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Preface

The European Society for Artificial Intelligence in Medicine (AIME) was established in
1986 following a very successful workshop held in Pavia, Italy, the year before. The
principal aims of AIME are to foster fundamental and applied research in the appli-
cation of artificial intelligence (AI) techniques to medical care and medical research,
and to provide a forum at biennial conferences for discussing any progress made. Thus,
the main activity of the society is the organization of a series of biennial conferences,
held in Marseilles, France (1987), London, UK (1989), Maastricht, The Netherlands
(1991), Munich, Germany (1993), Pavia, Italy (1995), Grenoble, France (1997),
Aalborg, Denmark (1999), Cascais, Portugal (2001), Protaras, Cyprus (2003),
Aberdeen, UK (2005), Amsterdam, The Netherlands (2007), Verona, Italy (2009),
Bled, Slovenia (2011), Murcia, Spain (2013), Pavia, Italy (2015), and Vienna, Austria
(2017). This volume contains the proceedings of AIME 2019, the 17th Conference on
Artificial Intelligence in Medicine, held in Poznan, Poland, June 26–29, 2019.

The AIME 2019 goals were to present and consolidate the international state of the
art of AI in biomedical research from the perspectives of theory, methodology, systems,
and applications. The conference included two invited lectures, full and short papers,
tutorials, workshops, and a doctoral consortium.

In the conference announcement, authors were invited to submit original contri-
butions regarding the development of theory, methods, systems, and applications for
solving problems in the biomedical field, including AI approaches in biomedical
informatics, molecular medicine, and health-care organizational aspects. Authors of
papers addressing theory were requested to describe the properties of novel AI models
potentially useful for solving biomedical problems. Authors of papers addressing
theory and methods were asked to describe the development or the extension of AI
methods, to address the assumptions and limitations of the proposed techniques, and to
discuss their novelty with respect to the state of the art. Authors of papers addressing
systems and applications were asked to describe the development, implementation, or
evaluation of new AI-inspired tools and systems in the biomedical field. They were
asked to link their work to underlying theory, and either analyze the potential benefits
to solve biomedical problems or present empirical evidence of benefits in clinical
practice.

AIME 2019 received 161 abstract submissions, 134 thereof were eventually sub-
mitted as complete papers. Submissions came from 36 countries, including 15 outside
Europe. All papers were carefully peer-reviewed by experts from the Program Com-
mittee with the support of additional reviewers. Each submission was reviewed in most
cases by three reviewers, and at least by two reviewers. The reviewers judged the
overall quality of the submitted papers, together with their relevance to the AIME
conference, originality, impact, technical correctness, methodology, scholarship, and
quality of presentation. In addition, the reviewers provided detailed written comments
on each paper, and stated their confidence in the subject area.



A small committee consisting of the AIME 2019 scientific chair, David Riaño, the
local organization chair, Szymon Wilk, and the doctoral consortium chair, Annette ten
Teije, made the final decisions regarding the AIME 2019 scientific program. This
process began with virtual meetings starting in October 2018. The process ended with a
two day face-to-face meeting of the committee in Poznan to assemble the final
program.

As a result, 22 long papers (an acceptance rate of 21%) and 31 short papers
(including demo papers) were accepted, two papers were withdrawn. Each long paper
was presented in a 25-minute oral presentation during the conference. Each regular
short paper was presented in a 5-minute presentation and by a poster. Each demo short
papers was presented in a 5-minute presentation and by a demo during the poster
session. The papers were organized according to their topics in the following main
themes: (1) Deep Learning; (2) Simulation; (3) Knowledge Representation;
(4) Probabilistic Models; (5) Behavior Monitoring; (6) Clustering, Natural Language
Processing, and Decision Support; (7) Feature Selection; (8) Image Processing;
(9) General Machine Learning; and (10) Unsupervised Learning.

AIME 2019 had the privilege of hosting two invited speakers: Anthony Chang, from
Pediatric Cardiology, CHOC Children’s, Orange, USA, and Ivana Bartoletti, Head of
Privacy and Data Protection at Gemserv, London, UK. In his keynote entitled
“Common Misconceptions and Future Directions for AI in Medicine: A Physician-Data
Scientist Perspective,” Dr. Anthony Chang discussed ten common misconceptions that
both clinicians and data scientists have about the application of AI in medicine. Ivana
Bartoletti’s keynote focused on the ethical and privacy challenges involved in the
deployment of AI in health care.

The doctoral consortium received six PhD proposals that were peer reviewed. AIME
2019 provided an opportunity for the best ones to present their research goals, proposed
methods, and preliminary results. A scientific panel consisting of experienced
researchers in the field (John Holmes, Beatriz Lopez, Mar Marcos, Paola Mello, Lucia
Sacchi, Allan Tucker, Alfredo Vellido, Blaz Zupan) provided constructive feedback to
the students in an informal atmosphere. The doctoral consortium was chaired by
Annette ten Teije.

Two workshops were organized after the AIME 2019 main conference. These
included the 11th International Workshop on Knowledge Representation for Health
Care (KRH4C) and the 12th International Workshop on Process-Oriented Information
Systems in Health Care (ProHealth), joined together for the third time at AIME. This
workshop was chaired by Mor Peleg, Mar Marcos, and Manfred Reichert. The second
workshop was the First Workshop on Transparent, Explainable and Affective AI in
Medical Systems, chaired by Grzegorz J. Nalepa, Gregor Stiglic, Sławomir Nowaczyk,
Jose M. Juarez, and Jerzy Stefanowski.

In addition to the workshops, four interactive half-day tutorials were presented prior
to the AIME 2019 main conference:

(1) Evaluation of Prediction Models in Medicine (Ameen Abu-Hanna); (2) The
Clinician–Data Scientist Dyad: Understanding Both for an Exceptional Convolution
(Anthony Chang), (3) Medical Information Retrieval (Lynda Tamine, Lorraine
Goeuriot); (4) Argumentation Technology in Medicine (Philipp Cimiano, Laura Moss,
Olivia Sanchez-Graillet, Basil Ell).

vi Preface



We would like to thank everyone who contributed to AIME 2019. First of all, we
would like to thank the authors of the papers submitted and the members of the
Program Committee together with the additional reviewers. Thanks are also due to the
invited speakers as well as to the organizers of the workshops, the tutorials and doctoral
consortium panel. Many thanks go to the local Organizing Committee, who managed
all the work making this conference possible. The free EasyChair conference system
(http://www.easychair.org/) was an important tool supporting us in the management of
submissions, reviews, selection of accepted papers, and preparation of the overall
material for the final proceedings. We would like to thank Springer for sponsoring the
conference and the Committee on Informatics of the Polish Academy of Sciences for its
patronage. Finally, we thank the Springer team for helping us in the final preparation of
this LNAI book.

June 2019 David Riaño
Szymon Wilk

Annette ten Teije
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Common Misconceptions
and Future Directions for AI in Medicine:
A Physician-Data Scientist Perspective

Anthony Chang(&)

Medical Intelligence and Innovation Institute (MI3),
Children’s Hospital of Orange County, Orange, CA 92868, USA
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“Healthcare is an information industry that continues to think that it is a biological
industry.” (Laurence McMahon at the AAHC Thought Leadership Institute meeting,
August, 2016)

The following are common misconceptions (by both clinicians as well as data
scientists) about AI in medicine that are understandable and human:

Clinicians will be replaced by AI. There is a fundamental lack of understanding of
what clinicians do even amongst august data scientists and seasoned venture capitalists,
and this deficiency renders it easy to think that computer vision and interpretation of
medical images alone is sufficient to replace image-intensive subspecialties like radi-
ologists, pathologists, ophthalmologists, dermatologists, and cardiologists. The doc-
tor’s tasks can be divided into perception (visual image interpretation and integrative
data analytics), cognition (creative problem solving and complex decision making), and
operation (procedures) (see Fig. 1). The computer is much stronger in perception tasks
but not yet facile with cognition nor operation parts of the clinician’s tasks. It is also
notable that all those who proclaim an end to radiologists are not radiologists (or even
physicians) themselves.

AI can be applied to every aspect of healthcare to bring value. While AI can
improve workflow and increase accuracy of diagnoses, there are certain technologies
that will not necessarily benefit from AI application. For example, applying AI to an
older technology (like auscultation for heart murmurs) may not increase the value
proposition of such an application. There is a myriad of workflow deficiencies in
healthcare, however, that can be improved with AI but these deficiencies are often
neglected. It is therefore important to remember design thinking principles in applying
AI (“design AI”) in delineating problems first.

AI, in conquering the game Go, will be successful for medicine and healthcare. AI
was indeed successful in defeating the human champion in the ancient game of Go.
Medicine and healthcare, especially in arenas such as a busy intensive care or emer-
gency room setting or in domains such as chronic disease management and population
health, is more akin to the real time strategy game of Starcraft where real time deci-
sions on multiple fronts need to be made in a complex milieu that is different for each
individual (so essentially it is even more akin to playing hundreds of Starcraft games
simultaneously). It should be noted, however, that AI was recently successful in
defeating a human real time strategy player.

© Springer Nature Switzerland AG 2019
D. Riaño et al. (Eds.): AIME 2019, LNAI 11526, pp. 3–6, 2019.
https://doi.org/10.1007/978-3-030-21642-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_1&amp;domain=pdf
https://doi.org/10.1007/978-3-030-21642-9_1


Deep learning, especially convolutional neural network (CNN), will be the pre-
ferred AI tool for a long time. While deep learning is in its hype and is indeed very
effective for computer vision and medical image interpretation as well as decision
support, the future of these areas will need even more sophisticated tools involving
cognitive architecture, which is the third wave of AI. Even deep learning gurus such as
Geoff Hinton feels that cognitive elements such as capsular networks will be needed to
improve deep learning performance [1]. Deep learning with CNN will also need to be
even more sophisticated in the future with tools such as recursive cortical network and
transfer learning as there are limitations to the amount of available medical data. In
addition, while CNN has been a major contribution in medical image interpretation,
recurrent neural network (RNN) with robust natural language processing can also be
equally as valuable by extracting information and knowledge from hospital and clinic
records. Variations of CNN with RNN can also be used to examine videos which are
commonplace in medical imaging [2].

We need more biomedical data for deep learning in healthcare. There are several
instances that big data in medicine and healthcare are not feasible. One situation
involves patients with rare diseases as there is a limit in the sheer number of patients
with the rare disorder with equal limit in the number of medical images. Another
situation would involve a very sophisticated or invasive test or a test with excessive
risks and/or costs; these tests would result in very few samples in a population. In all of
these cases, creative uses of generative adversarial networks (GANs) or one shot
learning to neutralize the lack of big data can obviate the absolute necessity of big data
in biomedicine.

The area under the curve (AUC) of the receiver operating curve (ROC) is a good
indicator of the performance of the algorithm. First, similar to parents having higher

Fig. 1. The Clinician’s Brain. The clinician has perception tasks such as medical image
interpretation and integrative data analytics. In addition, the clinician often have cognition tasks
such as complex decision making and creative problem solving, especially in chronic disease
management and rare medical conditions. Lastly, some clinicians like surgeons, cardiologists,
anesthesiologists, and intensive care physicians often perform procedures and this involves
special spatiotemporal and manual skill part of the brain.
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expectations of their children than they have of themselves, clinicians and data sci-
entists can have relatively high (and perhaps unfair) expectations of AI. It is not
uncommon for human clinicians to have not much better than 50% accuracy of certain
medical diagnoses and yet we have such higher (albeit understandable) expectations for
machine intelligence [3]. To use the AUC of the ROC as the sole determinant of the
accuracy of machine intelligence for a test, however, is problematic [4]. Some of this
problem lies in the fact that the labels on images are often not entirely accurate to begin
with (humans are labeling and are not infallible). Additional issues in the large datasets
include: lack of precise terminology (consolidation vs pneumonia), time element in
diagnoses (early vs late manifestation of pneumonia), presence of multiple labels
(diagnoses are often not exclusionary or dichotomous), and variability of the dataset
(quality of image). Three key elements are necessary for there to be an accurate
conclusion of performance derived from this ROC AUC assessment: accuracy,
threshold, and prevalence of disease, the latter is a critical element for the analysis but
often not included in the overall study description.

You have to be able to program to make a contribution to AI in medicine. There are
many ways other than actually programming and coding that anyone in medicine and
healthcare can contribute to the overall paradigm shift of AI in medicine. The most
glaring deficiency in the AI in medicine domain is not the lack of AI tools, but the
quality and management of biomedical data. First, any clinician can provide domain
expertise for an AI project or idea that can be misdirected. In addition, any healthcare
worker can also delineate the workflow inadequacies so pervasive in healthcare for an
AI project. Lastly, anyone in healthcare can also contribute to the foundation of the
data-information-knowledge-intelligence pyramid by focusing more on the quality of
data and integrity of data infrastructure.

AI is mainly for selected subspecialists like radiologists and pathologists. While AI
and deep learning have made significant contributions in these fields, the use of other
AI methodologies such as cognitive computing as well as robotic process automation
(RPA) and natural language processing are helpful for almost all other subspecialists.
In addition, these tools are essential in reducing the administrative burden of healthcare
systems irrespective of the clinical domain. AI, therefore, has much more to offer other
than CNN and deep learning with medical image interpretation; the portfolio of AI
tools will all provide a new resource to alleviate the burden of healthcare delivery in all
areas.

AI will make clinicians less human. With the appropriate application of AI, espe-
cially natural language processing (NLP) and understanding (NLU) tools, clinicians
will be in a position to be more human as the burden and distraction of electronic
medical record would be lessened. It would be a laudable vision that the future
sanctuary of the physician-patient setting will have no visible machines in the envi-
ronment but will be the venue for only human-to-human bonding [5].

AI devices will be difficult to be understood or regulated. There is the possibility of
a self fulfilling prophecy if advanced AI tools lack explainability. Even if we treat AI
and its panoply of tools as “software-as-a-device”, how we can effectively and expe-
diently approve all these upcoming AI tools as these emerge will be a challenge.
Perhaps we need to match this exponential paradigm shift in technology with a parallel
trajectory in how we regulate. One potential solution is to not regulate AI devices per se
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but rather teams and/or individuals working on the AI tools in a specific program
or institution. Another possible answer lies in the sagacious Turing philosophy of
“machines to machines” and devise regulatory algorithms that will overlook algorithms
on a continuous basis in addition to periodic checks by regulatory agencies.

A final one: AI in medicine will be here in the future. As the computer scientist
William Gibson so eloquently stated: “the future is already here, it is just not evenly
distributed”. The trajectory of medicine needs to change given the exponentially
increasing amount of data and information to attain precision medicine and chronic
disease management of our population. All stakeholders in both clinical medicine and
data science have a special opportunity to create a special synergy for a once-in-a-
generation transformative paradigm shift in medicine.

It is more than 100 years since the Flexner report that shaped our present medical
school education strategy, and it is now more important than ever to reassess our
medical educational strategy. The advent of AI is a precious gift from our technological
colleagues, and while AI is not necessarily going to replace clinicians, it should be part
of every medical student’s educational curriculum as well as every physician’s clinical
portfolio from this point forward.
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Abstract. The deployment of Artificial Intelligence in healthcare is extremely
promising and although AI is no panacea, harnessing patient data will lead to
precision medicine, help detect disease before they manifest and support inde-
pendent living for the elderly, amongst many other things. However, this pro-
gress will not be without challenges from both an ethical and privacy standpoint.
These issues need understanding from policy makers and developers alike for AI
to be embraced responsibly.

Keywords: AI � Healthcare � Privacy � Ethics

1 AI in Healthcare

Healthcare represents one of the most interesting and promising areas for the
deployment of AI systems [1]. We can now detect cancer faster and earlier than before,
identify diseases before they manifest and spot genetic disorders which may affect us
later down the line.

Likewise, algorithms can streamline back office processing thus improving patient
hospital experience as well as saving considerable resources by reducing waste and
inefficiency – resources that can then be invested into better patient care.

However, healthcare is a sector where technology must meet the law, regulations,
and privacy principles to ensure innovation is for the common good. This is because
the deployment of AI in the medical field brings a plethora of challenges from a privacy
and ethics standpoint, namely: the safeguarding of patient data, the ethical boundaries
of innovation and the actual impact of technology on medics and patients alike.

2 Privacy Challenges

Privacy is a complex concept: it is culturally bound, and it evolves with time. It is
culturally bound as it is influenced by the cultural norms of the specific country it
inhabits, thus varying across territories, generations and backgrounds. Therefore, it is
conceivable that it will also evolve alongside technological development, too. To an
extent, we are already seeing the transition of our ‘personhood’ into data citizenship as
we become increasingly monitored with data collection points placed at every corner of
our daily life; through our smartphones as well as the tracking of our movements online.
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Within this transformation, we are becoming acquainted with the fact that our data
is of great value – as well as becoming a real currency that we can use to access
entertainment and sometime services at no cost. Alongside this, we are also witnessing
a public awakening regarding the malicious use of data for microtargeting, online
manipulation and behavioral advertising that is leading to a decrease in public trust
towards the way private and public organizations handle our data. This distrust ranges
from fear of CCTV cameras and state monitoring to the devastating effects of online
manipulation which last year culminated in the Cambridge Analytica scandal.

It is therefore of no surprise that citizens are becoming wearier of collection points,
unethical use of data and transparency fallacies, namely the privacy notices that – due
to their nature as long and often unintelligible documents – are often brushed off.

Understanding the wider attitude and changes towards privacy is key when it comes
to healthcare, as trust becomes paramount. Health data is the most private information
about one’s self whilst being the most valuable resource to improving wellbeing,
defeating diseases and supporting the elderly, those with disabilities and in social care.

3 Building Trust in Algorithms Deployment in Healthcare

Challenges around privacy emerging from the use of AI in healthcare must not be
underestimated, and it is essential to recognise that the distinction between personal data
and sensitive information is increasingly blurred [2] as we can now infer health infor-
mation from behavior patterns and other data which is not sensitive in the first place.

The deployment of algorithms requires a clear roadmap, and that includes:

• Data Privacy Impact Assessments to assess the risks of privacy harms, identify the
privacy enhancing technologies that need to be deployed to safeguard patient data.

• Algorithmic Impact Assessments to ensure algorithms do not have bias embedded
into them. As algorithms use historic data, a level of bias may be inherent, or it can
emerge via proxy, class labels or associations. It is crucial to ensure all tools are in
place to identify risks of bias harms as well as to debias algorithms at the onset as
well as later down the line.

• Audit trails must be accurately kept to ensure logs are kept of who is doing what,
which data are used and what changes are being made to the systems.

• Procurement law in healthcare setting must ensure purchase of AI systems from
third parties needs to adhere to strict procedures including assessments of how the
algorithms have been trained, whether they have been audited and whether they
have been assigned a trustmark recognizing due process in their algorithms
processing.

• The establishment of a clear governance framework overseeing the use of AI,
including the set up of the three lines of defense to mitigate risks.

8 I. Bartoletti



4 Wider Ethical Issues Surrounding the Deployment of AI
in Healthcare

There is no doubt that the interplay between data, data analytics, robotics and AI is
extremely complex, nor that it will challenge the current regulatory establishment.

The key underlying issue is that ‘big data’ challenges the core principle of privacy –
which is to collect as little data as possible. Yet big data is about collecting all available
information. This dichotomy is hard to reconcile and stands as the core challenge to
privacy as we have known it so far. The use of mobile medical apps, wearables,
chatbots, connected devices etc., shows the amount of data that can be collected. For
this data to be harnessed, clear codes of privacy and ethics need to be established and
adhered to. Equally, it is perhaps necessary for these codes to be enforced, and for
regulators to conduct audits into the algorithms to ensure they follow due process.

But AI is much more than technology and the deployment of AI in healthcare is
likely to be challenging in other areas.

One challenge, for example, will be the impact on the workforce and how medics
will be trained and learn how to cooperate and work alongside the machine. How will
the machine augment a doctor’s capabilities? How will they develop the confidence in
it and, similarly, the detachment should they feel the need to intervene? And, equally,
what will happen to medical knowledge should decisions and diagnostics be increas-
ingly made by machines? These are all incredibly important questions we cannot ignore
if we want to exploit the opportunities offered by artificial intelligence.

Lastly, one key challenge will be accountability, and namely who is responsible in
case a mistake is made [3]. Interestingly, patients are used to relating to doctors, and
understand an error can be made by virtue of their humanity. How will patients react to
errors made by machines? This consideration is in addition to the legal issues around
accountability, namely who will hold the responsibility for a mistake. Courts will have
to intervene, and the law will need to catch up to identify what is the best normative
answer to this problem.

5 Conclusion

The deployment of AI in health is promising and very welcome. Cooperation between
doctors and machines could represent a turning point with regards to our ability to
tackle diseases and improve our wellbeing.

From precision and targeted medicine to back office operations and leaner pro-
cesses, from support with independent living for the elderly to greater diagnostic
ability, the benefits will certainly be invaluable.

However, it is likely that AI in health will also challenge the boundaries of both
current regulatory systems and privacy principles [4]. It is therefore essential to adopt a
cautious approach in order to maximise the positive whilst reducing the risks of pri-
vacy, bias and ethics harms.

AI in Healthcare: Ethical and Privacy Challenges 9
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Abstract. In this work, we propose a novel clinical event time-series
model based on the long short-term memory architecture (LSTM) that
can predict future event occurrences for a large number of different clin-
ical events. Our model relies on two sources of information to predict
future events. One source is derived from the set of recently observed
clinical events. The other one is based on the hidden state space defined
by the LSTM that aims to abstract past, more distant, patient infor-
mation that is predictive of future events. We evaluate our proposed
model on electronic health record (EHRs) data derived from MIMIC-III
dataset. We show that the combination of the two sources of information
implemented in our method leads to improved prediction performance
compared to the models based on individual sources.

Keywords: Recurrent neural network · Event time series prediction

1 Introduction

Successful modeling of complex multivariate event time series and their ability
to predict future events is important for applications in various areas of science,
engineering, and business. In clinical settings our ability to predict future events
for a patient based on clinical events observed in past, such as past medication
orders, past labs and their results, or past physiological signals can help us to
anticipate the occurrence of a wide range of future events that would let health
care practitioners intervene ahead of time or prepare resources to get ready for
their occurrence. All of this can in turn improve the quality of patient care.

One of the challenges of modeling clinical event time series is their complex-
ity, that is, clinical event time series for hospitalized patients may consist of
thousands of different types of events corresponding to administration of many
different medications, lab orders, arrivals of lab results, or various physiological
observations, etc. This complexity may not fit very well standard Markov time
series models [19] with either observed or hidden state and transition models.

To alleviate the event complexity problem we propose to develop a new more
scalable event time series model based on the long-short-term-memory (LSTM)
[14] that relies on two sources of information to predict future events. One source
is derived from the set of recently observed clinical events. The other one is based
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on the hidden state space defined by the LSTM that aims to abstract past, more
distant, patient information that is predictive of the future events. In the context
of Markov state models, the next state in our models and the transition to the
next state is defined by a combination of the recent state (most recent events)
and the hidden state summarizing more distant past events.

In order to evaluate the proposed model, we use data derived from electronic
health records (EHRs) of critical care patients in MIMIC-III dataset [16]. The
clinical events considered in this work correspond to multiple types of events,
such as medication administration events, lab test result events, physiological
result events, and procedure events. These are combined together in a dynami-
cally changing environment typical of intensive care units (ICUs) with patients
suffering from severe life-threatening conditions.

Through extensive experiments on MIMIC-III data we show that our model
outperforms multiple time series baselines in terms of the quality of event predic-
tions. To provide further insights to its prediction performance we also divide the
results with respect to different types of clinical events considered (medication,
lab, procedure and physiological events), as well as, based on their repetition
patterns, again showing the superior performance of our proposed model.

2 Related Work

2.1 Event-Time Series Models

The majority of discrete time-series models are based on Markov processes [24,
25]. Markov process models rely on Markov property that assumes that the state
captures all necessary information relating future and past. In other words, the
next state depends only on the most recent state, and is independent of the past
states. In this case the joint distribution of an observed sequence is modeled as
chain of conditional probabilities: p(y1, y2, ..yT ) = p(y1)

∏T
t=2 p(yt|yt−1)

For Markov process models, the conditional probability defining a transition
is parameterized by an e × e transition matrix where e denotes all possible
states: Ai,j = p(yt = j|yt−1 = i). Standard Markov processes assume all states
of the time series are directly observed. However, the states of many real-world
processes are not directly observable. One way to resolve the problem is to define
the state in terms of a limited number of past observations or features defined
on past observations [11,12,31].

Hidden State Models. Another is to use Hidden Markov models (HMM) [29]
that introduce hidden states zt of some dimension d. Now the observations yt
is defined in terms of the hidden states and an e × d emission table B with
components: Bi,j = p(yt = j|zt = i). Briefly, the transition table A is used to
update the hidden states and the emission table is used to generate observations.

HMM has been shown to reach good performance in many applications such
as stock price prediction [10], DNA sequence analysis [15], and time-series clus-
tering [28]. However, classic HMM model comes with drawbacks when applied
to real-world time series: the hidden state space is discrete, and the transition
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model is restricted to transitions in between the discrete states. Linear dynam-
ical models (LDS) [17] remedy some of the limitations by defining real-valued
hidden state-space with linear transitions among the current and next hidden
state. One problem with HMM and LDS models is that the dimensionality of
their hidden state space is not known a priori. Various methods for hidden state
space regularization, such as work by Liu and Hauskrecht [21,22] for LDS have
been able to address this problem.

Continuous Time Models. We would like to note that in addition to discrete
time series models, the researchers have explored also methods permitting con-
tinuous time models. Examples are various version of Gaussian process models
for predicting multivariate time series in continuous time, including those used
for representing irregularly sampled clinical time series [20,23].

Neural-Based Models. Recent advances in neural architectures and their
application to time-series offer end-to-end learning framework that is often more
flexible than standard time-series models. In neural-based approaches, the dis-
crete time series are typically modeled using recurrent neural network (RNN)
which provides a more flexible framework for modeling time-series. Similarly
to HMM and LDS, RNN uses hidden states to abstract and carry information
from past history but with more flexible hidden state defined by real-valued
vectors and transition rules. At each time step, hidden state is updated given
the previous time step’s hidden states and a new information from the current
time step’s input. Although its limitations on vanishing and exploding gradient
problems [13], its variants such as long short-term memory (LSTM) [14] unit
and gated recurrent units (GRU) [2] allow wide adoptions in event time-series
modeling. They have been applied to prediction and modeling time series [1,9],
vision [8], speech [7], and language [30] problems.

2.2 Clinical Event Time-Series Modeling

Modeling and prediction of discrete event time series in the healthcare area have
been influenced greatly by advances in various neural architectures and deep
learning. [3] used Skipgram [26] to represent and predict next visit in outpatient
data. But they evaluated their model on the prediction task at the level of
hospital visit, which can be of a very coarse granularity for real-world clinical
applications that encompass event-specific time information. [4] modeled clinical
time series with RNN and attention mechanism. However, the model is only able
to perform binary classification on a whole-sequence level. Our model is able to
predict fine-grained future event at the level of each time step of a sequence. [6]
also used neural network models to predict the sequence of clinical events. In
their approach, the patient pool was limited to patients with kidney failure and
organ transplant. On the other hand, our model is tested and shows superior
performances over baselines across general clinical time series that were not
limited to a specific patient cohort.
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3 Methodology

In this section, we first introduce state-space Markov and LSTM-based event
time series models and then present our model combining the two models.

State-Space Markov Event Prediction. Given an observed events sequence
y = y1, y2, ..., yT , we can model y by defining a Markov transition model relat-
ing the current event state yt with the next event states yt+1. In this case, we
assume the event space is formed by a multivariate binary vector reflecting the
occurrence of many different events (encoded as 1) over some time-window. One
way to parameterize the transition between two consecutive event states is to
use a transition matrix W with a bias vector b. As we want to predict multi-
variate binary vector, we can use sigmoid function σ(x) = 1

1+e(−x) as the output
activation function:

ŷt+1 = σ(W · yt + b) (1)

LSTM-Based Event Prediction. LSTM models are being successfully used to
model time series with the help of hidden state vector, allowing one to summarize
in the hidden state information from more distant past. At a glance, at each time
step of a sequence, LSTM gets current (event) input and updates its hidden
states. The hidden state then generates signals for the next hidden state, as well
as, predictions for the occurrence of events in the next time-step.

In detail, at each time step t, events in the input sequence represented as
multi-hot vector mt is processed to a real-valued vector xt through linear embed-
ding matrix W emb: xt = W (emb)·mt. Then, given processed input xt and previous
hidden states ht−1, LSTM updates hidden states ht:

ft = σ(W (f) · [ht−1, xt] + b(f)) it = σ(W (i) · [ht−1, xt] + b(i))

ot = σ(W (o) · [ht−1, xt] + b(o)) C̃t = tanh(W c · [ht−1, xt] + b(c))

Ct = ft · Ct−1 + it · C̃t ht = ot ⊗ tanh(Ct)

ft, it, and ot are forget, input and output gates and ⊗ denotes element-wise
multiplication. With these parameters ready, we can update hidden states:

ht = LSTM(xt, ht−1)

Future event occurrence prediction is generated through a fully-connected
layer W q with output activation function sigmoid:

ŷt+1 = σ(W (fc) · ht + b(fc)) (2)

This parameterization links to the state space based event predictor. When
yt of Eq. 1 is replaced to hidden states ht, it becomes Eq. 2.
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Recent Context-Aware LSTM-Based Event Predictor. When properly
trained, hidden states in LSTM can be sufficient to represent and model future
behaviors of event time-series by abstracting dependencies of past and future
events. However, to be trained properly, LSTM (or any deep-learning based
models) requires large amounts of training instances. In the clinical domain,
obtaining large amounts of clinical cases (e.g., rarely ordered medication or lab
tests) is hard in general. This constraint may deter us to train LSTM for pre-
dicting rare clinical cases. Meanwhile, for certain clinical event category such as
medications, the future occurrence of an event may highly depend on recent pre-
vious or current occurrence of the event type and incorporating this information
may help to resolve the data deficiency constraint.

Therefore, to address the problem, we propose and develop an adaptive mech-
anism that refers to both abstracted information of past sequence through hidden
states of LSTM and concrete information about event occurrences in very recent
context window. Different from the preliminary LSTM-based output generation
in Eq. 2 that only depends on abstracted hidden states of LSTM, we directly refer
to recent event occurrence information. The recent event at the current time step
t is in multi-hot vector mt and it is incorporated into the model through a linear
transformation to model:

b(u) = W (s) · mt + b(s)

b(s) can be seen as additional bias term that reflects recent event occurrence
information and final prediction for event occurrence is made as follows:

ŷt+1 = σ(W (fc) · ht + b(fc) + b(u))

The proposed predictor also can be seen as combining the LSTM based predictor
with state-space based Markov predictor. Especially, in context of Markov state
models, the next state in our models and the transition to the next state is defined
by a combination of the recent state (most recent events) and the hidden state
summarizing more distant past events.

Loss Function. To measure the performance of the event prediction, L is
defined as binary cross entropy between label vector yt and prediction vector
ŷt over all sequences in the training set and 1 denotes a vector filled with 1s:

L =
∑

t

−[yt · log ŷt + (1 − yt) · log(1 − ŷt)]

Parameter Learning. The parameters of the model is learned by back prop-
agation through time (BPTT) [32] with adaptive stochastic gradient descent
based optimizer [18]. Hyper-parameters are tuned by F1-score performances on
validation set with following ranges: embedding (W (emb)) size in {128, 256, 512};
hidden states size in {512, 1024, 2048} and learning rate = 0.005 batch size = 512.
To prevent over-fitting, early stopping and dropout (p = 0.5) are applied.
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4 Experimental Evaluation

4.1 Clinical Data

We test the proposed model on MIMIC-III, a clinical database generated from
real-world EHRs of intensive care unit patients [16]. We extract 21,897 patients
whose records are generated from Meta Vision system that is one of the systems
used to create records in the MIMIC-III database. We extract patient in age
between 18 and 99 and whose length of stay in ICU is between 3 and 20 days.
We randomly split patients into the train, test, and validation sets with the ratio
of 7:2:1 and generate multivariate event time-series by segmenting sequences with
both input-window and future window with size W = 24. At the end of each
input-window, its future-window is generated.

We consider the following types of events in our models: medication admin-
istration events, lab results events, procedure events, and physiological result
events. Medication administration events indicate records of specific kind
of medication administered to the patient. Lab results events indicate lab test
and its results represented as normal, abnormal-high, or abnormal-low. Proce-
dure events indicate records of procedures patient received during hospitaliza-
tion. For medication, lab, and procedure event categories, we select those events
observed in more than 100 different patients. Physiological result events con-
sist of 23 cardiovascular, routine vital signs, respiratory, and hemodynamics sig-
nals selected by a critical care expert. Similarly to the lab result events, numeric
physiological results are discretized to normal, abnormal-high, and abnormal-
low. Table 1 shows the basic data statistics.

Table 1. Clinical data statistics by event categories

Category Medication Procedure Lab test Physio signal

Cardinality 136 79 1197 102

Num. of occurrences 803K 257K 4266K 8378K

Proportion of positive label 5.9% 3.2% 3.6% 83.1%

4.2 Evaluation Metrics

We evaluate the quality of time series predictions using area under precision-
recall curve (AUPRC) and area under the receiver operating characteristic curve
(AUROC). Although AUROC is commonly used to present result for binary
classification problems, it can provide misleading information when applied to
highly imbalanced dataset. On the other hand, AUPRC provides more accurate
profile on performances of models under such circumstances [5,27]. As shown in
Table 1, our dataset is severely skewed to negative examples. Therefore, we use
AUPRC as our primary evaluation measurement.



Recent Context-Aware LSTM for Clinical Event Time-Series Prediction 19

4.3 Baseline Models

We compare our proposed model to the dense logistic regression models defined
upon the following inputs (predictors):

Current Markov state (Markov) as defined in Eq. 1.
Binary History (LR-binary): Unlike the current Markov state information,
this model considers the occurrence of all past events (not just the most recent
one) and encodes them into one multi-hot vector.
Count History (LR-count): This model, similarly to Binary history, summa-
rizes all past events (not just the most recent ones), but instead of multi-hot
vector representation it uses a vector of event counts.
Current LSTM state (LSTM): The model uses the hidden state of the LSTM
to summarize information from distant past important for prediction.

4.4 Results

All our evaluations were performed on the test set, that was not touched during
the training and validation steps. Prediction results in Fig. 1 summarize the
performance of our model and baselines on 24-h prediction window. The results
show that our model outperforms all baselines in terms of both AUROC and
AUPRC statistics. Moreover, the Markov state model is better than pure LSTM
in terms of AUPRC. This shows the information from the most recent time
window is most of the time the most important source for predicting the next
step events. This is not surprising given the fact that many events (such as
drug administrations or lab orders) are repeated every 24-h, hence once they are
observed they are most likely to occur also in the next time window.

Fig. 1. Overall time-series prediction results on the 24-h window segmentation

To verify the above reasoning, and to provide further insights into the pre-
dictive performance of our models, we break the above results by considering
separately predictions when the same events occurred in the previous time step
and when they did not. We refer to these as to repetitive and non-repetitive pat-
terns. The results are given in Fig. 2. From the results, we can clearly see that
predicting non-repetitive events is significantly more difficult than predicting
repetitive ones. However, despite this, we can also see that our model consis-
tently outperforms other baselines across both repetitive and non-repetitive sce-
narios. Remarkably for non-repetitive event prediction, our model’s AUROC is
32% higher than average of all baseline models in AUPRC and 11% in AUROC.
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Fig. 2. Prediction results on repetitive and non-repetitive events

To analyze our results further, we next break the evaluation down by inspect-
ing predictive performances of the models for the different event categories. The
results are shown in Fig. 3. Clearly, our model consistently outperforms baseline
models across all event categories in both AUROC and AUPRC statistics.

So far, all our results were obtained by considering the window size of 24 h.
Next, we investigate the predictive performance of the models by varying the
prediction window size. More specifically we will consider the window size W
of length 6, 12 and 24 h. Due to space limits, we will consider and compare
the methods only using AUPRC statistics. As shown in Fig. 4, our model shows
superior performance across all time-resolutions.

Fig. 3. Prediction results by the event type category

Fig. 4. AUPRC prediction statistics for the different window sizes

To dig deeper into the time segmentation results, in Fig. 5 we show the
predictive performance of lab test and physiological result events. We can see
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that on lab test event prediction, our model dominates at larger window sizes
(W = 12, 24): it outperforms baseline models by 27%. In smaller window size
(W = 6), the LSTM performs slightly better than ours by 2%. On physiological
event prediction, our model surpasses all baselines across all time resolutions.

Interestingly, on lab event prediction, overall predictability is high at W = 24
and deteriorates for smaller window sizes. This reflects the recurrent characteris-
tic of lab events at a cycle of 24 h, that is, lab tests and their results are ordered
and observed most of the time once daily. Inversely, the overall predictability
of physiological events decreases with increasing window length. It indicates a
recurrent characteristic of clinical events but in different recurring interval that is
much shorter. Most physiological result events are automatically generated from
bedside monitoring devices at short intervals, typically at a scale of seconds to
minutes. Therefore, the variability of observation on a time series generated from
smaller windows should be less than those of larger windows. Hence, overall pre-
dictability on smaller time resolution is consistently higher than larger ones as
seen in Fig. 5.

Fig. 5. Prediction result for lab and physiological events for the different window sizes

5 Conclusion

In this work, we show the importance of two sources of information for event-time
series modeling. One source is derived from the set of recently observed clinical
events and the other is based on the hidden states of LSTM that aims to abstract
past, more distant, patient information that is predictive of future events. We
show that the combination of the two sources of information implemented in our
method leads to improved prediction performance on MIMIC-III clinical event
data when compared to models that rely only on individual sources.

Acknowledgement. The work in this paper was supported by NIH grant R01GM-
088224. The content of the paper is solely the responsibility of the authors and does not
necessarily represent the official views of NIH.
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Abstract. Studies have shown that shotgun metagenomics sequencing facili-
tates the evaluation of diverse viruses, bacteria, and eukaryotic microbes and
assists in exploring their abundances in complex samples. Due to the challenges
of processing a substantial amount of sequences and overall computational
complexity, it is time-consuming to analyze these data through traditional
database sequence comparison approaches. Deep learning has been widely used
to solve many classification problems, including those in the bioinformatics
field, and has demonstrated its accuracy and efficiency for analyzing large-scale
datasets. The purpose of this work is to explore how a long short-term memory
(LSTM) network can be used to learn sequential genome patterns through
pathogen detection from metagenome data. Our experimental result showed that
we can obtain similar accuracy to the conventional BLAST method, but at a
speed that is about 36 times faster.

Keywords: Shotgun metagenomics sequencing � Sequence classification �
Deep learning � LSTM � GPU acceleration � Parallel computing

1 Introduction

Shotgun metagenomics sequencing allows the extraction of a large number of both
genes and species information from a given ecosystem. As compared to other types of
DNA sequencing, it produces many short reads of 20 to 500 base pairs that are long
and sensitive enough for clinical pathogen detection. Studies have shown that this
method enables the evaluation of the diversity of viruses, bacteria, and eukaryotic
microbes, and can help to estimate their abundances in given complex samples. Due to
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challenges that come from computational complexity from millions of reads within a
relatively short time, traditional sequence comparison approaches may require a much
longer time to obtain the results of a given analysis. Those methods, such as the Smith-
Waterman algorithm [1], BLAST [2], and BWA [3] use sequence alignment to measure
the similar sequences from the reference database which is highly time-consuming
process and may not be suitable for the massive amount of shotgun metagenomics
sequencing studies. In this paper, we use a deep learning method (LSTM model) to
discover the sequential patterns of given reference databases and have adopted it as a
disease discriminator to evaluate the given shotgun metagenomics samples.

2 Methodology

To develop a reliable deep learning model, it is essential to have high-quality training
data. Our data collection and preprocessing method include both an NCBI public
database as ground true reference data and shotgun sequence data from 28 clinical
samples as for our evaluation dataset. Those clinical samples include 5 HCV-positive
(hepatitis C viruses) patients and nasal swab samples from 13 influenza-infected patients.
For negative control samples, we used blood samples from 10 healthy donors. The
RNA/DNA extraction of those 28 clinical samples was performed by MagNA Pure 96
System. Each library was prepared using a Nextera Library Prep Kit. For each sequence
in the NCBI database, we generate more subsequences by the shifting sequence gen-
eration function below, with a multiple randomly generated overlap_ratio.

Shifting sequence generation = (sequence_length/subsequence_length) * (overlap_
ratio)

In this manner, those shifting sequences facilitate the sequence alignment opera-
tion, while deep learning extract characteristics of those shifting sequences and support
the polymorphism and indel type of sequence comparison. Please note that the sub-
sequence_length is determined by target testing data set. In our case, we find the
suitable length to be 50 for our pathogen detection use case of HCV or Influenza. For
traditional sequence alignment approaches such as BLAST, the size of the reference
database has a significant impact on overhead processing time. In contrast, for deep
learning, it only increases the model training time, and there is not much difference
when considering the task of sequence classification. Deep learning is considered to be
an alignment-free approach [4], and it uses mathematical functions to learn the distance
between the input sequence and its distance to the class boundary.

2.1 The Model: LSTM Model

An LSTM network is a type of recurrent neural network (RNN) that is designed to
learn the long-term dependencies between time steps of sequential data, which meets
the concept of analyzing DNA genomic sequences. To cope with the complicated
scenario of sequence classification from both sequence alignment and polymorphism,
we enhanced the above model with the bagging type of ensemble learning method
which is a meta-algorithm that combines several machine learning prediction results
and uses the meta-classifier to make the final decision. Figure 1 describes a scenario
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where we divide a sequence of 151 bp to 5 subsequences with a shifting sequence
window of 25 and two discrimination functions. Different subsequence predictions
capture information from different angles with different advantages and disadvantages.
By adequately leveraging the uniqueness of them, in most cases, it is possible to obtain
a higher prediction accuracy than a single classification [5]. The discrimination func-
tion is customized by different pathogen detection use cases such as for detecting a
different type of virus or bacteria. Since the preceding nucleotide has a higher base
calling quality to determine the sequence classification result, we usually impose its
importance in our discrimination function. From our observation, in many cases, there
is a no obvious effect for those later nucleotides, such as subsequence 03 or 04 in this
example. In other words, our approach can maintain the same level of accuracy when
increasing the processing speed by dynamically eliminating the number of evaluation
subsequences.

Depending on the reading capability of NGS technology, a clinical sample may
produce from a million to hundreds of millions of shotgun metagenomics sequences. In
a conventional computation use case, sequence comparison normally runs under a
single CPU. Analyzing this type of big-data task is highly challenging and time-
consuming without efficient sequence comparison algorithms. Depending on the data
size and parameter setting of the LSTM model, our model training time varies from 12
to 47 h. However, for the task of sequence classification, by using multi-GPU accel-
eration, our proposed method is able to split hundred million of shotgun DNA
sequences into many smaller batches of DNA sequences and concurrently process them
within minutes.

2.2 Sequencing Data Preprocessing

DNA sequences and reads commonly have varying length. In our implementation, we
use a fixed sequence length, because of two underlying reasons determined from the
shotgun sequences sample. First, shotgun sequencing is relatively shorter when com-
pared to other types of genome sequencing datasets, and it is relatively easy to adjust
the sequence length instead of directly inputting various amounts of base pairs (bp) into
the model. Second, sequence base calling is the process that converts the raw image
data to nucleotide sequences through the sequencing instrument. The quality of
nucleotide reads decreases along with the length of sequence reads, which are caused
by both the sample quality and the capability of the DNA sequencer.

Discrimination function 1 average (#00, #01, 
#02, #03, #04) > Thr ; where Thr = 0.75

Discrimination function 2 (#00 > Thr1) & (#01 
> Thr2) & (#02 > Thr3) ; where 
Thr1=Thr2=Thr3=0.99

Fig. 1. Ensemble prediction results with discrimination function.
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In this study, we obtained the sequencing data with paired-end within 200 bp read
length by using an Illumina HiSeq 2500. The average quality of reads distribution from
our 28 clinical samples which have approximately of 103 million shotgun sequences.
About 86.34% of these samples have an average Phread quality score greater than 30.
From the aspect of base calling quality, a significantly decreasing happens around a
base position of 110. To ensure that the input subsequences always included a portion
of high-quality reads as the input of the proposed ensemble LSTM model, we ignored
those low-quality base reads and used a fixed 50 bp subsequences.

3 Experimental Results and Discussion

3.1 Pathogen Detection (True Positive Test)

Influenza Test Result
Figure 2 shows the result of all sequences selected from the 13 influenza-infected
clinical samples which have about 4.8 million shotgun sequences per sample. By
comparing the number of overlapping sequences with our proposed method, it seems
that our result appears almost like a subset of BLAST. To further discover the sensi-
bility behavior, we zoom in on the quality of the BLAST output by using the expected
value (e-value). Figure 3 shows our result with the BLAST threshold of an E-value less
than 1e-30, which is considered to be a high-quality hit for homology matches. Overall,
our result is almost identical with BLAST in all samples. Precisely, it reports only
slightly more influenza-related sequences than BLAST. Those sequences do not nec-
essarily mean a false positive result, since BLAST does also generate erroneous
outputs.
HCV Test Result
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Figure 4 shows the sequences selection result from the 5 HCV-positive samples, which
have about 2.1 million shotgun sequences per sample. In this test, our method does not
have any overlapping sequences with BLAST in both sample 1 and sample 2. How-
ever, even the BLAST method only reports 2 and 1 HCV-related sequences from about
2 million sequences, respectively. From a clinical viewpoint, this could be due to the
patient being in the early stage of hepatitis C. For sample 3, 4, and 5, our approach
demonstrates a high degree of overlapping with BLAST, and both methods report a
significantly larger amount of HCV-related sequences than those reported with samples
1 and 2. The BLAST method seems much more sensitive than our approach in this
case, since it reports more possible HCV-related sequences. As compared to the test
result of influenza, our method seemed to struggle to identify the HCV viral sequences.
We consider that this effect is due to the higher diversity of human-genome–related
sequences from the blood sample, which increase the noise level and may cause
difficulty in discovering the HCV viral sequences.

3.2 False Positive Tests from Healthy Samples

Other than the accuracy of successfully detecting Influenza or HCV-related sequences,
a pathogen detection system should also avoid the chance of false positive detection. In
this study, we collected blood samples from 10 healthy individuals and we consider a
false positive occurs when the system reports any influenza or HCV sequences in those
ten samples. Figure 5 shows the false positives of those ten healthy clinical samples
from both our proposed method and the BLAST method. The BLAST method pro-
duced false prediction sequences in all ten samples with about ten false positive
sequences per sample, while our method reported false positive HCV sequences from 9
healthy human samples with an average of only 2 errors per sample. Apparently, our
method behaves better because it produces the fewer false positive sequence. Since
those healthy samples have an average of about 2.9 million sequences, the false-
positive hits ratio from both methods is relatively small (less than 0.0004%), and we
consider that both methods deliver a similar result of false positives. For the Influenza
test, both methods report zero false positive results.
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3.3 Time Complexity Test

Other than the accurate identification of the viral-related sequences, the computational
speed is as important as the accuracy. Figure 6 shows the processing speed comparison
for both our proposed deep learning approach and the conventional BLAST method.
The y-axis describes how many millions of sequences are processed and analyzed per
minute, and the x-axis shows the testing platform. We compared the processing speed
in various scenarios from a single CPU (Intel(R) Xeon(R) E5-2690 v4 @ 2.60 GHz)
and a single GPU to a multi-GPU (Tesla P100-PCIE-16 GB). From a single CPU test,
our method can process 0.13 million sequences, which is slower than the 0.37 million
sequences from BLAST. The proposed method is ordinarily designed for maximizing
GPU acceleration with multiple GPUs for detecting target DNA sequences. We observe
the linear increase pattern when the number of GPUs increase. We observed that as the
number of GPUs increases, the number of processing sequences per minute linearly
increases. Our best case (8 GPUs) shows that our method can evaluate about 13.38
million sequences per minute, which is about 36 times faster than the BLAST method.

4 Conclusions

In this work, we explored how an LSTM network can be used to learn sequential
genome patterns through pathogen detection from metagenome data. We collected and
conducted case studies that analyzed influenza, HCV viral sequences, and healthy
samples. We evaluated the accuracy of pathogen detection with GPU acceleration. Our
experimental result shows that we obtained similar accuracy to the conventional
BLAST method, but at a speed that was about 36 times faster.

Acknowledgments. The authors are members of Fujitsu next generation Cloud Research
Alliance Laboratory (FCRAL). This research and development work was partially supported by
the MIC/SCOPE #172107106 and by Fujitsu Ltd.
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Abstract. Performing an auscultation of respiratory system normally
requires the presence of an experienced doctor, but the most recent
advances in artificial intelligence (AI) open up a possibility for the lay-
men to perform this procedure by himself in home environment. However,
to make it feasible, the system needs to include two main components:
an algorithm for fast and accurate detection of breath phenomena in
stethoscope recordings and an AI agent that interactively guides the end
user through the auscultation process. In this work we present a system
that solves both of these problems using state-of-the-art machine learn-
ing algorithms. Our breath phenomena detection model was trained on
5000 stethoscope recordings of both sick (hospitalized) and healthy chil-
dren. All recordings were labeled by a pulmonologist and acousticians.
The agent is able to accurately assess patient’s lung health status by
auscultating only 3 out of 12 locations on average. The decision about
each next auscultation location or end of examination is made dynami-
cally, after each recording, based on breath phenomena detected so far.
This allows the agent to make best prediction even if the auscultation is
time-constrained.

Keywords: AI in healthcare · Deep learning · E-health ·
Telemedicine · Digital stethoscope · Lung sounds auscultation

1 Introduction

Lung sounds auscultation was made popular by Leannec, who invented the
stethoscope in 1816. While the most notable features of auscultation are
non-invasiveness, simplicity and low cost associated with the device, its major
drawback is its subjectivity, since the examination results depend on physician’s
c© Springer Nature Switzerland AG 2019
D. Riaño et al. (Eds.): AIME 2019, LNAI 11526, pp. 31–35, 2019.
https://doi.org/10.1007/978-3-030-21642-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-21642-9_5


32 T. Grzywalski et al.

abilities to interpret the respiratory sounds [2]. A way to overcome this inherent
limitation is by digital recording and subsequent computerized analysis [1].

Many efforts have been reported in literature to automatically detect lung
sound pathologies using digital signal processing and simple time-frequency anal-
ysis [1]. In recent years, however, machine learning techniques have gained pop-
ularity because of their potential to find significant diagnostic information on
statistical distribution of data itself. Currently, benchmark results for breath
phenomena detection are obtained by implementation of deep neural networks
(DNNs) and their variants [3]. DNNs consist of stacked layers of neurons, that
process raw data by multiple non-linear transformations, thus incorporating the
feature extraction itself in the training phase. If sufficient training examples are
shown to the network, these learned features are much more distinctive and
descriptive in comparison to hand-crafted features by experts [3].

When it comes to design a fully interactive lungs auscultation system, breath
phenomena detection information gathered in the single auscultation point (AP)
must be fused with the rest of the context, in such a way that decisions about
how to proceed with the auscultation can be taken. A mathematical framework
that could allow to do that is Reinforcement Learning (RL). In the common RL
problem, the algorithm (agent) learns to solve complex problems by interacting
with an environment, which in turn provides rewards or penalties depending on
the results of the actions taken. The objective of the agent is thus to find the
best action to take when being in a certain state (policy), in order to maximize
the received reward [4]. We believe that adoption of the RL framework to model
the problem of conducting lung sounds auscultation, can be the key to develop
a fully interactive lung sounds analysis system. Also, since no literature about it
was found, we contribute by presenting the first adoption of RL to this problem.

This paper presents a novel method of automatic and interactive lung sounds
analysis based on DNNs and RL, which has been implemented in a system that
uses a digital stethoscope for capturing respiratory sounds.

2 Fully Interactive Lungs Auscultation

Our solution consists of two main algorithms, combined together: the first one is
a RL agent, trained to determine the status of the patient as fastest as possible,
i.e. using the lowest number of APs as possible. The second one is a convolutional
recurrent neural network (CRNN) that serves the agent as a feature extractor,
providing as input to the agent – a fixed number of values representative of detec-
tion and intensity level of critical phenomena. In Fig. 2 a systematic overview of
the application is given, showing how these two components interact. The entire
application is enabled by a digital stethoscope (connected to a smartphone) that
captures the respiratory sounds.

Breath Phenomena Detection. Our neural network architecture is a modi-
fied implementation of the one proposed in [5], i.e. a CRNN designed for poly-
phonic sound event detection. Convolutional layers act as pattern extractors,
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recurrent layers integrate the extracted patterns over time providing context
information, and finally feedforward layers produce the activity probabilities for
each class [5]. The network, trained with 5000 recordings is able to detect 7 types
of sound events: inspirations (i), expirations (e), wheezes (w), rhonchi (r), fine
and coarse crackles (fc, cc) and noise (n) [9] (Fig. 1).

Fig. 1. The signal is transformed into spectrogram and analyzed by the CRNN. The
output of the model is presented in form of raster where rows represent time, framed
in windows of 10 ms each; and columns show the probability of positive detection of
each phenomenon.

Reinforcement Learning Agent. The states for the agent are represented
by the list of APs already auscultated, each one described with a set of fea-
tures, obtained by post-processing the binarized raster coming from the breath
phenomena detection module. When receiving the input state, the agent can
decide either to auscultate another point or predict status of the patient if confi-
dent enough. Rewards are given if the predicted diagnosis is correct, penalties in
the opposite case. A small penalty is given for each auscultated point, in order
to discourage the agent from using too many points. Best policy for the agent
is thus embodied in the best auscultation path, described as sequence of most
informative APs. The agent itself is a direct implementation of the Q-learning
algorithm [6], where Q-values are approximated by a DNN (deep Q-network)
whose weights are updated through stochastic gradient descendent optimization
algorithm, with the objective of maximizing the expected future reward.

3 Experiments

Dataset. The database used for the research was based on a large amount of
actual auscultation recordings batched in more than 400 so-called visits (set
of 12 recordings taken in different locations) captured in realistic conditions by
experienced pediatricians using StethoMe® and Littmann 3200® digital stetho-
scopes [7,8]. The two devices used for data gathering were working in the same
frequency range and the data was eventually normalized before being sent to the
algorithms. Each sample was described by one to three experienced pediatricians
and acousticians in terms of presence of adventitious sounds in certain phases of
breathing cycle. For this, taggers were provided by an interactive, proprietary
web-based interface that allows fast labelling of the time series data.



34 T. Grzywalski et al.

Fig. 2. Fully interactive lung sounds analysis application: the examiner starts auscul-
tating the patient from the initial point (e.g. point 3), using a digital and wireless
stethoscope, connected via Bluetooth to a smartphone. Recorded signal is sent to the
server where a fixed set of features are firstly extracted based on breath phenomena
detection algorithm. Then, these features are given as input to the agent that pre-
dicts next best to be taken. This is sent back to device and shown to the user (e.g. to
auscultate point 8). The auscultation goes on until the agent declares an alarm value.

Moreover, for each visit an alarm label was assigned considering severeness
of pathological sounds found: 0, when zero or minor (innocent) pathologies are
detected; 1, when severe pathologies are found. In the first case, there is no
need to consult a doctor (no alarm), while in the second case the patient should
consult a specialist (alarm). In case there was more than one label for the same
visit, the highest label value was taken. The database was build with signed
consent from the parents of children and was approved by bioethical commission.

Evaluation. We evaluated the accuracy of the two components of the proposed
solution separately. After properly tuning its main hyper-parameters (learning
rate, number of layers, number of neurons per layer, etc.), the CRNN was trained
with the whole 5000 recordings and tested on 2142 unseen recordings (hidden
test set), gathered in the same way as described in the previous section, but
left apart for testing purposes [9]. Then, we compared the performance of the
RL (interactive) agent against its static counterpart, i.e. an agent that always
performs auscultation using all 12 APs. Note that both of the agents were using
the trained CRNN as feature extractor. In order to access this comparison, we
performed 5-fold cross validation (CV) for 30 different random splits of the
dataset into training and validation sets, simulating the auscultation procedure
as depicted in Fig. 2. All best selected models for each iteration were finally tested
on the hidden test set. Averaged scores are reported in Table 2. For completeness,
in Table 1 results of breath phenomena detection are presented, where NGT and
NBPD indicate the number of 10 ms frames that had positive occurrence of the
event (phenomenon), for ground truth and model predictions respectively.
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Table 1. Breath phenomena detection

Event NGT NBPD Precision Recall Bacc

i 86907 85438 93.2% 91.7% 93.2%

e 112796 115230 91.5% 93.5% 91.2%

fc 15892 16817 58.9% 62.3% 79.2%

cc 9717 7719 40.9% 32.5% 65.0%

w 7448 6530 62.3% 54.6% 76.7%

r 11683 13050 64.8% 72.4% 85.0%

n 73705 82409 73.1% 69.3% 78.3%

Table 2. Interactive agent versus static
agent

Agent Bacc F1alarm F1not alarm APs

Static 84.8% 82.6% 85.1% 12

Interactive 82.3% 81.8% 82.6% 3.2

4 Conclusions

We presented a system being able to perform lungs auscultation in a fully inter-
active way. This system, enabled by a digital stethoscope capturing respiratory
sounds, relies on a RL agent that uses features extracted by a CRNN in order
to estimate which is the best action to take at every stage of the auscultation.
The agent is able to assess patient’s lungs health auscultating only 3 out of 12
locations on average, keeping an acceptable diagnosis accuracy if compared to an
exhaustive auscultation using all possible locations. We believe that this system,
once deployed on large scale, will reduce number of unneeded visits to the doc-
tors, convert a lot of real visits into telemedicine, but also support practitioners
by providing more objective tool for breath phenomena detection.
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Abstract. Falls are the most common cause of fatal injuries in elderly
people, causing even death if there is no immediate assistance. Fall detec-
tion systems can be used to alert and request help when this type of acci-
dent happens. Certain types of these systems include wearable devices
that analyze bio-medical signals from the person carrying it in real time.
In this way, Deep Learning algorithms could automate and improve the
detection of unintentional falls by analyzing these signals. These algo-
rithms have proven to achieve high effectiveness with competitive per-
formances in many classification problems. This work aims to study 16
Recurrent Neural Networks architectures (using Long Short-Term Mem-
ory and Gated Recurrent Units) for falls detection based on accelerome-
ter data, reducing computational requirements of previous research. The
architectures have been tested on a labeled version of the publicly avail-
able SisFall dataset, achieving a mean F1-score above 0.73 and improving
state-of-the-art solutions in terms of network complexity.

Keywords: Fall detection · Deep Learning ·
Recurrent Neural Networks · Long Short-Term Memory ·
Gated Recurrent Units · Accelerometer

1 Introduction

According to the World Health Organization [12], unintentional falls are one of
the most frequent causes of injuries in people over 65 years. Approximately 28%–
35% of this cohort suffer at least one fall per year. This topic is gaining importance
due to the progressive elderly population increase. Major injuries pose significant
risk for postfall morbidity and mortality. This risk has been shown to be closely
correlated to the delay in assist with first aid after the fall [7].

Fall detection systems (FDS) are devices that monitor the user’s activity
and ideally alert when a fall has occurred. They allow sending an accident noti-
fication immediately to medical entities, caregivers and family members for a
quick assistance. Among all the different FDS types, wearable devices allow a
c© Springer Nature Switzerland AG 2019
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continuous monitoring without dependence on the environment. This kind
of devices usually use accelerometers and different algorithms to distinguish
between daily activities and fall events [4]. Although threshold based algorithms
show very high performance in terms of detection effectiveness and low compu-
tational complexity, they present many difficulties when trying to adapt them to
new types of falls and user complexion. Machine learning methods are considered
more sophisticated approaches to try to solve this problem. However, traditional
supervised classification algorithms are not suitable due to the sequential nature
of fall events, that implies a large computational cost, and the scarcity of datasets
to study these events [5].

Recurrent Neural Networks (RNN) such as Long Short-Term Memory units
(LSTM) and Gated Recurrent Units (GRU) are Deep Learning networks specifi-
cally designed to process sequences. Recent studies shed some light on the poten-
tial of RNNs for accelerometers [6]. This work focuses on finding a cost-effective
RNN architecture in terms of computational complexity and effectiveness for fall
detection in real-time.

2 Materials and Methods

2.1 Dataset

SisFall dataset [10] is used in this study. This dataset is composed of several
simulated activities mainly classified in falls and activities of daily living (ADL).
Each sample contains accelerometer measurements obtained from a device fixed
to the user’s waist. The measurement’s sampling frequency is 200 Hz. The dataset
was complemented with labeling criteria proposed in [6] dividing each activity
into segments with a width of 256 samples and a stride of 128. Each segment can
be classified as Fall, Alert or Background (FALL, ALERT and BKG) considering
if that segment recorded part of a fall event, a fall hazard status or an ADL state
without danger. A subset of 20% approximately (all activities related to 5 adult
subjects and 3 elderly, randomly chosen from each category) was extracted from
the total set for evaluating the effectiveness of models trained in this study. The
dataset includes 94K samples for training (90K BCK, 1K ALERT, 3K FALL)
and 23K for testing (22K BCK, 0.3K ALERT, 0.7K FALL).

2.2 Gated RNN

Gated RNNs introduce some memory-like cells in the architecture that hold
information separated from the rest of the neural network. The information is
managed through a set of gates. During the training of the network, the cells
learn to close or open their gates according to the relevance of the information
that comes from the sequence and the information currently stored.

LSTM units [3] contain three gates. Input and forget gates evaluate the
addition of new information into memory and the deletion of part of the stored
information. The output gate controls what information is provided to the next
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Fig. 1. Scheme representing all architectures trained in the first study stage, differen-
tiated between them by having distinct combinations of the highlighted layers.

step. GRUs [1] are more recent cells similar to LSTM that lack of the output gate,
dumping what is stored in the cell’s memory during the entire training process.
Both alternatives have shown to be similarly effective [2], although GRUs are
more economical in terms of computation cost.

2.3 Training and Testing

This work aims to identify the most ideal RNN in order to be implemented in
wearable devices. To this end, due to the high computational cost, the architec-
ture should be simplified. Therefore, our study consists of two stages. First one
is focused on comparing architectures with different layers combinations (See
Fig. 1). The study includes 16 architectures (8 uses LSTM and 8 uses GRU).
These are obtained by including/removing the dotted layers in Fig. 1, and are
simplified versions of the proposed solution in [6] with the exception of number
8, that consist of the same architecture without dropout. Each architecture was
tested by using both GRU and LSTM as RNN layers.

Due to the dataset being highly unbalanced, the overall classification accu-
racy is not an appropriate way to measure the effectiveness of the system. We
compared the effectiveness employing the F1-score [8] for each class and average,
which measures the relations between data’s positive labels and those given by a
classifier through a combination of precision and accuracy. Regarding the archi-
tecture complexity, the observed metric was the number of trainable parameters.

The second stage aimed to optimize the architectures that obtained the
best results. Firstly, in order to deal with overfitting, dropout technique [9]
was applied in the dense and recurrent layers, with the exception of the last
dense used to classify the input. It was tested with 0% (without dropout), 20%
and 35% values for each layer. Secondly, we used the best results combinations
obtained previously to adjust batch size and learning rate hyperparameters by
grid search with {32,64} and {0.0015, 0.001, 0.0005} values respectively.

3 Results and Discussion

Main results of first stage are presented in Table 1. F-1 score did not reach 0.33
for the ALERT class. Some reason for this can be the scarcity of this class
examples in the dataset [5] and the falling conditions. The application of batch
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Fig. 2. Scheme representing the architecture with best results obtained in the first
stage in terms of number of trainable parameters and mean F1-score.

Table 1. Results obtained with proposed architectures. First 8 rows corresponds to
training results using LSTM as RNN layers and second ones using GRU. The avg
subscript means the average between metrics values obtained. The prec. term consists
of precision metric. Codes d1, bn and rnn2 indicates the presence in the architecture
of first dense layer, batch normalization and second RNN layer respectively.

Additional layers Loss F1BKG F1ALE F1FALL Prec.avg Recallavg F1avg Param.

1 - 1.83 0.88 0.09 0.58 0.49 0.76 0.52 4835

2 rnn2 1.56 0.94 0.21 0.69 0.55 0.87 0.61 13283

3 bn 1.04 0.95 0.22 0.83 0.61 0.91 0.66 4847

4 bn, rnn2 1.02 0.96 0.29 0.82 0.63 0.91 0.69 13295

5 d1 2.07 0.85 0.08 0.45 0.45 0.73 0.46 8675

6 d1, rnn2 1.37 0.94 0.20 0.71 0.56 0.86 0.62 17123

7 d1, bn 0.97 0.95 0.25 0.82 0.62 0.91 0.67 8803

8 d1, bn, rnn2 [6] 1.31 0.96 0.26 0.82 0.63 0.89 0.68 17251

9 - 1.75 0.87 0.09 0.64 0.51 0.78 0.53 3651

10 rnn2 1.63 0.95 0.23 0.74 0.58 0.85 0.64 9987

11 bn 1.10 0.97 0.32 0.82 0.64 0.90 0.70 3663

12 bn, rnn2 1.20 0.96 0.29 0.80 0.62 0.90 0.69 9999

13 d1 1.89 0.84 0.09 0.43 0.44 0.75 0.45 6563

14 d1, rnn2 1.11 0.94 0.21 0.71 0.56 0.89 0.62 12899

15 d1, bn 0.97 0.96 0.28 0.87 0.65 0.92 0.70 6691

16 d1, bn, rnn2 1.28 0.97 0.34 0.82 0.64 0.90 0.71 13027

normalization presents the best contribution to performance results. Although
the second RNN layer improves the results, the amount of parameters that it
adds to the network implies a higher computational cost. Due to the low number
of parameters and good results in comparison with the rest of the models, it was
considered to optimize results of both architectures 3 and 11 (Fig. 2).

Table 2 shows the best results obtained after the parameter optimization.
Effectiveness results are very similar to [6], of which is estimated an F1-score of
0.71 considering that they had used approximately the same number of samples
in each class as in this study. However, the model obtained in this study has
a much lower complexity since it lacks a dense layer and an additional LSTM
layer. This implies a direct impact on the energy saving of the real-time capable
device in which the model would be integrated, being able to have an autonomy
greater than 20 h of [11].
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Table 2. Results obtained after grid search optimization.

RNN

type

Learn.

rate

Batch

size

Input

drop

RNN

drop

Param F1BKG F1ALE F1FALL Precavg Recallavg F1avg

lstm 0.001 32 0.35 0 4847 0.98 0.42 0.85 0.69 0.88 0.75

gru 0.001 64 0.35 0.2 3663 0.98 0.37 0.85 0.69 0.88 0.73

4 Conclusions

In this paper, we present the use of Gated RNN based in LSTM and GRU layers
as a method implementable in wearable devices with accelerometer to detect
falls in real-time. After a study of 16 architectures, the best results in terms of
computational complexity and classification are formed by a batch normalization
layer receiving the input, a RNN layer and a dense end layer for the classification
of the event. FALL and BKG classes are well classified, with F1-scores above 0.98
and 0.85 respectively. Mean F1-score obtained was 0.75 and 0.73 for LSTM and
GRU versions, respectively. In future studies the authors will implement this
model in a hardware device suitable for use as a wearable FDS.
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Abstract. Cancer arises from the accumulation of particular somatic genomic
variants known as drivers. New sequencing technologies allow the identification
of hundreds of variants in a tumor sample. These variations should be classified
as driver or passenger (i.e. benign), but functional studies could be time and cost
demanding. Therefore, in the bioinformatics field, machine learning methods are
widely applied to distinguish drivers from passengers. Recent projects, such as
the AACR GENIE, provide an unprecedented amount of cancer data that could
be exploited for the training process of machine learning algorithms. However,
the majority of these variants are not yet classified. The development and
application of approaches able to assimilate unlabeled data are needed in order
to fully benefit from the available omics-resources.
We collected and annotated a dataset of known 976 driver and over 84,000

passengers from different databases and we investigated whether unclassified
variants from GENIE could be employed in the classification process. We
characterized each variant by 94 features from multiple omics resources. We
therefore trained different autoencoder architectures with more than 80000
GENIE variants. Autoencoder is a type of neural network able to learn a new
features representation of the input data in an unsupervised manner. The trained
autoencoders are then used to obtain new representations of the labeled dataset,
with a reduced number of meta-features with the aim to reduce redundancy and
extract the relevant information. The new representations are in turn exploited to
train and test different machine learning techniques, such as Random Forest,
Support Vector Machine, Ridge Logistic Regression, One Class SVM. Final
results, however, does not show a significant increase in classification ability
when meta-features are used.

Keywords: Somatic variant classification � Semi-supervised learning �
Autoencoder
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1 Introduction

It is now assessed that cancer originates from the accumulation, over life-time, of
genomic mutations known as drivers. These variants are able to confer an advantage to
the cell in which they occur, which starts to proliferate without control and gives rise to
the neoplasm [1]. However, the majority of variants appearing in somatic cells during
time is not malignant and they are referred to as passengers.

To distinguish driver from passenger mutations, functional studies should be per-
formed, but their high cost makes them often unfeasible. Thanks to the great avail-
ability of cancer data resulting from international and national research projects,
machine learning (ML) methods are often exploited to solve the task of
“driver/passenger classification” [2]. To assemble training and test set, known drivers
and passengers are characterized by a set of features, that include structural, evolu-
tionary and genetic information [3]. Several features could be collected to characterize
each variants, but many of them are often correlated: for instance, in silico tools to
predict the damaging impact of the variant on the gene product can rely on different
variant characteristics already collected as features. In similar circumstances, reducing
the dimensionality of the feature space have showed to improve ML performance, by
transforming the input space into a lower set of features that preserves the relevant
information, thus removing redundant data [4].

Another issue is the that the majority of available data, such as those collected by
the AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE) [5],
are not labeled and therefore cannot be exploited to train standard supervised learning
approaches. Since in this field data-labeling process is high, it is desirable the devel-
opment of approaches able to take into account also unlabeled data within the training
procedure. Specifically, semi-supervised learning techniques exploit unlabeled data in
addition to labeled data to improve model performance. The assumptions is that there is
some structure to the underlying distribution of data that the unlabeled data will help
elucidate [6].

2 Methods

We investigated whether unlabeled genomic data coupled with dimensionality reduc-
tion could be exploited to improve performance when classifying somatic variants from
pan-cancer data into drivers or passengers. We chose to perform dimensionality
reduction through autoencoders for two main reasons. It has been shown that classi-
fication performance increases when meta-features extracted from autoencoders are
exploited [7]. Moreover, autoencoder could be pretrained with unlabeled data, making
them feasible for the development of semi-supervised learning approaches.

2.1 Preprocessing: Labeled and Unlabeled Dataset

First we collect a labeled dataset from three public sources [8–10]. The total number of
driver mutations is 976, while the number of passengers is 84440. The great unbal-
anced between the two classes reflects the real proportions of drivers and passengers
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that has been sometimes observed in tumor samples [11]. The unlabeled dataset is
represented by 80032 GENIE variants (downloaded in June 2017). Each variant is
identified by a genomic coordinate (chromosome, start position, reference allele and
alternate allele). We characterized each variant with 94 features, including population
allele frequency, Boolean features indicating the presence of the variant in cancer
databases, in silico prediction of damaging impact, evolutionary profiling information.

2.2 Supervised and Semi-supervised Learning

We selected 4 different ML methods implemented in the scikit-learn Python package:
Random Forest (RF), Support Vector Machine (SVM), One Class Support Vector
Machine (OneClassSVM) and Ridge Regression (RR). RF is an ensemble classifier
where a set of decision trees are trained, and final classification is the result of a voting
procedure among them. SVM represents examples as points in space and try to dis-
cover a hyperplane able to divide two different classes. One Class SVM is an adap-
tation of standard SVM, applied to one class classification problems, i.e. when data
from only one class (the target class) are available. The target class represents normal
examples, while the outliers are unusual observations. In our case, we can assume that
passenger variants are the usual variations occurring in the genome, while drivers are
the abnormal that we want to detect. Finally, RR is a classification method where
classes probabilities are calculated according to a logistic function.

We selected the 70% of labeled dataset for training, leaving 30% for test. The
proportions of passengers and drivers in the two datasets are kept. We select the best
parameters after a 10-fold cross validation on the training set for each of the four
methods. Best models are trained on the whole training dataset and then tested.

We implemented an autoencoder through the Keras library. The architecture of the
network is the following: the input layer (94 neurons) is followed by 5 encoded layers
(with number of neurons equal to 90, 85, 80, 75 and 70), followed by five symmetric
decoded layers. Therefore, the reduced dimension of features is 70. The size of the
meta-features is selected empirically, and further analysis should be performed with
different meta-features size. We decide to first investigate a relatively high hidden
dimension (70) since it has been shown that for classification purpose a very small
number of meta-features does not improve performance [12]. We trained the autoen-
coder with GENIE unlabeled dataset (10 number of epochs, size of batch 32). The
trained network is exploited to reduce the dimensionality of the labeled dataset. The
four ML models are trained and tested also with the meta-features dataset.

3 Results

The model parameters selected after a 10-fold cross validation are the following: RF is
implemented through sklearn.ensemble.RandomForestClassifier (n_estimators = 10,
min_sample_split = 2, criterio = “gini”), SVM through sklearn.svm.SVC (kernel rbf,
gamma “scale”, C = 1), OneClass SVM through sklearn.svm.OneClassSVM (kernel
rbf, nu = 0.1, gamma = 0.1) and Ridge Regression thorugh sklearn.linear_model.
RidgeClassifier (alpha = 1.0, tol = 0.001). In Table 1 we reported some performance
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metrics on raw features test set, while Table 2 shows the same metrics for the 70 meta-
features dataset. We select metrics, for instance Matthews Correlation Coefficient
(MCC) and Balanced Accuracy, able to assess the effectiveness even with highly
imbalanced dataset [13].

RF and RR perform better on the meta-features dataset, while OneClass SVM and
SVM show better results on the raw features dataset. However, performance differences
are not clearly marked.

4 Conclusions

The distinction between passenger and driver mutations in tumor sample is a critical
step to understand patient individual cancerogenesis. Thanks to the great availability of
public cancer data, bioinformaticians have often trained ML models to classify somatic
variants into drivers or passengers. However, many examples could not be used since
the ground truth labels are missing. Semi-supervised learning approaches could allow
to fully benefit from genomic sequencing data reported by public resources.

Our work represents a preliminary attempt to use unlabeled data and meta-features
representation to improve performance of standard supervised methods. After the
collection of two datasets (labeled and unlabeled), four ML techniques are trained and
tested with the labeled dataset. Then, we implemented an autoencoder architecture pre-
trained with unlabeled data, that performed dimensionality reduction of labeled dataset.
The meta-features dataset is again used to train and test the same ML models. Clas-
sification performance are high, but there is not a strong improvement when using the
meta-features dataset. Source code is available at https://github.com/GiovannaNicora/
semi_supervised_learning-somatic_variant_classification.

Table 1. Results on 94 raw features labeled dataset.

Model MCC TPR TNR Balanced accuracy

Random forest 0.903 0.999 0.878 0.93
OneClass SVM 0.5 0.9 1 0.95
SVM 0.846 0.998 0.813 0.9
RR 0.813 0.998 0.79 0.89

Table 2. Results on 70 meta-features labeled dataset.

Model MCC TPR TNR Balanced accuracy

Random forest 0.916 0.999 0.91 0.95
OneClass SVM 0.494 0.898 0.996 0.94
SVM 0.901 0.998 0.901 0.95
RR 0.847 0.999 0.78 0.89
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Future works will include further investigation, through the testing of different
autoencoder architecture, with different number of meta-features involved. Moreover,
other dimensionality reduction techniques, for instance PCA, must be compared.
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Abstract. Brain-related disorders such as epilepsy can be diagnosed
by analyzing electroencephalograms (EEG). However, manual analysis
of EEG data requires highly trained clinicians, and is a procedure that
is known to have relatively low inter-rater agreement (IRA). Moreover,
the volume of the data and the rate at which new data becomes avail-
able make manual interpretation a time-consuming, resource-hungry, and
expensive process. In contrast, automated analysis of EEG data offers
the potential to improve the quality of patient care by shortening the
time to diagnosis and reducing manual error. In this paper, we focus
on one of the first steps in interpreting an EEG session - identifying
whether the brain activity is abnormal or normal. To address this specific
task, we propose a novel recurrent neural network (RNN) architecture
termed ChronoNet which is inspired by recent developments from the
field of image classification and designed to work efficiently with EEG
data. ChronoNet is formed by stacking multiple 1D convolution layers
followed by deep gated recurrent unit (GRU) layers where each 1D con-
volution layer uses multiple filters of exponentially varying lengths and
the stacked GRU layers are densely connected in a feed-forward manner.
We used the recently released TUH Abnormal EEG Corpus dataset for
evaluating the performance of ChronoNet. Unlike previous studies using
this dataset, ChronoNet directly takes time-series EEG as input and
learns meaningful representations of brain activity patterns. ChronoNet
outperforms previously reported results on this dataset thereby setting
a new benchmark.

Keywords: Machine learning · Recurrent neural networks ·
Electroencephalography

1 Introduction

Electroencephalography (EEG) is a noninvasive method to measure brain activ-
ity through the recording of electrical activity across a patient’s skull and scalp
and is frequently used for the diagnosis and management of various neurological
conditions such as epilepsy, somnipathy, coma, encephalopathies, and others. As
symptoms are not guaranteed to be present in the EEG signal at all times, the
diagnosis of a neurological condition via EEG interpretation typically involves
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long-term monitoring or the recording of multiple short sessions. In this process,
large amounts of data are generated that subsequently need to be manually
interpreted by expert investigators. The relatively low availability of certified
expert investigators and high volume of data make EEG interpretation a time-
consuming process that can introduce a delay of hours to weeks in the patient’s
course of treatment. Introducing a certain level of automation to the EEG inter-
pretation task could serve as an aid to neurologists by accelerating the reading
process and thereby reducing workload. It is these reasons why automatic inter-
pretation of EEG by machine learning techniques has gained popularity in recent
times [4,16].

When interpreting an EEG recording, first, an assessment is made as to
whether the recorded signal appears to show abnormal or normal brain activity
patterns [13]. This decision can influence which medication is being prescribed
or whether further investigation is necessary. Typically, both, patterns in the
recording and the patient’s state of consciousness are being considered when
deciding whether a recording shows a abnormal or normal EEG. Highly trained
clinicians typically follow a complicated decision chart to make this distinction
[13]. The motivation behind our work is to automate this first step of interpre-
tation. We do so using a recently released dataset known as the TUH Abnormal
EEG Corpus, which is the largest of its type to date [14] and freely available at
[1]. Inspired by successes in time-domain signal classification, we explore recur-
rent neural network (RNN) architectures using the raw EEG time-series signal
as input. This sets us apart from previous publications [12,13,16], in which the
authors used both traditional machine learning algorithms such as k-nearest
neighbour, random forests, and hidden markov models and modern deep learn-
ing techniques such as convolutional neural networks (CNN), however, did not
use RNNs for this task.

Compared to the original studies using hand-engineered features [12,13], we
show that the combination of raw time series and RNNs eliminates the need to
extract hand-crafted features and allows the classifier to automatically learn rele-
vant patterns, surpassing their results by 3.51%. Taking inspiration from 1D con-
volution layers [5], gated recurrent units [3], inception modules [17], and densely
connected networks [8], we build a novel deep gated RNN named ChronoNet
which further increases accuracy by an additional 4.26%, resulting in an overall
7.77% improvement over results reported in [12,13]. Moreover, compared to a
recently published study showing state-of-the-art performance on this dataset,
ChronoNet achieves 1.17% better results thereby setting a new benchmark for
the TUH Abnormal EEG Corpus.

2 Background and Theory

Raw EEG signals are temporal recordings that may exhibit patterns and period-
icities at various time scales. A method that has successfully been used to classify
time signals, for example speech, is the use of recurrent neural networks (RNNs).
In recent times, two types of recurrent units have become popular namely Long
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short-term memory [6] and Gated Recurrent Units [3] which we will be using in
this article. For more details on the theory and applications of these architec-
tures, we invite the reader to refer to [9].

We shall now discuss the concept of inception modules and densely connected
neural networks (concepts used in convolutional neural networks) which we will
use for EEG data analysis to account for patterns emerging at different scales
and for mitigation of vanishing gradients, respectively. This collection of princi-
ples and modules provides the essential basis for understanding the ChronoNet
architecture proposed in Sect. 3.

The inception module was proposed by Szegedy et al. [17] as a building
block for the GoogLeNet architecture. Unlike traditional convolutional neural
networks, the inception module uses filters of varied size in a convolution layer to
capture features of different levels of abstraction. Processing visual information
at different scales and aggregating them allows the network to efficiently extract
relevant features. Typically, the module uses three filters of sizes 1×1, 3×3, and
5 × 5. Moreover, an alternative parallel path is also included which implements
a 3 × 3 max-pooling operation. However, naively introducing more filters in
convolutional layers increases the number of parameters.

DenseNet is a deep convolutional neural network architecture recently pro-
posed in [8]. The main idea of DenseNet is that it connects each layer with every
other layer in a feed-forward fashion. Each layer uses the feature maps of all its
preceding layers as input and passes its own feature maps as input to all subse-
quent layers. Hence, while a traditional CNN with L layers has L connections, in
DenseNet there are L(L+1)/2 direct connections. DenseNet mitigates the prob-
lem of vanishing/exploding gradients that is observed in very deep networks [10].
It achieves that by providing short-cut paths for the gradients to pass during
backpropagation.

3 Methods

Inception modules (see Sect. 2) were originally proposed to enable a convolutional
neural network to account for different abstraction layers in the context of image
processing. Similarly, densely connected networks (see Sect. 2) were developed
to address vanishing gradients due to backpropagation in deep convolutional
neural networks. As described previously, EEG data contains information across
different scales in the time-domain. Furthermore, using deep RNN architectures
might lead to the problem of vanishing or exploding gradients. If designed prop-
erly, advantages of inception modules and densely connected layers may, thus,
equally apply to problems in the time-domain. In this section, we will use the
concepts of inception modules and densely connected networks to build novel
recurrent neural networks architectures for time-series classification.

3.1 Convolutional Gated Recurrent Neural Network (C-RNN)

Considering the input is a time series, an obvious first approach is to stack
multiple GRU layers as shown in Fig. 1a. This popular architecture for handling
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sequential input data has led to state-of-the-art accuracy in various pattern
recognition tasks, especially in natural language processing [18,19].

However, when applied to relatively long input time-series data (as opposed
to embedding vectors [15] in the case of natural language processing), this app-
roach turns out to be computationally very intensive and time consuming to
train. To solve this problem, data can be downsampled to an acceptable length
before it is given as input to RNNs. However, using fixed values means that net-
works will not be able to adapt to the data at hand. In order to mitigate these
problems, we used multiple 1D convolution (Conv1D) layers with strides larger
than 1, enabling the network to learn to appropriately reduce the input signal
automatically.

The resulting architecture (C-RNN) is a combination of Conv1D layers fol-
lowed by stacked GRU layers. Conv1D layers have two advantages. First, they
learn to sub-sample the signal and, thus, reduce the input vector’s length as we
move towards higher layers. This becomes particularly relevant when reaching
GRU layers, which during training constitute the most computationally expen-
sive part of the network. Second, Conv1D layers extract local information from
neighbouring time points, a first step towards learning temporal dependencies.
Following Conv1D layers, the GRU layers are responsible for capturing both
short- and long-term dependencies.

The specific network used in this paper is presented in Fig. 1b. The formats
used throughout the paper to describe Conv1D and GRU layers are (layer name,
filter length, number of filters, stride size) and (layer name, number of filters)
respectively.

3.2 Inception Convolutional Gated Recurrent Neural Network
(IC-RNN)

In the previous C-RNN architecture, each Conv1D layer had the capability to
extract local information at only one time scale determined by a single fixed filter
size, limiting the flexibility of the model. Since the rate of change of information
in a time series depends on the task at hand, the filter size for each Conv1D
layer would have to be hand-picked to fit the particular data.

To address this problem, taking inspiration from [17], we designed an archi-
tecture which expands upon C-RNN by including multiple filters of varying sizes
in each Conv1D layer. This allows for the network to extract information over
multiple time-scales. However, unlike [17], in IC-RNN, filter lengths used in the
Conv1D layers were drawn from a logarithmic instead of a linear scale, leading
to exponentially varying filter lenghts. Our experiments demonstrated that for
the dataset considered in this paper, exponentially varying filter lengths lead
to better performance. We speculate that this is because compared to images
where relevant features vary in the same order of magnitude, in time series the
range of timescales in which features exist is much wider. Note that, to the best
of our knowledge, inception modules with exponentially varying filter sizes are
reported for the first time in this paper. The specific configuration used in our
experiments is shown in Fig. 1c. A Filter Concat layer concatenates the incoming
features along the depth axis.
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Fig. 1. (a) A deep gated recurrent neural network which feeds the input directly into
stacked GRU layers. (b) The convolutional gated recurrent neural network (C-RNN)
which stacks multiple 1D convolution layers followed by a small number of GRU layers.
(c) The Inception Convolutional Gated Recurrent Neural Network (IC-RNN) modifies
the C-RNN (see Fig. 1b) architecture by including multiple filters of exponentially
varying lengths in the 1D convolution layers.

