®

Check for
updates

Taking Some Burden Off an Explicit CTL
Model Checker

Torsten Liebke and Karsten Wolf(=)

Universitat Rostock, Institut fiir Informatik, Rostock, Germany
{torsten.liebke,karsten.wolf }@uni-rostock.de

Abstract. In the CTL category of recent model checking contests, less
problems have been solved than in the Reachability and LTL categories.
Hence, improving CTL model checking technology deserves particular
attention. We propose to relieve a generic explicit CTL model checker.
This is done by designing specialised routines that cover a large set of
simple (and frequently occurring) formula types. The CTL model checker
is then only applied to formulas that do not fall into any special case.
For the simple queries, we may apply simple depth-first search instead of
recursive search, we may use much more powerful dialects of the stubborn
set reduction, and we may add additional tools for verification, such as
the state equation. Our approach covers about half of the CTL category
of a recent model checking contest and significantly increases the power
of CTL model checking.

Keywords: CTL model checking - Partial order reduction

1 Introduction

In recent years, Computational Tree Logic (CTL, [2]) has been the category
where most queries were left unsolved in the yearly Petri net model checking con-
test (MCC, [9]). Consequently, CTL model checking deserves particular attention
with the aim of keeping pace with LTL and reachability checking. At present,
leading Petri net CTL model checkers such as TAPAAL [7] and LoLA [29] use
explicit model checking algorithms. Their main tool for alleviating state explo-
sion is the stubborn set method [22] or, more general, the class of partial order
reduction methods [12,18]. In essence, partial order reduction explores, in any
given marking, only a subset of the enabled transitions. CTL preserving partial
order reduction [11] has severe restrictions: we either find, in a given marking,
a singleton set consisting of an invisible transition that satisfies all other condi-
tions for a stubborn set, or we have to fire all transitions enabled in this marking.
This condition is necessary for CTL preservation since otherwise the position of
visible transitions with respect to branching points may not be preserved which
in turn would jeopardise preservation of the branching time logic CTL.

Many CTL queries have a rather simple structure in the sense that they con-
tain only few temporal operators. In the MCC, this might be an artifact of the

© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 321-341, 2019.
https://doi.org/10.1007/978-3-030-21571-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_18

322 T. Liebke and K. Wolf

formula generation mechanism. However, we share the same experience with the
users of our tool LoLLA. Even if complicated CTL formulas occasionally occur,
they are subject to several simplification approaches. Firstly, there exist many
tautologies in temporal logic. Not all of them are commonly known. This way, an
originally complicated formula may automatically be rewritten to a much simpler
query [1]. The formula rewriting system of LoLA currently contains more than
100 rewrite rules that are based on CTL* tautologies. For Petri nets, secondly,
linear programming techniques employing the Petri net state equation can be
applied to the atomic propositions in the formula [1], sometimes proving them to
be invariantly true or false. This way, whole subformulas of a query may collapse,
enabling further rewriting based on tautology. Boolean combinations of queries
can be simplified by checking the subformulas separately (thus having queries
with less visible transitions in each run which propels partial order reduction).
Thirdly, complicated queries may be replaced by simpler queries through modi-
fications in the system under investigation. A simple example is the verification
of relaxed soundness [8] for workflow nets. For every transition ¢, we have to
show that there is a path to a given final place f that includes the occurrence of
t. In CTL, this reads as EF (¢t occurs A EF(f > 0)). Inserting a fresh post-place
p to t, the query can be simplified to EF (p > 0 A f > 0). The most systematic
approach of this kind is LTL model checking as a whole. The explicit verification
of an LTL formula ¢ is done by modifying the system under investigation (we
refer to the construction of the product system with the Biichi automaton for
—¢, [26]). In the modified system, we only need to verify = GF accepting-state
instead of the arbitrarily complicated ¢.

We conclude that explicit CTL model checking can be substantially improved
through a special treatment of as many as possible of the most simple queries.
Special treatment means that we apply a specific verification procedure to such
queries thus avoiding the application of the generic CTL model checking rou-
tines. This approach has two obvious advantages. Firstly, some of the queries
may permit the use of completely different verification technology. For example,
for properties like EF ¢ or AG ¢ (with ¢ assumed not to contain additional
temporal operators), we may employ the Petri net state equation for verification
[28]. Secondly, a verification technique dedicated to just one class C of simple
CTL queries may use a better partial order reduction: we only need to preserve
C rather than whole CTL.

In this paper, we focus on the second item. We identify several classes of
simple CTL queries for which specific search routines enable the use of partial
order reduction methods better than CTL preserving ones. These partial order
reduction methods are already known in most cases. So the actual contribution
of this paper is to show that the systematic separation of simple queries from
general CTL routines can indeed improve CTL model checking. In 2018, almost
70% of the CTL queries in the MCC were transferred to specific routines for
simple queries in our tool LoLA. Employing these methods, LoLA could solve
more than 50% of the queries that could not be solved with the generic CTL
model checking algorithm.

Taking Some Burden Off an Explicit CTL Model Checker 323

We start with a brief introduction of the terminology of Petri nets and the
temporal logic CTL. We then provide the necessary facts on the stubborn set
method. In the main part of the paper, we discuss our list of simple CTL queries.
We conclude with experimental results.

2 Terminology

Definition 1 (Place/transition net). A place/transition net consists of a
finite set P of places, a finite and disjoint set T of transitions, a set F' C
(P xT)YU (T x P) of arcs, a weight function W : (P xT)U (T x P) — N
where [z,y] ¢ F if and only if W(x,y) = 0, and a marking mg, the initial
marking. A marking is a mapping m : P — N.

Definition 2 (Behaviour of a place/transition net). Transition t is enabled
in marking m if, for allp € P, W(p,t) < m(p). If t is enabled in m, t can fire,
producing a new marking m' where, for all p € P, m/'(p) = m(p) — W(p,t) +
W (t,p). This firing relation is denoted as m L/, It can be extended to firing

sequences by the following inductive scheme: m = m (for the empty sequence

w t wt -
e), andm — m'Am' - m"”" = m —m" (for a sequence w and a transition

t). The reachability graph of a place/transition net N has a set of vertices that
comprises of all markings that are reachable by any sequence from the initial
marking of m. Every element m Lo of the firing relation (t € T) defines an
edge from m to m’ annotated with t.

With a matrix C' where, for all p € P and t € T, C(p,t) = W(t,p) — W(p, 1),
and marking m, equation mg 4+ Cx = m is called the Petri net state equation.
It has a nonnegative integer solution for every m reachable from my: fix a firing
sequence w from mg to m and let, for every ¢, z[t] be the number of occurrences
of t in w. For unreachable m, the state equation may or not have nonnegative
integer solutions.

In the sequel, we consider only Petri nets with finite reachability graph
(i.e. bounded Petri nets).

