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Abstract
DNA fragmentation, or the accumulation of sin-
gle- and double-strand DNA breaks, is a common 
property of sperm, and an increase in the level of 
sperm DNA fragmentation is known to influence 
natural reproduction. The effect of sperm DNA 
fragmentation on male infertility and assisted 
reproductive treatment (ART) outcomes remains 
controversial and is one of the most frequently 
debated topics of reproductive medicine. For the 
past 30 years, a number of assays have been devel-
oped to quantify the level of sperm DNA fragmen-
tation. In this chapter, we review the causes of 
sperm DNA fragmentation, describe the com-
monly used tests to evaluate these abnormalities, 
and perform a systematic review of existing stud-
ies to determine the impact of sperm DNA frag-
mentation on male fertility and ART outcomes.
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�Introduction

Sperm are a well-designed vehicle that facilitate 
the transfer of a haploid genome from the father 
to the oocyte (Aitken and De Iuliis 2010). To per-
form such a function, the spermatogonial stem 
cell must undergo a series of meiotic divisions 
and morphological and biochemical alterations 
resulting in the formation of a mature sperm, and 
this process is known as spermatogenesis. As a 
result of spermatogenesis, millions of sperm are 
produced every day. Clearly, normal embryonic 
development is dependent on the delivery of 
intact and complete genetic material to the oocyte 
(Simon et  al. 2014a). Therefore, the sperm 
nucleus has adopted a unique structural architec-
ture in which the DNA is tightly packaged with 
small and positively charged proteins, termed 
protamines, resulting in the formation of compact 
nuclear structure (Oliva 2006). During this pro-
cess, the sperm loses its cytoplasmic content, 
resulting in the formation of streamline sperm 
structure that facilitates the motility and protec-
tion of the genetic material.

The removal of the cytoplasm leaves the 
sperm nucleus vulnerable to the potential nega-
tive effects of free radicals; however, the com-
pact, toroidal organization of sperm chromatin in 
normally protaminated sperm is known to protect 
sperm DNA from most free radical-mediated 
damage (Aitken 2012). Additionally, the seminal 
plasma not only acts as a medium for the sperm 
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to swim, but consists of high concentrations of 
antioxidants that can scavenge the free radicals to 
minimize the effect of oxidative stress-mediated 
DNA damage (Koca et al. 2009). Despite these 
preventive mechanisms, oxidative stress is gener-
ated in sperm when the concentration of free 
radicals produced exceeds the level of antioxi-
dant activity, resulting in sperm “DNA fragmen-
tation”, or the accumulation of DNA strand 
breaks (Saleh et al. 2002). Recently, it has been 
shown that DNA fragmentation is a common 
property of all sperm and the level of DNA dam-
age may vary from one sperm to another (Simon 
et al. 2017a).

Sperm DNA fragmentation can also occur as 
a result of intrinsic factors where poor struc-
tural organization of sperm chromatin leaves 
the sperm vulnerable to oxidative stress-medi-
ated DNA damage (Aoki et  al. 2005). Studies 
have suggested that there may be a cascade of 
events that start with seminal oxidative stress 
leading to apoptosis of sperm (Aitken and 
Koppers 2011). Other factors such as medica-
tion, heat, radiation, etc. are some of the extrin-
sic factors also known to cause sperm DNA 
fragmentation (Agarwal and Allamaneni 2005; 
Aitken et al. 2005; Morris 2002). Regardless of 
the cause, DNA fragmentation occurring in 
sperm is permanent, as sperm lack any ability 
to repair damaged DNA.

�Methods of Sperm DNA 
Fragmentation Analysis

A number of assays are now available to measure 
the level of sperm DNA fragmentation. Of these 
methods, single-cell gel electrophoresis (com-
monly called as the Comet assay), in situ nick 
translation assay, and the terminal deoxynucleo-
tide transferase-mediated dUTP nick-end label-
ing (TUNEL) assays directly measure the level of 
DNA fragmentation, whereas the Sperm 
Chromatin Dispersion (SCD) assay (commonly 
called as the Halo test) and Sperm Chromatin 
Structure Assay (SCSA) are known to indirectly 
measure the level of DNA fragmentation in 
sperm. These assays differ in their ease of use, 

cost, and the type of DNA strand breakage mea-
sured (Fig. 6.1).

�Comet Assay

The Comet assay is one of the simplest methods 
to measure sperm DNA fragmentation and quan-
tifies single- and double-strand breaks 
(McKelvey-Martin et al. 1997). The principle of 
the assay is that the sperm nuclear DNA is sepa-
rated in an electric field based on charge and size, 
which can be viewed by using a fluorescent dye. 
The resulting image resembles a comet, with an 
intact head and tail based on the amount of DNA 
fragmentation. The intensity of staining deter-
mines the extent of DNA fragmentation (Ostling 
and Johanson 1984). Additional quantitative 
parameters have been used to increase the effi-
ciency of the test, such as diameter of the nucleus, 
olive tail moment, and the comet length (Singh 
et al. 1988).

