q

Check for
updates

MitPlan: A Planning Approach to Mitigating
Concurrently Applied Clinical Practice
Guidelines

Martin Michalowskil(%), Szymon Wilk?, Wojtek Michalowski®,
and Marc Carrier”

! University of Minnesota, Minneapolis, MN 55455, USA
martinm@umn. edu
2 Poznan University of Technology, Poznan, Poland
3 University of Ottawa, Ottawa, Canada
4 The Ottawa Hospital Research Institute, Ottawa, Canada

Abstract. As the overall population ages, patient complexity and the scope of
their care is increasing. Over 60% of the population over 65 years of age suffers
from multi-morbidity, which is associated with over two times as many patient-
physician encounters. Yet clinical practice guidelines (CPGs) are developed to
treat a single disease. To reconcile these two competing issues, we developed a
framework for identifying and addressing adverse interactions in multi-morbid
patients managed according to multiple CPGs. The framework relies on first-
order logic (FOL) to represent CPGs and secondary medical knowledge and
FOL theorem proving to establish valid patient management scenarios. In this
work, we leverage the framework’s representation capabilities to simplify its
mitigation process and cast it as a planning problem represented using the
Planning Domain Definition Language (PDDL). We demonstrate the frame-
work’s ability to identify and mitigate adverse interactions using planning
actions, add support for durative clinical actions, and show the improved
interpretability of management plan recommendations in the context of both
proof-of-concept and clinical examples.

Keywords: Clinical practice guidelines + Multi-morbidity - Planning

1 Introduction

Clinical practice guidelines (CPGs) are statements developed systematically from
available evidence to assist practitioners in appropriate management of a patient with a
specific disease [1]. CPGs have demonstrated multiple benefits, including improved
quality of care and patient outcomes [2]. Despite this, their practical adoption is limited
and one of the major obstacles is their very limited support for complex patients, i.e.,
patients with discordant multi-morbidity [3]. On one hand, such patients are typically
excluded from clinical trials used for CPG development [4]. On the other hand, pop-
ulation aging and the widening scope of care results in an increasing number of
complex patients (over 60% of population over 65 suffers from multi-morbidity [5]).
A straightforward application of disease-specific CPGs to such patients can lead to

© Springer Nature Switzerland AG 2019
D. Riafio et al. (Eds.): AIME 2019, LNAI 11526, pp. 93-103, 2019.
https://doi.org/10.1007/978-3-030-21642-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-21642-9_13

94 M. Michalowski et al.

adverse interactions between recommendations that were not considered when devel-
oping a CPG that significantly deteriorate the quality of provided care and may even be
dangerous to a patient’s health [6].

Thus, there is a need for methods and tools for identifying such adverse interactions
and for addressing them by revising conflicting recommendations [4, 7] — we refer to
this process as the mitigation of adverse interactions. Responding to this challenge,
there is significant research on computer-interpretable CPGs (CIGs) and on mitigating
adverse interactions between simultaneously applied CPGs (summarized in [3]). Two
groups of approaches have been proposed: those aimed at merging treatments and those
that are merging CIGs. Generally, the former take treatment recommendations con-
structed according to several CIGs, mitigate possible interactions, and construct a
single management plan, while the latter combine several CIGs into a single patient-
specific CIG that is later used to establish a safe (interaction-free) management plan.

In [8] we proposed a framework for mitigating adverse interactions that belongs to
the first group of approaches. It relies on first-order logic (FOL) to represent CIGs and
other medical knowledge (referred to as primary and secondary knowledge, respec-
tively) and combines search techniques with FOL-based reasoning in order to find
treatment recommendations from multiple CIGs into a safe management plan. When
revising recommendations, it also considers patient preferences such that the most
desired revisions are introduced. Although capable, our FOL-based framework is
complex and in this paper we propose its simplification, where we use planning instead
of a hybrid of search and logical reasoning. Specifically, we demonstrate how to
translate our FOL-based clinical knowledge representation into the Planning Domain
Definition Language (PDDL), and how using a PDDL-based representation with a
planner eases mitigation and construction of management scenarios.

2 Background

In this section we conceptually define the FOL-based mitigation framework and
introduce the planning paradigm to provide context for our new contributions.

