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Abstract
Epigenetic information refers to heritable 
changes in gene expression that occur without 
modifications at the DNA sequence level. These 
changes are orchestrated by different epigenetic 
mechanisms such as DNA methylation, post-
translational modifications of histones, and the 
presence of noncoding RNAs. Epigenetic infor-
mation regulates chromatin structure to confer 
cell-specific gene expression.

The sperm epigenome is the result of three 
periods of global resetting during men’s life. 
Germ cell epigenome reprogramming is 
designed to allow cell totipotency and to pre-
vent the transmission of epimutations via 
spermatozoa. At the end of these reprogram-
ming events, the sperm epigenome has a very 

specific epigenetic pattern that is a footprint of 
past reprogramming events and has an influ-
ence on embryo development.

Several data demonstrate that not all 
regions of the epigenome are erased during 
the reprogramming periods, suggesting the 
transmission of epigenetic information from 
fathers to offspring via spermatozoa. 
Moreover, it is becoming increasingly clear 
that the sperm epigenome is sensitive to 
environmental factors during the process of 
gamete differentiation, suggesting the plas-
ticity of the sperm epigenetic signature 
according to the circumstances of the indi-
vidual’s life.

In this chapter, we provided strong evi-
dences about the association between varia-
tions of the sperm epigenome and the exposure 
to environmental factors. Moreover, we will 
present data about how epigenetic mecha-
nisms are candidates for transferring paternal 
environmental information to offspring.
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 Layers of Epigenetic Information 
in Sperm

Spermatozoa are highly differentiated cells that 
play an essential role in reproduction by provid-
ing the haploid paternal genome to the embryo. 
Nevertheless, the biological relevance of sperm 
cells is not merely based on DNA sequence, but 
also on a wide range of epigenetic information 
such as DNA methylation, posttranslational mod-
ifications of histones, and the cargo of a specific 
set of RNA molecules. The orchestrated action of 
the different epigenetic mechanisms is essential 
for modulating sperm chromatin structure and 
gene expression, creating functional sperm able 
to achieve the processes of fertilization and early 
embryogenesis successfully.

 DNA Methylation

DNA methylation mainly occurs at position 5 of 
cytosines (5-methylcytosine, 5mC) in 5’-CpG-3′ 
dinucleotides. It has been called the “fifth base” 
of the human genome since 4% of the cytosines 
are methylated. The CpG dinucleotides are pres-
ent throughout the genome but concentrated in 
genomic regions called CpG islands (CG islands, 
CGI). CGI are normally found within gene pro-
moters, being unmethylated in the case of genes 
that are actively transcribed and methylated in 
the case of inactive genes. The significance of 
CpG dinucleotide methylation along the tran-
scription unit (exons, introns, and 5′ and 3′ 
untranslated regions) is less known.

The sperm methylome is the result of different 
waves of genome-wide DNA reprogramming 
during the differentiation of primordial germ 
cells (PGCs) into spermatozoa. PGCs arise from 
the epiblast and migrate to colonize the genital 
ridge (Chuva de Sousa Lopes and Roelen 2010). 
They initiated their differentiation as cells with a 
somatic epigenetic signature exhibiting high lev-
els of 5mC, which are passively removed during 
PGC migration (Guibert et  al. 2012; Kagiwada 
et al. 2013; Seisenberger et al. 2012). PGCs enter 
a second stage of active DNA demethylation in 
the genital ridge, resulting in an almost complete 

loss of 5mC (Hackett et  al. 2013; Tang et  al. 
2015). The demethylation process in PGCs also 
affects imprinted genes (Hackett et  al. 2013; 
Hajkova et  al. 2002; Sasaki and Matsui 2008). 
Although the global loss of methylation affects 
all methylation levels, some retrotransposon- 
associated and single copy regions of the genome 
are resistant to reprogramming (Tang et al. 2015). 
The establishment of new methylation marks 
starts in type A spermatogonia (Kota and Feil 
2010) and is completed before the onset of meio-
sis (Davis et al. 2000; Kerjean et al. 2000).

The sperm methylome is the consequence of 
this process of DNA methylation erasure and 
reestablishment. The result is a marked hypo-
methylated state with a high homogeneity 
among sperm samples from different individu-
als (Camprubí et al. 2017; Krausz et al. 2012). 
Some authors have demonstrated that genes 
with hypomethylated promoter regions are 
functionally associated with biological pro-
cesses related to embryonic development 
(Camprubí et  al. 2017; Hammoud et  al. 2009; 
Krausz et al. 2012; Molaro et al. 2011). In con-
trast, genomic regions containing repetitive 
DNA sequences appear to be significantly 
hypermethylated, probably to prevent the acti-
vation of transposable elements (Molaro et al. 
2011). Authors agree that these features reflect 
the reprogramming phenomena occurred dur-
ing spermatogenesis, a process designed to 
confer a pluripotent state to the sperm, which 
will facilitate the epigenetic reprogramming 
that will take place during the early stages of 
embryo development.

