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Abstract. Synthesis for a type τ of Petri nets is the problem of finding,
for a given transition system (TS, for short) A, a Petri net N of this type
whose state graph is isomorphic to A if such a net exists. The decision
version of this search problem, called τ -feasibility, asks if, for a given TS
A, there exists a Petri net N of type τ with a state graph isomorphic to A.
In this case, A is called τ -feasible. A’s feasibility is equivalent to fulfilling
two so-called separation properties. In fact, a transition system A is τ -
feasible if and only if it satisfies the type related state separation property
(SSP) and event state separation property (ESSP). Both properties, SSP
and ESSP, define decision problems. In this paper, we introduce for b ∈
N the type of restricted Zb+1-extended b-bounded P/T-nets and show
that synthesis and deciding ESSP and SSP for this type is doable in
polynomial time. Moreover, we demonstrate that, given a TS A, deciding
if A has the SSP can be done in polynomial time for the types of (pure)
Zb+1-extended b-bounded P/T-nets. Finally, we exhibit that deciding
if a TS A is feasible or has the ESSP for the types of (pure) Zb+1-
extended b-bounded P/T-nets is fixed parameter tractable if the number
of occurrences of events is considered as parameter.

1 Introduction

Synthesis for a Petri net type τ (τ -synthesis, for short) is the task to find for
a transition system A a Petri net N of type τ (τ -net, for short) with a state
graph isomorphic to A. The associated decision version, which we call feasibility
for τ (τ -feasibility, for short), asks whether there is a corresponding τ -net for
the input A. If such a net exists then we call A τ -feasible. A’s feasibility is
equivalent to fulfilling two so-called separation properties. More exactly, A is
τ -feasible if and only if it has the state separation property and the event state
separation property for τ (τ -SSP and τ -ESSP, for short) [5]. Both, τ -SSP and
τ -ESSP, define decision problems asking whether the input A has the τ -SSP or
the τ -ESSP, respectively.

Petri net synthesis has been investigated for many years and is applied in
numerous fields. It yields implementations which are correct by design and allows
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extracting concurrency and distributability information from sequential specifi-
cations as transition systems and languages [6,7]. Further application areas of
Petri net synthesis currently cover, among others, the reconstruction of a model
from its execution traces (process discovery), supervisory control for discrete
event systems and the synthesis of speed-independent circuits [1,9,13].

A type of Petri nets is called bounded if there is a positive integer b which is
not exceeded by the number of tokens on any place in every reachable marking.
This paper deals with the computational complexity of synthesis, feasibility, SSP
and ESSP for b-bounded Petri net types, that is, bounded Petri nets where b is
predetermined.

In [3,5], Badouel et al. showed that Synthesis, feasibility, SSP and ESSP
for the type of bounded and pure bounded place/transition nets (P/T-nets, for
short) are solvable in polynomial time if no bound b is preselected. On the con-
trary, SSP, ESSP and feasibility are NP-complete for pure 1-bounded P/T-nets
[4,12]. This remains true even for strongly restricted input transition systems
[19,21]. In [18], we showed that feasibility, SSP and ESSP are NP-complete for
(pure) b-bounded P/T-nets for arbitrary b ∈ N

+.
In [16], Schmitt advanced the pure 1-bounded P/T-net type by an interaction

between places and transitions simulating addition of integers modulo 2. This
brings the complexity of synthesis, feasibility, ESSP and SSP for the resulting
pure Z2-extended 1-bounded P/T-nets down to polynomial time. On the con-
trary, we proved in [18] that extending (pure) b-bounded P/T-nets by Zb+1 yields
no tractable type if b ≥ 2. In particular, feasibility and ESSP for (pure) Zb+1-
extended b-bounded P/T-nets, b ≥ 2, are NP-complete. We continued research
on the impact of interactions on the computational complexity of synthesizing
1-bounded Petri nets in [20]. Here, we investigated 43 1-bounded types purely
defined by interactions which they have or not. While for 37 of them synthesis
is tractable, feasibility and ESSP for the remaining 7 are NP-complete.

Results of [2,8] show that putting restrictions on the sought nets’s (syntac-
tical) structure can have a positive impact on the complexity of synthesis. In
particular, in [2], Agostini et al. proposed a polynomial time synthesis algorithm
for Free-Choice Acyclic pure 1-bounded P/T-nets having applications in work-
flow models. Moreover, in [8], Best et al. showed that it suffices to check certain
structural properties of the input A if the sought net is a pure b-bounded live
marked graph. Whether A has these properties or not is decidable in polynomial
time [14].

In this paper, we examine whether there are also types of b-bounded P/T-nets
for which synthesis is tractable if b ≥ 2. We affirm this question and propose
the restricted Zb+1-extended b-bounded P/T-nets, b ∈ N. This paper shows,
that synthesis, feasibility, ESSP and SSP are solvable in polynomial time for
this type. Moreover, our results prove that deciding whether a transition system
(TS, for short) A has the SSP for the types of (pure) Zb+1-extended b-bounded
P/T-nets, b ∈ N, is also doable in polynomial time. Notice, that this discovers
the first Petri net type where the provable computational complexity of SSP is
different to ESSP and feasibility.



150 R. Tredup

To decide whether a TS A is τ -feasible or has the τ -ESSP, where τ corre-
sponds to (pure) Zb+1-extended b-bounded P/T-nets, b ≥ 2, is NP-complete
[18]. Hence, this problem is considered inherently hard to solve algorithmically.
Consequently, one expects that every corresponding decision algorithm has an
exponential running time if complexity is measured in terms of the input size
of A only. In this paper, we analyze the computational complexity of feasibility
and ESSP for these types in finer detail. To do so, we apply parameterization,
a typical approach of modern complexity theory to tackle hard problems. The
running time of parameterized algorithms is not only expressed in the input’s
size, but it also takes the parameters into account. The number k of occurrences
of events, the maximum number of different transitions at which an event occur,
is one of the most obvious parts of a TS which can be considered as a parameter.
We show that feasibility and ESSP related to the types of (pure) Zb+1-extended
b-bounded P/T-nets are only exponential in the size of k while polynomial in
the size of the input. Hence, both problems are fixed parameter tractable if k is
considered as parameter. This result could not be foreseen with certainty. In fact,
in [19], we showed that feasibility, ESSP and SSP remain NP-complete for pure
1-bounded P/T-nets even if every event occurs at most twice. Hence, related
to pure 1-bounded P/T-nets, these problems parameterized by k are not fixed
parameter tractable as long as P �= NP.

2 Preliminaries

A transition system (TS for short) A = (S,E, δ) consists of finite disjoint sets S of
states and E of events and a partial transition function δ : S×E → S. Usually, we
think of A as an edge-labeled directed graph with node set S where every triple
δ(s, e) = s′ is interpreted as an e-labeled edge s e s′, called transition. We say
that an event e occurs at state s if δ(s, e) = s′ for some state s′ and abbreviate
this with s e . This notation is extended to words w′ = wa, w ∈ E∗, a ∈ E by

inductively defining s ε s for all s ∈ S and s w′
s′′ if and only if s w s′ and

s′ a s′′. If w ∈ E∗ then s w denotes that there is a state s′ ∈ S such that
s w s′. An initialized TS A = (S,E, δ, s0) is a TS with an initial state s0 ∈ S

where every state is reachable: ∀s ∈ S,∃w ∈ E∗ : s0
w s. The language of A

is the set L(A) = {w ∈ E∗ | s0
w }. In the remainder of this paper, if not

explicitly stated otherwise, we assume all TSs to be initialized and we refer to
the components of an (initialized) TS A consistently by A = (SA, EA, δA, s0,A).