2.1 FOL-Based Mitigation Framework

Our mitigation framework assumes that each disease-specific CPG capturing primary
clinical knowledge is represented as an actionable graph (AG) [8, 9]. The AG is a
directed graph with context, decision, action, and parallel nodes. A context node is the
root of the graph, a decision node indicates a clinical decision, an action node indicates
a clinical action, and a parallel node indicates the beginning or end of two or more
sequences of clinical decisions or actions that are executed in parallel. Nodes are
ascribed with additional properties, e.g., related to their temporal characteristics.

The AG relies on the task network-based representation used as a foundation in a
number of representation languages (e.g., GLIF3, SAGE or PROforma) [3], however, it
has been limited to the 4 types of nodes listed above as those elements are important
from a mitigation perspective. AGs can be easily obtained from other task network-

MitPlan 95

based languages [10] and we use these AGs as an intermediate representation to apply
our mitigation framework to CIGs represented in different languages.

We formally represent the AGs using a FOL language. The two key components of
this language are structural and temporal predicates. The structural predicates, shown in
Fig. la, describe the structure of the AG, and the temporal predicates, shown in
Fig. 1b, describe the temporal relationship of and between nodes in the AG. These
predicates are used in combination to construct FOL theories (i.e., sets of logical
sentences) describing specific patient encounters. Each theory represents all disease-
specific CIGs applied to a particular patient and information (potentially incomplete)
available about this patent. In order to generate a management scenario for an
encounter, we apply model finding techniques to the corresponding FOL theory. These
structural predicates constitute a starting point for MitPlan (described below).

Predicate Description
Predicate Description timeOffset(x. to) Node x occurs to time units after the preceding
node

node(x) xis a node in an actionable graph duration(x, dt) Node x takes dt time units to complete
disease(x. d) x is a context node indicating disease d startTime(x, st) Node x starts at time st
decision(x, t) x is a decision node associated with decision t currentTime(ct) Current patient time is ct
action(x, a) x is a action node associated with action a happensNowOrLater(x) Activity (decision or action) from node x is
parallel(x) x is a parallel node happening now (given current time) or will happen
directPrec(x,y) Node x directly precedes node y (there is an arc from x to y) in future
prec(x.y) Node x precedes y (there is a path from x to y) overlap(x.y) Execution periods of nodes x and y overlap
dosage(x,n) Dosage of the drug administered in an action node x is n overlapNowOrLater(x,y) Execution periods of nodes x and y are overlapping

units now (given current time) or will overlap in the
result(x, v) Result of the decision made in a decision node x is v future

Fig. 1a. Structural predicates [8]. Fig. 1b. Temporal predicates [8].

To identify and address adverse interactions, the framework includes revision
operators that encode two types of secondary medical knowledge: (1) knowledge
required to mitigate adverse interactions due to discordant morbidities and,
(2) knowledge about patient preferences that describe clinical circumstances (e.g., a
sequence of actions) that are not consistent with a patient’s preferences. All revision
operators are defined as a logical sentence in the FOL language that describes the
undesired circumstances for which the operator is applicable and a set of operations
that need to be applied to address the applicability of the operator.

The mitigation of adverse interactions is then handled through a series of algo-
rithms (see [8] for more detail). These algorithms operate on the FOL and its textual
representation, applying generalized search and replace operations. This makes the
process of generating a management scenario a complex operation. FOL was designed
to express statements, propositions, and relations between objects. The goal is checking
if a theory is consistent, determining if a certain formula holds in the context of a
theory, and finding a model for the theory. Our framework uses FOL reasoning
techniques to achieve these goals and then extracts certain parts of the model to form a
management scenario. Thus, support for treatment planning is only indirect.

While our FOL-based mitigation framework is able to mitigate adverse interactions
between concurrently applied CIGs, the FOL-based approach introduces extra com-
plexity to the mitigation process. Numerical operations, including the calculation of time,
theorem editing, and result interpretation to return management scenarios are chal-
lenging tasks that require significant domain engineering and complex processing. For

96 M. Michalowski et al.

example, numerical operations associated with revisions need to be performed at the
textual representation level outside of FOL, while time-based calculations (establishing
start and end times based on offsets and durations) are conducted inside FOL. Also,
constructing a management scenario requires the parsing of logical sentences in a found
model. To alleviate these drawbacks, we developed the planning-based approach Mit-
Plan described in this paper. We note that since FOL is more expressive than standard
planning formalisms, one can also use FOL to describe planning problems. However,
due to the complete difference of the semantics of planning and FOL, one would have to
“misuse” FOL for this purpose. FOL expresses statements, propositions, and relations
between objects while planning is about the execution of actions and reasoning whether a
sequence from initial state to the goal exists. These are two fundamentally different aims.

