21.04 |52.48 14.44 1 20.57 |0.12 0.10 —-0.09 | —-0.49
Eurasia | KLPD 21.12  |55.72 13.43 1 20.06 |0.24 0.30 —1.08 | —-0.25
Eurasia | UZHL 22.30 |48.63 13.89 | 21.83 | 0.08 0.10 —-0.44 | -0.30
Eurasia | SULP 24.01 49.84 13.95 | 21.47 |0.10 0.09 —-0.10 | -0.74
Eurasia | RIGA 24.06 |56.95 13.44 | 20.21 0.07 0.08 —0.60 | —0.40
Eurasia | GLSV 30.50 |50.36 12.84 |22.37 | 0.09 0.07 —0.06 | —0.90
Eurasia | MIKL 31.97 |46.97 12.07 | 23.52 | 0.12 0.11 —-0.55 | —0.60
Eurasia | CRAO 33.99 |44.41 11.50 | 23.73 |0.16 0.29 —-0.71 | —1.08
Eurasia | KHAR 36.24  |50.01 11.91 | 24.20 |0.17 0.17 0.18 | —0.09
Eurasia | MOBN 36.57 |55.11 11.74 | 22.77 1 0.38 0.16 0.07 | —0.59
Eurasia |ZECK 41.57 |43.79 11.72 | 26.02 | 0.06 0.12 1.16 0.08
Eurasia | ARTU 58.56 |56.43 6.23 [24.98 |0.08 0.12 0.02 |—-0.99
Eurasia | NVSK 83.24 |54.84 —0.93 | 25.78 1.12 0.79 —-0.00 |—1.42
Eurasia | KSTU 92.79 |55.99 —4.53 |25.68 | 0.36 0.25 —-0.81 | —1.00
Eurasia | CASC —9.42 |38.69 16.79 | 17.85 | 0.05 0.07 —-0.16 | —-0.39
Eurasia | TORS —6.76 | 62.02 17.57 | 10.63 | 0.23 0.60 0.67 |—1.11

(continued)



3 Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis 103
Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)

D A(deg) | ¢ (deg) | Vy Ve ovy ovy N E

Eurasia NEWL —5.54 50.10| 16.36| 15.75)0.17 0.06 —0.53 | -0.16
Eurasia BRST —4.50 4838 | 16.84| 16.77/0.09 0.07 —0.02 0.12
Eurasia MADR —4.25 40.43| 16.03| 18.38/0.17 0.20 —0.84 | -0.41
Eurasia VILL —3.95 4044 | 16.42| 18.73/0.12 0.08 —0.43 | —0.11
Eurasia CANT —3.80 43.47| 16.45| 18.41(0.07 0.06 —0.40 0.29
Eurasia YEBE —3.09 40.52| 16.29| 18.72/0.05 0.12 —0.54 | -0.26
Eurasia MORP —1.69 5521 16.79| 15.30|0.19 0.26 0.03 0.04
Eurasia NSTG —1.44 55.01| 16.24| 16.25)/0.07 0.19 —0.51 0.87
Eurasia HRM1 —1.28 51.45| 16.44| 16.41/0.08 0.05 —0.30 | —0.08
Eurasia LROC —-1.22 46.16| 16.32| 18.100.06 0.06 —0.43 0.15
Eurasia ALAC —0.48 38.34| 16.67| 20.21|0.07 0.13 —0.05 0.26
Eurasia CHIZ —0.41 46.13| 16.25| 18.35/0.05 0.09 —0.46 0.22
Eurasia NPLD —0.34 51.42| 15.94| 17.03|0.14 0.08 -0.76 0.32
Eurasia VALE —0.34 39.48 | 16.09| 19.75|0.06 0.09 —0.62 0.01
India MALD 73.53 4.19| 34.04| 43.30|0.24 0.49 0.25 | —-0.61
India HYDE 78.55 17.42| 34.25| 41.06|0.24 0.17 —0.11 |-0.02
Nazca EISL —109.38 | —27.15| —6.78| 67.07|0.28 0.29 -0.70 | —0.77
Nazca GALA | -90.30 | —0.74| 10.45| 51.37|0.17 0.13 —0.10 | —0.04
Nazca GALA | -90.30 | —0.74| 1045| 51.37|0.17 0.13 —0.10 | —0.04
N. America |PUCI | —110.81 39.60 | —8.30 | —14.12/0.07 0.09 —1.21 0.12
N. America | NISU | —105.26 40.00 | —5.98 | —15.000.24 0.18 —0.64 | —0.29
N. America | AMC2 | —104.52 38.80 | —5.69 | —14.45|0.08 0.10 —0.59 0.05
N. America | MDO1 | —104.01 30.68 | —5.81|—12.010.10 0.10 —0.87 0.68
N. America | SUMI | —102.51 34.83| —5.76 | —13.06 | 0.80 0.21 —1.31 0.67
N. America | AUS5 —97.76 3031 —2.74| —11.46|0.18 0.19 0.15 1.35
N. America | PATT —95.72 31.78 | —2.55|—12.73|0.08 0.13 —0.33 0.49
N. America | ANGI —95.49 29.30| —1.78|—11.73|0.13 0.38 0.36 0.88
N. America | WNFL | —92.78 31.90 | —1.85|—12.20|0.14 0.08 —0.61 1.10
N. America | NLIB —91.57 41.77| —1.30|—15.24|0.11 0.08 —0.46 0.31
N. America | MIL1 —87.89 43.00| —0.06 | —15.04|0.17 0.19 —0.45 0.76
N. America | MLF1 —87.39 32.09 0.37|—-12.97|0.19 0.26 —-0.18 0.39
N. America | STB1 —87.31 44.80| —0.93|—16.12|0.15 0.08 —1.51 0.03
N. America | UNIV —84.39 42.29 1.03 | —15.61 | 0.08 0.09 —0.52 0.01
N. America | LEBA —84.28 39.43 1.59 | —14.85|0.08 0.10 0.00 0.17
N. America | BAYR —83.89 43.45 0.88| —16.11{0.08 0.09 —0.84 | -0.27
N. America | MCNI1 —83.56 32.70 1.78 | —=13.23 | 0.12 0.10 —0.05 0.24
N. America | ASHV | —82.55 35.60 2.09|—14.14|0.12 0.11 —0.08 | —0.00
N. America | MCDI1 | —82.53 27.85 1.26 | —10.99 | 0.20 0.17 —0.91 1.24
N. America | SAV1 —81.70 32.14 2.39 | —12.630.08 0.11 —0.06 0.66

(continued)
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Table 3.16 (continued)
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Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Ve oYy oV N E
N. America | CCV3 —80.55 28.46 2.88 | —12.30|0.14 0.10 0.05 0.05
N. America | CHA1 —79.84 32.76 3.28 | —12.90 | 0.17 0.19 0.22 0.50
N. America | PSU1 —77.85 40.81 3.68| —15.19(0.15 0.06 —0.04 | —0.07
N. America | GODE —76.83 39.02 4.07 | —14.68 | 0.06 0.07 0.02 0.03
N. America | GLPT —76.50 37.25 4.08 | —14.35|0.06 0.12 —0.08 | —0.04
N. America | HNPT —76.13 38.59 4.54| —14.44|0.37 0.54 0.26 0.14
N. America | DUCK | —75.75 36.18 4.24|—-13.96|0.15 0.22 —0.16 0.08
N. America | VIMS —75.69 37.61 4.75| —14.06 | 0.08 0.05 0.33 0.29
N. America | DNRC —75.52 39.16 4.02 | —15.17|0.09 0.20 —-0.46 | —-0.49
N. America | CHL1 —75.09 38.78 3.99| —14.610.15 0.13 —0.63 | —0.04
N. America | WES2 —71.49 42.61 5.41|—15.12|0.12 0.07 —0.36 0.01
N. America | NPRI —71.33 41.51 5.66 | —15.06 | 0.07 0.06 —0.16 |—-0.16
N. America | BARH —68.22 44.40 6.73 | —15.23 | 0.06 0.05 —0.07 |-0.02
N. America | EPRT —66.99 44.91 7.25|—15.42|0.07 0.04 0.07 | -0.23
N. America | UNBI1 —66.64 45.95 7.30| —15.87|0.24 0.27 0.01 | —-0.54
N. America | BRMU | —64.70 32.37 8.87 | —11.970.18 0.38 0.98 0.56
N. America | HLFX —63.61 44.68 8.67 | —15.21{0.06 0.05 0.45 | —-0.38
Nubia WIND 17.09 | —22.57| 19.54| 19.000.11 0.14 0.30 | —1.05
Nubia SIMO 18.44 | —34.19| 19.43| 16.68|0.14 0.31 0.29 | -0.33
Nubia SUTH 20.81 | —32.38| 19.10| 16.86|0.09 0.11 0.11 | -0.23
Nubia LPAL —17.89 28.76 | 17.17| 16.13|0.11 0.09 —0.44 | —0.06
Nubia DAKA | —17.47 14.68 | 14.16| 21.02|0.43 0.39 —3.52 0.82
Nubia MASI1 —15.63 27.76 | 17.57| 16.62|0.15 0.13 —-0.36 |—0.22
Nubia GOUG —9.88 | —40.35| 18.80| 21.36|0.20 0.19 0.21 0.02
Pacific MCIL 153.98 2429 | 24.13|-71.710.21 0.12 —1.40 |-1.17
Pacific POHN 158.21 6.96| 25.61|—70.100.20 0.11 —-1.62 |—-1.30
Pacific NAUR 166.93 —0.55| 30.05|—67.00|0.10 0.10 —-0.20 |—-0.53
Pacific KWIJ1 167.73 8.72| 29.32|-68.900.12 0.12 —-1.17 | -0.45
Pacific KIRI 172.92 1.35| 31.09|—-67.75|0.15 0.08 -0.82 | -0.79
Pacific TUVA 179.20 —8.53| 32.43|—63.88|0.06 0.13 —0.85 0.44
Pacific CHAT | —176.57 | —43.96| 33.21|—40.580.08 0.11 —0.73 1.77
Pacific FALE | —172.00 |—13.83| 33.26|—63.55|0.06 0.12 —-1.27 |-0.14
Pacific SAMO | —171.74 | —13.85| 33.47|—64.09 | 0.09 0.23 —-1.09 | —0.65
Pacific ASPA | —170.72 | —14.33| 34.16|—63.24 | 0.07 0.16 —0.49 0.17
Pacific CKIS —159.80 | —21.20| 35.35|-62.490.11 0.13 0.45 0.35
Pacific KOK1 | —159.76 21.98| 35.13|—-62.210.11 0.13 0.22 | —1.11
Pacific KOKB | —159.66 22.13| 34.64 | —62.240.07 0.12 -0.26 | —1.21
Pacific LHUE | —159.34 21.98| 34.93|-61.45|1.71 0.29 0.04 | —0.44

(continued)
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Table 3.16 (continued)

Plate Station Horizontal velocities (mm/yr) Residuals (mm/yr)
ID A (deg) ¢ (deg) | Vy Ve oYy oV N E
Pacific HNLC | —157.86 21.30| 34.62|—62.54|0.05 0.06 —-0.20 |—1.54
Pacific UPO1 | —155.88 20.25| 35.39|—-67.33/0.33 0.49 0.69 | —6.26
Pacific MKEA | —155.46 19.80 | 34.85|—62.23|0.06 0.08 0.17 | —1.00
Pacific HILO | —155.05 19.72| 35.44|—63.02|0.07 0.38 0.81 | —1.88
Pacific THTI —149.61 | —17.58| 34.46|—65.44|0.08 0.11 0.44 0.53
Pacific GUAX | —118.29 28.88 | 25.33|—46.99(0.20 0.22 0.47 | —0.40
S. America | BUE2 —58.52 | =34.57| 12.46 0.00 | 0.99 0.01 1.21 1.91
S. America | LPGS —57.93 |-3491| 11.77| —0.95|0.09 0.10 0.48 | 0.98
S. America | LKTH —57.85 |-=51.70 | 12.29 0.380.17 0.20 1.00 0.38
S. America | KOUR —52.81 5.25| 12.63| —5.21(0.10 0.07 1.00 0.31
S. America | UEPP —51.41 |-22.12| 12.82| —3.29|0.18 0.24 1.12 0.50
S. America | PARA —49.23 | -2545| 12.18| —-3.53|0.14 0.26 0.38 0.18
S. America | NEIA —47.92 | -25.02| 12.74| —2.45|0.19 0.15 0.89 1.41
S. America | BRAZ —47.88 | —15.95| 12.59| —4.29|0.11 0.13 0.73 0.18
S. America | FORT —38.43 —3.88| 12.33| —4.26|0.14 0.27 0.27 0.97
S. America | ASC1 —14.41 —795| 11.04| —5.24|0.11 0.16 —0.04 0.62
Somalia MALI 40.19 —3.00| 16.34| 26.75|0.14 0.20 —0.31 1.75
Somalia REUN 55.57 | —-21.21| 12.43| 16.89/0.10 0.20 —-0.97 |—-1.90
Sunda NTUS 103.68 1.35| —5.26| 30.27(0.18 0.24 0.01 0.28

3.4.4 Mean Sea Level Time Series

The third real data set to be analysed with the MCMC method were the monthly
mean sea level (MSL) records from the Revised Local Reference (RLR) data base
provided by the Permanent Service for Mean Sea Level (PSMSL)’ (Holgate et al.
2013).

For example, Fig. 3.26a shows the monthly MSL in mm from the tide gauge
at Andreia in the Russian Federation. While it is easily noticed that the time series
differs from a GPS position time series, this difference is less evident when comparing
it to the gravity time series in Fig. 3.24. This comparison suggests the presence of
time-correlated noise also in the MSL record which is confirmed when looking at the
power spectrum in Fig. 3.26b, showing a power-law spectrum. However, at the time of
this study the PSMSL did not provide a full stochastic analysis of the MSL records
and only considered white noise when estimating the parameters and associated
uncertainties. As this spectrum is not an isolated case, rather it is representative of
many stations in the PSMSL database, the PSMSL has updated its analysis strategy

SData available at http://www.psmsl.org/.
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Fig. 3.25 Histograms for —«, o, v and yo

recently, see https://www.psmsl.org/products/trends/methods.php. Nevertheless, for
demonstration purposes only we will use here the trend estimates from the PSMSL
assuming randomness.

Figure 3.27 shows the distribution of all tide gauges contributing to the PSMSL
as in 2014. The differences in coverage between the Northern and Southern Hemi-
spheres are clearly evident. Furthermore, it is known that most of the long MSL
records (40+ years) are located around Northern Europe and the Baltic Sea with a
few stations in North America, Asia and Australia.

In order to construct time series of sea level measurements at each station, the
monthly means have to be reduced to a common datum. This reduction is performed
by the PSMSL making use of the tide gauge datum history provided by the supplying
authority. To date, approximately two thirds of the stations in the PSMSL database
have had their data adjusted in this way, forming the RLR dataset. Only the RLR
data set was used in this analysis as suggested by the PSMSL.

The histogram of the time series lengths in Fig. 3.28 shows they span from a few
months to around 200 years, although the mode is suggested to be centred around
20 years.

Besides the annual and semi-annual periodic terms observed in GPS time series,
the MSL records are also influenced by other time-scale phenomena, some of them
spanning several years like the Rossby wave propagation from open ocean towards the
shore (Douglas et al. 2001; Holgate and Woodworth 2004), the El Nifio phenomenon
in the Pacific Ocean (White et al. 2005; Church and White 2006) or the 18.6year
Lunar Nodal Cycle (Baart et al. 2012).
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Fig. 3.26 Monthly mean sea level at Andreia, Russian Federation

There are few sea level studies which have considered time-correlation within the
noise of the MSL records (Harrison 2002; Mazzotti et al. 2008; Hughes and Williams
2010; Burgette et al. 2013; Montillet et al. 2018), hence the interest of the MCMC
analysis on these time series.

Besides a purely scientific goal, sea-level rise is of importance nowadays due
to the socio-economic impact it will have on millions of people who live in coastal
regions around the world. Projections of sea level for the 21st century help to prepare
governments and people in these regions. The projections have uncertainties which
depend to a degree on the noise within the time series, therefore, it is necessary to
understand the nature of this noise.