One of the principles of the Comet assay is 
that the double-stranded DNA remains in the 
comet head, whereas short fragments of double- 
and single-stranded DNA migrate into the tail 
area (Klaude et al. 1996). Therefore, sperm with 
high levels of DNA strand breaks would show an 
increased comet tail which can be measured by 
its intensity of fluorescence (Hughes et al. 1999) 
and comet tail length (Singh and Stephens 1998). 
The Comet assay can be performed in a neutral or 
alkaline environment. In neutral pH buffer, only 
DNA with double-strand breaks are measured, 
while in the alkaline buffer single- and double-
strand breaks, and alkali-labile sites, are detect-
able due to unwinding of the strands (Tarozzi 
et al. 2009). This is the only technique that can 
measure the direct level of DNA fragmentation in 
individual cells. The Comet assay is relatively 
inexpensive and one of the most sensitive tech-
niques available to measure DNA fragmentation. 
However, the assay is relatively labor intensive. 
According to published results, Comet assay 
results are correlated to the results obtained from 
the TUNEL assay (Aravindan et  al. 1997). The 
alkaline Comet assay can be used in all cell types 
and also in the sperm. The assay requires only a 
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few cells, of benefit for analysis of sperm from 
severely oligozoospermic men, and data can be 
collected at the level of individual cells.

The clinical importance of the Comet assay 
in assessing male infertility has been demon-
strated by a number of authors (Simon et  al. 
2010, 2011a, 2017a, b; Irvine et  al. 2000; 
Donnelly et al. 2001; Lewis and Agbaje 2008). 
The disadvantage of the assay is that it still lacks 
standardized protocols, which makes it difficult 

to fully understand and relate the results of dif-
ferent authors (Tarozzi et al. 2007). It is known 
to damage the alkaline labile sites and therefore 
makes it difficult to discriminate between 
endogenous and induced DNA breaks. The 
assay is also criticized for underestimation of 
DNA fragmentation due to entangling of DNA 
strands. Additionally, incomplete chromatin 
decondensation, in the case of sperm DNA, will 
not allow breaks to be revealed. Overlapping 

Fig. 6.1  Image of the four major assays for DNA frag-
mentation detection. (a) Micrograph of sperm analyzed 
using the SCD assay. (b) TUNEL assay micrograph iden-
tifying sperm with DNA damage (green) and non-

damaged (blue). (c) Comet assay showing varying degrees 
of damage evidenced by tail length and intensity. (d) 
Printout of the data derived using the SCSA
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comet tails decrease the accuracy of the assay 
and some extremely small tail fragments are lost 
or too small fragments are difficult to be visual-
ized. The assay is laborious, has high level of 
inter-laboratory variation, and hence is not rou-
tinely recommended for routine clinical screen-
ing, but has been shown to be valuable in 
research applications (Olive et al. 2001).

�Terminal Deoxynucleotidyl 
Transferase-Mediated dUTP Nick-End 
Labeling Assay

The TUNEL assay quantifies the incorporation 
of deoxyuridine triphosphate (dUTP) at single- 
and double-strand DNA breaks in a reaction 
catalyzed by the template-independent enzyme, 
terminal deoxynucleotidyl transferase (Gorczyca 
et  al. 1993). The incorporated dUTP which is 
labeling the breaks can be quantified by flow 
cytometry, fluorescent microscopy, or even light 
microscopy (Tarozzi et  al. 2007). The TUNEL 
assay is widely known to measure direct sperm 
DNA fragmentation. The TUNEL assay resem-
bles the nick translation in situ in a number of 
technical aspects, but can reveal both single- and 
double-strand breaks (Tarozzi et al. 2007). The 
sperm DNA fragmentation measured by TUNEL 
assay has good stability over time, so it is possi-
ble to measure and monitor baseline damage in 
both fertile and subfertile men (Sergerie et  al. 
2005a). The assay is broadly used to assess 
sperm DNA fragmentation as an indicator of 
male fertility (Sergerie et  al. 2005b) and has 
been demonstrated to predict assisted reproduc-
tion outcome (Sun et al. 1997; Lopes et al. 1998; 
Duran et al. 2002; Benchaib et al. 2003; Borini 
et al. 2006).

