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1  �Introduction

Metalloids are elements that have chemical properties between metals and non-
metals. In the periodic table, metalloids are recognized as boron (B), silicon (Si), 
arsenic (As), germanium (Ge), antimony (Sb), tellurium (Te) and polonium (Po). 
These elements are paced diagonally between the metals and non-metals. Along 
with other elements, these metalloids are widely distributed in earth crust. Like 
many minerals, metalloids are known to regulate optimum growth and development 
of all animals and plants. However, it is also commonly known that enhanced 
metalloid concentration negatively impacts plant health by interfering in various 
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biochemical, structural and physiological processes of plant metabolism (Nagajyoti 
et al. 2010; Adrees et al. 2015; Afshan et al. 2015). These effects may range from 
substitution of essential functional groups to production of reactive oxygen species 
(ROS) and cellular damage (Anjum et al. 2015). Additionally, increased concentra-
tion of metalloids has been found to adversely affect plant biomass, growth, photo-
synthesis, accumulation and translocation of essential elements (Wagner 1993; 
Adrees et al. 2015). Consequently, extensive research into metalloid accumulation 
and resistance has been taken up across the globe in the last two decades to assess 
their immediate and long-term impact on environmental, human, livestock and plant 
health to optimize their bioavailability and uptake by plants to aid plant growth and 
yield (Nascimento and Xing 2006; Adrees et al. 2015). Compared to other organ-
isms, plants are better equipped with strategies to withstand influx of metalloids and 
also regulate their metabolism to not affect their survival and reproductive success. 
Plant genes encode expanded gene families of transporters that regulate uptake and 
subsequent sequestration of metalloids. These transporters have specific substrate 
specificities, expression and localization on cellular membranes as they manage 
translocation of respective metalloids across the whole plant (Hwang et al. 2016). 
Analysis of these transporters has been conducted in numerous plant systems and 
their relevance has been assessed using several forward and reverse genetic 
approaches. Only a few metalloids such as boron, silicon and selenium have been 
studied extensively and are now well established to play beneficial roles in plant 
growth and metabolism. These beneficial metalloids serve as essential micronutri-
ents and ensure optimum plant growth, development and productivity (Peterson 
et al. 1981). At optimum concentrations, metalloids effectively regulate function of 
many enzymes and metabolic pathways. Furthermore, these metalloids are instru-
mental in various biosynthetic pathways such as nucleic acid, chloroplast and pro-
tein besides governing structural and functional integrity of cellular membranes 
(Adrees et al. 2015; Oves et al. 2016). Therefore, in this chapter we discuss such 
incidences of metalloid relevance to plants, mechanisms of their transport and 
uptake, essential transporters, and various forward and reverse genetic approaches 
adapted to assay and optimize uptake of metalloids in plants.

2  �Sources of Metalloid Ions

Presence of metalloids in soil is a combined result of various anthropogenic and 
natural processes. Most common source of natural metalloid contribution to the soil 
in question is rock substratum and geological bedrock (Tchounwou et al. 2012). 
The amount and composition of metalloids in the parent bedrock and weathering 
conditions determine concentration of metalloids in the resultant soil (Wuana and 
Okieimen 2011). Agriculture is another major source of metalloid contamination. 
Typically, all soils more or less have all known metalloids. However, their concen-
tration varies; while some metalloids are found below the detection limit, some may 
be present at toxic amounts (Alloway 2013). Accordingly, the concentration of the 
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metalloids can be categorized as ‘total’ and ‘available’. The ‘available’ metalloids 
constitute only a part of the ‘total’ concentration of metalloids present in the soil at 
a given time. Total concentration refers to presence of all forms of element in the 
soil such as adsorbed to minerals like clay, bound to organic matter, bound in crystal 
structure of minerals, carbonates, oxides, soluble organic and inorganic complexes 
in soil solution, and free ions. More often than not, only a fraction of this ‘total’ 
concentration is available for immediate uptake by plants. This ‘available’ concen-
tration of the element is present in soil as soluble complexes, free ions or readily 
amenable forms. Further, this availability of the element to the plant is governed by 
many soil factors such as redox status, pH, temperature, macronutrients and water 
content. Additionally, plants are known to produce root exudates that can also 
significantly affect the availability of the metalloids. Assessing total concentration 
of a given metalloid is not a good indicator of the bioavailability of the element, 
notwithstanding these measures do indicate presence of anomalously increased or 
decreased concentrations of the metalloids. Such a measure is instrumental in 
assessing the effect on soil flora and fauna. Low levels of an element indicate that 
either the soil is derived from a bedrock that was deficient in the said element or the 
soil has become depleted over the years. In either case, such soils need to be supple-
mented with essential metalloids to ensure their bioavailability to growing plants.

3  �Molecular Interactions During Plant Elemental Uptake

Essential metalloids required for plant growth and development are taken up pri-
marily from the soil. To ensure regulated uptake of required metalloids (B, Si and 
Se), specific transporters and signalling mechanisms are in place. Such metalloids 
that are beneficial to several biochemical and physiological processes in plant 
growth are components of various cellular enzymes and regulate various oxidation–
reduction reactions (Adrees et al. 2015; Emamverdian et al. 2015). Boron (B) is 
avital element to numerous processes in plant development such as protein and 
amino acid (AA) biosynthesis, seed germination, nucleic acid metabolism, carbohy-
drate transportation, cell division and elongation, cell membrane integrity, sugar 
translocation, biosynthesis and transport of plant hormones, phenolic metabolism, 
gas exchange and water uptake (Kouchi and Kumazawa 1976; Camacho-Cristóbal 
et al. 2008; Han et al. 2008; Jehangir et al. 2017; Lu et al. 2015). High-affinity trans-
port systems ensure boron uptake, accumulation and absorption in plants occur via 
specific boron transporters and chelators (Jehangir et  al. 2017; Lu et  al. 2015). 
Selenium (Se) is an essential element for plant growth owing to its antioxidant 
capacities. It has been established as a component of selenoenzymes such as thiore-
doxin reductases (TR) and glutathione peroxidase (GSH-Px). In addition, its avail-
ability is cardinal to optimum functioning of the enzymes that maintain the redox 
potential of the cell (Rayman 2000). Silicon (Si) plays a central role in important 
physiological processes of the plants such as transpiration and photosynthesis. Si is 
also central in conferring plants with adaptive capacities to tide over drought 
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conditions (Tubana et al. 2016). These essential and/or non-essential metalloids are 
absorbed from the soil in accordance to a concentration gradient that favours selec-
tive uptake of a certain ion over the other at a given time (Peralta-Videa et al. 2009). 
First step towards uptake is exploration of soil by root system for availability of the 
micronutrients. Root responses to explore macronutrients such as nitrogen (N) and 
phosphorus (P) are well established. However, root responses to metalloid deficien-
cies do not remain well characterized. In response to nutrient deficiency, plant tends 
to increase the surface area of roots by promoting branching of roots. Such inci-
dences in root development have been noted in response to Fe deficiency in both 
monocots and dicots plants (Moog et al. 1995; Schmidt 2002). Second parameter 
that determines metalloid availability by roots is their bioavailability (Palmgren 
et  al. 2008). Metalloids are present adsorbed to soil particles or in an insoluble 
form. Plant roots ensure to increase their bioavailability by uptake of specific trans-
porters by changing them into appropriate forms by interacting with the surround-
ing rhizosphere (Marschner 1995; Palmer and Guerinot 2009). Plant roots exude 
acidification of the rhizosphere to generate a high membrane potential that drives 
cation uptake (Palmgren 2001). Additionally, protons that are released participate 
in cation exchange to release divalent metal ions that are bound to soil particles and 
consequently the acidification of rhizosphere releases metals from hydroxides 
(Palmer and Guerinot 2009; Palmgren 2001). Post mineral uptake, minerals 
migrate to apoplastic spaces from where metals are actively transported across 
plasma membrane into symplastic pathways.

