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Abstract. In order to speed up the synthesis of Petri nets from labelled
transition systems, a divide and conquer strategy consists in defining LTS
decomposition techniques and corresponding PN composition operators
to recombine the solutions of the various components. The paper explores
how an articulation decomposition, possibly combined with a product
and addition technique developed in previous papers, may be used in
this respect and generalises sequence operators, as well as looping ones.
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1 Introduction

Instead of analysing a given system to check if it satisfies a set of desired prop-
erties, the synthesis approach tries to build a system “correct by construction”
directly from those properties. In particular, more or less efficient algorithms
have been developed to build a bounded Petri net (possibly of some subclass)
the reachability graph of which is isomorphic to (or close to) a given finite labelled
transition system [2,7,10,11,15].

The synthesis problem is usually polynomial in terms of the size of the LTS,
with a degree between 2 and 5 depending on the subclass of Petri nets one
searches for [2,3,7,10], but can also be NP-complete [4]. Hence the interest to
apply a “divide and conquer” synthesis strategy when possible. The general idea
is to decompose the given LTS into components, to synthesise each component
separately and then to recombine the results in such a way to obtain a solution
to the global problem. This has been applied successfully to disjoint products of
LTS, which correspond to disjoint sums of Petri nets [12,13]. But it has also been
observed that such products may be hidden inside other kinds of components,
for instance in sequences of LTS, as illustrated in Fig. 1 (borrowed from [12];
the initial states are slightly fatter than the other ones), and developed in the
algebra of Petri nets1 [8,9].
1 Note that this theory uses labelled Petri nets, where several transitions may have

the same label, or multiset of labels, while here we shall only consider unlabelled
Petri nets.
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Fig. 1. Combination of sequence operators with a product.

We shall here develop this last point, but we shall also generalise the idea
of sequences into an articulation operator. The difference is that it will some-
times be possible to come back to the first component after having executed
the second one, and repeat the alternation between these two components. A
side consequence will be that the articulation operator will not always be anti-
commutative, like the sequence is, and that it includes a choice as well as a
looping feature.

The structure of the paper is as follows. After recalling the bases of labelled
transition systems, a new articulation operator is introduced, and its basic prop-
erties are analysed. Then, the bases of the Petri net synthesis problem are
recalled, and Sect. 4 shows how synthesis applies to the components of an artic-
ulation. Next, it is shown how articulations may be used to simplify a synthesis
problem, by composing a solution of the given system from the solutions of the
articulated components. A procedure is then detailed to show how to decom-
pose a given LTS into articulated components, when possible. As usual, the last
section concludes.

2 Labelled Transition Systems and Articulations

A classic way for representing the possible (sequential) evolutions of a dynamic
system is through its labelled transition system [1].

Definition 1. Labelled Transition Systems

A labelled transition system (LTS for short) with initial state is a tuple TS =
(S,→, T, ι) with node (or state) set S, edge label set T , edges → ⊆ (S × T × S),
and an initial state ι ∈ S. We shall denote s[t〉 for t ∈ T if there is an arc labelled
t from s, [t〉s if there is an arc lalbelled t going into s, and s[α〉s′ if there is a
path labelled α ∈ T ∗ from s to s′. Such a path will also be called an evolution
of the LTS (from s to s′).

Two LTSs TS 1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with the same
label set T are (state-)isomorphic, denoted TS1 ≡T TS 2 (or simply TS 1 ≡ TS 2

if T is clear from the context), if there is a bijection ζ : S1 → S2 with ζ(ι1) = ι2
and (s, t, s′) ∈ →1 ⇔ (ζ(s), t, ζ(s′)) ∈ →2, for all s, s′ ∈ S1 and t ∈ T . We shall
usually consider LTSs up to isomorphism.
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We shall also assume each LTS is totally reachable (i.e., ∀s ∈ S∃α ∈ T ∗ :
ι[α〉s), that it is weakly live (i.e., each label t ∈ T occurs at least once in →),
and T 
= ∅.

Let T1 ⊆ T . We shall denote by adj (T1) = {s ∈ S|∃t ∈ T1 : s[t〉 or [t〉s}
the adjacency set of T1, i.e., the set of states connected to T1. Let ∅ ⊂ T1 ⊂ T ,
T2 = T \ T1 and s ∈ S. We shall say that TS is articulated 2 by T1 and T2

around s if adj (T1) ∩ adj (T2) = {s}, ∀s1 ∈ adj (T1)∃α1 ∈ T ∗
1 : ι[α1〉s1 and

∀s2 ∈ adj (T2)∃α2 ∈ T ∗
2 : s[α2〉s2.

Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) two (totally reachable)
LTSs with T1 ∩ T2 = ∅ and s ∈ S1. Thanks to isomorphisms we may assume
that S1 ∩ S2 = {s} and ι2 = s. We shall then denote by TS 1 � s � TS 2 =
(S1 ∪ S2, T1 ∪ T2,→1 ∪ →2, ι1) the articulation of TS1 and TS 2 around s. ��

Several easy but interesting properties may be derived for this articulation
operator.

Note first that this operator is only defined up to isomorphism since we may
need to rename the state sets (usually the right one, but we may also rename
the left one, or both). The only constraint is that, after the relabellings, s is the
unique common state of TS1 and TS 2, and is the state where the two systems
are to be articulated. Figure 2 illustrates this operator. It also shows that the
articulation highly relates on the state around which the articulation takes part.
It may also be observed that, if TS 0 = ({ι}, ∅, ∅, ι) is the trivial empty LTS, we
have that, for any state s of TS , TS � s �TS 0 ≡ TS , i.e., we have a kind of right
neutral trivial articulation. Similarly, TS0 � ι � TS ≡ TS , i.e., we have a kind of
left neutral trivial articulation. However, these neutrals will play no role in the
following of this paper, so that we shall exclude them from our considerations
(that is why we assumed the edge label sets to be non-empty).

Corollary 1. Both forms of articulation are equivalent

If TS = (S,→, T, ι) is articulated by T1 and T2 around s, then the structures
TS1 = (adj (T1),→1, T1, ι) and TS 2 = (adj (T2),→2, T2, s), where →1 is the
restriction of → to T1 (i.e., →1=→ ∩adj (T1) × T1 × adj (T1)), and similarly for
→2, are (totally reachable) LTSs, TS ≡T1�T2 TS 1 � s � TS 2 (in that case we do
not need to apply a relabelling to TS1 and TS 2).

Conversely, TS1 � s � TS 2 is articulated by the label sets of TS1 and TS 2

around s, if these LTSs are totally reachable. ��

Corollary 2. Evolutions of an articulation

If TS ≡ TS 1 � s � TS 2, ι[α〉s′ is an evolution of TS iff it is an alternation of
evolutions of TS1 and TS 2 separated by occurrences of s, i.e., either α ∈ T ∗

1 or
α = α1α2 . . . αn such that αi ∈ T ∗

1 if i is odd, αi ∈ T ∗
2 if i is even, ι[α1〉s and

∀i ∈ {1, 2, . . . , n − 1} : [αi〉s[αi+1〉. ��
2 This notion has some similarity with the cut vertices (or articulation points) intro-

duced for connected unlabelled undirected graphs, whose removal disconnects the
graph. They have been used for instance to decompose such graphs into biconnected
components [14,16].
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Fig. 2. Some articulations.

For instance, in TS 3 from Fig. 2, a possible evolution is ι[abc〉s[fede〉s[b〉ι, but
also equivalently ι[a〉s[ε〉s[bc〉s[fe〉s[ε〉[de〉s[b〉ι (where ε is the empty sequence).

Corollary 3. Associativity of articulations

Let us assume that TS 1, TS2 and TS 3 are three LTSs with label sets T1, T2 and
T3 respectively, pairwise disjoint. Let s1 be a state of TS 1 and s2 be a state of
TS2. Then, TS1�s1�(TS 2�s2�TS 3) ≡T1∪T2∪T3 (TS 1�s1�TS 2)�s′

2�TS 3, where
s′
2 corresponds in TS1 � s1 � TS 2 to s2 in TS 2 (let us recall that the articulation

operator may rename the states of the second operand). ��

This is illustrated by Fig. 3.
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Fig. 3. Associativity of articulations.

Corollary 4. Commutative articulations

If TS1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with disjoint label sets (i.e.,
T1 ∩ T2 = ∅), then TS1 � ι1 � TS 2 ≡T1∪T2 TS2 � ι2 � TS 1. ��

For instance, in Fig. 2, TS 4 ≡ TS 1 � ι � TS 2 ≡ TS2 � ι � TS 1.

Corollary 5. Commutative associativity of articulations

Let us assume that TS 1, TS2 and TS 3 are three LTSs with label sets T1, T2 and
T3 respectively, pairwise disjoint. Let s2 and s3 be two states of TS 1 (s2 = s3 is
allowed). Then, (TS1 �s2 �TS 2)�s3 �TS 3 ≡T1∪T2∪T3 (TS 1 �s3 �TS 3)�s2 �TS 2

(Fig. 4). ��
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Fig. 4. Commutative associativity of articulations.

