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Abstract. Open nets have an interface of input and output places for
modelling asynchronous communication; these places serve as channels
when open nets are composed. We study a variant that inherits modal-
ities from Larsen’s modal transition systems. Instantiating a framework
for open nets we have developed in the past, we present a refinement pre-
order in the spirit of modal refinement. The preorder supports modular
reasoning since it is a precongruence, and we justify it by a coarsest-
precongruence result. We compare our approach to the one of Haddad
et al., which considers a restricted class of nets and a stricter refinement.
Our studies are conducted in an extended class of nets, which addition-
ally have transition labels for synchronous communication.

1 Introduction

On an abstract level, concurrent systems can be specified and developed with the
well-known labelled transition systems (LTS). The labels of such an LTS are the
actions of the system, including the hidden action τ . To combine components to
larger systems according to synchronous communication, parallel composition ‖
merges equally-labelled transitions of two components; one might also hide such
labels. Furthermore, a relation for stepwise refinement is needed that supports
modular reasoning: if one refines a component of a parallel composition, then
this should result in a refinement of the overall system. A refinement relation
with this property is called a precongruence w.r.t. ‖.

Such a precongruence can be defined as inclusion of the LTS-languages or
some other trace-based semantics, or it can be some kind of bisimilarity, see [7]
for an overview. These refinement relations can easily be transferred to (labelled)
Petri nets, cf. e.g. [14,21], with precongruence results for an analogous parallel
composition. Advantages of Petri nets are that they are distributed by nature as
are concurrent systems, and that they can give a finite representation for infinite
state systems.

Bisimilarity allows one, in particular, to refine an LTS to a parallel compo-
sition with new hidden transitions resulting from communication. Such a com-
position can be a step forward to an implementation. But bisimilarity, being an
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equivalence, does not offer much leeway and is, thus, in general not so appropri-
ate for refinement.

Modal transition systems (MTS) are a ground breaking improvement towards
loose specifications [11]. An MTS is an LTS with two kinds of transitions: must-
transitions are required, while may-transitions are allowed, but only optional. A
modal refinement relation can be described as an alternating simulation: each
must-transition of the specification has to be simulated by an equally labelled
must-transition of the refinement – possibly using additional hidden must-
transitions; analogously, a may-transition of the refinement has to be allowed
in the specification by a number of may-transitions. Also modalities and modal
refinement can be transferred to Petri nets, see the discussion of modal Petri
nets (MPN) below.

Petri nets are particularly well suited for modelling asynchronous commu-
nication, where the sender of a message does not have to wait for the receiver.
If the order of messages on the same channel is not relevant, one can simply
connect sending transitions via a (channel) place to receiving transitions instead
of merging transitions as in the synchronous case. For such a setting, we model
systems as so called open nets,1 which have an interface consisting of two disjoint
sets of special input and output places.

rc pwd

rc err pwd

rw m

t’

t

Fig. 1. Modal open nets ATM and password provider

1 The term open in this sense presumably stems from [1].
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As an example, consider the lower net ATM in Fig. 1; this is actually a
modal open net (MON), where the dashed boxes denote may-transitions while
the others denote must-transitions. The places rw and pwd are input places
(no ingoing arcs from the net), the other named places are output places. If a
user of the modelled system puts a token onto rw, this requests to withdraw
some money. Initially, the system requests additional credentials by putting a
token onto rc. After receiving a password via pwd, money is handed out on
m. Now the system can decide to repeat this, but it optionally can do without
asking for a password. In the latter case, a password is needed for the request
after. The system can also be implemented with some ability to detect errors:
an error message can be sent via place err if a withdrawal request is sent while
the previous request is being handled or if a password is sent already when the
previous interaction has just been finished.

The upper net describes a piece of software providing the user’s password
whenever it is required. Asynchronous composition ⊕ merges interface places
with the same name, removing the name from the new interface. In the example,
after installing the software and saving her password, the user deals with the
composed system and does not have to enter her password again.

An early paper considering the composition of place-bordered nets as the
above (without modalities) is [16], where nets are built composing determinis-
tic nets. It is shown how to check (Petri net) liveness for such compositions.
In [20], refining a transition t means to replace t (via place merging) by a so-
called daughter-net whose border (interface) consists of the places incident to t.
Results are given for which daughter-nets the replacement preserves behaviour
like liveness and boundedness. Results on liveness for asynchronous compositions
of more general nets can be found in [18]. A compositional semantics building
Petri-net processes by place merging is presented in [10].

Extending [20], a general framework is suggested in [21] how to transfer
semantics and refinement relations from a synchronous setting to open nets in
a “sensible way”. This is worked out e.g. in [19], which is one of a number of
papers on open nets and operating guidelines like [12]. It is also applied in [2] in
a setting with labelled open Petri nets; it is shown that some variants of bisimi-
larity are congruences for one operator that combines ‖ and ⊕. By a “sensible”
refinement relation we mean a relation that accepts a refinement unless there is
a formal reason against this. One general formal requirement is that the rela-
tion supports modular reasoning by being a precongruence. Additionally, one
chooses some behavioural requirements; in [19] for example, it is required that
a refinement step does not introduce a deadlock. Two trace sets are defined,
and inclusion of these is shown to be sensible in the above sense, since it is the
coarsest precongruence with the latter requirement.

In the present paper, we demonstrate that the above framework works also
in a setting with modalities and alternating simulation. Although we are mainly
interested in MON, we conduct our study for the larger class of labelled MON
(�MON), which also have action-labelled transitions and include MON and MPN.
The main contribution is a kind of modal refinement, which we show to be
a precongruence for ‖ and the coarsest precongruence for ⊕ respecting modal
refinement on MPN.
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MPN have been introduced in [6] in combination with a modal language as
in [15]. The main issue is to decide weak determinism (a variant of determi-
nacy as in [13]) and – for weakly deterministic, but possibly unbounded MPN
– modal-language inclusion. Asynchronous composition is only defined to build
large MPN, which are often unbounded due to the channel places. There are no
precongruence results.

The net class and the composition from [6] are further studied in [8], which is
very close to the present paper. There, the nets are called modal asynchronous
I/O-Petri nets (MAIOPN or, as we write here, MAP); they are a different rep-
resentation for a restricted class of MON: the nets are actually MPN and the
interface places are left implicit. The places only become explicit during the com-
position ⊕HH . The refinement relation is modal refinement and is shown to be
a precongruence. Due to the special interests in [8], a MAP may have so-called
internal actions, showing how the generated channel places are accessed. They
are not really visible but still taken into account in modal refinement. As a con-
sequence, a MAP can only be refined by another one, if the latter has the same
channel places; one cannot refine a monolithic specification by an asynchronous
composition. This is noted in [6,8], so for stepwise refinement it is suggested to
hide the internal actions at the end of composition. With this modification, one
can translate MAP into MON such that composition is preserved, i.e. MAP can
be seen as a sub-setting of our setting.