2.2 Planning

Planning, a field related to decision theory, finds a sequence of planning actions to
realize a stated goal. Given an initial state of the world, a set of desired goals, and a set
of planning actions, the planning problem is to identify a set of actions (ordered or non-
ordered) that is guaranteed to generate a state from the initial one that contains the
desired goal(s). Planning approaches fall into one of two categories: state-space and
plan-space. State-space planning works at the level of the states and operators, where
finding a plan is formulated as a search through state space, looking for a path from the
start state to the goal state(s). This is most similar to constructive search. Plan-space
planning operates at the level of plans, where finding a plan is formulated as a search
through the space of plans. Planning starts with a partial, possibly incorrect plan, then
applies changes to it to make it a full, correct plan. This approach is seen as an iterative
improvement/repair process.

Planning (and hence problems described using PDDL) asks the question whether
there exists a sequence of planning actions that transform the initial state (description of
the world prior execution of an action) to some desired goal state. Thus, planning is
about the execution of planning actions and reasoning whether such a sequence exists.
Each planning action has a set of parameters (typed objects in the planning problem),
preconditions that must be true for the action to be taken, and effects resulting from its
execution. As we discuss later, planning actions can also be associated with durations,
conditional effects, and costs. It is our hypothesis that planning is more naturally suited
to the mitigation problem we are solving.

In this work, we use a state-space approach to interleave planning for specific paths
through applied CIGs and applying revision and patient preference actions while trying
to reach terminal states for each CIG. By defining the initial state to include all
applicable CPGs and available patient information, our improved framework iteratively
builds the plan and avoids or mitigates adverse interactions between the CPGs. We
represent the planning problem using PDDL 2.1, which adds support for durative
actions and both negative and conditional effects. PDDL 2.1 enables our framework to
plan over parallel paths and actions with durations, when these are present in the AGs,
within our mitigation framework. We use the Optic [11] planner, a forward-chaining
partial-order state-space planner that supports PDDL 2.1, to find plans that can execute
any node from the AGs using defined planning actions.

MitPlan 97

3 MitPlan

In this section we describe MitPlan, an updated component to our mitigation frame-
work, that replaces the procedures, theorem proving, and model finding over FOL
theories with a planning approach. MitPlan significantly reduces the complexity of our
framework and supports durative clinical actions as first-class citizens in the planning
process, rather than domain-driven manual additions as done using FOL. It also
improves the interpretability of management scenario recommendations.

3.1 From FOL to PDDL

A planning problem is made up of two components: the domain and the problem
instance. A domain contains the planning predicates, functions, and actions while the
problem instance defines the objects, and the initial state and goal specification. The
first step in transitioning from FOL to PDDL is to define the planning domain. Fig-
ures la and 1b show the predicates in our FOL-based mitigation framework that
describe the structure of an AG and its nodes’ temporal properties. We translate these
into predicates in the planning domain and eliminate others by converting their rela-
tionships into planning functions. Table 1 shows only key planning predicates (due to
space limitations). All of the temporal predicates present in our FOL-based approach
are now encompassed in the semantics of durative actions in PDDL. We add new
predicates goal: a goal (terminal) node in the AG; interactionPresent: an adverse
interaction has been found; and revisionOperator: represents a revision operator.

Table 1. Predicate transition from FOL to PDDL.

FOL predicate | Planning predicate | Planning function
node v -
disease v -
decision v -
action v -
parallel v -
directPrec v -
prec” - -
dosage - v
result - v
- goal -
- interactionPresent | —
- revisionOperator | —

prec is no longer needed in the planning domain

(action ?d — disease ?n - node) is a PDDL predicate that contains two typed objects
(d: a disease, n: a node in an AG). The PDDL predicate (action HITN Al), when true,
indicates there is a node object A/ in the AG for the disease object HTN. The PDDL

98 M. Michalowski et al.

function (patientValue ?v - patientData) associates a numeric value with the patient
data object v. The PDDL predicate (decision ?d - disease ?n - node ?v - patientData)
associates patient data with a clinical decision such that object n is a clinical decision
node associated with disease object d and patient data object v. (revisionOperator ?nl -
node ?n2 - node ?’r - node ?c - cost) is a PDDL predicate that defines a revision
operator that replaces nodes n/ and n2 with r with a cost of ¢. Future work expands this
definition to support a wider range of replacement and insertion operations. All
predicates also include a cost and duration.

