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Chapter 3
Materials Used Intraoperatively During 
Oral and Maxillofacial Surgery Procedures

Mina D. Fahmy, Anish Gupta, Arndt Guentsch, and Andre Peisker

1  �Introduction

The methods that currently exist for treating maxillofacial defects are not as robust 
as they could be. Moreover, large contributors to success are the surgeon’s skill and 
the patient’s own bodily reactions to materials used intraoperatively [1]. Often, 
patients are left with oral and maxillofacial defects or fractures, which range in size 
due to such things as congenital anomalies, acquired pathologies, and trauma. For 
instance, complete or partial resection in the midface or mandible due to oncologic 
surgery or following trauma requires the use of grafting materials, whether natural 
or synthetic, to resolve the void created. Further, bone graft materials are applied to 
congenital defects such as cleft palate, facial clefts, and facial asymmetries [2]. To 
enhance the effectiveness of such grafts, growth factors are used. Growth factors are 
steroid hormones or proteins that aid in cellular differentiation, proliferation, 
growth, and maturation. Growth factors may also have both inhibitory and stimula-
tory effects and have been shown to aid in the regeneration of bodily hard and soft 
tissues. Growth factors are also involved in a multitude of processes including mito-
genesis, angiogenesis, metabolism, and wound healing [3]. In this chapter, we place 
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emphasis on BMP, TGF, FGF, and PDGF. Within the realm of oral and maxillofacial 
surgery, oral implantology is becoming more popular among patients hoping to 
bridge gaps within their dentition for improvement in form, function, and esthetics. 
As will be discussed later in the chapter, there are a multitude of different implant 
systems and numerous types of implant materials, shapes, and coatings that are used 
at the surgeon’s preference and skill level [4]. This chapter will also explore differ-
ent options concerning inter-maxillary and mandible fractures and how to fixate 
with plates, and screws, either biodegradable or permanent, in an effort to speed 
healing and recovery.

2  �Grafting and Growth Factors

2.1  �Grafting

Recovery and maintenance of natural structures has been a great challenge within 
the realm of oral and maxillofacial surgery. For a number of years, autogenous bone 
has been the gold standard for grafting due to its osteogenic, osteoinductive, and 
osteoconductive properties. However, there are several drawbacks to using autoge-
nous bone including morbidity, availability, and inability to customize shape and 
potential resorption [5–8]. To date, the perfect grafting material has not been identi-
fied, as this may be very patient specific. This section focuses on autografts; how-
ever, properties of various bone grafts and bone substitutes will be discussed later in 
this chapter.

Autogenous grafts may include cortical, cancellous, or cortico-cancellous bone 
with multiple factors determining successful incorporation. The healing process of 
these grafts requires both osteoconduction and osteoinduction. Embryonic origin, 
extent of revascularization, biomechanical features, type of fixation, and availability 
of growth factors are all factors of significant importance for incorporation of autog-
enous bone grafts [9]. Albrektsson and colleagues used a rabbit model to investigate 
the survivability of both cortical and cancellous bone grafts. It was found that 
trauma to the graft compromised cell viability in addition to a lag in the revascular-
ization time, whereas the carefully handled graft revascularized and remodeled 
faster [10]. Furthermore, it was found that the cancellous bone grafts demonstrated 
a faster rate of revascularization than the cortical grafts [11–13]. More regarding 
grafting techniques will be discussed later in this chapter.

With regard to healing, it has been suggested that soft tissue pressure applied by 
the periosteum and/or the flap covering the graft may in fact increase the osteoclas-
tic activity [14, 15]. As will be discussed in more detail later in the chapter, rigid 
fixation, a technique often used in the operating room, is important for healing. 
Several studies have concluded that rigid fixation (Figs. 3.1 and 3.2) increases the 
survival rate of the graft [16, 17].
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2.2  �Growth Factors Relevant to Surgery

Currently, researchers are investigating proteins and carriers for the delivery of 
growth factors (GFs): however, there are questions that exist with regard to the effi-
cacy of these materials [20]. GFs are present in bone matrix and plasma, albeit in 
low concentrations [21]. GFs are biological mediators that have been shown to help 
in the regeneration of the natural periodontium. They are key factors in cellular dif-
ferentiation, proliferation, and maturation. In addition, these GFs have been shown 
to have both stimulatory and inhibitory effects [3].