The TUNEL assay can simultaneously detect 
single- and double-strand breaks, unlike other 
assays that either simply measure sperm suscep-
tibility to DNA damage or require elaborate pro-
tocols to study both types of strand breakages 
(Lopes et al. 1998; Fraser 2004). Freezing raw or 
washed semen samples does not affect the results 
of the TUNEL assay (Sailer et  al. 1995). The 
TUNEL assay is highly sophisticated and expen-

sive; however, its popularity is justified by good 
quality control parameters, such as a low intra- 
and inter-observer variability (Barroso et  al. 
2000). This fluorescence labeling technique 
eliminates the problems associated with dye fad-
ing in the conventional microscopic method, 
thereby giving technicians more time to analyze a 
greater number of cells (Host et al. 1999). Due to 
the unique chromatin packaging of sperm, stain-
ing can be limited to the periphery of the cell; 
therefore, it is necessary to include techniques for 
relaxation of sperm DNA prior to labeling (Fraser 
2004).

The use of flow cytometry protocols within 
the TUNEL assay makes it possible to evaluate a 
very high number of cells, thus enhancing repro-
ducibility and accuracy of the technique. 
However, the TUNEL assay does not quantify the 
magnitude of DNA fragmentation within a given 
cell unless the measurement is conducted by flow 
cytometry as it only counts the number of cells 
within a population with DNA fragmentation as 
TUNEL-positive cells (Shamsi et al. 2008). The 
assay can be simplified to analyze cells using 
light microscopy, in which stained cells (with 
DNA fragmentation) and unstained cells (with-
out fragmentation) are manually counted. 
However, in this case background staining can 
decrease the accuracy of the assay.

�In Situ Nick Translation

The in situ nick translation (ISNT) assay is a 
modified form of the TUNEL assay that quanti-
fies the incorporation of biotinylated deoxyuri-
dine triphosphate (dUTP) at single-stranded 
DNA breaks in a reaction that is catalyzed by 
the template-dependent enzyme, DNA poly-
merase I (Shamsi et  al. 2008). Unlike the 
TUNEL assay, which utilizes template-indepen-
dent end labeling, nick translation can only be 
used for single-strand breaks, not for both sin-
gle-strand and double-strand breaks as in the 
TUNEL assay (Irvine et  al. 2000). This assay 
identifies variable levels of DNA strand breaks 
in each sperm (Manicardi et  al. 1995) and is 
positively associated with protamine deficiency 
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(Bianchi et al. 1993). The clinical value of the 
nick translation assay is severely limited because 
no correlation has been proven with fertilization 
capacity during in  vivo studies (Irvine et  al. 
2000), and it lacks sensitivity compared with 
other assays (Twigg et  al. 1998). Furthermore, 
the assay may be less biologically relevant given 
that single-strand breaks can be more easily 
repaired by the embryo than the double-strand 
break (Twigg et al. 1998).

The accuracy of the DNA polymerase enzyme 
used in the assay is high and hence single-strand 
nicks are efficiently incorporated with labeled 
dUTP, resulting in identification of sperm with 
very low levels of DNA strand breaks. The assay 
is capable to identify a variable level (low to 
high) of DNA damage in individual sperm within 
an ejaculate (Shamsi et  al. 2008). The clinical 
value of the nick translation assay is severely lim-
ited because no correlation has been proven with 
fertilization in in vivo studies (Irvine et al. 2000). 
When the ISNT is compared with other tests, 
TUNEL and Comet assays show better correla-
tions with ART outcomes as they measure both 
single-strand and double-strand breaks present in 
the sperm DNA (Irvine et al. 2000).

�Sperm Chromatin Structure Assay

The Sperm Chromatin Structure Assay (SCSA) 
is the most commonly used commercial test to 
characterize male infertility. It is a flow cytomet-
ric method to determine abnormal sperm chro-
matin which is highly susceptible to chemically 
induced in situ partial DNA denaturation. The 
extent of DNA denaturation is determined by 
measuring the metachromatic shift from green 
fluorescence to red fluorescence after heat or 
acid treatment (Evenson et al. 1980). The most 
important parameter of this test is the DNA frag-
mentation index (%), which represents the popu-
lation of cells with DNA fragmentation (Evenson 
and Jost 2000). It also measures the High DNA 
stainability (%). The SCSA measures the sus-
ceptibility of sperm DNA to heat- or acid-
induced DNA denaturation in situ, followed by 
staining with acridine orange stain where the 

double-strand DNA fluoresce green and the sin-
gle-strand DNA fluoresce red (Evenson and Jost 
2000). The use of flow cytometry makes it pos-
sible to measure a large number of spermatozoa 
per sample making the technique therefore sim-
ple and highly reproducible (Evenson and Jost 
2000). DNA fragmentation index (DFI) repre-
sents the sperm population with detectable 
denaturable single-stranded DNA and the highly 
DNA stainable (HSD) cells describe the sperm 
population with increased accessibility of dou-
ble-stranded DNA to the dye, mainly due to 
impaired replacement of histones with prot-
amines (Tarozzi et al. 2007).