3.3 Convolutional Densely Connected Gated Recurrent Neural
Network (C-DRNN)

The C-RNN architecture is not immune to the problem of degradation which
sometimes impedes the training of very deep neural networks [10]. For simpler
problems that do not need the full potential of the model complexity offered by
a C-RNN, the optimization procedure may lead to higher training errors.

To tackle this issue, inspired by the DenseNet architecture proposed by [8]
for CNNs, we incorporate skip connections in the stacked GRU layers of C-RNN
to form the C-DRNN architecture. Each GRU layer is connected to every other
GRU layer in a feed-forward fashion. Intuitively, skip connections will lead to
GRU layers being ignored when the data demands a lower model complexity
than offered by the entire network. The details of the network are shown in
Fig. 2a.
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Fig. 2. (a) The Convolutional Densely Connected Gated Recurrent Neural Network (C-
DRNN) architecture includes dense connections in the recurrent stage i.e. the output
of each GRU layer is given as input to every other GRU layers in a feed-forward
manner. (b) Proposed ChronoNet architecture which includes both multiple filters of
exponentially varying lengths in the 1D convolution layers and dense connections within
the GRU layers.

3.4 ChronoNet: Inception Convolutional Densely Connected Gated
Recurrent Neural Network

Finally, we combine both modifications introduced for the previous two net-
works (IC-RNN and C-DRNN) with C-RNN to form the ChronoNet architecture.
To the best of our knowledge, this is the first time this architecture has been
reported. To summarize, ChronoNet is created by stacking multiple Conv1D
layers followed by multiple GRU layers where each Conv1D layer has multiple
filters of varying sizes and the stacked GRU layers are densely connected in a
feed-forward manner.

The presence of multiple filters in the Conv1D layers allows ChronoNet to
extract and combine features from different time scales. The optimum filter size
for a Conv1D layer usually depends on both the task at hand and its relative
position in the network. ChronoNet has the flexibility to explore multiple filter
lengths for each Conv1D layer. On the other hand, densely connected GRU layers
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allow ChronoNet to mitigate the problem of degradation of training accuracy
caused by vanishing or exploding gradients. This potentially enables the creation
of very deep variants of ChronoNet for more complex tasks. Moreover, dense
connections also strengthen feature propagation and encourage feature reuse in
the GRU layers. The network we designed for the abnormal EEG classification
task considered in this paper is depicted in Fig. 2b.

4 Experiments

4.1 Data Selection and Preparation

In this paper, we primarily focused on the TUH Abnormal EEG Corpus [12],
which contains EEG records that are annotated as either clinically abnormal or
normal. The TUH Abnormal EEG Corpus is a subset of the TUH EEG Cor-
pus [14] which is the world’s largest publicly available database of clinical EEG
data. The TUH EEG Corpus comprises 23257 EEG sessions recorded over 13551
patients. In the entire dataset, almost 75% of the data represent abnormal EEG
sessions. The TUH EEG Abnormal Corpus was formed by selecting a demo-
graphically balanced subset of the TUH EEG Corpus through manual review
that consisted of 1488 abnormal and 1529 normal EEG sessions, respectively.
These sets were further partitioned into a training set (1361 abnormal/1379 nor-
mal), and a test set (127 abnormal/150 normal). TUH Abnormal EEG Corpus
consists of EEG sessions recorded according to the 10/20 electrode configuration
[7]. We converted the recorded EEG signal into a set of montages or differentials
based on guidelines proposed by the American Clinical Neurophysiology Soci-
ety [2]. In this paper, we used the transverse central parietal (TCP) montage
system for accentuating spike activity [12]. Note that we did not extract any
hand-engineered features from the dataset because we envisioned that the deep
RNNs used in this paper will be able to automatically extract relevant features
and learn meaningful representations.

In the original study [12], the authors noted that neurologists can accurately
classify an EEG session into either abnormal or normal by only examining the
initial portion of the signal. This motivated the authors to build machine learning
algorithms that can classify an EEG signal by taking only the first minute of
data as input. Hence, training and test set were generated by extracting the
first minute from the available EEG sessions. Note that during testing only the
first minute was used to enable a fair comparison of the classifier to human-level
performance. Using only the first minute to create the training set, on the other
hand, was a design choice motivated by the fact that the first minute might be
most representative of the test set. Once electrodes are placed on the scalp and
data recording starts, impedances and therewith the signal will gradually change
due to external factors such as slowly drying conductive paste. To have a fair
comparison with [12], we trained our model only on the first minute and report
the obtained results in Sect. 4.2.
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However, using the above method significantly limits the amount of data that
can be used for training. This results in two problems. First, deep learning is
a data hungry technique and performance substantially increases as more data
is included in the training set. Second, when applied to small datasets, RNNs
have a tendency to quickly overfit, an effect that intensifies as networks become
deeper, as is the case for those considered in this paper. To not limit ourselves
unnecessarily, we analyzed the effect of including more than just the first minute
from the training sessions. This was done by choosing a random subset of sessions
from the original training by exclusion of any samples later used for testing.
The resulting sets were then further divided into smaller training and test sets.
Separate models were trained for each minute of these training sets. We analysed
the performance of these models on the first minute of the intermediate small
test sets.

The outcome of this experiment demonstrated that we can use up to 11 min
of data from the training EEG sessions without performance degradation. This
led to a 11-fold increase in our training data as compared to the method used in
[12]. The sizes of the final training and test set used were 14971 abnormal/15169
normal and 127 abnormal/150 normal respectively.

In this dataset, most recordings were done with a sampling frequency of
250 Hz. Where this was not the case, sessions were resampled to 250 Hz. An input
vector to the network was 1 min long, thus, consisting of 15000 time points.

4.2 Results

We used the dataset described above to train the four deep recurrent neural
network architectures presented in Sect. 3. Networks were trained using the
adaptive moment estimation optimization [11] algorithm with a learning rate
of 0.001. Moreover, we used a batch size of 64 and trained the networks for
500 epochs. Table 1 lists mean accuracies of 5 repetitions of these experiments.
Results reported to date on this dataset are included for comparison. In [12], the
author explored various machine- and deep learning algorithms and observed
that best performance is obtained when frequency features extracted from the
input time-series signal are fed into a convolutional neural network [12] (CNN-
MLP in Table 1). Furthermore, in [16] the authors used a deep convolutional
neural network built by automatic hyperparameter search (DeepCNN in Table 1)
and reported the best accuracy to date.

Table 1 clearly depicts that the deep recurrent neural architectures explored in
this paper outperform the results shown in the original study [12] using CNN-MLP.
It is important to note that in contrast to CNN-MLP, the proposed architectures
do not rely on hand-crafted features. Moreover, we see that C-RNN, IC-RNN, C-
DRNN, and ChronoNet are surpassing best accuracy reported in [12] by 3.51%,
5.31%, 5.09%, and 7.77%, respectively. Furthermore, compared to the recently pub-
lished state-of-the-art performance [16], ChronoNet shows 1.17% better accuracy.
Out of the four recurrent architectures, ChronoNet achieves both the best train-
ing and testing accuracy. This shows that the combined positive effect of including
multiple filters in Conv1D layers and incorporating dense connections in the GRU
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Table 1. Performance comparison of the four deep recurrent neural networks described
in Sect. 3 and results reported in [12] (see CNN-MLP) and [16] (see DeepCNN).

– Training accuracy Testing accuracy

C-RNN 83.58% 82.31%

IC-RNN 86.93% 84.11%

C-DRNN 87.20% 83.89%

ChronoNet 90.60% 86.57%

CNN-MLP N/A 78.80%

DeepCNN N/A 85.40%

layers is more pronounced than using either one or none of them. Moreover, our
experiments showed thatChronoNet yields similar performance (86.64%, averaged
over 5 runs) when GRUs are replaced by LSTMs, however, networks with LSTM
units took longer time to train than their GRU counterpart.

The training and test dataset was pre-split in the TUH Abnormal EEG cor-
pus in a way such that each set is demographically balanced (gender and age) and
no patient appears in both the training and testing set. To demonstrate that the
network is not overfitting the hyper parameters on the test set, we combine the
training and test set provided in the TUH Abnormal EEG Corpus and perform
a 5-fold cross-validation to provide test accuracy for the proposed architecture.
We achieve a 86.14% accuracy with the 5-fold cross-validation approach.

Note that the number of EEG records used in the training set is the same
as the number used in other works on this dataset. While the original study
[12] used only the first minute, we discovered that more than the first minute
can be included in the training set. If trained on just the first minute i.e. when
the training set is exactly same as used in other work, ChronoNet achieves an
accuracy of 85.27% (averaged over 5 runs) which is 6.47% better than [12].

To demonstrate that exponentially varying filter sizes in the Conv1D lay-
ers of ChronoNet are a necessary component, two experiments were performed.
First, shorter (compared to the longest 1D convolution filter used in ChronoNet)
linearly varying filters of lengths 3, 5, and 7 were implemented. As a result,
training and testing accuracies fall to 89.15% and 85.12%, respectively. Second,
longer but linearly varying filters of lengths of 14, 16, and 18 were implemented.
While training accuracy increased to 91.25%, the testing accuracy was reduced
to 85.92. We speculate that in both cases features extracted by the network are
not sufficiently diverse, and furthermore, in the later case, the increased model
complexity leads to overfitting.

5 Conclusion

Determining whether an EEG recording shows abnormal or normal brain activity
is often the first step in the diagnosis of a neurological condition. Since manual
interpretation of EEG is an expensive and time-consuming process, any classifier
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that automates this first distinction will have the potential to reduce delays in
treatment and to relieve clinical care givers. We introduce ChronoNet, a novel
network architecture that is designed to be flexible and adaptable and, thus,
uniquely suited for the analysis of EEG time-series data. This novel RNN archi-
tecture outperforms the best previously reported accuracy on the dataset used
by 1.17%, setting a new benchmark.
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Abstract. Continuous bladder irrigation (CBI) is commonly used to
prevent urinary problems after prostate or bladder surgery. Nowadays,
the irrigation flow rate is regulated manually based on the color (qualita-
tive estimation of the blood concentration) of the drainage fluid. To mon-
itor the blood concentration quantitatively and continuously, we have
developed a portable CBI monitor based on the Lambert-Beer law. It
measures transmitted light intensity via a camera sensor and deduces
the blood concentration. To achieve high reliability, we need to guar-
antee that the measurement is conducted when there is no air bubble
passing through the view of the camera. To detect bubble occurrences,
we propose a convolutional recurrent neural network with a sequence of
images as input: the convolutional layers extract spatial features from
2D images; the recurrent layers capture temporal features in the image
sequence. Our experimental results show that our network has smaller
scale and higher accuracy compared with conventional convolutional and
recurrent neural networks.

Keywords: Continuous bladder irrigation ·
Blood concentration measurement · Bubble detection ·
Convolutional neural network · Recurrent neural network

1 Introduction

Continuous bladder irrigation (CBI) is commonly used after prostate or blad-
der surgery, like transurethral resection of the prostate, open prostatectomy
and transurethral resection of bladder tumor [1,2]. It can prevent postoperative
complications, like blood clot formation and retention, urinary tract obstruc-
tion, cystospasm and hemorrhage [3,4]. In some cases, CBI is also used to dis-
solve bladder stones or treat infected bladder lining. CBI uses a three-way Foley
catheter to allow the irrigation fluid (sterile saline) to flow into and the drainage
fluid to flow out of the bladder simultaneously [5]. Nowadays, to improve the
efficacy of CBI, nurses regulate the flow rate of the irrigation fluid based on the
qualitative estimation of the blood concentration of the drainage fluid in the
c© Springer Nature Switzerland AG 2019
D. Riaño et al. (Eds.): AIME 2019, LNAI 11526, pp. 57–66, 2019.
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evacuating catheter. That is, nurses observe the color of the drainage fluid: if
it is heavily bloodstained, they turn the irrigation faster, as the likelihood of
blood clot formation is increased due to the high blood concentration; if it is
lightly bloodstained, they let the irrigation run slower to inflict less pressure
upon the bladder of patient. Typically, the patient prescribed with CBI needs
frequent irrigation monitoring and regulation for around two days [5]. This is
a heavy burden for nurses since they have to inspect patients back and forth
in wards. Additionally, since the inspection by nurses is discontinuous, the flow
rate regulation might be incorrect. Moreover, the color estimation by eyes under
uncontrolled illumination conditions in wards is prone to be erroneous.

We have developed a portable CBI monitor which uses a camera sensor to
measure the blood concentration of the drainage fluid quantitatively. It helps
nurses monitor irrigation situations of patients continuously and accurately.
However, occasionally an air bubble passes through the view of the camera,
which deteriorates the blood concentration measurement. Therefore, we need to
detect the bubble occurrences and discard the corresponding measurements. The
main contribution of this paper is a small-scale convolutional recurrent neural
network (CRNN) to detect the bubble occurrences. The designed CRNN takes
a sequence of images as input, which is obtained by the same camera sensor
used for blood concentration measurement. It firstly uses convolutional layers to
extract spatial features from the 2D images, and then recurrent layers to capture
temporal features in the image sequence. Our approach provides reliable bubble
detection without introducing an extra sensor to our CBI monitor.

The remainder of this paper is organized as follows: Sect. 2 presents related
works that study automatic CBI monitoring as well as convolutional and recur-
rent neural networks; Sect. 3 describes the problem we are facing and our method-
ology to solve it; Sect. 4 reports the experiments and results while Sect. 5 draws
the conclusions and suggests some directions for future work.

2 Related Work

Nowadays, CBI is manually monitored and regulated in the hospital and is
important practical training for nurses. In 2016, Ding et al. [6] designed an auto-
matic flow rate controller for CBI. Their clinical experiments suggested that
their automatic controller could promote the recovery of patients and hence
improve the clinical outcome. In 2017, Arun et al. [7] published a patent about
an autonomous CBI device. In both works, a color sensor was utilized to mon-
itor blood concentration, which used a white light source to illuminate the
drainage fluid in the catheter and an RGB color sensor to determine the color
of the drainage fluid. The measured color might be quite different from the
one observed by nurses, because of the spectral difference between the adopted
white light source and natural/artificial light sources in wards, as well as the
different spectral responsivities between the used RGB photo-diodes and human
eyes. Moreover, the conversion from measured color to blood concentration is
unclear, because the color of the drainage fluid is not only related to blood,
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but also urinary pigments, such as urobilin, carotin, and betanin. A bubble in
the drainage fluid is prone to cause erroneous color measurements, which has
not been considered in the previous works.

Convolutional neural networks (CNNs) have recently achieved great success
in many computer vision tasks, such as image classification, object detection
and pixel-wise prediction [8–10]. CNNs use feed-forward architectures to extract
features from an image at different levels, which is similar to a human brain.
Recurrent neural networks (RNNs) use the idea of processing sequential informa-
tion and have shown great success in natural language processing tasks, such as
language modeling, machine translation and speech recognition [11–13]. RNNs
have memory over previous computations and use this information in current
processing. In recent years, some works have combined convolutional and recur-
rent neural networks to model the spatial dependencies between image pixels
and integrate context information on a single image [14–17]. They have proven
extremely capable of performing image segmentation, object detection and scene
labeling in single-frame images. However, there has been a comparatively small
amount of work on combining convolutional and recurrent neural networks to
integrate information from a sequence of images.

3 Problem Statement and Methodology

3.1 CBI Monitor

Instead of the color sensor used in [6,7], we used a camera sensor in our CBI
monitor to measure transmitted light intensity. Then, blood concentration was
deduced using the Lambert-Beer law. The schematic diagram of our monitor is
shown in Fig. 1a: a LED provides incident light propagating through the evacu-
ating catheter filled with drainage fluid perpendicularly; a monochrome camera
captures the transmitted LED spot; a black mounting box blocks the environ-
mental illumination.

According to the Lambert-Beer law,

It = I0 · 10εΔzc, (1)

where It and I0 denote the transmitted and incident light intensities respectively,
ε and c denote the molar absorptivity and concentration of the light absorptive
compound, and Δz is the optical length through the drainage fluid.

By selecting proper power supply (constant current) and wavelength (800 nm)
for the LED, we obtain constant I0 and ε. When the catheter tube is full of
drainage fluid, Δz is also constant and determined by the diameter of the tube.
Therefore, we can infer the blood concentration c solely based on It. The value
of It is measured by the camera sensor. Namely, the median value of the pixels
in the center of the LED spot is used as It, as shown in Fig. 1b.

In this way, our CBI monitor measures the blood concentration with good
accuracy when c ∈ [0%, 20%], and triggers an alarm when c > 20%, which means
massive bleeding and immediate medical intervention. It can be easily attached
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Fig. 1. (a) the schematic diagram of the CBI monitor; (b) the transmitted LED spot,
the median value of the pixels in the red rectangle is the measured transmitted light
intensity. (Color figure online)

to the existing CBI system and send nurses accurate blood concentration data
and alarms via wireless communication. Therefore, nurses can monitor irrigation
situations of patients continuously and accurately. When irrigation regulation is
necessary for a specific patient, they can conduct quick and precise intervention.

3.2 Bubble Problem

Since the evacuating catheter is connected to a non-vacuum urine bag, bub-
bles occasionally pass through the view of the camera of our CBI monitor. The
bubbles have very different appearances in the image, depending on their sizes,
relative positions with camera, velocities, and the drainage fluid composition.
For example, when the blood concentration is low, a bubble is distinguishable
by its dark edge (Fig. 2 top row); however, when the blood concentration is high,
a bubble is distinguishable by its bright center (Fig. 2 bottom row).

Fig. 2. Images of two bubbles passing through the view of the camera, in the solution
with 0.3% blood (top) and with 12% blood (bottom) respectively.

In presence of a bubble, Δz in Eq. 1 is not constant anymore. Consequently,
the exponential relationship between It and c becomes variable. Hence, the mea-
sured blood concentration becomes unreliable. In Fig. 3, we show how a bub-
ble deteriorates the blood concentration measurements. For instance, in Fig. 3a
without the interference of bubble, the measured blood concentration c̃ = 3.06%,
error Δc = +0.06%; while in Fig. 3c with bubble, c̃ = 2.35%, error Δc increases
to −0.65%.
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Fig. 3. Images taken with a bubble flowing in the solution with 3% blood (left) and
the corresponding measured blood concentrations (right).

3.3 Neural Network Architecture

To avoid unreliable blood concentration measurements from images with bub-
bles, e.g., Fig. 3c–h, we need to detect the presence of bubbles and discard the
corresponding images. There are commercial sensors on the market to detect
bubble occurrence in fluid-filled tubes, based on ultrasonic, capacitive or optical
property difference between the fluid and air. However, it is difficult to find one
which can be easily integrated with our CBI monitor and provide reliable bubble
detection for variable fluid composition and bubble velocity.

To detect the bubble occurrence in our CBI monitor, we designed a small-
scale convolutional recurrent neural network (CRNN). As shown in Fig. 4, this
CRNN takes a sequence of frames as input. It uses a spatial feature extractor (two
convolutional layers) to extract a feature map from each image. The feature map
is flattened and fed to a temporal feature extractor (two layers of unidirectional
LSTM). The temporal feature extractor integrates information from the sequence
of extracted feature maps and outputs a new feature vector which is then used to
compute class probabilities by a fully-connected layer. This CRNN fuses spatial
and temporal features from a sequence of frames to improve the bubble detection
in the current frame.

Fig. 4. The convolutional recurrent neural network (CRNN).
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4 Experiments and Results

4.1 Data Preparation

We prepared 46 catheter tube segments, in each of which solution with known
blood concentration and a certain volume of air were sealed. With these tube
segments mounted in our CBI monitor, we turned the monitor up and down
and gathered 46 image sequences. In every image sequence, there were bubbles
passing with different velocities. These image sequences are referred to as sub-
sequences S(c) hereafter, where c denotes corresponding blood concentrations.

The training sequence consisted of 28 sub-sequences S(c). Each sub-sequence
was used twice and they were stitched together to a whole image sequence with c
gradually rising and then decreasing: c = 0%, 0.1%, ..., 0.4%, 0.6%, ..., 1.2%, 1.6%,
2%, 2.2%, ..., 2.8%, 4%, 6%, ..., 22%, 50%, 70%, 90%, 90%, 70%, ..., 0%. The ratio
of images with bubble in the training sequence was 22754/99536 = 23%. In the
same way, the validation sequence was generated with other 10 sub-sequences S(c):
c = 0.5%, 1.5%, 1.8%, 3%, 7%, ..., 19%, 40%, 80%, 80%, 40%, ..., 0.5%. The bubble
image ratio in the validation sequencewas 6502/23340 = 28%. In the test sequence,
each of the remaining 8 sub-sequences S(c) was used twice, and they were stitched
together in the reverse order: c = 100%, 60%, 21%, 17%, ..., 5%, 1.4%, 1.4%,
5%, ..., 100%. The bubble image ratio in the test sequence was 4120/15454 = 27%.
The data sets were generated according to the fact that the blood concentration
changes gradually in reality. To exclude overfitting of the CRNN to the long-term
changing trend of blood concentration in training and validation data, we gave the
test sequence the reverse blood concentration order.

4.2 Network Training

In our case, the outputs of the LSTMs might depend on arbitrarily distant
inputs, because size and speed of bubbles are unpredictable. This makes back-
propagation computation difficult. To tackle this problem, we implemented the
truncated back-propagation through time (BPTT). The truncated BPTT pro-
cesses the sequence one timestep at a time, and every k1 timesteps, it runs
BPTT for k2 timesteps [18]. We used k1 = k2 = num steps(8) and pro-
cessed data in mini-batches of size batch size(80). The training image sequence
of length N(99536) was split into batch size number of short-sequences of
length batch len(N/batch size). As shown in Fig. 5, the k · num steps + 1 to
(k + 1) · num steps frames of the short-sequences were input to the CRNN as
the kth input block, where k ∈ [0, batch len/num steps).

The cost function based on the kth input block:

COSTk =
batch size∑

n=1

(k+1)·num steps∑

t=k·num steps+1

cross entropy(y
′t
n , yt

n), (2)

where y
′t
n denotes the tth output of the nth short-sequence from the CRNN,

yt
n is the corresponding true label.
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Fig. 5. The input block for CRNN training.

The BPTT based on the kth input block was conducted using the cost cal-
culated in Eq. 2. After the last frames of the short-sequences were processed
and the BPTT based on the (batch len/num steps − 1)th input block was con-
ducted, one whole epoch training was finished. The validation sequence was used
for hyperparameters selection and early stopping.

4.3 Test Results

The test sequence of M(15454) images was input to the trained CRNN. The
CRNN output two probabilities for each input image. One was the probability
of the presence of a bubble in the image, denoted as P , and the other one equaled
1−P . An image was classified as a bubble image when P ≥ threshold. We used
the typical threshold 0.5. By comparing the classification results of the CRNN
and the true labels, we obtained the confusion matrix shown in Table 1. Our
CRNN achieved 97.4% accuracy, 97.5% precision, and 92.6% recall. For our CBI
monitor, high recall is more important than high precision. In practice, we can
increase the recall at the cost of lower precision by decreasing the threshold for
bubble detection.

Table 1. Bubble detection results of the CRNN (threshold = 0.5).

M = 15454 Predicted NOT bubble Predicted IS bubble

Actual NOT bubble TN= 11236 FP = 98 11334

Actual IS bubble FN= 304 TP= 3816 4120

Figure 6 depicts two parts of the bubble detection results of the test sequence.
It shows that the predicted bubble occurrences (blue bars) overlap well with the
labeled ones (red bars). The miss-classification happens mostly at the transi-
tional frames. As shown in Fig. 7a, when the frame index is around 2953 to
2962, a bubble passes through the camera view. Our CRNN successfully detects
six frames of this bubble but misses one frame where the bubble enters the view.
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Fig. 6. Comparison between predicted and true labels of the test sequence. The green
line separates two image sub-sequences with different blood concentrations. (Color
figure online)

Fig. 7. (a) the images corresponding to the second bubble occurrencein Fig. 6a: a–j are
frames 2953–2962, red/blue digits are true/predicted labels; (b) false positive around
frame 8255 after blood concentration decreases sharply. (Color figure online)

The trained CRNN also showed good performance in some extreme cases,
like very long bubble/non-bubble sequence, a bubble jittering in the view of
the camera and bubbles next to each other. The only severe miss-classification
happened in the extreme case when blood concentration decreased sharply. For
instance, in Fig. 7b, after blood concentration decreases from 60% to 13% in
a single frame, the first four non-bubble frames are miss-classified as bubble
frames. Since in reality the blood concentration unlikely decreases so sharply
and the number of the miss-classified frames are small, the impact of this type
of false positive classification is bearable.
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For comparison, small-scale conventional CNN and RNN were designed, as
shown in Fig. 8. With the same data sets, they were trained and tested. The
comparison between them and our CRNN is shown in Table 2. The CRNN shows
significant advantage over conventional CNN and RNN.

Fig. 8. The conventional CNN (top) and RNN (bottom).

Table 2. Comparison between CRNN, conventional CNN and conventional RNN.

No. of trainable parameters Accuracy Precision Recall

CRNN 59099 97.4% 97.5% 92.6%

CNN 760962 93.3% 88.1% 89.4%

RNN 729410 95.7% 97.1% 86.7%

5 Conclusion

In this paper, we have solved the bubble problem in our portable CBI monitor
with a bubble detector which uses a camera sensor and a small-scale CRNN.
The camera sensor has low cost and is also used for blood concentration mea-
surement, which is the crucial function of our portable CBI monitor. The CRNN
outperforms conventional CNN and RNN at bubble occurrence detection in a
sequence of images, because it learns not only the spatial features of bubbles on
2D images, but also temporal features of bubbles in the image sequence. The
small scale of our CRNN is beneficial for low latency, especially when imple-
mented on mobile and embedded processors as well as SoCs. In the future, we
plan to implement the trained CRNN on a suitable processor/SoC and conduct
latency tests. With its capability to detect the presence of bubbles in fluid-
filled clear tubes non-invasively, this bubble sensor based on camera sensor and
CRNN might find its applicability in other fields, like medical treatments that
use extracorporeal blood circuits and micro-fluid control.
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Abstract. Breast radiologists inspect mammograms with the utmost
consideration to capture true cancer cases. Yet, machine learning mod-
els are typically designed to perform a binary classification, by joining
several severities into one positive class. In such scenarios with mixed
gradings, a reliable classifier would make less mistakes between distant
severities such as missing a true cancer case and calling it as normal or
vise versa. To this end, we suggest a simple yet elegant formulation for
training a deep learning model with ordered loss, by increasingly weight-
ing the loss of more severe cases, to enforce importance of certain errors
over others. Training with the ordered loss yields fewer severe errors
and can decrease the chances of missing true cancers. We evaluated our
method on mammogram classification, using a weakly supervised deep
learning method. Our data set included over 16 K mammograms, with a
large set of nearly 2,500 biopsy proven cancer cases. Evaluation of our
proposed loss function showed a reduction in severe errors of missing
true cancers, while preserving overall classification performance in the
original task.

Keywords: Mammography · Deep learning · Weakly supervised ·
Ordered loss

1 Introduction

Nearly 40 million mammography exams are performed on a yearly basis in the
US alone. These arise predominantly from screening programs implemented to
detect breast cancer at an early stage. All this data has to be inspected for signs
of cancer by one or more experienced readers. This is a time-consuming, costly,
and most importantly error-prone endeavor. In the drive for improved health
care, AI systems are being developed to assist radiologists in this task.

When it comes to screening, the goal is to separate suspiciously malignant
cases for recall and further diagnosis. A strong use case for an AI model is
triage, where an AI system ranks the tests for radiologist inspection according
to their severity. In breast radiology, the confidence for malignancy is graded
by BIRADS (Breast Imaging-Reporting and Data System), ranging from 0–6.
BIRADS assessment categories are (0) Incomplete, (1) Negative, namely normal
c© Springer Nature Switzerland AG 2019
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(2) Benign finding, (3) Probably benign finding, (4) Suspicious abnormality, (5)
Abnormality, highly suggestive for malignancy and (6) Known biopsy-proven
malignancy. Suspicious abnormalities go under biopsy test (usually BIRADS 4
and 5) to distinguish between cancerous and yet benign pathologies. The biopsy
result indicates positive for cancerous lesion and negative for a benign finding.
Figure 1 presents examples of mammograms of four different types, BIRADS 1
and 2 (abbreviated by B1 and B2) and cases of biopsied breasts with positive and
negative results (abbreviated by PB and NB respectively). This figure demon-
strates the challenge in detecting lesions and recognizing the cancerous cases as
it is often the case even for expert radiologists.

BIRADS 1 BIRADS 2 Negative-Biopsy Positive-Biopsy

Fig. 1. Examples of Mammograms of four different types. Findings are subtle and
differentiation is a challenge often for expert radiologists.

Existing machine learning and deep learning based methods in mammogra-
phy mostly target a binary classification task [1–4,6], often using cross-entropy
(CE) as loss function. In this loss function there is no order or importance associ-
ated with the samples in a class. While in natural images this is often a satisfac-
tory criterion, in the medical domain, images in the same class may correspond
to diverse stages of a disease, where errors may have different consequences.

Mammograms are often classified in literature into two categories: normal
and benign grouped together, versus suspiciously malignant cases. A common
practice in the classification and triage of mammograms is to set BIRADS 1,2
as a negative set and BIRADS 3–6 as positive e.g., [2,3]. Yet, there are many
classifiers that share the same triage operation point, indicated by the tuple,
true-positive rate (TPR) and false-positive rate (FPR), but yield a different
error distribution. For example, a positive set composed of 80 NB and 20 PB
cases can yield 80% true-positive rate (TPR) with classifier C1 by categorizing
all 80 NB and no PB as positive (meaning that all 20 PB are missed). Yet, a
second classifier C2 can reach the same TPR by categorizing 60 NB and 20 PB
cases as positive. While both classifiers yield the same triage performance (the
FPR is ignored for sake of simplicity), C2 classifier is a highly preferred model,
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due to it’s significantly lower crucial errors such as missing of true cancers. This
emphasizes the importance for the types of mistakes obtained by a certain binary
classifier. Naturally, we would prefer a classifier that is less likely to miss a true
cancer. This can be achieved by training a model with an ordered loss.

In this paper, we suggest a generalization of CE to an ordered loss, by sug-
gesting a new formulation that diverges from the standards CE, and increasingly
weights the losses of more severe errors. This modeling enforces a preference on
certain errors over others. For instance, false-negatives of malignant cases (PB)
are more heavily penalized compared to false-negatives of a biopsied, yet benign
cases (NB). A model trained with such ordered loss is less likely to miss true
cancers.

We evaluate our model with a weakly labeled classification task similar to
[1,2,10], where no local annotations around findings are needed for training.
Images in this setup are labeled by their global BIRADS assessment and biopsy
outcome. In our testbed, we grouped B1, B2 as negative and NB, PB as positive
set, according to a typical triage task. Our data set consists of a large scale
mammography corpus with over 16 K mammograms, 9,774 biopsy verified labels,
including 2,466 true cancers. To the best of our knowledge, tests on such a
large scale of full field digital mammography with biopsy validated tags are
rarely found in literature. We demonstrate the advantage of our ordered loss by
measuring two performance values, one for the original task of triage and the
other for a true cancer classification (or alternatively number of missed cancers).
We show that a model trained for triage with our ordered loss is less likely to
miss a true cancer, without jeopardizing the triage performance.

Our work entails four major contributions: (1) We suggest a simple yet pow-
erful and easy to implement, ordered loss that generalizes the commonly used
cross-entropy. This loss mimics a human-like behavior, where more “attention”
is paid to find the true cancer (2) Our model was verified on a test bed with a
large set of biopsy verified cases (3) Our evaluation is based on extensive tests,
including k-fold cross validation, as well as a held out set. (5) The suggested
model is general and can be implemented in other medical domains.

Previous Work. Two obvious approaches for handling discrete ordinal labels
are (1) treating the different severities as unrelated classes and learning to predict
them as in a multiclass classification settings, and (2) treating them as real-
valued responses and using a standard regression setting with a loss function
such as sum-squared error. However, option (1) suggests an undesirable loss
in terms of a task originally defined as binary classification. In a multi-class
classification model, miss-classification between sub-classes in the positive set,
such as NB and PB will be penalized in the same manner as miss-classification
between PB and B1. Such penalizing pattern is prone to yield poor results in
the original binary classification task of triage. The sum of squared error loss
function in (2) is often inferior to the commonly used cross-entropy (CE) loss.

Ordered labels has been used in different applications [7,8]. These types
of labels arise when preferences are specified by several raters for each item,
such as movie ratings. To this end, Rennie and Srebro [8] employ a discrete
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ordinal regression loss, in movie rating, to fit rating levels by ordered labels.
They study various generalizations of logistic and hinge loss, to learn a real
valued predictor. Niu et al. [7] address the age estimation in human faces, by
solving an ordinal regression problem in a convolutional neural network (CNN)
framework. In their work, they reduce the ordinal regression problem into a set
of multiple binary classification tasks. These approaches address non-medical
use cases and define the problem as a regression task. In this paper, we address
a different problem of binary classification with various sub-classes, carrying a
severity label. We suggest a new loss function to enforce a prior for the types of
errors made between different sub-classes. We validate the impact of this loss in
mammogram classification with a weakly supervised deep CNN.

2 Mammogram Classification

Considering a binary classification task, the most common deep learning loss
function is cross entropy:

LCE = y log(p) + (1 − y) log(1 − p) (1)

where y ∈ {0, 1} denotes the image label and p ∈ [0, 1] stands for the positive
class probability. In medical applications, several types of abnormalities are often
grouped together establishing the positive set while the rest are grouped to a
single negative set.

Ordered Loss. Let us map the BIRADS monotonically, according to their
severity (or importance) to a new set B, which we call pseudo-BIARDS (P-
BIRADS). Often, the positive and negative sets are split according to a threshold
in the ordered set B, dividing it into two mutually exclusive and ordered sets:
BN and BP . We can now define the following ordered loss:

LO(B) = y(B − max BN )γFN log(p) + (1 − y)(min BP − B)γFP log(1 − p) (2)

where B ∈ B is a pseudo-BIARDS and γFN ≥ 0, γFP ≥ 0 define the amplifica-
tion of false negative and false positive losses, according to the order in B. Note
that B > max BN for y = 1 since B ∈ BP in this case. Similarly, B < min BP

for y = 0 since the sample belongs to the negative set. In our study, we use
the following mapping (without loss of generality): BIRADS 1 → 1, BIRADS
2 → 2, negative biopsy → 3 and positive biopsy → 5. The biopsied cases cor-
respond to BIRADS 0 or BIRADS ≥ 3 at the screening stage. We therefore
obtain B = {1, 2, 3, 5} where, BN = {1, 2} and BP = {3, 5}. This assignment
is similar to BIRADS prediction except that for pseudo-BIRADS 3 & 5, the
diagnosis is based on biopsy results. An example for the ordered loss func-
tion is shown in Fig. 2. At a given score (probability) for a positive sample,
LO(B = 5) ≥ LO(B = 4) ≥ LO(B = 3), creating a preference for less severe
errors. This formulation further suggests a loss with the following properties:

lim
γ→0

LO = LCE ,∀B ∈ B, γ := |γFN | + |γFP | (3)

LO(B) ≡ LCE , forB = max BN + 1orB = min BP − 1 (4)
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The property in (3) ensures convergence of the ordered loss to the standard
CE loss. Varying γFN and γFP continuously changes the CE loss in an ordered
manner. Property (4) indicates that the loss function is bounded from below
with the bound equal to the CE loss (see also Fig. 2). The loss for errors between
neighboring ordered labels e.g., B = 3 are B = 2 are identical to CE loss (see
the coincidence of the dashed green line and P-BIRADS = 3 in Fig. 2).

Fig. 2. An example of ordered loss for the positive set, with γFN = 1. The severity order
is determined by pseudo-BIRADS (P-BIRADS). Note the increase in loss obtained by
higher P-BIRADS. We associate true cancers (verified positive biopsy) with P-BIRADS
= 5, and the negative biopsies with P-BIRADS = 3 (Color figure online).

Network Architecture. In order to validate our model we use a weakly super-
vised deep learning classifier. Our model is based on a customized Inception-
ResNet V2 network architecture [9]. The network is composed of 14 Inception-
ResNet blocks. This output is then fed into a global-max-pooling stage followed
by a fully connected layer (256D) and a softmax classifier. The network was
trained end-to-end. The input images were tight bounding boxes around the
breast area, resized to 2048 × 1024. We trained the network using the Adam
optimizer with a learning rate of 10−4, dropout and batch-size of 2 images. In
addition, we performed augmentations of flips, rotations, contrast, offsets, and
zoom to add diversity in the training set and balance between the positive and
the negative classes. For each fold we first ran the baseline training, in which we
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set γFN = γFP = 0. The network converged after 60 epochs, which took ∼2.5
days on an IBM Power-AI machine with NVIDIA Tesla-V100-16G GPU.

3 Experimental Results

Dataset. To evaluate our method, we used a large multi-center full-field digital
mammography data set from the screening stage, with over 16 K mammograms.
From this data set we used the common cranial-caudal (CC) & mediolateral-
oblique (MLO) views, and excluded images containing artifacts such as metal
clips, skin markers, as well as large foreign bodies like pacemakers and implants.
Other than that the images contain a wide variation, in terms of anatomical dif-
ferences, pathology (including benign and malignant cases) and breast densities,
corresponding to what is typically found in screening clinics.

We divide our data to two sets, one used for cross-validation (train and test)
and the second as held-out (independent test set). In our cross validation (CV)
set we had 10,424 mammograms corresponding to BIRADS 1,2 (B1 and B2) that
constituted our negative set. The positive class had 4,412 mammograms from
which 3,440 were from breasts that underwent biopsy procedure with negative
results (NB) and 972 mammograms of breasts with positive biopsies (PB). This
data was divided patient-wise into 3 folds. We also tested our model on a large
held out data set with 6,046 mammograms. Table 1 presents the data distribution
in our CV and held-out data sets. Note that the images used for NB and PB
class, were the corresponding screening images before the biopsy, in order to
avoid biopsy signs appearing as a “feature” for the classifier.

Table 1. Class distributions in our two data sets used for evaluation. NB: Negative-
Biopsy, PB: Positive-Biopsy. ∗ In the Triage set-up, the positive set includes NB and PB
cases while in the Cancer set-up the positive set consists of only the PB mammograms
(for more details see the Evaluation section).

Negative set Positive set∗

BIRADS 1 BIRADS 2 NB PB Total

Cross-Validation 3,685 2,327 3,440 972 10,424

Held-Out 1,464 1,902 1,943 747 6,046

Evaluation. We consider two set-ups in our evaluation. First is the original
Triage set-up with NB and PB used as positive class. The second set-up is the
Cancer classifier where we measure the success of the trained triage classifier
in true cancer detection. Overall performance of a triage classifier is defined by
high values for these two measures.

In this section we present the results of our deep learning model for a binary
classification task. We used BN = {1, 2} and BP = {3, 5} in our ordered loss con-
figuration as described in Sect. 2. We compare the network trained with ordered
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loss to a baseline that uses standard cross entropy loss. Targeting the miss cases
of true cancers (false negatives of type PB), we demonstrate the performance
of the ordered loss using γFN = 1 and γFP = 0 (i.e., false-positives are not
penalized in an ordered manner here). We show the two ROC curves for one fold
of our cross validation set in Fig. 3. The plots correspond to the triage set-up
with the associated ROC for cancer detection (denoted by Cancer). The cancer
detection ROC is computed from the triage model while considering only the PB
mammograms in the positive set (removing the NB set). The plots show that in
this case the ordered loss improves both the triage separation task along with
cancer detection.

Fig. 3. Triage and Cancer ROC curves in a single fold of the cross-validation tests.
Both triage and cancer detection performance are improved with the ordered loss.

In our second evaluation we measure the triage and cancer detection perfor-
mance on the held-out set. To this end, we use an ensemble of trained models in
the 3 folds of our cross-validation test set. The results depicted in Fig. 4 show a
similar triage performance for both loss functions, while the ordered loss yields
an improved cancer detection (note the higher blue ROC curve at the right plot).

We further report quantitative results by the following measures: ROC-AUC,
false-negative rate (FNR) at operation point of false-positive rate FPR = 0.35,
for triage and cancer detection curves (see Figs. 3 and 4). Note that FPR =
0.35 corresponds to sensitivity in the range [0.8,0.9], close to the average radi-
ologists sensitivity in screening (0.87) [5]. Our last measure includes the FPR
at true-positive rate TPR = 0.90 for true cancer detection (lower is better).
Table 2 summarizes these results for our cross validation and held-out tests. The
results show that under similar triage AUC, the operation point on triage is
slightly improved indicated by lower FNR, although this was not targeted. Most
importantly the ordered loss significantly improves the true cancer detection
along with slight improvement in the triage performance. The cancer miss-rate
is reduced by 19% in average in CV tests (from 12.97% to 10.50%) and by 10.5%
for the held-out set (from 13.3% to 11.9%). While the AUC-Cancer is slightly
raised by 1.2–2%, the FPR-Cancer is reduced by 9.5% in CV and 7.4% in the
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Fig. 4. Triage and Cancer ROC curves for held-out set. The cancer detection is
improved with the ordered loss under similar triage performance.

held-out test. Due to the high imbalance between positive and negative class in
population, this FPR reduction is projected to yearly 1.2 million less false posi-
tives in screening (based on 40M yearly mammograms in US from which nearly
90% are B1 or B2 [5]). Note that the large positive set of NB and PB allows a
valid statistics at the high sensitivity rates around 0.9. This ensures a reliable
comparison at the radiologists operation point. Figure 5 presents four examples
of mammograms with positive biopsy that were missed with the CE loss but
recovered with the order loss (at TPR = 0.90). The results imply that ordered
loss better captures low signature cancers.

Table 2. Comparison of classification performance on cross-validation (CV) and held-
out data sets. False-negative rates in triage task FNR(NB,PB) and the corresponding
true cancer miss-rates, FNR(PB) are shown (lower is better). The positive class in each
scenario is indicated, NB: Negative Biopsy, PB: Positive Biopsy. AUC values are for
triage and cancer (higher is better). FPR-Cancer indicates the false-positive rate (FPR)
at cancer detection rate of 0.90 (lower is better). For CV, mean values are shown. Best
results are in bold.

Cross-Validation

FPR = 0.35 TPR(PB) = 0.90

Corresponds to 0.8-0.9 TPR

Model FNR(NB,PB) %
triage

FNR(PB) %
cancer

AUC
triage

AUC
cancer

FPR
cancer

CE 16.93 12.97 0.832 0.868 0.392

OL 16.47 10.50 0.835 0.879 0.358

Held-Out

CE 16.20 13.30 0.841 0.859 0.433

OL 15.00 11.90 0.848 0.876 0.401
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Fig. 5. Examples of mammograms with positive biopsy results (true cancers) that were
missed by the standard CE loss but recovered by the ordered loss. Bright patterns in
breast are mostly part of natural fibro-glandular tissues. Pathologies are often obscured
and hardly visible.

Fine Tuning: In this experiment we first trained the network with CE loss to
obtain the standard baseline approach. We then changed the loss to our ordered
loss and continued training end-to-end. In this workflow we obtained convergence
of the baseline model to the ordered loss optimum after only 20 epochs. This was
verified by the classification results. Therefore, an existing model trained with
CE loss can obtain ordered preference in a short extra training time, without
the need to retrain the model from scratch.

4 Summary and Conclusions

Often in medical applications, radiologists are required for a binary decision.
For example, whether to recall a patient or not. In such tasks, high sensitivity
is expected while an emphasis is put on the subclass of more severe cases, such
as missing true cancers. This clinical practice is often ignored in computational
models, which aim to maximize AUC or an operation point. In this work, we
propose a generalization of the common cross-entropy loss to an ordered loss
to address this problem. In our formulation, the ordered term is reduced to
the cross entropy loss by a simple parameter setting. We evaluated our new
loss function with a large data set of over 16 K mammograms, including nearly
2,500 true cancers verified by biopsy. The results show a significant reduction
in true cancer misses while preserving the overall classification performance in
the original task. This outcome shows that the characteristics of severe cases are
more emphasized in a model trained with our ordered loss function. We hope that
this property will lead to a more reliable and trustworthy tool for radiologists.
However, the current model is limited to binary classification and there is a need
to further study the combination of augmentations (for different sub-classes)
and ordered loss. While demonstrated on mammography, the method can be
directly implemented to other medical domains. In our future work, we intend
to implement the ordered loss in a detection scenario, to prioritize detection of
lesions of more severe types.
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Abstract. As the percentage of the population living in urban areas is con-
stantly increasing throughout the world, big cities’ municipalities and public
health policy makers have to deal with raising socioeconomic disparities and
need for environmental interventions to reduce pollution and improve wellbeing.
The PULSE project, funded by the EU commission under the H2020 program,
aims at providing an instrument that assesses health and wellbeing in cities
through sensing technologies and data integration. The system has been
deployed in 7 cities – Barcelona, Birmingham, Keelung, New York, Paris, Pavia
and Singapore – and includes several state-of-the-art technologies, such as a
smartphone App, a WebGIS, air quality sensors, a Decision Support System and
dashboards. A crucial aspect of the project is the direct involvement of the
citizens and the creation of Public Health Observatories (PHOs) that can help
taking informed decisions and organize targeted interventions. To this end,
PHOs are provided with powerful visual analytics to study different areas of the
city, and with simulation tools that can be used to model the effect of inter-
ventions of public health authorities the city. In this paper, a first agent-based
simulation model, based on the results of spatio-temporal data analytics, is
presented. The model simulates the effect of traffic pollution, industrial land use
and green areas on the probability of asthma hospitalizations in an area of East
Harlem, one the neighborhoods with the highest asthma hospitalizations rate in
New York City.
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1 Introduction

The percentage of the world’s population living in urban areas is projected to increase
in the next decade [1]. In big cities social disparities are usually higher than in small
towns and environmental factors are crucial to guarantee citizens’ health and wellbeing.
The EU project named PULSE (Participatory Urban Living for Sustainable Environ-
ments) aims at providing an instrument that assesses health and wellbeing in cities
through sensing technologies and data integration. The project partners with 7 pilot
cities – Barcelona, Birmingham, Keelung, New York, Paris, Pavia and Singapore –

focusing on two main diseases: asthma, known for being related to air pollution [2],
and type 2 diabetes, related to physical inactivity and unhealthy habits [3]. PULSE
main innovation stands in the direct involvement of the citizens, that can send their own
data and receive personalized feedbacks and communications that help them improve
their health and lower their risk or diseases. PULSE culminates with the establishment
of Public Health Observatories (PHOs), that, provided with visualization and simula-
tion tools, can inspect the situation in the city and design proper interventions in the
neighborhoods that need them. The data collection and integration in PULSE allows
Spatial Enablement, i.e. the addition of geographic information to existing data, useful
to study how health problems can change in the different areas of a city, depending on
environmental and socioeconomic factors. In this paper, we briefly present the results
of a spatial enablement study carried out within PULSE, where we model the relation
between asthma hospitalizations and a number of factors in New York City, then, we
present a first prototype of simulation tool of the interactions between several variables
and asthma hospitalizations to be provided to the PHOs.

2 Methods

In this section, we briefly present the PULSE system architecture, the methods used in
our spatial enablement analyses and the principles of agent-based modeling, with
which we implemented the PHO simulation tool.

2.1 The PULSE System

Data integration is at the basis of the PULSE system. Within PULSE, both personal and
public data are collected. Through an App, called PulseAir, each user can send his/her
own data by (i) answering to health and well-being questionnaires, (ii) sharing his/her
mobility patterns, measured with GPS and physical activity tracking and, finally,
contributing to air quality monitoring by collecting air pollution data with low-cost
measuring devices. These data are sent to a set of backend services, where their
analysis allows defining citizen profiles that may include disease risk estimate and well-
being scores, thus finally providing semi-automated feedbacks on life style to the
citizen through the App. Besides personal data, also open data are acquired in the
process, and used mainly to allow citywide analyses. This data is shown on the Pulse
WebGIS (Geographical Information System) and on a dashboard available to the PHO.
The PHOs will also be able to see aggregated anonymized user data, useful for decision
making concerning public health interventions in the city.
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2.2 Spatial Enablement Through Geographically Weighted Regression

One of the most important and innovative aspects of PULSE is its focus on each city,
considering how population and environment can vary, sometimes widely, from a
neighborhood to another. Using data collected within PULSE, we used Geographically
Weighted Regression (GWR) [4] to model the relations between asthma hospitaliza-
tions and several factors that are known to be related to them according to the literature
[5]. GWR can be thought as a generic regression model where the relation is multiplied
by a weight that gives a geographic description to the results. In formula, for the
simplest linear case:

Y ¼ Xb; b := min
X

wi yi � Xbð Þi
� �2

; b0i ¼ XtW iXð Þ � XtW iY ð1Þ

The introduction of a weight factor in the least squared estimation of the coeffi-
cients b can be noticed. For each b, a weight matrix W i is defined specific to the i-th
location, so that the nearest points have more weight than the ones further away. In our
case, we overlapped a grid of points distant 1 km from each other to a polygon map of
New York City. The weights are defined, following some examples found in literature,
as the exponential of the negative squared ratio between the distance between the
considered dot and the i-th centroid of the polygon and a threshold, in our case
correspondent to 5 km.

2.3 Agent-Based Modeling

Agent-based models (ABM) are simulation tools used to study a lot of physical, social,
epidemiological and economical phenomena. ABM are versatile tools that model
interactions among agents in a certain environment, where agents can be people,
animals, objects etc., and they interact with each other and with the environment
changing their behavior or status according to underlying laws. In our study, we
developed a first version of an ABM that exploits some of the GWR results and allows
the observer to visualize how the trend of asthma hospitalizations would change if
some specific variables were changed with targeted interventions.

3 Results and Implementation

3.1 GWR Results

We tested several covariates both in univariate and multivariate models, specifically
average annual PM2.5, age, race, poverty rate, percentage of industrial land use, dif-
fusion of Medicaid insured, obesity and recycling rate. The type and reliability of the
correlations between each covariate and the independent variable change notably
within the different neighborhoods of the city. Figure 1 shows an example of the GWR
results concerning poverty rate, which demonstrates the extreme variability of the
relations within neighborhoods. However, as a general rule, we observed that the areas
with the highest hospitalization rates (the Bronx, East Harlem, Washington Heights and
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an area that includes Crown Heights, Brownsville and East Flatbush) are the same in
which the average age is low, the concentration of Black and Hispanic is higher, the
obesity rate, the poverty rate and Medicaid use are higher, there are more industrial
sites and lower recycling rates. PM2.5, at least on an averaged measure, has generally a
bland positive correlation with asthma, with the exception of most of Manhattan.

3.2 ABM Implementation

In line with the aim of PULSE of allowing the PHOs to plan interventions throughout
the city, we developed a first example tool based on agent-based modeling, visually
implementing the relations found with our GWR model. Our ABM (Fig. 2), developed
in NetLogo, is based on real GIS data referred to part of East Harlem, with the
following boundaries: Malcolm X Boulevard on the West, Tito Puente Way (E 100th

Street) on the South, the FDR Drive on the East and E 126th Street on the North. The
used shapefiles contain streets centerlines, sidewalks, buildings and parks. The observer
can determine the initial population and the traffic density, in order to simulate how a
variation of them could influence pollution and exposure to it. The interface features
some sliders where the observer can increase or decrease the percentage of land used
for industrial activities, the recycling rate and the obesity rate, in order to simulate the
impact of interventions on land use, public services and food policies. The observer can
also set the initial mean and standard deviation of the population’s age, a specific age
will be given to all people according to a normal distribution. The risk of hospital-
izations changes with age (i.e. people under 18 and over 60 are more at risk), plus
there’s a probability of death that increases dramatically after 75 years of age. Each tick
of the model corresponds to 6 months. Once the observer hits the “Go” button, cars are
free to move on the streets and pollute the area, and people walk in the sidewalks and
get exposed to pollution. A plot and some monitors show the current number of
hospitalized people, based on the probability computed by the regression model and a
reasonable discharge rate. The initialized quantities can be changed during the simu-
lation to see the subsequent changes in the hospitalizations trend.

Fig. 1. Results of the GWR using poverty as covariate. On the left, values of the regression
coefficient across the city. On the right, values of the coefficient of determination.
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4 Conclusions and Future Developments

Public health, wellbeing and disease risks are the result of a complex combination of
factors, especially in big cities. In this paper we presented how the PULSE project is
addressing these topics through the development of a collaborative system that allows
both citizens and policy makers to take part of the health decision making, using data
with high spatial and temporal resolution. As the project goes on, thanks to the higher
availability of data, new risk models will be developed, and the PHOs will be provided
with new ABM models for all the neighborhoods concerning also different health-
related phenomena, such as the relations among environment, behavior and wellbeing.
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Abstract. The implementation of the most recent technologies is a requirement
in this fast-growing and competitive world, especially in the improvement and
development of the healthcare area, that is fundamental in life quality
enhancement. This article has as objective the utilization of AI and Industry 4.0
concepts oriented to the optimization of a hospital, using a case study an
Emergency Department (ED). This proposal allows the development of a current
proposal of e-Hospital based on Health 4.0 features and the use of computational
ED models will allow the avoidance and detection of bottlenecks in the work-
flow. Those blockages are automatically removed using an improved shift
management proposal based on control theory, AI, and telemedicine. The results
show an optimization in the use of the resources and a reduction of the length of
stay improving the service quality. The simulation tools allow the test and
validation of novel proposals for e-health.

Keywords: Health 4.0 � Discrete Event Simulation � e-Hospital �
Emergency Department � Evolutionary Algorithm � Optimization

1 Introduction

Health 4.0 was created as a response to the demographic and socio-economic changes
in the last years. The main design principles are interoperability, virtualization, real-
time capability decentralization, service orientation, modularity, safety, security and
resilience [1, 2]. Its execution represents a complex challenge that can be solved by the
adoption and implementation of concepts like Artificial Intelligence (AI), Cloud
Computing, 5G, Internet of Things (IoT), Medical Internet of Things, Precision
Medicine and Blockchain. That technology is complemented with healthcare simula-
tion tools, like Discrete Event Simulation (DES), that is the main simulation tool to test
and solve management issues.

A problem that can be solved by the implementation of Health 4.0 concepts and the
use of simulation tools is the overcrowding in the Emergency Department (ED),
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recognized as a world-class problem. The overcrowding is a situation that occurs when
the number of patients is superior to the available resources. This is an unpredictable
situation that occurs only 25% of the total operating time of an ED, it reduces the
service quality and the staff productivity, creating agglomerations, increasing the
patients waiting time, and others negative social factors [3]. The overcrowding problem
is a current problem, making it a good case study to proof the design principles of
Health 4.0 and the integration of up-to-date technologies. For its implementation is
mandatory an analysis and understanding of the processes in a traditional Hospital,
identifying the opportunities to upgrade the tools and improve the resources, for
example with the use of teleconsultation, telepresence, and telesurgery, as a solution for
remote services [4, 5].

This work has as objective to propose a solution for the overcrowding in a chosen
ED, testing the solutions in a DES environment, measuring and performance com-
parison using the Key Performance Indicators (KPI). The comparison and development
of simulation models for a traditional ED and an e-Hospital ED based on Health 4.0
were implemented in DES models, using Matlab-SimEvents®, based in [6, 7], Table 1
and Fig. 1.

Table 1. Service time distributions and staff number [6, 7].

Stage Distribution
(Minutes)

Staff Abbrev Current
staff

Reception Uniform (5,10) Receptionist R 2
Lab tests Triangular

(10,20,30)
Laboratory
technician

T 3

Examination room Uniform (10,20) Physician D 2
Reexamination room Uniform (7,12)
Treatment Room (TR) Uniform (20,30) TR nurse TN 1
Emergency Room (ER) Uniform (60,120) ER nurse EN 9

Fig. 1. ED high-level process view [6, 7].
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2 Methodology

The proposed methodology for this work takes the study case of ED presented by [6],
where a DES model was developed for a chosen ED to optimize the personnel,
increasing the Hospital profits. By another hand, this work is the continuation of [7],
where a DES model was developed with an automatic method to solve the ED over-
crowding issues.

Initially was developed of a DES for the chosen the ED model, it is used for analysis
of health services under a certain established condition. The DES ED follows the data
presented in Fig. 1. The developed DES follows the implementation and patients arrival
rate presented by [6, 7]. The improvement of the traditional ED makes of it an e-Hospital
ED, that is achieved based on the analysis of the ED-DES. A bottleneck is detected in
the Examination Room because of its high utilization (99 ± 1%.), it generates over-
crowding. Also, other KPI in that stage are abnormal, the queue length and waiting time
average of 18.51 ± 4.36 patients/h and 88.41 ± 20.41 min, respectively.

An e-Health ED is proposed based on the implementation of telemedicine, used
technically in [5], in order to reduce the detected bottleneck. The proposed telediagnosis
solution, based on automatic control, it is a controller that takes as reference the
Examination Room queue length, in this case, 6 patients in the waiting line. That
controller will automatically choose the moment when a tele-physician will be required.

The implemented controller corresponds to a PID controller [8], that following a
mathematical model based on the error signal, it will be able to take some decisions, as it
implemented by [7]. In order to set controller parameters (Proportional, Integral, and
Derivative), traditional methods used for deterministic dynamic systems are useless, due
because of the stochastic nature of the studied system. Instead, an AI technique was used
to find the right parameters. An Evolutionary Algorithm was used to solve this problem,
more specifically a Memetic Algorithm (MA) based on a Genetic Algorithm (GA).

The MA optimizes the PID controller parameters using metaheuristics, it uses a
fitness function to determine how good or bad is a solution. The population size
corresponds to 100 controllers with its constants, representing a set of controllers in the
solution space. Each solution is graded by a fitness function, where the more fit
individuals (better solutions) of the population can survive, mutate, replicate, and
reproduce themselves to obtain better results. The implemented MA follows the
metaheuristic algorithm of [7, 8].

The used MA follows the training algorithm of [8] and the use of a fitness function
like the used by [7]. In this case, the fitness function corresponds to the sum of 3
methods to evaluate PID controllers, the Integral Square Error, Integral Absolute Error
and Integral of Time-Weighted Absolute Error. The fitness function (J) is optimized by
the MA.

This management optimization proposal brings some features of Health 4.0 to the
ED like Virtualization, Real-Time Capability, and Modularity. The implemented
solution of the e-Hospital DES model corresponds to an improvement of the Tradi-
tional Hospital ED, in Fig. 2. The implementation of the described telediagnosis room
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represents the design principle of a Hospital 4.0. This solution is based on the inte-
gration of concepts like AI, and Control theory, showing Health 4.0 principles like
Virtualization, Real-Time Capability, and Modularity, improving some e-health char-
acteristics like management, efficiency, and equity. Finally, the identification and
improvement of the system allowed a KPI comparison of a traditional and an e-
Hospital ED-based Health 4.0 concepts.

3 Results and Discussion

The simulation results of the developed DES of a traditional ED [6, 7] and the proposed
e-Hospital, in Fig. 2. Table 2 shows the most remarkable obtained KPIs. The results
summarize 1000 days of each DES model under different conditions (stochastic sim-
ulation). The main difference between the compared systems is the use of a telediag-
nosis room in the e-Hospital, in order to reduce the ER queue length bottleneck. The
main KPI improvements are presented in the Examination Room, where the bottleneck
was located. That improvement is reflected in the improvement of the e-Hospital ED
performance, with the reduction of the Length of Stay (LOS) and the increased number
of Discharged patients.

The main difference between the structures of the traditional and the e-Hospital ED
proposal is the addition of 1.72 ± 0.96 tele-physicians were scheduled, using the based
AI PID controller. The performance of the e-Hospital system showed that a minor
improvement makes a difference in the service quality, reflected in the KPIs. Com-
paring the obtained results with the results of [6], the obtained results were better, since
[6] do not consider dynamical shifts during the day. The current work can be also

Fig. 2. DES simulator of an ED-based Health 4.0, following [7].
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compared with [7], where following a similar methodology, they added an additional
step in the analysis of bottlenecks after the first improvement. That second analysis was
avoided in this work to respect the principle of Real-Time Capability of Health 4.0. The
improvement in [7] for the LOS was around 23.86 ± 8.85% adding 9.8 ± 0.94% of
personnel, while in the current work, the LOS improvement was around
13.65 ± 9.79% adding 10.11 ± 5.64% of personnel. This comparison showed the
importance of secondary bottleneck analysis and improvement.

4 Conclusion and Further Developments

The design principles of Health 4.0 allowed us to identify the current requirements of a
traditional hospital, leading us to perceive solutions through the integration of different
areas like automatic control and AI, to improve some gaps in the traditional ED. The
current study case was a good example of problem identification and solution, fol-
lowing the Health 4.0 bringing valuable features like virtualization, real-time capa-
bility, and modularity, improving the ED management, efficiency, and equity. As a
further development, a reinforcement learning algorithm can be used to improve
management decision making.
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Abstract. As the overall population ages, patient complexity and the scope of
their care is increasing. Over 60% of the population over 65 years of age suffers
from multi-morbidity, which is associated with over two times as many patient-
physician encounters. Yet clinical practice guidelines (CPGs) are developed to
treat a single disease. To reconcile these two competing issues, we developed a
framework for identifying and addressing adverse interactions in multi-morbid
patients managed according to multiple CPGs. The framework relies on first-
order logic (FOL) to represent CPGs and secondary medical knowledge and
FOL theorem proving to establish valid patient management scenarios. In this
work, we leverage the framework’s representation capabilities to simplify its
mitigation process and cast it as a planning problem represented using the
Planning Domain Definition Language (PDDL). We demonstrate the frame-
work’s ability to identify and mitigate adverse interactions using planning
actions, add support for durative clinical actions, and show the improved
interpretability of management plan recommendations in the context of both
proof-of-concept and clinical examples.

Keywords: Clinical practice guidelines � Multi-morbidity � Planning

1 Introduction

Clinical practice guidelines (CPGs) are statements developed systematically from
available evidence to assist practitioners in appropriate management of a patient with a
specific disease [1]. CPGs have demonstrated multiple benefits, including improved
quality of care and patient outcomes [2]. Despite this, their practical adoption is limited
and one of the major obstacles is their very limited support for complex patients, i.e.,
patients with discordant multi-morbidity [3]. On one hand, such patients are typically
excluded from clinical trials used for CPG development [4]. On the other hand, pop-
ulation aging and the widening scope of care results in an increasing number of
complex patients (over 60% of population over 65 suffers from multi-morbidity [5]).
A straightforward application of disease-specific CPGs to such patients can lead to
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adverse interactions between recommendations that were not considered when devel-
oping a CPG that significantly deteriorate the quality of provided care and may even be
dangerous to a patient’s health [6].

Thus, there is a need for methods and tools for identifying such adverse interactions
and for addressing them by revising conflicting recommendations [4, 7] – we refer to
this process as the mitigation of adverse interactions. Responding to this challenge,
there is significant research on computer-interpretable CPGs (CIGs) and on mitigating
adverse interactions between simultaneously applied CPGs (summarized in [3]). Two
groups of approaches have been proposed: those aimed at merging treatments and those
that are merging CIGs. Generally, the former take treatment recommendations con-
structed according to several CIGs, mitigate possible interactions, and construct a
single management plan, while the latter combine several CIGs into a single patient-
specific CIG that is later used to establish a safe (interaction-free) management plan.

In [8] we proposed a framework for mitigating adverse interactions that belongs to
the first group of approaches. It relies on first-order logic (FOL) to represent CIGs and
other medical knowledge (referred to as primary and secondary knowledge, respec-
tively) and combines search techniques with FOL-based reasoning in order to find
treatment recommendations from multiple CIGs into a safe management plan. When
revising recommendations, it also considers patient preferences such that the most
desired revisions are introduced. Although capable, our FOL-based framework is
complex and in this paper we propose its simplification, where we use planning instead
of a hybrid of search and logical reasoning. Specifically, we demonstrate how to
translate our FOL-based clinical knowledge representation into the Planning Domain
Definition Language (PDDL), and how using a PDDL-based representation with a
planner eases mitigation and construction of management scenarios.

2 Background

In this section we conceptually define the FOL-based mitigation framework and
introduce the planning paradigm to provide context for our new contributions.

2.1 FOL-Based Mitigation Framework

Our mitigation framework assumes that each disease-specific CPG capturing primary
clinical knowledge is represented as an actionable graph (AG) [8, 9]. The AG is a
directed graph with context, decision, action, and parallel nodes. A context node is the
root of the graph, a decision node indicates a clinical decision, an action node indicates
a clinical action, and a parallel node indicates the beginning or end of two or more
sequences of clinical decisions or actions that are executed in parallel. Nodes are
ascribed with additional properties, e.g., related to their temporal characteristics.

The AG relies on the task network-based representation used as a foundation in a
number of representation languages (e.g., GLIF3, SAGE or PROforma) [3], however, it
has been limited to the 4 types of nodes listed above as those elements are important
from a mitigation perspective. AGs can be easily obtained from other task network-
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based languages [10] and we use these AGs as an intermediate representation to apply
our mitigation framework to CIGs represented in different languages.

We formally represent the AGs using a FOL language. The two key components of
this language are structural and temporal predicates. The structural predicates, shown in
Fig. 1a, describe the structure of the AG, and the temporal predicates, shown in
Fig. 1b, describe the temporal relationship of and between nodes in the AG. These
predicates are used in combination to construct FOL theories (i.e., sets of logical
sentences) describing specific patient encounters. Each theory represents all disease-
specific CIGs applied to a particular patient and information (potentially incomplete)
available about this patent. In order to generate a management scenario for an
encounter, we apply model finding techniques to the corresponding FOL theory. These
structural predicates constitute a starting point for MitPlan (described below).

To identify and address adverse interactions, the framework includes revision
operators that encode two types of secondary medical knowledge: (1) knowledge
required to mitigate adverse interactions due to discordant morbidities and,
(2) knowledge about patient preferences that describe clinical circumstances (e.g., a
sequence of actions) that are not consistent with a patient’s preferences. All revision
operators are defined as a logical sentence in the FOL language that describes the
undesired circumstances for which the operator is applicable and a set of operations
that need to be applied to address the applicability of the operator.

The mitigation of adverse interactions is then handled through a series of algo-
rithms (see [8] for more detail). These algorithms operate on the FOL and its textual
representation, applying generalized search and replace operations. This makes the
process of generating a management scenario a complex operation. FOL was designed
to express statements, propositions, and relations between objects. The goal is checking
if a theory is consistent, determining if a certain formula holds in the context of a
theory, and finding a model for the theory. Our framework uses FOL reasoning
techniques to achieve these goals and then extracts certain parts of the model to form a
management scenario. Thus, support for treatment planning is only indirect.

While our FOL-based mitigation framework is able to mitigate adverse interactions
between concurrently applied CIGs, the FOL-based approach introduces extra com-
plexity to the mitigation process. Numerical operations, including the calculation of time,
theorem editing, and result interpretation to return management scenarios are chal-
lenging tasks that require significant domain engineering and complex processing. For

Fig. 1a. Structural predicates [8]. Fig. 1b. Temporal predicates [8].
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example, numerical operations associated with revisions need to be performed at the
textual representation level outside of FOL, while time-based calculations (establishing
start and end times based on offsets and durations) are conducted inside FOL. Also,
constructing a management scenario requires the parsing of logical sentences in a found
model. To alleviate these drawbacks, we developed the planning-based approach Mit-
Plan described in this paper. We note that since FOL is more expressive than standard
planning formalisms, one can also use FOL to describe planning problems. However,
due to the complete difference of the semantics of planning and FOL, one would have to
“misuse” FOL for this purpose. FOL expresses statements, propositions, and relations
between objects while planning is about the execution of actions and reasoning whether a
sequence from initial state to the goal exists. These are two fundamentally different aims.

2.2 Planning

Planning, a field related to decision theory, finds a sequence of planning actions to
realize a stated goal. Given an initial state of the world, a set of desired goals, and a set
of planning actions, the planning problem is to identify a set of actions (ordered or non-
ordered) that is guaranteed to generate a state from the initial one that contains the
desired goal(s). Planning approaches fall into one of two categories: state-space and
plan-space. State-space planning works at the level of the states and operators, where
finding a plan is formulated as a search through state space, looking for a path from the
start state to the goal state(s). This is most similar to constructive search. Plan-space
planning operates at the level of plans, where finding a plan is formulated as a search
through the space of plans. Planning starts with a partial, possibly incorrect plan, then
applies changes to it to make it a full, correct plan. This approach is seen as an iterative
improvement/repair process.

Planning (and hence problems described using PDDL) asks the question whether
there exists a sequence of planning actions that transform the initial state (description of
the world prior execution of an action) to some desired goal state. Thus, planning is
about the execution of planning actions and reasoning whether such a sequence exists.
Each planning action has a set of parameters (typed objects in the planning problem),
preconditions that must be true for the action to be taken, and effects resulting from its
execution. As we discuss later, planning actions can also be associated with durations,
conditional effects, and costs. It is our hypothesis that planning is more naturally suited
to the mitigation problem we are solving.

In this work, we use a state-space approach to interleave planning for specific paths
through applied CIGs and applying revision and patient preference actions while trying
to reach terminal states for each CIG. By defining the initial state to include all
applicable CPGs and available patient information, our improved framework iteratively
builds the plan and avoids or mitigates adverse interactions between the CPGs. We
represent the planning problem using PDDL 2.1, which adds support for durative
actions and both negative and conditional effects. PDDL 2.1 enables our framework to
plan over parallel paths and actions with durations, when these are present in the AGs,
within our mitigation framework. We use the Optic [11] planner, a forward-chaining
partial-order state-space planner that supports PDDL 2.1, to find plans that can execute
any node from the AGs using defined planning actions.

96 M. Michalowski et al.



3 MitPlan

In this section we describe MitPlan, an updated component to our mitigation frame-
work, that replaces the procedures, theorem proving, and model finding over FOL
theories with a planning approach. MitPlan significantly reduces the complexity of our
framework and supports durative clinical actions as first-class citizens in the planning
process, rather than domain-driven manual additions as done using FOL. It also
improves the interpretability of management scenario recommendations.

3.1 From FOL to PDDL

A planning problem is made up of two components: the domain and the problem
instance. A domain contains the planning predicates, functions, and actions while the
problem instance defines the objects, and the initial state and goal specification. The
first step in transitioning from FOL to PDDL is to define the planning domain. Fig-
ures 1a and 1b show the predicates in our FOL-based mitigation framework that
describe the structure of an AG and its nodes’ temporal properties. We translate these
into predicates in the planning domain and eliminate others by converting their rela-
tionships into planning functions. Table 1 shows only key planning predicates (due to
space limitations). All of the temporal predicates present in our FOL-based approach
are now encompassed in the semantics of durative actions in PDDL. We add new
predicates goal: a goal (terminal) node in the AG; interactionPresent: an adverse
interaction has been found; and revisionOperator: represents a revision operator.

(action ?d – disease ?n - node) is a PDDL predicate that contains two typed objects
(d: a disease, n: a node in an AG). The PDDL predicate (action HTN A1), when true,
indicates there is a node object A1 in the AG for the disease object HTN. The PDDL

Table 1. Predicate transition from FOL to PDDL.

FOL predicate Planning predicate Planning function

node ✓ –

disease ✓ –

decision ✓ –

action ✓ –

parallel ✓ –

directPrec ✓ –

preca – –

dosage – ✓

result – ✓

– goal –

– interactionPresent –

– revisionOperator –
aprec is no longer needed in the planning domain
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function (patientValue ?v - patientData) associates a numeric value with the patient
data object v. The PDDL predicate (decision ?d - disease ?n - node ?v - patientData)
associates patient data with a clinical decision such that object n is a clinical decision
node associated with disease object d and patient data object v. (revisionOperator ?n1 -
node ?n2 - node ?r - node ?c - cost) is a PDDL predicate that defines a revision
operator that replaces nodes n1 and n2 with r with a cost of c. Future work expands this
definition to support a wider range of replacement and insertion operations. All
predicates also include a cost and duration.

To complete the planning domain, we include the set of planning actions described
in Table 2. The terms listed for the preconditions and effects are all predicates and
functions in the domain (+ denotes optional terms). Each action is defined by a set of
parameters, a duration, preconditions, and effects. All preconditions and effects are
required (precondition) or achieved (effect) at the start, over all, or at the end of the
action. We do not list durations in Table 2 as they are action-instance dependent and
action costs are numerical fluents added to an overall cost as part of an action’s effect.

For each revision operator, its precondition is represented as the predicate revi-
sionOperator and its operations as the planning action replaceNodes. In our previous
work we supported both insertion and deletion operations. In this paper we only
describe the replacement of actions with a new action, a combination of deletion and
insertion. We will support finer grained revision operators in future work, by defining
additional planning actions and updating the revisionOperator predicate.

The planning problem (referred to as the problem instance) inherits from the
domain described above and contains the objects, initial state, and goal specification for
a specific patient encounter. The objects in the instance are the diseases, nodes, and
patient data (as defined in each AG), and the revision operators described in secondary

Table 2. Actions in the planning domain.

Action Preconditions Effects

takeAction disease, action node, prec node
executed, patient data value(+)

action taken, cost added(+)

makeDecision disease, decision node, prec
node executed, patient data
value(+)

decision made, patient data value set,
cost added(+)

startParallel disease, parallel node, prec node
executed, patient data value(+)

parallel path started

endParallel disease, parallel node, parallel
path started, all parallel nodes
executed

parallel path completed

reachGoal disease, goal node, prec node
executed, patient data value(+)

goal node reached for disease

replaceNodes disease(s), node(s), interaction
present

existing nodes replaced with new
nodes, precedence relationships set,
cost added(+)
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knowledge sources or provided as patient preferences. The initial state represents the
structure of each AG, the available patient information (patient data), and all known
revision operators. The goal specification is to reach the goal (terminal) state of each
AG with no adverse interactions present (optionally minimizing the overall cost).

4 Case Study

To show the feasibility of MitPlan within the context of our mitigation framework, we
first describe proof-of-concept actionable graphs similar to those presented in our
previous work [8]. We visually represent these AGs in Fig. 2. These AGs include
action and decision nodes, a parallel path, share the action A3, and the planning
instance contains two revision operators. The first operator states that if actions A2 in
disease D1 and A3 in disease D2 are executed, then replace A3 in D2 with newAction.
The second states that if action C2 in D1 and A3 in D2 are taken, then replace A3 in D2
with newAction2. MitPlan also supports more general revisions that replace all
instances of A3, for example. We acknowledge that creating revision operators can be a
time consuming task for a clinical expert, however interaction repositories (e.g.,
Cochrane) and ontologies are sources that can be used to (semi-)automatically generate
these operators.

Figure 3 shows the PDDL problem instance for the AGs and revision operators in
Fig. 2. Due to space considerations, we only show the description of the AG for D2,
the revision operators, and goals. Patient data V3 is set to 2, the costs of each revision
operator are 10, and our goal is to minimize the total cost. The bounds for decision
node T3’s branching points are set as [0..4] and [5..10]. Using the Optic planner to
solve this problem instance, we get the solution presented in Fig. 4. We note that
patient data values V1 = 2 and V2 = 4 are set in the initial state for this instance.

Each line shows the action taken, where the number at the start of each line is the
time step in which the planning action is taken, and the number at the end the time

Fig. 2. Proof-of-concept AGs.
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duration for the action. These results show the feasibility of our approach in several
ways. First, we see that the planner has successfully identified a plan to achieve the
goal of both AGs while identifying and addressing an adverse interaction (rev2).
Actions for each CPG are taken concurrently as they are independent of each other, as
are actions within a parallel block for D1 (B1/C1, B2/C2). In this problem, the planner
checks for interactions at the end of reaching the goal states, although it is trivial to
check them as a new node is executed (we discuss this below). While in this example
all action durations and costs are 1, these can be varied by assigning values for duration
and cost to each action and decision predicate in the initial state. Furthermore, we
support revision operators that mitigated the same adverse interactions but at different
costs. By minimizing the total-cost, the planner applies the revision operator(s) with the
lowest cost. In our previous work all of this reasoning had to be encapsulated in the
mitigation algorithm. Lastly, the management scenario is extracted from the plan by
considering each line and mapping the action to its corresponding text and applying
any revisions taken. This output generation makes integration into a CDSS much easier
when compared to the manual interpretation, rearrangement, and processing of logical
sentences in the found model of our FOL-based approach.

Fig. 3. Example problem instance PDDL.
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Having conceptually demonstrated the feasibility of MitPlan, we applied it to the
clinical case study in our previous work [8] by solving each patient case as a planning
problem. In this study we combined the chronic kidney disease (CKD), atrial fibril-
lation (AFib), and hypertension (HTN) guidelines and used revision/patient preference
operators for each case. Each patient case defined the problem instance and the plan-
ning domain was the same for all problem instances. We represented deletion revisions
as replacements where the replacement action was an empty action and temporal
revisions were encoded in the temporal aspects of durative actions. MitPlan was able to
successfully find a plan for each patient case (successful identification of a management
scenario was also the metric used in our previous work) with no additional computa-
tional costs (a cost that is insignificant overall).

5 Discussion and Future Work

In this paper we presented MitPlan – a modification of our FOL-based mitigation
framework where we replaced a hybrid approach combining search and FOL-based
reasoning with a uniform planning approach employing PDDL. The revised framework
significantly simplifies the mitigation process, as identification of interactions, revision
of CIGs, and construction of management scenarios is handled by a planner and there is
no need to switch between several representations and methods (e.g., FOL and text).
Moreover, MitPlan provides support for additional criteria when developing a man-
agement scenario (e.g., the total cost of prescribed treatments and introduced revisions)
and provides sound support for durative actions without the need for explicit specifi-
cation of additional knowledge (e.g., logical rules for handling temporal action prop-
erties in FOL).

MitPlan shares some similarities with solutions described in [12, 13]. Similarly to
GLARE-SSCPM [12], it takes into account temporal characteristics of CIG actions
during mitigation and relies on knowledge-driven detection of interactions. However, it
automatically derives a management scenario, while GLARE-SSCPM aims at planning
the scenario through interactions with a physician. Automatic planning is employed in
the multi-agent planning (MAP) framework [13] that handles temporal CIG charac-
teristics and patient planning. The important difference between [13] and MitPlan lies

Fig. 4. Example problem instance resulting plan.
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in the representation of clinical knowledge. In MitPlan, secondary clinical knowledge
on how to handle adverse interactions is captured by revision operators independent of
CIGs, while MAP assumes the primary and secondary knowledge is combined and
embedded in CIGs. Our approach facilitates knowledge management as adding new
revision operators does not imply changes to CIGs.

As part of our future work we plan to expand our PDDL-based MitPlan to use the
Action Description Language (ADL). ADL provides a richer and more compact rep-
resentation that supports more of the PDDL formalism and enables a finer grained
description of revisions introduced to CIGs as single insertions or deletions. We are
also planning to implement MitPlan within the larger framework for clinical decision
support presented in [8] and evaluate it practically in a clinical setting.
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Abstract. Over the past one hundred years, the classic teaching
methodology of “see one, do one, teach one” has governed the surgi-
cal education systems worldwide. With the advent of Operation Room
2.0, recording video, kinematic and many other types of data during the
surgery became an easy task, thus allowing artificial intelligence systems
to be deployed and used in surgical and medical practice. Recently, sur-
gical videos has been shown to provide a structure for peer coaching
enabling novice trainees to learn from experienced surgeons by replay-
ing those videos. However, the high inter-operator variability in surgical
gesture duration and execution renders learning from comparing novice
to expert surgical videos a very difficult task. In this paper, we propose
a novel technique to align multiple videos based on the alignment of
their corresponding kinematic multivariate time series data. By leverag-
ing the Dynamic Time Warping measure, our algorithm synchronizes a
set of videos in order to show the same gesture being performed at differ-
ent speed. We believe that the proposed approach is a valuable addition
to the existing learning tools for surgery.

Keywords: Dynamic Time Warping · Multivariate time series ·
Video synchronization · Surgical education

1 Introduction

Educators have always searched for innovative ways of improving apprentices’
learning rate. While classical lectures are still most commonly used, multimedia
resources are becoming more and more adopted [22] especially in Massive Open
Online Courses (MOOC) [13]. In this context, videos have been considered as
especially interesting as they can combine images, text, graphics, audio and ani-
mation. The medical field is no exception, and the use of video-based resources is
intensively adopted in medical curriculum [11] especially in the context of surgi-
cal training [9]. The advent of robotic surgery also simulates this trend as surgical
robots, like the Da Vinci [7], generally record video feeds during the interven-
tion. Consequently, a large amount of video data has been recorded in the last
c© Springer Nature Switzerland AG 2019
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(a) Video without alignment (b) Video with alignment

Fig. 1. Example on how a time series alignment is used to synchronize the videos by
duplicating the gray-scale frames. Best viewed in color. (Color figure online)

ten years [19]. This new source of data represent an unprecedented opportunity
for young surgeons to improve their knowledge and skills [5]. Furthermore, video
can also be a tool for senior surgeons during teaching periods to assess the skills
of the trainees. In fact, a recent study [14] showed that residents spend more
time viewing videos than specialists, highlighting the need for young surgeons
to fully benefit from the procedure. In [6], the authors showed that knot-tying
scores and times for task completion improved significantly for the subjects that
watched the videos of their own performance.

However, when the trainees are willing to asses their progress over several
trials of the same surgical task by re-watching their recorded surgical videos
simultaneously, the problem of videos being out-of-synch makes the comparison
between different trials very difficult if not impossible. This problem is encoun-
tered in many real life case studies, since experts on average complete the surgical
tasks in less time than novice surgeons [12]. Thus, when trainees do enhance their
skills, providing them with a feedback that pinpoints the reason behind the sur-
gical skill improvement becomes problematic since the recorded videos exhibit
different duration and are not perfectly aligned.

Although synchronizing videos has been the center of interest for several
computer vision research venues, contributions are generally focused on a special
case where multiple simultaneously recorded videos (with different characteris-
tics such as viewing angles and zoom factors) are being processed [15,25,26].
Another type of multiple video synchronization uses hand-engineered features
(such as points of interest trajectories) from the videos [2,24], making the app-
roach highly sensitive to the quality of the extracted features. This type of tech-
niques was highly effective since the raw videos were the only source of informa-
tion available, whereas in our case, the use of robotic surgical systems enables
capturing an additional type of data: the kinematic variables such as the x, y, z
Cartesian coordinates of the Da Vinci’s end effectors [5].

In this paper, we propose to leverage the sequential aspect of the recorded
kinematic data from the Da Vinci surgical system, in order to synchronize their
corresponding video frames by aligning the time series data (see Fig. 1 for an
example). When aligning two time series, the off-the-shelf algorithm is Dynamic
Time Warping (DTW) [20] which we indeed used to align two videos. However,
when aligning multiple sequences, the latter technique does not generalize in a
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(a) Original time series without alignment

(b) Warped time series with alignment

Fig. 2. Example of aligning coordinate X’s time series for subject F, when performing
three trials of the suturing surgical task.

straightforward and computationally feasible manner [16]. Hence, for multiple
video synchronization, we propose to align their corresponding time series to
the average time series, computed using the DTW Barycenter Averaging (DBA)
algorithm [16]. This process is called Non-Linear Temporal Scaling (NLTS) and
has been proposed to find the multiple alignment of a set of discretized surgical
gestures [3], which we extend in this work to continuous numerical kinematic
data. Figure 2 depicts an example of stretching three different time series using
the NLTS algorithm. Examples of the synchronized videos and the associated
code can be found on our GitHub repository1, where we used the JHU-ISI Ges-
ture and Skill Assessment Working Set (JIGSAWS) [5] to validate our work.

The rest of the paper is organized as follows: in Sect. 2, we explain in details
the algorithms we have used in order to synchronize the kinematic data and even-
tually their corresponding video frames. In Sect. 3, we present our experiments
and finally conclude the paper and discuss our future work in Sect. 4.

1 https://github.com/hfawaz/aime19.

https://github.com/hfawaz/aime19
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2 Methods

In this section, we detail each step of our video synchronization approach. We
start by describing the Dynamic Time Warping (DTW) algorithm which allows
us to align two videos. Then, we describe how Non-Linear Temporal Scaling
(NLTS) enables us to perform multiple video synchronization with respect to the
reference average time series computed using the DTW Barycenter Averaging
(DBA) algorithm.

2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) was first proposed for speech recognition when
aligning two audio signals [20]. Suppose we want to compute the dissimilarity
between two time series, for example two different trials of the same surgical
task, A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn). The length of A and B are
denoted respectively by m and n, which in our case correspond to the surgical
trial’s duration. Here, ai is a vector that contains six real values, therefore A
and B can be seen as two distinct Multivariate Time Series (MTS).