Uptake of boron from soil and its subsequent transport to shoots is now explained 
using a model that has been developed based on available data from various differ-
ent plant systems so far (Takano et al. 2008; Miwa and Fujiwara 2010; Durbak 
et al. 2014; Baxter and Dilkes 2012). According to this model, boron diffuses from 
the soil to the apoplast of root epidermis. The influx proteins present on the plasma 
membrane of the epidermis, endodermis and cortex transport boron to the cytosol. 
Boron then reaches the pericycle through the symplastic pathways, and efflux pro-
teins subsequently load it into xylem vessels that ensure its availability across the 
plant system (Kohl and Oertli 1961). Uptake of silicon from soil occurs in the form 
of silicic acid (Takahashi and Hino 1978; Mitani et al. 2005). Three distinct models 
from Si uptake have been proposed in plants having varying concentration of Si 
accumulation and uptake (Takahashi et al. 1990). These models primarily profess 
active, passive and rejective mode of Si uptake. During passive uptake of Si the rate 
is similar to that of water uptake resulting decreased concentration of Si in the 
uptake solution. However, during rejective mode of Si uptake the Si concentration 
in uptake solution increases. These models have been found valid in a few plant 
systems. However, these mechanisms remain largely uncharacterized in plant sys-
tems so far. Selenium (Se) uptake in plants also varies between different plant spe-
cies. Additionally, Se uptake is dependent on phases of plant development, soil 
conditions (salinity and pH) and concentration of Se (Renkema et al. 2012; Gupta 
and Gupta 2016). Se is present in two forms: selenate in alkaline soils and selenite 
in acidic soils (Gupta and Gupta 2016). Both of these forms have differential 
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absorption and mobility (Li et al. 2008). Selanate (SeO4
2−) is the most prevalent 

and available form of Se (Missana et al. 2009; Gupta and Gupta 2016). In order of 
preference selenate is absorbed first in plants followed by selenomethionine 
(SeMet) and selenite. In plants, transporters in root cell membrane play an impor-
tant role. While selenite is transported by phosphate transport mechanism (Zhang 
et al. 2014a), selenate uptake is mediated by sulphate transporters and channels 
(Feist and Parker 2008; Li et al. 2008; Zhang et al. 2003). Although high-affinity 
transport systems are cardinal for regulated plant growth and development, during 
the period of excess metal concentration in soil unspecific uptake of metal is 
unavoidable. For example, arsenic (As) is a metalloid with no established biologi-
cal function in higher plants; therefore, no specific uptake mechanisms for these 
metals are in place. However, in soils with high As concentration, uptake of As 
occurs via phosphate transporters as As(V) that is reduced in plants to As(III) 
(Meharg Andrew and Hartley-Whitaker 2002). In reducing environments, aquapo-
rin nodulin-26-like intrinsic proteins bind to As (III) (Bienert et al. 2008; Isayenkov 
and Maathuis 2008).

4  �Beneficial Role of Metalloids in Plants

4.1  �Boron

Boron (B) a trace element, a non-metal, is one of the eight essential micronutrients 
that are required by plant for their optimum growth and development. Maze (1919) 
was the first to recognize boron as an essential element for optimum plant growth of 
maize (Zea mays L.) plants. Warington (1923) illuminated relevance of boron in the 
development of broad bean (Vicia faba L.). Following this, Brenchley and Waeikngton 
(1927) displayed significance of boron in plant growth in different plant species. By 
the 1930s, boron was well recognized as an essential micronutrient for plants. Plants 
growing in soil that are deficient in boron concentration were found to have reduced 
crop yields and compromised crop quality. Boron requirement varies significantly 
across all plant species. For example, while corn requires increased boron concentra-
tions, gramineae requires much lower amount. Decreased boron availability causes 
some of the most noted disorders in plants such as cracked stems of celery Apium 
graveolens L., brown heart of Brassica napobrassica Mill. and Raphanus sativus L. 
roots, brown heart of Brassica oleracea var. botrytis L., internal brown spots of 
Ipomoea batatas Lam. and heart rot of Beta vulgaris L. (Gupta and Gupta 2016). 
Boron is essential in regulating cell elongation and division, as a result of which it 
directly impacts root growth (Shelp 1993). Boron deficiency was found to have an 
adverse effect on root length elongation. It was found that root elongation in seed-
lings of Cucurbita pepo L. reduced within 3 h of removing boron supply and com-
pletely stopped within 24 h. However, restoring boron supply within 12 h restored 
root length elongation within 12–18 h (Bohnsack and Albert 1977). In Helianthus 
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annus L. presence of boron in soil resulted in development of adventitious roots 
(Josten and Kutschera 1999). Further it was found that in contaminated soils that 
have increased aluminium content and are acidic, application of boron prevented 
aluminium-mediated inhibition of root growth (Lenoble et al. 1996).

In boron-deficient soils, protein synthesis has been reported severely affected 
(Carpena Artes and Carpena Ruiz 1983). However, in such studies various param-
eters such as age of the plant, stage of organ development, localization and remobi-
lization of proteins have not been taken into consideration (Shelp 1988). For 
example, growing bean (Phaseolus vulgaris L.) cotyledons without boron for 5 days 
increased protein concentration in comparison to control plants suggesting hin-
drance of nitrogen remobilization due to boron deficiency (Dave and Kannan 1981). 
However, protein concentrations in actively growing regions was found to slow 
down in incidences of boron deficiency (Duggar 1983; Shelp 1993). Partitioning of 
nitrogen into soluble components such as ammonium, nitrate and amino acids was 
found boron dependent in Brassica oleracea var. botrytis L. This, in turn, was found 
dependent on plant organ under study and concentration and duration of boron sup-
ply (Shelp 1993). Relative amino acid composition was not found affected due to 
boron deficiency. Inorganic nitrogen in plant tissues and translocation fluids was 
substantially increased. Boron deficiency increased nitrate reductase activity in 
Beta vulgaris L., Lycopersicon esculentum Mill., sunflower and corn (Bonilla et al. 
1997; Kastori and Petrović 1989). In Nicotiana tabacum L., boron deficiency 
resulted in decreased leaf nitrogen and also resulted in decreased nitrate reductase 
activity (Camacho-Cristóbal et al. 2008). Boron-deficient plants Glycine max Merr. 
showed low acetyls reduction activities and damaged root nodules (Yamagishi and 
Yamamoto 1994). In Vigna unguiculata Walp, acute boron deficiency resulted in 
increased amounts of reducing and non-reducing sugar concentrations and at the 
same time decreased starch phosphorylase activity (Chatterjee et al. 1990). Boron 
deficiency has been documented to result in increased accumulation of phenolic 
substances as a result of upregulation of genes responsible for pentose phosphate 
shunt (Hajiboland and Farhanghi 2010). Foliar spray of boron to sunflower dis-
played increased accumulation of non-reducing sugars and starch concentrations 
(Shehzad et al. 2016). Such findings suggest a specific role of boron in the produc-
tion and accumulation of starch and sugar reserves in sunflower seeds. Similar 
instances of increased accumulation of non-reducing sugars and starch were also 
found in Brassica nigra Koch (Sinha et al. 2000) and Nicotiana tabacum (Camacho-
Cristóbal and González-Fontes 1999), respectively. In leaves of boron-deficient 
plants of Pisum sativum L., concentration of both starch and sugars increased. 
However, a marked decrease in their accumulation was noted in seeds that severely 
affected seed quality (Sinha et al. 2000).