Fig. 3.1  Mandibular angle 
fracture with rigid fixation 
[18]

Fig. 3.2  Rigid fixation of 
mandibular fracture using 
plates and screws [19]

3  Materials Used Intraoperatively During Oral and Maxillofacial Surgery Procedures



24

2.2.1  �Bone Morphogenetic Protein

In 1971, it was shown that protein extracted from demineralized bone matrix 
induced the formation of the bone. This extracted protein was named BMP [22]. 
BMPs can provoke local immediate action, bind to extracellular antagonists, or 
interact with the extracellular matrix proteins and, subsequently, target cells. 
Interestingly, BMPs can regulate morphogenesis during development while also 
inducing bone and cartilage formation [23]. In their work, Karsenty and Kingsley 
describe how BMPs form a large group of proteins, which affect migration, differ-
entiation, and cell growth. This protein group is the TGF-β superfamily [24, 25]. 
The TGF-β superfamily includes a number of proteins such as BMPs, osteogenic 
proteins, cartilage-derived morphogenic proteins, and growth differentiation factors 
[26]. Mesenchymal stem cells exhibit several BMP receptors [27] while also syn-
thesizing the BMP antagonists noggin, gremlin, follistatin, and sclerostin. The 
osteoconductive biomaterial BMP/hydroxyapatite has been used in oral and maxil-
lofacial surgery for contour augmentation by means of a macroporous delivery sys-
tem [28].

2.2.2  �Transforming Growth Factor

TGF-β increases the chemotaxis as well as the mitogenesis of the osteoblast precur-
sors while also acting to stimulate osteoblast deposition of collagen matrix for 
wound healing and the regeneration of the bone [29]. TGF-β is produced by osteo-
blasts and is found at the highest concentration in platelets [30]. This growth factor 
stimulates the expression of bone matrix proteins [31] and moderates the break-
down activity of matrix metalloproteinases, among others [32]. The differentiation 
and proliferation of osteoblastic cells, along with the inhibition of osteoclast precur-
sor formation, may be attributed to TGF-β [33]. Unlike BMP, TGF-β does not have 
the capacity to induce ectopic bone formation [34]. During the healing of bone 
fractures, the release of TGF-β, BMP 1–8, and growth differentiation factors (GDFs) 
1, 5, 8, and 10 are plentiful [35]. Signaling molecules that are released after a bone 
fracture and during the progression of healing include pro-inflammatory cytokines, 
TGF-β superfamily, and other growth factors like PDGF, fibroblast growth factor, 
and insulin-like growth factors, as well as angiogenic factors such as vascular endo-
thelial growth factor, angiopoietins 1 and 2, and matrix metalloproteinases [36]. 
TGF-β is found in high amounts in PRP which will be discussed in a later section.

2.2.3  �Platelet-Derived Growth Factor

PDGF has the important biological activity of initiating connective tissue healing 
while also increasing mitogenesis and macrophage activation [29]. PDGF is pro-
duced by monocytes, macrophages, osteoblasts, endothelial cells, and platelets [37]. 
There are three types of PDGF, including PDGF AB, AA, and BB, with PDGF BB 
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being the most biologically potent. In the early stages of fracture healing, PDGF 
plays a key role in acting as a chemotactic agent for inflammatory cells and as an 
inducer for osteoblasts and macrophages [34]. Hock and Canalis proposed that 
PDGF acts as a stimulant for osteoblasts, as well as osteoclast lineages, which may 
allow for decreased healing time [38]. As mentioned previously, PRP, which on its 
own will be discussed in a following section, is an autologous source of PDGF and 
TGF-β. Moreover, both of these growth factors play a primary role in the creation 
of platelet gels that, unlike fibrin glue, have a high concentration of platelets that 
release bioactive proteins necessary for tissue repair and regeneration .

