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Abbreviations

2D-PAGE Two-dimensional polyacrylamide gel electrophoresis

DIGE Differential in gel electrophoresis

ESI Electrospray ionization

ICAT Isotope-coded affinity tags

IMAC Immobilized metal affinity chromatography

iTRAQ Isobaric tags for relative and absolute quantification
LC Liquid chromatography

LCM Laser capture micro-dissection

MALDI-TOF Matrix assisted laser desorption/ionization-time of flight
MS Mass spectrometry

MS/MS Tandem mass spectrometry

MudPit Multidimensional Protein Identification Technology
PTM Post-translational modification

SILAC Stable isotope labelling by amino acids in cell cultures

1 Introduction and Brief Bibliographic Review

Plant growth, development and productivity are severely diminished by abiotic
stress factors such as drought, salinity, waterlogging, extreme temperatures and
heavy metals (Surabhi 2018). As a consequence to it, physiological and biochemical
responses in plants vary and cellular aqueous and ionic equilibriums are disrupted
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(Sreenivasulu et al. 2007). The assessment of potential yield losses by individual
abiotic stresses is estimated at 17% (drought), 20% (salinity), 40% (high tempera-
ture), 15% (low temperature) and 8% by other factors (Shafig-ur-Rehman and
Ashraf 2005). It has been estimated that 90% of arable land experience different
abiotic stresses, singly or in combination (Leopold 1990) under field conditions.
Plant responses to abiotic stresses are dynamic and complex, and quite different
depending on the type, level, duration of the stress involved, type of tissue and geno-
type under stress (Cramer et al. 2011). Higher plants have evolved multiple, inter-
connected strategies that enable them to survive under abiotic stress (Surabhi et al.
2003; Kumari et al. 2007; Surabhi et al. 2008; Veeranagamallaiah et al. 2008; Singh
et al. 2010; Witzel et al. 2009, 2010; Surabhi 2018). However, these strategies are
not well developed in most agricultural crops (Fig. 1).

Unlike genome which is a static structure inherited from parents and defining
plant genotype, changes in plant epigenome, transcriptome, proteome and metabo-
lome shape plant phenotype in response to both developmental stages and for exter-
nal cues. Plant stress proteomics is a dynamic discipline, aimed at studying plant
proteome and protein biological functions in plants exposed to various stress factors
(Veeranagamallaiah et al. 2008; Witzel et al. 2009, 2010; Surabhi 2018). The role of
proteins in plant stress response is crucial since proteins are directly involved in
shaping novel phenotype by adjustment of physiological traits to altered environment.

[ Abiotic stress (drought, salinity, water logging, heavy metal and temperature) }
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Fig. 1 Schematic representation of the proteomic strategy to study proteome and phosphopro-
teome modulations under different abiotic stresses in crop plants
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Further, the analysis of protein is the most direct approach to define the function of
its associated gene, proteome analysis linked to genome-sequence information is a
very powerful tool in functional genomics studies (Komatsu et al. 2003). There are
several types of proteomes that can be measured under abiotic stress, and each of
them can reveal particular information about the expressed proteins. The most com-
mon proteomes to be measured in crop/plant or abiotic stress related studies are the
whole proteome and the phosphoproteome (Helmy et al. 2012a, b; Witzel et al.
2009, 2010; Surabhi 2018). Phosphorylation is one of the most important post-
translational modifications (PTMs) of proteins (Pawson and Scott 1997).
Approximately one-third of the proteins are modified by phosphorylation (Hubbard
and Cohen 1993). The study of whole proteome and phosphoproteome are the quan-
titative and/or qualitative profiling of all the expressed proteins and phosphorylated
proteins in a given sample, respectively (Nakagami et al. 2012). Through phospho-
proteomics, proteins and signalling pathways involved in response to particular
stress can be identified (Sugiyama et al. 2008; Lassowskat et al. 2014; Zhang et al.
2014). Both proteome and phosphoproteome can be combined in one study to
obtain a holistic understanding of abiotic stress tolerance in plants (Margaria et al.
2013; Yang et al. 2012; Hopff et al. 2013).

In recent years, proteome and phosphoproteome studies were conducted in crop/
plants singly or in combination of both (Chitteti and Peng 2007; Margaria et al.
2013; Yang et al. 2012; Hopff et al. 2013) to get an molecular insight under different
abiotic stresses such as drought (Atikur et al. 2016; Paul et al. 2015; Simova-
Stoilova et al. 2015a, b; Li et al. 2018; Zadraznik et al. 2017; Hu et al. 2015;
Bhaskara et al. 2017; Ren et al. 2017), salinity (Mostek et al. 2015; Zhang et al.
2017, 2018; Pi et al. 2018; Witzel et al. 2009), temperature (Guo et al. 2017; Gao
et al. 2017; Pi et al. 2017), waterlogging (Pan et al. 2010, 2018; Mustafa and
Komatsu 2014) and heavy metal stress (Xue et al. 2015; Chen et al. 2015, Cheng
etal. 2017; Zhong et al. 2017). This review highlights some of the recent proteomics
and phosphoproteomics studies conducted on crop/plants under different abiotic
stresses. In addition, this review briefly discussed about different proteins which
were altered in crop/plants under different abiotic stress factors. Finally, functional
studies should complement high-throughput proteome analysis and can thus con-
tribute to uncover protein role in plant stress response (Table 1).

