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Chapter 14
Tissue Engineering in Periodontal 
Regeneration

Aysel Iranparvar, Amin Nozariasbmarz, Sara DeGrave, and Lobat Tayebi

1  �Introduction

Millions of people around the world suffer from tooth loss caused by irreversible 
periodontium destruction due to acute trauma, extensive caries, or severe periodon-
tal disease. Periodontal disease is a serious health issue that can affect quality of life. 
One of the main therapeutic goals of today’s medicine is to develop novel regenera-
tive treatments for periodontal tissues [1, 2].

The periodontium is a complex organ consisting of both mineralized and soft 
connective tissues. It includes the periodontal ligament (PDL), gingiva, cementum, 
and alveolar bone, generally named as the “attachment apparatus” (Fig. 14.1) [3]. 
The attachment apparatus fastens the tooth to surrounding bone and acts as a bum-
per to absorb the energy and forces from mastication. Periodontitis can endanger the 
integrity, health, and function of periodontal tissues [4].

The periodontal ligament (PDL) is an active connective tissue that is capable of 
continual adaptation to preserve tissue size and width. PDL acts like an anchor that 
connects the tooth to the alveolar socket and as a cushion to absorb the mechanical 
forces and loads resulting from mastication. Hence, PDL establishes the substratum 
of the periodontium and determines the tooth life span [5].

Accumulation of bacteria and other pathogenic microorganisms in the subgingi-
val biofilm can lead to tissue inflammation called periodontitis. Some risk factors 
that increase the probability of having periodontitis include aging, smoking [6], and 
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systemic disorders, such as diabetes, cardiovascular disease, rheumatoid arthritis, 
and adverse pregnancy outcomes [7]. Untreated periodontitis can lead to early tooth 
loss due to the inevitable destruction of the periodontium [6, 8].

There is an increasing demand for alternatives to replace and treat the diseased 
tissues and organs, such as destructed periodontal tissues. One of the major chal-
lenges in clinical periodontics has always been treating and managing periodontal 
defects, including intrabony defects and destructed cementum and PDL [9, 10]. 
Periodontal regeneration intends to repair the damaged periodontal tissues, both 
soft tissues (i.e., PDL) and hard tissues (i.e., alveolar bone and cementum) [2, 9].

Six tissues are typically involved to reconstruct a periodontal lesion, including 
the PDL, cementum, alveolar bone, gingival connective tissue, gingival epithelium, 
and all related vasculature [3]. Periodontal regeneration is one of the most compli-
cated procedures to occur in the body [2].

In periodontal tissue engineering (TE), regeneration of a periodontal defect is 
achieved by stimulating the self-recovery capability of the periodontium. Therefore, 
the appropriate balance of cells and stimulating molecules, along with a durable 
matrix to control the regrowth of periodontal tissue, is necessary. It is important to 
prevent soft gingival tissue from growing into the defect so as to preserve the space 
for new bone formation and achieve functional regenerated tissue [4].

The regeneration ability varies for each of the mentioned tissues [11]. For 
instance, alveolar bone can regenerate bone that is similar to the original tissue, 
while the regenerative ability for the cementum and PDL is very limited and slow 
[12, 13]. For the first time, TE was suggested by Langer and Vacanti in 1993 as a 
possible technique for periodontal tissue regeneration [14].

Fig. 14.1  (a) Radiographic and (b) schematic structure of tooth and attachment apparatus
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Many regenerative treatment techniques have been established so far, such as the 
use of bone grafts and guided tissue/bone regeneration (GTR/GBR) [8, 15]. 
However, their success rates are poor and limited. Therefore, researches turned to 
stem cell-based techniques for periodontal regeneration. Nevertheless, these tech-
niques also have limitations. For example, scaffold degeneration can be caused by 
inflammation, necrosis, unstable transplanted cells, etc. [16, 17].

In this chapter, a perspective into the fundamental principles of TE and its appli-
cation in periodontal disease treatments is discussed based on the recent studies in 
TE and regenerative medicine.

2  �Conventional Approaches for Periodontal Regeneration

Since the 1980s, several approaches have been established to enhance regeneration 
of periodontal tissues. The results of these methods have had limited success and 
poor clinical predictability [17, 18]. The main conventional methods are listed as 
follows.

2.1  �Bone Grafts

Using grafts/biomaterials containing bone-inducing substances and bone-forming 
cells can result in bone formation. The biological function of bone grafts can be 
divided into three categories: osteogenesis (formation of new bone from living stem 
cells in graft materials), osteoinduction (bone formation by recruitment of immature 
cells by graft materials to become active osteoblasts), and osteoconduction (known 
as bone growth on the surface of the graft material) [17, 19]. There are several types 
of grafts used for bone regeneration.

