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2 MTA-BME Lendület Cyber-Physical Systems Research Group,

Budapest, Hungary
molnarv@mit.bme.hu

Abstract. The saturation algorithm for symbolic state space genera-
tion has proved to be an efficient way to tackle the state space explo-
sion problem in the verification of concurrent, asynchronous systems.
Since its original publication in 2001, several variants and extensions
have been introduced. The reason for altering the algorithm in these
variants is often specific to how it handles transitions. Saturation heav-
ily relies on the notion of locality: transitions tend to affect only some of
the state variables. The saturation effect, however, can be achieved and
even enhanced with a weaker notion of locality, which we call conditional
locality. In this paper, we define a generalized version of the saturation
algorithm (GSA) for multi-valued decision diagrams that works with
conditional locality and show that it enables the direct usage of tran-
sition relations that previously required a specialized algorithm such as
variants of constrained saturation. Focusing on Petri nets, we also empir-
ically demonstrate on models of the Model Checking Contest that the
GSA often outperforms the original saturation algorithm whenever con-
ditional locality can be exploited and has virtually no overhead for other
models.

Keywords: Generalized saturation · Symbolic model checking ·
Formal verification · Conditional locality

1 Introduction

Model checking is a formal verification technique that looks for specified behavioral
patterns in a discrete-state system by exploring its state space. Even though we can
sometimes avoid the full exploration of the state space, the huge number of reach-
able states in non-trivial systems tend to limit the applicability of model check-
ing. Concurrent, asynchronous systems are especially problematic for approaches
based on a total ordering of events, because the interleaving of the behavior of
independent components can easily cause a combinatoric explosion.
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This problem has been tackled in many ways, one of which is symbolic model
checking with decision diagrams. Decision diagrams can efficiently encode large
state spaces by exploiting the regularities between states. Furthermore, the sym-
bolic encoding of states and transitions enables the efficient computation of next
states by working with sets of states and relations. Even though this technique
was a great step forward [2], simpler exploration strategies like breadth-first
search suffered from the large size of intermediate decision diagrams.

Decision diagrams have an interesting property: their size is not proportional
to the number of encoded states. In fact, after some point, adding more states
will reduce the size of the diagram because more and more regularities will be
introduced. This is what the saturation algorithm, first introduced in [3], exploits.

To saturate means to fill completely. The main idea of the algorithm is to sat-
urate smaller parts of a decision diagram before moving on to larger parts. Specif-
ically, saturation processes decision diagrams in a bottom-up fashion, exploring
the state space starting with transitions that do not require any component
whose state variable is higher in a variable ordering than the processed level
– transitions that are local on the currently processed variables. This is often
possible because in concurrent systems, transitions usually affect only a small
number of the components. With this strategy, saturation can keep all subdia-
grams empirically small.

The saturation algorithm initially required the Kronecker condition of the
transition relation, but this restriction was removed when [10] introduced matrix-
diagrams and [5] did the same with decision diagrams with 2 levels per variable.

Efficient saturation-based model checking for computational-tree logic (CTL)
has been introduced in [12]. The main novelty was the introduction of con-
strained saturation, which provides an efficient way to handle constraints on
the state space. Constrained saturation takes a set of states – the constraint –
and performs state space exploration without leaving the constraint. With the
modified algorithm, it is possible to avoid intersecting the transition relations
with the constraint, which preserves the locality of transitions and the beneficial
properties of saturation.

Building on constrained saturation, [11] introduced further extensions to sup-
port the verification of linear temporal logic (LTL) and [8] proposed a new app-
roach for the model checking of prioritized Petri nets. Both of them proposed
ways to preserve locality for a transition relation that is composed of simple tran-
sitions and additional constraints (such as synchronization between the system
and the property automaton or enabledness based on priorities).

In this paper, we propose a new algorithm for saturation that generalizes
the attempts of preserving locality in the approaches above. We introduce con-
ditional locality to relax the original notion of locality and automatically handle
transition relations that previously required a form of constrained saturation
to process efficiently (such as [8,11]). In addition to generalizing a family of
algorithms, using conditional locality can increase the saturation effect, which is
intuitively associated with better performance. We investigate this effect in the
context of Petri nets, where we empirically show that the generalized saturation
algorithm (GSA) can be orders of magnitude faster than the original saturation
algorithm (presented in detail in [4]) and is virtually never slower.
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The main motivation of conditional locality is to compute fixed points even
more locally. Saturation ignores variables that are independent of the processed
events to avoid computing the fixed point for each of their valuations. With
conditional locality, we can ignore even those variables that are not written but
read by an event (because they will not change), but compute the fixed point as
many times as the value of those variables would cause a different result. The
intuition is that the resulting nodes will be part of the final decision diagram
more often than those created by the original saturation algorithm, leading to
less intermediate nodes and therefore improved performance.

The most important related work is [10], where the authors propose a method
to split a transition relation such that the resulting relations are as local as
possible. The key idea is to extract relations which do not depend on the variables
higher in the variable ordering and therefore the method works well when the
transition relation is a “sum” of such a relation and another one (i.e. R =
R1 ∪R2). Our approach also handles the cases when the relation is the result of
“removing” certain cases from a transition that normally does not depend on a
variable (i.e. R = R1 \ R2). Another work that is similar in spirit is [9], where
the dependencies of high-level transitions on state variables are more fine-grained
than dependent and independent, which enables a more compact encoding and
more efficient update of the transition relation. Our approach also refines this
dependency relation to relax the notion of locality.