To complete the planning domain, we include the set of planning actions described
in Table 2. The terms listed for the preconditions and effects are all predicates and
functions in the domain (+ denotes optional terms). Each action is defined by a set of
parameters, a duration, preconditions, and effects. All preconditions and effects are
required (precondition) or achieved (effect) at the start, over all, or at the end of the
action. We do not list durations in Table 2 as they are action-instance dependent and
action costs are numerical fluents added to an overall cost as part of an action’s effect.

Table 2. Actions in the planning domain.

Action Preconditions Effects

takeAction disease, action node, prec node action taken, cost added(+)
executed, patient data value(+)

makeDecision disease, decision node, prec decision made, patient data value set,
node executed, patient data cost added(+)
value(+)

startParallel disease, parallel node, prec node | parallel path started
executed, patient data value(+)

endParallel disease, parallel node, parallel parallel path completed
path started, all parallel nodes
executed

reachGoal disease, goal node, prec node goal node reached for disease
executed, patient data value(+)

replaceNodes disease(s), node(s), interaction existing nodes replaced with new
present nodes, precedence relationships set,

cost added(+)

For each revision operator, its precondition is represented as the predicate revi-
sionOperator and its operations as the planning action replaceNodes. In our previous
work we supported both insertion and deletion operations. In this paper we only
describe the replacement of actions with a new action, a combination of deletion and
insertion. We will support finer grained revision operators in future work, by defining
additional planning actions and updating the revisionOperator predicate.

The planning problem (referred to as the problem instance) inherits from the
domain described above and contains the objects, initial state, and goal specification for
a specific patient encounter. The objects in the instance are the diseases, nodes, and
patient data (as defined in each AG), and the revision operators described in secondary

MitPlan 99

knowledge sources or provided as patient preferences. The initial state represents the
structure of each AG, the available patient information (patient data), and all known
revision operators. The goal specification is to reach the goal (terminal) state of each
AG with no adverse interactions present (optionally minimizing the overall cost).

4 Case Study

To show the feasibility of MitPlan within the context of our mitigation framework, we
first describe proof-of-concept actionable graphs similar to those presented in our
previous work [8]. We visually represent these AGs in Fig. 2. These AGs include
action and decision nodes, a parallel path, share the action A3, and the planning
instance contains two revision operators. The first operator states that if actions A2 in
disease DI and A3 in disease D2 are executed, then replace A3 in D2 with newAction.
The second states that if action C2 in DI and A3 in D2 are taken, then replace A3 in D2
with newAction2. MitPlan also supports more general revisions that replace all
instances of A3, for example. We acknowledge that creating revision operators can be a
time consuming task for a clinical expert, however interaction repositories (e.g.,
Cochrane) and ontologies are sources that can be used to (semi-)automatically generate
these operators.

Disease D1 Disease D2 “ Shared Action
Vi= [0,.4] V1= [5..10]
q‘ 9 m n fetn
°Decision
E V32[0.4]
n - 6 -

! V3=[5,10]

Parallel

y “ Revision Operators
A . IfA2&A3(D2),
V2=[5:10] replace A3(D2) with
4 newAction
V2=[0.4]

. If C2 & A3(D2),
Fig. 2. Proof-of-concept AGs.

N

N

replace A3(D2) with
newAction2

Figure 3 shows the PDDL problem instance for the AGs and revision operators in
Fig. 2. Due to space considerations, we only show the description of the AG for D2,
the revision operators, and goals. Patient data V3 is set to 2, the costs of each revision
operator are 10, and our goal is to minimize the total cost. The bounds for decision
node 73’s branching points are set as [0..4] and [5..10]. Using the Optic planner to
solve this problem instance, we get the solution presented in Fig. 4. We note that
patient data values VI = 2 and V2 = 4 are set in the initial state for this instance.

Each line shows the action taken, where the number at the start of each line is the
time step in which the planning action is taken, and the number at the end the time

100 M. Michalowski et al.

duration for the action. These results show the feasibility of our approach in several
ways. First, we see that the planner has successfully identified a plan to achieve the
goal of both AGs while identifying and addressing an adverse interaction (rev2).
Actions for each CPG are taken concurrently as they are independent of each other, as
are actions within a parallel block for DI (B1/C1, B2/C2). In this problem, the planner
checks for interactions at the end of reaching the goal states, although it is trivial to
check them as a new node is executed (we discuss this below). While in this example
all action durations and costs are 1, these can be varied by assigning values for duration
and cost to each action and decision predicate in the initial state. Furthermore, we
support revision operators that mitigated the same adverse interactions but at different
costs. By minimizing the fotal-cost, the planner applies the revision operator(s) with the
lowest cost. In our previous work all of this reasoning had to be encapsulated in the
mitigation algorithm. Lastly, the management scenario is extracted from the plan by
considering each line and mapping the action to its corresponding text and applying
any revisions taken. This output generation makes integration into a CDSS much easier
when compared to the manual interpretation, rearrangement, and processing of logical
sentences in the found model of our FOL-based approach.