 Sperm Chromatin

During the postmeiotic differentiation of round 
spermatids into spermatozoa, chromatin is exten-
sively remodeled resulting in nucleoprotamine 
structure in 85% of the nucleus (Gatewood et al. 
1987). This process allows the establishment of 
highly ordered and compacted toroid-chromatin 
structures. The remaining 15% of the sperm 
chromatin retain a nucleohistone structure 
(Gatewood et al. 1987).
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In human spermatozoa, residual nucleosomes 
are programmatically retained in gene regulatory 
regions, including the promoters of developmen-
tal genes, microRNA genes, and imprinted loci 
(Hammoud et al. 2009). Moreover, these histones 
carry multiple posttranslational modifications, 
suggesting some degree of retained regulatory 
competence through histone tail modifications 
(Arpanahi et  al. 2009; Hammoud et  al. 2009). 
The fact that sperm histone modifications are 
transmitted to the embryo and are resistant to 
protein oocyte replacement (Van Der Heijden 
et al. 2008) argues in favor of an effect beyond 
fertilization.

Like histones, protamines also exhibited post-
translational modifications (Brunner et al. 2014; 
Oliva et al. 2015). Nevertheless, protamines are 
exchanged by the histones provided by the oocyte 
(Van Der Heijden et  al. 2008), which argues 
against an effect of posttranslational protamine 
modifications beyond fertilization.

 Noncoding RNAs

Sperm RNAs have emerged as a field of interest 
because of their high complexity and diversity. 
Beyond the relevance of coding RNAs, different 
populations of sperm noncoding RNAs (ncRNAs) 
have been characterized in the last decade, reveal-
ing their strong contribution in processes related 
to cellular spermatogenesis, fertilization, and 
embryogenesis (Corral-Vazquez and Anton 
2018). Sperm RNA transcripts mainly originated 
from the two transcriptional waves that take place 
during spermatogenesis generating specific tran-
scripts for the correct development of spermato-
genesis (de Mateo and Sassone-Corsi 2014). 
Moreover, some sperm ncRNAs remain intact 
after being released into the oocyte (Boerke et al. 
2007) regulating the expression of specific 
oocytes transcripts (Amanai et al. 2006), which 
suggest their ability to introduce epigenetic mod-
ifications in the early embryo.

ncRNAs are classified, depending on their 
length, into long noncoding RNA (lncRNA) and 
small noncoding RNA (sncRNA). The biological 
functions of lncRNAs mainly comprise epigene-

tic regulation of single mRNA transcription or 
whole chromosomes (Bao et al. 2013). There are 
specific lncRNAs that are especially abundant in 
the sperm transcriptome, suggesting their role in 
male fertility (Jodar et al. 2013).

The sperm sncRNA family includes 
microRNA (miRNAs), Piwi-interacting RNA 
(piRNAs), and endogenous small interfering 
RNAs (endo-siRNAs). MicroRNAs are a family 
of functional RNA molecules of 22–24 nucleo-
tides (nt) that form complementary stem-loop 
structures in the 3′ untranslated region (3’ UTR) 
of their target messenger RNAs (mRNAs). 
Usually, this association leads to mRNA degrada-
tion and/or translational repression. It is known 
that each miRNA has hundreds of potential 
mRNA targets, and it has been estimated that 
they can regulate up to 60% of protein-coding 
genes (Luo et  al. 2015). Human spermatozoa 
show homogeneous and stable expression pat-
terns of miRNAs, which have a significant onto-
logical relation with processes involved in 
embryogenesis and spermatogenesis (Salas- 
Huetos et al. 2014). PiRNAs are 24–30 nt mono-
catenary RNA molecules. They are the most 
abundant sncRNA in both human and mice sperm 
transcriptomes (Pantano et al. 2015; Röther and 
Meister 2011). Their functionality is based on 
their attachment to PIWI proteins, which are 
exclusive of germ cells, to allow the posttran-
scriptional silencing of retrotransposons (Chuma 
and Nakano 2012). Accordingly, their biological 
function is in connection with a protective mech-
anism against genome modifications produced by 
transposable elements. Endo-siRNAs are 22  nt 
RNA molecules highly expressed in male germ 
cells (Song et al. 2011). The posttranscriptional 
gene regulatory function of endo-siRNAs is simi-
lar to the gene-silencing pathway of miRNAs. It 
is based on their attachment to 3’ UTR regions of 
target mRNAs (Song et al. 2011), which lead to 
the silencing or degradation of the mRNA 
sequences (Luo et  al. 2015). In spermatozoa, 
these molecules control the expression of epigen-
etic regulators, such as histone methyltransfer-
ases, and promote the modification of chromatin 
conformation (Song et  al. 2011). Additionally, 
some studies suggest that endo-siRNAs are 
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 necessary in postfertilization processes for the 
correct development of preimplantational 
embryos (Suh et al. 2010).