In addition, several studies have reported beneficial role of boron in plant growth 
and metabolism by regulating processes such as auxin and phenol metabolism 
(Camacho-Cristóbal et al. 2018), formation of flowers and subsequent seed produc-
tion (Zohaib et al. 2018) and membrane function (González-Fontes et al. 2014).
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4.2  �Silicon

In plant growth and metabolism several essential macro- and micronutrients play a 
central role. Many plant scientists, do not consider silicon (Si) as an essential plant 
nutrient. However, a plethora of evidence has been generated in recent years to sug-
gest a cardinal role of Si in determining plant growth and quality. In addition to 
being central in governing important biological processes of plants such as transpi-
ration and photosynthesis, Si adapts a plant to grow in adverse conditions of nutrient 
deficiency, drought, temperature etc. Si supplementation has seen positive effects on 
plant growth and development in many plants species. This effect was seen more 
pronounced in plants where plants growing in soils with limited Si concentration 
were supplemented with optimum Si. In the same study, Si accumulated in a differ-
ent plant tissue was found to vary between different species, suggesting that the 
affinity for Si uptake and localization varies between different plant species and 
tissues, respectively. Plants growing in soils with increased cadmium concentration 
when supplemented with Si displayed lower ROS species compared to control 
plants (Hasanuzzaman et  al. 2017), suggesting role of Si in antioxidant defence 
mechanisms. In addition to improving antioxidant defence mechanisms against Cd 
stress, Si has been established to augment glyoxalase pathways, increase activity of 
AsA-GSH and production of antioxidant components. Varying dosage of Si supple-
mentation was found to revive Si-deficient plants significantly. In Zinnia and 
Helianthus robust stem structures found associated with Si supplementation. The 
flower size was found increased in Gerbera following Si foliar sprays. In all these 
species, the flower quality increased and flowering time was found substantially 
reduced with silicon treatments compared to control plants.

Deciphering role of Si in disease resistance and flower size has intrigued a lot of 
scientists globally. Si supplementation reduces water loss by plants making this 
research relevant in present times. Si regulates this aspect by regulating develop-
ment of a waxy layer on plant that significantly reduces rate of transpiration by the 
plant. Reduction in transpiration rates has proven benefits to plants. Si supplementa-
tion was found to regulate functioning of the stomatal valves, thereby affecting 
stomatal conductance. While growing in greenhouses, the leaves transpired less 
with increased Si supplementation. While this study implicates role of Si in regulat-
ing stomatal conductance, an active role of Si in the process remains to be estab-
lished with certainty. In addition, Si has also been implicated to alleviate heat stress 
in plants as it imparts thermal stability to lipids in cell membranes. However, the 
mechanism remains uncharacterized thus far.

A role of Si has been reported in preventing incidences of powdery mildew dis-
ease. Kanto et al. (2009) found that with increase of Si content in leaves, the inci-
dences of powdery milder disease substantially decreased. Similarly, in wheat and 
barley Si deficiency was found associated with susceptibility to powdery mildew 
and poor growth (Zeyen et al. 2002). Use of Si foliar sprays was found to prevent 
powdery mildew disease in grape, muskmelon and cucumber (Bowen et al. 1992). 
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Datnoff (2005) reports prevention from several disease in turf grass with application 
of Si foliar sprays. Si supplementation has also been reported to alleviate various 
chemical stresses such as metal toxicity, nutrient imbalance and salinity. In rice and 
barley Si supplementation was found to benefit the plant phosphorus deficiency. 
Beneficial effects of Si include improved structural cell strength, improved absorp-
tion of nutrients and reduced salt stress.

One of the first Si sprays to be extensively used is 13 Essentials. It is the first 
foliar nanoscale (particle size of 1–30 nm) fertilizers to be commercialized in the 
US market. It boasts an optimum mix of primary nutrients (P and K), secondary 
nutrients (Ca, Mg and S) and micronutrients (Fe, Cu, Mn, B, Zn, Co and Mo) 
adsorbed on a nano-silica base. In this foliar spray, Si serves as both a carrier for 
other nutrients and a nutrient, thereby reducing the possibility of complexing and 
making the nutrients efficiently available to the plants.

4.3  �Selenium

Selenium is an important trace chalcogen metalloid which exists in very low con-
centration in the earth (Hawrylak-Nowak et  al. 2014; Pilon-Smits et  al. 2009). 
Selenium essentiality for the optimal development in higher plants has been well 
debated (Terry et al. 2000). However, the consistent efforts in this field of research 
have confirmed the role of selenium in plant’s growth (Hartikainen and Xue 1999; 
Hawrylak-Nowak et al. 2014), reproduction (Cao et al. 2018; Hladun et al. 2013), 
metabolism (Schiavon and Pilon-Smits 2016; Ning et  al. 2013) and in delaying 
senescence (Rahmat et al. 2017; Pukacka et al. 2011). In addition, it has been estab-
lished to play a significant role in tolerance against various stresses such as oxida-
tive stress (Mroczek-Zdyrska and Wójcik 2012), biotic stress (Hanson et al. 2004) 
and abiotic stress (Malerba and Cerana 2018; Nawaz et al. 2015). Table 1 shows 
some of important studies on the role of selenium in plants.

Table 1  Significant studies highlighting the role of selenium in plants

Sl no Plants Effects References

1 Triticum aestivum Drought stress Nawaz et al. (2015)
2 Acer saccharinum Recalcitrant Pukacka et al. (2011)
3 Oryza sativa Biofortification Boldrin et al. (2013)
4 Cucumis sativus Salt stress Hawrylak-Nowak (2009)
5 Brassica rapa Increases seed production Lyons et al. (2009)
6 Spirulina platensis Decreases Cr uptake Belokobylsky et al. (2004)
7 Brassica juncea Aphids resistance Hanson et al. (2004)
8 Lactuca sativa Antioxidative and growth promoting Xue et al. (2001)

P. Dhakate et al.

https://www.sciencedirect.com/topics/food-science/asian-rice


365

5  �Metalloid Distribution in Plants

Many metalloids are considered an essential micronutrient for higher plants because 
of assigned important roles in various processes. These metalloids’ concentrations in 
plants are directly related to phyto-availability of these elements in the soil due to 
natural presence, anthropogenic contamination or foliar application of fertilizers 
(White 2015; Camacho-Cristóbal et al. 2018). In addition, these beneficial elements 
are taken in different forms by many transporters (Ding et al. 2008; Archana and 
Verma 2017; Kumarathilaka et al. 2018). In addition, there are few articles in the 
literature that have tabulated distribution of various metalloids in various genera and 
species (Pilon-Smits et  al. 2017; White 2015; Camacho-Cristóbal et  al. 2018). 
Table 2 shows the distribution and accumulation of metalloids.