(define (problem CPG-mitigate)
(:domain CPG-gen)
(:objects D1 D2 - disease
A4 T3 A3D2 G2 newAction newAction2 - node
V3 - patientData
revl rev2 - revID
total-cost - cost)
(:init
(diagnosed D2)
(initialNode D2 A4)
(action D2 A4)
(decision D2 T3 V3)
(action D2 A3D2)
(goalNode D2 G2)

(directPrec A4 T3)
(directPrec T3 A3D2)
(directPrec T3 G2)
(directPrec A3D2 G2)

(= (patientValue V3) 2)

(= (decisionValueLower D2 T3 A3D2) 0)
(= (decisionValueUpper D2 T3 A3D2) 4)
(= (decisionValueLower D2 T3 G2) 5)
(= (decisionValueUpper D2 T3 G2) 10)

(replaceRevision revl A2 A3D2 newAction)
(replaceRevision rev2 (2 A3D2 newAction2)
(= (interactionPresent revl) 0)
(= (interactionPresent rev2) 0)

(= (total-cost) 0.0))
D)
(:goal (and
(reachedGoal D1)
(reachedGoal D2)

(noAdverselnteractions D1 D2 revl)
(noAdverseInteractions D1 D2 rev2)
D)
D]

(:metric minimize (total-cost))

Fig. 3. Example problem instance PDDL.

MitPlan 101

Having conceptually demonstrated the feasibility of MitPlan, we applied it to the
clinical case study in our previous work [8] by solving each patient case as a planning
problem. In this study we combined the chronic kidney disease (CKD), atrial fibril-
lation (AFib), and hypertension (HTN) guidelines and used revision/patient preference
operators for each case. Each patient case defined the problem instance and the plan-
ning domain was the same for all problem instances. We represented deletion revisions
as replacements where the replacement action was an empty action and temporal
revisions were encoded in the temporal aspects of durative actions. MitPlan was able to
successfully find a plan for each patient case (successful identification of a management
scenario was also the metric used in our previous work) with no additional computa-
tional costs (a cost that is insignificant overall).

0.000: (makedecision d1 tl1 vl1) [0.001]

0.000: (takeaction d2 a4) [0.001]

0.001: (makedecision d2 a4 t3 v3) [0.001]

0.001: (takeaction d1 tl1 al v1) [0.001]

0.002: (takeparallel dl al pl bl cl) [0.001]

0.002: (takeaction d2 t3 a3d2 v3) [0.001]

0.003: (reachgoal d2 a3d2 g2) [0.001]

0.003: (takeaction dl pl c1) [0.001]

0.003: (takeaction d1 pl bl) [0.001]

0.004: (takeaction d1 bl b2) [0.001]

0.004: (takeaction d1 cl1 c2) [0.001]

0.005: (endparallel dl p2 pl b2 c2) [0.001]

0.006: (makedecision d1 p2 t2 v2) [0.001]

0.007: (reachgoal dl t2 gl v2) [0.001]

0.008: (norevisionneeded d1 d2 a2 a3d2 newaction revl) [0.001]
0.009: (replaceactions dl d2 c2 a3d2 newaction2 rev2) [0.001]

Fig. 4. Example problem instance resulting plan.

5 Discussion and Future Work

In this paper we presented MitPlan — a modification of our FOL-based mitigation
framework where we replaced a hybrid approach combining search and FOL-based
reasoning with a uniform planning approach employing PDDL. The revised framework
significantly simplifies the mitigation process, as identification of interactions, revision
of CIGs, and construction of management scenarios is handled by a planner and there is
no need to switch between several representations and methods (e.g., FOL and text).
Moreover, MitPlan provides support for additional criteria when developing a man-
agement scenario (e.g., the total cost of prescribed treatments and introduced revisions)
and provides sound support for durative actions without the need for explicit specifi-
cation of additional knowledge (e.g., logical rules for handling temporal action prop-
erties in FOL).