 An Overview into the Concept 
of Transgenerational Inheritance

In human and animal models, several studies 
have demonstrated that the exposure to certain 
environmental factors in specific windows of the 
epigenome reprogramming affects the mecha-
nisms that lead to the establishment of the sperm 
epigenome. Since the sperm epigenome is cru-
cial for the proper fertility of the individuals, 
these variations have been related to male infer-
tility (Camprubí et  al. 2016). Moreover, it is 
becoming clear that some epimutations could be 
also transmitted via spermatozoa to offspring, 
which introduce the concept of epigenetic 
inheritance.

Inheritance of environmental-induced epigen-
etic changes is associated to the permanent trans-
mission of epigenetic variations through the 
germline (Skinner 2008). In the case of exposure 
of a gestating F0 female, only the transmission of 
a phenotypic alteration until the third generation 
(F3) could be considered true transgenerational 
inheritance (Fig. 4.1). In this case, the germ cells 
of the F1 generation also carry the epigenetic 

variation induced in the gestating female (F0), 
which could also affect F1 gametes. Accordingly, 
F2 individuals could inherit the trait from an F0 
gestating female. Therefore, in this model, the 
transmission until the F3 generation is required 
to assure that the results are the consequence of 
epigenetic transmission between cells unrelated 
to previous exposure effects (Fig. 4.1). When the 
exposure occurs in an adult male (F0), germ cells 
of the F1 generation could inherit the variation 
from the F0 spermatozoa. Thus, in this case, the 
first nonexposed generation involved would be 
F2 (Fig. 4.2). If the transmission of an epigenetic 
treat does not reach F3 (from a gestating female 
exposure) or F2 (from an adult male exposure), 
we talk about intergenerational or multigenera-
tional inheritance.

In this context, it is important to remark that 
the only way to explain the transmission of any 
epigenetic variation induced by any agent 
between generations is the permanent repro-
gramming of germ cells. That is, the variation 
must be resistant to the resetting periods in which 
the epigenome is involved during the man’s life. 
This would guarantee stable transmission across 
generations.

From these premises, posttranslational 
modifications of histones and sncRNAs signa-
ture are epigenetic mechanisms that can hardly 
be associated with transgenerational epigenetic 

Fig. 4.1 Epigenetic inheritance of environmental- induced 
changes through the male germline. Transgenerational epi-
genetic inheritance from an exposed gestating female (F0) 

occurs when the transmission of a phenotypic alteration via 
spermatozoa reaches the third generation (F3); otherwise 
the mode of inheritance is classified as intergenerational
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transmission. Concerning DNA methylation, it 
was assumed until a few years ago that the only 
regions that escaped from the global demethyl-
ation during epigenetic reprogramming were 
those regulated by genomic imprinting (Branco 
et  al. 2008) and some repetitive noncoding 
DNA (Lane et al. 2003). Nevertheless, several 
pieces of data suggest that the number of 
regions is more extensive, affecting non-
imprinted coding regions of the genome. For 
instance, it has been identified a group of CGI 
(Hackett et al. 2013; Seisenberger et al. 2012) 
and non-imprinted promoter sequences (Borgel 
et al. 2010) that resist the global DNA methyla-
tion reprogramming in the embryo. In human 
and mouse embryonic cells, it has been demon-
strated the existence of single copy non-
imprinted sequences resistant to reprogramming. 
Interestingly, these regions seem to be enriched 
in genes particularly active in the brain during 
adult life development (McGraw et  al. 2015; 
Tang et al. 2015).

The existence of coding regions that escape 
DNA methylation epigenetic reprogramming 
points to the possibility of the existence of trans-
generational epigenetic inheritance. That is, a 
part of the genome could be involved in the trans-
generational epigenetic transmission of adult- 
onset disease phenotypes.

 Environmental Factors Affect 
the Human Sperm Epigenome

There are several pieces of evidence  demon-
strating the influence of environmental factors 
over the sperm epigenome. Nevertheless, the 
molecular basis of this phenomenon is poorly 
understood and appears to be variable between 
inductor factors. In overall terms, the alteration 
of the sperm epigenetic signature has been asso-
ciated to epigenetic insults in the development 
of PGCs that ultimately affects spermatozoa. 
Moreover, environmental factors could also dis-
turb testis microenvironment that is crucial to 
accomplish the epigenetic mechanisms in germ 
cells during spermatogenesis. It is important to 
mention that epigenetic modifications associ-
ated to environmental factors mainly affect 
germ cells rather than spermatozoa since the 
sperm chromatin is a highly condensed structure 
and, therefore, highly resistant to environmen-
tal-induced perturbations.