2.1.1  �Autologous Bone Grafts

Autologous bone grafts, also known as autografts, are harvested from one site on the 
patient’s body and transplanted to another site [20, 21]. Autologous bone grafts have 
been regarded as the gold standard in bone defect treatment because they only con-
tain self-bone-forming cells. These cells can induce osteogenesis and are therefore 
able to integrate into the host bone more quickly and completely [21–23].

2.1.2  �Allogeneic Bone Grafts

Allogeneic bone grafts, also known as allografts, are bone tissues harvested from a 
genetically distinct source of the same species [24, 25]. Considering the limitation 
of autologous bone grafts, such as limited amount of obtained graft and surgical 
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processes, allografts are considered the best substitute to autografts. However, it 
should be noted that allografts are more immunogenic in comparison to autografts 
and have a higher risk of failure [23, 26].

2.1.3  �Alloplastic Grafts

Alloplastic grafts are usually made from hydroxyapatite (prepared from bioactive 
glass) or calcium carbonate. Hydroxyapatite (HA) graft is the most used graft today 
due to its biocompatibility and osteoconduction potential. Calcium carbonate grafts 
are used less due to rapid resorption of the material and subsequent risk of fragile 
bone [27]. The major disadvantages of using bone grafts in periodontal regeneration 
include the risk of infection, surgical challenges, donor site morbidity, limited 
amount of graft in autologous and allogeneic grafts [28–30], and the risk of fibrous 
encapsulation associated with alloplastic materials [31, 32]. In addition, they gener-
ally result in tissue repair rather than true regeneration and cannot be used in all 
clinical situations [33, 34].

2.2  �Guided Tissue Regeneration (GTR)

The GTR technique aims to enhance the natural healing potential of the PDL and 
alveolar bone [4, 35–37]. If a periodontal defect is left empty after flap debridement, 
oral epithelium cells and fibroblasts grow down into the site of the defect, forming 
an unwanted fibroepithelial tissue that prevents the formation of a functional peri-
odontal tissue [38–42].

It was considered that if the PDL and alveolar bone cells initially colonized the 
root surface and adjacent alveolar bone instead of gingival cells, the formation of a 
long junctional epithelium would be prevented, and a functional periodontium 
would be formed [4, 43].

In this method, a membrane with variable porosity is employed to cover the root 
surface, acting as a barrier to oral epithelium cells and fibroblasts, and promote the 
natural growth of bone and PDL cells (Fig. 14.2) [22]. GTR has been the gold stan-
dard approach for regeneration of intrabony and interradicular defects for more than 
a decade [40, 44]. However, several studies demonstrate that the outcomes of GTR 
therapies have been limited and unpredictable [1, 45–47].

3  �Cell-Based Approaches for Periodontal Regeneration

Figure 14.3 shows three indispensable elements in cell-based regeneration in peri-
odontal tissue engineering, including progenitor cells, signaling molecules, and 
scaffolds. They will be discussed in detail as follows.
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Fig. 14.2  Schematic 
representation of guided 
tissue engineering (GTR), 
involving a barrier 
membrane to prevent the 
growth of oral epithelium 
cells and fibroblasts into 
the bone defect

Fig. 14.3  The key 
components for 
periodontal tissue 
engineering

3.1  �Progenitor Cells

Stem cells are undifferentiated cells that have the potential for self-renewal, giving 
rise to more stem cells, and differentiation into various cell types in reaction to 
external signals [48].
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To date, several types of stem cells have been introduced for periodontal 
regeneration studies, including mesenchymal stem cells (MSCs), embryonic stem 
cells (ESCs), and induced pluripotent stem cells (iPSCs). Considering the ethical 
issues of ESC usage, MSCs are more accepted for regeneration purposes [49]. 
MSCs were initially isolated from bone marrow-derived mesenchymal stem cells 
(BMMSCs) and were found to promote periodontal bone defects [50, 51].

Obtaining BMMSCs requires a bone marrow aspiration process, which is painful 
and traumatic. Additionally, the number of cells harvested is limited [51]. Therefore, 
subsequent research has aimed to harvest MSCs from oral-derived tissues such as 
the periodontal ligament, gingiva, dental pulp, dental follicles, apical papilla, and 
human exfoliated deciduous teeth [50, 52–56]. The most critical step in TE is select-
ing the stem cell population [32, 57]. Several types of mesenchyme-derived cells 
have been studied for periodontal regeneration.

3.1.1  �Intraoral Mesenchymal Stem Cells and Periodontal Regeneration

Intraoral tissues can be used as a source of stem cells for periodontal regeneration. 
Some of the main intraoral-derived mesenchymal stem cells used in periodontal 
regeneration are listed below.