Sperm DNA fragmentation measured by the 
SCSA is known to be more constant over a longer 
period of time when compared with the tradi-
tional sperm evaluation parameters (Zini et  al. 
2001). The consistency of the test makes it useful 
in epidemiological studies (Spanò et  al. 1998). 
Freezing of semen does not affect the test, allow-
ing samples to be batched for convenience or 
used in multi-center trials and analyzed at a later 
date in a central facility. The assay determines the 
percentage of sperm with DNA fragmentation. 
Several clinical studies have shown its usefulness 
in evaluating male fertility (Evenson et al. 2002; 
Spano et al. 2000; Virro et al. 2004). It is simple 
and rapid for the analysis of thousands of human 
sperm (Fraser 2004). Generally, most users have 
defined that a threshold value above 30% DFI 
and 15% HSD predicts couples who are likely to 
be infertile. Several clinical studies have shown 
its usefulness in evaluating male fertility in rela-
tion with fertilization, blastocyst development, 
ongoing pregnancy in IVF, and ICSI (Evenson 
and Jost 2000; Evenson et al. 2002; Spano et al. 
2000; Virro et al. 2004).

The SCSA does not give information about 
the extent of DNA fragmentation in individual 
sperm (Fraser 2004). The assay requires expen-
sive equipment for analysis. Laboratory factors 
affect the test giving high variation between rep-
licates (Boe-Hansen et al. 2005a, 2006). There is 
conflicting data as its usefulness in predicting 
fertilization rates, embryo quality, or pregnancy 
outcomes (Larson et al. 2000; Payne et al. 2005; 
Erenpreiss et al. 2006).
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�Sperm Chromatin Dispersion Assay

The Sperm Chromatin Dispersion (SCD) assay 
has been described as a simple and inexpensive 
method for the analysis of sperm DNA fragmen-
tation. It is based on the principle that sperm with 
fragmented DNA fail to produce the characteris-
tic halo that is seen when sperm are mixed with 
agarose following acid denaturation and removal 
of nuclear proteins (Fernandez et al. 2003). The 
methodology of the test includes the following 
steps. Sperm are immersed in an agarose matrix 
on a slide, treated with an acid solution to dena-
ture DNA that contains breaks, and then treated 
with lysis buffer to remove membranes and pro-
teins. The agarose matrix allows working with 
unfixed sperm on a slide in a suspension-like 
environment. Removal of nuclear proteins results 
in nucleoids with a central core and a peripheral 
halo of dispersed DNA loops. Following fluores-
cent staining, sperm nuclei with elevated DNA 
fragmentation produce very small or no halos of 
DNA dispersion, whereas those sperm with low 
levels of DNA fragmentation release their DNA 
loops forming large halos. These results have 
been confirmed by DNA breakage detection-
fluorescence in situ hybridization, a procedure in 
which the restricted single-stranded DNA motifs 
generated from DNA breaks can be detected and 
quantified (Fernández and Gosálvez 2002).

The test does not rely on fluorescence inten-
sity, hence it is simple to analyze with light 
microscopy. The test does not require the use of 
complex instrumentation; it can be carried out 
with equipment normally available in andrology 
laboratories (microscope). The test endpoints 
(non-dispersed and dispersed nuclei) can be eas-
ily obtained without extensive training of labora-
tory technicians.

Despite its ease of use, some limitations of the 
assay are well known. The assay has been 
reported to have low-density nucleoids, which 
are fainter with less contrasting images. Thus, the 
peripheral limit of the halo, where the chromatin 
is even less dense, may not be accurately discrim-
inated from the background. Furthermore, all of 
the halos are not necessarily in the same visual 
plane of the agarose; hence, the use of software to 

analyze can result in misreading due to unfo-
cused halos. Lastly, sperm tails are not preserved; 
therefore, discriminating sperm from other con-
taminant cells is problematic.

�Consequence of Sperm DNA 
Fragmentation on Male 
Reproductive Health

During the past few decades, a number of studies 
have associated DNA fragmentation with male 
infertility (Host et  al. 1999; Zini et  al. 2001; 
Hughes et  al. 1996; Evenson et  al. 1999; Saleh 
et  al. 2003a; Simon et  al. 2011b; Castillo et  al. 
2011). Most of these studies suggest that sperm 
DNA fragmentation is associated with male 
infertility. Additionally, DNA fragmentation in 
the sperm of men from the general population 
planning their first pregnancy, with no previous 
knowledge of their fertility capability, was asso-
ciated with diminished fecundity associated with 
an increase in sperm DNA fragmentation, indi-
cating the necessity of normal sperm chromatin 
for the expression of male fertility potential 
(Spano et al. 2000).