Overall, the information provided in this sec-
tion suggest that fetal, perinatal, or adult expo-
sure of male germ cells to environmental factors 
has a detrimental effect on the sperm epigenome. 
Therefore, the fertility of the exposed individuals 
could be compromised. Furthermore, since some 
of the epimutations appear to be permanent, 

Fig. 4.2 Epigenetic inheritance of environmental- 
induced changes through the male germline. 
Transgenerational epigenetic inheritance from the 
exposure in an adult individual (F0) occurs when the 

transmission of a phenotypic alteration via sperma-
tozoa reaches the second generation (F2); otherwise 
the mode of inheritance is classified as 
intergenerational
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which is resistant to the reprogramming events, 
they could be transmitted to upcoming generations.

 Age

Some authors have found a general increase of 
sperm DNA methylation with age (Camprubí 
et al. 2016; Jenkins et al. 2014). Since the nega-
tive influence of age on the testicular function 
and seminogram is well documented (Eisenberg 
and Meldrum 2017), it has been suggested that 
advanced age could alter the methylation marks 
of genes associated with male fertility. Actually, 
the influence of age over DNA methylation goes 
beyond male fertility. It has been described that 
DNA from blood of old individuals is more het-
erogeneous and hypomethylated in comparison 
with newborn DNA (Heyn et al. 2012).

It is interesting to remark that age-associated 
epigenome variations observed in human sper-
matozoa are specially associated to genes 
involved in neuropsychiatric disease in adult life 
(Jenkins et  al. 2014). In a  mouse model, a 
genome-wide DNA methylation study compar-
ing sperm from young and old mice has revealed 
that the offspring of older fathers exhibited simi-
lar brain DNA methylation abnormalities than 
that observed in the paternal sperm (Milekic et al. 
2014). Moreover, these methylation abnormali-
ties are related to transcriptional dysregulation of 
developmental genes implicated in autism and 
schizophrenia (Milekic et al. 2014). These results 
suggest the possibility of transmission to the next 
generation of epimutations associated with brain 
disorders via spermatozoa.

Although the mechanisms that drive age- 
related methylation alterations in the sperm 
remain elusive, it appears that the rate of cell 
proliferation has a direct influence. It has been 
reported that highly proliferative cells exhib-
ited a greater magnitude of age-associated 
DNA methylation changes (Thompson et  al. 
2010), while nondividing cells are less prone to 
these age effects (Chu et  al. 2007). The high 
proliferation rate of spermatogonial germ cells 
along reproductive man lifespan made this cell 
type especially susceptible to age-related epi-

genetic alterations. It is possible that dividing 
cells are more prone to the accumulation of 
epimutations over time since they are exposed 
to errors during the transmission of the meth-
ylation marks in the S-phase of the cell cycle. 
As stated by other authors, further studies are 
required to determine whether the observed 
age-associated effects in spermatozoa are a 
consequence of the accumulation of epimuta-
tions in primordial germ cells or whether they 
are a consequence of testicular microenviron-
ment perturbations related to advanced age 
(Oakes et al. 2003).

 Obesity

Obesity may induce male infertility by a combi-
nation of different factors including endocrine 
abnormalities that ultimately affects the process 
of spermatogenesis and early embryogenesis (Du 
Plessis et al. 2010).

It is well documented that obese men had an 
increased incidence of sperm epimutations, 
which is interpreted by some authors as a con-
tributing factor for male infertility. For instance, 
it has been described sperm DNA methylation 
differences at specific CpG of imprinted genes 
between overweight men and normal weight 
men (Soubry et al. 2016). In a sperm epigenome 
study from lean and obese men, a difference in 
small noncoding RNA expression and DNA 
methylation pattern was observed (Donkin 
et  al. 2016). Moreover, morbidly obese men 
submitted to surgery- induced weight loss modi-
fies the sperm epigenetic pattern (Donkin et al. 
2016). In this regard, in an obesity mouse 
model, it has been demonstrated the differential 
abundance of different molecules of sperm 
microRNAs that have been ontologically asso-
ciated with embryo development and metabolic 
and reproductive dysregulations in adulthood 
(Fullston et al. 2016).