Definition 3 (Syntax of CTL). TRUE, FALSE, FIREABLE (t) (for t € T),
DEADLOCK, and kip1+- -+ knpn <k (ki,k € Z,p; € P) are atomic propositions.
PQ = {A,E} is called the set of path quantifiers, UT = {X,F,G} the set of
unary temporal operators, and BT = {U, R} the set of binary temporal operators.

Every atomic proposition is a CTL formula. If ¢ and ¥ are CTL formulas,
so are =, (G AY), (9VY), QY ¢ (with Q € QP andY € UT), and Q(¢B)
(with Q € QP and B € BT).

The logic LTL is defined similarly. The only difference is that the path quan-
tifiers are not used in LTL.

324 T. Liebke and K. Wolf

Definition 4 (Semantics of CTL). Marking m satisfies CTL formula ¢
(m = ¢) according to the following inductive scheme:

- m |= TRUE, m [~ FALSE;

— m = FIREABLE (%) if t is enabled in m;

— m = DEADLOCK if there is no enabled transition in m;

-m): klpl +F knpn < k ifklm(pl) + knm(pn) < k;

7m’:_‘¢ mel;'é¢;

-mE(@AY)ifm ¢ andm = ;

- m = EX¢ if there is at and an m’ with m Lom! and m/ E ¢

- m = E(¢U%) if there is a path mymg...my (my = m,k > 1) in the reacha-
bility graph where my |= 1 and, for all i with 1 <1i < k, m; = ¢;

- m = A(@U4) if, for all mazimal paths (i.e. infinite or ending in a deadlock)
mims... in the reachability graph with my = m, there is a k (k > 1) where
my = and, for all i with 1 <i <k, m; = ¢.

The semantics of the remaining CTL operators is defined using the tautolo-
gies (p V) <= (-9 AN), AX$p < -EX—¢, EF$p <= FE(TRUE
U¢), AF$p <= A(TRUE U¢), AG¢ <= —-EF-¢, EGp <= —AF-¢,
E($RY) = ~A(~U—), and A(GR) <= ~E(~oU—).

A place/transition net N satisfies a CTL formula if its initial marking mq
does.

For LTL, all temporal modalities concern the same single path. Moreover,
only infinite paths are considered. A maximal finite path is transformed into
an infinite path by infinitely repeating the last (deadlock) marking. Otherwise,
evaluation accords with CTL. A place/transition net N satisfies an LTL formula
if all paths starting from mg do.

3 CTL Model Checking

We consider local model checking, that is, we want to evaluate a given CTL
formula just for the initial marking mg. Other markings are only considered as
far as necessary for determining the value at mg. In global model checking, one
would be interested in the value of the given formula in all reachable markings.
As a reference for our work, we use the algorithm of [27]. In the sequel, we briefly
sketch this algorithm.

We assume that, attached to every marking, there is a vector that has an
entry for every subformula of the given CTL query. The value of a single entry can
be true, false, or unknown. Whenever we want to access the value of a subformula
¢ in a marking m, we inspect the corresponding value. If it is unknown, we
recursively launch a procedure to evaluate ¢ in m.

If ¢ is an atomic proposition or a Boolean combination of subformulas, eval-
uation is trivial. For evaluating a formula of shape EX ¢’ or AX ¢’, we proceed
to the immediate successor states and evaluate ¢’ in those states. If the successor

Taking Some Burden Off an Explicit CTL Model Checker 325

marking has not been visited yet, we add it to the set of visited markings and
initialise its vector of values.

If ¢ has the shape A(¢¥Ux), we launch a depth-first search from m, aiming at
the detection of a counterexample. The search proceeds through markings that
satisfy 1, violate x, and for which A(¢¥Uy) is recorded as unknown. Whenever
we leave the space of state satisfying these assumption, there is a reaction that
does not require continuation of the search beyond that marking, as follows.

If x is satisfied, or A(¢UY) is recorded as true in any marking m’, we back-
track since there cannot be a counterexample path containing m’. If x and
are violated, or A(UYx) is recorded as false, we exit the search since the search
stack forms a counterexample for A(¢Uy) in m. If we hit a marking m’ on the
search stack, we have found a counterexample, too (a path where ¢ and not y
hold forever). The depth-first search assigns a value different from unknown to
all states visited during the search: For markings on the search stack (i.e. partic-
ipating in the counterexample), A(v¥Uy) is false, while for states that have been
visited but already removed from the search stack, A(¢¥Uy) is actually true.

If ¢ has the shape E(¥UYx), we launch a similar depth-first search, aiming
at the detection of a witness path. This time, we integrate Tarjan’s algorithm
[21] for detecting the strongly connected components (SCC) during the search.
It proceeds through markings that satisfy v, violate x, and for which E(¢¥Ux)
is recorded as unknown. If we hit a marking m’ where x is satisfied, or E(¥Ux)
is true, we have found our witness. In states where ¢ and x are violated, or
E(¢Uy) is known to be false, we backtrack since there cannot be witness path
containing such a marking. Again, we assign a value different from unknown
to every marking visited during the search. Markings that are on the search
stack as well as markings that are not on the search stack but appear in SCC
that have not yet been completely explored, get value true. An SCC is not yet
fully explored if it contains elements that are still on the search stack. Then,
however, a path to the search stack extended by the remaining portion of the
search stack forms a witness. For markings in SCC that have been completely
explored, E(¢Uy) is false.

We can see that existential and universal until operators are not fully sym-
metric. This is due to the fact that a cycle of markings that satisfy ¢ and violate
X, form a counterexample for universal until but no witness for existential until.
Any SCC with more than one member would contain such a cycle. Consequently,
universal until will never remove markings from the search stack without closing
a whole (singleton) SCC.

The remaining CTL operators can be traced back to the two until operators
using tautologies. Since every search assigns values to all visited markings, the
overall run time of the algorithm is O(|¢||R|) where |¢| is the length of ¢ (the
number of subformulas), and |R| is the number of markings reachable from my.

4 Partial Order Reduction—the Stubborn Set Method

Given a Petri net NV and a property ¢, the stubborn set method aims at producing
a subgraph G’ of the reachability graph G of N such that the evaluation of

326 T. Liebke and K. Wolf

¢ using G’ yields the same value as the evaluation on G. To this end, a set
stubborn(m) of transitions is assigned to every marking m, and only enabled
transitions in stubborn(m) are explored for the construction of G’.

Over the years, a consistent systematic has emerged for presenting stubborn
set methods. There is a list of principles that should govern the selection of
stubborn sets. Each principle comes with an algorithmic approach for computing
a stubborn set that obeys that principle. Finally, there is a list of results stating
that, if G’ is computed using stubborn sets that meet some selection of principles,
all properties of a certain class of properties are preserved. In the sequel, we
shall list principles and results that we need for our considerations below. For
some principles, there exist several variations that push results further to the
limit. However, our focus here is not stubborn set theory as such but CTL
model checking technology. For this reason, we selected principles such that
presentation is as understandable as possible. For stronger results on stubborn
sets, the reader is referred to [11,15,23,25]. We will further completely skip
the algorithmic approaches as they are not necessary for understanding our
argument.