2  Summary of Proteome and Phosphoproteome Studies
Under Different Abiotic Stresses

Plant stress proteomics has the ability of identifying possible candidate genes that can
be used for the genetic enhancement of plants to different stress factors (Cushman and
Bohnert 2000; Rodziewicz et al. 2014; Barkla et al. 2016). Proteomics deals with
determination, identification, expression profiling, post-translational modifications
(PTMs) and protein—protein interactions under stress conditions (Hashiguchi et al.
2010; Nam et al. 2012; Mertins et al. 2013; Ghosh and Xu 2014). Using a proteome
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approach, the effects of abiotic stress factors on protein abundance have been
examined in model, horticultural plants and crop and non-crop species such as
Arabidopsis (Guo et al. 2014), rice (Paul et al. 2015, Chen et al. 2015), Cucumis sati-
vus and Solanum tuberosum (Aghaei et al. 2008), wheat (Gao et al. 2011; Li et al.
2018), barley (Witzel et al. 2009, 2010; Mostek et al. 2015), soybean (Mustafa and
Komatsu 2014), stiff grass (Cheng et al. 2017), sunroot (Zhang et al. 2017, 2018),
shrubby cinquefoil (Guo et al. 2017), alfalfa (Atikur et al. 2016), Chinese grass (Xue
et al. 2015), poplar (Romeo et al. 2014). Similarly, phosphoproteome studies were
conducted on different crop/plants such as Arabidopsis (Bhaskara et al. 2017), rice
(Zhong et al. 2017), maize (Hu et al. 2015) mulberry (Pi et al. 2017), apple (Ren et al.
2017), banana (Gao et al. 2017) and soybean (Pi et al. 2018).

2.1 Drought

Drought is a widespread environmental stress that limit agricultural productivity
worldwide (Carrio et al. 2016). Despite many decades of research, drought stress is
continues to be a challenging task to the agricultural scientists in general and plant
breeders, in particular (Surabhi 2018). Plant response to drought has become very
important in current plant biology research because it causes many changes in the
biology of the plant cell, beginning with the stress perception and followed by phys-
iological and molecular changes that promote the acclimation to the stress.
Physiological processes like photosynthesis, respiration, water relations, anti-oxi-
dative metabolism and hormonal metabolism are affected by drought (Farooq et al.
2009; Bhargava and Sawant 2013).

2.1.1 Proteome Analysis Under Drought

The proteomic studies of different species under drought stress have been extensively
studied to date (Atikur et al. 2016; Paul et al. 2015; Simova-Stoilova et al. 2015a, b;
Khan and Komatsu 2016; Li et al. 2018; Zadraznik et al. 2017). The altered level of
expression of several protein families such as secondary metabolism, carbohydrate
metabolism, energy metabolism, stress response, ROS scavenging proteins, transcrip-
tion factors, signal transduction, protein folding, hormonal synthesis and cell wall
metabolism have been well elucidated from different proteomic studies under drought
(Ghaffari et al. 2013; Atikur et al. 2016; Paul et al. 2015; Khan and Komatsu 2016). It
has been found that generation of reactive oxygen species (ROS) during drought stress
can damage the structures of proteins, lipids and cell membrane integrity which ulti-
mately destroy the plant cell (Atikur et al. 2016).

The higher amount of ROS scavenging proteins in plants increases the resistance
mechanism to cope up with particular stress conditions (Atikur et al. 2016; Simova-
Stoilova et al. 2015a, b). Some novel proteins which have a key role in generation
of drought tolerant plants were found in the form of R40Cl1, cytosolic ascorbate
peroxidase and putative F-box proteins during the proteomic analysis of rice and
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alfalfa (Paul et al. 2015; Atikur et al. 2016). Beta-glucosidase which was found to
be involved in cell wall modification during proteomic analysis of bean under
drought stress showed the highest increase in the abundance during initial and final
drought treatment (Zadraznik et al. 2017). Many specialized proteins are differen-
tially expressed in plants during drought, where they have a role as signalling mol-
ecules (Atikur et al. 2016), reactive oxygen scavengers (Liu et al. 2017), proteins
with responses to pathogen-related (Paul et al. 2015), heat shock proteins, late
embryogenesis abundant (LEA) proteins (Liu et al. 2017) and chaperones (Liu et al.
2009; Veeranagamallaiah et al. 2011).

2.1.2 Phosphoproteome Analysis Under Drought

Phosphoproteomic studies were conducted on different plants in response to drought
stress (Harb et al. 2010; Hu et al. 2015; Bhaskara et al. 2017; Ren et al. 2017).
Functional analysis of maize and wheat proteins during drought stress has revealed
that phosphoproteins were involved in signalling pathways or activation of receptor
signalling in the form of kinases, protein transport, mMRNA processing and transcrip-
tion factors like bZIP-30, MYB1R1, bHLH and AB15 (Bhaskara et al. 2017; Ren
et al. 2017). Phosphoproteome analysis of drought treated wheat and Arabidopsis
revealed phosphorylated proteins such as ABA induced SnRK, mitogen activated
protein kinases (MAPK) and calcium dependent protein kinases (Umezawa et al.
2013; Ren et al. 2017). Phosphoproteomic studies in crop/plants under drought
stress are rather scanty and it requires more focus on this aspect in order to get
deeper insights on stress signalling process.

2.2 Salinity

Salt tolerance is a complex phenotype which is controlled by multiple genes.
Identifying novel genes, determining their expression patterns in response to salt
stress and exploring their functions in stress adaptation are the basis for implementing
effective engineering strategies to improve salt tolerance in plants (Cushman and
Bohnert 2000). It is estimated that salt stress may affect half of all arable lands by
2050, and will be a major factor responsible for the loss of arable land for the coming
decades (Wang et al. 2003a, b).