The reason why obesity induces sperm epi-
genetic alterations has been related to different 
causes. Endocrine disruptions appear to be one of 
the most significant. Obesity has been associated 
with hypogonadism, leading to alterations of the 
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testicular microenvironment that could interfere 
with the normal development of the sperm epig-
enome. In rat models, tamoxifen (estrogen recep-
tor modulator) has been shown to reduce sperm 
DNA methylation at specific loci (Igf2/H19 dif-
ferentially methylated region) through DNA 
methyltransferase 1 (Dnmt1) functional altera-
tions in the testis. Hence, it is likely that this 
alteration could influence the proliferative phase 
of spermatogonial germ cells where Dnmt1 pro-
teins are expressed abundantly, resulting in meth-
ylation errors in spermatozoa leading to male 
infertility (Pathak et al. 2009).

Other authors have related the presence of 
obesity-related epigenetic variations with an 
increased scrotal temperature, which led to tes-
tis hyperthermia and the subsequent reactive 
oxygen species (ROS) production. It has been 
described that DNA damage induced by oxida-
tive stress could disturb the functionality of 
DNA methyltransferases (DNMTs), resulting in 
methylome variations. DNA lesions affect the 
ability of DNA to function as a substrate for the 
DNMTs resulting in hypomethylation (Franco 
et al. 2008). Moreover, oxidative DNA damage 
leads to mutations preferably at methylated 
CpGs that would result in loss of epigenetic 
marks (Lee 2002). In this regard, ROS produc-
tion has also been associated to hypermethyl-
ation of promoter regions of tumor suppression 
genes promoting carcinogenesis (Lim et  al. 
2008). Moreover, DNA damage induced by oxi-
dative stress has also been implicated in the 
regulation of miRNA expression (Mateescu 
et al. 2011; Simone et al. 2009).

In animal models, it has been demonstrated a 
perturbed methylation pattern in the paternal pro-
nuclei derived from heat-stressed spermatozoa 
(Rahman et  al. 2014). In humans, it has been 
described that varicocele, which has been related 
to the exposure of sperm to heat, is associated 
with alterations of the sperm methylome 
(Bahreinian et al. 2015). Since an increased scro-
tal temperature is expected in obese men (because 
of sedentarism), testis heat stress and their detri-
mental effects on the sperm methylome are 
expected in obese men.

 Endocrine Disruptors

Endocrine disruptors (ER) are a heterogeneous 
set of exogenous chemical substances capable of 
altering the regulation of the hormonal system. In 
reproduction, ER can disturb the regulation of the 
hypothalamic-pituitary-gonads axis and there-
fore alter the gonadal sex differentiation and 
gametogenesis, which ultimately lead to 
infertility.

In animal models, prenatal or perinatal expo-
sure to relevant doses of ER leads to testis dis-
ease, ovarian disease, and pubertal abnormalities 
in adult individuals (Manikkam et  al. 2013; 
Salian et al. 2011). The exposure to ER in mice 
causes changes in spermatogonia that result in 
meiotic alterations in the spermatogenesis of the 
adult male (Vrooman et  al. 2015) that could 
result in a disruption in the progression of meio-
sis I and decreased sperm counts (Liu et al. 2013; 
Tiwari and Vanage 2013).

Since ER act at the time of the germ cell epig-
enome reprogramming, some authors have asso-
ciated the exposure to ER to perturbation of the 
sperm epigenome, mainly by means of altera-
tions of DNA methylation (Consales et al. 2016; 
Miao et al. 2014). ER would induce alterations of 
the testicular microenvironment and increase 
sperm DNA damage (Tiwari and Vanage 2013) 
that ultimately would perturb the epigenetic 
marks by affecting DNA methylation patterns.

 Diet

It is well known that dietary compounds, such as 
phytochemicals, minerals and vitamins, can pro-
mote changes in epigenetic mechanisms of 
somatic as well as germ cells by influencing 
enzymes and other proteins responsible for epi-
genetic modifications (Schagdarsurengin and 
Steger 2016).

For instance, B vitamins must be provided by 
diet or supplementation and modulate the avail-
ability of methyl groups provided by the 1 Carbon 
Cycle, which is essential to ensure the availabil-
ity of activated methyl groups for the methylation 
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reactions of the cell. Methyl groups needed by 
methyltransferases are provided by S-adenosyl- 
L-methionine (SAM) through the 1 Carbon 
Cycle. Thus, diet can influence the levels of DNA 
methylation and consequently affect gene expres-
sion. Other authors have reported an association 
between vitamin D deficiency and global dys-
regulation of the methylome via overexpression 
of DNA methyltransferase 3b (Dnmt3b) tran-
scripts (Xue et al. 2016).

In this regard, the influence of diet on the sperm 
epigenome has been demonstrated in several stud-
ies including humans (Schagdarsurengin et  al. 
2012), mainly through alteration of sperm DNA 
methylation (Aarabi et  al. 2015; Lambrot et  al. 
2013). These variations have been associated with 
negative effects on the sperm quality that would 
affect the reproduction success of the couple.