In the sequel, let N = [P, T, F, W, mg| be an arbitrary fixed place/transition
net.

Definition 5 (COM: The commutativity principle). stubborn(m) C T

)
satisfies the commutativity principle (COM for short) if, for all w € (T\
stubborn(m))* and all t € stubborn(m), m % m/ implies m ~2 m’.

Definition 6 (KEY: The key transition principle). stubborn(m) C T sat-
isfies the key transition principle (KEY for short) if m does not enable any
transition or it contains a transition t* (a key transition) such that, for all
w € (T \ stubborn(m))*, m % m’ implies that t* is enabled in m'.

Definition 7 (VIS: The visibility principle). Transition t is invisible
w.r.t. an LTL or CTL formula ¢ if, for all atomic propositions 1 occurring
in ¢ and all markings m,m’, m = m' implies that p(m) holds if and only if
Y(m') holds. stubborn(m) C T satisfies the visibility principle for a property ¢
(VIS(¢) for short) if stubborn(m) contains only invisible transitions w.r.t. ¢, or
all transitions.

Definition 8 (IGN: The non-ignoring principle). stubborn satisfies the
non-ignoring principle (IGN for short) if every cycle in the reduced reachability
graph contains a marking where all enabled transitions are explored.

Definition 9 (UPS: The up-set principle). For a marking m and a CTL
property ¢ such that m - ¢, U is an up-set if every path from m to a marking that
satisfies ¢ contains an element of U. stubborn(m) satisfies the up-set principle
w.r.t. ¢ if m = ¢ or U C stubborn(m), for some up-set U.

Definition 10 (BRA: The branching principle). stubborn(m) satisfies the
branching principle (BRA for short) if stubborn(m) contains a single enabled
transition, or all enabled transitions.

Taking Some Burden Off an Explicit CTL Model Checker 327

In the following propositions, let G’ be a reduced reachability graph using stub-
born sets that meet the principles mentioned in the assumption.

Each principle has a specific purpose for proving property preservation. In
most cases, we assume that there is a path 7 in the full reachability graph (e.g. a
witness or counterexample for the property under investigation) and show that
the reduced system contains a path 7 that is equally fit w.r.t. the studied prop-
erty. With COM, 7/ may execute transitions in another order than 7. With KEY
(in connection with COM), n’ may contain transitions that are not occurring in
w. With UPS, the stubborn set at m will always contain a transition of 7. With
VIS, visible transitions in 7’ appear in the same order as in 7, if they appear in
7’. IGN is used for making sure that all transitions of 7 are eventually occurring
in 7/, and BRA is used for making sure that visible transitions are not swapped
with branches in the state space other than branches that are introduced by
concurrency. Again, [11,15,23,25] provide more details concerning these issues.

Proposition 1 (Preservation of deadlocks, [22]). If the principles COM and
KEY are satisfied then G’ contains all deadlocks and at least one infinite path
of the original reachability graph.

Proposition 2 (Preservation of terminal SCC, [24]). If the principles
COM, KEY, and IGN are satisfied then G' contains at least one marking of
every terminal SCC of the original reachability graph.

Proposition 3 (Preservation of reachability, [15,19]). Let ¢ be a CTL for-
mula without temporal operators. If the principles COM and UPS(¢) are satisfied
then EF¢ is preserved.

Proposition 4 (Preservation of LTL-X, [18,23]). Let ¢ be an LTL property
not using the X operator. If the principles COM, KEY, VIS(¢), and IGN are
satisfied than ¢ is preserved.

Proposition 5 (Preservation of CTL-X, [11]). Let ¢ be a CTL formula not
using the X operator. If the principles COM, KEY, VIS(¢), IGN, and BRA are
satisfied then ¢ is preserved.

5 Simple CTL Queries

We are now ready to discuss the advantages of separating simple CTL queries. In
most cases, one of the advantages shall be the ability of using a more powerful
stubborn set method. In all reported cases, we will be able to drop the very
limiting BRA principle that enables reduction only in markings where just one
(invisible) enabled transition is sufficient to meet all the other principles. In
addition, less restrictive conditions (i.e. a smaller set of principles to be met),
leads to potentially smaller stubborn sets and thus to better reduction.

The simple problems discussed below appear as pairs of an existentially and
a universally quantified formula. These two formulas can be reduced to each

328 T. Liebke and K. Wolf

other by negation. Hence, they permit the application of the same verification
techniques.

In the sequel, let ¢ and ¥ be CTL formulas without temporal operators.
Experimental data refers to the tool LoLA 2 [29], applied to the benchmark of
the model checking contest (MCC) 2018. We give 300 seconds for every individual
query. More details on experiments can be found in Sect. 7.

5.1 AG ¢, EF ¢

For the reachability problem EF¢, we may use stubborn set as suggested by
Proposition 3 [19], or a relaxed version [15]. Both techniques have specific advan-
tages. The first method works much better if FF¢ is true while the second
method has advantages if EF'¢ is false. Any of the methods, however, is much
more powerful than the CTL-X preserving method.

For reachability, Petri net structure theory can be applied. If the Commoner’s
theorem [4,13] applies, EF DEADLOCK evaluates to false. The conditions of
the theorem can be checked as a satisfiability problem in propositional logic
(SAT) [17]. The Petri net state equation, enhanced with the refinement method
proposed in [28] provides a powerful tool for verifying other reachability queries.
Since the structural methods can be traced back to NP-complete problems (SAT
resp. Integer Linear Programming) and therefore use only polynomial space, they
can be applied in parallel to state space exploration.

The ability of LoL A to solve far beyond 90% of the queries in the reachability
category of the MCC, compared to less than 70% if only a CTL model checker is
applied to the CTL category, clearly confirms the conclusion to separate reach-
ability queries from CTL model checking.

5.2 AF ¢, EG ¢

The CTL formula AF¢ is equivalent to the LTL formula F'¢. The universal
path quantifier is implicitly present in LTL, too, since a system satisfies an LTL
formula if all its paths do. That is, we may apply LTL-X preserving stubborn
sets instead of CTL-X preserving ones. Without the BRA principle, LTL-X pre-
serving stubborn sets are more powerful (more than 90% success in the LTL
category, compared to less than 70% success if CTL-X preserving stubborn sets
are applied to all of the CTL category).