2.2.1 Proteome Analysis Under Salinity

Salinity induced tissue specific proteome studies were conducted on different
crop/plants (Guo et al. 2011, 2014; Mostek et al. 2015; Witzel et al. 2014; Li et al.
2015; Zhang et al. 2017, 2018). While some proteomic studies have focused on the
plant response within a few hours of encountering stress (Chitteti and Peng 2007;
Li et al. 2015), others have been more interested in studying the response over a
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number of days (Guo et al. 2011; Witzel et al. 2014). Functional analysis of proteins
identified during salt stress in different plants were involved in protein transport,
carbohydrate mechanism, ATP-synthesis, protein folding, detoxification, signal
transduction, cell wall modification, energy metabolism, glycolysis, post-transla-
tional modification and defence response gives a basic insight into the mechanism of
plants to cope with salt stress (Guo et al. 2011, 2014; Mostek et al. 2015; Witzel et al.
2014; Li et al. 2015; Zhang et al. 2017, 2018). During proteomic analysis of salt-
sensitive and salt-tolerant barley lines revealed that enhanced salinity tolerance of
barley line, that is, DH-187 observed as a result of an increased activity of signal
transduction mechanism and cell wall structural changes (Mostek et al. 2015).
Majority of the proteins involved in the cell wall metabolism and secondary metabo-
lism were found to be increase in abundance in salt stressed Arabidopsis and cotton
roots (Guo et al. 2014; Li et al. 2015). Witzel et al. (2014) have identified some of the
new candidate proteins underlying salinity tolerance in barley, such as germin-like,
pathogen related and cell-wall modification ($-1,3-glucanase) proteins (Table 1).

2.2.2 Phosphoproteome Analysis Under Salinity

Plants respond to salt stress by triggering phosphorylation cascades to turn on the salt
overly sensitive (SOS) signalling pathway (Zhu 2001; Hsu et al. 2009; Jun et al. 2010;
Pi et al. 2018). The phosphoproteomic studies were conducted in different plants
under salt stress (Hsu et al. 2009; Jun et al. 2010; Pi et al. 2018) and signalling
responses and phosphorylation cascades are suggested to function in transmitting and
amplifying the extracellular salt stress signals in plants (Jun et al. 2010; Pi et al. 2018).
It was found that the growth of Thellungiella roots was less inhibited by high-salinity
stress than Arabidopsis and also Thellungiella roots have higher abilities to limit the
Na influx than Arabidopsis because of expression of specific Na/K antiporter (Hsu
et al. 2009; Jun et al. 2010). Five novel membrane proteins, that is, AHA1, STP1,
patellin-2 and probable receptor kinase were identified in salt treated Arabidopsis
plant (Hsu et al. 2009). Three MYB proteins were found to be differentially phos-
phorylated upon salt treatment in soybean and it was reported that over-expression of
the GmMYB173S59D and GmCHSS resulted in the enhancement of salt tolerance
mechanism (Pi et al. 2018). The above-mentioned investigations suggested the power
of proteomic and phosphoproteomic approaches in identifying functional proteins
responsive to salt stress in plants. However, our understanding of salt stress responsive
proteins in different tissues of crop plants is still far from complete.

2.3 Waterlogging

Waterlogging is defined as prolonged soil saturation with water at least 20%
higher than the field capacity (Aggarwal et al. 2006). It is a major problem of
utmost importance as it limits the growth and yield of many crops in humid areas.
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Globally, approximately 10% of irrigated farmlands suffer from frequent waterlog-
ging; however, values up to 20% occur in specific regions such as Eastern Europe
and the Russian Federation (FAO 2002; Alam et al. 2010). During 1993, approxi-
mately 20 million acres of corn and soybean were inundated in the mid-western
United States leading to heavy economic loss, as estimated by United State
Department of Agriculture, National Agricultural Statistics Service (Suszkiw 1994).
The deleterious effects associated with hypoxia and anoxia include a decrease in
cellular energy charge, drop in cytoplasmic pH, and the accumulation of toxic
metabolites and reactive oxygen species (ROS) which are responsible for the slowed
growth and reduced yield of many agriculturally important crops (Subbaiah and
Sachs 2003; Surabhi 2018).

2.3.1 Proteome Analysis Under Waterlogging

Several proteomic studies on crop/plants in responses to waterlogging (flooding)
stress revealed that it affects the proteins involved in several metabolic pathways
such as cellular processes, defence mechanism, secondary metabolite synthesis, pro-
tein storage and amino acid metabolism (Ahsan et al. 2007; Komatsu and Hossain
2013). Earlier studies revealed that waterlogging treatment of maize seedlings drasti-
cally altered the profile of total protein synthesis. In an anaerobic environment, 20
proteins, which account for more than 70% of the total translation, are selectively
synthesized (Sachs et al. 1980). A proteomic examination of the soybean cell wall
found that flooding induces a suppression of lignification through a decrease in the
expression of proteins involved in ROS scavenging (Komatsu et al. 2010). In another
study, it was revealed that accumulation of glycoproteins localized in the secretory
pathway decreased under flood stress in soybean. Further, some novel proteins, that
is, 3-pf-hydroxylases, glutamyl t-RNA reductase, cysteine proteases, auxin-amidohy-
drolase and coprophyrinogen oxidase were identified in soybean during flooding
stress (Ahsan et al. 2007; Komatsu and Hossain 2013).