The following notion of types of nets has been developed in [5]. It allows
us to uniformly capture several Petri-net types in one general scheme. Every
introduced Petri-net type can be seen as an instantiation of this general scheme.
A type of nets τ is a TS τ = (Sτ , Eτ , δτ ) and a Petri net N = (P, T, f,M0) of
type τ , τ -net for short, is given by finite and disjoint sets P of places and T of
transitions, an initial marking M0 : P −→ Sτ , and a flow function f : P × T →
Eτ . The meaning of a τ -net is to realize a certain behavior by cascades of firing
transitions. In particular, a transition t ∈ T can fire in a marking M : P −→ Sτ
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Fig. 1. Top: The type τ2
2 . Edges with several labels represent different transitions.

Discarding the (1, 1), (1, 2), (2, 1) and (2, 2) labeled transitions yields τ2
3 . Bottom: The

type τ2
4 .

and thereby produces the marking M ′ : P −→ Sτ if for all p ∈ P the transition

M(p) f(p, t) M ′(p) exists in τ . This is denoted by M t M ′. Again, this notation
extends to sequences σ ∈ T ∗. Accordingly, RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M}
is the set of all reachable markings of N . Given a τ -net N = (P, T, f,M0),
its behavior is captured by the TS AN = (RS(N), T, δ,M0), called the state
graph of N , where for every reachable marking M of N and transition t ∈ T

with M t M ′ the transition function δ of AN is defined by δ(M, t) = M ′. The
following types of b-bounded P/T-nets and pure b-bounded P/T-nets build the
basis of the announced Zb+1-extensions:

0. The type of b-bounded P/T-nets is defined by
τ b
0 = ({0, . . . , b}, {0, . . . , b}2, δτb

0
) where for s ∈ Sτb

0
and (m,n) ∈ Eτb

0
the

transition function is defined by δτb
0
(s, (m,n)) = s − m + n if s ≥ m and

s − m + n ≤ b, and undefined otherwise.
1. The type of pure b-bounded P/T-nets is a restriction of τ b

0 -nets that discards
all events (m,n) from Eτb

0
where both, m and n, are positive. To be exact,

τ b
1 = ({0, . . . , b}, Eτb

0
\ {(m,n) | 1 ≤ m,n ≤ b}, δτb

1
), and for s ∈ Sτb

1
and

e ∈ Eτb
1

we have δτb
1
(s, e) = δτb

0
(s, e).

Having τ b
0 and τ b

1 , their following Zb+1-extension allows them to simulate the
addition of integers modulo b + 1.
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2. The type of Zb+1-extended b-bounded P/T-nets τ b
2 arises from τ b

0 such that,
firstly, Eτb

2
extends the event set Eτb

0
by the elements 0, . . . , b and, secondly,

the transition function δτb
2

extends δτb
0

by the addition of integers modulo
b + 1. More exactly, τ b

2 = ({0, . . . , b}, (Eτb
0

\ {(0, 0)}) ∪ {0, . . . , b}, δτb
2
) where

for s ∈ Sτb
2

and e ∈ Eτb
2

we have that δτb
2
(s, e) = δτb

0
(s, e) if e ∈ Eτb

0
and

δτb
2
(s, e) = (s + e) mod (b + 1) if e ∈ {0, . . . , b}.

3. The type of Zb+1-extended pure b-bounded P/T-nets is defined by τ b
3 =

({0, . . . , b}, (Eτb
1

\ {(0, 0)}) ∪ {0, . . . , b}, δτb
3
) where for s ∈ Sτb

3
and e ∈ Eτb

3

the transition function is given by δτb
3
(s, e) = δτb

1
(s, e) if e ∈ Eτb

1
and

δτb
3
(s, e) = (s + e) mod (b + 1) if e ∈ {0, . . . , b}.

The new Petri net τ b
4 type arises as a restriction of τ b

2 :

4. The type of restricted Zb+1-extended b-bounded P/T-nets τ b
4 = (Sτb

2
, Eτb

2
, δτb

4
),

b ∈ N
+, origins from τ b

2 and has the same state set, Sτb
4

= Sτb
2
, and the same

event set, Eτb
4

= Eτb
2
, but a restricted transition function δτb

4
. In particular,

the transition function δτb
4

restricts δτb
2

in way that for s ∈ Sτb
4

and (m,n) ∈
Eτb

4
we have that δτb

4
(s, (m,n)) = δτb

2
(s, (m,n)) if s = m and, otherwise,

if s �= m then δτb
4
(s, (m,n)) remains undefined. Hence, every (m,n) ∈ Eτb

4

occurs exactly once in τ b
4 . Furthermore, if (s, e) ∈ {0, . . . , b}2 then δτb

4
(s, e) =

δτb
2
(s, e).

In the remainder of this paper we assume τ ∈ {τ b
2 , τ b

3 , τ b
4} and b ∈ N

+, unless
stated otherwise. Notice, that τ1

4 coincides with Schmitt’s type [16]. Figure 1
gives a graphical representation of τ2

2 , τ2
3 and τ2

4 . The following notion of τ -
regions allows us, on the one hand, to define the type related ESSP and SSP
and, on the other hand, to reveal in which way we are able to obtain a τ -net
N for a given TS A if it exists. Figure 2 shows examples of all subsequently
introduced terms.

If τ is a type of nets then a τ -region of a TS A is a pair of mappings (sup, sig),
where sup : SA −→ Sτ and sig : EA −→ Eτ , such that, for each transition

s e s′ of A, we have that sup(s) sig(e) sup(s′) is a transition of τ . If (sup, sig)
is a τ -region of A then for e ∈ EA we define sig−(e) = m, sig+(e) = n and
|sig(e)| = 0 if sig(e) = (m,n) ∈ Eτ and, otherwise, sig−(e) = sig+(e) = 0 and
|sig(e)| = sig(e) if sig(e) ∈ {0, . . . , b}. Hence, by definition of τ , (sup, sig) is a
τ -region if and only if s e s′ entails sup(s′) = (sup(s) − sig−(e) + sig+(e) +
|sig(e)|) mod (b + 1).

Two distinct states s, s′ ∈ SA define an SSP atom (s, s′), which is said to
be τ -solvable if there is a τ -region (sup, sig) of A such that sup(s) �= sup(s′).
An event e ∈ EA and a state s ∈ SA at which e does not occur, that is ¬s e ,
define an ESSP atom (e, s). The atom is said to be τ -solvable if there is a τ -

region (sup, sig) of A such that ¬sup(s) sig(e) . A τ -region solving an ESSP or
a SSP atom (x, y) is a witness for the τ -solvability of (x, y). A TS A has the
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Fig. 2. Upper left, top: Input TS A. Bottom: The table depicts the set of τ2
4 -regions

R = {R1, R2, R3, R4, R5} where Ri = (supi, sigi) for i ∈ {1, . . . , 5}. All regions of
R are also τ2

2 -regions and all of R \ {R1} are also τ2
3 -regions. One verifies that R

contains a witness for every ESSP atom and every SSP atom of A. Hence, if τ ∈
{τ2

2 , τ2
4 } then A and the synthesized τ -net NR

A has a state graph that is isomorphic
to A. However, the set {R2, . . . , R5} contains no witness for the solvability of (c, 1)
and R1 is no τ2

3 -region. The ESSP atom (c, 1) is not τ2
3 -solvable at all, hence, A is

not τ2
3 -feasible. Upper right: The graphical representation of the synthesized τ -net

NR
A = (R, {a, b, c}, f, 21210), where f(Ri, x) = sigi(x) for every x ∈ {a, b, c} and

M0(R1) · · · M0(R5) = sup1(0) . . . sup5(0). For readability, 0-labeled flow arcs for the
representation of f(R5, x) = 0 for x ∈ {b, c, d} are neglected and flow arcs to the same
place are drawn in the same color. Upper left, bottom: The state graph ANR

A
of NR

A

where the reachable markings (states) are represented by 5-tupels M(R1) · · · M(R5).
Obviously, ANR

A
is isomorphic to A.
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τ -ESSP (τ -SSP) if all its ESSP (SSP) atoms are τ -solvable. Naturally, A is said
to be τ -feasible if it has the τ -ESSP and the τ -SSP.