6  �Uptake Mechanism and Transporters Involved 
in Metalloid Uptake in Plants

6.1  �Boron Transporter

Boron (B) is an essential metalloid required for the development and growth of the 
plant. B is an important component of the cell wall that cross-links rhamnogalactu-
ronan-II, a pectic polysaccharide to it, and maintains the integrity of cell wall and 
growth of the plant (Kato et al. 2009). B deficiency causes a severe impact on the 
organ expansion including abnormal cell wall, altered cytoskeletal polymerization, 
defects in the leaf expansion, root elongation, flower and fruit development 
(Marschner 2012). In plants, B is prevalent in leaves; however, its excess causes 
the retarded growth, peculiarity of shoots, and chlorosis of leaf tips and margins 

Table 2  Accumulation of different metalloids in plant species, parts and regions

Elements Genera Regions Plant parts References

B Lycopersicum 
esculentum, Hordeum 
vulgare, Brassica napus

Turkey, USA, 
Asia

Stem, leaves Pommerrenig et al. 
(2015), Camacho-
Cristóbal et al. (2018)

Si Oryza sativa, Glycine 
max, Helianthus annus

China, 
Southeast Asia, 
Africa

Stem, leaves, 
straw, flag leaf, 
husk and grains

Ma and Yamaji (2015)

As Oryza sativa, Pteris 
vittata

China, 
Southeast Asia

Stem, leaves, 
straw, husk, 
germ, and 
grains

Kumarathilaka et al. 
(2018)

Se Astragalus praelongus, 
Brassica oleracea, 
Stanleya pinnata, 
Lecythis ollaria

USA, 
Australia, 
China, Mexico, 
Europe

Fruits, stem, 
leaves, 
Cladodes

Pilon-Smits et al. 
(2017), Lindblom et al. 
(2018)
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(Reid and Fitzpatrick 2009). Toxicity mediated by B is prevalent throughout the 
world, including Turkey, South Australia, Mediterranean countries, Chile and 
California (Miwa and Fujiwara 2010). In plants, B transportation is mainly done 
from root to shoot through the symplastic and apoplastic movements. Studies using 
sunflower suggested the passive mode (gradient) of transportation of B (Dannel 
et al. 2000). Boron is generally present in soil solution as boric acid and is taken up 
by the plants in the same form. Boron is transported in the plants through two trans-
porters BOR1 and NIP5;1, which are involved in efficient translocation of boron 
under its deficit. NIP5;1, boron importer, is a member of nodulin-26-like intrinsic 
protein (NIP) subfamily of the aquaporins (Maurel et al. 2015). High boron concen-
trations lead to reduction in the expression of level of NIP5;1 root elongation and 
root hair zone. It is established as an essential transporter. A T-DNA insertion mutant 
of nip5;1 was found to have reduced biomass and plant growth under boron-limited 
conditions (Tanaka et  al. 2011, 2016). In maize, TASSEL-LESS1 (TLS1) gene 
encodes NIP3;1, an aquaporin family member and orthologue of Arabidopsis 
NIP5;1 which is involved in boron transport under boron deficiency (Durbak et al. 
2014). In rice, Os NIP3;1 (homolog of AtNIP5;1), is induced during plant growth 
and development under B-deficient conditions (Hanaoka et al. 2014). In contrast to 
nip5;1 which displays decreased root and shoot growth under boron deficiency, 
bor1-1 mutant encoding boron transporter 1 shows reduction only in shoot tissue 
under B deficit. Promoter studies for BOR1 identified it to be expressed chiefly in 
the root pericycle cells, and BOR1–green fluorescent protein (GFP) fusion protein 
was localized to the plasma membrane. Further, experiment done on BOR1 mutant 
yeast complemented with Arabidopsis BOR1 led to a threefold reduction of boron 
in yeast cells implying BOR1 is an exporter of B. It was also the first B transporter 
to be identified in the biological system (Tanaka et al. 2008). Rice has four copies 
of Bor1-like gene which is less compared to the Arabidopsis which has seven copies 
of the same gene. Of the four genes, OsBOR1 has the maximum similarity to 
AtBOR1. OsBOR1 plays an important role in B acquisition by roots and transloca-
tion into shoots (Nakagawa et al. 2007).

6.2  �Silicon Uptake and Transportation in Plants

Silicon (Si) is the second most copious element after oxygen in soil. Silicon dioxide 
comprises 50–70% of the soil mass. Abundance of Si in the soil and no visible effects 
of deficiency led to the consideration that Si is not important for plant growth and 
yield. Although Si is still not known as essential for plant growth and development, 
the beneficial effects of this element on the growth, development, yield and disease 
resistance have been observed in a wide variety of plant species like rice and sugar-
cane. For example, Si provides resistance against various biotic (Fauteux et al. 2006; 
Marschner 2012) and abiotic stresses, including drought stress, salt stress, water 
logging, metal toxicity, nutrient inequity, radiation exposure, freezing and heat 
(Ma 2004; Coskun et al. 2016), especially for crops like rice and sugarcane.
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Plants take up Si as silicic acid [Si(OH)4] from the soil. Si content in plants is 
equal to or greater than the macro-nutrients N, P, and K, which are supplied through 
fertilizers (Meena et al. 2014). There are two types of Si transporters in plants: (a) 
channel type transporters and (b) efflux transporters. Low Silicon1 (Lsi1) and Lsi6 
belong to the influx- or channel-type transporters of silicic acid. Lsi1 is a member 
of nodulin-26-like major intrinsic protein III (NIP III) subgroup of aquaporins and 
acts as a Si-permeable channel. It is localized in different tissues in different plants, 
for example, rice Lsi1 is localized in the lateral side of root exodermis and endoder-
mis (Ma et al. 2006). Lsi1 in maize and barley is present in the epidermis and cortex 
(Mitani et al. 2009; Chiba et al. 2009). Si is transported bidirectionally by Lsi1. 
However, Si taken up into the root cells by Lsi1 is instantly effluxed out of the cells 
by another transporter Lsi2  in rice, generating a concentration gradient from the 
external solution to the root cells; thus, Lsi1 only functions as an influx transporter 
in rice roots (Mitani et  al. 2008; Ma et  al. 2006). Maize Si influx transporters 
(ZmLsi1 and ZmLsi6) are homologues of OsLsi1 and OsLsi6, respectively, but 
unlike OsLsi1 their expression is not affected by Si availability (Mitani et al. 2009). 
OsLsi2 was first identified in rice; further, its homologues were reported in other 
plant species. Although OsLsi2 works in conjunction with OsLsi1, they do not bear 
any structural similarity with OsLsi1 transporters (Ma et al. 2007). In Arabidopsis, 
the AtLsi2-like transporters are prevalent compared to the AtLsi1 (NIPIII), empha-
sizing dominant role of OsLsi2-like transporters. In tomatoes, the NIPIII and Lsi2-
like transporters are not involved in the Si accumulation (Mitani et al. 2005) that 
confirms the role of other factors like gene expression, localization, polarity of the 
transporters, and others in the Si transportation and accumulation.