3.1.2  �Periodontal Ligament Stem Cells (PDLSCs)

The periodontal ligament (PDL) is a specialized, dynamic connective tissue derived 
from the dental follicle and originating from neural crest cells [5, 58]. PDLSCs can 
be a good source of autologous stem cells for bone tissue engineering. They possess 
classic characteristics of stem cells, such as small size, slow cellular cycle, and 
expression of several stem cell markers [53, 59, 60]. They are also capable of dif-
ferentiating into cells, including osteoblast-like cells, adipocytes, chondrocytes, and 
neurocytes, which can colonize on scaffolds [61–63]. PDLSCs can express all sur-
face markers and immunomodulatory ability like BMMSCs [5, 50, 64]. They are 
able to grow faster than BMMSCs, although their osteogenic potential has been 
found to be lower than BMMSCs and dental pulp stem cells (DPSCs) [53, 59, 65].

For the first time in 1998, transplanted autologous PDL cells were used to pro-
mote periodontal regeneration in an animal study. The results suggested that autolo-
gous PDL cells can promote regeneration in vivo [3, 66]. Isaka et al. [67] placed 
PDL cells in a surgically created defect in an autologous dog model. Their results 
showed the formation of new cementum, while formation of alveolar bone was 
limited. Dogan et al. [68, 69] showed that seeding PDL cells in an autologous blood 
clot under a Teflon membrane supported regeneration of surgically created furcation 
and fenestrations. Seo et al. [70] harvested PDLSCs from human impacted third 
molar and found that these cells successfully could differentiate into PDL, cemen-
tum, alveolar bone, nerves, and blood vessels [50, 71–73]. A more recent study by 
Dan et al. [74] showed that PDL cells have more periodontal regenerative capacity 
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compared to other periodontal-derived counterparts such as gingival fibroblasts and 
alveolar bone osteoblasts. All these studies confirm that PDL cells do have a regen-
erative capacity.

Dental Follicle Stem Cells (DFSCs)

The dental follicle is a mesenchymal tissue. During the tooth development process, 
the dental follicle encircles the tooth germ. During root formation, dental follicle 
progenitors create the periodontal components, such as the PDL, alveolar bone, and 
cementum [75, 76]. DFSCs, which were first isolated from the dental follicle of 
human third molar, are the progenitor cells of osteoblast, cementoblasts, and fibro-
blasts. They can differentiate into osteoblasts, cementoblasts, adipocytes, and neu-
rons [77] and produce cementum and bone [78, 79]. Bay et al. found that co-culturing 
of DFSCs with Hertwig epithelial root sheath (HERS) cells enhances the ability of 
DFSCs to regenerate cementum and PDL after transplantation [80]. Yokoi et al. [79] 
transplanted DFSCs subcutaneously to immunocompromised mice. They found that 
PDL-like structures with type I collagen began forming, indicating the potential of 
DFSCs in regenerating PDL.

Gingival Epithelial Cells and Fibroblasts

Okuda et al. [81] cultured gingival epithelial cell sheets that were harvested from 
human gingival tissue for chronic desquamative gingivitis treatment. The results 
showed that autologous gingival epithelial sheets enhanced gingival regeneration. 
In another study, autologous gingival fibroblasts were used for patients with defi-
cient attached gingiva, and this resulted in successfully increasing the keratinized 
tissue width [82].

GINTUITTM is an allogeneic cellular product, which is comprised of allogeneic 
cultured keratinocytes and fibroblasts in bovine collagen. McGuire et al. [83] indi-
cated that the product is an effective therapy approach for repairing the keratinized 
gingiva.

Periosteal Cells

The periosteum is a structure consisting of two layers. The outer layer is a fibrous 
layer containing fibroblasts, collagen, elastin, nerves, and a vascular network. The 
inner layer is a highly cellular layer comprised of osteoblast-like cells that support 
bone generation and bone reformation. The periosteum is considered a structure 
with regenerative capacity [84], as it has been found that cultured periosteum is 
capable of differentiation into an osteoblastic lineage. Autologous cultured perios-
teum sheet samples combined with HA and coagulated platelet-rich plasma (PRP) 
showed significant improvements in human infrabony defects and clinical attach-
ment gain [85].
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Dental Pulp Stem Cells (DPSCs)

Dental pulp stem cells (DPSCs) were the first recognized human dental stem cells 
[86]. They have been harvested from human third molars [86, 87]. The dental pulp 
contains a variety of cells, including fibroblasts, neural cells, vascular cells, and 
undifferentiated stem cells. DPSCs are anatomically located on the most vascular-
ized areas of the pulp. They possess multipotent differentiating and self-renewal 
ability. They can differentiate into osteoblasts, odontoblasts, neural cells, and chon-
drocytes in vitro [59, 88–90]. DPSCs can successfully be isolated and characterized 
from human extracted teeth, inflamed pulp tissue [91], supernumerary teeth [92], 
and natal teeth [93] by a variety of approaches. For example, D’Aquino et al. [94] 
showed that DPSCs isolated from human teeth, along with collagen sponge implants, 
have improved mandibular bone tissue regeneration in patients.