Like other geophysical time series, MSL records have a power-law spectrum
(Agnew 1992; Harrison 2002; Mazzotti et al. 2008). Nevertheless, so far it has not
been common to use models of white noise plus power-law in the analyses of MSL
records, with a few exceptions (Mazzotti et al. 2008; Hughes and Williams 2010;
Burgette et al. 2013; Montillet et al. 2018). In order to estimate the spectral index
and its effect on the estimated parameters and their uncertainties, an analysis using
the MCMC method implemented has been carried out on the MSL records provided
by the PSMSL. As in Hughes and Williams (2010), the chosen deterministic model
includes linear plus annual and semi-annual terms.
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Fig. 3.27 Distribution of PSMSL tide gauge stations as in 2014. (Reproduced from https://www.
psmsl.org)
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Fig. 3.28 Histograms for all the monthly RLR MSL records from PSMSL

As Zhang et al. (1997); Mao et al. (1999) and Williams et al. (2004) showed
for GPS position time series, the hypothesis of a pure white noise process clearly
underestimates the uncertainties of the parameters. Moreover, unlike white noise,
long memory processes have a power-law spectrum and, consequently, as the ampli-
tude changes in time, even the estimated parameters themselves may be different

(Harrison 2002).
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Fig. 3.29 Estimates for —« for monthly MSL records from the PSMSL RLR data base

Therefore, differences coming from this analysis on the MSL time series are
expected, and they may affect conclusions of other applications where their trends
are used, as, for example, the computation of vertical land movements from GPS time
series for the correction of tide gauge records in sea level studies, e.g. Woppelmann
et al. (2007).

Figure 3.29 shows the distribution of the spectral index —« for the MSL data
set. Clearly, most of their values do contain coloured noise. They are centred near
—k = 1 (i.e. Flicker noise) and, in general, the value of —« ranges from ~0 to above
2, spanning the stationary and non-stationarity regimes. This is in good agreement
with Burgette et al. (2013) where they carried out an analysis on MSL records from
Australia with CATS, and found that most of the MSL spectrums fit either a combi-
nation of white noise and power-law, or a First Order Gauss Markov process (which
is equivalent to a Random-Walk at middle frequency).

The empirical cumulative density function (ECDF) of —« is shown in Fig. 3.30.
Most remarkable is that 99% of the MSL records have an —« > 0.5, with 56% in
the interval [0.5 — 1) (stationary regimes) and 44% in the non-stationary regimes,
ie. with —x > 1.

In order to estimate the trends, only monthly MSL records longer than 30 years
were analysed, assuming most of the seasonal effects are sub-monthly (therefore they
are filtered out), semi-annual and annual, though there are still some discrepancies
about oscillations of longer periods within the time series (Chambers et al. 2012).
According to Woodworth et al. (1999, 2009) and cites therein, this is the length
required to estimate sea level trends with a standard error of the order of 0.5 mm/yr
or less.
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Fig. 3.30 Empirical cumulative density function of —«

A histogram of the estimated velocity v is shown in Fig. 3.31. Although most
of the estimated values are centered around v = 1 mm/yr, they range from —10 to
10mm/yr, with some extreme cases at —20 and 20 mm/yr. The median is v;,.q =
1.26 mm/yr and v,,.y = 1.41 mm/yr for the MCMC and PSMSL cases, respectively.
Their differences in their standard deviation are also sub-millimetre per year, namely
o, = 3.21 mm/yr and o, = 2.83 mm/yr for MCMC and PSMSL, respectively. As
these values are corresponding to sea level variations potentially affected by vertical
land movements, they cannot be compared with a globally averaged sea level rise
estimate.

Finally, the uncertainties of the estimated v from the MCMC method are shown
in Fig. 3.32. Although the estimates range from 0 to 35 mm/yr, they cluster at the
few millimetre per year level, mainly between 0 and 5 mm/yr.

In order to compare the results from the MCMC analysis with the values from
PSMSL (white noise model), the same stations for which the trends are given in the
PSMSL web page® were selected. Figure 3.33 shows the differences. In the vertical
axis, the estimates from MCMC (coloured noise hypothesis); in the horizontal axis,
white noise model is assumed. Although most of them align along the diagonal,
there are some noticeable differences with some points around (5, —17) mm/yr
and (5, —20) mm/yr. It is worth mentioning that most of the distant points from the
diagonal have —« > 1 (red-circled points in Fig. 3.33), i.e. indicating non-stationary
processes. This is in good agreement with the fact that such processes, i.e. those for
which —k > 1, contribute to the velocity. This could be the reason for those extreme

Data available at http://www.psmsl.org/.
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Fig. 3.31 Estimates of v for monthly MSL records from the PSMSL RLR data base
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Fig. 3.32 Estimates of o, for monthly MSL records from the PSMSL RLR data base

values below the diagonal, as the velocity from the long-memory process could be
negative. Moreover, as it was explained in Harrison (2002), due to the power-law
spectrum, as the perturbations at low-frequency are included with longer time series,
they naturally contribute to increase the estimated velocity.
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Fig. 3.33 Estimates for v (mm/yr) from MCMC versus PSMSL models. Red-circled points stem
from MSL records with —x > 1

The uncertainties from both methods are compared in Fig. 3.34. In general, as
expected with a few exceptions, the estimates from MCMC are larger than those from
the PSMSL model, i.e. they are well above the diagonal. A plot of the ECDF of the
ratio of both uncertainties R,, = 0,(MCMC)/o,(PSMSL) in Fig. 3.35 provides
more information. Around 87% of the uncertainties estimated by the MCMC method
are larger than those from the PSMSL model. Moreover, 86% of the uncertainties
estimated with the MCMC method are [1 — 10] times larger than those obtained
with a pure white-noise model.

According to these results, to consider a coloured noise instead of white noise
model, and analyse the monthly MSL records with the MCMC method, yields some
quantitative differences, namely:

e Due to the contribution of the non-stationary noise to the trend of some MSL
records larger absolute velocities are estimated (see Fig. 3.33).

e 86% of the stations have uncertainties which are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] times
larger than those from the white noise model.

The uncertainties here just consider the effect from the coloured noise. Corrections
with GPS velocities would increase the uncertainty of any “averaged” sea level
change estimate (Woppelmann et al. 2007, 2009; Santamaria-Gémez et al. 2012).
The MCMC analysis carried out on the monthly MSL records available in the
PSMSL RLR data base confirms that the assumption of white noise, as it was con-
sidered in the past, does not hold for these either. Most of the time series have —« ~ 1
(see Fig. 3.29), and around 3% of them have —« > 2 (see Fig. 3.30). Moreover, 44%
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of them are non-stationary as their spectral indices are —« > 1. Consequently, dif-
ferent velocities were found with the coloured noise model (see red-circled points in
Fig. 3.33). The contribution of the non-stationary processes to the trend is also known
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as leakage. Indeed, if the model used to fit the records does not contain any velocity
term that comes from the noise it will yield an underestimated spectral index.

Actually, around 86% of the MSL records analysed with MCMC have uncertain-
ties [1,2,3,4,5,6,7,8,9,10] times larger than for the white noise-only model.

As the analysis of the MSL records has shown that a pure white noise model
underestimates the uncertainties, unlike for the analysis of the GPS time series, the
range of the ratio for the uncertainties between the models is very wide. Hence we
do not provide a transformation method for the results from the white noise only to
the coloured noise model.

Bearing these findings in mind, the authors suggest to analyse all MSL records
using a coloured noise model and to employ the MCMC method due to the large
number of records with non-stationary processes.

3.5 Summary

In order to better constrain geophysical models using time series of geodetic obser-
vations, e.g., GPS-derived positions, superconducting gravity and mean sea level, it
is necessary to have an estimate of the stochastic properties of the series. Due to the
long-term correlation characteristics of the coloured noise of different geophysical
phenomena (Agnew 1992; Mandelbrot 1982), both the deterministic and stochastic
models have to be estimated and the a priori assumption of white noise is for many
cases no longer valid. Doing so would underestimate the uncertainties of the param-
eter estimates (Zhang et al. 1997; Mao et al. 1999; Williams 2003a; Williams and
Willis 2006) while the trend of the time series could be affected (leakage when mul-
tiple parameters are estimated) should the noise be non-stationary (Harrison 2002).

In this regard methods, such as the presented Markov Chain Monte Carlo (MCMC)
method, that provide a sample of the distribution function of the deterministic and
stochastic parameters are good estimators for geodetic time series, which contain
long-term correlation in the form of coloured noise.

In this chapter several examples as to how to implement statistical analysis of
geodetic time series by means of the MCMC method have been presented, namely,
GPS position time series (with synthetic and real data sets), superconducting gravity
time series and mean sea level records. Furthermore, the impact of the MCMC-
derived GPS station velocities and uncertainties on constraints of plate motion models
was demonstrated.

The results from synthetic data prove that the MCMC method performs well. In
general, the true values are within the 1o confidence level. It can also be stated from
those results that the wider the parameter space, i.e. the more parameters, the larger
the uncertainties.

The MCMC method provides samples of the distributions of the estimates, thus
through histograms it is easy to obtain statistical information about them as, for
example, the mean, the median, the uncertainties at different confidence levels, and
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the cross-correlation between them. It is also possible to distinguish local maxima
in case of multi-modality as a consequence of non-stationary processes.

It has also been noted that the MCMC method seems to be a good estimator for
non-stationary time series, though without giving a mathematical proof for this in
this study.

According to Fig. 3.7, MLE as implemented in CATS performs alike in the non-
stationary regime, though at low values provides biased —« estimates as a conse-
quence of setting o,,, to zero when it is difficult for the estimator to distinguish one
noise source from the other.

Another advantage of MCMC upon CATS is that the former does not deal with
derivatives of the covariance matrix as, for example, the Fisher matrix, thus avoiding
numerical issues present in some results from CATS (e.g. a NaN for the uncertainty
of the East component velocity for THU3).

The analysis carried out on the synthetic data leads to the following conclusions:

e Overall, the model parameter estimates from both methods are in good agreement.

e The MCMC method estimates similar o,; and larger —«, o,,, with smaller RMS
than CATS.

e The MCMC method provides larger uncertainties for the model parameters, e.g.
o,(MCMC) ~ 1.40 x 0,(CATS).

e The correlation parameters a and b are useful to transform estimates from one
method into the other, in order to compare both methods. It is evident from the
data that it is more robust to compute the median than the mean in the comparisons,
due to the latter being more easily corrupted by the presence of outliers.

The larger estimates for the spectral index —« from MCMC than from CATS
indicate that, according to the MCMC method, there is more time-correlation within
the noise than what CATS suggests. On the other hand, the values of o ,; obtained from
CATS are overestimated, for, even though they are larger than those from MCMC,
the RMS for o, from CATS is ~20% larger than that for the MCMC estimate.

Finally, the RMS of the estimates of the white noise amplitude o,, from the
MCMC method is around half the value of its counterpart from CATS. CATS sets
Oy to zero for low values of —k (red-circled points in various figures), thus underes-
timating the coloured noise within the time series and, consequently, underestimating
the uncertainties of the model parameters as well. Despite of the larger values for
o, from CATS than from MCMC, as the uncertainties for the velocity estimate o,
increases geometrically with larger —« and linearly with the power amplitude, the
larger —« estimates from MCMC lead to larger o,.

Concerning the uncertainties for the other model parameters, yy is smaller R, =
0.70 for MCMC than for CATS, and the periodic terms have uncertainties that range
between 1.03 and 1.08 times larger for the MCMC than for the CATS method. Except
for o, and oy, with A, = 0.23mm/yr and A, = —0.88 mm, the differences of the
periodic terms are sub-millimetre.

Results obtained from the JPL data set are in good agreement with those for
the synthetic data. As the estimated —k are larger for the MCMC method than for



116 G. Olivares-Pulido et al.

CATS, the former method yields larger uncertainties for the parameters of the model.
Namely, for the uncertainties of the estimated velocity of the JPL data sets

e 0,(MCMC) ~ [1.18 — 1.40] x 0,(CAT S), which is in good agreement with the
results for the synthetic data set.

Similar results are obtained for the estimates of the amplitudes of the periodic
terms in the JPL time series. All the uncertainties are larger for the MCMC than
for the CATS method. In general, the uncertainties are 1.03 — 1.11 times larger for
MCMC than for CATS. This is consistent with the results from the synthetic data set
too.

As the estimates of both methods cluster along a straight line, the same method
as for the synthetic data to transform the parameter estimates and uncertainties from
CATS to MCMC has been introduced. Again, it is more robust to use the median of
the ratio and of the differences instead of the mean.

The impact of the parameter estimates and uncertainties is investigated when using
the GPS station velocities and the associated uncertainties as constraints during the
estimation of Plate Motion Models. Both methods, i.e. MCMC and CATS, yield
results with differences at the 1o confidence level. Such differences may imply
different values for the constraints in geophysical models. Moreover, according to
the reduced Xz’ the MCMC method yields less underestimated uncertainties than
CATS, as the uncertainties of the former should be 22.4 times larger, whereas for the
latter they should be 28.3 larger, in order to get the best fit possible, i.e. x> = 1.

The MCMC analysis of the time series of the superconducting gravity measure-
ments has shown another advantage of using an integrator method such as MCMC.
Due to the characteristics of the algorithm, it explores the surrounding areas of a
maximum, thereby spotting other local maxima. This is the case for the ordinate
parameter yo of the gravity time series. This is typical of non-stationary stochastic
processes, where the noise adds some velocity into the trend (leakage phenomenon).
Therefore, it is suggested to use the MCMC method in time series with high spectral
index, e.g. —k > 1.

The analysis of mean sea level records has confirmed other findings that in order
to take into account the coloured noise within these series, it is necessary to estimate
the spectral index and its uncertainty, otherwise it may yield biased trend estimates
and underestimated uncertainties in sea level studies. This is of particular interest due
to the socio-economic impact of present-day global sea level rise as a consequence
of human-induced climate change.

Finally, it must be mentioned that despite the advantages of the MCMC method
over, e.g., MLE as implemented in CATS, the real disadvantage stems from the
computational time required by the current implementation of the MCMC. While
for some applications this may not be an issue and the computational resources are
likely to increase in future, using this method would not be feasible for time-critical
monitoring with high or regular update rates for the parameter estimates for large
numbers of time series.
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Appendix

The appendix presents a cross-evaluation of the MCMC and Hector methods using
the Benchmark Synthetic GNSS (BSG) time series (Chap. 2 of this book).

An Evaluation of MCMC Using Hector and the Benchmark Synthetic
GNSS Time Series

Here we provide an evaluation of the MCMC method as implemented by Olivares and
Teferle (2013) using Hector and the Benchmark Synthetic GNSS (BSG) time series.
While providing the results from MCMC by themselves, we also carry out a basic
comparison with the results provided and computed in-house with Hector. We have
computed our own Hector parameter estimates since MCMC is a computationally
intensive method and we have down—sampled the daily time series into weekly ones
for all BSG series, see Fig. 3.36 for an example showing both original and down—
sampled time series. Figure 3.37 shows the differences in the trend estimates Av
between the two methods. Overall the parameter estimates (trend, amplitude of the
annual term and phase-lag, white and power-low noise amplitudes as well as spectral
index) are in good agreement between MCMC and Hector. A detailed comparison is
shown in Tables 3.17, 3.18, and 3.19 for the deterministic parameter estimates, and
in Tables 3.20, 3.21 and 3.22 for the stochastic parameter estimates.

Gaussian Properties of Parameters Estimates from MCMC

The parameters estimated from MCMC follow in general a Gaussian distribution.
While these histograms can provide valuable additional information it is clear that
in several cases the MCMC method has failed to provide converged results. This is
most likely due to instabilities in the variance/covariance matrix within the MCMC
method. Figure 3.38 shows the histograms for the Up trend components for the 20
time series.

Further we have tested the Gaussian properties of the parameter estimates from
the MCMC method by constructing the histograms for the amplitude estimates of
the annual terms as shown in Figs. 3.39, 3.40, and 3.41 for the North, East and Up
components, respectively.