6.3  �Selenium Transporter

Selenium (Se) is an essential trace element for humans and animals. Selenium in 
soil varies from 0.01 to 2  mg  kg−1, and in selenium-rich areas, Se content 
<1200 mg kg−1 has been reported (Fordyce 2005; Stroud et al. 2010). Elevated Se 
concentration is toxic to the living organisms since it bears chemical similarity to S 
that might cause the replacement of S by Se in the proteins (Terry et al. 2000). It also 
affects the enzymatic activity of peroxidases, which catalyses the oxidation of thiols 
leading to reactive oxygen species (ROS) production harmful to the plants (Groppa 
et al. 2007). Se from the soil is acquired in the form of selenate (SeO4

2−), selenite 
(SeO3

2−; HSeO3−; H2SeO3) or organoselenium compounds, such as selenocysteine 
(SeCys) and selenomethionine (SeMet) (White and Broadley 2009). Selenate is the 
major water-soluble form of Se in aerobic soils, while selenite mostly occurs in 
anaerobic soils such as paddy soils (Pilbeam et al. 2015). Selenate is taken up by the 
root cells through high-affinity sulphate transporters (HASTs), homologous to the 
Arabidopsis thaliana sulphate transporters (AtSULTR1;1 and AtSULTR1;2) 
(Gigolashvili and Kopriva 2014). Similarly, enhanced uptake of selenate in S-starved 
wheat plants validates the positive relation of sulphate transporter with selenate 
uptake since plants upregulate the expression of sulphate transporter genes in roots 
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under sulphur starvation (Buchner et  al. 2004; Li et  al. 2008). Unlike selenate, 
sulphur starvation did not have significant effect on selenite uptake in major crops 
like wheat and rice (Li et al. 2008; Zhang et al. 2006). However, in wheat, selenite 
uptake was found to be enhanced under the phosphate starvation, which expectedly 
increases the expression of the phosphate transporter genes (Li et al. 2008). In rice, 
phosphate transporter, OsPT2, mediates selenate uptake (Zhang et  al. 2014a), 
whereas selenite is transported via OsNIP2;1 transporter encoding aquaporin chan-
nel (Zhao et al. 2010b). Selenite assimilated through roots is readily converted to 
organic forms such as selenomethionine (SeMet) and selenomethionine Se-oxide 
hydrate (SeOMet) (Li et al. 2008), and only slight selenite was transported into 
xylem. Faulty incorporation of the products such as SeMet or SeCys in proteins 
distorts structure as well as function of protein and poses toxicity in plants (Fig. 1) 
(Gupta and Gupta 2016).

Fig. 1  Model structures of various metalloid transporters: (a) OsNIP3.1, (b) OsNIP3;2, (c) 
OsPIP2;4, (d) OsPIP2;6, (e) OsPIP2;7, (f) AtNIP3;1, (g) AtNIP5;1, (h) AtNIP7;1, (i) AtBOR4, (j) 
AtTIP4;1, (k) AtSULTR1;1, (l) OsSULTR1;2, (m) SbLsi1 and (n) OsLsi2 generated using PHYRE2 
web portal (http://www.sbg.bio.ic.ac.uk/~phyre2) (Kelley et al. 2015). Image coloured by rainbow 
N → C terminus
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7  �Co-Transporters Like Arsenate and Citric Acid 
Transporters

7.1  �Arsenate Transporters in Plants

Arsenic (As) is a toxic metalloid with an estimated concentration of 1.5–3 mg kg−1 
in soil (Farooq et al. 2016). Several natural processes like the weathering of rocks, 
volcanic emissions, hot spring releases, mining, smelting and others are the major 
sources of As pollution. Among the major crops, rice readily takes up As and trans-
locate it to the grains, making it unfit for the population dependent on it (Zhao et al. 
2010a). Arsenic exists in the form of several inorganic and organic forms. Arsenate 
[As(V)] is the major inorganic form in aerobic soils while arsenite [As(III)] pre-
dominates in anaerobic soil environment. Organic forms of As include methylated 
species such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) 
(Mendoza-Cózatl et  al. 2011). As(V) is transported in the plants via phosphate 
transporters due to the structural similarity with phosphate (Pi). PHOSPHATE 
TRANSPORTER1 (Pht1) proteins are characterized by 12 membrane spanning 
domains bearing similarity to the yeast Pho84p high-affinity Pi transporter (Rausch 
and Bucher 2002). Among the phosphate transporter family, Arabidopsis thaliana 
PHT1;1 and PHT1;4 are the two high-affinity transporters involved in As uptake. 
Further, pht1;1pht1;4 double mutant in Arabidopsis was reported to have tolerance 
against As(V) stress, suggesting major role of these transporters towards As(V) 
uptake (Shin et al. 2004). Later a study by González et al. (2005) reported the role 
of Arabidopsis mutant defective in phosphate transporter traffic facilitator 1 (PHF1) 
(involved in trafficking of PHT1;1 from endoplasmic reticulum to plasma mem-
brane) in arsenate metabolism. Atphf1 mutant was found to have greater tolerance 
towards arsenate stress compared to the wild type emphasizing importance of 
Pht1;1 in arsenate uptake. The mutants of the PHS family like the AtPht1;1 have 
slow As uptake, but it accumulates twice compared to the wild type (Catarecha et al. 
2007). Another study by DiTusa et al. (2015) reported PvPHT1;3, a novel PHT1 
member cloned in the As hyper-accumulating fern Pteris vittata, to have compara-
ble and a higher affinity for Pi and As(V), respectively, compared to Arabidopsis 
thaliana AtPHT1;5. In rice, OsPht1;8, transporter which is expressed in both the 
root and shoot tissue independent of Pi supply, possesses high affinity for both Pi 
and As (V). Plants overexpressing OsPht1;8 in rice show increased As(V) uptake 
and translocation (Wu et al. 2011). Transcript abundance of OsPht1;8 is known to 
be regulated by the transcription factor OsPHR2 (Pi starvation response 2) (Wu 
et al. 2011). Similarly, high-affinity phosphate transporter, OsPht1;1, located in the 
plasma membrane participates in the As transportation in rice (Kamiya et al. 2013). 
The regulatory mechanisms governing Pht transporters are still not well defined, but 
WRKY transcription factors like the WRKY6 and WRKY45 are found involved in 
the As influx (Castrillo et al. 2013; Wang et al. 2014). WRKY6 is reported to regu-
late As(V) uptake by repressing expression of the As(V)/Pi transporter PHT1;1 
(Castrillo et al. 2013).
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7.2  �Citric Acid Transporters

Carboxylates like the malate, fumarate and citrate are known to be major constitu-
ents of the living system. These metalloids are involved as a precursor or intermedi-
ates in the energy, metabolism, biomolecule synthesis, chelators for metallic 
nutrients and the heavy metals (Ovecka and Takac 2014). Citric acid is a major 
metalloid that is reported as an iron chelator and is transported by the multidrug and 
the toxin extrusion (MATE) class of transporter family (Wu et al. 2014). This trans-
porter family is induced during the Fe deficiency.

Citrate transporters like Ferric Reductase Defective 3 (FRD3), OsFRDL1, 
MtMATE66 and MtMATE69 are prevalent in the leaves, roots and stem that 
required for the root–shoot translocation of metal ions (Durrett et  al. 2007; 
Yokosho et  al. 2009; Pineau et  al. 2012). Some transporters like HvAACT1  in 
barley (Furukawa et al. 2007) and SbMATE in sorghum (Doshi et al. 2017) are 
well studied. Some of the transporters for the citric acid transportation are FRD3, 
OsFRDL1 and MATE (multidrug and toxic compound extrusion or multi-antimi-
crobial extrusion).