Men with unexplained or idiopathic infertility 
have been shown to have increased levels of oxi-
dative stress in the seminal plasma compared to 
controls (Pasqualotto et  al. 2001), resulting in 
sperm DNA fragmentation (Sikka et  al. 1995; 
Alkan et  al. 1997). Increased levels of sperm 
DNA fragmentation has also been observed in 
men diagnosed with idiopathic male infertility 
(Saleh et al. 2003a). Leukocytospermia is com-
mon in patients with infections in the male geni-
tal tract, and resulting oxidative stress can result 
in sperm DNA fragmentation (Agarwal et  al. 
2014; Erenpreiss et al. 2002) and have a negative 
impact on ART outcomes (Lackner et al. 2008).

Varicoceles are a common cause of dimin-
ished sperm production and/or decreased sperm 
quality. In patients with a varicocele, an increased 
level of oxidants and reduced antioxidants is 
observed (Abd-Elmoaty et al. 2010). The level of 
oxidants in the seminal plasma has also been 
shown to positively correlate with the degree of 
varicocele (Barbieri et  al. 1999), resulting in 

L. Simon et al.



93

increased sperm DNA fragmentation. Sperm 
DNA fragmentation has been shown to be 
reduced after varicocelectomy treatment, con-
comitantly with increased in pregnancy rates 
(Baker et al. 2013).

Lastly, an increase in the level of DNA frag-
mentation in infertile men can be attributed to 
abnormal histone to protamine exchange (Simon 
et  al. 2011a; Zhang et  al. 2006), sometimes 
observed as an abnormal protamine content or 
ratio (Castillo et al. 2011; Aoki et al. 2006). The 
mechanism by which diminished or altered prot-
amination results in DNA fragmentation may be 
associated with a loss of the “protective” nature 
that protamination confers on sperm DNA.

�Systematic Analysis 
of the Consequences of Sperm DNA 
Fragmentation on Assisted 
Reproduction Technologies

The existing literature regarding the effects of 
sperm DNA fragmentation on ART outcomes are 
controversial. A recent study showed a strong 
influence of sperm DNA fragmentation on male 
reproductive health and suggested that sperm 
DNA testing should be incorporated into routine 
clinical use (Simon et al. 2017b). In contrast, ear-
lier meta-analyses and reviews did not support 
the clinical use of sperm DNA fragmentation 
(Collins et  al. 2008; Zini and Sigman 2009). 
Therefore, for this chapter, we have performed an 
updated literature search and analysis of the asso-
ciation of sperm DNA fragmentation with ART 
outcomes, as measured using the four most com-
monly used assays (TUNEL, SCSA, SCD, and 
Comet). Our literature search identified 70 arti-
cles that included 94 study methodologies, 
TUNEL assay (35 studies), SCSA (30 studies), 
Comet assay (10 studies), and SCD assay (19 
studies). Based on the treatment type, these stud-
ies involve standard-type insemination of IVF 
(30 studies), ICSI (41 studies), and IVF + ICSI 
mixed (23 studies) studies (Table 6.1).

Studies with overlapping data, inappropriate 
sampling method, assays that are less commonly 
used (neutral Comet assay, in situ nick translation 

assay, and acridine orange slide-based staining 
method), and studies with insufficient data were 
excluded from this systematic analysis. A draw-
back of this systematic analysis is that, in some 
studies, there were differences in the definition of 
threshold values for DNA fragmentation assays, 
study design, lack of control for female factors, 
diverse patient group, nonconsecutive recruit-
ment of patients, and variations in the protocols 
used to measure DNA fragmentation assays, 
while in some studies, the inclusion and exclu-
sion criteria of subject selection were not clearly 
stated.

�Effect of Sperm DNA Damage 
on In Vitro Fertilization Rates

Of the 94 studies that analyzed sperm DNA frag-
mentation with ART outcomes, 18 did not evalu-
ate and study the relationship between fertilization 
rates and sperm DNA fragmentation. The remain-
ing 76 studies (26 IVF, 32 ICSI, and 18 mixed 
IVF  +  ICSI studies) involved 8711 treatment 
cycles (3149 IVF, 2558 ICSI, and 3004 mixed 
IVF + ICSI cycles). Forty percent (30/76 studies; 
including 14 TUNEL, 5 SCSA, 7 SCD, and 4 
Comet studies) reported a significant inverse 
relationship between sperm DNA fragmentation 
and fertilization rate, whereas the other 46 stud-
ies (16 TUNEL, 19 SCSA, 6 SCD, and 5 Comet) 
showed no significant relationship between these 
parameters (Table 6.1).

There appears to be a stronger effect in stan-
dard IVF compared to ICSI. Fifty eight percent 
of the studies (15/26) reported a significant 
inverse relationship between sperm DNA frag-
mentation and fertilization rate compared to ICSI 
(25% or 8/32) and mixed IVF  +  ICSI studies 
(39% or 7/18). One possible explanation of this 
effect is that during IVF fertilization, the sperm 
fertilizing the oocyte is randomly selected based 
on the sperm-oocyte interaction, in contract to 
the ICSI process where the most morphologically 
normal and motile sperm are injected into the 
oocytes (Ola et al. 2001). Such selection of sperm 
for ICSI fertilization may result in selection of 
sperm with low DNA fragmentation, as sperm 
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motility and sperm morphology are negatively 
associated with sperm DNA fragmentation 
(Borini et  al. 2006; Huang et  al. 2005; Caglar 
et  al. 2007; Lin et  al. 2008; Simon and Lewis 
2011).

