
CoRA: An Online Intelligent Tutoring
System to Practice Coverability

Graph Construction

Jan Martijn E. M. van der Werf(B) and Lucas Steehouwer

Department of Information and Computing Science,
Utrecht University, Utrecht, The Netherlands

j.m.e.m.vanderwerf@uu.nl, lucas@architecturemining.org

Abstract. While teaching Petri nets, many students face difficulties in
constructing coverability graphs from Petri nets. Providing students with
individual feedback becomes infeasible in large classes.

In this paper, we present CoRA: the Coverability and Reachability
graph Assistant. It is an online intelligent tutoring system designed to
support users in constructing a coverability graph for a Petri net. Its
main goal is to provide additional tutorial support to students, so they
can practice on their own and ask questions to staff when required. CoRA
is capable of giving personalized feedback; whenever a user submits a
solution CoRA provides targeted feedback stating what is correct in what
is not. CoRA’s feedback is designed to be both guiding and informational;
a user should be able to understand what went wrong and how they can
improve their graph.

Keywords: Petri nets · Coverability graph · Education ·
Intelligent tutoring

1 Introduction

Since several years, the course Information Systems is taught as a mandatory
course to first year Bachelor students Information Sciences. The course serves as
an introduction in process modeling and analysis. For the theoretical aspects, the
book of Van der Aalst & Stahl (2011) is used [1]. Many properties of Petri nets
are explored during the course, and students are required to make statements
about the nets they produce for assignments. One of the skills the students have
to learn is to construct a coverability graph from a given Petri net [11]. Over
the years, we observed that many students struggle with this topic and require
additional guidance. As each year the course has over 180 participants, providing
sufficient individual guidance and feedback becomes unfeasible. Therefore, we
searched for a more creative solution, allowing students to practice converting
Petri nets to coverability graphs in their own time, at their own pace, while still
giving adequate feedback to support the learning process of the student.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 91–100, 2019.
https://doi.org/10.1007/978-3-030-21571-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_6

92 J. M. E. M. van der Werf and L. Steehouwer

Software-based solutions for these kinds of problems come in the form of Intel-
ligent Tutoring Systems (ITS) [12]. These are systems which provide feedback,
guidance, and other supporting factors one would find in a typical educational
environment focusing on a specific topic [12]. Over the years many ITSs have
been built. For example, [5] reports on the tool LISPITS, an ITS which was used
to teach students the contents of a LISP course at Carnegie Melon University.
In their experiment, students using LISPITS and the students receiving human
tutoring worked through the material much faster than the students learning on
their own. LISPITS students were slower than the students tutored by lectur-
ers, but not by much: 11.4 hours versus 15 hours, whereas the third group took
26.5 h on average to go through the material [2]. Hence, an implemented ITS
can provide sufficient tutorial support to students.

In this paper, we present CoRA: the Coverability and Reachability graph
Assistant. CoRA is an ITS that focuses on providing tutorial support on how to
convert a Petri net to a coverability graph. Software to automatically infer cover-
ability graphs for a given Petri net already exist for many years. For example, the
Low Level Analyzer (LoLA) [15] supports coverability analysis, including vari-
ous reduction techniques. Similarly, the open-source framework ProM [16] has
plugins that create a coverability graph inference. However, these tools focus
on automatic model checking, rather than on providing feedback for learning
coverability graph construction.

The remainder of this paper is structured as follows. In the next section, we
introduce the tool by presenting a typical use case showing most of the steps
a student would go through when practicing coverability graphs. In Sect. 3, we
present the principles behind CoRA: coverability-graph validation and feedback
generation. The tool has been tested and evaluated by a selected group of stu-
dents, on which we report in Sect. 4. Last, Sect. 5 concludes the paper discussing
future work.

2 CoRA to Assist Students

Over the years that the course Information Systems has been taught, we observed
that many students had problems with constructing coverability graphs. For
example, students often find it difficult to traverse over the state space of the
Petri net in a structured manner. As a consequence, students overlook many
states. Another example is that many students simply do not know when to intro-
duce the symbol ω. CoRA supports students by providing them feedback during
the construction process. It is a web-based tool and runs in most browsers1.