To compute the DTW dissimilarity between two MTS, several approaches
were proposed by the time series data mining community [21], however in order
to apply the subsequent algorithm NLTS, we adopted the “dependent” vari-
ant of DTW where the Euclidean distance is used to compute the difference
between two instants i and j. Let M(A,B) be the m × n point-wise dissim-
ilarity matrix between A and B, where Mi,j = ||ai − bj ||2. A warping path
P = ((c1, d1), (c2, d2), . . . , (cs, ds)) is a series of points that define a crossing of
M . The warping path must satisfy three conditions: (1) (c1, d1) = (1, 1); (2)
(cs, ds) = (m,n); (3) 0 ≤ ci+1 − ci ≤ 1 and 0 ≤ dj+1 − dj ≤ 1 for all i < m and
j < n. The DTW measure between two series corresponds to the path through
M that minimizes the total distance. In fact, the distance for any path P is
equal to DP (A,B) =

∑s
i=1 Pi. Hence if P is the space of all possible paths, the

optimal one - whose cost is equal to DTW (A,B) - is denoted by P ∗ and can be
computed using: minP∈P DP (A,B).

The optimal warping path can be obtained efficiently by applying a dynamic
programming technique to fill the cost matrix M . Once we find this optimal
warping path between A and B, we can deduce how each time series element in A
is linked to the elements in B. We propose to exploit this link in order to identify
which time stamp should be duplicated in order to align both time series, and by
duplicating a time stamp, we are also duplicating its corresponding video frame.
Concretely, if elements ai, ai+1 and ai+2 are aligned with the element bj when
computing P ∗, then by duplicating twice the video frame in B for the time stamp
j, we are dilating the video of B to have a length that is equal to A’s. Thus, re-
aligning the video frames based on the aligned Cartesian coordinates: if subject
S1 completed “inserting the needle” gesture in 5 s, whereas subject S2 performed
the same gesture within 10 s, our algorithm finds the optimal warping path and
duplicates the frames for subject S1 in order to synchronize with subject S2

the corresponding gesture. Figure 1 illustrates how the alignment computed by
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DTW for two time series can be used in order to duplicate the corresponding
frames and eventually synchronize the two videos.

2.2 Non-Linear Temporal Scaling

The previous DTW based algorithm works perfectly when synchronizing only
two surgical videos. The problem arises when aligning three or more surgical tri-
als simultaneously, which requires a multiple series alignment. The latter prob-
lem has been shown to be NP-Complete [23] with the exact solution requiring
O(LN ) operations for N sequences of length L. This is clearly not feasible in our
case where L varies between 103 and 104 and N ≥ 3, which is why we ought to
leverage an approximation of the multiple sequence alignment solution provided
by the DTW Barycenter Averaging (DBA) algorithm which we detail in the
following paragraph.

DBA was originally proposed in [18] as a technique that averages a set of
time series by leveraging an approximated multiple sequence alignment algo-
rithm called Compact Multiple Alignment (CMA) [17]. DBA iteratively refines
an average time series T and follows an expectation-maximization scheme by
first considering T to be fixed and finding the best CMA between the set of
sequences D (to be averaged) and the refined average sequence T . After com-
puting the CMA, the alignment is now fixed and the average sequence T is
updated in a way that minimizes the sum of DTW distances between T and
D [16].

DBA requires an initial value for T . There exist many possible initializations
for the average sequence [17], however, since our ultimate goal is to synchronize
a set of sequences D by duplicating their elements (dilating the sequences), we
initialize the average T to be equal to the longest instance in D. We then find
precisely the exact optimal number of time series elements - and their associated
video frames - to be duplicated in order to synchronize multiple videos, using
the NLTS technique which we describe in details in the following paragraph.

Non-Linear Temporal Scaling (NLTS) was originally proposed for aligning
discrete sequences of surgical gestures [3]. In this paper, we extend the technique
for numerical continuous sequences (time series). The goal of this final step is
to compute the approximated multiple alignment of a set of sequences D which
will eventually contain the precise information on how much a certain frame
from a certain series should be duplicated. We first start by computing the
average sequence T (using DBA) for a set of time series D that we want to align
simultaneously. Then, by recomputing the Compact Multiple Alignment (CMA)
between the refined average T and the set of time series D, we can extract an
alignment between T and each sequence in D. Thus, for each time series in D
we will have the necessary information (extracted from CMA) in order to dilate
the time series appropriately to have a length that is equal to T ’s, which also
corresponds to the length of the longest time series in D. Figure 2, depicts an
example of aligning three different time series using the NLTS algorithm.
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Fig. 3. Snapshots of the three surgical tasks in the JIGSAWS dataset (from left to
right): suturing, knot-tying, needle-passing [5].

3 Experiments

We start by describing the JIGSAWS dataset we have used for evaluation, before
presenting our experimental study.

3.1 Dataset

The JIGSAWS dataset [5] includes data for three basic surgical tasks performed
by study subjects (surgeons). The three tasks (or their variants) are usually part
of the surgical skills training program. Figure 3 shows a snapshot example for
each one of the three surgical tasks (Suturing, Knot Tying and Needle Passing).
The JIGSAWS dataset contains kinematic and video data from eight different
subjects with varying surgical experience: two experts (E), two intermediates (I)
and four novices (N) with each group having reported respectively more than
100 h, between 10 and 100 h and less than 10 h of training on the Da Vinci. All
subjects were reportedly right-handed.

The subjects repeated each surgical task five times and for each trial the
kinematic and video data were recorded. When performing the alignment, we
used the kinematic data which are numeric variables of four manipulators: left
and right masters (controlled directly by the subject) and left and right slaves
(controlled indirectly by the subject via the master manipulators). These kine-
matic variables (76 in total) are captured at a frequency equal to 30 frames per
second for each trial. Out of these 76 variables, we only consider the Cartesian
coordinates (x, y, z) of the left and right slave manipulators, thus each trial will
consist of an MTS with 6 temporal variables. We chose to work only with this
subset of kinematic variables to make the alignment coherent with what is visi-
ble in the recorded scene: the robots’ end-effectors which can be seen in Fig. 3.
However other choices of kinematic variables are applicable, which we leave the
exploration for our future work. Finally we should mention that in addition to
the three self-proclaimed skill levels (N, I, E) JIGSAWS contains the modified
Objective Structured Assessment of Technical Skill (OSATS) score [5], which
corresponds to an expert surgeon observing the surgical trial and annotating the
performance of the trainee.
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(a) Videos synchronization process

(b) Perfectly aligned videos

Fig. 4. Video alignment procedure with duplicated (gray-scale) frames.

3.2 Results

We have created a companion web page2 to our paper where several examples of
synchronized videos can be found. Figure 4 illustrates the multiple videos align-
ment procedure using our NLTS algorithm, where gray-scale images indicate
duplicated frames (paused video) and colored images indicate a surgical motion
(unpaused video). In Fig. 4a we can clearly see how the gray-scale surgical tri-
als are perfectly aligned. Indeed, the frozen videos show the surgeon ready to
perform “pulling the needle” gesture [5]. On the other hand, the colored trial
(bottom right of Fig. 4a) shows a video that is being played, where the surgeon
is performing “inserting the needle” gesture in order to catch up with the other
paused trials in gray-scale. Finally, the result of aligning simultaneously these

2 https://germain-forestier.info/src/aime2019/.

https://germain-forestier.info/src/aime2019/
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four surgical trials is depicted in Fig. 4b. By observing the four trials, one can
clearly see that the surgeon is now performing the same surgical gesture “pulling
the needle” simultaneously for the four trials. We believe that this type of obser-
vation will enable a novice surgeon to locate which surgical gestures still need
some improvement in order to eventually become an expert surgeon.

Fig. 5. A polynomial fit (degree 3) of DTW dissimilarity score (y-axis) as a function
of the OSATS score difference between two surgeons (x-axis).

Furthermore, in order to validate our intuition that DTW is able to cap-
ture characteristics that are in relationship with the motor skill of a surgeon,
we plotted the DTW distance as a function of the OSATS [5] score difference.
For example, if two surgeons have both an OSATS score of 10 and 16 respec-
tively, the corresponding difference is equal to |10 − 16| = 6. In Fig. 5, we can
clearly see how the DTW score increases whenever the OSATS score difference
increases. This observation suggests that the DTW score is low when both sur-
geons exhibit similar dexterity, and high whenever the trainees show different
skill levels. Therefore, we conclude that the DTW score can serve as a heuristic
for estimating the quality of the alignment (whenever annotated skill level is
not available) - especially since we observed low quality alignments for surgeons
with very distinct surgical skill levels.

Finally, we should note that this work is suitable for many research fields
involving motion kinematic data with their corresponding video frames. Exam-
ples of such medical applications are assessing mental health from videos [27]
where wearable sensor data can be seen as time series kinematic variables and
leveraged in order to synchronize a patient’s videos and compare how well the
patient is responding to a certain treatment. Following the same line of think-
ing, this idea can be further applied to kinematic data from wearable sensors
coupled with the corresponding video frames when evaluating the Parkinson’s
disease evolution [1] as well as infant grasp skills [10].
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4 Conclusion

In this paper, we showed how kinematic time series data recorded from the
Da Vinci’s end effectors can be leveraged in order to synchronize the trainee’s
videos performing a surgical task. With personalized feedback during surgical
training becoming a necessity [4,8], we believe that replaying synchronized and
well aligned videos would benefit the trainees in understanding which surgical
gestures did or did not improve after hours of training, thus enabling them to
further reach higher skills and eventually become experts. We acknowledge that
this work needs an experimental study to quantify how beneficial is replaying
synchronized videos for the trainees versus observing non-synchronized trials.
Therefore, we leave such exploration and clinical try outs to our future work.
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17. Petitjean, F., Gançarski, P.: Summarizing a set of time series by averaging: from
Steiner sequence to compact multiple alignment. Theoret. Comput. Sci. 414(1),
76–91 (2012)
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Abstract. Precision oncology aims at integrating molecular data into clinical
decision making, in order to provide the most suitable therapy and follow-up
according to patient’s specific characteristics. A critical step towards this goal is
the interpretation of genomic variants, whose presence can be revealed by next
generation sequencing. In particular, cancer variant interpretation defines whe-
ther the patient harbors genomic alterations that could be targeted by specific
drugs, or that were observed as prognostic biomarkers. To standardize somatic
interpretation, in 2017 guidelines have been proposed by a working group of
associations, including the American Society of Clinical Oncology (ASCO).
Automatic tools implementing such guidelines to ease their actual application in
the clinical routine are needed.
We developed a Rule-based Expert System (ES) that automatically imple-

ments ASCO guidelines. ES is an Artificial Intelligence system able to reason
over a set of rules and to perform classification, thus emulating human reasoning
process. First, we developed automatic pipelines to extract information of over
1500 known diagnostic/prognostic/diagnostic biomarkers from six public data-
bases, including COSMIC and CiVIC. The collected knowledge base is struc-
tured in an object-oriented model and the ES is implemented in a Python
program through the PyKnow library.

Keywords: Somatic variant interpretation � Standard guidelines �
Expert System
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1 Introduction

1.1 Somatic Variant Interpretation: Principles and Current Status

The promise of Precision Medicine (PM) is to improve patient outcomes by identifying
the best clinical strategy according to patient’s individual characteristics. In this con-
text, clinical decision making, i.e. the delineation of diagnosis, prevention and treat-
ment approaches, could greatly benefit from genomic information extracted from DNA
sequencing [1]. Oncology was one of the first fields of PM application, due to the
intrinsic genetic nature of cancer: in fact, tumor originates from the accumulation in
somatic cells of alterations in genes involved in apoptosis, cellular proliferation and cell
cycle. Not all somatic alterations are able to driver cancer progression and, among
those that confer an evolutive advantage, it is critical to identify potential biomarkers.
Biomarkers are any molecular characteristics that have been correlated with response or
resistance to a particular treatment (therapeutic biomarkers), influence disease prog-
nosis (prognostic biomarker) or serve to establish a diagnosis (diagnostic biomarkers)
[1]. As genomic screening is becoming routinely applied in clinical practice, standards
and guidelines for the cataloging and interpretation of patients variants have been
proposed [1, 2]. As somatic variant interpretation is concerned, the aim is to assess
whether a somatic variant could have an impact on clinical care. In particular, a
working group including the Association for Molecular Pathology (AMP), the
American Society of Clinical Oncology (ASCO) and the College of American
Pathologists (CAP) published in 2017 a set of guidelines to leverage information
collected from different omics-resources in order to classify a somatic variant in 4
different tiers of clinical significance (“Strong Clinical Significance”, “Potential Clin-
ical Significance”, “Unknown Clinical Significance” and “Benign”) for three different
categories (“Therapeutic”, “Diagnosis” and “Prognosis”). Omics-resources include
population allele frequency databases, in silico predictions of variant damaging impact,
and repositories of previous interpretation. For instance, a variant observed at high
frequency in population database is likely to be “Benign”, while a very low frequency
variant targeted by a FDA-approved therapy will fall into “Therapeutic Tier I” cate-
gory. However, since these guidelines rely on the utilization of different and complex
omics-resources, and they could be applied to potentially thousands of variants per
patients, the demand for automatic tools implementing them is high.

2 Methods

We developed a Rule-based Expert System (ES) able to automatically interpret somatic
variant according to AMP/ASCO/CAP guidelines. ESs are Artificial Intelligence sys-
tems that emulate expert human reasoning process over a set of rules and knowledge
from a specific domain [3]. In our case, rules are represented by the AMP/ASCO/CAP
guidelines, while the domain knowledge needs to be gathered from several public
omics-resources. After knowledge base collection, the ES is implemented in a Python
program thanks to the PyKnow library, which creates an environment to define Rules
and fire them against Facts.

A Rule-Based Expert System for Automatic Implementation 115



2.1 Preprocessing: Knowledge Base Collection

We collected information about known biomarkers from 6 different cancer-specific
databases. These repositories provide evidence about variants clinical impact, public
literature references, clinical trials and professional guidelines. Information about
cancer-specific databases is listed in Table 1.

We developed automatic pipelines that extract relevant information and standardize
nomenclature from each resource. In fact, each database has different terminologies: for
instance, OncoKB Therapeutic levels are “Resistance” or “Response”, while in DEPO
the same concept is represented by “Resistant” and “Sensitive”. Moreover, we stan-
dardized cancer representation to Disease Ontology terms, and we select single
nucleotide variations and indels.

2.2 ES Implementation

The ES is implemented in a Python program. Input files are the following: an anno-
tation tab-delimited file with the lists of genomic coordinates of somatic variants that
need to be classified and a tab-delimited file for each collected omics-resource,
resulting from our preprocessing pipeline. Data are organized into an Object-oriented
model. Rules, representing AMP/ASCO/CAP guidelines, are defined through PyKnow.
For instance, the final rule for “Tier I” classification is composed by three “sub-rules”:
one is related to the allele population frequency, the second to in silico prediction of
damaging impact, and the last one checks if the variant is actually reported as a
biomarker. The final rules could is therefore the following: (IF variant allele frequency
<=5% in DbSNP, ExAC and Esp population databases THEN variant has low allele
frequency) AND (IF PaPI, Dann and dbscSNA prediction score >=0.8 THEN variant
has damaging impact) AND (variant is reported in the knowledge base as
“Therapeutic/Prognostic/Diagnostic” by FDA or professional guidelines) THEN vari-
ant is Tier I Therapeutic, Prognostic or Diagnostic. Rules could overlap since a variant
could be interpreted as both Tier I Therapeutic and Tier I Prognostic, but it cannot be
interpreted both as Tier I and Benign.

Table 1. Cancer-specific databases information.

Database URL Type of evidence

CGI [4] https://www.cancergenomeinterpreter.
org/biomarkers

Therapeutic

CiVIC [5] https://civicdb.org/home Therapeutic, Diagnostic,
Prognostic

OncoKB [6] http://oncokb.org/ Therapeutic
DEPO [7] http://depo-dinglab.ddns.net/ Therapeutic
DOCM [8] http://docm.info/ Diagnostic
COSMIC (Resistance
mutation) [9]

https://cancer.sanger.ac.uk/cosmic/
download

Therapeutic
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After classification process, the ES provides as output a tab-delimited file with final
classification for each input variant and a JSON file for each variant, containing
information about variant annotation and classification, following the minimal variant
level data (MVLD), a recently proposed framework to standardize cancer variants data
for clinical utility [2].

3 Results

3.1 Standardized Knowledge Base

The harmonization of cancer-databases contains 1277 prognostic assertions, 987
therapeutic and only 38 prognostic. Almost 200 types of different cancer where mapped
to Disease Ontology terms. The majority of variants (1270) are found in DOCM
(diagnostic biomarkers), while from OncoKB we collected only 40 therapeutic vari-
ants, among that only 31 were reported also in other cancer-databases. COSMIC
contains about 190 therapeutic biomarkers, DEPO and CGI about 300. CIVIC final
variant list has 38 prognostic biomarkers, 24 diagnostic and more than 330 therapeutic.

3.2 Case Study: Interpretation of Variants in Myelodysplastic
Syndromes Patients

We interpreted 884 variants found in a cohort of 310 patients with myelodysplastic
syndromes (MDS). MDS are heterogeneous hematopoietic disorders whose progres-
sion could lead to Acute Myeloid Leukemia. The ES took 6.15 s to interpret all 884
variants. Among these, 8 variants were classified as “Strong Clinical Significance”: 5
variants were reported as Diagnostic biomarkers, 5 as Prognostic and 3 as Therapeutic
(3 variants are reported as both Diagnostic and Prognostic, while a variant has been
observed as Therapeutic, Diagnostic and Prognostic). 27 variants were interpreted as
“Potential Clinical Significance” (34 as Diagnostic, 1 as Prognostic and 11 as Thera-
peutic). The remaining variants are interpreted as Uncertain. The 35 classified variants
occurred in 115 different patients. We compared our classification of MDS variants
with a previous study classifying mutations as oncogenic/possible oncogenic or
uncertain, in 111 genes associated with MDS or closely related neoplasms [10]. We
found that 225 variants in our cohort have been reported by this study as “oncogenic”.
Among that, we interpreted 7 as “Strong” and 34 as “Potential”. Only one “Strong”
variant is reported as uncertain by the previous study. Therefore, the 97% of variants
interpreted to have a clinical impact are reported as oncogenic. It is important to
underline that these guidelines are not supposed to predict the pathogenicity of a
variant, but they provide a framework to evaluate the clinical impact of a variant
according known studies.
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4 Conclusions

Somatic variant interpretation is a complex process whose results could guide clinical
decision making. However, the actual implementation of interpretation guidelines in
clinical practice calls for tools able to reason over a heterogeneous and always growing
knowledge base. We collected and standardized from 6 databases over 1500 mutations
known to have a clinical impact in cancer. Within the annotation process, we associated
each variants with further information. Developed ETL pipelines will allow future
update of the knowledge base. We then implemented an Expert System that reasons
over the collected standardized knowledge base and automatically interprets somatic
variant according to standard AMP/ASCO/CAP guidelines. ES architecture will allow
future updates of the Rules, avoiding complex alteration of the application code.
The ES receives as input a list of genomic variants, it performs inference, and then
provides as output a JSON file for each variant, reporting variant annotation and
AMP/ASCO/CAP interpretation, according to MVLD. Thanks to output files, the ES
allows user to follow the reasoning process that lead to the final classification. We
interpreted more than 800 variants in patients with myelodysplastic syndromes, sug-
gesting that almost half of the cohort carried variants of strong or potential clinical
significance. This information could therefore help clinicians in clinical decision-
making process. Future improvements will be the possibility to interpret also complex
alteration and the development of a web tool where user could query the ES inter-
pretations. Moreover, other databases could be included in the knowledge base.
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Abstract. The treatment of patients affected by multiple diseases (comorbid
patients) is one of the main challenges of the modern healthcare, involving the
analysis of the interactions of the guidelines for the specific diseases. Practically
speaking, such interactions occur in time. The GLARE project explicitly pro-
vides temporal representation and temporal reasoning methodologies to cope
with such a fundamental issue. In this paper, we propose a further improvement,
to take into account that, often, (i) the actions in the guidelines can be executed
by physicians at different times with different preferences, and that (ii) the
effects of such actions have a probabilistic distribution in time. In our approach,
physicians may investigate what are the preferences of their choices on the
execution-time of guideline actions, and the probabilities that their effects
temporally intersect (interactions may occur only in case effects intersect in
time).

Keywords: Comorbidities � CIG interactions � Temporal reasoning �
Probabilities � Preferences

1 Introduction

Clinical practice guidelines are the major tool that has been introduced to grant both the
quality and the standardization of healthcare services, on the basis of evidence-based
recommendations. The adoption of computerized approaches to acquire, represent,
execute and reason with Computer–Interpretable Guidelines (CIGs) provides crucial
additional advantages so that, in the last twenty years, many different approaches and
projects have been developed to manage CIGs (consider, e.g., the book [1] and the
survey [2]). One of such approaches is GLARE (Guideline Acquisition, Representation
and Execution) [3]. By definition, clinical guidelines address specific pathologies.
However, comorbid patients are affected by more than one pathology. The problem is
that, in comorbid patients, the treatments of single pathologies may interact with each
other, and the approach of proposing an ad-hoc “combined” treatment to cope with
each possible comorbidity does not scale up.
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In the last years, many approaches in the Medical Informatics literature have faced
different aspects of the treatment of comorbid patients (see the survey in [4]). Some of
them have focused on the knowledge-based automatic detection of possible interactions
between CIGs [5, 6], considering (i) the actions in the CIGs and (ii) their effects. In
particular, in GLARE-SSCPM [7], specific attention has been devoted to temporal data
[8–10] and to the temporal analysis of interactions [11], taking into account complex
forms of temporal reasoning and query answering about temporal constraints between
events. However, the approach in [11] only considers “crisp” temporal constraints,
while a more flexible analysis may be needed, considering the fact that:

(1) CIG may contain guideline preferences among the execution-time of CIG actions
[12] and

(2) the effects of CIG actions may have a probabilistic distribution in time (derivable,
e.g., from pharmacokinetic and a pharmacodynamic studies).

Consider, e.g., Example 1, about the interaction between calcium carbonate
administration (CCA) and nalidixic acid administration (NAA), concerning gastric
absorption.

Example 1. A patient is affected by gastroesophageal reflux (GR) and by urinary tract
infection (UTI). The CIG for GR may recommend CCA, to be administered as soon as
possible, and within three hours. Considering as granularity units of 15 min, and
assuming preferences in a scale from 0 (minimum preference) to 1 (maximum pref-
erence) the administration can be in the first two units (first 30 min) with preference 1,
in units 3 and 4 with preference 0.75, in units 5, 6, 7 and 8 with preference 0.5, units 9,
10, 11 and 12 with preference 0.25. CCA has the effect of decreasing gastric absorption
(DGA). DGA can start after 1 unit with probability 0.4, after 2 with probability 0.4, and
after 3, with probability 0.2. Additionally, the duration of DGA may be 4 units
(probability 0.1), 5 (0.3), 6 (0.4), 7 (0.1), or 8 (0.1). The CIG for UTI may recommend
NAA, to be administered within two hours, with decreasing preferences (preference 1
for the units 1 and 2, 0.75 for units 3 and 4, 0.5 for 5 and 6, and 0.25 for 7 and 8). NAA
has as effect nalidixic acid gastric absorption (NAGA), starting after 1 unit (probability
0.4) or 2 (probability (0.6). The duration of NAGA may be 1 (probability 0.05), 2
(0.05), 3 (0.15), 4 (0.15), 5 (0.25), 6 (0.25), 7 (0.05), 8 (0.05). ■

In order to support physicians in the study of the interaction between CCA and
NAA, one must take into account not only the temporal constraints, but also their
preferences and probabilities. This is essential to answer physician’s queries such as:

(Q1) If I perform on the patient CCA in unit 1 or 2 (i.e., in the following 30 min), and
NAA in units 1 or 2, what is the guideline preference of my choices and what is the
probability that the effects of such two actions intersect in time (i.e., what is the
probability of the interaction between CCA and NAA)?

The approach in [11] does not consider preferences nor probabilities on temporal
constraints. Such an approach has been extended in [13] to consider probabilities.
However, no work in the literature has proposed a comprehensive approach coping
with both preferences and probabilities.
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2 Managing Temporal Constraints with Preferences
and Probabilities

Temporal Formalism. The first step of our approach is the definition of an extended
temporal formalism, in which temporal constraints are paired with preferences and/or
probabilities. We base our approach on STP (Simple Temporal Problem [14]). In STP,
temporal constraints have the form Pi[l, u]Pj, where Pi and Pj denote time points, and l
and u (l <= u) are integer numbers, stating that the temporal distance between Pi and Pj

ranges between l and u. Notably, in STP, pairs of time points may represent time
intervals, to cope with durative facts/actions.

As discussed in the introduction, certain constraints are “purely” preferential, and
others are “purely” probabilistic. Additionally, while performing the propagation of
temporal constraints, “mixed” probabilistic+preferential constraints, which model
probabilities and preferences along paths of events, can arise. To simplify the technical
treatment, we choose to represent all types of constraints (preferential, probabilistic,
and “mixed”) in an homogeneous way. Thus, in our approach, each constraint has both
a preference and a probability, and we use the special symbols “%” and “#” to denote
undefined probability and preference, respectively.

Definition. Probabilistic+Preferential Quantitative Temporal Constraint
(P+PQTC). Let

• let ti,tj ∈ r be time points
• let p1, …, pn ∈ r be probabilities; 0 < p1 � 1, …, 0 < pn � 1 or p1 = … = pn = %
• let P1, …, Pn ∈ r be preferences; 0 � P1 � 1, …, 0 � Pn � 1 or P1 = … = Pn = #
• let d1, … ,dn ∈ z be distances (between points)

A Probabilistic+Preferential Quantitative Temporal Constraint (P+PQTC) is a
constraint of the form ti < (d1, p1, P1),…, (dn, pn, Pn) > tj where ti, tj 2 R are time points
and where either p1 = … = pn = % or p1, …, pn 2 [0, 1] and conforms a probability
distribution. ■

The intended meaning of a constraint ti < (d1, p1, P1), …, (dn, pn, Pn) > tj is that the
distance tj – ti between tj and ti can be d1 with probability p1 and preference P1, or… or
dn with probability pn and preference Pn (where preferences or probabilities may also
be undefined, when they are denoted by # or %).

Example 2. The constraint between calcium carbonate administration (CCA) and the
beginning of decreasing gastric absorption (DGAS) in Example 1 can be represented by
the following P+PQTC:

CCA <(1,0.4,#),(2,0.4,#),(3,0.2,#)> DGAS

and the constraint in Example 1 about the calcium carbonate administration (CCA),
relating it to a time point X0 representing the starting time in the execution of the
guideline, can be represented by the following P+PQTC:

X0 <(1,%,1),(2,%,1),(3,%,0.75)(4,%,0.75),(5,%,0.5),(6,%,0.5),(7,%,0.5),(8,%,0.5),
(9,%,0.25),(10,%,0.25),(11,%,0.25),(12,%,0.25)> CCA ■
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Temporal reasoning. In STP, as well as in most AI approaches, temporal rea-
soning is based on two operations on temporal constraints: intersection and compo-
sition. Given two constraints C1 and C2 between two temporal entities A and B,
temporal intersection (henceforth \ ) determines the most constraining relation
between A and B (e.g., A[20,40]B \ A[30,50]B ! A[30,40]B). On the other hand,
given a constraint C1 between A and B and a constraint C2 between B and C, com-
position (@) gives the resulting constraint between A and C (e.g., A[20,40]B @ B
[10,20]C ! A[30,60]C).

In STP, constraint propagation can be performed applying Floyd-Warshall’s all-
pairs shortest path algorithm, to repeatedly apply intersection and composition of
temporal constraints. Floyd-Warshall’s algorithm is correct and complete on STP [14],
operates in cubic time, and provides as output the minimal network of the input
constraints, i.e., the tightest equivalent STP, or an inconsistency.

In our approach, we extend such an approach to operate on the P+PQTC con-
straints. We propose a version of the general Floyd-Warshall’s algorithm in which the
operations of intersection and composition used for STP are extended to operate also
on preferences and probabilities (our formal definition of intersection and composition
is quite technical and long, and is omitted for the sake of brevity). The application of
Floyd-Warshall algorithm (considering our new definition of intersection and com-
position) provides as output the minimal network of our P+PQTC constraints, i.e., the
possible distances between each pair of time points, and the preference and probability
of each distance.

Query Answering. To facilitate the interaction with physicians, we provide users
with facilities to query such a minimal network, to ask for (i) the extraction (from the
minimal network) of the temporal constraints between actions (or their endpoints), and
their preferences and probabilities; (ii) Boolean queries, concerning whether a set of P
+PQTC temporal constraints holds; (iii) Temporal interaction queries, devoted to the
check of whether two events (effects of CIG actions) can interact in time, and what is
the probability of such an interaction; (iv) Hypothetical queries, in which queries of
types (i)–(iii) above are asked while assuming a set of temporal constraints. For
example, query Q1 can be expressed in our approach as

IF{X0<1,2>CAA, X0<1,2>NAA}THEN Pref&Prob(INTERSECT(DGA,
NAGA))?

The answer is <pref: 1, prob: 0,9486> (i.e., the choice of the execution time has an
high preference, but there is a strong probability of interactions between the effects).
Notably, after Q1, physicians might ask a query like Q2 (to check the probability of
interaction in case NAA is executed in the first 30 min, and CAA between two and
three hours from the current time, and the guideline preference of such a choice of the
execution-time of the CIG actions):

(Q2) IF {X0<9,10,11,12>CAA,X0<1,2>NAA} THEN Pref&Prob(INTERSECT
(DGA,NAGA))?

The answer is <pref: 0,625, prob: 0,02455>, suggesting to physicians that, delaying
CAA, they can still comply with the CIG constraints (though obtaining a lower pref-
erence with respect to the choice in Q1), but sharply decrease the probability of
interactions. Notably, considering our running example, using a “standard” temporal
reasoner (i.e., not considering probabilities and preferences), physicians could only
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infer that an interaction may occur, both in case CAA is executed within the first
30 min, and in case it is executed after two or three hours.

3 Conclusions

We propose the first temporal reasoning approach in the AI literature coping with both
preferences and probabilities. Our approach provides significant advantages to support
physicians in interaction detection for comorbid patient. Future work regards the
development of user-friendly interfaces, and an experimental evaluation.
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Abstract. In this paper we develop and study machine learning based
models based on latent semantic indexing capable of automatically
assigning diagnoses and diagnostic categories to patients based on struc-
tured clinical data in their Electronic Health record (EHR). These mod-
els can be either used for automatic coding of patient’s diagnoses from
structured EHR data at the time of discharge, or for supporting dynamic
diagnosis and summarization of the patient condition. We study the per-
formance of our diagnostic models on MIMIC-III EHR data.

Keywords: Lower dimensional representation ·
Singular value decomposition · Electronic health records ·
Machine learning · ICD-9 diagnosis

1 Introduction

Healthcare is one of the most promising areas for applications of data mining and
machine learning methodologies. Since the adoption of electronic health records
(EHRs), there has been an explosion in digital clinical data available for learning
and analysis. However, the development of models that are derived from such
data and that can solve important clinical problems still lags the advances in data
collection. One important that can use such data is the problem of automated
assignment of diagnoses to EHRs. Motivation behind solving this problem can be
summarized as follows. First, automated diagnostic assignments can be used as
a utility that informs clinician about the diagnoses associated with the current
patient. Second, it can be used as a patient condition summarization tool to
define proper context for analysis of patient management steps or to support
improved prediction of future outcomes.

Going from structured EHR data to automated diagnoses is not easy. First,
structured EHRs consist of a large number of time series that represent vari-
ety of labs, physiological measurements, symptoms, treatments, procedures, etc.
Hence it is not easy to automatically associate the signals in these time series
with specific diagnoses, especially when the diagnoses are defined by a com-
bination of these signals or the same diagnosis can be confirmed by multiple
c© Springer Nature Switzerland AG 2019
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alternative signals. This problem is even more challenging when data are sparse
(data are collected at irregular times) and many time series for the patient cases
are unknown or missing. Second, the assignment of diagnoses to patient case is
typically done at the time of the discharge, which means it is not only unclear
what the signals related to the specific diagnosis are but also when they occurred
in time. Finally, some diagnoses are very rare and even with moderate to large
EHR repositories the number of patients suffering from the specific disease is
very small, so learning of diagnostic models for such diseases is not feasible.

In this work we study this important problem by investigating methods from
text mining, natural language processing (NLP) and information retrieval, but
apply them to structured EHR data. Briefly we consider each patient’s EHR to
be equivalent to a document, and clinical events of different kinds recorded in
EHR as words or terms in the document. To represent different events describ-
ing the patient case we consider the bag-of-word (BoW) representation that
uses individual event counts and transform it using a lower-dimensional projec-
tion, based on Latent Semantic Indexing [5] that aims to better reflect semantic
relations between events. The advantage of such a representation is that it per-
mits us to consider a large number of events of different types typically found
in the EHR data, and is also robust in handling missing and unknown data
sources very common in EHRs. Additionally, it helps us to define the meaning-
ful similarity among the patients as well as similarities among the words (clinical
events). We use this new patient case representation to build models for individ-
ual diagnoses, as well as, diagnostic categories we define with the help of icd-9
hierarchy. Through experiments we demonstrate our new representation is able
define accurate diagnostic models at different levels of abstractions.

2 Related Work

Majority of existing work modelling patient diagnostic process fall into one of two
categories. The first group tackles prediction of future patient visit diagnosis. Lip-
ton et al. proposed a Recurrent Neural Network (RNN) architecture based on
Long Short Term Memory units to predict future patient visit diagnosis from a
collection of 13 clinical variables [8]. GRAM [3] is an attention based RNN net-
work that uses a BoW representation of patient’s previous diagnosis as their input
and take advantage of diagnosis hierarchies to extend low level diagnosis to cat-
egories. The second category of existing work studies the problem of automatic
diagnosis assignment at the end of hospitalization and it is mainly motivated by
improving hospital billing process. Other solutions were also proposed based on
Autoencoder and LSTM neural network architectures [10,12].

The data models and SVD-based lower dimensional projections we propose
in our work are typically used for analysis of text data. For example, SVD has
been applied in addition to information retrieval and document analysis [2]. In
terms of clinical applications, SVD and other lower dimensional representation
methods including non-negative matrix factorization have been used on EHR
data for missing value imputation [1], future visit diagnosis prediction [9] and
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medical phenotyping [11]. Despite numerous studies in diagnoses prediction and
assignment, the existing work has not attempted to take advantage of the entire
span of structured clinical data in EHR nor they have studied the advantage of
looking at diagnostic categories as target variables.

3 Methodology

Let Vi denote a patient visit i and let D = {V1, V2, ..., V|D|} be a set of all
patient visits in our data. A visit can be defined as Vi = {xi, yi} where xi and
yi are respectively a set of clinical events and diagnoses assigned to the patient
during the visit. Clinical events are formed by a discrete representation of clini-
cal information derived from Electronic Health Records (see below for details).
Additionally, we adopt a bag-of-word (BoW) representation of a patient’s EHR,
therefore, xi ∈ N

E reflects the number of occurrences of each clinical event
during a patient’s stay where E is the total number of event types.

Low dimensional representation of patient’s clinical information is a key
step in summarizing the information important for learning of diagnostic mod-
els. We define a low dimensional embedding as a mapping E �→ R

k : xi : ui that
maps a patient’s visit’s data to a new lower dimension dense vector ui ∈ R

k

while k << |E|. Automatic learning of a low dimensional representation of com-
plex data vectors is one of the most actively studied topics in machine learning
research [4]. Our goal in this work is to show that these methods are capa-
ble supporting our problem - automatic assignment of diagnoses to patient’s
clinical data. Briefly, Electronic Health Records contain tens of thousands of dif-
ferent information including medications, procedures and surgeries, lab results,
vital signs, pain scores and etc. However, often this data contain missing values.
Additionally, much of this information is interrelated, conveying interchangeable
or opposite information regarding patient condition. For example, various med-
ications are used to treat blood pressure related conditions including Diuretics,
Beta blockers and Alpha-1-Agonist medications. However, the first two are pre-
scribed to patients with high blood pressure and the third group is ordered for
patients with low blood pressure. Therefore, with the help of lower dimensional
representation methods one can learn compact representations of patient data
that a simple bag-of-word model fails to do.

Latent semantic indexing is a statistical method for analyzing the rela-
tionship between a set of documents and terms used in information retrieval
by finding underlying concepts [5]. This is done by finding a Singular Value
Decomposition (SVD) of original term-document matrix A. We consider each
patient’s EHR to be equivalent to a document, and clinical events of different
kinds recorded in EHR as words or terms in the document. The underlying con-
cepts are in fact eigenvectors of symmetric matrix XTX and are represented in
the left singular vector matrix in A = UΣV T . Therefore, rank k Singular value
decomposition of patient matrix X|D|,|E| can be obtained as:

X|D|,|E| = U|D|,kΣkkV
T
k,|E| (1)
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The lower dimensional representation of ui can be obtained as ui = xiV ΣT .
Learning diagnostic models includes learning one model per yi (diag-

nosis or diagnostic category) using logistic regression with L2 regularization to
capture the input-output relations. All models use low dimensional vectors as
their inputs. If the lower dimensional representation is successful in capturing
all important information about the patient visit in a compact form, we expect
it to be sufficient. We note that this approach is not optimized to capture the
relations among different diagnoses and their categories. We leave the study of
these models to our future work.

4 Experiments

We experiment with our models on MetaVision part of MIMIC-III [7], an open
access EHR dataset obtained over a 12-year time span that covers 22K patient
visits or hospitalization to ICU. MIMIC-III encodes patients’ diagnoses using
standard ICD-9 codes. We enrich the ICD-9 codes with diagnostic categories
defined by ICD-9 hierarchy. We limited our experiments to ICD-9 codes with at
least 0.02 for prior probability of positive examples chosen to guarantee enough
positive examples for learning and cross validation. This results in 421 diagnoses
and diagnosis categories. We evaluate the performance of our models on the
post-discharge diagnostic assignments expressed in terms of icd-9 diagnoses and
their categories using the area under receiver operating characteristics curve
(AUROC) and area under precision recall curve (AUPRC). The latter statistics
is known to be more appropriate in the presence of imbalanced data [6].

Data processing is needed before creating a bag-of-word representation of
patient data. We convert patient information in EHR to a set of meaningful
binary events. We used medication and procedure orders by converting them to
occurrence indicators. Laboratory results and physiological measurements with

Table 1. Performance of models for diagnoses on different ICD-9 hierarchy levels

Task name Prior AUROC AUCPRC Task name Prior AUROC AUPRC

Root ICD9 codes average 0.434 0.74 0.647 Forms of heart failure 0.509 0.822 0.822

All ICD-9 codes average 0.096 0.771 0.262 Heart failure 0.249 0.852 0.681

Diseases of Genitourinary 0.495 0.862 0.869 Systolic heart failure 0.096 0.808 0.324

Nephritis related diseases 0.371 0.931 0.891 Chr systolic hrt failure 0.035 0.732 0.091

Acute renal failure 0.269 0.878 0.718 Diastolic heart failure 0.103 0.81 0.331

Ac kidney fail, tubr necr 0.056 0.897 0.376 Cardiac dysrhythmias 0.352 0.793 0.674

Ac kidney failure NOS 0.213 0.832 0.527 Cardiac arrest 0.026 0.849 0.211

Chronic kidney disease 0.198 0.917 0.742 Atr fibrillation & flutter 0.269 0.831 0.642

Chr kidney dis stage III 0.029 0.863 0.158 Atrial fibrillation 0.261 0.829 0.63

End stage renal disease 0.053 0.971 0.79 Atrial flutter 0.032 0.751 0.095

Chronic kidney dis NOS 0.097 0.838 0.323 Liver disease & cirrhosis 0.073 0.876 0.586

Diseases of Urinary Sys. 0.183 0.732 0.351 Alcohol cirrhosis liver 0.028 0.924 0.419

Disease of male Genital. 0.061 0.657 0.102 Cirrhosis of liver NOS 0.03 0.885 0.273
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numerical values were converted to Abnormal Low, Normal or Abnormal High
events based on their standard normal ranges, discrete valued measurements
were converted to events matching these values. Finally, pain assessments were
converted to special events reflecting the different pain levels. After the conver-
sion our new events data covered 4826 clinical events including 2420 for medi-
cation orders, 116 for procedure orders, 2012 for laboratory results and 278 for
physiological and pain assessment measurements.

Results in Table 1 show that more accurate models can be learned by using
higher level (more general) diagnoses from disease hierarchy by taking advan-
tage of their higher priors. However, it is important to mention that moving up
the hierarchy may not always improve the models as generic categories might
be harder to learn. An example of this case is the category “Diseases of Geni-
tourinary” in Table 1 that has lower AUPRC and AUROC from its immediate
sub-category. Additionally, generic categories may not be as informative.
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Abstract. In this paper, we tackle the issue of assessing the effectiveness
of sequences of treatments by introducing the concept of state-changing
sequential patterns. Our proposal aims at identifying sequential patterns
in an environment where certain actions are taken for patients (medi-
cal procedures, administration of pharmaceuticals, etc.) while simultane-
ously measuring some indicator of their health (e.g., blood pressure). We
propose to combine the information about the events with the informa-
tion about the states of the patients targeted by these events when mining
for sequential patterns. To be able to properly interpret the changes in
states as outcomes of sequences of events, we rely on the concept of a
control group known from clinical trials. We illustrate the usefulness of
our proposal with a proof-of-concept experiment.

Keywords: Sequential data · Frequent patterns · Modeling change

1 Introduction

Sequential patterns are an extension of frequent patterns (or frequent itemsets,
known from association rule mining) to sequential data. They find many appli-
cations in domains such as customer transaction analysis, web mining, software
bug analysis, chemical and biological analysis [1]. Just like with traditional fre-
quent patterns, there are many versions of sequential patterns, depending on
the structure of the sequences. In scenarios such as classification or regression,
target attribute can be added to each element in each sequence. This results in
a setting where a dataset contains sequences of pairs 〈event, target〉. In many
real-world scenarios, however, such a setting is impossible to achieve, as the
value of the target attribute may be provided with a delay or even completely
asynchronously from the analyzed events. Consider a sequence of treatments
prescribed to a given patient for a certain disease measured by some indicator
(e.g., blood pressure). After a series of events (e.g., administered pharmaceuti-
cals, medical procedures, dietary regulations) the indicator may either improve,
worsen, or stay unchanged. However, this result does not necessarily coincide
with any of the events nor need it be a result of one, all, or any of the preced-
ing events. This scenario is universal when modeling people’s behavior, opinion,
c© Springer Nature Switzerland AG 2019
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or—more generally speaking—state. As illustrated by the examples above, this
problem is no longer described by a single sequence of events (like in classical
sequential pattern mining), but rather by two connected sequences—one with
the events and the other with target values. To the best of our knowledge, pro-
cessing of sequential data of such composition has not yet been considered and
is the focus of this research.

In this paper, we introduce the concept of state-changing sequential patterns
along with a method to find them. Unlike in regular clinical trials, where we
try to nullify the impact of all other factors, state-changing sequential patterns
focus on discovering potentially hidden dependencies between medical events.
We showcase the applicability of the presented concept in practical situations
by performing a proof-of-concept experiment.

2 Related Work

Sequential pattern mining has first been introduced by Agrawal and Srikant [2]
through a market basket analysis model. Since mining of such patterns is very
costly, many optimisation algorithms have been created to improve sequential
pattern mining. Giannotti et al. [3] propose an annotation solution to a problem
of distinction between patterns with the same sequence but different transition
times. Gebser et al. [4] propose to use knowledge-based sequence mining which
takes into account expert knowledge in order to extract fewer patterns but of
greater relevance.

Associating data with additional information not only can help in pattern dis-
tinction or evaluation of relevance but also in classifying it into categories. This
was suggested by Pinto et al. [5]. Their algorithm focuses on multi-dimensional
data and describes how certain patterns might apply to certain categories of data.
Multi-dimensional data has also been examined by Plantevit et al. [6]. Their
framework concentrates on relevant frequent sequences in multi-dimensional and
multi-level data. It is a solution to mining relevant patterns in data of various
dimensions, but there are other proposals for standard sequential data. One of
such papers [7] proposes an algorithm for mining the most relevant sequential
patterns and also provides a ranking according to their interestingness. Another
paper [8] about mining interesting sequential patterns uses leverage (difference
between observed and expected frequencies of a pattern) as a measure of interest.

A solution to mining patterns with a user-centric approach has been described
by Guidotti et al. [9]. In their market basket prediction model the focus is on sin-
gle users history by using four characteristics: co-occurrence (items often bought
together), sequentiality (set of items often bought after another one), periodic-
ity (sequential purchases in specific periods), recurrence (frequency of sequential
purchases in a given period).

The described papers aim at finding more meaningful sequential patterns,
however, none of them studies patterns with an impact on certain objects’ state.
To the best of our knowledge, such a problem has not yet been considered.
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3 State-Changing Sequential Patterns

Assume we have a history of medical events (procedures, pharmaceuticals,
dietary regulations, etc.) of a given patient. Additionally, between these events
the health of the patient was being recorded in a form of some indicators (e.g.,
blood test results). Given a database of such records for many patients, we can
look for patterns of events which increase the chances of improving patients’
health. Typically, one would analyze each medical event in isolation from others
to assess its sole impact on patients’ health (e.g., in clinical trials). However,
given historical data of the above-described composition, we can look for pat-
terns of different events appearing in a certain order, i.e., sequential patterns.

Given the above, the problem of state-changing sequential patterns can be
formulated as follows. Is it possible to find a sequence of events which will have
a high probability of influencing the patients’ state in a desired manner.

Formally, the concept of state-changing sequential patterns can be defined as
follows. By a sequence s =< s1, s2, ..., sn > we understand an ordered multi-set
of elements, where each element si is drawn from the same set. We distinguish
two types of sequences: sequences of events and sequences of states. Each events
sequence has a corresponding states sequence. The corresponding sequences can
be combined into a single sequence of events and states and there exists a total
order between the elements of the combined sequences such that the order of
the elements from each sequence is preserved.

A sequence s′ which elements form a subset of elements of another sequence
s is called a subsequence of s and is denoted as s′ ⊆ s. Given a set of sequences
S, a sequence p is called a sequential pattern (or pattern), if it is a subsequence
of at least minsup sequences in S: |{s ∈ S : p ⊆ s}| ≥ minsup, where minsup is a
user-defined minimal support parameter. We denote that a sequence s contains a
pattern p if p ⊆ s. Given a sequence s =< s1, s2, ..., sn >, its subsequence s′ =<
si1 , si2, ..., sim >, 1 ≤ m ≤ n, and an element sx ∈ s, we say that sx appears
in s after s′ if im < x ≤ n, and before s′ if 1 ≤ x < i1, denoted respectively
as s′ ≺s sx and s′ 	s sx. Given the above, a state-changing sequential pattern
can be generally defined as a pattern p, for which the probability of a certain
change in state (positive or negative) appearing in any given sequence s after
this pattern is higher than the probability of this change appearing without this
pattern by at least minchange:

P ( ∃
si,sj∈s

si < sj |si ≺s p 	s sj)−P ( ∃
si,sj∈s

si < sj |¬(si ≺s p 	s sj)) > minchange

where si and sj indicate states, i < j for positive change, j < i for negative
change, and minchange is a user-defined threshold.

Ideally, to calculate the second probability, i.e., the change happening without
the pattern, we would use a separate control group. However, unfortunately
such data in historical patients’ records are very rare. Therefore, to make this
definition usable on any given dataset, let us split each sequence into smaller
sequences based on the following principle. For any three consecutive states
si, sj , sk, if sign(sk − sj) �= sign(sj − si) then sj marks the end of one sequence
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of events an the beginning of another. For every such sequence of events we
calculate the difference between the state which marks the beginning and the
end of this sequence. The sequences with positive and negative differences fall
into separate datasets: S+ and S−, respectively. Given the above datasets, we
can mine for sequential patterns in each of these sets separately and select the
state-changing sequential patterns as those p for which:

|sup(p,S+) − sup(p,S−)|
total number of sequences

> minchange (1)

where sup(p,S) = |{s ∈ S : p ⊆ s}|.

4 Application

Let us now illustrate the usefulness of state-changing sequential patterns with
a simple proof-of-concept experiment. In the experiment we use the diabetes
dataset, which is publicly available through the UCI Machine Learning Repos-
itory [10]. It includes medical events performed on patients suffering from dia-
betes along with their blood sugar level measurements. The dataset consists of
3883 sequences composed of 20 different elements with an average length of 7.6
elements per sequence. The code for the experiment was written in Python pro-
gramming language and is available at https://github.com/joanna-solomiewicz/
state-changing-sequential-patterns. The experiment was carried out using the
procedure described at the end of Sect. 3.

Table 1. Top 5 patterns: left—in order of their support, right—in order of their change
(calculated using Eq. 1) [R = Regular insulin dose, N = NPH insulin dose].

Pattern p sup(p,S−) sup(p,S+) Change Pattern p sup(p,S−) sup(p,S+) Change

R 982 785 0.096 N, R, N 460 185 0.134

N 771 603 0.082 N, N 503 243 0.127

R, N 688 454 0.114 R, R, N 499 243 0.125

R, R 677 555 0.059 N, R 550 305 0.119

N, R 550 305 0.119 R, N 688 454 0.114

In Table 1 we present the top 5 patterns found according to their support in
S− and contrast them with the top 5 state-changing sequential patterns. As the
support of the patterns is already calculated based on the dataset transformed
according to our method, it is difficult to objectively compare the measurements.
Still, we can clearly observe that the ranking produced by support is significantly
different from the one produced by the change indicator. This suggests that the
concept of state-changing sequential patterns can be potentially used to discover
new causal relationships between sequences of events and changes in state which
could otherwise be omitted.

https://github.com/joanna-solomiewicz/state-changing-sequential-patterns
https://github.com/joanna-solomiewicz/state-changing-sequential-patterns
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5 Conclusions

In this paper, we introduced the concept of state-changing sequential patterns
along with a simple way of discovering them. The concept allows for finding
patterns of events which have high probability of causing a certain change of
state. We define and formalize the concept and illustrate its applicability in
medical scenarios with an empirical example. As this paper reports a work-in-
progress research, there is still much theoretical and experimental work to be
done. After exploring the theoretical properties and thoroughly experimenting
with the introduced concept, we plan on including time constraints in the anal-
ysis as some previous studies suggest they can add important information from
the pattern mining perspective [11]. The constraints could concern both, events
(e.g., restricting time gaps between events) and states (e.g., the certainty of a
given object’s state can decay over time until new state appears). We also intend
to quantify the magnitude of change in state caused by the discovered patterns,
as currently we solely focus on the direction of change. Moreover, we plan to
create new sequential pattern evaluation measures dedicated for this problem as
well as an efficient algorithm which would cut the unpromising patterns at an
earlier stage to enhance efficiency.

Acknowledgments. This research is partly funded by the Polish National Science
Center under Grant No. DEC-2015/19/B/ST6/02637.
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Abstract. Pulmonary arterial hypertension (PAH) is a severe and often
deadly disease, originating from an increase in pulmonary vascular resis-
tance. The REVEAL risk score calculator [3] has been widely used and
extensively validated by health-care professionals to predict PAH risks.
The calculator is based on the Cox’s Proportional Hazard (CPH) model,
a popular statistical technique used in risk estimation and survival analy-
sis. In this study, we explore an alternative approach to the PAH patient
risk assessment based on a Bayesian network (BN) model using the same
variables and discretization cut points as the REVEAL risk score calcula-
tor. We applied a Tree Augmented Näıve Bayes algorithm for structure
and parameter learning from a data set of 2,456 adult patients from
the REVEAL registry. We compared our BN model against the original
CPH-based calculator quantitatively and qualitatively. Our BN model
relaxes some of the CPH model assumptions, which seems to lead to a
higher accuracy (AUC = 0.77) than that of the original calculator (AUC
= 0.71). We show that hazard ratios, expressing strength of influence in
the CPH model, are static and insensitive to changes in context, which
limits applicability of the CPH model to personalized medical care.

Keywords: Bayesian networks · Risk assessment ·
Cox’s proportional hazard model · Hazard ratios ·
Pulmonary arterial hypertension

1 Introduction

Pulmonary arterial hypertension (PAH) is a chronic and life-changingdisease, orig-
inating from an increase in pulmonary vascular resistance, and leading to high
blood pressure in the lung. One of the most widely used tools in prognosis and man-
agement of PAH is the REVEAL risk score calculator [3], which assesses the risk
c© Springer Nature Switzerland AG 2019
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of death of a PAH patient based on various risk factors. The REVEAL calculator
is based on the Cox’s Proportional Hazard (CPH) [4] model, a popular statisti-
cal technique used in risk estimation and survival analysis. One weakness of this
approach is that CPH models can be only learned from data and are not readily
amenable to refinement based on expert knowledge. Another limitation is that the
CPH models rest on several assumptions simplifying the interactions between the
risk factors and the disease. While the CPH-based risk assessment models have
been successfully used for decades, it is interesting to study whether recent devel-
opments at the intersection of statistic and artificial intelligence, such as Bayesian
networks (BNs), offermoremodeling flexibility andpossibly superior performance.

In this paper, we describe our effort to replace the CPH model underlying the
existing REVEAL risk score calculator by a BN. We created a BN model with
the same variables and variable states as the REVEAL risk score calculator using
data from the REVEAL database [3]. In an earlier paper [10], we described a
BN model that mimicked the REVEAL CPH model and, hence, offered precisely
the same accuracy [9]. In this paper, we are presenting a BN model that is
learned directly from the REVEAL data set and compare it to the original
CPH model. We applied a Tree Augmented Näıve Bayes (TAN) algorithm for
structure and parameter learning and 10-fold cross-validation to measure the
BN performance, which we report as the area under the Receiver Operating
Characteristic curve (AUC). The BN model has the AUC of 0.77, compared to
the original REVEAL calculator’s AUC of 0.71. We attribute this difference to
relaxing some of the modeling assumptions that are not satisfied by the data
set. We also show restrictive assumption of the CPH model, notably static and
context-invariant character of influence of individual risk factors, as expressed
by CPH hazard ratios.

The remainder of our paper is structured as follows. Sections 2 and 3 provide
background knowledge on the REVEAL risk score calculator and BNs respec-
tively. Section 4 describes our approach to building and validation of the BN
model. Finally, Sects. 5 and 6 focus on both qualitative and quantitative com-
parison of the two modeling techniques.

2 The REVEAL Risk Score Calculator

The REVEAL risk score calculator was developed to predict PAH disease pro-
gression and guide physician’s therapeutic decision making. The calculator is
comprised of 19 demographic, functional, laboratory, and hemodynamic param-
eters and is based on a multivariate Cox’s proportional hazard (CPH) model.
The CPH model was developed based on data from 2,529 newly and previously
diagnosed PAH patients. The model was simplified into a risk score calculator,
which was later validated on 504 newly diagnosed patients. The original AUC of
the risk score calculator validated on the validation cohort of 504 adult patients
was reported to be 0.724 [2].

The REVEAL risk score calculator has been used for almost two decades.
Although it offers good quality of predictions, it has some limitations. The model
does not take into account interactions among its variables and is not robust to
missing key variables.
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3 Bayesian Networks

Bayesian networks [11] are probabilistic graphical models capable of modeling
the joint probability distribution over a finite set of random variables. The struc-
ture of a BN is an acyclic directed graph in which each node corresponds to a
single variable and directed arcs denote direct dependencies between pairs of
variables. A conditional probability table (CPT) of a variable X contains prob-
ability distributions over the states of X for all combinations of states of X’s
parents. The joint probability distribution over all variables of the network can
be calculated by taking the product of all prior and conditional probability dis-
tributions, i.e.,

Pr(X) = Pr(X1, . . . , Xn) =
n∏

i=1

Pr(Xi|Pa(Xi)) . (1)

BNs have been used in numerous practical applications and because they
are capable of deriving the posterior marginal probability distribution over any
variables of interest, given values of other variables in the model, it is quite nat-
ural to apply them to risk assessment. BNs are compact and intuitive, while also
being theoretically sound [7]. They can be based purely on literature or expert
knowledge, can be learned from data, or a combination of the two. Calculation
in BNs, which ks worst case NP-hard, is very efficient for most practical models.
Prior Bayesian networks have been previously applied to risk assessment (e.g. a
BN model for predicting cardiovascular risk [1] and a BN risk assessment model
for patients with the left ventricular assist devices [8]).

4 Application of a Bayesian Network to the REVEAL
Risk Score Calculator

We used a total of 2,456 patient records from the REVEAL registry to develop a
BN model. The data did not include censored patients. We preserved the list of
variables from the REVEAL risk score calculator along with their discretization
levels (see Table 1). It is clear that some of the variables in the table have been
artificially created for the purpose of CPH modeling. For example, the three
WHO Group I Subgroup variables are mutually exclusive states of a single vari-
able. The same holds for the NYHA functional class, 6min walking distance,
BNP and % DLCO variables. The CPH model required them to be risk factors,
modeled as states of binary variables. We combined these states back into single
variables, as the laws of probability require. For all numerical variables, which we
had to discretize in order to include them into the Bayesian network model, we
applied the cut points used by the REVEAL risk score calculator. We also added
a baseline state (shown in bold), wherever needed but not explicitly defined in
the calculator.
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Table 1. A list of 19 binary risk factors from the REVEAL risk score calculator [3]
along with their counterparts in the Bayesian network. Baseline states are shown in
bold.

Risk factors HR Random variable States

APAH-CTD 1.59 WHO group I subgroup APAH-CTD

FPAH 3.60 FPAH

APAH-PoPH 2.17 APAH-PoPH

Other

Renal insufficiency 1.90 Renal insufficiency Yes

No

Male >60 years age 2.18 Male >60 years Yes

No

NYHA/WHO FC I 0.42 NYHA/WHO FC I

II

NYHA/WHO FC III 1.41 III

NYHA/WHO FC IV 3.13 IV

SBP <110 mmHg 1.67 Systolic BP <110

≥110

Heart Rate >92 bpm 1.39 Heart rate >92

≤92

6MWD <165 m 1.68 Six minute walking distance <165

165-<440

6MWD ≥440 m 0.58 ≥440

BNP <50 pg/ML 0.50 BNP <50

50–180

BNP >180 pg/ML 1.68 >180

Pericardial effusion 1.35 Pericardial effusion Yes

No

% DLCO ≤32% 1.46 % pred. DLCO ≤32

>32-<80

% DLCO ≥80% 0.59 ≥80

Mean RAP >20 mmHg 1.79 Mean RAP >20

≤20

PVR >32 WU 4.08 PVR >32

≤32

Note: HR: hazard ratio; APAH-CTD: PAH associated with connective tissue
disease; FPAH: familial PAH; APAH-PoPH; PAH associated with portal hyper-
tension; WHO: World Health Organization; NYHA: New York Heart Association;
FC: functional class; 6MWD: 6-min walk distance; SBP: systolic blood pressure;
BNP: brain natriuretic protein; % pred. DLCO: % predicted diffusing capacity
of the lung for carbon monoxide; RAP: right atrial pressure; PVR: pulmonary
vascular resistance; WU: Wood unit
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We used the REVEAL registry data to learn a Tree Augmented Näıve (TAN)
BN model [5] that predicts 1-year survival. The TAN learning algorithm is one
of the most popular learning methods for BN classification. TAN extends the
Näıve Bayes structure by adding most important interdependencies among fea-
ture variables. At the same time, the algorithm constraints the maximum num-
ber of incoming arcs to two and, by this, keeps the conditional probability tables
(CPTs) in individual nodes small. Small CPTs mean a small number of param-
eters, which can be learned reliably even when the learning data set is small.
Effectively, when the learning data set is small, the quality of the parameters
remains high and the entire TAN model typically matches well the joint proba-
bility distribution that generated the data.

Figure 1 shows the TAN Bayesian network learned for the purpose of our
study.

Fig. 1. The TAN Bayesian network learned from the REVEAL registry data.

We applied 10-fold cross-validation on the 2,456 adult patients records from
the REVEAL registry to validate this BN model. We validated the REVEAL risk
score calculator on the same data set. The BN model demonstrated an improved
AUC of 0.77 to the AUC of 0.71 for the REVEAL calculator.

5 Bayesian Networks vs. CPH Model in Risk Assessment

CPH models are prevalent in medical literature. They allow for estimating the
effect of multiple risk factors on survival. Impact of each individual risk factor
is expressed by a number called hazard ratio (HR). The HR is defined as a
ratio of the hazard in the corresponding risk group to the hazard in the baseline
group (i.e., a hypothetical group in which none of the risk factors is present). For
example, Table 1 reports the HR for Renal insufficiency as 1.90. This means that
patients with renal insufficiency have a 90% higher risk of dying from PAH than
patients without renal insufficiency. This ratio is, by one of the assumptions of
the CPH model, constant over time and the same regardless of what other risk
factors are present [4]. It is clear that in practice HRs may potentially change
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over time [6] and there exists an extension of the CPH model that relaxes this
assumption [14]. A problem that has to our knowledge not received attention is
that HRs are sensitive to context and change with presence or absence of other
risk factors.

BNs, on the other hands, do not require restrictive modeling assumptions
outside of expressing independencies. The structure of a BN and all its numeri-
cal probabilities can be obtained from experts or learned from data. While it is
conceivable that CPH model parameters can be elicited from experts, most clin-
ical CPH models are derived directly from data. In practice, data sets used for
model construction usually contain missing values. The standard CPH model
is not capable of handling missing values and require statisticians to perform
proper imputation. BNs naturally allow for estimating their parameters from
data sets with missing values.

BNs also allow researchers to combine multiple risk models. For example,
Fig. 2 shows an example of a BN model that combines (Heart-Related Deaths,
with risk factors 6 Min Walking Distance, Age and SBP > 110mmHg and PAH-
Related Deaths with the above risk factors and PVR > 32 Wood Unit) to deter-
mine the risk of dying of patients suffering from heart disease and pulmonary
arterial hypertension (PAH). It is not straightforward for a CPH model to be
extended without re-learning its parameters from data.

Fig. 2. An example Bayesian network predicting survival based on two risk models of
patients with partial observations (only Age and SBP are observed)

When performing prediction, BNs allow for estimating the outcome probabil-
ity based on partial observations, while the CPH model is not designed for that,
even though one could extend it along the lines of BN inference. For example, if
we know that a given patient is subjected to only one or two risk factors, we can
make a prediction of survival without knowledge of presence or absence of the
remaining risk factors. CPH models require that we know for each risk factor
whether it is present or absent.
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6 Context Sensitivity of CPH Hazard Ratios

We mentioned above that one of the assumptions of the CPH model is that the
individual HRs do not change with presence or absence of other risk factors.
This assumption did not seem realistic to us, so we decided to test it on the
REVEAL registry data. The REVEAL registry data set is far too small to test
this assumption, so we decided to use an artificial data set of 30,000 records gen-
erated from our TAN network. As we argued above, TAN networks match the
joint probability distributions from which they were learned reasonably well and,
effectively, statistical properties of a data set generated from the TAN model will
not depart too far from the statistical properties of the original data set. Given
a 30,000 record data set, we were able to simulate situations in which some of
the risk factors have been observed (this amounted to selecting a subset of the
data) and to learn a new CPH model from the resulting data. Our goal was to
check whether the HRs for those variables that have not been observed yet are
indeed constant, i.e., the same in the selected subset of records. Figure 3 shows
the result of this experiment. Figure 3a shows the HRs calculated for subsets in
which a single risk factor (listed in the header of the table) has been observed.
All columns differ from the first column, which contains the original CPH param-
eters. Figure 3b shows differences between the hazard ratios calculated for each
of the cases relative to the original parameters and expressed as a percentage of
change. Colors give a visual indication of where the largest differences are. Some
of the hazard ratios in the table have changed as much as 700%!

Figure 4 shows NYHA-I column of Fig. 3b in graphical format. We can see
that these risk factors, e.g., SIXMWD 165, MRAP, become very important once
we observe that the patient belongs to NYHA Functional Class I. However, in
theory HRs are static and are not capturing this context-induced change.

Modeling with BNs does not require us to make such assumptions. In fact,
varying degree of influence of risk factors is a natural consequence of varying
context. As some of the risk factors are observed, the role of other risks, expressed
by their potential to impact of the survival variable, changes. Figure 5 shows a
scatter plot of HR and entropy (used typically in BNs as an expression at the
amount of information) for the NYHA Functional Class I case. The plot shows
the baseline situation, i.e., when no risk factors are observed (triangle marks)
and a change in context, when NYHA-I is observed (circles). The two measures
are correlated with each other at the baseline. However, the entropy changes
with context, while the hazard ratios stay the same by definition.
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Fig. 4. Percent relative change of hazard ratios when we observed NYHA-FC-I

Fig. 5. An example of the movement of the entropy when we observed NYHA-I. The
entropy change or the influence of the risk factors is context-sensitive.

7 Conclusion

In this paper, we proposed a simple TAN BN model to replace the CPH model
underlying the REVEAL risk calculator. The TAN model is a compromise
between our desire to relax the CPH assumptions and what can be extracted
from a limited size data set. While the REVEAL data set is not small, it is not
large enough to learn the general structure of a BN reliably. While the TAN
model fits the joint probability distribution over its variables reasonably well,
it does not mimic the causal structure of interactions among the model vari-
ables. Still, with this important disadvantage, it offers an improved numerical
accuracy, which we believe stems from relaxing the CPH model assumptions.
As we demonstrate in this paper, the assumptions of the CPH model may be
unrealistic in practice. BNs model naturally varying magnitude of influence of
risk factors as other factors are observed.
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As a follow up, we are currently working on a causal BN model, in which the
structure of the graph is elicited from medical experts and the parameters are
learned from data. We expect that this model will show even better numerical
performance than the current TAN model and will be more intuitive for our
experts and users of the REVEAL calculator. Moreover, we hope to incorpo-
rate more patient data including censored data [1,12,13] and perform thorough
validation in practice.
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Abstract. In hospital intensive care units (ICU), patients are under continuous
evaluation. One of the purposes of this evaluation is to determine the expected
number of days to discharge. This value is important to manage ICUs. Some
studies show that health care professionals are good at predicting short-term
discharge times, but not as good at long-term predictions. Machine learning
methods can achieve 1.79-day average prediction error. We performed a study
on 3,787 patient-days in the ICU of the Hospital Joan XXIII (Spain) to obtain a
data-driven model to predict the discharge time of ICU patients, in a daily basis.
Our model, which is based on random forest technology, obtained an error of
1.34 days. We studied the progression of the model as more data are available
and predicted that the number of instances required to reduce the error below
one day is 4,745. When we trained the model with all the available data, we
obtained a mean error of less than half a day with a coefficient of determination
(R2) above 97% in their predictions on either ICU survivors and not survivors.
Similar results were obtained differentiating by patients’ gender and age, con-
firming our approach as a good means to achieve optimal performance when
more data will be available.

Keywords: Intelligent data analysis � Intensive care units �
Discharge time prediction � Data-driven models

1 Introduction

Intensive Care Units (ICUs) are hospital services with an intense and complex activity,
where heterogeneous critical patients are admitted to receive continuous care from an
organized team of health care professionals (mainly physicians and nurses) till the
patients’ clinical condition and parameters reach an acceptable state for them to be
moved to other hospital services or discharged.

The proper functioning of an ICU depends on the quality of care and the correct
management and planning of resources. In order to face these challenges, a series of
descriptive parameters and indicators of the ICUs are defined, among which there are
the length of stay (LOS) and the time to discharge (TTD). While LOS is a static
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indication of the time that a patient remains in the ICU between the admission and the
discharge, TTD is dynamic and it informs about the time a patient will remain in the
ICU from a given moment.

According to these definitions, LOS prediction is based on the patient’s condition at
the time of admission (or in the first 24 h after admission), it is useful during admis-
sion, but it loses interest as the patient spends more days in the ICU and his/her clinical
condition evolves. On the contrary, the prediction of TTD takes into account the
patient’s condition (and optionally its evolution) at any moment when the prediction is
required. In this sense, TTD can be calculated at any time (e.g., in a daily routine) and
adapts to the patient’s evolution over time.

The task of correctly predicting the LOS, or the TTD, is difficult for physicians [1],
particularly for predictions of five or more days [2], but even one-day predictions are
not free of errors [3].

For many years, statistical and machine learning methods have been recurrently
applied to predict LOS. Only one study on TTD prediction was found with good results
for short term TTD [4], but less effective for long term TTD. For LOS, datasets on ICU
patients have been used to produce predictive models [5] of various types and qualities.
Four of the most used methods are artificial neural networks [6–8], regression [9–11],
random forest [11, 12], and support vector machines [11, 13]. Some comparative
studies showed that random forest outperforms artificial neural networks and support
vector machines [12, 13], while regression models are not always recommended [9].
Random forest is, therefore, recommended if we want to predict TTD.

The quality of these predictive models uses to be measured in terms of the mean
average error (MAE), the root mean square error (RMSE), or the coefficient of
determination (R2) between the time of the real stay and the predicted value. Our
bibliographic search found that some of the best current predictors are [12] with
R2 = 0.81 and [11] with MAE = 1.79. Errors of 1–2 days are not always acceptable.
This introduces the challenge of producing models with prediction errors of less than
one day. Moreover, these models should be robust at the time of predicting stays of
both ICU patients who survive and those who do not survive. Optimally, they should
also be stable with regard to other parameters such as the gender and the age of the
patient.

In this paper, we present the result of a process of searching a robust and precise
data-driven model to predict TTD in ICUs. In particular, we propose the use of random
forests. When applied on our data, we obtained an MAE below 1.34 days, after a 10-
fold cross validation. We also studied the progression of error reduction as new data is
added and we concluded that, by the end of 2019, the UCI of the hospital will have
treated so many patients as to be able to obtain models with prediction errors of less
than one day. To analyze the potential of our approach, we also trained a model with all
the available data. This model showed MAE and RMSE values below one day and R2

above 97%, and it was robust when considering surviving and not surviving patients,
gender, and age group. These results do not only represent a significant improvement
with respect to previous predictive models, but they are also an important step towards
the construction of optimal models for TTD prediction and their incorporation in ICUs.
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2 Methods

The University Hospital Joan XXIII is a tertiary hospital in Tarragona (Spain). In the
ICU of this hospital, approximately 900 patients are attended every year. For these
patients, data about monitoring systems, laboratory results, diagnoses by the image
information, assessments and scales (APACHE 2, NAS, SOFA, etc.), adverse events,
administrative data, and treatments are electronically registered in the hospital records
through a Clinical Information System (CIS). In the ICU, the computer tool ICU-DaMa
[14] allows the extraction of data from the CIS and the definition of clinical indicators
that are used by physicians and UCI managers to provide a better service.

In our retrospective study, we used ICU-DaMa to extract all the patients admitted in
the UCI between January 2016 and November 2017. We removed patients who stayed
more than 14 days in the ICU (i.e., outliers). In order to predict TTD rather than LOS, each
day of stay of each patient was considered a clinical case. The datawas anonymized. From
the CIS, we considered 49 clinically relevant variables related to demographic (e.g., age,
gender, origin, etc.), laboratory (e.g., creatinine, max-min glycaemia values, platelets,
etc.), clinical (e.g., O2 therapy, primary diagnosis, heat rate, etc.), and pharmacological
(e.g., sedatives and analgesics, vasopressors, insulin, antibiotics, etc.) information. For
continuous values (e.g., heart rate) the mean value within each day was taken. The data
also included daily values offifteen scales such asAPACHE II, CaM-ICU,CHE, EMINA,
GCS, NAS, six specific SOFA values, and others.

This dataset was used to learn a TTD predictive model with the random forest
machine learning method. A 10-fold cross validation approach was followed. The
quality of the approach was measured in terms of the MAE, RMSE, and R2. Later on,
we studied the progression of the RMSE as new training data are added to the learning
algorithm. For this purpose, 10% of the available data was reserved for testing, and
10%, 20%, …, 100% of the remaining data progressively used to train the model. The
process was repeated 10 times with different training and testing sets, using random
selection of the data. The average MAE for each percentage group was calculated. With
the help of linear extrapolation, we calculated the expected amount of data required by
our method to construct a model that predicts TTD with a RMSE below one day.

To complement the study and in order to determine the quality of the approach, we
trained a random forest with all the available data and obtained the MAE, RMSE, and
R2 values, when tested on all the data in 2016–17.

3 Results

The database contained 3,787 cases concerning 62% of males and an average (±std.
deviation) age of 61.4 (±17.2) years, arriving at the ICU with cardiovascular problems
(15%) or postoperative (13%), from the emergency department (54%) or after surgery
(20%), with admission SOFA value 3.74 (±3.26), who stayed 4.7 (±3.04) days in the
ICU. 90.51% of them were discharged alive. See Fig. 1(a) for a detailed distribution of
the patients across the TTD values. Most of the cases survived, and 85% of them have a
TTD between 2 and 7 days. When 10-fold cross validation was applied, we obtained
the values MAE = 1.34, RMSE = 1.73 and R2 = 0.61. These results are significantly
better than previous published results [6–12].
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Figure 1(b) shows the progression of RMSE as new ICU data is considered to train
the TTD predicting model. When we extend the curve with a linear extrapolation, we
obtain that, with 4,745 data (to be achieved by 2019), a model could be made with an
RMSE below one day. Also, the model generated with the 3,787 data available showed
an average MAE below 0.5 days for all the data, regardless the gender and the age.
Only patients that did not survive had a mean value slightly higher. See Table 1.
RMSE showed a similar behavior. R2 is 97% or above, except for younger patients.

When we studied the MAE and RMSE values for the different TTDs (Fig. 2), we
observed a homogeneous shape for all the groups of patients, except for young patients,
whose prediction errors were lower. In general, the model predicts below one-day error
for all the stays shorter than 10–11 days and below 2 days for stays of 11–13 days.

Fig. 1. (a) Prevalence of cases for different TTDs and (b) Progression of RMSE mean (dotted
line) and RMSE mean ± st.dev (straight lines).

Table 1. MEA, RMSE, and R2 values for DT prediction within the groups studied.

All Age <=35 Age 35–65 Age >65 Male Female Alive Dead

MEA 0.4802 0.4821 0.4760 0.4837 0.4799 0.4806 0.4726 0.5508
RMSE 0.6204 0.6944 0.6900 0.6955 0.6928 0.6933 0.6875 0.7422
R2 0.9723 0.9632 0.9724 0.9732 0.9722 0.9725 0.9733 0.9689

Fig. 2. TTD predictive errors for patients discharged in 1–14 days.
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4 Conclusions

Anticipating the time of discharge of patients in ICUs is of great importance. The
incorporation of a reliable and accurate T2D predictor into the ICU routine could
significantly help improve clinical care and the management of ICUs. We proposed a
data-driven approach to build TTD predictive models with average error below one day.

This research has been founded by the RETOS P-BreasTreat project (DPI2016-
77415-R) of the Spanish Ministerio de Economia y Competitividad.
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Abstract. Sometimes representing a decision process involves building multi-
stage models, where some outputs of stagei become the inputs of stagei+1. This
was the case for an economic evaluation study of two mini-invasive techniques
for head&neck cancer, namely Transoral Robotic Surgery and Transoral Laser
Microsurgery. We built a two-stage model, composed by a first decision tree ac-
counting for the surgical complications and need for additional treatments,
which in turn are used as initial conditions for a second decision tree that models
long-term outcomes through a Markov process. To allow the automatic con-
catenation of decision trees, we developed a Java extension to the TreeAgePro
software, a well-known tool for decision analysis. Moreover, we integrated the
resulting model into UceWeb, a framework we developed over the last two
years, which allows personalizing costs and preferences for different target
populations. In this way the same model may be re-used to perform cost/utility
and cost/effectiveness analysis in different settings.

Keywords: Decision analysis � Economic evaluation � Head&neck cancer

1 Introduction

Oro-pharyngeal carcinomas represent a significant health burden with 400,000 new
cases a year in the world. Three types of treatment can be offered to patients, namely
surgery, radiotherapy (RT) and chemotherapy (CT). Some of them may be combined to
improve treatment efficacy. For example, radiotherapy or chemo-radiation may be
added after the surgery, and in this case they are referred to as “adjuvant”. In order to
improve functional recovery after surgery, new, mini-invasive, techniques have been
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developed. They consist of fully endoscopic approaches to the tumor through the
mouth, avoiding access through the neck and thus reducing access related morbidity.
The two major techniques practiced nowadays are Trans-Oral Robotic Surgery (TORS)
and Trans-oral Laser Microsurgery (TLM). In both strategies, a retractor is used to open
the mouth to create room for intervention. In TORS, the surgeon uses a surgical robot
to view and access structures in the pharynx, while in TLM he uses a microscope and a
laser. A limitation of TLM is that the visual field of the microscope is quite small, so
the tumor has to be removed in pieces. This may affect surgical margins and trigger
further adjuvant treatments. However, the precision of TLM is exceptionally high,
since the resection is done under high magnification. TORS on the contrary allows a
resection in one piece, leading to more precise margins, but less precise dissection [1].
Also, costs are different, with TORS showing a higher economic burden for the
intervention. Since the two techniques show pros and cons, with different outcomes and
different costs, a decision analytic approach is reasonable to compare them.

2 Methods

2.1 Decision Trees and Markov Models

For performing decision analysis, we used the decision tree formalism. A decision tree
is a graphical model including decision nodes, i.e. the options to be compared, followed
by the consequences of those options, represented as a series of probabilistic nodes.
Each path of the tree ends with a so-called “value node”, which is valued with one or
more payoffs, for example survival, quality-adjusted survival, and costs. Solving the
tree provides the option that maximizes/minimizes a given payoff. In economical
evaluations, solving the tree allows to find incremental cost-effectiveness and cost-
utility ratios, which may inform decision makers about the convenience of adopting a
new intervention. A decision tree may embed a Markov process [2] that represents
patients through their transitions among mutually exclusive health states, each one
lasting a fixed length of time (Markov cycle). Each transition is given a ‘transition
probability’. Each health state is then assigned a quality of life coefficient (utility
coefficient) and costs for the resources used to manage it. By running the model over a
number of cycles, life-years, quality-adjusted life years and costs associated with the
different options can be estimated. As a computational tool, we employed TreeAgePro,
which is a well-known commercial tool for representing and running decision trees.

2.2 Concatenation of Decision Trees

The TreeAgePro standard user interface only allows running one tree at a time. How-
ever, the tool provides the Object Interface API that allows to access and modify tree
components. The extension developed in this work allows to automatically propagate
values from a tree to another tree. To this aim, we developed a Java application exploit-
ing the UceWeb repository of decision trees. UceWeb [3] is a framework we developed
in the last years to elicit utility coefficients, use them to quantify decision trees
developed with TreeAgePro, run them, and present analysis results. In particular, the
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UceWeb repository contains a description of all the decision trees that we developed,
and all the JSON (Javascript Object Notation) files with the mapping information for
those decision trees that need to be concatenated. Once the user runs a decision tree
(e.g., DT1) from UceWeb, the application checks if the JSON file reports other trees
that are concatenated with DT1. In that case, it runs the trees in the proper sequence to
obtain and present the final result.

3 The Model

Starting from a model already published by one of the authors [4] (comparing TORS
with chemo-radiotherapy), additional literature [5], experts’ opinions, and data pro-
vided by the Lausanne University Hospital CHUV, we built and quantified a two-stage
model. As a matter of fact, the clinical path of patients may be separated in two
conceptually different phases: the short/mid-term consequences of the surgery, and the
long-term remission-relapse process. The first-stage model is summarized in Fig. 1,
and accounts for the events that may happen during the first months after surgery. More
precisely, for the two interventions under comparison, the first variable to consider is
the need for adjuvant therapy (Fig. 1a). The second one is represented by complica-
tions (Fig. 1b) that are related both to the intervention and to possible adjuvant treat-
ment. The third one (Fig. 1c) is the possible need for re-interventions, which again may
lead to complications (with higher probability with respect to the first intervention).

Fig. 1. Sketch of the first-stage model. Each path in tree (a) continues with subtree (b), and each
path in subtree (b) continues with paths in subtree (c). Variables under the branches indicate the
event probability and the symbol # indicates the complement to 1. The + symbol after a node
indicates that the branches originating from that node are not shown in this figure.
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The second-stage model must embed the Markov process that starts at the end of
each first model path, depicting the patient’s transition among different health states, as
shown in Fig. 2. For the study, we chose a time horizon of 10 years and a Markov cycle
of 3 months, corresponding to the typical rate of the patients’ follow-up visits.

If all the paths of the first-stage model had the same duration, the second-stage
model would be a tree with just the decision node TORS/TLM, and with each strategy
followed by a Markov process that inherits, as initial conditions, the expected values of
the payoffs of the first-stage-model. In our case, complications have different duration,
e.g., gastrostomy may last for one year, so overlapping with the remission-relapse
process. Thus, we must foresee different Markov processes with different initial con-
ditions. This is taken into account by properly assessing the duration of each Markov
process and the number of cycles where complications are still present. However, not
every path of the first tree has a different duration. For example, the paths including the
node “Other” in subtrees (b) and (c) in Fig. 1, have the same duration. In this case, a
single Markov process has been represented, the initial conditions of which are given
by the expected values of the payoffs at the node “Other”. In this way, the model
complexity, and subsequently computation time, is still highly decreased.

4 Running the Model

We are currently quantifying the model parameters with Swiss-specific data, to per-
form a country-specific analysis. More precisely, 45 TLM cases and 62 TORS cases
have been collected and analyzed to estimate the model parameters. Since we still lack
some data about costs and quality of life (see next section), we ran the model using
literature estimates for some of those parameters. Thus, our results are not final. On the
other hand, the main purpose of this paper was to describe the technical solutions for

Fig. 2. Sketch of the Markov model to represent the remission-relapse process following the
first treatment phase. From every state there is a transition probability to the state “Death”.
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tree concatenation and tree quantification with different populations. That said, we re-
port some figures to provide the preliminary results of our analysis. Using the current
parameters, the expected survival is almost the same for the two strategies, being
110.30 months for TORS and 110.25 for TLM. After adjusting for quality of life, the
difference is still low, but in favor of TLM, being 92.79 quality-adjusted life months for
TORS and 92.91 for TLM. Costs have been estimated as 45547.96 CHF for TORS and
32484.25 for TLM.

5 Conclusion and Future Developments

The work presented in this paper has two values. From the medical standpoint, despite
mini-invasive techniques have been proven to be cost-effective in head&neck cancer, in
our knowledge there is no literature yet comparing TORS and TLM. From the technical
standpoint, motivated by the two-stage nature of our model, we developed a generic
approach allowing to automatically concatenate multiple decision trees. The ex-ample
in Sect. 3 shows only one of the potential advantages that tree concatenation provides.
In fact, our application may be used to (i) decrease a tree complexity avoiding
duplication of identical subtrees, (ii) represent separate models for conceptually sep-
arated phases of clinical histories, facilitating model development and interpretability,
and (iii) re-use the same model, when it may be used in conjunction with more than one
possible model for subsequent stages. Since our models run within UceWeb, which
also manages a utility coefficient repository, the next steps are to run the TORS/TLM
model with utilities collected from a Swiss population and analyze the differences with
respect to different settings. Also costs are different in different settings, and sensitivity
analyses will be used to figure out if results are more sensible to variations in costs or
utilities, or both.

References

1. Cracchiolo, J.R., Roman, B.R., Kutler, D.I., Kuhel, W.I., Cohen, M.A.: Adoption of transoral
robotic surgery compared with other surgical modalities for treatment of oropharyngeal
squamous cell carcinoma. J. Surg. Oncol. 114, 405–411 (2016)

2. Sonnenberg, F.A., Beck, J.R.: Markov models in medical decision making: a practical guide.
Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 13, 322–338 (1993)

3. Parimbelli, E., Sacchi, L., Rubrichi, S., Mazzanti, A., Quaglini, S.: UceWeb: a web-based
collaborative tool for collecting and sharing quality of life data. Methods Inf. Med. 54, 156–
163 (2015)

4. de Almeida, J.R., et al.: Cost-effectiveness of transoral robotic surgery versus (chemo)
radiotherapy for early T classification oropharyngeal carcinoma: A cost-utility analysis. Head
Neck 38, 589–600 (2016)

5. Li, H., et al.: Clinical value of transoral robotic surgery: Nationwide results from the first 5
years of adoption. Laryngoscope (2018)

Towards the Economic Evaluation of Two Mini-invasive Surgical Techniques 159



Gated Hidden Markov Models for Early
Prediction of Outcome of Internet-Based

Cognitive Behavioral Therapy

Negar Safinianaini1(B), Henrik Boström1(B), and Viktor Kaldo2,3(B)

1 School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, Stockholm, Sweden

{negars,bostromh}@kth.se
2 Department of Psychology, Faculty of Health and Life Sciences,

Linnaeus University, Växjö, Sweden
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Abstract. Depression is a major threat to public health and its miti-
gation is considered to be of utmost importance. Internet-based Cogni-
tive Behavioral Therapy (ICBT) is one of the employed treatments for
depression. However, for the approach to be effective, it is crucial that the
outcome of the treatment is accurately predicted as early as possible, to
allow for its adaptation to the individual patient. Hidden Markov models
(HMMs) have been commonly applied to characterize systematic changes
in multivariate time series within health care. However, they have limited
capabilities in capturing long-range interactions between emitted sym-
bols. For the task of analyzing ICBT data, one such long-range interac-
tion concerns the dependence of state transition on fractional change of
emitted symbols. Gated Hidden Markov Models (GHMMs) are proposed
as a solution to this problem. They extend standard HMMs by modifying
the Expectation Maximization algorithm; for each observation sequence,
the new algorithm regulates the transition probability update based on
the fractional change, as specified by domain knowledge. GHMMs are
compared to standard HMMs and a recently proposed approach, Inertial
Hidden Markov Models, on the task of early prediction of ICBT outcome
for treating depression; the algorithms are evaluated on outcome predic-
tion, up to 7 weeks before ICBT ends. GHMMs are shown to outperform
both alternative models, with an improvement of AUC ranging from 12 to
23%. These promising results indicate that considering fractional change
of the observation sequence when updating state transition probabilities
may indeed have a positive effect on early prediction of ICBT outcome.
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1 Introduction

Depression affects about a hundred million people worldwide and it is estimated
to reach second place in the ranking of Disability Adjusted Life Years for all ages
in 2020 [15]. It is vital to consider depression an issue of public health importance,
thereby prompting effective treatment of the patients and minimizing the disease
burden [15]. Internet-based Cognitive Behavioral Therapy (ICBT) is an effective
treatment for depression [22]. Machine learning can be used to solve different
computational challenges in the analysis of ICBT, such as predicting patient
adherence to depression treatment [20] and outcome prediction for obsessive-
compulsive disorder [11].