�Effect of Sperm DNA Damage 
on Embryo Development

From the systematic review (Table 6.1), we iden-
tified 62 eligible studies (22 IVF, 24 ICSI, and 16 
mixed IVF + ICSI studies) that analyzed sperm 
DNA fragmentation with embryo quality, of 
which 21 studies (34%) showed a significant 
association between embryo quality and sperm 
DNA fragmentation. The 62 studies involved 
9116 treatment cycles (4193 IVF, 2445 ICSI, and 
2478 mixed IVF + ICSI cycles). In 34% (21/62) 
of the studies (5 TUNEL, 4 SCSA, 6 SCD, and 6 
Comet), a significant inverse relationship between 
sperm DNA fragmentation and embryo quality 
was reported, whereas the remaining 41 studies 
(17 TUNEL, 15 SCSA, 6 SCD, and 3 Comet) 
showed no significant relationship between these 
parameters.

Studies using the Comet assay more com-
monly reported an adverse effect (67%), whereas 
22% of TUNEL, 21% of SCSA, and 50% of SCD 
studies reported adverse effects of sperm DNA 
fragmentation on embryo quality. In terms of the 
type of assisted treatment, 36% of IVF, 29% of 
ICSI, and 38% of mixed IVF  +  ICSI studies 
reported adverse effect of sperm DNA fragmen-
tation on embryo quality. Our analysis showed a 
differential association between sperm DNA 
fragmentation and embryo quality; when the 
studies were segregated into groups based on 
assay types, sperm DNA fragmentation detected 
by the alkaline Comet assay was strongly associ-
ated with poor embryo quality when compared to 
other assays. This association may be due to the 
sensitivity of the Comet assay, which measures 
both single- and double-stranded DNA fragmen-
tation following complete chromatin deconden-
sation, or may be due to the small number of 
studies (Simon et al. 2014b).

�Effect of Sperm DNA Damage on ART 
Success

An extensive review of the existing literature and 
meta-analysis of studies testing the effect of 
DNA fragmentation on ART treatment were 
recently published by our group (Simon et  al. 
2017b). In this meta-analysis (56 studies), clini-
cal pregnancy was analyzed in 3734 IVF treat-
ment cycles from 16 studies, 2282 ICSI treatment 
cycles from 24 studies, and 2052 mixed 
IVF + ICSI treatment cycles from 16 studies. An 
overall relationship between sperm DNA frag-
mentation and clinical pregnancy outcome from 
56 studies (including 8068 ART cycles) sup-
ported a strong and significant association 
between the two parameters [Odds Ratio (OR): = 
1.68; 95% CI: 1.49–1.89, P <0.0001] (Simon 
et al. 2017b). The meta-analysis showed a strong 
relationship between sperm DNA fragmentation 
and clinical pregnancy outcome based on the 
type of treatment. A significant association 
between sperm DNA fragmentation and clinical 
pregnancy was observed for IVF treatment 
(OR  =  1.65; 95% CI: 1.34–2.04; P <0.0001), 
ICSI treatment (OR = 1.31; 95% CI, 1.08–1.59; 
P = 0.0068), and combined IVF + ICSI treatment 
(OR  =  2.37; 95% CI: 1.89–2.97; P <0.0001) 
(Simon et al. 2017b).

The meta-analysis suggested that DNA frag-
mentation measured by TUNEL (n = 2098 cycles 
from 18 studies; OR = 2.22; 95% CI: 1.61–3.05; P 
<0.0001), SCD (n = 2359 cycles from 8 studies; 
OR = 1.98; 95% CI: 1.19–3.3; P = 0.0086), and 
Comet (n = 798 cycles from 7 studies; OR = 3.56; 
95% CI: 1.78–7.09; P = 0.0003) assays reported a 
significant relationship with clinical pregnancy 
outcome. However, the association between the 
two parameters using SCSA studies was not statis-
tically significant (n = 2813 cycles from 23 stud-
ies; OR = 1.22; 95% CI: 0.93–1.61; P = 0.1522) 
(Simon et al. 2017b).