The following fact is well known from [5, p. 161]: A set R of τ -regions of A
contains a witness for all ESSP and SSP atoms if and only if the synthesized
τ -net NR

A = (R, EA, f,M0) has a state graph that is isomorphic to A. The flow
function of NR

A is defined by f((sup, sig), e) = sig(e) and its initial marking
is M0((sup, sig)) = sup(s0,A) for all (sup, sig) ∈ R, e ∈ EA. The regions of R
become places and the events of EA become transitions of NR

A . Hence, for a
τ -feasible TS A where R is known, we can synthesize a net N with state graph
isomorphic to A by constructing NR

A .

3 Polynomial Time Results

Theorem 1. Solving τ b
4 -synthesis for a TS A or deciding if A has the τ b

4 -ESSP
is doable in polynomial time. Moreover, for τ ∈ {τ b

2 , τ b
3 , τ b

4} one can decide in
polynomial time whether a given TS A has the τ -SSP.

The contribution of Theorem 1 is threefold. Firstly, in [18] it has been shown
that deciding the τ -ESSP and τ -feasibility is a NP-complete problem for τ ∈
{τ b

2 , τ b
3}. Hence, by showing that deciding the τ -SSP for τ ∈ {τ b

2 , τ b
3} is doable

in polynomial time, Theorem 1 discovers the first Petri net types where the
provable computational complexity of SSP is different to ESSP and feasibility.

In [16], Schmitt advanced pure 1-bounded P/T-nets by the additive group of
integers modulo 2 and discovered a tractable superclass. In [18], we showed that
lifting this approach to (pure) b-bounded P/T-nets where b ≥ 2 do not lead to
superclasses with a tractable synthesis problem. Thus, Theorem 1 proposes the
first tractable type of b-bounded Petri nets, b ≥ 2, so far. Finally, Theorem 1
gives us insight into which of the τ -net properties, τ ∈ {τ b

0 , τ b
1}, cause the syn-

thesis’ hardness. In particular, flow arc relations (events in τ) between places
and transitions in a τ -net define conditions when a transition is able to fire. For
example, if N is a τ -net with transition t and place p such that f(p, t) = (1, 0)
then the firing of t in a marking M requires M(p) ≥ 1. By Theorem 1, the hard-
ness of finding a τ -net N for A origins from the potential possibility of τ -nets
to satisfy such conditions by multiple markings M(p) ∈ {1, . . . , b}. In fact, the
definition of τ b

4 implies that f(p, t) = (m,n) requires M(p) = m for the firing
of t and prohibits the possibility of multiple choices. By Theorem 1, this makes
τ b
4 -synthesis tractable. It should be noted that the results of [4,12] show that

the restriction to “unambiguous markings” of p satisfying conditions defined by
f(p, t) does not guarantee tractability.

While the question of whether there are superclasses of τ b
0 , τ b

1 , b ≥ 2, for
which synthesis is doable in polynomial time remains unanswered, the following
lemma shows that the type τ b

4 yields at least a tractable superclasses of Schmitt’s
type τ1

4 [16]. In particular, if b < b′ then the class of τ b
4 -nets is strictly more

comprehensive than the class of τ b′
4 -nets.

Lemma 1. If b < b′ ∈ N
+ and if T is the set of τ b

4 -feasible TSs and T ′ the set
of τ b′

4 -feasible TSs then T ⊂ T ′.
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Proof. To proof the lemma, we consider a TS A which is τ b′
4 -feasible but not τ b

4 -
feasible. Let A defined by A = ({s0, . . . , sb′}, {a}, δ, s0) the TS with transition
function δ(si, a) = si+1 for i ∈ {0, . . . , b′ −1} and δ(sb′ , a) = s0. By other words,
A is a directed labeled cycle s0

a . . . a sb′ s s0 where every transition is
labeled by a. Notice, that A has no ESSP atom and, hence, the τ -ESSP for
every type of nets. Consequently, A is τ -feasible if and only if it has the τ -SSP.

Assume, for a contradiction, that A is τ b
4 -feasible. By b < b′, A provides

the SSP atom (s0, sb+1) and A’s τ b
4 -feasibility implies that there is a τ b

4 -region
(sup, sig) solving it. If sig(a) = (m,n) then sup(s1) = sup(s0)−m+n �= sup(s0)

and, by definition of τ b
4 , ¬sup(s1) (m,n) . This is a contradiction to s1

a . Hence,
sig(a) ∈ {1, . . . , b}. By induction, sup(sb+1) = sup(s0) + (b + 1) · sig(a) =
sup(s0) mod (b + 1) implying sup(sb+1) = sup(s0). Thus, (sup, sig) does not
solve (s0, sb+1), which proves that A not to be τ b

4 -feasible.
On the contrary, it is easy to see that the τ b′

4 -region (sup, sig), which is defined
by sup(s0) = 0, sig(e) = 1 and sup(si+1) = sup(si)+sig(a) for i ∈ {0, . . . , b′−1},
solves every SSP atom of A. Hence, A is τ b′

4 -feasible. ��

3.1 Abstract Regions and Fundamental Cycles

Unless otherwise stated, in the remainder of this paper we assume that A is
a (non-trivial) TS with at least two states, |SA| ≥ 2 and event set EA =
{e1, . . . , en}. Recall that τ ∈ {τ b

2 , τ b
3 , τ b

4} and b ∈ N
+.

The proof of Theorem 1 bases on a generalization of the approach used in
[16] that reduces ESSP and SSP to systems of linear equations modulo b + 1.
It exploits that the solvability of such systems is decidable in polynomial time
which is the statement of the following lemma borrowed from [11]:

Lemma 2 ([11]). If A ∈ Z
k×n
b+1 and c ∈ Z

k
b+1 then deciding if there is an element

x ∈ Z
n
b+1 such that Ax = c is doable in time O(nk · max{n, k}).

Essentially, our generalization composes for every ESSP atom and every SSP
atom α = (x, y) of A, respectively, a system of equations modulo b + 1 which is
solvable if and only if α is τ -solvable. Moreover, a solution of the corresponding
system shall provide a τ -region of A that solves α. On the one hand, this approach
ensures that having a solution for every system defined by single ESSP atoms
and SSP atoms implies the τ -ESSP and τ -SSP for A, respectively. On the other
hand, it provides a τ -solving region for every atom in question and, hence, a set
R of τ -regions that witnesses the τ -ESSP and τ -SSP of A. Thus, R allows us
to construct the synthesized net NR

A with a state graph isomorphic to A. In the
following, we establish the notions of abstract regions and fundamental cycles
which make such a translation possible.