Corollary 6. Sequence articulations

If TS1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with disjoint label sets (i.e.,
T1 ∩ T2 = ∅), if ∀s1 ∈ S1∃α1 ∈ T ∗

1 : s1[α1〉s (s is a home state in TS 1) and
�t1 ∈ T1 : s[t1〉 (s is a dead end in TS 1), then TS 1 � s � TS 2 behaves like a
sequence, i.e., once TS2 has started, it is no longer possible to execute T1.

The same occurs when ι2 does not occur in a non-trivial cycle, i.e., ι2[α2〉ι2∧
α2 ∈ T ∗

2 ⇒ α2 = ε: once TS 2 has started, it is no longer possible to execute T1.
��

This is illustrated in Fig. 5. It may be observed that sequences in [9] corre-
spond to the intersection of both cases.
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Fig. 5. Sequential articulations.

3 Petri Nets and Synthesis

Definition 2. Petri Nets

An initially marked Petri net (PN for short) is denoted as N = (P, T, F,M0)
where P is a set of places, T is a disjoint set of transitions (P ∩ T = ∅), F is the
flow function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0 is
the initial marking (where a marking is a mapping M : P → N, indicating the
number of tokens in each place).

Two Petri nets N1 = (P1, T, F1,M
1
0 ) and N2 = (P2, T, F2,M

2
0 ) with the same

transition set T are isomorphic, denoted N1 ≡T N2 (or simply N1 ≡ N2 if T is
clear from the context), if there is a bijection ζ : P1 → P2 such that, ∀p1 ∈ P1, t ∈
T : M1

0 (p1) = M2
0 (ζ(p1)), F1(p1, t) = F2(ζ(p1), t) and F1(t, p1) = F2(t, ζ(p1)). We

shall usually consider Petri nets up to isomorphism.
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A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if ∀p ∈
P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′, if
M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p). This can be extended, as usual, to
M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings reachable
from M . The net is bounded if there is k ∈ N such that ∀M ∈ [M0〉, p ∈ P :
M(p) ≤ k.

The reachability graph RG(N) of N is the labelled transition system with the
set of vertices [M0〉, initial state M0, label set T , and set of edges {(M, t,M ′) |
M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If an LTS TS is isomorphic to the reachability graph
of a Petri net N , we say3 that TS is solvable and that N solves TS . A synthesis
problem consists in finding a PN solution for a given LTS, when possible.

Let M1 and M2 be two reachable markings of some Petri net N . We shall
say that M1 is dominated by M2 if M1 � M2, i.e., M1 is distinct from M2 and
componentwise not greater. ��
Corollary 7. Independence from isomorphisms

Let N1 and N2 be two Petri nets. If N1 ≡T N2, then RG(N1) ≡T RG(N2), so
that if N1 solves some LTS TS, N2 also solves TS.
Let TS 1 and TS 2 be two LTS. If TS1 ≡T TS 2 and some Petri net N solves
TS1, then N also solves TS2. ��

4 Petri Net Synthesis and Articulation

We shall first see that if an articulation is solvable, then each component is
individually solvable too.

Proposition 1. Synthesis of components of an articulation

If TS = (S,→, T1 � T2, ι) is articulated by T1 and T2 around s, so that T ≡
TS 1 � s � TS 2 with TS 1 = (adj (T1),→1, T1, ι) and TS 2 = (adj (T2),→2, s) (see
Corollary 1), and is PN-solvable, so is each component TS1 and TS 2. Moreover,
in the corresponding solution for TS1, the marking corresponding to s is not
dominated by any other reachable marking. The same happens for the marking
corresponding to ι2 in TS 2 if the latter is finite.

Proof: Let N = (P, T, F,M0) be a solution for TS . It is immediate that N1 =
(P, T1, F1,M0), where F1 is the restriction of F to T1, is a solution for TS 1 (but
there may be many other ones).

Similarly, if M is the marking of N (and N1) corresponding to s, it may be
seen that N2 = (P, T2, F2,M), where F2 is the restriction of F to T2, is a solution
for TS 2 (but there may be many other ones).

Moreover, if s[t2〉 for some label t2 ∈ T2 and M ′ is a marking of N1 corre-
sponding to some state s′ in TS 1 with M ′ � M , then s 
= s′, s′[t2〉 and s is not
the unique articulation between T1 and T2.