We have also compared the mean and median trend estimates for all the time series
considered in this analysis. The mean and median values show a similar magnitude.
An indication that the estimates from MCMC exhibit unbiased and uncorrelated
properties. A further test for the Skewness and the Kurtosis (“tailedness” of the
probability distribution) for the trends again show the majority of the estimates
indeed follow a Gaussian distribution, see Tables 3.23, 3.24, and 3.25. Formally, the
Skewness of a Gaussian distribution is O while the Kurtossis is 3.


http://dx.doi.org/10.1007/978-3-030-21718-1_2
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Fig. 3.36 A weekly sampled time series (green line) superimposed on the daily time series (red
line) for one of the time series for North, East, and Up components
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Table 3.20 Hector and MCMC stochastic parameter estimates for North component time series
compared: spectral index «, power-law o and white oy, noise amplitude

Name Hector MCMC
K op [mm] own [mm] K op; [mm] | oy, [mm]

Station 1 —0.68+0.16 3.12 0.70 &+ —0.86 0.18 1.43 0.86
Station 2 —0.71+0.16 3.10 0.64 £ -0.97 0.16 1.22 1.04
Station 3 —0.71+0.15 3.20 0.68 £+ —0.90 0.21 1.42 0.85
Station 4 —0.81+0.15 3.28 1.02 +—-1.17 0.17 1.11 1.32
Station 5 —0.57+0.18 3.02 0.14 +-0.82 0.19 1.40 0.84
Station 6 —0.95+0.07 2.85 1.20 £ -1.52 0.21 0.68 1.42
Station 7 —0.62+0.00 2.96 0.00 +—0.96 0.24 1.21 0.90
Station 8 —0.65+0.00 3.24 0.00 & —-0.74 0.08 1.67 0.34
Station 9 —0.71+0.17 3.30 0.53 +£-0.92 0.15 1.40 0.89
Station 10 —0.72+0.17 3.07 0.93 £ —1.05 0.19 1.12 1.28
Station 11 —0.82+0.13 3.41 0.79 £ —1.00 0.00 2.10 2.10
Station 12 —0.64+0.00 3.02 0.00 +—0.90 0.15 1.33 0.81
Station 13 —0.92+0.10 2.70 1.28 +-1.22 0.15 0.84 1.41
Station 14 —0.67+0.00 3.30 0.00 +—0.88 0.11 1.44 0.81
Station 15 —0.88+0.12 2.99 0.99 +—1.21 0.16 0.96 122
Station 16 —0.89+0.11 2.88 1.24 +-1.41 0.13 1.79 1.22
Station 17 —0.541+0.06 2.76 0.00 &£ —-0.70 0.13 1.43 0.64
Station 18 —0.84+0.14 3.04 1.05 +—1.13 0.18 1.06 1.26
Station 19 —0.87+0.11 3.18 0.87 £ —1.04 0.15 1.21 0.97
Station 20 —0.81+0.16 2.70 1.03 £ —1.40 0.07 0.79 1.31

Table 3.21 Hector and MCMC stochastic parameter estimates for East component time series
compared: spectral index «, power-law o and white oy, noise amplitude

Name Hector MCMC
K op [mm] own [mm] K opr [mm] | oy, [mm]

Station 1 —0.524+0.00 2.87 0.00 —0.88+0.21 1.26 1.00
Station 2 —0.55+0.00 2.88 0.00 —0.72+0.15 1.46 0.67
Station 3 —0.63+0.18 2.89 0.69 —0.924+0.22 1.24 1.02
Station 4 —0.72+0.17 2.82 1.12 —1.05+0.13 1.02 1.40
Station 5 —0.71+0.16 3.00 0.70 —1.00+0.15 1.20 1.04
Station 6 —0.63+0.19 2.49 091 —1.14+0.18 0.82 1.33
Station 7 —0.76 £0.16 2.92 1.15 —1.01+0.18 1.12 1.34
Station 8 —0.9440.07 2.82 1.21 —1.36+0.14 0.76 1.41
Station 9 —0.69+0.17 3.06 0.60 —0.84+0.14 1.41 0.78
Station 10 —0.64+0.17 3.05 0.29 —0.82+0.15 1.42 0.71
Station 11 —0.74+0.13 3.16 0.64 —0.82+0.08 1.48 0.66
Station 12 —0.79+0.16 2.64 1.24 —1.02+0.22 1.01 1.35
Station 13 —0.90+0.10 3.42 0.82 —1.11+0.18 1.23 0.98
Station 14 —0.80+0.16 2.71 1.04 —0.90+0.18 1.22 0.98
Station 15 —0.80+0.14 2.89 1.00 —0.87+0.13 1.33 0.92
Station 16 —0.79+0.15 2.70 0.95 —1.60+0.08 0.63 1.35
Station 17 —0.944+0.08 2.93 1.18 —-1.26+0.19 0.89 1.34
Station 18 —0.65+0.17 2.93 0.63 —0.95+0.11 1.15 1.13
Station 19 —0.73+0.17 2.83 0.96 —1.05+0.24 1.02 1.26
Station 20 —0.66+0.18 2.79 0.94 —0.86+0.17 1.25 1.14
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Fig.3.37 Trend differences between Hector and MCMC for the 20 weekly BSG time series. North,
East, and Up components are displayed in green, red, and blue, respectively. A box whisker plot
showing minimum, 25th percentile, median, 75th percentile and maximum values is to the right

Table 3.22 Hector and MCMC stochastic parameter estimates for Up component time series com-
pared: spectral index «, power-law o and white o0y, noise amplitude

Name Hector MCMC

K op; [mm] own [mm] K op (mm] | own
Station 1 —0.64+0.18 9.39 253 —0.80+0.14 4.48 3.14
Station 2 —0.73+£0.15 10.04 274 —0.89+0.16 4.31 3.24
Station 3 —0.80+0.16 10.30 3.50 —1.00+0.22 4.09 3.94
Station 4 —0.81+0.14 10.20 3.41 —0.96+0.20 4.24 3.52
Station 5 —0.84+0.13 10.32 3.59 —1.15+0.17 3.37 4.46
Station 6 —0.56+0.06 10.13 0.00 —0.70+0.12 5.20 2.16
Station 7 —0.90+0.11 10.27 3.78 —1.144+0.17 3.52 4.28
Station 8 —0.74+0.16 9.56 3.41 —0.88+0.20 4.28 3.36
Station 9 —0.72+0.15 10.88 2.20 —1.01+0.12 4.21 3.71
Station 10 —0.67+0.17 9.91 2.39 —0.84+0.18 4.55 2.95
Station 11 —0.95+0.06 11.03 3.92 —1.31£0.11 3.61 4.48
Station 12 —0.61+0.17 9.51 2.52 —0.77+0.17 4.63 3.05
Station 13 —0.87+0.11 11.71 3.21 —1.07+0.16 4.24 3.89
Station 14 —0.83+0.13 11.56 2.49 —0.924+0.12 4.89 2.67
Station 15 —0.73+0.14 11.44 2.38 —0.84+0.14 5.20 2.67
Station 16 —0.83+0.14 11.68 3.00 —1.024+0.18 4.55 3.54
Station 17 —0.95+0.07 10.18 4.19 —1.36+0.20 2.78 4.87
Station 18 —0.78+£0.12 12.23 1.89 —0.92+0.11 5.10 2.73
Station 19 —0.91+0.10 11.69 3.59 —1.18£0.18 3.89 4.25
Station 20 —0.85+0.14 11.23 3.67 —1.14£0.21 3.90 4.39
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Fig. 3.38 Histograms of the trend estimates of the Up component, continued on next page
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Table 3.23 Statistics for the Gaussian distributions of the North component time series MCMC
results: trend v, amplitude of the annual term A yr» phase—lag ¢, Skewness and Kurtosis

Name VMean VMedian Alyy [mm] ¢ [deg] Skewness Kurtosis
[mm/yr] [mm/yr]
Station 0 11.06 £0.12 | 11.06 £0.15 | 1.55 £0.27 —71.32 —0.12 4.07
Station 1 15.62 £0.13 | 15.62 £0.17 |2.21 £0.27 —143.36 0.12 3.70
Station 2 19.82 £0.16 | 19.82 £0.20 | 1.94 £0.30 —168.70 0.98 12.00
Station 3 1772 £0.20 | 17.72 £0.25 | 1.25 £0.29 —107.09 0.12 4.95
Station 4 9.56 +£0.12 9.56 +£0.15 0.23 +£0.27 135.18 0.77 7.13
Station 5 26.67 £0.39 |26.67 £0.49 |1.22 £0.29 165.32 0.06 5.45
Station 6 26.75 £0.14 | 26.75 £0.18 | 1.33 £0.26 173.75 0.29 5.60
Station 7 30.02 £0.10 |30.02 +£0.13 | 1.42 £0.28 173.79 —0.07 3.19
Station 8 496 £0.13 4.97 £0.16 1.11 £0.28 131.50 —0.14 4.36
Station 9 9.87 £0.16 9.87 £0.20 1.90 £0.29 144.99 0.04 3.92
Station 10 5.26 £0.00 5.26 +£0.00 0.13 +£0.00 —45.00 0.47 1.83
Station 11 2490 £0.14 |24.89 £0.18 |0.12 £0.29 176.52 —0.06 3.47
Station 12 4.63 £0.15 4.63 +£0.18 0.83 £0.24 —71.55 —0.10 3.69
Station 13 29.68 £0.13 |29.67 +£0.16 | 0.94 £0.28 —70.39 0.10 3.13
Station 14 1570 £0.20 | 15.70 £0.25 | 1.39 +£0.27 —164.63 0.15 4.51
Station 15 0.89 +0.06 0.89 +£0.07 3.32 £0.70 —47.11 0.16 1.75
Station 16 9.62 £0.08 9.62 £0.10 0.76 £0.23 —125.80 0.17 3.38
Station 17 14.83 £0.18 | 14.83 £0.22 | 0.47 £0.28 160.76 0.05 4.15
Station 18 12.17 £0.16 | 12.17 £0.20 | 1.15 £0.29 —106.28 0.12 3.96
Station 19 27.68 £0.23 |27.70 £0.29 |0.81 £0.24 —151.22 —0.24 3.10

Table 3.24 Statistics for the Gaussian distributions of the East component time series MCMC
results: trend v, amplitude of the annual term Ay, , phase-lag ¢, Skewness and Kurtosis

Name VMean VMedian Ajyy [mm] ¢ [deg] Skewness Kurtosis
[mm/yr] [mm/yr]
Station 0 17.47 £0.12 | 17.46 £0.15 |0.09 £0.25 140.94 0.61 4.58
Station 1 4.64 £0.08 4.64 £0.10 0.92 £0.24 —117.68 0.24 3.94
Station 2 14.24 £0.13 | 14.24 £0.16 | 0.69 £0.26 178.34 —0.14 5.31
Station 3 12.64 £0.13 | 12.64 £0.16 |0.95 £0.26 —85.88 —0.11 3.63
Station 4 18.33 £0.16 | 18.33 £0.20 | 1.62 £0.29 153.89 0.14 3.78
Station 5 28.93 £0.14 |28.94 £0.18 |0.21 £0.23 —13.58 —0.06 5.06
Station 6 11.96 £0.14 | 11.96 £0.17 | 1.32 £0.26 179.91 0.12 4.45
Station 7 2443 £0.27 |24.43 £0.34 | 0.40 +£0.29 167.44 0.02 3.74
Station 8 2349 £0.13 | 23.50 £0.17 | 1.81 £0.27 —108.61 —0.31 3.50
Station 9 9.91 £0.11 9.91 +£0.14 0.60 £0.26 —136.01 0.10 4.03
Station 10 18.23 +£0.12 | 18.23 £0.15 |1.13 £0.28 —148.38 0.04 2.98
Station 11 8.65 £0.13 8.65 £0.16 0.25 £0.23 —26.77 0.05 4.66
Station 12 1.92 £0.18 1.92 £0.22 2.00 £0.30 —128.67 0.07 3.96
Station 13 19.73 £0.11 | 19.73 £0.14 |0.03 £0.25 88.15 —0.30 5.27
Station 14 26.88 £0.11 |26.88 £0.14 | 1.51 £0.26 —91.60 —0.16 3.71
Station 15 29.34 £0.33 | 29.34 £0.42 | 0.97 £0.29 —103.50 —0.34 4.14
Station 16 0.19 £0.18 0.20 +£0.23 1.09 £0.26 —66.74 0.63 5.62
Station 17 15.11 £0.11 | 15.11 £0.13 | 0.65 £0.24 —98.18 —0.04 341
Station 18 5.51 £0.15 5.51 £0.19 0.72 £0.24 108.84 0.27 5.40
Station 19 27.73 £0.12 | 27.74 £0.15 |1.16 £0.26 —112.14 —0.27 3.67
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Table 3.25 Statistics for the Gaussian distributions of the Up component time series MCMC results:
trend v, amplitude of the annual term Ay, phase-lag ¢, Skewness and Kurtosis

Name VMean [MM/yrl|  Vageqian [mm/yr]  Apy, [mm] ¢ [deg] Skewness Kurtosis
Station 0 20.25 £0.31 20.24 £0.39 1.68 £0.82 149.77 0.35 3.68
Station 1 17.10 £0.37 17.10 £0.46 1.41 £0.86 103.05 —0.02 4.44
Station 2 25.43 £0.49 25.43 +£0.61 0.92 £0.94 2.18 0.10 5.37
Station 3 226 £0.48 2.30 £0.60 0.86 £0.91 | —166.34 —0.33 2.82
Station 4 17.98 £0.56 18.01 £0.70 1.37 £0.94 | —122.27 —0.34 4.44
Station 5 9.25 £0.26 9.25 £0.32 2.40 £0.83 | —168.73 0.22 3.73
Station 6 10.49 £0.59 10.49 £0.74 1.50 £0.90 —52.13 0.01 4.54
Station 7 13.29 £0.39 13.28 £0.48 1.71 £0.85 | —133.25 0.53 5.65
Station 8 27.08 £0.46 27.06 £0.57 2.10 £0.94 120.03 0.20 3.53
Station 9 8.66 £0.36 8.67 £0.45 1.43 £0.89 —152.12 —0.44 5.21
Station 10 10.77 £0.87 10.76 +£1.10 1.28 +2.65 141.80 —0.12 2.92
Station 11 3.43 £0.31 3.42 £0.39 2.49 £0.77 168.46 0.50 6.58
Station 12 30.00 £0.57 29.99 £0.72 1.97 £1.01 —94.87 0.05 421
Station 13 8.88 £0.43 8.88 £0.54 0.31 £0.96 —91.82 —0.06 3.40
Station 14 3.20 £0.38 3.18 £0.47 1.12 £1.01 —81.15 0.24 3.65
Station 15 5.52 £0.52 5.54 £0.65 1.39 £1.02 | —133.40 —0.10 3.41
Station 16 6.30 £0.90 6.30 £1.12 1.81 £0.92 176.41 0.03 4.40
Station 17 27.39 £0.45 27.37 £0.57 321 £1.05 154.00 0.15 3.40
Station 18 9.19 £0.71 9.18 £0.89 1.67 £1.06 171.94 —0.00 4.71
Station 19 15.26 £0.73 15.20 £0.91 1.41 £1.02 —78.54 091 7.92
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Chapter 4
Introduction to Dynamic Linear Models s
for Time Series Analysis

Marko Laine

Abstract Dynamic linear models (DLM) offer a very generic framework to analyse
time series data. Many classical time series models can be formulated as DLMs,
including ARMA models and standard multiple linear regression models. The models
can be seen as general regression models where the coefficients can vary in time. In
addition, they allow for a state space representation and a formulation as hierarchical
statistical models, which in turn is the key for efficient estimation by Kalman formulas
and by Markov chain Monte Carlo (MCMC) methods. A dynamic linear model can
handle non-stationary processes, missing values and non-uniform sampling as well
as observations with varying accuracies. This chapter gives an introduction to DLM
and shows how to build various useful models for analysing trends and other sources
of variability in geodetic time series.