2.2.4  �Fibroblast Growth Factor

FGF may be produced by macrophages, mesenchymal cells, monocytes, chondro-
cytes, and osteoblasts. FGF is essential in the process of bone resorption and chon-
drogenesis [39]. Of the two isoforms that exist, α-FGF plays a key role in chondrocyte 
proliferation, while β-FGF is significant in the maturation of chondrocytes and bone 
resorption during the process of fracture healing, which often occurs after oral and 
maxillofacial surgery. Basic fibroblast growth factor (bFGF) is a growth factor that 
may be isolated from the pituitary glands of bovine [40]. bFGFs have also been 
isolated from a number of cells and tissues in tumors [3]. FGF-2 is considered a 
mitogen that has an effect on angiogenesis, thereby inducing a differentiation stimu-
lus for mesodermal cells. In the short term, FGFs prevent the mineralization of the 
bone; however, in the long term, they act to speed and support bone development 
[41]. This was shown in a study by Takayama and colleagues where topical applica-
tion of FGF-2 had a healing effect on bone fractures [42].

3  �Growth Factor Enhancements

At the foundation of any surgical discipline is the science of wound healing. The 
oral and maxillofacial surgeon is usually blessed to work in an environment with 
rich vasculature; surgical and traumatic wounds tend to heal. But there will be com-
promised patients and ambitious reconstructive goals, and the surgeon will take any 
advantage given to assist his patient’s natural healing process.

As discussed previously, growth factors with cytokine-mediated healing have 
been shown to assist in the biological healing process. Many of these growth factors 
can be resultant from platelets, including PDGF, TGF, VEGF, and EGF [43]. 
Platelet-derived products have been used as early as the 1970s, starting with fibrin 
glue [44]. Fibrin adhesives are still commercially available today (e.g., Tisseel from 
Baxter Healthcare) and are primarily used for hemostasis of diffuse microvascular 
bleeding. Its use is well documented in multiple surgical specialties, including oral 
and maxillofacial surgery [45]. Fibrin glue evolved into other autologous platelet 
concentrates including PRP [46], platelet gel, and platelet-rich fibrin (PRF) [47]. 
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The literature reveals multiple studies with favorable treatment effects, not only 
in dentistry but also in orthopedics, dermatology, and ophthalmology [48]. 
Unfortunately, the literature has not come up with any consensus in terminology for 
platelet derivatives [49], and even less uniformity in their preparations, which likely 
accounts for inconsistencies in reported therapeutic effects.

3.1  �The Biology of Wound Healing

Injury to tissue, whether surgical or traumatic, starts a cascade of events to allow 
wound healing. There are overlapping phases of inflammation, proliferation, and 
remodeling. The initial priority is to prevent hemorrhage, then prevent infection, 
and ultimately, restore the injured tissue [50]. The immediate reaction to injured 
tissue is vasoconstriction to limit bleeding. Coagulation factors are activated and 
multiple cascades are set into motion. A fibrin matrix is formed at the injured vas-
culature, and circulating platelets aggregate at the exposed subendothelium, creat-
ing a platelet plug. This plug functions not only for hemostasis but also orchestrates 
subsequent healing [51]. Activated platelets in the plug degranulate and create cel-
lular signals through cytokines and growth factors.

Entire chapters can be devoted to each individual component of the wound heal-
ing process. We will limit and simplify our discussion to the roles of fibrin and 
platelets.

Platelets are anuclear structures arising from bone marrow precursors. The 
platelet membrane contains receptors for many molecules, including thrombin, and 
the cytoplasm contains granules that are released on activation [52]. Fibrin is a 
fibrous protein, which is activated by thrombin. Activated platelets and resulting 
thrombin allow fibrin to form a cross-linked mesh with the platelet plug to finalize 
a blood clot.

3.2  �Collection and Preparation of Platelet Derivatives

Platelet derivatives have few contraindications, specifically in patients with platelet 
counts less than 105/microliter, hemoglobin level less than 10 g/dL, or presence of 
active infections [53]. PRP has shown great variability in centrifugation protocol. 
Current PRP procedures start with the collection of whole blood in acid/citrate/
dextrose, which are then centrifuged. The red blood cells are removed, and the PRP 
then undergoes a second centrifugation step to obtain a supernatant of platelet-poor 
plasma (PPP) and the pellet of platelets. Growth factor release of the PRP happens 
with platelet activation from thrombin, either bovine thrombin or autologous throm-
bin obtained by adding calcium gluconate to the PPP. Thrombin is combined to the 
PRP and allows handling as a gel [48].