A goal in the analysis of treatment outcome in ICBT for depression is to perform
early predictions; thus, the patients with unsuccessful treatment can early on be
detected and receive better care by the therapists. However, the accuracy of the
predictions are also affected by at what time they are made; there is hence a trade-
off for the psychologist to decidewhen toperform the early prediction.For example,
if waiting one extra week gives better accuracy in predicting the final outcome,
it may be preferred over deciding on a treatment earlier, based on a less accurate
prediction. At the same time, waiting too long means less time to step in and adjust
the treatment to better suit the patient [16].

The main motivation of this work is to explore a suitable machine learning
method which improves the performance of early predictions on ICBT outcome
for patients suffering from depression. We focus on graphical models, as they are
interpretable, often easy to customize and allow for probabilistic modeling [1,23].
In particular, they allow for incorporating prior knowledge and handling missing
data without imputation, through marginalization [2]. The latter is of particular
importance as there are several, often unknown, reasons for why data is missing,
and imputation may often not be appropriate in healthcare applications [9,21].

ICBT involves changes in human behavior; these have stochastic properties
resulting in health state transitions. In this particular study, we have categorical
observations (self-rated scores established by questionnaires) and a latent vari-
able (treatment outcome) over time. As the state transitions can be modeled as
Markov chains, Hidden Markov Models (HMMs) is a natural choice. However,
one limitation of HMMs is the lack of context [24], which becomes a challenge
when a state transition is dependent on the fractional change (defined as the dif-
ference between two values in time divided by the first value) of the observation
sequence. We propose Gated Hidden Markov Models (GHMMs) as a potential
solution to the problem. GHMMs extend standard HMMs by modifying the
Expectation Maximization (EM) algorithm; for each observation sequence, the
new algorithm regulates the transition probability update based on the fractional
change, as specified by domain knowledge.

In the next section, we provide some notation and background on HMMs.
In Sect. 3, we introduce the GHMMs. In Sect. 4, we evaluate and compare this
approach to standard HMMs and a recently proposed approach, Inertial Hidden
Markov Models (IHMMs) [13], on the task of early prediction of the outcome
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of ICBT for treatment of depression. In Sect. 5, we discuss related work, and
finally, in Sect. 6, we summarize the main findings and point out directions for
future research.

2 Preliminaries

An HMM [2] is a statistical Markov model in which one observes a sequence
of emitted symbols (observation sequence), but does not know the sequence
of states the model went through to generate the observation sequence. The
Markov property implies that the next state only depends on the current state.
We define an HMM with N time steps, an observation sequence denoted as
X = {x1, . . . , xN} containing N emitted symbols, and hidden states defined as
Z = {z1, . . . , zN}. An HMM has a parameter set, θ, which contains: initial prob-
abilities, p(z1); transition probabilities, p(zn|zn−1); and emission probabilities,
p(xn|zn) where n ∈ [1, N ]. The learning of the parameters of an HMM can be
done by maximizing likelihood, using EM, which comprises two steps: the E-step,
calculating the expected values; and the M-step, maximizing likelihood based on
the expected values. Baum-Welch [2], shown in Algorithm 1, is an instance of
EM suitable for HMMs. The E-step is done by calculating the marginal poste-
rior distribution of a latent variable zn, denoted as γ(zn), and the joint posterior
distribution of two successive latent variables, ε(zn−1, zn). In the M-step, θ is
updated using γ(zn) and ε(zn−1, zn). Forward and backward probabilities, α(zn)
and β(zn) [2], are used in the calculations of γ(zn) and ε(zn−1, zn) as below. For
details we refer to [2].

γ(zn) =
α(zn)β(zn)

p(X)
ε(zn−1, zn) =

α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)
p(X)

(1)

Algorithm 1. Baum-Welch
1: procedure learn(trainingData):
2: Initialise θ
3: repeat
4: for each X ∈ trainingData do
5: E-step: calculate ε, γ in Equation (1)
6: M-step: update θ using ε, γ

7: until convergence
8: return θ

3 Gated Hidden Markov Models

Although HMMs are quite powerful, as demonstrated by their wide variety of
applications, they have limitations in capturing long-range interactions between
emitted symbols in the observation sequence; e.g. Palindrome Language [24].
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Rather than considering more powerful (and less explored) models, we will in this
proposal instead consider modifying the learning algorithm, i.e. Baum-Welch, to
incorporate information regarding such long-range interactions through regulat-
ing the transition probabilities. In particular, we will consider global properties
of the observation sequences, and when certain conditions are met, the algo-
rithm, in the E-step, will be forced to set certain transition probabilities to zero.
The latter can be thought of as gates being closed; hence the name Gated Hidden
Markov Models (GHMMs).

Our algorithm, as presented in Algorithm 2, modifies Algorithm 1 by adding
lines 6 through 8. Moreover, three additional input arguments (policy, threshold,
label) and one new local variable (change) are added:

– policy: the rule defining how to calculate the fractional change
– change: the fractional change within an observation sequence, X, as calculated

by policy.
– threshold: the specified threshold to compare with change (as determined by

domain knowledge)
– label: the hidden state of the GHMM, which the algorithm regulates.

Algorithm 2. Modified Baum-Welch
1: procedure learn(trainingData, policy, threshold, label):
2: Initialise θ
3: repeat
4: for each X ∈ trainingData do
5: Calculate γ in Equation (1)
6: Calculate change by X and policy
7: if change <threshold then
8: p(zn = label|zn−1) = 0

9: Calculate ε in Equation (1) by applying p(zn = label|zn−1) = 0
10: M-step: update θ using ε, γ

11: until convergence
12: return θ

Gate

Conceptually, the if-clause (line 7, Algorithm2) represents the Gate concept.
When the transition probability is set to zero, it means that the Gate is closed.
Whenever this occurs, the update of θ in the M-step of EM is affected. The seman-
tics of Baum-Welch is retained because the regulation only concerns the value of
a transition probability and does not change any formulas calculated in the E-
step or M-step. The algorithm can be viewed as updating the transition proba-
bilities not only based on EM, but also based on the domain knowledge. Notice
that the algorithm targets cases where the state transition is dependent on the
fractional change of the observation sequence. The parameters threshold, policy
and label may be customized for other situations, with similar types of data.
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The worst-case time complexity of the modified algorithm is the same as for the
original Baum-Welch algorithm; the worst case scenario of calculating the frac-
tional change requires parsing the whole length of sequence, which results in that
the original complexity is multiplied with a constant.

4 Empirical Investigation

4.1 Experimental Setup

Dataset. The data, based on the depression rating scale MADRS-S (Mont-
gomery Åsberg Depression Rating Scale) [4], contain self-score replies to treat-
ment questionnaires filled in by 2076 patients with depression and which have
been assessed as suitable to, and willing to try, ICBT. The project, in which
the data has been collected, has been approved by the regional ethical board in
Stockholm (ref. no. 2011/2091-31/3, 2016/21-32 and 2017/2320-32).

The data points consist of ordinal values, ranging from 0 to 6, reflecting
the severity of the mental state, as assessed by the patients themselves. The
highest score represents the worst mental situation a patient can experience.
The data is for each patient collected over 13 weeks, where for each week, the
patient is requested to answer the same set of nine standardized questions. The
data for the first week, week 0, is based on screening, before introducing the
patient to ICBT, which contains the same questions. Week 0 is used when there
is missing data regarding week 1 (week 1 corresponds to the pre-measurement
week in [16]). Only patients that answered the questionnaires for the final week
are included in the dataset (required for supervised learning). Let qiwj denote
the answer (a score from 0 to 6) to question i at week j. The observation
sequence of qiwjs for each patient is assumed to be a merge of time-based (e.g.
the step from q9w0 to q1w1) and event-based steps (e.g. the step from q1w0 to
q2w0). For increasing the sequence size, which improves the learning of HMMs,
we consider each step as a generic step in an HMM (regardless of whether it
is event-based or time-based). The final observation sequence then becomes:
q1w0, q2w0, .., q9w0, q1w1, q2w1, .., q9w1, ..., q1w12, q2w12, .., q9w12.

The labels representing treatment outcome are “success” and “failure”.
Below, we show the rule concerning the class “success” based on clinical exper-
tise [4] using the data from week 1 and week 12; the “failure” class does not
satisfy the rule. The left inequality in Eq. 2 concerns the fractional change—
called symptom reduction—being compared to the threshold of 50%; the right
inequality in Eq. 2 defines the cut-off for the healthy score at the end of the
treatment:

∑9
i=1 qiw1 − ∑9

i=1 qiw12
∑9

i=1 qiw1

>= 0.50 ∨
9∑

i=1

qiw12 <= 10 (2)

The average symptom reduction over time and the frequency of the missing
scores are shown in Fig. 1.
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Experimental Protocol. This section explains the technical configurations of
our experiments. For each of the considered algorithms, the same underlying
structure is considered, consisting of the observation sequence and two hidden
states, each corresponding to one of the two possible labels (“success” and “fail-
ure”). Here, we assume to know which hidden state corresponds to “success”.
For learning of the HMM parameters, we make the last latent variable observable
by assigning the label to it, for each sequence X; we incorporate these changes
into Baum-Welch.

For handling missing observations, marginalization is used based on [14]. We
set the initial emission probabilities inspired by the prior knowledge; a patient’s
score for the “success” class has higher probabilities for the lower scores while
for the “failure” class has higher probabilities for the higher scores.

The input parameters of Algorithm 2 are set to meet the requirements of the
specific application of depression treatment using ICBT. The parameter change
is set to be fractional change as defined in Eq. (2); threshold is set to 0.50 as
in Eq. (2), and finally, label is set to “success”. This means that if a patient’s
fractional change is less than 0.50, the transition probability of the outcome
becoming “success” is set to zero (it is known which state transition probability
to set to zero since the hidden state corresponding to “success” is known). The
Gate here disallows EM to independently decide over the probability of treat-
ment success if patients have insufficient fractional change, symptom reductions,
according to the psychological measures. By this we have a hypothesis of reduc-
ing false negatives—the patients incorrectly predicted to belong to the “success”
class—, which is critical for detecting that treatment is not successful.

Fig. 1. On the left side, the average score for all patients through 13 weeks is shown,
presenting the trend of symptom reduction. The vertical bars represent the standard
deviation. To the right, the trend of missing scores is illustrated.

We compare the novel algorithm with HMMs and IHMMs. The latter regular-
izes the update of the transition matrix so that self-transitions, i.e., transitions to
the same state as previous, have a higher probability than non-self-transitions. It
is relevant to compare our algorithm with IHMMs since they satisfy the slow state
transition property concerning a patient’s behavior. We perform the comparison
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on a separate test dataset and for each early prediction, data corresponding to the
later weeks is withheld. The IHMM is trained with a set of values for the regular-
ization parameter and the value resulting in the highest AUC in the validation set
is chosen to be the regularization value. AUC, accuracy, precision and recall are
used to evaluate the performance of the algorithms.

For the implementation of GHMMs, we refer to GHMMs.

4.2 Experimental Results

In Table 1, results are presented for GHMMs, HMMs and IHMMs regarding
AUC, accuracy, precision and recall. The comparison is done for different early
predictions with the earliest prediction taking place at week 5. This week, which
corresponds to week 4 in [16], has shown to be the best week for measuring early
change for ICBT [16]. GHMMs outperform HMMs and IHMMs with respect to
AUC by between 12 to 23% and with respect to accuracy, with a probability
threshold of 0.5, by between 2 to 8%. In Fig. 2, the performance comparison
with respect to AUC is plotted. Evidently, GHMMs outperform the other models
regarding all predictions which are up to 7 weeks before the final week.

Table 1. AUC, accuracy, precision and recall are compared for early predictions among
three algorithms: HMMs; IHMMs, GHMMs.

% AUC
Week HMM IHMM GHMM
12 67% 68% 91%
11 65% 65% 85%
10 65% 65% 85%
9 66% 67% 83%
8 63% 64% 80%
7 63% 63% 80%
6 66% 66% 78%
5 64% 64% 77%

% Accuracy (threshold 0.5)
Week HMM IHMM GHMM
12 77% 77% 79%
11 69% 69% 77%
10 70% 70% 77%
9 71% 71% 77%
8 70% 70% 76%
7 72% 72% 74%
6 71% 71% 74%
5 70% 70% 73%

% Precision % Recall (threshold 0.5)
Week HMM IHMM GHMM
12 99% 56% 99% 56% 98% 60%
11 90% 44% 90% 45% 90% 60%
10 88% 47% 88% 47% 88% 62%
9 84% 53% 84% 53% 86% 66%
8 78% 56% 79% 56% 81% 69%
7 78% 65% 78% 65% 77% 71%
6 75% 65% 75% 65% 76% 73%
5 73% 68% 73% 68% 73% 75%

Looking at precision and recall, in Table 1, it can be observed that GHMMs
decrease false negatives more than the other algorithms for all weeks; confirming
our hypothesis of reducing false negatives. Note that for all algorithms, when
using probability threshold 0.50, precision gets higher but recall gets lower for
later weeks; as shown in Fig. 2, however, week 12 dominates week 5, hence choos-
ing a different threshold can lead to higher values for both precision and recall
at later predictions.

5 Related Work

In medical applications, Markov models have been used to capture disease pat-
terns regarding discrete mutually exclusive health states and the transitions
between them over time. Markov models are useful in particular when the pat-
tern involves clinical changes across the states; one clinical example being the

https://github.com/negar7918/GHMMs
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Fig. 2. On the left side, latest and earliest predictions by GHMMs, are compared
concerning precision and recall. To the right, AUC of GHMMs, HMMs and IHMMs is
compared for different early predictions.

progression of Alzheimer’s Disease (AD) over time [6]. Shirley et al. [17] apply
HMMs in alcoholism treatment analysis, by which different drinking behaviors
are recognized. Assessment of preterm babies’ health is another application of
HMMs where the measurements are linked to state of health [10]. Capturing the
quality of healthcare has been studied using HMMs for geriatric patient data
by modelling quality as hidden states [12]. The clinical state of patients have
also been estimated using infinite-HMM (an HMM with an unknown number of
latent variables) [7].

Similar ideas to what have been proposed here, have also been used in inte-
grating domain knowledge into machine learning; e.g. [3,8], where domain knowl-
edge is applied in form of a framework or new components in the learning
model. In contrast, GHMMs do not add any extra components to the model,
as these may be expensive and complex. GHMMs instead apply domain knowl-
edge through modifying the learning algorithm. Fung et al. [5] improve a binary
classifier by incorporating two linear inequalities—so called knowledge sets—,
corresponding to the classes, into the error minimization term of the classifier.
We similarly use the linear inequalities between fractional change and the defined
threshold as a constraint bundled in the optimization algorithm, EM.

Concerning context-sensitive HMMs for handling long-ranged interactions
between symbols, in [24] an approach is proposed which stores symbols, emit-
ted at certain states, in an auxiliary memory; the stored data serves as the
context that affects the emission and the transition probabilities of the model.
GHMMs also considers a symbol-based context, although without introducing
extra components in HMMs. The early detection of neonatal sepsis has been
studied using Autoregressive HMMs [18]; this work tackles HMMs’ context lim-
itation by introducing direct dependencies only between consecutive symbols.
Similarly, GHMMs consider symbols dependencies but in a longer range.
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6 Concluding Remarks

Standard HMMs have limited capabilities in capturing long-range interactions
between emitted symbols in observation sequence. We introduce GHMMs as a
remedy to this problem by which the learning of transition probabilities is regu-
lated by the fractional change in observation sequence. This particular problem
is motivated by the task of early prediction of ICBT outcome for depression. The
approach is compared to standard HMMs and IHMMs, and GHMMs are shown
to outperform both alternative models, with an improvement of AUC ranging
from 12 to 23%, up to 7 weeks before ICBT ends. These promising results show
that considering fractional change of observation sequence when updating state
transition probabilities may have a positive effect on early prediction of ICBT
outcome. These results, obtained through a collaboration project led by the
Internet Psychiatry Clinic in Stockholm, indicate that GHMM may be a poten-
tially effective tool in practice to improve predictions regarding ICBT [19].

The proposed approach can be applied and further tested in contexts of
other psychological disorders and similar data types where the fractional change
of an observation sequence should be allowed to affect state transitions. This
work opens up for several different research paths, as there are still room for
improvement, such as incorporating other forms of domain knowledge, consider-
ing additional data types, modelling missing values in the graphical model and
combining the GHMMs with other machine learning and time series methods.
Finally, regarding GHMMs, directions for future research include investigating
soft thresholds and more complex gate mechanisms as well as techniques to avoid
over-training of GHMMs.
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Abstract. Unsupervised learning is often used to obtain insight into the
underlying structure of medical data. In this paper, we show that unsu-
pervised methods, in particular hidden Markov models, can go beyond
this by guiding the generation of clinical outcome measures and hypothe-
ses, which play a crucial role in medical research. The usage of the data-
driven approach facilitates selecting which hypotheses to further inves-
tigate. We demonstrate this by using clinical trial data for psychotic
depression treatment as a case study. The discovered latent structure
and proposed outcome are shown to provide new insight into the hetero-
geneity of psychotic depression in terms of predictive symptoms.

Keywords: Machine learning · Psychiatry · Depression ·
Latent variable · Hidden Markov model · Unsupervised learning ·
Outcome measure

1 Introduction

Much about disease processes is unknown, as often the only available informa-
tion about a disease are the patient’s symptoms and signs. This results in an
incomplete understanding of a medical disorder, which can be overcome by latent
variable modeling. Latent variables can enhance our understanding of the prob-
lem domain by capturing unmeasured quantities (e.g. related to the underlying
physiology) and their relationship to observed quantities [14], and might pro-
vide better fitted models [15]. Hence, by using latent variables, one can try to
reconstruct the underlying structure of the process at hand by using observed
data.

Unsupervised learning is the machine learning task that aims to generate rep-
resentations of the underlying structure of the data. Applications of unsupervised
c© Springer Nature Switzerland AG 2019
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learning to medical data include, e.g., the discovery of underlying patient groups
using clustering methods [7,8], which might help improve diagnosis and provide
new insight into more effective treatment selection [1]. Yet, when applied to
medical data, unsupervised techniques generate output that often makes experts
confront themselves with questions like what else can we do with this structure?.
We show in this paper that unsupervised learning methods, in particular hidden
Markov models (HMMs) [9], can be used not only to describe the underlying
structure but also to support the formulation of meaningful medical outcomes.
Previous research suggested that the formulation of clinical outcomes might be
guided by latent-variable models [5], with the advantage of reducing the hypoth-
esis space to be explored by inspecting model properties. By using HMMs, we
claim that one can explore hypotheses on disease dynamics by inspecting model
characteristics such as transition dynamics, latent states, etc.

In order to illustrate the usage of HMMs on disease dynamics, we make use of
data from a clinical trial originally designed to compare pharmacological treat-
ments to psychotic depression (PD) [13]. PD is a severe medical condition that
is associated with a high burden of disease and relatively low remission rates fol-
lowing pharmacological treatment [10]. Although recent research has considered
PD as a homogeneous subtype of major depressive disorder [12], the possibility
that this subtype itself is heterogeneous should also be considered, which would
stimulate the development of subgroup adjusted prognostics and treatment mod-
ifications. In this work, we apply HMMs to one of the largest pharmacological
trials of patients with PD conducted so far [13], aiming to explore potential
differences in course characteristics.

The contributions of this paper are as follows. We present a procedure to
guide the exploration of hypotheses on disease dynamics by means of HMMs. We
then apply this methodology to yield insight into the dynamics of PD treatments
by exploring clinically meaningful outcomes. The results are then assessed based
on standard clinical response and remission in PD. To the best of our knowledge,
this is the first effort into a more systematic approach for exploring hypotheses
on disease dynamics based on probabilistic graphical models.

The remainder of this paper is organized as follows. In Sect. 2, the rele-
vant work related to this paper is discussed. In Sect. 3, a method for exploring
hypotheses on latent disease dynamics is proposed. In Sect. 4, the PD data used
as case study is described. The experimental results are presented in Sect. 5.
Section 6 summarizes the paper and suggests future work.

2 Related Work

Hidden Markov models have been extensively used in medicine in general, as
well as in psychiatry. It is often the case that the number of latent states in
HMMs is determined in advance, as researchers might be interested in a spe-
cific subset among all possible models. Previous research [4] used a two-state
HMM to investigate the hypothesis that patients switch between two stable
states (symptom-free versus depressed) in major depressive disorder. In the con-
text of Alzheimer’s disease, a four-state continuous-time HMM was developed
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to investigate the relationship between cognition and psychotic symptoms [11].
However, one might argue that by not imposing an a priori number of or already
known latent states, a larger set of possible models is considered, which can lead
to more insight into disease dynamics, at a potential cost of having an increased
difficulty interpreting the models.

The typical usage of HMMs is in prediction or as a model to describe the
underlying structure of the data. While prediction is self-explanatory, the under-
lying structure is usually be seen as a set of clusters, thus it is a more abstract
and more difficult to be used representation. A much more specialized usage
of latent variables lies in the development of data-driven outcome measures [5],
which was based on models other than HMMs (namely, the item response the-
ory). Such data-driven approach to generating outcomes has the advantage that
latent states might provide a more natural, compact and empirically-oriented
way to measure multiple relationships between symptoms and other observables.

More recently, HMMs have been applied to electronic health records (see
e.g. [6]). Such datasets are often large and heterogeneous, requiring models such
as HMMs for gaining relevant insights.

3 Capturing Latent Disease Dynamics

In this section we discuss models suitable for capturing latent disease dynamics
and propose a data-driven method for exploring medical outcomes.

3.1 Bayesian Networks and Hidden Markov Models

Hidden Markov models are models based on latent variables that are able to
cope with uncertainty and sequential phenomena, which makes HMMs suitable
for many biomedical problems [4,6,11]. In HMMs, the observable variables typ-
ically interact only via the latent (or state) variable [9], which is known as the
naive-structure HMM. In this work we opt for modeling the observation space
as a Bayesian network (BN), thus allowing for more general representations of
symptom interaction. By such modeling, more insight into the problem can be
obtained by a more concise latent-state representation [2].

3.2 State Trajectories

Before we describe how to use HMMs to obtain insight into disease processes,
we introduce the notation. Let us denote by S the random variable repre-
senting the latent states to be modeled, where S takes values on the set
dom(S) = {s1, . . . , sk}. The remaining variables {X1, . . . , Xm} are observable
variables with associated domains dom(Xi). In medical domains, each Xi will
often refer to measured data such as symptoms, lab exams, medication, etc.,
while the latent variable S will refer to some state of the underlying disease (e.g.
a disease remitting situation). The disease process of interest is assumed discrete
over the time points {0, . . . , T}, where the value of the latent variable and the
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observables that hold at time t will be denoted by S(t) and X
(t)
i respectively.

For a discrete time interval [t1, t2], the notation S(t1:t2) will be used.
HMMs can be used to predict the hidden states that better explain the

observations [9]. Prediction is achieved by first computing the distribution of
latent states at each week t conditional on the complete patient’s symptom data
(i.e. his or her data over all the weeks):

γt(s) = P (S(t) = s | X
(0:T )
1 , . . . , X(0:T )

m ) (1)

where γt(s) is the notation used in standard forward-backward algorithms for
HMMs [9]. After this has been done, the sequence of states for a given patient
is obtained by selecting the most likely state at each time t:

γ∗
t = arg maxs∈dom(S)γt(s) (2)

for all t ∈ {0, . . . , T}. This can be interpreted as “placing” patients in states.
Note that the predicted states are the individually most likely states, obtained
by maximizing Eq. 2 for each time point independently, in contrast to the so-
called Viterbi path, where the maximization is applied over the probability of
state trajectories over {0, . . . , T}.

3.3 Exploring Medical Outcomes

Understanding disease dynamics in a multi-variate setting is challenging because
of potential complex interactions between diseases, symptoms, and findings.
Therefore, we propose to investigate the transition dynamics between latent
states. This is convenient because each latent state can take into account multi-
ple symptom dimensions at once, which makes reasoning over patient trajectory
very feasible. Once the states are discovered, a detailed outcome measure that
provide insight into treatment dynamics can be formulated.

We propose a procedure to build outcome measures in Fig. 1. The procedure
selects a set of baseline states Sb based on a selection criterion. From the remain-
ing states, a set of target states Se are to be selected based on its own criterion.
Once Sb and Se are obtained, state reachabilities from Sb states to Se states are
calculated. By varying the time interval between two given states of Sb and Se,
the resulting probabilities reach(i, j, t1, t2) indicate the temporal influence of a
baseline state over a target state. Such state reachabilities can then be used to
compose a rich outcome measure, e.g., by making t1 = 0 and t2 ∈ {1, . . . , T},
which will result in a reachability trend as indicated in Fig. 1.

In this paper, a state is classified as a baseline state if one or more patients are
predicted to be in this state at the process start. These states can be computed
by first determining the state trajectories γt(s) for each patient (see Eq. 1). Then
we define s ∈ Sb if and only if γ∗

0 = s holds for at least one patient. To determine
the target states, we look at the model parameters, such that P (s → s) ≥ ρ,
where 0 ≤ ρ ≤ 1. In particular, we chose ρ = 0.95, resulting in states that are
not in Sb and have a high self-transition probability.
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Temporal patient data

Latent states

Sb: Baseline states
Sb ⊆ S

baseline-state
criteria

Se: Target states
Se ⊆ S − Sb

target-state
criteria

State reachability

reach(i, j, t1, t2) = P (S(t2) = sj | P (t1) = si)
si ∈ Sb, sj ∈ Se

Reachability trend

{reach(i, j, t1, t2) : t2 > t1 ≥ 0, t1 fixed}

learn model

Fig. 1. Procedure to guide the generation of outcome measures based on latent states.

4 Data

4.1 Patients and Variables

All patients had participated in the DUDG (Dutch University Depression Group)
study [13], a 7 week double-blind randomized clinical trial originally designed for
comparing the effectiveness of venlafaxine, imipramine and venlafaxine plus queti-
apine (V+Q, for brevity) in psychotic depression. The dataset originally included
122 participants aged 18–65 who met DSM-IV-TR criteria for a unipolar major
depressive episode with psychotic symptoms and a 17-item Hamilton Depres-
sion Rating Scale (HAM-D [3]) score of at least 18 (both at the screening visit
and at baseline). The 17-item HAM-D indicates severity of depression as follows:
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normal (0–7), mild depression (8–13), moderate depression(14–18), severe depres-
sion (19–22), and very severe depression (greater than or equal to 23).

Because of insufficient information about the specific nature of psychotic
symptoms, three patients were not included in the current study resulting in a
dataset with 119 patients. From the total group, 59 (49,6%) were females; the
mean age was 51.1 (SD 10.9) years. Forty patients were randomized to treatment
with imipramine, 38 to venlafaxine and 41 to V+Q.

Severity of depression (HAM-D, continuous) and the presence of psychotic
symptoms (dichotomized) were measured at baseline (i.e. before treatment
starts) and weekly thereafter. A total of 98 patients completed the trial (34 in
imipramine, 30 in venlafaxine, and 34 in V+Q). Data on patients who dropped
out was imputed by the last-observation-carried-forward approach [13].

4.2 Depression Assessment

At the end of medical treatment, patients were assessed according to conventional
criteria for response and remission of depression [13]. Response was defined as a
reduction of at least 50% on the HAM-D score compared to baseline and a score
of 14 or below, and remission as a score of 7 or below.

5 Experimental Results

5.1 Model of Observations

The observable variables in the HMM used in this work are modeled accord-
ing to the BN shown in Fig. 2, which allows for a more expressive representation
than the naive-Bayes structure by connecting Hal and Del via HAM-D. By doing
so, we impose less independence assumptions than the naive solution, thus the
model becomes more flexible in that more dependences can be induced from data.
Hence, once in a state the observables are parameterized as follows: the psychotic
symptoms are encoded as binary random variables, while the depressive symp-
tom (the HAM-D score) is a conditional Gaussian distribution (conditioned on
the state and on both psychotic symptoms, as shown in Fig. 2).

At any time point, the parameterization of each symptom is given by the
factorization entailed by the BN structure of Fig. 2. This modeling dictates that
HAM-D will be given by a mixture of four Gaussians, one for each configuration
of Del and Hal (assuming the state is fixed). For a given state s ∈ S, the dis-
tribution of HAM-D can be obtained by marginalizing out Del and Hal and by
applying the Bayesian network factorization as follows (we omit the time index
as it is equal to t):

p(HAM-D | s) =
∑

Del,Hal

p(HAM-D,Hal,Del | s) (3)

=
∑

Del,Hal

P (Del | s)P (Hal | s)p(HAM-D | Del,Hal, s) (4)

Thus, the distribution of HAM-D conditional on state s is Gaussian as it is
a linear combination of the Gaussians associated to the possible parent values.
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Latent state(t)

Del(t) Hal(t)

HAM-D(t)

Fig. 2. BN structure of the space of observations. The domain of the state variable
depends on the experiments.

5.2 Model Dimension

The number of latent states was obtained by balancing model fit and inter-
pretability. Log-likelihoods were obtained from a 10-fold cross validation pro-
cedure, where models can have from two states up to the number of states
obtained prior to model overfitting. Suppose we denote by L(k) [95% CI]
the mean log-likelihood obtained by the model with k states. The obtained
means are as follows: L(2) = −431[−441;−421], L(3) = −410[−422;−398],
L(4) = −416[−436;−396], L(5) = −410[−431;−389], L(6) = −405[−423;−387],
L(7) = −399[−418;−381], L(8) = −400[−417;−383]. We do not show L values
for k > 8 states as L approximately saturates at that point. As the values of L
are to be maximized and the 95% CIs highly overlap for k ≥ 3, then adding more
than 3 states is not likely to lead to a significant improvement to L. Hence, we
choose k = 3 as the number of states. The selected number of states also takes
into account that simpler models are preferred for the formulation of outcomes.

5.3 Identified States

The learned model has 3 latent states, as shown in Fig. 3 (top row), where in
each latent state there is one distribution for each symptom measurement (i.e.,
Del, Hal and HAM-D). The states can be interpreted as follows:

– The state Hallucinations (abbreviated as state H) is associated with
patients with high prevalence of hallucinations and moderate prevalence of
delusions, with the highest mean HAM-D score and low variance.

– The state Delusions (abbreviated as state D) is associated with patients
with high prevalence of delusions and low prevalence of hallucinations. Its
mean HAM-D score is moderate and has wide tails.

– The state No Psychosis (abbreviated as state NP) is associated with
patients with low prevalence of psychotic symptoms and moderate HAM-D
score (though with high variance).
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state delusions

Hal

Del
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False True

HAM-D
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0 20 40
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1

2

False True
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88.3

7.7

4

83

17
98.20.4 1.4

Fig. 3. Top: marginal distributions of symptoms in the latent states of the learned
model (Del and Hal stand for symptom measurements). Bottom: state transitions.

5.4 Dynamics

Figure 3 (bottom row) shows the transition behavior of the learned HMM. The
arcs indicate transition probabilities between latent states, e.g. the looping prob-
ability of 88.3% in state H represents the chance for remaining in such state over
two adjacent weeks. Based on Fig. 3 (top row) and on the previous characteri-
zation of the states, D and H can be seen as starting states that are primarily
distinguished based on the prevalence of hallucinations in patient. Later on,
depending on their response to treatment, the patient will potentially move to
state NP. The state NP can be seen as a healthier state due to the absence
of psychotic symptoms, but the state does not imply depression remission or
response due to its moderate mean HAM-D. In fact, the state NP characterizes
a wide range of no-psychosis patients in terms of HAM-D score.

Figure 4-a shows the reachability trends given the baseline states, while Fig. 4-b
shows the 95% bootstrap confidence intervals (BCIs) for the difference between the
trends. In these cases, positive values indicate a stronger trend in favor of state D.
The difference between the area under the curve of each trend was also computed,
resulting in a 95% BCI equal to [0.17; 2.29]. The 95% BCI for the slope difference
was [0.02; 0.17]. These results suggest that the initial state of the patient is relevant,
i.e. starting in state D allows for a significantly stronger reachability to state NP
than the reachability when starting in state H.
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Fig. 4. Reachability trends based on different baseline states.

5.5 Validation of the Outcome

We now assess the claim that the state at baseline leads to significantly different
state reachability. To this end, two distinct groups of patients were considered:
patients with hallucinations at baseline (29 patients), and patients with no hal-
lucinations at baseline (90 patients). The HAM-D scores of these groups at
treatment endpoint were compared using a Mann-Whitney test for independent
samples, which resulted in a p-value = 0.0007, suggesting that these two groups
differ significantly (under a 95% confidence level). As a result, the psychotic
symptom at baseline is predictive to depression recovery of patients in general.

6 Conclusions

This paper demonstrated that probabilistic graphical models can reveal insight
into disease dynamics by considering not only the underlying structure, but also
using meaningful outcome measures built from such structure. We illustrated the
proposed methodology by applying hidden Markov models to psychotic depres-
sion treatment data, which were learned in a fully data-driven way.

The identified underlying symptom structure revealed two clinically signifi-
cant results. First, the remission of psychotic symptoms preceded the decrease of
depressive symptoms in PD treatment, which is in accordance with clinical obser-
vation. Second, it was shown that patients differed in their prognosis depending on
the type of psychotic symptoms they exhibited at baseline (hallucinations versus
delusions). Hence, our methodology allowed to shed light on the heterogeneity of
psychotic depression. As future work, we will further investigate the clinical sig-
nificance of the results, and will investigate the sensitivity of different treatment
groups to treatment. The combination of graphical models and a data-driven app-
roach can be easily integrated into the investigation of other disorders as well.
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Abstract. Chemotherapy is the main treatment commonly used for
treating cancer patients. However, chemotherapy usually causes side
effects some of which can be severe. The effects depend on a variety of
factors including the type of drugs used, dosage, length of treatment and
patient characteristics. In this paper, we use a data extraction from an
oncology department in Scotland with information on treatment cycles,
recorded toxicity level, and various observations concerning breast cancer
patients for three years. The objective of our paper is to compare several
different techniques applied to the same data set to predict the toxic-
ity outcome of the treatment. We use a Markov model, Hidden Markov
model, Random Forest and Recurrent Neural Network in our comparison.
Through analysis and evaluation of the performance of these techniques,
we can determine which method is more suitable in different situations
to assist the medical oncologist in real-time clinical practice. We discuss
the context of our work more generally and further work.

Keywords: Breast cancer data · Toxicity prediction · Modelling ·
Machine learning

1 Introduction

Cancer is a vast medical problem and a major cause of mortality in the UK and
worldwide. Each year, one in every 250 men and one in every 300 women get diag-
nosedwith cancer [12].Cancer itself includesmore than200different diseaseswhich
are characterised by the uncontrolled proliferation of cells. The rapid and abnormal
reproduction of the cells can happen in several different organs and tissues within
the human body (e.g., breast, lungs, bone, etc.) [12]. In this paper, we focus on
chemeotherapy-based treatments for patients with breast cancer.
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Chemotherapy in breast cancer is considered one of the major therapeutic
treatments. Although introduced only fairly recently, it has gained increasing
use both in primary management (also known as adjuvant therapy) and for
patients with metastatic disease (for palliative care). Since the treatments are
toxic and expensive, it is important to gain further insight into the consequences
of their use when treating patients with cancer. One methodology to obtain
knowledge about chemotherapy is by using a digital system (e.g., trained model
or simulation). This system can evaluate the treatments applied to patients
throughout several cycles.

Today, machine learning enables us to create a system which can be used to
observe the outcome of the chemotherapy by feeding the data into several differ-
ent learning algorithms [3]. With the right combination of data and techniques,
we can improve the performance of the system and gain new insights that can
guide and improve patient treatment in the future.

In this paper, we compare several different techniques, including Markov
model (MM), Hidden Markov model (HMM), Random Forest (RF) and Recur-
rent Neural Network (RNN), to predict the outcome (e.g., toxicity) of chemother-
apy treatments for breast cancer. The toxicity level is a scale obtained by mea-
suring the condition of a patient based on several side effects of chemotherapy
treatments (e.g., vomiting, diarrhoea, constipation, hand/foot and skin condi-
tions). By comparing the result of several different techniques, we can find the
connection between the treatment and its side effect. Finding this correlation
among the recorded patient data can help guide clinicians and patients to decide
which treatment is the most suitable for them when treating breast cancer.

This paper is structured as follows. We present related work in Sect. 2,
describe the data and its features in Sect. 3, and our models in Sect. 4.
We discuss our results in Sect. 5, and conclude with suggestions for further work
in Sect. 6.

2 Related Work

In the past decade, many multivariate programs have been used to help diagnose
and stage cancers, such as prostate cancer, as well as forecast the prognoses of
patients [5]. As more facts about cancer are known, some cancer experts argue
that every patient cancer is unique which explains why treating cancer is so
difficult.

Motivated by this issue, there has been a lot of ongoing research to develop
a multivariate system for personalised cancer treatment, e.g., IBM Watson [7],
Microsoft Research [11], NHS [13]. Most of these approaches treat cancer as a
data problem and should only be used for guidance.

Chen et al. [2] used the Breast Cancer Wisconsin (Diagnostic) Data Set,
which describes characteristics of the cell nuclei in an image of a fine needle
aspirate (FNA) of a breast mass [1], to train a support vector machine classi-
fier for breast cancer diagnosis. Other studies by Nguyen et al. [10] used ran-
dom forest to predict breast cancer diagnosis and prognostic. By using another
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machine learning technique, namely Bayesian logistic regression, Mani et al. [8]
investigated the application of machine learning techniques to imaging data for
predicting the eventual therapeutic response of breast cancer patients after a
single cycle of neoadjuvant chemotherapy.

In our case, our data extraction consists of sequence data, and that makes
it possible to explore other techniques commonly used in Natural Language
Processing (NLP) such as Hidden Markov Model (HMM) [6] and Recurrent
Neural Network (RNN) [4].

HMM is a sequence model for part-of-speech tagging. A sequence model, aka
sequence classification-sequence model, is one whose job is to assign a label or
class to each unit in a sequence, thus mapping a sequence of observations to a
sequence of labels. Given a sequence of units (words, letters, morphemes, sen-
tences, and so on), a HMM computes the probability distribution over possible
sequences of labels and chooses the best label sequence [6].

RNN is an enhancement to a neural network. There is a known limitation
with artificial neural networks (ANNs) and convolution neural networks (CNNs)
that constrain their API. Both CNN and ANN only accept a fixed size of input
or output (one sequence) [3]. RNN instead consists of several layers of ANNs,
which allows us to process sequence data for which the input can be longer than
one sequence [4].

In this paper, we adjust our data extraction, which is time series data, to
create models using HMM and RNN and then we compare the result with the
other machine learning classifiers to predict the toxicity level of a patient.

3 Data Analysis

3.1 Data Characteristics

In this paper, we use a data extraction from an oncology department in Scotland
with information on treatment cycles, recorded side effects (here, toxicity level),
and various observations concerning breast cancer patients for three years (from
2014 to 2016).

The extraction has data for 51661 treatments of which 13030 are of breast
cancer treatments. There are 933 unique patients, and some patients have two
or three different treatments/regimes during the time period. Each regime has
several cycles ranging from one to more than 50 cycles (e.g., 85). Table 1 shows
the number of patients for different intentions. We exclude the Curative regime
because we do not have enough data for training our model.

Along with an extraction of general patient characteristics, we received the
toxicity level and measurement of the patients in separate flat files. We combine
the data by connecting the treatment appointment date with the date when
the toxicity and other measurements (i.e., weight, height, surface area) were



On Predicting the Outcomes of Chemotherapy Treatments in Breast Cancer 183

Table 1. The treatment’s Intentions

Intention Total patients

Adjuvant 620

Neo-Adjuvant 427

Palliative 483

Curative 17

obtained. In this paper, we ignore patient data with no toxicity information.
After we performed data cleansing, we are left with 2752 instances (i.e., 213
patients) for the palliative treatment, 1855 instances (i.e., 382 patients) for the
adjuvant treatment, and 1209 instances (i.e., 205 patients) for the neo-adjuvant
treatment.

3.2 Feature Analysis

Before we feed the data into the model, we analyse our datasets. First, we order
the data by the cycles to make sequences. We then determine the target answer
(i.e., toxicity) and predictors. After we categorised the fields, we check the rela-
tion between each predictor in the dataset to the toxicity outcome. Figure 1(a)
shows that at the beginning of the treatment, most of the patients have low
toxicity which is to be expected.

Fig. 1. Features analysis and correlation: (a) Patients’ proportion against low toxicity
(b) Adjuvant therapies fields’ correlation map

Next, we calculate the correlation between all the predictors to the target
answers as shown in Fig. 1(b). High correlation implies that there is a relation-
ship between the variable and the target class. We want to include variables with
high correlation because they are the ones with higher predictive power (signal),
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and leave out variables with low correlation because they are likely less relevant [9].
Even though including more relevant features during the training helps to improve
the prediction power, we still include all features in the model training and then
gradually exclude the irrelevant features as it is not always possible to know the
features that have high predictive influence in advance.

Finally, we clean the data by replacing the missing/invalid data in our pre-
dictors. We use the mean average for fields like age or body mass index (BMI)
while we use regression for the performance status (PS). To avoid the class
imbalance problem, when some regime has more data than the others, we create
a new dataset by duplicating some of the data. We perform this only for the RF
model training because, unlike for the other models used (in our case HMM and
RNN), our RF model is not dependent on the previous observation. For exam-
ple, we have 141 patients treated with FEC (D) while only 80 patients treated
with PACLITAX. Here, we duplicate some of the data from the PACLITAX to
match the number of patients treated with FEC (D).

4 Model Creation

As usual after analysis, we split the data into training and evaluation subset. The
split ratio is 90% for training and 10% for evaluation. Hence, we randomly choose
20 patients as the test data for both adjuvant and neo-adjuvant treatments and
30 patients for the palliative treatments. All others are used to train the models.

4.1 Markov Model (MM)

A Markov model is a stochastic model with the assumption that a future state
only depends on the current state [6]. Based on the toxicity in the data extrac-
tions, we created a discrete time Markov chain shown in Fig. 2 where the states
represent the different levels of toxicity (e.g., T0 corresponds to no toxicity, and
T3 is very high toxicity) and transitions reflect the treatment effects over time.

Fig. 2. The diagram representing the Markov chain for patients’ toxicity outcome

Table 2 denotes the transition probability matrix for Fig. 2. From our data
extraction, we calculate both the transition probability matrix and the initial
probability distribution.
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Table 2. The transition probability for all adjuvant treatment regimes

T0 T1 T2 T3

T0 0.06177606 0.4980695 0.40926641 0.03088803

T1 0.03555556 0.63407407 0.30962963 0.02074074

T2 0.00524934 0.44356955 0.51968504 0.03149606

T3 0 0.32142857 0.64285714 0.03571429

We have three different Markov models for each Intention (i.e., adjuvant,
neo-adjuvant, palliative). We have the model for all regimes, individual regimes,
and the patient’s body mass index (BMI).

4.2 Hidden Markov Model (HMM)

A HMM is based on augmenting a Markov chain to observe the hidden states
of events. In our case, we want to infer/predict the toxicity level based on the
patient’s characteristics. Table 3 specifies the components of our HMM.

Table 3. The HMM components for predicting the toxicity outcome

Component Description

States The toxicity level of the patients (i.e., T0, T1, T2, T3)

Transition probabilities The transition from one toxicity level to another toxicity
level (e.g., from T0 to T1, from T1 to T3, etc)

Observations The observed events obtained from the data extraction
(i.e., cycle, age, BMI, regime). We categorise the value of
each observation to simplify the process of training our
HMM. For example, 1-2-3-1 denotes the observation for an
overweight patient who gets the FEC-D (D) in their first
cycle and is aged less than 50 years old

Emission probabilities Each member represents the probability of the
observations generated from the toxicity state

To predict the toxicity from the sequence of the patients’ events, and as
is usual for HMM, we use the Viterbi algorithm. The Viterbi algorithm is a
dynamic programming algorithm used for finding the most likely sequence of
hidden states (aka path) [6].

Table 4 shows an example of using HMM to predict the toxicity outcome for
patients.

4.3 Random Forest (RF)

Random forest (RF) is an ensemble of decision trees for solving classification
problems. The random forest classifier uses several features to predict the out-
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Table 4. The HMM classification result example

Observed events Toxicity outcome

1-2-3-2/1-2-3-2/2-2-3-2 T0/T1/T1

1-2-3-4/1-2-3-4/2-2-3-4 T3/T3/T2

1-2-3-4/1-2-3-4/2-2-3-4/2-2-3-4 T3/T3/T2/T2

come [3]. For our RF model, we use the following features: age, BMI, cycle,
Regime, previous performance status, previous toxicity level to predict the toxi-
city outcome of the treatment. We created three RF models for each treatment
intention (i.e., adjuvant, neo-adjuvant, palliative), and categorised most of the
features (except age) for training our model. After we created our first RF model,
we manipulate the hyperparameters to get a better prediction result. Those
hyperparameters are number of estimators, minimum sample leafs, minimum
sample splits, and the maximum depth of each tree.

Lastly, we observe the feature importance of each field. We get an estimate of
the importance of a feature by computing the average depth at which it appears
across all trees in the forest [3]. The RF libraries we used for this work allowed us
to compute the feature importance automatically for every feature after training.
Figure 3 shows the graph of the feature importance for the fields used to predict
the toxicity outcome.

Fig. 3. The feature importance in neo-adjuvant treatments

4.4 Recurrent Neural Network (RNN)

The RNN models we created take several inputs and produce one output for
each input based on the treatment cycle. During the training, we used similar
features as for our RF model. However, we do not use the previous performance
status and previous toxicity fields because an RNN model preserves states across
time steps (in other words, has memory cells) [3]. For both models, we use the
Long short-term memory (LSTM) [4] units.
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5 Model Evaluation

For the MM, we observe the general pattern of the treatment outcome for each
cycle and then compare it with the outcome distribution obtained from the
data extraction. Figure 4 shows both datasets plotted together. The dashed line
represents the value obtained from the Markov chain. From that we get the
steady-state probability after 5/6 cycles. The distribution obtained from the
MM resembles the distribution obtained from the real data.

Fig. 4. The Distributions for Chemotherapy treatments: (a) Adjuvant treatments
(b) Palliative treatments

We measure the performance of our classifier models by using several met-
rics (i.e., precision, recall, accuracy, and f1-score) after performing the cross-
validation test [3]. We choose 5-fold cross validation (instead of 10-fold CV) to
get more records for the validation (i.e., around 20% of total records). By dupli-
cating the data for tackling the class imbalance issues, our model, especially the
Random Forest model, is susceptible to overfitting. Here, we need more sam-
ple in the validation set to evaluate our models confidently. We do not perform
the cross-validation for the HMM because the performance measured with the
splitting train-test method is much lower compared to the RF or RNN models.
Table 5 shows the result of the evaluation for all classifier models.

We need more data to train the corner cases (i.e., initial and end of the treat-
ments) for the HMM models. The accuracy for the corner cases is significantly
lower than the middle/transition case because the dataset has more transition
cases than the initial (cycle 1) or end cases. Similarly, we can see the same char-
acteristic for the F1-score for each treatment outcome. The T1 and T2 have
higher F1-score compared to the extreme case, T0 and T3 because our datasets
have more data with T1/T2 as its outcome. The RNN models outperform the
RF models because, unlike RF, the RNN has LSTM units which allow the model
to consider all the observations since the first treatment. Since our datasets are
given as a time series, the previous treatments may affect the result of the cur-
rent treatment. Hence, the RNN has an advantage compared to the RF that only
considers the current state and limited information about the previous treatment
result.
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Table 5. Model test result (mean-std)

Model Regime Accuracy Precision Recall F1-score

RF Adjuvant 0.81(+/−0.11)T0:0.55(+/−0.50) 0.92(+/−0.32) 0.65(+/−0.46)

T1:0.85(+/−0.15) 0.83(+/−0.09) 0.84(+/− 0.09)

T2:0.82(+/−0.09) 0.78(+/−0.20) 0.80(+/−0.13)

T3:0.57(+/−0.52) 0.83(+/−0.67) 0.67(+/−0.55)

Neo-Adjuvant 0.72(+/−0.09)T0:0.53(+/−0.80) 0.60(+/−0.88) 0.52(+/−0.74)

T1:0.77(+/−0.11) 0.80(+/−0.08) 0.79(+/−0.07)

T2:0.63(+/−0.16) 0.61(+/−0.22) 0.62(+/−0.17)

T3:0.33(+/−0.77) 0.23(+/−0.61) 0.23(+/−0.49)

Palliative 0.78(+/−0.08)T0:0.43(+/−0.23) 1.00(+/−0.00) 0.60(+/−0.24)

T1:0.96(+/−0.03) 0.73(+/−0.09) 0.83(+/−0.06)

T2:0.56(+/−0.17) 0.88(+/−0.10) 0.68(+/−0.15)

T3:0.55(+/−0.81) 0.70(+/−0.92) 0.61(+/−0.83)

RNN Adjuvant 0.85(+/−0.09)T0:0.70(+/−0.22) 0.96(+/−0.08) 0.80(+/−0.15)

T1:0.87(+/−0.11) 0.86(+/−0.14) 0.86(+/−0.10)

T2:0.94(+/−0.10) 0.79(+/−0.16) 0.85(+/−0.11)

T3:0.85(+/−0.64) 0.72(+/−0.63) 0.77(+/−0.61)

Neo-Adjuvant 0.81(+/−0.09)T0:0.58(+/−0.35) 0.82(+/−0.25) 0.67(+/−0.31)

T1:0.84(+/−0.10) 0.84(+/−0.11) 0.84(+/−0.09)

T2:0.85(+/−0.17) 0.77(+/−0.12) 0.81(+/−0.13)

T3:0.95(+/−0.30) 0.78(+/−0.47) 0.82(+/−0.34)

Palliative 0.85(+/−0.09)T0:0.67(+/−0.94) 0.24(+/−0.44) 0.33(+/−0.57)

T1:0.85(+/−0.12) 0.94(+/−0.05) 0.89(+/−0.07)

T2:0.83(+/−0.17) 0.75(+/−0.20) 0.79(+/−0.15)

T3:0.53(+/−0.96) 0.56(+/−0.99) 0.54(+/−0.97)

HMM (corner) Adjuvant 0.53(+/−0.00)NA NA NA

HMM (middle) 0.70(+/−0.00)NA NA NA

HMM (corner) Neo-Adjuvant 0.62(+/−0.00)NA NA NA

HMM (middle) 0.70(+/−0.00)NA NA NA

HMM (corner) Palliative 0.4(+/−0.00) NA NA NA

HMM (middle) 0.72(+/−0.00)NA NA NA

6 Conclusion

The real value of predicting outcome/toxicity for individual patients in real-time
is to help the patient and clinician understand the potential consequences of the
treatment, where the patient needs to make a decision on whether to undergo
treatment or not. Whereas attempts have been made to predict mortality from
cancer, prediction of toxicity is much less common in the literature and where it
has taken place has used simple logistic regression. The novelty of our approach
is to explore the use of machine learning for these purposes.



On Predicting the Outcomes of Chemotherapy Treatments in Breast Cancer 189

With our classifiers, we can predict the toxicity outcome of the chemother-
apy with around 0.8/0.85 accuracy. The RNN model performed better overall,
because it considers all patient’s treatments. Both RF and HMM only have lim-
ited observations (one previous state). However, RF has advantages because it
does not differentiate between corner cases (first/last treatment) and the middle
cases. Furthermore, the datasets we use for our RF models have a less class-
imbalance problem than HMM. In comparison to the MM, the classifiers are
more tailored for an individual patient. The MM shows the general pattern of
the treatment while the classifiers can help predict the toxicity outcome of the
patient. Both the MM and the classifiers complement each other.

We can improve the accuracy of our models further with more data regarding
cancer characteristics or comorbidities. In our datasets, the information regard-
ing the cancer stage is limited. We presently lack crucial information (e.g., TNM,
ER/HER2 status [13]), which makes it difficult to reliably recommend suitable
regimes for different patients, as we need both the toxicity outcome and cancer
TNM to evaluate the treatment efficacy. For instance, some treatments might
more effectively inhibit cancer growth but give higher toxicity in the short term.
We are currently retraining our models with richer data extractions for more
informed results on the suitability of different regimes for individual patients.
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Abstract. The number of machine learning clinical prediction models
being published is rising, especially as new fields of application are being
explored in medicine. Notwithstanding these advances, only few of such
models are actually deployed in clinical contexts for a lack of validation
studies. In this paper, we present and discuss the validation results of
a machine learning model for the prediction of acute kidney injury in
cardiac surgery patients when applied to an external cohort of a Ger-
man research hospital. To help account for the performance differences
observed, we utilized interpretability methods which allowed experts to
scrutinize model behavior both at the global and local level, making it
possible to gain further insights into why it did not behave as expected
on the validation cohort. We argue that such methods should be con-
sidered by practitioners as a further tool to help explain performance
differences and inform model update in validation studies.

Keywords: Clinical predictive modeling · Nephrology · Validation ·
Interpretability methods

1 Introduction

Clinical Prediction Models (CPM), more specifically prognostic models, or sim-
ply models are “tools for helping decision making that combine two or more
items of patient data to predict clinical outcomes” [25]. In this context, valida-
tion studies are crucial, since for a model to be utilized, physicians must trust
that it generalizes well to unseen patients. Therefore, to overcome a lack of trust,
a prediction model should not only be internally but also externally validated
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to ensure the results achieved upon derivation hold true for a diverse patient
population. In particular, Machine Learning (ML) models are specially prone
to‘learning’ dataset-specific characteristics which might fail to generalize on a
wide range of cohorts, further compounding the issue of lack of trust [9]. Pre-
viously, we derived a CPM to predict incidence of post-surgery Acute Kidney
Injury (AKI) before the surgical procedure [3]. The model was based on the
MIMIC-III database and utilized Gradient Boosting Decision Trees (GBDT) as
modelling algorithm, achieving promising discrimination results (C-statistic of
0.9). In this paper, we validate the model developed on an external cohort of
the German Heart Center Berlin (DHZB), evaluating its performance in terms
of discrimination and calibration. As a rule, model performance obtained on
the validation cohort is usually poorer when compared to that of the derivation
cohort, with models often showing “disappointing accuracy” on new cohorts [17].
When this happens, a procedure called ’model updating’ can be applied which
consists in adapting model parameters or the model itself to the characteristics
of the external validation cohort [24]. This is a straight-forward process when
it comes to models such as logistic regression, in which it suffices to update
regression weights or adjust decision thresholds. This is a less trivial task with
respect to “black box” approaches such as GBDT or Random Forest (RF), since
“the reasoning behind the function is not understandable by humans and the
outcome returned does not provide any clue for its choice” [8].

Fig. 1. Graphical abstract using Fundamental Modeling Concepts language: The Clin-
ical Prediction Model developed was applied to two different cohorts, derivation
(MIMIC-III) and validation (DHZB). Abbreviations: LR = Logistic Regression, DT
= Decision Tree, RF = Random Forest and GBDT = Gradient-Boosted Decision Tree.

In addition to evaluating discrimination and calibration for both cohorts,
we apply three interpretability methods, global and local surrogate, along with
method-based feature importance, to help shed light on how the ML model
works and possibly inform future model updating. Figure 1 provides a graphical
abstract of this paper using a Fundamental Modeling Concepts (FMC) block
diagram [12]. The remainder of this article proceeds as follows. Section 2 pro-
vides an overview of related work on the development and validation of CPM
in Nephrology, especially for AKidney Injury. In Sect. 3 we lay out the method-
ology e pursued in this research, including interpretability methods. Section 4
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summarizes the results obtained in both cohorts for discrimination and calibra-
tion, as well interpretability. Finally, in Sect. 5 we analyze the results obtained
in light of expert feedback, especially how the interpretability methods can help
inform model updating.

2 Related Work

A wealth of research has been conducted concerning the development of predic-
tive models for cardiac-surgery related AKI. While the majority of published
models rely on traditional statistical methods, such as the Cleveland score [22],
more and more ML techniques are being utilized for AKI prediction. Thottakkara
et al. utilized a number of ML techniques, with Generalized Additive Model as
the best-performing for AKI prediction in a large patient cohort (N = 50,318)
with AUC = 0.858 [23]. With a substantially smaller cohort (N = 212), Legrand
et al. achieved AUC = 0.760 using a super learner estimator [15]. In a similarly
sized cohort of heart surgical patients (N = 212), Eyck et al. were able to achieve
AUC = 0.8339 [5]. An ensemble of learners achieved the best result in a cohort
of North American patients f with AUC = 0.760 [11]. Flechet et al. achieved
AUC = 0.84 using random forests on a general surgery multicenter cohort (N
= 50,318) for AKI stage 2–3 [6]. More recently, in cohort of Korean patients
(N = 2,010), Lee et al. 2010 [14] reported AUC = 0.78 with gradient boosting
machine (XGBoost). In contrast, our model based on GBDT derived previously
achieved AUC = 0.9 (N = 6,782). It is worth noting that excepting the work
of Flechet et al. none of the other works offered an external validation of their
ML models. Further, Doshi-Velez and Been define interpretability as “the abil-
ity to explain or to present in understandable terms to a human”, which can be
assessed globally, i.e., for the model as whole, or locally, for specific instances [4].
Taken together, these strategies rely on deriving surrogate models based on the
original model to be explained. They are therefore termed global and local sur-
rogates, respectively. Additionally, if one is dealing with a tree-based model, is it
possible to derive rank of feature importance, which also provides some degree
of insight into the inner-workings of the model at the global level. Given that
multiple interpretability methods exist, we follow Hall and Gill’s recommenda-
tion, and combine both global and local interpretability methods, along with
method-based feature importance [9]. To the best of the authors’ knowledge,
this is the first work comparing three different interpretability methods applied
to the validation of a CPM.

3 Methodology

The existing model relied on a cohort (N = 6,782) of surgical heart patients
extracted from the MIMIC-III critical database [10]. From an initial set of 103
features encompassing demographics, laboratory values and comorbidities, 53
were selected via mutual information criteria [13]. We implemented Logistic
Regression (LR), Decision Tree (DT), RF, and GBDT, the latter two being
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the best-performing algorithms. The model thus developed achieved an AUC =
0.9 in the prediction of post-surgical AKI with GBDT, comprising an ensemble
of 126 tree stumps of depth = 3 and learning rate of 0.1 [3]. The algorithms’
hyperparameters were optimized via gridsearch. Missing data was handled with
multiple imputation using kNN (k Nearest Neighbors) with k = 3.

For development, we utilized Python version 3.6.1 [21]. The code used in
the experiments can be accessed on-line1. Because of data privacy issues, we
were not able to have physical access to the German hospital’s data. There-
fore, using the language-specific module ‘pickle’, we were able to exchange the
trained models in binary form with the medical institution, thereby foregoing
the need for data exchange. Model exchange took place via an encrypted channel
using git-crypt [1]. After exchange of models between the institutions, we uti-
lized two experiment set-ups. The first consisted in running the original model
without any modification, in order to ascertain its generalizability. The second
set-up consisted in updating the original model. In this work, model update con-
sisted in re-training the original classifiers exclusively on the validation dataset –
therefore not including the derivation cohort – while also optimizing the respec-
tive algorithms’ hyperparameters using gridsearch with 5-fold cross-validation.
The train/test split chosen was 80:20. As such, the metrics reported refer to
the performance on the held-out test set. To measure model performance, we
relied on both discrimination as measured by Area under the Receiver Operat-
ing Characteristic (AUROC) and calibration using Brier score and calibration
plots. Furthermore, we included Diagnostic Odds Ratio (DOR), a metric com-
monly applied in medicine [7], alongside precision and recall.

3.1 Validation Cohort

Data for external validation was drawn from 54,958 admissions in the period of
2013–2018 at the German Heart Center Berlin (DHZB), a hospital specialized in
the care of cardiac patients. Exclusion criteria entailed admissions of non-adult
patients (5,853) and those that had no surgery or only minor surgery (31,635),
with a final cohort of N = 14,191 admissions. In this cohort, AKI incidence was
approximately 38.4% (5,449 out of 14,191) and therefore somewhat higher than
usually reported in the literature [19], also differing from the AKI incidence in
the derivation cohort (9.83%). The initial set of feature attributes were derived
from literature and expert consultation and comprised demographics, comorbidi-
ties and laboratory data up to three days leading up to surgery. The complete
list of attributes for both the derivation and validation cohort is provided as
supplementary material2.

3.2 Interpretability Methods

For our purposes, we define interpretability methods as “tools which quantify
or visualize feature effects or feature importance”, describing how features con-
1 https://github.com/hpi-dhc/akilearner.
2 https://goo.gl/aV8YLv.

https://github.com/hpi-dhc/akilearner
https://goo.gl/aV8YLv
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tribute to the predictions of the model globally or locally [18]. This task is
typically achieved by means of surrogate models or method-based approaches.

Global Surrogate. Global surrogates seek to distill the knowledge captured
by a black-box ML model into a more interpretable model. In this method, also
termed mimic learning, a simple more interpretable or student model is trained
on the outputs of the original or teacher model. Instead of being trained on the
outputs of interest, the student model is trained on the predicted probabilities of
the teacher model while retaining the same original input features [2]. Formally,
given a prediction model defined by f(x, y) = y′, where x is the model input
and y′ its output for a true label y, we train a mimic model g(x, y′) = y′

∗ where
g ∈ G, i.e., a class of interpretable models. As such, the mimic model is obtained
by minimizing

∑N
i=1 ||y′

i − y′
i∗||2 for N training samples. It is worth noting that

the student model is only as accurate as its teacher. In this paper, we utilized
Bayesian Ridge Regression (BRR) as mimic model.

Local Surrogate. The Locally Interpretable Model-agnostic Explanations
(LIME) method makes use of a more interpretable model, e.g. linear regres-
sion, to explain the behavior of a black-box algorithm when applied to a given
sample, i.e., a specific patient instance [20]. Given an instance x, in our case
a surgical patient, LIME generates a number of ‘perturbed’ samples weighted
by their distance to x and fits an interpretable model to these new samples.
As per Eq. 1 the explanations are given by minimizing a loss function L that
measures how well the local surrogate g belonging to a class of interpretable
models G approximates our model f in the vicinity of the instance of inter-
est defined by πx. The loss function is further penalized by model complexity
Ω(x). As such, the explanations are given by the regression coefficients of the
surrogate model, which are deemed to be locally but not globally faithful. To
obtain a global understanding of the model’s behavior, this method provides the
so-called submodular pick, in which explanations are chosen that have the high-
est explanation coverage, thereby offering some insight into the model’s global
behavior. We chose the number of explanations to be 25% of the dataset size.
We then computed the mean absolute value of each feature’s contribution across
all explanations. Given that LIME is prone to unstable explanations because of
the randomness of the perturbed samples, we excluded features that appeared
in less than 10% of the explanations.

ξ(x) = argming∈GL(f, g, πx) + Ω(x) (1)

Method-Based Feature Importance. In addition to the two interpretability
methods discussed above, we also include feature importance provided by the
algorithm’s library implementation. For tree-based methods such as the ones
we used, scikit-learn computes the fraction of samples to which a given feature
contributes along with the associated decrease in impurity using it as split to
estimate the relative feature importance. In other words, nodes closer to the top
of the tree will be considered more important. For ensemble methods, decreases
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in impurity are averaged over all constituent trees, i.e., mean decrease in impu-
rity [16]. In the case of random forests, one can calculate the importance of
a variable Xm over all NT trees as defined in Eq. 2, where p(t)Δi(st, t) is the
weighted decrease in impurity over all nodes t which include Xm. In Eq. 2, v(st)
is the variable used in split st and p(t) = Nt/N , i.e., the proportion of samples
reaching t. A disadvantage of the mean decrease in impurity method is that is
algorithm-dependent, i.e., can only be used with tree-based approaches.

Imp(Xm) =
1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)Δi(st, t) (2)

4 Results

When it comes to discriminative performance in the derivation cohort, we can
observe from Table 1 that the ensemble methods employed RF and GBDT per-
formed substantially better than LR and DT in all considered metrics except
recall, where DT outperformed the GBDT, i.e., 0.66× 0.48. Similarly, DOR of
the ensemble models is significantly larger ( >10-fold increase). Although not
always guaranteed, ensemble learners have been empirically shown to provide
better discrimination than single learners in a wide variety of applications. Nev-
ertheless, all algorithms consistently presented relatively low precision and recall,
with LR presenting lowest precision, possibly resulting from poor model cali-
bration. In effect, as depicted in Fig. 2, we can visualize the degree of model
miscalibration for both ensemble methods. After applying Platt’s method (sig-
moid calibration), model calibration could be improved, even though the model
upon derivation still showed considerably higher miscalibration (cf. Fig. 2-A and
Fig. 2-B).

Table 1. Precision, recall, diagnostic odds ratio (DOR), and area under the curve
(AUC) for AKI=yes achieved in the different cohorts (derivation and validation)
employing logistic regression (LR), decision tree (DT), random forest (RF) and
gradient-boosted decision trees (GBDT).

Metrics Derivation Cohort Validation (w/o Update) Validation (w/ Update)

Prec. Rec. DOR AUC Prec. Rec. DOR AUC Prec. Rec. DOR AUC

LR 0.63 0.25 19.14 0.84 0.00 0.00 n/a 0.56 0.68 0.33 4.27 0.69

DT 0.35 0.66 11.22 0.80 0.68 0.16 3.78 0.52 0.75 0.30 6.08 0.71

GBDT 0.90 0.48 149.92 0.90 0.58 0.22 2.54 0.62 0.72 0.42 5.94 0.75

RF 0.92 0.41 169.58 0.90 0.90 0.02 14.44 0.70 0.75 0.42 6.90 0.76

With regards to performance in the validation cohort, we analyzed two vari-
ants, one considering the derivation model “as-is” and another by training the
algorithms with the local dataset, i.e., model updating. As expected, a sharp
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deterioration in most metrics can be observed when applying the models with-
out any changes on the validation cohort, with the AUROC of the ensemble
methods being reduced in 30%, e.g., with respect to GBDT. Exception to this is
the precision from the RF classifier, which remained similar to that of the orig-
inal model (≈0.9). After model update, including hyperparameter tuning with
gridsearch, a modest increase in performance could be achieved with AUROC =
0.76 for RF. Nevertheless, the updated model still performed significantly worse
than the original model (derivation cohort). Most strikingly, a difference of about
12% in AUROC was accompanied by 20 times lower DOR, i.e., 169.58 vs. 6.90
for RF.

Fig. 2. Calibration plots for both the gradient boosting classifier (GDBT) and random
forest classifier (RF) for the derivation (A and B) and validation cohorts (C and D).
Graphs show model output without calibration and after applying Platt’s method along
with Brier scores.

We chose the best performing method as per DOR metric as the target for
the interpretability methods (LIME, mimic learning and model-based feature
importance). Figure 3 displays the feature importances provided by each of the
methods employed for both cohorts (derivation and validation). The heatmap
thus generated is colored according to the intensity of the given feature’s impor-
tance after normalization (0–1) to allow comparison between the different meth-
ods. For plotting, features have been removed for which the maximal normal-
ized importance for any method was below 0.3. When compared side by side,
the outputs of the different interpretability methods provide some insight into
the relevance of model features. The heatmap in Fig. 3 shows that blood urea
values shortly before the procedure, a clinically recognized biomarker of kid-
ney function, as well as Elixhauser score, a measure of combined comorbidity,
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were considered important for all three methods. In contrast, pre-surgical crea-
tinine was deemed to be important by both LIME (local surrogate) and feature
importance methods, while absent from mimic learning (global surrogate). Fur-
thermore, creatinine and urea values in the days leading up to the procedure,
e.g., two or three days before, are likewise relevant, albeit with a somewhat
smaller magnitude. It is worth noting, however, that these values are absent from
the explanations provided by the mimic learning method. Nevertheless, mimic
learning was able to capture the importance of features such as pre-existing
chronic kidney disease and fluid electrolyte imbalance, which were assigned a
substantially lower importance.

Fig. 3. Heatmap displaying normalized feature contributions from LIME, mimic learn-
ing and random forest feature importance. Features are sorted according to the average
contribution of all methods taken together. Abbreviations: GS = Global Surrogate,
LS= Local Surrogate, MB = Method-based feature importance.

5 Discussion

In the derivation cohort, while a high AUROC could be achieved, an imbalance
with respect to precision and recall could be observed, which was also present in
the validation cohort. In our context, higher precision than recall means that the
model is particularly sure that patients it classifies as under risk of AKI do in
fact develop it, though it was very selective when doing so. As a result, it means
that the model will likely ‘miss out’ on patients under risk (false negatives).
This tendency of the model was further exacerbated in the validation cohort
as illustrated by the large difference in terms of DOR. While precision and
recall differed upon validation, they did so to a considerable smaller extent when
compared to DOR. This difference can be explained by a much larger ratio of
false negatives to true negatives in the validation cohort. For AKI management,
the costs of misclassifying a high-risk patient as not under risk are higher than
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enabling protective measures for patients who are not under risk. Therefore,
thorough model calibration would be necessary before clinical deployment with
other techniques beyond Platt’s method. The differences in performance upon
validation, particularly in the set-up without model update, can be traced back
in part to a difference in the prevalence of the outcome of interest (9.83% vs.
38.4%).

The interpretability algorithms indicated the Elixhauser score among the
most predictive features in the validation cohort. The exact same pattern could
not be verified upon validation, where Elixhauser score did not play as significant
role, i.e., much lower feature importance. Upon closer inspection of the distri-
bution of this variable, one can observe that its mean value in the derivation
cohort is substantially higher than in the validation cohort. This might suggest
that either patients in the derivation cohort are on average more severely ill or
that coding for this variable in the validation cohort might be inconsistent. In
a similar fashion, creatinine and blood urea values played an important role for
the predictions upon derivation, a result not observed to the same extent in the
validation cohort. These lab values present a similar distribution and standard
deviation in both cohorts, with a somewhat higher rate of missing values in the
validation cohort, specially as days before surgery increase (cf. Supplementary
Material). Appraisal with the medical expert revealed that in this German hos-
pital surgical patients are usually admitted only shortly before the procedure
takes place. As such, laboratory values days before surgery are not available as
a rule. This observation agrees with the suggestion that in the derivation cohort
patients are being treated who are in a more critical condition and likely had
been admitted to the hospital and therefore under monitoring before surgery
took place. Building on these insights, model update should, e.g., exclude Elix-
hauser score in favor of its constituent comordidities and limit itself to lab values
available upon admission. A mere analysis of the distribution of different vari-
ables while informative, offers little towards understanding underlying causes for
performance differences from the perspective of the model itself.

Limitations. The interpretability algorithms themselves are also not entirely
without downsides and pitfalls. For one, while global surrogates such as mimic
learning are flexible, the conclusions drawn concern the model, not the data,
since the surrogate model does not have access to the actual data. As such,
explanations tend to be only as good as the original model. Furthermore, since
the choice of surrogate impacts how well it can mimic the original model, i.e., its
R2 values, the surrogate itself will bring along a host of potential issues. Second,
local surrogates such as LIME tend to exhibit a considerable degree of instability
for their explanations. This happens because of the random neighborhood sam-
pling inherent to this method. In other words, if the sampling process is repeated,
one might obtain different explanations for the same instance, calling into ques-
tion its robustness. We sought to mitigate this effect by applying submodular
pick and averaging out the contributions across many different explanations. For
these reasons, not only more methods should be included, but also hypotheses
drawn from such interpretability algorithms must be validated by experiment for
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claims to be considered valid. Third, considering the precipitous drop in perfor-
mance upon validation, the original model might have suffered from overfitting,
therefore warranting the use of regularization techniques such as elastic net or
class balancing. Finally, we were not able to include the insights gleaned with the
interpretability approaches into a new model. This and the other issues pointed
out shall be addressed in future work.

6 Conclusion

In this paper, we reported the validation results of applying a ML-based CPM on
a external cohort, observing a substantial deterioration of its performance upon
validation. While a performance difference was expected to some degree, the issue
is compounded by the use of “black-box” algorithms. We applied three inter-
pretability methods in order to illuminate possible reasons that could account
for performance differences. The methods employed highlighted particular char-
acteristics of the CPM developed, which, as it turned out, relied considerably
upon longitudinal lab values and an aggregated comorbidity index, the Elix-
hauser score. Even though the insights obtained can potentially inform model
update for external validation, hypotheses drawn from these methods must be
validated by experiment, i.e., via iteratively refining the model. Potentially, this
might lead to more generalizable models that are easier to understand for prac-
titioners. Open questions remain, however, regarding the robustness of inter-
pretability methods, an issue that warrants further investigation.
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Abstract. An increasingly-popular treatment for ablation of cancerous
and non-cancerous masses is thermal ablation by radiofrequency joule
heating. Real-time monitoring of the thermal tissue ablation process is
essential in order to maintain the reliability of the treatment technique.
Common methods for monitoring the extent of ablation have proven to
be accurate, though they are time-consuming and often require pow-
erful computers to run on, which makes the clinical ablation process
more cumbersome and expensive due to the time-dependent nature of
the clinical procedure. In this study, a Machine Learning (ML) approach
is presented to reduce the time to calculate the progress of ablation while
keeping the accuracy of the conventional methods. Different setups were
used to perform the ablation and collect impedance data at the same time
and different ML algorithms were tested to predict the ablation depth
in three dimensions, based on the collected data. In the end, it is shown
that an optimal pair of hardware setup and ML algorithm were able to
control the ablation by estimating the lesion depth within an average
of micrometer-magnitude error range while keeping the estimation time
within 5.5 s on conventional x86-64 computing hardware.

Keywords: Radiofrequency · Ablation · Monitoring ·
Machine learning · Data · Ensemble · Lesion · Artificial intelligence

1 Introduction

Radiofrequency ablation (RFA) is a minimally invasive medical procedure that
involves thermally destroying undesired tissue by delivering high-frequency alter-
nating current via needle-sized electrodes or catheter [13]. When the undesired
tissue is heated enough, coagulative necrosis begins to occur. It is possible to
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make a probabilistic estimation on the death of the target cells, depending on
the tissue temperature and the exposure time to heat [2]. 43 ◦C+ for 10 min,
50 ◦C+ for 5 min, and 57 ◦C+ for 2 s are commonly-accepted scenarios for certain
mammalian cell death [4,5].

A major drawback of RFA has been its uncontrollable nature that may result
in undesired tissue left unablated and/or destruction of non-targeted tissue [15].
The need for real-time monitoring of RFA arises due to this uncontrollable nature
as well as the opacity of human tissue, that hinders the visual control of the
medical personnel during the treatment. There is quite a significant amount of
work done by the scientific community to develop monitoring techniques that
are more automated and data-based. The majority of these techniques utilize
changes in tissue properties undergoing thermal ablation, including electrical,
acoustic, and optical behaviors.

The requirements of the RFA monitoring in our case are that: (1) monitoring
should be performed in real-time to avoid the aforementioned complications,
(2) monitoring should be performed using equipment that could be low-cost for
purchase by community hospitals for public health, and (3) monitoring should be
performed with as little external equipment as possible. Due to the large capital
equipment required, external imaging modalities such as Magnetic Resonance
Imaging (MRI) and Contrast-enhanced Computed Tomography (CT) are not
easily accessible, even though they construct very accurate depth maps [7,9].

A very common method for real-time monitoring is checking the tempera-
ture of the ablated volume via a temperature probe that is inserted closely to
the ablation electrode [4]. A similar approach is applied with a thermographic
camera that captures the radiation within the long-infrared range [11]. These
methods are faster than an MRI or CT scan, however they make the whole
treatment more invasive, defeating the main purpose of ablation therapy. For
thermographic imaging, the emitted infrared waves cannot leave the tissue, so
the camera should be inside the body, close to the targeted tissue. Moreover,
they are both manual techniques, meaning that there should be a staff or the
physician who is handling the monitoring equipment. Such manual methods tend
to be cumbersome, especially in comparison with automated methods.

Three local methods that do not require large external imaging machines have
been explored for RFA monitoring: acoustic, optoacoustic, and electrical. Ultra-
sound imaging (primarily Nakagami imaging) is real-time, but cannot image
muscular tissue [17]. Optoacoustic imaging is very accurate (95%+), but can
take up to 400+ s to compute a depth map, preventing true real-time use until
processors are fast enough to reduce this time [10]. Electrical methods, primarily
using EIT, are very accurate (90%+), but require ≥ 100 s to compute [6,8]. Thus,
there is a need for a faster method to compute a depth map in order to provide
real-time actuation. We present a machine learning (ML) based approach in this
paper, using tree-based classifiers, to compute depth maps from tissue electrical
impedance for real-time control of RFA. The results in this study are built on
and compared to [14] that uses an Artificial Neural Network (ANN) classifier
for depth estimation. The contribution of this study is a new hardware setup for
data collection, two tree-based ML models that are predicted to outperform the
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ANN and lastly, a simple linear search algorithm to interpret the classification
performances both in this study and in [14] as actual depth predictions.

2 Materials and Methods

2.1 The Hardware Configuration and Data Collection

The tissue model that simulates breast tissue and the spherical design of the
ablation device were the same as used in [14]. The electrodes on the device were
connected to a system that activates or deactivates all electrodes on one side
at a time. The control system was connected to a RF generator to deliver the
alternating current (AC) and to an impedance analyzer for impedance measure-
ments. The impedance data was collected by the same RFA device that performs
the ablation, removing the need for any additional equipment that would affect
the comfort of a patient in real life.

The thermal ablation was created by the AC delivered through the electrodes.
A constant frequency of 100 kHz was used for the entire ablation process. After
the ablation cycle was complete for all 6 sides, the impedance data was collected
for all the sides through the same steel electrodes and measured at the impedance
analyzer connected to them. The side of the activated electrodes was also added
to the impedance data as another feature in the data logger. After the data was
recorded, another ablation cycle starts and the whole process was repeated. The
entire workflow is shown in Fig. 1a and the timing diagram of the ablation, the
measurements and the data logging are shown in Fig. 1c.

The data for the models were collected with two different hardware setups.
The first dataset used off-the-shelf equipment, based on a mid-tier LCR (induc-
tance (L), capacitance (C), impedance (R)) meter (Hameg Rohde and Schwarz
HM8118, Munich, DE) and matrix switch (National Instruments PXIe-2529,
Austin, TX, USA). This setup is not feasible within clinical environments, how-
ever, as it is not low-cost and is in separate units that make setup difficult. Thus,
a new low-cost embedded-system-based hardware setup was created, utilizing the
AD5933 (Analog Devices, Norwood, MA, USA) in the setup for low-impedance
measurement, as provided by the CN-0217 reference design from Analog Devices.
The total cost for this embedded hardware setup is less than $200. The embed-
ded system connects directly inline between the RFA generator and the RFA
device. The second dataset was collected using the embedded hardware setup,
shown in Fig. 1b. It was predicted that there would be a difference in the level of
noise between the two datasets. Both this noise profile and the embedded-system
based hardware setup were presented in more detail in [1].

In order to obtain the ground truth for ML, a resistance thermometer detector
(RTD) input module was inserted through the clearances on each side. The
temperature data for each side after each ablation cycle was recorded using
temperature probes and platinum 100 Ω resistance temperature detectors on this
module. These detectors were placed at 0 mm, 5 mm, 10 mm and 15 mm depths
from the side of the device. The temperature values for the depths in between
were linearly interpolated. After the temperature was recorded for all depth
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values from 0.0 mm to 15.0 mm with a stepsize of 0.1 mm, the temperature and
exposure time thresholds introduced in Sect. 1 were used to determine whether
the volume at every depth was ablated or not.

After the data was collected, the prediction of the lesion depth was posed
as a classification task. The four numerical features from the impedance data
were the initial and final magnitude and phase of tissue impedance. The side
the activated electrodes were on was added as a categorical feature (1 to 6)
in order to create a 3D depth map. Lastly, the depth value was added as the
fifth numerical feature. The categorical feature is one-hot-encoded into 6 binary
features, so the dataset has 11 features in total. The targets were binary labels;
0 for an unablated volume and 1 for an ablated one.

The first hardware setup collected 1,872,000 data points, which was referred
as the first dataset in this study and the second one collected 1,561,944 data
points, which was referred as the second dataset. Each sample ablation was
comprised of 20–50 ablate/measure cycles. Each data measurement generates
6 data groups per cycle (for each side). Each data group has one sample per each
depth value between 0.0 and 15.0 mm, with a resolution of 0.1 mm, containing
151 samples in total. Since it took many cycles for the tissue to be completely
ablated, the classes in these datasets were not balanced, having only one third

Fig. 1. Hardware setups. (a) shows system flow of off-the-shelf setup, (b) shows the
embedded hardware setup, and (c) shows the timing diagram for the ablation, measure-
ment and computation. The colored labels on the embedded hardware are as follows:
red is the AC input, green is the relay network, yellow is the impedance measurement
subsystem, purple is the connection to the RFA device, orange is the temperature mea-
surement subsystem, and black is the microcontroller that controls the whole process.
(Color figure online)
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of their total number of samples labeled as the positive class. This will be taken
into consideration when the ML metrics are presented.

2.2 Machine Learning Models

Aside from the ANN that was trained in [14], two different tree-based ensem-
ble classifiers are introduced in this study. Tree-based models are known for
their simplicity when compared to other ML models just as complex. They have
fewer hyperparameters to tune and take considerably less time to train. On the
other hand, while ANNs function well with unstructured and high-dimensional
datasets, such as images and sequential data, they can be overly complex for
structured datasets that are not very high-dimensional, like the data at hand
for this study. Therefore, the tree-based models in this study were predicted to
outperform the ANN in [14] for both datasets. Before making a comparison,
it was verified that the ANN in [14] indeed has the optimum performance by
tuning its hyperparameters and architecture.

The first ensemble classifier tested on the RFA data was a Random Forest,
a bagging ensemble that is further randomized with a simple tweak, making it
more robust to changes in data than just a number of trees trained in parallel on
the same data [16]. The Random Forest algorithm was based on a Decision Tree
that was trained with the CART algorithm [3]. All the trees in a Random Forest
were trained in parallel, on different subsets of data. The slight modification
that creates more randomness and gives the model its name is that the trees are
given only a random subset of the features. This avoids the trees having high
structural similarity and correlation in their predictions. After the model was
trained, the final class decision was given with majority voting among the trees.

The second ensemble classifier was an Adaptive Boosting classifier, that was
based on Decision Trees as well. For Adaptive Boosting, trees are trained sequen-
tially instead of in parallel, each correcting the mistakes of the previous one, all
of them adding up to a complex ensemble model [12]. For Adaptive Boosting,
each tree was trained on the entire dataset instead of just a subset of it.

Since decision trees can keep branching out until all the training data was
separated into pure leaf nodes, the models based on them are prone to high over-
fitting. To avoid this, the models were always regulated by putting restrictions
on some of their hyperparameters. In this study, the maximum number of leaf
nodes was picked as the regularization hyperparameter. The number of trees in
the ensembles was another hyperparameter to be tuned.

2.3 Final Interpretation

Aside from some classification metrics to evaluate the models in pure ML sense,
the classification results should also be interpreted according to how they reflect
on the real-life ablation task this study is about.

This is made possible by using a linear search to obtain numerical depth
estimations (between 0.0 and 15.0 mm) from the predicted labels and comparing
them to their corresponding true depth values, which are obtained from the true
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Algorithm 1. Ablation depth estimation from the classification results
Require: 151 instances that pertain to the same target depth, trained classifier
1: for Current Depth = [0.0:0.1:15.0] do
2: if Predicted class for the instance with depth as Current Depth = 0 then
3: return Current Depth
4: end if
5: end for

labels. In order to implement this conversion, the samples that belong to the same
data group of 151 samples are used together. For each group, the search starts
from the sample with 0.0 mm and went through the samples in an increasing
order of their depth value as long as their predicted label is 1 (ablated). The
algorithm stops when it sees a 0 (unablated) label and returns the last ablated
depth. This linear search is summarized in Algorithm 1.