2.3.2 Phosphoproteome Analysis Under Waterlogging

The effect of flooding on soybean has been extensively studied because soybean is a
flood-in tolerant crop, whose growth and grain yield are significantly reduced under
flooding stress (Nanjo et al. 2010, 2012). Comparative gel-free proteomics and gel-
based phosphoproteomics techniques were used to investigate early responses to
flooding stress in the roots and hypocotyls of soybean seedlings (Nanjo et al. 2010).
De-phosphorylation of proteins involved in protein folding and synthesis was found
to be one of the early responses. Different studies have suggested that the transla-
tional or post-translational control of proteins involved in protein folding and synthe-
sis during flooding induces an imbalanced expression of proteins involved in several
metabolic pathways, including carbohydrate metabolism, which may cause flooding-
induced injury to the seedlings. Recently, gel-free mass spectrometry-based
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proteomics techniques was used to compare protein phosphorylation states in the
root tips of flooded soybean seedlings (Nanjo et al. 2012). A comparison of the pro-
teins identified through phosphoproteomic and quantitative proteomic analyses
revealed six proteins affected by flooding and showed changes in both abundance
and phosphorylation status, including those involved in energy generation, protein
synthesis and cell structure maintenance (Nanjo et al. 2010, 2012). It was concluded
that protein phosphorylation is likely to play a major role in the regulation of pentose
phosphate pathways, photosynthesis activities, pyruvate metabolism and ROS pro-
duction which together contribute to stable energy supply that enhances flooding
tolerance in Kandelia candel. Some novel phosphoproteins were identified in
Kandelia during flood stress, that is, GSP, GxxSP and RSxS (Pan et al. 2018).
Phosphoproteomic studies on different crop/plants under waterlogging are rather
scanty. It requires attention to explore the specific set proteins expressed under water-
logging in order to utilizing them for crop improvement programs.

2.4 Temperature

The effects of global warming will not be limited to rising mean annual tempera-
tures around the globe. There will also be a remarkable increase in both frequency
and amplitude of severe temperature events, resulting in more extreme hot and cold
days, more frequently (Neilson et al. 2010).

2.4.1 Proteome and Phosphoproteome Analysis Under High Temperature

When subjected to a high-temperature stress, plants generally respond through
alterations in cell structure, cell membrane permeability, cell osmotic adjustment
and photosynthetic activity (Dias et al. 2010). Guo et al. (2017) have studied pro-
teomic changes in Potentilla fruticosa leaves after subjecting plants to 42 °C heat
stress for 3 days, using isobaric tags for relative and absolute quantification (iTRAQ)
coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS).
They identified 35 up-regulated and 23 down-regulated proteins after the heat stress
treatment. Those differentially abundant proteins were involved mainly in protein
synthesis, protein folding and degradation, abiotic stress defence, photosynthesis,
RNA process, signal transduction and other functions. Further, 58 proteins were
categorized based on their sub-cellular localization mainly in the chloroplast enve-
lope, cytoplasm, nucleus, cytosol, chloroplast, mitochondrion and cell membrane.
In another study, Xu and Huang (2008) have reported that, upon imposition of heat
stress, 70 protein spots were altered in at least one species. Both moderate and
severe heat stress caused down-regulation of majority of proteins than up-regulated,
and thermal Agrostis scabra roots had more up-regulated proteins than Agrostis
stolonifera roots. Further, the mass spectrometry studies led to the identification of
corresponding sequences of 66 differentially expressed protein spots. The results
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suggested that up-regulation of sucrose synthase, glutathione S-transferase,
superoxide dismutase and heat shock protein stress-inducible protein (Sti) may
contribute to the superior root thermo tolerance of A. scabra. In addition, two iso-
forms of fructose-biphosphate aldolase were highly phosphorylated under heat
stress as revealed by phosphoproteomic analysis, and thermal A. scabra had greater
phosphorylation than A. stolnifera, suggesting that the aldolase phosphorylation
might be involved in root thermo tolerance (Xu and Huang 2008).

Chen et al. (2011) have studied phosphoproteome of rice leaves after exposing
plants to heat stress, and their study revealed 10 differentially expressed proteins.
Analysis of the biological processes revealed that three of the variable phosphopro-
teins are involved in the Calvin cycle, two are part of hydrogen peroxide catabolism,
two participate in ATP synthesis-coupled proton transport, one is involved in micro-
tubule-based movement and one in cellular metabolic processes; the others have
unknown functions. Heat stress induced the dephosphorylation of ribulose bisphos-
phate carboxylase (RuBisCo) and the phosphorylation of ATP synthase subunit-8.
This modification decreases the activities of these enzymes, but the functional sig-
nificance of other phosphorylation events remains to be examined. Characterization
of different candidate proteins expressed under high-temperature stress provides
valuable information on their functional role and also scope for further utilization of
the proteins/genes for developing high-temperature tolerant plants (Xu and Huang
2008; Guo et al. 2017; Surabhi 2018).

2.4.2 Proteome and Phosphoproteome Analysis Under
Low-Temperature Stress

Low temperature, as an extreme environment, is responsible for 30—40% yield
reduction in temperate growing areas (Thakur et al. 2010). The plants exposed to
low-temperature stress reported to shift the thermodynamic equilibrium, when there
is an increased likelihood that non-polar side chains of proteins become exposed to
the aqueous medium of the cell, which can directly affect the stability and the solu-
bility of many globular proteins. This leads to a disturbance in the stability of pro-
teins or protein complexes, and, therefore, to a disruption of metabolic regulations.
The investigation of proteome expression in different plants under chilling stress
and identification of some novel proteins could be useful for better understanding
the molecular basis of low-temperature stress responses in plants.

Hashimoto et al. (2009) have identified 12 number of cold stress responsive pro-
teins from the rice root plasma membrane using a 2D-PAGE-based proteomic
approach. The identified proteins were such as receptor-type protein kinase, GPI-
anchored protein, leucine-rich repeat transmembrane protein kinase, water channel
protein, plasma membrane integral protein, lipid transfer protein, phosphate trans-
porter and MAP 3 K like protein kinase. In addition, cold shock protein-1 was sig-
nificantly decreased in plasma membrane of rice under cold stress.