Additionally, we may completely drop the IGN principle for visible transi-
tions. We sketch a proof for EG¢. If there is no witness path (an infinite path
where ¢ permanently holds) in the original reachability graph, there cannot be
one in the reduced reachability graph which is a subgraph. If there is an (infinite)
witness path 7, then by COM, KEY, and VIS, there is an infinite path 7’ in the
reduced system such that visible transitions of 7’ occur in the same order as in
m. Invisible transitions in 7’ do not alter the value of ¢. That is, 7’ witnesses
EG¢ as well since otherwise there would be a prefix of m where ¢ is violated,
contradicting the assumption that 7 is a witness path.

Taking Some Burden Off an Explicit CTL Model Checker 329

When only COM, KEY, and VIS need to be established in stubborn set
computation, we can often find much smaller stubborn sets and achieve much
better state space reduction.

5.3 E (¢ U), A(p R v)

To satisfy E (¢ U 1), we need to use stubborn sets that preserve two properties:
first, the reachability of ¥, and second, the non-violation of ¢. Combining the
discussion for reachability (EF) and non-violation (EG), we propose the follow-
ing combination of principles for the stubborn sets to be used: COM, UPS(v)),
and VIS(¢). We sketch the arguments for correctness of this setting. Assume
the original reachability graph contains a witness path w. By UPS(%)), this path
contains a transition that is in the stubborn set used in the initial marking. By
COM, we can shift the first such transition to the front of the path. By VIS(¢),
this modification does not change the order of transitions visible for ¢. At least
the first transition of the modified path can be replayed in the reduced reacha-
bility graph. By induction, a witness path in the reduced system is established.

We obtain a combination of principles where the harmful BRA principle is
absent and VIS can disregard . In addition, the UPS principle preserves a
shortest witness path. This accelerates the positive effect of on-the-fly model
checking in all situations where E(¢ U %) turns out to be true.

We can employ linear programming for checking a necessary and a sufficient
condition for E(¢ U). A necessary criterion is obviously EF ¢, and the approach
in [28] can be used for checking this condition. A sufficient condition is the
reachability of ¢ using only transitions that are invisible to ¢, in addition to
checking ¢ in the initial marking. This can be checked by removing all transitions
visible for ¢ from N and applying the approach of [28] to the resulting net.
With the moderate memory footprint of linear programming, the necessary and
sufficient conditions can be checked in parallel to the actual depth-first search
(“portfolio approach”).

5.4 EGEF ¢, AFAG ¢

For this pair of formulas, we do not have a dedicated version of stubborn sets, so
we apply CTL preserving stubborn sets for state space reduction. However, the
check for the pair of temporal operators can be folded into a single depth-first
search. We present the approach for EGEF ¢. The witness path 7 for the EG
operator is a maximal path (i.e. infinite or ending in a deadlock).

If the path ends in a deadlock, the deadlock marking has to satisfy ¢ since
this is the only way for ¢ to be reachable from that marking. If the deadlock
satisfies ¢, all markings on the path satisfy EF ¢ automatically, so this case can
be easily implemented. An infinite path appears in a model checker as a cycle
that is reachable from mg. For satisfying EGEF ¢, it is necessary and sufficient
that, from one of the markings m on the cycle, a marking m’ is reachable that

330 T. Liebke and K. Wolf

satisfies ¢. Necessity follows immediately from the definition of the semantics of
CTL. Sufficiency follows from the fact that m is reachable from all markings in
m, so m’ is reachable as well from all markings in .

We record, for every marking visited in depth-first search, whether a marking
satisfying ¢ can be reached. To this end, every marking that satisfies ¢ itself is
marked as “can reach ¢”. In addition, whenever depth-first search backtracks
from a marking that can reach ¢, the predecessor marking is marked as well as
“can reach ¢”. For detecting cycles, we use the well-known fact [14] that every
cycle in a state space contains an edge from some marking m to a marking m/’
such that, at some stage of depth-first search, m is the top element of the search
stack and m/ is on the search stack as well (such an edge is called backward
edge). During the search, we maintain information whether or not the search
stack contains such m’. If this is the case while the marking on top of the stack
can reach ¢, we return true. If we reach a deadlock satisfying ¢, we return true
as well. If the search is completed without having returned true, we return false.

Lemma 1. The procedure sketched above correctly evaluates EGEF ¢.

Proof. If we reach a deadlock satisfying ¢, EGEF ¢ is trivially true. If we return
true in any other situation, we have a marking m on the search stack that is
member of some cycle reachable from mg. From m, the top element m’ of the
stack is reachable and, from m’, a marking satisfying ¢ can be reached. Hence,
EGEF ¢ is true. For the other direction, assume that EGEF ¢ is true and consider
a witness path 7 for the EG operator. If this is a finite path, the final marking
must be a deadlock satisfying ¢. Otherwise, 7 is infinite. The set of markings
that are visited infinitely often in 7 is strongly connected, hence contained in
an SCC C of the reachability graph. The root m* of C' (i.e. the marking of C'
entered first by the search) is member of some cycle (by strong connectivity).
As m* is the first marking of C' entered by the search, it is target of a backward
edge. This is recognised before m* is finally left by depth-first search. Depth-first
search explores all markings reachable from m™* before finally leaving m*. That
is, in the moment we are about to finally leave m*, we know that m* is target of
a backward edge and can reach ¢. Hence, we return true (if we have not returned
true much earlier). O

In addition to the combined depth-first search, we can add a check for EF
¢ as a necessary condition and AG ¢ as a sufficient criterion to a portfolio for
EGEF ¢. Again, the state equation approach can be used in order not to take
too much memory away from the main search procedure.

5.5 EFEG ¢, AGAF ¢

We present the approach for EFEG ¢. We check the property by nested depth-
first search. The approach uses ideas from [5,6,10,14] that are concerned with
the similar problem of finding accepting cycles in Biichi automata. Outer search

Taking Some Burden Off an Explicit CTL Model Checker 331

proceeds through markings that have already proven not to be part of a ¢-cycle
(or a ¢-deadlock). This includes markings that do not satisfy ¢ and markings
where inner search has already been run. Inner search proceeds only through
¢-markings and tries to find a cycle or a deadlock. By definition, EFEG ¢ holds
if and only if a ¢-cycle or a ¢-deadlock is reachable from mg. We start with outer
search. Whenever we encounter a fresh ¢-marking m, we switch to inner search.
If inner search terminates without having found a cycle or deadlock, we resume
outer search in m.

This procedure is very similar to the general CTL model checking algorithm.
However, we may apply dedicated stubborn sets. In outer search, we distinguish
markings that satisfy ¢ from markings that do not satisfy ¢. If m does not satisfy
¢, we use stubborn sets that satisfy COM and UPS(¢). If m satisfies ¢, we have
two correct combinations of principles. We can use stubborn sets that satisfy
COM and UPS(—¢), or stubborn sets that satisfy COM, KEY, and VIS(¢). In
inner search, we use stubborn sets satisfying COM, KEY, and VIS(¢).

