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Abstract. Processes are a key application area for formal models of con-
currency. The core concepts of Petri nets have been adopted in research
and industrial practice to describe and analyze the behavior of processes
where each instance is executed in isolation. Unaddressed challenges arise
when instances of processes may interact with each other in a one-to-
many or many-to-many fashion. So far, behavioral models for describing
such behavior either also include an explicit data model of the processes
to describe many-to-many interactions, or cannot provide precise opera-
tional semantics.

In this paper, we study the problem in detail through a funda-
mental example and evolve a few existing concepts from net theory
towards many-to-many interactions. Specifically, we show that three con-
cepts are required to provide an operational, true concurrency seman-
tics to describe the behavior of processes with many-to-many interac-
tions: unbounded dynamic synchronization of transitions, cardinality
constraints limiting the size of the synchronization, and history-based
correlation of token identities. The resulting formal model is orthogonal
to all existing data modeling techniques, and thus allows to study the
behavior of such processes in isolation, and to combine the model with
existing and future data modeling techniques.

Keywords: Multi-instance processes · Many-to-many interactions ·
Modeling · True-concurrency semantics · Petri nets

1 Introduction

Processes are a key application area for formal models of concurrency, specifi-
cally Petri nets, as their precise semantics allows both describing and reasoning
about process behavior [1]. The basic semantic concepts of Petri nets, locality of
transitions which synchronize by “passing” tokens, are at the core of industrial
process modeling languages [21] designed to describe the execution of a process
in a process instance which is isolated from all other instances. At the same
time, processes behavior in practice is often not truly isolated in single process
instances, but instances are subject to interaction with other instances, data
objects, or other processes. Modeling and analyzing such processes has been the
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focus of numerous works such as proclets [3], artifact-centric modeling [6], UML-
based models [5], BPMN extensions [16], DB-nets [19], object-centric declarative
modeling [2], and relational process structures [27].

The existing body of work can be considered in two major groups. Artifact-
centric modeling that can address one-to-many and many-to-many relations first
defines a relational data model; process behavior is then defined by a control-
flow model for each entity in the data model, and logical constraints and condi-
tions that synchronize the steps in one entity based on data values in the data
model of another entity [5,6]. DB-nets adopt this principle to Petri net theory
through Coloured Petri nets [19]. Numerous decidability results and verification
techniques are available for these types of models, such as [5,7,17]. However,
the behavior described by these models cannot be derived easily by a modeler
through visual analysis as the interaction of one entity with other entities depend
on complex data conditions not shown in the visual model, inhibiting their appli-
cation in practice [22]. While object-centric declarative models [2,12] make the
dependency between behavior and data visually explicit, declarative constraints
themselves are challenging to interpret. Proclets do explicitly describe interac-
tions between instances of multiple processes [3] but do not provide sufficient
semantic concepts to describe many-to-many interactions [10]. Relational pro-
cess structures [26,27] turn the observations of [10] into a model with imple-
mented operational semantics for describing many-to-many interactions through
so-called coordination processes. However, the language requires numerous syn-
tactic concepts, and no formal semantics is available, prohibiting analysis, which
also applies to data-aware BPMN extensions [16].

In this paper, we investigate semantic concepts that are required to provide
formal semantics for a modeling language that is able to describe many-to-many
interactions. The language shall bear a minimal number of syntactic and seman-
tic concepts building on established concepts from Petri net theory. Our hope
is that such a minimal, yet maximally net-affine language allows to project or
build richer modeling languages on top of our proposed language, while allowing
to apply or evolve existing Petri net analysis techniques for analyzing behavior
with many-to-many interactions.