MitPlan shares some similarities with solutions described in [12, 13]. Similarly to
GLARE-SSCPM [12], it takes into account temporal characteristics of CIG actions
during mitigation and relies on knowledge-driven detection of interactions. However, it
automatically derives a management scenario, while GLARE-SSCPM aims at planning
the scenario through interactions with a physician. Automatic planning is employed in
the multi-agent planning (MAP) framework [13] that handles temporal CIG charac-
teristics and patient planning. The important difference between [13] and MitPlan lies

102 M. Michalowski et al.

in the representation of clinical knowledge. In MitPlan, secondary clinical knowledge
on how to handle adverse interactions is captured by revision operators independent of
CIGs, while MAP assumes the primary and secondary knowledge is combined and
embedded in CIGs. Our approach facilitates knowledge management as adding new
revision operators does not imply changes to CIGs.

As part of our future work we plan to expand our PDDL-based MitPlan to use the
Action Description Language (ADL). ADL provides a richer and more compact rep-
resentation that supports more of the PDDL formalism and enables a finer grained
description of revisions introduced to CIGs as single insertions or deletions. We are
also planning to implement MitPlan within the larger framework for clinical decision
support presented in [8] and evaluate it practically in a clinical setting.

References

1. Rosenfeld, R.M., Shiffman, R.N.: Clinical practice guideline development manual: a quality-
driven approach for translating evidence into action, otolaryngol. Head Neck Surg. 140, S1-
543 (2009)

2. Goud, R., et al.: The effect of computerized decision support on barriers to guideline
implementation: a qualitative study in outpatient cardiac rehabilitation. Int. J. Med. Inform.
79, 430-437 (2010)

3. Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed.
Inform. 46(4), 744-763 (2013)

4. Shekelle, P., Woolf, S., Grimshaw, J.M., Schunemann, H.J., Eccles, M.P.: Developing
clinical practice guidelines: reviewing, reporting, and publishing guidelines; updating
guidelines; and the emerging issues of enhancing guideline implementability and accounting
for comorbid conditions in guideline development. Implement. Sci. 7, 62 (2012)

5. Xu, J., Murphy, S.L., Kochanek, K.D., Arias, E.: Mortality in the United States, 2015.
NCHS Data Brief 267, 1-8 (2016)

6. Boyd, C.M., Darer, J., Boult, C., Fried, L.P., Boult, L., Wu, A.W.: Clinical practice
guidelines and quality of care for older patients with multiple comorbid diseases:
implications for pay for performance. JAMA 294, 716-724 (2005)

7. Riafio, D., Ortega, W.: Computer technologies to integrate medical treatments to manage
multimorbidity. J. Biomed. Inform. 75, 1-13 (2017)

8. Wilk, Sz., Michalowski, M., Michalowski, W., Rosu, D., Carrier, M., Kezadri-Hamiaz, M.:
Comprehensive mitigation framework for concurrent application of multiple clinical practice
guidelines. J. Biomed. Inform. 66(2), 52-71 (2017)

9. Wilk, Sz., Michalowski, M., Michalowski, W., Farion, K., Hing, M.M., Mohapatra, S.:
Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint
logic programming. J. Biomed. Inform. 46(2), 341-353 (2013)

10. Hing, M.M., Michalowski, M., Wilk, Sz., Michalowski, W., Farion, K.: Identifying
inconsistencies in multiple clinical practice guidelines for a patient with co-morbidity. In:
IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW),
pp. 447-452. IEEE (2010)

11. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In:
Proceedings of the 20th International Conference on International Conference on Automated
Planning and Scheduling ICAPS 2010, pp. 42-49. AAAI Press (2010)

MitPlan 103

12. Piovesan, L., Terenziani, P., Molino, G.: GLARE-SSCPM: an intelligent system to support
the treatment of comorbid patients. IEEE Intell. Syst. 33(6), 37-46 (2018)

13. Fdez-Olivares, J., Onaindia, E., Castillo, L., Jordan, J., Cozar, J.: Personalized conciliation of
clinical guidelines for comorbid patients through multi-agent planning. Artif. Intel. Med.
(2018, in press)

	MitPlan: A Planning Approach to Mitigating Concurrently Applied Clinical Practice Guidelines
	Abstract
	1 Introduction
	2 Background
	2.1 FOL-Based Mitigation Framework
	2.2 Planning

	3 MitPlan
	3.1 From FOL to PDDL

	4 Case Study
	5 Discussion and Future Work
	References