We proceed by deducing the notion of abstract regions. Our starting point is
the goal to obtain regions (sup, sig) of A as solutions of linear equation systems
modulo b + 1. By definition, (sup, sig) is a τ -region of A if and only if for every
transition s e s′ it is true that

sup(s′) = (sup(s) − sig−(e) + sig+(e) + |sig(e)|) mod (b + 1) (1)
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Hence, installing for every transition s e s′ the corresponding Eq. 1 yields a
linear system of equations whose solutions are regions of A. If (sup, sig) is a
solution of this system such that sig(e) = (m,n) ∈ Eτ \ {0, . . . , b} for e ∈ EA

then, by definition, for every transition s e s′ it has to be true that m ≤
sup(s) and sup(s′) − m + n ≤ b. Unfortunately, the conditions m ≤ sup(s)
and sup(s′) − m + n ≤ b can not be tested in the group Zb+1. To cope with
this obstacle, we abstract from elements (m,n) ∈ Eτ by restricting to regions
(solutions) that identify (m,n) with the unique element x ∈ {0, . . . , b} such that
x = (n − m) mod (b + 1). This leads to the notion of abstract τ -regions. A τ -
region (sup, sig) of A is called abstract if sig’s codomain restricts to {0, . . . , b},
that is, sig : EA −→ {0, . . . , b}. If (sup, sig) is an abstract region, then we call
sig an abstract signature. For the sake of clarity, we denote abstract signatures
by abs instead of sig and abstract regions by (sup, abs) instead of (sup, sig).

By definition, two mappings sup, abs : {0, . . . , b} −→ {0, . . . , b} define an
abstract τ -region if and only if for every transition s e s′ of A it is true that

sup(s′) = (sup(s) + abs(e)) mod (b + 1) (2)

Obviously, for abstract regions Eq. 1 reduces to Eq. 2. Installing for every tran-
sition s e s′ of A its corresponding Eq. 2 yields a system modulo b + 1 whose
solutions are abstract regions. Uncomfortably, such systems require to deal with
sup and abs simultaneously. It is better to first obtain abs independently of sup
and then define sup with the help of abs. The following observations show how
to realize this idea.

By induction and Eq. 2, one immediately obtains that (sup, abs) is
an abstract region if and only if for every directed labeled path p =

s0,A
e′
1 . . . e′

m sm of A from the initial state s0,A to the state sm the path equa-
tion holds:

sup(sm) = (sup(s0,A) + abs(e′
1) + · · · + abs(e′

m)) mod (b + 1) (3)

To exploit Eq. 3 we, firstly, identify every abstract signature abs with the unique
element abs = (abs(e1), . . . , abs(en)) ∈ Z

n
b+1. Secondly, we say that ψp

b+1 =
(#p

e1
, . . . ,#p

en
) ∈ Z

n
b+1 is the Parikh-vector of p that counts the number #p

ei
of

occurrences of every event ei ∈ EA on the path p modulo (b + 1). Thirdly, for
two elements v, w ∈ Z

n
b+1 we define v · w = v1w1 + · · · + vnwn. As a result,

considering p and abs as elements of Z
n
b+1 allows us to reformulate the path

equation by sup(sm) = (sup(s0,A) + ψp
b+1 · abs) mod (b + 1). Especially, if p, p′

are two different paths from s0,A to sm then ψp
b+1 · abs = ψp′

b+1 · abs. Thus, the
support sup is fully determined by sup(s0,A) and abs. By the validity of the
path equation, every abstract signature abs implies b + 1 different abstract τ -
regions of A, one for every sup(s0,A) ∈ {0, . . . , b}. Altogether, we have argued
that the challenge of finding abstract regions of A reduces to the task of finding
A’s abstract signatures. In the following, we deduce the notion of fundamental
cycles defined by chords of a spanning tree of A which enables us to find abstract
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Fig. 3. A spanning tree A′ of running example TS A introduced in Fig. 2. The unique
Parikh vectors ψ0, . . . ψ7 of A′ (written as rows) are given by ψ0 = (0, 0, 0, 0), ψ1 =
(1, 0, 0, 0), ψ2 = (1, 1, 0, 0), ψ3 = (1, 1, 1, 0), ψ4 = (1, 1, 2, 0), ψ5 = (0, 0, 1, 0), ψ6 =
(0, 0, 2, 0) and ψ7 = (1, 0, 2, 0). The transitions δA(7, d) = 4, δA(4, c) = 2 and
δA(6, c) = 0 of A define the chords of A′. The corresponding fundamental cycles are
given by ψt = ψ7+(0, 0, 0, 1)−ψ4 = (0, 2, 0, 1) and ψt′ = ψ4+(0, 0, 1, 0)−ψ2 = (0, 0, 0, 0)
and ψt′′ = ψ6 + (0, 0, 1, 0) − ψ0 = (0, 0, 0, 0). Hence, if abs = (xa, xb, xc, xd) then
ψt · abs = 0 · xa + 2 · xb + 0 · xc + xd = 2 · xb + xd. By ψt′ · abs = ψt′′ · abs = 0 for
every map abs, only the equation 2 · xb + xd = 0 contributes to the basic part of every
upcoming system.

signatures. For readability, we often write x = y1 + · · · + y� mod (b + 1) instead
of x = (y1 + · · · + y�) mod (b + 1)

A spanning tree A′ of A is a sub-transition system A′ = (SA, EA, δA′ , s0,A)
of A with a restricted transition function δA′ such that, firstly, δA′(s, e) = s′

entails δA(s, e) = s′ and, secondly, for every s ∈ SA′ there is exactly one path
p = s0,A

e1 . . . em s in A′. By other words, the underlying undirected graph of
A′ is a tree in the common graph-theoretical sense. Every transition s e s′ of
A which is not in A′ is called a chord (of A′). The chords of A′ are exactly the
edges that induce a cycle in A′’s underlying undirected graph. This gives rise
to the following notion of fundamental cycles. For ei ∈ {e1, . . . , en} we define
1i = (x1, . . . , xn)t ∈ Z

n
b+1, where xj = 1 if j = i and, else xj = 0. If t = s ei s′ is

a chord of A′ then there are unique paths p from s0,A to s and p′ from s0,A to s′

in A′ such that t corresponds to the unique element ψt = ψp
b+1+1i−ψp′

b+1 ∈ Z
n
b+1,

called the fundamental cycle of t.
The following lemma teaches us how to use fundamental cycles to generate

abstract signatures of A:

Lemma 3. If A′ is a spanning tree of a TS A with chords t1, . . . , tk then abs ∈
Z

n
b+1 is an abstract signature of A if and only if ψti ·abs = 0 for all i ∈ {1, . . . , k}.

Two different spanning trees A′ and A′′ provide equivalent systems of equations.

Proof. We start with proving the first statement. If : Let abs ∈ Z
n
b+1 such that

ψti ·abs = 0 for all i ∈ {1, . . . , k} and sup(s0,A) ∈ {0, . . . , b}. If s ∈ SA′ then there

is a unique path p = s0,A
e′
1 . . . e′

m sm = s in A′ from s0,A to s. By defining
sup(s) = sup(s0,A)+ψp

b+1·abs we obtain inductively that every transition s e s′

of A′ satisfies sup(s′) = sup(s)+abs(e). It remains to prove that this definition is
consistent with the remaining transitions of A, the chords of A′. Let t = s e s′
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be a chord of A′ and let p = s0,A
e′
1 . . . e′

m = s and p′ = s0,A
e′′
1 . . . e′′

� = s′

be the unique paths from s0,A to s and s′ in A′, respectively. By sup(s) =
sup(s0,A) + ψp

b+1 · abs and sup(s′) = sup(s0,A) + ψp′
b+1 · abs we have that

0 = ψt · abs ⇐⇒
0 = (−ψp′

b+1 + 1i + ψp
b+1) · abs ⇐⇒

0 = −ψp′
b+1 · abs + abs(e) + ψp

b+1 · abs ⇐⇒

ψp′
b+1 · abs = abs(e) + ψp

b+1 · abs ⇐⇒

sup(s0,A) + ψp′
b+1 · abs = sup(s0,A) + ψp

b+1 · abs + abs(e) ⇐⇒
sup(s′) = sup(s) + abs(e)

where 0 = ψt · abs is true by assumption. Hence, abs is an abstract signature
of A and the proof shows how to get a corresponding abstract region (sup, abs)
of A.