FRD3 protein belongs to the multidrug and toxin efflux family that participates in 
transportation of the chelators like the citrate for efficient distribution of iron through-
out the plant (Durrett et al. 2007). Its effluxes citrate into the xylem to form a fer-
ric–citrate complex. The other well-known transporter for the citrate transporter in 
rice is the OsFRDL1 that shares homology to the HvAACT1 (barley citrate trans-
porter) (Furukawa et al. 2007). This transporter is localized in the pericycle of the 
cell and transports Fe–citrate complex to the shoot. MATE class of transporters is 
another well-known citrate transporter which is 400–550 amino acid long compris-
ing 12 transmembrane domains (TMDs). They are involved in the transportation of 
the secondary metabolite out of the cytosol due to the electrochemical gradient of 
membrane. They also referred to as a DETOXIFICATION (DTX) protein that par-
ticipates in the detoxification of the heavy metal contaminants, disease resistance and 
other biological processes. MATEs are primarily involved in the Al3+ detoxification 
and the Fe uptake by forming complex with the citrate.

7.3  �Transporters Unanimously Transporting Beneficial 
and Harmful Metalloids: Aquaporins

Water transporters that were purified forming the red blood cells were first reported 
by Peter Agre (Agre et al. 1993). This water channel was later characterized using 
the Xenopus oocyte and named aquaporins1 (AQP-1) that belongs to the major 
intrinsic protein (MIP) family (Deshmukh et al. 2013). The MIP family comprises 
aquaporin (water and ion transportation), the glycerol facilitators (glycerol trans-
portation) and the aqua glyceroproteins (water and small uncharged molecules like 
polyols, urea and arsenite). This family comprises the six transmembrane domains 
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with five loops, and an N-terminal and C-terminal domain (Frick et al. 2014). At the 
centre, it has an NPA (Asn–Pro–Ala) motif that provides the substrate selectivity 
(Fig. 2) (Kitchen and Conner 2015).

7.3.1  �Aquaporins in Plants

The tonoplast protein γ-TIP (AtTIP1;1) of Arabidopsis is a first characterized aquapo-
rin (Rivera-Serrano et al. 2012). The aquaporin transporters are involved in different 
physiological processes like the cell elongation, seed germination and osmoregula-
tion. A total of 35 MIPs are known in Arabidopsis (Deshmukh et al. 2013), 36  in 
maize (Bansal and Sankararamakrishnan 2007) and 33 in rice (Sakurai et al. 2005) 
compared to the mammals (Borgnia et al. 1999), Escherichia coli (Agre and Kozono 
2003) and Saccharomyces cerevisiae (Pettersson et al. 2012). The higher number of 
aquaporins is due to continuous water absorption, flux and evaporation during growth 
and development (Li et al. 2014).

7.3.2  �Aquaporin Mode of Activity

Aquaporin has Ar/R (aromatic–arginine) pore region that is located near to the NPA–
NPA region and provides selectivity to the transporter (Deshmukh et al. 2013). In NIPs, 
the Ar/R provides an additional advantage by allowing neutral metalloids, undissociated 
acids and small solutes like glycerol across the plasma membrane.

8  �Transgenic Plants with Improved Uptake of Beneficial 
Metalloids

From the last two decades, the researchers have expedited the field of transgenic 
biotechnology several folds mainly with advances in high-throughput transfor-
mation protocols, donor genes isolation from diverse organisms and available 

Fig. 2  A typical structure of aquaporin channel in plants
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databases (Mitani et al. 2011; Deshmukh et al. 2015; Song et al. 2017). As a result, 
the scientists have pushed their research prospects in improving the photosynthetic 
capacity, yield, nutrition content, aroma, biotic stress tolerance, heavy metal toxic-
ity and metalloid uptake (Helliwell et al. 2013; Quilis et al. 2014; Kudo et al. 2017; 
Bardor et  al. 2018). This is also evident from the fact that the term ‘transgenic 
plants’ fetched around 517,000 publications in the Google scholar (https://scholar.
google.co.in/). It is very challenging to include all the transgenic plants in this 
book chapter; therefore, we will only list about the main transgenic plants with 
improved uptake of beneficial metalloids (Wang et al. 2017, 2018; Sun et al. 2017; 
Song et al. 2017; Mitani et al. 2011; Pérez-Castro et al. 2012; Tanaka et al. 2013; 
Chen et al. 2017).

8.1  �Enhancement of Boron Uptake

Besides being rare element, B is considered as an essential element for normal 
growth, development, metabolism, signalling and reproduction in plants (Camacho-
Cristóbal et al. 2018). Earlier it was a notion that the plant cells maintain the levels 
of boron at optimum concentration through unregulated simple diffusion (Dannel 
et al. 2000). However, Takano and co-workers (2002, 2008) discovered the involve-
ment of specific transporter proteins in boron trafficking across the roots cell mem-
brane and xylem loading. Their finding was also supported by the work of Miwa 
et  al. (2006) and other groups (Uraguchi and Fujiwara 2011; Marschner 2012). 
Therefore, the understanding is necessary to manipulate and develop plants that are 
resistant to B deficiency and toxicity. Due to this, the researchers have aimed their 
research prospects in understanding the (1) molecular aspects of the transporters of 
these metalloid elements; (2) role in uptake, distribution and utilization; (3) effects 
of deficiency or toxicity of metalloids; and (4) development of plants with increased 
metalloid use efficiency (Camacho-Cristóbal et al. 2018). As a result, the scientists 
have made multiple transgenic plants over the last decades (Pang et al. 2010; Pérez-
Castro et al. 2012; Tanaka et al. 2013; Wang et al. 2017).

Miwa et al. (2006) developed the Arabidopsis transgenic lines by overexpressing 
AtBor1 and reported the enhanced tolerance to B-deficient conditions and increase in 
the seed content. Kato and group (2009) overexpressed the AtNIP5;1 in A thaliana 
plants and observed an increase in the tolerance to B-deficient conditions. They spec-
ulated the enhanced tolerance was probably due to enhanced B initial uptake.

Pang et al. (2010) overexpressed the AtTIP5;1 in Arabidopsis and found a signifi-
cant increase in tolerance under high boron conditions. Tanaka et al. (2013) examined 
the OsBOR4 function in relation to the accumulation of boron in the leaves and flow-
ers by using the knockout mutant lines in rice. Their results established that OsBOR4 
is cardinal to the reproductive process in rice. Similarly, the overexpression of AtBOR1 
in Solanum lycopersicum showed a better survival under the B-deficient conditions 
(Uraguchi et al. 2014). Takada and group developed AtBOR2 overexpression lines in 
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Arabidopsis and found the enhancement in root growth and seed setting under 
B-deficient conditions (Takada et al. 2014). Additionally, the AtBOR1 orthologoues 
genes have been overexpressed in plants, including citrus, grape, maize and rice 
(Nakagawa et al. 2007; Pérez-Castro et al. 2012; Cañon et al. 2013; Chatterjee et al. 
2014) growing under B-deficient conditions.