In Sect. 2, we study a basic example of many-to-many interactions through
the formal model of Proclets and analyze the core challenges that arise in describ-
ing the behavior of such processes. In Sect. 3, we show that these challenges can
be overcome by a paradigm shift in describing many-to-many relations. Just as
many-to-many relations in a data model have to be reified into its own entity,
we show that many-to-many interactions require reifying the message exchange
into its own entity. Based on this insight, we then propose in Sect. 4 synchronous
proclets as a formal model that extends [3] with dynamic unbounded synchro-
nization of transitions. We provide a formal true concurrency semantics for our
model. We then show in Sect. 5 how the semantics of relations between entities
can be realized on the level transition occurrences as cardinality and correla-
tion constraints over pairs of instance identifiers to fully describe many-to-many
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interactions in an operational semantics. We discuss some implications of our
work in Sect. 6.

2 Multi-dimensional Dynamics - A Simple Example

The running example for this paper describes a very simple logistics process.
After an order has been created, it gets fulfilled by sending packages to the cus-
tomer. Typically, not all products are available in the same warehouse, resulting
the order to be split into multiple packages. Packages are transported to the
customer through a delivery process, where multiple packages are loaded for one
delivery tour; these packages may originate from multiple orders, resulting in
a many-to-many relationship between orders and deliveries. Packages are then
delivered one by one, being either successfully delivered or the package could
not be delivered, leading either to a retry in a new delivery or in considering the
package as undeliverable. The customer is billed only after all deliveries of all
packages in the order concluded.

order delivery

order delivery

split

notify

bill

create

+

*

*

deliver

finish

load* *

undeliv. retry 11

1 next

created

sent

notified

delivering

delivered

++

Fig. 1. Proclet model describing asynchronous message exchange between multiple
instances

The proclet model [3] in Fig. 1 describes this process. The behavior of order
and delivery instances are described in their respective proclet, initial and final
transitions describe the creation and termination of instances. Instances of order
and delivery interact by exchanging messages via channels (dashed lines); the
cardinality inscriptions at the ports indicate how many messages are sent or
received in the occurrence of the transition in one instance. Figure 2 shows a
partially-ordered run that satisfies the model of Fig. 1: order17 gets split into two
packages 1 and 3, while order18 requires just a single package 2. Packages 1 and 2
are loaded into delivery23 where package 2 requires a retry with delivery24 where
it is joined by package 3.
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Fig. 2. A partially-ordered run of the proclet model in Fig. 1

The proclet semantics [3] however is not defined on instance identifiers and
hence also allows undesired behaviors in many-to-many interactions, such as the
run in Fig. 3: First, package 1 gets duplicated and then both delivered and gets
a retry with delivery24. Second, package 3 originates in order17 but gets billed
for order18. Third, package 2 is created and loaded but then disappears in the
run.

3 Reifying Behavior of Relations into Conversations

The core problem of the proclet model in Fig. 1 is that order and delivery are in
a many-to-many relation that is not explicitly described. We know from data
modeling that implementing a many-to-many relationship in a relational data
model requires to reify the relationship into its own entity, which then also results
in the well-known Second Normal Form (2NF). By the same reasoning, we reify



Describing Behavior of Processes with Many-to-Many Interactions 7

delivery23

order18

delivery24

order17

split

notify

bill

create

finish

load

next

retry

finish

load

deliver

split

notify

bill

create

deliver

e1

e3

e4

e2
e5

e6

e7

e8
e9

e10

e11
e14

e15

e16

e17

e18

(ready,1)

(done,3)

(ready,3)

(ready,2)

(ready,1)

(done,1)

(created,17)

(sent,17)

(notified,17)

(created,18)

(sent,18)

(notified,18)

Fig. 3. Another partially-ordered run of the proclet model in Fig. 1 describing undesired
behavior

the structural many-to-many relation in Fig. 1 into a package entity which has
one-to-many relations to order and delivery.

The first central idea of this paper is that we also reify the behavioral rela-
tion between order and delivery, i.e., the channels, into its own sub-model. The
resulting composition, shown in Fig. 4, contains a proclet for the package entity.
Where the model in Fig. 1 described interaction through asynchronous message
exchange, the model in Fig. 4 uses synchronization of transitions along the indi-
cated channels. Hence, we call this model a synchronous proclet model. Crucially,
multiple instances of a package may synchronize with an order instance in a sin-
gle transition occurrence. Figure 5 shows a distributed run of the synchronous
proclet system of Fig. 4, where the run of each instance is shown separately and
the dashed lines between events indicate synchronization. For example, events
e2, e′

2, and e′′
2 in order17, package1, and package3 occur together at once in a

single synchronized event which also causes the creation of the package1, and
package3 instances. The run in Fig. 5 is identical to the run in Fig. 2 except for
the condition loaded in the different package instances.