Lemma 2. A reduced reachability graph obeying the principles stated above
preserves EFEG ¢.

Proof. Let mj ... m} bea ¢-cycle or a ¢-deadlock (then: n = 1). Let myma ... my
be a path such that m; has been visited in outer search in the reduced reacha-
bility graph, and my = m}, for some i (1 < i < n). Consider first the case where
all m; (1 < j < k) satisfy ¢. Then inner search from m; will find a ¢-cycle or
¢-deadlock since the path

_ _ * % * % * *
ﬂ'—ml...(mk—mimi+1...mnm1...mi_1)

witnesses EG ¢ and EG ¢ is preserved by stubborn sets with COM, KEY, and
VIS (see Subsect. 5.2).

Second, consider the case where m; does not satisfy ¢. Since m; = m;
satisfies ¢, the path from m; to my; contains a transition of the up-set used
in my, and, by the UPS principle, elements of the stubborn set used in m;.
Applying COM, we obtain an alternative path where the first transition is in
the stubborn set used in m;. Its successor meets the same properties in m; but
with a smaller value for k.

It remains to consider the case where m; satisfies ¢ and the first case is
not applicable. Then, for at least one ¢ (2 < ¢ < k), m, violates ¢. If we apply
stubborn sets satisfying COM and UPS(—¢), we argue as in the second case. This
yields a continuation for the witness path in the reduced reachability graph. If
we obey COM, KEY, and VIS instead, we argue as follows. If a transition of
the stubborn set used in m; occurs in 7, COM yields a continuation of the path
in the reduced reachability graph. Otherwise, the stubborn set in m; contains
only invisible transitions (by VIS). Choose a key transition ¢* in the stubborn
set for m; (available via KEY). By KEY, ¢* is never disabled in 7. By COM, all
transitions in 7 can still be executed after having fired ¢t*. The t*-successor m’
of my occurs in the reduced reachability graph. The third case is applicable only
a finite number of times since m’ satisfies ¢ but there is no ¢-cycle reachable in
inner search from m;. O

332 T. Liebke and K. Wolf

As in previous cases, AG ¢ is a sufficient condition for EFEG ¢ while EF¢ is
necessary. The state equation approaches to these properties may be added to
the portfolio for EFEG ¢.

5.6 AGEF ¢, EFAG ¢, EFAGEF ¢, AGEFAG ¢

These properties are tightly related to terminal SCC of the reachability graph.
For AGEF ¢, every terminal SCC must contain a marking satisfying ¢. For
EFAG ¢, there must exist a terminal SCC where all markings satisfy ¢. For
EFAGEF ¢, a terminal SCC must exist where at least one marking satisfies ¢,
and for AGEFAG ¢, all markings in all terminal SCC must satisfy ¢.

By Proposition 2, stubborn sets obeying COM, KEY, and IGN preserve
access to all terminal SCC of the reachability graph. Adding UPS(¢) for AGEF
¢ and EFAGEF ¢ (or UPS(—¢) for the other two cases) at least inside the
terminal SCC preserves the properties under investigation. There are several
strategies for implementing U PSS in the terminal SCC. We can either require it
for all markings (then KEY may be dropped) [20], or enforce a relaxed version of
UPS in all markings (see [15] for details), or we may launch a depth first search
using stubborn sets with COM and UPS whenever we encounter a terminal SCC
in the reduced graph w.r.t. COM, KEY, and IGN.

The proposed procedure has two advantages. First, we proceed in a single
depth-first search compared to the recursive approach of a CTL model checker.
Second, we can drop the very problematic BRA principle. Being able to drop the
VIS principle as well, the stubborn set method can achieve substantial reduction
even in cases where ¢ is a property that refers to a large number of places, and
causes many transitions to be visible.

For all properties considered in this subsection, AG ¢ is a sufficient condition
and EF ¢ is necessary. Using the state equation approach mentioned above, we
can add these checks to our portfolio. This way, we have an additional opportu-
nity to answer the query early while using only a moderate amount of additional
memory.

5.7 Formulas Starting with EX and AX

This section is concerned with formulas of the shape EXEF ¢, EXEG ¢,
EXE(¢ R ¢), EXE(¢ U v), EXEGEF ¢, EXEFEG ¢, AXAG ¢, AXAF ¢,
AXA(¢p R), AXA(¢p U o), AXAGAF ¢ and AXAFAG ¢. We explicitly discuss
the existentially quantified ones. Verification of these properties can be traced
back to the respective formula without the leading EX operator. All we need
to do is to explore all enabled transitions of mg, and not to store mq. That is,
whenever my is visited during the search, it is treated as fresh marking and a
stubborn set can be used. Other than this, the same stubborn set approaches as
discussed earlier are applicable.

Taking Some Burden Off an Explicit CTL Model Checker 333

5.8 Single-Path Formulas

In this section, we discuss a larger class of CTL formulas. We aim at applying
LTL model checking instead of CTL model checking. This way, the BRA principle
may be skipped. Switching to an LTL model checker is actually a good idea,
given the better success rate of tools like LoLA in the LTL category of the
MCC. According to [3], removing the path quantifiers of a CTL formula yields
the only candidate to be an equivalent LTL formula. But this candidate may or
may not turn out to be indeed equivalent. The ACTL formulas where equivalence
can be achieved can be characterised [16]. We chose to apply the approach to a
collection of CTL formulas that can be more easily be recognised by a rewriting
system.

LTL is a linear time temporal logic. That is, a counterexample for an LTL
formula is always a single maximal path of the system. In contrast, CTL is a
branching time temporal logic. This means that the counterexample is a subtree
of the computation tree (the unrolling of the reachability graph). For instance,
a witness for EGEF ¢ consists of a maximal path where, for each marking
a finite path to a state satisfying ¢ branches off. Even with the observations
made in Subsect. 5.4, the structure remains more complicated than a single path.
However, in several cases, the branching structure collapses into a single path.
Consider EFEG ¢. Here, we only need a finite path to the first state of a ¢-cycle
(or deadlock), extended with the cycle itself. It is precisely a counterexample
for the LTL formula GF —¢ that is obtained by negating EFEG ¢ to AGAF
—¢ and then dropping the universal path quantifiers. In the sequel, we shall
exhibit a class of CTL formulas where this approach is applicable. We call them
single-path formulas. They may contain only existential path quantifiers or only
universal path quantifiers. In the next definition, let a state predicate be a CTL
formula without any temporal operator.