DPSCs have also been reported to have immunomodulatory properties on mice 
[95]. They have several similar features to BMMSCs; however, their osteogenic 
potentials are limited in comparison [86]. Human autologous DPSCs, along with 
HA or beta-tricalcium phosphate (TCP), have shown capability of forming bone and 
cementum [32, 86, 89, 96]. However, the effect of these stem cells on periodontal 
regeneration has been inconsistent to date [32].

Stem Cells from Human Exfoliated Deciduous Teeth (SHED)

Miura et al. [55] described SHED as clonogenic cells with high proliferation capac-
ity that can differentiate into several cell types. They transplanted SHED in vivo and 
found that they were able to promote bone generation. These stem cells are mainly 
obtained from children’s tooth pulp tissue around ages 6 to 12 [97]. Obtaining 
SHED is simple and beneficial because of six reasons: (1) They are less mature 
compared to permanent teeth, so they possess a higher proliferation ratio. (2) They 
have the flexibility of differentiating into a variety of cells, including osteoblasts, 
adipocytes, odontoblasts, and neural cells. (3) They are easily achievable. (4) They 
are convenient for use in young patients with mixed dentition. (5) There is no need 
to sacrifice a tooth. (6) Obtaining process is atraumatic [76].

According to previous studies, SHED are not able to differentiate directly into 
osteoblasts, but they can induce in vivo bone generation by forming osteoinductive 
patterns to employ osteogenic cells in rats. Therefore, it has been concluded that 
deciduous teeth, in addition to providing a guidance for permanent tooth eruption, 
are associated with inducing bone generation during permanent tooth eruption [55]. 
Although both DPSCs and SHED are obtained from pulp tissue, they show notice-
able differences in proliferative potentials [98]. SHED possess a higher prolifera-
tion ratio compared to DPSCs and can differentiate into a variety of mesenchymal 
lineages [55, 99].
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Stem Cells from Apical Papilla (SCAP)

SCAPs were isolated and introduced by Sonoyama et al. from premature roots of 
human third molars [54]. They can differentiate into several mesenchymal lineages 
such as osteoblasts, odontoblasts, chondrocytes, adipocytes, smooth muscle cells, 
and neurons in vitro [100–102]. In comparison to DPSCs, SCAPs possess a higher 
proliferation rate and mineralization capacity. However, compared to BMMSCs, 
they have lower adipogenic capacity [54, 101]. It has been reported that SCAPs pos-
sess immunomodulatory properties [103].

In one study, SCAPs were transplanted into immunocompromised rats using HA 
and tricalcium phosphate particles as dentin-like carriers. Human SCAPs and 
PDLSCs were also transplanted into mini pigs. The results showed successful root 
and periodontal regeneration. In addition, an in vivo study on human SCAPs, along 
with porous ceramic discs that were transplanted into immunosuppressed rats, 
showed that hard tissues can be formed [104].

3.1.3  �Extraoral Mesenchymal Stem Cells and Periodontal Regeneration

Extraoral tissues can be used as a source of stem cells for periodontal regeneration. 
The main extraoral-derived mesenchymal stem cells used in periodontal regenera-
tion are listed below.

Bone Marrow-Derived Mesenchymal Stem Cells (BMMSCs)

Bone marrow-derived mesenchymal stem cells (BMMSCs) have been the most 
studied among mesenchymal stem cells. Human BMMSCs are pluripotent stem 
cells which originate from the bone marrow and can differentiate into multiple mes-
enchymal linages such as osteoblasts, chondrocytes, and adipocytes [105–107]. 
BMMSCs have been found to generate the cementum, periodontal ligament, and 
alveolar bone, indicating that the bone marrow can be a convenient source for peri-
odontal regeneration [105].