PRF is considered a second-generation platelet concentrate, notably with a 
simplified preparation in comparison to PRP.  Whole blood is collected without 

M. D. Fahmy et al.



27

anticoagulants and centrifuged to form a fibrin clot, which contains the platelets. As 
opposed to PRP where the activation of the platelets is due to thrombin, the PRF 
activation is a result of the centrifugation process itself. The PRF clot is homoge-
nous and is interpreted to have the cytokines incorporated into the fibrin mesh, 
allowing for an increased lifespan of these intrinsic growth factors and cell signal-
ing molecules [52]. The inflammatory markers present also indicate degranulation 
of the leucocytes, which may play a role in the reduction of infection [54].

3.3  �Applications in Oral and Maxillofacial Surgery

Both PRP and PRF continue to be used and reviewed in the literature. The therapeu-
tic effects are not validated with multi-center randomized trials, and there still exists 
discrepancies in overall benefits. In the literature, benefits have been documented 
when platelet concentrates are used in multiple maxillofacial applications. In post-
extraction sites, including third molars, healing times have been improved, with 
reduction of complications including alveolar osteitis [55–61]. However there are 
studies that show no significant benefit using scintigraphic evaluation [62]. Many 
studies discuss platelet concentrates used in combination with bone grafting for 
both reconstruction and for site preparations for dental implants. Studies showed 
accelerated healing, particularly of the soft tissue [63]. Reviews of the literature in 
regard to sinus augmentation show increased bone density [64] but no significant 
improvement in bone formation or implant survivability [65, 66]. In the setting of 
poor wound healing, we see applications of platelet derivatives in the setting of 
medication-related osteonecrosis of the jaws (MRONJ) and other oral mucosal 
lesions, with cautious interpretation of results suggesting benefits of their use [67–
70]. Successful treatment of alveolar cleft bone grafting has been shown by multiple 
teams [71–73].

In the temporomandibular joint (TMJ), platelet concentrates have been hypoth-
esized to help, given that the cartilage is avascular and has difficulty with self-repair. 
Bone growth was significantly improved in osteoarthritis in the rabbit model, with 
improved, but not significant, regeneration of the cartilage [74]. Injections of plate-
let concentrates into the TMJ have been shown to be effective for treatment of tem-
poromandibular osteoarthritis [75–77] and better than arthrocentesis alone [78]. 
However, it has been pointed out that growth factors associated with PRP, including 
VEGF, may be detrimental to cartilaginous healing [79].

3.4  �Future Applications

The common complaint in the systematic reviews of PRP and PRF therapy con-
tinues to be a large discrepancy in preparation and use of platelet concentrates. 
Good evidence is available that there is a quantifiable increase in growth factors 
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when using platelet-rich products [80–83]. However, large multi-center trials 
need to be conducted to prove the efficacy of these treatments reliably and 
reproducibly.