Upon entering the website, the user registers with a new user name. Next,
the user needs to upload a Petri net in LoLA format [15]. We deliberately chose
to not include a Petri net editor, but instead rely on existing tools, such as
Yasper [9], and WoPeD [8]. After a short introduction to the main interactions
with the tool, the coverability construction phase starts.

1 We tested the tool in Google Chrome and Mozilla Firefox.

CoRA: An Online ITS to Practice Coverability Graph Construction 93

Fig. 1. Screenshot of CoRA, showing a partial coverability graph with feedback.

After uploading the file, a workspace as presented in Fig. 1 is shown. The
uploaded Petri net is shown on the left. The grid canvas on the right is where the
student has to construct the coverability graph. Initially, the canvas is empty, and
the student can start adding states. By double clicking on a state, the student can
update the state, by setting the token values for the different places. Similarly,
arcs can be labeled with an action by double clicking on it, and selecting a
transition from a drop-down list.

Constructing the coverability graph can be done in any order, contrary to
feedback generation, which requires an initial state. Therefore, as long as no
state has been marked as the initial, the only feedback the tool gives is that it
does not know the initial state. Once the student sets the initial state, the tool
starts providing feedback.

Colors are used to indicate whether a state or arc is correct (green), par-
tially correct (orange), or incorrect (red). Upon hovering on an element, the tool
displays the generated feedback as a list. For example, in Fig. 1, the first two
states are green, indicating that these are correct, i.e., that they are reachable,
have the correct token values, and the correct outgoing transitions. The last
two states are orange, showing that the state is only partially correct. In this
example, The student has highlighted state [p1 : 1, p2 : 0, p3 : 1]. As this state
covers the initial marking, the tool hints that one of the places can be marked
as unbounded. Additionally, outgoing transitions are missing. Although missing
edges gives an incorrect result, we color the state as partially correct, to provide
better feedback. Transition t1 from this state is colored red, hinting that the
transition is not enabled in this state.

94 J. M. E. M. van der Werf and L. Steehouwer

After each action by the student, the tool validates the model and generates
new feedback. This process continues until the student has a correct coverability
graph, i.e., that all states and transitions are colored green. By default, the tool
provides immediate feedback. This is typically preferred for the target audience:
novice learners [12]. Students can also choose to set feedback to manual. They
then can decide themselves when to submit the graph, and when to receive
feedback.

3 Design of CoRA

CoRA is a web-based tool, consisting of a client for modeling, and a server for
validation and feedback generation. CoRA-client provides a coverability-graph
modeling environment which uses the API exposed by CoRA-server. CoRA-
client runs in the browser as a combination of HTML, JavaScript and CSS. Its
JavaScript library is written in Typescript, a programming language with static-
typing, which can be compiled to JavaScript. If immediate feedback is switched
on, CoRA-client sends the complete coverability graph to CoRA-server after each
user action. The server then validates it, and returns the generated feedback.

CoRA-Server is built on the Slim-framework2, a bare-bones PHP framework
for creating web applications, and implements a REST-service [7]. CoRA-Server
runs on any server with support for PHP7. It uses a MySQL database for storage.

The tool is publicly available at http://CoRA.architecturemining.org/, its
source code can be found at GitHub3.

3.1 Analyzing Coverability Graphs

In theory, composing a coverability graph for a given Petri net is nothing more
than following Algorithm 1. To find all paths from the initial marking to the
newly added marking we use a graph traversal algorithm like Breadth First
Search [6]. From a tutorial perspective, we have an initial state (an empty graph)
and a goal state (a correct coverability graph). The student “only” needs to learn
the correct strategy to arrive at a goal state from the initial state [12]. However,
a coverability graph is not unique for a Petri net. Consequently, the traversal
and discovery of nodes in the graph may happen in any order. This needs to be
taken into account when generating automatic feedback.