We show that our modal refinement is coarser than the one on MAP, i.e.
it is better from our perspective. One difference concerns a typical feature of
asynchronous communication: if two messages are sent on different channels one
after the other, there can be overtaking such that the environment cannot observe
the order of sending. Hence, this order should not matter for the refinement
relation. This is indeed the case in our approach, but it does matter in [8].
We also give an alternative proof for the MAP precongruence result, which we
believe to be simpler conceptually. This paper revises and generalizes [17].

Section 2 introduces MTS and transfers parallel composition and hiding to
MPN; the latter is also done in [8], but the actual net variant there is more
complicated and an MTS (!) variant with additional Petri net places is used.
Section 3 defines asynchronous composition and our refinement relation, pointing
out that it preserves some liveness notion. The coarsest-precongruence for ⊕ and
precongruence for the MTS operators are shown. Section 4 compares ours to the
MAP-approach. The paper ends with a sketch how to restrict our approach to
bounded nets in Sect. 5 and with some conclusions. We thank Alexander Knapp
and Ayleen Schinko for supporting us with the figures, and the reviewers for
their helpful comments.

2 Preliminaries

This section provides some basic notation for modal transition systems and
modal Petri nets. Refinement and basic operations such as parallel composi-
tion, relabelling and hiding are transferred from MTS to MPN. The same holds
for the precongruence results provided by Hüttel and Larsen in [9].
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Most of the structures in this paper have an action alphabet, usually denoted
by Σ. There is one hidden or invisible action τ , which is never in an alphabet.
We denote Σ ∪{τ} by Στ ; a and α often stand for a typical action in Σ and Στ

resp. N denotes the set of natural numbers including zero.

2.1 Modal Transition Systems

In the introduction, we have already explained that MTS [11] have required
must- and optional may-transitions. The condition −→ ⊆ ��� below reflects
that every required transition should also be allowed.

Definition 1 (MTS). A modal transition system (MTS) is a tuple Q =
(S,Σ, ���,−→, s0) where S is a set of states containing the initial state s0;
Σ is an alphabet,

– ��� ⊆ S × Στ × S is the set of may-transitions, and
– −→ ⊆ S × Στ × S is the set of must-transitions satisfying −→ ⊆ ���. ♦

We add the name of the MTS as an index to the components when needed
or use e.g. Si for the state set of Qi etc., and similarly for nets later on. We
write s

α��� s′ for (s, α, s′) ∈���, and extend this to words w ∈ (Στ )∗: s
w��� s′

means that there is a sequence s
α1��� s1

α2��� s2 . . . sn−1
αn��� s′ with w = α1 . . . αn.

Let ŵ be obtained from w by removing all τs. With this, we define the weak
may-transition s

w=⇒ s′ as ∃v ∈ (Στ )∗ : v̂ = w∧s
v��� s′. We have the analogous

notations for must-transitions, writing =⇒ for =⇒. A state s is reachable in Q

when s0
w��� s for some w ∈ Στ .

The following defines the standard (weak) modal refinement for MTS as
explained in the introduction.

Definition 2 (MTS refinement). Let Q1 and Q2 be two MTS over the same
alphabet. We say that Q1 is a (modal)refinement of Q2, written Q1 �MTS Q2, if
there exists an MTS-relation R ⊆ S1 × S2 with (s01, s

0
2) ∈ R such that for every

(s1, s2) ∈ R:

– s2
α−→ s′

2 ⇒ s1
α̂=⇒ s′

1 ∧ (s′
1, s

′
2) ∈ R and

– s1
α��� s′

1 ⇒ s2
α̂=⇒ s′

2 ∧ (s′
1, s

′
2) ∈ R. ♦

Note that, for two implementations (MTS with coinciding may- and must-
transitions), MTS-relations and weak bisimulations [13] are the same. Next we
define the operations of relabelling, hiding, parallel composition and parallel
composition with hiding.

Definition 3 (MTS relabelling, hiding). A relabelling function for an alpha-
bet Σ (and for MTS and MPN below with this alphabet) is a surjective function
f : Σ → Σ′; additionally, we set f(τ) = τ . The respective relabelling of an MTS
Q is denoted by Q[f ] and obtained from Q by replacing Σ with Σ′ and each
action α of a transition with f(α).
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Similarly, for an alphabet H, the hiding of H in Q, denoted by Q/H, is
obtained from Q by replacing Σ with Σ\H and each action a ∈ H of a transition
with τ . ♦

The idea of parallel composition is that two systems synchronize on common
(visible) actions and perform all other actions independently.

Definition 4 (MTS parallel composition). The MTS parallel composition of
two MTS Q1 and Q2 is defined as the MTS Q1‖Q2 = (S1×S2, Σ1∪Σ2, ���,−→,
(s01, s

0
2)) with

−→ = {((s1, s2), α, (s′
1, s2)) | s1

α−→1 s′
1 ∧ α /∈ Σ2}

∪ {((s1, s2), α, (s1, s′
2)) | s2

α−→2 s′
2 ∧ α /∈ Σ1}

∪ {((s1, s2), a, (s′
1, s

′
2)) | s1

a−→1 s′
1 ∧ s2

a−→2 s′
2 ∧ a ∈ Σ1 ∩ Σ2}

and ��� is defined analogously. ♦

Note that two equally labelled must-transitions synchronize to a must-
transition, and the same for may-transitions. In effect, a must- and a may-
transition synchronize to a may-transition, because the must-transition has an
underlying may-transition. Finally, we define a variant of parallel composition
where the synchronized actions are hidden.

Definition 5 (MTS parallel composition with hiding). The parallel
composition with hiding of MTS Q1 and Q2 is the MTS Q1 ⇑ Q2 = (Q1‖Q2)/H
with H = Σ1 ∩ Σ2. ♦

In [9], there is a parametric precongruence result for modal refinement (in a
version for MTS without an initial state), which can be instantiated to obtain
the following result. The details have been worked out in [17].