The key novelties introduced in this paper are the following: (1) the intro-
duction of conditional locality to relax the original notion of locality; (2) the gen-
eralization of a family of saturation-based algorithms using conditional locality;
and (3) an empirical demonstration of the efficiency of the proposed approach on
Petri nets. The paper is structured as follows. Section 2 presents the formalisms
and notations used in the rest of the paper. Section 3 introduces conditional
locality and the generalized saturation algorithm. The empirical evaluation on
Petri nets is in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background

In this section we summarize the theoretical background of our work and intro-
duce the necessary notations. First, we briefly present Petri nets in Sect. 2.1, then
we introduce partitioned transition systems in Sect. 2.2. Building on the latter,
we define locality in Sect. 2.3, then formalize multi-valued decision diagrams for
encoding states (Sect. 2.4) and abstract next-state diagrams for encoding tran-
sition relations (Sect. 2.5). Finally, we present the saturation and constrained
saturation algorithms in Sect. 2.6.

2.1 Petri Nets

Petri nets are a widely used formalism to model concurrent, asynchronous sys-
tems. The formal definition of a Petri net (including inhibitor arcs) is as follows
(see Fig. 1 for an illustration of the notations).
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Fig. 1. Petri net model of 3 concurrent processes locking (tli) and unlocking (tui ) a
mutually exclusive resource. Examples for the interpretations of the various notations
introduced in Sects. 2.1–2.3 and 3.1 are given on the right.

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T,W,M0) where:

– P is the set of places (defining state variables);
– T is the set of transitions (defining behavior) such that P ∩ T = ∅;
– W = W−�W+�W ◦ is a multiset of three types of arcs (the weight function),

where W−,W ◦ : P × T → N and W+ : T × P → N are the set of input arcs,
inhibitor arcs and output arcs, respectively;

– M0 : P → N is the initial marking, i.e. the number of tokens on each place.

The three types of weight functions describe the structure of the Petri net:
there is an input or output arc between a place p and a transition t iff W−(p, t) >
0 or W+(t, p) > 0, respectively, and there is an inhibitor arc iff W ◦(p, t) < ∞.

The state of a Petri net is defined by the current marking M : P → N.
The dynamic behavior of a Petri net is described as follows. A transition t is
enabled iff ∀p ∈ P : M(p) ∈ [

W−(p, t),W ◦(p, t)
)
. Any enabled transition t

may fire non-deterministically, creating the new marking M ′ of the Petri as
follows: ∀p ∈ P : M ′(p) = M(p) − W−(p, t) + W+(t, p). We denote the firing
of transition t in marking M resulting in M ′ with M

t−→ M ′. A marking Mi is
reachable from the initial marking if there exists a sequence of markings such
that M0

t1−→ M1
t2−→ · · · ti−→ Mi. The set of reachable markings (i.e. the state

space of the Petri net) is denoted by Sr. This work assumes Sr to be finite.

2.2 Partitioned Transition Systems

A generic model for saturation is usually called a partitioned transition system
(PTS), where high-level events (causing transitions) and their dependencies on
state variables are preserved to partition the low-level next-state relations and
localize the effect of transitions [4]. In decision diagram-based model checking,
such models usually come with a user-specified variable ordering.
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Definition 2 (Variable ordering). A variable ordering over variables V
(|V | = K) is a total ordering of elements of V that defines a sequence. The
variable in position k of the sequence is denoted by xk. We will say that x1 is
the lowest and xK is the highest in the ordering. We will use the notations
V≤k = {x1, . . . , xk} and V>k = {xk+1, . . . , xK} for sets of variables constituting
a prefix or suffix (respectively) of the sequence.

With a specified variable ordering, the formal definition of a PTS is as follows
(again see Fig. 1 for an illustration on the example model).

Definition 3 (Partitioned Transition System). A partitioned transition
system is a tuple M = (V,D, S0, E ,N ) where:

– V = {x1, . . . , xK} is the finite set of variables with an arbitrary but well-
defined variable ordering;

– D is the domain function such that D(xk) ⊆ N for all xk ∈ V ;
– S0 ⊆ Ŝ is the set of initial states, where Ŝ =

∏
x∈V D(x) is the potential state

space (the shape of which is unaffected by the chosen variable ordering);
– E is the set of high-level events, specifying groups of individual transitions;
– N ⊆ Ŝ×Ŝ is the transition relation partitioned by E such that N =

⋃
α∈E Nα.

We often use N as a function returning the “next states”: N (s) = {s′|(s, s′) ∈
N} and N (S) =

⋃
s∈S N (s).

A (concrete) state of the system is a vector s ∈ Ŝ, where each variable xk has a
value from the corresponding domain: s[k] ∈ D(xk). A partial state over variables
X is a vector assigning a specific value to variables in X and � (undefined) to
those in V \ X. Sets of partial states are denoted by S(X) and when significant,
a single partial state is denoted by s(X). A partial state s(X) matches a concrete
state s if s[k] = s(X)[k] for every xk ∈ X, denoted by s ∈ M(s(X)).

2.3 Locality

Exploiting the information preserved in a PTS, we can define different relation-
ships between an event and a variable (illustrated in Fig. 1).

Definition 4 (Locally read-only). An event α is locally read-only on vari-
able xk if for any (s, s′) ∈ Nα we have that s[k] = s′[k]. Informally, the value of
x is never modified by the transitions of event α.