In line with the idea of a relational model in 2NF, the synchronization chan-
nels in the model in Fig. 4 only contain one-to-many, and one-to-one cardinalities.
We consider a model such as the one in Fig. 4 to be in behavioral second normal



8 D. Fahland
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Fig. 4. Synchronous Proclet model

form: During any interaction between two entities, one entity is always uniquely
identified, by having only one instance participate in the interaction. Specifically,
a package always relates and interacts with one delivery and one order. However,
that relation is dynamic as package2 first relates to delivery23 and later to deliv-
ery24. To ensure that “the right” instances remain synchronized, we propose
using correlation constraints: the annotation init O and =O shall ensure that
only package instances created by an order also synchronize in the bill step.

4 Dynamic Unbounded Synchronization

In the following, we develop the required formal concepts for the model pro-
posed in Sect. 3. We first define dynamic synchronization of transitions in a
true-concurrency semantics. In Sect. 5 we constrain synchronization through car-
dinality and correlation constraints.

4.1 Notation on Nets

A net N = (P, T, F ) consists of a set P of places, a set T of transitions, P ∩ T = ∅,
arcs F ⊆ (P × T ) ∪ (T × P ). We call XN = P ∪ T the nodes of N . We write
•t and t• for the set of pre-places and post-places of t ∈ TN along the arcs F ,
respectively; pre- and post-transitions of a place are defined correspondingly. We
write N1 ∩ N2, N1 ∪N2, and N1 ⊆ N2 for intersection, union, and subset of nets,
respectively, which is defined element-wise on the sets of nodes and arcs of N1

and N2, and we write ∅ for the empty net.
A labeled net N = (P, T, F, �) additionally defines a labeling � : P ∪ T → Σ

assigning each node x ∈ XN a label �(x) ∈ Σ; w.l.o.g, we assume for any two
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Fig. 5. Synchronization of multiple partially ordered runs corresponding to the syn-
chronous proclet model of Fig. 4

labeled nets N1, N2 that �1(x) = �2(x) for any node x ∈ X1 ∩ X2. We use labels
to synchronize occurrences of different transitions with the same label.

For a node x ∈ XN and a fresh node x∗ /∈ XN we write N [x/x∗] for the net
obtained by replacing in N simultaneously all occurrences of x by x∗.

An occurrence net π = (B,E,G) is a net (B,E,G) where each place b ∈ B
is called a condition, each e ∈ E is called an event, the transitive closure G+ is
acyclic, the set past(x) = {y | (y, x) ∈ G+} is finite for each x ∈ B ∪ E, and
each b ∈ B has at most one pre-event and at most one post-event, i.e., |•b| ≤ 1
and |b•| ≤ 1. We will consider labeled occurrence nets π = (B,E,G, λ), where
each condition (event) is labeled with a set of labels of the from (x, id) where x
refers to a place (transition) of another net, and id is an instance identifier. The
behavior of any net N (with an initial marking m0) can be described as a set of
occurrence nets R(N,m0) called the runs of N .
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4.2 Entities, Instances, and Synchronous Proclet System

A classical process model NE describes the processing of a single entity E,
e.g., an order, a delivery. This can be formalized as a single labeled net
NE = (PE , TE , FE , �E). The behavior of one instance of E, e.g., a concrete
order, then follows from consuming and producing “black” tokens in NE which
defines a firing sequence or a run of NE [1].