Theorem 6. For relabelling, hiding, parallel composition and parallel composi-
tion with hiding, �MTS is a precongruence, i.e.: for MTS Q1, Q2 and R with
Q1 �MTS Q2, a relabelling function f for Q1 (and thus for Q2), and an alphabet
H we have:

Q1[f ] �MTS Q2[f ], Q1/H �MTS Q2/H,

Q1‖R �MTS Q2‖R, Q1 ⇑ R �MTS Q2 ⇑ R

Since (Petri net) liveness is an issue in the related literature, we define a
corresponding property on MTS in such a way that it is preserved under refine-
ment. An action a is action live in an MTS if it surely remains possible whatever
happens. Formally:

Definition 7 (action live). For an MTS Q, a ∈ Σ is action live in Q if, for
each reachable state s, s

wa=⇒ s′ for some word w ∈ Στ .
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Proposition 8. For MTS Q1 and Q2 with Q1 �MTS Q2, a ∈ Σ1 is action live
in Q2 implies a is action live in Q1.

Proof. The assumptions imply that there is a suitable MTS-relation R. A reach-
able state s1 of Q1 is reached by a sequence of may-transitions. Each of these is
matched by a small path in Q2 according to R; stringed together, these paths
reach some s2 with (s1, s2) ∈ R. By assumption for a, there is some w and
s′
2 with s2

wa=⇒ s′
2. In turn, the respective must-transitions are matched in Q1,

implying s1
wa=⇒ s′

1. ��
For implementations, action liveness directly corresponds to Petri net live-

ness. In Definition 7, s is reached by may-transitions and a is performed along
a sequence of must-transitions. To see that this is the right choice of modalities,
think of a variant where only states s reachable by must-transitions are con-
sidered. If Q consists of states s0 and s with s0

a−→ s0 and s0
τ��� s, then a

would be action live in Q, but not in a refinement having the τ -transition as a
must. Vice versa, think of a variant where it suffices that a is performed along
a sequence of may-transitions. If Q consists of state s0 with s0

a��� s0, then a
would be action live in Q, but not in a refinement having no transition.

2.2 Modalities for Petri Nets

Also for Petri nets, one can distinguish between must- and may-transitions.
Additionally, one can label transitions with actions, which form an interface for
synchronous communication (MPN). Alternatively, one can distinguish specific
input and output places, and these form an interface for asynchronous commu-
nication (MON). Our focus lies on the latter, but we need also MPN for our
approach, and we even need a combination for the envisaged coarsest precon-
gruence result. For generality, we start from this combination. Note that all
transitions are may-transitions, their set is denoted by T as usual. We also treat
infinite nets, but observe the assumption in the paragraph after the following
definition.

Definition 9 (���MON). A labelled modal open net (�MON) is a tuple

N = (P, I,O,Σ, T, T�,W,m0, l)

where P and T are disjoint sets of places and (may-)transitions, and T� ⊆ T is
the set of must-transitions; W : (P × T ) ∪ (T × P ) → N is the set of weighted
arcs; m0 is the initial marking, where a marking is a mapping m : P → N.

Furthermore, I ⊆ P and O ⊆ P are disjoint sets of input and output places,
which are empty under the initial marking. Finally, Σ is an alphabet disjoint
from I and O, and l : T → Στ is the labelling ; τ -labels are omitted in figures.

A modal open net (MON) is an �MON where Σ is empty, cf. Fig. 1; we will
often omit Σ and l, which maps all transitions to τ . A modal Petri net (MPN)
is an �MON where I and O are empty and often omitted. ♦
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We call F = {(x, y) | W (x, y) �= 0} the flow relation of N . For an x ∈ P ∪̇ T ,
we call the sets •x = {y | (y, x) ∈ F} the preset and x• = {y | (x, y) ∈ F} the
postset of x. At some stage, we will need that transitions have finite presets, so
we assume this throughout.

The behaviour of an �MON N is given by the occurrence rule. A transition
t ∈ T is enabled at a marking m, if ∀p ∈ •t : W (p, t) ≤ m(p). When t is
enabled at m, it can occur or fire, changing the marking to m′ with m′(p) =

m(p)−W (p, t)+W (t, p); we write m
t��� m′, or m

t−→ m′ if t is a must-transition.
Furthermore, the same notation is used for transition labels, i.e. we also write

m
l(t)
��� m′ or m

l(t)−→ m′.
The latter notations in fact define the may- and must-transitions of an MTS

associated to N : its alphabet is Σ, m0 the initial state, and the reachable mark-
ings are the states. With this view, the other MTS notations like

w��� and w=⇒
for words carry over to �MON. Whenever m

w��� m′ or m
w=⇒ m′, there exists

an underlying transition sequence, a firing sequence leading from m to m′.

2.3 MPN: Refinement and Operators

First, we will concentrate on MPN. With the concept of an associated MTS,
MPN refinement can be defined according to Definition 2, i.e. the MPN-relation
below is just an MTS-relation between the associated MTS:

Definition 10 (MPN refinement). For MPN N1 and N2 over the same alpha-
bet, we say that N1 is a refinement of N2, written N1 �MPN N2, if there
is an MPN-relation R between the reachable markings of N1 and N2 with
(m0

1,m
0
2) ∈ R such that for every (m1,m2) ∈ R:

– m2
α−→ m′

2 ⇒ m1
α̂=⇒ m′

1 ∧ (m′
1,m

′
2) ∈ R and

– m1
α��� m′

1 ⇒ m2
α̂=⇒ m′

2 ∧ (m′
1,m

′
2) ∈ R. ♦

In some cases, we might use MPN-relations that include unreachable mark-
ings. This can make arguments easier, e.g. we do not have to prove reachability.
Strictly, we would have to remove all pairs containing an unreachable marking.

Next, we define the operations for MTS also for MPN. The essential point
for parallel composition is that, for a common label a, each a-labelled transition
in the first and each a-labelled transition in the second MPN are merged to a
new transition, which inherits both presets and both postsets. This implies the
lemma after the definition. Note that we identify isomorphic structures; hence,
we can e.g. assume place sets to be disjoint in this definition:

Definition 11 (MPN operators). Let N1 and N2 be MPN, where w.l.o.g. the
place sets are disjoint. Then, we define their parallel composition to be

N1‖N2 = (P,Σ, T, T�,W,m0, l)

where P and Σ are the componentwise unions, i.e. P = P1 ∪ P2 etc.
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– T = {(t1, τ) | t1 ∈ T1 ∧ l1(t1) /∈ Σ2} ∪ {(τ, t2) | t2 ∈ T2 ∧ l2(t2) /∈ Σ1}
∪ {(t1, t2) | t1 ∈ T1 ∧ t2 ∈ T2 ∧ l1(t1) = l2(t2) ∈ Σ1 ∩ Σ2},

– T� is defined analogously,

– ∀p ∈ P, (t1, t2) ∈ T : W (p, (t1, t2)) =

⎧

⎨

⎩

W1(p, t1) if p ∈ P1 ∧ t1 ∈ T1

W2(p, t2) if p ∈ P2 ∧ t2 ∈ T2

0 otherwise
W ((t1, t2), p) is defined analogously,

– ∀p ∈ P : m0(p) =
{

m0
1(p) if p ∈ P1

m0
2(p) if p ∈ P2,

– ∀(t1, t2) ∈ T : l(t1, t2) =
{

l1(t1) if t1 ∈ T1

l2(t2) if t2 ∈ T2.

