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1  �Introduction

Plants being sessile in nature have developed the ability to cope up with different 
growth habitats and fluctuating climatic conditions by improvising myriad regula-
tory mechanisms. There are many classes of small endogenous RNA molecules, 
such as small transfer RNA (tRNA), ribosomal RNA (rRNA), small nucleolar RNA 
(snoRNA), small interfering RNA (siRNA) and microRNA (miRNA). miRNA and 
siRNA are biochemically and functionally indistinguishable. Both are 19–20 nucle-
otides (nt) in length with 5′-phosphate and 3′-hydroxyl ends, and assemble into 
RISC to silence specific gene expression. MicroRNAs (miRNAs) are small non-
coding RNAs with 20–22 nucleotides discovered as the regulatory RNA in C. ele-
gans. First plant miRNAs were discovered in Arabidopsis in 2002 and over the past 
three decades they have been reported in about 120 plant species. A transcribed 
miRNA acts by different mechanisms like feedback and feedforward loop regula-
tions and has the ability to control its own transcription as well as other genes. 
A single miRNA may regulate hundreds of mRNAs and in turn may effect a net-
work of interactions. The length of miRNA genes varies from miRNAs to miRNs 
and from species to species. For example, miRNA genes in plant species are usually 
longer than in animals. The initial tools like genetic screening for miRNA identifi-
cation were often time consuming, expensive, and cumbersome. There was a 
tectonic shift in the technology of the sequencing and computational methods. 
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These advances aided in completion of draft genome sequences with less cost. 
By using bioinformatic software and tools with the combination of the next-gener-
ation deep sequencing, miRNA identification and expression studies in plants have 
increased dramatically. Computational approaches have estimated that organisms 
probably contain about 1–5% miRNA genes of the total protein-coding genes 
(Lai 2003; Lim et al. 2003; Lewis et al. 2005). Notably, various miRNAs are now 
known to play a role in biotic and abiotic stress, which has led researchers to consider 
them as a promising tool to develop stress-resistant crops.

According to the United Nations reports present world population is at 7.8 billion 
and expected to reach 9.8 billion by 2050 (The World Population Prospects: The 
2017 Revision). Besides population growth, there is an increase in the prosperity 
across the world. If the present trend continues, because of the richer diets we 
should double the amount of crops we grow by 2050. Consequently, to feed the 
ever-increasing world population it is highly important to find solutions to increase 
the global food production by developing stress tolerant crop plants. Biotic stresses 
account for up to 30% crop loss worldwide (Bebber and Gurr 2015). To deal with 
these devastating pathogens and pests, plants have specialized defense mecha-
nisms, which get induced when there is a stress (rewrite). Plants have developed 
various physiological and molecular mechanisms to deal with abiotic stresses such 
as drought, salinity, heat, cold and dehydration by minimizing water loss and pho-
tosynthesis. The role of the genes were elucidated either through overexpression or 
through silencing.

In this chapter, we aimed to describe briefly biogenesis of plant miRNAs and 
different online tools available for discovering and expression profiling of miRNAs 
based on computational methods and also understanding their role in tolerance 
mechanism against abiotic and biotic stress.

2  �Biogenesis of miRNAs

There are four steps in biogenesis of miRNAs: (1) MIR genes transcription, (2) 
miRNA precursor processing, (3) miRNA stabilization and (4) RISC formation.

	1.	 MIR Genes Transcription
The genes which are coding for miRNAs are known as MIR genes. The pro-

moters of MIR genes contain typical TATA box motifs and transcription factor 
binding motifs indicate that transcription MIR genes is regulated by general and 
specific transcription factors (Xie et al. 2005; Megraw et al. 2006).The first step 
in biogenesis of miRNAs starts in the nucleus with primary miRNA (pri-
miRNA) transcribed from MIR genes by RNA polymerase II (Xie et al. 2005). 
Pol II activity in MIR transcription is probably subject to phosphoregulation 
(Hajheidari et al. 2013). pri-miRNAs can be more than 1 kb in length, they can 
undergo canonical splicing, polyadenylation, and capping. Just like mRNA, 

P. T. K. Jagannadham et al.



95

nascent pri-miRNAs are capped at the 5′ end and polyadenylated at the 3′ end, 
and intron-containing pri-miRNAs are spliced or alternatively spliced (Stepien 
et al. 2017). The pri-miRNA is processed within the nucleus by a multiprotein 
complex consisting of DCL1/HYL1/SE called the Microprocessor.