4  �Implantable Devices

4.1  �Replacement of Teeth

Oral implants have become the sought-after method of treatment, which is scientifi-
cally accepted and well documented in the literature [84–86]. Oral implants were 
introduced some 30–40 years ago [87–89]. Since then, implants have revolutionized 
the concept of replacing missing teeth and improved the quality of life for patients 
[90, 91]. Today, there are over 1300 different implant systems worldwide. They vary 
in shape, dimension, bulk, surface material, topography, surface chemistry, wetta-
bility, and surface modification [92]. Titanium is the material most commonly used 
for oral endosseous implants, due to its mechanical strength, excellent biocompati-
bility, and osseointegration [93]. Some studies have reported regarding the clinical 
disadvantages of titanium, such as host sensitivity to titanium, electrical conductiv-
ity, corrosive properties, and esthetic concerns as a result of their dark-grayish col-
oring [94–96]. Furthermore, elevated titanium concentrations have been found in 
close proximity to oral implants [97] and in regional lymph nodes [98]. However, 
the clinical relevance of these facts is still unclear [99]. Ceramic materials have been 
suggested as a substitute to titanium for oral implants because of their esthetic ben-
efits and excellent biocompatibility in vitro and in vivo [100–102], great tissue inte-
gration, low affinity to plaque, and favorable biomechanical properties [103]. These 
ceramic materials have already been investigated and clinically used since approxi-
mately 30–40 years ago. The first ceramic material utilized was aluminum oxide 
[104, 105], and later, the Cerasand ceramic and the ceramic anchor implant were 
introduced [106, 107]. The physical and mechanical properties of alumina ceramics 
are high hardness and modulus of elasticity, which make the material brittle. In 
combination with the relatively low bending strength and fracture toughness, alu-
mina ceramics are vulnerable to fractures. Based on these drawbacks, there are no 
alumina implant systems remaining on the market [86, 108]. Currently, the material 
of choice for ceramic oral implants is zirconia (ZrO2), containing tetragonal poly-
crystalline yttria (Y2O3) (Y-TZP). In comparison to alumina, Y-TZP has a higher 
bending strength, a lower modulus of elasticity, and a higher fracture toughness [86, 
109, 110]. Through in vitro and in vivo studies, zirconia has become an attractive 
alternative to titanium for the fabrication of oral implants [103]. However, animal 
studies have indicated a better bone-to-implant contact with titanium implants than 
with Y-TZP implants [101, 111]. In addition, early failures were significantly higher 
for zirconia implants than for titanium implants [103].
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Surface topography is one of the important parameters for the achievement of 
osseointegration and can be classified into macro-, micro-, and nanoscale [112]. The 
three major modifications of macrotopography are screw threads (tapped or self-
tapping), solid body press-fit designs, and sintered bead technologies. Recently, 
studies were mainly focused on micro- and nanogeometry. The osteoblast activity is 
significantly increased at 1–100 μm of the surface roughness compared to a smooth 
surface [113]. Increased surface roughness of dental implants can be achieved by 
machining, plasma spray coating, grit blasting, acid etching, sandblasting, anodiz-
ing, and applying a biomimetic coating, or other combinations of the several men-
tioned techniques [114–117] resulted in greater bone apposition [118] and reduced 
healing time [119].

4.2  �Reconstruction of the Craniomaxillofacial Skeleton

Reconstruction of the craniomaxillofacial skeleton, resulting from resection of 
benign and malignant tumor, osteomyelitis, or osteoradionecrosis, still remains a 
challenge for the surgeon [120].

4.2.1  �Natural Bone Grafts

Since the nineteenth century, autologous bone has been successfully used as bone 
substitute [121]. Different donor sites are described in the current literature. Intraoral 
donor sites include the symphysis of the mandible, mandibular ramus, and maxil-
lary tuberosity [122]. The common extraoral donor sites for non-vascularized bone 
grafts are the iliac crest and rib. The non-vascularized iliac crest graft is a treatment 
possibility for reconstruction of moderate mandibular defects [123], whereas the 
costochondral graft from the rib is used predominantly for condylar reconstruction 
[124, 125]. During the past decade, a variety of donor sites for vascular bone flaps 
and soft tissue have been recommended. The osteocutaneous radial forearm free 
flap [126, 127], fibular free flap [127, 128], scapula free flap [128], and iliac crest 
free flap [129] are the most commonly utilized donor sites for vascularized 
reconstruction.

Allogenic bone refers to the bone that is harvested from one individual and trans-
planted into another individual, both of the same species. Due to the limitations of 
autologous bone grafting, allogenic grafts are considered an effective alternative. 
Allografts, to a limited extent, can be customized by being machined and shaped to 
fit the defect. It can be available in a variety of forms, including cortical and cancel-
lous. The disadvantage, however, is that compared to autografts, they have a higher 
failure rate due to their immunogenicity [130, 131].

Xenograft bone has been taken from a donor of another species [122], usually of 
bovine origin. Mineral xenograft has been applied in oral and maxillofacial surgery 
for several years [132]. Demineralized bone, harvested from human donors, has 
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been frequently used in craniofacial reconstruction [133, 134]. The demineralization 
is achieved through the process of acidification, resulting in a matrix containing 
type I collagen and osteoinductive growth factors, predominantly BMP. Based on 
porosity, it can be easily formed and remodeled intraoperatively [135, 136].