Keywords DLM - MCMC - State space model - Kalman filter - Kalman
smoother - Hierarchical statistical model + Seasonal variability + Seasonal signal

4.1 Introduction to Dynamic Linear Models

Statistical analysis of time series data is usually faced with the fact that we have only
one realization of a process whose properties might not be fully understood. We need
to assume that some distributional properties of the process that generate the obser-
vations do not change with time. In linear trend analysis, for example, we assume
that there is an underlying change in the background mean that stays approximately
constant over time. Dynamic regression avoids this by explicitly allowing temporal
variability in the regression coefficients and by letting some of the system properties
to change in time. Furthermore, the use of unobservable state variables allows direct
modelling of the processes that are driving the observed variability, such as seasonal
variation or external forcing, and we can explicitly allow some modelling error.
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Dynamic regression can be formulated in very general terms by using a state
space representation of the observations and the hidden state of the system. With
sequential definition of the processes, having conditional dependence only on the
previous time step, the classical recursive Kalman filter algorithms can be used to
estimate the model states given the observations. When the operators involved in the
definition of the system are linear we have so called dynamic linear model (DLM).

A basic model for time series in geodetic or more general environmental appli-
cations consists of four elements: a slowly varying background level, a seasonal
component, external forcing from known processes modelled by proxy variables,
and stochastic noise. The noise component might contain an autoregressive structure
to account for temporally correlated model residuals. As we see, the basic compo-
nents have some physical justification and we might be interested in their contribution
to the overall variability and their temporal changes. These components are hidden
in the sense that we do not observe them directly and each individual component is
masked by various other sources of variability in the observations.

Below, we briefly describe the use of dynamic linear models in time series analy-
sis. The examples deal with univariate time series, i.e. the observation at a singe time
instance is a scalar, but the framework and the computer code can handle multivari-
ate data, too. All the model equations are written in way that support multivariate
observations. In the presented applications we are mostly interested in extracting the
components related to the trends and using these to infer about their magnitude and
the uncertainties involved. However, these models might not be so good for produce
predictions about the behaviour of the system in the future, although understanding
the system is a first step to be able to make predictions.

The use of DLMs in time series analysis is well documented in statistical literature,
but they might go by different terminology and notation. In Harvey (1991) they
are called structural time series, Durbin and Koopman (2012) uses the state space
approach, and the acronym DLM is used in Petris et al. (2009).

4.2 State Space Description

The state space description offers a unified formulation for the analysis of dynamic
regression models. The same formulation is used extensively in signal processing
and geophysical data assimilation studies, for example. A general dynamic linear
model with an observation equation and a model equation is

ve =Hx; +¢&, & ~NOR, 4.1)
X =Mx;_1 +E;, E;~N(Q, Q). 4.2)
Above y; is a vector of length k of observations at time ¢, with t =1, ..., n.

Vector x; of length m contains the unobserved states of the system that evolve in time
according to a linear system operator M, (am x m matrix). In time series settings x,
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will have elements corresponding to various components of the time series process,
like trend, seasonality, etc. We observe a linear combination of the states with noise
&, and matrix H, (k x m) is the observation operator that transforms the model
states into observations. Both observations and the system states can have additive
Gaussian errors with covariance matrices R, (k x k) and Q, (m x m), respectively.
In univariate time series analysis we will have £k = 1. With multivariate data, the
system matrices M,, H;, R, and Q, can be used to define correlations between the
observed components.

This formulation is quite general and flexible as it allows handling of many time
series analysis problems in a single framework. Moreover, a unified computational
tool can be used, i.e. a single DLM computer code can be used for various purposes.
Below we give examples of different analyses. As we are dealing with linear models,
we assume that the operators M, and H, are linear. However, they can change with
the time index ¢ and we will drop the time index in the cases where the matrices
are assumed static in time. The state space framework can be extended to non-linear
model and non-Gaussian errors, and to spatial-temporal analyses as well, see, e.g.,
Cressie and Wikle (2011), Sarkkid (2013). However, as can be seen in the following
example, already the dynamic linear Gaussian formulation provides a large class of
models for time series trend analyses.

4.2.1 Example: Spline Smoothing

A simple local level and local trend model can be used as a basis for many trend
related studies. Consider a mean level process w, which is changing smoothly in time
and which we observe with additive Gaussian noise. We assume that the change in
the mean, ;41 — U;, is controlled by a trend process «, and the temporal change in
these processes is assumed to be Gaussian with given variances alivel and Gt%end' This
can be written as

Vi = WUs + Eobs, Eobs ~ N (O, oozbs), observations, 4.3)
W = -1 + 01 + Elevels Elevel ~ N(0, 0121, local level, (4.4)
QU = 0 + Eyends Eend ~ N (0, 0nq), local trend, 4.5)

which in state space representation transfers simply into

x=[wa] . H=[10], M=[(1) ﬂ (4.6)

O-I%Vel 0 . 2 2
Q= 0 012 » and R= dlag ([aobs s Gobs]) ’ 4.7

rend

with three parameters for the error variances
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Fig. 4.1 DLM smoother fit to synthetic data set using a local trend model. In this example oops =
0.3, 0level = 0.0, and oyeng = 0.01, with time interval equal to one unit

T
0= [oozbs O—l%vel Ut%end] . (48)

We have dropped the time index ¢ from those elements that do not depend on time.
It is interesting to note, that if we set Jl%vel = 0, we have a second difference
process for , as

AZ,U«: = W1 — 20y + Myg1 = Ay = Egrends 4.9)

and it can be shown (Durbin and Koopman 2012) that this is equivalent to cubic
spline smoothing with smoothing parameter A = 02, ,4/04 > 0.

obs
Figure 4.1 shows simulated observations with a true piecewise trend and the fitted
mean process i, t = 1, ..., ntogether with its 95% uncertainty limits. In this exam-

ple, the observation uncertainty standard deviation (o,,s = 0.3) as well as the level
and trend variability standard deviations (Ojeve] = 0.0, Oyreng = 0.01) are assumed to
be known. In the later examples these values are estimated from the data.

4.3 DLM as Hierarchical Statistical Model

The DLM formulation can be seen as a special case of a general hierarchical statisti-
cal model with three levels: data, process and parameters (see e.g. Cressie and Wikle
2011), with corresponding conditional statistical distributions. First, the observation
uncertainty p(y;|x;, 6) described by the observation equation and forming the sta-
tistical likelihood function, second, the process uncertainty of the unknown states
x; and their evolution given by the process equations as p(x;|6) or p(x;|x;—1, 60),
and third, the unconditional prior uncertainty for the model parameters p(6). This
formulation allows both an efficient description of the system and computational
tools to estimate the components. It also combines different statistical approaches,
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as we can have full prior probabilities for the unknowns (the Bayesian approach),
estimate them by maximum likelihood and plug them back (frequentistic approach),
or even fix the model parameters by expert knowledge (a non-statistical approach).
By the Bayes formula, we can write the state and parameter posterior distributions
as a product of the conditional distributions

p(xe, 0lyr) o< p(yi|xi, 0) p(x:10) p(0), (4.10)

which is the basis for full Bayesian estimation procedures. Next we will describe
the steps needed for Bayesian DLM estimation of model states, parameters and their
uncertainties.

4.4 State and Parameter Estimation

To recall the notation, y; are the observations and x; are the hidden system states
for time indexes t = 1, ..., n. In addition, we have a static vector 6 that contains
auxiliary parameters needed in defining the system matrices M, and H; and the model
and observation error covariance matrices Q, and R,. For dynamic linear models
we have efficient and well founded computational tools for all relevant statistical
distributions of interest. For the state estimation assuming a known parameter vector
0 the assumptions on linearity and Gaussian errors allows us to estimate the model
states by classical recursive Kalman formulas. The variance and other structural
parameters appear in non-linear way and their estimation can be done either by
numerical optimization or by Markov chain Monte Carlo (MCMC) methods. MCMC
allows for a full Bayesian statistical analysis for the joint uncertainty in the dynamic
model states and the static structural parameters (Gamerman 2006). Table 4.1 relates

Table 4.1 Conditional DLM distributions and the corresponding algorithms. The variables used
are: x; for the time varying state of the system (e.g. trend), y, for the observations at each time ¢,
and 6 for structural parameters used in the model and covariance matrices. Notation x;., means all
time instances for 1, ...,n

Distribution Meaning Algorithm

p(xe|xe—1, Y1:t—1,6) One step prediction Kalman filter

p(x¢ |14, 0) Filter solution Kalman filter

Xt yim, 6) Smoother solution Kalman smoother

px1nlyin, 0) Full state given parameters Simulation smoother

p(y1:410) Marginal likelihood for Kalman filter likelihood
parameters

P X1, 01Y1:0) Full state and parameter MCMC

p@lyi:n) Marginal for parameter MCMC

PX1n|Yin) Marginal for full state MCMC
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the different statistical distributions to the algorithms, which are outlined later. The
notation yj., X1, etc. means the collection of observations or states from time 1 to
time ¢.

4.5 Recursive Kalman Formulas

Below we give the relevant parts of the recursive formulas for Kalman filter and
smoother to estimate the conditional distributions of DLM states given the observa-
tions and static parameters. For more details, see Rodgers (2000), Laine et al. (2014).
A notable feature of the linear Gaussian case is that the formulas below are exact and
easily implemented in computer as long as the model state dimension or the number
of observations at one time is not too large.

To start the calculations, we assume that the initial distribution of xg at t =0
is available. The first step in estimating the states is to use Kalman filter forward
recursion to calculate the distribution of the state vector x, given the observations up
to time £, p(x;|y1., 0) = N(x;, 6,), which is Gaussian by the linearity assumptions.
At each time 7 this step consists of first calculating, as prior, the mean and covariance
matrix of one-step-ahead predicted states p(x;|x;_1, Y141, 0) = N(x;, 6,) and the
covariance matrix of the predicted observations /(fy,, as

x = Mx_; prior mean for x;, 4.11)
6, = M,El_lMTT +Q: prior covariance for x;, 4.12)
6},, = H,éthT + R, covariance for predicting y;. 4.13)

Then the posterior state mean and its covariance are calculated using the Kalman
gain matrix G, as

G, = /(E,Hfé;; Kalman gain, 4.14)
r; =y, — HXx; prediction residual, (4.15)
X =x + Gr, posterior mean for x;, (4.16)
C, = /(Et — G,H,G, posterior covariance for x;. “4.17)
These equations are iterated for t = 1, ..., n and the values of x; and E are stored

for further calculations. As initial values, we can use X, = 0 and Cy = «1, i.e. a
vector of zeros and a diagonal matrix with some large value « in the diagonal. Note
that the only matrix inversion required in the above formulas is the one related to
the observation prediction covariance matrix Gy,,, which is of size 1 x 1 when we
analyse univariate time series.

The Kalman filter provides distributions of the states at each time ¢ given the
observations up to the current time. As we want to do retrospective time series
analysis that accounts for all of the observations, we need to have the distributions
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of the states for each time, given all the observations y;.,. By the linearity of the
model, these distributions are again Gaussian, p(x;|yi.., 0) = N(X;, 6,). Using the
matrices generated by the Kalman forward recursion, the Kalman smoother backward
recursion gives us the smoothed states for t = n,n — 1, ..., 1. There are several
equivalent versions of the backward recursion algorithm. Below we show the Rauch-
Tung-Striebel recursion (Sarkka 2013) for illustration. For alternatives, see Durbin
and Koopman (2012):

CH=M,CM/ +Q, propagated covariance, (4.18)
G, =CM/ (C;*)_] smoother gain, (4.19)
Xo1=%+G, (X —7x) smoothed state mean, (4.20)
E,_l =C, -G, (E, — C;r) GtT smoothed state covariance. 4.21)

In smoother recursion we are dealing with several matrix vector computations
and one matrix inversion of size m x m and these formulas can be implemented
quite efficiently in any general numerical analysis software. As a note, we see that
the algorithms work with missing observations, too. If some observations at a time
t are missing, the corresponding columns of the gain matrix Eq. (4.14) will be zero.
If all are missing, the filter posterior will be equal to the prior. Note that the above
smoother recursion does not refer to the observations. All the Kalman formulas
given above are for observations with uniform sampling in time, for non-uniform
temporal sampling, the propagation of uncertainty to the next observation time has
to be handled differently, see Harvey (1991), Durbin and Koopman (2012).

4.6 Simulation Smoother

The Kalman smoother algorithm provides the distributions p(x;|y;.,, 6) for each ¢,
which are all Gaussian. However, for studying trends and other dynamic features in
the system, we are interested in the joint distribution spanning the whole time range
P(X1:| Y1, €). Note that we are still conditioning on the unknown parameter vector
0 and will account for it later. This high dimensional joint distribution is not easily
accessible directly. As in many cases, instead of analytic expressions, it is more
important to be able to draw realizations from the distribution and use the sampling
distribution for statistical analysis. This has several benefits. One important is that
by comparing simulated realizations to the observations, we see how realistic the
model predictions are, which can reveal if the modelling assumptions are not valid.
Also, we can study the distributions of model outputs directly from the samples and
do not need to resolve to approximate statistics.

A simple simulation algorithm by Durbin and Koopman (2012) is the following.
The state space system equations provide a direct way to recursively sample realiza-
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tions of both the states x;.,, and the observations y;.,, but the generated states will
be independent of the original observations. However, it can be shown (Durbin and
Koopman 2012, Sect.4.9) that the distribution of the residual process of generated
against smoothed state does not depend on y;.,. This means that if we add simu-
lated residuals over the original smoothed state X).,, we get a new realization that
is conditional on the original observations y;.,. A procedure to sample a realization
X{, ~ P(X1n|Y1:n, 0) is thus:

1. Generate a sample using the state space system equations, Eqs. (4.1) and (4.2)
to get X1., and yy.,.

2. Smooth y1., to get X;., according to formulas in Sect.4.5.

3. Add the residuals from step 2 to the original smoothed state:

Xy = Xt — X + X (4.22)

This simulation smoother can be used in trend studies and as a part of more general
MCMC simulation algorithm that will sample from the joint posterior distribution
p (X1, 0]y1,) and by marginalization argument also from p(xj.,|y1.,) Where the
uncertainty in € has been integrated out (Laine et al. 2014).

4.7 Estimating the Static Structural Parameters

In the first examples, the variance parameters defining the model error covariance
matrix Q, were assumed to be known. In practice we need some estimation method-
ology for them. Basically there are three alternatives. The first one uses subject level
knowledge with trial and error to fix the parameters without any algorithmic tuning.
The second one use the marginal likelihood function with a numerical optimization
routine to find the maximum likelihood estimate of the parameter 6 and plug the
estimate back to the equations and re-fit the DLM model. The third one use MCMC
algorithm to sample from the posterior distribution of the parameters to estimate the
parameters and to integrate out their uncertainty.

To estimate the free parameters 6 in the model formulation by optimization or
by MCMC we need the marginal likelihood function p(y;.,|6). By the assumed
Markov properties of the system, this can be obtained sequentially as a byproduct of
the Kalman filter recursion (Sarkka 2013),

n

~210g (p(y1:016)) = constant + Y [(vr = HiZ)" 5} — Hio) + log(1Cy )]

=1
(4.23)
On the right hand side, the parameter & will appear in the model predictions X; as they
depend on the matrix M; as well as on the model error Q,. For the same reason we
need the determinant of the model prediction covariance matrix |é yt|. A fortunate
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property is that this likelihood can be calculated along the DLM filter recursion
without much extra effort.
The scaled one-step prediction residuals

ri=C,/2(y —HT) (4.24)

can be used to check the goodness of fit of the model. In order of the DLM model
to be consistent with the observations these residuals should be approximately inde-
pendent, N (0, I) Gaussian and without serial autocorrelation. Later in the GNSS
time series example, we will do model diagnostics by residual quantile-quantile and
autocorrelation function plots.

4.8 Analysing Trends

In general terms, trend is a change in the distributional properties, such as in the
mean, of the process generating the observations. We are typically interested in
slowly varying changes in the background level, i.e. in the mean process after the
known sources of variability, such as seasonality, has been accounted for. A common
way to explore trends is to fit some kind of a smoother, such as a moving average,
over the time series. However, many standard smoothing methods do not provide
statistical estimates of the smoothness parameters or asses the uncertainty related to
the level of smoothing.

In typical DLM trend analyses, a slowly varying (relative to the time scale we
are interested in) background level of the system is modelled as a first or higher
order random walk process with variance parameters that determine the time wise
smoothness of the level. These variance parameters must be estimated and their
uncertainty accounted for proper uncertainty quantification. In an optimal case, the
data provides information on the smoothness of the trend component, but typically we
need to use subject level prior information to decide the time scale of the changes we
want to extract. In the GNSS application example in Sect.4.10 we assume a global
linear trend and the local non-stationary fluctuations are modelled using a local
random walk model with autocorrelated residuals. A Bayesian DLM model offers
means to provide qualitative prior information in the form of the model equations
and quantitative information by prior distributions on the variance parameters, see
e.g. Gamerman (2006).