While the locally read-only property guarantees that the value of the variable
will not change, the event can still depend on the information stored in the
variable. The following property forbids this as well.

Definition 5 (Locally invariant). An event α is locally invariant on variable
xk if it is locally read-only and for any (s, s′) ∈ Nα and v ∈ D(xk) we also have
(s[xk←v], s′

[xk←v]) ∈ Nα, where s[xk←v] is a state where the value of variable xk

is v, but all other variables have the same value as in s. Informally, the value of
x does not affect the outcome of event α.
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With the help of local invariance, we can now define locality, the central
notion of the saturation algorithm.

Definition 6 (Locality). An event α ∈ E is said to be local over variables
X ⊆ V if it is locally invariant on variables in V \ X. If X is minimal (i.e. the
event is dependent on variables in X) then we say that X is the set of supporting
variables of α: Supp(α) = X. The variable with the highest index among the
supporting variables (according to a variable order) is the top variable (Top(α))
of α. We use Ek = {α | Top(α) = xk} and Nk =

⋃
α∈Ek

Nα to denote events and
their next-state relations whose top variable is the xk.

The next-state relation of an event α local on variables Supp(α) = X can
be defined over partial states S(X), because no other information is required to
compute its image. This enables a compact representation and clever iteration
strategies like saturation.

2.4 State Space Encoded in Multi-valued Decision Diagrams

Saturation works with different types of decision diagrams. This paper addresses
the version that uses multi-valued decision diagrams to encode the state space.1

Definition 7 (Multi-valued decision diagram). An ordered quasi-reduced
multi-valued decision diagram (MDD) over a set of variables V (|V | = K), a
variable ordering and domains D is a tuple (V, lvl, children) where:

– V =
⋃K

k=0 Vk is the set of nodes, where items of V0 are the terminal nodes 1
and 0, the rest (V>0 = V \ V0) are internal nodes (Vi ∩ Vj = ∅ if i �= j);

– lvl : V → {0, 1, . . . ,K} assigns non-negative level numbers to each node,
associating them with variables according to the variable ordering (nodes in
Vk = {n ∈ V | lvl(n) = k} belong to variable xk for 1 ≤ k ≤ K and are
terminal nodes for k = 0);

– children : V>0 × N → V defines edges between nodes labeled with elements of
N (denoted by n[i] = children(n, i), n[i] is left-associative), such that for each
node n ∈ Vk (k > 0) and value i ∈ D(xk) : lvl(n[i]) = lvl(n) − 1 or n[i] = 0;
as well as n[i] = 0 if i /∈ D(xk);

– for every pair of nodes n,m ∈ V>0, if for all i ∈ N : n[i] = m[i], then n = m.

An MDD node n ∈ Vk encodes a set of partial states S(n) = S(V≤k) over vari-
ables V≤k such that for each s ∈ S(V≤k) the value of n[s[k]] · · · [s[k]] (recursively
indexing n with components of s) is 1 and for all s /∈ S(V≤k) it is 0.

There are efficient recursive algorithms that compute the result of set oper-
ations directly on MDDs (e.g. union is described in [4]).

An interesting property of MDDs is that the number of nodes does not grow
proportionally with the size of the encoded set. In fact, the size of an MDD
can decrease when adding new states because of the exploited regularities. This
phenomenon can be observed on Fig. 4, where each MDD from left to right
encodes one more state, but has either 3 internal nodes or 5. Also note that the
right-most MDD encodes the state space of the Petri net from Fig. 1.
1 See [6] for saturation with hierarchical set decision diagrams.
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2.5 Next-State Representations

We have introduced a generalization of next-state representations compatible
with saturation in [8] – we will build on this notion heavily in the generalization
of saturation variants.

Definition 8 (Abstract next-state diagram). An abstract next-state dia-
gram over a set of variables V (|V | = K) and corresponding domains D is a
tuple (D, lvl,next)

– D = �K
i=0Di is the set of next-state descriptors (NS descriptor or descriptor

for short), where items of D0 are the terminal identity 1 and the terminal
empty 0 descriptors, the rest (D>0 = D \ D0) are non-terminal descriptors;

– lvl : D → {0, 1, . . . ,K} assigns non-negative level numbers to each descriptor,
associating them with variables (descriptors in Dk = {d ∈ D | lvl(d) = k}
belong to variable xk for 1 ≤ k ≤ K and are terminal nodes for k = 0);

– next : D × N × N → D is the indexing function that given a descriptor d
and a pair of “before” and “after” variable values returns another descriptor
d′ such that lvl(d′) = lvl(d) − 1 or d′ = 0. Also denoted by d[v, v′] = d′ ⇔
(d, v, v′, d′) ∈ next (with d, d′ ∈ D, v, v′ ∈ N, d[v, v′] is left-associative) and
d[s, s′] = d[vK , v′

K ] · · · [v1, v′
1]. We require for any v, v′, v′′ ∈ N and v �= v′

that 1[v, v] = 1, 1[v, v′] = 0, and 0[v, v′′] = 0.