If M ′ is a reachable marking of N2 with M ′ � M , then, it is well known that
PN2 is unbounded, hence TS 2 may not be finite. ��
3 Note that an LTS may be unsolvable, but if it is solvable there are many solutions,

sometimes with very different structures.
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Note that there may also be solutions to TS1 (other than N1) such that the
marking M corresponding to s is dominated, but not if the LTS is reversible,
i.e., if ∀s1 ∈ S1∃α1 ∈ T ∗

1 : s1[α1〉ι1, due to the same infiniteness argument as
above. This is illustrated in Fig. 6.

5 Recomposition

The other way round, let us now assume that TS = TS1�s�TS 2 is an articulated
LTS and that it is possible to solve TS1 and TS 2. Is it possible from that to
build a solution of TS?

To do that, we shall add the constraint already observed in Proposition 1 that,
in the solution of TS 1 as well as in the one of TS 2, the marking corresponding
to s is not dominated by another reachable marking. If this is satisfied we shall
say that the solution is adequate (with respect to s). Hence, in the treatment of
the system in Fig. 6, we want to avoid considering the solution N ′

1 of TS 1; on
the contrary, N1 or N ′′

1 will be acceptable.
If TS 2 is finite, as already mentioned, it is immediate that the initial marking

M2
0 (corresponding to s) in the solution of TS2 is not dominated by any reachable

marking, otherwise there is a path M2
0 [α〉M in that solution such that M2

0 �
M and an infinite path M2

0 [α∞〉, hence also an infinite path ι2[α∞〉 in TS 2,
contradicting the finiteness assumption.

If TS1 is finite and reversible, from a similar argument, no marking reachable
in the solution of TS 1 is dominated by another one, so that the constraint on s
is satisfied. Otherwise, it is possible to force such a solution (if there is one) in
the following way:

Proposition 2. Forcing an adequate solution for TS1

Let us add to TS 1 an arc s[u〉s where u is a new fresh label. Let TS ′
1 be the LTS

so obtained. If TS ′
1 is not solvable, there is no adequate solution. Otherwise,

solve TS ′
1 and erase u from the solution. Let N1 be the net obtained with the

procedure just described: it is a solution of TS1 with the adequate property that
the marking corresponding to s is not dominated by another one.

Proof: If there is an adequate solution N1 of TS 1, with a marking M corre-
sponding to s, let us add a new transition u to it with, for each place p of N1,
W (p, u) = M(p) = W (u, p): the reachability graph of this new net is (isomorphic
to) TS ′

1 since u is enabled by marking M (or any larger one, but there is none)
and does not modify the marking. Hence, if there is no adequate solution of TS1,
there is no solution of TS ′

1.
Let us now assume there is a solution N ′

1 of TS ′
1. The marking M correspond-

ing to s is not dominated otherwise there would be a loop M ′[s〉M ′ elsewhere in
the reachability graph of N ′

1, hence also in TS ′
1. Hence, dropping u in N ′

1 will
lead to an adequate solution of TS1. ��

For instance, when applied to TS1 in Fig. 6, this will lead to N ′′
1 , and not N ′

1

(N1 could also be produced, but it is likely that a ‘normal’ synthesis procedure
will not construct the additional isolated place).
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Fig. 6. The lts TS is articulated around s2, with T1 = {a} and T2 = {b}, hence
leading to TS1 and TS2. It is solved by N , and the corresponding solutions for TS1

and TS2 are N1 and N2, respectively. TS1 also has the solution N ′
1 but the marking

corresponding to s2 is then empty, hence it is dominated by the initial marking (as well
as by the intermediate one). This is not the case for the other solution N ′′

1 (obtained
from N1 by erasing the useless isolated place: we never claimed that N1 is a minimal
solution). TS2 also has the solution N ′

2.
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Now, to understand how one may generate a solution for TS from the ones
obtained for TS 1 and TS 2, let us first consider the example illustrated in Fig. 7.
This leads to the following construction.

ι

s

s2

ab

cd

TS = TS1 � s � TS2

ι1

s

ab

TS1

ι2

s2

cd

TS2

a b

N1

c d

N2

a

b

c

d

N

Fig. 7. The lts TS is articulated around s, with T1 = {a, b} and T2 = {c, d}, hence
leading to TS1 and TS2. It is solved by N , and the corresponding solutions for TS1

and TS2 are N1 and N2, respectively. In N , we may recognise N1 and N2, connected
by two kinds of side conditions: the first one connects the label b out of s in TS1 to
the initial marking of N2, the other one connects the label c out of ι2 in TS2 to the
marking of N1 corresponding to s.