 Metabolic Disorders: Diabetes

Glucose metabolism is of great importance for 
sperm cell functionality. Diabetic disease has 
been associated with detrimental effects on male 
fertility, especially on sperm quality, sperm DNA 
integrity, and sperm epigenome dysregulations 
(Ding et al. 2015). In particular, alterations of the 
sperm methylome in paternal prediabetes indi-
viduals have been described (Wei et al. 2014).

Diabetes-induced testicular impairment due to 
its detrimental effect over testis microcirculation 
(Long et  al. 2018). This detrimental effect 
increases the susceptibility of spermatogenic 
germ cells to generate ROS (Long et al. 2015). 
ROS generation in diabetic patients has been also 
associated with increased testicular temperature 
resulting from fat accumulation, which leads to 
testis hyperthermia (Wei et al. 2014). Among the 
collateral damage on male fertility induced by 
ROS, aberrant sperm DNA methylation is one of 
the most significant.

 Chemotherapy

Those agents used to treat cancer that interfere 
with the process of DNA methylation or DNA 

replication have a severe impact over spermato-
genesis (Chan et al. 2012; Doerksen et al. 2000; 
Doerksen and Trasler 1996; Kelly et  al. 2003) 
and early embryo development (Doerksen et al. 
2000; Kelly et al. 2003). When these treatments 
are of sufficient duration to affect the spermato-
gonia, the alterations of the sperm epigenome are 
permanent (Chan et  al. 2012; Doerksen et  al. 
2000; Kelly et al. 2003). In this regard, adoles-
cent chemotherapy exposure in patients with 
osteoblastoma has been related with sperm epi-
mutations in adult life (Shnorhavorian et  al. 
2017). These results suggest that chemotherapy 
exposure causes permanent epigenetic alterations 
in the spermatogonial epigenome.

 Alcohol

Although the association between alcohol intake 
and male infertility remains controversial 
(Martini et al. 2004), there is no doubt about the 
detrimental effect of alcohol consumption on 
DNA integrity due to the oxidative damage 
induced by consumption (Ellegaard and Poulsen 
2016). This effect has been also found in male 
germ cell line (Aboulmaouahib et  al. 2018). 
Since ROS is connected to alterations of DNA 
methylation, some authors have found sperm 
methylome variations in alcohol-exposed indi-
viduals (Liang et al. 2014; Ouko et al. 2009).

The alteration of the sperm methylome 
induced by alcohol intake has been also associ-
ated with decreases in the activity of DNA meth-
yltransferase 1 (Dnmt1) (Bielawski et  al. 2002; 
Garro et al. 1991) or reduced production of the 
methyl donor SAM (Sultana et al. 2015).

 Smoking

Like alcohol intake, seminal quality is not clearly 
altered by cigarette consumption, although subtle 
modifications have been described suggesting an 
effect on male reproductive function (Martini 
et al. 2004).

There is a clear connection between tobacco 
and DNA oxidative damage as a consequence of 
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the production of ROS (Ellegaard and Poulsen 
2016). Moreover, smoking is known to cause 
ROS throughout spermatogenesis, which would 
affect the sperm DNA integrity (Aboulmaouahib 
et al. 2018), including some marginal effects on 
sperm DNA methylation (Al Khaled et al. 2018; 
Hamad et al. 2018; Laqqan et al. 2017).

Although the reason why smoking causes 
sperm DNA methylation variations deserves 
further investigation, some authors have identi-
fied a detrimental effect of nicotine on DNA 
methyltransferase expression (Satta et al. 2008). 
Moreover, cigarette smoke may alter DNA meth-
ylation via the interference of hypoxia (which is 
usual in smoker individuals) with the availability 
of SAM (Liu et al. 2011).

 Epigenetic Mechanisms Are Strong 
Candidates for Transferring 
Paternal Environmental 
Information

In the last decade, several studies have addressed 
the analysis of the sperm epigenome as a vehicle 
for the transmission to offspring of epimutations 
induced by environmental factors (Table  4.1). 
Among the different epigenetic mechanisms, 
DNA methylation has been the most studied, 
probably because it has been proved that some 
sperm DNA methylation signatures escape the 
reprogramming events in the early embryo. 
Accordingly, at least a portion of the sperm DNA 
methylation variations induced by environmental 
factor has the potential to be retained in germ 
cells and be transmitted to the next generation.