	2.	 miRNA Precursor Processing
The second step involves cleavage of the pri-miRNA into the pre-miRNA, the 

hairpin structure in the pri-miRNA (Lee et al. 2003). DAWDLE (DDL) is a fork 
head-associated protein, required for pri-RNA accumulation and recruitment of 
RNase III family enzyme DICER-like protein 1 (DCL1) to pri-miRNA for down-
stream processing (Yu et al. 2008). DICER-LIKE1 (DCL1) makes a cut from 15 
to 17 nt away from the base of the stem or a bulge or unstructured region within 
the loop-distal stem. HYPONASTIC LEAVES1 (HYL1) is one of the family 
member of DOUBLE STRANDED RNA BINDING PROTEINS (DRBs). HYL1 
interacts with DCL1 to facilitate efficient and precise miRNA precursor process-
ing (Yang et al. 2014).The resulting precursor-miRNA (pre-miRNA) is further 
cleaved by DCL1 to produce a 21-nt miRNA/miRNA∗ duplex (Zhu et al. 2013). 
Alternative processing modes include loop-to-base processing (Bologna et  al. 
2009). Homodimerization of HYL1 is essential for its functions in miRNA pre-
cursor processing (Yang et al. 2014). HYL1 also affects the splicing of some 
pri-miRNAs and strand selection from miRNA/miRNA∗ duplexes in AGO1 
loading (Ben Chaabane et  al. 2012). The DCL1 together with HYL1 
(HYPONASTIC LEAVES 1) and the zinc-finger protein SE (SERRATE) were 
required for processing of pre-miRNA into miRNA duplex.

	3.	 miRNA Stabilization
The miRNA/miRNA∗ duplex is stabilized through 3′-terminal 2′-O-

methylation by HEN1. The export of miRNAs from the nucleus to the cytoplasm 
is fundamental for miRNA activity (Köhler and Hurt 2007; Rogers and Chen 
2013).The 2-nt 3′ overhang, characteristic of RNase III-mediated cleavage gets 
methylated by HEN1 (HUA ENHANCER 1), that is recognized by exportin 5, 
HASTY (HST), is proposed to export the miRNA/miRNA∗ duplex to the cyto-
plasm based on the assumption that the duplex is produced by DCL1  in the 
nucleus (Bollman et al. 2003).

	4.	 RISC Formation
In the cytoplasm, miRNAs are unwound into single strand mature miRNAs by 

helicase. The miRNA strand with relatively lower stability of base-pairing at its 5′ 
end act as guide molecule to reach the target mRNA and is incorporated into a 
ribonucleoprotein complex RISC, whereas the other miRNA strand is typically 
degraded (Du and Zamore 2005). Once incorporated into RISC, the miRNA directs 
AGO1 (or AGO10) containing RISCs to its target mRNA for cleavage or transla-
tional repression on the basis of sequence complementarity. In cases of perfect or 
near-perfect complementarity to the miRNA, target mRNA scan be cleaved (sliced) 
and degraded; otherwise, their translation is repressed (Martinez and Tuschl 2004; 
Treiber et  al. 2012). Therefore, miRNAs control gene expression by regulating 
mRNA stability and translation (Eulalio et al. 2008).
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3  �List of Bioinformatics Tools for miRNAs Prediction, 
Identification and Characterization

miRNA prediction tools

MiRscan http://genes.mit.edu/mirscan/
miRank http://reccr.chem.rpi.edu/MIRank/ MiRank is programmed in Matlab
MirnaFind 
WebServices

https://mirnafind.fbk.eu/

miRFinderV4.0 http://www.bioinformatics.org/mirfinder/
MirevalV2.0 http://tagc.univ-mrs.fr/mireval
PITA http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
mirplant https://sourceforge.net/projects/mirplant/
Target prediction tools

RNAhybrid https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
Diana-microT http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_