The abstract NS descriptor d ∈ Dk encodes the relation N (d) ⊆ N
K ×N

K iff for
all s, s′ ∈ N

K the following holds:
(
(s, s′) ∈ N (d) ⇔ d[s, s′] = 1

) ∧ (
(s, s′) /∈ N (d) ⇔ d[s, s′] = 0

)

Decision diagram-based representations such as MDDs with 2K levels or
matrix decision diagrams naturally implement abstract next-state diagrams –
descriptors are nodes of the diagram, the identity descriptor is the terminal one
node (1), the empty descriptor is the terminal zero node (0) and the indexing is
the same (in case of MDDs with 2K levels d[x, x′] is implemented by d[x][x′]).
The main difference between these representations and abstract next-state dia-
grams is that the latter are abstract – they can have any representation as long
as it can be mapped to the definition and they can be compared for equality.

In case of Petri nets, the simplest representation is the weight function of the
net. Given a Petri net with K = |P | places each constituting a separate state
variable (pk denoting the kth variable in the ordering encoding the number of
tokens on place p ∈ P ), a mapping to an abstract next-state diagram for every
transition t ∈ T is as follows.

– The set of descriptors is Di = N×N×N×Di−1 for 1 ≤ i ≤ K, i.e. tuples of the
input weight, inhibitor weight and output weight for pi and the descriptor of
for the next place if the transition is enabled with respect to pi (D0 = {1,0}).

– For the next function, if d = (v−, v◦, v+, d′), the result of indexing d[i, j] is d′

if v− ≤ i < v◦ and j = i − v− + v+ and 0 otherwise.
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Fig. 2. Pseudocode of constrained saturation and NS descriptors.

– For each transition t the corresponding descriptor is defined recursively: d0 =
1 and di =

(
W−(pi, t),W ◦(pi, t),W+(pi, t), di−1

)
.

Figure 2d illustrates the NS descriptors of transitions tli of the example Petri
net. A descriptor d = (v−, v◦, v+, d′) is denoted by a node with (v−, v◦, v+) and
d′ is denoted by an arrow from d. Descriptors can be shared between transitions.

2.6 Saturation

Saturation is a symbolic state space generation algorithm working on decision
diagrams [4]. Formally, given a PTS M , its goal is to compute the set of states
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S that are reachable from the initial states S0 through transitions in N : S =
S0 ∪ N (S0) ∪ N (N (S0)

) · · · = N ∗(S0), where N ∗ is the reflexive and transitive
closure of N . This is equivalent to computing the least fixed point S = S ∪N (S)
that contains S0. The main strength of saturation is a recursive computation of
this fixed point, which is based on the following definitions.

Definition 9 (Saturated state space). Given a partitioned transition system
M , a set of (partial) states S(X) over variables X is saturated iff S(X) = S(X) ∪
NX(S(X)), where NX =

⋃
α|Supp(α)⊆X Nα.

A saturated state space is a fixed point of NX . In model checking, the goal of
state-space exploration is to find a least fixed point S = S ∪ N (S) that contains
the initial states S0. Saturation computes this fixed point recursively based on
the structure of a decision diagram.

Definition 10 (Saturated node). Given a partitioned transition system
M , an MDD node n on level lvl(n) = k is saturated iff it encodes a set
of (partial) states S(n) that is saturated. Equivalently, the node is saturated
iff all of its children n[i] are saturated and S(n) = S(n) ∪ Nk(S(n)), where
Nk =

⋃
α|Top(α)=xk

Nα for 1 ≤ k ≤ K and N0 = ∅.
As suggested by the definition, locality is mainly used to compute a Top

value for each event, which is the lowest level on which fixed point computation
involving the event can happen. By definition, the terminal nodes 1 and 0 are
saturated because they do not have child nodes and N0 is empty. The saturation
algorithm is then easily defined as a recursive algorithm that given a node n
computes the least fixed point S(ns) = S(ns) ∪ Nk(S(ns)) that contains S(n),
making sure that child nodes are always saturated by recursion. When applied
on a node encoding the set of initial states, the result will be a node encoding
the states reachable through transitions in N .

The motivation of this decision diagram-driven strategy comes from the
observation that larger sets may often be encoded in smaller MDDs. By explor-
ing as many variations in the lower variables as possible, intermediate diagrams
may be much smaller than in traditional BFS and chaining BFS strategies (also
described in [4]). Another intuition is that in an MDD encoding the set of reach-
able states, all nodes are by definition saturated – therefore it is impractical to
create nodes which have unsaturated child nodes. In other words, a saturated
node has a chance of being in the final MDD, while an unsaturated one has not.

The Constrained Saturation Algorithm. The constrained saturation algo-
rithm has been introduced in [12] to limit the exploration inside the boundaries
of a predefined set of states (the constraint). Even though this is possible with
the original algorithm by removing transitions in N that end in states not inside
the constraint, it would damage the locality of events by making them depen-
dent on additional variables (the event has to decide whether it is leaving the
constraint or not). Constrained saturation avoids this by traversing an MDD
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representation of the constraint along with the MDD of the state space, and
deciding the enabledness of events when firing them.

Formally, given a constraint set C, the goal of constrained saturation is to
compute the least fixed point S = S ∪(N (S)∩C

)
that contains the initial states

inside the constraint S0 ∩ C. Definitions 9 and 10 are modified as follows.

Definition 11 (Saturated state space with constraint). Given a par-
titioned transition system M and a constraint C, a set of (partial) states
S(X) over variables X is saturated iff S(X) = S(X) ∪ (NX(S(X)) ∩ C

)
, where

NX =
⋃

α|Supp(α)⊆X Nα.