Two pea lines (Pisum sativum L.) with contrasted behaviours towards chilling
and subsequent frost were studied by Dumont et al. (2011). Following a chilling
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period, the Champagne line showed tolerant to frost, whereas, Terese line remains
sensitive. Fifteen-root proteins were identified and these proteins were related to
chilling response or cold acclimation. Altogether, the investigation revealed that
cold acclimation is a very complex biological process that might be linked to genetic
variability within the two pea species (Dumont et al. 2011).

In rice roots, a total of 27 up-regulated proteins were identified by matrix-assisted
laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry or elec-
tro spray ionization-tandem mass spectrometry (ESI-MS/MS), after subjecting
plants to chilling stress treatment (Lee et al. 2009). In their study, a group of novel
proteins were identified including acetyltransferase, phosphogluconate dehydroge-
nase, NADP-specific isocitrate dehydrogenase, fructokinase, PrMC3, putative
alpha-soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein and gly-
oxalase-1, in addition to the previously identified cold-stress responsive proteins.
The identified proteins are involved in several cellular processes, including energy
production and metabolism, vesicular trafficking and detoxification. Gene expres-
sion at mRNA level of some selected proteins revealed that transcription levels are
not always concomitant to the translational level.

Phosphoproteomics analysis using LTQ-Orbitrap with mass spectrometry have elu-
cidated the molecular mechanism of chilling (4 °C) tolerance in mulberry leaves (Pi
et al. 2017). The result showed that 427 differentially expressed phosphoproteins were
detected after 6 h of chilling, while a total of 611 phosphoproteins which were found to
be significantly changed during 48 h of chilling injury. Several groups of phosphopro-
teins were identified in the form of protein kinases (CKII) which were responsible for
the proteomic changes during chilling injury and also found to be involved in the signal
transduction, protein modifications and translation process. Two phosphorylation pro-
teins BpSIZ1 and BpICE1 found to be involved in transcription factors such as CBF/
DREB during chilling stress was identified (Pi et al. 2017).

A comparative phosphoproteomic profiling of cold-sensitive Cavendish and rela-
tively cold-tolerant Dajiao under cold stress was conducted to identify the differen-
tially expressed proteins in banana (Gao et al. 2017). The study revealed that five
phosphoproteins were differentially expressed and kinesin proteins showed a differ-
ence between the two cultivars of banana during cold stress (Gao et al. 2017).
Western blot analysis showed that T31 phosphoproteins were increased, while
MKK?2 was decreased in Daojiao during cold stress. In case of Cavendish, MKK2
was increased, while T31 was not detected during cold stress (Gao et al. 2017).
Identification of chilling related pathways and novel phosphopeptides in plants
would broaden the insight into chilling response.

2.5 Heavy Metal Stress

Heavy metal pollution of air and agricultural soils is one of the most important eco-
logical problems worldwide. Although many heavy metals occur naturally in the
earth’s crust at various levels, the problem arises when they are released in excess
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into the environment due to natural and/or anthropogenic activities (Singh et al.
2016). Large areas of land have been contaminated with heavy metals due to the use
of pesticides, fertilizers, municipal and compost wastes, and also due to heavy metal
release from smelting industries and metalliferous mines (Yang et al. 2005). The
annual toxicity of all toxic metals mobilized exceeds the combined total toxicity of
radioactive and organic wastes produced every year from all sources (Nriagu and
Pacyna 1998).

2.5.1 Proteome Analysis Under Heavy Metal Stress

Liu et al. (2014) have utilized recently developed 6-plex Tandem Mass Tag (TMT)
for relative and absolute quantitation methods to achieve a comprehensive under-
standing of Cu tolerance/detoxification molecular mechanisms in Elsholtzia splen-
dens root cell wall, for the first time. An LC-MS/MS approach was followed to
analyse the Cu-responsive cell wall proteins and polysaccharides. The majority of
22 up-regulated proteins was involved in antioxidant defence pathway, cell wall
polysaccharide remodelling and cell metabolism process. Changes in polysaccha-
ride amount, composition and distribution could offer more binding sites for Cu
ions. Further, the 33 down-regulated proteins were involved in signalling pathway,
energy and protein synthesis.

In another study by Chen et al. (2015) have investigated the differences in
Cu-binding protein expression between Cu-tolerant and Cu-sensitive rice varieties
using a new IMAC method. In total, 27 differentially expressed Cu-binding proteins
were identified, out of which 16 proteins were not previously identified as Cu-IMAC-
binding proteins either from plants or animals (Chen et al. 2015). These novel
Cu-binding proteins were of four main types, proteins involved in antioxidant
defence and detoxification, putative pathogenesis-related proteins, putative cold-
shock domain proteins and eukaryotic translation initiation factors.

Kumar and Majeti (2014) have studied Pb-stress effects on Talinum triangulare
Jacq. (Willd.) after exposing the plants for 7 days and proteomic study was per-
formed for control and 1.25 mM Pb-treated plants to examine the root protein
dynamics in the presence of Pb. Twenty-three major proteins showed increased
abundance, of which three proteins are new (appeared only in 1.25 mM Pb).
Functional categorization of identified proteins under 1.25 mM Pb-stress have given
a very clear indication about their involvement in root architecture, energy metabo-
lism, reactive oxygen species (ROS) detoxification, cell signalling, primary and sec-
ondary metabolisms, and molecular transport systems.