Only-if : If abs is an abstract region of A then we have sup(s′) = sup(s) +
abs(e) for every transition in A. Hence, if t = s e s′ a chord of a spanning
tree A′ of A then working backwards the equivalent equalities above proves
ψt · abs = 0.

The second statement is implied by the first: If A′, A′′ are two spanning trees
of A with fundamental cycles ψA′

t1 , . . . , ψA′
tk

and ψA′′
t′
1

, . . . , ψA′′
t′
k

, respectively, then

we have for abs ∈ Z
n
b+1 that ψA′

ti · abs = 0, i ∈ {1, . . . , k} if and only if abs is an
abstract signature of A if and only if ψA′′

t′
i

· abs = 0, i ∈ {1, . . . , k}. ��
In the following, justified by Lemma 3, we assume A′ to be a fixed spanning

tree of A with chords t1, . . . , tk. By MA′ we denote the system of equations
ψti · abs = 0, i ∈ {1, . . . , k}. Moreover, by ψs we abridge for s ∈ SA the Parikh-

vector ψp
b+1 of the unique path s0,A

e′
1 . . . e′

m s in A′. A spanning tree of A
is computable in polynomial time: As δA is a function, A has at most |E||SA|2
transitions and A′ contains |SA| − 1 transitions. Thus, by 2 ≤ |SA|, A′ has at
most |E||SA|2 − 1 chords. Consequently, a spanning tree A′ of A is computable
in time O(|E||SA|3) [17].

To get polynomial time solvable systems of equations, we have restricted our-
selves to equations like Eq. 2. This restriction results in the challenge to compute
abstract signatures of A. By Lemma 3, abstract signatures of A are solutions of
MA′ . An (abstract) τ -region (sup, abs) of A arises from abs by defining sup(s0,A)
and sup(s) = sup(s0,A) + ψs · abs, s ∈ S(A). However, if (s, s′) is a SSP atom of
A then sup(s) �= sup(s′) is not implied. Moreover, by definition, to τ -solve ESSP
atoms (e, s) we need (concrete) τ -regions (sup, sig) such that sig : EA −→ Eτ .
The next section shows how to extend MA′ to get τ -solving regions.

3.2 The Proof of Theorem 1

This section shows how to extend MA′ for a given (E)SSP atom α to get a system
Mα, whose solution yields a region solving α if there is one.
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If α is an SSP atom (s, s′) then we only need to assure that the (abstract)
region (sup, abs) built on a solution of MA′ satisfies sup(s) �= sup(s′). By
sup(s) = sup(sA,0) + ψs · abs and sup(s′) = sup(sA,0) + ψs′ · abs, it is suffi-
cient to extend MA′ in a way that ensures ψs · abs �= ψs′ · abs. The next lemma
proves this claim.

Lemma 4. If τ ∈ {τ b
2 , τ b

3 , τ b
4} then a τ -SSP atom (s, s′) of A is τ -solvable if and

only if there is an abstract signature abs of A with ψs · abs �= ψs′ · abs.

Proof. If : If abs is an abstract signature with ψs ·abs �= ψs′ ·abs then the τ -region
(sup, abs) with sup(s0,A) = 0 and sup(s) = ψs · abs satisfies sup(s) �= sup(s′).
Only-if : If (sup, sig) is a τ -region then we obtain a corresponding abstract τ -
region (sup, abs) as defined in Lemma 6. Clearly, abs is an abstract signature
and satisfies the path equations. Consequently, by sup(s0) + ψs · abs = sup(s) �=
sup(s′) = sup(s0) + ψs′ · abs, we have that ψs · abs �= ψs′ · abs. ��

The next lemma applies Lemma 4 to get a polynomial time algorithm which
decides the τ -SSP if τ ∈ {τ b

2 , τ b
3 , τ b

4}.

Lemma 5. If τ ∈ {τ b
2 , τ b

3 , τ b
4} then to decide whether a TS A has the τ -SSP is

doable in time O(|EA|3 · |SA|6·).

Proof. If α = (s, s′) is a SSP atom of A then the (basic) part MA′ of Mα

consists of at most |E| · |SA|2−1 equations for the fundamental cycles. To satisfy
ψs · abs �= ψs′ · abs, we add the equation (ψs − ψs′) · abs = q, where initially
q = 1, and get (the first possible) Mα. A solution of Mα provides an abstract
region satisfying ψs �= ψs′ . By Lemma 4, this proves the solvability of α. If Mα

is not solvable then we modify Mα to M ′
α simply by incrementing q and try to

solve M ′
α. Either we get a solution or we modify M ′

α to M ′′
α by incrementing

q again. By Lemma 4, if (s, s′) is solvable then there is a q ∈ {1, . . . , b} such
that the corresponding (modified) system has a solution. Hence, after at most
b iterations we can decide whether (s, s′) is solvable or not. Consequently, we
have to solve at most b linear systems with at most |EA| · |SA|2 equations for
(s, s′). The value b is not part of the input. Thus, by Lemma 2, this is doable
in O(|EA|3 · |SA|4) time. We have at most |SA|2 different SSP atoms to solve.
Hence, we can decide the τ -SSP in time O(|EA|3 · |SA|6). ��

As a next step, we let τ = τ b
4 and prove the polynomial time decidability

of τ -ESSP. But before that we need the following lemma that tells us how to
obtain abstract regions from (concrete) regions:

Lemma 6. If (sup, sig) is a τ -region of a TS A then we obtain a corresponding
abstract τ -region (sup, abs) by defining abs for e ∈ EA as follows: If sig(e) =
(m,n) then abs(e) = −m + n mod (b + 1) and, otherwise, if sig(e) ∈ {0, . . . , b}
then abs(e) = sig(e).

Proof. We have to show that s e s′ in A entails sup(s) abs(e) sup(s′) in τ . If
abs(e) = sig(e) ∈ {0, . . . , b} this is true as (sup, sig) is a τ -region.
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If sig(e) = (m,n) then, by definition, we have sup(s′) = sup(s) − m +
n mod (b + 1) implying sup(s′) − sup(s) = −m + n mod (b + 1). By abs(e) =
−m + n mod (b + 1) and symmetry, we get −m + n = abs(e) mod (b + 1) and,
by transitivity, we obtain sup(s′) − sup(s) = abs(e) mod (b + 1) which implies

sup(s′) = sup(s) + abs(e) mod (b + 1). Thus sup(s) abs(e) sup(s′). ��

Let α be an ESSP atom (e, s) and let s1, . . . , sk be the sources of e in A.
By definition, a τ -region (sup, sig) solves α if and only if sig(e) = (m,n) and

¬sup(s) sig(e) for a (m,n) ∈ Eτ . By definition of τ , every element (m,n) ∈ Eτ

occurs at exactly one state in τ and this state is m. Hence, sup(s1) = · · · =
sup(sk) = m and sup(s) �= m. We base the following lemma on this simple obser-
vation. It provides necessary and sufficient conditions that an abstract region
must fulfill to imply a solving (concrete) region.