Definition 12 (Saturated node with constraint). Given a partitioned
transition system M and a constraint node nc (S(nc) = C), an MDD node
n on level lvl(n) = k is saturated iff it encodes a set of (partial) states S(n)
that is saturated with respect to constraint C. Equivalently, the node is saturated
iff all of its children n[i] are saturated with respect to constraint node nc[i], and
S(n) = S(n) ∪ (Nk(S(n)) ∩ C

)
, where Nk =

⋃
α|Top(α)=xk

Nα for 1 ≤ k ≤ K

and N0 = ∅.
The recursive computation of Nk(S(n))∩C is done by simultaneously travers-

ing n with the source states, the descriptor d of Nk with source and target
states, and nc with target states. Note that nc does not encode the partial state
determined by the path through which recursion reached the current node, but
“remembers” just enough to decide if the transition is allowed based only on the
rest of the state.

Figures 2a–c present the pseudocode of the constrained saturation algorithm.
To retrieve the pseudocode of the original saturation algorithm, one should
assume that at any point c �= 0 and c[i] �= 0 for any i. The pseudocode also
contains a stub for the Confirm procedure that serves for the on-thy-fly update
of the transition relations whenever new states are found (as described in [4] and
enhanced in [9]).

The ConsSaturate procedure starts by checking the terminal cases. Line 2
checks if the same problem has already been solved. Caching – as in all operations
on decision diagrams – is crucial to have optimal performance. If there is no match-
ing entry in the cache, the algorithm recursively saturates the children of the input
node n, calling Confirm for every encountered local state. The resulting node is
checked for uniqueness in line 7 and is replaced by an already existing node if nec-
essary (to preserve MDD canonicity). In line 8, we get the NS descriptors for each
event belonging to the current level, then iteratively apply them again and again
in lines 9–14 until no more states are discovered – a fixed point is reached. This
version of the iteration is called chaining and is discussed in [4].

The result of firing an event on a set of states is computed by ConsFire and
ConsRecFire. The only differences between them are that ConsRecFire also
saturates the resulting node before returning it and also caches it – ConsFire
is called as part of a saturation process so this is not necessary. The common
parts (3–7 in ConsFire and 4–8 in ConsRecFire) compute the resulting node
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by recursively processing their child nodes. It is important to note that the
arguments of the recursive call are n[i], c[j] and d[i, j], that is, n is traversed
along the source state and c is traversed along the target state. The recursive
saturation of the result node in ConsRecFire in line 10 ensures that child
nodes of the currently saturated node always stay saturated during the fixed
point computation in accordance with Definitions 10 and 12.

3 The Generalized Saturation Algorithm

As we could see, the motivation of the constrained saturation algorithm (and
all of its variants like those in [8,11]) is to handle a modified transition relation
without losing locality. This paper generalizes these attempts by introducing
the notion of conditional locality, a concept that expresses the most important
consideration of all kinds of saturation: computing fixed points as locally (i.e.
low in the decision diagram) as possible. This intuition has been discussed in
Sect. 2.6, and the conclusion – that saturated nodes have a chance of being in
the final MDD – can be used to improve the definitions to enhance this effect
even further, which we do in the generalized saturation algorithm (GSA).

3.1 Conditional Locality

The concept of locality enables the saturation algorithm to ignore the value of
variables outside the support of the currently processed event because it does not
depend on them in any way. The result is that a fixed point can be calculated over
partial states, which has to be computed only once regardless of the number of
matching concrete states. The main motivation of conditional locality is to ignore
even those variables that are not written but read by an event and compute the
fixed point over even shorter partial states, but as many times as the value of
those variables would cause a different result. The intuition is that the resulting
nodes will be part of the final MDD more often than those created by the original
saturation algorithm, leading to less intermediate nodes and therefore improved
performance. Concepts are again illustrated in Fig. 1.

Definition 13 (Conditional locality). An event α ∈ E is said to be con-
ditionally local over variables X and with respect to condition variables Y
(X ∩ Y = ∅) iff it is local over X ∪ Y and locally read-only on variables in
Y . If Y is maximal and X ∪Y = Supp(α), then we call Y = Guard(α) the guard
variables and X = Suppc(α) the conditional support of α. The variable with
the highest index among the conditionally supporting variables (according to a
variable order) is the conditional top variable (Topc(α)) of α.

The (full) next-state relation of a PTS can be automatically repartitioned
based on conditional locality. The resulting partitions (events) will either be
locally read-only on a variable or will always change its value (behaviors like
“test-and-set” may combine these and be read-only sometimes but change the
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value other times – in this case, we can split the next-state relation). A special
case of this repartitioning is built into the GSA as described in Sect. 3.2.

The following definition of conditionally saturated state spaces and MDD
nodes can be considered as relaxations of Definitions 9 and 10 based on condi-
tional locality.

Definition 14 (Conditionally saturated state space). Given a partitioned
transition system M , a set of (partial) states S(X) over variables X is condition-
ally saturated with respect to the partial state s(Y ) (Y ⊆ V \ X) iff S′ = S′ ∪
NX(S′), where S′ = {s(Y )} × S(X) and NX =

⋃
α|Suppc(α)⊆X,Guard(α)⊆X∪Y Nα.

Note that a set of (partial) states S(X) over variables X that is conditionally
saturated with respect to a zero-length state s(∅) is also saturated over X, there-
fore the goal is the same as before: generate a minimal, conditionally saturated
set of states S with respect to s(∅) that contains the initial states S0.