4.2.2  �Synthetic Bone Grafts

Craniofacial reconstruction using alloplastic implants has shown to be associated 
with low rates of infection and other types of morbidity [137]. Computer-aided 
designed and manufactured (CAD/CAM) titanium implants which are prefabricated 
are a reasonable option for secondary reconstruction [138]. The major disadvan-
tages are the thermosensitivity and limited possibility of intraoperative customiza-
tion [136]. Synthetically manufactured bioactive glass-ceramic is an option as a 
single CAD/CAM implant for craniofacial reconstruction with good clinical out-
comes. As opposed to titanium implants, it allows intraoperative remodeling and 
adjustment without thermosensitivity [139]. Calcium phosphates belong to the 
group of bioactive synthetic materials. The most commonly used are hydroxyapa-
tite, tricalcium phosphate, and biphasic calcium phosphate [140–142]. Calcium 
phosphates are osteoconductive, do not cause any foreign body response, and are 
nontoxic [136].

Hard tissue replacement (HTR)-sintered polymers consist of poly(methyl meth-
acrylate (pMMA), poly(hydroxyethyl methacrylate) (pHEMA), and calcium 
hydroxide. The porosity of the plastic allows for the indwelling growth of blood 
vessels as well as connective tissue [136]. HTR implants can be used for the recon-
struction of large defects of the cranio-orbital region when combined with simulta-
neous bone tumor resection [143]. The implants are fixated with titanium or 
resorbable plates and screws.

Polyetheretherketone (PEEK) is a synthetic material that has been used for a 
number of years in neurosurgery due to its excellent biocompatibility, good mechan-
ical strength, and radiographic translucency. In recent years, studies of maxillofacial 
reconstructions have been reported using PEEK for the construction of patient-
specific implants [144–146]. The major disadvantage of computer-designed PEEK 
is its high cost [147].

Porous polyethylene (PPE) or high-density polyethylene (HDPE) is a linear 
highly compressed (sintered) aliphatic hydrocarbon. It is a biocompatible, durable, 
and stable material. Furthermore, it shows rapid surrounding soft tissue ingrowth 
without capsule formation around it [137, 148, 149]. PPE has proven to be a reason-
able alternative to PEEK as a material for craniofacial reconstructions. The use of 
this material seems to be safe and has minimal morbidity [149]. In summary, auto-
grafts are osteoconductive, osteoinductive, and osteogenic; however, they have 
limited availability and have donor-site morbidity. Allografts are osteoconductive 
and osteoinductive but are not osteogenic; they carry the same disadvantages as 
autografts with the addition of having disease transmission risk. Xenografts are 
osteoconductive, but not osteoinductive or osteogenic, and carry the potential for 
foreign body reaction. Alloplastic materials are osteoconductive but often costly [150].
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5  �Maintenance of Structural Integrity and Fixation

5.1  �Plates and Screws

Today, nearly all the metal plates and screws for the fixation of the craniomaxillofa-
cial skeleton consist of titanium and are stored in sets that can be re-sterilized. 
Titanium is the most biocompatible and corrosion-resistant metal and has an innate 
ability to fuse with human bone [151, 152]. Therefore, it has received much atten-
tion in the area of craniofacial reconstruction [153]. Prior to the use of titanium, 
several other materials were applied for craniofacial applications. These metals, 
which included stainless steel and vitallium, an alloy from cobalt, chrome, and 
molybdenum, have fallen out of favor because of their corrosion profile and/or lack 
of inertness [154, 155]. Furthermore, vitallium and stainless steel produce more 
artifacts on computed tomography scans and magnetic resonance imaging than tita-
nium [156–158]. There exist miniplates of different shapes with corresponding 
osteosynthesis screws of different lengths (Fig. 3.3) [159].