 Sperm Epimutations Affect Embryo 
Development

Several pieces of data suggest that sperm epig-
enome variations have a detrimental effect on 
embryo development, suggesting their funda-
mental role in postfertilization events. In humans, 
some authors have associated the presence of 
sperm DNA methylation variations and low preg-
nancy rate (Benchaib et  al. 2005). Recently, 

Denommme et  al. have described sperm DNA 
methylation differences at CGI contained in 
retained histone regions between good and poor 
blastocyst development groups (Denomme et al. 
2017). In the case of histones, the fact that his-
tones are retained in the promoters of develop-
mental genes (Hammoud et  al. 2009), and the 
fact that sperm histone modifications are trans-
mitted to the embryo and are resistant to protein 
oocyte replacement (Van Der Heijden et  al. 
2008), argues in favor of an effect beyond fertil-
ization. Finally, some data from sncRNAs dem-
onstrated the importance of some sperm-borne 
miRNAs for early embryo development, suggest-
ing that alteration of the sperm RNA cargo could 
be critical for the first cleavage events (Liu et al. 
2012).

 Sperm Epimutations Affect 
the Health of the Exposed Men 
and Their Offspring

Environmentally induced epigenetic inheritance 
refers to the transmission of epigenetic informa-
tion through sperm cells in the absence of con-
tinuous exposure to the inductor agent. A great 
number of studies have addressed the issue of the 
transmission of epigenetic changes via spermato-
zoa through epigenetic perturbations of the germ 
line (Table  4.1). Most of the studies have ana-
lyzed this phenomenon using animal models, 
whereas in humans this phenomenon has been 
poorly studied. Several factors may induce epi-
genetic variations among which are endocrine 
disruptors, diet, exercise training, diabetes, alco-
hol, obesity, stress, smoking, dioxin, pesticide, 
hydrocarbon, and age.

As we stated before, the only way to explain 
the transmission of an induced epigenetic varia-
tion across generations is the permanent repro-
gramming of germ cells. That is, the variation 
must be resistant to the different reprogramming 
periods. This situation hardly will occur in the 
case of posttranslational modifications of his-
tones and sncRNA signature, but it is possible for 
DNA methylation. The discovery of coding 
regions that escape DNA methylation epigenetic 
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reprogramming points out the possibility of the 
participation of this mechanism in transgenera-
tional epigenetic inheritance events. Therefore, 
DNA methylation is, by far, the most studied 
epigenetic mechanisms in transgenerational stud-
ies (Table 4.1).

It is important to mention again that only the 
transmission of a phenotypic alteration via sper-
matozoa until the third generation (in the case of 
exposure of a gestating F0 female; Fig. 4.1), or 
the second generation (when the exposure 
occurs in an adult individual; Fig. 4.2), could be 
considered true transgenerational inheritance 
(Skinner 2008).

 Intergenerational Inheritance

Intergenerational analysis has been performed in 
10 different studies, 5 from a gestating female 
(Ding et al. 2012; Lambrot et al. 2013; Martínez 
et al. 2014; Radford et al. 2014; Xue et al. 2016) 
and 5 from the exposure of an adult male (Carone 
et  al. 2010; Finegersh and Homanics 2014; 
Fullston et  al. 2016; Liang et  al. 2014; Milekic 
et al. 2014).

In the studies from a gestating female, 
authors demonstrated the transmission of phe-
notypic alterations to the F2 generation, includ-
ing metabolic and body weight alterations which 
in all cases were related with the inducing factor 
(diabetes and diet) (Ding et  al. 2012; Lambrot 
et al. 2013; Martínez et al. 2014; Radford et al. 
2014; Xue et al. 2016). In three studies, authors 
found that the same epimutations observed in 
spermatozoa were maintained, at least in part, in 
somatic tissues of the following generation, 
reinforcing the interpretation of epigenetic 
inheritance (Ding et  al. 2012; Lambrot et  al. 
2013; Martínez et al. 2014).

The remaining five studies were designed from 
exposures of adult males (Carone et  al. 2010; 
Finegersh and Homanics 2014; Fullston et al. 2016; 
Liang et al. 2014; Milekic et al. 2014). Again, the 
authors observed phenotypic effects in offspring 
related to the inducing agent. Concerning the 
postulation of the sperm cell as a vehicle for 

transmission, all studies except one (Carone et al. 
2010) demonstrated sperm epigenome variations. 
Two works demonstrated the presence of the 
same sperm methylome variation in sperm and 
somatic tissues from next generation (Liang 
et al. 2014; Milekic et al. 2014).

 Transgenerational Inheritance

Eight transgenerational studies have been pub-
lished so far, five from the exposure to a gestating 
female (Anway et  al. 2005; Manikkam et  al. 
2012a, b, Manikkam et  al. 2013; Tracey et  al. 
2013) and three from adult male exposure (de 
Castro Barbosa et  al. 2016; Gapp et  al. 2014; 
Wei et al. 2014).