CDS/index
Rna22 https://cm.jefferson.edu/rna22/
miRecords http://c1.accurascience.com/miRecords/
TAPIR http://bioinformatics.psb.ugent.be/webtools/tapir/
miRTar http://mirtar.mbc.nctu.edu.tw/human/
TargetS http://liubioinfolab.org/targetS/mirna.html
psRNATarget http://plantgrn.noble.org/psRNATarget/
MicroTar http://tiger.dbs.nus.edu.sg/microtar/
MiRNA-EMBL http://www.russelllab.org/miRNAs/
miRNA database

MiRBase http://www.mirbase.org/
miRWalk http://mirwalk.umm.uni-heidelberg.de/
miRNAMap 2.0 http://mirnamap.mbc.nctu.edu.tw/
PMRD http://bioinformatics.cau.edu.cn/PMRD/
CSRDB http://sundarlab.ucdavis.edu/smrnas/
miRNA secondary structure prediction tools

miRNA Digger http://www.bioinfolab.cn/
miRNA deep sequencing tools

mirTools http://59.79.168.90/mirtools/
miRExpress http://mirexpress.mbc.nctu.edu.tw/
miRegulome http://bnet.egr.vcu.edu/miRegulome/
miRspring http://mirspring.victorchang.edu.au/
R packages

microRNA https://bioconductor.org/packages/release/bioc/html/microRNA.html
miRNApath https://bioconductor.org/packages/release/bioc/html/miRNApath.html
AgiMicroRna https://bioconductor.org/packages/release/bioc/html/AgiMicroRna.html
mirIntegrator https://bioconductor.org/packages/release/bioc/html/mirIntegrator.html
miRNAtap https://bioconductor.org/packages/release/bioc/html/miRNAtap.html
TargetScore https://bioconductor.org/packages/release/bioc/html/TargetScore.html
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ExiMiR https://bioconductor.org/packages/release/bioc/html/ExiMiR.html
LVSmiRNA https://bioconductor.org/packages/release/bioc/html/LVSmiRNA.html
MiRaGE https://bioconductor.org/packages/release/bioc/html/MiRaGE.html
miRcomp https://bioconductor.org/packages/release/bioc/html/miRcomp.html
miRLAB https://bioconductor.org/packages/release/bioc/html/miRLAB.html
miRNApath https://bioconductor.org/packages/release/bioc/html/miRNApath.html
miRNAtap https://bioconductor.org/packages/release/bioc/html/miRNAtap.html
MmPalateMiRNA https://bioconductor.org/packages/release/bioc/html/MmPalateMiRNA.html
Roleswitch https://bioconductor.org/packages/release/bioc/html/Roleswitch.html
ssviz https://bioconductor.org/packages/release/bioc/html/ssviz.html

4  �Role of miRNAs in Plant Abiotic Stress Tolerance

Plants have evolved highly sophisticated molecular machinery to cope up and adapt 
to the challenging environmental conditions. In addition to various mechanisms, 
miRNAs-mediated rapid response plays crucial role in plant adaption. Various stud-
ies have shown that several miRNAs were downregulated in order to increase their 
target stress-responsive genes during stress conditions in a range of plant species 
(López and Pérez-Quintero 2012).

4.1  �Drought

miRNAs play significant role in sensing the drought stress and imparting tolerance 
in plants (Ferdous et al. 2015). Drought-responsive miRNAs and their mechanism 
in drought tolerance is well established in crop plants including Arabidopsis 
(Clauw et  al. 2016), tomato (Liu et  al. 2017), rice (Zhou et  al. 2010), maize 
(Aravind et al. 2017), sorghum (Katiyar et al. 2015) and grasses (Zhou et al. 2013). 
Thirteen miRNAs expression were up-regulated and six miRNAs were downregu-
lated, under drought stress in Arabidopsis. All these differentially expressed miR-
NAs also play significant role in key developmental process, suggesting that the 
existence of tight regulation of plant growth and development and drought toler-
ance (Ferdous et al. 2015; Muthusamy et al. 2017). Under drought stress condi-
tions, miR166, miR167, miR169, miR383 and miR398 family members displayed 
differential expression pattern in drought tolerant and drought susceptible geno-
types (Katiyar et al. 2015). Balyan et al. (2017) studied the drought tolerance mech-
anism in the set of rice cultivars comprising drought tolerance and susceptible 
genotypes and showed the role of Cultivar-specific drought responsive (CSDR)-
miRNAs networks involving seven family members (osa-miR159f, osa-miR1871, 
osa-miR398b, osa-miR408-3p, osa-miR2878-5p, osa-miR528-5p and osa-miR397a) 
by modulating the Cu and ROS homeostasis. This finding shed a novel insight on 
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Cultivar-specific drought responsiveness network which can potentially be targeted 
in breeding programs in regulating drought responsive genes for the development of 
new drought tolerant genotypes (Lenka et al. 2018).