After the conversion with the linear search was done, the true and predicted
ablation depths were compared in a way that is similar to a regression task.
The metrics for this evaluation were Root Mean Squared Error (RMSE) and
a residual map. These metrics were also considered for a comparison between
datasets and ML models.

3 Results

This study has two datasets from two different hardware configurations and
three different ML models that were tested on these sets. The ANN architecture
from [14] was kept the same but the hyperparameters of the ensemble models
were tuned with a two-dimensional grid search.

The training-test split was 70%–30% for both datasets. A 10-fold cross-
validation on training data was performed to tune the hyperparameters with
a grid search and the test data was held out to evaluate how well the models
generalize after training.

The results of all models trained with the first dataset can be seen in Table 1. As
mentioned in Sect. 2.1, the classes were unbalanced, so an f1-score was added as a
second metric to eliminate any possible bias this unbalance might add to the accu-
racy results. The Random Forest was trained with 20 trees and 3000 maximum leaf
nodes. The Adaptive Boostingmodelwas trained with 40 trees and 2000 leaf nodes.
(These optimum hyperparameter values were obtained with the grid search.)

Table 1. Performances of all the ML models on the first dataset

ML model Classification metrics

Test Acc.Test F1 ScoreCV-Average Acc.CV-Average F1 Score

ANN 92.72% 0.886 92.93% 0.888

Random forest 93.58% 0.890 92.65% 0.891

Adaptive boosting 93.74% 0.891 93.78% 0.891
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The results with the second dataset are in Table 2. The Random Forest was
trained with 20 trees and 7000 maximum leaf nodes. The Adaptive Boosting
model was trained with 30 trees and 3000 maximum leaf nodes.

Table 2. Performances of all the ML models on the second dataset

ML model Classification metrics

Test Acc.Test F1 ScoreCV-Average Acc.CV-Average F1 Score

ANN 97.12% 0.932 97.10% 0.931

Random forest 99.83% 0.994 99.85% 0.995

Adaptive boosting 99.97% 0.999 99.96% 0.999

After getting the predicted and true ablation depths from predicted and true
labels for the entire datasets, respectively, the depth prediction performances
and their residual maps for all ML models are shown in Table 3 and Fig. 1.

Table 3. Depth prediction results of all the ML models on both datasets

ML model RMSEs (mm)

First dataset Second dataset

ANN 2.24 0.68

Random forest 2.18 0.19

Adaptive boosting 2.20 0.13

4 Discussion

Both classification metrics as well as the depth estimation results indicate that
the second dataset was much less noisy and therefore, easier to predict. This
makes sense because the second dataset was collected in a consistent manner
by the embedded hardware setup, not affected by any noise introduced by the
wiring of multiple pieces of external, off-the-shelf equipment, which was the setup
for the first dataset. For both tree-based ML models on the first dataset, the
classification performance reached a 94% test accuracy and 0.89 F1 score. Both
of these models were outperformed by the models trained on the second dataset.
The Random Forest had a 99.8% accuracy with both the test and the validation
data and moreover, the Adaptive Boosting model reached an almost perfect test
performance with 99.96% accuracy. The impact of data quality on ML results
became much more obvious when the classification results were converted into
depth estimations. The RMSEs and residues in Fig. 2 decreased dramatically
for all models, reaching the lowest value of 0.13 mm for Adaptive Boosting,
which corresponds to only one single misprediction. Especially this almost perfect
prediction performance of Adaptive Boosting shows how effectively a ML model
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(a) ANN on the First Dataset (b) ANN on the Second Dataset

(c) Random Forest on the First Dataset (d) Random Forest on the Second Dataset

(e) Adaptive Boosting on the First
Dataset

(f) Adaptive Boosting on the Second
Dataset

Fig. 2. Residual (prediction error) maps of all the models on both datasets after con-
verting the class predictions to depth estimations. For the maps of the second dataset,
the horizontal patterns at 0 mm residue for all true depth values indicate a high predic-
tion performance without much error. The vertical and diagonal patterns on the maps
of the first dataset correspond to inaccurate depth predictions for impedance measure-
ments that actually belong to 0 or 15 mm depth and predicting 0 or 15 mm depth when
the thermal lesion was not there, respectively. Both of these cases would cause serious
medical issues in real-life tumor ablation such as a recurrent cancer from unablated
tumor volume or ablated healthy tissue volume that can lead to body deformation or
the collapse of an organ.
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can function as the depth estimator in an ablation scheme, given that the noise
was eliminated and enough data was collected. Since the ML approach to the
RFA monitoring problem is a novelty, a direct comparison with any other study
is not possible. However, it is safe to say that the monitoring precision is on par
with the conventional local methods introduced in Sect. 1.

Among the ML models, the ANN from [14] should be compared to the tree-
based ensemble models first. For both datasets and with all metrics, the ensem-
bles outperformed the ANN. As mentioned in Sect. 2.2, it was made certain that
the optimum architecture was used for the ANN, so it is safe to say that the
ensemble models were a better fit for both datasets in this study, as predicted.
As for the performance comparison between the ensembles, they performed simi-
larly when trained with the first dataset, the reason for this being the noise that
prevented both models from performing above a certain level. When trained
with the second dataset though, the Adaptive Boosting model outperformed the
Random Forest, with better test accuracy and a lower RMSE for depth pre-
diction. The 10-fold CV results agree with the test results to show that these
performances are indeed statistically significant and not due to random chance.
The performance of Adaptive Boosting, which was the best in this study, came
with a computational cost. Training the Adaptive Boosting model took 81.5 s
which was more than four times how long it took to train the Random Forest.
(18.4 s) This cost was expected because the Adaptive Boosting was a sequen-
tial ensemble, in which each tree goes through the entire training set one by
one, whereas all trees in a Random Forest were trained in parallel, with random
subsets of the training set. Lastly, prediction times were 5.5 s for the Adaptive
Boosting model and 3.6 s for the Random Forest. These prediction times showed
that the ML approach proposed in this study proved to be considerably faster
than conventional methods while retaining their accuracy.

5 Conclusion

The results of this study show that different machine learning models can be used
to predict the lesion depth for RFA successfully. The data from the embedded
system proved that data collection setups with minimal noise are essential even
before choosing the ML model. Adaptive Boosting seemed to have the best per-
formance, for both classification and depth estimation. All these results, along
with the short prediction times, indicate that an efficient real-time monitoring
scheme for RFA can be successfully implemented with a noise-minimized hard-
ware setup and appropriate ML classifier that is able to capture the nonlinear
complexities in collected data.
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Abstract. To mitigate anxiety, pain and dehydration in Pediatric Emergency
Departments (PED), it is paramount to tailor educational, motivational and self-
help content towards the current location inside the PED, since this reflects the
current stage in their PED visit. However, accurately identifying the patient’s
indoor location in a real-world complex environment, such as a hospital, is still a
challenging problem, with interference and attenuation from patients, staff, walls
and various electromagnetic sources (e.g., imaging devices).We present an indoor
localizationmethodology that achieve a best-effort localization accuracy given the
available sensors, (low-quality) motion data and computational platforms. First,
we utilize machine learning methods to find a suitable accuracy/granularity bal-
ance and then proceed by training a localization model. Then, we apply a set of
heuristics based onmotion data to eliminate false location estimates.We validated
of our approach in a real-life busy and noisy PED with a 92% accuracy.

Keywords: Indoor localization � Machine learning � Mobile health �
Bluetooth low energy beacons

1 Introduction

In Pediatric Emergency Departments (PED), children often experience pain, dehy-
dration and anxiety, which can be mitigated by digital solutions that engage patients,
and their families, to learn about their condition and care process. iCare Adventure is a
mobile e-therapeutic app that seeks a patient’s information through a series of questions
embedded within games [1]. Based on their responses, the app invokes a variety of
therapeutic protocols, such as the self-administration of Pedialyte for vomiting or
Ventolin for asthma, and presents educational videos tailored to their condition.

PED are spread across a large area, with rooms designated for different assessments
and interventions. Patients move through different rooms during a visit, with the
patient’s triaging determining the order and types of rooms. Throughout patients’ visits,
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it is essential to provide information that is contextually-salient—i.e., associated with
the type and function of their current room—which raises the challenge of localizing
the patient in the PED. Localization is useful for other healthcare-related purposes as
well, such as tagging medical observations with the exam room, and enhancing the
efficacy of self-management programs (e.g., medication adherence) [2]. Still, accurate
indoor localization is a challenging problem, especially in a complex building such as a
hospital, with attenuation due to walls, humans, and radio wave generators [3].

Our case study took place at the PED in the IWK Hospital in Halifax, Nova Scotia
(Canada). The PED had iPad Minis (1st generation) [4] for deploying health-related
content, while a set of 14 iBeacons [5] provided a reasonable coverage of the PED’s
rooms. Beacons are small devices that, among others, allow other devices to determine
their relative location to the beacon. Our approach involves the standard process of
fingerprinting [6], i.e., collecting Received Signal Strength (RSS) measures per discrete
location (e.g., waiting, exam rooms). At runtime, this allows estimating distances
between transmitters (i.e., iBeacon) and receivers (i.e., an iPad) and thus triangulating
the user’s location. However, our initial evaluation showed that many of the aforesaid
factors lead to a loss of accuracy. To lessen the issue, we tried to increase sensor
density. However, this merely led to signal strength differences between neighboring
beacons dropping below the signal noise. We observe that, in our case, where local-
ization is required in discrete locations (e.g., rooms) instead of continuous coordinates,
an opportunity exists to offer a best-effort localization accuracy. In particular, by
merging discrete locations into cohesive regions, we improve localization accuracy at a
coarser granularity, which may nonetheless still be in line with application needs.
Secondly, there are some opportunities for sensor fusion. Although the platform (1st

gen iPad Mini) supplies only low-quality motion data, a set of heuristics can leverage
the motion data, combined with a semantic location model, to rule out false location
estimates.

We present an indoor localization methodology that applies (a) hierarchical clus-
tering to obtain a suitable accuracy/granularity balance; (b) a decision tree algorithm to
train a localization model that targets discrete locations; (c) a sliding window method to
smooth beacon data; and (d) a set of heuristics to rule out false locations. We developed
a mobile library, called iLocate, which implements our approach. We validated our
approach in a real-life busy and noisy PED, and achieved a 92% location accuracy.

2 Background and Related Work

Received Signal Strength (RSS) is one of the simplest and widely used measuring
metrics for indoor positioning based on radio waves (RF) [6], although it is quite
susceptible to attenuation from walls and other obstacles [6]. By capturing the RSS and
transmission power at the receiver, one can estimate the distance between a transmitter
and a receiver. Several RF technologies are available on mobile devices, such as WiFi
and Bluetooth Low Energy (BLE). While virtually ubiquitous, WiFi networks are
mostly optimized for data throughput and coverage rather than positioning [6], and
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protocol differences lead to lower positioning accuracy than BLE [7]. In general, RF-
based positioning is based on establishing proximity between an individual and several
beacons based on an RF metric (e.g., RSS). Fingerprinting is the most utilized local-
ization method [6]: it involves an offline phase, where a representative set of metric
values are collected, and an online phase, where real-time values are compared with the
fingerprint set to estimate the user’s location. Fingerprinting thus allows coping with
the idiosyncrasies of an indoor setting, where attenuations (e.g., due to walls and
equipment) will interfere with positioning. Given a fingerprint set, k-Nearest Neighbor
(kNN) is often utilized to estimate the user’s location, i.e., where the average of k
nearest fingerprint locations (e.g., using Root Mean Square Error) is taken as the user’s
location [6]. For identifying discrete locations, this method requires a highly detailed
indoor map to connect absolute coordinates to discrete locations. Instead, we utilize a
machine learning (ML) method to estimate an user’s discrete location. E.g., the LoCo
system [8] relies on supervised ensemble learning (boosting) to build a set of room-
specific classifiers. Zhang et al. [9] compared the accuracy of Neural Networks and
Support Vector Machines (SVM). To the best of our knowledge, no prior work has
utilized Decision Trees for indoor localization, or applied clustering for balancing
accuracy with granularity.

3 Indoor Localization Methodology

Our baseline localization approach involves a standard fingerprinting method, where
RSS measures are collected together with their discrete location in an offline phase [6].
Then, we train indoor localization models using ML and the fingerprint dataset.
A trained localization model can estimate the user’s discrete location by correlating
RSS values at runtime. Figure 1 shows an overview of the indoor localization process.

Fig. 1. Overview of the different processes involved in indoor localization.
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During the Data Collection Process, the Beacon Ranging step continuously detects
beacon proximity data (i.e., RSS, derived proximity, and proximity accuracy). The Data
Collection and Segmentation step collects and segments this data stream using a sliding
window, coping with beacon data fluctuations by extracting discriminative features
(i.e., medians) per segment. These Proximity Segments are then utilized to either collect
datasets for training localization models (Model Learning Process) or track patient
locations at runtime (Indoor Localization Process). In the Model Learning Process, a
supervisor performs Segment Labeling by labeling each segment with its location
(Training Dataset). Our approach then proceeds by Generating a Suitable Localization
Model, which involves ML methods to (a) Balance Accuracy with Granularity, where
discrete locations are merged into cohesive regions; and (b) Train an Indoor Local-
ization Model, where the labeled segments are utilized to train an Indoor Localization
Model. These two steps may be executed iteratively and in any order (Sect. 3.2).

In the Indoor Localization Process, the Model-Based Indoor Localization step
continuously estimates the user’s location, based on detected Proximity Segments and a
trained Indoor Localization Model. The Semantic Location Model represents a
semantic indoor location model, highlighting the meaning, purpose and connectivity of
each location. To locate the user in discrete locations, Semantic Map Matching utilizes
this model to map estimated positions to Semantic Locations (e.g., waiting, exam
room). The Heuristic Filtering step employs a set of Heuristics, together with Motion
Data and the Semantic Location Model, to rule out false location estimates. The iLo-
cate mobile library incorporates the Data Collection and the Indoor Localization
processes, and deploys both a data-driven Indoor Localization Model and knowledge-
driven Semantic Location Model. The Model Learning Process is carried out on a
server, which will create indoor localization models to be run locally on mobile
devices.

3.1 Data Collection Process

Within the IWK PED environment, 14 iBeacons are situated at different locations; 1
beacon per exam room (12 rooms, R1 to R13), 1 beacon in the waiting room (R101),
and 1 beacon at the nurse’s station. Each iBeacon is assigned an UUID (Universally
Unique IDentifier). To estimate the proximity of iBeacons, we perform a beacon
ranging process where each sample supplies the RSS and the derived proximity value,
i.e., relative beacon distance (immediate = 1, near = 2, far = 3, unknown = 4). We
utilize the iOS Core Location framework [10] although any framework providing
UUID and RSS values could be utilized. Proximity values are considered more robust
as they estimate the source/receiver distance from both the measured RSS as well as the
transmission power. Nevertheless, it is still subject to variation due to antenna angles,
noisy environments [11] and low sampling rates (we chose 1 Hz to preserve battery).

To further reduce the impact of noisy sensor data, we apply a sliding window
approach to separate proximity data streams (i.e., time series) into discrete segments,
and then extract median proximity values per segment, since medians are more robust
to outliers and skewed distributions [12]. A window w is moved by an amount s over
the proximity data stream, with each window delineating a segment. The sizes of w and
s present a compromise between localization accuracy and delay: a larger segment
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leads to less fluctuations but there is a longer delay until a coherent segment is col-
lected. In our case, we found that wj j ¼ 4 and sj j ¼ 2 s presents the best compromise.

3.2 Model Learning Process

After a training dataset is created, we utilize ML to (a) balance accuracy with granu-
larity by merging discrete locations into cohesive regions; and (b) train an indoor
localization model (proximity segment as input, discrete location as output) based on
the (merged) training dataset. These sub-processes may be executed iteratively and in
any order, e.g., when the model from (b) lacks accuracy, step (a) may be (re-)executed
until the desirable accuracy/granularity balance is attained.

Balancing Accuracy with Granularity. Our initial goal was to locate patients, with
reasonable accuracy (ca. 90%), to a room-level granularity inside the IWK PED.
However, our initial evaluation only achieved ca. 84% accuracy (see Results). Due to
our focus on discrete indoor locations, an opportunity exists to create a best-effort
localization model where accuracy is better balanced with granularity. By merging
discrete locations into geographically cohesive regions, accuracy can be improved at a
coarser-granularity that is nevertheless still in line with application needs. For instance,
the iCare Adventure app [1] personalizes educational content based on whether the
patient is in the waiting room or the PED’s “operational” part (i.e., exam rooms)—by
merging all locations into three regions, i.e., waiting room, exam rooms, and “outside”
(i.e., hallway), we may thus improve localization accuracy at no loss of functionality.

To that end, we apply a clustering method to group discrete locations with similar
beacon measurements. We use hierarchical agglomerative clustering with the Ward
criterion [13] using a set of dissimilarities computed using the Manhattan distance
between proximity data segments. To select the best clustering, we rely on the average
silhouette width [14], where the silhouette width of an observation (i.e. segment)
indicates how similar an observation is to its own cluster (cohesion) compared to other
clusters (separation). A large, small and negative width respectively mean that an
observation is clustered very well, lying between 2 clusters, or likely in the wrong
cluster. Thus, we kept the clusterings with the highest widths. For each clustering, we
assign a room to a cluster in case that cluster has the highest proportion of the room’s
segments. As a second criteria, if the highest proportion of a room’s segments is lower
than 60%, we reject the clustering—in that case, a room belongs with similar likelihood
to 2 regions, which will reduce the performance of the model. Based on the clustering,
the relevant proximity segments are re-labeled with the corresponding region. An
important but reasonable assumption here is that grouping locations with similar
proximity data improves localization accuracy. We revisit this assumption in our
discussion.

Training an Indoor Localization Model. We utilize the C5.0 algorithm [15] to learn
ruleset-based localization models, where an initial decision tree is grown and collapsed
into rules, which are further simplified (pruning, reducing ruleset size). This choice was
made because, at least currently, deploying a ML structure on the mobile platform
requires a rule-based format (see Indoor Localization Process section). Despite their
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relative simplicity, C5.0 models have been shown to achieve high accuracy [16]. We
used 10-repeated 10-fold cross-validation to tune the learning parameters.

3.3 Indoor Localization Process

To perform indoor localization, the iLocate library is loaded with a trained indoor
localization model and semantic location model for a specific indoor location. Further,
the library is loaded with a set of heuristics to improve localization accuracy.

Semantic Location Model. To create a semantic location model, we utilize Spa-
tialModeler, a custom Java application, to delineate discrete locations based on the
indoor schematic, and indicate entrances to these locations (see Fig. 2, entrances are
orange). By choosing a suitable concept from the hierarchy, we associate the discrete
location with a concrete meaning (e.g., exam room). The application stores the location
model as a set of First Order Logic (FOL) facts using the Flora-2 [17] system. A set of
FOL rules then determines the connectivity between locations, based on their associ-
ated entrances, and estimates the walking time between the connected locations.

Location Reasoner. iLocate currently relies on a custom probabilistic rule engine
(iPad Mini 1st gen is restricted to iOS v.9.3.5 and lacks the Core ML framework for ML
support) for executing the localization model, which requires it to be available in rule-
based form. Since we rely on the C5.0 algorithm, models can be easily learnt as a set of
rules with associated confidence values. In this setup, an inferred fact with the highest
cumulative confidence value (i.e., multiple rules may infer the same fact) will be
chosen as the user’s most likely location. The output of the indoor localization model,
i.e., the label of an indoor location (i.e., room or region), is used to obtain the patient’s

Fig. 2. Screenshot of the SpatialModeler application. (Color figure online)
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semantic location (e.g., waiting or exam room) from the semantic location model. This
high-level location, together with the semantic location model, allows a third-party app
to tailor its behavior and content to the patient’s current location.

Heuristic Filter to Eliminate False Location Estimates. A well-known solution to
optimizing localization accuracy is sensor fusion, where data from other sensors,
typically motion-related, are correlated with the RSS readings using probabilistic
models [18] (e.g. hidden Markov models, particle filters and conditional random fields).
Other types of sensing modalities have known issues, such as acoustic and ultrasound
signals (busy hospital settings, atmospheric disturbances), inherent magnetic fields
(multitudes of magnetic interference in hospitals), computer vision (obvious privacy
issues and budgetary implications), and WiFi (see related work) [6]. In our IWK data
collection step, we found that mobile platforms (1st gen iPad Mini from 2012) only
provided low-quality motion data and had underpowered hardware (1 GHz dual-core
ARM, 512 MB), while they also had to concurrently run heavyweight apps (i.e., iCare
Adventure app). Hence, instead of using the aforesaid resource-intensive methods, we
opted for a set of low-computation heuristics that rely on motion data and a semantic
location model.

Based on motion data and the semantic model, these heuristics rule out false
locations estimated by the localization model. We defined two heuristics:
(1) NoWalking, which rules out new location estimates when, in the current location, no
motion above a threshold was detected; and (2) InsufficientWalkTime, which does the
same when, given the required walking time between the current and estimated loca-
tion, insufficient motion above a threshold was detected. We calculate motion intensity
by applying a low-pass filter over the X, Y, Z accelerometer values and taking their
Euclidian norm. We define the “walking threshold” as the average motion intensity
while walking. We did not utilize the Activity classification from the iOS CoreMotion
library since, on the iPad Mini, these turned out to be unreliable and often took over a
minute to provide. Walking times were estimated based on connectivity between two
locations, as provided by the semantic location model, and an average walk time per
meter.

Important to note is that these simple heuristics will not reject cases where the
patient walks around inside the room. Also, we note that once the same location is
rejected a configurable number of times, the location will eventually be accepted. This
was implemented to avoid a false initial location to linger due to lack of motion—else,
when one e.g., enters room 7 that is wrongly identified as room 6, any location estimate
correctly putting them in room 6 would be rejected in case they do not walk around.

4 IWK Case Study Results

Proximity data was collected during several sessions on different days at the IWK PED.
The data from the first session was used as the training dataset (2012 segments), while
data from the second session was used for testing (841 segments). First, we used the
training dataset to identify suitable clusterings (i.e., coherent regions). Then, we trained
a localization model for each clustering. Next, we loaded the iLocate test app with each
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localization model, the test dataset, semantic location model, and the two heuristics for
evaluation on an iPad Mini (1st gen), i.e., the target platform in our case study. The
average duration for the indoor localization process is 28.54 ms per segment.

According to the silhouette criterion, the best clustering involves 2�K� 7 (K = #
of clusters or cohesive regions). According to the second criterion, we rejected clus-
terings with K[ 7 since those involved cases where, for one room, less than 60% of
the segments are inside the same cluster. In our results, we denote a particular clus-
tering as M[# regions + outside]. Figure 3 illustrates the regions in the IWK for M8
and M3. We trained an indoor localization model for each clustering, where each
room/region is a class, and an outside class includes all locations not inside a
room/region. Each trained localization model was converted to a list of decision rules
(if-then rules), where the proximity values of iBeacons are conditions and the output
are the patient location.

For instance, the indoor localization model M6 includes the following rules:

- b_1 <= 1 AND b_8 <= 1 AND b_9 > 1 -> @outside ~ 0.714
- b_7 <= 2 AND b_10 <= 2 AND b_100 > 3 -> @C1 ~ 0.994
- b_3 <= 2 AND b_12 > 2 AND b_12 <= 3 -> @C2 ~ 0.988
- b_11 <= 1 AND b_12 <= 2 -> @C3 ~ 0.984
- b_7 <= 1 -> @C4 ~ 0.942
- b_12 > 2 AND b_13 > 3 AND b_101 <= 2 -> @C5 ~ 0.998

E.g., in case the beacons b_1 and b_8 proximity value is � 1 and the beacon b_9
proximity value is >1, then the confidence value of the patient being outside is 0.714.
Table 1 presents the localization accuracy of each test configuration on unseen prox-
imity data (test dataset). Columns correspond to the number of regions (clusters), and
rows indicate whether or not heuristics were used.

(a) 7 room clusters (M8) (b) 2 room clusters (M3)

Fig. 3. Indoor localization models M8 and M3.
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When utilizing heuristics, NoWalking ruled out between 102 (M3) and 170 location
estimates (M14), whereas InsufficientWalkTime only ruled out 2 locations (M14).

5 Discussion of Evaluation Results

Our baseline approach, i.e., the fine-grained model (M14), detects a patient’s location
with 0.83 accuracy across 14 locations, including 12 exam rooms, the waiting/triage
room and “outside” (e.g., hallway). The more coarse-grained model M6 detects a
patient’s location with 0.89 accuracy inside one of 5 regions (or “outside”), improving
accuracy by ca. 6% at the expense of granularity. Hence, it seems that our assumption
holds to an extent, i.e., using clustering to group locations with similar proximity data
improves accuracy. Nevertheless, merging locations into fewer than 6 groups results in
lower accuracy. This is likely due to (1) the increased distance between rooms inside
the merged regions and (2) the creation of large regions that are separated by hallways.

Applying our two heuristics further improves accuracy by an avg. of ca. 4,5%—
giving the fine-grained model (M14) an accuracy similar to some of the coarse-grained
models (M8, M7, M3). NoWalking rules out more location estimates for fine-grained
(e.g., 170 for M14) than for coarse-grained models (e.g., 102 for M3)—merging nearby
locations into coherent regions reduces the likelihood of false locations due to beacon
proximity. InsufficientWalkTime ruled out only 2 locations, both for M14. We found
that the vast majority of false locations were already rejected by NoWalking. Also, once
starting to merge locations into larger regions, to avoid false negatives, one must
assume the most optimistic scenario—i.e., walking from the current region’s edge to
the nearest edge of the other region. This greatly reduces the “required” walking times
between locations, and hence the effectiveness of this heuristic. Note that the number of
rejected locations is not necessarily linear w.r.t. the increase in accuracy, since rejecting
a false location “early” on while inside a room will have a larger impact than later.

6 Conclusions and Future Work

The ability to identify the location of movable resources, patients and care providers in
a healthcare facility allows us to optimize resource utilization, as well as the tailored
delivery of educational material and care services. In an assisted living setting, it can
enhance the efficacy of patient self-management programs [2]. We presented a novel
application of ML methods to improve indoor localization accuracy by merging rooms
into cohesive regions. We further evaluated the effectiveness of two motion-based
heuristics in improving accuracy. Our approach trains indoor localization models using

Table 1. Evaluation results (accuracy) for different test configurations.

M14 M8 M7 M6 M5 M4 M3

Default 0.83 0.87 0.87 0.89 0.85 0.85 0.87
2 heuristics 0.90 0.90 0.90 0.92 0.91 0.92 0.90
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the C5.0 ML algorithm, for different clusterings of locations, which estimate the user’s
position by correlating beacon proximity values. Together with a semantic location
model, these localization models are used by the iLocate app library to identify the
patient’s semantic location in the indoor environment. We validated our localization
models in a real-life busy PED (IWK Health Center). Our approach enables a fine-
grained indoor localization (14 locations) with good accuracy (ca. 90%), and supports
coarser-grained localization (6 locations) at a higher accuracy (ca. 92%) that may still
suit certain application needs. The proposed methodology is scalable to other health-
care settings with location sensors and other classification methods (e.g. random
forests).
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Abstract. Falls in the elderly are a known problem, leading to hospitalization,
impaired life quality, and social costs. Falls are associated to multiple risk
factors, related to the subject’s health, lifestyle, and living environment. Living
alone makes it difficult to detect a patient’s decline, which increases the fall risk.
In this paper, we present NONCADO, a project funded by the Lombardy Region
(Italy), aimed at developing a system for preventing falls in the elderly living
alone, by integrating data from a network of sensors (both wearable and envi-
ronmental). The collected data are analyzed by a decision support system
(DSS) that exploits advanced temporal data analysis techniques to detect
behaviors known to increase the individual risk (e.g. moving within the house
with inadequate lighting, or performing not enough physical activity). A daily
report listing the detected risky behaviors is produced and delivered through a
mobile app. Since we address long-term monitoring, it’s important to detect as
well the changes in a subject’s habits that may increase fall risk. Such changes
are summarized in a weekly report. A preliminary feasibility evaluation of the
system was performed during a 2-weeks pilot study involving 16 patients treated
at the Casa di Cura Privata del Policlinico hospital, in Milan, Italy. Patients were
asked to perform 5 activities, and the system’s ability to correctly detect them
was assessed. The study results were encouraging, as the system reached an
overall accuracy of 90%.

Keywords: Fall risk � Temporal data analysis � Home monitoring

1 Introduction

Falls in elderly people are a social problem, being a major cause of loss of indepen-
dence, hospitalization (or increase of hospital stay), decreased quality of life, and
increased social costs [1]. They are also associated with psychological and functional
sequelae, independently from the injury severity. Falls are associated to a variety of risk
factors, related to the subject’s health status (e.g., neurological disorders, traumas, drug
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therapies), lifestyle (e.g., lack or excess of physical activity), social and economic
condition (possibly leading to malnutrition or impossibility of adapting the home to the
subject’s needs), and living environment (e.g., inadequate lighting, slippery floors).

Within NONCADO, a project funded by the Lombardy Region in Italy, we aim at
preventing falls in elderly people living alone at home. Living alone implies a difficult
or delayed detection of a possible decline that in turn may increase the subject’s fall
risk. Reasonably, a decline influences the patient’s habits, concerning for example daily
activity, sleep quality/quantity, time spent outside the house, and consumption of hot
meals [1]. These considerations motivated the development of a monitoring system
able to detect such changes, and to inform the patient’s family of a possible decline. To
detect changes and risky behaviors, NONCADO relies on a decision support system
(DSS), which integrates data from (1) a network of environmental sensors, monitoring
both the movement of the subject within the house and the quality of the environment,
and (2) an activity tracker, monitoring the subject’s activity and sleep. At the end of
each day, the DSS produces a report, meant both for the monitored elderly subject and
his/her family. This report warns against the potentially risky behaviors that have been
detected during the day. An additional report is provided at the end of each week, to
compare the considered week to the previous ones. The reports are delivered through a
mobile app, and should allow the subject’s family to remotely monitor the user, and to
detect significant changes in his/her habits, to early identify a possible decline.

Early detection of changes in the patient’s daily habits is the innovative feature of
the NONCADO system, compared to the devices known in the literature [2, 3]. In fact,
most of the existing projects are aimed at providing support when a fall occurs. Usually
such systems are designed to detect the fall event, reach for the family member who is
the closest to the patient’s position, and possibly arrange an healthcare intervention [4].
Few systems focus on fall prevention. The majority of them assist the subject in
performing specific exercises to maintain her/his walking ability [5]. Others [6] ask the
subject to perform a specific action when receiving a specific audio/video signal. By
analyzing the subject’s reaction time, they detect changes in his physical/mental state,
which could correspond to an increase in his/her risk of falling.

In this work we present the first prototype of the NONCADO system. First, we
describe how it detects daily activities by integrating data from the network of envi-
ronmental sensors. Furthermore, we present the results of its application in a prelim-
inary evaluation study on a small group of neurological patients.

2 Methods

The NONCADO system includes two main components: a network of sensors to
monitor the activities of daily living, and a DSS, implemented in java, to detect such
activities and to identify possible unhealthy deviations occurring in time.

The sensors collect measurements of motion using passive infrared technology
(PIR), temperature, humidity, and lighting within each room of the house. In addition,
pressure mats can be placed under the mattress to detect a subject’s presence in bed.
For the prototype developed in the project, we used three pressure mats, each one
positioned on a section of the bed (i.e., head, back, feet). Finally, one or more
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photocells positioned close to the door are used to detect when the subject passes
through the door, and in which direction (enter/exit). The sensors are connected to
Raspberry PI boards, which gather the collected measurements, and transmit them to a
signal repository.

The DSS processes the raw signals to identify the patient’s behavior and daily
activities. To detect such activities, the DSS exploits Temporal abstraction (TA), a
technique that allows converting a numeric time series (TS) to an interval-based rep-
resentation, where each time interval has a label that summarizes the qualitative
behavior of the TS in that interval [7]. To perform TA on our data, we use JTSA (Java
Time Series Abstractor), a framework recently developed by the University of Pavia [8].
JTSA is modular: it provides several algorithms for TA, that can be personalized by
tuning their parameters, and can be combined in workflows to detect user-defined
patterns. Workflows must be formalized using a JTSA-specific XML file. In this work,
we have identified the following daily activities to be detected by the system: resting in
bed, resting in bed with getting up, cooking, leaving the kitchen while cooking, and
washing the dishes. To detect such activities, we formalized four JTSA workflows,
whose characteristics are shown in Table 1. For each workflow, we provide the input
variables (Input TS) and a description of the pattern we aim to detect. The parameters of
each JTSA algorithm in these workflows were tuned after functional tests aimed at
observing the response of the involved sensors to stimuli designed to simulate the
specific activity.

For the detection of each activity, the DSS uses one or more workflows. In par-
ticular, to identify resting in bed and resting in bed with getting up, it first runs
Presence on a bed section for each bed section. It then extracts all the time intervals in
which at least one bed section is active. For each interval, the DSS distinguishes

Table 1. Workflows formalized to summarize the TS provided by the environmental sensors.

Workflow ID Input TS Pattern to detect

Presence on a
bed section

- Pressure (from one
pressure mat)

Increasing pressure followed by stationary
pressure

Motion in a
room

- Motion (from multiple
PIR sensors in the room)

Time intervals in which motion is detected
by at least one motion sensor in the room

Presence in a
room

- Pressure (from the
pressure mats), if
available
- Motion (from all the PIR
sensors in the room)

Time intervals that verify either Presence
on a bed section or Presence in a room for
the considered room

Cooking - Temperature (from a
sensor located near the
stove)

Increasing temperature, followed by
decreasing temperature

Washing the
dishes

- Motion (from a PIR
sensor next to the sink)

Time intervals in which motion is detected
by the dedicated PIR sensor
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whether the subject is sitting (only one section is active) or lying (more than one
section is active) on the bed. Multiple consequent episodes of resting in bed, separated
by a time interval of absence from the bedroom (detected by running the Presence in a
room workflow), verify resting in bed with getting up. Cooking is detected by running
the Cooking workflow. If the photocell in the kitchen reports an exit occurring in an
instant that verifies the cooking activity, also exiting the kitchen while cooking is
verified. Finally, the washing the dishes activity is recognized by running the Motion in
a room workflow to detect movements next to the sink faucet. In this case, the system
selects as input for the workflow only the measurements provided by a dedicated
motion sensor placed next to the sink. Given the complexity of the steps needed to
define a specific activity, the DSS uses the Drools (https://www.drools.org/) framework
to formalize into a set of rules the sequence of steps that must be completed to collect
the necessary monitoring variables, to pre-process the signals to be compatible with the
JTSA workflows, to run the workflows, and to save the obtained results (i.e., the time
intervals in which the activity is detected) into a dedicated repository.

3 Results and Discussion

In September 2018, a prototype of the system was tested in a 2-weeks pilot study
involving 16 patients (6 females, 10males, aged 72.69 ± 8.53 years) with history offalls,
treated at the Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico
(CCP), in Milan, Italy. The patients were asked to perform the 5 above-described activ-
ities during rehabilitation sessions held in the “Living Lab”, an environment specifically
devoted to practice activities of daily living with a therapist. Every patient participated in
two study sessions; in each session he/she completed each activity once. One patient
interrupted one session early due to a concomitant visit, thus completing 3 activities out of
5. During each session, an observer was present in the room together with the patient and
the therapist, and recorded the details (start time and end time) of the actions performed by
the patient. The pilot studywas approved by the Ethical Committee of Fondazione IRCCS
Cà Granda Area 2, Milan, Italy (nr 570_2018bis).

To evaluate the performance of the system, the results of the DSS elaboration in
terms of intervals of validity of each activity were compared to the details reported by
the observer during each rehabilitation session. The accuracy of the system, computed
as the ratio between the number of correctly identified actions and the number of
actions actually performed by the patients was 31/32 (97%) for resting in bed, 30/31
(97%) for resting in bed with getting up, 30/31 (97%) for cooking, 25/32 (78%) for
exiting the kitchen while cooking, and 26/32 (81%) for washing the dishes. Thus,
considering all the activities, the system reached an overall accuracy of 142/158 (90%).

Identifying exiting the kitchen while cooking was the most challenging task, with 7
wrongly detected actions. In 3 out of 7 cases, the error was due to unreliable measures
(i.e., −100 °C) provided by the sensor in the time intervals of interest. In 2 out of 7
cases, both occurring at the end of a test day, the photocell log was written with a delay,
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which caused the most recent data to be lost when the system was shut down. In 2 out
of 7 cases, the photocell was able to detect the movement, but it was not able to
determine its direction, probably due to the presence of the therapist who had to assist
the patient on the way out of the living lab for safety reasons. This highlights one
limitation of the system, which is designed to deal with a subject living alone. The
other activity that showed low accuracy was washing the dishes. However, 5 out of the
6 errors happened during the same test day and were due to a cable throttling, which
prevented the communication between the motion sensor and the Raspberry PI board.
The sixth error was due to a temporary connection problem, causing the sensor to fail
sending the collected data, as well. A connection problem also occurred for pressure
mats, leading to the inability to detect one resting in bed with getting up activity. The
system also failed in identifying one resting in bed activity. In this case, a spike in the
pressure signal, probably due to an intervention of the therapist who needed to help the
patient, prevented JTSA from detecting the increase in pressure triggered by the
presence of the patient in the bed. Although spikes in the TS of pressure measurements
occurred only in this case, it highlighted the need to remove them from the signal
before analyzing it.

4 Conclusion

In this paper we presented NONCADO, a system aimed at preventing the risk of falling
by identifying potentially unhealthy behaviors of its users through a network of sensors
monitoring the daily activities within the house. A prototype of the system detecting 5
activities was tested during a pilot study. The system showed good performance in
identifying the selected activities. In our laboratory we also tested the system ability to
detect other patterns of interest, including movement within a room in poor lighting
conditions. These activities were performed by healthy volunteers wearing a fitness
tracker, to take into account the performed physical activity as well. In the future, we
are planning a more extensive test, to be performed within real life settings.
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Abstract. The availability of geolocation sensors embedded in smartphones
introduces opportunities to monitor behaviours of individuals. However, sensing
geolocation at high sampling rates can affect the battery life of smartphones. In
this study, we sought to explore the minimum sampling rate of geolocation data
required to accurately recognise out-of-home activities. We collected geoloca-
tion data from 19 volunteers sampled every 10 s for 8 non-consecutive days on
average. These volunteers were also instructed to complete a paper-based
activity diary to record all activities during each data collection day. For finding
the minimum sampling rate, we derived datasets at lower sampling rates by
down sampling the original data. A semantic analysis was applied using a
previously published activity recognition algorithm. The impact of the sampling
rates on accuracy of the algorithm was measured through the F1 score. The best
F1 score was found at sampling intervals of 2 min and it did not drop sub-
stantially until the sampling intervals increased to 10 min. Our study proves the
feasibility of monitoring activities at low sampling rates using smartphone-based
geolocation sensing.

Keywords: Geolocation � Global positioning system � Smartphones �
Sample frequency

1 Introduction

Personal digital devices with geolocation capabilities are ubiquitous nowadays, with
three billion people estimated to use smartphones globally [1]. This introduces new
possibilities of getting deeper understanding of human activities and behaviours based
on geolocation data, at higher spatio-temporal resolution than traditional methods (e.g.
questionnaires, activity diaries or interviews) and cheaper costs [2].

Currently, geolocation data are used for several applications: navigation systems to
guide users in their journeys [3]; location-based recommender systems, suggesting
nearby places based on the user’s previous history and preferences [4, 5]; social net-
working services that based on users previous locations history connect individuals
with similar interests [6, 7]; monitoring of criminal offenders based on their location
[8]; monitoring of health-related activities and behaviours [9–11].
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Although the contexts might be different, similar challenges are encountered when
processing geolocation data for human behaviour analysis. Geolocation data are subject
to measurement error. This can be as low as 10 m, but on current smartphones the
median is around 70 m [12]. Missing data is another issue faced when analysing
geolocation data [13]. This can be caused by: signal loss in most buildings [14]; users
not carrying their devices with them [13]; battery draining due to frequent geolocation
data sampling [15, 16]. Even when the noise is removed, raw geolocation data is just
the spatio-temporal positions of individuals, which is essentially meaningless. In
applications where going beyond quantitative statements as “more activity” and “less
activity” is needed, geolocation data trajectories are enriched with geographic and
semantic information. This comes from databases such as Google Maps [17], Open-
StreetMap (OSM) [18], and Foursquare [19], which often are user-editable and
therefore might be inaccurate or incomplete [10].

This paper aims to explore the minimum sampling rate of geolocation data required
to accurately recognise out-of-home activities. This is an essential aspect of geolocation
data collection, since high sampling rate frequency leads to draining batteries and
consequently missing values [15, 16]. This was investigated by applying a modified
version of an algorithm originally developed by Difrancesco et al. [10] to detect out-of-
home activities relevant to schizophrenia on data from 19 healthy volunteers that was
progressively down-sampled to evaluate impact on the algorithm’s performance.

2 Methods

We collected data from healthy volunteers (students and staff) at the University of
Manchester in Spring 2017. The study received ethical approval from the Research
Ethics Committee at the University of Manchester, with each participant who received
£20 at the end of the study, as a compensation for their time and effort.

Participants were asked to collect data for ten randomly chosen days during a
period of four weeks after entering the study. On data recording days, participants were
instructed to collect geolocation data, while performing everyday activities as normal,
using an application on their smartphone called GPSLogger for Android [20].
GPSLogger for Android collects raw geolocation data (i.e. geolocation timestamp,
latitude, longitude) without profiling or analysing it. For this study, sample frequency
was set up to one sample every 10 s, and to limit noise we set up GPSLogger for
Android to record only data points with an accuracy of at least 40 m. As a gold standard
for evaluating the accuracy of the algorithm we tested to identify daily activities from
geolocation data, participants were asked to fill an activity diary containing places
visited and activities undertaken for each data recording day.

To explore our research question, we improved an algorithm proposed by
Difrancesco et al. [10], which was originally developed to identify out-of-home
activities from geolocation data in the context of schizophrenia. The algorithm is
composed of four steps. First, we found geolocations visited, such as where a partic-
ipant stopped to perform an activity, by using two complementary approaches: a time-
threshold method [21], which detects geolocations visited by the user by looking for
signal loss when a participant enters into a building; a density-based method [22],
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which searches spatio-temporally dense areas to cluster geolocation data points, and
extract their centroid as a geolocation that was visited. Second, we used a modified
version of k-means [21] that is applied to all geolocations identified in the first step
(using the two methods). The centroids of the different clusters identified are labelled as
places visited by the user. The third step aims at associating each place visited to the
most likely place of interest (POIs) in the real-world. This is done by applying a set of
heuristic rules on the information retrieved from OSM [18]. Finally, to the found POIs
we associated activities relevant to monitor schizophrenia (home, employment, shop-
ping, sports, social activities, recreational activities, and other).

To find the minimum sampling rate to accurately detect out-of-home activities, we
tested the performance of our algorithm on the original dataset (i.e. collected every
10 s) and down-sampled versions that we created by reducing the sampling rate to:
30 s, 1 min, 2 min, 3 min, 4 min, 5 min, 10 min and 20 min. The time threshold used
by Difrancesco et al. [10] in the first step of their algorithm was kept constant at
10 min, except for the down-sampled dataset with a sampling rate of 20 min. This was
done to avoid that each GPS data point would be labelled as a geolocation visited by
the time-threshold method.

To evaluate algorithm performance, we compared the activities predicted by the
algorithm to what was recorded by participants in their activity diaries. Note that no
data were used to train the algorithm. We used two methods. First, we considered as
correctly classified all unique activities that matched between the algorithm results and
the activity diary on a given day. For example, if the algorithm found that someone
went shopping that day, and the participant reported to have gone shopping at least
once, this would be taken as a true positive. Second, since this approach is potentially
too optimistic, we also accounted for the number of times an activity was performed.
For example, if someone had reported to have gone shopping twice and our algorithm
detected three shopping sessions that day, two would be considered as correctly
classified (e.g. true positive) and one as incorrectly classified (e.g. false positive). We
assessed performance with recall (i.e. proportion of correctly classified activities out of
the ones recorded in the diary), precision (i.e. proportion of correctly classified
activities out of the total number of activities identified) and F1 score (i.e. harmonic
mean between precision and recall). Finally, we re-ran the algorithm with each set of
resampled data, and evaluated diferenes in algorithm performance.

3 Results

Nineteen people volunteerd to take part in the study (5 males, 14 females), with a mean
age of 25.4 years, (Standard Deviation [SD], 6.7 years). The vast majority (seveteen)
were students. Five participants used their own smartphone for the study, all others
used a smartphone that we handed out to them. The sampling duration varied from 4
days to 10 days.

Our algorithm showed moderate recall and good precision on activity recognition
from individuals’ geolocation data (see Table 1). As expected, the algorithm’s perfor-
mance decreased when accounting for the number of times an activity was recorded in
the activity diary (i.e. method 2). However, results by the two methods for calculating
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performance are consistent in terms of trends. Particularly, recall decreased when the
level of down-sampling increased. Conversely, precision increased when we used a
higher degree of down-sampling. The F1 score peaked at a sampling frequency of 2-
min, and progressively decreased with more down-sampled datasets.

4 Discussion and Conclusion

Few studies have considered the effect of a decreasing geolocation data sampling rate
on performance, when inferring out-of-home behaviours. We found a similar experi-
ment conducted by Zheng et al. [23]. By tracking more than 33,000 taxis, Zheng et al.
compared the effect of sampling rate on four POI recognition algorithms. In their study,
they also found that performance was dropping when the sampling rate was lower than
10 min.

This study has several limitations. First, OSM is a user-editable database. The large
number of contributors enables the database to be complete, but it could also introduce
inaccurate labels to places in the database. Second, the process of data collection relied
on the compliance of participants and, as for any instrument of this kind, we expect the
self-reported activity diary to be affected by recall bias. Finally, although sampling
interval was predefined as 10 s, for some participants this sampling rate was not always
maintained due to signal loss.

To conclude, the inclusion of geolocation sensors in smartphones introduces new
opportunities for monitoring of individuals’ activities in several domains. However,
high-sampling-rate geolocation data collection affects the battery life of smartphones.
We found the best performance (precision, recall and F1 score) for sampling intervals
of 2 min. However, performance did not change substantially when down-sampling
to intervals of 10 min. This indicates that it is probably feasible to accurately monitor
activities at a low sampling rate using smartphone-based geolocation sensing.
We recommend that future studies use a geolocation sampling rate of at least once per
minute, and that more simulation studies are carried out on larger datasets to investigate
whether further decrease in sampling frequency is warranted.

Table 1. Results from testing on different down-sampled datasets. SD: Standard deviation.

Sampling
frequency

Daily activities Daily activity counts

Recall (SD) Precision (SD) F1 score (SD) Recall (SD) Precision (SD) F1 score (SD)

10 s 0.65 (0.10) 0.76 (0.13) 0.70 (0.10) 0.52 (0.11) 0.65 (0.19) 0.57 (0.13)
30 s 0.64 (0.08) 0.80 (0.14) 0.71 (0.10) 0.52 (0.10) 0.73 (0.18) 0.60 (0.11)
1 min 0.62 (0.09) 0.81 (0.12) 0.70 (0.08) 0.49 (0.11) 0.75 (0.17) 0.58 (0.10)

2 min 0.64 (0.09) 0.84 (0.09) 0.72 (0.08) 0.51 (0.10) 0.79 (0.14) 0.61 (0.09)
3 min 0.59 (0.13) 0.84 (0.12) 0.68 (0.12) 0.46 (0.12) 0.78 (0.15) 0.57 (0.12)

4 min 0.57 (0.14) 0.80 (0.14) 0.66 (0.13) 0.45 (0.12) 0.74 (0.18) 0.55 (0.13)
5 min 0.56 (0.10) 0.81 (0.10) 0.66 (0.09) 0.43 (0.12) 0.75 (0.14) 0.54 (0.12)
10 min 0.56 (0.12) 0.84 (0.11) 0.66 (0.10) 0.42 (0.12) 0.81 (0.12) 0.54 (0.11)

20 min 0.50 (0.15) 0.84 (0.11) 0.61 (0.14) 0.35 (0.14) 0.81 (0.14) 0.47 (0.15)
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Abstract. Inappropriate pathology test orders are an economic burden on
laboratories and compromise patient safety. We pursue a laboratory utilization
management strategy that involves raising awareness amongst physicians
regarding their test ordering behaviour. We are employing an AI-driven
approach for laboratory utilization management, whereby we apply both
machine learning and semantic reasoning methods to analyze pathology labo-
ratory data. We are analyzing over 6-years of primary care physician’s pathol-
ogy test order ‘big’ data. Our analysis generates physician order profiles, based
on their case-mix and orders-sets, to inform physicians about their laboratory
utilization. We developed an AI-driven platform—i.e. Pathology Laboratory
Utilization Scorecards (PLUS) that offers an interactive means for physicians to
self-examine their test ordering pattern. PLUS aims to optimize the utilization of
the Central Zone pathology laboratory of the Nova Scotia Health Authority.

Keywords: Machine learning � Data analytics � Semantic web �
Pathology � Laboratory utilization � Big data

1 Introduction

Pathology laboratory testing is central to medical practice as most diagnostic and thera-
peutic decisions are guided by the patient’s pathology test results. Pathology tests are
routinely ordered by physicians and it has been observed that a significant number of tests
ordered are inappropriate—i.e. the test is either redundant, clinically irrelevant or non-
compliant with clinical guidelines. There are multiple reasons for the inappropriate
ordering of pathology lab tests including inconsistencies in test nomenclature [1], poor
implementation of evidence-based guidelines [2] and physician’s discretionary behaviour
when ordering tests [3]. A meta-analysis of 108 studies, examining 1.6 million results
from 46 of the 50 most commonly ordered pathology tests, concluded that on average
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30% of all tests ordered by physicians were likely to be inappropriate [4]. Inappropriate
pathology test ordering [5] not only affects laboratory resource utilization, but it also
compromises patient safety by producing falsely abnormal results which may require
unnecessary interventions [6]. Given rising healthcare costs whilst the need to meet
quality and efficiency targets, there is an awareness to minimize inappropriate pathology
testing. In Canada, the ‘Choosing Wisely’ initiative aims to optimize healthcare services
by reducing waste, and pathology test ordering is an area that needs innovative strategies
to minimize inappropriate test ordering by physicians [7]. Utilization management is a
strategy to evaluate the appropriateness and efficiency of healthcare services. As such,
pathology laboratory utilization management aims to optimize pathology test ordering—
i.e. the right test is ordered at the right time for the right patient—by reducing both over-
and under-utilization of the pathology laboratory.

In our work, we pursue pathology laboratory utilization management by raising
awareness amongst physicians about their inappropriate test ordering behaviour. Our
approach is to provide physicians personalized insights into their laboratory utilization
profile and peer comparisons via a self-auditing tool [8]. In this paper, we present an AI-
based framework for laboratory utilization management that employs (1) machine
learning methods to tackle overutilization of laboratory tests by (a) clustering physicians
based on their patient case-mix for inter-physician peer comparisons; (b) using asso-
ciation rules to identify the unconventional order-sets of individual physicians with
respect to their peers; and (2) knowledge-based reasoning to tackle underutilization of
laboratory tests by implementing test appropriateness rules to recommend essential tests
in response to the results of prior tests. We have implemented a Pathology Laboratory
Utilization Scorecard (PLUS) platform that offers (i) scorecards for physicians to
examine their test ordering pattern over time, and compare it with peers having the same
case-mix; and (ii) dashboards for laboratory managers to assist with waste minimiza-
tion. PLUS has been implemented to optimize the Central Zone pathology laboratory in
Halifax that processes 8 million general pathology test orders yearly.

2 Laboratory Utilization Management Approaches:
A Review

Current approaches for laboratory utilization management focus on reducing physician
options in test ordering, physician education, decision support and peer comparisons.

Strategies to reduce physician options to tests include specialist vetting of lab
orders [9] and at the CPOE level McDonald et al. removed the option to order daily
tests beyond 2 days [10], Neilson et al. [11] utilized prompts to reduce the ease of
repeating targeted tests, and Iturrate et al. [12] disallowed daily recurring tests entirely.
In terms of physician education, Ryskina et al. [13] provided social comparison
feedback linked to patients’ EMR records, Bunting et al. [14] discussed with the
physician their lab utilization and compared it with other physicians; Iams et al. [15]
sent out weekly feedback e-mails to physicians comparing their lab ordering rates with
the ordering rates of all others as well as the pre-set goal ordering rates; and. Srivastava
et al. [16] illustrated the utility of reflex rules (and reflective testing) in lab test
recommendation.
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Pathology laboratory utilization management strategies have yielded encouraging
results, for instance a saving of 19% of the total costs for genetic test orders by
reviewing each ordered test [17], a 21% reduction in B-type natriuretic peptide test
orders by employing a decision support system [18], unbundling of test panels and
providing pocket cards with laboratory test costs to physicians resulted in a 21%
reduction in costs [19], and an 8% test volume reduction was noted by leveraging
social influence of opinion leaders, academic detailing, and giving test prices in
newsletters to physicians [19]. The pathology department in Halifax provided written
feedback to individual primary care physicians about their orders for specific tests and a
25% reduction in orders was noted [20]. In a Canadian study [14], physicians were
provided feedback on their laboratory utilization rate along with peer-comparisons, and
as a result a reduction in inappropriate ordering by physicians was noted.

We note from pathology laboratory utilization management strategies that
addressing inappropriate test orders at the physician level can yield the highest impact
given the significant variability in the test ordering pattern of physicians despite them
treating patients with the same diagnosis. This alludes to physician’s discretionary
behaviour when ordering tests [3]—a behaviour that can be modified by providing
physicians with education, self-audit of test ordering profile [21] and peer comparisons.

3 AI-Driven Laboratory Utilization Management Approach

We are targeting laboratory utilization optimization at the primary care physician level
since they are the heaviest users of the pathology laboratory. To minimize inappropriate
testing, our strategy is to engage physicians to (a) self-examine their test ordering
pattern and its implications on laboratory utilization, (b) show how their laboratory
utilization compares with their peers, and (c) recommend essential follow-up tests.

We argue that peer comparisons are meaningful when a physician is compared with
similar physicians as opposed to all physicians. Typically, peer comparison of physi-
cian’s pathology test ordering profile is based on the type, volume and frequency of
tests they order [22]. However, such peer comparisons are inconclusive as it does not
consider the physician’s patient case-mix—i.e. if a physician is treating more elderly
patients with chronic kidney and cardiac conditions then a higher volume of CBC and
creatinine tests is not an inappropriate test ordering pattern; hence, they should not be
flagged as a high laboratory user compared to a physician treating younger patients.

To determine the laboratory overutilization by a physician, our approach is to gen-
erate a multi-faceted physician test ordering profile that takes into account: (i) patient
case-mix managed by the physician to justify the test orders based on medical necessity,
and in turn to allow a fair comparison with peers having a similar case-mix; (ii) test co-
occurrence pattern (i.e. order-sets) to determine the medical necessity of tests that are
frequently ordered simultaneously; (iii) temporal variations in ordering patterns to
account for seasonal needs, and also to detect changes in the physician’s knowledge and
guideline compliance over time, and (iv) geographical location of the physician to provide
a fairer comparison with peers practicing in the same health zone. Machine learning
methods, applied to a ‘big’ pathology laboratory order dataset, are used to generate a
physician ordering profile to determine laboratory overutilization by the physician.
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To handle laboratory underutilization by physicians our approach is to computerize
diagnostic testing rules, derived from clinical guidelines and domain experts, that
recommend follow-up laboratory tests that are essential for the diagnostic process in a
timely and safe manner. We use semantic web based ontologies and decision rules to
represent the test ordering protocols, and we apply logic-based reasoning to the deci-
sion rules to determine the follow-up tests based on the results of the ordered tests.

To engage physicians to perform a self-audit of their laboratory utilization, our
approach is to provide them a web-based interactive physician-specific scorecard that
they can securely access and privately view to examine their overall test ordering
profile and its implications on the provincial laboratory’s utilization.

4 Our Pathology Test Ordering Data

Our dataset comprises pathology test orders received by the Central Zone pathology lab
(in Halifax) during the period 2011–2017. We analyzed 15 general tests—i.e. PT, CBC
Auto Diff, Creatinine, Alkaline Phosphatase, Urea, Electrolyte Panel, AST, ALT, GGT,
Glucose AC, Glucose Random, Cholesterol, HDL Cholesterol, Triglycerides, TSH.
Note that a single test may comprise 1 or more procedures (i.e. the CBC test comprises
11 procedures, each generating an individual result), and a physician can order one or
more tests for a patient in a single test order. The dataset covers around 2000 physicians
and 250,000 patients. The annual breakdown of test orders is given in Table 1.

5 Data Analytics for Laboratory Utilization Management
to Minimize Laboratory Overutilization by Physicians

5.1 Data Clustering to Generate Physician Case-Mix Clusters

A tenet of our approach for minimizing overutilization of laboratory is to provide
physicians with a comparison of their laboratory utilization with that of their peers. The
key to peer comparison is that a physician is compared only with physicians that have a
similar practice and case-mix of patients, and not with all physicians in the province.

We used machine learning based clustering methods to generate groups of physi-
cians with similar case-mix of patients. Our dataset does not include the patient’s
diagnosis which is essential to determine a physician’s case-mix. Given that specific
tests are ordered to confirm the presence/absence of specific diseases, we can assume
that physicians having patients with specific diseases will order more tests associated
with those diseases and the test results will further confirm that the physician is treating
a patient with a specific disease. For instance, high abnormal values for the potassium
test and low abnormal values for the sodium and glucose AC tests are associated with

Table 1. Annual volume of general orders for 15 common tests.

2012 2013 2014 2015 2016 2017

1,447,798 1,481,788 1,567,964 1,569,422 1,583,671 1,679,531
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Addison’s disease. Thus, physicians treating a high number of patients with Addison’s
disease will order the potassium, sodium, and glucose AC tests in higher proportions
than a physician treating less patients with Addison’s disease. Building on existing
mappings between pathology tests and diseases, we developed a test-disease mapping
between 26 diseases and 40 pathology tests which were validated by pathologists.

To generate the dataset for clustering physicians based on their case-mix, we
retrieved the test orders of each physician for each of the 40 test types with their results,
and then applied the test-disease mapping to assign a plausible disease diagnosis to
each patient seen by a physician to determine his/her case-mix. We created ratios for
each disease by using the total of ordered tests per physician, and used the 26 disease
ratios along with physician attributes such as patient demographics, practice location,
test results, test frequency per patient, etc. to generate the input vector for physician
clustering. We standardized the data by centering (removing the mean) and scaling
(dividing by standard deviation) the 26 diseases (ratios) to ensure that each disease
contributes proportionately to determine similarity between two physicians. Next, we
applied metric Multi-Dimensional Scaling (MDS), a non-linear dimension reduction
approach, to reduce the inter-physician similarity from a 26-dimensional disease space
to a 2-dimensional space. We used the Partitioning Around Medoids method with the
Euclidian distance between physicians in the 2-dimensional MDS space to generate the
physician clusters. To select the optimal number of physician clusters, we used the
average silhouette width [23]. Based on the average silhouette widths, the best solution
was K = 4 clusters (average silhouette width of 0.36). Figure 1 shows the silhouette
widths of all physicians in the 4 clusters. Figure 2 shows the clusters of physicians on
the 2-dimensional space. The physician clusters were annotated and validated by
experts by comparing the inherent characteristics of physicians within a cluster. Since a
physician’s case-mix can vary over time, we also generated period-sensitive physician
clusters at a 2-year interval, thus allowing peer comparisons across a given period, and
across the overall study period (of 6 years). Our PLUS system applies the clustering
results to group physicians, based on their case-mix, for peer comparisons.

Fig. 1. Silhouette widths for the 4 clusters. Fig. 2. Clustering of physicians in 4 clusters.
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5.2 Association Rule Mining to Generate Test Order-Sets

We examine a physician’s order-sets to establish whether the high-volume of test
order-sets justify clinical need or that the physician was overprescribing tests, maybe
due to practice behaviour or lack of awareness of clinical guidelines. A frequent pattern
refers to a set of items appearing as a pattern beyond a pre-specified frequency
threshold. A frequent order-set illustrates a frequent pattern of tests ordered by a
physician in a single test order. To analyze a physician’s test ordering pattern—i.e.
which tests are ordered simultaneously and which tests are ordered for specific patient
groups. To generate frequent order-sets, we used the constrained association rule
mining method to generate n-order association rules (where n = 2–15 tests) based on
order frequency and test relevance at the physician cluster. To account for temporal
changes, we generated order-sets for 3-year periods (Tables 2 and 3 show the 14, 13,
12, 10, 7, 5, 3 order-sets).

When comparing the order-sets over the two 3-year time periods, we noted that in
general the most frequent order-sets remain the same over time—out of the 14 order-
sets (i.e. comprising 1–14 items), 7 order-sets remained the most frequent. This sug-
gests that the order-sets are well-defined with fluctuations in their ordering frequency
over time. The identified order-sets were implemented within the PLUS system as a
benchmark for a physician to compare his/her order-sets with peers, where the unit of
comparison is test order-set as opposed to individual test orders.

6 Knowledge-Based Analytics to Overcome Laboratory
Underutilization by Physicians

Underutilization of laboratory—i.e. physicians not prescribing tests that are needed, or
should be ordered as a follow-up to the earlier tests—leads to future increased labo-
ratory utilization, delays in proper treatments and compromises patient safety.

To handle laboratory underutilization, we devised an evidence-based reflex testing
strategy [24] that recommends (or “reflexes”) follow-up tests in response to results of
prior tests (shown in Fig. 3). We use knowledge-based analytics, employing semantic
web methods, to represent and execute reflex rules that suggest follow-up pathology

Table 2. Frequent order-sets at the regional
level for the period of Jul-2011 to Jun-2014

Table 3. Frequent order-sets at the regional
level for the period of Jul-2014 to May-2017
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tests to confirm a diagnosis (e.g. early diagnosis of pituitary dysfunction). Responding
to abnormal test results noted for certain elements (such as abnormal patterns of basal
pituitary hormones), our reflex testing strategy [24] firstly identifies additional reflec-
tive pathology tests, and then directly conducts the follow-up tests if the patient’s
existing blood sample can be used, or recommends the tests to the patient’s physician.

To implement our reflective testing strategy, we developed an OWL ontology and a
set of Description Logics (DL-safe) rules. We used the Protégé ontology engineering
tool to construct the Reflex ontology and rules and utilized Hermit reasoner [25] for
implementing the reasoning process. We explain reflex testing and its knowledge-based
implementation using the example of diagnosing pituitary dysfunction. Based on
pathology test results, as first step of our strategy we apply a set of context-sensitive
ReflexRules to identify abnormal patterns in the pathology test results. For instance, the
following rule “reflexes” when finding tests for women over 55 with a measurement of
FSH (Follicle Stimulating Hormone) under 15:

Female ? pð Þ ^ age ? p; ? að Þ ^ ? a� 55 ^ test ? p; ? tð Þ ^ hormone ? t;FSHð Þ^
outcome ? t; ? fshð Þ ^ ? fsh\15 ! reflexed ? t;ReflexRule1ð Þ

Note that, ReflexRule1 is associated with a set of exclusion rules—based on clinical
information, such rules exclude special cases from consideration. Following our
example, this rule excludes cases where the patient is pregnant, or on HCT or HRT
(Hormone Contraception/Replacement Therapy):

Patient ? pð Þ ^ test ? p; ? tð Þ ^ reflexed ? t; ? rrð Þ ^ hasExclusion ? rr; ? exclð Þ^
? excl ¼ ExclRule31 ^ isPregnant ? p; trueð Þð Þ_
? excl ¼ ExclRule32 ^ followsTherapy ? p;HRTð Þð Þ_
? excl ¼ ExclRule33 ^ followsTherapy ? p;HCð Þð ÞÞ ! excluded ? p; ? exclð Þ

Fig. 3. Reflex strategy to identify abnormal lab result patterns and suggesting reflective testing.
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Once abnormal test patterns are identified and special cases are excluded, Reflex-
Rule1 suggests a series of reflective tests to confirm pituitary dysfunction; e.g., mea-
suring Thyroid Stimulating Hormone (TSH) and Free Thyroxine (FT4). Once results
from these new tests are available, a set of FollowupRules, related to the initial
ReflexRule1, check whether follow-up with an endocrinologist is recommended. For
instance, the below rule recommends follow-up if TSH is non-raised and FT4 is low:

Patient ? pð Þ ^ test ?p; ?tð Þ ^ reflexed ? t; ? rrð Þ ^ hasFollowup ? rr;FollowupRule1ð Þ^
reflexTest ? p; ? rt1ð Þ ^ hormone ? rt1; TSHð Þ ^ outcome ? rt1; ? tshð Þ ^ NonRaised ? tshð Þ
^ reflextTest ? p; ? rt2ð Þ ^ hormone ? rt2;FT4ð Þ ^ outcome ? rt2; ? ft4ð Þ ^ Low ? ft4ð Þ
! followup ? p;FollowupRule1ð Þ

As future work, we target to link our reflex testing strategy via PLUS with the LIS’s
clinical pathway to recommend and conduct appropriate reflective pathology tests,
based on the latest evidence and test results, to aid in accurate and early diagnosis.

7 Visualization of Laboratory Utilization: The PLUS System

PLUS implements a web-based health data analytics system using machine learning
methods [26, 27] for laboratory utilization management (shown in Fig. 4).

Advance data visualization has been implemented for users to dynamically interact
with the data analysis. PLUS provides a web-based (a) scorecard for physicians to
understand their own test ordering profile over time and across different patient cohorts,
and to compare their laboratory utilization (adjusted to case-mix) with similar peers.
The scorecard presents physician’s laboratory utilization in terms of abnormal results,
test volumes and frequency over time, peer comparisons, cost incurred, case-mix and

Fig. 4. PLUS functional architecture
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the rate and cost of inappropriate test orders. The physician’s scorecard is private and
cannot be viewed by practice auditing bodies; and (ii) dashboard for laboratory
managers provides broad operational intelligence by aggregating the patient-level
analytics to the regional level, displaying tests ordered, completion rates and flagged as
inappropriate.

We present a working example of PLUS use by a physician. Figure 5 illustrates the
opening page of a physician’s scorecard. The date selector (not shown) allows the
physicians to select specific year(s) or quarter(s) within a year, following which the
right-hand side visualizations are dynamically updated to show volume of tests ordered
and the rate of abnormal and normal results. Physicians can hover over a visualization
to get additional information. Figure 6 shows the physician’s scorecard with peer
comparisons (on a yearly basis) across all tests, with options for filtering the order-tests.

Fig. 5. Physician scorecard main page

Fig. 6. Physician scorecard showing peer comparison across tests over a 6-year window
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8 Concluding Remarks

As health care transitions from volume- to value-based care, there is an increasing need
for efficient and effective laboratory utilization by physicians. In this paper, we pre-
sented an innovative and sustainable laboratory utilization management approach, tar-
geting physicians, that leverages (a) data analytics methods to develop and understand
each physician’s test ordering profiles; and (b) data visualization techniques to display
the physician’s test ordering pattern as an interactive scorecard so that they can self-audit
and -regulate their test ordering behaviour. We posit that given healthcare budgetary
pressures and increasing test volumes, our sustainable, data-informed and physician-
engaged approach will help to minimize inappropriate laboratory utilization, improve
sustainability of the laboratory operations, and achieve value-based care. PLUS is being
implemented to optimize test utilization at the Central Zone pathology laboratory in
Nova Scotia. As literature estimates that a minimum of 25% of tests are inappropriately
ordered [1–3], we believe that the utilization of Central Zone laboratories (in Halifax)
can potentially be reduced by 2 million tests annually from the 8 million currently
performed, leading to huge cost savings and improved patient safety.

Acknowledgements. We thank the NSHA Central Zone pathology lab for supporting the
project, and Nova Scotia Health Research Foundation for giving the catalyst grant.
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Abstract. Identification of patient subgroups is an important process
for supporting clinical care in many medical specialties. In psychiatry,
patient stratification is mainly done using a psychiatric diagnosis follow-
ing the Diagnostic and Statistical Manual of Mental Disorders (DSM).
Diagnostic categories in the DSM are however heterogeneous, and many
symptoms cut across several diagnoses, leading to criticism of this app-
roach. Data-driven approaches using clustering algorithms have recently
been proposed, but have suffered from subjectivity in choosing a number
of clusters and a clustering algorithm. We therefore propose to apply clus-
ter ensemble techniques to the problem of identifying subgroups of psy-
chiatric patients, which have previously been shown to overcome draw-
backs of individual clustering algorithms. We first introduce a process
guide for modelling and evaluating cluster ensembles in the form of a
Meta Algorithmic Model. Then, we apply cluster ensembles to a novel
cross-diagnostic dataset from the Psychiatry Department of the Univer-
sity Medical Center Utrecht in the Netherlands. We finally describe the
clusters that are identified, and their relations to several clinically rele-
vant variables.

Keywords: Cluster ensembles · Mental healthcare · Psychiatry ·
Patient subgroups · Patient stratification · Applied data science

1 Introduction

Identification of patient subgroups is an important process that is able to guide
clinical treatment in many medical specialties. In psychiatry, the main construct
for stratifying patients is a psychiatric diagnosis, typically performed using the
Diagnostic and Statistical Manual of Mental Disorders (DSM). This manual
describes various high level disorders such as depressive disorders, anxiety dis-
orders, and developmental disorders, with sub-types for each category. It defines
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clear diagnostic criteria based on symptoms—a major depressive disorder for
instance can only be diagnosed after eight symptoms have been assessed, includ-
ing depressed mood, weight loss, fatigue, and inability to concentrate, and at
least five were observed in a two-week period. While the DSM is by far the most
widely adopted standard for diagnosis, in recent years its rigid approach has
been subject to criticism. Research for instance shows that the DSM has little
biological validity (i.e. lack of connection to biomarkers), that diagnostic cate-
gories are not specific (i.e. large heterogeneity exists within groups), and that
symptoms often cut across diagnostic categories [4].

This critique on the DSM has seeded data-driven approaches that seek inter-
esting subgroups using relevant datasets rather than using expert elicited cri-
teria. For this purpose, various clustering algorithms that are able to discover
latent subgroups have been applied to patient data. One major downside of a
clustering approach however is the need to select an appropriate number of clus-
ters and an appropriate clustering algorithm, which both have been shown to
provide challenges for researchers [12]. The majority of studies rely on a single
metric for choosing the right number of clusters, and subsequently apply a single
clustering algorithm [14], while both choices can have significant impact on the
results that are obtained. Consequently, as of yet no consensus exists on either
the number or nature of psychiatric patient subgroups that can be derived in
this data-driven way.

In this work we therefore propose to apply cluster ensembles, i.e. combina-
tions of multiple clustering algorithms, to this problem. This enables identifica-
tion of distinct subgroups that can directly inform treatment, while overcoming
the downsides of individual clustering algorithms. Previous work has already
shown that cluster ensembles often improve robustness, stability and accuracy
over individual clustering algorithms, both in general and in the medical domain,
yet this approach is still rare in mental healthcare research [8,22].

The contribution of this work is twofold. First, we present a process guide for
modelling and evaluating cluster ensembles in the form of a Meta Algorithmic
Model, as introduced in [20]. This guide aims to support researchers in applying
cluster ensembles in their particular (medical) domain. Second, we apply a clus-
ter ensemble approach to a novel cross-diagnostic dataset of 1,098 Youth Self
Report (YSR) questionnaires of adolescents that were treated at the University
Medical Center Utrecht in the Netherlands. Since these questionnaires were rou-
tinely captured during treatment, using them to identify patient subgroups, if
present, can have direct applicability in the psychiatric practice [16,17]. After
applying the cluster ensemble approach, we examine key characteristics of the
clusters we obtained, and assess their relation to several clinically relevant vari-
ables including DSM diagnosis.

2 Background and Related Work

Clustering algorithms have previously been used in mental healthcare research
for stratifying patients with a common psychiatric diagnosis, such as schizophre-
nia, depression, or autism [14]. The number of clusters ranges from two to seven,
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typically selected based on a single measure such as Bayesian Information Cri-
terion or Ward’s method. Most researchers then apply one algorithm to their
dataset, such as K-means Clustering, Hierarchical Clustering, or Latent Class
Cluster Analysis. Clusters of various natures have been found, for instance based
on differences in symptoms [5], treatment outcome and onset [3], and patient
functioning [6]. A smaller number of studies focused on stratifying patients in
a cross-diagnostic setting. A study by Olinio et al. for instance found six sub-
types differing in presence of depression, anxiety, or a mixture of both [18], while
Lewandowski et al. reported a neuropsychologically normal subtype, a globally
impaired subtype, and two mixed cognitive profiles [13], and Kleinman et al.
found a cluster with diminished sustained attention, inhibitory control and vig-
ilance, and increased impulsiveness, and a second converse cluster [11]. So far,
cluster ensembles have only been applied once in mental health research in a
study by Shen et al. who used this technique to identify four subtypes of perva-
sive developmental disorders [19]. They reported differences in severity, in prob-
lems with language acquisition and impairment, and in aggressive behaviour.

To reduce variability in clustering outcomes, such as for example described
above, cluster ensembles were proposed based on the principle that multiple weak
partitions in combination can provide a more accurate and objective outcome
than a single strongly optimized clustering [7]. This is analogous to ensemble
learning techniques such as Boosting and Random Forests in the supervised
domain. First, during the generation stage, a number of diverse partitions are
obtained, ideally with strengths and weaknesses in different parts of the solution
space [8]. This is for instance achieved by using multiple clustering algorithms
and different algorithm parameters, by subsetting data, and by projecting data
to subspaces [22]. The result of the generation stage on a dataset X = {xi, ..., xn}
with n observations is a partition set P = {p1, ..., pm} of m partitions, where
each pi = {Ci

1, ..., C
i
k} assigns every observation to a single cluster Ci out of k

clusters. In the subsequent consensus stage, an optimal partitioning is obtained
using partition set P . Various procedures have been proposed based on object co-
occurrence in clusters, such as majority voting [23], or the graph-based Cluster-
based Similarity Partitioning Algorithm (CSPA) [21]. Another type of approach
finds the median partition in p∗ ∈ P , for instance defined as the partition that
maximizes similarity with all other partitions in P [24]. Cluster ensembles have
recently successfully been applied in several biomedical domains [2].

3 Meta Algorithmic Model

To support researchers in applying cluster ensembles to their (medical) domain,
we propose a Meta Algorithmic Model (MAM) of cluster ensemble modelling
and evaluation (Fig. 1). Our MAM is an extension of the original work of Spruit
and Jagesar [20], that was aimed at supervised learning tasks. In their words,
MAMs are intended to provide “highly understandable and deterministic method
fragments — i.e. activity recipes — to guide application domain experts with-
out in-depth Machine Learning expertise”. Method fragments are specified as a
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combination of a Unified Modelling Language (UML) activity diagram showing
processes, and a UML class diagram showing concepts.

The cluster ensemble modelling process, shown on the left of Fig. 1, starts
with loading a prepared dataset. Then, in the generation stage multiple methods
for introducing diversity in the cluster portfolio are used, including observation
and feature sampling, choosing clustering algorithms and selecting a number of
repetitions. After a number of clusters and a distance measure are selected, the
cluster portfolio is created. In the subsequent consensus stage a consensus func-
tion should be selected, and weak partitions can be trimmed from the cluster
portfolio. During the evaluation stage, internal index criteria (e.g. Carlinski-
Harabasz, Silhouette) can be evaluated, and clusters can be visualized after
applying a dimension reduction algorithm to the dataset. Cluster characteristics
can be identified based on the cluster assignments of the dataset, and an exter-
nal evaluation (e.g. using expert evaluation, or comparison to a reference class)

Fig. 1. Method fragment of the Meta Algorithmic Model for cluster ensemble modelling
and evaluation.
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can finally be performed. The class diagram on the right of Fig. 1 shows which
concepts need to be instantiated in relation to each process step.

4 Applying Cluster Ensembles

4.1 Dataset

We applied the cluster ensemble modelling approach in Fig. 1 to a novel cross-
diagnostic dataset of adolescent patients who were treated at the Psychiatry
Department of the University Medical Center Utrecht in the Netherlands. The
dataset consisted of Youth Self Report (YSR) questionnaires, a standardized
checklist aimed at adolescents. It consists of 112 items in the form ‘I am/have/feel
symptom/behaviour ’, which a respondent can indicate as ‘not true’, ‘somewhat
or sometimes true’, and ‘very true or often true’. The YSR defines eight outcome
scales by summing responses of specific item subsets: (1) Anxious depressed, (2)
Withdrawn depressed, (3) Somatic complaints, (4) Social problems, (5) Thought
problems, (6) Attention problems, (7) Rule breaking behaviour, and (8) Aggres-
sive behaviour. We dismissed 50 reports with more than five percent out of
112 items missing, and for the remaining YSRs imputed missing values with
the median score of that item. If multiple reports of a patient were present
(n = 175), we used only the first report, under the assumption that treatment
effect is smallest at this point. Our final dataset consists of 1,098 YSRs. The
mean age of respondents was 14.7 years (SD = 2.2), and 44.5% of respondents
were female.

For cluster ensemble modelling, we used the eight outcome scales of the YSR
as input data. Since these scales have a non-arbitrary zero value (i.e. absence of
any symptoms), we chose to analyse them as ratio scales, using Euclidean dis-
tance, implicitly assuming equidistant item scores. Since the outcome scales are a
sum of individual items measured on an ordinal scale, they could also be regarded
as ordinal scales themselves. However, this distinction is often relatively unim-
portant in practice, especially when performing clustering [9]. Analysing these
data as ratio scales furthermore allows a larger variety of clustering algorithms
to be applied to this dataset, most likely improving clustering outcomes.

4.2 Cluster Ensemble Modelling

One risk of performing cluster analysis is obtaining clusters, while no natural
grouping exists in a dataset. For this purpose, we computed the Hopkins statistic
as a measure of clustering tendency [1]. This statistic is computed from a dataset
X with n observations by creating a sample Y ⊆ X, and a set of uniform
randomly sampled points U , with U and Y both of size m � n. Then, let qi be
the distance of ui ∈ U to its nearest neighbour in X, and let pi be the distance
of yi ∈ Y to its nearest neighbour in X, according to some distance measure d.
The Hopkins statistic is finally given by:

H =
∑m

i=1 qi∑m
i=1 pi +

∑m
i=1 qi

(1)
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Fig. 2. Partitions of the dataset after applying Principal Component Analysis, both
based on single algorithm (a–c), and combined in Cluster Ensemble (d).

Fig. 3. Median YSR outcome scale value for each of the three identified clusters.

The Hopkins statistic ranges from 0 (uniformly distributed data), to 0.5 (ran-
domly distributed data) to 1 (highly clusterable data). Computing this statistic
for our dataset using Euclidean distance obtains H = 0.71. No definitive cut-
off for cluster tendency has been established, but a value between 0.5 and 1 is
regarded as indicative for high likelihood of significant clusters.

Next, an appropriate number of clusters k should be selected. Rather than
rely on a single measure for determining this number, we used the R package
NbClust, which computes 26 internal validity indices for several values of k, and
proposes an optimal number of clusters based on a majority vote. We computed
the validity indices in combination with both K-means clustering and hierarchical
clustering, and set the number of clusters between two and seven. The majority
vote shows that the optimal number of clusters k = 3 for our dataset, which we
will use in all following steps.

For application of the cluster ensemble to our dataset, the R package DiceR
was used, which implements various cluster ensemble techniques. In order to
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find an appropriate subset of algorithms, we applied each of the twelve imple-
mented algorithms with their standard settings to the dataset. We then selected
three algorithms that obtain different partitions of the dataset, based on two-
dimensional Principal Component Analysis (PCA) plots. These are the K-means
algorithm (Fig. 2a), which minimizes the within-cluster sum of squares using
an iterative approach, a Gaussian Mixture Model (Fig. 2b), which models the
dataset with a mixture of multi-dimensional Gaussian probability distributions,
and the Affinity Propagation algorithm (Fig. 2c), which approaches a dataset as
a network in which data points communicate with all other points.

To obtain a diverse cluster portfolio, we used five reruns for each of the three
clustering algorithms with a random subset of 80% of all data. The number of
clusters k is fixed to three, as determined previously. We trimmed the cluster
portfolio using a Rank Aggregation method: all partitions were ranked based on
several internal validity indices, and the 75% highest partitions were retained.
We finally used the Cluster-based Similarity Partitioning Algorithm (CSPA) to
obtain a single clustering based on the cluster portfolio (Fig. 2d). All analysis
code is made publicly available on GitHub1.

5 Cluster Evaluation

Applying the cluster ensemble method to our dataset results in three clusters,
which contain respectively 55.5%, 32.1%, and 12.5% of observations (Fig. 2d).
The ensemble clustering shows strongest similarity with the Gaussian Mixture
model, with some differences in the two smallest clusters, and greater differences
with the K-means and Affinity Propagation partitions. To assess statistical sig-
nificance of the three clusters found by the cluster ensemble approach, we used
the sigClust method [10] which tests against a null hypothesis of all data being
from a single Gaussian distribution. This results in p = 0.01 when applied to
our dataset, indicating presence of significant clusters at the α = 0.05 level.

Figure 3 shows the median value of the eight YSR scales over the three clus-
ters, where distinctions among the three clusters can be observed. Cluster 1, the
largest cluster, has the highest overall scores, especially in the two depressed
scales (1–2). Values of other scales are among the highest as well in Cluster 1,
with Rule Breaking Behaviour being the lowest item. Clusters 2 and 3 on the
other hand generally have lower scores, with equal median outcomes on the Anx-
ious depressed, Withdrawn depressed, and Somatic problems scales (1–3). For
the other five scales, Cluster 2 shows higher outcomes. For the Rule Breaking
Behaviour and Aggressive Behaviour scales (7–8), Cluster 2 shows higher median
values than Cluster 1 as well.

To identify clusters’ distinguishing characteristics, we integrated clinical
notes from the EHR, i.e. pieces of text written by caregivers about treatment,
that were de-identified using the DEDUCE method [15], in the two weeks sur-
rounding YSR response. We extracted the 1000 most frequent terms from these
texts, and computed the Spearman correlation coefficient for each term and
1 http://www.github.com/vmenger/cluster-ensembles.

http://www.github.com/vmenger/cluster-ensembles
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each of the three clusters vs the other two clusters. A psychiatrist then selected
three informative terms among those with the highest positive correlation coef-
ficients. For Cluster 1, the selected terms are depressive, dejected, and suicidal,
which is in line with high scores in the two depressed scales. For Cluster 2, the
terms behavioural problems, adhd (attention deficit hyperactivity disorder), and
distracted are identified, which is in line with high scores on the Attention Prob-
lems and Aggressive Behaviour scales. For Cluster 3, these terms are speech,
verbal, and individual. Based on these terms and Fig. 3, we describe Cluster 1
as ‘depressive symptoms’, and Cluster 2 as ‘behavioural problems’. A compre-
hensive description of Cluster 3 is less evident, we therefore describe it as ‘low
severity’.

Table 1 shows the three clusters versus the main DSM diagnosis, which had
been made definitive within 12 weeks of YSR response for a subset of 665
patients. The most common diagnosis for the three clusters respectively are
Anxiety Disorder, Attention Deficit Disorder, and Pervasive Developmental Dis-
order (PDD). Diagnoses are typically present in several clusters, although they
are usually most prominent in one single cluster, with the exception of PDDs.

Table 1. Main DSM diagnoses per cluster, if finalized within 12weeks.

Disorder Cluster 1 Cluster 2 Cluster 3 Total

Anxiety disorder 76 (19.2%) 7 (3.5%) 13 (18.3%) 14.4%

Developmental disorder

Attention deficit disorder 39 (9.8%) 82 (41.4%) 10 (14.1%) 19.7%

Pervasive developmental disorder 103 (26.0%) 51 (25.8%) 24 (33.8%) 26.8%

Other 15 (3.8%) 15 (7.6%) 2 (2.8%) 4.8%

Eating disorder 10 (2.5%) 2 (1.0%) 3 (4.2%) 2.3%

Mood disorder 65 (16.4%) 13 (6.6%) 7 (9.9%) 12.8%

Psychotic disorder 24 (6.1%) 7 (3.5%) 4 (5.6%) 5.3%

Personality disorder 27 (6.8%) 1 (0.5%) 0 (0.0%) 4.2%

Other 37 (9.3%) 20 (10.1%) 8 (11.3%) 9.8%

Total 396 (100%) 198 (100%) 71 (100%) 100%

We finally integrate several clinically relevant variables, including Global
Assessment of Functioning (GAF) score at start and end of treatment, a seven-
point burden of disease indicator, and length of treatment (Table 2). Although
Cluster 1 has the highest overall YSR outcome scale scores, the GAF scores
both at start and end of treatment are relatively low. The difference between
these groups are assessed with a Kruskal-Wallis one-way analysis of variance
test. Results show that significant differences in GAF score at start and end
of treatment and in length of treatment exist at the α = 0.05 level, but not in
burden of disease. This indicates that clusters do not only differ in YSR outcome
scales, but also in variables that are relevant in clinical practice.
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Table 2. Average value of clinically relevant variables per cluster. P-value is assessed
using a Kruskal-Wallis test, * indicates significance at the α = 0.05 level. GAF =
Global Assessment of Functioning.