Pittenger et al. [107] aspirated bone marrows from 350 donors and found differ-
entiation of MSCs into bone, cartilage, and fat. Kuo et  al. [108] reported that 
BMMSCs can induce the generation of PDL, odontoblasts, and cementum from 
DPSCs. Kawaguchi et al. [109] showed that autologous bone marrow-derived mes-
enchymal cells promote periodontal regeneration in surgically induced class III fur-
cation defects in dogs. Other studies also showed that BMMSCs were able to control 
diabetes in animal models [110] and stimulate wound healing [111].
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Adipose Tissue-Derived Stromal Cells (ATSCs)

Adipose tissue is another extraoral source of mesenchymal stem cells. Lately, adi-
pose tissue-derived stem cells have been extensively studied as an applicable source 
of cells for regenerative medicine [112, 113]. They have been introduced as a con-
venient source of stem cells because they are abundant and easy to obtain [17]. 
Various studies have confirmed the capability of ATSCs’ differentiation into osteo-
genic, neurogenic, adipogenic, myogenic, and chondrogenic cells [114–116]. 
ATSCs, in combination with platelet-rich plasma (PRP), have been shown to induce 
alveolar bone and PDL-like structures fabrication in mice [117].

3.2  �Signaling Molecules

Another major TE approach for periodontal regeneration is to stimulate cells near 
the defect area using biological signals. Table 14.1 summarizes different types of 
signaling molecules in addition to their effects and applications. The main signaling 
molecules are listed as follows.

3.2.1  �Insulin-Like Growth Factors (IGFs)

Insulin-like growth factor (IGF) is a hormone with a similar molecular structure to 
insulin, which has different forms. IGF-1 is an effective chemotactic agent that 
enhances the formation of new blood vessels and promotes the formation of bone 
and cementum. It causes in vitro protein synthesis and periodontal ligament fibro-
blasts mitogenesis [118]. Studies on non-human primate models showed that IGF-1 
cannot modify periodontal wound healing by itself [126]. Lynch et al. [127] pro-
posed using IGF-1 along with platelet-derived growth factor-B (PDGF-B) to 
increase periodontal regeneration. IGF-2 is an active factor in bone formation which 
abounds in bone as a growth factor. Although it helps in bone formation, it is not as 
effective as IGF-1 [128].

3.2.2  �Platelet-Derived Growth Factor (PDGF)

PDGF is a growth factor that controls cell differentiation and growth. It consists of 
two polypeptide chains encoded by two dissimilar genes, PDGF-A and PDGF-B 
[5]. PDGF can enhance periodontal tissue regeneration by stimulating mitosis of 
PDL cells and synthesis of gingival fibroblast hyaluronate [2]. Clinical studies have 
shown that using PDGF-B improves the treatment of periodontal bone defects. It 
enhances the rate of filling bone defects and improvement of attachment level, along 
with reduction of gingival recession [129].
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As mentioned earlier, the combination of PDGF-B and IGF-1 can improve peri-
odontal regeneration; at initial stages of wound healing after a surgery, it increases 
the formation of the periodontal attachment apparatus [130].

3.2.3  �Bone Morphogenetic Proteins (BMPs)

BMPs are growth factors that interact with specific receptors on the cell surface. 
There are several BMPs that originate from the human body. Three of these are bone 
morphogenetic protein-2, bone morphogenetic protein-3 (known as osteogenin), 
and bone morphogenetic protein-7. All are highly involved in periodontal regenera-
tion [119]. BMP stimulates development of new blood vessels and bone fabrication 
[2]. BMPs have morphogenetic potential and are important in conducting migration 
and attachment of stem cells onto scaffolds to increase the response of stem cells to 
BMPs [131].

Table 14.1  Signaling molecules, theirs effects, and applications

Signaling molecules Effects Applications Ref.

Insulin-like growth 
factor (IGF)

Enhances the formation of new 
blood vessels and promotes the 
formation of bone and cementum

Protein synthesis, 
periodontal ligament 
fibroblasts mitogenesis

[118]

Platelet-derived growth 
factor (PDGF)

Controls cell differentiation and 
growth

Periodontal tissue 
regeneration

[2, 5]

Bone morphogenetic 
protein (BMP)

Interacts with specific receptors on 
the cell surface

Development of new 
blood vessels, bone 
fabrication

[2, 
119]

Fibroblast growth 
factor (FGF)

Triggers development of new blood 
vessels and stimulates differentiation 
and proliferation of mesenchymal 
cells

Tissue regeneration, 
wound healing, and 
angiogenesis

[120]

Transforming growth 
factor-beta (TGF-β)

Adjusts and stimulates several 
biological processes and components 
such as embryonic growth and 
immune regulation

Induces cells to grow in 
soft agar

[121, 
122]

Periodontal ligament-
derived growth factor 
(PDL-CTX)

Periodontal regeneration without 
chemotactic effect on epithelial cells 
or gingival fibroblasts

Autocrine chemotactic 
agent for periodontal 
ligament cells

[2, 
123]