Definition 15 (Conditionally saturated node). Given a partitioned tran-
sition system M , an MDD node n on level lvl(n) = k is conditionally saturated
with respect to the partial state s(V>k) iff it encodes a set of (partial) states S(n)
that is conditionally saturated with respect to s(V>k).

The equivalent definition in terms of child nodes is now phrased as a theorem.

Theorem 1 (Conditionally saturated node – recursive definition).
Given a partitioned transition system M , an MDD node n on level lvl(n) =
k is conditionally saturated with respect to the partial state s(V>k) iff (1)
all of its children n[i] are conditionally saturated with respect to s(V>k−1),
s(V>k−1) ∈ M(s(V>k)) and s(V>k−1)[k] = i; and (2) S′ = S′ ∪ Nk(S′), where
S′ = {s(V>k)} × S(n) and Nk =

⋃
α|Topc(α)=xk

Nα for 1 ≤ k ≤ K and N0 = ∅.
Proof. We prove only that a node described in the theorem encodes a con-
ditionally saturated set of states. To prove the fixed point, we have to show
that for any state s ∈ {s(V>k)} × S(n) we have NV≤k

(s) ⊆ {s(V>k)} × S(n).
Note that NV≤k

=
⋃k

i=0 Nk because if Suppc(α) ⊆ V≤k then Topc(α) ≤ k and
Guard(α) ⊆ V≤k ∪ V>k = V always holds. Assume there is a state s′ ∈ NV≤k

(s)
that is not in {s(V>k)}×S(n). We know that (s, s′) ∈ Nl for some l ≤ k. If l = k
then we have a direct contradiction with the second requirement of the theorem.
If l < k, then s′[k] = s[k] = i, because the transition cannot change the value of
xk. Because the first requirement of the theorem says that n[i] is conditionally
saturated with respect to s(V>k−1) as defined above, and Nl ⊆ NV≤k−1 , it follows
that s′ must be in {s(V>k−1)} × S(n[i]) ⊆ {s(V>k)} × S(n).

Based on Theorem 1 and the observation after Definition 14, the set of reach-
able states is encoded as a conditionally saturated MDD node on level K.

The key difference compared to Definitions 9 and 10 is the inclusion of a
partial state with respect to which we can define a fixed point. Because we
consider the repartitioned events that are now conditionally local, the partial
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state can be used to bind their guard variables, which will specify their effect
on the variables in their conditional support. Since the guard variables are not
changed when executing the transitions, we can compute a fixed point on only
those variables that are in the conditional support of the event.

Even though the definition uses a partial state to define the fixed point, it
is generally enough to traverse the NS descriptors just like the constraint in
constrained saturation: whenever we navigate to n[i], we should also navigate
through d[i, i]. The resulting descriptor will characterize all the partial states
that cause the same behavior in the rest of the transitions.

3.2 Detailed Description of the GSA

The pseudocode for the GSA is presented in Fig. 3. The inputs are an MDD node
n encoding the initial states S0 of a PTS, and a NS descriptor d representing
the whole next-state relation N . Since the algorithm will automatically partition
the next-state relation based on conditional locality, d can be an union of all dα

(descriptors for events).
Sometimes, computing the full next-state relation is not practical, either

because of its cost (e.g. we have to change representation) or because we want to
use chaining in the fixed point computation. An advantage of abstract next-state
diagrams is the ability to represent operations in a lazy manner. For example, the
union of two descriptors may be represented by extending the set of descriptors
D with elements of D×D×{union} (lvl((d1, d2, union)) = lvl(d1) = lvl(d2)) and
extending next such that (d1, d2, union)[i, j] is: 1 if d1 or d2 is 1; d1 if d2 is 0; d2 if
d1 is 0; and (d1[i, j], d2[i, j], union) otherwise. The lazy descriptor (d1, d2, union)
will not be equivalent to any non-lazy descriptor (even if they encode the same
relation), but will be equivalent to (d1, d2, union) or (d2, d1, union), which is
not optimal cache-wise but is often better than pre-computing the union. This
approach can be generalized to more than two operands.

Compared to (constrained) saturation in Figs. 2a–c, the main differences and
points of interest are listed below. In Saturate:

– Next-state descriptors are not retrieved for each level, but are a parameter.
– Recursive saturation of child nodes in line 7 passes d[i, i] as the NS descriptor

to use on the lower level k − 1, which encodes a set of transitions that do not
modify the variable associated to this level (and any above), therefore they
are conditionally local over V≤k−1 with respect to the partial state specified
by the Saturate procedures currently on the call stack.

– Cache lookup in line 3 considers d instead of the partial state specified by the
call stack because every partial state leading to d would produce the same
result.

– In the fixed-point iteration in line 10 the Split procedure is used to retrieve
the operands of a lazy union descriptor to support chaining. It may be imple-
mented in any other way as long as the returned set of descriptors cover the
relation encoded by the descriptor passed as argument.

– In lines 6 and 9, the Update procedure supports on-the-fly next-state relation
building by providing a hook for replacing parts of d.
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In SatFire:

– There are two descriptors: ds for recursive saturation and df to fire.
– In the loop computing local successors in line 4 we omit locally read-only

transitions (i �= j), because they will be processed by recursive saturation.
– In the recursive firing in line 5, ds is indexed by [y, y] because (like in con-

strained saturation) the resulting node will be n′[y] (and therefore ds[y, y]
describes the conditionally local transitions), while df is indexed as usual.