Variable Cluster 1 Cluster 2 Cluster 3 P-value

GAF at start of treatment 45.9 50.0 46.0 0.008*

GAF at end of treatment 53.6 56.7 51.5 0.012*

Burden of disease 4.5 4.5 4.8 0.550

Length of treatment (days) 132.6 175.3 160.7 0.003*

6 Discussion and Conclusion

In line with previous research, our results point out that different clustering algo-
rithms indeed obtain different partitions. Cluster ensembles are a useful method
to overcome such issues. By applying our proposed cluster ensemble approach to
a dataset of YSR questionnaires, we obtained three distinct patient subgroups.
Patients with the same DSM diagnosis are typically represented in multiple clus-
ters, indicating that the three clusters are to some extent a novel stratification
of adolescent patients. We furthermore identified significant differences in GAF
both at start and end of treatment, and in length of treatment. Although abso-
lute differences among clusters are modest, this shows that patient subgroups
do not only differ in the YSR outcome scales.

The clustering outcomes of this study are limited by both the type of data
and the specific patient population that reported it. The dataset includes eight
outcome scales that are general, but may not capture all dimensions of patient
well-being, and whether the clusters we obtained generalize to other populations
should be the topic of further research. The main contribution of this research
however lies in the cluster ensemble approach, and the process guide introduced
with the Meta Algorithmic Model. Such cluster ensemble approaches are able to
eliminate one source of variance in reported psychiatric patient subgroups, and
can thereby in the future contribute to the identification of a more robust and
objective stratification of psychiatric patients.
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Abstract. Parkinson’s disease (PD) is a neurodegenerative disease
characterized by a variety of symptoms. Clinicians studying movement
disorders have tried to connect the variability of symptoms to under-
lying subtypes of PD, the two most common being tremor dominant
(TD) and postural instability and gait difficulty dominant (PIGD). This
paper investigates the connection between the Parkinson’s disease PIGD
and TD subtypes, and patients’ symptoms progression. We present a
set of symptoms closely related to each subtype as well as the patients’
statuses that indicate a switch in subtype classification. Detection of
patients’ symptoms that possibly lead towards subtype change can con-
tribute to the more personalized treatment of PD patients. The results of
experiments on Parkinson’s Progression Markers Initiative (PPMI) data
suggest the connection of the PIGD subtype to non-motor symptoms
associated with decreased quality of life.

1 Introduction

Patients suffering from Parkinson’s disease (PD) experience a variety of symp-
toms whose severity can significantly affect the quality of life of both the patients
and their families. As a step to better understanding the illness, the clinicians
have tried to connect the variability of symptoms to some underlying subtype(s)
of PD. The commonly used subtype classification, proposed by Jankovic et al.
[2], is the division of PD patients into the tremor dominant (TD), postural insta-
bility and gait difficulty (PIGD), and indeterminate (Indeterminate) subtypes.

The classification of PD patients in the TD/PIGD subtypes can be derived
from the assessment of patients’ symptoms severity using the well-established
MDS-UPDRS scale [5]. Classification into TD and PIGD is actually based on
the calculation of the ratio of the TD and the PIGD scores. Usually, the classi-
fication into PIGD/TD subtypes is done only at the beginning of the patient’s
c© Springer Nature Switzerland AG 2019
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diagnostic/treatment process. However, this classification can change as the dis-
ease progresses and the patient’s symptoms are affected by both the natural
progression of the disease and their symptomatic treatment.

The definition of consistent subtypes of PD is still an open issue and is key
to better understand the underlying disease mechanisms, predict disease course,
and design clinical trials [1]. To better understand the properties of the current
subtype categorization, this paper investigates how the PIGD/TD subtypes are
related to the several aspects of experiences of daily living of PD patients. We
investigate which non-motor symptoms are closely related to each subtype and
which symptoms mostly influence the change of subtype classification between
two consecutive patient’s visits to their clinician.

The paper is structured as follows. Section 2 presents the data used in the
analysis. Section 3 presents the proposed methodology and Sect. 4 outlines the
experimental results, followed by the conclusions and plans for further work
outlined in Sect. 5.

2 Data

In this paper, we use clinical data from the Parkinson’s Progression Markers
Initiative (PPMI) data collection [3]. The PPMI data collection records data for
over 400 PD patients, involved in the study for up to 5 years. During their involve-
ment, the patients made regular visits on every 3–6 months to their assigned
clinicians where their symptoms are assessed. The clinical data used in our work
was gathered using several standardized questionnaires:

– MDS-UPDRS (Movement Disorder Society-sponsored revision of Unified
Parkinson’s Disease Rating Scale) is the most widely used, four-part ques-
tionnaire (65 questions) addressing both motor and non-motor aspects of the
patients’ life.

– MoCA (Montreal Cognitive Assessment) is a rapid screening instrument for
mild cognitive dysfunction.

– SCOPA-AUT (Scales for Outcomes in Parkinson’s disease - Autonomic) is a
specific scale for assessing autonomic dysfunction in PD patients.

– PASE (Physical Activity Scale for the Elderly) is a questionnaire which is a
practical and widely used approach for physical activity assessment in epi-
demiological investigations.

Answers to the questions from each questionnaire form the vectors of
attribute values. All of the considered questions have ordered values, and—with
the exception of questions from MoCA and PASE—increased values suggest
higher symptom severity and decreased quality of life.

The classification of patients into the PIGD/TD subtypes is done in accor-
dance with the guidelines for PIGD/TD classification using the patients’ MDS-
UPDRS scores, where the PIGD/TD subtype classification of patients is depen-
dent on the ratio between the TD score and the PIGD score. The TD score
reflects the mean severity of symptoms describing different types of tremors.
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The PIGD score reflects the mean severity of symptoms concerning patients’
gait and postural instability. Detailed information about the relevant symptoms
and the ratio boundaries used for subtype classification is available in [5].

3 Methodology

In the PPMI data collection the patients’ symptoms were regularly updated
during their visits to their clinicians. In our study, we transformed the original
PPMI data set into a set of 1,345 instances, each identifiable as a pair (pi, vij),
where pi is the identification of a patient, and vij identifies the j-th visit the i-th
patient has made to the clinician. Each instance (pi, vij) is a record of all the
symptoms severity assessments for patient pi on their j-th visit.

As the patients’ symptoms change over time as a reaction to the natural
progression of the disease and their symptomatic treatment, we expect their
assigned subtype to change over time. With the aim to investigate how the
PIGD/TD classification of PD patients is connected to their overall quality of
life, we investigate which symptoms are important for the classification of an
instance as PIGD or TD. In this work we also investigate which symptoms
influence the change of patients’ subtype classification between two consecutive
visits. The methodology is composed of consecutively applying two methods.

– Since the classification into subtypes is based only on motor symptoms, while
the patients’ overall status actually depends on the severity of both the motor
and non-motor symptoms, we are interested in finding out which non-motor
symptoms affect the classification of an instance (pi, vij) into subtype PIGD
or TD. To study the influence of non-motor symptoms on the classifica-
tion of instances as PIGD/TD we applied the EXPLAIN methodology [4],
which decomposes the classification model into the individual contribution of
attributes using weighted evidence (WE). We used the random forest as the
classifier.

– Since we hypothesize that there is a connection between the patients’ overall
status and their subtype classification, the improvement or degradation of the
patient’s overall status or their subtype classification will share a subset of
influential symptoms. To investigate the symptoms’ influence on PD subtype
change, we used our previously proposed methodology [6], where influential
symptoms are detected as those whose severity changes most frequently as
the PD subtype changes. The calculation of influential symptoms is done for
all symptoms identified in Sect. 2.

4 Results

Figure 1 outlines the importance of non-motor symptoms for classifying an
instance as PIGD. The blue lines suggest attributes’ positive influence towards
classifying an instance as PIGD. The red lines indicate the opposite. The results
show that patients, classified as PIGD, experience also non-motor symptoms
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Fig. 1. Non-motor symptoms importance for the classification of instances as PIGD.
Classification model: random forest, method: EXPLAIN, type: WE. (Color figure
online)

indicating a declined quality of life (NP1FATG - fatigue, NP1LTHD - lighthead-
edness, NP1CONST - constipation, NP1APAT - apathy, etc.).

Table 1 presents the top 5 attributes whose severity improved or worsened
most frequently when a subtype change between two consecutive patient’s visits
was detected. We present the lists of most influential symptoms for subtype
change from PIGD to TD, and from TD to PIGD, respectively.

The results are not surprising. When the patients’ subtype changes from
PIGD to TD, the most obvious improvement is noted in symptoms that are rep-
resentative of PIGD: gait, stability, apathy. At the same time, there is worsening
of many types of tremor, i.e. the symptoms that are significant for the classifi-
cation of TD. Constancy of rest, hand pronation/supination, urinary problems,
and fatigue are among the most influential symptoms for subtype change and
are also among the ones most affected by the changes of the patients’ overall
status, as defined in [6]. This is an indication of the possible association between
the subtype classification and the overall quality of life of Parkinson’s disease
patients. On the other hand, when the subtype classification between two vis-
its has changed from TD to PIGD, the symptoms that have most frequently
improved are various types of tremor, which are highly associated with subtype
TD. When the patient’s subtype has changed to PIGD, patients most frequently
experience increased severity of their gait, fatigue, speech, stability symptoms,
and also their inability to commit time to their hobbies.
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Table 1. Top 5 symptoms with most frequently improved/worsened severity when a
subtype change is detected between two consecutive visits, uncovered using the method
presented in [6]. Symptoms are ordered according to their influence, in descending order
of influence. For readability, symptoms descriptions are used without PPMI codes.

Subtype change Symptoms improvement Symptoms worsening

From PIGD to TD Gait Constancy of rest

Saliva Resting tremor

Stability Tremor

Apathy Hand pronation/supination

Lightheadedness Urinary problems

From TD to PIGD Resting tremor Gait

Constancy of rest Fatigue

Postural tremor Speech

Kinetic tremor Stability

Tremor Hobby

5 Conclusion

This paper investigates the connection between the subtypes of PD patients
and the progression of patients’ symptoms. It combines two methodological
threads to (a) explore the influence of non-motor symptoms on the classifica-
tion of patients as PIGD and (b) to investigate the symptoms influence on the
change of patients’ subtype classification between two consecutive visits. The
experimental results reveal a subset of non-motor symptoms whose increased
severity is associated with both the PIGD classification and the declined quality
of life of patients. The comparison of our results to previous research has also
identified a subset of symptoms with high influence on the change of patients’
subtype and the change of the patients’ overall status.

In further work, we will take advantage of patients’ MR and medication
treatment data to improve subtype classification.

Acknowledgments. We acknowledge the support of the Slovenian Research Agency
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Abstract. Antibiotic resistance in hospitals is a general problem whose
solution includes the adaptation of antimicrobial therapies to the local
epidemiology. The identification of groups of the population with a com-
mon phenotype (by means of their clinical histories) is essential if a
hospital is to establish a policy regarding antibiotics. Descriptive pat-
tern mining is effective when carrying out exploratory analyses, such as
the design of clustering and subgroup algorithms in order to generate
groups of interest. However, the researchers have paid little attention
to how these types of algorithms are combined and supervised in med-
ical research. We believe that the implication of clinicians in the pro-
cess, the interpretability of algorithms and patient traceability of the
results obtained are also key requirements. In this work, we propose:
(1) to adapt well-known clustering algorithms in order to identify sub-
groups of patients and (2) a man-in-the-loop methodology so as to carry
out this task, thus fulfilling the abovementioned requirements. This pro-
posal is evaluated in the context of a hospital’s antimicrobial stewardship
problem.

1 Introduction

The characterisation and identification of groups of patients of special interest
(phenotype) is a core issue in medical research [7]. For example, the loss of
efficacy of antibiotics in antimicrobials is a growing problem, which requires not
only global actions but also local measurements in hospitals [1]. In this context,
subgroups of patients with a common unexpected response to antibiotics could
be identified in order to review specific administration protocols.

In Machine Learning, the exploratory analysis of datasets is confronted using
descriptive pattern-mining approaches. In unsupervised learning, traditional
clustering methods divide the dataset into groups (clusters), thus establishing a
partition. In supervised learning, Subgroup Discovery (SD) is a relatively new
approach whose purpose is to find subgroup patterns when given an attribute
target and (often) a rule format to represent those patterns [6]. Tailored algo-
rithms has recently been used to solve medical subgrouping [5].
c© Springer Nature Switzerland AG 2019
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However, little attention has been paid to how pattern-mining methods are
adapted in practical medical research. In particular, we have identified two fun-
damental issues that should be dealt with. First, the difficulty involved in stating,
a-priori, the attributes of interest and the scarce availability of inter-department
hospital data limits the quality of patterns (rules) found. In this respect, clini-
cians carry out a post-mining task to trace patients’ records in order to evaluate
their clinical relevance. Second, the trust placed in the mining method is still an
open problem in the clinical community. The use of interpretable outcomes, the
methods themselves and the implication of the clinicians in the process (man-
in-the-loop) are necessary in order to resolve this problem [3].

2 Trace-Based Clustering

Our objective is to discover and evaluate subgroups of patients, while combining
machine learning (ML) techniques and the involvement of the medical experts
in the process, and we, therefore, propose the use of trace-based clustering. In
particular, we deal with the subgroup discovery problem by considering unsu-
pervised learning.

The proposal has two parts: we propose (a) an algorithm that extends well-
known clustering techniques and (b) a methodology based on the man-in-the-
loop strategy in order to select the best candidates from the clinical point of
view.

Formal Aspects. We propose to tackle the patient subgroup discovery prob-
lem for unlabelled data by combining clustering algorithms. Our proposal is
based on the simple idea of considering interesting subgroups as elements that
often/always remain together in different clusters when executing clustering algo-
rithms iteratively. This proposal is, therefore, based on the evaluation of clusters
between different partitions of the same dataset. The fundamental concepts of
the proposal are the following:

Def. Partition (Cx): given a dataset C, Cx is a partition of C if Cx ⊆ P(C)
with |Cx| = x where Cx = {Cx1, . . . , Cxx} and Cx1 ∪ . . . ∪ Cxx = C.

Def. Cluster (Cxi): the elements of partition Cx are called clusters, meeting that
∀Cxi, Cxj ∈ Cx, Cxi ∩ Cxj = ∅.

Using this terminology, when x �= y, Cxi and Cyi are two clusters of different
partitions, Cx and Cy.

We denote P(C)k as the set of all possible partitions of C with k clusters.

Def. Clustering Function: given a dataset C and a positive integer value of k,
the clustering function obtains a partition of C with k clusters, expressed as
follows: Clustering : C × Z

+ → P(C), where Clustering(C, k) ∈ P(C)k.
For the sake of clarity but without a loss of generality, in this research we

use classic clustering algorithms (understanding that the objective of these algo-
rithms is the partition of a dataset in k clusters and the value of k parameter is
set a-priori).
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An essential aspect in the study of clustering algorithms is the evaluation
of their partitions by using Cluster Validity Indexes (CVIs), such as Rand or
Silhouette indexes and various criteria are involved in the direct evaluation of
clusters. In this paper, we focus on measures with which to evaluate clusters of
different partitions. We, therefore, generalise this kind of metrics by introducing
the matching function.

Def. Matching Function (M): given two partitions Cx and Cy, the matching
function between the clusters Cxi and Cyj measures the similarity between such
clusters in terms of the elements they contain. Formally: M : P(C)a × P(C)b →
[0, 1].

The intuitive idea of trace eases the task of tracking the elements of a cluster
that also remain grouped in the clusters of other partitions.

Def. Trace: Let us suppose a dataset C and a set of partitions {C2, . . . , CK}
(as a result of computing iteratively Clustering(C, i), i ∈ {2, . . . ,K}). Given a
cluster CKi of the partition CK , the trace of this cluster is the set of clusters of
partitions from C2 to CK−1 that maximize the Matching function in relation to
the cluster CKi.

Def. Trace Function: The trace function calculates the trace of a cluster, given a
set of partitions, as follows: Trace : CK ×{P(C)2, . . . ,P(C)K−1} → C2∗ × . . .×
CK−1∗.

In Algorithm 1, we propose a method by which to implement the Trace
function.

Algorithm 1. Trace
Input Cxi: cluster ; {C2, . . . , Cx}: set of partitions ; M : matching function
Output T % vector of selected clusters

T ← ∅
for k = x − 1 . . . 2 do

candidate ← Ck1
for y = 1 . . . k do

if M(Cxi, Cky) > M(Cxi, candidate) then
candidate ← Cky

end if
end for
Tk ← candidate

end for
return T

In Algorithm 1, M is a matching function and T stores the set of selected
clusters that trace Cxi (input cluster). Note that, if there are x partitions
(C1, . . . , Cx), then k ∈ [2, x − 1]. This is because: (1) C1 is never taken into
account because it is a partition with only one cluster (signifying that Cxi ⊆ C11

and C1 = C) and (2) Cxi is a cluster of Cx and, according to the definition,
Cxi ∩ Cxj = ∅.

Def. M-Traces Function: given a dataset C and a positive integer value of K, the
M − Traces function obtains a matrix of traces for the partitions C2, . . . , CK ,
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computing the corresponding vectors through the Trace function for each cluster
CKi of the CK partition. Formally, M − Traces : C × Z+ → C2 × . . . × CK−1

In Algorithm 2, we propose a specific implementation of the M − Traces
function.

Algorithm 2. M-Traces: Matrix of traces
Input C: dataset ; K ∈ Z+, M : matching function
Output T % matrix of selected clusters

C = ∅
T ← ∅
for i = 2 . . . K do

Ci ← Clustering(C, i)
C = C ∪ {Ci}

end for
for i = 1 . . . K do

Ti ← Trace(CKi, C,M)
end for
return T

Methodology. We follow a methodology comprising the following steps: (1)
Extraction of data and selection of attributes: In our case, this process is accom-
plished by means of WASPSS [1,4], a tool that integrates data from hospital
departments for antibiotic surveillance. (2) Selection of clustering algorithms
and parameters: We select the clustering algorithm (clustering function) and we
estimate the maximum number of expected clusters (K parameter). (3) Auto-
matic generation of candidates (subgroups): One key aspect in this step is the
adoption of a specific matching function M . In this work, we adapted the Jac-
card coefficient. (4) Visual support of candidate selection: Once matrix J has
been computed, we create a visual representation in order to ease the selection of
the subgroups using heat-maps. (5) Evaluation by clinical experts: The patients
related to the clusters eventually selected will be supervised by the clinicians by
revising their personal records.

3 Experiments

Our experiments have been carried out in the context of the rational use of antibi-
otics in a hospital with the specific objective of identifying groups of patients with
similar antibiotic resistance behaviour. More precisely, we focus on the study of
patients treated with Vancomycin, considering their antibiogram and regarding
the following target Gram positive bacteria: Staphylococcus Aureus, Enterococcus
Faecalis, Staphylococcus Epidermidis, MRSA (Methicillin-Resistant Staphylococ-
cus Aureus), Negative Staphylococcus Coagulasa and Enterococcus Faecium.

In our experiments, the dataset was collected from 4 different sources: clinical
records, microbiology department, pharmacy department and laboratory. The
initial dataset has 169 attributes and 1778 records, collected between 2015 and
2016 using WASPSS platform [1]. After carrying a data transformation process,
we obtain a final mining view containing 83 attributes and 1768 records.
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The experiment described was carried out using k−medoids clustering algo-
rithms: PAM and CLARA [2]. We chose these classic algorithms because of the
evidence provided in clinical literature and in order to facilitate the traceability
of the process by the clinical expert. Taking into account the total number of
patients and the local epidemiology, the K parameter will be in range [2, . . . , 20]
(number of possible subgroups). The M−Traces function has been implemented
in R (version 3.3.2) using clustering algorithms from the cluster package (version
2.0.5).

Note that the number of candidate clusters is high, and that they are,
in most cases, irrelevant. After generating the J matrix (visualization step)
for the previous results, we, therefore, select the C20,x clusters with statistics:
Mean(

∑19
n=2 Jx,n) > 0.7 and Median(

∑19
n=2 Jx,n) > 0.7. This additional prune

reduces 92% of the number of clusters and avoids the expert having to carry out
a manual study of an excessive number of clusters that are of no interest.

Once the processes of candidate generation and pruning has been completed,
the information from matrix J for each experiment is displayed visually.

The 11 relevant groups of patients obtained were reviewed by 2 medical
doctors.

All experts agreed the outstanding and unexpected nature of the subgroup
found. According to their opinion, conventional profiles of patients usually
include the type of sample and the length of stay. However, this unexpected
outcome mostly focuses on elderly patients with cardiopathy or ischemic periph-
eral vasculopathy. That is, the potential existence of Vancomycin resistance
in patients with atherosclerosis and a ‘clean’ medical surgery from an infec-
tious point of view. More specifically, this non-trivial outcome may suggest that
patients sharing procedures such as venous access and prostheses have a high
risk of infection by Gram-positive bacteria.

4 Conclusions

The aim of this paper is to support clinicians in the identification of relevant sub-
groups of patients by paying attention to the interpretability and traceability of
the process. We propose a methodology, denominated as trace-based clustering.

We have evaluated the suitability of our proposal by studying Gram-positive
infections treated with Vancomycin (treatment of choice) and the changes in
the minimum inhibitory concentration in groups of patients at a hospital. The
results obtained helped the clinicians to characterise a specific group of patients,
currently under supervision at the hospital.
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Abstract. This paper tackles the problem of mining scientific literature
to extract Food-Drug Interaction (FDI). This problem is viewed as a rela-
tion extraction task which can be solved with classification method. Since
FDI need to be described in a very fine way with many relation types,
we face the data sparseness and the lack of examples per type of relation.
To address this issue, we propose an effective approach for grouping rela-
tions sharing similar representation into clusters and reducing the lack of
examples. Since unspecified relations represent more than half the data,
we propose to contrast supervised and unsupervised methods to iden-
tify the specific relation involved in these examples. The performance of
our classification-based labeling approach is twice better than on initial
dataset and the data imbalance is significantly reduced. Besides, how
learning models combine relations can be interpreted to more effectively
group relations.

Keywords: Clustering · Classification · Medical text ·
Food-Drug Interaction

1 Introduction

Food-drug interactions (FDI) correspond to various types of adverse drug effects
and lead to harmful consequences on the patient’s health and well-being. They
are also less known and studied and consequently very sparse in the scientific
literature. Similarly to interactions between drugs, FDI is the appearance of an
unexpected effect, e.g. grapefruit is known to have an inhibitory effect on the
metabolism of several drugs [5]. Other foods may affect the absorption of a drug
or its distribution in the organism [3].

In this article, we address the automatic identification of interaction state-
ments between drug and food in abstracts of scientific articles issued from the
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Medline database. To extract this information from the abstracts, we face sev-
eral difficulties: (1) drugs and foods are very variable in the abstracts. (2) the
interactions are described in a rather precise way in the texts, which leads to
a limited number of examples; (3) the available set of annotations does not
include the different types of interaction homogeneously and the learning set is
often unbalanced.

Our contributions focus on FDI extraction and improvement of previous clas-
sification results by proposing a relation representation which addresses the lack
of data, applying clustering method on type of relations, and using cluster labels
in a classification step for identification of FDI type.

2 Related Work

Several approaches have been proposed to extract relations from biomedical
texts. [6] combine patterns and CRF methods for symptom recognition. [10]
learn lexical patterns based on a multiple sequential alignment to identify sim-
ilar contexts. In [11], sentence’s verb are compared to a list of verb known as
indicating relation to determine the relation between entities. To extract Drug-
drug Interaction (DDI) [8] focus on pharmacokinetic evidence identification in
relevant sentences and abstracts. [1] propose a SVM-based approach combin-
ing features describing context and composite kernels using dependency trees.
This method first detects potential DDI and then classify previously identified
relations. [7] built a binary classifier to extract interacting drug pairs. A DDI
type classifier is then applied to assign pairs to predefined relation categories.
[2] consider the extraction of protein localization relation as a binary classifica-
tion. In contrast, we use multi-class classification for relation type recognition.
[9] propose a CNN-based method for DDI extraction with normalization of drug
mentions. Other works use recurrent neural network model with multiple atten-
tion layers for DDI classification [12].

Our FDI extraction method is similar to the DDI extraction approach pro-
posed by [1] even if we need to identify much more types of relations (see Sect. 3).
Our method joins their two steps approach for DDI detection and classification
in which we added a relevant sentences selection step as proposed in [8].

3 Dataset

FDI have been already considered in the POMELO corpus [4]. This corpus con-
sists of 639 abstracts of medical articles (269,824 words, 5,752 sentences) col-
lected from the PubMed portal1 by the query: ("FOOD DRUG INTERACTIONS"[MH]

OR "FOOD DRUG INTERACTIONS*") AND ("adverse effects*"). The abstracts have
been annotated according to 9 types of entities and 21 relation types by a phar-
macy resident. From the POMELO corpus, we collect the sentences containing
couples of drug and food or food-supplement. The resulting dataset is composed

1 https://www.ncbi.nlm.nih.gov/pubmed/.

https://www.ncbi.nlm.nih.gov/pubmed/


Extracting Food-Drug Interactions from Scientific Literature 277

of 831 sentences labeled with 13 types of relations: unspecified relation (476,
57.3%), no effect on drug (109, 13.1%), decrease absorption (49, 5.9%), improve
drug effect (6, 0.7%), positive effect on drug (19, 2.3%), without food (9, 1.1%),
negative effect on drug (85, 10.2%), speed up absorption (1, 0.1%), increase
absorption (38, 4.6%), worsen drug effect (5, 0.6%), slow elimination (15, 1.8%),
new side effect (4, 0.5%), slow absorption (15, 1.8%).

4 Grouping Types of Relation

To solve the lack of examples per relation type, we propose to contrast an intu-
itive grouping method based on the definition of the relation types and an unsu-
pervised clustering based on the instances of each relation type.

Intuitive Grouping. First, we propose a very intuitive grouping of Food-Drug
relations, defined as the following: Unspecified relation. Instances labeled with
‘unspecified relation’ do not give more precision about the relation involved. No
effect. ‘No effect on drug ’ instances represent food-drug relations in sentences
where it is explicitly expressed that the considered food have no effect on the
drug. Reduction. Instances labeled with ‘decrease absorption’, ‘slow absorp-
tion’, ‘slow elimination’ express diminution of action of drug under the influence
of a food. Augmentation. Instances labeled with ‘increase absorption’, ‘speed
up absorption’. Negative. negative effect on drug express explicitly a negative
effect of food on drug, ‘worsen drug effect ’ express a negative effect of the drug,
side effect is generally an drug adverse effect drug that coins a negative con-
notation, the same to ‘without food ’ that prevents from taking food with the
considered drug. Positive. By analogy, ‘positive effect on drug ’, ‘improve drug
effect ’ are grouped to form the positive relation. Henceforth, the intuitive group-
ing method is named ARNP (Augmentation, Reduction, Negative and Positive).

Relation Clustering. We propose to use unsupervised clustering method to
group Food-Drug relations. To achieve this purpose, each type of relation should
be represented by a set of features. The most natural way to get these features is
to group every sentences labeled by the relation in the initial dataset. In order to
capture more accurately the expression of the relation in a sentence, we propose
to use as features, lemmas of words before the first argument of the relation
(Before), lemmas of words between the two arguments (Between), and lemmas
of words after the second argument (After). The data is given to a unsupervised
clustering to group the relations given the associated features. Relation labeled
with the same cluster are assumed to belong to a same group.

5 Unspecified Relation Labeling

We propose to identify which relation type among those annotated can be
invoked in such example. We use the entire abstract to represent the exam-
ple instead of the sentence, then we apply classifiers to label the example with
a specific relation type.
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Representation for Clustering Method. Since the unsupervised clustering
of examples involving the same relation can not be constrained to be in the same
cluster, we propose to group together the sentences involving the same relation
in a single example by applying the relation representation method described in
the Sect. 4.

Representation for Classification Method. We train a classifier on exam-
ples labeled with specified relation and apply the resulting model to the unspec-
ified relation examples to predict which relation is involved. The representation
is used for learning classifiers such as SVM or Logistic Regression.

6 Experiments, Results and Discussion

We first apply KMeans algorithm in order to obtain an automated grouping
scheme. We assume that unspecified relation examples should belong to the 12
manually annotated specific relations, so following the method in Sect. 5 the data
is composed of 488 examples that are 12 examples as representations of the 12
specific relations and the 476 unspecified examples to be clustered by considering
the whole abstract instead of the sentence as context of the relations.

We note that for any number of clusters, decrease absorption, increase absorp-
tion are always in the same cluster, showing that the two relations are differenti-
ated from the others according to the pharmacokinetics point of view. no effect
on drug is represented individually in 6 cases when using 7 clusters or more,
which confirms the ARNP hypothesis. slow elimination is represented individu-
ally in 5 cases (3 and 6 to 9 cluster grouping), and grouped with positive effect
on drug in 4 cases (5, 10, 11, 12 cluster grouping). This clustering result sug-
gests possible interaction between the 2 types of relation and can be a support
for medical specialists analysis. 9-clusters grouping is most in agreement with
other assignments, that we keep as a new grouping scheme: (1) decrease absorp-
tion, increase absorption, (2) improve drug effect, new side effect, worsen drug
effect, which refer to effect of drug, speed up absorption, slow absorption, without
food, positive effect on drug, (3) negative effect on drug, (4) no effect on drug,
(5) slow elimination. However, the specific relations are grouped in 5 clusters,
which means that 4 other relations have emerged among the unspecified relation
examples. And if we look at 5-clusters assignments, only 4 clusters appear, so
one other have emerged. These emerging relations can be analyzed better by a
specialist to agree if the new relations are relevant or just mislabeled. We also
note that the average V-measure of ARNP grouping is quite low, which means
that the automated grouping does not follow the same scheme as ARNP.

Once specific relations clustered, we keep the best grouping scheme obtained
with 9 clusters for classification-based labeling of the unspecified examples: we
use the cluster label of each relation type as the new label of examples labeled
with the considered relation. Then we train the 5 classification models on these
examples and apply these models on the 476 unspecified relation examples to
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obtain a predicted label, i.e. the group to which the example belongs. Finally,
the results are contrasted with the assignments obtained with KMeans cluster-
ing in the previous step on FDI extraction task using all the 831 examples with
their new labels. 9-clusters-classification-based labeling outperforms KMeans-
based labeling and ARNP grouping when labeling the unspecified examples,
and the resulting F1score is twice better than on initial dataset. Among the 6
classifiers, Decision Tree classifier leads to the best performance. The difference
between micro-score and macro-score decreases from 0.236 with initial dataset
to 0.005 with 9-clusters-based-classification, suggesting an important reduction
of the data imbalance. We analyze the agreement score of the methods for label-
ing the 476 unspecified examples: the agreement between clustering-based and
classification-based labeling methods is quite low. This phenomenon probably
occurs because 4 new labels appear in cluster-based labeling. It represents a dif-
ference compared to the classification methods that only use the 5 pre-defined
labels in the grouping scheme.

7 Conclusion and Future Work

Our paper contributes to the task of extraction of FDI from scientific litera-
ture, that we address as a relation extraction task. When applying supervised
machine learning to this purpose, we face an issue of lack of examples because
of the high number of types of relation. To address this issue, we propose to
represent each relation by words before, between and after the arguments of
the relation in order to group these relations into clusters. The resulting cluster
labels are used to label unspecified relation examples. The KMeans-based auto-
mated clustering shows relation grouping scheme which differs from an intuitive
grouping based on the definition of the relation types. It also allows emergence of
new group of relations. This computed scheme is used as new labels for specific
examples and combined with whole abstract to identify the specific relations
involved in unspecified relation examples by labeling these examples based on
clustering and classification methods. Our results show that labeling unspeci-
fied examples improve significantly the performance on FDI extraction. Indeed,
we obtain a F1-score twice better with classification-based labeled unspecified
examples while grouping data in 5 clusters than on initial dataset. Besides, the
decrease in the difference between micro- and macro-score suggests an important
reduction of the data imbalance. For future work, we will use features such as
semantic category of terms, go through emerging relations, and consider a more
domain-based labeling following the ADME classes [3] of Drug-Drug Interaction
by transfer learning.
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Abstract. We present a probabilistic model for clustering which enables
the modeling of overlapping clusters where objects are only available as
pairwise distances. Examples of such distance data are genomic string
alignments, or protein contact maps. In our clustering model, an object
has the freedom to belong to one or more clusters at the same time. By
using an IBP process prior, there is no need to explicitly fix the number
of clusters, as well as the number of overlapping clusters, in advance. In
this paper, we demonstrate the utility of our model using distance data
obtained from HIV1 protease inhibitor contact maps.

Keywords: Bayesian nonparametrics · Clustering ·
Medical informatics

1 Introduction

Traditional clustering methods partition objects into mutually exclusive clus-
ters. In many applications, however, it is more realistic that objects may belong
to multiple, overlapping clusters [5,9]. If, for instance, a gene has many dif-
ferent functions, it might belong to more than one cluster and therefore be
potentially identified with multiple functional pathways rather than just one.
However, if the data is available in the form of pairwise distances, there exists
no probabilistic clustering model which allows overlapping clustering of objects.
The general strategy in this situation is to first embed the distance data into
a (lower-dimensional) Euclidean space [8] and then cluster the embedded data.
This introduces unnecessary noise and bias, as was shown in [11]. Therefore, it
would be advantageous to have a model which can cater to distance data directly.
In this work, we present a method which enables the modeling of overlapping
clusters. The model is able to deal with objects that are available as pairwise
distance data, and one object is not restricted to just lie within one cluster but is
allowed to belong to multiple clusters. In this short paper, we concentrate on the
applications of our model to clustering HIV1 protease inhibitor contact maps.
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2 A Brief Introduction into the Model

We developed a model that allows inferring multiple clusters per object where
objects are represented by their pairwise distances. In order to be able to model
overlapping clusters, we consider an Indian Buffet Process (IBP) in our model
[4,5]: the IBP is a generative process with an analogy that n customers are lined
up in a sequence in an Indian buffet restaurant that offers infinitely many dishes.
The first customer chooses some of the Poisson(ξ) dishes before sitting down.
Every incoming customer then helps themselves to some of the buffet dishes in
proportion to their popularity, such that customer i serves herself dish k with
probability mk, where mk is the proportion of previous customers having cho-
sen that dish. After passing by every dish previously sampled, customer i tries
Poisson(ξ/i) new dishes. The binary cluster assignment matrix Z has n rows
denoting customers and C columns for C buffet dishes. An entry zik indicates
whether customer i chose dish k, and objects (customers) can be assigned to
more than one cluster (dish). The model is not restricted a priori to having a
fixed number of clusters, and allows the data to determine how many clusters
are required. Further, since we consider an exchangeable distribution, neither the
number of identical columns nor the column sums are affected by the ordering on
objects. The assumption is that the (suitably pre-processed) input matrix D con-
tains squared Euclidean distances with components Dij = Kii +Kjj − 2Kij and
K represents the pairwise similarities between objects. The likelihood P (D|Z)
is chosen to be the translation and rotation invariant generalized Wishart dis-
tribution Wd. This implies that in the inference, we do not need to consider
any geometry in vector spaces, as the likelihood solely depends on the pairwise
distances D. Inference is performed using Gibbs Sampling.

3 Results

3.1 Performance of the Model on Simulated Data

Distance data D is simulated as per the generative model we introduced
above. We set the following parameters: n = 30 objects, d = 400 dimensions,
Cmax = 100 as the maximum number of clusters allowed. Z(n×Cmax) is gener-
ated via the beta-binomial prior. The similarity matrix K(n×n) ∼ Wd(ΣZ) where
ΣZ = αI + βBZ with BZ = ZZT . K is centered to Kc using kernel centering.
The distance D(n×n) is computed as D(ij) = Kc(ii) + Kc(jj) − 2Kc(ij). We use
D as input to our model to infer both Z and BZ . The columns in the inferred
Z matrix can be permuted and therefore we cannot directly compare Zest with
Ztrue. Instead, we compare Btrue with Best. These matrices are invariant to col-
umn permutations, and contain the number of shared clusters between each pair
of objects in the data set. Comparing Best and Btrue is a column invariant way
to determine how well the true underlying cluster assignment structure is discov-
ered. Since we obtain many Gibbs sampled Best matrices, we compute an average
matrix Baverage for the comparison with Btrue. We deploy the following error
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Fig. 1. Top: Btrue (left) and inferred Best (right). Bottom: Error statistics from
simulated D: the in degree error (blue) and structure error (red) between Btrue and
Baverage. We display the error for the first 1000 independent iterations. (Color figure
online)

statistics to quantify the errors obtained in the diagonal and off-diagonal ele-
ments between Btrue and Baverage: in degree error =

∑∣
∣diag(Btrue−Baverage)

∣
∣

and structure error =
∑(

lowtri(Btrue) − lowtri(Baverage)
)
. In Fig. 1, we see

that the inferred Best (top right panel) has captured the underlying partition
structure of that of Btrue (top left panel).

3.2 Clustering Protein Contact Maps from HIV Protease Inhibitors

Amongst the 26 US Food and Drug Administration (FDA) approved anti-HIV
drugs, 10 are HIV protease inhibitors (PIs). These are saquinavir (3TK9), indi-
navir (2B72), ritonavir (1HXW), nelfinavir (2PYM), amprenavir (3NU3), fosam-
prenavir (3S85), lopinavir (2O4S), atazanavir (2AQU), tipranavir (2O4L) and
darunavir (3TTP) with the unique identifiers as provided in the RCSB Protein
Data Bank (PDB) [2], in brackets. The HIV PIs exhibit similar behaviour which
can be attributed to their similarity in chemical structures as well as binding sites
but these PIs are not readily available and have high toxicity when administered
as anti-HIV drug concoctions [7]. It is therefore of utmost importance to identify
alternative PIs for therapy which calls for identifying any potential structural
dissimilarities that stand out amongst the already known HIV PIs. We use our
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Fig. 2. (a) Contact map for the reference HIV1 protease. (b) Contact maps for the
10 HIV1 protease inhibitors. Even though the PIs are structurally similar, the contact
maps show variation. We compute pairwise distances between these contact maps via
NCD and then apply our model to identify any potential variation in the structure of
PIs.

novel clustering model on distances derived from the PIs contact maps. Every
PI is a protein and can be represented by its vectorized contact map computed
from their PDB files. A contact map contains the distances between all possi-
ble amino acid residue pairs for a given protein. For the HIV1 reference protein
with T amino acid residues, the contact map (see Fig. 2(a)) would be a T × T
binary matrix CM where CMij = 1 if residues i and j are similar or 0 other-
wise. The contact maps for the 10 PIs are shown in Fig. 2(b). Next, we flatten
the contact map representation into row-wise vectors to construct a string. To
obtain the pairwise distances between strings in these contact maps, we compute
the Normalized Compression Distance (NCD) [6] which is an approximation to
the Normalized Information Distance (NID) [10]. Given strings x and y, NID
is proportional to the length of the shortest program that computes x|y and
y|x. NID(x, y) = Q(xy)−min[Q(x),Q(y)]

max[Q(x),Q(y)] where Q(x) is the Kolmogorov complex-
ity of the string x. The real-world approximated version of NID is given by NCD
where Q(xy) now represents the size of the file obtained by compressing the
concatenation of x and y.

We compute NCD for all the 10 PIs as well as the reference HIV1 pro-
tease (1HIV) and apply our model to the resulting D11×11. We observe that the
inferred BZ primarily has 3 blocks: block 1 groups 1HXW (ritonavir) and 2AQU
(atazanavir) together and the efficacy of this drug combination has been high-
lighted in [1,3], block 2 has a singleton 2AQU (atazanavir) showing its difference
to the rest of the PIs. In fact, atazanavir is distinguished from other PIs in that it
can be given once-daily (rather than multiple daily-doses) and has lesser effects
on the patient’s cholesterol and fat amounts present in the blood [3] and block
3 finds the rest of the PIs clustering together with the reference HIV1. Even
though this test considered only 11 PIs, our model was able to identify estab-
lished differences amongst themselves. We believe that by extending this test to
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involve all the 26 FDA approved anti-HIV drugs, the subsequent identification
of structural differences would aid in suggesting potential drug candidates.

4 Conclusion

We present a probabilistic model, for inferring overlapping clusters where objects
are only available as pairwise distance data. Here, an object may belong to one or
more clusters concurrently. Examples of such pairwise distance data are genomic
string alignments, protein contact maps or pairwise patient similarities. So far,
to the best of our knowledge, there is no probabilistic model that can handle
identifying overlapping clusters in distance data. The main contributions of our
work are the following: (i) we propose a probabilistic model that is able to
partition data into overlapping groups and (ii) we demonstrate the usefulness
of our model by clustering 11 HIV1 Protease inhibitor protein contact maps
where the model is able to tease apart potential structural variations that were
inherent amongst the 11 PIs and that these could be used as cues to identify
drug candidates.
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Abstract. Preterm birth is the leading cause of death among children
under five years old. The pathophysiology and etiology of preterm labor
are not yet fully understood. This causes a large number of unnecessary
hospitalizations due to high–sensitivity clinical policies, which has a sig-
nificant psychological and economic impact. In this study, we present
a predictive model, based on a new dataset containing information of
1,243 admissions, that predicts whether a patient will give birth within
a given time after admission. Such a model could provide support in
the clinical decision-making process. Predictions for birth within 48 h or
7 days after admission yield an Area Under the Curve of the Receiver
Operating Characteristic (AUC) of 0.72 for both tasks. Furthermore, we
show that by incorporating predictions made by experts at admission,
which introduces a potential bias, the prediction effectiveness increases
to an AUC score of 0.83 and 0.81 for these respective tasks.

Keywords: Preterm birth · Clinical decision support · eHealth

1 Introduction

Preterm birth, defined as birth before 37 weeks of gestational age, is the lead-
ing cause of death among children younger than five years, according to the
World Health Organization (WHO) [8]. In Flanders, the average prevalence rate
amounts to 7%. Furthermore, for tertiary care centers in Flanders this can be
significantly higher, as for example 18% of the deliveries in Ghent University
Hospital are preterm. Today, a patient at risk of preterm birth, is often hospital-
ized in order to take measures that ameliorate the short- and long-term outcome
for the neonate. These measures include the administering of antenatal corticos-
teroids (ACS) for fetal lung maturation, often under tocolysis for labor arrest.
Unfortunately, these measures can have short- and long-term maternal and off-
spring side effects and should therefore only be taken when imminent birth is
c© Springer Nature Switzerland AG 2019
D. Riaño et al. (Eds.): AIME 2019, LNAI 11526, pp. 286–291, 2019.
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expected [13]. Moreover, the societal and personal psychological and economical
burden related to the hospitalization of these patients, should not be underesti-
mated. For example, the costs associated with preterm birth in the USA in 2005
were estimated around $51,600 per infant [3]. Currently, the pathophysiology
and etiology of preterm labor are not yet fully understood, making it hard for
experts to accurately determine whether a patient will give birth at term or not.
As is often the case in medical domains, the sensitivity of a policy is typically
considered more important than its specificity, resulting in a high number of
false positives, or unnecessary hospitalizations.

Predictive machine learning models have been applied to numerous medical
use cases [21]. The prior research on predictive models for preterm birth risk is
shown in Table 1. The most important difference w.r.t. the presented study is the
incorporation of expert opinions within the model. We assess the added value of
a model that predicts the time-to-birth, based on a simple, interpretable logistic
regression model. The input to the model consists of structured clinical variables
which are available shortly after the patient’s admission to the hospital, e.g. the
gestational age at intake, the patient’s BMI and how long membranes have been
ruptured, and indications given by domain experts at admission.

2 Methodology

2.1 Data Collection and Filtering

The dataset used within this study consists of data collected from patients admit-
ted to the Department of Gynecology and Obstetrics at Ghent University Hos-
pital, between 2012 and 2017. In total, 3,611 women were admitted in that
period, corresponding to 4,332 pregnancies and 5,030 admissions. From these,
1,243 pregnancy-related admissions, corresponding to 1,145 high-risk pregnan-
cies of 1,056 women, occurring between 24 and 37 weeks of gestation, were used
in the proposed pipeline. The reason for excluding other admissions is because
the clinical use of our model is limited for these type of admissions. Patients at a
gestational age less than 24 weeks are not included, since neonatal intensive care
is not started before this term in Ghent University Hospital. Patients arriving
at the hospital after 37 weeks of gestation are no longer at risk for preterm birth
and thus do not require potential preventive measures.

2.2 Predictive Variables

From the data we extract: number of fetuses, age (mother), gravidity, parity,
length (mother), weight (mother), BMI, gestational age at admission, duration
ruptured membranes, method of conception, smoking history, alcohol usage, drug
usage, history of cesarean section, race (mother), and admission indications. This
list of variables has been constructed in consultation with domain experts. The
admission indications are keywords that can either be objective observations
including ‘blood loss’ and ‘stomach ache’, or more subjective keywords of experts
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such as ‘imminent partus prematurus’. The latter type of keywords can include
indications of what the expert expects to happen, i.e. an expert opinion. Hence,
such keywords introduce a potential bias which could cause the model to simply
repeat the predictions of an expert. This however does not need to be the case,
especially if it turns out that the prediction implied by such keywords does
not always hold true. In fact, these subjective expert predictions are recorded
directly after the patient’s intake, and we therefore propose to investigate the
predictions of a model in which these expert opinions are actually used as highly
informative features.

2.3 Data Processing and Modeling

Before feeding the data to a machine learning model, all variables were first
transformed to a numerical form. To achieve this, categorical variables were
one-hot-encoded and a bag-of-terms was constructed for each patient based on
her listed keywords. This bag-of-terms is a k-dimensional binary vector, with
k being the number of available keywords in the training set, and each value
indicating the presence of a certain keyword. In our study, k is equal to 30.
Afterwards, the processed data was fed to logistic regression classifiers to solve
two tasks, corresponding to threshold values chosen in consultation with experts,
as they are the bounds between which the effect of corticosteroids is thought to
be optimal [11]. On the one hand, we will predict whether birth will occur within
48 h after admission (Task 1 ), while on the other hand we make the prediction
for birth within 7 days (Task 2 ).

3 Results

To assess the predictive performance of the proposed model, we measured differ-
ent metrics using five-fold cross-validation, based on the patient identifiers rather
than individual admissions. First, we report the classifier’s accuracy. As accuracy
does not provide a good indication of the model’s predictive performance in the
scenario of imbalanced data, we also report the specificity, sensitivity and Diag-
nostic Odds Ratio (DOR) obtained from the confusion matrices of our classifiers,
and the Area Under the Curve (AUC) of the Receiver Operating Characteristic
curve (ROC) score. Table 2 summarizes the predictive performances for the mod-
els with and without inclusion of the expert predictions. The table lists the mean
± std over the five folds. From these results, we can conclude that Task 1 seems
to be a slightly easier prediction task. We hypothesize that this is due to the
fact that patients that would give birth within 48 h often have more distinctive
symptoms. Further, we see that incorporating the biased expert predictions in
our model results in a considerable increase in predictive performance. It should
be noted that the sensitivity values are rather low, since we did not optimize
specifically for this and kept the default decision boundary, i.e., at a predicted
probability level of 0.5.
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Table 2. The predictive performances of a model that predicts whether a patient will
give birth (i) within 48 h, or (ii) within 7 days. Model without and model with inclusion
of admission indication keywords as input features.

Pred. Task Accuracy Specificity Sensitivity DOR AUC

Without ≤48 h 0.74 ± 0.02 0.94 ± 0.02 0.32 ± 0.05 9.3 ± 5.3 0.72 ± 0.02

≤7 d 0.67 ± 0.02 0.83 ± 0.05 0.48 ± 0.08 5.1 ± 1.5 0.72 ± 0.04

With ≤48 h 0.80 ± 0.02 0.90 ± 0.01 0.60 ± 0.05 14.5 ± 4.3 0.83 ± 0.03

≤7 d 0.76 ± 0.02 0.83 ± 0.03 0.67 ± 0.02 10.7 ± 2.7 0.81 ± 0.02

4 Conclusion

A simple and interpretable logistic regression model was presented to assess the
time-to-birth of a patient upon admission to the hospital. Preliminary results
show the positive impact of incorporating expert opinions within the model.
Future work includes applying survival analysis to directly predict the time-to-
birth, as opposed to a dichotomized target.

Acknowledgements. This research is funded by imec, the PRETURN clinical
trial (B670201836255, EC/2018/0609) and a Ph.D. SB fellow scholarship of FWO
(1S31417N).
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Abstract. Many AI (or ML) systems have been proposed for clinical decision
support. Clinical usefulness is assessed in an ‘Impact Study’, a form of trial of a
completed system. In development, in contrast, the focus is on AI accuracy
measures, such as the AUC. To improve impact and to justify the cost of a
study, the impact of a proposed AI system should be modelled during its
development. We show that an Influence Diagram can be used for this and
provide a small set of generic models for diagnostic AI systems. We show that
how the AI interacts with clinical decision makers is at least as important as its
predictive accuracy.

Keywords: Impact analysis � Clinical decision support � Influence diagram �
AI

1 Introduction

1.1 Is AI for Decision Support Clinically Beneficial?

AI (or ML) can be used in a clinical decision-support system (CDSS) to improve
medical care. It is important to distinguish the ‘prediction’ (which uses AI) from the
CDSS, into which the prediction goes and it is well understood that prediction accuracy
does not ensure clinically utility. Wyatt and Altman [1] point out the need for evidence
of clinical effectiveness, making the key distinction between accuracy (or validation –

see e.g. [2]) and effectiveness or, more commonly, impact. A CDSS has impact when
its implementation benefits care, by improving decision-making or reducing costs. In
frameworks for the implementation of prediction systems, for example [3], impact is
evaluated in an experimental study. We argue that impact should be considered before
the experimental phase of an impact study and an estimate of impact made, covering:

• The way the use the prediction interacts with clinical decision making, and
• The hoped-for benefits, whether in costs or workload or better decision-making.

The frameworks consider these issues: for example, in [3] the ‘preparation’ phase
including ‘determining how the [prediction system] will be integrated into the clinical
workflow’. Similarly, [2] suggests using simulated decisions, pointing out that:
“clinicians will not always follow the rule’s recommendations”. Building on these
ideas, we propose a method to estimate impact during the development of a CDSS and
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draw attention to the relationship between prediction accuracy, proposed used and
impact.

2 Approach to Modelling Different Uses of AI System

2.1 How an AI System Can be Used Clinically

A prediction (the ‘AI’ element) can be integrated into the clinical workflow in many
different ways to form a CDSS. Table 1 shows three simple uses that we will analyze,
representing a much wider range of real possibilities.

The first two uses ‘Replace’ and ‘Filter’ are broadly directive while the other is
assistive. Many papers on predictors for clinical still say little about intended use; see
for example [4, 5] in a recent collection of papers about clinical AI systems.

2.2 Utility Models

The impact of an AI system may include both benefit and harm. We can model this
using a utility model (see Sect. 3) given estimates of these benefits and harms which
become parameters in the utility model. We focus on the forms of information needed
and how it varies with use, including:

• Healthcare cost: to illustrate, we assume that the cost of a consultation (100 units)
exceeds the cost of operating the AI (0 units).

• Patient outcome: this is typically measured in quality-adjusted life-year (QALY)
and depends the disease state and the diagnosis. Table 2 shows some illustrative
values.

These outcomes measures depend on the consequences of both false positive and
false negative error. We have assumed less harm from a false negative compared to the
benefit of a correct diagnosis; other assumptions can be modelled in the same way. In a

Table 1. Possible uses of AI in a diagnostic CDSS.

Name Description of use

Replace The AI diagnoses all patients, replacing the clinician
Filter The AI diagnoses some patients; the clinician sees fewer
Assist The AI and the clinician work together

Table 2. Example patient outcomes.

Disease False True
Diagnosis False True False True

Patient Outcome 0 −50 −500 5000
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utility models, a (small) deterioration in outcome may be compensated for by a cost
reduction but this might not be permitted by a regulator.

The benefits also depend on the way that the AI is used. Table 3 summarizes the
potential areas of benefit for difference AI system uses.

2.3 Performance Assumptions

In this section, we introduce some assumptions about the performance of both the AI
system and clinician, as it will become clear that we cannot estimate the impact of an
AI system without knowledge of the performance of an existing clinical care system.

Disease Prevalence: We assume disease is present in 30% of cases.

Receiver Operating Curve (ROC) and Confusion Matrix. The performance of the
AI system can be represented by its ROC, showing the tradeoff between sensitivity (or
TPR) and specificity (or 1 - FPR). Figure 1 shows a simulated ROC with 5 possible
operating points P1-5 for the AI system, all lying on the curve. Two points are shown
for the clinical decision maker, one (B) above the AI’s ROC and the other (A) below.

Table 3. Summaries of expected benefit by use.

Name Potential expected benefits

Replace Primarily cost saving, with equivalent patient outcome
Filter Cost reduction, by reducing the number of patients to be seen. Outcome may also

change, however
Assist Primarily improved patient outcome; since all patients are still seen and the

healthcare costs do not reduce (given our assumptions)

Fig. 1. Simulated ROC curve for the AI in which Area Under the Curve (AUC) is 84%.
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Given an operating point (and the prevalence), decision accuracy can be summa-
rized in a confusion matrix; we assume this is known for the clinician as shown below.

Actual Actual
False True False True

Predicted
False TN FN

Predicted
False 63% 9%

True FP TP True 7% 21%

3 Utility of an AI System in Different Uses

3.1 Modelling an AI System Replacing a Clinician

Figure 2 shows a utility model (as an influence diagram, implemented using the
AgenaRisk toolset [6]) for an AI system replacing a clinician. If the performance of the
clinical decision-maker matches point A in Fig. 1 then the use of AI is beneficial (has
greater utility), anywhere between point P2 and P3, as both the FNR and FPR are
reduced. The clinician’s utility (at point A) is 833.0; the utility of the AI system at point
P2 is 835.71 and at P3 is 1017.6.

3.2 Modelling an AI System Filtering Patients Seen by a Clinician

In a diagnostic problem, an AI system can be used to filter out some cases so that a
clinician sees fewer cases, saving clinical time (and money). Using a similar utility
model, we consider (a) no disease filter, where the AI only filters out the cases it is
confident have no disease and (b) disease present filter, the opposite to examine
whether AI used in this way can benefit even if its performance does not dominate the
clinician’s. Comparing the AI to clinician B in Fig. 1 we obtain Table 4.

Fig. 2. Influence diagram for the case in which the clinician is replaced by the AI.
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We expected that the ‘no disease’ filter would be beneficial, particular operated at
P5 (to minimize FNR). The model does not support our intuition: the problem is that
both AI and clinician have an FNR, so together they miss more case than either
operating alone. On the other hand, the ‘disease present’ filter is beneficial.

3.3 Modelling an AI Used to Assist a Clinician

An AI system could assist a clinician, who has access to the AI’s predictions before a
final diagnosis. If there is a conflict, the clinician can re-evaluate her diagnosis. A model
of this requires some assumption about how the clinician and AI system interact. As an
example, we optimistically assume that the diagnosis is revised in 50% of the cases
when the clinician was wrong (but never when she was right) but this revision has the
same cost as the original consultation (100 monetary units). With these assumptions,
which ignore the differing difficulty of some diagnoses, AI cannot reduce costs. Table 5
shows the increased utility of the AI at the different operating points P1 to P5. We note
that the impact of this use of AI is smaller than the earlier cases, greater for the less
accurate clinician A and that it increases as the AI is operated with a lower FNR.

4 Conclusions and Further Work

We have shown that the same AI system used in different ways can have different
impact. In some uses, the accuracy of the AI system must exceed that of the clinical
decision maker; in other cases, it can still be beneficial despite lower accuracy. Making
an estimate of impact requires the AI developer to consider both the potential benefits
and the proposed use; we believe more systems would have more impact if this was
done. In all cases we need some information about the performance of the clinical
decision maker, though our use of a simple confusion matrix for this is simplistic as, for
example, performance may vary between individuals. We know little about the inter-
action between a clinical decision maker and AI intended to assist with decision-
making. We could consider the AI to behave like a ‘second opinion’ and the effects of

Table 4. Change in utility when AI filters patients seen by the clinician.

Type of filter AI system operation point
P1 P2 P3 P4 P5

(a) No disease −494.3 −385.5 −265.3 −124.9 −17.6
(b) Disease 225.1 266.6 310.7 358 384.3

Table 5. Increase in utility when clinician assisted by AI.

Clinician AI system operation point
P1 P2 P3 P4 P5

A 136.21 167.50 201.60 240.00 266.10
B 99.3 122.4 146.9 173.2 187.8
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this have been studied, for example in [7]. Some decisions are harder than others and it
is likely that those that the AI system gets wrong may also be incorrectly diagnosed by
the clinician. We will investigate this correlation between the two decision makers in
future.
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Abstract. The development of Natural Language Processing (NLP)
solutions for information extraction from electronic health records
(EHRs) has grown in recent years, as most clinically relevant information
in EHRs is documented only in free text. One of the core tasks for any
NLP system is to extract clinically relevant concepts such as symptoms.
This information can then be used for more complex problems such as
determining symptom onset, which requires temporal information. In the
mental health domain, comprehensive vocabularies for specific disorders
are scarce, and rarely contain keywords that reflect real-world terminol-
ogy use. We explore the use of embedding techniques to automatically
generate lexical variants of psychosis symptoms into vocabularies, that
can be used in complex downstream NLP tasks. We study the impact of
the underlying text material on generating useful lexical entries, exper-
imenting with different corpora and with unigram/bigram models. We
also propose a method to automatically compute thresholds for choosing
the most relevant terms. Our main contribution is a systematic study of
unsupervised vocabulary generation using different corpora for an under-
studied clinical use-case. Resulting lexicons are publicly available.

Keywords: Natural language processing · Electronic health records ·
Embedding models · Schizophrenia

1 Introduction and Background

Secondary healthcare sources such as electronic health records (EHRs) contain
a large proportion of text with clinically relevant information. To analyze this
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information for clinical research, natural language processing (NLP) techniques
are needed. In recent years, NLP systems have been developed to process clinical
texts and extract relevant information [1]. An essential step for such systems is
the identification of relevant entities, such as medications, symptoms, and time
expressions, which can be linked to extract more complex constructs (e.g., treat-
ment and symptom onset). Symptom onset extraction is important in the field
of mental health, as a longer duration of untreated symptoms can be associated
to worse intervention outcomes [2]. In EHRs related to schizophrenia patients,
this information is documented in textual notes in a variety of ways. The first
step towards extracting symptom onset is the identification of symptom men-
tions, which can be achieved using a domain-specific vocabulary. In the mental
health domain, however, few standardized vocabularies are available for specific
diseases and they rarely contain entries that reflect real-world terminology use.

To develop more comprehensive vocabularies, word embedding techniques
can be exploited [3] which rely on neural models to automatically learn word
representations (in the form of numeric vectors) from large collections of texts.
Given their ability to capture semantic similarity, embedding models have been
increasingly used to enhance NLP development, especially for general-domain
applications and datasets. In the clinical domain, Ye and Fabbri created embed-
ding models trained on multiple types of EHR clinical notes (e.g., Prescription,
Problem List), proposing a method to combine them to enhance term discovery
[4]. In the mental health domain, Velupillai et al. compared three approaches
for vocabulary generation (dictionary search, linguistic rules, and embedding
models) from intensive care unit EHRs [5]. Jackson et al. trained embeddings
on mental health EHRs from the Clinical Record Interactive Search (CRIS)
database [6], to identify concepts related to mental illness symptomatology.

In this paper, we explore unsupervised embedding models to automatically
generate variants of psychosis symptoms indicative of disease onset. Our aim is
to generate comprehensive use-case specific lexicons that could be used to solve
complex information extraction tasks. Our long-term goal is to identify symp-
tom onset in clinical notes for patients with a diagnosis of schizophrenia. In
particular, we study how the choice of the underlying text material impacts the
generation of useful terms, comparing four different input corpora and experi-
menting with bigram models (where frequent word pairs are mapped to a single
vector). Moreover, we propose a method to automatically compute appropriate
thresholds for choosing the most relevant terms from each model.

2 Materials and Methods

We use data from the CRIS database1, which gathers anonymized patient infor-
mation from the EHR system used at the South London and Maudsley NHS
Foundation Trust (SLaM) [7].

In our embedding experiments, we trained different (unigram and bigram)
models on: (1) Use-case specific EHR texts (CRIS specific, 23.3m words) from
1 Ethical approval for secondary analysis: Oxford REC C, reference 18/SC/0372.
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early psychosis intervention services; (2) Institution-specific discharge summaries
(CRIS general, 23.6m words) for all mental health disorders (not restricted
to psychosis); (3) External clinical texts from MIMIC II [8] (MIMIC, 187.4m
words), i.e., an intensive care unit setting. To train embeddings, we used the
gensim implementation of Word2Vec, with the CBOW model2. We also exper-
imented with (4) Pre-trained embeddings from MEDLINE/PubMed (PubMed,
3.6bn words): we used the available models off-the-shelf (only unigram), without
re-training [9].

We considered an initial list of keywords from a comprehensive mental health
vocabulary [6]. Two psychiatrists reviewed the most frequent vocabulary terms
found in CRIS specific, and selected only those that were relevant to identify
symptom onset, e.g., positive psychosis symptoms. This led to a list of 26 terms
- 7 unigrams (e.g., hallucinations), 14 bigrams (e.g., persecutory ideas), and
5 trigrams (e.g., loosening of associations) - which were used for vocabulary
generation. For each model, we considered the most similar terms with respect
to these keywords (highest vector cosine similarity), and the terms with low
Levenshtein distance, i.e., the edit difference (to capture misspellings).

To automatically compute a similarity threshold for each model, we relied on
the “elbow” method proposed by Ye and Fabbri [4], which searches for a keyword-
specific cutoff point. Given the top K similar terms (with decreasing similarity),
the method selects the point with maximum distance from the curve connecting
the two end-point similarities. In our case, the method was applied to the overall
list resulting from all keywords, thus obtaining a model-specific threshold. Since
the elbow threshold can change depending on K, we automatically computed an
optimal value for each model: we tested all K values from 50 to 200 and looked
at the greatest drop in the resulting elbow threshold.

To evaluate the generated vocabularies, two psychiatrists manually classified
terms as: (1) Relevant psychosis symptom term (RT); (2) Potentially relevant
term (PT); (3) Not relevant term (NT). As real-world clinical text is likely
to contain errors, we also manually assessed the amount of misspelled terms
(MSP) per vocabulary. To measure agreement between the raters, we computed
the proportion of terms classified with the same label (Ac). Given the nature
of this evaluation, other agreement measures (e.g., Cohen’s κ) were deemed
inappropriate.

3 Results

Figure 1 shows Venn diagrams for the vocabularies generated by each model.
Table 1 reports model-specific results: the number of found original keywords
(Keywords), the selected K, the vocabulary size, and the number of misspellings
(MSP). We report the number of terms classified as relevant by both (RT) or at
least one (RT*) rater (the most useful terms for our use-case), and the number of
2 From: https://pypi.org/project/gensim/. Implementation details (preprocess-

ing, parameters) available at: https://github.com/medesto/psychosis-symptom-
keywords.

https://pypi.org/project/gensim/
https://github.com/medesto/psychosis-symptom-keywords
https://github.com/medesto/psychosis-symptom-keywords
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terms classified as PT/NT by both. We also report accuracy on all terms (Ac-all)
vs on RT terms only (Ac-RT). Examples of RT were variants (hallucinatory),
misspellings (hallicinations), and specific bigrams (auditory hallucinations).

Fig. 1. Venn diagrams for unigram models (center and left) and bigram models (right).

Table 1. Manual evaluation results

Corpus Model Keywords K All terms MSP RT* RT PT NT Ac-all Ac-RT

CRIS specific unigram 7/7 90 40 0 4 3 12 6 53% 75%

CRIS general unigram 7/7 60 50 10 15 13 15 4 64% 87%

MIMIC unigram 5/7 60 21 1 5 4 2 0 29% 80%

PubMed unigram 7/7 90 37 4 8 6 11 3 54% 75%

CRIS specific bigram 21/21 100 135 0 47 40 44 9 69% 85%

CRIS general bigram 19/21 160 220 8 70 58 57 20 61% 83%

MIMIC bigram 6/21 120 49 1 7 7 6 5 37% 100%

4 Discussion and Conclusion

Generating vocabularies that reflect real-world terminology use is needed to facil-
itate complex NLP tasks. Moreover, sharing comprehensive lexical resources is
an important step to support research in the NLP community. Our main con-
tribution is a systematic study of unsupervised vocabulary generation using dif-
ferent corpora for an understudied clinical use-case. In addition, we proposed a
method to automatically compute thresholds to select useful terms from embed-
ding models. All developed resources (vocabularies and evaluations) are made
publicly available on our github repository.

A first observation on the impact of corpus selection regards the size of
generated vocabularies (Fig. 1). Despite PubMed being the largest corpus, the
resulting list of terms was comparable to the other models. Also in the case
of MIMIC, generated vocabularies were relatively small - partially due to some
missing original keywords. This observation confirms that larger corpus sizes do
not necessarily lead to more useful embedding models [10]. When comparing the
two CRIS datasets, the CRIS general model led to a larger vocabulary, especially
in the bigram setting (220 vs 135). Interestingly, the proportion of bigram terms
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was actually higher in the CRIS specific vocabulary (60.7% vs 50.9%). As for
misspellings, while the CRIS specific model did not find any entry of interest,
the other considered datasets were useful (in particular CRIS general).

As regards the manual evaluation process, the proportion of RT* terms was
relatively small, with the most promising results obtained with CRIS general
unigram (30%) and CRIS specific bigram (35%). However, most of the remain-
ing terms were classified as potentially useful, which indicates that embedding
models hold potential to capture semantic similarity. It is important to notice
that agreement values when considering all labels were lower than those obtained
on RT values only. This indicates that it is not straigthforward to distinguish
between terms that could be relevant to psychosis and terms that are not rel-
evant at all, which reflects the intrinsic complexity of defining symptoms (and
in general the meaning of “relevant”) in the mental health domain, hence ter-
minologies. As a starting point, the new RT terms could be successfully reused
in support of symptom onset extraction. To improve the proposed methodol-
ogy/classification, further analysis will be performed on the terms that caused
disagreements, with the final aim of developing a psychosis terminology to be
linked to SNOMED CT.

As a main limitation of this work, we did not consider different embedding
configurations nor n-gram models beyond bigrams. This could have impacted on
the small size of RT lists, as single words or word pairs might not be sufficient
to identify psychosis symptoms in a definite way (e.g., beliefs, anxiety attacks).
More generally, given the intrinsic complexity of this domain, embedding models
alone might not be the ideal choice to generate new concepts for specific use-
cases. In future work, we will extend our study to take into account more complex
models, and we will investigate other ways of modelling the extraction problem.
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Abstract. With popular use of multimedia and 3D content in anatomy
teaching there is a need for a simple yet comprehensive tool to create
and edit pedagogical anatomy video lessons. In this paper we present
an automated video authoring tool created for teachers. It takes text
written in a novel domain specific language (DSL) called the Anatomy
Storyboard Language (ASL) as input and translates it to real time 3D
animation. Preliminary results demonstrates the ease of use and effec-
tiveness of the tool for quickly drafting video lessons in realistic medical
anatomy teaching scenarios.

1 Introduction

Anatomy is the cornerstone of medical education. Fundamental knowledge of the
human body is essential for understanding other subjects in medical and para
medical fields. Traditionally anatomy is taught using visual aids such as chalk
board drawings and slide presentations. Previous studies have shown that 3D
graphics and animation make anatomical learning more engaging [1] and effective
[3,6] but they suffer from a content creation bottleneck. If teachers choose to
incorporate 3D animation in their lessons they either have to use the content
already available to them or invest resources to create new content with the
help of a graphic designer. In the first case content may not match the learning
objectives of the class and the second case offers very little control to the teachers
over the finished video. The solution to this would be to enable anatomy experts
to generate their own 3D animations using innovative authoring tools.

Text-to-movie (or text-to-scene) authoring is a general class of methods that
have been proposed for automatically generating 3D graphics and animation
from text written by a domain expert. Recently, Hassani and Lee have proposed
a review of text-to-movie research focusing on natural language [2]. While they
provide a useful conceptual framework for our work, we chose to use a special-
purpose authoring language, rather than natural language, in order to better
address the needs of medical education.

In our authoring system (Fig. 1(a)) scripts for the lessons are written in a new
formal language called the Anatomy Storyboard Language (ASL). The scripts are
c© Springer Nature Switzerland AG 2019
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(a) (b)

Fig. 1. Text-to-movie generation example with HFSM representation.

then parsed and translated part by part into hierarchical finite state machines
(HFSM). Finally, state machines are executed in Unity 3D game engine to produce
the desired animation at runtime.

2 Anatomy Storyboard Language

It is a domain specific language that is both machine and human readable. The
video to be produced is written as a set of unique sentences. Each sentence
describes all the visual elements, camera actions and animations seen from the
start of the recording till the camera stops. ASL is an anatomical extension of the
Prose Storyboard Language [5] that was designed for annotating and directing
movies. As each sentence is capable of generating a complete shot it must have all
the information necessary to transition into the shot, build composition, direct
camera movements and record changes in composition as subjects in the video
perform actions. The complete And/Or graph of the ASL grammar is presented
in Fig. 2.

ASL is a context free language with terminals (anatomical entities and cine-
matographic terms) and non terminals (initial composition and subsequent devel-
opment). The terminals are either generic terms used for camera movement or
animation, or specific terms referring to the subject described in the shot such
as anatomical parts and regions. The nomenclature of these specific terminals
is derived from My Corporis Fabrica [4] (MyCF), an extensive ontology that
describes structural and functional relations of different parts of human body.
Composition is a description of all the elements that are seen in a particular
frame. It needs to be comprehensive in detailing the size (Fig. 3(b)), angle, plane
of view, anatomical location or specification, profile and relative screen position



306 V. A. Murukutla et al.

Fig. 2. And/Or Graph representation of the Anatomy Storyboard Language gram-
mar. ASL scenes are made of shots containing an initial composition and one or more
optional developments.

of the subjects viewed. The subjects in our case are anatomical parts and regions
as seen in the complete 3D male Zygote model for human body1.

The most important descriptive elements that are essential in building the
composition are plane, anatomical specification, profile. Plane refers to the hypo-
thetical planes that divides the human body. In ASL they define the view in
which we see the anatomical parts and direct camera position accordingly. If
a plane is not mentioned in a composition then the system will automatically
assign a plane in the vertical axis (sagittal or frontal) based on the profile infor-
mation but if the desired composition is in horizontal axis (transverse) then it
must be mentioned in composition.

(a) Specifi-
cations

(b) Anatomy sizes (c) Profiles in transverse plane

Fig. 3. ASL specifications, sizes and profiles.

1 https://www.zygote.com.

https://www.zygote.com
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Anatomical specification (Fig. 3(a)) further defines the part of anatomy most
in focus in the current composition. Profile describes the orientation of the part
in relation to the camera. It is the side of the subject that is viewed by the
camera. The anatomical profile of left and right femurs are shown in Fig. 3(c).
As the shot develops there will be changes in the composition. These changes
can be due to Actions or Effects in Cues, or Camera movements, or both.

Sentences written in ASL are parsed via the Parsimonious2 parser in the
Python language. The parsed sentences are then translated to a hierarchical
finite state machine (HFSM), with one state per composition or development.
The HFSM is described in a XML format with specific tags to define each state
of the machine. Finally, the HFSM is interpreted and executed to generate the
desired animation. We now describe each of those steps separately.

3 From ASL to Animation

3.1 HFSM Generation

The different elements written in ASL are organised into states and transitions
of a HFSM. Particular tags are used to describe the state machine. Our Python
based HFSM generator creates a scenario tag for each complete ASL sentence.
A scenario tag contains a list of states and transitions. Each state is given a
unique name and an anatomy list of parts present in the current composition. A
state also describes a camera with several tags that characterise its positioning
such as orientation, angle up, angle side, up. In particular, a lookat tag lists the
objects the camera should look at. A transition is a change from a start state to
an end state. Currently the transitions are executed automatically between two
consecutive states with a preset time delay that is specified in the delay tag.

Actions in ASL are translated into animations in the HFSM. An additional
animation tag is added in state to trigger animations of anatomical elements
(e.g. a knee flexion). In the current state of the application, animations are pre-
made and cyclical. This is done to avoid editing glitches that could arise if the
body position at the end of animation in one state does not match the body
position in the next state.

Some descriptive terms of the ASL need to be converted to numerical values
in HFSMs. For example, for the lessons written in this paper we specified that the
ASL term high angle will be translated to a 45◦ bird’s eye view. This numerical
value of 45 is defined in an animation style sheet along with other global values
that change the camera position and total run-time of the video. This style sheet
can be edited by the teachers depending on their preferences thereby giving them
more nuanced control over the video making process.

3.2 Animation Generation

We developed an application using the Unity 3D game engine to generate the
desired animation at runtime from the HFSM obtained from the ASL script. The
2 https://github.com/erikrose/parsimonious.

https://github.com/erikrose/parsimonious
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application is thus an interpreter, from a specific XML format to 3D videos of
anatomy. The description of the camera in the HFSM is given by a view plane
(frontal, sagittal or transverse), an object or a group of object to look at and a up
vector to orient the rotation of the camera. With these pieces of information, the
application computes the bounding boxes of the objects to look at and deduces
the position and orientation to reach. The camera then moves from its previous
position to the new one according to the other parameters translated from the
ASL (e.g. type and speed of camera movement). If an animation tag is present, it
executes an animation from the database that is registered under the same name.

4 Results and Future Work

We used our text to movie authoring system to create short videos based on scripts
written by two anatomy professors. The teachers were given a brief introduction
to ASL using the And/Or chart. Examples of compositions in ASL and their cor-
responding frames in Unity player were shown to get them familiarised with the
system and ASL grammar. They initially started writing very short scripts with
initial composition and one development. Progress was made one composition at a
time during which they tested different animations and decided on the best view-
ing positions. The most liked features of the system are that it allows the user to
build the video state by state and has immediate visualisation of the video made
so far which facilitates easier editing. After some practice the teachers were able
to write three lessons on the knee joint and one lesson on the forearm.

In future work, we would like to extend our approach to non-linear con-
tent generation by taking into account user-triggered transitions between states.
This would make our approach applicable to mixed reality. Another promis-
ing direction for future research would be to generate ASL scripts directly from
audio narrations, using a combination of speech processing and natural language
understanding.
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Abstract. Psychiatric disorder diagnoses are heavily reliant on observ-
able symptoms and clinical traits, the skill level of the physician, and the
patient’s ability to verbalize experienced events. Therefore, researchers
have sought to identify biological markers that accurately differenti-
ate mental disorder subtypes from psychiatrically normal comparison
subjects. One such putative biomarker, DNA methylation, has recently
become more prevalent in genetic research studies in oncology. This paper
proposes to apply this paradigm in a study of the diagnostic accuracy of
DNA methylation signatures for classifying schizophrenia, bipolar dis-
order, and major depressive disorder. Very high classification perfor-
mance measures were obtained from differentially methylated positions
and regions, as well as from selected gene signatures. This work con-
tributes to the path toward the identification of biological signatures for
mental disorders.
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1 Introduction

Psychiatric disorder diagnoses are heavily reliant on the behavioral criteria enu-
merated in the Diagnostic and Statistical Manual of Mental Disorders’ listing of
observable symptoms and clinical traits, as well as the skill level of the physician,
and the patient’s ability to verbalize experienced events. As stated in Demkow and
Wolańczyk [1], the patient’s ability to consistently verbalize their experiences cou-
pled with varying degrees of perceptive awareness in the health professional exag-
gerate complications in proper diagnosis. This sentiment is echoed in the mission
of the National Institute of Mental Health’s (NIMH) Research Domain Criteria
(RDoC) initiative. In commentary for the initiative, Insel [4] suggests that “While
we can improve psychiatric diagnostics by more precise clustering of symptoms,
c© Springer Nature Switzerland AG 2019
D. Riaño et al. (Eds.): AIME 2019, LNAI 11526, pp. 311–321, 2019.
https://doi.org/10.1007/978-3-030-21642-9_40
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diagnosis based only on symptoms may never yield the kind of specificity that we
have begun to expect in the rest of medicine.” Therefore, researchers have sought
to identify biological markers that accurately differentiate mental disorder sub-
types from psychiatrically normal individuals. Among the’omics range of data, one
particular biomarker, DNA methylation, has recently raised attention in genetic
research studies in oncology. Following on these tracks, this paper proposes to clas-
sify a subset of mental disorders based on their methylome with the goal of deter-
mining whether DNA methylation data alone can be successful at diagnosing a
mental disorder. Machine learning has been chosen for this task as a method of
choice to complement statistical data processing.

2 Epigenetics and Methylation

The term epigenetics was first introduced into modern biology by Conrad
Waddington as a means of defining interactions between genes and their prod-
ucts that result in phenotypic variations. Waddington’s landscape presents a
cell becoming more differentiated as time goes on. What causes them to differ-
entiate, however? What sort of forces are at play? One of many such events is
methylation. Methylation is a covalent attachment of a methyl group to cytosine.
Cytosine (C) is one of the four bases that construct DNA and one of only two
bases that can be methylated. While adenine can be methylated as well, cytosine
is typically the only base that’s methylated in mammals. Once this methyl group
is added, it forms 5-methylcytosine where the 5 references the position on the
6-atom ring where the methyl group is added. Under the majority of circum-
stances, a methyl group is added to a cytosine followed by a guanine (G) which
is known as CpG. While the methyl group is added onto the DNA, it doesn’t
alter the underlying sequence but it still has profound effects on the expression
of genes and the functionality of cellular and bodily functions. Methylation at
these CpG sites has been known to be a fairly stable epigenetic biomarker that
usually results in silencing the gene. Further, the amount of methylation can be
increased (known as hypermethylation) or decreased (known as hypomethyla-
tion) and improper maintenance of epigenetic information can lead to a variety
of human diseases.

3 Methylation in Mental Disorders

Methylation’s influence in cancer has been introduced with great success which
encourages its application in psychiatry. There have been a number of studies
disclosing the impact of methylation levels on overall psychiatric health that are
both broad and narrow in scope. One potential precursor to the onset of a mental
disorder is the presence of chronic stress. It has been linked to the development
of schizophrenia and bipolar disorder [14], major depressive disorder [12], and
addiction [11]. Klengel, Pape, Binder and Mehta [5] performed a review of lit-
erature and noted how stress induces long-term changes in DNA methylation.
Specifically, they report differential methylation among genes and promoters
for post-traumatic stress disorder (PTSD), major depressive disorder (MDD),
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depressive symptoms and suicide. Radtke et al., [9] also found that maternal
exposure to intimate partner violence had a sustained increase in methylation
of the GR promoter and altered the hypothalamic-pituitary-adrenal axis (HPA-
axis), which has been linked to several mental disorders. Methylation of the GR
promoter has not only been implicated in internalizing behavioral problems in
preschoolers [7] but methylation of this promoter has been found in those suf-
fering from PTSD and from depressive, anxiety and substance-abuse disorders
[13]. Further, DNA methylation increases throughout the lifespan but this was
found to be 8-fold greater in those who have committed suicide [2].

4 Materials

4.1 Datasets

Three publicly available Gene Expression Omnibus (GEO) datasets were selected
from Array Express; GSE80417, GSE41169 and GSE44132. Selection criteria
were based on the availability, affordability, measurement apparatus and sample
location. These three datasets were Illumina HumanMethylation450 (HM450)
BeadChip data derived from whole blood samples. Data from 322 psychiatrically
normal control subjects was extracted from GSE80417 and added to 33 control
subjects from GSE41169. The 322 control subjects from GSE80417 were screened
for an absence of mental health problems, and interviewed. The interview ensured
that these subjects did not have a personal history of a mental disorder, or a
family history of schizophrenia, bipolar disorder or alcohol dependence.

Whole blood HM450 data from 62 subjects with schizophrenia (SCZ) were
also used from GSE41169 and added to HM450 data from 34 subjects with major
depressive disorder (MDD) and 21 subjects with bipolar disorder (BP) from the
GSE44132 dataset (Table 1). These three datasets were merged, resulting in
402,723 observations of CpG sites and 472 subjects. Each dataset was β-quartile
normalized. β values are an estimation of the methylation levels between 0 and
1 with 0 being completely non-methylated and 1 being completely methylated.

Table 1. Number of subjects per disorder for each dataset

Dataset Normal SCZ MDD BP

GSE44132 0 0 34 21

GSE41169 33 62 0 0

GSE80417 322 0 0 0

TOTAL 355 62 34 21

4.2 Data Preprocessing

The GEO datasets from Array Express were stored in an ExpressionSet object
within RStudio. These objects contain the phenotype data, assay data, meta-
data, protocol and feature data. Before beginning the surrogate variable analyses,
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the phenotype and assay data were extracted and stored in their own dataframe
objects in RStudio. The majority of the phenotype data pertained to the lab-
oratory and these variables were removed while subject-specific variables were
maintained.

4.3 Surrogate Variable Analyses

Genetic and epigenetic factors are highly-dimensional with thousands of poten-
tial influencers. Surrogate variable analyses (SVA) attempts to estimate some of
these unobserved influencers for their effect on a variable of interest. The effects
of the subject’s age and gender on methylation levels were tested at this stage,
as well as variations in equipment and extraction methodologies. Commonly
referred to as a “batch effect,” different laboratories having different equipment
and extraction procedures can alter obtained methylation levels was therefore
accounted for.

Surrogate variables and batch effects were handled through the R package
SVA. SVA operates by using the iteratively least weighted squares approach to
estimate surrogate variables. Upon estimation of the surrogate variables, SVA
calculates the probability that each probe is associated with the variable of inter-
est (disorder classification, in this case). Parametric F-test p-values are calcu-
lated for differential methylation in regards to disorder status, adjusted for mul-
tiple testing with the Benjamin-Hochberg (BH) method, and further adjusted
for the influence of the surrogate variables. Through this stage, probes that were
associated with age, gender, and batch were removed from each of the three
datasets prior to re-assembly. The resulting SVA set was comprised of 472 sub-
jects and 10,890 remaining CpG sites and was utilized in each of the following
analyses. Additionally, smoking has been shown to be a confounding factor. As
the selected datasets did not screen for smokers, an additional check was per-
formed to ensure that probes significantly associated with smoking were not in
the dataset after SVA.

5 Methods

The first step was to take an overall glance at the differences in disorders and the
control group. This entailed viewing the average total methylation per disorder,
percent hypermethylation and percent hypomethylation. On average, the sites
in the control subjects were 35.5% methylated, SCZ subjects were 35.3%, MDD
subjects were 39.6% and BP subjects were 36.9%. This was performed simply
by computing the average β value per subject and calculating an average for all
subjects for each disorder.

Computing the percent of hypermethylation was performed by filtering for
all sites within each subject that had a β greater than 0.8 and dividing by 10,890
(total number of sites in the dataset). After the percent of hypermethylated sites
were determined for each subject, an average for each disorder was computed.
15.7% of sites were hypermethylated on average for the control subjects, 23.8%
for SCZ, 30.3% for MDD, and 22.2% for BP.
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Calculating the percent of hypomethylation was done by filtering for all sites
within each subject that had a β lower than 0.2 and dividing by 10,890. 56.7%
were hypomethylated for the control subjects, 58.7% for SCZ, 57.6% for MDD
and 57.3% for BP (Fig. 1).

Fig. 1. Percent of hyper and hypomethylation per disorder.

A scatterplot was produced in Fig. 2 that plotted the percent of hypermethy-
lation (X-axis) versus the percent of hypomethylation (Y-axis) for each subject.
The plot is arranged based on disorder class with the psychiatrically normal
control group (N) being unfilled squares, SCZ being the letter X, MDD being
unfilled circles and BP being filled circles.

Fig. 2. A plot of the percent of hyper and hypomethylation for 455 subjects in 4
disorder classes.
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An important issue to address is that 33 of the normal subjects were clustered
in with the schizophrenia subjects. These 33 subjects were determined to be those
in the GSE41169 dataset, so it is possible that equipment calibration procedures
may have contributed to the higher hypomethylated positions. However, since
these subjects were screened to be psychiatrically normal they were left in the
dataset during classification.

5.1 Differentially Methylated Positions

Differentially methylated positions (DMP) were identified using the Chip Anal-
ysis Methylation Pipeline (ChAMP) for R. A pairwise comparison of all possible
disorders and controls was conducted using a BH adjusted p-value of 0.05. Each
comparison and the number of significant probes are available in Table 2. Methy-
lation β-values from these significant probes were then merged and compiled to
form one composite dataset of 10,585 variables (Table 3).