The seedlings of ‘Sour pummelo’ (Citrus grandis) and ‘Xuegan’ (Citrus sinensis)
were irrigated for 17 weeks with 2 pM (control) or 600 pM (Mn-toxic) MnSO4
(You et al. 2014). Two-dimensional gel electrophoresis (2-DE) subsequent analysis
yielded 11 up-regulated and 42 down-regulated protein spots from Mn-toxic
C. sinensis roots, and 25 up-regulated and 14 down-regulated protein spots from
Mn-toxic C. grandis roots. This indicates more remarkable metabolic flexibility in
C. sinensis roots than in C. grandis ones. They found important differences in
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Mn-toxicity-induced changes in root protein profiles as well as root metabolic
responses between the two species, especially in these proteins involved in protein
biosynthesis and degradation, nucleic acid metabolism, carbohydrate and energy
metabolism, and stress responses. The abundance of proteins related to nucleic acid
metabolism, glycolysis and cell transport increased in non-tolerant C. grandis roots
in response to Mn-toxicity, and decreased in tolerant C. sinensis roots (You et al.
2014) (Table 1).

2.5.2 Phosphoproteome Analysis Under Heavy Metal Stress

Zhong et al. (2017) have studied Cd stress effect on rice seedlings using an iTRAQ-
based quantitative phosphoproteomic approach. They identified 2454 phosphosites,
associated with 1244 proteins, and a total of 482 of these proteins became differen-
tially phosphorylated under Cd stress. Number of proteins which were affected at
100 pM Cd?** was sixfold higher than in 10 uM treatment. Functional analysis of the
proteins which were differentially phosphorylated under stress revealed that a sig-
nificant number was involved in signalling, stress tolerance and reactive oxygen
species metabolism, in addition transcription factor related proteins were identified
(Zhong et al. 2017). Currently, proteome and phosphoproteome analysis under
heavy metal stress in crop plants is infancy and more attention is required to get
deeper molecular insights of heavy metal stress tolerance in crop plants.

3 Combined Proteomics and Phosphoproteomic Studies
Under Different Abiotic Stress in Crop Plants

Significant amount of proteome work has been conducted on crop/plants under dif-
ferent abiotic stresses. However, phosphoproteome studies in plants dealing with
abiotic stresses or combined proteome and phosphoproteome studies are rather
scanty. One biochemical manifestation common to all stresses is specific, regulated
protein phosphorylation. It is universally accepted that a major part of the signal
linking is the environmental perception of the stress at the cell surface to the nucleus,
where response proteins can be translated, Protein phosphorylation is generally
transmitted by protein kinase cascades (Kersten et al. 2009). A few kinase-mediated
signalling pathways have been elucidated (e.g. Asai et al. 2002) in the model plants
Arabidopsis thaliana (van Bentem and Hirt 2007; Pitzschke et al. 2009) and rice
(Chen and Ronald 2011). A picture of the complexity of these signalling pathways,
with all their cross-talk and branch points, is beginning to emerge. Since these path-
ways rely principally on post-translational modification to transmit their signal,
their elucidation is well served by a proteomic approach.

Guo et al. (2014) have conducted two-dimensional gel-based proteome (coo-
massie brilliant blue R-350 stain) and phosphoproteome (Pro-Q diamond stain)
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studies coupled with mass spectrometry to investigate salt stress induced alterations
in protein profiles in the model plant, Arabidopsis roots. Non-synchronous differ-
ences were found between total proteins and phosphorylated proteins. Ten differen-
tial spots were common between 28 differential total protein spots and 13 differential
phosphoproteins spots. The identified proteins are involved in binding, catalysis,
signal transduction, transport, metabolisms of cell wall and energy, and reactive
oxygen species (ROS) scavenging and defence (Guo et al. 2014).

Chitteti and Peng (2007) have investigated differential expression of proteins
after imposing salinity stress for 24 h in rice roots. They have utilized both SYPRO
ruby and Pro-Q diamond stain to study proteome and phosphoproteome fractions,
respectively. Thirty-one differentially regulated proteins revealed by SYPRO ruby
and 28 differentially regulated putative phosphoproteins revealed by Pro-Q dia-
mond stain were identified using mass spectrometry. Seven proteins displayed dif-
ferential expression whether the gel was stained by Pro-Q diamond or SYPRO ruby
stain. The other differentially regulated proteins were specific either to Pro-Q dia-
mond or SYPRO ruby stain, suggesting, necessity of conducting proteome and
phosphoproteome studies in order to obtain holistic view of plant response to abi-
otic stresses (Chitteti and Peng 2007).

In another study, Lv et al. (2014) have conducted combined proteome and phos-
phoproteome study on Brachypodium distachyon leaves, after imposing salt stress. A
total of 80 differentially expressed protein spots corresponding to 60 unique proteins
were identified. Phosphopeptide purification was carried using TiO, micro-columns
and LC-MS/MS for phosphoproteome analysis to identify phosphorylation sites and
phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites
were identified. Among them, 468 phosphoproteins containing 496 phosphorylation
sites demonstrated significant changes at the phosphorylation level. Of the 60 unique
differentially expressed proteins, 14 were also identified as phosphoproteins. Many
proteins and phosphoproteins, as well as potential signal pathways associated with
salt response and defence, were found, including three 14-3-3s (GF14A, GF14B and
14-3-3A) for signal transduction and several ABA signal-associated proteins such as
ABF2, TRAB1 and SAPKS. Based on different studies, it is clear that the overlapping
between proteome and phosphoproteome within different studies under varying stress
conditions were found minimal. Therefore, it necessitates conducting both proteome
and phosphoproteome in each study to identify metabolic and signalling proteins,
respectively, under abiotic stress in crop plants.