With this, we define relabelling, hiding and parallel composition with hiding
word by word as in Definitions 3 and 5. ♦

Note that in the last item above, in case of a merged transition, l1(t1) and
l2(t2) coincide. For the next lemma, note that markings of N1‖N2 can be written
(m1,m2), where m1 is a marking of N1 and m2 one of N2.

Lemma 12. Let N1 and N2 be two MPN. If t1 and t2 are a-labelled transitions

of N1 and N2 resp., then (m1,m2)
(t1,t2)��� (m′

1,m
′
2) if and only if m1

t1��� m′
1

and m2
t2��� m′

2. If t1 is a transition of N1 with l1(t1) �∈ Σ2, then (m1,m2)
(t1,τ)
���

(m′
1,m2) if and only if m1

t1��� m′
1, and analogously for N2. The same statements

hold for must-transitions.

This lemma implies that the MTS associated to N1‖N2 is the parallel com-
position of the two MTS associated to N1‖N2. Similar statements hold for the
other three operators defined above. Hence, we obtain the following corollary to
Theorem 6.

Corollary 13. W.r.t. the above operators for MPN, �MPN is a precongruence.

Observe that, in the same way, the notion of action liveness and its preserva-
tion under refinement carry over to MPN and �MPN . We close with a technical
operation and lemma, which will be important in the next section. The opera-
tion contracts special τ -must-transitions by merging the only place in the preset
with the only place in the postset. This is illustrated in Fig. 2.

Definition 14 (τ-contraction). Let N be an MPN and A a set of τ -labelled
must-transitions with the following properties:

– for each ti ∈ A: •ti = {pi}, t•i = {p′
i} and W (pi, t) = W (t, p′

i) = 1;
furthermore, •p′

i = p•
i = {ti} and m0(pi) = m0(p′

i) = 0;

– all these places are different.
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Then, the τ -contraction N [A] is obtained from N by removing the transitions
ti ∈ A and the associated places p′

i, and changing the values W (pi, t) for the
remaining transitions t from 0 to W (p′

i, t). ♦

pi

τ

ti p′
i

pi

Fig. 2. Transformation from MPN N to MPN N [A]

Lemma 15. Let N be an MPN and A ⊆ T�
N as in Definition 14, then N �MPN

N [A] and N [A] �MPN N .

Proof. Let m and m′ be markings of N and N [A], resp., that are identical on the
common places except that, for each of the pi, m′(pi) = m(pi) + m(p′

i); then we
denote m′ by [m]. Now consider the relation R = {(m, [m]) | m reachable in N}.
This relation proves the first claim, and its reverse proves the second claim.

First, consider some m
ti−→ m′ with ti ∈ A. This can be matched by firing no

transition: (m′, [m]) ∈ R since ti does not change m(pi) + m(p′
i), i.e. [m′] = [m].

It remains to deal with each transition t of N [A], and we restrict ourselves to
must-transitions, since the case of may-transitions is similar. So second, consider
m

t−→ m′ in N . From each p′
i ∈ •t, t removes W (p′

i, t) tokens, which are present
in and removed from pi under [m]; for the other places, t removes the same
number of tokens in both nets, and it adds the same number of tokens to each
place in both nets.

Third, consider [m] t−→ [m′] in N [A]. Here, some tokens on some p′
i ∈ •t

might be missing in N . This is remedied by first firing invisibly some ti: for each
of the (finitely many!) p′

i ∈ •t, we fire the invisible must-transitions ti until pi

is empty. Now t removes the same number of tokens from p′
i ∈ •t in N as it

removes from pi in N [A], and it removes the same number of tokens in both nets
from each other place; then, it adds the same number of tokens in both nets to
each place. ��

3 Asynchronous Communication

While the definition of composing nets according to asynchronous communica-
tion, i.e. by merging places, should be pretty clear, the question is how to define
a refinement framework that deals with the interface places in a suitable way.
The idea of [19,21] is to make visible how an environment interacts via these
places. The environment observes that it puts a token onto an input place, but
not when the token is taken, and vice versa for output places. Thus, for each
input (output) place a, we add an arc from (to) a new a-labelled transition and
compare the resulting MPNs with �MPN . In the following definition, we assume
that a− and a+ are fresh in the sense that they are not in P ∪ T .



Modal Open Petri Nets 35

Definition 16 (���MON wrapper). The �MON wrapper of an �MON N is the
MPN wrap(N) (also denoted here by Nw). Nw is obtained from N by renaming
a ∈ I (a ∈ O) to the fresh a− (a+) – defining Pw; these inherit the arcs and
initial marking from a – defining m0

w. We set Σw = Σ ∪̇I ∪̇O and add a-labelled
transitions a to T and T� for all a ∈ I ∪ O – defining also Tw, T�

w and lw. The
modified W is extended on the new pairs involving some new transition a by
Ww(a, a−) = 1 for a ∈ I, Ww(a+, a) = 1 for a ∈ O and 0 otherwise – defining
Ww. See Fig. 3 for the example N2 and wrap(N2).

p1p0

a2a1

N1

a1

a3

a2

a4N3

p1p0

a2a1N2

p1p0

a+
2a+

1

a1 a2

wrap(N2)

Fig. 3. Three MON N1, N2, N3 and wrap(N2)

Definition 17 (���MON refinement). Let N1 and N2 be two �MON with the
same alphabet as well as input and output places. We say that N1 is a refinement
of N2, written N1 ��MON N2, if wrap(N1) �MPN wrap(N2). ♦

This definition extends Definition 10: since an MPN N is identical to
wrap(N), ��MON and �MPN coincide if applied to two MPN.

As a first example, we show that N1 ��MON N2 for the MON N1 and N2

in Fig. 3 by showing a suitable MPN-relation R. We write markings as a formal
sum: e.g. if p1 and a1 have one token each, we write p1 + a1, and we write
this also for a marking of wrap(N2) although the place has changed its name
to a+

1 there; 0 is the empty marking. With this, R ={(p0, p0), (p1 + a2, p1 +
a1), (a2, p1), (p1, a1), (a1 + a2, a1 + a2), (a1, a1), (a2, a2), (0, 0)}.