To show that the order of traversal determines the resulting coverability
graph, consider the example depicted in Fig. 2, taken from [1]. Starting in initial
marking [p1], two transitions are enabled, t1 and t2. Firing t1 results in [p2],
transition t1 in [p3]. From [p3], firing transition t4 brings us back to [p2]. Now,
we fire transition t3, resulting in marking [p2, p3]. This marking clearly covers the
earlier visited marking [p2], showing that place p3 is unbounded. Similarly, this
marking covers the already visited marking [p3] as well. This results in the left

2 https://www.slimframework.com.
3 https://github.com/ArchitectureMining/CoRA.

http://CoRA.architecturemining.org/
https://www.slimframework.com
https://github.com/ArchitectureMining/CoRA

CoRA: An Online ITS to Practice Coverability Graph Construction 95

Algorithm 1. Generating a coverability graph
1: procedure GenerateCoverabilityGraph((P, T, F), m0)
2: s0 ← m0 ; V ← ∅ ; E ← ∅
3: O ← ∅ � Frontier: Set of markings which still have to be expanded
4: Q ← Queue of markings � Frontier provides O(1) lookup of markings
5: Q.Enqueue(s0)
6: while Q not empty do
7: s ← Q.Dequeue() ; O ← O \ { s } ; V ← V ∪ { s }
8: R ← All paths from s0 to s
9: for all r ∈ R do

10: for all m ∈ r do
11: if s ≥ m then
12: for all p ∈ P do
13: if s(p) > m(p) then s(p) = ω

14: for all t ∈ T do
15: if t is enabled for s then
16: s′ ← ∀p ∈ P : s(p) − F (p, t) + F (t, p)
17: if s′ /∈ V ∧ s′ /∈ O then � Add the state to the Queue and Frontier
18: O ← O ∪ { s′ } ; Q.Enqueue(s′)

19: E ← E ∪ { (s, s′, t) } � Add the discovered edge

20: return G = (V, E, s0)

coverability graph depicted in Fig. 3 would we have followed a different strategy
in generating a coverability graph, e.g. by first continuing with transition t1, we
would not yet have discovered the unboundedness of place p2, resulting in the
middle coverability graph of Fig. 3.

Another challenge for feedback generation is that marking a place as
unbounded does not have to happen immediately. Students may discover only
later in the process that a place could already be marked unbounded, and unfold
the graph unnecessarily deep, as shown in the third example of Fig. 3. Note that
the third example in Fig. 3 cannot be produced by Algorithm 1. Still, the deliv-
ered coverability graph is correct. When a student omits to mark a place as
unbounded while it is possible to do so, then the feedback generation algorithm
needs to adapt to this. It needs some way of “remembering” that this place can
be marked as unbounded and that all markings in the postset of the current
marking can also mark this place as such.

3.2 Providing Feedback

The main goal of CoRA is providing useful feedback on coverability graphs.
Designing good feedback however, is not an easy task. Feedback can inform the
user about his or her progress and can also guide the user to the correct solution,
for example by giving pointers [10]. These two types of feedback, informational
and guiding feedback, can overlap. The goal of CoRA is providing both these
forms of feedback; it should provide information to the users about which ele-
ments of the coverability graph are correct and incorrect, but CoRA should also

96 J. M. E. M. van der Werf and L. Steehouwer

p1

t1
p2

t2
p3

t3t4

Fig. 2. Petri net example taken from [1]

[p1]

[p2] [p3]

[ω · p2, ω · p3]

t1 t2

t4

t3

t3, t4

[p1]

[p2] [p3]

[p2, ω · p3]

[ω · p2, ω · p3]

t1 t2

t4

t3

t4

t3

t3, t4

[p1]

[p2] [p3]

[p2, p3] [ω · p2]

[p2, ω · p3] [ω · p2, ω · p3]

t1 t2

t4

t3
t4

t3
t4

t3

t3 t3, t4

Fig. 3. Three correct coverability graphs of the Petri net of Fig. 2, the first and second
followed a different strategy in traversing the states. In the third, unbounded places
were discovered at a later stage.

provide messages which suggest a corrective measure if required. For example, if
a state misses an outgoing edge, a message should be given stating that an edge
is missing. This message shows that something is not right (an edge is missing),
but also provides a hint on how this problem should be solved (adding an edge).

There are three kinds of feedback messages that we can give with CoRA. For
each element of the graph we can decide whether it is a correct, partially correct,
or incorrect element. For example, the user can model two reachable states, but
the label of the edge between those states is not correct. CoRA gives feedback
that this edge represents the wrong transition.