For statistical analysis we need to estimate the full state as either p(x1.,| Y1, é),
where we plug in some estimates of the auxiliary parameters 6, (the maximum
likelihood approach) or by p(x1.,|y1:n) = f P (X1, 0] y1:n) d6 where the uncertainty
of auxiliary parameter 6 is integrated out. The latter is the Bayesian approach and
calculations can be done, e.g., by Markov chain Monte Carlo (MCMC) simulation
(Gamerman 2006; Laine et al. 2014). A procedure to account the uncertainty in a
DLM model and its structural parameters and to study DLM output will contain the
following steps:
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1. Formulate the DLM model and its marginal likelihood p(y;.,|6) by Kalman
filter.

2. Use MCMC to sample from the posterior distribution p(6|y;.,,) with a suitable
prior distribution p(6) for the structural parameters and with the likelihood of
step 1.

3. Generate a sample from the marginal posterior p(xy.,|y;.,) using the simulation
smoother (Sect. 4.6) and for each sample use a different & from the MCMC chain
from the previous step.

4. For each state realization, x},, ~ p(x1.|y1:x), from step 3., calculate a trend
related or any other statistics of interest and use this sample for the estimates
and their uncertainties.

4.9 Examples of Different DLM Models

In the following, we give several useful DLM formulations for model components
that are typically used in geodetic or in more general environmental analyses. They
have been used in existing applications for stratospheric ozone (Laine et al. 2014),
ionosonde analysis (Roininen et al. 2015) and for station temperature records (Mikko-
nen et al. 2015). In Sect.4.10, we will show analysis for synthetic GNSS station
positioning time series.

4.9.1 The Effect of Level and Trend Variance Parameters

In the first example in Sect.4.2.1 the variance o2,,; was assumed to be known and
fixed. Altering the variance affects the smoothness of the fit. In Fig.4.2 the effect
of different variance parameters are shown for the same data. Note that by setting
both o2, and 0,4 to zero results in classical linear regression without dynamical
evolution of the regression components. In this case, the 95% probability limits for the
level obtained from the smoother covariance matrix C; coincide with the classical
confidence intervals for the mean. In classical non-dynamic linear regression the
modelling error is included in the residual term, whereas in DLM we can include it
in the model definition by allowing temporal change in model parameters.

If we estimate the parameters by the likelihood approach and MCMC outlined in
Sect.4.7, we get the values in the last panel of Fig. 4.2 corresponding to the posterior
mean. Figure 4.3 shows MCMC chain histograms together with estimated marginal
posterior densities. It also has the point values obtained by likelihood optimization.
Note by optimization we get an estimate for ojey; Which is very close to zero rela-
tively to the MCMC solution, which tries to find all values of the parameter that are
consistent with the data.
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Fig. 4.2 DLM smoother fit for synthetic data set with different smoothing levels. The dots are the
observations and solid blue line is the mean DLM fit. The grey area corresponds to 95% probability
limit from the Kalman smoother. The last panel uses the parameter obtained by MCMC

4.9.2 Seasonal Component

Seasonal variability can be modelled by adding extra state components for the effect
of each season. A common description of seasonality uses trigonometric functions
and is achieved by using two model states for each harmonic component. Monthly
data with annual and semiannual cycles would use four state components and the
following model and observation matrices

cos(mr/6) sin(mw/6) 0 0
| —sin(sr/6) cos(w/6) 0 0
Mieas = 0 0 cos(m/3) sin(m/3) (4.23)
0 0 —sin(m/3) cos(r/3)

and
Hgeos = [1 01 O] . (4.26)
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Fig. 4.3 Two variance parameters of example 4.9.1 estimated by MCMC. Histogram is the MCMC
chain histogram. The solid line is a kernel estimate for the marginal posterior probability distribution.
Dotted vertical line is obtained by numerical minimization of the log likelihood

In addition, a corresponding part or the model error covariance matrix Qge,s has
to be set up to define the allowed variability in the seasonal amplitudes. A sim-
ple approach is to use a diagonal matrix with equal values for each component as
diag(Queas) = [02,5, 02,05 024, 02,17 . If we set these variances to zero, the DLM
algorithm will fit a temporally fixed seasonal amplitude.

For illustration we use a simulated monthly data with yearly variation that has
some randomness in the amplitude. The observations have a piecewise linear trend
similar to example in Sect.4.2.1 and some values as missing to see the effect on
the uncertainties. We fit a seasonal component with one harmonic function, but we
allow some variability in the amplitude and trend, with oyeng = 0.005 and o,y = 0.4.
Figure 4.4 shows the generated data together with both the fitted mean process and
the fitted seasonal component. A similar example was also used in Roininen et al.

(2015).

4.9.3 Autoregressive Process

Autoregressive processes have serial dependence between the observations. A gen-
eral AR(p) process is defined by p coefficients [p1, ..., p,] and an independent
innovation term ¢ as
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Fig. 4.4 DLM smoother fit to synthetic data in Sect. 4.9.2 with seasonal variation, piecewise linear
trend, and missing observations

Vi = P1Yioi +paYica+ -+ ppVip+e &~ NQO, onR) (4.27)

For including an autoregressive component into the state space formulation we
need to use state variables that “remember” their previous values. This can be
achieved by suitable evolution operator Msr. For example, AR(3) process with
coefficients [p1, p2, p3], will have three extra states with

01 10 02, 00
Mur=|m 01|, Hag=[100], Q=] 0 00]. (4.28)
0300 000

A pure AR(3) process would then be obtained by setting the observation error
o2 in Eq.(4.1) to zero and the model error component equal to the innovation
variance aﬁR. If we, in addition, have 002,)5 > 0, it will result to an ARMA. In fact all
ARMA and ARIMA models can be represented as DLM models (Petris et al. 2009,
Sect.3.2.5) and many ARIMA estimation software implementations use the Kalman

filter likelihood Eq. (4.23) to formulate the cost function for estimation.

4.9.4 Regression Covariates and Proxy Variables

In many applications the variability in the observations is affected by some known
external factors, such as temperature, air pressure or solar activity. Sometimes these
variables can be measured directly, as for the temperature, and sometimes their effect
is modelled via a proxy, such as a radio fluxes for the solar effect. As an example,
assume an observations model
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W=t +nr+ BiZ; + &qps, 4.29)

where 1, and y, are the mean level and the seasonal components, Z, is a row matrix
of the values of the regression variables at time ¢, and S, is a vector of time-varying
regression coefficients. The effect of the covariates can be formulated by having the
coefficients as extra states, Xproxy,r = B, using an identity model operator, and by
adding the covariate values to the observation operator H; as

Hproxy(l) = Zt = [Zt,l’ ey Zt,p] ) (430)
Moy = 1, = diag(l, ..., 1), 4.31)
Qprony = diag ([Tprony.1 -+ Fpony.2]) - (432)

The DLM model for equation Eq.(4.29) is then build up as diagonal block matrix
combination of the components:

X = [Xtrend.t Xseas, t xproxy,t]T s (433)
_Mtrend 0 0
M, = 0 Mg, O , (4.34)
L0 0 My
Hr = [Htrend Hseas Hproxy(t)] ’ (435)
_Qtrend 0 0
Q= 0 Quus O . (4.36)
0 0 Qproxy

The covariate variances Upzroxy control the allowed temporal variability in the
coefficients B, and their values can be estimated or set to some prior value. By setting

the variances to zero, turns this model into classical multiple linear regression.

4.10 Synthetic GNSS Example

Next we estimate trends in synthetic GNSS time series provided by Machiel S. Bos
and Jean-Philippe Montillet. In this application, the trend estimated in the GNSS
time series represents the tectonic rate on the East and North components and the
vertical land motion on the Up coordinate. The characteristics of the GNSS time
series are discussed in details in Chaps. 1 and 2. We select data for one of the stations
(labeled station n:o 3 in the figures) with the three components (East, North, Up)
shown in Fig.4.5, top left panel. The time series are simulated using linear trend,
yearly seasonal variation and a combination of coloured and i.i.d Gaussian noise.
We assume that we do not know the noise structure a priori. We are interested in the
(non-local) linear trend and we need a model component for the local fluctuations
seen in the data. This chosen data sets does not contain any sudden jumps in the
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Table 4.2 Parameter estimates from DLM/MCMC estimation for the synthetic GNSS time series
example. The uncertainty value is one-sigma posterior standard deviation. The true values for trends

were 12.59, 17.64, and 2.778 mm/yr. The true seasonal amplitude was 1 mm

Data Trend [mm/yr] | Seasonal Olevel OAR PAR

[mm]
East 12.62 £0.61 [0.93+0.15 0.20+£0.024 |0.85+0.024 |0.62+0.03
North 1776 £0.69 |1.19£0.16 0.22+0.02 [0.86£0.024 |0.64 +0.29
Up 222+1.00 |0.74£0.29 |0.34+0.07 2.00+£0.075 |0.87£0.016

measured position. Modelling offset changes would require a different strategy, with
some iterative estimate of the jump locations, which we will not consider here. We
use a DLM approach, where we assume that the non-stationary part can be modelled
by local polynomials and the stochastic stationary part can be described as an AR
or ARMA process in addition to the i.i.d. Gaussian observation uncertainty. See
Dmitrieva et al. (2015) for a somewhat similar approach, which uses state space
representation and Kalman filter likelihood to model flicker and random walk type
noise in several stations at the same time.

So, in contrast to the spline smoothing example in Sect.4.2.1, which had oével =0
and 02,4 > 0, we will extract anon-local linear trend, 0.2, = 0, and model the local
non-stationary fluctuations as a local level model with o2, > 0. In addition, we use
a yearly seasonal component for the daily observations and an autoregressive AR(1)
noise component to account for the possible residual correlation. The observation
error is assumed Gaussian and to have known standard deviation, oy, = 1 mm for
components “East” and “North” and oy, = 4 mm for the “Up” component. The
AR(1) innovation variance oag as well as the AR coefficient pag will be estimated
from the data. We use Kalman filter likelihood to estimate the 2 variance parameters
and the AR(1) coefficient by MCMC. We analyse the three components (East, North,
Up) separately.

The true trend coefficients used in the simulation for the three data sets were give as
12.59, 17.64, and 2.778 mm/yr. The estimates obtained for them were 12.62 £ 0.61,
17.76 £ 0.69 and 2.22 4+ 1.00 mm/yr, with one-sigma posterior standard deviations
after &. Table 4.2 shows the parameter estimates obtained by combination of Kalman
simulation smoother for the linear slope and seasonal amplitude, and MCMC for
0 = [Otevel, AR, PAR]T - Figures4.5 and 4.6 visualise the results graphically. There
is a hint of negative autocorrelation in the ACF plot for the East components in
Fig.4.5, but otherwise the residuals, obtained from the scaled prediction residuals,
equation Eq. (4.24), look very Gaussian. In overall, the selected DLM model seems to
provide statistically consistent fit and reproduce the true trends within the estimated
uncertainty.
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Fig. 4.5 GNSS example data set and the DLM fit. Top left: three data components. Top right:
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trend removed, showing the seasonal variation and the model residual over it. Bottom right: residual
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Fig. 4.6 GNSS example data set and the DLM fit. On left are the pairwise scatter plots of the
MCMC samples for the model parameters for the “East” observations. Right panel shows the
estimated marginal posterior densities. The dashed line is the corresponding prior density used
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4.11 Computer Implementation

The examples and code to fit DLM models described here are available from a
Github repository at https://github.com/mjlaine/dIm. The code is written in Matlab
and it contains a reference implementation of Kalman filter, smoother and simulator
algorithms as well as optimization and MCMC for the structural parameters. Other
software implementations for DLM include state space models toolbox for Matlab
described in Peng and Aston (2011), aR package d1mdescribed in Petris et al. (2009)
and python implementations in the statsmodes package (Seabold and Perktold
2010).

4.12 Conclusions

DLM provides a general framework for modelling many kinds of environmental time
series, including geodetic ones. Some features of GNSS time series, such as the often
assumed flicker noise and handling of offsets and data jumps might still require more
special treatments. However, the DLM approach provides a very useful generalization
to the ordinary linear regression model. Its strengths include the ability to model non-
stationary processes by allowing temporal change in the model coefficients and the
direct modelling of the processes that generate the observed variability. By guiding
the analysis in terms of the generating processes and their uncertainties it provides
a good basis for Bayesian statistical inference. If there is prior knowledge about
the changes, such as known change points in the data, they can be included in the
model. By using simulation based Bayesian DLM analysis, your prior and posterior
model simulations can be checked to be consistent with physical constrains and the
observations.
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Chapter 5 ®)
Fast Statistical Approaches to Geodetic s
Time Series Analysis

Michael A. Floyd and Thomas A. Herring

Abstract We present fast algorithms for estimating common parameters in geodetic
time series based on statistical approaches to assess the impact of temporal correla-
tions. One such assessment is based on the characteristics of the time series residuals
averaged over different durations and with the statistical characteristics extrapolated
with a first-order Gauss—Markov process to infinite averaging time. This approach
circumvents a limitation of spectral methods, which cannot reliably account for the
impact of temporal correlations over periods longer than the length of a given time
series. The subsequent fast approach is the use of a Kalman filter with process noise
values determined from the first-order Gauss—Markov characteristics to estimate all
parameters. These methods are particularly useful for assessing long and numerous
geodetic time series, which are nowadays ubiquitous, because they are much less
computationally intensive than comprehensive methods, such as maximum likeli-
hood estimators. Our approaches are compared to other commonly used programs,
such as Hector, to understand the speed and impact of outliers on the algorithms,
and to provide advice and suggestions on the uses of such algorithms in operational
geodetic processing.

Keywords First-order Gauss—Markov - FOGMEX - Time series statistics *
Correlation time - GAMIT/GLOBK - tsfit

5.1 Introduction

Time series from observation sites continuously recording data from Global Naviga-
tion Satellite Systems (GNSS), such as the Global Positioning System (GPS), exhibit
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temporally correlated noise characteristics (e.g. Zhang et al. 1997). The most fun-
damental (and common) quantity that geophysicists wish to measure from repeated
geodetic observations is the secular (tectonic) velocity, which is the linear trend of a
time series in three components (local east, north and up). The main effect of tempo-
rally correlated noise on the secular rate is to decrease the formal precision (increase
the formal uncertainties) when estimating a trend. Time series parameters of inter-
est to geophysicists, in addition to the secular rates, are seasonal cycles, offsets due
to earthquakes or equipment changes, and transient (non-secular) motions, such as
volcanic inflation and deflation or fault creep episodes.

Common estimation methods, such as minimization of time series residuals in a
least-squares sense, often include an associated covariance matrix that is constructed
by neglecting off-diagonal (correlation) terms, resulting in an implicit assumption
that all observations are independent. Algorithms have been developed based on
maximum likelihood estimation to accommodate the estimation of common time
series parameters in the presence of temporally correlated noise. Here we present
our statistical approach, which circumvents the need for computationally expensive
maximum likelihood estimator methods and the use of full temporal covariance matri-
ces. The approach is primarily designed to approximate the increase in uncertainty
of the estimated parameters due to temporal correlations. We extend our method by
incorporating an equivalent random walk process noise, derived from the statistical
estimation of the increase in parameter uncertainty due to temporally correlated noise,
into a Kalman filter, which then estimates simultaneously all the chosen parameters
to fit the time series and their more realistic uncertainties.

First, we describe the motivations for using a statistical, rather than maximum
likelihood estimator, technique for time series analysis in geodesy and geophysics.
Next, we introduce our algorithm by explaining how deviation from this expectation
informs us about the influence of temporal correlations within the time series. We
also describe the implementation of the Kalman filter extension, which we consider
to be our ultimate method, and demonstrate it in comparison to the basic statistical
method and other algorithms, which employ the maximum likelihood methods men-
tioned briefly, above, and in detail in other chapters of this book. Then we test the
performance of our algorithm, against Hector (Bos et al. 2013), using simulated time
series with known parameters and real time series with unknown parameters from
sites in the Plate Boundary Observatory (PBO).