Kumar et al. (2014) characterized the role of OsPIP2;7 and OsPIP2;4 genes in 
B permeability. They found that the high B conditions elevated the OsPIP2;7 and 
OsPIP2;4 expressions in rice roots using transcriptome analysis. Furthermore, they 
heterologously overexpressed OsPIP2;7 and OsPIP2;4 in the A. thaliana. The over-
expression lines displayed a significant enhancement in higher biomass, root length 
and shoot length. Furthermore, there was an increase in B accumulation in trans-
genic plants in comparison to the control plants. Hanaoka et al. (2014) characterized 
the OsNIP3;1 in rice (Oryza sativa). They expressed the OsNIP3;1 gene in yeast 
cells and found the enhancement in the uptake of boric acid compared to control 
cells. They even heterologously expressed GFP-tagged OsNIP3;1  in the tobacco 
plant and reported the OsNIP3;1 localized to the plasma membrane of exodermal 
and pericycle cells. Furthermore, they revealed the OsNIP3;1 transcript accumula-
tion increased up to fivefold in roots under low B conditions only. Even, using 
RNA-interference (RNAi) technology, the effect of OsNIP3;1 knockout was seen 
on growth under different B supply. In another instance, Liu and group character-
ized a dwarf and tiller-enhancing 1 (dte1) mutant of rice, which exhibited many 
defects such as impaired pollen fertility, retarded growth and more numbers of tillers 
under low B conditions. Using RNA-interference, transgenic complementation and 
map-based cloning, they revealed the DTE1 gene encodes an AtNIP5;1 orthologoue. 
In addition, they found the subcellular localization using β-glucuronidase (GUS) 
staining and studied the DTE1 transcript accumulation profile in vegetative organs 
under B starvation. The RNAi mutant lines showed a steep decline in the total B 
content under B-deficient conditions.

Similarly, Wakuta et al. (2015) studied the polar localization and evolutionary 
divergence in borate exporter family. Additionally, they generated both AtBOR1 
overexpression and RNAi mutant lines to study boron-dependent vacuolar sorting. 
In another study, Mosa et al. (2016) provided the experimental evidence about the 
bidirectional transport of boron by OsPIP1;3 and OsPIP2;6 in rice. Heterologous 
overexpression of OsPIP2;6 and OsPIP1;3  in A. thaliana led to enhancement of 
tolerance to B toxicity. Interestingly, the 10B was effluxed from the roots in the 
transgenic plants. More recently, Wang and co-workers (2017) studied the role of 
clathrin-mediated endocytosis in NIP5;1 polar localization of epidermal and endo-
dermal cells in the roots. Additionally, they found the role of arrangement is medi-
ated by the phosphorylation of Thr residues of the N-terminal region. Lv et  al. 
(2017) reported a shb1 (sensitive to high level of boron 1) mutant which exhibited 
hypersensitivity under high boron conditions. They found that SHB1 gene upregu-
lates in roots under excessive boron treatments. Additionally, it upregulates the tran-
scription of the BOR4 gene and alters the boron uptake in root cells. More recently, 
Porcel et al. (2018) screened complementary DNA (cDNA) library of Beta vulgaris 
and identified a BvCOLD1 gene which codes for a protein with a role in the 
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transport of several molecules, including boron. The heterologous overexpression 
of BvCOLD1 in A. thaliana led to enhancement in tolerance against many abiotic 
stresses as well as boron uptake.

8.2  �Silicon Uptake and Transgenic Plants: A Short Story

In the earth’s crust, silicon is the second most abundant element; however, it is con-
sidered important for plant defence. In the literature, the articles about the trans-
genic plants with higher uptake of silicon are very less. For the first time, Ma and 
group (2006) described the low silicon rice 1 (Lsi1) gene in the O. sativa cultivar 
Oochikara, which plays a role in silicon accumulation. They studied the cellular and 
subcellular localization; in addition, they reported the Lsi1 RNAi plants that showed 
a decline in silicon uptake. Similarly, Chiba et al. (2009) described the cellular and 
subcellular localization of Lsi1 gene in Hordeum vulgare. They heterologously 
expressed the Lsi1 gene in mutant rice with defects in Si uptake. Surprisingly, the 
HvLsi1 expression enhanced the Si uptake and radial transport in rice. In another 
instance, Montpetit and co-workers (2012) functionally characterized Lsi1 gene in 
wheat. In addition, they heterologously expressed TaLsi1 and OsLsi1 orthologoues 
in A. thaliana. The heterologous expression significantly increased the uptake by 
fivefold in overexpression Lsi1 lines in comparison to the wild-type control plants. 
Similarly, Dallagnol et al. (2013) evaluated the effect of soluble silicon on the wild-
type and mutant rice plants with defects in the Lsi1 transporter. In addition, they 
evaluated the effect of Bipolaris oryzae on biomass accumulation, photosynthesis 
and soluble sugar levels. In another study, Mitani and co-workers (2011) identified 
a Si influx transporter in Cucurbita moschata cultivars Super-unryu and Shintosa. 
They isolated this transporter and expressed in a rice mutant with a defect in Si 
uptake. The transgenic lines showed the heterologous expression led to the influx of 
Si. In addition, the amino acid change of proline to a leucine at the position 242 by 
site-directed mutagenesis leads to Si transport activity loss. In another study, Fang 
and workers (2011) evaluated the role of the Lsi1 transporter in the defence against 
Ultraviolet B (UV-B) stress in rice. In order to elucidate, they generated both over-
expression and knock-out Lsi1 lines and subjected to UV-B stress. They found a 
correlation between the Lsi1 transcript levels with Si uptake in roots. In addition, 
they reported the Lsi1 upregulated expression of genes related to resistance and 
photosynthesis, including phenylalanine ammonia-lyase using suppression subtrac-
tive hybridization. In another study, Deshmukh et al. (2015) characterized the NIP-
III aquaporins which play a role in Si permeability. They performed the comparative 
analysis of more than 100 aquaporins in many species and predicted about 30 Si 
transporters with a GSGR filter and significant asparagine–proline–alanine (NPA) 
domain. In addition, they assessed the effect of 108 amino acids spacing on Si per-
meability on poplar and tomato mutants. Recently, Sun et  al. (2017) studied the 
cellular localization and functionally characterized the CsLsi1 gene in Cucumis 
sativus cultivar Mch-4. The CsLsi1 gene heterologous expression in a mutant rice 
significantly enhanced the silicon uptake.
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8.3  �Transgenic Plants with Enhanced Selenium Uptake

Compared to the other metalloids, the publications for the transgenic plants with 
higher uptake are very few (Ellis et al. 2004; LeDuc et al. 2004; Zhao et al. 2010b; 
Zhang et al. 2014b; Song et al. 2017). The trial of adenosine triphosphate (ATP) 
sulphurylase (APS) transgenic lines in a greenhouse pot experiment displayed accu-
mulation of Se more than threefold levels compared to wild-type Brassica juncea 
(Huysen et al. 2004). Ellis et al. (2004) isolated the SeCys methyltransferase (SMT) 
gene from the donor Astragalus bisulcatus, and the heterologous overexpression in 
A. thaliana led to a slight increase in the overall uptake of selenate. Similarly, LeDuc 
and colleagues overexpressed the SMT gene in the plant B. juncea and found the 
changes in the profile of Se volatilization, uptake, transport and accumulation 
(LeDuc et  al. 2004). Later, the same group developed ATP sulphurylase (APS), 
SMT transgenic and double transgenic APSxSMT lines and compared the accumu-
lation efficiency of all transgenics to the control plants (LeDuc et al. 2006). Sors 
et al. (2005) overexpressed the Adenosine 50-phosphosulphate reductase (PaAPR) 
in A. thaliana. The transgenic lines showed an increase in selenite uptake in com-
parison to the control plants. Banuelos and co-workers (2005, 2007) heterologously 
expressed the AtATPS1 and SMT in the plant B. juncea and observed an increase in 
selenate uptake. Additionally, they performed the field trials of these transgenic 
Indian mustard lines and reported no effect on the Se tolerance in the rhizosphere. 
El Kassis and group (2007) characterized the SULTR1;2 and SULTR1 transporters 
from A. thaliana mutant and confirmed their role in selenite uptake using a gain of 
function approach. Additionally, they confirmed the SULTR1;2 play a predominant 
role in selenate uptake. In another study, Zhang and co-workers (2014a) confirmed 
that OsPT2 is a negative regulator of selenite (HSeO3) uptake using OsPT2 overex-
pression and RNAi plants. In another instance, Zhao and co-workers (2010b) evalu-
ated the role of OsNIP2;1 in the uptake of H2SeO3 in rice plant using mutant analysis 
and expression studies. Their work was also supported by the Pommerrenig and 
group (2015).