Enamel matrix 
derivative (EMD)

Stimulates differentiation of 
mesenchymal cells including 
osteoblasts

Enamel formation, root 
and attachment 
apparatus development

[44, 
124]

Platelet-rich plasma 
(PRP)

Developing grafting procedures, 
decreasing periodontal healing time, 
and improving bone quality

Source of growth 
factors such as PDGF 
and TGF-β

[1, 
125]
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3.2.4  �Fibroblast Growth Factor (FGF)

The FGF is one of the heparin-binding growth factors involved in tissue regenera-
tion, wound healing, and angiogenesis [120]. FGF triggers development of new 
blood vessels and can stimulate differentiation and proliferation of mesenchymal 
cells [120]. It is a signaling protein that is isolated from regular tissue in two forms: 
acidic FGF (a-FGF) and basic FGF (b-FGF) [2].

There are several different forms of FGF. FGF2 is the most studied FGF and can 
attach to heparin to develop new blood vessels and induce mitosis [132]. In the 
wound healing process, it can adjust different cellular functions, including prolif-
eration and migration, among others [133]. In vivo studies of FGF2 in non-human 
primates show that it can trigger regeneration of periodontal tissue with new cemen-
tum and alveolar bone creation [134]. Furthermore, it can improve bone formation 
by enhancing the rate of differentiation of osteoprogenitor cells. FGF2 is a capable 
candidate for regenerating soft and hard periodontal tissues because it can trigger 
the migration and proliferation of ligament cells [55, 70, 90, 95]. An in vivo study 
on skin defect of mice indicated that regeneration of soft tissue can be accelerated 
by b-FGF [135].

3.2.5  �Transforming Growth Factor-Beta (TGF-β)

TGF-β is highly concentrated in human bone and platelets, and it can induce cells 
to grow in soft agar. TGF-β adjusts different types of biological processes such as 
differentiation of adult stem cells, embryonic growth, immune regulation, etc. [121]. 
It stimulates several biological processes and components, including fibronectin 
and osteocalcin biosynthesis, chemotaxis of osteoblasts, bone matrix deposition, 
type I collagen, and periodontal ligament fibroblast proliferative activity, as well as 
rising ECM production. Moreover, it decreases the connective tissue destruction 
due to the reduction of metalloproteinases and plasminogen activator inhibitor (PAI) 
synthesis [2, 122].

TGF-β is composed of three 25 kDa homodimeric mammalian isoforms, includ-
ing β1, β2, and β3. TGF-β1 can result in proliferation of MSCs, wound healing, 
enhanced ECM formation, inhibition of inflammation, and production of pre-
osteoblasts, chondrocytes, osteoblasts, and collagen [136–138]. In addition, it has 
been reported that TGF-β1 raises cell surface proteoglycan genes in PDL cells 
[139, 140], assists in DNA and fibronectin synthesis, and produces protein acids 
[141, 142].

3.2.6  �Periodontal Ligament-Derived Growth Factor (PDL-CTX)

Periodontal ligament-derived growth factor (PDL-CTX) is a novel polypeptide 
growth factor from human periodontal cells [143]. It is a specific autocrine chemo-
tactic agent for periodontal ligament cells, which is one thousand times more 
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effective than other growth factors, including IGF, PDGF, and TGF [2]. Furthermore, 
PDL-CTX can have a favorable effect on periodontal regeneration because it does 
not have a chemotactic effect on epithelial cells or gingival fibroblasts [123].

3.2.7  �Enamel Matrix Derivative (EMD)

Enamel matrix proteins are produced by ameloblasts and are responsible for growth 
of HA crystals and enamel mineralization [144]. In addition to their role in enamel 
formation, they are also involved in root and attachment apparatus development 
[44]. EMD is available commercially in an injectable gel solution form known as 
Emdogain, which consists of enamel proteins amelogenin, ameloblastin, amelotin, 
tuftelin, and enamelin [3]. Emdogain was the first signaling product that could suc-
cessfully regenerate periodontal tissue [22]. It has been reported that EMD can 
stimulate differentiation of mesenchymal cells including osteoblasts. Hejil et  al. 
[124] applied EMD in intrabony defects; the results showed 66% bone fill in 
defected areas.

3.2.8  �Platelet-Rich Plasma (PRP)

PRP is a concentration of autologous plasma isolated by centrifugation of patient’s 
blood. PRP acts as a source of growth factors and contains growth factors such as 
PDGF and TGF-β [125]. Various commercial PRP kits are available to facilitate 
chair-side PRP isolation for clinicians. Although there is not enough convincing 
information about PRP benefits for periodontal regeneration, it seems that PRP can 
be advantageous for developing grafting procedures, decreasing periodontal healing 
time, and improving bone quality [1].