Definition 11 (Existential single-path formula). If ¢ and i) are existential
single-path formulas and w is a state predicate, then the following formulas are
existential single-path formulas:

w (the base of the inductive definition);
- FG w;

- EF ¢;

- FElw U¢);

o E(¢ R LU),'

- ¢ \ ¢;

- ¢ A wy

Universal single-path formulas are defined accordingly:

Definition 12 (Universal single-path formula). If ¢ and ¢ are universal
single-path formulas and w is a state predicate, then the following formulas are
universal single-path formulas:

— w (the base of the inductive definition);
- AF w;
- AG (b;

334 T. Liebke and K. Wolf

o A(w R ¢);
- A(p Uw);
- ¢ A QZ};
B (b vV w;

The class of single-path formulas covers several cases discussed earlier in this
paper. However, the results above are stronger then the results we shall obtain
now, so the separate treatment is indeed justified. It is easy to see that the
negation of an existential single-path formula is indeed a universal single-path
formula and vice versa. That is, we may restrict subsequent considerations to
universal single-path formulas.

For a universal single-path formula ¢, let LTL(¢) be the formula obtained
from ¢ by removing all path quantifiers. We claim:

Lemma 3. Let ¢ be a universal single-path formula and N a Petri net. Then
N satisfies ¢ if and only if N satisfies LTL(¢).

Proof. We show that violation of ¢ implies violation of LTL(¢) and viola-
tion of LTL(¢) implies violation of ¢. We proceed by induction, according to
Definition 12.

Case w (state predicate): In both CTL and LTL, a state predicate is violated
if it does not hold in the initial marking.

Case AF w: In both CTL and LTL, a counterexample is a maximal path
where all markings violate w. Since w is a state predicate, it directly refers to
the markings on the path.

Case A(w R ¢): A counterexample for A(w R ¢) is a finite path to a marking
where all but the last marking violate w and the last marking violates ¢. As w is
a state predicate, the intermediate markings as such violate w. Hence, the path,
extended by a counterexample path for ¢ at the final marking (which exists
by induction hypothesis) yields a path that is a counterexample for LTL(A (w
R ¢)). For the other direction, consider a counterexample for LTL(A(w R ¢)).
It must have a suffix serving as a counterexample for LTL(¢). Hence the first
marking of that path violates ¢ (using once more the induction hypothesis). The
markings that are not part of the considered suffix violate w, so the full path is
a counterexample for A(w R ¢).

Case A(¢ Uw): A counterexample can either be a maximal path where w is
violated in every marking (then apply the argument of Case AF w) or a path
where w is violated until both w and ¢ are violated (then apply the argument of
case A(w R ¢)).

Case AG ¢: This case can be traced back to Case A(w R ¢) using the tau-
tology AG ¢ <= A(false R ¢).

Case ¢ N : If ¢ is violated, there is a counterexample for ¢ for which the
induction hypothesis may be applied. Otherwise, there is a counterexample for
4 for which again the induction hypothesis applies.

Case ¢ V w: In this case, ¢ and w are violated. Since w is a state predicate,
only the initial marking of the path is concerned. Hence, the induction hypothesis
applied to ¢ yields the desired result. a

Taking Some Burden Off an Explicit CTL Model Checker 335

Using Lemma, 3 the considered fragment of CTL can be verified using an LTL
model checker. As another option, we may use a CTL model checker but apply
LTL preserving stubborn sets. Existential single-path formulas can be verified
by checking their negation.

5.9 Boolean Combinations

If a CTL formula is a Boolean combination of subformulas, we may check the
subformulas individually. Doing that, the subformulas often have a smaller set
of visible transitions, so some of the stubborn set principles are stronger for a
subformula than for the whole formula. Some subformulas may contain the X
operator, so the stubborn set method can be applied at least to the subformulas
not containing the X operator. Some subformulas may fall into any of the classes
considered above, so their verification may be accelerated.

In a setting with distributed memory, the subformulas can be verified in par-
allel. With shared memory, a parallel execution is not necessarily recommendable
since the individual verification procedures compete for memory which may lead
to memory exhaustion in all procedures while verification could have been suc-
cessful if the whole memory were available for either of the procedures.

To get the most out of our accelerated procedures in a shared memory setting,
we rate subformulas according to their simplicity. Then, the simplest formulas
are checked first. This way, we get an increased probability that the result of
the Boolean combination can already be determined (by a true subformula of a
disjunction or a false subformula of a conjunction) before the procedures for the
most complicated formulas have been launched.

Our rating works as follows. The simplest category consists of subformulas
that do not contain temporal operators. They are true, false, or can be evaluated
by just inspecting the initial marking. Second category consists of formulas that
contain only X operators. They can be verified by exploring the state space
to a very limited depth. Then follow categories for the simple cases studied
above. The simplicity of these categories is mainly influenced by our experience
concerning their performance in the MCC. Then follow the categories LTL-X,
CTL-X, LTL, and CTL (in this order). For the last categories, applicability of
stubborn sets is the distinguishing feature.

6 Preprocessing

It has already been recognised [1] that formulas should be carefully preprocessed
before running a model checking procedure. Atomic propositions may turn out
to be always true or always false, proven by the infeasibility of a linear program
that can be derived from the proposition and the Petri net state equation. Once
some of the propositions have been identified as true or false, whole subformulas
may turn out to be true or false as well. This way, a significant number of
formulas can be evaluated without running a model checker at all. For other
formulas, the remaining model checking problem is simpler than the original one.

336 T. Liebke and K. Wolf

In the remainder of this section, we add a few observations to the findings of
[1]. We have two objectives. First, we want to increase the number of situations
where one of the special routines discussed in the previous section can be applied.
Second, we want to increase the power of the stubborn set method.

Boolean Operators. Some tautologies, such as AG (¢ A ¢) <= (AG ¢ A
AG %) can be applied in both directions. Applying it from right to left decreases
the number of temporal operators. However, the operator in general applies to a
more complicated subformula, with more transitions being visible. Applying the
formula from left to right leads to a formula with more temporal operators that,
however, work on a smaller subformula. Stubborn sets potentially work better.
Moreover, we increase the likelihood that the Boolean operator then becomes
the root of the formula tree and the results of Sect. 5.9 are applicable. Hence,
our tool LoLLA uses an orientation of tautologies that prefers pushing Boolean
operators towards the root of the formula tree.

X Operators. We also try to push X operators towards the root to the formula
tree. To this end, we apply tautologies such as EFEX ¢ <= EXEF ¢ from
left to right. This way, we increase the likelihood that we finally obtain one of
the formulas considered in Sect.5.7. Moreover, we get larger subformulas that
do not contain an X operator. Since CTL preserving stubborn sets work only on
X-free formulas, stubborn reduction is not applicable to a formula containing an
X operator as a whole. However, when an X-free subformula of a CTL formula is
evaluated on some level of recursion in the procedure sketched in Sect. 3, there
is no reason not to apply stubborn sets. Hence, the rewriting strategy improves
the applicability of stubborn set reduction.