An interesting pair is (p1 + a2, p1 + a1): the only enabled must-transition
on the specification side is a1; although the token on a1 is produced after the
token on a2 in N1, this can be matched using the second τ -transition, which is a
must transition. Thus, the pair (a2, p1) is reached. On the refinement side, a2 is
enabled, which can be matched with the second τ -transition in N1; it is sufficient
that this is a may-transition. Additionally, the two second τ -transitions match
each other as required.
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Here, the specification produces two messages in some order while the refine-
ment produces them the other way round. We justify this intuitively after the
definition of asynchronous composition.

rc err pwd

rw m

t’

t

t”

Fig. 4. Refinement ATM ′ of ATM

As another example, Fig. 4 shows a refinement ATM ′ of the lower MON
ATM in Fig. 1. Here, the optional top right may-transition is omitted, possibly
because we assume that the password provider in Fig. 1 is used and we expect
no errors due to premature passwords. Furthermore, the optional shortcut t is
now a must-transition. But there is a difference that makes it less obvious that
ATM ′ really is a refinement of ATM : if the shortcut is used in ATM , it can only
be used again the next but one time; in ATM ′, it can only be used one time
later. Let us prove the refinement.

The two MON have the same places except for the lower two places of ATM ′;
obviously, these together will always have one token. For each reachable marking
m of wrap(ATM ), we denote by m+ l (m+r) the same marking of wrap(ATM ′)
with an additional token on the left (right) additional place. The MPN-relation
R for wrap(ATM ) and wrap(ATM ′) consists of all pairs (m+l,m) and (m+r,m)
for such reachable m, obviously relating the initial markings.

The new visible must-transitions of wrap(ATM ) and the upper must-
transitions of ATM have the same labels and effects in wrap(ATM ′). Further-
more, m

τ−→ m′ due to t′ in wrap(ATM ) if and only if m + l
τ−→ m′ + r due
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to t′ in wrap(ATM ′) if and only if m + r
τ−→ m′ + l due to t′′ in wrap(ATM ′).

Thus, all must- and their underlying may-transitions (except t) are matched
appropriately.

The may-transition of wrap(ATM ′) is matched by itself in wrap(ATM ).
Finally, t can only fire under a marking m + r in wrap(ATM ′) resulting in
m + r

τ��� m′ + l. This is matched in wrap(ATM ) by m
τ��� m′ due to t.

We call some a ∈ Σ ∪ I ∪ O action live in an �MON N if it is action live
in wrap(N). This is the case for each a ∈ I, whereas for a ∈ O it means: N
can always put another token onto a provided that sufficiently many tokens are
provided on the input places. Obviously, action liveness is also preserved under
��MON .

We now come to the most important operator of this paper; it merges com-
mon interface places, modelling asynchronous communication.

Definition 18 (�MON asynchronous composition). Two �MON N1 and N2

are called (async-)composable whenever (Σ1 ∪ I1 ∪ O1) ∩ (Σ2 ∪ I2 ∪ O2) = (I1 ∩
O1) ∪ (I2 ∩ O2) =: asc(N1, N2). We can further assume that the four place and
transition sets are pairwise disjoint except for asc(N1, N2).

The (asynchronous) composition of such �MON is the �MON N1 ⊕ N2 =
(P, I,O,Σ, T, T�,W,m0, l) where P , Σ, T and T� are the componentwise
unions. The interface places are I = (I1 ∪ I2) \ asc(N1, N2) and O = (O1 ∪
O2) \ asc(N1, N2). For i = 1, 2, marking m0 coincides on p ∈ Pi with m0

i , and l
coincides on t ∈ Ti with li. Finally,

W (p, t) =

⎧
⎨

⎩

W1(p, t) if p ∈ P1 ∧ t ∈ T1

W2(p, t) if p ∈ P2 ∧ t ∈ T2 — W (t, p) is defined analogously.
0 otherwise

♦

Composability ensures that N1 ⊕ N2 is well-defined. In particular, it ensures
that synchronous and asynchronous channels do not get confused. One could also
think of a variant that combines parallel and asynchronous composition where
the components also synchronize on common actions – actions we have forbidden
here. We observe that the composition ⊕ is commutative and associative up to
isomorphism for pairwise composable components. Note that for three �MON N1,
N2 and N3 with some a ∈ I1∩O2∩I3, (N1⊕N2)⊕N3 and N1⊕(N2⊕N3) might
be well-defined, but would have different behaviour in general: N2 communicates
on a with N1 in one and with N3 in the other composition. So also N1 and N3

have to be composable.
Let us reconsider the nets N1 and N2 in Fig. 3. As a potential argument

against reordering messages, one might come up with N3, which looks like it is
sensitive to the order in which tokens arrive on a1 and a2. In N2 ⊕ N3, the first
token arrives on a1, and a token on a3 can be produced immediately; in N1⊕N3,
the first token arrives on a2. But using the second τ -transition of N1, a token
can be put onto a3 before marking a4, so N3 cannot “see” the reordering. Thus,
this reordering should be allowed in a refinement step. To prove that ��MON is
indeed a precongruence w.r.t. ⊕, we need another lemma.
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Lemma 19. Let N1 and N2 be two composable �MON and A = {(a, a) | a ∈
asc(N1, N2)}, then (wrap(N1) ⇑ wrap(N2))[A] and wrap(N1 ⊕ N2) are isomor-
phic.

Proof. By composability, asc(N1, N2) is the set of the common actions of
wrap(N1) and wrap(N2). For wrap(N1) ⇑ wrap(N2), the unique a-labelled tran-
sition a in one net is merged with the unique a-labelled transition a in the other
if a ∈ asc(N1, N2), and then all these a-labels are hidden. Hence, A is a set
as required in Definition 14 and [A] merges a+ and a− into one place, which
we may call a again; cf. Fig. 2. Now the only difference is that transitions are
pairs, where always one component is τ . Removing these components results in
wrap(N1 ⊕ N2). ��
Theorem 20. The refinement relation ��MON is a precongruence for ⊕, i.e. for
three �MON N1, N2 and N3 where N2 is composable with N3 and N1 ��MON N2,
also N1 is composable with N3 and N1 ⊕ N3 ��MON N2 ⊕ N3.

Proof. Composability only depends on the interfaces, so the first claim is obvious.
Let A = {(a, a) | a ∈ asc(N1, N3)} = {(a, a) | a ∈ asc(N2, N3)}.