In SatRecFire:

– Cache lookup in line 3 considers both next-state descriptors.
– In the loop computing local successors in line 5 we now consider every transi-

tion even if they are read-only, (on some level above they changed a variable).
– Recursive saturation in line 9 will use ds (which is still conditionally local).

3.3 Constrained Saturation as an Instance of the GSA

With the automatic partitioning offered by the GSA, next-state relations that
motivated the introduction of constrained saturation and its variants can now be
directly encoded into the transition relation without any cost. This is because
a constraint is a guard, therefore it can cause an event only to become read-
only on a variable instead of independent, but will still never write it. Adding
a constraint will never raise the conditional top variable of events, but it can
raise their unconditional top variable in many cases, which is associated with
degraded performance.

Indeed, the handling of ds in the GSA is very similar to the handling of
the constraint node – we could say that our algorithm uses the next-state rela-
tion itself as a constraint. Combining this with the flexibility of abstract NS
descriptors (lazy descriptors in particular), we get the properties of constrained
saturation enhanced with every difference between the original saturation algo-
rithm and the GSA (see Sect. 3.4).

We illustrate the usage of abstract NS descriptors for variants of constrained
saturation with the kind of constraint used in the original constrained saturation
algorithm [12].

Definition 16. (Constrained next-state descriptor). Given a NS descrip-
tor d and a constraint node c, the constrained next-state descriptor dc describing
N (dc) = N (d) \ (

N
K × S(c)

)
is a tuple dc = (d, c) with lvl(dc) = lvl(d) = lvl(c),

and dc[i, j] is: 0 if d[i, j] = 0 or c[j] = 0; and (d[i, j], c[j]) otherwise.

3.4 Discussion

To estimate the efficiency of the algorithm, we will consider the advantages and
disadvantages of the different modifications. First and foremost it is important
to note that if Topc(α) = Top(α) for every event α, then the GSA degrades to
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Fig. 3. Pseudocode of the GSA.

the original saturation algorithm from [4] or the corresponding constrained sat-
uration algorithm from [8,11,12] with no difference in the iteration strategy and
the virtually zero overhead of handling the next-state relation as a parameter.
In every other case, there may be a complex interplay between the advantages
and disadvantages discussed below.

An advantage of using conditional locality is that Topc(α) ≤ Top(α), i.e. we
can potentially use event α when saturating a node on a lower level, which is
intuitively better because it raises the chance that the resulting node will be
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Fig. 4. A (degraded) run of saturation on
the example model: n3 encodes S0, n4 =
n3 ∪ Ntl3

(n3), n7 = n4 ∪ Ntl1
(n4), the state

space is n9 = n7 ∪ Ntl2
(n7). Note that tui

does not reach new states.

Fig. 5. A run of the GSA on the
example model: n3 encodes S0, n4

is the saturated n1 (after firing tl1),
n5 is the saturated n2 (after firing
tl2) and n6 is the state space.

part of the final diagram. Figures 4 and 5 illustrate the MDDs that are created
while exploring the state space of the example Petri net model from Fig. 1 with
saturation and the GSA. Saturation is degraded to a chaining version of BFS
because every transition that can yield a new state is dependent on all variables.
In the unfortunate case of firing tl3, tl1 and tl2 in this order, the number of created
nodes will be 9 compared to the 6 nodes created by the GSA, which can still
exploit the read-only dependencies.

A direct price of this is the diversification of cache entries. By repartitioning
the events, we may introduce a lot more next-state relations to process, and
it is not evident if their smaller size and the enhanced saturation effect can
compensate this. Furthermore, by keeping track of ds (the descriptor to saturate
with), we spoil the cache of saturation due to the following.

Whenever we navigate through d[i, i], we remember something from i in the
context of the next-state relation, yielding a potentially large number of different
descriptors to saturate with. The original saturation algorithm saturates each
MDD node only once, because it uses the same next-state relation every time.
In the GSA, we saturate every pair of different MDD node and NS descriptor,
so the diversity of descriptors can be a crucial factor. In the extreme case, when
at least one event remembers every value along the path (for example because it
copies them to other variables below), caching can degrade to the point where
everything will need to be computed from scratch.

The other extreme is when each event remembers only one thing from the
values bound above: whether it is enabled or not (e.g. when variables are com-
pared to constants in guard expressions). Fortunately, this is the case with Petri
nets: each transition will check variables locally and decide whether it is still
enabled or not. This means that given a descriptor d representing transitions in
T , the number of possible successors for d[i, i] will be O(|T |) (n values can par-
tition N into n + 1 partitions, each transition may contribute 2 values – one for
an input arc and one for an inhibitor arc), but this number will also be limited
by the number of non-zero child nodes of the saturated MDD node.
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Given the facts that transitions of Petri nets are inherently conditionally local
without repartitioning, and many nets are bounded (often safe), model checking
of Petri net models with the GSA can be expected to yield favorable results. In
fact, the experiment presented in Sect. 4 shows that the GSA is superior to the
original saturation algorithm on every model that we analyzed.

For other types of models, we have yet to investigate the efficiency of the
algorithm and the balance of benefits and overhead. It might be the case that
we have to refine the read-only dependency into “local” and “global” evaluation
(depending on whether we have to remember the value of the variable or can
evaluate it immediately) and use conditional locality only with the “local” case.
We also have to note that the efficient update of the next-state descriptors is
not trivial and subject to future work.