Traps. When investigating atomic propositions, [1] mainly employs the Petri
net state equation. In quite some situations where the state equation is not
able to prove a proposition to be invariantly true or false, a trap can actually
help. A trap is a set Q) of places that, once containing a token, always keeps at
least one token. This is formally established by requiring that every transition
that consumes tokens from any place in @, also produces a token on some place
in Q. Consider an atomic proposition kipy + -+ + knp, > 1 with all k; being
positive. If {p1,...,pn} includes a trap that has at least one token in the initial
marking, the proposition is invariantly true. Existence of a trap is easily checked.
We start with {p1,...,p,} and remove places where some transition consumes
tokens while not producing tokens on any of the places. This way, we obtain the
maximal trap included in {p1,...,pn}.

Embedded Place Invariants. A place invariant ¢ assigns a weight i(p) to every
place p such that the weighted sum of tokens remains constant for all reachable
markings. Place invariants can be found by solving the system of equations
CTi = 0, where C is the incidence matrix of N. With a place invariant i, the
equation i(p1)m(p1) + « -+ + i(pn)m(pn) = tmp holds for all reachable markings
in a net with set of places {p1,...,pn}. Sometimes, such invariants can be used
for simplifying an atomic proposition. Consider as an example the proposition
p1 + 2p2 + p3 > 2 and assume that there is a place invariant that yields the
equation p;+po = 1. Then the atomic proposition can be simplified to po+ps > 1.

Taking Some Burden Off an Explicit CTL Model Checker 337

It is not constant but does no longer mention p;. Consequently, the set of visible
transitions may become smaller since the environment of p; does no longer need
to be considered as visible (unless transitions still appear in the environment of
p2 or p3). With a smaller set of visible transitions, better stubborn set reduction
may be expected (in particular regarding the VIS principle). In general, a helpful
invariant can be systematically computed as the solution of a linear program.
Consider an atomic proposition of the shape kipy + -+ + kmpm + l1q1--- +
lngn op k, where all p; and g; are places, all k; are positive integers, all I;
are negative integers, op € {=,#,<,>,<,>}, and k is an integer. The linear
program looks for the largest possible invariant where the coefficients are between
0 and k; (resp. [;): Maximise i(p1)+- - -+i(pm)—i(q1) — - -—i(gn) where CTi = 0,
and 0 < i(p;) < k; (for 1 < j <m), and [; < i(¢g;) <0 (for 1 < j < n). If
the linear program is feasible, subtracting the resulting solution from the atomic
proposition may or may not lead to less mentioned places but is guaranteed not
to add places to the formal sum of the proposition.

7 Experimental Validation

We implemented the methods discussed in the paper in our tool LoLA (imple-
mentation does not yet cover EXEFEG, EXEGEF, and the universal counter-
parts AXAGAF and AXAFAG). For evaluating the methods, we use the bench-
mark provided by the MCC 2018 [9]. We used the formulas provided in the
CTL category. While the nets of the MCC are contributed by the community,
the formulas are actually generated automatically, and are to a certain degree
random.

In 2018, a total of 767 place/transition Petri nets were used in the MCC. For
every net, 32 CTL formulas are provided. This makes 24544 individual verifica-
tion problems. For 3704 problems (15.1%), the initial rewriting process yielded
a formula that does not contain any temporal operator. Here, sufficiently many
atomic propositions have been found to be invariantly true or false. Resulting
formulas can be evaluated by just inspecting the initial marking, so no actual
run of a model checker is necessary. 13366 problems (54.5%), after rewriting, fall
into some of the categories mentioned in Sect.5. That is, we need to run the
generic CTL model checker only for 30.4% of the CTL problems in the MCC!

For the 13366 problems where application of a special routine is possible, we
compared the proposed routine with a run of the generic CTL model checking
procedure. To this end, we used 300 seconds of execution time and unlimited
memory for every problem instance. Experiments were executed on our machine
Ebro. This machine has been used for executing parts of the actual MCC in
recent years. It has 32 physical cores running at 2.7 GHz and 1TB of RAM.
Memory overflow was no issue within the 300 seconds given to each instance.

Table 1 lists the results of our experiments. It shows that specialised routines
in total are more successful than the CTL model checking procedure. For the for-
mulas where specialised routines have been found, we increased the success rate
from 69.2% to 85.7%. In other words, specialised routines are able to solve more

338 T. Liebke and K. Wolf

Table 1. Comparison between CTL model checking procedure (CTL) and special
routine (as proposed in this paper).

Formula type Number | CTL Special Improvement
(#) # % | # % |# | %
EF ¢, AG ¢ 2471 |1438|58.2| 2300|93.1| 862|34.9
EG ¢, AF ¢ 1767 |1625|92.0| 1670 94.5| 45| 2.5
E(¢ Rv), A(p U v) 168 157/93.5| 160|95.2 3] 1.8
E(¢ U), A(¢p R v) 318 187/58.8| 198 /62.3| 11| 3.5
EFEG ¢, AGAF ¢ 515 340 | 66.0 431 83.7 91 |17.7
EGEF ¢, AFAG ¢ 385 276 | 71.7| 277|71.9 1/ 03
EXEF ¢, AXAG ¢ 353 193 54.7| 319,90.4| 126 35.7
EXEG ¢, AXAF 6 197 | 177/89.8| 178 90.4] 1] 05
EXE(¢ R ¢), AXA(¢ U @) 19 17/89.5 18|94.7 1 53
EXE(¢ U v), AXA(pRv)| 33 20/60.6| 24727 4121
EFAG ¢, AGEF ¢ 884 286324 343|38.8| 57| 64
EFAGEF ¢, AGEFAG ¢ 13 3123.1 646.2 3123.1
Single-Path 421 275/65.3| 295|70.1| 20| 4.8
Boolean 5822 |4250|73.0| 5239|90.0 989|17.0
All 13366 9244 169.2 | 11458 | 85.7 | 2214 | 16.5

than half of the cases where a generic CTL model checker was not successful.
This means that the proposed approach proved to be effective.

The table also shows that success is very unevenly distributed over the var-
ious formula types. The big success of reachability (EF ¢) is of course to be
expected and can be quoted to the large portfolio that included search with
very powerful stubborn sets, the state equation approach, and the use of the
siphon/trap property.

On the other edge of the spectrum, the little success for EGEF ¢ is well
explained by the fact that we still need to apply the CTL-X preserving stub-
born set method, so we have a more efficient exploration of the state space but
the state space as such remains the same. In case of EXEG ¢, the CTL model
checker left only 20 problems open. That is, there is not much room for improve-
ment. Problems in the MCC can be separated into the categories “easy enough
for everybody”,“too hard for everybody”, and “battleground”. The first cate-
gory refers to nets with rather small state space. Here, every approach is able
to get a result in time. In the second category, we have nets with very large
state spaces and dense dependencies between transitions. At least explicit model
checkers that depend on the reduction power of the stubborn set method, have
no chance to verify such systems. This means that progress in model checking
mainly refers to the battleground category. We should aim at covering the prob-
lems in this category as much as possible. Returning to the EXEG ¢ category,

Taking Some Burden Off an Explicit CTL Model Checker 339

the little success may very well be due to the fact that only one of the 20 for-
mulas left open by the CTL model checker actually fell into the battleground
category. Consequently, we do not conclude that the special routine for EXEG ¢
is ineffective as such. Given the fact that we may apply more powerful stubborn
sets, we have reason to believe that the procedure would be more effective on a
different benchmark, with more EXEG formulas in the battleground category.
In consequence, the large bandwidth of success rates in the different formula
types does not jeopardise the general conclusion in favour of using specialised
routines.