Lemma 7. Let τ = τ b
4 and A be a TS and let s1

e s′
1, . . . , sk

e s′
k be the e-

labeled transitions in A, that is, if s′ ∈ SA \ {s1, . . . , sk} then ¬s′ e . The atom
(e, s) is τ -solvable if and only if there is an event (m,n) ∈ Eτ and an abstract
region (sup, abs) of A such that the following conditions are satisfied:

1. abs(e) = −m + n mod (b + 1),
2. ψs1 · abs = m − sup(sA,0) mod (b + 1),
3. (ψs1 − ψsi

) · abs = 0 mod (b + 1) for i ∈ {2, . . . , k},
4. (ψs1 − ψs) · abs �= 0 mod (b + 1).

Proof. If: Let (sup, abs) be an abstract region that satisfies the conditions 1–
4. We obtain a τ -solving region (sup, sig) with (the same support and) the
signature sig defined by sig(e′) = abs(e′) if e′ �= e and sig(e′) = (m,n) if e′ = e.

To argue that (sup, sig) is a τ -region we have to argue that q e′
q′ in A implies

sup(q) sig(e′) sup(q′). As (sup, abs) is an abstract region this is already clear for

transitions q e′
q′ where e′ �= e. Moreover, (sup, abs) satisfies ψs1 · abs = m −

sup(sA,0) mod (b+1) and the path equation holds, that is, sup(s1) = sup(sA,0)+
ψs1 · abs mod (b + 1) which implies sup(s1) = m. Consequently, by definition of

τ , we have sup(s1) (m,n) n in τ . Furthermore, by abs(e) = −m+n mod (b+1) we

have m + abs(e) = n mod (b + 1). Hence, by sup(s1) abs(e) sup(s′
1), we conclude

sup(s′
1) = n and, thus, sup(s1) (m,n) sup(s′

1). By (ψs1 −ψsi
)·abs = 0 mod (b+1)

for i ∈ {2, . . . , k}, we obtain that sup(s1) = · · · = sup(sk) = m. Therefore,

similar to the discussion for s1
e s′

1, we obtain by sup(si) abs(e) sup(s′
i) that the

transitions sup(si) (m,n) sup(s′
i) are present in τ for i ∈ {2, . . . , k}. Consequently,

(sup, sig) is a τ -region.
Finally, by (ψs1 − ψs) · abs �= 0 mod (b + 1), have that sup(s1) �= sup(s) and,

thus, ¬sup(s) sig(e) . This proves (e, s) to be τ -solvable by (sup, sig).
Only-if: Let (sup, sig) be a τ -region that solves (e, s) implying, by definition,

¬sup(s) sig(e) . We use (sup, sig) to define a corresponding abstract τ -region
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(sup, abs) in accordance to Lemma 6. If sig(e) ∈ {0, . . . , b} then sup(s) sig(e) ,

a contradiction. Hence, it is sig(e) = (m,n) ∈ Eτ such that sup(si) (m,n) for

i ∈ {1, . . . , k} and ¬sup(s) (m,n) . This immediately implies sup(s) �= sup(s1)

and, hence, (ψs1 − ψs) · abs �= 0 mod (b + 1). By sup(si) (m,n) sup(s′
i) and def-

inition of τ , we have that sup(si) = m and sup(s′
i) = n for i ∈ {1, . . . , k}

implying (ψs1 − ψsi
) · abs = 0 mod (b + 1) for i ∈ {2, . . . , k}. Moreover, by

sup(s1) abs(e) sup(s′
1) we have abs(e) = sup(s′

1) − sup(s1) mod (b + 1). Hence,
it is abs(e) = −m + n mod (b + 1). Finally, by the path equation, we have
sup(s1) = sup(sA,0) + ψs1 · abs mod (b + 1) which with sup(s1) = m implies
ψs1 · abs = m − sup(sA,0) mod (b + 1). This proves the lemma. ��

The next lemma’s proof exhibits a polynomial time decision algorithm for
the τ b

4 -ESSP: Given a TS A and a corresponding ESSP atom α, the system MA′

is extended to a system Mα. If Mα has a solution abs then it implies a region
(sup, abs) satisfying the conditions of Lemma 9. By Lemma 9, this implies α’s
solvability. Reversely, by Lemma 9, if α is solvable then there is an abstract
region (sup, abs) which satisfies the conditions (1–4). The abstract signature abs
is the solution of a corresponding equation system Mα. Hence, we get a solvable
Mα if and only if α is solvable. We argue that the number of possible systems
is bounded polynomially in the size of A. The solvability of every system is also
decidable in polynomial time. Consequently, by the at most |EA| · |SA| ESSP
atoms to solve, this yields the announced decision procedure.

Lemma 8. If a TS A has the τ b
4 -ESSP is decidable in time O(|EA|4 · |SA|5).

Proof. To estimate the computational complexity of deciding the τ b
4 -ESSP for A

observe that A has at most |SA|·|EA| ESSP atoms to solve. Hence, the maximum
costs of deciding the τ b

4 -ESSP for A equals |SA| · |EA|-times the maximum effort
for a single atom.

To decide the τ -solvability of a single ESSP atom (e, s), we compose systems
in accordance to Lemma 7. The maximum costs can be estimated as follows:
The (basic) part MA′ of Mα has at most |EA| · |SA|2 equations. Moreover, e
occurs at most at |SA| − 1 states. This makes at most |SA| equations to ensure
that e’s sources will have the same support, the third condition of Lemma 7.
According to the first and the second condition, we choose an event (m,n) ∈ Eτ ,
a value sup(sA,0) ∈ {0, . . . , b}, define abs(e) = −m + n mod (b + 1) and add the
corresponding equation ψs1 · abs = m − sup(sA,0). For the fourth condition we
choose a fixed value q ∈ {1, . . . , b} and add the equation (ψs1 − ψs) · abs = q.
Hence, the system has at most 2 · |EA| · |SA|2 equations.

By Lemma 2, one checks in time O(|EA|3 · |SA|4) if such a system has a
solution. Notice, we use that 2 · |EA| · |SA|2 = max{|EA|, 2 · |EA| · |SA|2}. There
are at most (b + 1)2 possibilities to choose a corresponding (m,n) ∈ Eτ and
only b + 1 possible values for x and for q, respectively. Hence, for a fixed atom
(e, s), we have to solve at most (b + 1)4 such systems and b is not part of the
input. Consequently, we can decide in time O(|EA|3 · |SA|4) if (e, s) is solvable.
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A provides at most |SA|·|EA| ESSP atoms. Hence, the τ b
4 -ESSP for A is decidable

in time O(|EA|4 · |SA|5). ��

The following lemma completes the proof of Theorem 1 and shows that τ b
4 -

synthesis is doable in polynomial time.

Corollary 1. To construct for a TS A a τ b
4 -net N with a state graph AN iso-

morphic to A if it exists is doable in time O(|EA|3 · |SA|5 · max{|EA|, |SA|}).

Proof. By [5], if R is a set of regions of A containing for each ESSP and SSP
atom of A a solving region, respectively, then the τ -net NR

A = (R, EA, f,M0),
where f((sup, sig), e) = sig(e) and M0((sup, sig)) = sup(s0,A) for (sup, sig) ∈
R, e ∈ EA, has a state graph isomorphic to A. Hence, the corollary follows from
Lemmas 5 and 8. ��

3.3 Examples

We pick up our running example TS A introduced in Fig. 2 and its spanning tree
A′ presented in Fig. 3. We present two steps of the method given by Lemma 8
for the type τ2

4 and check τ2
4 -solvability of the ESSP atom (c, 1).