5.2 Motivation and Statistical Impact of Temporal
Correlations

It is most often the case that geodetic time series analysis seeks to estimate param-
eters of a geophysical nature for interpretation. Such parameters include the secular
velocity (linear trend), seasonal terms and offsets at the epochs of discontinuities
due to events such as earthquakes and equipment changes. The determination of the
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uncertainties of the estimated parameters is as critical as the parameter estimation
itself if the parameter estimates are to be used to differentiate between different phys-
ical models that explain the observations. The character and magnitude of the noise
itself is often a secondary consideration for more detailed research. Therefore, we
wish to have a fast algorithm that simply produces a reasonable estimate of the trend
sigma (i.e. secular velocity uncertainty), in addition to the other common parameters.

In order to characterize the statistical properties of a time series we note the
following properties that can be exploited. We assume that a reasonable number
of values are in the time series and, for geodetic time series, the spacing between
the values will be constant but that there can be missing data. We also assume that
each data point in the time series has an estimated standard deviation generally
derived from the large estimator used to process the raw GNSS data. These standard
deviations typically vary from point-to-point and we assume their relative sizes reflect
the quality of the time series estimates at each time. Our algorithm necessarily uses
data weighted by the inverse of these variances. As is often the case for GNSS time
series, the magnitude of the standard deviations may not fully represent the errors in
each data point and we will assume that values can be scaled to better approximate the
scatter in the time series, i.e. for some processing packages, the standard deviations
may be too small and for other packages they may be too large. The latter case applies
typically to the short-term scatter of time series generated by GAMIT (Herring et al.
2018).

A common measure for the appropriateness of the size of the standard deviations
of the points in a time series is the chi-squared per degree of freedom () ?/f) of the
residual values after estimating parameters to fit the time series. x is the sum of the
squared residuals weighted by the inverse of the variance of the data point, i.e.

N RV
Z (x; 'xl) (5.1)

i=1

where x; is the value of the ith data point, X; is the model value of the ith data point
and cri2 is the standard deviation of the ith data point. The degree of freedom, f,
is the difference between the number of data points, N, and number of parameters
estimated, p, to fit the time series. We define the normalized root-mean-square misfit,
for weighted data, as the square root of the x? misfit (sum of the weighted squared
residuals) per degree of freedom, i.e.

N ERY
NRMS = ! 3 i — %) (5.2)
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The factor by which this NRMS value deviates from unity is an indication of how
much the data uncertainties should be scaled to adequately describe the scatter in
the data or, more usually, treated as an a posteriori scaling factor for the parameter
sigmas. The NRMS can therefore be used to re-scale the estimates of the standard
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deviations of the parameters such that the standard deviations are consistent with the
scatter of the residuals. If the time series contained only white noise, the estimated
standard deviations would reflect the uncertainties in the parameter estimates. If the
noise is Gaussian and the estimator linear, the noise in the parameter estimates will
also be Gaussian.

To better understand the nature of time series residuals, we examine the charac-
teristics of mean values of either the original time series values themselves or of the
residuals. For most time series where the changes in the time series due to estimated
parameters vary slowly (e.g. linear trends and annual signals for daily sampled time
series), the mean of the data can be calculated and removed first, then the parameters
fit to the residual values. If the time series consists of statistically independent data
points, it is said to exhibit white noise and the scatter of the residuals relative to the
mean value should be ./N smaller than the scatter of the original data, where N is the
number of values used to calculate each mean. That is, if a mean is calculated from
four times as many data points as another estimate of the mean, the scatter should be
reduced by two. The weighted mean, w, for any given interval of data, j, containing
n data points is expressed as

w=—— % (5.3)

and the variance, af, associated with this weighted means is the inverse of the denom-
1nator.

If the x2/f is computed using the standard deviations of such mean values, calcu-
lated over many intervals within the complete time series, it should remain constant.
This type of behavior is rarely (if ever) seen in GNSS time series. For time series with
large temporal correlations, the scatter of the mean values would be very close to the
scatter of the original data; the x2/f would increase linearly with the number of data
in the mean rather than remaining constant. The behavior of x2/f with increasing
numbers of values in the means informs us about any temporal correlations in the
time series. The mean values do not need to be used in the parameter estimates; the
means and y2/f values can be computed from the residuals to the fit of the origi-
nal data, which makes the algorithm fast and rapid changes due to offsets, which
might otherwise affect the mean value for that window of data, can be included in
the parameter estimates. The x2/f of these weighted means per window of data is
expressed as

»
) > o
X)f=—

m

54

where m is the number of means (i.e. number of averaging windows, of length n data
points, within the time series). Given N data points in the entire time series, m <=
N/n.



5 Fast Statistical Approaches to Geodetic Time Series Analysis 161

To exploit the behavior of the means of the time series residuals, we go back
to ideas that have been used since the 1930s (Bartlett 1935). Bartlett proposed the
idea that in the presence of correlated noise, results obtained using data separated by
twice the correlation time, where the correlation time is the 1/e value of the correlation
function (e.g. Eq. 5.5), would yield estimates and standard deviations that accounted
for the correlation. A first-order Gauss—Markov process, for example, exhibits a
correlation function, r, that is as a function of data separation, At, and correlation
time, 7, i.e.

R(At) = o2 exp(—%) (5.5)

Leith (1973) reviewed this type of approach and methods for computing the effec-
tive number of data accounting for temporal correlations.

In our fast algorithm, introduced and briefly described by Herring (2003) and
Reilinger et al. (2006), we assess the effective number of data by looking at the
behavior of x?/f for time series residuals after parameter estimation over varying
durations of averaging. If the correlations between points drop to zero after a specific
number of data, n, are included in calculating the means, w;, for a given window
interval, the x2/f of the means of the residuals would remain constant for means
taken with more than that number of data of points. Our “First-Order Gauss—Markov
Extrapolation” algorithm (FOGMEX), which is an option for the GLOBK (Herring
et al., 2015) program tsfit and was previously referred to as the “RealSigma” option
by Herring (2003), uses this principle to estimate standard deviations of velocity
parameter estimates that account for the correlations between data points. Based
on the behavior of y2/f with increasing number of values used in calculating the
means of the residuals, the algorithm tries to compute the effective number of data
at which the x2/f of the means would stop increasing as more data are used in
computing the means of the residuals. In Fig. 5.1, we show an example of this type
of behavior for a triangular correlation function (i.e. correlation decreases linearly)
where the correlation goes to zero after 32 days of separation between data points.
Part (a) of the figure shows one realization of a 20-year daily sampled time series
where the time series has white Gaussian noise with 1 mm standard deviation and
triangular correlation function noise with 1 mm standard deviation. The total RMS
scatter of the time series is /2 mm. A realization of the correlated time series is
generated by multiplying the eigenvectors of the covariance matrix of the time series
with Gaussian white noise generated with variances given by the eigenvalues of
the covariance matrix. This technique can be used to generate realization of time
series with any covariance matrix. For each realization, we compute the x2/f of
the means of the residuals averaged over different averaging times. The maximum
averaging time is set so that there are at least m = 10 data windows providing mean
values to compute x>2/f, i.e. the longest averaging time is one tenth of the duration
of the time series. The white noise standard deviation is used to compute x2/f (see
discussion in Sect. 5.3.1 for treatment when real data are analyzed). Since each
realization is a random process, we average the results over 1000 realizations to see
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(a) Example time series with Triangle correlation function
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Fig. 5.1 a Example synthetic time series of daily time series values for 20-years of data with
1 mm standard deviation of white noise and 1 mm standard deviation noise with a 32-day duration
triangular correlation function; b Behavior of the x2/f of the means of residuals averaged over
different durations from n = 7 days up to n = 732 days. The black curve with error bars is the
average of the x2/f behavior for 1000 realizations. The error bars are the root-mean-square (RMS)
scatters about the mean for different averaging times. The blue line is the FOGMEX algorithm fit
discussed in the text

the average behavior, as shown in part (b) of the figure. As expected, with averaging
intervals greater than approximately 32 days the x2/f flattens to a constant value.
The FOGMEX algorithm looks for this type of asymptotic behavior with real data.

The functional form we fit is based on the behavior of a first-order Gauss—Markov
process and is given by

X2 a)/f = a(l —e™/7) (5.6)

where x2(t,,)/f is the chi-squared per degree of freedom (f) for averaging time f,,.
We estimate the scaling factor o and the correlation time 7 in for the x>(t,,)/f with
a non-linear least-squares estimator. The /o is the scale factor we multiply the rate
standard deviations from the white noise weighted least squares estimator to generate
a more realistic estimate of the standard deviation. The blue line in Fig. 5.1b is the
fit of Eq. (5.5) to the averaged xz(tav)/f values.
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5.3 The First-Order Gauss—Markov Extrapolation
(FOGMEX) Algorithm

5.3.1 Weighted Least-Squares Algorithm

The implementation of the FOGMEX (First-Order Gauss—Markov Extrapolation)
algorithm for real data has several elements. First, we estimate the white noise level
of the data by computing x ?/f of the differences between adjacent residuals (first dif-
ference) to a parametric fit to the time series data, including one’s choice of common
geophysical parameters such as seasonal signals, discontinuities and earthquakes.
This calculation allows us to scale the standard deviations of the data points to be
consistent with the short period scatter. The assumption here is that the correlated
part of the noise model will not contribute significantly to the first difference between
days of the residuals. We use the re-scaled standard deviations to compute the x >/f of
the residuals for different averaging times starting at n = 7 days and progressing to a
duration that has at least 10 mean values being used to compute the y 2/f, as described
previously. If there were no data gaps, this duration will be one tenth the duration
of the time series. In order to extrapolate the x2/f behavior of the mean values to
the long-term constant value we assume the noise process is a first-order Gauss—
Markov (FOGM), or autoregressive order 1 process, and we estimate the correlation
time and the scale level of the FOGM process using Eq. (5.6). Once the correlation
time and scale level are computed, we use the scale value, «, to compute a rescal-
ing of the standard deviations at, effectively, infinite-averaging time. For a FOGM
process this value is well defined and this is the primary reason we use this class of
noise process. The basic FOGMEX algorithm applies this re-scaling to the standard
deviations of the parameters estimates from a weighted least-squares estimate with
the initially rescaled standard deviations to reflect the short period noise in the data
(determined from the daily differences). We refer to this method as WLS FOGMEX
because the estimator is weighted least-squares (diagonal covariance matrix) and we
only change the estimated standard deviations based on the FOGMEX algorithm.
We show an example of this procedure in Fig. 5.2. The synthetic data in this case
are generated from a FOGM process with 1 mm standard deviation and a correlation
time of 210 days, and 1 mm standard deviation white noise. Since the signals here
are random processes, again there is noise in the estimates and we average over 1000
realizations to reduce the impact of these random variations. These 1000 realizations
allow us also to compute the variations between the realizations and we are thus
able to compute the standard deviations of the estimates of the standard deviations.
As can be seen in Fig. 5.2c the mean behavior of the averaged residuals x?/f very
closely follows the expected behavior. There is a subtlety in this analysis. To ini-
tially test the algorithm, we used just the simulated noise data with no parameters
estimated. As we discuss below, the averaged results from this approach match the
FOGM model predictions for the rate uncertainties. However, in practice, additional
parameters always need to be estimated and this estimation affects the nature of the
statistics of the residuals. Figure 5.2 and the results shown here use residuals after
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Example time series FOGM + White Noise
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Fig. 5.2 a One realization of a FOGM process with 1 mm standard deviation and a correlation
time of 210 days added to 1 mm standard deviation white noise. The total duration is 20 years; b the
x2If of the means of the residuals averaged over different durations for one time series realization
(black circles) and the fit of a scale and correlation time the mean Xz/f values (blue line); and ¢ the
mean of the x 2/f plots averaged over 1000 realizations. The black line is the averaged values and the
blue is the fit. The error bars show the RMS scatters of the mean value x2/f for different averaging
times

two parameters (reference position and rate) have been estimated. The summary of
the nature of the algorithm estimates are given in Tables 5.1 and 5.2. Some of the
analysis types in the tables are described below.

For the 20-year time series, the standard deviation of the rate estimate is
0.038 mm/yr computed from the correct covariance matrix for the data. The aver-
age FOGMEX computed standard deviation was 0.037 4 0.011 mm/yr (about 3%
smaller than the correct value) when using the noise itself to compute the changes in
x2/f with increasing averaging times (FOGM plus white noise process). If however
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Table 5.1 Comparison of the estimates of the velocity standard deviations from the analysis of
20-years data spans with either FOGM plus white noise (WN), each with 1 mm standard deviation,
or flicker noise (FN) plus white noise, again each with 1 mm standard deviation. The “Actual”
column is computed from the full covariance matrices and represents the true standard deviation;
WLS FOGMEX estimate is the average of 1000 realization with the ratio in the following column
being the ratio to the actual estimate. KF RW is the Kalman filter estimate (see Sect. 5.3.2) with
the ratio to the actual in the following column. The process types either use the simulated noise
(“Noise” label) or the residual after estimating an offset and linear trend from the data. All units
are mm/yr

Process Actual WLS FOGMEX | Ratio KF RW Ratio
FOGM + WN Noise 0.038 0.037 1.03 0.038 1.00
FOGM + WN Residual |0.038 0.031 1.23 0.032 1.19
FN 4+ WN Noise 0.043 0.032 1.36 0.033 1.33
FN + WN Residual 0.043 0.022 1.97 0.023 1.92

Table 5.2 Root mean square

(RMS) scatters of the velocity Process Actual %(?MEX KFRWRMS

estimates from the 1000 RMS

realizations used to generate

Table 5.1. When the full FOGM + WM | 0.038 0.040 0.061

covariance matrix (“Actual” Noise

column) is used the RMS FOGM + WM | 0.038 0.039 0.055

scatter matches the estimated  Residual

standard deviations. For the

WLS and KF estimators, the EI:;; WN 0.043 0.049 0.047

scatter is larger than the

estimated standard deviations ~ FN + WN 0.043 0.047 0.047
Residual

the residuals, after removing a reference position and trend, are used to compute
the changes in x2/f with increasing averaging times, the average estimated standard
deviation drops to 0.031 £ 0.008 which is 23% less than actual uncertainty. Remov-
ing the trend reduces the amount of power in the noise spectrum at long periods and
has a corresponding impact on large duration averaged x%/f values. The uncertainty
values on the standard deviations, above, are computed from the RMS scatter of the
standard deviation estimates, which correspond to the error bars in Fig. 5.2c.

From the 1000 realizations, we are able to compute the RMS scatter of the velocity
estimates. The RMS scatter of the 1000 rate estimates when the weighted least-
squares solution uses the correct (full) data covariance matrix matches the estimated
standard deviation of 0.038 mm/yr as should be expected. The RMS scatter of the
WLS FOGMEX estimates is between 0.039 and 0.040 mm/yr. (Table 5.2). The
small variation reflects the “noise” in the ensemble average from 1000 realizations.
The value is larger than the scatter using the correct covariance matrix because
the weighting of the data as a function of time in determining the rate estimate is
different between the full covariance matrix and the diagonal white noise covariance
matrix. This topic is discussed in more detail in Sect. 5.3.3. In these simulations, the
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estimated rate standard deviations are 19 times larger than would be computed using
white noise with the scatter of the residuals.

This FOGMEX algorithm using an extrapolation to infinite time is designed to
determine the standard deviation of the velocity estimates taking into account the
correlations in the time series residuals. The basic algorithm is referred to as WLS
FOGMEX because the velocity estimate is based on a weighted least-squares estimate
assuming white data noise.

5.3.2 Kalman Filter Extension

An extension to the WLS FOGMEX algorithm is to use the correlated noise properties
from the FOGMEX algorithm in a Kalman filter estimator. For this application we
use a random walk plus white noise model where the random walk (RW) process
noise level is set to generate the same velocity uncertainty as predicted by the WLS
FOGMEX model. The RW process noise value is computed simply as the FOGMEX
estimate of the variance of the rate multiplied by the data duration (e.g. Zhang et al.
1997, Eq. 2). This value is appropriate when the rate noise is dominated by the
correlated noise process and there is little missing data. This algorithm we refer to
as the Kalman Filter Random Walk (KF RW) method.