4.2  �Cold

In Arabidopsis, 11 miRNAs (miR156/157, miR159/319, miR164, miR165/166, 
miR169, miR172, miR393, miR394, miR396, miR397 and miR398) were induced 
under cold stress (Sunkar and Zhu 2004; Zhou et  al. 2008; Liu et  al. 2008; 
Chinnusamy et al. 2010). Song et al. (2017) identified 34 conserved and 5 novel 
miRNAs family members that showed a differential expression pattern between the 
cold-stressed and control spikelet samples of wheat. These miRNAs were known 
to target the floral organ pattern homeotic transcription factors members including 
ARF, SPB, MYB and MADS-box. Melatonin induced downregulation of miR159, 
miR858 and miR8029 increases the cold tolerance ability of Citrullus lanatus L. 
(Li et al. 2016). Melatonin-mediated miRNA downregulation increases the tran-
script levels of the target cold tolerance genes involved in signaling, protection and 
detoxification. In tomato, four miRNAs (miR167, miR169, miR172 and miR393) 
expression were increased immediately under cold stress (Koc et al. 2015). Cold 
stress-responsive miRNAs target wide range of proteins with diverse cellular func-
tion, indicating an intricate regulation molecular network in responses to cold 
stress (Chinnusamy and Zhu 2009; Chinnusamy et al. 2010; Megha et al. 2018). 
Cis-regulatory analysis in the promoters of cold-responsive miRNAs showed the 
presence of conserved regulatory elements including ABRE, LTRs, MYB binding 
sites, and HSE (Liu et al. 2008; Zhou et al. 2008).

4.3  �Salt

Salt stress inhibits the plant growth and development. High concentration of salts in 
the plant cells modulates the ABA synthesis which in turn results in closure of sto-
mata, reduction of photosynthesis activity and increase in ROS (Chinnusamy et al. 
2006; Mangrauthia et al. 2013). Several salt-stress responsive genes (transcription 
factors, transporters, ROS enzymes, etc.) were targeted by the miRNAs (Chinnusamy 
and Zhu 2003; Mondal and Ganie 2014). The expression pattern of the salt stress 
responsive genes NADP-dependent malic enzyme, cytochrome oxidase and sulfury-
lase were modulated by miRNAs (Ding et al. 2009; Mangrauthia et al. 2013). The 
role of miRNAs in imparting tolerance to salt stress were documented in plants 
(Ferdous et al. 2015). Ten miRNAs (miR156, miR165, miR319, miR393, miR396, 
miR167, miR168, miR171, miR152 and miR394) were reported to play a pivotal 
role in salt tolerance in Arabidopsis and chickpea (Liu et al. 2008; Kohli et al. 2014). 
In Populus, 15 miRNAs targeting the key developmental salt-stress responsive genes 
regulating auxin signaling, light or circadian rhythms and tissue morphogenesis were 
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differentially expressed under salt-stress condition (Li et al. 2013). A total of 259 
miRNAs were differentially expressed in chickpea under salinity and moisture stress 
conditions (Khandal et al. 2017). Seventy one miRNAs were differentially expressed 
under salinity in radish (Sun et al. 2015).