For a start, we choose (m,n) = (0, 1) and sup(0) = 0 and determine abs(c) =
−0 + 1 = 1 which yields abs = (xa, xb, 1, xd). We have to add ψ0 · abs = m −
sup(0) = 0 which, by ψ0 = (0, 0, 0, 0), is always true and do not contribute to the
system. Moreover, for i ∈ {0, 2, 3, 4, 5, 6}, we add the equation (ψ0−ψi) ·abs = 0.
We have ψ0 − ψ6 = (0, 0,−2, 0) and (0, 0,−2, 0) · abs = 0 · xa − 0 · xb − 2 − 0 ·
xd = 0 yields a contradiction. Hence, (c, 1) is not solvable by a region (sup, sig)
where sup(0) = 0 and sig(c) = (0, 1). Similarly, we obtain that the system
corresponding to sup(0) ∈ {1, 2} and sig(c) = (0, 1) is also not solvable.

For another try, we choose (m,n) = (2, 2) and sup(0) = 2. In accor-
dance to the first and the second condition of Lemma 7 this determines
abs = (xa, xb, 0, xd) and yields the equation ψ0 · abs = m − sup(0) = 2 − 2 = 0
which is always true. For the fourth condition, we pick q = 2 and add the equa-
tion (ψ0 − ψ1) · abs = 2 · xa = 2. Finally, for the third condition, we add for
i ∈ {0, 2, 3, 4, 5, 6} the equation (ψ0 − ψi) · abs = 0 and obtain the following
system of equations modulo (b + 1):

ψt · abs = 2 · xb + xd = 0
(ψ0 − ψ1) · abs = 2 · xa = 2
(ψ0 − ψ2) · abs = 2 · xa + 2 · xb = 0
(ψ0 − ψ3) · abs = 2 · xa + 2 · xb +2 · 0 = 0
(ψ0 − ψ4) · abs = 2 · xa + 2 · xb +1 · 0 = 0
(ψ0 − ψ5) · abs = 2 · 0 = 0
(ψ0 − ψ6) · abs = 1 · 0 = 0
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This system is solvable by abs = (1, 2, 0, 2). We construct a region in accordance
to the proof of Lemma 7: By sup(0) = 2 we obtain sup(1) = 2 + ψ1 · abs =
2+(1, 0, 0, 0) · (1, 2, 0, 2) = 0. Similarly, by sup(i) = 2+ψi ·abs for i ∈ {2, . . . , 7}
we obtain sup(2) = sup(3) = sup(4) = sup(5) = sup(6) = 2 and sup(7) = 0.
Hence, by defining sig(c) = (2, 2), sig(a) = 1, sig(b) = 2 and sig(d) = 2 we
obtain a fitting τ b

4 -region (sup, sig) that solves (c, 1).
A closer look shows, that this support equals sup1 which is presented in Fig. 2

and allows the signature sig1, hence, (sup, sig1) = (sup1, sig1). The τ b
4 -region

(sup, sig1) solves a lot of further ESSP and SSP atoms. This observation reveals
a first possible improvement of the method introduced by Lemma 8 and suggest,
given a solution abs, to map as many events of A to a signature different from
0, . . . , b as possible.

4 Fixed Parameter Tractability Results

Classical complexity theory measures the computational complexity of decision
problems only in the size of the input. In [18], we showed that deciding if a TS
A is τ -feasible or has the τ -ESSP, respectively, is NP-complete for τ ∈ {τ b

2 , τ b
3}.

Thus, both problems are intractable from the perspective of classical complexity.
Unfortunately, measuring the complexity purely in the size of A tells us noth-
ing about the “source” of this negative result. On the contrary, parameterized
complexity, developed by Downey and Fellows [10], allows us to study in which
way different parameters of a TS A influence the complexity. This makes a finer
analysis possible. Moreover, if we find a parameter, typically small on input
instances of real-world applications, then algorithms, exponential in the size of
the parameter but polynomial in the size of A, may work well in practice.

Formally, we say that a (decision) problem P is fixed paramter tractable
with respect to parameter k if there exists an algorithm that solves P in time
O(f(k)nc), where f is some computable function, n is the size of the input and
c is a constant independent from parameter k.

Let A be a TS and let for e ∈ EA the set Se = {s ∈ SA | s e } containing the
states of A at which e occur. The (maximum) number of occurrences of events is
defined by k = max{|Se| | e ∈ EA}. In [19] it has been shown that deciding τ1

1 -
feasibility and τ1

1 -ESSP is NP-complete even if k = 2. If there is a O(f(k)|A|c)-
time algorithm for these problems then, for k = 2, it runs in polynomial time
in A’s size. This is because f(2) is a constant. Thus, τ1

1 -feasibility and τ1
1 -ESSP,

parameterized by k, are not fixed parameter tractable as long as P�=NP.
On the contrary, the main result of this paper discovers that τ -ESSP and

τ -feasibility parameterized by k are fixed parameter tractable. This reveals, that
the number of occurrences of events is a structural property of the input A that
makes τ -ESSP and τ -feasibility problems inherently hard to solve.

Theorem 2. Let τ ∈ {τ b
2 , τ b

3} and let A be a TS system with number of occur-
rences of events k. The τ -ESSP and the τ -feasibility are fixed parameter tractable
with respect to parameter k.
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Given an ESSP atom α of a TS A, the following lemma provides conditions
which an abstract τ -region of A satisfies if and only if α is τ -solvable. Moreover,
it teaches us how to gain a corresponding τ -solving region from an abstract
region satisfying the conditions.

Lemma 9. Let τ ∈ {τ b
2 , τ b

3}, let (e, s) be an ESSP atom of A and let s1, . . . , sk be
the sources of e in A, that is, si

e for i ∈ {1, . . . , k} and if s′ ∈ SA\{s1, . . . , sk}
then ¬s′ e .

The ESSP atom (e, s) is τ -solvable if and only if there is an event (m,n) ∈ Eτ

and an abstract region (sup, abs) of A that satisfies the following conditions:

1. abs(e) = −m + n mod (b + 1),
2. ψsi

· abs = sup(si) − sup(sA,0) mod (b + 1) and m ≤ sup(si) ≤ b + m − n for
i ∈ {1, . . . , k},

3. ψs · abs = sup(s) − sup(sA,0) mod (b + 1) and 0 ≤ sup(s) ≤ m − 1 or b +m −
n + 1 ≤ sup(s) ≤ b

Proof. If: Let (sup, abs) be an abstract τ -region of A satisfying (1)–(3). We get
a τ -solving region (sup, sig) as follows: For e′ ∈ EA we define sig(e′) = abs(e′)
if e′ �= e and, otherwise, we set sig(e′) = (m,n) if e′ = e. Firstly, we show that
(sup, sig) is a region and, secondly, we argue that it τ -solves (e, s).

We have to show, that q e′
q′ in A implies sup(q) sig(e′) sup(q′) in τ . If e′ �= e,

then this is true by (sup, abs) being a τ -region. It remains to show that si
e s′

i

implies sup(si) (m,n) sup(s′
i) for i ∈ {0, . . . , k}. By m ≤ sup(si) ≤ b+m−n and

the definition of τ , there is an sτ ∈ {0, . . . , b} with sup(si) (m,n) sτ . This implies
sτ = sup(si)−m+n mod (b+1). The assumption abs(e) = −m+n mod (b+1)
yields sτ = sup(si)+abs(e) mod (b+1). Hence, we have that sup(si)+abs(e) =

sup(si)−m+n mod (b+1). By sup(si) abs(e) sup(s′
i) we get sup(s′

i) = sup(si)+
abs(e) mod (b+1) such that sup(s′

i) = sup(si)−m+n mod (b+1). Consequently,

sτ = sup(s′
i) implying sup(si) (m,n) sup(s′

i) making (sup, sig) a τ -region.
Moreover, by 0 ≤ sup(s) ≤ m − 1 or b + m − n + 1 ≤ sup(s) ≤ b we have

that ¬sup(s) (m,n) such that (sup, sig) τ -solves (e, s).
Only-If: Let (sup, sig) be a τ -region that solves (e, s). In accordance to

Lemma 6, we define the τ -abstract region (sup, abs) originating from (sup, sig).
We argue that (sup, abs) satisfies the conditions (1)–(3).