Recently, Song et al. (2017) reported the role of OsPT8 in Se uptake in tobacco. 
The OsPT8 overexpression in the tobacco plant led to a significant increase in the 
biomass, total P concentration and Se accumulation in comparison to the control 
plants. More recently, Wang et al. (2018) studied the differences in transcriptome 
profiles of shoot and root from Stanleya pinnata and S. elata when grown with or 
without selenite supply. They reported that genes related to selenate cycle, defence-
related, oxidative stress resistance and antioxidant activity were found highly 
upregulated in the S. pinnata compared to the non-accumulator species. They 
reported the Se hyper-accumulation as well as hyper-tolerance were due to upregu-
lation of SA, ethylene and JA pathway genes. They highlighted that these upregu-
lated genes will be the targets of biofortification mediated by genetic engineering 
in the future publications.

Beneficial Role of Metalloids in Plants: Molecular Understanding and Applicability



376

8.4  �Manipulating the Arsenic (As)

In the environment, arsenic is present as a well-known metalloid which exists in two 
variable forms, arsenite (As(III)) or arsenate (As(V)). In the recent past, the biotech-
nological approaches have been used to identify the genes and develop transgenic 
plants to increase the As uptake (Isayenkov and Maathuis 2008; Remy et al. 2012; 
LeBlanc et al. 2013; Xu et al. 2015; Chen et al. 2017).

Dhankher et al. (2002) pyramided two bacterial genes, γ-glutamylcysteine syn-
thetase and As(V) reductase, in A. thaliana and found enhancement in the accumu-
lation of As in shoots as compared to the control plants. Navaza et  al. (2006) 
overexpressed glutathione synthetase and gamma-glutamyl cysteine synthetase in 
Brassica juncea and observed higher As accumulation and uptake. In a series of 
publications, Ma et al. (2007, 2006) studied the cellular localization and role of low 
silicon rice family members (Lsi1 and Lsi2) in As(III) influx and efflux. They knock 
out the expression of both transporters and studied the effect on As uptake, traffick-
ing and concentrations in the grain and straw. Grispen et al. (2009) heterologously 
expressed the Arabidopsis metallothionein gene in the tobacco and reported the 
significant change in As accumulation and uptake. Isayenkov and Maathuis (2008) 
confirmed the role of AtNIP7;1 in arsenite uptake using overexpression and RNAi. 
Wu et  al. (2011) overexpressed two genes Phosphate transporter (Pht1;8) and 
Phosphate Starvation Response 2 (PHR2) in the susceptible cultivar of O. sativa and 
increase in uptake of As(V) and phosphate. The heterologous co-expression of 
many members of OsPIP family in A. thaliana led to enhancement in the plant’s 
tolerance towards H2AsO3 rather than the enhancement in the As uptake as well as 
higher biomass accumulation (Mosa et al. 2012). In another instance, the heterolo-
gous expression of phytochelatin synthase gene from Ceratophyllum demersum in 
plants such as Arabidopsis and tobacco (Shukla et al. 2012, 2013) led to significant 
enhancement in As uptake and accumulation. However, there was no effect on the 
plant growth. LeBlanc et al. (2013) overexpressed the AtPht1;7 gene in A. thaliana 
and observed the significant accumulation of As(V) in transgenic lines.

In another case, it was reported that WRKY45 and WRKY6 regulate the AtPht1;1 
expression of and, hence, modulate As(V) uptake from the soil (Castrillo et al. 2013; 
Wang et al. 2014). Xu et al. (2015) identified the NIP subfamily to be involved in 
arsenite uptake. Furthermore, they found AtNIP3;1 play a role in the arsenic uptake 
as well as root-to-shoot distribution under different arsenite conditions using reverse 
genetic strategies. The single nip3;1 mutant accumulated less arsenic in shoots in 
comparison to the control plants, whereas the double mutant displayed improved 
growth in shoots and roots under arsenic stress conditions. They also found the 
NIP3;1 gene was expressed exclusively in roots using GUS analysis. Recently, He 
et al. (2016) characterized a PvTIP4;1 gene from Pteris vittata, which mediates the 
uptake of As(III) using functional complement cDNA library. Further, they analysed 
the effect of arsenic accumulation in A. thaliana; subcellular localization and the 
tissue expression profile of PvTIP4;1. The transgenic lines showed an increase in 

P. Dhakate et al.



377

arsenic uptake and accumulation. In another study, Wang et al. (2016) knocked out 
the OsPht1;8 gene in rice in order to evaluate the effect on the uptake; contrastingly, 
they found that As(V) uptake significantly decreased by about 55% in transgenic 
lines in comparison to the control. Shi et al. (2016) identified the differential expres-
sion of OsHAC1;2 and OsHAC1;1 genes in different cells of rice roots under differ-
ent arsenate treatments. The knockout mutant of both genes displayed a decrease in 
arsenate reduction and increase in As accumulation in the mutant plants. In the lat-
est study, Chen et al. (2017) reported that OsNIP3;2 plays a significant role in arse-
nite uptake in rice lateral roots using mutant analysis and overexpression studies. 
More recently, Wang et  al. (2018) investigated the effects of arsenate reductase, 
γ-glutamylcysteine synthetase and phosphate effluxer knockout on As tolerance and 
uptake in A. thaliana plants. In addition, their group overexpressed PvACR3 from 
the plant Pteris vittata. They observed a slight change in As uptake as well as shoot-
to-root translocation. All knockout mutants showed higher root-to-shoot transloca-
tion of arsenic.

9  �Challenges to Improve Solute Specificity

These metalloids are elements with chemical properties between metals and non-
metals. They comprise many physiologically important elements with roles in 
growth, development, reproduction, flowering, stress tolerance, desiccation and 
ultimately yield. In addition, some are toxic to plants such as arsenic, germanium 
and antimony as their exposure seriously downgrades the plant’s metabolism. 
However, most of metalloids are considered beneficial for plants, and their uptake, 
translocation and homeostasis are mediated by various membrane transporters. The 
large data about these various types of transporters have already been gathered 
majorly by application of techniques such as the gain of function or loss of function 
approaches, GUS assays, functional complementation assays and promoter analy-
sis. However, there are still many questions associated with the metalloid transport 
and transporters which need to be addressed.

In the future, many questions associated with metalloid transport in plants will 
be addressed, including (1) how metalloid-permeable transporters are regulated on 
metalloid exposure? (2) how do the various plant species orchestrate the transport of 
a given metalloid? (3) which motif of transporters determines the metalloid selectiv-
ity? (4) at which point in the evolution time scale, the nature abled the transporters 
to channel two types of metalloids? (5) how do the uncharged forms of metalloids 
are transported in planta? and (6) what are the potential transporters of rare ele-
ments such as Po, Te and At? In addition, the researchers will generate plants, espe-
cially major crops with higher uptake as well as higher tolerance using both breeding 
and transgenic approaches.
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