The motivations for this extension are two-fold. The FOGMEX algorithm sets
a white noise level in the least-squares solution at a value to represent the lowest
frequencies. The estimates of the standard deviations of parameters that represent
higher frequency terms such as seasonal and offset terms are greatly overestimated
in the WLS FOGMEX algorithm (see examples in Sect. 5.5). The second motivation
is improved offset estimates. In a WLS solution, the overall WRMS scatter of the
residuals is minimized and when there are systematic deviations in the residuals,
offset estimates that minimize the overall WRMS scatter, will often leave a residual
discontinuity at the times of breaks in the time series. The Kalman filter estimator,
which will track the systematics of the residuals provided the process noise level is
correct and the time series noise is stationary, will generate an offset estimate which
better match the discontinuities in the time series (Wang and Herring 2019).

In Tables 5.1 and 5.2 we also show the results for the estimates of velocity using
the KF RW algorithm. When the a FOGM + WN process is simulated and the x2/f
is computed using the process noise itself, the KF RW algorithm generates the same
estimate of the rate standard deviation as the rigorous solution. When residuals are
used, the algorithm underestimates the standard deviation by 19% which is similar
to the WLS FOGMEX algorithm. The RMS scatter of the velocity estimates is larger
than the computed standard deviations. When the residuals are used to compute the
process noise, the RMS scatter of the estimates is reduced (from 0.061 mm/yr to
0.055 mm/yr) and this reduction is likely associated with the changing the relative
magnitudes of the random walk and white noise components in the Kalman filter
analysis. Data weighting is discussed in more detail below.
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5.3.3 Impact of Flicker Noise

FOGM processes are stationary and can be easily incorporated into Kalman filter
type estimators. By taking the limit as the correlation time in a FOGM process
goes to infinity, they can represent random walk processes which are strictly non-
stationary. However, most analyses of geodetic time series suggest that flicker noise
(power spectral index -1) combined with white noise is a better representation of the
noise characteristics of GNSS time series. To evaluate how the FOGMEX algorithm
behaves in the presence of flicker plus white noise, we ran a series of simulations
with flicker and white noise. We generated realizations of flicker noise by creating
a covariance function from the inverse Fourier transform of a 1/frequency power
spectral density function. Since a mean will always be removed from the data, we set
the spectral density to be zero at zero frequency. The covariance function depends
on the duration of data processed. Similar to Figs. 5.2, 5.3 shows the same type of
analyses but using flicker noise plus white noise each with equal standard deviations
of 1 mm.

The behavior when flicker plus white noise is used for the simulation shows small
systematic deviations from the FOGM fit to the flicker noise behavior (Fig. 5.3b).
These deviations are likely to affect the projection to long averaging times. As we
did with FOGM simulations, we compared the FOGMEX error estimates with the
true values computed from the full flicker-plus-white noise covariance function for
the 20-year simulations. These results are given in Tables 5.1 and 5.2 along with
the FOGM values for comparison. We also ran these tests fitting the FOGMEX x%/f
dependence to the noise itself and to the residuals after removing offsets and linear
trends. When the full covariance matrix is used, the standard deviation of the rate
estimate is 0.043 mm/yr. The RMS scatter of estimates using the full covariance
matrix in the estimator is 0.043 mm/yr with repeats of the 1000 sample simula-
tions generating values between 0.042 and 0.044 mm/yr. The small differences from
0.043 mm/yr are due to the statistical variations expected when only 1000 simula-
tions are used. (An approximate noise estimate is the inverse of the square root of
half the number of samples, or ~5% in our case). The FOGMEX noise estimate of
the standard deviation is 0.032 mm/yr when the noise itself is used and 0.022 mm/yr
when residuals are used. These values are 1.4 and 2.0 times smaller than the actual
standard deviation of the velocity estimate. So when the noise in the time series is
flicker noise, our FOGM extrapolation to long averaging times underestimates the
rate uncertainties; a cross-over where the blue line (FOGM fit) falls below the black
line (flicker noise simulations) can be seen in Fig. 5.3 at long averaging times. The
KF RW rate estimates, using the FOGMEX rate sigmas, generated an average stan-
dard deviation of 0.033 mm/yr when the noise itself is used and 0.023 mm/yr when
the residuals are used, and thus have a similar level of underestimation. The RMS
scatter of the estimates for both WLS FOGMEX and KF RW varies between 0.047
and 0.050 mm/yr. Again, the algorithm underestimates the scatter in the estimates.
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(a) Example time series Flicker Noise + White Noise
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Fig. 5.3 Similar to Fig. 5.2 except the simulated process is flicker noise with 1 mm standard
deviation and 1 mm white noise

5.3.4 Dependence of Results on Data Duration and Noise
Ratios

We investigated the underestimation of the standard deviations by running a series of
simulations with different durations of data, from 6 months to 20 years, and different
mixes of white noise to flicker noise for a 10-year time series. The flicker noise and
FOGM standard deviations were varied from 0.5 mm to 5.0 mm while the white
noise was kept constant with a 1 mm standard deviation. The simulations were each
repeated 1000 times and the values averaged. Again, we ran these simulations with
the statistics computed from the noise itself and from the residuals. The results are
shown in Figs. 5.4 and 5.5 for both these cases. When modeling a process with
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Fig. 5.4 Behavior of the FOGMEX algorithm for different durations of data for the WLS estimator
(black) and KF RW estimator (red) for equal proportions of flicker noise and white noise, and for
equal proportions of 210 day FOGM process noise and white noise (blue). The top figure a shows
results when the noise itself is used to compute the statistics; the bottom figure b shows results when
residuals are used. Some of the variations are due to random variations in the 1000 realizations used
to generate these results. The impact of using residuals is mostly evident for the FOGM + WN
model

flicker noise and white noise, the conclusion from Figs. 5.4 and 5.5 is the FOGMEX
algorithm in both the WLS and KF forms underestimates the standard deviations the
rates estimated by a factor 2.0 when residuals are used and 1.4 when the noise itself
is used, independent of the data duration and the mix of white noise to flicker noise.
‘When the data noise is simulated with FOGM noise, the algorithm correctly estimates
the sigma of the rate estimates when the noise itself is used but can underestimate
the station deviations when the data durations are short compared to the correlation
time of the FOGM model.

The factor of 2.0 is an average value of the scaling needed for flicker plus white
noise when residuals are used. There is also ~33% variation of the sigma estimates
from realization to realization. The factor does not depend strongly on data duration.
This variation occurs because of variations in the power of the low frequency part
of the spectrum. The noise in a periodogram estimate of the power spectral density
(PSD) is the PSD value itself for white noise and for most stochastic processes this
relationship is valid. In a single realization of a time series there are a limited number
of low frequency estimates and hence there are variations in the estimates of the low
frequency power. Estimating a linear trend from the data also reduces the power at
low frequencies.
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Fig. 5.5 Similar to Fig. 5.4, showing the sensitivity of the FOGMEX algorithm to different ratios
of correlated noise to white noise for the WLS estimator (black) and Kalman filter random walk
estimator (red) for a duration of 10 years, and for a FOGM processes with a correlation time of
210 days (blue). The top figure shows the results when the noise itself is used to compute the
statistics, the bottom figure shows the results when residuals are used

5.3.5 Time Series Data Weighting

The other aspect of using a time correlated noise model is the sensitivity of the
parameter estimates to individual data points. For uniformly spaced, constant stan-
dard deviation white noise, the sensitivity of the rate estimate is linear with the
maximum sensitivities at the beginnings and ends of the data. For positive temporal
correlations, the sensitivities increase at the ends of data relative to the points in the
middle. This behavior is shown in Fig. 5.6a, b where the sensitivity of a flicker noise
model, a FOGM model with correlation time 210 days and a random walk, each
with the same variance as an added white noise component, is shown. The lower
part of Fig. 5.6b shows a zoom in the y-direction to highlight the differences in the
intermediate time regimes. The sensitivity to the data at the edges of the time interval
is most extreme for a pure random walk model (with no white noise component). For
this model, the rate is determined simply from the difference between the first and
last data points divided by the time between them. One of the potential problems of
using temporally correlated noise models that do not match the true statistical prop-
erties is therefore the extreme sensitivity of the rate estimates to values at the ends
of the data. The difference between estimates using a white noise estimator and the
correlated noise estimator would give an indication of the possible magnitude of this
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effect. With our FOGMEX algorithm, the white noise and Kalman filter estimates
should be compared. Large differences in the estimated rates could indicate that one
or both of the estimates might have errors larger than implied by the estimates of the
standard deviation.

Adding discontinuity estimates and periodic parameters to the estimates also
changes the sensitivity. As might be expected, adding a discontinuity breaks the
sensitivity at that time. For white noise only, when only a break is estimated, the
sensitivity is linear on either side of the break with the magnitudes depending on
where the break occurs in the times series. We show an example in Fig. 5.6c, d where
both a break and annual sine and cosine periodic terms are estimated. The break is a
third of the way through the data spans. The characteristics are as expected with the
periodic term causing an oscillation in the sensitivity and the break causing a clear
offset. The correlated noise models have higher sensitivities to data near the breaks
and the ends of the time series. In these sensitivity curves, the flicker plus white noise
model, tends to lie between the KF RW and WLS estimators.

5.4 Comparisons to Hector Results

Two sets of simulated data with a combination of flicker noise and white noise were
generated to test different algorithms accounting for temporal correlations in time
series data. One of these sets simply had white and flicker noise, linear rates and
seasonal signals. The other data set had breaks of different sizes and locations. The
data sets supplied had Hector analyses of both data sets. For the dataset with breaks,
the epochs of the breaks detected with Hector as well as the actual epochs of the
breaks were given. Our algorithm has no automatic break detection code and for
these comparisons we processed the data with the Hector detected breaks, the actual
breaks, and our visually detected breaks. The comparison with the Hector results
compares solutions which used the same break epochs.

5.4.1 Comparison for Time Series with no Breaks

The comparison of the errors in the rate estimates with the estimated standard devi-
ations of the rate estimates for the simulated data set with no breaks is shown in
Fig. 5.7 for the 20 simulated stations. The weighted root-mean-square (WRMS)
and normalized root-mean-square (NRMS) differences for the combined north and
east estimates and the up estimates are given Table 5.3 (along with results from the
analysis of simulated data with breaks). The north and east components are plotted
separately to the height (up) component because of the differences in the levels of
noise between the simulated horizontal and vertical components. The characteristics
of the comparison are (1) in general, the results from the three analysis methods
compared here vary similarly to each other from station to station; (2) the fast algo-
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(KF RW) and weighted least squares with FOGMEX error bars (WLS FOGMEX) analyses of the
Flicker noise plus white noise simulated data set with no breaks in the time-series

rithm methods, WLS FOGMEX and KF RW have smaller error bars than the Hector
analyses; and (3) the Hector error in the velocity estimates tend to fall between the
two fast algorithm results. The statistics of the errors in the velocity estimates are
given in Table 5.3. The characteristics of these comparisons are similar to our own
flicker noise plus white noise simulations presented in Sect. 5.3. As summarized in
Sect. 5.3.3, our analyses showed an underestimate by a factor of 2.0 but in Table 5.3,
the factor compared to the Hector estimate is ~2.5 (with only 20 samples, the random
noise in this estimate due to variations between individual realizations is quite large).
The KF RW scale factor for the horizontal components is 1.74 but this lower value
results from for our use of a minimum value of the random walk process noise. With
this minimum removed, the factor would be closer to the vertical estimate and the
WLS FOGMEX estimates. The actual RMS errors between the methods are sim-
ilar, with Hector having the smallest values of 0.14 and 0.44 mm/yr, and the fast
algorithms having values of 0.15 and 0.53—0.56 mm/yr. This type of deviation is
expected because both KF RW and WLS FOGMEX are using the wrong covariance
matrix and therefore their weighting of the data at different times in the time series
is not consistent with the actual weighting that should be used given the flicker noise
plus white noise model.

An interesting observation about the results plotted in Fig. 5.7 is that the KF RW
and WLS FOGMEX estimates tend to straddle the Hector estimate. As noted in
Sect. 5.3.5, the data weighting as a function of time for KF RW and WLS methods
lie on either side of the flicker noise model and the bounding of the estimates is
consistent with this behavior. Taking the average of the KF RW and WLS FOGMEX
estimates could provide a more robust fast estimate of the velocities. The difference
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Table 5.3 Comparison between Hector and the WLS FOGMEX and KF RW estimates of velocities
for the simulation data sets

Analysis NE RMS NE NRMS U RMS Up NRMS
(mm/yr) (mm/yr)

Hector 0.14 1.16 0.44 1.07

KF RW 0.15 1.74 0.56 2.57

WLS FOGMEX | 0.15 2.83 0.53 2.68

Hector breaks

Hector 0.30 2.07 0.61 1.39

KF RW 0.27 2.16 0.64 2.28

WLS FOGMEX | 0.34 3.39 0.73 2.85

Actual breaks

KF RW 0.28 1.74 0.93 1.77

WLS FOGMEX |0.31 2.33 1.04 2.11

Visual breaks

KF RW 0.25 1.98 0.75 2.60

WLS FOGMEX |0.32 3.14 0.76 2.84

between the two estimates could also be used as an indicator of the realism of the
error estimates from the methods.

5.4.2 Comparison for Time Series with Breaks

For the case of the simulated data sets with data breaks included, we repeated our
analyses using this data set as well. To be consistent with the Hector results, we ran
our processing using WLS and KF RW using the same breaks detected by Hector.
These results are shown in Fig. 5.8. We also ran our analyses with the actual break
epochs and epoch chosen based on visual inspection of the time series. There were
115 breaks inserted and many of these were small with amplitudes less than a few
millimeters. Hector detected 28 breaks and generally these had amplitude of order
10 mm or greater in the offset files. The visual detection found 33 breaks which
largely corresponded to the ones detected by Hector with a few additional ones
with amplitudes between 5—-10 mm being detected visually. The visual detection
sensitivity did depend on the noise level in the time series.

When breaks are added, the errors in the velocity estimates grew again, with all of
the methods generating similar RMS fits. The NRMS values ranged from 1.4 (Hector
vertical) to 3.4 (WLS FOGMEX) when the Hector breaks were used. The KF RW
algorithm had NRMS values of ~2.2, similar to the value when there were no breaks.
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Fig. 5.8 Similar to Fig. 5.7 except the simulated data set contained breaks. For the results shown
here the same break epochs as used in the Hector analysis were used

5.5 Performance Using Real Data

We have presented the theoretical basis for our FOGMEX algorithm, with synthetic
examples and tests using a small number of simulated time series. Finally, we present
the performance of the algorithms using real-world data to provide guidance and
advice to the reader regarding the functionality and limitations of our algorithm. We
analyse 820 time series from the Plate Boundary Observatory (PBO), now incor-
porated into the Network of the Americas (NOTA), using both implementations of
our FOGMEX algorithm compared to Hector (Bos et al. 2013). These time series
are available from ftp://data-out.unavco.org/pub/products/position/ and we specifi-
cally use all “PNNN” sites, where NNN is “001” to “820”. In the case of FOGMEX
KEF, the value of random walk noise used is that estimated from an initial weighted
least-squares, as described in Sect. 5.3.2.

We use the same definitions of discontinuities for all algorithms, which are not
allowed to be altered, due to equipment changes and earthquakes, including loga-
rithmic decay functions for some larger earthquakes. Both algorithms are able to
fit logarithmic decay functions for post-earthquake deformation, and this is impor-
tant when considering time series from a tectonically active region, as we are here.
Time series points with sigma greater than 1 cm in either horizontal component or
3 cm in the vertical component are excluded preliminarily. We test speed, agree-
ment between parameter estimates and the effect of preliminary cleaning, which
is available in both algorithms, although based on slightly different criteria, which
is worthy of note: Hector employs an inter-quartile range definition for detecting
outliers whereas tsfit, the GAMIT/GLOBK program that implements FOGMEX if
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selected, uses an n-sigma criterion. During our testing, we convert the n-sigma crite-
rion to inter-quartile range (IQR) for Hector using the definition IQR = 1.349x. Our
testing was done on a machine running Linux (Ubuntu 14.04.5 LTS) with Intel Xeon
2.60 GHz CPUs, using the pre-compiled binary for Hector (version 1.7.2) available
from http://segal.ubi.pt/hector/.