4.4  �High Temperature

Heat shock responsive transcription factors HSFA1b and HSFA7b induce the 
expression of high temperature responsive miR398  in Arabidopsis (Guan et  al. 
2013). In rice, miRNA genes belonging to 162 miRNA families were differentially 
expressed under high temperature stress, 33 families displayed shoot-specific 
expression, 12 displayed root-specific expressions, and 117 displayed expression in 
both shoot and root tissues. Seventy-nine miRNAs were differentially expressed 
under heat stress conditions in wheat. These results suggest the presence of wider 
role of miRNA mediated regulation in imparting stress tolerance under heat stress 
conditions (Mangrauthia et al. 2017). Several heat stress responsive genes including 
ClpATPase (Muthusamy et al. 2016), HSF (Guan et al. 2013) and HSP (Muthusamy 
et al. 2017) expression were under regulation of miRNA. MiR396b-3p expression 
were increased under both heat and drought conditions, suggesting a wider scope 
for utilization in crop improvement programs in developing climate resilient crop 
plants (Barciszewska-Pacak et al. 2015).

5  �Role of miRNAs in Plant Biotic Stress Tolerance

Plants are faced with innumerable biotic stresses caused by pests, parasites and patho-
gens. Fungi, bacteria, nematodes and viruses are the pathogens primarily accountable 
for plant diseases and major concern is of their continuous and fast evolution. Plants 
have different lines of defense to all these biotic stresses and they respond through 
several morphological, biochemical, and molecular mechanisms and interactions 
among their respective signaling pathways (Nejat et al. 2017). One of the lines of plants 
defense in response to biotic stresses through miRNAs by expressing or regulating 
stress responsive genes and transcription factors strive to mitigate the stress.

In genomics era, the whole genome, transcriptome, proteome and interactome 
sequencing and analysis has become a baseline for different areas of research. The 
small RNA sequencing of organisms identified putative and novel RNAs which 
might be involved in regulatory pathways. Deep sequencing of stress treated and 
untreated plant samples showed regulation of small RNAs which could be studied 
further to improve the conventional approaches for development of stress resistant 
crops. High throughput sequencing of tomato microRNAs in 2011 identified con-
served and novel miRNAs expressed in tomato (Zuo et al. 2011), which regulates 
the expression of genes involved in biotic stresses. miRNAs are explicitly employed 
by plants in response to pathogenic attacks.

Micromics: A Novel Approach to Understand the Molecular Mechanisms in Plant Stress…
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5.1  �Viruses

Viruses contain DNA or RNA as a genetic material in either double-stranded or 
single-stranded form. The viruses affect host transcriptome levels (Reyes et al. 2016) 
by transferring genomic DNA/RNA into the host genome. The virus utilizes the host 
machinery to amplify the genomic content and synthesize proteins by using RNA-
dependent RNA polymerase and reverse transcriptases (retroviruses). The viruses 
also affect the miRNA levels which in-turn affects the fate of the target genes 
(Pradhan et al. 2015).

In soyabean, 12 potential miRNAs were identified and through 5′-RNA-ligase-
mediated rapid amplification of cDNA ends (5′-RLM-RACE) analyses showed 9 
miRNAs (miR395, miR530, miR1510, miR1514, miR1515, miR1535, miR2109, 
miR3522 and miR2118-3p) responded to SMV soybean mosaic virus infection (Yin 
et al. 2013). In tomato, 40 novel miRNAs were identified in response to cucumber 
mosaic virus (CMV) and functional analysis revealed miRNA related to defense 
response and photosynthesis (Feng et al. 2014). In watermelon, by using small RNA 
sequencing RNA technology, 246 novel miRNAs were identified as differentially 
expressed in response to cucumber green mottle mosaic virus (CGMMV) infection. 
Further analysis of these miRNAs revealed, these miRNAs influenced wide array of 
biological functions like cell-wall enhancing, changes in levels of phytohormones, 
intracellular transport and modulation of different R genes (Sun et al. 2017). miR168 
is ubiquitously up-regulated in most of plant-virus combinations. For example in 
Malus hupehensis resistance against Botryosphaeria dothidea is conferred by miR168 
targeting AGO1 (Yu et al. 2017). Similarly, in rice AGO18 sequesterartion by miR168 
confers resistance against viruses (Wu et al. 2015). In response to Mungbean Yellow 
Mosaic India virus (MYMIV) infection gma-miR5787 maintains AGO homeostasis 
and targets viral genome in soyabean (Ramesh et al. 2017). In Vigna mungo 14 novel 
and 53 known miRNAs were identified V. mungo Mungbean Yellow Mosaic India 
virus (MYMIV). Among the 53 known miRNAs, induction of miR396 suppresses 
JA signaling there by activating the SA-mediated pathway (Kundu et  al. 2017). 
Besides SA, auxin also regulates plant-pathogen interactions through two candidates 
miR160 and miR393. PVX-potyvirus synergistic infections alters miRNAs (miR156, 
miR171, miR398 and miR168) and targeted mRNA levels in Nicotiana benthamiana 
(Pacheco et al. 2012). Comprehensive genome-wide analyses of miRNA revealed 
that plants modulate the expression of known, constitutively expressed miRNAs in 
a spatiotemporal specific manner during viral infection.