Our results are in contrast with previously 
published meta-analysis (Collins et  al. 2008; 
Practice Committee of the American Society for 
Reproductive Medicine 2013; Li et  al. 2006; 
Zhao et al. 2014) as these studies were unable to 

6  Sperm DNA Fragmentation: Consequences for Reproduction



98

show any relationship between sperm DNA frag-
mentation and clinical pregnancy outcome. Our 
recent meta-analysis (Simon et  al. 2017b) con-
cludes that a modest but significant association 
between sperm DNA fragmentation and clinical 
pregnancy rates is present in all three ART treat-
ment groups (IVF, ICSI, and mixed IVF + ICSI 
studies) with a variable effect according to the 
type of sperm DNA assay. A moderate relation-
ship between the two parameters may be due to 
the failure of prior studies to control for strict 
patient inclusion criterion, such as the failure of 
most studies to not exclude couples with female 
factors infertility. Studies in which more than 
half of the couples had been diagnosed with 
female infertility resulted in lower odds of pre-
dicting a success via DNA damage analysis 
(Payne et al. 2005; Frydman et al. 2008; Meseguer 
et  al. 2011), whereas studies in which patients 
with female infertile factor were controlled, the 
odds to predicting a successful pregnancy have 
significantly increased irrespective of the type of 
DNA fragmentation testing method (Simon et al. 
2011b; Giwercman et al. 2010).

�Association of Sperm DNA Damage 
with Pregnancy Loss

Robinson et al. performed a meta-analysis evalu-
ating the relationship between sperm DNA dam-
age and pregnancy loss. The results of the 
meta-analysis suggested a significant increase in 
miscarriage in patients with high DNA fragmen-
tation compared with those with low DNA frag-
mentation (Risk risk (RR): 2.16; 95% CI: 
1.54–3.03; P <0.0001) (Robinson et  al. 2012). 
The meta-analysis also reported a strong associa-
tion of DNA fragmentation on miscarriages, 
observed when DNA fragmentation was mea-
sured in the raw semen (RR: 1.65; 95% CI: 1.66–
2.33; P <0.0001) as well as the density gradient 
prepared subpopulation (RR: 3.47; 95% CI: 
2.13–5.63; P <0.0001). These results are in sup-
port of previous meta-analysis (Zini et al. 2008) 
where a positive impact of sperm DNA fragmen-
tation on spontaneous pregnancy loss was 
observed.

Although the specific mechanism(s) by which 
sperm DNA damage leads to increased preg-
nancy loss is not understood, it is well known that 
many factors contribute to this problem (Ford 
and Schust 2009). Interestingly, the negative 
impact of sperm DNA fragmentation is more pro-
nounced in animal models where induced sperm 
DNA damage leads to abnormal embryo devel-
opment, reduced implantation rate, and frequent 
pregnancy loss (Ahmadi and Ng 1999; Fatehi 
et  al. 2006). Such prolonged effects of sperm 
DNA fragmentation, also known as the late pater-
nal effect (Tesarik et al. 2004), may be in part due 
to the inability of the oocyte to repair the dam-
aged sperm chromatin when it exceeds the 
threshold value (Simon et al. 2014a).

�Effect of Sperm DNA Damage 
with Intrauterine Insemination 
Success

Our literature search identified ten studies that 
analyzed the association between sperm DNA 
fragmentation and IUI outcome. A total of 1673 
IUI cycles were analyzed using SCSA (7 stud-
ies), TUNEL (2 studies), and SCD (1 study) 
assays. The results from five of the seven studies 
by SCSA (Saleh et  al. 2003b; Bungum et  al. 
2004, 2007, 2008; Yang et  al. 2011) and one 
study using the TUNEL assay (Duran et al. 2002) 
suggested a significant statistical difference in 
the level of sperm DNA fragmentation between 
the clinically pregnant and non-pregnant groups. 
Conclusive results were not published in two 
studies using SCSA (Boe-Hansen et  al. 2006; 
Alkhayal et al. 2013), while no correlations were 
reported in two studies: using TUNEL assay 
(Thomson et  al. 2011) and using SCD assay 
(Muriel et al. 2006).

Data were available to construct a two-by-two 
table from six of the seven studies performed 
using SCSA.  The remaining five studies were 
used to construct a meta-analysis consisting of 
1135 IUI cycles and with an overall pregnancy 
rate of 18.23%, resulting in an odds ratio of 5.61 
(CI: 2.59–12.16; Z statistics: 4.37; p <0.0001) 
and relative risk of 1.17 (CI: 1.12–1.22; p 
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<0.0001) indicating a strong association between 
sperm DNA fragmentation and IUI outcome 
(unpublished data). The positive and negative 
predictive values were 18.96% and 96.00%, 
respectively. This model provided a high sensi-
tivity (96.30%) but low specificity (17.76%) val-
ues. Our recent meta-analysis suggests a slight 
but significant ability of DNA fragmentation to 
predict IUI success, which is in contrast to the 
previous meta-analysis that included four of the 
ten studies presented above for the analysis 
(Practice Committee of the American Society for 
Reproductive Medicine 2013).