5.1.1  �Midface

Osteosynthesis screws are also based on different systems. For the midface, osteo-
synthesis is based on systems 1.0, 1.3, 1.5, and 2.0. The numbers refer to the outer 
screw thread diameter in mm. Low profile plates are recommended for the infraor-
bital rim because the structural forces are not significant in this region. In contrast, 
increased stability with stronger implants is needed for the zygomaticomaxillary 
buttress where high masticatory forces are transmitted [160, 161].

Fig. 3.3  Postoperative 
x-ray of a complex midface 
fracture treated with 
several malleable fixation 
plates
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Depending on the size and location of the orbital defect, reconstruction can be 
achieved by using implants of various materials with different benefits and disad-
vantages. Currently, the ideal implant material for orbital reconstruction still remains 
unclear [153]. The use of silastic implants, bioactive glass, and porous polyethylene 
to bridge the bony defect has been extensively documented in the literature [162–
164]. In addition, titanium mesh (Fig.  3.4) or pre-shaped plates, such as the 3D 
titanium orbital plate, are applied in special cases [165, 166]. Biodegradable polyg-
lycolic acid [167] and polydioxanone [168] are options as resorbable alloplastic 
materials. Alternatively, autogenous transplants can be used [169–172]. Considering 
donor-site morbidity of autologous transplants and infections with nonresorbable 
materials, resorbable implants for reconstruction could be recommended [168].

5.1.2  �Mandible

Different osteosynthesis plating systems are in use for application to the mandible. 
According to Arbeitsgemeinschaft für Osteosynthesefragen (AO)/Association for 
the study of Internal Fixation (ASIF) principles, the types of plates include mandi-
ble plates 2.0, locking plates 2.0, (locking) reconstruction plates, dynamic compres-
sion plates, and universal fracture plates [173–176]. Mandibular miniplates are 
designed to be used with monocortical screws (Fig. 3.5). Bicortical screws can be 
used for additional stability in selected cases. In approaches with limited space 
(e.g., condylar and subcondylar regions), plates of modified design, such as the 
compression plate, the trapezoid plate, or the delta plate, are applied [177, 178]. Lag 
screw osteosynthesis of fractures of the mandibular condyle is a method to combine 
functional stability with simple removal of osteosynthesis materials, without re-
exposure of the temporomandibular joint region [179, 180].

Fig. 3.4  Postoperative 
x-ray of an orbital floor 
fracture treated with a 
titanium mesh
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5.1.3  �Absorbable Materials

Absorbable osteosynthetic material is an option to make metal removal unnecessary 
[181]. A complete resorption occurs approximately 1 year in experimental models 
[182]. Further advantages are the absence of thermal sensitivity and radiological 
artifacts [136]. Use of bioresorbable miniplates has been suggested in the pediatric 
population because of possible growth disturbances associated with titanium-based 
hardware [183]. A variety of biodegradable implants are commercially available in 
the field of oral and maxillofacial surgery. Polymers of α-hydroxy acids as glycolic 
acid (PGA), L-lactic and D, L-lactic acids (PLLA, PDLLA), and their copolymers 
are the substances largely used as osteosynthesis materials [184–188]. These mate-
rials have proven clinical success throughout the world; however, there are some 
arguments against biodegradable fixation. The complications of biodegradable fixa-
tion are infections, foreign body reactions, malocclusions, and malunions [188]. 
Furthermore, the duration of surgery is more challenging and costly [187, 189].

6  �Summary

Oral and maxillofacial surgery is an incredible and evolving field. Injuries, defects, 
and pathologies to the head, neck, and face, as well as hard and soft tissues of the 
oral region, are often taken care of by specialists extensively trained as oral and 
maxillofacial surgeons. As further research is completed and scientists continue 
exploration of materials and methods, techniques and strategies are altered to ben-
efit the patient in clinical settings. In this chapter, we focused on the use of different 
grafting materials, both natural and synthetic for bone regeneration and defect 
repair, growth factors that aid in healing and growth of tissues, as well as fixation 
devices used in the repair of maxillofacial bone fractures. The techniques discussed 
are effective; however, future work needs to be outlined in order to improve effi-
ciency and efficacy, both inside and outside of the operating room.

Fig. 3.5  Postoperative 
x-rays shows fracture 
fixation with six 
mandibular miniplates 2.0
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