CoRA can also provide warnings. Warnings are intended for elements that
are not incorrect, but do provide a risk to make mistakes later on. For example,
students can make coverability graphs with duplicate states. Having duplicate
states in a coverability graph does not make the graph incorrect, but it does
make it unnecessarily difficult for the student to not make mistakes.

Another example is the introduction on unboundedness of places. Instead of
following Algorithm 1, CoRA checks for each state created by the user if this
state covers some state on the path from the initial state to the state under

CoRA: An Online ITS to Practice Coverability Graph Construction 97

analysis. If it is indeed a cover, but no ω has been introduced, the user receives
feedback that it is possible to introduce an ω in this state.

Next to the kinds of feedback, there is a difference on when feedback should be
provided: for beginners it is preferred that feedback is given instantly, whereas
for people with some experience it is better to provide delayed feedback [12].
CoRA supports both forms. At first, most of the students will not be familiar
with composing coverability graphs and will therefore need immediate guidance,
whereas at later stages it can be more beneficial for students to only get feedback
when they feel like they need it or when they are finished.

With this knowledge in mind, we designed a set of messages to be shown to
the user. Messages can be assigned to particular elements of the graph, as well as
to the graph as a whole. Table 1 shows the feedback messages that we designed for
CoRA. All feedback messages have been constructed to be both informational as
well as guiding. However, further research is required to validate these messages.

4 Initial Evaluation

CoRA was presented and pitched during the Information Systems course. This
provided an opportunity to test CoRA immediately with its target audience:
students. CoRA was introduced during one of the lectures and a small demo
was given on how to use it. After this demo a set of Petri nets was given to the
students to practice with. Students were also asked to fill in a questionnaire after
practicing a few times. The questionnaire was presented in an on-line form, and
was available at all times. This questionnaire contained the System Usability
Scale (SUS) [4]. The SUS provides a simple way to measure the usability of a
system. The Net Promoter Score (NPS) [13] was included as it is correlated to the
SUS (r = 0.61, [14]), and thus provides an extra validation. The recommendations
section of the questionnaire had questions on how to improve CoRA, as well as
a question whether they would recommend CoRA to fellow students.

Only ten responses to the survey were recorded, probably since the tool was
presented only in one of the last lectures before the exam, Eight participants were
following the Information Systems course while taking the survey. These eight
participants did state that they found CoRA to be at least somewhat supportive
in their efforts to understand the subject of coverability graphs. With a score of
3.25 out of 5 for this question the response was quite neutral, with a slight favor
towards being helpful. For the System Usability Scale scores ranged between 62.5
and 95, with an average score of 70.25, and a median of 76.25. According to [3]
this is often an acceptable score, but there certainly is room for improvement.
The scores for the NPS seem to indicate this as well. NPS scores range between
−100% and 100%. With a score of 20% we have more promoters than detractors,
but clearly the score could be much better.

Eight of the participants provided suggestions on improving CoRA. The main
complaint was that it was not possible to upload a second Petri net, to keep
practicing. Instead, they needed to restart CoRA-client each time they wanted
to start a new session, which also means going through the hoops of registering

98 J. M. E. M. van der Werf and L. Steehouwer

Table 1. Types of feedback and hints the tool provides

Type of feedback Hint provided to user

Initial state

No initial state No state has been declared as the initial state

Incorrect initial state The initial state of the graph is not equal to
the initial marking of the Petri net

Correct initial state The initial state of the graph and the initial
marking of the Petri net are identical

Unbounded place At least one of the places in the initial state is
marked as unbounded. This is impossible!

States

Reachable from preset This state is reachable from its preset

Duplicate state This state occurs multiple times in the graph

Omitted ω It is possible to introduce an ω in this state,
but this has not been done

Not reachable from preset This state is not reachable from at least one of
the states in its preset

Edge missing This state is missing an outgoing edge

Not reachable from initial
state

This state is not reachable from the initial state

Omitted ω from preset At least one of the states in the preset has at
least one place marked as unbounded, while
this state does not mark this place as such

Edges

Enabled and correct post The edge’s label corresponds to an enabled
transition and points to a reachable state

Duplicate edge There are multiple edges with the same label
originating from the same state

Enabled, correct post state,
wrong label

The transition corresponding to the label is
enabled and the target of the label is
reachable, but firing this transition does not
lead to this state

Enabled, incorrect post state The transition corresponding to the label is
enabled, but the target state is not reachable
from the source state

Disabled The transition corresponding to the label is
disabled

Disabled, correct post state The transition corresponding to the label is
disabled, but the target state is reachable by
firing a different transition

CoRA: An Online ITS to Practice Coverability Graph Construction 99

a new account again. Participants also indicated that there were a few bugs
with the modeler, especially regarding opening menu’s for editing elements of
the graph.