As (sup, sig) τ -solves (e, s) there is an event (m,n) ∈ Eτ such that

sup(si) (m,n) , i ∈ {1, . . . , k}, and ¬sup(s) (m,n) . By abs’s definition, abs =
−m + n mod (b + 1) implying the first condition. Moreover, (sup, abs) satisfies
the path equation. Hence, we have sup(si) = sup(sA,0) + ψsi

· abs mod (b + 1)
implying ψsi

· abs = sup(si) − sup(sA,0) mod (b + 1) for i ∈ {1, . . . , k}. Further-

more, by sup(si) (m,n) and τ ’s definition, we have m ≤ sup(si) ≤ b + m − n.
Thus, the second condition is satisfied. Similarly, the path equation implies

ψs · abs = sup(s) − sup(sA,0) mod (b + 1) and, by ¬sup(s) (m,n) , we obtain
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0 ≤ sup(s) ≤ m − 1 or b + m − n + 1 ≤ sup(s) ≤ b. Hence, the third condition
is also true. ��

The following lemma shows that deciding the τ -ESSP for A is only exponen-
tial in parameter k but polynomial in the size of the input.

Lemma 10. If τ ∈ {τ b
2 , τ b

3}, then to decide for a k-fold TS A whether it has the
τ -ESSP is possible in time O((b + 1)k+4 · |EA|4 · |SA|5).

Proof. An ESSP atom (e, s) of A is a τ -solvable if and only if there is an abstract
region (sup, abs) of A that satisfying the conditions of Lemma 9. Using Lemma 9,
to decide the solvability of (e, s) we iteratively construct systems of linear equa-
tions Mα. There is an abstract region (sup, abs), fulfilling the conditions, if and
only if at least one Mα is solvable by abs. A single system to be computed modulo
b + 1 is obtained as follows:

Firstly, it implements the basic part MA′ requiring at most |E||SA|2 − 1
equations.

Secondly, we choose an event (m,n) ∈ EA and a value sup(sA,0) ∈ {0, . . . , b}
and, in accordance to Lemma 9.1, set abs(e) = −m + n mod (b + 1). Thus, the
number of unknown becomes |EA| − 1.

Thirdly, in accordance to Lemma 9.2, we choose for every source s′ of e in A

(s′ e ) a value sup(s′) satisfying m ≤ sup(s′) ≤ b + m − n. After that we add
the equation ψs′ ·abs = sup(s′)−sup(sA,0). By definition of k, there are at most
k sources of e. This yields at most k additional equations.

Finally, we choose sup(s) such that 0 ≤ sup(s) ≤ m − 1 or b + m − n + 1 ≤
sup(s) ≤ b, respectively. Then we add the equation ψs ·abs = sup(s)−sup(sA,0).
Now, a solution satisfies the condition of Lemma 9.3.

Altogether, by Lemma 9, this defines a fitting system whose solvability proves
the τ -solvability of (e, s). Moreover, the system has at most |EA| · |SA|2 + k ≤
2 · |EA| · |SA|2 equations.

We estimate how many such systems must be maximally resolved for a sin-
gle atom: By definition of τ , we have at most (b + 1)2 possible choices for
(m,n) ∈ {0, . . . , b}2, and at most b+1 different values for sup(sA, 0) ∈ {0, . . . , b},
respectively. Furthermore, having (m,n) and sup(sA,0) already chosen, there
are at most b + 1 possible choices for sup(s) with 0 ≤ sup(s) ≤ m − 1 or
b + m − n + 1 ≤ sup(s) ≤ b. Similarly, for every source s′ of e we have at most
b + 1 choices for sup(s′) with m ≤ sup(s′) ≤ b + m − n. By definition of k this
makes at most (b+1)k different possible choices for the sources of k. Altogether,
we have at most (b + 1)k+4 possibilities to define a system of linear equations
whose solvability implies the τ -solvability of (e, s). Moreover, each system has
at most size 2 · |EA| · |SA|2.

Hence, by Lemmas 2 and 9 and |EA| ≤ |EA| · |SA|2, we can decide in time
O((b + 1)k+4 · |EA|3 · |SA|4) if the atom (e, s) is τ -solvable. Consequently, by the
at most |EA| · |SA| different ESSP atoms of A, we can decide whether A has the
τ -ESSP in O((b + 1)k+4 · |EA|4 · |SA|5) time. ��
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If τ ∈ {τ b
2 , τ b

3} then, by Lemmas 5 and 9, deciding if a TS A has the τ -SSP
and the τ -ESSP is doable in time O(|EA|3 ·|SA|6) and O((b+1)k+4 ·|EA|4 ·|SA|5),
respectively. Thus, the following corollary is justified and completes the proof of
Theorem 2.

Corollary 2. If τ ∈ {τ b
2 , τ b

3} then to decide if a TS A has the τ -feasibility is
doable in time O((b + 1)k+4 · |EA|3 · |SA|5 · max{|EA|, |SA|}).

5 Conclusion

In this paper, we investigate the computational complexity of synthesis, feasi-
bility, ESSP and SSP for several types of b-bounded P/T-nets, b ∈ Zb+1. We
introduce the new Petri net type of restricted Zb+1-extended b-bounded P/T-
nets and show that for this type synthesis and all corresponding decision prob-
lems are solvable in polynomial time. Moreover, we show that SSP is decidable
in polynomial time for the types of (pure) Zb+1-extended b-bounded P/T-nets.
Finally, we prove that feasibility and ESSP for (pure) Zb+1-extended b-bounded
P/T-nets are fixed parameter tractable if the (maximum) number of occurrences
of events is considered as parameter.

It remains for future work to search for other parameters that makes fea-
sibility for Petri net types fixed parameter tractable. Moreover, the question
whether there are tractable superclasses of (pure) b-bounded P/T-nets is still
open. One might also investigate the computational complexity for other Petri
nets related synthesis problems: The exact complexity status of synthesis up to
language equiavalence is unknown. In [3], Badouel et al. proposed an algorithm
that requires exponential space. Another open question has been stated in [15]:
Schlachter et al. suggested to characterize the complexity of synthesis for b-
bounded P/T-nets from modal transitions systems. Here, the task is to find, for
a given modal TS M , a Petri net N that implements M . So far, we are at least
aware of some (new) lower and upper bounds:

Conjecture 1. Let b ≥ 2. Deciding, for a given TS A, if there is a (pure) b-
bounded P/T-net N such that its state graph has the same language as A is
NP-hard. Moreover, the problem is in PSPACE. To decide for a given modal TS
M if there exists a (pure) b-bounded P/T-net N that implements M is NP-hard.

Acknowledgements. I would like to thank Uli Schlachter for his helpful remarks and
for simplifying the proof of Lemma 1. Also, I’m thankful to the anonymous reviewers
for their valuable comments.



Fixed Parameter Tractability and Polynomial Time Results 167

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19345-3

2. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Man-
agement. LNCS, vol. 1806, pp. 218–234. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-45594-9 14

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

4. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

5. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, Heidelberg (2015).https://
doi.org/10.1007/978-3-662-47967-4

6. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

7. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

8. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
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