4 Mass Spectrometry in Proteomic and Phosphoproteomic
Studies

The technology of choice for proteomics is mass spectrometry (MS) including sev-
eral approaches such as liquid chromatography—mass spectrometry (LC-MS/MS),
ion trap-mass spectrometry (IT-MS) and matrix-assisted laser desorption/
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ionization—time of flight mass spectrometry (MALDI-TOF-MS) (Komatsu and
Hossain 2013; Shao et al. 2015). However, it is necessary to choose the appropriate
instrument for the purpose as there is no MS that can be useful for all fields of pro-
teome analysis. MALDI-TOF/MS is often used for high-throughput identification
of the protein by peptide mass fingerprinting (Witzel et al. 2009, 2010). In the anal-
ysis of amino acid sequence and post-translational modification, MS/MS such as
ESI-IT and ESI-Q-TOF/MS are used. These technologies are basically used in mea-
suring the mass and charge of small protein fragments (or ‘peptides’) that result
from protein enzymatic digestion with special enzymes called proteases, such as
trypsin (Helmy et al. 2012a; Nakagami et al. 2012). The output of a standard
MS-based proteomic analysis is a set of peptide fingerprints called MS spectra. MS
spectra require another layer of interpretation to reveal the peptide sequences asso-
ciated with each of them, the protein of each peptide and the modification occurring
in each protein after being translated (Tyers and Mann 2003; Helmy et al. 2012a, b;
Nakagami et al. 2012).

Proteomic and phosphoproteomic investigation was carried on plants under dif-
ferent abiotic stress conditions by using different mass spectrometry platforms such
as MALDI-TOF/MS (Atikur et al. 2016; Paul et al. 2015), LC-MS/MS (Zadraznik
etal. 2017; Lietal. 2018; Guo et al. 2017), LC-ESI-MS/MS (Ren et al. 2017; Zhang
et al. 2017, 2018), nano-LC-MS/MS (Oskuei et al. 2017; Zhang et al. 2017, 2018;
Li et al. 2018; Wang et al. 2018), nano-LC-ESI-Q-TOF-MS/MS (Pan et al. 2018),
nano-LC-ESI-LIT-MS/MS (Romeo et al. 2014) and nano-RPLC-MS/MS (Pi et al.
2018). Despite these technological innovations and advancements, the analysis of a
full proteome is still a challenging task, mainly because of the high complexity of
protein samples (Bachi and Bonaldi 2008; Surabhi 2018). To overcome this diffi-
culty, several separation techniques such as multi-dimensional chromatography,
MudPit (Washburn et al. 2001) or specific enrichment/depletion techniques, tandem
affinity purification (Gavin et al. 2002) and equalizer beads (Guerrier et al. 2008)
can be applied prior to mass spectrometric analysis. These approaches increase the
proteome coverage and the dynamic range of large-scale proteomics analysis.

4.1 Gel-Based Proteomic and Phosphoproteomic Analysis
in Plant Abiotic Stress

2-DE coupled with MALDI-TOF-MS or ESI-Q-TOF-MS/MS are the most common
technique used in the abiotic stress-related proteomic studies. 2-DE resolves pro-
teins on the basis of isoelectric point (pI) and molecular mass (Mr) (Roy et al. 2011).
The separated protein spots can then be stained, with coomassie brilliant blue, silver
nitrate, or SYPRO Ruby (Robinson et al. 2011), among others. When combined
with advanced MS techniques, 2-DE allows hundreds of proteins to be character-
ized in a single polyacrylamide gel (Magdeldin et al. 2014), including the position
of the protein spot (pI and Mr) on the gel. This capability of 2-DE has allowed for
analysis of post-translational modifications (PTMs) of proteins. Two-dimensional
gel-based proteomic and phosphoproteomic analysis were conducted on plants
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under different abiotic stresses such as drought (Atikur et al. 2016; Paul et al. 2015;
Simova-Stoilova et al. 2015a, b), salt (Chitteti and Peng 2007; Jun et al. 2010; Guo
et al. 2014; Wen et al. 2014; Witzel et al. 2014; Mostek et al. 2015), heavy-metal
(Romeo et al. 2014; You et al. 2014), low-temperature (Lee et al. 2009) and water-
logging stress (Alam et al. 2010). The DIGE technique was developed to improve
the reproducibility of 2-DE and to overcome gel-to-gel variation (Unlu et al. 1997).
Each protein sample is labelled at a lysine residue with different fluorophores, such
as CyDye2, CyDye3 and CyDye5 (Beckett 2012), prior to mixing and separation on
the same gel, and the abundance of the same protein in different samples can easily
be determined by using these fluorophores (Magdeldin et al. 2014). This technique
reduces the number of gels needed for one experiment and is able to detect as little
as 150 pg of a single protein with a linear response in protein concentration of over
five orders of magnitude. Differential-in-gel electrophoresis (DIGE) performed in
different plants in response to several abiotic stress such as salt (Gao et al. 2011) and
heavy-metal stress (Kumar and Majeti 2014; Chen et al. 2015; Xue et al. 2015;
Cheng et al. 2017). The relatively high cost of DIGE equipment, software and con-
sumables, however, has limited its use. Despite the successes of 2-DE, the method
has many limitations (Robinson et al. 2011). For example, 2-DE can separate only
30-50% of the entire proteome, depending on the tissue, and it is unable to separate
all the proteins present in a complex sample (Beckett 2012).

The low-abundance proteins with physiological relevance, including regulatory
and signal-transducing proteins or phosphoproteins, are also rarely detected on tradi-
tional 2-DE gels, because the large amount of highly abundant proteins masks their
detection (Roy et al. 2011). For instance, ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO), which accounts for a large percentage of total plant protein,
hinders absorption of low-abundant proteins on the immobilized pH gradient (IPG)
strips and results in poor detection and identification of these proteins on 2-D gels
and by MS (Beckett 2012). Different staining technique have applied for visualiza-
tion of proteins and phosphoproteins which were differentially expressed under dif-
ferent abiotic stress such as colloidal coomassie blue R-250, R-350 and G-250 (Chen
et al. 2015; Paul et al. 2015; Simova-Stoilova et al. 2015a, b; Xue et al. 2015; Atikur
et al. 2016; Cheng et al. 2017) and SYPRO-ruby staining (Chitteti and Peng 2007).
The Pro-Q diamond in gel stain was found to be useful method for direct visualiza-
tion of the putative phosphoprotein spots expressed under different abiotic stress
such as salt (Chitteti and Peng 2007; Jun et al. 2010; Guo et al. 2014; Liu et al. 2014)
and drought (Yuan et al. 2016).