5.5.1 Comparison of Least-Squares and Kalman Filter
Estimates

When the estimates of equivalent random walk noise are incorporated into a Kalman
filter approach, there will be a difference between the parameters estimates from the
original least-squares approach and the Kalman filter, as described in Sects. 5.3 and
5.4. Figure 5.9 shows comparisons of the four commonly estimated parameters of
geophysical interest: linear trend (a, b); seasonal signals (c, d); discontinuities (e, f);
and logarithmic decay functions for post-earthquake deformation (g, h). Figure 5.9(a)
shows that the algorithm, as demonstrated with synthetic tests in Sect. 5.3, provides
rate estimates derived from the WLS FOGMEX and KF RW implementations that
agree well, although there is some scatter around zero, where velocities are very
small (likely most vertical time series; the figure shows all components together).
Figure 5.9(b) demonstrates that, in general, the algorithm is consistent enough that
WLS FOGMEX and KF RW rate uncertainties agree, although there is a secondary
trend where KF RW rate uncertainty estimates are approximately three times the
WLS FOGMEX estimate, indicating that there are circumstances under which the
WLS FOGMEX method underestimates the rate uncertainty.

Figures 5.9(c-h) shows significant differences are demonstrated in the other
parameters estimated, however. As alluded to in Sect. 5.3.2, the WLS FOGMEX
estimator is likely to overestimate the uncertainties associated with seasonal sig-
nals and steps (equipment changes or earthquakes), by several times in the case of
seasonal signals shown in Fig. 5.9(c). However, almost all parameter estimates them-
selves are in good agreement. We therefore consider the Kalman filter approach to
be superior to the scaled weighted least-squares approach due to the former handling
the uncertainties associated with seasonal signals and discontinuities better than the
latter.

5.5.2 Comparison of FOGMEX and Hector

Finally, we now compare our preferred Kalman filter implementation of our FOG-
MEX algorithm with Hector, which employs a maximum likelihood analysis to esti-
mate the noise characteristics and model parameters. We first test the agreement
between parameters estimates and their associated uncertainties. Figure 5.10 shows
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Fig. 5.9 Comparison of
parameters estimates (left
column) and associated
uncertainties (right column)
for linear trend (a, b),
seasonal signals (c, d; red
dots for annual amplitudes
and blue for semi-annual),
discontinuities (e, f; red dots
for non-geophysical
discontinuities, such as
equipment changes, and blue
for earthquakes). All
parameters estimates for all
three components of the time
series are plotted.
One-to-one ratio lines are
plotted, as are three-to-one
ratios lines in (b), (f) and (h),
and a nine-to-one ratio in (d)
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the results of these for tectonically meaningful uncertainties (sigma <= 1 mm/yr).
Figure 5.11 shows the distribution of uncertainties associated with Fig. 5.10.

Figure 5.11 shows the general properties of rate uncertainties arising from dif-
ferences in the approaches presented. First, we note that the uncertainties reported
by Hector are, in many cases, spread over a much wider range compared to those
from KF RW. This is particularly true in the case of white plus random walk noise,
for which Hector often reports very large uncertainties. We suggest from this that
random walk noise is rarely a suitable choice for noise in GNSS time series when
performing power-law analyses. Flicker noise (and power-law noise) are mostly con-
sistent with each other, suggesting that when the exponent of power-law noise is left
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Fig. 5.10 Comparison of velocity (rate) estimates using our KF RW algorithm versus Hector with
a white plus flicker noise model. Only points with sigma <= 1 mm/yr in the horizontal components
and <= 2 mm/yr in the vertical component are plotted, given that these are tectonically useful
estimates of linear trend

as a free parameter it is often estimated as being close to -1 (flicker noise). The great
majority of rate uncertainties using flicker (and power-law) noise lie between the one-
to-one and three-to-one ratio lines, meaning that KF RW potentially underestimates
rate uncertainty by between one and three times compared to Hector’s maximum
likelihood estimator approach. This was also a result from the synthetic tests in
Sect. 5.3.4, where it was determined that the FOGMEX algorithms underestimate
rate uncertainty compared to a flicker noise model by about a factor of two, with a
variation of about a 33%. Although the tests with real data show an unsurprising vari-
ation about this factor, as was the case in the many individual simulations performed
in Sect. 5.3.4, this fundamental observation about our algorithm is supported.

It is also clear in these plots that FOGMEX incorporates a minimum noise level in
the Kalman filter. By default, this is set to 0.05 mm?/yr but can be tuned by the user.
This results in rate uncertainties that are all greater than about 0.05 mm/yr in the hor-
izontal components and about 0.1 mm/yr in the vertical component. We consider this
floor to be both realistic and important in the implementation of time series analyses.
Hector, on the other hand, reports rate uncertainties as low as 0.02 mm/yr (flicker
noise) or even 0.01 mm/yr (power-law noise) in the horizontal components. In the ver-
tical component, Hector’s floor is much higher than KF RW, about 0.35 mm/yr (flicker
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Fig. 5.11 Comparison of velocity (rate) standard deviations reported KF RW and Hector using
several different noise models: white plus flicker noise (red); white plus random walk noise (blue);
white plus power-law noise, where power is a free parameter (black); and white plus flicker plus
random walk noise (orange). Dashed gray lines represent one-to-one, two-to-one and three-to-one
ratios, and their inverses

noise) or 0.20 mm/yr (power-law noise). These floors in the statistical uncertainties
are not to be overlooked because increasing lengths of time series and numbers of
data points, which can now be 20 or more years and several thousand data points,
tend to force down the uncertainties, even when accounting for the presence of tem-
porally correlated noise. As noted at the beginning of this chapter, one inescapable
limitation of any spectral method is fully assessing the noise over periods longer than
the time series itself; FOGMEX circumvents this notion by attempting to extrapolate
the temporal pattern shown within the time series to its asymptote, effectively as if
the analysis is done on a time series of infinite length. Even compared to maximum
likelihood estimators, it is not clear whether uncertainties reported by FOGMEX
or Hector, given any chosen noise model, are more “realistic”. However, it is clear
that FOGMEX and Hector do agree well for the most part, and factors of two when
uncertainties are already fractions of a mm/yr becomes a negligible distinction for
tectonic purposes.
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5.5.3 Comparison of Run Times

One of the most significant hurdles today for any analysis is the proliferation of
continuous GNSS sites, whose time series get longer each day. The amount of data
that is required to be analysed has become so large that as fast an approach as possible
is useful and sought for operational processing and product generation on a regular
basis. Figure 5.12 shows the time taken by tsfir, employing KF RW, and Hector to
analyze each (three-component) time series. For reference, most time series in this
real-world analysis are between about 14.5 and 10.0 years long with daily data. As
shown by the grey dashed lines, tsfit generally runs approximately 10 to 40 times
faster than the equivalent Hector run, with a minimum run time of between 0.7 and
0.8 s per site and most runs finishing in 1-2 s. Hector generally takes at least 10-20 s
per site for fixed-power (flicker and random walk) noise, 15-30 s for free power-law
noise and over 25 s for a combination of flicker and random walk noises. This varies
slightly with whether or not outlier detection is performed (cf. Fig. 5.13). For zsfit,
the time taken to do this preliminary step is a greater proportion of the total time than
for Hector, therefore outlier detection has the impact of spreading the point cloud
shown in Fig. 5.12 along the horizontal axis. Figure 5.13 shows this effect for a fairly
aggressive 2.5-sigma criterion. In general, outlier detection and removal appears to
have a negligible effects on the agreement of parameter estimates and uncertainties
between the two algorithms.

5.6 Conclusions

This analysis of the WLS FOGMEX and KF RW algorithms has shown that if the
noise in the time series is composed of first-order Gauss—Markov and white noise,
and the noise itself is used to compute the statistics, the average behavior of the algo-
rithm performs as expected, i.e. when averaged over many realizations, the estimated
rate uncertainties match the values that are derived from a full variance-covariance
matrix inversion. However, then time series residuals are used, as is needed in any
practical implementation, the algorithm underestimates the standard deviations of
the rate estimates by ~25% for data durations that are long compared to the cor-
relation time and by larger amounts for shorter durations of data. In addition, for
individual realizations the standard deviation of the estimated rate sigma is about
33% so the sigma may be under- or over-estimated in individual cases. The rescaling
of the WLS solution estimates of the standard deviations of the periodic and discon-
tinuity estimates are far too great and for these parameters the KF RW solution will
give a more reasonable estimate of the standard deviations but this estimate may be
underestimated if the random walk variance contribution is less than the white noise
contribution.

For flicker noise plus white noise, the algorithm consistently underestimates the
standard deviation of the rate estimates for both the WLS and KF versions. Applying
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Fig. 5.12 Comparison of run times per site (all three components) using all available data (no
cleaning using an n-sigma outlier criteria) between the KF RW algorithm and Hector. Dashed gray
lines define an approximate envelope showing the number of times faster KF RW performs relative
to Hector

a multiplying factor of 2.0 would seem to remedy this problem in our simulations
in which only a mean value and rate is estimated and there are no missing data. The
factor does not seem to depend on duration of data or on the ratio of flicker noise to
white noise.

Finally, the sensitivity to data at the edges of the data span and around the times
of breaks depends on the correlated noise models. The KF RW estimates are more
sensitive to data in these regions than the WLS estimates. The rigorous flicker noise
estimates of the sensitivity fall between the WLS and KF RW sensitivities. The
comparison of estimates of the rates from the WLS and KF algorithms will give
some indication of the impacts on the rate estimates from this change in sensitivity.

We note that our implementation of the KF RW algorithm and our use of random
walks in the GLOBK Kalman filter puts a (user-defined) minimum value on the
random walk process noise value. The default minimum is 0.05 mm?/yr which places
a lower limit on the estimates of the standard deviation of the velocity estimates. For
a 10-year time series, this limit is 0.07 mm/yr. For a 20-year series, the limit is
0.05 mm/yr corresponding to an accumulated 1 mm of random walk noise over the
20-year time span.



182 M. A. Floyd and T. A. Herring

FOGMEX KF (s) FOGMEX KF (s)

0 2 4 0 2 4
(a) ] L ‘ 1 (b) ‘ A\ 1 _
O] S T {40 §
o ' T
< P
= S
5 20 420 =
g S
[0} [ 8]
T T
0 ; U
D
@ 40 140 =
: :
£ 3
= s
5 20 420 %
[8) [e]
T 3

0 -"\ | L | L | L | O
0 2 4 0 2 4
FOGMEX KF (s) FOGMEX KF (s)

Fig. 5.13 Same as for Fig. 5.12 except a preliminary 2.5-sigma outlier detection and removal is
performed in both cases (zsfit and Hector) prior to ultimate estimation of parameters

Our algorithm shows comparable results when tested on real data, showing a
consistent replication of parameter estimates but a significant difference for other
geophysical parameters, such as seasonal signals and discontinuities. The algorithm
runs between about 8 and 40 times faster than Hector, depending on the noise model
and preliminary cleaning (e.g. n-sigma) cleaning criteria. The FOGMEX algorithm
is especially useful in operational situations where large amounts of data need to
be quickly analyzed on a regular basis without the need for significant computing
resources.

The program zsfit, which implements the FOGMEX option for time series analysis,
is available as part of the GAMIT/GLOBK GNSS processing software package. A
MATLAB-based graphical user interface (e.g. Herring 2003) is also available at
http://geoweb.mit.edu/~tah/GGMatlab/.
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Chapter 6 ®)
Least Squares Contribution to Geodetic I
Time Series Analysis

Alireza Amiri-Simkooei

Abstract This chapter introduces the least squares framework to the analysis of
geodetic time series. The geodetic time series analysis is based on the correct for-
mulation of both functional and stochastic models. The ultimate goal of all geodetic
time series studies is to discriminate between the functional and the stochastic effects
in the series. Both effects are relevant in geodetic and geophysical phenomena and
hence the subject of discussion in this contribution. Functional effects, such as a
linear trend, offsets, and potential periodicities, can be well explained by a deter-
ministic model, while the remaining unmodeled effects can be described by a proper
stochastic model. Both models should optimally be selected and analyzed for proper
analysis of the time series. This can be implemented both for a single and multiple
time series, resulting in the univariate and multivariate time series analysis. The first
part of the chapter is devoted to the functional model identification in which the
presence and identification of outlying observations, offsets, and possible periodic
signals in the series will be discussed. The second part deals with the parameter
estimation in the stochastic model. Identification and estimation of different noise
components in GNSS time series analysis will be discussed. A few simulated time
series are used to illustrate the theory.
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6.1 Introduction and Background

Geodetic time series analysis has been the subject of intensive research in the last
decades. Along with the development of space-based methods, proper analysis tech-
niques have been accordingly developed. We may at least refer to the parametric
techniques such as maximum likelihood estimation (MLE) method implemented by
Zhang et al. (1997), Williams et al. (2004), Bos et al. (2008, 2013), and the least
squares (LS) method (Amiri-Simkooei et al. 2007, 2017a, b; Amiri-Simkooei 2009,
2013, 2016). The methods can also be classified as non-parametric methods such
as singular spectrum analysis (SSA) method, see Chen et al. (2013), Gruszczynska
etal. (2016), Klos et al. (2018), Walwer et al. (2016), Wang et al. (2016), Xu (2016).
This contribution addresses the LS contribution to the analysis of time series.

The ultimate goal of the geodetic time series studies is to discriminate between the
functional and the stochastic effects in the series. Both effects are relevant in geode-
tic and geophysical phenomena and hence the subject of discussion in the present
contribution. Our contribution to the use of the least squares method is twofold. As a
single estimation principle, the least squares method is applied to identify misspec-
ifications and to estimate parameters in both the functional and stochastic models.
The least squares method can be applied to a variety range of geodetic applications
including, (1) analysis of GNSS position time series applicable to plate tectonics,
glacial isostatic rebound, crustal deformation and earthquake dynamics (Segall and
Davis 1997; Argus et al. 2010; Johansson et al. 2002; King et al. 2010), (2) analy-
sis of sea level height time series to extract tidal frequencies and predict sea level
variations (Amiri-Simkooei et al. 2014; Mousavian and Mashhadi-Hossainali 2012),
(3) application to ionospheric time series such as total electron contents (TEC) time
series to model regular ionospheric variations (Amiri-Simkooei and Asgari 2012;
Sharifi et al. 2012).

The analysis of time series can be performed in a univariate and multivariate form.
Analysis of a single time series leads to univariate analysis. There are also multiple
time series that are to be analyzed in a multivariate form to tackle the interaction
among different series in an appropriate manner. For example, the correlation among
different time series can be taken into consideration in the multivariate analysis. The
LS framework on time series analysis can also address the multivariate analysis.

A correctly selected functional model of geodetic time series usually consists of
a linear trend, possible periodic signals (mainly annual and semi-annual signals),
and probabilistic offsets. Identification and estimation of such deterministic effects
is addressed in the functional model. Among such deterministic effects we may refer
to GPS draconitic year (351.4 days) signals present in GPS position time series.
Another example is the presence of probabilistic offsets, which are to be detected
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and compensated for in the functional model. Other unmodeled effects, not of deter-
ministic nature, can best be described in the stochastic model. Proper identification
and estimation of noise components is also the task of the least squares principle
in this chapter. Different noise structures have been identified and estimated in time
series analysis. Among them the most commonly used noise model in geodetic time
series is known to be a combination of white noise and power-law noise—flicker
noise and random walk noise for instance.

Without the loss of the generality, in this contribution we only deal with GNSS
position time series. However, the presented theory can accordingly be applied to
other geodetic time series. The functional model of an individual coordinate compo-
nent, namely any of the north, east or up components, is of the form

E(y) = Ax, D(y)= 0, (6.1)

where E and D are the expectation and dispersion operators, respectively, y is the
m-vector of time series observations, e.g. daily GNSS position of one component,
x is the n-vector of the unknown parameters, A is the m x n design matrix and Q,
is the m x m covariance matrix. The observation vector is usually denoted by y(¢)
where ¢ refers to the time instant. The simplest functional model may only include a
linear trend in its functional part of the model

E(y(®) = yo + vt (6.2)

where yp and