�Sperm DNA Fragmentation 
as a Biomarker

Approximately, 30% of couples having fertility 
issues are diagnosed with unexplained infertility. 
In couples with unexplained infertility, sperm 
DNA fragmentation is elevated (Simon et  al. 
2013; Feijó and Esteves 2014). Simon et al. ana-
lyzed 147 unexplained infertile men for sperm 
DNA fragmentation using the Comet assay and 
reported that 84% of these unexplained infertile 
men had DNA fragmentation above the 25% cut-
off value used to determine fertile from infertile 
men (Simon et al. 2013). In addition, the study 
reported that 41% of men categorized with unex-
plained infertility issues have sperm DNA frag-
mentation above the threshold of 52% 
fragmentation, a level previously shown to cate-
gorize the probability of a clinical pregnancy fol-
lowing IVF treatment (Simon et  al. 2013). In 
another study using the SCSA assay, Oleszcuk 
et al. reported that 26% of men diagnosed with 
unexplained infertility had high DNA fragmenta-
tion index (Oleszczuk et  al. 2013). Similarly, 
studies using TUNEL and SCD assays have 
reported that men with unexplained infertility 
have high levels of sperm DNA fragmentation 
(Feijó and Esteves 2014). These studies suggest 
that, to some extent, sperm DNA fragmentation 
assays may be helpful as a biomarker to identify 
men with fertility problems even when they are 
presented with normal semen analysis, as 
reported in unexplained infertility.

It has been shown that sperm are vulnerable to 
xenobiotic agents, resulting in DNA fragmenta-
tion (Aitken and De Iuliis 2007). The exposure to 
xenobiotics can be classified into three major 
types such as occupational exposure, environ-
mental exposure, and pharmacological exposure. 
Workers in contact with polycyclic aromatic 
hydrocarbon exposure have higher sperm DNA 
fragmentation (Hsu et al. 2006). Elevated levels 
of DNA fragmentation were also observed in 
workers associated with waste incineration (Oh 
et al. 2005). Men working in the factories in con-
tact with organic molecules such as styrene 
(Migliore et al. 2002), men working in the insec-
ticide and pesticide industries (Xia et al. 2005), 
and men exposed to organic chemicals (Migliore 
et  al. 2002) also have increased in sperm DNA 
fragmentation.

Pharmacological intervention for the treat-
ment of diseases can result in genotoxic to sperm 
and male germ cells. A well-known example for 
such intervention is cyclophosphamide, which is 
used as a chemotherapeutic agent to treat cancer 
(Hales et  al. 2005). In addition, environmental 
estrogens and similar compounds can have pro-
found effects on male fertility, including affect-
ing sperm DNA fragmentation (Anderson et  al. 
2003). Other environmental pollutions that have 
the ability to induce DNA fragmentation include 
organo-chlorides (Spano et  al. 2005) and smog 
(Evenson and Wixon 2005). Therefore, sperm 
DNA fragmentation may not only be useful to 
identify male reproductive health status but also 
can serve as a biomarker to diagnose men exposed 
to xenobiotics.

�Conclusion

General semen quality parameters (sperm con-
centration, sperm motility, sperm morphology, 
and total sperm count) have shown little or no 
correlation with fertility outcome in populations 
of first pregnancy planners (Bonde et  al. 1998; 
Andersen et al. 2002; Cooper et al. 2010; Buck 
Louis et al. 2014). In contrast, studies correlating 
sperm DNA fragmentation with time to preg-
nancy (Spano et  al. 2000; Evenson et  al. 1999) 
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show a strong association between the two 
parameters. In addition, men with infertility 
issues are showed to have higher levels of sperm 
DNA fragmentation when compared with fertile 
men, suggesting a strong association between 
sperm DNA fragmentation and male infertility 
(Simon et al. 2011b).

The meta-analyses and systematic review pre-
sented here demonstrate that sperm DNA frag-
mentation is a good predictor of IUI failure and is 
associated with IVF pregnancy but less so with 
ICSI outcomes. Sperm DNA fragmentation is 
also negatively associated with embryo develop-
ment and implantation and positively associated 
with miscarriage rates. Based on the evidence 
presented here, we suggest that sperm DNA frag-
mentation is closely associated with male infer-
tility and it is independent of semen parameters. 
In addition, the level of sperm DNA fragmenta-
tion could influence various parameters of ART 
outcomes.

Controversy still exists regarding the clinical 
implementation of DNA fragmentation assays. 
Future studies should carefully consider the cost 
effectiveness and clinical utility of routine 
screening, versus targeted analysis. Furthermore, 
while preliminary data are intriguing, more data 
are still needed regarding the clinical utility of 
clinical interventions, such as antioxidant ther-
apy and testicular sperm aspiration (TESE). 
Lastly, until testing procedures can become 
standardized, it will be nearly impossible to 
solve issues of variability and ultimate utility of 
the assay.
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