5.2  �Bacteria

Apart from positive interaction like nitrogen fixation, bacteria also causes diseases 
through negative interactions. Plant activates pathogen-associated molecular pattern 
(PAMP)-triggered immunity (PTI), when exposed to flagella or elicitors released 
from bacterium and further express disease resistance genes in response to Effector 
triggered susceptibility ETS (Schwessinger and Zipfel 2008).
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In Arabidopsis miRNAs were globally profiled in response to infection of 
Pseudomonas syringae pv. tomato (Pst) and identified several miRNAs that regulate 
plant hormone signaling and biosynthesis (Zhang et al. 2011). The involvement of 
these hormone pathways in against bacterial defense has been well established 
(Berens et  al. 2017). For example, SA signaling pathways regulates the anti-
biotrophic pathogen defense in plants while positive regulation of JA triggers and 
regulates the anti-necrotrophs (Tamaoki et al. 2013) defense Pseudomonas syringae 
and Xanthomonas axonopodis induces miRNAs, for example miR160, miR167 and 
miR390, miR393 all regulate genes involved in the auxin signaling pathway, includ-
ing different ARFs and F-boxauxin receptors TIR1, AFB2, and AFB3 mRNAs 
(Zhang et al. 2011; Snyman et al. 2017; Jodder et al. 2017). Evidently, Auxin response 
factors are the major targets of most of the upregulated miRNAs whilst downregu-
lated miRNAs targets disease resistance genes. In-fact, miR393 involvement in the 
regulation of auxin signaling pathway was first discovered in anti-bacterial response 
of Arabidopsis thaliana through active contribution in PTI (Zhang et  al. 2006). 
Besides auxin, some miRNAs were identified regulated other hormonal pathways, 
like miR159 was involved in abscisic acid (ABA) signaling pathway and miR319 
was involved in jasmonic acid (JA) signaling cascade (Li et al. 2010; Fahlgren et al. 
2007). In Arabidopsis, mi393 and SA pathway act synergistically to provide toler-
ance to bacterial infections (Chen et  al. 2014). Further experiments revealed that 
miR393 down regulate MEMB12 (SNARE) gene that encodes protein involved in 
membrane fusion.

5.3  �Fungal

In Arabidopsis, miR773 was functionally characterized and found that concomitant 
upregulation of miR773 target gene METHYLTRANSFERASE 2 (MET2) consider-
ably increased resistance to Plectosphaerrella cucumerina, Fusarium oxysporum 
and Colletototrichum higginianum infection (Salvador-Guirao et al. 2017). In Rice, 
a total of 33 potential miRNAs were identified in providing immunity against the 
Blast Fungus Magnaporthe oryzae. Among them miR160a and miR398b were func-
tionally characterized in providing suppression against fungal infection (Li et  al. 
2014). In cotton, 65 miRNAs were identified as differentially expressed in response 
to the Verticillium. Among them, Ptc-miR482, Ptc-miR1444 and Ptc-miR1448 were 
found to specific to cotton cultivars which cleaves the PPO (Polyphenol oxi-
dase) gene in providing resistance (Chi et al. 2014; Tran et al. 2012). In Populus, 
74 conserved miRNAs along with 27 novel miRNAs from 37 different miRNA 
families were identified in response to Dothiorella gregaria. Further analysis 
revealed miR472, miR1447 and miR1448 were targeting the disease resistance 
gene (Chen et al. 2012).