4.2 Gel-Free Proteomics and Phosphoproteomics Analysis
in Plant Abiotic Stress

In iTRAQ (Isobaric Tags for Relative and Absolute Quantitation), samples are
labelled at peptide level and it is an LC-based gel-free method. All the proteins pres-
ent in requisite amounts will be systematically quantified and identified in iTRAQ
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method, and at the end it provides a more comprehensive map of the protein content
of a sample (Alvarez et al. 2009). iTRAQ labelling overcomes some of the limitations
of 2-D gel-based techniques and also improves the throughput of proteomic studies.
This technique has a high degree of sensitivity, and the amine specific isobaric
reagents of iTRAQ allow the identification and quantitation of up to eight different
samples simultaneously (Ross et al. 2004; Aggarwal et al. 2006; Zieske 2000).
iTRAQ can identify proteins outside the pH range of commonly used gels and dis-
tinguish between proteins that would co-migrate on a gel, whereas DIGE resolves
only soluble proteins included in a pH range of 3—11 (Alvarez et al. 2009). iTRAQ-
based proteomics and phosphoproteomic analysis have conducted in plants in
response to different abiotic stresses, that is, drought (Hu et al. 2015; Ren et al.
2017; Sun et al. 2017), salt (Zhang et al. 2017, 2018; Pi et al. 2018), heavy metal
(Lan et al. 2012; Zhong et al. 2017) and high temperature (Guo et al. 2017; Wang
et al. 2018). Recent advancement in LC-MS-based quantitative techniques such as
isotope-coded affinity tags (ICAT) (Gygi et al. 1999), stable isotope labelling by
amino acids in cell cultures (SILAC) (Schutz et al. 2011), and isobaric tags for rela-
tive and absolute quantification (iTRAQ) (Alvarez et al. 2009) showed advantages
for relative quantification of proteins or peptides on a large scale. Advances in these
techniques and in the MS field can allow the analysis of complex proteomes at
organ/tissue and whole plant levels in different crops. This technological advance-
ment in gel-free proteomics could further expand our scope of understanding of
abiotic stress sensing mechanisms in plants.

Immobilized metal ion affinity chromatography (IMAC) is a common separa-
tion platform used prior to MS analysis for large-scale identification of protein
phosphorylation sites from complex samples (Niihse et al. 2003). Typically, phos-
phopeptides are bound by immobilized metal ions through metal-phosphate affin-
ity interactions, and non-phosphorylated peptides are removed by washing. The
phosphopeptides can be released from the solid support by phosphate or alkaline
elution. Several metal ions were employed for IMAC, and each metal ion has dis-
tinct strengths and weaknesses (Zhou et al. 2008). Among these metal ions, Fe** is
the most common metal ion used in the IMAC approach; however, its specificity is
insufficient for comprehensive phosphoproteome analysis (Kinoshita et al. 2004).
IMAC-based phosphoproteomics analysis has been conducted in Arabidopsis
thaliana, banana, rice and chickpea in response to salinity (Hsu et al. 2009), low-
temperature (Gao et al. 2017) and heavy metal stress (Lan et al. 2012; Chen et al.
2015). Metal affinity chromatography (TiO,)-based phosphoproteomic studies
were conducted on banana and Ammopiptanthus mongolicus under low-tempera-
ture (Gao et al. 2017) and drought (Sun et al. 2017). IMAC and LC-MS/MS-based
phosphoproteomics analysis on Arabidopsis thaliana during salt stress has revealed
that level of phosphopeptides on five membrane proteins such asAHA1, STP1,
Patellin-2, probable inactive receptor kinase (At3g02880) and probable purine
permease-18 showed at least twofold increase in comparison to control in response
to 200 mM salt-stress (Hsu et al. 2009).
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5 Conclusion

Investigating the molecular events occurring in stress responses using gel-based and
gel-free phosphoproteomic studies will enhance our understanding of the biological
processes in crop plants. Recent advancement in proteomic methodologies, such as
multi-dimensional protein fractionation (MudPit), SILAC, ICAT, iTRAQ, IMAC,
DIGE and high-resolution tandem mass spectrometry, has facilitated a more accu-
rate comparison of crop stress responses and can detect more deferentially abundant
proteins than prior analysis. Sensitive proteomic approaches are capable of identify-
ing low-abundance proteins (especially transcription factors and regulatory pro-
teins) involved in the initial stress response in crops. Currently, majority of the crop
proteomic changes often analysed after several hours, even days after a stress onset.
A focus on early responsive proteins is required in order to identify regulatory and
signalling proteins. Combined proteome and phosphoproteome analysis of the
response of plants to stress at the protein and phosphoprotein level, together with
physiological measurements, will assist in identifying the novel proteins and path-
ways that are crucial for stress tolerance. Further, proteomics has identified a vast
number of proteins that participate in the growth of plants or their adaptation to
environmental stresses. Functional analysis of those proteins will contribute to the
development of high-yielding crops through artificial manipulation of the basic life
phenomena of plants or through the assessment of their stress tolerance. In addition,
integration of proteomics result with findings from other large-scale ‘omics’ and
bioinformatics applications will surely facilitate the establishment of molecular
networks underlying abiotic stress response and tolerance in crop plants.
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