The checks for EF ¢ as a necessary condition and AG ¢ as a sufficient con-
dition, which we run in parallel to the depth-first search, provided solutions to
305 problems (1.2% of the whole CTL category).

8 Conclusion

We proposed to relieve the CTL model checker by providing specialised support
for a large set of simple CTL queries. Special treatment permits the use of much
more powerful stubborn set dialects. In addition, the Petri net state equation
may be employed for solving the problem, or for checking necessary or sufficient
conditions in a portfolio approach. In the MCC, specialised routines are appli-
cable to more than half of the problems. In the introduction, we argued that a
significant percentage of simple queries has to be expected in practice, too.

With our approach we increased the success rate for simple formulas by
16.5% in the MCC benchmark. This is a remarkable achievement since none
of the additionally solved problems falls into the “easy enough for everybody”
category. Over half of the simple problems left unsolved by the CTL model
checker can now be solved. The performance demonstrated here with the MCC
benchmark (that uses randomly generated formulas) can be repeated in other
situations with meaningful formulas. Unfortunately, there is not enough space
to report details.

Offering the new methods, LoLLA unfortunately does not yet reach the
performance of TAPAAL [7], the 2018 winner of the MCC CTL category.
TAPAAL offers some techniques that have not (yet) been implemented in LoLA.
For instance, TAPAAL uses sophisticated net reduction as another form of
preprocessing [7].

Future work could include finding more formula types that permit any
improvement in verification. In addition, some of the ideas of this paper could
be integrated into a CTL model checker itself. For instance, treating AGEF, or
even AGEFAG, in a single depth-first search should be possible even if that pair
of operators occurs in the middle of a more complex CTL formula. In addition,
the proposed stubborn set dialects may not necessarily be the optimal ones for
the respective formula type. Finding alternative stubborn set methods for larger
classes of formulas, we may ultimately be able to have a dedicated dialect of
stubborn sets for every subformula of a CTL query. Finally, the initially pro-
posed idea of modifying the net for the sake of simplifying a CTL query has not
been systematically explored yet.

340

T. Liebke and K. Wolf

References

10.

11.

12.

13.

14.

15.

16.

17.

. Bgnneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of

CTL formulae for efficient model checking of petri nets. In: Khomenko, V., Roux,
O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 143-163. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91268-4_8

Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52-71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear-time and
branching-time logics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
REX 1988. LNCS, vol. 354, pp. 428-437. Springer, Heidelberg (1989). https://doi.
org/10.1007/BFb0013029

Commoner, F.: Deadlocks in Petri Nets. Applied Data Research Inc., Wakefield,
Massachusetts, Report CA-7206-2311 (1972)

Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des.
1(2/3), 275-288 (1992)

Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for
generalized Biichi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp- 169-184. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328_15
David, A., Jacobsen, L., Jacobsen, M., Jgrgensen, K.Y., Mgller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc petri nets. In:
Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492-497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_36

. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,

K.R., Geppert, A., Norrie, M.C. (eds.) CAIiSE 2001. LNCS, vol. 2068, pp. 157—
170. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45341-5_11
Kordon, F., et al.: Homepage of the Model Checking Contest, June 2018. http://
mee.lip6.fr/

Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with tarjan’s
algorithm. Theor. Comput. Sci. 345(1), 60-82 (2005)

Gerth, R., Kuiper, R., Peled, D.A., Penczek, W.: A partial order approach to
branching time logic model checking. Inf. Comput. 150(2), 132-152 (1999)
Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput.
110(2), 305-326 (1994)

Hack, M.H.T.: Analysis of Production Schemata by Petri Nets. Master’s thesis,
MIT, Dept. Electrical Engineering, Cambridge (1972)

Holzmann, G.J., Peled, D.A., Yannakakis, M.: On nested depth first search. In:
Proceedings 2nd SPIN Workshop, pp. 23-32 (1996)

Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods
for state properties. Formal Methods Syst. Des. 29(3), 215-251 (2006)

Maidl, M.: The common fragment of CTL and LTL. In: Proceedings of FOCS, pp.
643-652. IEEE Computer Society (2000)

Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the siphon-trap
property. In: Lilius, J., Penczek, W. (eds.) PETRINETS 2010. LNCS, vol. 6128, pp.
267-286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-
7_16

https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0013029
https://doi.org/10.1007/BFb0013029
https://doi.org/10.1007/11537328_15
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/3-540-45341-5_11
http://mcc.lip6.fr/
http://mcc.lip6.fr/
https://doi.org/10.1007/978-3-642-13675-7_16
https://doi.org/10.1007/978-3-642-13675-7_16

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Taking Some Burden Off an Explicit CTL Model Checker 341

Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409-423. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_34

Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46-65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X _4

Schmidt, K.: Stubborn sets for model checking the EF/AG fragment of CTL.
Fundam. Inform. 43(1-4), 331-341 (2000)

Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146-160 (1972)

Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491-515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1_36

Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429-528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6_21

Valmari, A.: Stubborn set methods for process algebras. In: Proceedings of
DIMACS Workshop on Partial Order Methods in Verification, vol. 29, pp. 213-231
(1997)

Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Koutny, M., Kleijn,
J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XII. LNCS, vol. 10470, pp. 140-165. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55862-1_7

Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238-266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6_6
Vergauwen, B., Lewi, J.: A linear local model checking algorithm for CTL. In:
Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 447-461. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57208-2_31

Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Logical
Methods Comput. Sci. 8(3) (2012)

Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351-362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4_18

https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/3-540-57208-2_31
https://doi.org/10.1007/978-3-319-91268-4_18

	Taking Some Burden Off an Explicit CTL Model Checker
	1 Introduction
	2 Terminology
	3 CTL Model Checking
	4 Partial Order Reduction—the Stubborn Set Method
	5 Simple CTL Queries
	5.1 AG , EF
	5.2 AF , EG
	5.3 E (U), A(R)
	5.4 EGEF , AFAG
	5.5 EFEG , AGAF
	5.6 AGEF , EFAG , EFAGEF , AGEFAG
	5.7 Formulas Starting with EX and AX
	5.8 Single-Path Formulas
	5.9 Boolean Combinations

	6 Preprocessing
	7 Experimental Validation
	8 Conclusion
	References