4 Evaluation

In this section, we present the results of our experiments performed on a large
set of Petri net models.

4.1 Research Questions

We have two main research questions about the GSA, both comparing it to the
original saturation algorithm (SA) from [4] (results should apply to constrained
saturation as well). Both questions will be answered by measuring the relevant
metrics for each algorithm and comparing the results for each benchmark model.

We expect that (1) the GSA will be identical to the SA when conditional local-
ity cannot be exploited; as well as in other cases (2) the GSA will create less MDD
nodes than the SA and (3) in these cases it will be faster than the SA.

4.2 The Benchmark

We have implemented both the original saturation algorithm and the GSA in
Java. Both variants used the same libraries for MDDs and next-state descriptors,
and their source code differs only in the points discussed in Sect. 3.2.

We used the latest set of 743 available models from the Model Checking
Contest 2018 [7], excluding only the Glycolytic and Pentose Phosphate Path-
ways (G-PPP) model with a parameter of 10–1000000000 (because the initial
marking cannot be represented on 32-bit signed integers). We generated a vari-
able ordering for each model using the sloan algorithm recommended by [1],
and a modified sloan algorithm where we omitted read-only dependencies when
building the dependency graph (motivated by the notion of conditional local-
ity). We ran state space exploration 3 times on each model with each ordering,
measuring several metrics of the algorithms. We will report the median of the
running time of the algorithms (excluding the time of loading the model) and
the total number of MDD nodes created during each run, as well as the size of
the state space and the final MDD for each model and each ordering.
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Fig. 6. Main results of the experiment: running times and total number of created
nodes with sloan ordering (top row) and modified sloan ordering (bottom row).

Measurements were conducted on a bare-metal server machine rented from
the Oracle Cloud (BM.Standard.E2.64), with 64 cores and 512 GB of RAM,
running Ubuntu 18.04 and Java 11. Three processes were run simultaneously,
each with a maximum Java heap size of 100 GB and stack size of 512 MB. No
process has run out of memory and the combined CPU utilization never exceeded
70%. Timeout was 20 min (including loading the model and writing results).

4.3 Results

The main results of the experiments can be seen in Fig. 6. Every point represents
a model (dashes on the side means a timeout), classified into two groups: “sim-
ply local” if none of the events had a read-only top variable and “conditionally
local” otherwise. In the “simply local” group we expected no difference because
the GSA should degrade into the original saturation algorithm, which was sup-
ported by the results. In the other group we were optimistic about the balance
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of advantages and disadvantages as discussed in Sect. 3.4, but the results were
even better than what we expected. As the plots show, a significant part of the
“conditionally local” models are below the reference diagonal, meaning that the
GSA were often orders of magnitudes faster.

With the sloan ordering, 274 models were in the “conditionally local” group
and the GSA was at least twice as fast as the SA in 53 cases. With the modified
ordering, these numbers are 69 out of 298. In one case (SmallOperatingSystem-
MT0256DC0128 ), the SA managed to finish just in time while the GSA exceeded
the timeout (scaling was similar for smaller instances). Models where the GSA
finished successfully but the SA exceeded the timeout with the sloan ordering
include instances of CloudDeployment, DiscoveryGPU, DLCround, DLCshifumi,
EGFr, Eratosthenes, MAPKbis, Peterson and Raft ; and with the modified order-
ing also AirplaneLD, BART, Dekker, FlexibleBarrier, NeoElection, ParamPro-
ductionCell, Philosopher, Ring and SharedMemory. Analyzing these models in
detail may provide insights about when the GSA is especially efficient.

Looking at the plots about the number of created MDD nodes (i.e. the size of
the unique table) reveals that our expectations about less intermediate diagrams
were correct and this probably has direct influence on the execution time. Even
though not visible in Fig. 6, interactive data analysis revealed that the model
instances are more-or-less located at the same point on the execution time and
node count plots. The collected data also suggests a linear relationship between
the number of created nodes and the execution time, but this is rather a lower
bound than a general prediction.

As an auxiliary result and without any illustration, we also report that out of
the 117 cases when the sloan ordering and the modified ordering were different
and we have data about the final MDD size, the modified sloan ordering produced
smaller final MDDs 69 times and larger MDDs 39 times. This motivates further
work on variable orderings like in [1]. We have also compared the SA with sloan
ordering and the GSA with the modified sloan ordering to find that the GSA
with the modified sloan ordering was better in 78 cases and worse in 16 cases
(considering only at least a factor of 2 in both cases).

5 Conclusions

In this paper, we have formally introduced the generalized saturation algorithm
(GSA), a new saturation algorithm enhanced with the notion of conditional local-
ity. We have shown that the GSA generalizes a family of constrained saturation
variants and discussed the effects of using conditional locality. We have empiri-
cally evaluated our approach on Petri nets from the Model Checking Contest to
find that the GSA has virtually no overhead compared to the original satura-
tion algorithm, but can outperform it by orders of magnitude when conditional
locality can be exploited.
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We have made theoretical considerations and prepared the algorithm to be
compatible with a wide range of next-state representations as well as the on-
the-fly update approach described in [4]. The GSA seems to be superior to the
original saturation algorithm on Petri net models, but its efficiency over more
general classes of models is yet to be explored.
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