In the cases of gestational female exposure 
(Anway et  al. 2005; Manikkam et  al. 2012a, b, 
Manikkam et  al. 2013; Tracey et  al. 2013), 
authors demonstrated the transmission of pheno-
typic alterations (including alterations of the 
reproductive system, kidney disease, and obesity) 
until the F3 generation. Moreover, all these stud-
ies found sperm DNA methylation variations in 
F3 spermatozoa, suggesting that the transmission 
of the epigenetic phenotypic alteration is associ-
ated to sperm methylome variations that are not 
reprogrammed across generations. It is important 
to mention that, in none of them, the  authors 
analyzed if the epimutations observed in sperma-
tozoa were also present in somatic tissues of the 
subsequent generation.

Three more studies demonstrated transgenera-
tional inheritance in adult male exposures (F2 
phenotypic alterations related to the inducing 
agent) (de Castro Barbosa et al. 2016; Gapp et al. 
2014; Wei et al. 2014). In all the cases, authors 
identify sperm and somatic epigenome variations 
associated with the inducing factor that would 
explain the phenotypic alteration observed in F2 
individuals. These results are highly indicative of 
true transgenerational inheritance.

Overall, the revision of the literature per-
formed in the present manuscript (Table  4.1) 
demonstrated the existence of strong evidences 
about the presence of epigenetic inheritance via 
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spermatozoa. Nevertheless, we must be cautious 
in the interpretation of the results. It is important 
to mention that most of the studies only provide 
partial evidences about this phenomenon. In this 
sense, a study demonstrating unequivocally the 
presence of transgenerational inheritance via 
spermatozoa is currently lacking. This study 
must accomplish the following requirements: (i) 
to identify sperm epigenome variations induced 
by environmental factors, (ii) to demonstrate the 
transmission of epigenome variations from sperm 
to somatic tissues, (iii) to identify phenotypic 
effects associated to the presence of epimuta-
tions, and iv) to demonstrate the presence of the 
same epimutations in sperm and somatic tissues 
at least until the first nonexposed generation.

 Is Multigenerational Disease 
Prevention a New Paradigm?

From the information provided in the preceding 
paragraphs, it becomes clear that the exposure to 
certain environmental factors in specific win-
dows of sperm development influences the risk of 
developing chronic diseases and behavior disor-
ders in adulthood. These studies support the 
intriguing idea that human beings could adapt the 
expression of genes to environmental signals. 
That is, epigenetic plasticity would provide the 
ability for adaptation to the current environment 
in individuals of equal genotype. Accordingly, an 
area of research that could be crucial in the near 
future regards the possibility to prevent the onset 
of epigenetic-based diseases through the modula-
tion of the sperm epigenome in the previous gen-
eration. That is, the modification of lifestyle 
factors driving to sperm epimutations could be a 
powerful tool to normalize the sperm epigenome 
and avoid their negative consequences.

Some evidence suggests the veracity of this 
possibility. For instance, in a mouse model, it has 
been demonstrated that diet or exercise training 
in obese males restores insulin sensitivity and 
normalized adiposity in female offspring. These 
modifications are associated with the normaliza-
tion of sperm microRNA pattern, suggesting that 

diet and/or exercise normalize aberrant epigene-
tic signals in sperm and improve the metabolic 
health of offspring (McPherson et  al. 2015). In 
humans, it has been demonstrated that exercise 
training modified the sperm DNA methylation 
mark of genes related to schizophrenia and 
Parkinson’s disease (Denham et al. 2015). Also, 
surgery-induced weight loss has been associated 
with a remodeling of sperm DNA methylation, 
especially at genetic locations implicated in the 
central control of appetite (Donkin et al. 2016).

 Concluding Remarks

The sperm epigenome is the result of the differ-
ent periods of epigenome reprogramming in 
germ cells. These reprogramming events have the 
main function to develop totipotent cells and to 
prevent the transmission of epimutations via 
spermatozoa. At the end of these reprogramming 
events, spermatozoa carry a distinctive epig-
enome, which is a footprint of spermatogenesis 
events and is programmed to allow embryogene-
sis and to influence in adult life.

Since the sperm epigenome is sensitive to 
numerous environmental factors, it is clearly sus-
ceptible to variations. The discovery of coding 
regions that escape DNA methylation epigenetic 
reprogramming points to the possibility of the 
transmission of epigenetic variation between 
generations (induced by environmental factors) 
and hence, to the existence of transgenerational 
epigenetic inheritance. In animal models, there 
are strong evidences about the presence of trans-
generational epigenetic inheritance via spermato-
zoa. Nevertheless, a complete study unequivocally 
demonstrating this kind of transmission is cur-
rently lacking.

The high plasticity of the sperm epigenome 
opens the possibility of its modulation through 
the modification of lifestyle factors. This is a very 
promising area in the field of reproductive epi-
genetics, that is, the analysis of the normalizer 
effect of changes in lifestyle factors on the sperm 
epigenome as a tool to overcome some types of 
male infertility.
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