5.2 Differentially Methylated Regions

The DMRcate method within ChAMP was used to extract the differentially
methylated regions (DMR). Regions are clusters of probes that serve a sim-
ilar function in gene transcriptional regulation. ChAMP allows for three dif-
ferent methods of locating DMRs: Bumphunter, Probe Lasso and DMRcate.
Probe Lasso can only compare two phenotypical categories, and thus wouldn’t
be functional without methodical pairwise comparisons. Upon comparison,
Peters et al., [8] found DMRcate to have superior predictive performance com-
pared to Bumphunter and Probe Lasso in real and simulated data though Ruiz-
Arenas and Gonzalez [10] found that DMRcate had low power for smaller effect
sizes. In contrast, Ruiz-Arenas and Gonzalez [10] did find that DMRcate had
high power and precision in larger effect sizes and high precision for small effect
sizes which was echoed in Mallik et al., [6]. Of note is that Mallik et al., [6]
found DMRcate to outperform or match the results of Bumphunter and Probe
Lasso in all instances aside from its power in small effect sizes. These led to
DMRcate being chosen and utilized, though DMRcate required the removal of
cross-hybridizing probes and sex-chromosome probes prior to operation. This
could be handled through DMRcate. A false-discovery rate of 0.05 and a mini-
mum probe number of 3 were provided as thresholding parameters. Probes within
the located regions were then used to build the dataset for this stage. 494 probes
remained after compiling and removing redundancies.

5.3 Classification

The classification was performed almost exclusively in Weka [3], an open source
collection of machine learning algorithms. We decided to use leave-one-out cross
validation and a 90% training and 10% testing split due to the small sample size
in each disorder. The evaluation measures were balanced accuracy and the area
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Table 2. Number of significant probes for
each pairwise comparison

Comparison Probes

Control and SCZ 10,265

Control and MDD 9,520

Control and BP 7,401

SCZ and MDD 10,178

SCZ and BP 9,024

MDD and BP 10,452

Table 3. Number of significant regions
for each pairwise comparison

Comparison Regions

Control and SCZ 493

Control and MDD 480

Control and BP 397

SCZ and MDD 493

SCZ and BP 490

MDD and BP 493

under the ROC curve due to the substantially uneven classes. Balanced accuracy
was computed by applying Formula 1 to locate the accuracy of each class with
i representing one of the four classes. Formula 2 was then applied to determine
the overall balanced accuracy, where N is the number of classes.

acci = 1/2(TruePositiveRatei + (1 − FalsePositiveRatei)) ∗ 100 (1)

Acc =

N∑

i=1

acci

N
(2)

The first stage was to classify the disorders using the dataset after SVA
had been conducted but prior to any other stages. This stage was meant to
establish a baseline through which to compare the results of any subsequent
stages. Following were the utilization of the DMP and DMR datasets. The next
sections disclose the classification results. Among machine learning algorithms,
Nearest Neighbor (NN), Support Vector Machines (SVM), Näıve Bayes (NB),
and Random Forest (RF) were compared on all 10,890 probes (after SVA), 10,585
differentially methylated positions, and 494 differentially methylated regions.

5.4 Feature Selection

Feature selection was carried out on the dataset after surrogate variable analyses
were performed, as well as on the data after differentially methylated position
analyses. Five algorithms consisting of the Information Gain Attribute Evalu-
ation, Correlation Attribute Evaluation, SMO Classifier Attribute Evaluation
and Näıve Bayes Classifier Attribute Evaluation were performed. An ensemble
was then created using all of the results by tallying the rankings for each probe
in the results of each algorithm. In each list, the best probe would be ranked
first and the second best would be ranked second and so forth. The 15 with
the lowest overall tallied score were mapped to their nearest gene and used to
classify sequentially using Näıve Bayes. 15 was selected as subsequent tests to
50 features revealed no significant changes in accuracy. Balanced accuracy and
the ROC area were used as performance measures.
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6 Results

6.1 All Probes

Classification results on all probes are very high (see Table 4).

Table 4. Classification results for the overall 10,890 probes at the probe level

Leave-one-out cross validation 90% Training, 10% Testing

Algorithm Balanced accuracy ROC Algorithm Balanced accuracy ROC

NN 89.2% 0.952 NN 91.2% 0.976

SVM 95.45% 0.947 SVM 94.08% 0.935

NB 97.52% 0.955 NB 94.08% 0.914

RF 97.58% 0.970 RF 98.77% 0.990

6.2 Differentially Methylated Positions

Classification results on differentially methylated positions are also high (see
Table 5).

Table 5. Classification results using 10,585 differentially methylated positions

Leave-one-out cross validation 90% Training, 10% Testing

Algorithm Balanced accuracy ROC Algorithm Balanced accuracy ROC

NN 90.77 0.958 NN 94.9 0.970

SVM 95.83 0.952 SVM 93.46 0.928

NB 97.52 0.955 NB 96.33 0.931

RF 96.51 0.971 RF 94.9 0.953

6.3 Differentially Methylated Regions

Moving from probes to regions reduces significantly the number of features while
classification performance shows a trend of improvement (see Table 6).

Table 6. Classification results using 494 differentially methylated regions

Leave-one-out cross validation 90% Training, 10% Testing

Algorithm Balanced accuracy ROC Algorithm Balanced accuracy ROC

NN 95.67 0.972 NN 98.75 0.996

SVM 93.06 0.920 SVM 98.75 0.984

NB 96.17 0.939 NB 98.75 0.967

RF 95.88 0.972 RF 98.75 0.995
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6.4 Feature Selection

Balanced accuracy and the ROC area were computed for each iteration and the
results are available in Table 7 from 1 to 15 top ranked genes.

When comparing performances with Näıve Bayes (see Table 8), one notices
that both accuracy and area under the ROC curve reach similar performance on
15 selected genes, which is an impressive result. Having a small number of genes
to differentiate between the four classes makes the results of the classification
much more explainable and interpretable.

Table 7. Accuracy and ROC for the top ranked genes

Analysis
stage

Split Top 1 Top 5 Top 10 Top 15

SVA LOOC 80.05% (0.957) 85.45% (0.965) 86.48% (0.967) 97.3% (0.974)

SVA 90/10 80.69% (0.983) 90.08% (0.972) 90.08% (0.98) 97.26% (0.964)

DMP LOOC 79.81% (0.916) 95.95% (0.912) 96.83% (0.911) 96.44% (0.912)

DMP 90/10 75.79% (0.916) 94.16% (0.912) 94.16% (0.911) 94.16% (0.912)

Table 8. Comparison of overall performance with and without feature selection

Analysis stage Number of features LOOC 90/10

SVA 10,890 97.52% (0.955) 94.08% (0.914)

DMP 10,585 97.52% (0.955) 96.33% (0.931)

DMR 494 96.17% (0.939) 98.75% (0.967)

Ensemble feature
selection (SVA)

15 97.3% (0.974) 97.26% (0.964)

Ensemble feature
selection (DMP)

15 96.44% (0.912) 94.16% (0.912)

7 Conclusion

This paper outlines the application of four classification algorithms for deter-
mining the accuracy of identifying three disorders and a control class using
DNA methylation signatures. Differentially methylated positions and regions
were detected and utilized, and potential associated genes were notated for pos-
sible further investigation. Classification accuracy and area under the ROC curve
show very high figures that demonstrate an excellent performance particularly
by Random Forest and Näıve Bayes. It is notable that the reduction in number
of features from 10,890 to 494, then to 15 when moving from probe to region
level then to the gene level did not lower the classification performance while
greatly improving the execution speed and interpretability. These results are all
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the more encouraging and robust given that patients were evaluated by differ-
ent teams of psychiatrists, which could have conflated the diagnostic categories;
however, we were limited by the availability of data. Future work will involve
focusing on annotating the genetic signature at the pathway level, performing
more thorough analyses on larger datasets as they become available, and in
particular on independent test sets to test the replicability of results.
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Abstract. Diabetes is a global epidemic, which leads to severe complications
such as heart disease, limb amputations and blindness, mainly occurring due to
the inability of early detection. Photoplethysmography (PPG) signals have been
used as a non-invasive approach to predict diabetes. However, current methods
use long, continuous signals collected in a clinical setting. This study focuses on
predicting Type 2 Diabetes from short (*2.1s) PPG signals extracted from
smart devices, and readily available physiological data such as age, gender,
weight and height. Since this type of PPG signals can be easily extracted using
mobile phones or smart wearable technology, the user can get an initial pre-
diction without entering a medical facility. Through the analysis of morpho-
logical features related to the PPG waveform and its derivatives, we identify
features related to Type 2 Diabetes and establish the feasibility of predicting
Type 2 Diabetes from short PPG signals. We cross validated several classifi-
cation models based on the selected set of features to predict Type 2 Diabetes,
where Linear Discriminant Analysis (LDA) achieved the highest area under the
ROC curve of 79%. The successful practical implementation of the proposed
system would enable people to screen themselves conveniently using their smart
devices to identify the potential risk of Type 2 Diabetes and thus avoid austere
complications of late detection.

Keywords: Machine Learning � Diabetes Type II � Photoplethysmography �
Feature selection

1 Introduction

Diabetes is a severe global phenomenon that has been the root cause of millions of
deaths worldwide. This study focuses on detecting Type 2 Diabetes, which is caused by
the body’s inefficient use of insulin, resulting in abnormally high levels of sugar in the
blood. The symptoms of the disease are less marked and is often detected several years
after the onset through complications, which can result in premature heart disease,
blindness, limb amputations and kidney failure. Hence, the utmost importance of early
detection and continuous monitoring. Individuals at risk are advised to undergo regular
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medical tests such as Hb1Ac to detect diabetes, which is intrusive and often neglected
due to the busy lifestyles and the associated costs.

Our research focuses on developing a system capable of predicting Type 2 Diabetes
using readily available data of general users. We use physiological characteristics and
short(*2.1s) recorded Photoplethysmography (PPG) signal measurements of the users
towards Diabetes prediction. Photoplethysmography can be identified as a non-
invasive, inexpensive, optic technique that measures the blood volume changes in
blood vessels through which, oxygen saturation, blood pressure, cardiac output could
be measured [1, 2]. Recent research studies have identified that PPG is a promising
technique towards early screening of diseases as the PPG waveform possess significant
information embedded within. The recent advancement in hardware has enabled the
integration of high-quality PPG sensors within mobile phones & smart watches, which
has enabled easy access to regular measurement of required health parameters moti-
vating towards early disease prediction and continuous health monitoring, which is
recommended for diseases such as Diabetes.

The objective of this study is to predict Diabetes using a single instance of a short-
recorded PPG signal combined with physiological characteristics, which is uncommon.
However, there have been studies that have focused on analyzing the PPG signals and
other features of the users towards the prediction of Type 2 Diabetes. Reddy et al. [3]
have focused on analyzing features related to PPG derived Heart Rate Variability
(HRV) and shape information of the PPG waveform towards diabetes prediction.
Ballinger et al. [4] focused on predicting a range of diseases including diabetes using
features such as the user medical history, step count and continuous optical heart rate
measured using PPG and was able to achieve an accuracy of 84.51%. Moreno et al. [5]
achieved an accuracy of 69.4% using HRV and Cepstral Analysis. In contrast the core
focus of this research relies on developing a system capable of using basic user known
physiological characteristics and a single instance of a PPG signal recorded for at most
2–3 s to be used towards diabetes prediction. The successful research in this domain
would ensure great value addition in the fields of smart wearables and healthcare.

2 Methodology

2.1 Data Description

The research was conducted based on a de-identified open clinical trial dataset for non-
invasive detection of cardiovascular diseases by Liang et al. [6], which contains
physiological characteristics, short recorded PPG signals and information related to the
presence of Diabetes and Hypertension in patients. The final extracted data for eval-
uation purposes eliminating the erroneous signals, contained a total of 150 subjects,
comprising of 51 healthy, 39 prehypertension, 28 hypertension, 9 diabetes, 16 diabetes
with prehypertension and 7 diabetes with hypertension subjects. Subjects with cerebral
infarction and cerebrovascular disease were excluded from the study. It should be noted
that the number of subjects in the target group Diabetes was comparatively less and
there were diabetes subjects who were also suffering from both Hypertension and
Prehypertension. Hypertension and Diabetes are strongly interconnected diseases, both
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affecting the cardiovascular system of the human body and thus the PPG signals.
Hence, considering the practical disease distribution in the environment, it is important
to clearly identify unique features to develop a system that is able to clearly predict
diabetes when healthy, and subjects with a form of hypertension are present.

2.2 Data Preprocessing and Feature Extraction

The PPG signals related to the above identified subjects were analyzed in order to
extract features related to the cardiovascular system. For each patient, three segments of
short recorded PPG waveforms had been captured in the dataset, and the best signal
was selected based on the Skewness Signal Quality Index (SSQI) [7] for the study. The
selected signal was passed through a 4th Order Chebyshev II filter in order to eliminate
noise [8]. The final processed signal and its second derivative referred to as the
Accelerated Photoplethysmography (APG) signal, was used for the extraction of
identified features related to the cardiovascular system using the MATLAB software.
The list of extracted features is presented in Table 1.

2.3 Feature Selection

The above extracted signal features have been clearly identified and described in
Elgendi et al. [1] and Allen et al. [2]. The identified features were analyzed in previous
researchers mainly towards the understanding and interpretation of the cardiovascular
system. The cardiovascular system is affected by a range of diseases such as Hyper-
tension, Diabetes and Renal failure. Hence, it is important to uniquely identify the
features related to diabetes that affect the vascular system. An ANOVA test with a 95%
confidence interval was carried out focusing on the healthy subjects (51) and the
subjects with only diabetes (9). Through the test it was identified that the Age, Aug-
mentation Index (AI), Adjusted AI, e/a Ratio and the ratio between the Pulse Interval to
the Systolic Amplitude are suitable features for the prediction of type 2 diabetes. It is
important to note that other features analyzed related to vascular ageing and arterial
stiffness were not identified as predictors towards diabetes, even though they represent

Table 1. Features selected for the analysis

APG signal features PPG signal features Physiological features

b/a Ratio Systolic amplitude Gender
c/a Ratio Pulse area Age
d/a Ratio Inflexion Point Area (IPA) ratio Height
e/a Ratio Pulse Interval (PI) Weight
(b-c-d-e)/a Ratio PI/Systolic amplitude ratio BMI
(b-e)/a Ratio Augmentation Index (AI) Body fat (%)
(b-c-d)/a Ratio Adjusted AI
(c + d – b)/a Ratio Large artery stiffness index
a-a Interval Rise time
(-d/a) Ratio
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the vascular system. A second ANOVA test with a 95% confidence interval was
conducted focusing on the healthy (51), prehypertension (39) and hypertension
(28) subjects. The results of the earlier test were justified as the e/a ratio, AI,
Adjusted AI and the ratio of pulse interval to its systolic amplitude were not identified
as prominent features towards the prediction of hypertension. Hence it can be clearly
identified that the e/a ratio, AI, Adjusted AI and the ratio of pulse interval to its systolic
amplitude are unique features towards the prediction of type 2 diabetes.

2.4 Machine Learning Models

Supervised Machine Learning techniques were used to carry out binary classification
where the evaluation metric was set to the area under the ROC curve. The study
evaluated the Naive Bayes classifier, Linear Discriminant Analysis (LDA), Decision
Trees, Random Forest, AdaBoost Classifier, Logistic Regression and Support Vector
Machine (SVM) towards the classification of Diabetes. The selected models were
initially tuned to identify the optimum hyper parameters for each model using random
search and stratified 10-fold cross validation. All the classification models were tuned
ensuring the selection of suitable hyper parameters to avoid overfitting due to the
relatively small number of data samples. Upon successful tuning of the algorithms a
final 10-fold cross validation was run on the entire dataset in order to select the best
performing model. A binary classification ensuring equal samples for each class was
carried out towards the prediction of diabetes. The evaluation focused upon three
experiments. Healthy versus diabetes only subjects, healthy versus diabetes subjects
with prehypertension, healthy versus diabetes subjects with prehypertension and
hypertension. A final experiment was carried out using only the selected PPG signal
features (excluding physiological features) to evaluate the robustness of using PPG for
diabetes prediction. The subjects below 30 years were excluded from the test ensuring
an even distribution of healthy and diabetes subjects across age groups. The classifi-
cation results for the aforementioned four experiments are presented in Table 2.

Table 2. Diabetes prediction results.

Experiment Classification algorithm ROC F1

Healthy (9) vs Diabetes Only (9) Decision Trees
LDA

0.83 ± 0.14
0.82 ± 0.14

0.79 ± 0.21
0.76 ± 0.13

Healthy (25) vs Diabetes with
Prehypertension (25)

SVM (Linear Kernel)
LDA

0.71 ± 0.20
0.69 ± 0.21

0.55 ± 0.30
0.68 ± 0.16

Healthy (32) vs Diabetes with
Prehypertension & Hypertension (32)

LDA
SVM (Linear Kernel)

0.79 ± 0.15
0.74 ± 0.17

0.71 ± 0.15
0.69 ± 0.10

Using only PPG Signal Features.
Healthy (31) vs Diabetes with
Prehypertension & Hypertension (31)

Decision Trees
LDA

0.70 ± 0.20
0.64 ± 0.15

0.56 ± 0.28
0.56 ± 0.15
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3 Evaluation and Results

Decision Trees and LDA achieved accuracies of 83% and 82% respectively in clas-
sifying diabetes only subjects from healthy subjects. However, in order to enhance the
confidence of this finding, the test should be carried out with additional samples from
diabetes only subjects. In contrast diabetes prediction for subjects with prehypertension
and hypertension provided more confident results due to the relatively larger number of
subjects. SVM performed well predicting diabetes with the presence of prehypertension
providing an accuracy of 71%, whereas LDA was able to obtain an accuracy of 79%
for predicting diabetes with the presence of hypertension and prehypertension. It
should be noted that this test case portrays the real-world scenario of a robust diabetes
prediction system encompassing all possible diabetes and hypertension combinations.
The evaluation of the robustness of using PPG for the diabetes prediction is of utmost
importance to ensure that the predictions are not biased from physiological features
such as the age, which is used in this study. The conducted control test achieved an
accuracy of 70% for the Decision Trees classifier which establishes the suitability of
using the PPG signal for diabetes prediction.

4 Conclusion and Future Work

In this paper we have focused on integrating both physiological and short recorded
PPG signal characteristics, which can be easily extracted through the help of smart
devices, in order to predict Type 2 Diabetes. Through the two ANOVA tests, we were
able to identify the best features for the classification of diabetes. It was identified that
the e/a ratio, AI, Adjusted AI and the ratio of pulse interval to its systolic amplitude are
unique features towards the prediction of type 2 diabetes. The accuracy of predicting
diabetes without the presence of hypertension or prehypertension was 83%. The
confidence of the obtained results can be further improved through data collection and
validation from additional subjects, which is the current focus of our research.
According to our knowledge, this is the first research focusing on analyzing the easily
obtainable short (*2.1s) photoplethysmography signals in order to predict diabetes in
a practical setting with the presence of Hypertension & Prehypertension. The approach
demonstrates good potential through the achievement of an accuracy of 79%. Hence, it
is evident that there exists a potential in using PPG signals to develop intelligent
systems for diabetes prediction through the utilization of smart devices.
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Abstract. Machine learning has potential to identify patterns in pre-
diagnostic prescribing that act as an early signal of cancer diagnosis. Dan-
ish studies using classical regression models have shown that prescribing
of particular drugs increases in the months prior to lung and colorec-
tal cancer diagnosis. The aim of this case-control study is to assess the
potential for machine learning to extend these findings to identify com-
binations of prescriptions that might act as pre-cancer signals. We use
a boosted trees approach to analyse prescriptions data from NHS Busi-
ness Services Authority linked to English cancer registry data to classify
individuals into two classes: cancer patients and controls. We then iden-
tify the drugs that contributed the most to the classification decisions in
the models. To the best of our knowledge, this is the first study utilising
machine learning to find pre-diagnostic primary-care-prescription-related
indicators of cancer diagnosis in England. We assess two feature selec-
tion approaches using text categorisation methods alone and in com-
bination with clinical domain knowledge. Matched samples of controls
(ten controls for each patient) to control for age are used throughout.
We train models for matched cohorts of 6,770 lung cancer patients and
5,869 colorectal cancer patients starting the cancer pathway for the first
time between January and March 2016. The models outperform classical
methods by AUC, AUC-PR, and F0.5 score, showing strong potential for
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using machine learning to extract signals from this dataset to aid earlier
diagnosis. Our findings confirm the Danish studies.

Keywords: Cancer · Boosted trees · Feature selection · Clinical input

1 Introduction

Cancer is the second most common cause of death worldwide, with lung and
colorectal cancer the leading causes of cancer deaths. Further, lung and colorectal
cancers are the two most common forms of cancer that do not primarily affect
one sex. Early diagnosis of cancer can increase survival, improve quality of life,
and decrease healthcare costs [1]. Identification of cancer is a difficult problem,
and the NHS in England considers it worth investigating 100 patients with a
suspicion of cancer for 3 diagnoses of cancer. This means that algorithms with
moderate machine learning performance can add high clinical value.

Patterns in pre-diagnostic prescribing could provide an early signal of cancer
diagnosis. Danish studies [2–4] have observed increases in prescribing of partic-
ular drugs prior to cancer diagnosis, including COPD drugs, antibiotics, and
opioids prior to lung cancer diagnosis, and haemorrhoid drugs, laxatives, oral
iron, and opioids prior to colorectal or colon cancer diagnosis. These studies use
classical approaches including generalised linear models. While these methods
have been effective in showing prescribing increases of some drugs prior to diag-
nosis, we are not aware of studies using modern machine learning methods to try
to find signals in prescriptions prior to cancer diagnosis. Machine learning has
the potential to identify complex, non-linear relationships between high num-
bers of variables. Our study aims to assess whether there is potential utility for
a machine learning approach to build on the published traditional approaches to
identify combinations of prescriptions indicative of subsequent cancer diagnosis.

In this work, we apply a boosted trees classifier to prescription data prior to
cancer pathway start date to classify individuals as cancer patients or matched
controls and extract a list of drugs that contributed most to the decisions in the
model. We compare our models to classical methods. As drugs prescribed for
comorbidities add noise to the data, and to increase interpretability, we assess
two feature selection approaches: a data-driven approach using text categorisa-
tion methods, and these drugs grouped by a domain expert.

2 The Approach

The Data: We use population-level anonymised data of all prescriptions dis-
pensed in community pharmacies in England provided by NHS Business Services
Authority linked to data held by Public Health England’s National Cancer Reg-
istration and Analysis Service (NCRAS) where a patient has received a cancer
diagnosis [5]. In England, drugs are categorised by levels of the British National
Formulary (BNF) [6], a multi-level hierarchy. Drugs in the prescription data are
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identified at the lowest level, presentation code, which includes how the chemical
is administered. In this analysis, drugs within the same BNF subparagraph are
combined to form one drug. For example, a presentation code may be ‘Amox-
icillin’ with the dosage information of a 250 mg capsule. This would be classed
under the wider class of ‘broad-spectrum penicillins’.

We evaluate our method on two cohorts consisting of all patients diagnosed
with a first cancer of lung (N = 6,770) or colorectal cancer (N = 5,869) who
started the patient pathway between January and March 2016 with at least one
prescription in the previous nine months. This cohort was chosen as the earliest
cohort with nine prior months of data available. We define cancer pathway start
as the first referral or diagnosis recorded by the cancer registry for the specified
tumour. As early exploratory analysis found age to be a strong confounder, we
case-match each patient to ten controls to ensure we identify drugs linked to
cancer rather than comorbidities in older patients, and to control for seasonal
variation in prescribing. We randomly sample controls from the population who
have no history of cancer matched on age and having received a prescription
in the same nine-month period as the patient. Prescriptions for both patients
and their matched controls are taken from the nine months prior to the patient
pathway start date. Sex was not available in the data.

Data Preprocessing and Feature Selection: After linking tables, the data
has the form (patient, age, drug code, month of prescription, other variables),
which we aggregate for each patient to take the form (age, d1, . . . , dn), where di
is the number of prescriptions of drug i received by the patient in the nine-month
period. There were 563 (lung) and 534 (colorectal) drugs before feature selec-
tion. The first feature selection method we use is an effective method used in text
categorisation, the Entropy based Category Coverage Difference (ECCD) crite-
rion [7]. In this, we view patients as “documents”, and the drugs they receive as
the “words” within them. This method was chosen because it ranks drugs using
both the frequency of prescriptions and the proportions of individuals receiving
the drugs for patients compared with controls. We select the highest and lowest
25 drugs for the 50-drug feature selection (respectively, highest and lowest 50
drugs for the 100-drug method), ranked by ECCD score for the cancer patient
cohort. Further, as several drugs (and types of drugs) are used for the same clin-
ical indication, the 100-drug ECCD-identified drugs are then grouped into 54
drug groups, each representing distinct clinical presentations. This classification
was developed by two medically qualified co-authors (MR-general practitioner,
GL-public health physician).

TheModels:We train the models using XGBoost [8] in R, with evaluation metric
AUC. Data is split into training (80%) and testing sets (20%). We tune parameters
using 10-fold cross-validation applied to the training set with metric AUC, with the
learning rate in {0.01, 0.1, 0.3} and maximum tree depth in {3, 6, 10}, with early
stopping after 10 rounds with no increase in test AUC (capped at 500 rounds) and
all other parameters set to the default values. Models are evaluated using AUC and
AUC-PR. The threshold probability for classifying cases as cancer patients was
chosen to maximise the F0.5 score, to balance identifying sufficiently many cases
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for the test to be useful with prioritising minimising misclassified healthy controls
as a high PPV makes a test of clinical value. For comparison, we fit a LASSO logis-
tic regression model with the same variables as the data for our machine learning
model with no feature selection (the choice of LASSO regularisation is to handle
the high dimensionality).

Table 1. Results of the models.

Classifier Lung cancer

AUC AUC-PR Accuracy F0.5 PPV Sensitivity

XGBoost: No feature selection 0.735 0.257 0.903 0.319 0.412 0.167

XGBoost: ECCD (50 drugs) 0.729 0.251 0.871 0.314 0.309 0.335

XGBoost: ECCD (100 drugs) 0.731 0.248 0.886 0.312 0.331 0.253

XGBoost: ECCD (clinical groups) 0.716 0.227 0.889 0.297 0.330 0.212

Logistic model 0.715 0.223 0.880 0.284 0.298 0.236

Colorectal cancer

XGBoost: No feature selection 0.637 0.177 0.897 0.261 0.334 0.138

XGBoost: ECCD (50 drugs) 0.639 0.177 0.896 0.267 0.335 0.145

XGBoost: ECCD (100 drugs) 0.643 0.182 0.899 0.272 0.354 0.139

XGBoost: ECCD (clinical groups) 0.631 0.181 0.894 0.255 0.314 0.144

Logistic model 0.595 0.131 0.884 0.181 0.218 0.106

3 Implementation

The results of the models on the testing sets are shown in Table 1. We compare
the models by the AUC, AUC-PR, and maximum F0.5 scores, and show the
accuracy, PPV, and sensitivity for the prediction threshold maximising F0.5. For
lung cancer, the machine learning models outperform classical logistic regression
by all three metrics, and the data-driven approaches outperform the clinical
approach. The model with no feature selection outperforms any feature selection
method for these metrics. In the case of colorectal cancer, again the machine
learning models outperform the logistic regression by all three metrics. Feature
selection improves the model, and the ECCD algorithm (100 drugs) performs the
best by the three metrics. Clinical groupings still reduce performance compared
to the other machine learning models by AUC and max F0.5. For both sites, all
models outperform chance (AUC = 0.5, AUC-PR = 0.091, max F0.5 = 0.111).

For each site, the most informative five drugs coincide for all XGBoost mod-
els, bar the order of analgesics for lung cancer. Those for lung cancer, with clin-
ical interpretations by MR, are given in Table 2. Those for colorectal cancer are:
oral iron, antispasmodics and other drugs altering gut motility, haemorrhoidal
preparations with corticosteroids, osmotic laxatives, and non-opioid analgesics.
The drugs obtained are consistent with [2–4] and clinical understanding.



332 J. French et al.

Table 2. The drugs of highest importance to the lung cancer model.

Drug Clinical interpretation

Antimuscarinic Bronchodilators Treatment of COPD and asthma. Overlapping
symptoms with lung cancer

Selective Beta(2)-Agonists Treatment of COPD and asthma. Overlapping
symptoms with lung cancer

Broad-Spectrum Penicillins Treatment of respiratory tract infections.
Symptoms overlap with lung cancer

Tetracyclines Treatment of respiratory tract infections.
Symptoms overlap with lung cancer

Opioid/Non-Opioid Analgesics Treatment of pain. Could be from
cancer/metastases

The efficacy of feature selection for colorectal cancer data, but not lung can-
cer, could be due to fewer data points and higher sparsity. The ECCD algorithm
was run on the full dataset for the clinical grouping, which will introduce positive
bias due to the feature selection seeing the test data. In further work, optimising
the models using AUC-PR may better account for the imbalanced classes.

4 Conclusion

Earlier diagnosis of lung and colorectal cancers could be aided by signals arising
from prescription history. We test the potential for machine learning to identify
such signals. We assess the impact of two feature selection approaches based
on an effective text categorisation method and clinical domain knowledge. Clas-
sical methods are able to classify patients more effectively than chance alone,
showing that prescribing patterns may provide pre-cancer signals. Machine learn-
ing methods outperform classical approaches and identify clinically meaningful
drugs, demonstrating potential for machine learning to find pre-diagnostic pre-
scribing patterns. The data-driven approaches outperform feature selection with
domain knowledge. Further machine learning work could identify more com-
plex prescribing patterns, explore feature choices in more depth, and potentially
improve model performance.
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Arnau Mir1,2, and Sebastià Rub́ı2,3
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Abstract. The arterial concentration of the radiopharmaceutical
18F-choline is needed to estimate its absorption by tumors and other tis-
sues. The blood concentration of 18F-choline changes as it interacts with
tissues, and so it is represented as a function with respect to time, the
so-called Input Function (IF). In this paper, we present the estimation of
an arterial whole-blood Image-Derived Input Function (IDIF) from the
PET image, needed to model its absorption. The sagittal and transverse
brain venous sinuses are automatically segmented based on the top-hat
morphological transform. Such segmentation provides an estimation of
the venous whole-blood IDIF. It is then corrected to obtain the arte-
rial whole-blood IDIF by relating the amount of radioactivity material
entering the brain region with the amount leaving it and the amount
remaining. We compare the automatic venous whole-blood IDIF with a
whole-blood venous IDIF from a region manually segmented. Also, we
compare the automatic arterial whole-blood IDIF with the arterial IF
obtained with serial blood samples on the radial artery. Quantitative
measures indicate the overall accuracy of the estimation.

Keywords: PET · 18F-choline · Image processing ·
Vessel segmentation · Input function · Image-derived input function ·
Top-hat morphological transform

1 Introduction

Almost 50% of cerebral primary tumors diagnosed are gliomas, from which the
majority of them are of high grade (grades III and IV according to the WHO
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classification) [4]. High-grade gliomas are malignant tumors, which frequently
grow rapidly. Their diagnosis is based on Magnetic Resonance Imaging (MRI)
with gadolinium-based contrast medium. The clinical treatment of high-grade
gliomas is their surgical excision if possible, usually completed with radiotherapy
and adjuvant chemotherapy. Different prognostic indicators that may help to cat-
egorize tumors and guide therapeutic decisions have been previously described
[7].

The work presented in this paper is framed in a research project aimed
at identifying noninvasive biomarkers based on neuroimaging for high-grade
gliomas. More specifically, we study the pharmacokinetics of 18F-choline with
positron-emission tomography (PET) imaging to characterize its transport and
metabolization in the tumoral tissue [5]. The radiotracer 18F-choline contains a
short-lived isotope of fluor, 18F, incorporated into choline, which is an essential
nutrient precursor for the synthesis of phospholipids, used to build cell mem-
brane. The PET imaging technology is able to capture a 3D map of the distri-
bution of 18F-choline, which indicates how much of it has been absorbed by the
target tissue.

The concentration of radiotracer in blood during the duration of the study is
also an essential measure. In order to quantify the absorption of 18F-choline in
tissues, we must measure the quantity absorbed by the tissue, shown in the PET
image, and the quantity available to be absorbed by the target tissue, which is the
concentration of 18F-choline in the blood irrigating the tissue. In addition, both
of these concentrations depend on time. Instead of a single measure, we must
obtain them in the form of Time-Activity Curves (TAC), which is a function
with respect to time. A vascular TAC is also called Input Function (IF) due to
its role in kinetic modeling. Currently, we measure the blood concentration with
serial blood sampling on the radial artery. In particular, with 27 blood samples
non-uniformly distributed during the duration of the study [5]. However, this is
an invasive procedure for patients that will also undergo surgery.

This paper aims at avoiding the invasive serial blood sampling by facing two
objectives: (i) to introduce a method to estimate the arterial whole-blood IF
(AIF) from the image, and (ii) to validate the method. To attain (i), we first
estimate the venous whole-blood IF (VIF) with image-processing techniques,
obtaining the so-called Venous Image-Derived IF (VIDIF). Afterwards, the Arte-
rial Image-Derived IF (AIDIF) is computed based on the conservation of radio-
tracer in the brain region. Objective (ii) is met by comparing the data obtained
from the semi-automatic methods with measured data. First, by comparing the
automatic VIDIF with a reference VIDIF computed from a manually segmented
region. And second, by comparing the semi-automatic AIDIF with the arterial
blood sampling measures.

Automatic vessel segmentation has been approached with a multitude of
image processing techniques [1]. The manual segmentation of vessels and blood
structures has also been used, e.g. the venous sinuses by Wahl et al. [9], the left
ventricle or other large arterial blood pools by Verwer et al. [8], etc. Schiepers
et al. [6] used factor analysis, a model that splits each voxel’s contribution as
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vessel, tumor and residual. More works were reviewed by Zanotti et al. [10],
who focus on image-derived input functions for brain PET studies with different
radiotracers. In contrast to our proposed methodology, almost all the works they
review are based on manually segmenting the carotid artery, a population-based
input function or simultaneous estimation of input functions and the kinetic
model parameters.

2 Materials and Methods

As previously discussed, we express each Time-Activity Curves (TAC) as a math-
ematical function, the so-called Input Function, if(t). It provides the concentra-
tion at the time specified by its only parameter, the time t. The IF can be
estimated from the PET image, which in this case is known as Image-Derived
Input Function (IDIF). We also consider the TAC of the cranial cavity, also rep-
resented by a mathematical function, intracranial(t), which is measured in
kBq. The kinetic modeling of tumors requires differentiating between the whole-
blood concentration of radiotracer, the plasma concentration and the metabolite
fraction. However, on the following we focus on whole-blood concentrations only:
they are the only concentrations we can measure in the PET image.

The IF used for the pharmacokinetic analysis is a mathematical model
adjusted to the experimental or imaging data. With the radiotracer used,
18F-choline, the tri-exponential model has proved to accurately represent the
arterial IF (AIF) [5]. Such model represents the first seconds—corresponding to
the radiotracer injection—with linear interpolation starting at if(0) = 0, and
the tail of the IF as the sum of three different exponential functions, which has
6 parameters:

if(t) =
3∑

i=1

Ai · e
−t· log (2)

Ti , for t > t0,

where Ai ∈ R is the amplitude, Ti ∈ R the semi-life of the i-th exponential, and
t0 the end of the linear interpolation interval.

All the methods presented in the following have been executed with PMOD
and Matlab. The manual segmentations were also carried out with the PMOD
software.

2.1 Data Acquisition

The data used to compute the arterial whole-blood IDIF (AIDIF) is the fol-
lowing. The study comprises 8 patients. Each PET image is acquired with a
GE-Discovery-PET/CT-600, in dynamic mode, to capture 36 temporal frames
with different duration (we emphasize that the majority of absorption takes
place at the beginning of the study, as can be observed in Fig. 2). Each frame
is a 256 × 256 × 47-voxel image, accounting for 4.49 mm3 per voxel. Also, a
coregistered low-dose PET-TAC and a high-resolution MR image are captured.
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To validate the method, we also have blood samples and the manual seg-
mentation of part of the venous sine. 27 blood samples are obtained from the
radial artery, also at different times [5], which provides a good estimator of the
AIF. The superior sagittal and transverse venous sines are manually segmented
as follows. We averaged the first 14 temporal frames, corresponding to the first
90 s of the study. Manually, we selected a voxel on the frontier of the superior
sagittal venous sine. This was used as a seed to a region-growing algorithm that
iteratively adds connected voxels if their activity is higher to the activity of the
original seed voxel. Also manually, we checked that the mask delineating this
Volume of Interest (VOI) was overall correct and did not intersect with any
tissue. This venous sine VOI is used to compute a venous whole-blood IDIF
(VIDIF)—which we emphasize that is just an estimator, mainly due to lack of
resolution in both time and space.

2.2 Venous Image-Derived Input Function

In this section, we introduce an automatic algorithm to automatically extract
a region corresponding to veins to then compute a VIDIF. This algorithm and
the one to estimate the AIDIF are illustrated in Fig. 1. We aim at capturing
the veins that appear to be more visible in the PET image, again the superior
sagittal and transverse sinuses. To do so, we select voxels whose concentration
with respect to time resembles that of a generic VIF, iteratively favouring the
groups of voxels disposed in thin structures and adjusting the reference VIF to
the PET image.

Fig. 1. Flow diagram of our algorithms, highlighting the idifv estimation from Sect. 2.2
(dotted frame) and the idifa estimation from Sect. 2.3 (dashed frame).

First, we initialize our reference VIF as a pre-defined tri-exponential model,
based on the VIF from the manual segmentation of the superior sagittal and
the transverse sinuses, as previously described. In particular, we use a model
whose exponentials have an amplitude of 4, 1 and 0.3 kBq/ml, and a respective
semi-life of 5, 5 and 20 s. We emphasize that this is valid since the amount of
radiotracer was similar for all the patients, and was always injected at a constant
speed, for 60 s beginning at the study start. Let if1(t) be this reference model,
as a function with respect to time.
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Second, we score each voxel based on its similarity to the reference VIF
obtained. To do so, we consider the correlation between the TAC of each voxel
and the current reference, if1, both as one-dimensional signals.

score1(x) =
T∑

τ=1

pet(x, τ) · if1(τ),

where pet(x, t) is a function that gives the concentration in kBq/cc (with x
representing the 3D coordinates of a voxel, and t the temporal slice).

Third, the score, interpreted as a parametric 3D image, is filtered with the
grayscale top-hat morphological transform to enhance curvilinear structures [1].
As structuring element, we use a 3D sphere with radius equal to 5 voxels.

Fourth, we select the best voxels from which we will estimate the new refer-
ence VIF, to iteratively improve it. We leave out the anatomically lower part of
the filtered score 3D image, which does not contain a structure of interest but
may contribute with voxels belonging to the carotid artery. We emphasize that
we are interested in the VIF. Then, we select the voxels whose score is at least
50% of the maximum score minus the minimum one. Although the method is
robust to this threshold, we observe that a 50% already selects the candidates
adapting very well to the VIF shape. These voxels, interpreted as a 3D image,
are a mask of the structure of interest, M1. The new reference VIF will be the
average of the voxels in the mask, if2(t), from which we will estimate a new
tri-exponential model and iteratively improve from the beginning.

The iterative method stops, at the iteration ξ, when the number of voxels
that were added or excluded to the mask is less than 1% of the total amount
of voxels in the mask itself. The final mask, M = Mξ, is consistently a region,
not necessarily connected, within the transverse and superior sagittal sinuses.
An example of such mask is found in Fig. 2, which shows how the biggest blood
pools tend to be included in the mask. The computed venous IDIF is then
idifv = ifξ+1.

2.3 Arterial Image-Derived Input Function

This section introduces a method to compute the AIDIF. It is based on the
following observation: the amount of radiotracer that enters the intracranial
region minus the amount of radiotracer that leaves it must be equal to the
amount captured. We emphasize that, given the size of the carotid artery and
the limited resolution, an automatic segmentation-based strategy as the one in
Sect. 2.2 is not well suited. Since we can measure both the amount leaving, the
VIF, and the amount absorbed within the intracranial region, reflected in the
PET image, we are able to infer the amount entering it, the arterial IDIF, which
we will denote as idifa(t). Let us note the following relation holding for all t ∈ R:

∫ t

−∞
fluxa(τ) · ifa(τ) dτ = intracranial(t) +

∫ t

−∞
fluxv(τ) · ifv(τ) dτ ,
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where intracranial(t) is the total activity in the intracranial region in kBq;
and fluxa(t), fluxv(t) are, respectively, the arterial and venous blood flow in
ml/s.

Before describing the method, let’s study the assumptions between the simpli-
fied relation of ifa(t), ifv(t), and intracranial(t) that will allow us to compute
the former. Although the arterial blood flow is pulsatile, given the time scale of
our study we will assume that both arterial and venous blood flow are constant.
Let us also assume that, in the intracranial region, the total arterial blood flow
and the total venous blood flow are equal: fluxa(t) = fluxv(t) = F for all t.
Also, let us assume that, at each instant t, ifa(t) is the radiotracer concentration
averaged across all the arteries irrigating the intracranial region; and that ifv(t)
is the radiotracer concentration averaged among all blood drained through veins.
In this case, we obtain the following simplified relation:

ifa(t) ≈ ifv(t) +
1
F

· d
dt

intracranial(t), for all t ∈ R,

which gives an estimate of the AIF based on the image, idifa(t):

idifa(t) = idifv(t) +
1
F

· d
dt

intracranial(t), for all t ∈ R.

First, we obtain intracranial(t) by segmenting such region based on a high-
quality MR image. The Hammers N30R83 brain atlas [2], with 1 mm sampling,
is adjusted to each MR image. All the atlas’ VOIs are merged into a single
brain VOI. Afterwards, we compute the transform that coregisters the PET-TAC
image to the MR image of the same patient. The transform is obtained with a
multi-modality iterative rigid matching algorithm that optimizes the normalized
mutual information, without previously smoothing either of the images. Since
the PET-TAC and the PET are already coregistered, the inverse transform of the
abovementioned transforms the brain VOI into the PET image space. This VOI
is finally postprocessed to fill the holes within different brain regions, employing
a 3D morphological closing with a spherical structuring element of radii equal to
6 voxels. This provides an intracranial VOI, whose averaged TAC is our estimate
of the TAC of the intracranial region, intracranial(t), measured in kBq. This
first step was carried out with the PMOD software.

Let us assume that we have somehow estimated F , so we are able to estimate
idifa(t) at some instances t, then followed by adjusting it to a tri-exponential
model. Let us note that we only compute idifa(t) for each t being the mid-
time of a PET temporal frame, since these are the instants at which we can
compute both idifv(t) and d

dt intracranial(t). With them, we can obtain the
tri-exponential model that best fits these data points. On the following, we will
consider that idifa(t) is such tri-exponential model.

Finally, we actually compute idifa(t) using a mean blood flow F , that is,
estimated from all the patients in the study. Let us recall that we have a good
estimator of ifa(t), provided by the blood serial sampling. Thus, we use the same
relation to infer the value of F that best fits all the patients’ TACs simultane-
ously. In particular, we choose the value of F that minimizes the sum of mean
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squared distances between the arterial image-derived input function, idifa(t),
and the sampled arterial input function ifa(t − Δ), where the delay Δ accounts
for the time difference when measuring on the brain arteries and the radial artery

F = arg min

⎧
⎨

⎩
∑

patient p

MSE(p)

⎫
⎬

⎭ , where

MSE(p) = min
Δ

⎧
⎨

⎩
1
T

(∫ T

0

(idifa(τ) − ifa(t − Δ))2 dτ

) 1
2

⎫
⎬

⎭ .

We emphasize that we estimate a single flow F for all patients, but a different
delay Δ for each of them. We also emphasize that the estimated F is not a good
estimator of the blood flow, but a value that has been experimentally proved to
be consistent among patients (see discussion in Sect. 4).

3 Validation of the Method

In this section, we introduce quantitative metrics and visual plots to validate
the methods introduced in Sects. 2.2 and 2.3.

To compare the similarity of two estimations of the same TAC we quanti-
tatively compare the differences between the two curves. We are interested in
these TAC to later infer the parameters of a compartmental kinetic model that
describes the absorption of radiotracer by the tissue. Thus, if the parameters
obtained when using both TACs were similar, they would be close enough. How-
ever, as a stronger requirement, we require that both TACs represent a very
similar function. To do so, we focus on an interpretable indicator, the mean
absolute error between a reference curve f(t), and an estimated curve, g(t),

MAE(f, g) =
1
T

∫ T

0

|f(τ) − g(τ)|dτ .

We provide the absolute mean error of IF, which is measured in kBq/ml, and in
relative terms (that is, the ratio between MAE(f, g) and MAE(f, 0), where 0 is
a function that always returns zero).

The first comparison is between the automatic VIDIF, presented in Sect. 2.2;
and a second VIDIF, obtained from a manually segmented VOI (see Sect. 2.1 for
details). To do so, we compare the tri-exponential models adjusted to the data
points extracted from the image in each case. The results are shown in Table 1,
were we emphasize that the mean absolute error was 0.73 kBq/ml.

Second, we compare the automatic AIDIF (see Sect. 2.3) with the sampled
AIF (see Sect. 2.1). Since the automatic AIDIF method makes use of a pobla-
tional model to infer the value of F , we perform this comparison in a leave-
one-out fashion: to obtain the automatic AIDIF of a patient, the value of F is
inferred from all the other patients, excluding the current one. This procedure is
designed to avoid the reference data—the sampled AIF in our case—to be used
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Fig. 2. Different axial slices showing the automatic venous mask overimposed on the
PET frame at t = 60 s (top), an anatomically higher slice showing the tumor and the
intracranial mask (bottom left) and visual results of the automatic VIDIF and the
automatic AIDIF. All visualizations correspond to patient №4, which yields the worst
quantitative results.

to infer the output of the method, ensuring that the comparison is not positively
biased.

This second comparison is also carried out using the tri-exponential models
adjusted to the data points. However, these TACs correspond to slightly different
measures, one based on the cerebral arterial flow and the other on samples taken
from the radial artery. This produces a temporal delay between them. We avoid
this effect by finding the delay that makes the two curves more similar in terms
of their mean squared error, computed as in Sect. 2.3, since this is a trade-off
between the mean absolute error and the maximum error. In other words, Table 1
shows the comparison between idifv(t) and ifv(t − Δ), with Δ as the one that
minimizes the the mean squared error, MSE, between idifv(t) and ifv(t − Δ).

4 Analysis and Conclusion

In this section, we analyze the results and we introduce the strengths and limi-
tations of the automatic arterial IDIF method and its validation.

The automatically estimated TACs tend to be similar to the original ones, as
seen in Fig. 2, as well as in Table 1. The automatic VIDIF tends to be very similar
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Table 1. Quantitative results of the automatic VIDIF and the automatic AIDIF meth-
ods. The latter, validated in a leave-one-out fashion, also shows the estimated cerebral
flow F .

Mean absolute error

Reference: manual VIDIF Reference: sampled AIF

Input: automatic VIDIF Input: automatic AIDIF

Patient Absolute Relative Absolute Relative Estimated F

[kBq/ml] [kBq/ml] [ml/min]

№1 1.23 25.4% 1.82 37.5% 402.3

№2 0.11 1.9% 1.89 31.4% 448.9

№3 0.33 5.6% 1.29 21.2% 401.5

№4 1.98 33.4% 2.16 36.0% 401.6

№5 0.58 17.1% 1.08 31.0% 401.5

№6 0.54 10.5% 1.69 32.1% 407.2

№7 0.14 2.8% 0.66 13.1% 448.9

№8 0.90 19.6% 0.84 17.9% 401.5

Mean 0.73 14.5% 1.43 27.5% 414.2

Std 0.63 11.3% 0.54 9.0% 21.5

to the manually-segmented VOI-based VIDIF. Its mean error ranges, in relative
terms, between 1.9% and 33.4%, having an average of 14.5% of dissimilarity.
The automatic AIDIF has a larger error, from 13.1% to 36%, with an average
of 27.5%. We observe that all these errors tend to be higher than in the VIDIF
case. This could be caused by a bias of our method as well as by the harder
nature of the task.

Although the quantitative results seem acceptable, they have to be correctly
interpreted. First, the automatic and manual VIDIF methods are very similar
because our gold reference also suffers some of the same biases. All the noise
that the image contains affects both methods, such as the spill-out effect. Also,
the error is averaged during the whole study duration, but the measure is more
accurate after the first 10–15 min. Therefore, the longer the study is, the lowest
error measures we would obtain.

The methods presented are robust. We emphasize that they depend on dif-
ferent pre-defined parameters, such as the population-based loose estimator of
the cerebral flow or the size of the structuring element to fill holes within the
intracranial region. However, the results are not very sensitive to them, which
encourages its use with other patients and slightly different settings. Provided
the IDIF introduces an error that can be assumed, most blood samples could be
avoided, avoiding the invasive arterial blood samples.

Several limitations of the method must be mentioned. First, some of its under-
lying assumptions are not strictly verified. In particular, we assumed that the
average activity in the sagittal and transverse sinuses is equal to the real average
of blood leaving the intracranial region. However, we are not able to measure the
jugular veins and, furthermore, some intracranial regions may not drain through
them. Also, we have assumed that the cerebral flow, F , relates the total activity
in the intracranial region and the concentration entering and leaving it. While



346 C. González et al.

this assumption seems correct, the estimated cerebral flow tends to be ∼400
ml/min, while young adults present a cerebral flow of ∼750 ml/min [3]. The
cause of this difference may be the lack of accuracy and the biases in the data
used to estimate F , as well as the demographic differences between our patients
and the average young adult. Rather than aiming at accurately measuring a
physiological process, we experimentally found that F tends to be a parameter
that is consistently estimated to be within the same range (see Table 1), and this
fact can be leveraged to infer the AIDIF.

The validation of the method is also somewhat limited. First, the comparison
is not done with other methods to infer the IDIF. We recall that IDIF methods
seem to be very tracer specific [10]. Also, most of them are manual extractions of
the IDIF, and others such as factor analysis do not always distinguish between
arterial and venous IDIF. Also, the comparison of the TACs is done based on the
similarity with a reference TAC, rather than studying its effect on the kinetic
models used to study the radiotracer absorption. Finally, we recall that this
study is limited to only eight patients.
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Abstract. Segmentation of retinal blood vessels is an important diagnostic
procedure in ophthalmology. In this paper we propose an automated blood
vessels segmentation method that combines both supervised and un-supervised
approaches. A novel descriptor named Local Haar Pattern (LHP) is proposed to
describe retinal pixel of interest. The performance of the proposed method has
been evaluated on three publicly available DRIVE, STARE and CHASE_DB1
datasets. The proposed method achieves an overall segmentation accuracy of
96%, 96% and 95% respectively on DRIVE, STARE, and CHASE DB1 data-
sets, which are better than the state-of-the-art methods.

Keywords: Color fundus photographs � Vessel segmentation � Haar feature �
Multiscale line detector � Random forest

1 Introduction

Segmentation of retinal blood vessel is an important step in several retinal image analysis
tasks including automated pathology detection and registration of retinal images [1].
Manual segmentation of retinal blood vessels is a long and tedious task. That is why, over
the last two decades a large number of methods have been proposed to automatically
segment retinal blood vessels. However, still there are challenges to address.

Ricci et al. [2] proposed a simple yet efficient segmentation method based on basic
line operators and support vector machine. Despite addressing many of the important
challenges in vessel segmentation [3], the method fails in the presence of central vessel
reflex, at bifurcation and crossover regions. To overcome these problems, Nguyen et al.
[3] proposed a method based on multi-scale line detector. While the method is one of
the best in its category, the method fails to segment blood vessels accurately in the
presence of pathology. On that perspective, in this work we aim to augment the method
proposed by Nguyen et al. [3], so that blood vessels can be segmented accurately even
with the presence of pathology.
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2 Proposed Method

A preliminary segmentation of the blood vessels is performed relying on multi-scale
line detector approach [3]. Each of the pixels that are determined as vessels (that also
contain misclassified pathology pixels) are then defined using Local Haar Pattern
(LHP) descriptor (proposed here; described below). A random forest (RF) classifier [4]
then determines a pixel as true vessel or not depending on its LHP description. While
training the RF classifier, manual labeling (done by expert grader) of the actual vessel
and pathology pixels were made available. A diagram of the proposed system is shown
in Fig. 1.

2.1 Local Haar Pattern (LHP) to Describe Retinal Pixel of Interest

A novel descriptor named Local Haar Pattern (LHP) is proposed here. LHP is inspired
by the earlier works of Saha et al. in [5]. Rather than comparing the intensity of two
groups of pixels to generate one bit of the descriptor as in [5], in this work, we compute
and store the actual intensity difference, which is to some extent similar to Speeded Up
Robust Feature (SURF) [6]. In order to perform pixels grouping, we define a set of 16-
pixel patterns depicted in Fig. 2, which are reminiscent of Haar basis function [7].

Fig. 1. Diagram of the proposed system. Operations shown within the dotted box are performed
pixel-wise.
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In order to compute the LHP descriptor a patch p of size 32 � 32 is consider
around the pixel of interest, and vector of size 128 bytes is calculated that represents the
patch.

Each byte of the vector is computed based on the intensity comparisons of two-
pixel groups as defined below:

T p;X;Yð Þ ¼ IX � IY : ð1Þ

Here, IX and IY represent the mean intensities of two different pixel groups X and
Y belonging to the patch p. 128 bytes vector is generated in three steps. At the first step,
all the 16 patterns are considered to perform intensity comparisons (Eq. 1) on the
whole patch, that results 16 bytes vector. In the second step, the patch is divided into 4
sub-patches of size 16 � 16. All the 16 patterns are considered and intensity com-
parisons are performed on each of these sub-patches, which results 64 (=4 � 16) bytes
vector. In third stage, each of the sub-patches is further divided into 4 sub-patches of
size 8 � 8 and the first three of 16 patterns are considered to perform intensity com-
parisons, which results 48 (=16 � 3)-bytes vector.

All these vectors are concatenated at the end and a feature vector of size 128-bytes
is formed. Finally, the feature vector is normalized and LHP descriptor is formed.

3 Experiments and Results

Experiments are conducted on three publicly available datasets: DRIVE [8], STARE
[9], and CHASE_DB1 [10]. 90% of these images are used for training and the rest 10%
are used for testing (10-fold cross validation approach). Some sample outputs produced
by the proposed method and Nguyen et al.’s method is shown in Fig. 3.

Sensitivity, specificity, accuracy and area under the curve (AUC) as computed in
[11] are used to quantitatively the measure the performance of the proposed and the
state-of-the-art methods. Table 1 compares the performance of the proposed method
with the state-of-the-art methods on DRIVE, STARE, and CHASE_DB1 datasets.

Fig. 2. All of the 16-pixel patterns used to compute LHP descriptor.
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4 Conclusion

In this paper, a semi-supervised method for retinal blood vessels segmentation is pro-
posed. The method augments the multi-scale line detector approach [3] of Nguyen et al.
by incorporating a supervised step with it. A novel descriptor named LHP is proposed to
describe retinal pixels of interest. The descriptor encodes rich texture information
around the pixel of interest. LHP descriptor together with random forest classifier is
applied to separate vessel pixels from pathology pixels. Experimental results have
shown that the proposed method produces higher accuracy (0.961 for DRIVE,
0.960 for STARE, and 0.951 for CHASE DB1), than the state-of-the-art methods,

Fig. 3. Sample outputs. (a) Original image, (b) segmentation by Nguyen et al.’s method,
(c) segmentation by proposed method. Misclassified pathology pixels are circled in blue. (Color
figure online)

Table 1. Comparison of performance on DRIVE, STARE, and CHASE_DB1 datasets.

Methods Datasets

DRIVE STARE CHASE_DB1
Acc AUC SE SP Acc AUC SE SP Acc AUC SE SP

Supervised
Staal et al. [12] .944 – – – .952 – – – – – – –

Soares et al. [13] .946 – – – .948 – – – – – – –

Marin et al. [14] .945 .843 .706 .980 .952 .838 .694 .982 – – – –

Unsupervised
Mendoca et al. [15] .945 .855 .734 .976 .944 .836 .699 .973 – – – –

Budai et al. [16] .957 .816 .644 .987 .938 .781 .580 .982 – – – –

Nguyen et al. [3] .941 – – – .932 – – – .934 .870 .791 .950
Proposed .961 .847 .711 .983 .960 .878 .790 .973 .951 .854 .742 .967

(Acc = Accuracy, SE = sensitivity, SP = specificity)
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with comparable or higher sensitivity, specificity, and AUC. Future work will be
focused on identifying more optimized pixel patterns to compute the descriptor and
designing of more effective segmentation model. Ensemble learning may be a way for
boosting the performance of the classifiers.
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Abstract. Preterm birth is the leading cause of death among young chil-
dren and has a large prevalence globally. Machine learning models, based
on features extracted from clinical sources such as electronic patient files,
yield promising results. In this study, we review similar studies that con-
structed predictive models based on a publicly available dataset, called
the Term-Preterm EHG Database (TPEHGDB), which contains electro-
hysterogram signals on top of clinical data. These studies often report
near-perfect prediction results, by applying over-sampling as a means
of data augmentation. We reconstruct these results to show that they
can only be achieved when data augmentation is applied on the entire
dataset prior to partitioning into training and testing set. This results in
(i) samples that are highly correlated to data points from the test set are
introduced and added to the training set, and (ii) artificial samples that
are highly correlated to points from the training set being added to the
test set. Many previously reported results therefore carry little meaning
in terms of the actual effectiveness of the model in making predictions
on unseen data in a real-world setting. After focusing on the danger of
applying over-sampling strategies before data partitioning, we present a
realistic baseline for the TPEHGDB dataset and show how the predictive
performance and clinical use can be improved by incorporating features
from electrohysterogram sensors and by applying over-sampling on the
training set.

Keywords: Preterm birth · Electrohysterogram (EHG) ·
Imbalanced data · Over-sampling

1 Introduction

Giving birth before 37 weeks of pregnancy, which is referred to as preterm
birth, has a significant negative impact on the expected outcome of the neonate.
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According to the World Health Organization (WHO), preterm birth is one of
the leading causes of death among young children, and its’ prevalence ranges
from 5% to 18% globally [23]. As preterm labor is currently not yet fully under-
stood, gynecologists are experiencing difficulties in assessing whether a patient
recently admitted to the hospital will deliver at term or not. In order to sup-
port experts in their assessment, several studies have already investigated the
added value of a predictive model [6,13,24,35]. These models are based on a
large number of variables extracted from clinical sources such as the electronic
health record. These variables include the gestational age, results of a biomarker,
cervical length, clinical history, and more. In this study, we provide a thorough
and extensive overview of related work on a public dataset and discuss many
of the overly optimistic results. These results are often obtained by introducing
a large bias through over-sampling the dataset, before partitioning the data, in
order to combat the class imbalance, i.e., the fact that it contains many more
pregnancies with term deliveries than preterm. Afterwards, we set a realistic
baseline and assess the impact of correct over-sampling and of incorporating
features extracted from the electrohysterogram data.

2 The Impact of Over-Sampling Prior to Data
Partitioning

In this section, we highlight the impact of applying over-sampling prior to the
data partitioning on an artificially generated dataset. We generated a binary
classification problem with 100 samples. Twenty samples were marked positive
(red circles), and the others negative (blue squares). The generated dataset is
depicted on the left of Fig. 1 (step 0). We now compare the effect of over-sampling
data after partitioning with the effect of over-sampling prior to partitioning. In
the former approach, we first partition our data into two mutually exclusive
sets (step 1). Then, we create artificial samples (red, unfilled circles) that are
highly correlated to the training samples of the minority class (step 2) in order
to have a similar number of samples for both classes in our training set. On the
other hand, if we over-sample the data prior to partitioning, we generate train
samples that are highly correlated with original data points that will end up
in the test set (step 1). Moreover, some of the generated artificial samples will
be distributed to the test set as well (step 2). These two consequences result in
highly optimistic results that merely reflect the model’s capability to memorize
samples seen during training, rather than its predictive performance if it were
applied in a real-world setting on unseen data.

3 A Critical Look on Studies Reporting Near-Perfect
Results on the TPEHGDB Dataset

In 2008, a public dataset, called TPEHGDB (Term/Preterm ElectroHystero-
Gram DataBase), containing 300 records, which correspond to 300 pregnancies,
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Fig. 1. Comparing the impact of applying over-sampling prior to data partitioning
to applying over-sampling after data partitioning on a two-dimensional classification
problem.
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has been released on PhysioNet [9,14]. Each record consists of three raw bipo-
lar signals that express the difference in electric potentials, measured by four
electrodes placed on the abdomen. In addition, each record is accompanied by
clinical variables, such as the gestational age at recording time, the age and
weight of the mother, and whether an abortion occurred in the patients’ medical
history. The recordings can be categorized as being captured at an early stage
of pregnancy (gestational age of 23.11 ± 0.77 weeks) or at a later stage of preg-
nancy (31.09 ± 1.05 weeks). Recordings were captured at a frequency of 20 Hz
for about 30 min. In Fig. 2 the number of weeks till birth is plotted in function
of the gestational age at the time of recording and displayed according to term
or preterm delivery. Clearly, an imbalance is present in the dataset with more
term (green area) than preterm (red area) deliveries (262 vs 38).

Fig. 2. The number of weeks till birth expressed in function of the gestational age
in weeks at the time of recording. All data points within the red area correspond to
preterm deliveries, while the ones within the green area correspond to term deliveries.
(Color figure online)

While impressive (near-perfect) results on the TPEHGDB dataset
are reported in many studies [1,2,10–12,15–21,27,29,33,34], these results
should be interpreted cautiously as their evaluation methodology is based on
applying over-sampling strategies before data partitioning. All these studies
apply over-sampling in order to make the distribution of classes more uniform.
These over-sampling techniques are applied prior to partitioning the data into
two mutually exclusive sets (referred to as the training and testing set). As dis-
cussed earlier, this causes the predictive performance metrics to be overly opti-
mistic.
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Nevertheless, a significant number of studies on the TPEHGDB dataset do
not apply any over-sampling technique. However, in these studies, certain deci-
sions concerning the evaluation were often made which raises serious questions
concerning the credibility of the provided results [3,4,8,25,26,32]. In many of
these studies, results were either not obtained through cross-validation, or cross-
validation was applied on a subset of data subsampled from the original dataset.
Performing this kind of pre-processing, in a machine learning context, without
any kind of argumentation, raises doubts since it drastically increases the vari-
ance of the obtained results and avoids the problem of imbalanced data, which
does not reflect reality in terms of potential applications. In other studies, seg-
ments are extracted from the original signals, which are highly correlated with
each other, and then partitioned into training and testing set [7,31], which again
results in highly optimistic results.

At the time of writing (December 2018), within all the 153 citations to the
original paper, which introduced the TPEHGDB dataset, we have found three
machine learning studies that were accessible and, to the best of our knowledge,
had a sound evaluation methodology [22,28,30]. In the study of Sadi-Ahmed et
al. [30], all records taken before 26 weeks of gestation were filtered away from the
dataset, resulting in a dataset of 138 recordings taken after the 26th week of ges-
tation. All of these signals were processed in order to detect contractions through
Auto-Regressive Moving Averages (ARMA). From the detected contractions, fea-
tureswere extracted such as the total number of contractions, average duration and
average timebetween contractions.Unfortunately, only an accuracy score of 0.89 to
distinguish between term and preterm pregnancies was achieved within this study,
making it hard to assess the clinical use of such amodel. It is important to note that,
on this filtered dataset, an accuracy score of 0.86 can be achieved by always pre-
dicting term birth, precisely because of the aforementioned class imbalance, with a
fraction of 119 term deliveries on 138 records from 26 weeks onwards. Janjarasjitt
et al. proposed a new type of feature, based on a wavelet decomposition of the sig-
nals [22]. The feature was evaluated by tuning a threshold on a single feature in a
leave-one-out cross-validation scheme. A sensitivity and specificity of 0.6842 and
0.7133 are achieved. While these scores are very promising, it should be noted, that
they are rather optimistic due to the fact that the evaluation happened in a leave-
one-out scheme. As such, the performance of the sample entropy feature, provided
along with the original data, closely matches, and sometimes even outperforms,
that of the proposed feature. Nevertheless, the wavelet-based feature may be an
interesting addition to the feature set. In the work of Ryu et al. [28] a similar study
is performed in which a feature based on Multivariate Empirical Mode Decom-
position (MEMD) is proposed. They evaluate the added value of their feature, by
subsampling a balanced dataset of 38 term and 38 preterm records, 100 times, from
the original dataset. They found that the AUC improved from 0.5698 to 0.6049 by
adding their feature to the dataset. While this subsampling strategy again avoids
the problem of imbalanced data, which is reflected in the original dataset, it does
show an improvement in AUC and thus indicates that adding the MEMD-based
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feature to the dataset could be beneficial for the predictive performance. Moreover,
due to the many repetitions of the experiment, the sample mean better reflects the
real mean.

4 Setting a Realistic Baseline for the TPEHGDB Dataset

In this section, we will assess the effects of incorporating information from raw
EHG signals, and of over-sampling the data after partitioning, on the predictive
performance of the resulting model. Moreover, we will show that predictive per-
formances similar to the aforementioned studies can be only be achieved through
over-sampling before data partitioning.

Seven machine learning algorithms were trained on the original dataset con-
sisting of clinical features and four features extracted from the raw EHG signals,
i.e.: the root mean square value & entropy of the raw signal and the median and
peak frequency from the spectral information of each signal. The seven different
classification techniques, and their corresponding abbreviations, are: (1) Logis-
tic Regression (LR), (2) Decision Trees (DT), (3) Linear Discriminant Analysis
(LDA), (4) Quadratic Discriminant Analysis (QDA), (5) K-Nearest Neighbors
(KNN), (6) Random Forests (RF), and (7) Support Vector Machines (SVM). All
reported results are generated using five-fold stratified cross-validation. Hyper-
parameters were tuned using grid search. Moreover, to solve the issue of imbal-
anced data, and to improve the clinical use of the different classifiers, we apply
over-sampling, using SMOTE [5], on the train set. We compare these results
to when SMOTE is applied on the entire dataset, to show that near-perfect
predictive performance can only be achieved by introducing label leakage.

In total, we evaluate four different approaches: (i) clinical features and no
over-sampling, (ii) clinical and EHG features and no over-sampling, (iii) clinical
and EHG features and over-sampling in a correct fashion, and finally (iv) clin-
ical and EHG features and over-sampling in an incorrect fashion. The first two
approaches are compared in Table 1. As can be seen, the AUC scores drastically
improve when features, extracted from the EHG signals, are incorporated. Nev-
ertheless, the clinical use of both approaches is very limited, as all the models
almost always predict that someone will deliver at term (which is reflected in the
low sensitivity scores), which is a typical problem that arises when dealing with
imbalanced data. The performance for both over-sampling approaches is listed
in Table 2. We can conclude that the near-perfect performances from the stud-
ies mentioned in Sect. 3 can only be closely matched by applying over-sampling
prior to data partitioning. If we apply over-sampling on the training set, we see
that the clinical use of a predictive model for preterm birth prediction, based on
the TPEGHDB dataset, is still limited, with a maximum AUC score of 63.20%.
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Table 1. The results obtained with seven different classifiers, on (i) a dataset con-
structed using solely clinical variables and (ii) a dataset with clinical variables concate-
nated to four features extracted from the EHG data. No over-sampling is applied for
both approaches.

Algorithm Sensitivity (%) Specificity (%) AUC (%)

Clinical All Clinical All Clinical All

LR 0 ± 0 0 ± 0 100 ± 0 100 ± 0 48 ± 6 58 ± 7

DT 3 ± 5 0 ± 0 96 ± 4 96 ± 3 47 ± 6 62 ± 9

LDA 0 ± 0 0 ± 0 97 ± 3 96 ± 4 54 ± 9 59 ± 5

QDA 28 ± 34 11 ± 11 67 ± 36 90 ± 7 48 ± 5 62 ± 4

KNN 0 ± 0 0 ± 0 100 ± 1 98 ± 2 50 ± 8 57 ± 7

RF 0 ± 0 0 ± 0 99 ± 2 95 ± 4 52 ± 8 58 ± 5

SVM 0 ± 0 0 ± 0 100 ± 0 100 ± 0 52 ± 8 56 ± 9

Table 2. The results obtained with seven different classifiers, on the entire TPEHGDB
dataset, constructed using clinical features and features extracted from the 3 filtered
EHG signals. Oversampling with SMOTE is applied before data partitioning (column
correct) versus after data partitioning (column incorrect).

Algorithm Sensitivity (%) Specificity (%) AUC (%)

Correct Incorrect Correct Incorrect Correct Incorrect

LR 39 ± 26 74 ± 3 68 ± 19 66 ± 6 59 ± 6 78 ± 3

DT 40 ± 16 81 ± 3 71 ± 10 84 ± 5 59 ± 3 86 ± 4

LDA 53 ± 14 73 ± 1 59 ± 10 69 ± 7 59 ± 5 78 ± 3

QDA 51 ± 36 100 ± 0 58 ± 24 41 ± 7 61 ± 6 79 ± 2

KNN 48 ± 16 99 ± 1 64 ± 3 73 ± 5 58 ± 6 92 ± 2

RF 42 ± 13 91 ± 4 68 ± 6 95 ± 2 63 ± 5 98 ± 1

SVM 43 ± 31 99 ± 2 64 ± 23 86 ± 4 58 ± 6 98 ± 1

5 Conclusion and Future Work

This study tackles the problem of preterm birth risk prediction, based on the
publicly available dataset TPEHGDB. Our contributions are two-fold. First, in
the light of a significant body of recent literature, we show that applying over-
sampling for data-augmentation purposes, prior to partitioning the data into
separate parts for training and evaluation, leads to overly optimistic results. To
evaluate a model’s predictive performance, the data partitioning needs to be
performed before applying over-sampling. Second, a realistic baseline was set in
which it was shown how an increase in AUC score can be obtained by using
features extracted from electrohysterogram recordings, besides clinical observa-
tions. This confirms the potential added value of such recordings. In future work
we will investigate whether deep learning techniques can improve the predictive
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performance by directly training on the raw recordings, as opposed to manually
extracting features. Unfortunately, for this, a larger dataset may be required.
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Abstract. We report our experience with developing an assurance case
for a deep learning system used for retinal disease diagnosis and referral.
We investigate how an assurance case could clarify the scope and struc-
ture of the primary argument and identify sources of uncertainty. We also
explore the need for an assurance argument pattern that could provide
developers with a reusable template for communicating and structuring
the different claims and evidence and clarifying the clinical context rather
than merely focusing on meeting or exceeding performance measures.
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1 Introduction

Justifying the use of machine learning in critical healthcare applications is cur-
rently a significant technological and societal challenge [5]. The developers and
clinical users of the technology have to assure, prior to deployment, different crit-
ical properties such as safety, performance, usability and cost-effectiveness [6].
This challenge can be refined further into 2 parts. Firstly, there is no consensus
on the assurance criteria or specific properties that machine learning systems
have to exhibit for them to be accepted by the public or by the clinical and
regulatory authorities, i.e. what is good enough? Secondly, there is very little
guidance, e.g. standards, on accepted means for achieving such properties [6].

In this paper, we investigate the extent to which an explicit assurance case
could inform a decision concerning the use of machine learning in clinical diag-
nosis. An assurance case is “a reasoned and compelling argument, supported by a
body of evidence, that a system, service or organisation will operate as intended
for a defined application in a defined environment” [1]. An assurance case is
considered as a generalisation of a safety case, i.e. where safety claims are the
focus of the assurance.

We build on the results of De Fauw et al. [2] on the use of a deep learn-
ing system for diagnosis and referral in retinal disease. This system comprises
2 different neural networks. The first network, called Segmentation Network,
c© Springer Nature Switzerland AG 2019
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takes as input three-dimensional Optical Coherence Tomography (OCT) scans
and creates a detailed device-independent tissue-segmentation map. The second
network examines the segmentation map and outputs one of the four referral sug-
gestions in addition to the presence or absence of multiple concomitant retinal
pathologies.

Through an assurance case, our objectives are to (1) clarify structure of the
primary argument and the clinical context and (2) identify sources of uncertainty.
The contribution of the paper is that it provides a self-contained assurance case
for a deep learning system, thereby highlighting assurance issues that have to be
considered explicitly beyond merely exceeding a specific performance measure.

2 Assurance Case

The assurance case is represented using the Goal Structuring Notation (GSN) [1].
GSN is a generic argument structuring language that is widely used in the safety-
critical domain. The reader is advised to consult the publicly available GSN stan-
dard [1] for a more detailed description of the notation. Due to the space limitation,
we focus the discussion on 2 assurance argument fragments:

1. Segmentation network assurance argument (Fig. 1, Sect. 2.1)
2. Classification network assurance argument (Fig. 2, Sect. 2.2)

These arguments capture the essence of the justification based on perfor-
mance against clinical experts. The clinical context in the assurance case is
the ophthalmology referral pathway at Moorfields Eye Hospital, from which
the training, validation and test data is provided. At this stage, the scope of
the claims is limited to this clinical setting with no evidence for generalisation
(despite the wide and diverse population served). It is important to note that
the assurance case focuses exclusively on the chain of reasoning and evidence
based on the data in the original study [2]. The extent to which this assurance
case could be improved, or its scope extended, is discussed in Sect. 3.

2.1 Segmentation Network Assurance Argument

Figure 1 shows the assurance argument fragment concerning the performance
and transparency of the segmentation network. The argument makes a distinc-
tion between the scans that include ambiguous and unambiguous regions. The
context is important here, referencing the data used for training, testing and
validation. It also clarifies the profile of the clinical experts involved in the seg-
mentation experiment. Evidence of sufficient performance is provided based on
two different scanning devices (99.21% and 99.93%). The argument clarifies fur-
ther that for unambiguous regions, the network produces tissue-segmentation
maps that are comparable to manual segmentation. For scans with ambiguous
regions, the network provides different (but plausible) interpretations of the low
quality regions, i.e. similar to how the different human experts might produce
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different interpretations. The evidence is represented by supplementary videos
that show the multiple hypotheses of the segmentation maps produced by the
network. An important aspect of creating a separate network for segmentation
is greater transparency. By being able to inspect the tissue-segmentation map
(and not just referral decisions), clinicians have clearer means for understand-
ing the basis for the final clinical decision. What is less clear, however, is the
effectiveness of this visualisation, i.e. degree of acceptance by clinical experts.
As such, this is labelled as ‘to be developed’ (small diamond below the claim).

Fig. 1. Segmentation network assurance argument

2.2 Classification Network Assurance Argument

The argument in Fig. 2 states the primary claim that the system achieves or
in some cases exceeds human expert performance in retinal disease diagnosis
and referral. Experts comprise 4 retina specialists with respective 21, 21, 13 and
12 years of experience and 4 optometrists with respective 15, 9, 6 and 3 years
of experience. Two sessions were organised. In the first session experts were
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required to give the referral suggestions using the OCT scans only. In the second
session they were also able to use fundus images and clinical notes. Similar to the
segmentation network assurance argument, this argument communicates clearly
the training, test and validation data as well as the benchmark against which
performance is assessed (i.e. gold standard and expert profiles).

Fig. 2. Classification network assurance argument

3 Discussion

We reflect on the insights gained and lessons learned from different perspectives.

Performance-Based Arguments. Evidence in machine learning studies tends
to focus on meeting or exceeding certain performance criteria. The assurance
argument above is consistent with this approach. Importantly, it ensures that
the different training, test and validation datasets are explicitly referenced in
addition to the performance results. It clarifies, particularly to non-technical
reviewers and decision makers, the importance of appraising the quality of these
datasets and the extent to which the data used is relevant to the context in which
the performance claims are made. The argument also prompts the reviewers to
question the performance criteria used.
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Fig. 3. Preliminary machine learning assurance argument pattern

Assurance Case Pattern. By looking at the argument fragments for the Seg-
mentation and Classification Networks, a pattern of reasoning seems to emerge
(Fig. 3). Such a pattern could prompt the developers and assessors of machine
learning to more explicitly consider the relevance and appropriateness of the
contextual and evidential data, i.e. ensuring sufficient confidence in the quality
and relevance of the data and models, by scrutinising the links in the argument
in Fig. 3, rather than merely exceeding a specific performance measure.

Assumptions and Transparency. An assurance case can help ensure that the
assumptions made are explicitly listed. For example, the reviewers of the case
can question the profiles and representativeness of the clinical experts involved in
the experiments and the extent to which further clarification might be necessary.
Transparency in how the machine makes clinical decisions is also important.
Here, the assurance case clarifies that transparency is limited to the output of
the segmentation and not the classification network, i.e. prompting the reviewer
to question the need for transparency in the final diagnosis and referral decision.

Safety and Regulations. Although our assurance case does not directly
address patient safety [3], there remain fundamental questions as what is deemed
as good enough for assuring the safety of machine learning. For example, are
arguments based on exceeding human equivalence or appealing to risk-benefit
evidence acceptable? How do we address non-quantifiable factors such as those
related to human or organisational factors? Another issue is the readiness of the
regulators to review, challenge and approve machine learning evidence. Kelly in
[4] talks about the Imbalance of Skills between the developers and the indepen-
dent assessors of novel technologies as a major hurdle for effective assurance case
practices. The readiness of regulators to appraise machine learning algorithms,
evaluation evidence and deployment constraints is an ongoing concern.
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Abstract. Heart rate dynamics are a macroscopic indicator of cardiac health.
Sino-atrial degradation manifested as heart rate fragmentation (HRF) are ana-
lyzed using rr values (relative-RR intervals) derived from the inter-beat-intervals
of ECGs. The rr-value is useful for the analysis of cycle-by-cycle variations such
as HRF and arrhythmias. Three novel metrics developed in this work: CM20,
Z3e20 and sPIP, along with two conventional metrics: SDNN and LFHF ratio
are used for the detection of HRF and arrhythmias. The supervised machine
learning technique of random forests is applied to develop the classification
model. For this, we used a balanced dataset of 300 cases comprising of
arrhythmic, non-arrhythmic coronary artery disease, and individuals without any
medically significant cardiac conditions. The model was tested on 104 inde-
pendent cases. The F1 score of the classifier is 91.1% without any adjustments
for age, gender, prior medical conditions, etc. Insight into threshold values of
heart rate dynamics for arrhythmic, heart rate fragmentation and normal cases
are obtained from a single decision tree model.

Keywords: Heart rate fragmentation � Arrhythmia detection � Random forest �
Machine learning

1 Introduction

Heart disease is responsible for 31% of deaths worldwide [1]. Thus, it is necessary to
develop methods that accurately detect medically significant incipient cardiac condi-
tions such as arrhythmias and heart rate fragmentation (HRF). HRF has been shown to
be a dynamical biomarker of the neuroautonomic-electrophysiologic system break-
down: patients with greater HRF have been shown to be at an increased risk of coronary
artery disease (CAD) [2]. HRF has been recently determined as an anomalous increase
in heart rate due to short-term acceleration/deceleration [2, 10]; it has the potential to
provide, falsely, values of heart rate variability (such as SDNN) that are deemed normal.
Prior work [2] utilizes univariate predictors of HRF with limited discrimination; one
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objective of this work was thus to improve the discrimination ability of HRF. In this
work, heart rate fragmentation is synonymous with non-arrhythmic individuals who
have been diagnosed as having CAD in the THEW database [4].

Work on the detection of arrhythmias outside of the clinical setting has shown
tremendous progress in recent years, such as the 2017 Physionet/CinC Challenge [3] on
single-lead atrial fibrillation detection. The work presented here seeks to improve upon
existing research in the following ways: (1) accurate identification of heart rate frag-
mentation with high discrimination capability (2) separate classification of heart rate
fragmentation, arrhythmias, and “normal” patterns (3) emphasis on the application of
Random Forest (RF) for a computationally non-intensive methodology with straight-
forward implementation into battery-operated wearable devices.

2 Datasets and Methodology

2.1 Datasets

A total of 300 cases, representing a set of balanced class examples, was used for
statistical analysis and ML model development: 90 cases of non-arrhythmic CAD from
the University of Rochester THEW-project database [4], 115 examples of normal heart
rate rhythm data from THEW-project database [4] and MIT-BIH nsr2db (normal sinus
rhythm) database [5], and 95 examples of arrhythmic cases from MIT-BIH mitdb and
afdb [5]. To test the model, 104 (30 non-arrhythmic CAD, 30 normal, 44 arrhythmic)
new cases from the same databases were used [4, 5].

2.2 Data Visualization

In this work, rr (moving average window normalized RR intervals, [6] called relative
RR intervals) is used, as it overcomes limitations of RR [7, 8]. The novelty of the usage
of these rr-values for this work comes from the application to HRF and non-conduction
type arrhythmia detection.

Data visualization of successive rr-values in a scatter plot [6] has yielded interesting
insights: most cases of arrhythmias exhibited rr excursions >20%. Thus, the “Zones of
Cardiac Activity” concept was established: It was observed that individuals having an
|rr| < 5% (Zone 1) most of the time is a warning of arrhythmia especially if the SDNN
value is low (<75 ms); most healthy individuals usually have 5% < |rr| < 20% (Zone 2);
rr-variations greater than 20% existing for >1% of the time (Zone 3) indicative of
arrhythmias. Non-arrhythmic individuals with HRF from the THEW-Coronary Artery
Disease datasets do not exhibit any discernible excursion signature on the rr scatter plot.

Table 1 shows the group statistics of the three patient classes and corresponding
metrics summary represented by the median and interquartile range. To investigate the
group specific distribution of the parameters, Random Forest was applied as the suit-
able classification technique (Fig. 1).
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2.3 Methodology and Features Used for Machine Learning Model

I. Analysis of datasets to determine critical rr-derived metrics that characterize
arrhythmias; this step implies arrhythmia detection as detectable RR interval
fluctuations (such as sinus arrhythmia, sinus tachycardia, sinus bradycardia,
etc.).

II. Extraction of features from the datasets (arrhythmia, THEW-cardiac and THEW
healthy). In addition to conventional metrics such as SDNN and pNN50, the
magnitude of cycle-to-cycle rr variation and consecutiveness of this magnitude
was also analyzed.

III. Elimination of statistically insignificant/redundant features using Spearman rank
correlation through a pairwise analysis of the features.

Fig. 1. Concept of zones of heart rate dynamics, rr-values in contour map (left); 60 s contour
map of arrhythmic heart rate dynamics

Table 1. Group statistics (median and IQR) of training data

Class Count CM20 Z3e20 SDNN sPIP LFHF

Arrhythmic 95 1.91
[0.46,9.26]

5.90
[1.96,18.7]

133.17
[97,169]

60.16
[55,67]

0.50
[0.36,0.68]

CAD 90 0.06
[5e-3,0.16]

0.31
[0.09,0.58]

111.19
[86,129]

56.84
[52,62]

0.82
[0.61,1.03]

Normal 115 2.1e–3
[8e–4,0.11]

0.14
[0.04,0.38]

142.24
[115,168]

47.78
[45,50]

1.22
[0.93,1.33]
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Statistical analysis of data (Spearman rank correlation) revealed the following
features as the five best representatives of cycle-by-cycle heart rate dynamics:

1. Z3e20: number of excursions into the 20% zone in the rr-contour map
2. CM20: Percentage of consecutive changes in opposite directions (acceleration $

deceleration), >20% in the rr scatter plot
3. sPIP: percentage inflection points of rr (positive $ negative value changes),

accounting for quantization error in measurements
4. LFHF ratio and SDNN: as per conventional definitions [9]

IV Separation of the pre-classified datasets (arrhythmic, CAD, normal) into distinct
non-duplicate training and testing data subsets. Analysis of the group distributions
(i.e. median) for each of the features was performed to gain insight.

V. Development of random forest machine learning model: 300 datasets representing
the three patient groups were used to train the models. 104 new datasets (see
Sect. 2.1) were used to test the machine learning model (Fig. 2).

The combined incidence of HRF and arrhythmia in American adults is *10% [12,
13]; training the detection model with *90% “normal” patients for the sake of sim-
ulating real world scenarios is, thus, not desirable over the balanced datasets used in
this work and hence the above balance of classes was chosen.

3 Results and Insights

A 30-tree ensemble of a random forest implementation [11] showed out-of-bag error
leveling and was chosen. From Table 2, the F1_ARR score is 0.967, the F1_CAD
score is 0.871 and F1_NOR score = 0.900; the overall F1 score is 0.911.

Fig. 2. Workflow methodology for HRF and arrhythmia detection

Table 2. Classification results of random forest classifier

Class Actual ARR Actual CAD Actual NOR

Pred ARR 44 3 (FP) 0
Pred CAD 0 27 5 (FP)
Pred NOR 0 0 25 (TN)
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Using a single decision tree algorithm, insights into thresholds for the various
classes were identified: ARR cases were characterized by Z3e20 > 1.1%; NOR and
CAD cases were separated by a sPIP threshold of 54% and LFHF of *1.00.