By definition of ��MON and the precongruence properties of �MPN , we have

– wrap(N1) ⇑ wrap(N3) �MPN wrap(N2) ⇑ wrap(N3).

Now by Lemmas 19 and 15,

– wrap(N1 ⊕ N3) �MPN (wrap(N1) ⇑ wrap(N3))[A]
�MPN wrap(N1) ⇑ wrap(N3) and

– wrap(N2) ⇑ wrap(N3) �MPN (wrap(N2) ⇑ wrap(N3))[A]
�MPN wrap(N2 ⊕ N3).

Thus, wrap(N1 ⊕ N3) �MPN wrap(N2 ⊕ N3) and N1 ⊕ N3 ��MON N2 ⊕ N3. ��
It might seem that the wrap-based definition of our refinement relation is

somewhat arbitrary; our next aim is to show its optimality by proving a coarsest-
precongruence result. The starting point is that modal refinement is accepted
for MTS, so its translation �MPN to MPN is in a sense just right. Hence, the
optimal refinement relation � on �MON should respect this: if N1 � N2 for MPN
N1 and N2, then also N1 �MPN N2. Furthermore, � should be a precongruence
w.r.t. ⊕. To be optimal, it should allow all refinements consistent with these two
requirements, so � should be the coarsest MPN-respecting precongruence w.r.t.
⊕; such a coarsest precongruence always exists.

In principle, this coarsest precongruence could be finer than �MPN for MPN
but – being ��MON – it actually coincides with �MPN for MPN, which is even
more pleasing.

One could question why a precongruence for all �MON is needed. Our proof
below also supports another argument with the same starting point to answer
this. In this argument, we call an �MON No an observer of a MON N if it has
the same interface places as N but with input and output interchanged; thus,
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N ⊕ No is an MPN. Hence, No interacts with N on the complete asynchronous
interface of the latter, and it can make its observations visible on its synchronous
interface. Now one could alternatively aim for some � on MON that is the
coarsest precongruence w.r.t. ⊕ such that N � N ′ implies, for all observers No

of N (i.e. also of N ′), that N ⊕ No �MPN N ′ ⊕ No. Again, this � is ��MON

(restricted to MON). In fact, for all MON N and N ′, N ��MON N ′ if and only
if N ⊕ No �MPN N ′ ⊕ No for all observers No of N , as we show more generally
in the next proposition.

Definition 21. A relation � on �MON is called MPN-respecting if it implies
�MPN on MPN. An �MON No is an observer of an �MON N , if No and N are
composable, Io = O and Oo = I. ♦

Proposition 22. Let N and N ′ be �MON with the same alphabet as well as
input and output places. Then N ��MON N ′ if and only if N⊕No �MPN N ′⊕No

for all observers No of N .

Proof. For the “if”-direction, we construct a specific No: it has, for each a ∈ I∪O,
an empty place a and an a′-labelled transition, where a′ is a fresh action, i.e.
a′ �∈ Σ ∪ I ∪ O. (These fresh actions are needed, since an interface place is not
allowed to be an action as well.) The only arcs have weight one and connect each
a ∈ Io to the a′-labelled transition and, for a ∈ Oo, the a′-labelled transition to
the place a. Further, let f be the relabelling that maps each a′ to a and is the
identity on Σ.

Now, N ⊕No is isomorphic to wrap(N) except that it has labels a′ instead of
a and, so, (N ⊕ No)[f ] is isomorphic to wrap(N). Thus, N ⊕ No �MPN N ′ ⊕ No

implies (N ⊕ No)[f ] �MPN (N ′ ⊕ No)[f ], which implies N ��MON N ′.
The “only if”-direction follows from Theorem 20 and the observation after

Definition 17.

Theorem 23. Relation ��MON is the coarsest MPN-respecting precongruence
w.r.t. ⊕ on �MON.

Proof. Let � be the coarsest MPN-respecting precongruence w.r.t. ⊕ on �MON.
Due to Theorem 20 and the observation after Definition 17, ��MON is an MPN-
respecting precongruence as well. Thus, it is contained in � by the definition of
the latter.

This definition also gives us that N � N ′ implies N ⊕ No � N ′ ⊕ No and
N⊕No �MPN N ′⊕No for all observers No of N . The latter implies N ��MON N ′

by Proposition 22, showing that � is contained in ��MON as well. ��
We close with a quick look at the operators that we have only defined for MPN

so far. The following definition extends Definition 11 to �MON; in particular,
par-composability holds automatically for MPN.

Definition 24 (further ���MON operators). Two �MON N1 and N2 are called
par-composable whenever (Σ1∪I1∪O1)∩(Σ2∪I2∪O2) = Σ1∩Σ2. We can further
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assume that the place sets are disjoint. Then, we define their parallel composition
N1‖N2 as in Definition 11, letting also I and O be the componentwise unions.

For an �MON N , a relabelling function f is defined as in Definition 3 except
that, additionally, we require that Σ′ and I ∪O be disjoint. With this, relabelling
N [f ] and hiding N/H are defined word by word as in Definition 3. Similarly,
the parallel composition with hiding N1 ⇑ N2 of two par-composable �MON N1

and N2 is defined as before as (N1‖N2)/H with H = Σ1 ∩ Σ2. ♦

Also the operations ‖ and ⇑ are commutative and associative up to isomor-
phism for pairwise par-composable components.

Theorem 25. The relation ��MON is a precongruence for ‖ and ⇑ on �MON,
i.e. for three �MON N1, N2 and N3 where N2 is par-composable with N3 and
N1 ��MON N2, also N1 is par-composable with N3, N1‖N3 ��MON N2‖N3 and
N1 ⇑ N3 ��MON N2 ⇑ N3. The relation is also a precongruence for relabelling
and hiding.

Proof. For parallel composition, observe that wrap(Ni)‖wrap(N3) and
wrap(Ni‖N3) are isomorphic for i = 1, 2, since wrap adds the same transitions
to the same places for both systems, and these new transitions are also not syn-
chronized in the first system. By definition of ��MON , we have wrap(N1) �MPN

wrap(N2), which implies wrap(N1)‖wrap(N3) �MPN wrap(N2)‖wrap(N3) by
Corollary 13. The above observation gives wrap(N1‖N3) �MPN wrap(N2‖N3)
and we are done.