3.3  �Scaffolds

To utilize the maximum potential of stem cells, an isolated three-dimensional (3D) 
environment should be provided to allow the cells to proliferate in three dimensions 
and be transferred into the defected area [145]. Scaffolds can be in the form of a 
sponge, gel, or complex network of pores and channels. All the scaffolds used in TE 
are designed to degrade gradually after implantation in the targeted site, being 
replaced by new tissue [1, 146]. The major challenge in TE is to develop regenera-
tion in three dimensions and promote angiogenesis over the entirety of the 
scaffold.

The main roles of scaffold include as follows [132]: (1) It serves as a framework 
to supply physical support for the regenerating area, to preserve the shape of the 
defect and to prevent surrounding tissue from collapsing into the defect. (2) It pro-
vides a 3D substratum for ECM production, cell adhesion, and migration. (3) It 
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serves as a barrier with selective permeability to confine the migration of cells. (4) 
It serves as a growth factor delivery vehicle for cells [2].

Additionally, the key features of an ideal scaffold are (1) biocompatibility, bio-
degradability, and nontoxicity; (2) being able to preserve migration, attachment, 
proliferation of the cells, and production of new ECM; (3) having enough mechani-
cal strength to endure physical stress and being able to preserve the surrounding 
bone from stress; (4) having an intrinsic network of interconnected pores; and (5) 
providing appropriate conditions for neovascularization [147].

3.3.1  �Biomaterials Used as Scaffolds

To date, a variety of biocompatible materials have been used to fabricate scaffolds, 
including polymers, metals, ceramics, and proteins [148]. The following is the list 
of main biomaterials used as scaffolds.

Ceramics

Bioceramics have a long history of use for joint and tooth implants [149]. Ceramics 
used in bone TE are natural and synthetic hydroxyapatite (HA) and beta-tricalcium 
phosphate (TCP). They are biocompatible and osteoinductive and, due to being pro-
tein free, are not able to induce immunological reactions [2]. HA is a natural bioc-
eramic found in hard tissues such as dentine and enamel [149] and was one of the 
first materials used as scaffolds. It can be synthetic or derived from natural sources 
like bovine bone or coraline [2].

Some studies suggest nanostructured HA as a potent material due to its good 
biocompatibility and bone integration ability [150, 151]. TCP is a natural material 
consisting of calcium and phosphorous and is used as a ceramic bone substitute [2].

Metals and Alloys

Titanium and its alloys, cobalt-chromium alloys, and stainless steel are used in fab-
rication of scaffolds [149]. Titanium is the most common material used for implants 
due to its decent biocompatibility, osteointegration potential, and ability to be lami-
nated with various polymers [152]. However, metals and ceramics have very limited 
potential to be used as effective scaffolds because they are not biodegradable and 
cannot be processed easily [148].

Polymers

Polymers have been widely used for TE due to their biodegradability and capability 
of being processed [153–156]. There are two types of polymer materials: syn-
thetic polymers and natural polymers [148]. The most biodegradable polymers are 
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polyesters, polycaprolactone, polyanhydride, polycarbonate, polyfumarate, and 
polyorthoester [157–162]. The most widely used polymers in TE include polyesters 
like polyglycolic acid (PGA), polylactic acid (PLA), and their copolymer poly(lactic-
co-glycolic acid) (PLGA) [163–166].

Synthetic Polymers

Polyglycolic acid (PGA), a simple and linear polymer of glycolic acid, is the first 
polymer scaffold used in TE. For the first time in the 1980s, PGA was used alone as 
a scaffold in the form of mesh for renal injury treatment. It is also used as a bone 
fracture fixation implant and suture material [2, 149].

Polylactic acid (PLA) is a polymer of lactic acid and is more hydrolysis resistant 
and hydrophobic than PGA. The copolymer of PLA with PGA is PLGA. It was first 
used as a suture material (Vicryl) in 1974 and degrades in 8 weeks [167]. It was the 
first FDA-approved copolymer and has been the first candidate for use in dental tis-
sue regenerations due to its biocompatibility, structural strength, controllable degra-
dation, and ability to deliver growth factors. PLGA can also be used in combination 
with other polymers like gelatin [155].

Polymethylmethacrylate (PMMA) is a highly biocompatible, but nondegradable, 
polymer. Due to its excellent biocompatibility, it has been widely used for mandibu-
lar reconstruction and repairing skull defects and bone cements in clinical proce-
dures [168, 169]. Nevertheless, PMMA promotes fibrotic tissue formation [169].