The change in hormonal pathways is common to all the biotic stresses. In wheat, 
enhanced auxin-mediated response was observed against powdery mildew infection 
by miR393 targeting transport inhibitor response 1 (TIR1), i.e., a negative regulator 
of auxin signaling (Nowara et al. 2010). In case of infection with Puccinia graminis 
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three independent responses (lignin biosynthesis, hormone signaling, and protein 
biosynthesis) were regulated through eight miRNAs namely miR159, miR164, 
miR167, miR171, miR408, miR444, miR1129 and miR1138 (Liu and Chen 2009).

In Brassica species, 62 novel miRNAs were differently expressed under 
Verticillium longisporeum infection. Among them it was found that miR168 nega-
tively regulates the expression of argonaute1 (AGO1). In most of the fungal infec-
tions, pathogens change the expression of DCL1 and AGO1 by overtaking the host 
machinery and cellular homeostasis. But over the period, plants have acclimatized 
to the situation and started overexpressing miR162 and miR168 in response to fun-
gal elicitors to maintain the homeotic balance of DCL1 and AGO1 as host derived 
PTI (Baldrich et al. 2014).

5.4  �Nematodes

Over the year, Nematodes have been proved as menace for crop growth, develop-
ment, yield and productivity. Incidentally, it was in the nematode, Caenorhabditis 
elegans that MicroRNAs (miRNAs) were first discovered (Lee et  al. 1993) and 
subsequently several miRNAs were discovered in response to nematode infection. 
For example, in Arabidopsis upon the infection of Heterodera schachtii, miR161, 
miR164, miR167a, miR172c, miR396c, miR396a,b, and miR398a were downreg-
ulated (Kammerhofer et al. 2015) whereas over expression miR827 silences NLA 
(Nitrogen Limitation Adaptation), which encodes for ubiquitin E3 ligase enzyme 
leading to susceptibility to Heterodera schachtii (Hewezi et al. 2016). In soyabean, 
537 known and 70 putative novel miRNAs were in response to Soybean cyst nema-
tode (SCN) infection of which 60 miRNAs belonging to 25 families were shown to 
be significantly differentially expressed. After in-depth analysis of these differen-
tially expressed, it was revealed that miR159 and miR399 likely targeting different 
genes in root during SCN Infection (Tian et  al. 2017). In Arabidopsis, miR390/
TAS3 discovered as regulatory module for proper gall formation through auxin-
responsive factors during infection of Meloidogyne javanica (Cabrera et al. 2016). 
In a recent study more number of gene regulatory modules were identified, i.e., 
miRNA172/TOE1, miRNA159/MYB33, miRNA390/TAS3-derived-tasiRNAs/
ARFs, miRNA319/TCP4 or miRNA396/GRFs during the gall formation (Cabrera 
et al. 2018).

5.5  �Insect Pests

In Chrysanthemum, a total of 303 conserved miRNAs belonging to 276 miRNAs 
families and 234 potential novel miRNAs were identified. Among them miR159a, 
miR160a and miR393a (abundant miRNAs) were found to be responsive to the 
Chrysanthemum morifolium and aphid interaction. (Xia et al. 2015). In tea plant, 
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512 novel miRNAs were identified in response to Ectropis oblique feeding. A hypo-
thetical model for miRNA regulatory pathways and their target genes was constructed 
using the data obtained. This will help to uncover the molecular mechanism involved 
in stress (Jeyaraj et al. 2017). In most of the cases, pathways were studies in the 
insect biology and information used for RNAi-based insect control (Xu et al. 2013; 
Burand and Hunter 2013).

6  �Conclusion

Next generation sequencing technologies have enabled to generate voluminous data 
regarding miRNAs. In combination with the cutting edge computational technolo-
gies, researchers able to decipher the role of miRNAs in conferring tolerance to 
different biotic and abiotic stresses. These findings help to map the detailed molecu-
lar mechanism involved in providing the resistance. After considerable meta-
analysis, researchers will be enabled to identify conserved pathways and specific 
pathway. With artificial miRNA (amiRNA) technology emerging as potential tool 
for gene silencing. The information obtained through different high-throughput 
sequencing technologies can be useful to construct amiRNAs. With the proper 
application of genome editing and gene silencing, better varieties could be develop 
to thrive in adverse conditions and provide good yield.
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