For N1 ��MON N2 and a suitable relabelling function f , we extend f to fIO,
which additionally is the identity on I1∪O1; fIO is a relabelling function for each
wrap(Ni). Now we only have to observe that wrap(Ni)[fIO]) and wrap(Ni[f ]) are
isomorphic. With this, we are done as above, using again the definition of ��MON

and Corollary 13.
The case of hiding is easier, and the case of ⇑ is implied. ��

4 Modal Asynchronous I/O-Petri Nets (MAP)

For comparison, we have a closer look at MAP, which are MPN where the visible
actions are subdivided into input, output and internal actions [8]. An input
action a indicates that an a-labelled transition takes a token from the (only
implicit) place a, and analogously for an output. For composition, a common
action a must always be an input of one and an output of the other component.
A new place a is created and connected to a-labelled transitions as explained
above; it represents an internal channel of the overall system. The label a is
changed to internal actions a� on the output and �a on the input side.

The main issue in [8] is to decide the property message consuming (and
a variation thereof): a net is message consuming w.r.t. internal channel a if,
whenever there is a token on a, it is possible to perform a must-�a, possibly
preceded by output, internal or hidden must-transitions. This is regarded as a
quality criterion for communication since no message in a channel will necessarily
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be ignored. Message consuming is preserved under composition and refinement,
and to achieve this, internal actions must be visible.

Message consuming can be too strict: possibly, a message on a can only be
processed sensibly if another message on b is received first. Also, a message
consumption is certainly not so relevant if it has no effect for the environment.
So we will not pursue this issue here. But note that the main idea in [19] is
similar in spirit: there, the aim is to construct systems that only stop when a
final marking (from a predefined set) is reached where all channel places are
empty. Thus, the system will not stop while a message is pending. In contrast
to the MAP approach, this property is not checked for the components; the aim
is only to achieve it in the final system where it really is essential.

Since it is argued in [8] that, for stepwise refinement, the internal transitions
should be hidden in the end, we will do so immediately in our comparison. To
avoid a partitioning of Σ, we present MAP as MPN where the visible actions
have the form a� or �a and, for no a, we have a� and �a in Σ. The refinement
is simply �MPN . MAP are composable if their alphabets are disjoint. In the
composition ⊕HH , whenever some a� is in one and �a in the other alphabet,
a new place a is created together with an arc from each a�-labelled transition
and an arc to each �a-labelled transition as sketched in Fig. 5 on the left; the
respective transitions are hidden.

Essentially, we could produce the same net by adding a place a and the resp.
connections to each of the two MAP first and then apply ⊕. The first part gives
us a function that embeds MAP into MON.

a
� ⊕HH

�
a

=

a

a
�
1

�
a2N

a
�

a

�
aNa

Fig. 5. Composition ⊕HH , MAP N and the MPN Na

Definition 26. The function map2mon maps each MAP N to a MON by adding
for each a� and �a in Σ a new empty place a together with a weight-1 arc from
each a�-labelled transition or an arc to each �a-labelled transition resp. All
actions are hidden.

For a symbol a, Na denotes an MPN (not a MAP!) as shown in Fig. 5. For a
set A, we denote the disjoint union of the Na with a ∈ A by NA. ♦

For the MAP N in Fig. 5, map2mon(N) is the MON N2 in Fig. 3. Clearly, any
map2mon(N) is a MON with the restriction (violated by the MON in Fig. 1) that
each transition is only connected to at most one interface place, and then with
an arc of weight one. From each such MON, we can shear off the interface places
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and reconstruct the respective transition labels for a corresponding MAP. The
following theorem states that MAP is a proper sub-setting of our MON-setting
with a stricter refinement.

Theorem 27. Function map2mon embeds MAP into MON in the sense that
it is injective but not surjective and, for all composable MAP N1 and N2,
map2mon(N1) and map2mon(N2) are composable and

map2mon(N1 ⊕HH N2) = map2mon(N1) ⊕ map2mon(N2) .

If we have N1 �MPN N2 instead, then map2mon(N1) ��MON map2mon(N2),
but not vice versa.

Proof. The first sentence should be clear. For the refinement, let A = {a | a� or
�a in Σ} and let f rename a� (!) to a if �a ∈ Σ and �a (!) to a if a� ∈ Σ. Now,
(Ni ⇑ NA)[f ] is isomorphic to wrap(map2mon(Ni)). Since (N1 ⇑ NA)[f ] �MPN

(N2 ⇑ NA)[f ] by the MPN-precongruence results, we are done.
Finally, we prove that the implication is strict. Consider the MAP N in

Fig. 5 with map2mon(N) = N2 in Fig. 3, and the similar MAP N ′ with
map2mon(N ′) = N1 in Fig. 3. We have N1 ��MON N2, but N �MPN N ′ fails
due to the reordering. ��

In [8], it is shown that �MPN on MAP is a precongruence for ⊕HH with a
(not so difficult) proof that goes into the details of the definition of �MPN . One
can also prove this from general precongruence results on MPN. Let N1, N2 and
N3 be MAP such that N1 �MPN N2 and N1 and N3 are composable. Let A be
the set of those a where �a is in one of Σ1 and Σ3 while a� is in the other. Then,
Ni ⇑ NA ⇑ N3 is isomorphic to Ni ⊕HH N3 and, with N1 ⇑ NA ⇑ N3 �MPN

N2 ⇑ NA ⇑ N3, we are done.

5 Bounded Modal Open Nets

To argue that N1 ��MON N2 for MON N1 and N2, we have to exhibit an MPN-
relation for wrap(N1) and wrap(N2). The problem is that the latter usually have
infinitely many reachable markings, since arbitrarily many tokens can be put on
each input place. One solution to this problem is to work with finite nets and to
require that the final system (a closed MON as defined below) is b-bounded for
some fixed bound b, i.e. that all reachable markings are b-bounded, assigning at
most b tokens to each place. We sketch below how to modify MPN-relations for
a setting where more than b tokens on a place are considered to be an error.

It can also be helpful to observe that a wrap(N) is a special MPN, where each
visible action a appears just once, and on a must-transition. From the position
of such a transition, we can read off whether a is an input or an output action
and whether the incident place (still denoted by a below) was an input or output
place originally without having specific components in the MPN-tuple. We give
here a first observation only, calling an MPN a special MPN (sMPN) if it is
wrap(N) for some MON N .
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Proposition 28. Let R be an MPN-relation for sMPN N1 and N2, and
(m1,m2) ∈ R. Writing m + i for a marking m with an additional token on
input place i, also R ∪ {(m1 + i,m2 + i)} is an MPN-relation for N1 and N2.

Proof. We check the two conditions for (m1 + i,m2 + i).
— Let m2 + i

α−→ m′′
2 . By (m1,m2) ∈ R and m2

i−→ m2 + i, there is
some (m′

1,m2 + i) ∈ R with m1
i=⇒ m′

1; we can assume that the underlying
firing sequence starts with m1

i−→ m1 + i, since the i-transition does not remove
any token; thus, m1 + i =⇒ m′

1. Furthermore, m′
1

α=⇒ m′′
1 with (m′′

1 ,m′′
2) ∈ R.