Construction
Let TS = TS 1 � s � TS 2 be an articulation of the LTS TS around s for the
partition T = T1 � T2.
Let N1 be a Petri net solution of TS 1, with a non-dominated marking M1 cor-
responding to s, and N2 be a Petri net solution of TS 2, with an initial marking
M2 that we know to be non-dominated.
Let us assume that the places of N1 and N2 are disjoint, which is possible since
we consider nets up to isomorphism, and let us put them side by side.
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For each transition t1 out of s in TS 1, and each place p2 such that M2(p2) > 0,
let us create a side condition F (t1, p2) = F (p2, t1) = M2(p2).
For each transition t2 out of ι2 in TS 2, and each place p1 such that M1(p1) > 0,
let us create a side condition F (t2, p1) = F (p1, t2) = M1(p1).
The result is a Petri net N .
End of Construction

Proposition 3. Synthesis of articulation

If TS1 or TS2 are not solvable, so is TS.
Otherwise, the net N constructed as above is a solution of TS.

Proof: The property arises from the observation that N1 with the additional
side conditions behaves like the original N1 provided that, when we reach M1,
N2 does not leave M2. Similarly, N2 with the added side conditions behaves like
the original N2 provided N1 reached M1 and stays there, until N2 returns to
M2. ��

Note that we do not claim this is the only solution, but the goal is to find a
solution when there is one.

6 Decomposition

It remains to show when and how an LTS may be decomposed by an articulation
(or several ones). Let us thus consider some LTS TS = (S,→, T, ι). We may
assume it is totally reachable (the states which may not be reached from ι play no
role in the evolutions of the system) and that the label set T is finite (otherwise,
it may happen that the finest decomposition is infinite. Usually we shall also
assume that the state set S is also finite, otherwise there may be a problem to
implement the procedure we are about to describe in a true algorithm. We may
also assume it is deterministic, i.e., (s[t〉∧s[t′〉) ⇒ t = t′ and ([t〉s∧[t′〉s) ⇒ t = t′

for any state s ∈ S and labels t, t′ ∈ T , otherwise there may be no unlabelled
Petri net solution.

First, we may observe that, for any two distinct labels t, t′ ∈ T , if |adj ({t})∩
adj ({t′})| > 1, t and t′ must belong to a same subset for defining an articulation
(if any). Let us extend the function adj to non-empty subsets of labels by stating
adj (T ′) = ∪t∈T ′adj (t) when ∅ ⊂ T ′ ⊂ T . We then have that, if ∅ ⊂ T1, T2 ⊂ T
and we know that all the labels in T1 must belong to a same subset for defining
an articulation, and similarly for T2, |adj (T1)∩adj (T2)| > 1 implies that T1 ∪T2

must belong to a same subset of labels defining an articulation (if any). If we
get the full set T , that means that there is no possible articulation (but trivial
ones, that we excluded from this study).

Hence, starting from any partition T of T (initially, if T = {t1, t2, . . . , tn},
we shall start from the finest partition T = {{t1}, {t2}, . . . , {tn}}), we shall
construct the finest partition compatible with the previous rule:

while there is T1, T2 ∈ T such that T1 
= T2 and |adj (T1) ∩ adj (T2)| > 1,
replace T1 and T2 in T by T1 ∪ T2.
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At the end, if T = {T}, we may stop with the result: there is no non-trivial
articulation.

Otherwise, we may define a finite bipartite undirected graph whose nodes
are the members of the partition T and some states of S, such that if Ti, Tj ∈
T , Ti 
= Tj and adj (Ti)∩adj (Tj) = {s}, there is a node s in the graph, connected
to Ti and Tj (and this is the only reason to have a state as a node of the graph).
Since TS is weakly live and totally reachable, this graph is connected, and each
state occurring in it has at least two neighbours (on the contrary, a subset of
labels may be connected to a single state). Indeed, since TS is weakly live,
∪T ′∈T adj (T ′) = S. Each state s occurring as a node in the graph is connected
to at least two members of the T , by the definition of the introduction of s in
the graph. Let T1 be the member of T such that ι ∈ adj (T1), let Ti be any other
member of T , and let us consider a path ι[α〉 ending with some t ∈ Ti (we may
restrict our attention to a short such path, but this is not necessary): each time
there is a sequence t′t′′ in α such that t′ and t′′ belong to two different members
T ′ and T ′′ of T , we have [t′〉s[t′′〉, where s is the only state-node connected to
T ′ and T ′′, hence in the graph we have T ′ → s → T ′′. This will yield a path in
the constructed graph going from T1 to Ti, hence the connectivity.