5 Conclusions

In this paper, we presented CoRA: the Coverability and Reachability graph
Assistant. It is an online intelligent tutoring system to practice constructing
coverability graphs, and provides feedback based on the users’ input.

Initial evaluation shows that the tool has the desired potential, but requires
some improvements. In the near future, we plan to extend the tool with a frame-
work to support multiple exercises per session, and to add PNML support.

Future work lies in assessing the quality of the feedback messages the tool
provides. The tool stores all intermediate stages of the coverability graph, allow-
ing to study which feedback is given, and how this feedback is perceived by
students. Another direction of research lies in studying the possibilities in the
realm of gamification and applied games. Games provide a continuous loop of
feedback messages [10]. CoRA only provides feedback when the client requests
it. With a game, feedback could be provided constantly, possibly providing bet-
ter support to the user. Currently, CoRA just assumes the user is a novice. A
possible avenue of further research, perhaps in combination with the idea of
gamification, would be to automatically infer the experience level of a user and
adapt the provided feedback based on this level.

CoRA gives feedback on the conversion of Petri nets to coverability graphs.
There are many other analysis techniques students need to learn. Future work
therefore also includes the development of tutoring systems for other techniques,
such as invariants. These solutions could then be integrated into a electronic
learning environment, providing the students an environment where they can
practice all sorts of techniques regarding Petri nets, including coverability anal-
ysis with CoRA.

References

1. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes–A Petri Net-
Oriented Approach. Cooperative Information Systems Series. MIT Press (2011)

2. Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science
228(4698), 456–462 (1985)

3. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system
usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008)

4. Brooke, J., et al.: SUS-a quick and dirty usability scale. In: Usability Evaluation
in Industry, vol. 189, no. 194, pp. 4–7 (1996)

5. Corbett, A.T., Anderson, J.R.: Lisp intelligent tutoring system: research in skill
acquisition. In: Computer-Assisted Instruction and Intelligent Tutoring Systems:
Shared Goals and Complementary Approaches, pp. 73–109 (1992)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

100 J. M. E. M. van der Werf and L. Steehouwer

7. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based
software architectures, vol. 7. University of California, Irvine Doctoral dissertation
(2000)

8. Freytag, T., Sänger, M.: WoPeD - an educational tool for workflow nets. In: Pro-
ceedings of the BPM Demo Sessions, CEUR Workshop Proceedings, vol. 1295, pp.
31–35 (2014). CEUR-WS.org

9. van Hee, K.M., Oanea, O., Post, R.D.J., Somers, L.J., van der Werf, J.M.E.M.:
Yasper: a tool for workflow modeling and analysis. In: ACSD, pp. 279–282 (2006)

10. Kapp, K.M.: The Gamification of Learning and Instruction: Game-based Methods
and Strategies for Training and Education. Wiley (2012)

11. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

12. Passier, H.J.M.: Aspects of Feedback in Intelligent Tutoring Systems for Modeling
Education. PhD thesis, Open University, The Netherlands (2013)

13. Reichheld, F.F.: The one number you need to grow. Harvard Bus. Rev. 81(12),
46–55 (2003)

14. Sauro, J.: Does better usability increase customer loyalty? (2010). https://
measuringu.com/usability-loyalty/. Accessed 05 July 2018

15. Schmidt, K.: LoLA a low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44988-4 27

16. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-17722-4 5

http://CEUR-WS.org
https://measuringu.com/usability-loyalty/
https://measuringu.com/usability-loyalty/
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1007/978-3-642-17722-4_5

	CoRA: An Online Intelligent Tutoring System to Practice Coverability Graph Construction
	1 Introduction
	2 CoRA to Assist Students
	3 Design of CoRA
	3.1 Analyzing Coverability Graphs
	3.2 Providing Feedback

	4 Initial Evaluation
	5 Conclusions
	References