Hence, m1 + i
α=⇒ m′′

1 matches m2 + i
α−→ m′′

2 .

— Let m1 + i
α��� m′′

1 . By (m1,m2) ∈ R and m1
i��� m1 + i, there is some

(m1 + i,m′
2) ∈ R with m2

i=⇒ m′
2; we can again assume that the underly-

ing firing sequence starts with m2
i��� m2 + i, so that m2 + i =⇒ m′

2. Fur-
thermore, m′

2
α=⇒ m′′

2 with (m′′
1 ,m′′

2) ∈ R. Hence, m2 + i
α=⇒ m′′

2 matches
m1 + i

α��� m′′
1 . ��

This observation shows that m1
i−→ m1+i can always be matched by m2

i−→
m2 + i and vice versa; no other pair than (m1 + i,m2 + i) is needed for this in
R. This can help to prove or disprove N1 �MPN N2.

Often, it is desirable that systems are finite state and channels have a finite
capacity. The final systems in such a setting can be modelled by finite b-bounded
Petri nets; for the rest of this section, we fix some arbitrary positive bound b.

Definition 29. A MON is closed if it has no input or output places. A marking
m of a MON or an sMPN that is not b-bounded is called an error ; then, a
marking m′ with m′ =⇒ m is called illegal. ♦

A closed MON describes a final system, which usually arises as the compo-
sition of a system with the final user. We consider a setting where such a closed
MON is required to be b-bounded. Note that a closed MON N coincides with
wrap(N).

If such a MON is built with a system component N ′, a marking of wrap(N ′)
that is not b-bounded is an error ; it cannot occur in the final system and sub-
sequent behaviour is irrelevant. In fact, this already holds for an illegal marking
m′, since nothing can prevent wrap(N ′) to move autonomously from m′ to an
error. Note that the occurrence of a transition t can only lead from a legal to an
illegal marking if t is an input.

Interface automata (IA) [5] form a similar setting (with synchronous commu-
nication), where an “unexpected” input leads to an error. While IA are a kind
of LTS, there is quite some literature on combinations with modalities, see [4]
for an advanced approach called modal interface automata (MIA). Similarly to
transferring refinement and precongruence results from MTS to MPN, one can
transfer these with some care from MIA to sMPN. The refinement definition
looks as follows; note that any behaviour is better than an error, so an illegal
marking does not have to be matched.
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Definition 30 (sMPN-b-refinement). For sMPN N1 and N2 with the same
input and output actions, we say that N1 is an sMPN -b-refinement of N2, written
N1 �b

sMPN N2, if there is an sMPN -b-relation R between the reachable markings
of N1 and N2 with (m0

1,m
0
2) ∈ R such that for every (m1,m2) ∈ R where m2 is

legal:

– m1 is legal,
– m2

α−→ m′
2 ⇒ m1

α̂=⇒ m′
1 ∧ (m′

1,m
′
2) ∈ R,

– m1
α��� m′

1 ⇒ m2
α̂=⇒ m′

2 ∧ (m′
1,m

′
2) ∈ R. ♦

For closed MON N1 and N2, wrap(N1) �b
sMPN wrap(N2) simply means that

m0
1 must be legal if m0

2 is. Intuitively, this means: if the system specification
composed with the user is b-bounded, then the refinement composed with the
user is b-bounded as well.

Some details are simpler for sMPN than for MIA. Here, m′ is illegal if
m′ =⇒ m for some error m. For MIA, also outputs must be considered for
the transition sequence; we can ignore these here, since output transitions only
remove tokens. Furthermore, for the matching of transitions as in Definition 30,
inputs and outputs are treated differently for MIA: in case of an input, the
matching transition sequence must start with the respective input. Here, this
does not matter; if the only visible transition in a firing sequence is an input, we
can just as well move it to the front since it does not remove tokens.

Additionally, MIA have so-called disjunctive must-transitions [4] for defining
conjunction on MIA. It is not at all clear to us how a conjunction for Petri
nets (“real” Petri nets with concurrency) could look like. Compared to a setting
without conjunction, disjunctive must-transitions make [4] unnecessarily difficult
to read. Therefore, we plan to work out a self-contained presentation of the b-
bounded setting. There, it will be worthwhile to explicitly accompany each sMPN
by a modified reachability graph, where – as in MIA – all illegal markings are
merged into a special error state.

As a final remark, we point out that our b-bounded setting is optimistic like
IA and MIA. An sMPN might have behaviour that leads to an error. As long as
an error cannot be reached autonomously (i.e. the initial marking is illegal), there
is an environment such that the composition is error-free; e.g. the environment
may simply not provide any inputs. In fact, if the respective MON has some
input place, reachable errors are unavoidable. A pessimistic approach as in [3]
forbids components where errors are reachable, it cannot be applied here.

6 Conclusion

In [6,8], Petri nets were augmented with may- and must-modalities and modal
refinement for stepwise design, and they were used for modelling asynchronous
communication via merging implicit interface places (MAP). We have here
applied a much older framework for nets with interface places [21], see also [19],
and developed an according refinement relation for nets with modalities and
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explicit interface places (MON). We have justified this relation with a coarsest-
precongruence result. Our studies were carried out in a larger setting with modal
nets having interface places for asynchronous as well as action-labelled transi-
tions for synchronous communication.

Details of the MAP-approach are related to checking so-called message con-
sumption, a property that holds if, intuitively speaking, each message can even-
tually be received, i.e. removed from the channel. For stepwise refinement, it is
more appropriate to abstract from these details, as also suggested in [6,8]. With
this abstraction, it turned out that MAP is a subsetting of MON with a stricter
refinement relation. With an example, we have shown that some reordering of
messages leads to a rejection as a refinement in the MAP-approach, although
it is intuitively acceptable for asynchronous communication (and in the MON-
approach).

To show that one MON refines another, a suitable alternating simulation
has to be exhibited. These simulations have special properties (compared to the
general alternating simulations used for MAP), which could help to find one or
prove that none exists. We have given one such property here and will look into
this issue in the future.

Often, it is desirable that the components are finite-state and channels have a
finite capacity. We have given a rough sketch how this can be integrated into the
MON-approach and plan to work this out in detail. Furthermore, also motivated
by the idea of message consumption, we think about integrating final markings
as in [19] such that a system can only stop when all channels are empty.
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