If there is a cycle in this graph, that means that there is no way to group the
members of T in this cycle in two subsets such that the corresponding adjacency
sets only have a single common state. Hence we need to fuse all these members,
for each such cycle, leading to a new partition, and we also need to go back to
the refinement of the partition in order to be compatible with the intersection
rule, and to the construction of the graph.

Finally, we shall get an acyclic graph G, with at least three nodes (otherwise
we stopped the articulation algorithm).

We shall now define a procedure articul(SG) that builds an LTS expression
based on articulations from a subgraph SG of G with a chosen state-node root.
We shall then apply it recursively to G, leading finally to an articulation-based
(possibly complex) expression equivalent to the original LTS TS .

The basic case will be that, if SG is a graph composed of a state s connected
to a subset node Ti, articul(SG) will be the LTS TS i = (adj (Ti), Ti,→i, s) (as
usual →i is the projection of → on Ti; by construction, it will always be the case
that s ∈ adj (Ti)).

First, if ι is a state-node of the graph, G then has the form of a star with
root ι and a set of satellite subgraphs G1, G2, . . . , Gn (n is at least 2). Let us
denote by SGi the subgraph with root ι connected to Gi: the result will then
be the (commutative, see Corollary 4) articulation around ι of all the LTSs
articul(SGi).

Otherwise, let T1 be the (unique) label subset in the graph such that ι ∈
adj (T1). G may then be considered as a star with T1 at the center, surrounded
by subgraphs SG1, SG2, . . . , SGn (here n may be 1), each one with a root si
connected to T1 (we have here that si ∈ adj (T1), and we allow si = sj): the result
is then ((. . . ((adj (T1), T1,→1, ι)�s1 �articul(SG1))�s2 �articul(SG2)) . . .)�sn �
articul(SGn)). Note that, if n > 1, the order in which we consider the subgraphs
is irrelevant from Corollary 5.
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TS TS1 � s1 � (((TS2 � s3 � TS3) � s2 � TS4) � s2 � (TS5 � s7 � TS6))

Fig. 8. The lts TS leads to the graph G. The corresponding components are TS1 to
TS6, which may easily be synthesised; note that, from the total reachability of TS , they
are all totally reachable themselves. This leads to the articulated expression below.
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Finally, if a subgraph starts from a state s′, followed by a subset T ′,
itself followed by subgraphs SG1, SG2, . . . , SGn (n ≥ 1; if it is 0 we have
the base case), each one with a root si connected to T ′ (we have here that
s′ ∈ adj (T ′), and we allow si = sj): the result is then ((. . . ((adj (T ′), T ′,→′

, s′) � s1 � articul(SG1)) � s2 � articul(SG2)) . . .) � sn � articul(SGn)). Again, if
n > 1, the order in which we consider the subgraphs is irrelevant from Corol-
lary 5.

This procedure is illustrated in Fig. 8.

7 Concluding Remarks

We have developed a theory around a new operator acting on labelled transition
systems, that we called articulation. Its main algebraic properties have been
exhibited, and it was shown how this may be used to construct syntheses from
the solutions of the various components. Since the latter are simpler than the
original LTS (when articulation is possible), it is also much simpler to synthesise
them (when possible), hence speeding up the global synthesis, or the detection
that this is not possible (while pointing at the culprit components). A procedure
has also been devised to decompose a given LTS into articulated components,
when possible.

It remains to build effectively the corresponding procedures, and to incorpo-
rate them in some existing tool, like APT [11].

Other possible issues are to examine how this may be specialised for some
subclasses of Petri nets, like Choice-Free ones, where each place has at most
one outgoing transition: this is exactly the class of Petri nets allowing fully dis-
tributed implementations [6], and they present interesting behavioural properties
[5,10] which could be exploited.

Another possible extension would be to look how these articulations behave
in the context of approximate solutions devised when an exact synthesis is not
possible, in the spirit of the notions and procedures developed in [15].

Finally, other kinds of LTS operators could be searched for, having interest-
ing decomposition procedures, and corresponding to compositions of component
solutions allowing to speed up synthesis problems.

Acknowledgements. The author thanks Eike Best as well as the anonymous referees
for their useful remarks and suggestions.
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