Naturally Derived Polymers

Naturally derived polymers include proteins derived from natural ECM or polysac-
charides. They have been widely used in TE [170–172].

Chitosan is a biocompatible, nontoxic, and non-immunogenic carbohydrate 
polymer derived from chitin, which is found in crustacean shells [173] and has 
shown improvement in bone regeneration and wound healing, as well as antibacte-
rial activity [174, 175] and bioadhesive character [176]. Chitosan is capable of 
being made into different shapes and structures such as membranes [177], fibers 
[178], sponges [179], paste [180], microspheres [181], and porous scaffolds [182]. 
These characteristics make it suitable to be used as a scaffold for tissue regenera-
tion. Chitosan can also be used as a copolymer with other materials [165, 183].

Collagens are made by several cell types [184]. Collagens can be formed into 
various forms and structures such as sheets, gels, sponges, fibers, and films [1, 185, 
186]. However, collagen scaffolds have not shown enough mechanical strength, and 
their degradation rate is not convincing. Therefore, crosslinking agents such as 
formaldehyde, polyepoxy, and glutaraldehyde compounds have been used to 
enhance the thermal, mechanical, and biological properties of collagen [1, 187].

Fibrin is a blood component critical for hemostasis. It is produced from fibrin-
ogen and thrombin during hemostasis and enhances wound healing [1, 149]. After 
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tooth extractions, blood clots have been used as natural scaffolds for promoting 
bone healing process [149]. Fibrin is widely used as a biopolymer scaffold in 
periodontal TE due to its biocompatibility, biodegradability, and simple prepara-
tion and handling process [149]. Fibrin scaffolds are also available in combination 
with other polymers, such as fibrin-PEG blend [172, 188]. Fibrin hydrogels are 
used as a heparin-binding delivery system and cell seeding during inkjet printing 
process [172].

Hydrogels are a new type of biomaterials that are injectable into the periodon-
tium. They are made of viscous polymers, which are composed of synthetic or natu-
ral macromolecules [189–191].

Alginate is a hydrogel isolated from brown seaweed and bacteria [192]. It is 
biocompatible and nontoxic and can have a slow gelling time depending on tem-
perature and concentration [193]. Its limitations include uncontrollable degradation 
and low viscoelasticity. These can be improved by using alginate incorporation with 
HA [194].

4  �Cell Sheet Technique

Cell sheet technique is a novel approach for harvesting and delivering cells in TE 
[195]. Conventionally, in TE proteolytic enzymes are utilized to fragment the ECM 
and release the cells, which could impair cell functions and damage the cell mem-
brane because the proteolytic enzymes hydrolyze cell membrane proteins [32]. This 
technique prevents the enzymatic digestion of proteins, keeping the normal cell and 
ECM interactions [196]. In other words, it is possible to harvest a complete cellular 
sheet with intact ECM and cell-cell junctions [3]. This technique has been used 
recently to regenerate periodontal defects [197, 198].

Cell sheet engineering involves thermo-responsive systems including poly(N-
isopropylacrylamide) (PIPAAm) polymer for cell culturing [3]. This polymer is 
hydrophilic at temperatures greater than 32 °C and hydrophobic when temperatures 
are lower than 32 °C. In addition, cells are prone to attach to hydrophobic surfaces. 
These properties are beneficial for detaching the cell sheets from cultures [32].

Harvested cell sheets are delicate and fragile. Thus, manipulation and implanta-
tion of them can be challenging. Therefore, 3D biocompatible scaffolds such as 
hyaluronic acid, fibrin gel, and ceramic bovine bone have been developed to increase 
stabilization and strength, also facilitating the manipulation and results [32].

Cell sheet technology has been utilized for various TE applications, such as 
cornea transplantation using corneal epithelial cell sheets and myocardial tissue 
regeneration using cardiomyocyte cell sheets [199, 200]. They have been exten-
sively applied to improve periodontal regeneration in animal studies using dogs 
and rats [201].
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5  �Conclusions

During the last few decades, a rapid development has been reported in periodontal 
regeneration methods. Recent studies have emphasized the importance of wound 
stability and space preservation for a predictable and optimal tissue regeneration, 
but they are not achievable by current clinically applied techniques. Successful 
results can be feasible by utilizing a combination of cells, signaling molecules, and 
scaffolds to construct the anatomy based on the complex structure of periodontal 
tissues and defects. Three-dimensional scaffolds are the key for complete periodon-
tal regeneration. Application of tissue engineering on periodontal regeneration is 
still in its initial stages and requires more investigation. Recent advances in material 
science, tissue engineering, and microscopy techniques provide a brighter perspec-
tive for more predictable regenerative therapies for periodontal defects in the near 
future.
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