4 Limitations and Future Work

The limitations of this work are analyzed by reviewing the mis-classifications among
the results (Table 2). The classifier has a bias towards false positive results: 5 NOR
cases are wrongly classified as CAD (sPIP > 54% and LFHF tending towards 1.00 in
these cases); 3 CAD cases are wrongly classified as ARR – these cases have a
Z3e20 > 1.1%, sPIP > 54% and LFHF < 1.00. The wrongly classified cases while
justified by thresholds generated by the decision tree, are medically classified differ-
ently. Additional morphological features from the EKG might be required to decrease
the false positive bias of the classifier.
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Abstract. Cardiac patients undergoing surgery face increased risk of postop-
erative complications, due to a combination of factors, including higher risk
surgery, their age at time of surgery and the presence of co-morbid conditions.
They will therefore require high levels of care and clinical resources throughout
their perioperative journey (i.e. before, during and after surgery). Although
surgical mortality rates in the UK have remained low, postoperative compli-
cations on the other hand are common and can have a significant impact on
patients’ quality of life, increase hospital length of stay and healthcare costs. In
this study we used and compared several machine learning methods – random
forest, AdaBoost, gradient boosting model and stacking – to predict severe
postoperative complications after cardiac surgery based on preoperative vari-
ables obtained from a surgical database of a large acute care hospital in Scot-
land. Our results show that AdaBoost has the best overall performance
(AUC = 0.731), and also outperforms EuroSCORE and EuroSCORE II in other
studies predicting postoperative complications. Random forest (Sensitiv-
ity = 0.852, negative predictive value = 0.923), however, and gradient boosting
model (Sensitivity = 0.875 and negative predictive value = 0.920) have the best
performance at predicting severe postoperative complications based on sensi-
tivity and negative predictive value.

Keywords: Postoperative complications � Machine learning � Cardiac surgery

1 Introduction

The 2011 National Confidential Enquiry into Patient Outcome and Death (NCEPOD)
estimated that there are between 20,000–25,000 deaths among people undergoing a
surgical procedure every year in the UK [1]. Approximately 80% of these deaths occur
amongst a minority of ‘high risk’ patients, who make up approximately 10% of the
overall surgical population. In addition to facing higher mortality rates, these patients
also have increased risk of postoperative complications, and therefore require high
levels of care and clinical resources before, during and after surgery [1].
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Over the last two decades, an increasing number of hospitals have developed
preoperative clinics and services [2] designed to triage patients well in advance of their
surgery into ‘low risk patients’, suitable for day-care surgery, and ‘high-risk patients’,
requiring additional management and admission as inpatients [3]. Data-driven risk
scoring systems are now an integral component of these surgical pre-assessment
clinics, and most of these generally focus specifically on predicting patients’ risks of
mortality [4].

According to the Society of Cardiothoracic Surgery in Great Britain and Ireland,
the in-hospital mortality rate after cardiac surgery has remained low: i.e. under 3% over
the past five years [5]. Although surgical mortality rates are low, complications after
surgery are common, and can have an important impact on patients’ quality of life [6].
Surgical complications can also increase hospital length of stay [7] and healthcare costs
[8]. Hence, a robust and reliable predictive model for postoperative complications
would prove extremely useful for managing patient flows and clinical resources in
surgical care.

Although there are numerous preoperative risk models predicting mortality, such as
EuroSCORE [9] and EuroSCORE II [10], there are currently no validated surgical
preoperative risk scoring systems available which can predict generic surgical com-
plications and their severity [4, 11]. In order to explore the feasibility of developing
such a scoring system, we have previously explored various machine learning methods,
such as logistic regression, random forest, naïve Bayes and bootstrap aggregated
classification and regression trees at predicting severe postoperative complications in
our patient population. As the percentage of patients with severe postoperative com-
plications is relatively small compared to no or other complications, we are facing an
imbalanced classification problem, which is one of the biggest challenges in prediction
modeling due to its presence in many real-world classification tasks [12]. There are
various methods available to approach this, including modifying existing algorithms to
take into account the significance of positive examples and using methods to balance
datasets, such as Synthetic Minority Over-sampling Technique (SMOTE) [12].

In this paper we are presenting our results from another approach: the use of
ensembles of classifiers, which has been shown to have a better performance when
approaching class imbalance problems [13]. Ensembles are designed to increase the
accuracy of a single classifier by training several different classifiers and combining
their decisions to output a single class label [13]. The range of methods which were
evaluated and compared include: random forest and ensemble methods.

This paper is structured as follows: we describe our methods in Sect. 2, provide our
results in Sect. 3 and discuss the relevance of our findings in Sect. 4.
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2 Methods

2.1 Study Setting, Cardiac Surgery Data and Categorization
of Complications

Setting. This project was conducted with the Golden Jubilee National Hospital
(GJNH),1 Clydebank, Scotland. GJNH is a state-of-the art tertiary referral center,
carrying out a range of major surgical procedures (general, cardiac, orthopedic and
thoracic surgery) with a commitment to reducing patient national waiting times across
the National Health Service (NHS) in Scotland, while striving to deliver the highest
quality of care. The hospital has 15 operating theatres. In 2016/17 GJNH carried out a
total of 40,929 inpatients, day cases and diagnostic examinations.

Study Ethics and Data. This study was approved by our Institution’s Research and
Development Review Board and classified as an anonymized data study covered by
Caldicott status. Data about cardiac procedures were obtained from a clinical audit
database called the Cardiac, Cardiology and Thoracic Health Information system
(CaTHI). The database consists of cardiac, cardiology and thoracic patients’ diagnos-
tics, surgical procedures and discharge information. All admissions in cardiac surgery
between 1st April 2012 and 31st March 2016 were recorded in the CATHI database,
adding up to a total of n = 3838 admissions. All patients reported in the CaTHI
database received a treatment. In the analysis, only patients undergoing coronary artery
bypass graft (CABG), valve and combined CABG and valve surgery were included in
the study, the final study sample being n = 3700 clinical records.

Being a clinical audit database, most variables in the CaTHI database were con-
sistently recorded. In cases where categorical variables had missing data, the blank
fields were coded as “Unknown”. The variables with “Unknown” entries included renal
impairment (43.38% unknown), rhythm (7.97%), smoking status (36.24%), and left
main stem disease (48.76%). If a numerical variable was not recorded consistently, the
variable was excluded from the analysis. The only variable excluded for that reason
was preoperative hemoglobin level.

Therefore, the final dataset used for our analysis consists of 25 preoperative vari-
ables,2 including patient characteristics, preoperative variables about patients’ cardiac
status and comorbidities, as well as other surgical variables.

Categorization of Complications. With the assistance of a panel of consultant cardiac
anesthetists and surgeons in GJNH, we categorized complications reported in the
CaTHI database into four discrete categories (no/mild/moderate/severe) based on their
impact on hospital length of stay, patients’ quality of life and cost of care. For example,

1 https://www.nhsgoldenjubilee.co.uk/.
2 Attributes are: Age, sex, diabetes, body mass index, smoking status, surgical priority, critical
preoperative state, procedure, left main stem, extracardiac arteriopathy, pulmonary disease, creatinine
level, renal impairment, New York Heart Association grade, angina status, rhythm, left ventricular
function, neurological dysfunction, congestive cardiac failure, previous myocardial infarction, active
endocarditis, hypertension, previous cardiac surgery, previous percutaneous coronary intervention.
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urinary retention was categorized as “mild”, elevated creatinine as “moderate”, and
renal failure as “severe”. The categorization was subsequently cross-referenced with
findings from a literature review we have conducted in relation to risk scoring of
perioperative complications. Based on the categorization task, our patient population
was recorded to have 17 types of mild complications, 42 moderate complications and
19 severe complications.3

2.2 Model Development

In this study, we have focused on developing a predictive model for solving a binary
classification task: i.e. whether a patient is likely to have a severe postoperative
complication (‘yes’ or ‘no or other’). The reason why we chose to focus on predicting
severe complications in the first instance is due to the fact that these have the most
detrimental impact to patients and on the use of clinical resources (e.g. such as
requiring additional procedures to manage the complication or increasing hospital
length of stay).

As this is an imbalanced classification problem involving both categorical and
numerical variables, we used machine learning methods shown to be effective [14] for
this kind of data analysis: random forest (RF), AdaBoost (AB), gradient boosting model
(GBM) and two stacked models.

All analysis was conducted with statistical package R version 3.5.0.

Random Forest, AdaBoost and Gradient Boosting. The RF, AB and GBM were
developed using k-fold cross-validation, where the training data (n = 2479 records) was
randomly partitioned into k sub-sets of approximately equal sizes. At each k iteration
one of the folds is chosen as the test set and the remaining k-1 are used for the training.

This method often results in a less biased and less optimistic estimate of the model
than other methods. In this study we use 5-fold cross-validation, as is generally rec-
ommended in the literature [15].

For RF, the package ‘randomForest’ version 4.6-14 was used with the number of
trees set at n = 200. The AB model was developed using the package ‘fastAdaboost’
version 1.0.0, which implements Freund and Schapire’s Adaboost.M1 algorithm [16],
and for which we conducted n = 40 iterations. For the GBM, the package ‘gbm’
version 2.1.5 was used, which uses the Friedman’s gradient boosting algorithm [17].
The number of trees was chosen to be n = 1000 and the shrinkage parameter as 0.01.
For these three models, we evaluated the performance using a separate set of testing
data (n = 1221 records).

Stacked Models. The base learners included in our stacked models were generalized
linear model [18], random forest [19], naïve Bayes [20] and bootstrap aggregated
classification and regression trees (Bagging CART) [21]. These learners are appropriate

3 Severe complications in this study include: Acute renal failure, deep sternal wound infection,
septicemia, transient stroke, tracheostomy, cardiac arrest, permanent stroke, severe heart failure,
adult respiratory distress syndrome, multi-organ failure, mesenteric infarction, required laparotomy,
severe pulmonary edema, left ventricular wall dissection, hepatic failure, reopening requiring
coronary artery bypass graft, paraparesis, and amputation.
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for our data due to allowing both numerical and categorical features in the dataset. We
firstly generated k-fold cross-validated predicted values from the base learners to gen-
erate the training data for the metalearner algorithm. The training set (n = 1850 records)
was used to develop our base learners. Then a validation set (n = 925 records) was used
to create the level one dataset. The base learners and the ensemble were then evaluated
using the testing dataset (n = 925 records). In this study we compared two different
metalearner algorithms: random forest (n = 3000 trees) and generalized linear model.
All analysis for the stacked models was done using the package ‘caret’ version 6.0–81.

2.3 Model Evaluation and Performance Measures

The models were evaluated based on the area under the receiver operating characteristic
(ROC) curve (AUC), sensitivity (a.k.a. recall), specificity (a.k.a. true negative rate), and
positive (PPV) and negative predictive value (NPV). We also look at the Gini
importance measure and relative influence for the variables in RF and GBM model,
respectively. As this is an imbalanced classification problem, where the prevalence of
severe postoperative complications is small compared to ‘no or other’ complications,
using these performance measures help us avoid the accuracy paradox [22].

As the aim of this study is to predict severe complications, we are aiming for the
highest sensitivity and negative predictive value as possible. This is to ensure that the
model recognizes as many patients with severe complications as possible (i.e. sensi-
tivity) and in case of negative testing: to ensure that the probability that the patient
actually does not have a severe complication is high (i.e. negative predictive value).
However, in order to compare our results with existing literature, we also discuss AUC
as a performance measure.

3 Results

3.1 Population Characteristics

In our study sample of n = 3700 clinical records and using the classification of com-
plications described earlier in Sect. 2.1, 48.65% of the patients had a recorded post-
operative complication. Of these: 7.05% had mild complications, 36.65% moderate
complications, and 4.95% severe complications after cardiac surgery. The prevalence
for severe postoperative complications indicates that this is a highly imbalanced
classification task.

Of all patients, 59.65% had a CABG, 26.49% had a valve surgery, and 13.86% had
a combined CABG and valve surgery. The mean age was 66.7, with a median of 68
years. Most of the patients were men (73.22%). The majority of the patients (77.54%)
had an elective surgery, 14.27% had an urgent surgery, 7.49% had a prioritized surgery
and a small number of patients (0.70%) had an emergency surgery.
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3.2 Performance of the Models

Table 1 shows that in terms of AUC, AB outperforms RF, GBM and the stacked
models with an AUC of 0.731. However, as our end goal is to develop a clinical
decision support system predicting severe postoperative complications, our aim is to
have the highest possible sensitivity and negative predictive value. Based on that, the
GBM has the highest sensitivity of 0.875, meaning that the model recognizes patients
with severe complications 87.5% of the time. The GBM also has a very high negative
predictive value of 0.920, which means that if the test is negative, the probability that
the patient actually does not have a severe complication is 92.0%.

Surprisingly, both stacked models had a considerably worse performance in terms
of AUC compared to the other models. Even though the stacked model with RF has a
high sensitivity, in order to reach such high level of sensitivity, the model was built
using 3000 trees. A high number of trees, however, results in the model being com-
putationally expensive, making it difficult to apply to clinical practice. Compared to
other models, the GLM stacked model had a considerably worse performance in terms
of sensitivity compared to the other models.

As the RF and GBM have the highest sensitivities and negative predictive values,
we further investigated these two models. To assess which variables are the most
important, for RF we calculated at the Gini importance measure and for GBM we
calculated the relative influence (Table 2).

Both of these models show─with some differences in ordering─that preoperative
creatinine, BMI, age, angina status and smoking are the most important variables when
predicting severe complications. These results are also supported by findings from the
literature: elderly patients are at a greater risk of postoperative complications, especially
for bleeding, infections, neurologic and renal problems [23]. Patients with a higher
BMI have increased risk of wound infection, blood loss and acute kidney injury [24].
Angina status is shown to be a significant predictor of long-term mortality [25]. Per-
sistent smokers have a higher incidence of pulmonary complications [26] and also
slower wound healing following CABG surgery [27].

Table 1. Area under the curve (AUC), sensitivity, specificity, positive (PPV) and negative
predictive value (NPV) for the models.

Algorithm AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

RF 0.724
(0.650–0.798)

0.852
(0.790–0.912)

0.462
(0.390–0.534)

0.017
(0.010–0.023)

0.923
(0.876–0.969)

AB 0.731
(0.658-0.804)

0.738
(0.665–0.811)

0.629
(0.552–0.706)

0.021
(0.013–0.029)

0.905
(0.854–0.956)

GBM 0.718
(0.644–0.792)

0.875
(0.818–0.932)

0.465
(0.392–0.538)

0.014
(0.008–0.020)

0.920
(0.873–0.967)

Stacked
with RF

0.659
(0.583–0.735)

0.804
(0.737–0.871)

0.472
(0.399–0.545)

0.026
(0.017–0.035)

0.911
(0.861–0.961)

Stacked
with GLM

0.655
(0.579–0.731)

0.643
(0.566–0.720)

0.639
(0.562–0.716)

0.035
(0.024–0.046)

0.897
(0.844–0.950)
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4 Discussion

Our study found that postoperative complications are common (48.65% in our study
population) and the most severe of these─although less frequent at 4.95%─can have a
significant impact on episodes of care and use of clinical resources as well as being
potentially devastating for patients’ quality of life after surgery. It is therefore essential
that adequate systems are developed within clinical care in order to better plan and
mitigate these instances of severe perioperative complications.

Trying to approach that problem, some studies have been carried out to assess how
EuroSCORE I and II predict combinations of postoperative complications [23, 28–31].
Looking at the AUC, our AB model outperforms both versions of EuroSCORE in all
aforementioned studies. Our RF model has a similar performance to EuroSCORE and
EuroSCORE II in one study (AUC = 0.72 for both) [31]. Even though our GBM model
has the lowest performance out of these three in our study, it still outperforms the
commonly used risk models in most mentioned studies, apart from EuroSCORE and
EuroSCORE II in one study [31].

Performance Measures. Even though the AB model has the highest AUC, the per-
formance of sensitivity and negative predictive value are the most important for the
purpose of developing a decision support application for severe complications.
A model with a high specificity can be used to rule out patients who do not need
specific treatment [32]. However, our aim is to develop a model which can identify
which patients are more likely to develop severe postoperative complications, in order
to improve care planning, management and monitoring. Having a higher negative
predictive value, meaning the patient probably does not have the disease when the test
is negative, reassures the provider of the treatment to do no harm.

Some of the previously mentioned papers evaluating the commonly used preop-
erative risk tools predicting complications have similar results based on AUC as our
models. However, these studies have not reported other performance measures such as
sensitivity, specificity, PPV and NPV.

Table 2. The importance measures for the top five variables of Gradient Boosting Model
(GBM) and Random Forest (RF).

Variable GBM (relative influence) RF (Gini importance)

Pre.Op. Creatinine 17.93 31.89
BMI 16.41 35.24
Age 10.25 28.90
Angina status 6.90 13.27
Smoking 6.57 12.04
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Current Challenges in Predicting Postoperative Complications. At present a major
obstacle in predicting postoperative complications is that there is currently no single
nomenclature of surgical complications; unlike for clinical diagnosis (i.e. the Interna-
tional Statistical Classification of Diseases, ICD-104). Due to that, when comparing our
results with the literature, all of the aforementioned studies have a different definition
for “morbidity”, which includes a different set of combined complications. The
reporting of different complication outcomes in the scientific literature therefore pre-
vents the objective comparison of the performance of these predictive risk models.

It is also worth mentioning that prediction models appear to have very good per-
formance when applied at the population level [9, 10], i.e. their prediction accuracy
generally performs well when applied to broad group or categories of patients. How-
ever, the prediction performance of these models at the ‘individual’ level is in fact far
less satisfactory [33].

Conclusion and Future Work. In this study, we have highlighted how the use of
machine learning techniques could be applied to the problem of predicting postoper-
ative complications and compared the performance of several approaches.

Through our analysis we found two machine learning models suitable for pre-
dicting severe postoperative complications: random forest and gradient boosting model
based on sensitivity (0.852 and 0.875, respectively) and negative predictive value
(0.923 and 0.920, respectively). Either of these models could help a clinician to identify
patients who are at risk of having severe postoperative complications in order to
allocate resources or avoid high-risk treatments. In order to develop a usable clinical
decision support system that relies on the models developed in this study, a further
validation study needs to be undertaken.
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Abstract. In this paper, we develop a new framework for mining pre-
dictive patterns that aims to describe compactly the condition (or class)
of interest. Our framework relies on a classification model that consid-
ers and combines various predictive pattern candidates and selects only
those that are important for improving the overall class prediction per-
formance. We test our approach on data derived from MIMIC-III EHR
database, focusing on patterns predictive of sepsis. We show that using
our classification approach we can achieve a significant reduction in the
number of extracted patterns compared to the state-of-the-art methods
based on minimum predictive pattern mining approach, while preserving
the overall classification accuracy of the model.

1 Introduction

Past decade has witnessed an explosion in the number of medical and health-
care datasets available to researchers and healthcare professionals. However, the
analyses and utilization of these datasets still lack the data collection efforts.
This prompts the development of appropriate data mining techniques and tools
that can automatically extract relevant information from data and consequently
provide insight into various clinical behaviors or processes captured by the data.
Since these tools should interact with medical experts, it is important that all
the extracted information is represented in a human-friendly way, that is, in a
concise and easy-to-understand form.

One way to present knowledge to humans is to use if-then rules, that relate
a condition defining a subpopulation of instances (or patients) with observed
outcomes. The strength of this relation can be expressed using various statis-
tics, such as precision and support. This human-friendly form facilitates the
exploration, discovery and possible utilization of these patterns in healthcare.
For example, consider a rule mining algorithm that identifies a subpopulation of
patients that respond better to a certain treatment than the rest of the patients.
If the rule clearly and concisely defines this subpopulation, it can be validated
and potentially utilized to improve patient management and outcomes.

Many strategies to mine ‘if-then’ rules from the data exist. One is associ-
ation rule mining [1,2]. It gained a lot of popularity in data mining research
c© Springer Nature Switzerland AG 2019
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[14], including medical data mining [8,18]. The key strength of association rule
mining is that it searches the space of rules completely by examining all pat-
terns that occur frequently in the data. Its disadvantage is that the number of
association rules it finds and outputs is often very large. This may hinder the
discovery process and the interpretability of the results. Hence, it is desirable to
reduce the mined rule set as much as possible while preserving the most impor-
tant relations (rules, patterns) found in the data. Various rule interestingness
statistics and constraints based on such statistics have been proposed to address
this problem [13].

The objective of this work is to study new ways of improving association
rule mining that can lead to a smaller set of rules that are sufficient to capture
the essential underlying patterns in the data. This requires analyzing relations
among the mined rules and defining criteria for assessing the importance of indi-
vidual rules w.r.t. other rules. The key principle studied and applied in this work
for filtering the rules is rule redundancy. Our approach builds upon the mini-
mum predictive pattern mining idea proposed by Batal and Hauskrecht [6] to
eliminate spurious and highly redundant rules, and attempts to improve it by
reducing the set of mined minimum predictive rules using an auxiliary classifi-
cation model that combines the rules into one model. Since in general the search
for the optimal set of rules is equivalent to the optimal subset selection prob-
lem [17], we propose and experiment with a more efficient greedy rule selection
algorithm that avoids the need to explore and evaluate all possible rules subsets.

We have tested our method on data from MIMIC-III [15] EHR database.
More specifically, our goal is to discover patterns that are associated with sepsis
and its treatments. We compare our method to the original one [6] and show
that the number of rules found by our method is significantly smaller than the
original set. Moreover we show that the performance of the classification model
that is based upon our rule set is close or better than classification models built
by Batal’s rule sets.

2 Related Work

Association rule mining [1,2] is a method for identifying strong relations in a
dataset based on some measure of interestingness (e.g., confidence/precision,
support or lift [13]). Typically, such relations are expressed in terms of if-then
rules consisting of different rule antecedents (conditions) and consequents (tar-
gets). The majority of association rule mining algorithms rely on Apriori algo-
rithm [2]. The algorithm searches the pattern space defining the condition of
the rule by starting with more general patterns with the highest support before
inspecting more specific patterns with a lower support. The process is bottomed-
out by the minimum support parameter.

When the rule mining process is focused on a specific target class, we refer to
it as to predictive pattern (rule) mining [16]. The task of identifying all impor-
tant predictive patterns from a large pool of frequent patterns is similarly to
association rule mining time-consuming, and may lead to a huge number predic-
tive rules. One important contribution in limiting the size of the rule set is the
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minimal predictive rule mining approach proposed in [6] to eliminate spurious
predictive patterns. Briefly, a pattern is called spurious when it is predictive
when evaluated alone, but is redundant given one of its subpatterns. Spurious
patterns may be formed by adding irrelevant items to other simpler predic-
tive patterns. Approach in [6] eliminates spurious patterns using statistical test
based on binomial distribution. Later the same authors proposed a more robust
Bayesian criterion to perform the spurious pattern elimination [3]. The minimum
predictive rule mining approach has been successfully adapted and applied to
mine temporal clinical data [4,5,7].

Predictive pattern mining process can be used for knowledge discovery when
the goal is to extract a set of rules describing patterns that are important for
a specific target class. Alternatively, it can be used to define a classifier [6]. In
such a case, predictive patterns can be viewed as nonlinear features helping to
improve overall performance of a classification algorithm. This complementary
use of predictive patterns raises an interesting question. Is it possible to reduce
the set of extracted predictive rules with the help of a classification model? That
is, are there any rule redundancies that can be eliminated when we combine the
rules into a classification model? Research in this work is centered around this
interesting question. More specifically, we use mined set of minimum predic-
tive rules to define features of the linear classification model based on Support
Vector Machines (SVM). Then, feature selection methods are applied to further
reduce the rule set, aiming to extract the set that optimizes the classification
performance of the classification model.

3 Method

3.1 Definitions

Assume a dataset with only categorical features (attributes): all numeric features
should be first discretized. Each (feature, value) pair is mapped to a distinct
item in Σ = {I1, ..., Il}. A pattern is a conjunction of items: P = Iq1 ∧ ... ∧
Iqk where Iqj ∈ Σ. If a pattern contains k items, we call it a k-pattern (an item
is a 1-pattern). Assume an item I = (fea, val), where fea is a feature and val
is a value. Given a data instance x, we say that I ∈ x if fea(x) = val and that
P ∈ x if ∀Ij ∈ P : Ij ∈ x.

Given a dataset D = {xi}n
i=1, the instances that contain pattern P define

a group DP = {xj |P ∈ xj}. If P ′ is a subpattern of P (P ′ ⊂ P ), then DP ′ is
a supergroup of DP (DP ′ ⊇ DP ). Note that the empty pattern Φ defines the
entire population. The support of P is defined as: sup(P ) = |DP |/|D|.

In this paper we are interested in mining patterns that are predictive of
class c. So for pattern P , we can define a predictive pattern (or a rule) R:
P ⇒ c with respect to class label c. The confidence of R is the precision (or
posterior probability of c in group DP ). Note that confidence of Φ ⇒ c is the
prior probability of c. We say that rule R′: P ′ ⇒ c′ is a subrule of rule R: P ⇒ c
if c′ = c and P ′ ⊂ P .
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Let Ω = {P1, ..., Pm} be a set of patterns predictive of c. Given a dataset
D = {xi , yi}n

i=1 defined in d-dimensional feature space and a set of patterns Ω
the instances in D can be mapped into a new m-dimensional binary array DΩ

as follows:
xi → {bi,1, ..., bi,m} where bi,j = 1 if Pj ∈ xi and bi,j = 0 if Pj /∈ xi .
We refer to new DΩ = {x′

i , yi}n
i=1 as to the pattern induced projection of

the dataset D based on patterns in Ω. The pattern induced dataset DΩ and
its instances can be used to define and also learn a binary classification model
f : x′

i → yi = c that distinguishes instances with the target class c from other
classes. Effectively, this classification model combines a set of patterns predictive
of c into a unified model for predicting the same class.

3.2 Problem

Our objective is to identify a small set of predictive patterns (rules) for the target
class c from the data. To achieve this we propose a new two-step pattern mining
process.

First, the number of predictive rules one can define by considering just the
rule support and its precision can be enormous and may include a large number of
spurious patterns. Hence we restrict our attention only to non-spurious rules. We
mine these rules using Apriori algorithm proposed by [6] that includes binomial
test when selecting more specific rules.

Second, to further limit the number of predictive rules we combine the min-
imal predictive patterns into a unified classification model to search for the
optimal minimal pattern set Ω∗ predictive of the target class c. We define the
optimal pattern set to be the minimal pattern set that leads to the best combined
generalization performance discriminating class c from the rest of the classes.

In the following we first describe the idea behind the minimum predictive
patterns, and the unified classification models. After that we propose a greedy
search algorithm that combines the two ideas into one search mechanism for
identifying small sets of predictive patterns.

3.3 Minimum Predictive Patterns

Our solution builds upon the concept of minimum predictive patterns (MPRs)
proposed by Batal and Hauskrecht [6].

Definition: A predictive pattern R : A → c is a called minimal, if and only if,
R predicts class c significantly better than all its subpatterns.

The gist of this definition is that every item in the condition of the predic-
tive pattern R is an important contributor to its prediction, that is, removal
of any of the items in the condition would cause a significant drop in its pre-
dictive performance. The significance of the pattern R is determined using a
statistical test derived from the binomial distribution. Let us assume we are
interested in testing the significance of rule R : A → c. Assume that pattern
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A consists of N instances, out of which Nc instances belong to class c. Let
Pc represents the highest probability achieved by any subpattern of R, that is,
Pc = max(A′ ⊂ A)Pr(c|A′). To test, if the pattern R is significantly different,
we hypothesize (null hypothesis) that Nc is generated from N according to the
binomial distribution with probability Pc. If we cannot reject the hypothesis at
some significance level, then, R is not significantly different from the subpattern
with Pc. However, we say that pattern R is significantly different when we can
reject the above hypothesis and show that the probability that generated Nc

class x instances out N is significantly higher than Pc. We can perform this
test using a one sided significance test and calculate its p-value. If this p-value
is significant (smaller than a significance level α), we conclude that R signifi-
cantly improves the predictability of c over all its simplifications, and hence R
is a MPR. The mining algorithm to mine minimal predictive patterns relies on
the Apriori algorithm that uses a minimum support parameter. The algorithm
generates all patterns starting from more general patterns to more specific that
satisfy the minimum support, but only the patterns that satisfy the binomial
test (the minimality condition) are retained. As shown by studies in [6] such an
algorithm retains significantly smaller subset of predictive patterns.

3.4 Combining Predictive Patterns via Classification Model

Our second solution attempts to reduce the number of minimum patters mined
by considering their combinations. Briefly, we are interested in retaining only
a subset of minimum predictive patterns that are critical for predictive perfor-
mance of the classification model defined on the pattern induced dataset.

There are many classification models one can define on the binary dataset
induced by the predictive patterns. In this work, instead of considering all pos-
sible classification models, we restrict our attention to linear support vector
machines (SVM) models with shared discriminant functions (discriminating class
c from the rest of the classes) that are defined by a linear combination of pre-
dictive patterns. To judge and compare the quality of such models across many
features we use the area under the ROC curve (AUROC) statistic.

In general the problem of finding the optimal subset of minimum predictive
patterns that leads to the best performing classification model is intractable.
In order to make the search more efficient we resort to greedy pattern search
approach. To make the choices of patterns we rely on the wrapper approach
that tests, and selects patterns by considering the internal validation approach.
That is, in order to compare two distinct sets of patterns Ω and Ω′, we use the
internal train and test splits of the data to evaluate the AUROC performance of
the two sets in combination with the SVM model. The model and its patterns
set with better AUROC performance is preferred. In the following we describe
the specific algorithm we use to search a subset of minimum predictive patters
to identify the best set.
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3.5 Greedy Pattern Subset Selection Algorithm

Our approach starts by splitting dataset D into the training and test sets. All
pattern selection and learning is always done on the training set. We use the test
set only for the final evaluation.

Since our algorithm searches and compares many different subsets of predic-
tive patterns, we use internal validation process to measure their quality and
choose better subsets. Briefly, in order to evaluate and compare the goodness
of a specific set of patterns Ω to other candidate sets, we use a classification
model based on the linear SVM that is run on the data induced by Ω. We use
multiple internal validation splits of the training data to make the comparison.
The training dataset is divided as follows: first we randomly pick 30% of the
data rows and use them as the test set, the remaining rows are reshuffled 10
times and for every reshuffle 80% of the data are used as the internal training
set and the remaining 20% as the internal validation set. The goodness of Ω is
then estimates by averaging the AUROC score for all internal splits obtained
through reshuffling.

While our ultimate goal would be to find a set of predictive patterns that
are optimal in terms of the quality of the predictive performance of a classifier
that combines them, the full search is infeasible. To avoid the full pattern subset
search, we adapt a greedy approach that generates, examines and selects the
patterns level-wise, where a level k covers all k-patterns. More specifically, our
method uses a two-stage procedure. First, using an Apriori algorithm with the
minimum support threshold and the binomial test proposed by Batal et al., we
generate a set of minimum predictive patterns for each level k. Second, we use
these minimum level-wise patterns to construct greedily the final set of patterns.
We implemented two procedures to conduct the greedy search. One that searches
and constructs the subset of patterns starting from the most general (level 1)
patterns and gradually adds new more specific (higher level) patterns. We refer to
this procedure as the top-bottom greedy procedure. The other procedure starts
from the most specific patterns (the highest level minimum predictive patterns)
and greedily adds to the set more general patterns of lower complexity. We refer
to this method as to the bottom-up greedy procedure.

Let us assume that Ω′ is our current set of patterns (selected in the previous
steps). Our greedy search algorithm on level k works by first trying each min-
imum pattern on level k in combination with Ω′. Each of these combinations
are ranked in terms of the AUROC score based on the internal validation. This
order defines a greedy order in which all k-level minimum patterns are sequen-
tially tried and if successful (in terms of AUROC improvement) they are added
(one-by-one) to the resulting set of patterns. The same procedure for greedily
adding the patterns on level k is applied whether we build the patterns in the
top-down fashion (from level 1 patterns) or from the bottom-up (from highest
level patterns). The reason for using the bottom-up greedy search process is that
it tends to retain a greater number of the more specific patterns.
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4 Experiments

4.1 Data

To test and validate our method, we analyze clinical data derived from MIMIC
III dataset [15] with the goal of identifying patterns predictive of sepsis diag-
nosis. Briefly, MIMIC is a publicly available database that contains EHR data
for patients treated in intensive care units between 2001 and 2012. The data
are de-identified and associated with 46000+ patients and ∼60000 admissions.
The data consist of multiple clinical data sources: measurements of hourly vital
signs (heart rate, blood pressures, oxygen saturation, and so on), administered
drugs, labs and diagnosis for every patient. However, before analysis, it is nec-
essary to transform the MIMIC-III raw data in a form that we could mine.
This was accomplished through an E.T.L. (Extract, Transform, Load) process.
One source of our data was chartevents, that is the vital signs table. We
used it to extract specific measurements of hearth rate, diastolic and systolic
blood pressure, white blood cells, and body temperature across the admission.
For each of these variables we created two attributes, one containing its maxi-
mum value during the hospitalization of a patient, and the other one containing
its minimum value. Instead of numerical values, all these measurements were
discretized to low, normal and medium ranges, using the thresholds shown in
Table 1. Other information we selected from the records came from “proce-
dures icd” table which we used to determine whether a patient had a pro-
cedure or not (true\false attribute is created) during the hospitalization. We
applied the same transformation to table “diagnoses icd” to identify all the
patients diagnosed with sepsis. “inputevents mv” table consists of medica-
tion administration records. We used it to extract some medications adminis-
tered to the patient, such as vancomycin, piperacillin/tazobactam, ciprofloxacin,
epinephrine, norepinephrine, vasopressin, dopamine, metoprolol, potassium chlo-
ride, phenylephrine, omeprazole (prilosec), and pantoprazole (protonix). Let
us note that while some of these medications are commonly used for treating
patients with sepsis, whereas other medications such as metoprolol, potassium
chloride, phenylephrine, omeprazole (prilosec), and pantoprazole (protonix) are
more general. These were included to test the effectiveness of our method when
mining patterns related to sepsis. At the end of the E.T.L. process we obtain
data for 21880 patients, 2806 of them with sepsis.

Table 1. Thresholds used to discretize the considered vital signs in low, medium, high.

Heart rate Diastolic BP Systolic BP White blood cells Body temperature

Low <60 <60 <90 <4.0 <36.0

High >90 >90 >140 >12.0 >38.0
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4.2 Results

Table 2 shows the results we obtained on MIMIC-III data for the minimum
predictive rule mining approach by Batal and Hauskrecht [6], and two versions
of our greedy classification model driven subset selection approach. The main
statistics we use to evaluate the quality of the predictive rule set is the area
under the ROC (Receiver Operating Characteristics) curve (AUROC) [12]. All
AUROC statistics listed in the table are obtained on the test data. In addition
to AUROC performances, we list the number of patterns found by the different
methods. For example, the minimum predictive pattern (MPR) baseline used 85
patterns and reached AUROC performance of 0.8580. As we can see, both greedy
methods outperformed (in terms of the AUROC classification performance) the
baseline. Moreover this improvement is accompanied by a significant reduction
in the total number of patterns used in the set compared to the baseline. We
note that while there is nearly no difference in the AUROC performance among
the two versions of our greedy method, the number of patterns found and used
by the two is significantly different. In particular, we observe that the majority
of the patterns in the bottom-up approach are more complex patterns while
the majority of patterns in the top-down approach are 1-patterns. This shows
that bottom-up approach tends to keep more detailed patterns compared to the
top-down approach.

Table 2. Comparison between the results for our method and Batal et al.’s predictive
pattern mining method.

Method AUROC Number of patterns

MPR (Batal et al.) 0.8580 85

Our method (bottom-up) 0.8643 33

Our methods (top-down) 0.8635 19

5 Discussion

Sepsis is the systemic response to infection, and there are many conditions that
would indicate its occurrence during the admission or hospital stay, such as: tem-
perature >38 ◦C or <36 ◦C; heart rate >90 beats per minute; systolic blood pres-
sure <90 mm Hg, and white blood cell count >12,000/cu mm or <4,000/cu mm
[9]. Moreover, patients with sepsis are usually treated with antibiotics such as
vancomycin, piperacillin/tazobactam, ciprofloxacin, and drugs treating episodes
of hypotension such as epinephrine, norepinephrine, phenylephrine, vasopressin,
and dopamine [11].

Table 3 lists all minimal predictive patterns that we mined using the bottom-
up greedy procedure. The table entries include the absolute weight the rule was
assigned by the final classification model, the rule support and the rule precision.
By analyzing the results with respect to sepsis symptoms and treatments we
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Table 3. The mined set of minimal predictive patterns with their absolute weight,
support and precision

Pattern Rule

weight

Support Precision

Norepinephrine = true 0.4667 0.1453 0.5571

Norepinephrine = true & Vancomycin = true 0.2628 0.1114 0.4865

Piperacillin/Tazobactam = true 0.2476 0.143 0.4449

MaxSystolicBloodPressure = low 0.1981 0.4311 0.5267

Ciprofloxacin = true 0.1750 0.1157 0.2671

Vancomycin = true 0.1619 0.3890 0.7897

Pantoprazole (Protonix) = true & MaxSystolicBloodPressure

= low

0.1418 0.1437 0.3128

Norepinephrine = true & Piperacillin/Tazobactam = true 0.1159 0.0566 0.2854

MaxWhiteBloodCells = high 0.1017 0.5669 0.7486

MinWhiteBloodCells = low & MaxHeartRate = high 0.0870 0.0653 0.1412

Vancomycin = true & MinWhiteBloodCells = high 0.0856 0.0940 0.2026

PotassiumChloride = true & MaxWhiteBloodCells = high 0.0738 0.3275 0.4566

Vancomycin = true & MaxHeartRate = high 0.0628 0.3015 0.6729

MinWhiteBloodCells = low 0.0601 0.0913 0.1640

MinDiastolicBloodPressure = low & MaxWhiteBloodCells =

high

0.0533 0.3102 0.4454

Vancomycin = true & MaxWhiteBloodCells = high 0.0527 0.2821 0.6135

Pantoprazole (Protonix) = true & Piperacillin/Tazobactam =

true

0.0512 0.0662 0.2285

MaxWhiteBloodCells = high & MaxSystolicBloodPressure =

low

0.0500 0.3255 0.4535

Piperacillin/Tazobactam = true & MaxWhiteBloodCells =

high

0.0471 0.1106 0.3646

Pantoprazole (Protonix) = true & Ciprofloxacin = true 0.380 0.0574 0.1533

MinTemp = low 0.0369 0.0618 0.0813

Vancomycin = true & MaxDiastolicBloodPressure = high 0.0324 0.1089 0.2559

Ciprofloxacin = true & MaxHeartRate = high 0.0241 0.0930 0.2351

Ciprofloxacin = true & MaxWhiteBloodCells = high 0.0117 0.0873 0.2214

Pantoprazole (Protonix) = true & Norepinephrine = true 0.0094 0.0679 0.2899

MaxWhiteBloodCells = high & MaxHeartRate = high 0.0075 0.4129 0.6338

Pantoprazole (Protonix) = true & Vancomycin = true 0.0058 0.1433 0.3814

Pantoprazole (Protonix) = true & PotassiumChloride = true 0.0053 0.1616 0.3068

Pantoprazole (Protonix) = true & MinDiastolicBloodPressure

= low

0.0047 0.1369 0.3067

PotassiumChloride = true & MaxDiastolicBloodPressure =

high

0.0047 0.1320 0.2240

MaxDiastolicBloodPressure = high & MaxHeartRate = high 0.0001 0.1451 0.2570

MaxSystolicBloodPressure = low & MaxHeartRate = high 0.0015 0.3109 0.4692

Pantoprazole (Protonix) = true & MaxWhiteBloodCells = high 0.0001 0.1851 0.3646
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see 21 patterns (out of 33) that match exactly sepsis related symptoms and/or
treatments, and 9 more with the sepsis related patterns but in conjunction with
Pantoprazole (Protonix). Pantoprazole is a proton pump inhibitor (PPI) and,
even though it is not used to treat sepsis, PPIs are used for stress-related mucosal
damage (SRMD). SRMD is an erosive gastritis of unclear pathophysiology, which
can occur rapidly after a severe insult such as trauma, surgery, sepsis or burns
[10]. In other words, it is still reasonable to mine patterns with Pantoprazole,
because it is weakly related to sepsis. Finally, we have only 3 patterns, indicated
in Table 3 in italic, that include items we would consider to be weakly related to
sepsis: 2 patterns have MaxDiastolicBloodPressure = high and one that includes
PotassiumChloride = true. This demonstrates our algorithm is able to select a
much smaller subset of patterns compared to MPR method and that the majority
of the patterns predictive of sepsis are reasonable.

6 Conclusion

In this work we have developed and tested a new framework for mining predictive
patterns that compactly describe a class of interest. It uses a greedy algorithm
to mine the most predictive patterns level-wise and including only those that
improve the overall class prediction performance. We tested our approach on
intensive care data from MIMIC-III EHR database, focusing on patterns pre-
dictive of sepsis. The results preserve the overall classification quality of state-
of-the-art methods based on minimum predictive pattern mining approach, but
with a significant reduction in the number of extracted patterns.
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Abstract. Temporal phenotyping enables clinicians to better under-stand
observable characteristics of a disease as it progresses. Modelling disease pro-
gression that captures interactions between phenotypes is inherently challeng-
ing. Temporal models that capture change in disease over time can identify the
key features that characterize disease subtypes that underpin these trajectories.
These models will enable clinicians to identify early warning signs of pro-
gression in specific sub-types and therefore to make informed decisions tailored
to individual patients. In this paper, we explore two approaches to building
temporal phenotypes based on the topology of data: topological data analysis
and pseudo time-series. Using type 2 diabetes data, we show that the topological
data analysis approach is able to identify trajectories representing different
temporal phenotypes and that pseudo time-series can infer a state space model
characterized by transitions between hidden states that represent distinct tem-
poral phenotypes. Both approaches highlight lipid profiles as key factors in
distinguishing the phenotypes.
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1 Introduction

Electronic temporal phenotyping is the identification of clinically meaningful event
sequences from patient data that have been collected over time. The identification of
temporal phenotypes that are specific to subgroups of patients can assist researchers in
identifying useful cohorts and could also be used to generate hypotheses for precision
medicine research. What is more, they help experts to better understand the disease in
question and how it progresses over time, while ensuring that existing guidelines and
care plans are appropriate. Existing methods for temporal phenotyping include the use
of temporal graphs extracted from electronic health records [1, 2]. Unlike most pre-
vious research that is based on extracting phenotypes from longitudinal electronic
health records, we are interested in the construction of temporal phenotypes based on
the overall structure of data (that is not necessarily longitudinal) and the identification
of realistic trajectories through this structure in time.

Topological Data Analysis (TDA), enables structural phenotype discovery from
large, complex data by creating networks of individuals and linking those who display
demographic, clinical, and biomarker similarities. TDA provides an analytic method
for complex clinical and -omics data to identify shape characteristics that are robust to
changes by rescaling distances resulting in a qualitative description of the data. Lev-
eraging methods adapted from topological mathematics, which studies the character-
istics of shapes that are not rigid, TDA approaches consider fundamental properties:
like coordinate invariance, deformation invariance and compression [3, 4, 7]. TDA
works by clustering related data points, representing these as a non-dimensional net-
work graph. This allows for visualization of a “disease space”, the underlying shape of
the data, and the identification of relevant groupings. Relevant features of TDA include
the possibility of studying patients’ conditions as a continuum, where subjects can
fluctuate over the disease space, moving through the nodes of the network graph.
Furthermore, TDA provides intuitive representations of results, which are drawn from
simple linear algebra steps and geometric parameters. Its simplicity and ease of
interpretation responds to a current compelling challenge of artificial intelligence: to
translate research results into transparent and accessible tools based on data visual-
ization and interactive data exploration [5]. Algorithms underpinning TDA are well
defined [3–5].

A pseudo time-series (PTS) [9, 10] exploits the characteristics of disease pro-
gression so that realistic trajectories can be constructed from cross-sectional data. It
uses known labels that determine the beginning and endpoints of a trajectory so that a
time-series can be created to better understand the metabolism or cell cycles in genomic
data [11, 12], or the different variations of progression in diseases such as glaucoma or
cancer [13]. PTS has also been used to integrate longitudinal studies with cross-
sectional data [14].

In this paper we explore both TDA and PTS for building different trajectories from
health record data in order to better understand the temporal phenotypes that can
identify different subtypes of type 2 diabetes mellitus (T2DM).
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2 Methods

In the following we describe our approach to discover T2D temporal phenotypes. First,
we use TDA to identify subgroups of disease characteristics from cross-sectional
record-level data, not ordered in time; we consider these as “sub-phenotypes”. Then,
TDA is used to identify an overall, complex structure with multiple trajectories by
applying a minimum-spanning-tree filter, which identifies a number of feasible tra-
jectories representing different temporal phenotypes. Second, we explore pseudo-time
approaches which involve using a combination of distance metrics and graph theory to
reconstruct transitions among the phenotypes and infer realistic trajectories through the
data space from early disease stages through to advanced ones (Fig. 1).

2.1 Topological Data Analysis

Topological Data Analysis (TDA) allows modelling complex data with an organization
principle focused on capturing data shapes. While topology is a mathematical for-
malism for measuring and representing shapes, TDA uses topology in order to visualize
and explore high dimensional and complex real-world data sets and represent them as a
graph. The mathematical tools to identify shape characteristics of data sets with
topology are called topological mappers [15, 16] and they work by identifying the
shape of a data set along specific filter functions, as follows: (1) The points in the
dataset are represented with a similarity metric that measures the distance between
points in the space; (2) The filter functions (lenses) project the points into a coordinate
space and describe the distribution of data in that space; (3) The projections are
partitioned into overlapping bins. The bins are defined by resolution, which sets the
number of bins that are created within the projections’ range of selected lens values,
and by gain, which defines the amount of overlap between bins; (4) a clustering step is
carried out within each of these bins. This step defines the geometric scale of the shape
and is defined by the number of clusters in each bin; (5) finally, the graph is generated
by plotting clusters as the graph nodes where shared samples (between bins) are
connected by an edge. Once the graph is generated it is possible to colour nodes and
edges with the average value of filter functions or to generate a specific function that
represents variables of interest (e.g. number of observations in the bins, average age of
the subject in bins etc.). We used the Topological Data Mapper implementation
described in [4] to perform our analysis, and perform the analysis using the function
mapper2D from Topological Data Analysis using Mapper R package [https://github.
com/paultpearson/TDAmapper].

Fig. 1. Methodological steps: 1. TDA finds sub-phenotypes, 2. Pseudo-time reconstruct
transitions and trajectories to derive temporal phenotypes.
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Parameterization of TDA. We used cosine distance in conjunction with singular-
value decomposition (SVD) and L1-infinity centrality (which assigns to each point the
distance to the point most distant from it) as filter functions to build the topology. This
is based on the same pipeline adopted in [6] and has been found to provide a more
detailed and succinct description of the data than typical scatterplots. We explored the
effect of varying resolution parameters (i.e. number of bins and their overlapping) and
the geometric scale (i.e. the number of clusters within bins) and using a grid search. It’s
important to tune parameters and scale in order to insure a shape granularity fine
enough to detect temporal behaviors (i.e. repeated observations in time of individual
patients aren’t restrained within the same node). Too-coarse granularity would result in
state changes within nodes, which might impede trajectory discovery.

Topology and Clustering. The output of the TDA algorithm is a graph object that can
be analysed with a network analysis package [http://igraph.org/]. In order to identify
distinct topology sections that allow us to retrieve sub-groups of observations, we
applied the cluster optimal function [17], which calculates the optimal community
structure of a graph, by maximizing the modularity measure over all the possible
partitions.

Minimum Spanning Tree on Topology. In order to identify specific trajectories from
the overall topology, we applied a minimum spanning tree filter to detect the shortest
paths within the topology. The weights were based on the average time of the obser-
vations represented in the topology’s edges. While temporal features were not used to
retrieve the original topology, the minimum spanning tree was guided by time to
illustrate disease temporal pathways.

2.2 Pseudo-Time Trajectories

Pseudo-time methods can be used to infer state-space models that are characterized by
transitions between explicit hidden states, representing distinct temporal phenotypes.
Specifically, the outcome we considered is the development of complications during
disease progression. This is one of the main indicators of the progression of the disease
for T2DM patients [18]. For the PTS analysis, a distance matrix was constructed using
cosine distance as was used for the topological analysis. A number of data points were
sampled by bootstrapping the data and the weighted graph was constructed based on
the cosine distance. This was implemented in MATLAB using the Bayes Net Toolbox
[19]. The EM algorithm was used to infer parameters and the junction tree algorithm to
perform inference.

2.3 MOSAIC Data

Data for this study was previously collected for clinical andmanagement purposes during
the MOSAIC project funded by the European Commission under the 7th Framework
Program, (Theme Virtual Physiological Human, 2013–2016) [17–19]. Health records
were accumulated from 356 pre-diagnosed T2DM patients, which resulted in
3959 instances in our data set. Risk factors found to influence T2DM [20] include: body
mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP),
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high-density lipoprotein (HDL), triglycerides, glycated haemoglobin (HbA1c), total
cholesterol and smoking habits. Accordingly with previous studies on the MOSAIC
project [20], the experimental results were mined for microvascular comorbidities (dia-
betic nephropathy, neuropathy, and retinopathy). The following variables were used to
build the topology and pseudo time-series: age, smoking habit, HbA1c, BMI, SBP, total
cholesterol, and triglycerides. Continuous variables were standardized on a –1 to +1
scale. While we did not exploit the temporal nature of this data for phenotype identifi-
cation, we used the fact that many of these patients had varying follow-up measurements
to evaluate our trajectories. In particular, we used time-since-first-visit to assess whether
the trajectories correctly model patient progression.

3 Results

3.1 Topological Data Analysis

The graphs shown in Figs. 2 and 3 illustrate the result produced by the TDA algorithm.
Each node represents a cluster of data points as observations in time (i.e., an encounter
in the MOSAIC data set). The nodes are coloured with the time (days) from the first
visit of each encounter. Figure 4a reports the distribution of the value on a continuous
scale from blue (time = 0 days from the first visit) to red (time = 4000 days from the
first visit).

First, we explored the effect of varying the number of clusters within each bin,
which defines the geometric scale of the topology (Fig. 2a). In general, a lower value
results in very small clusters (sometimes individual data points), and for higher values
the network starts to become extremely sparse or loosely connected. In both cases,
edges, which are based on shared samples, are impossible to extract and resulting
shapes don’t show any relevant topological features. Figure 2a demonstrates a rela-
tively stable topology for between 8 and 12 clusters per bin. For the remainder of the
analysis we chose a value of 10. Secondly, we explored the resolution scale while also
varying the degree of cluster overlap (gain) when determining the topology (Fig. 2b).
In general, higher gain results in more edges. Increasing the resolution of a graph
increases the number of bins. In Fig. 2b the horizontal axis represents the number of
overlapping intervals and the vertical axis represents the percentage overlap. Note that
while the percentage doesn’t affect the shape considerably, the interval sizes between 6
and 14 enable a stable shape. For higher values, the network becomes too unstable and
it is more difficult to recognize any characteristic shape or trajectories within the
network.

Figure 3 illustrates a stable topology generated with seven bins, 60% overlap, and a
geometric scale of 8; this is the one used in the following analysis steps. Figure 3a
reports the topology enriched by time from the first visit, whose distribution is given in
the bottom panel. It is possible to identify a clear temporal direction from the blue
bottom node towards the red nodes. Figure 3b reports the topology enriched by the five
clusters that we obtained applying the optimal community structure cluster.
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The minimum spanning tree identified seven distinct trajectories (Fig. 3c); all of
which start from the central blue cluster which accounts for the first observations in
time. We grouped the trajectories as follows: (A) the two trajectories that lead to the red
clusters, (B) the two trajectories that lead to the orange clusters and (C) the three
trajectories that lead to the yellow clusters past the green clusters. These three groups
represent disease progression phenotypes, which we refer to as temporal phenotypes.

3.2 Pseudo-Time Trajectories

Figure 5a reports the weighted graph constructed on the basis of a cosine distance. This
graph was used to construct the minimum spanning tree (Fig. 4b). Randomly predefined
points were identified as the start-point and endpoint of a trajectory. Here we accepted
any sampled patient that has no microvascular complications as a potential start and any
patient with microvascular complications as a potential endpoint. The shortest path was
identified between the start-point and the endpoint within the minimum spanning tree,
resulting in a single pseudo time-series (Fig. 4c). The entire resampling procedure was

Fig. 2. Topologies (a) varying Geometric Scale and (b) varying Resolution Scale and
Percentage Cluster Overlap (gain).

Fig. 3. The network retrieved via TDA and displayed with igraph. In (a) nodes are coloured by
time from the first visit, in (b) with the cluster membership. In (c) The Minimum Spanning Tree
identifies trajectories of patients. The node colouring is based upon the clustering membership.
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repeated 1000 times to generate multiple pseudo time-series. Figure 5 illustrates the
cosine distance plot enriched with the information about having developed or not a
micro vascular complication during the observation period. The pseudo time series (10
samples and all of them) have been plotted upon the graph showing the correlation
between trajectories of disease and complications. Having constructed 1000 pseudo-
time series, we used an Autoregressive Hidden Markov Model (ARHMM) with five
discrete hidden states to build a model to capture the dynamics of the different trajec-
tories through the data.

3.3 Clinical Assessment

Using data for T2DM patients, we created a topological data network, selecting that with
the most stable topology, and enriched the topology with time-from-the-first-visit
information. This process revealed potential trajectories for disease progression
(Fig. 3a) and sub-groups of observations from the topology clustering (Fig. 3b). Having
identified the most suitable topology, the graph was used to build a minimum spanning
tree in order to identify pseudo-time-based trajectories (Fig. 3c). Using this approach,
seven potential trajectories were identified. These trajectories have been grouped in
three temporal phenotypes: A, B and C (Fig. 3c), which show the progression of each
trajectory (each one representing a T2DM temporal phenotype) towards the disease’s
deterioration and distinct outcomes. When the temporal phenotypes are compared in
terms of microvascular complications, we found that patients in the C phenotype
develop higher prevalence of complications (61%, num. patients = 159), compared to B

Fig. 5. Left: Multidimensional Scale plot of Cosine Distance where red represents patients with
at least one microvascular complication, and black represents none. Middle: Cosine Plot with 10
sample Pseudo-time Series trajectories plotted, right: Full 1000 Pseudo-time Series Generated

Fig. 4. Generation of pseudo-time series from left to right: (a) the weighted graph of a sample of
data (b) the minimum spanning tree of the weighted graph and (c) the Pseudo Time-Series (Color
figure online)
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(43%, num. patients = 574) and A phenotypes (23%, num. patients = 191). Therefore,
minimum spanning tree paths can identify groups of patients less (A phenotype) or more
(B and C phenotype) exposed to the development of T2DM-related complications over
time. We characterize these phenotypes using relevant clinical features values as they
develop in time (Fig. 6).

In addition to the high prevalence of micro-complications, patients belonging to the
C phenotype demonstrated higher cholesterol levels and systolic blood pressure over
time. Interestingly, the A phenotype shows a higher and increasing level of HbA1c, a
decreasing and then increasing trend of cholesterol, and an increasing trend of
triglycerides. We now turn to the pseudo-time approach where we have inferred a five-
state Auto Regressive Hidden Markov Model from the 1000 pseudo time-series gen-
erated from the original data. Table 1 illustrates the expected values for the key features
of the data for each of the five hidden states.

Fig. 6. Clinical characteristics over time of subjects in the A (red-dashed), B (orange-dotted)
and C trajectories (yellow-continuous) (Color figure online)

Table 1. Expected values for the 5 hidden states, where t2d represents time-since-first-visit,
TotChol represents total cholesterol and Trigl represents triglycerides.

State 1 2 3 4 5

% Female 0 0 0 50 59
% Male 100 100 100 50 41
Age 59.16 69.41 63.7 67.78 56
t2d 3.77 9.76 13.4 11.86 5.42
HbA1c 47.66 50.3 62.6 53.54 60.7
BMI 28.1 27.58 30.07 30.31 31.02
SBP 129.59 129.5 136.08 134.8 132.73
TotChol 187.51 167.28 183.7 188.86 207.62
Trigl 126.98 108.13 136.71 124.38 232.46
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Looking at the expected statistics in Table 1 (highest values in bold), State 1
represents younger patients who have the shortest period of time since their first visit,
State 2 represents the oldest patients, State 3 represents people with the highest Hba1c
and SBP values and are the patients who have been visiting for the longest of time since
their first visit, State 4 represents older patients who have been visiting for a relatively
long period, while State 5 represents the youngest patients with the highest BMI.

Table 2 illustrates the transition probabilities between these states. The transition
probabilities in Table 2 demonstrate that most states are relatively stable with higher
probabilities of remaining the same than of changing. Highlighted in bold are the two
highest transition probabilities from one state to another. This is presented as a diagram
in Fig. 7a, which captures a natural flow from State 5 to two potential end-States 3 and
4. This flow is supported by a general increase in the expected time-since-first-visit
(t2d) shown in the diagram, as well as increasing age. End State 3 represents patients
with very high hb1ac and relatively lower cholesterol whereas end State 4 captures
older patients with relatively higher cholesterol but lower hb1ac and very low
triglyceride levels. Figure 7b shows two potential trajectories in the form of state
transitions based on the HMM model: State transitions 5-1-4 and 5-1-2-3, for patients’
triglycerides (left) and cholesterol (right). It is interesting that the lipid profiles were
discovered as a defining characteristic of the two trajectories, similar to the TDA results
in Fig. 6.

Table 2. State transition matrix

State 1 State 2 State 3 State 4 State 5

State 1 0.733 0.145 0.023 0.084 0.015
State 2 0.036 0.866 0.049 0.049 0
State 3 0.055 0.127 0.678 0.132 0.007
State 4 0.159 0.113 0.157 0.542 0.029
State 5 0.134 0 0.107 0.140 0.618

Fig. 7. (a) Transition Diagram with expected time since first visit. (b) Mean statistics for two
trajectories 5-1-4 (dashed) and 5-1-2-3 (solid) for Triglycerides (left) and Cholesterol (right)
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4 Discussion

In this paper we present a comparison of two approaches to automatically building
temporal phenotypes from health records. TDA has been used to capture the overall
shape of the data and a minimum spanning tree filter was applied to identify different
trajectories. This approach highlighted subcategories of T2DM including one sub-
cohort that displays different levels of cholesterol and initial Hba1c from the rest of the
population. We also explored the use of PTS methods where different trajectories have
been bootstrapped from the data and a state-space model was learned with five hidden
states. This approach has identified only two trajectories; however, these are clinically
relevant and support the findings made using TDA. Neither TDA nor PTS relied on
temporal features of the data in the health records to build these models. As a result,
both approaches could be used to construct temporal phenotypes from cross-sectional
data if appropriate disease staging information is included. Here we used micro-
vascular comorbidity data, but any data that helps to stage a disease could be used.
Another important step of the analysis of temporal trajectories regards their comparison
among individual patients and their use for predicting disease deviations or adverse
outcomes [22–25]. Future steps will employ similarity measures to compare individual
trajectories to modelled ones, as in [21], and to predict deviation in the disease space
drawn from probabilities of moving forward into nodes with higher density of
complications.

Our approach is somewhat limited by the degree of validation. The limitation of
PTS is that we only investigated only a 5-hidden-state ARHMM, as suggested by the
topology clustering. It is likely that for large datasets, the number of hidden states could
be much higher and as a result more complex trajectories can be discovered. Further
validation of the joint utility of the two methods could also be carried out. This could
be achieved using data simulated via pseudo-time approaches to derive topologies in
order to provide a more robust evidence for approaches that combine the two methods.
Furthermore, we will compare the presented approach to baseline methods, including
simplified version of the analysis pipeline, standard clustering methods and time series
methods based on dynamic time warping.
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Abstract. Mitral valve segmentation specifies a crucial first step to
establish a machine learning pipeline that can support practitioners
into performing diagnosis of mitral valve diseases, surgical planning,
and intraoperative procedures. To this end, we propose a totally auto-
mated and unsupervised mitral valve segmentation algorithm, based on
a low-dimensional neural network matrix factorization of echocardiogra-
phy videos. The method is evaluated in a collection of echocardiography
videos of patients with a variety of mitral valve diseases and exceeds the
state-of-the-art method in all the metrics considered.

Keywords: Mitral valve segmentation · Echocardiography ·
Neural network matrix factorization

1 Introduction

The mitral valve (MV) of the heart regulates the blood flow between two heart
chambers, namely the left atrium and the left ventricle. It is formed by two
leaflets, the anterior and the posterior leaflet, that are attached to a fibrous
ring known as the mitral annulus. In healthy patients, the left atrium contracts
during diastole and the blood flows through the open MV into the left ventricle
that is dilating. During systole the left ventricle contracts and pushes the blood
into the aorta through the aortic valve, and the MV closes so that the blood
does not flow back into the atrium. Various diseases concern the MV causing an
alteration of healthy blood flow between left atrium and left ventricle. Briefly,
two possible scenarios are possible: (i) mitral stenosis that is characterized by
a narrowing of the mitral annulus and hence a decline of the blood flow to the
left ventricle and (ii) mitral regurgitation that causes blood to flow back to the
left atrium during systole. This last condition defines the second most common
cardiac valvular defect amenable of surgical intervention [7].
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Echocardiography (echo) is a medical imaging technique that produces 2D
and 3D pictures and videos using ultrasound waves generated by a transducer,
scattered/reflected by biological tissue and read by a detector. Echo is the stan-
dard imaging tool in the clinical routine to perform the diagnosis of most of
heart diseases and dysfunctions, including MV diseases [1,7,15] since it is inex-
pensive, non-invasive and it enables both qualitative and quantitative assess-
ment of the myocardium and of the MV functions. The current clinical protocol
requires practitioners to manually measure a plethora of diagnostic parameters
of the cardiac valves as well as of the cardiac chambers. In this paper we pro-
pose NN-MitralSeg, an unsupervised MV segmentation algorithm that supports
a systematic and fast evaluation of MV health status for the medical practition-
ers. Our method improves on the Robust Non Negative Matrix Factorization
method (R-NNMF) proposed in [4] and it outperforms R-NNMF on a dataset
of 38 patients affected with MV dysfunction and mitral regurgitation.

2 Related Work

MV segmentation in 2D and 3D echo enables automatic diagnosis and per-
sonalized prognosis and, therefore, it has received a lot of attention recently.
Many early methods are based on active contour algorithms or on other meth-
ods that depend heavily on human-in-the-loop contributions. Active contour
algorithms [2,9] require practitioners to initialize the segmentation algorithm,
placing manually a contour close to the desired position in a given frame or on
multiple frames [10,13]. Then the MV is segmented on the given frames opti-
mizing a fixed energy function, and the mask is propagated over time with the
support of the optical flow [11] and/or of a dynamical model of the MV [12].
In [3] the authors proposed a method that leverages both an active contour algo-
rithm that segments the myocardial walls and a thin tissue detector that finds
the valve leaflets. Also in [14] medical practitioners initialize the segmentation
denoting multiple points that are then connected using J-splines.

The first attempts to design a fully automated MV segmentation algorithm
are proposed in [4,16]. The 2D echo video is factorized using (robust) non-
negative 2-rank matrix factorization. Every frame of the video is decomposed
as a non-negative linear mixture of two frames and a sparse signal, where the
frames, the mixture coefficients and the sparse signal are obtained optimizing an
l2 loss. The 2-rank factorization captures most of the myocardium wall motion,
while the high dimensional sparse signal represents the echo noise and the MV
movement. Then the MV is segmented using simple diffusion and thresholding
of the sparse signal. Despite producing satisfactory results on high quality echos,
these methods performs poorly on noisy low quality videos, due mostly to the
misplacement of the region of interest (ROI).

We propose Neural Network Mitral Segmentation (NN-MitralSeg)1, a method
that improves on [4] with a two-fold contribution: (i) we use a neural network
1 Code, hyperparameters and network specifications are available at https://github.

com/jprovost14/NN-MitralSeg.

https://github.com/jprovost14/NN-MitralSeg
https://github.com/jprovost14/NN-MitralSeg
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matrix factorization [5] (also know as neural collaborative filtering in [8]) to
account for both linear and non-linear contributions of the myocardial wall
motion, in combination with a parametrized threshold operator to learn the
high dimensional sparse signal that captures the MV, and (ii) we leverage the
information of both the sparse signal and of the dense optical flow to delineate
the ROI.

3 Method

3.1 Model

Each echo is initially represented as a tensor T ∈ R
h×w×T
+ , where h and w are

respectively the height and the width of a single frame and T is the number of
frames in the video. We reshape each frame of the echo into a column vector and
then concatenate all the columns to get a matrix X ∈ R

N×T
+ where N = h · w.

The matrix X is then embedded in a low dimensional space as follows. For each
row (pixel) n ∈ N and each column (frame) t ∈ T , we associate the latent feature
matrices with non-negative entries Un, Vt,∈ R

D×K
+ , where D and K are two

hyperparameters of the model. Let fθLD
denote the low dimensional network

with weights θLD and fθT
denote the threshold network with weights θT . The

low dimensional network reconstructs the inputs as

X̂n,t = fθLD
(un,1 · vt,1, . . . ,un,D · vt,D).

where un,j · vt,j is the inner product between the j-th row vectors of Un and
Vt. It is easy to see that the input of the fθLD

is equivalent to the diagonal
of the product matrix UnVT

t , hence it is a D-dimensional latent feature vec-
tor. Notice that K-rank non-negative matrix factorization is obtained enforcing
fθLD

= 1 and D = 1, where 1 is the identity function (see [8]), hence K can be
interpreted as the generalized rank of the factorization. The non-negativity of
the latent features is imposed using non-negative activation functions. Given the
reconstruction X̂n,t, the difference between Xn,t and X̂n,t serves as the scalar
input to the threshold network and is transformed to get the scalar output:

Ŝn,t = fθT
(Xn,t − X̂n,t).

The threshold network is composed by just one node and a ReLu activation func-
tion and acts as a parametrized threshold operator. A diagram for the general
architecture is given in Fig. 1.

3.2 Learning

The training of this model occurs in three stages. In the first stage the low-
dimensional network is trained to provide an accurate approximation X̂. Subse-
quently, both the low-dimensional network and the threshold network are trained
iteratively such that the threshold network fully reconstructs the error X − X̂.
The final stage consists of imposing the sparseness on Ŝ using a �1 regularizer.
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diag(UnVT
t ) X̂n,t

Xn,t

− Ŝn,t

fθT

fθLD

Fig. 1. Diagram of the model used in NN-MitralSeg. The network fθLD maps the pixel
and frame latent features Un, Vt to the reconstruction X̂n,t. The input of the network
is the diagonal of UnV

T
t denoted as diag(UnV

T
t ). The threshold operator fθT is then

applied to X̂n,t −Xn,t to give the sparse signal Ŝn,t.

Pre-training the Low-Dimensional and Threshold Networks. Pre-
training the parameters θLD and {(Un,Vt)}n,t of the low-dimensional net-
work ensures that the network can produce an accurate approximation of X̂,
which is used as input into the threshold operator. The pre-training of the
low-dimensional network is performed as in [5]; freezing the latent (pixel and
frame) features {(Un,Vt)}n,t while updating θLD, and then freezing the low
dimensional network θLD while updating {(Un,Vt)}n,t. The objective that is
optimized during this stage is given by:

‖X − X̂‖2F + β

[∑
n

‖Un‖2F +
∑

t

‖Vt‖2F
]

,

where β is a regularization parameter and ‖·‖F is the Frobenius norm. In the sec-
ond stage also the threshold network is trained in an iterative fashion: updating
θT while freezing θLD and {(Un,Vt)}n,t; then updating θLD and {(Un,Vt)}n,t

as described above while freezing θT according to the loss function given by:

‖X − X̂ − Ŝ‖2F + β

[∑
n

‖Un‖2F +
∑

t

‖Vt‖2F
]

.

Training on the Full Objective. The goal of pre-training is to obtain two
networks that can fully reconstruct the echo. The low-dimensional network cap-
tures the myocardium movement and the threshold operator captures the echo
noise and the mitral valve movement. Sparsity is enforced by regularizing the
loss function with the �1-norm:

‖X − X̂ − Ŝ‖2F + β

[∑
n

‖Un‖2F +
∑

t

‖Vt‖2F
]

+ λ‖Ŝ‖1,

where λ is the sparsity coefficient and ‖ · ‖1 denotes the �1-norm.
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3.3 Mitral Valve Window Detection and Segmentation

The sparse signal Ŝ captures the motion of the mitral valve. In [4] the authors
compute the Frobenius norm on all possible 3D windows of the sparse matrix
Ŝ and define the MV ROI as the window with the maximum Frobenius norm.
However, it often occurs that part of the myocardium movement is also captured
in the sparse signal due to low quality of the echos and then the ROI does not
contain the mitral valve or it captures it only partially.

We propose an alternative method for MV window detection that leverages
also movement information. The motion of the MV is much faster compared
to the myocardium, even when the myocardium appears in the sparse signal.
The norm of the dense optical flow [6] can measure the motion in a video and
a large norm is indicative of fast motion. First the sparse signal Ŝ ∈ R

n××T
+ is

reshaped into a 3D array of the same shape of the original video R
h×w×T
+ and

then thresholding is applied in order to retain only the p percent high intensity
pixels. The dense optical flow is then computed for every frame of Ŝ and is
denoted as optical flow(Ŝ)t. Similar to the window detection method in [4,16],
the ROI of the MV is then identified as the window with largest sum among
the frames of the optical flow norms. The selection is made between windows
spanning the whole 2D frame, with a fixed stride. Denoting by Wl ∈ {0, 1}w×h

the windows as binary masks, the ROI selection can be summarized as

l∗ = arg max
l

T∑
t=1

‖optical flow(Ŝ)t · Wl‖22

The segmentation is consequently performed on the sparse signal enclosed in the
ROI similarly to [4] using simple isotropic 2D diffusion on each frame.

4 Experiments and Results

4.1 Dataset Description

A total of 38 transthoracic echos were obtained from the MitraSwiss Registry, a
Swiss-wide prospective registry which includes patients undergoing percutaneous
mitral valve repair using the MitraClip system. All patients had moderate-to-
severe (3+) or severe (4+) mitral regurgitation of functional or degenerative
origin as graded according to current recommendations of the American Soci-
ety of Echocardiography [18]. Imaging data were processed in an anonymized
way and all patients provided written informed consent to be entered into the
database. Only 4-chamber echo views are used, and for every echo, a rectangular
window around the MV and three selected frames were annotated by an expert
medical doctor.

4.2 Window Detection

A comparison of the sparse signal according to R-NNMF [4] and our method
NN-MitralSeg is showed in Fig. 2 for a R-NNMF failure case. As it can be seen
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Fig. 2. A failure case for the window detection method of R-NNMF [4]. The sparse
signal (in blue) is given for both our method (NN-MitralSeg, top row) and R-NNMF
(middle row) with reference to the original frames (bottom row) for three consecutive
frames. The mitral valve region is always highlighted as the shaded area. The region
is misplaced by R-NNMF due to a strong myocardium movement contribution in the
sparse signal. (Color figure online)

the failures of the R-NNMF window detection method are due to a strong pres-
ence of the myocardium movement in the sparse signal, as a consequence of the
low expressiveness of the linear model used in R-NNMF. We compare the perfor-
mance of the mitral valve window detection according to accuracy (I), defined
as the percentage of pixels in the computed ROI that intersect the gold stan-
dard window. Note that in this specific task, the window sizes are fixed and not
inferred by the model, hence the accuracy is a reliable measure of performance.
I is sorted in descending order according to our method in Fig. 3a. In Fig. 3b
the difference between the accuracies of our method and of R-NNMF Idiff is
sorted in ascending order, alongside the average Idiff over all echos μ and the
p-value of the one-sided t-test. In Table 1 we also report the number of success
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(a) (b)

(c) (d)

Fig. 3. A comparison of our method NN-MitralSeg and the R-NNMF [4] according to
window detection accuracies I (a-b) and Dice coefficient (c-d). (a) and (c) show respec-
tively the accuracy and the Dice coefficient sorted in descending order by our method.
(b) and (d) show respectively the difference of accuracies Idiff and the difference of dice
coefficients DCdiff between NN-MitralSeg and R-NNMF, sorted in ascending order.

cases where the accuracy I is higher then a given threshold, and the average
Intersection over Union score (IoU).

4.3 Mitral Valve Segmentation

The output of the segmentation algorithms are compared with the ground truth
in Figs. 3a and d according to the Dice coefficient (DC). The DC is reported
for every echo and it is sorted in descending order according to the score of our
method. The DC difference DCdiff between the two methods is also reported in
Fig. 3d sorted in ascending order. We observe that NN-MitralSeg outperforms the
state-of-the-art in both window detection and in the dense MV annotation by a
statistically significant margin. A detailed comparison of the MV segmentations
produced by the two algorithms is documented in Figs. 4a and b where we show
the masks and the ground truth respectively for the highest and lowest five
scoring echos (according to our method).
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Fig. 4. The mitral valve segmentation masks for the echos with the (a) five highest
and (b) lowest Dice coefficients according to NN-MitralSeg. From left to right: NN-
MitralSeg (yellow), R-NNMF (green) and ground truth (red). (Color figure online)

Table 1. Number of success cases and average Intersection over Union score for the
window detection algorithm. The total number of echo is 38.

I > 0.65 I > 0.85 IoU

NN-MitralSeg (Ours) 35 31 0.35132

R-NNMF [4] 32 25 0.30883

5 Conclusion and Future Work

We proposed NN-MitralSeg, a fully automated and unsupervised mitral valve
segmentation algorithm based on non-linear matrix factorization. An echocar-
diography video is decomposed into a low dimensional signal that captures the
linear and non-linear myocardial wall motion, and a high dimensional sparse
signal that accounts for the echocardiography noise and mitral valve movement.
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The mitral valve is then segmented from the sparse signal using thresholding and
diffusion algorithms. This method outperforms the state-of-the-art fully auto-
mated algorithm in a data-set of 38 videos with patients suffering various mitral
valve dysfunctions, in both the task of positioning the rectangular region of inter-
est, and in the accuracy of the dense mitral valve mask. Despite being a small
dataset, due to the health status of the patients it contains a larger variability
then an healthy control dataset of the same size. A possible future development
includes the use of both the sparse ground truth segmentation masks and the
dense (inaccurate) annotation generated by unsupervised algorithms (like NN-
MitralSeg) to train segmentation deep networks in a weakly-supervised-learning
scenario [17] in an online fashion. This would provide practitioners with seg-
mentation algorithms that could be deployed in the real-time echocardiography
during mitral valve intraoperative procedures.
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Abstract. Parkinson’s disease (PD) is a chronic neurodegenerative dis-
order that predominantly affects the patient’s motor system, resulting
in muscle rigidity, bradykinesia, tremor, and postural instability. As the
disease slowly progresses, the symptoms worsen, and regular monitoring
is required to adjust the treatment accordingly. The objective evaluation
of the patient’s condition is sometimes rather difficult and automated
systems based on various sensors could be helpful to the physicians. The
data in this paper come from a clinical study of 19 advanced PD patients
with motor fluctuations. The measurements used come from the motion
sensors the patients wore during the study. The paper presents an unsu-
pervised learning approach applied on this data with the aim of check-
ing whether sensor data alone can indicate the patient’s motor state.
The rationale for the unsupervised approach is that there was significant
inter-physician disagreement on the patient’s condition (target value for
supervised machine learning). The input to clustering came from sensor
data alone. The resulting clusters were matched against the physicians’
estimates showing relatively good agreement.

Keywords: Unsupervised learning · Motion sensor ·
Parkinson’s disease · Objective evaluation · Patient monitoring ·
Bradykinesia · Dyskinesia

1 Background and Experimental Setup

A clinical trial conducted at the Uppsala University Hospital, Sweden [5],
recruited 14 males and 5 females with advanced Parkinson’s disease (PD) and
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D. Riaño et al. (Eds.): AIME 2019, LNAI 11526, pp. 420–424, 2019.
https://doi.org/10.1007/978-3-030-21642-9_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21642-9_52&domain=pdf
https://doi.org/10.1007/978-3-030-21642-9_52


Unsupervised Learning from Motion Sensor Data of PD Patients 421

experiencing motor fluctuations. Their mean age was 71.4 and mean years with
levodopa treatment was 10. Each patient received a 150% of their individual
levodopa-carbidopa equivalent morning dose and was followed up until the med-
ication wore off. Patients were observed once within 50 min before the morning
dose was administered, once at the time the dose was administered, and approx-
imately every 20–30 min afterwards. During each observation the patients per-
formed a set of standardised motor tasks as specified in the UPDRS-III (Unified
Parkinson’s Disease Rating Scale; motor section) including hand rotation tests,
leg agility, and walking. Three movement disorder specialists provided ratings for
finger taps, rapid alternating of hands, leg agility, arising from chair, gait, and
body bradykinesia/hypokinesia, each on a scale from 0 (normal) to 4 (extremely
severe). They also rated the severity of dyskinesia on a scale from 0 (no dysk-
inesia) to 4 (severe dyskinesia) and the overall mobility of the patients on a
Treatment Response Scale (TRS) on a scale from −3 (very bradykinetic) to 0
(normal) to 3 (very dyskinetic) [4].

In addition to clinical-based measures, 3D accelerometer and gyroscope data
was available for each observation as the patients wore motion sensors on each
ankle and wrist during all observations. For leg agility tests, the patients were
asked to sit on straight-back chair and stomping each foot on the floor 10 times
as fast as possible. During rapid alternating movements of hands, subjects were
seated on a chair and performed hand rotation tests for 20 s, starting with the
right hand and then with the left hand [6]. During walking tests, the patients
walked for about 4 m at a self-selected pace. [1]

This paper presents an unsupervised learning approach applied on the data
from the clinical trial with the goal to check how well motion sensor data alone
can indicate the patient’s motor state. The decision for the unsupervised app-
roach was due to significant inter-physician disagreement on the patient’s con-
dition (target value for supervised machine learning).

2 Unsupervised Learning Results

Altogether there were 178 features from motion sensors, including 24 from leg
agility tests, 88 from hand rotation, 37 from gait, and 29 from arm swing. The
principal component analysis (PCA) was applied on them in order to reduce
their number before the unsupervised learning. It was performed in R, using
the princomp function with the correlation matrix as the input. It yielded 33
components with eigenvalues over the Keiser criterion of 1 and in combination
explained 87% of variance. These 33 components were used as the only input
for cluster analysis. The algorithm was blind to the patients’ condition, time of
dose and their other medical data (e.g. levodopa concentration in blood, medical
history, etc.) as the goal was to check whether and/or how well motion sensor
data alone can indicate the patient’s motor state.

The cluster analysis was run using the trimmed k-means algorithm, using
R’s package tclust [3]. Trimmed approach was chosen in order to remove the
influence of the most outlying cases that can skew the results of the analysis.
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Ten per cent, or 21 cases, were trimmed, leaving 183 out of 204 individual patient
measurements to be clustered.

Figure 1 shows the resulting two clusters. The clusters are roughly similar in
size, one containing 104 (56.8%) and the other 79 (43.2%) measurements. The
size of the individual recordings (dots) represents TRS ratings (discussed below)
and the numeric labels are patient IDs. The visualisation shows that the large
majority of the discrepancy between TRS ratings and the obtained clusters are
due to just a few patients: these are patients with IDs #14 and #8 in the red
cluster and patient #41 in the blue cluster. Some recordings of patient #33 are
puzzling (red ones on the bottom).

Fig. 1. Visualisation of the two clusters. Dot size represents the TRS score and numeric
labels are patient IDs. (Color figure online)

The clustering results were visualised using FreeViz [2] with the aim to sep-
arate the instances of different classes; in our case clusters 1 and 2. FreeViz
projection in Fig. 1 shows that clusters 1 and 2 are well separated. In contrast,
Fig. 2 shows a different projection, where the clusters overlap, however the intent
there is to show the relation of clusters to TRS values.

The two clusters were compared with the TRS ratings of the individual
recordings (Fig. 2). These ratings would represent the class/target value in a
supervised setting. However, as stated earlier, we used the unsupervised setting
since there is relative disagreement (first order intra-class correlation coefficient
of 0.79) between individual physicians when rating the patients’ recordings thus
making the class value potentially unreliable. The y-axis represents TRS rat-
ings and the x-axis represents discrete timestamp of the recording with the first
recording being the baseline one before the patients received the medication. We
see that there is a relatively good correlation between TRS ratings and the two
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Fig. 2. Comparison between TRS ratings and the two clusters. The x-axis represents
recording time (the first measurement is before medication), and y-axis represents TRS.

clusters, one representing high TRS values and the other representing low TRS
values. The TRS is usually interpreted in three levels with an additional layer
around zero. However, three cluster analysis did not correspond to that – this is
further debated in the discussion.

We treated the TRS ratings as a continuous variable (which it is) for the
purpose of this analysis even though in clinical practice it is usually discretised.
Just to give a general feel as to the correspondence between learned clusters
and the average TRS scores in a discretised setting, we put a threshold at TRS
rating of zero, thus dividing it into positive and negative bands. The clusters (if
interpreted as low and high) correctly classify 132 out of 183 cases; that is 72.1%
accuracy. We excluded the 21 outliers, even though all but one is in the lower
band and classified correctly as we wanted to report the worst-case scenario. The
majority class is the lower band containing 51.9% of the recordings.

3 Discussion

This paper presents the initial results of an unsupervised analysis of the motion
sensor recordings of PD patients during standardised tests to quantify their
motor states. It compares the obtained clusters with the TRS ratings represent-
ing the clinicians’ assessment of the patients.

We visualised the clusters using FreeViz best linear projection to show the
quality of separation. Furthermore, we treated the TRS rating as a continuous
variable and presented the agreement between TRS ratings and the two clusters
graphically as this best shows the recordings in discrete time after the baseline
(pre-medication). To give a numeric feel for this agreement we divided the TRS
ratings to those above and below zero – the worst-case agreement is 72.1% com-
pared to 51.9% majority class. It has to be noted, however, that since there is
noteworthy inter-rater disagreement on TRS ratings, the “misclassified” record-
ings might actually be correct, and these could facilitate the search for better
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guidelines on TRS appraisal. This is the major goal of future work stemming
from this preliminary analysis.

We have explored a larger number of clusters than just two that we reported
in the results section. Purposefully increasing the number of clusters resulted in
the clustering algorithm starting to cluster together the recordings of individual
patients. It appears that each individual patient has his or her own motion pat-
terns which eventually get detected by the clustering algorithm. However, when
clustered in a small number of clusters these seem to represent the pathology
(patient’s condition) as testified by a relatively good correlation with TRS scores
and by individual patient’s recording being spread over several clusters.

Moreover, we observed that just a few patients cause most of the discrepancy
between TRS and the two clusters. Since these patients are clustered “as a
whole”, one explanation is that it is their unique motion patterns and not change
due to the medication that the algorithm is primarily detecting. Further work
should focus to re-observe these patients’ video recordings to carefully observe
for specifics in their movement to either confirm or reject this hypothesis.
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Single-cell RNA sequencing (scRNA-seq) is an emergent technology that enables the
discovery and tracking of cell types, tumor progression, differentiation factors, and
pathogen identification. Single-cell Orange is an interactive visual programming tool that
uses visual programming to assemble data analysis workflows (Fig. 1). Built on top of the
general purpose data analysis platform Orange [2], scOrange implements data
preprocessing, filtering, and batch effect removal techniques designed for scRNA-seq
data. It includes a rich library of data visualization,modeling, and bioinformatics methods
that support combinations of data management, visualization, and machine learning.

ScOrange aims for balance between easiness of use and the capacity to answer
complex questions. End-to-end scRNA-seq analyses often consist of working with
multiple data sets driven by biological and technical variability (Fig. 2). The principal
advantages of interactive workflows are control over data flow and methods, effects of
tuning modeling parameters, and visualization-based inspection at any step. Statistical
analysis enables characterization of cell types, revealing de novo markers, or use a
provided marker library and access to resources such as Gene Ontology or KEGG
pathways, combined on production quality plots. Comparing to providing code or
method descriptions in publications, workflows are a complementary medium that
guarantees results sharing and reproducibility.

Fig. 1. An example workflow. Cells are scored withMarker Genes to identify natural killer (NK) cells
in the t-SNE plot. Interactively selecting the found population reveals the abundance of NK cells in
healthy and acute myeloid leukemia (AML) patients.
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Computational techniques for single cell analysis and their access through R or
Python are widespread [3], but add to the steep learning curve for the users and creates
a barrier between biologists and their data. We aimed to design a tool that simplifies
access to the data and allows construction of analysis pipelines within minutes after
minimal training. The tool enables life scientists to focus on content, rather than on
issues of programming. Finally, interactive visualizations support exploratory data
analysis and focus on the most interesting data and patterns. scOrange is released in
open source (http://singlecell.biolab.si), including documentation, workflow examples,
data sets, and educational videos.

Acknowledgement. Development of scOrange was funded by Slovenian Research Agency
(P2-0209, BI/US-17-18-014).

Fig. 2. End-to-end analysis of two peripheral blood mononuclear cell data sets. The combined data
undergoes filtering, normalization, and batch effect removal via Canonical correlation analysis [1]. The
resulting clustering is unbiasedwith regard to IFN-b treatment (crosses) and control cells (circles). Cluster
analysis reveals cell types and gene markers, as well as cell type-specific response to IFN-b stimulation.
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