Our aim is to describe the behavior of multiple entities and multiples
instances of these entities together in one run as discussed in Sect. 2. We adopt
Petri nets with token identities [11,24,25] to distinguish different instances of an
entity E. Let I be an infinite set of instance identifiers. Each id ∈ I is a unique
identifier. By distributing I (as tokens) over the places of NE , we describe the
state of instance id . The state of NE (for several instances) is then a distribution
of multiple tokens from I over the places of NE .

To describe the interplay of multiple entities, we adopt concepts of proclets [3,
4] and open nets [14]. A system describes the behavior of each entity in its own
net; the nets of all entities are composed along channels. Where the earlier works
use asynchronous channels for composition, we use synchronous channels which
are connecting pairs of transitions, as motivated in Sect. 3. This gives rise to the
notion of a synchronous proclet system:

Definition 1 (Synchronous Proclet System). A synchronous proclet sys-
tem S = ({N1, . . . , Nn},mν , C) defines

1. a set of labeled nets Ni = (Pi, Ti, Fi, �i), i = 1, . . . , n, each called a proclet of
S,

2. an initial marking mν :
⋃n

i=1 Pi → N
I assigning each place p a multiset

m(p) of identifier tokens such that proclets have disjoint sets of identifiers,
∀1 ≤ i < j ≤ n,∀pi ∈ Pi, pj ∈ Pj : mν(pi)∩ mν(pj) = ∅, and

3. a set C of channels where each channel (ti, tj) ∈ C is a pair of identically-
labeled transitions from two different proclets: �(ti) = �(tj), ti ∈ Ti, tj ∈
Tj , 1 ≤ i 
= j ≤ n.

Figure 4 shows a synchronous proclet system for entities order, package, and
delivery with several channels, for example, channel (t2, t5) connects two split-
labeled transitions in order and package. Each proclet in Fig. 4 has a transition
without pre-places and the initial marking is empty. This allows creating an
unbounded number of new instances of any of the three entities in a run.

4.3 Intuitive Semantics for Synchronous Proclet Systems

A single proclet Ni describes the behavior of a single entity Ei. We assume each
instance of Ei is identified by an identifier id . A distribution of id tokens over the
places in Ni describes the current state of this instance. The instance id advances
by an occurrence of an enabled transition of Ni in that instance id : Any transition
t ∈ NE is enabled in instance id when each pre-place of t contains an id token;
firing t in instance id then consumes and produces id tokens as usual. A new
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instance of Ei can be created by generating a new identifier idν as proposed for
ν-nets [25]. We limit the creation of new identifiers to transitions without pre-set.
Such an “initial” transition tinit is always enabled (as it has no pre-places); tinit
may occur in instance idν ∈ I only if idν is a fresh identifier never seen before; its
occurrence then produces one idν token on each post-place of tinit . For example,
in the run in Fig. 5, we see three occurrence of t5 (split) in proclet package, each
occurrence creates a different token package1, package2, package3 ∈ I on place
ready describing the creation of three different package instances.

In the entire proclet system, a local transition that is not connected via any
channel, such as t3 (notify) in order in Fig. 4, always occurs on its own. However,
for transitions that are connected to each other via a channel, such as t2 and t5
(split), their occurrences may synchronize.

The modality “may synchronize” is important in the context of true concur-
rency semantics. Considering the partially-ordered run in Fig. 5, we can see two
occurrence of t2 (split) in instances order17 and order18, and three occurrences
of t5 in package1–package3. Bearing in mind that all instances are concurrent
to each other, we may not enforce that one occurrence of t2, say, in order17
must synchronize with all occurrences of t5 in package1–package3. If we did,
we would silently introduce a notion of global state and a global coordination
mechanism which knows all order instances in that state, i.e., at a particular
point in time. Rather, by synchronizing on non-deterministically chosen sub-
sets of possible occurrences, we can express local knowledge. The occurrence
of t2 in order17 synchronizes with occurrences of t5 in package1 and package2
in Fig. 5 because they happen to be “close to each other”—because package1
and package2 are created for order17. In other words, this non-determinism on
synchronizing transition occurrences allows to abstract from a rather complex
data-driven mechanism describing why occurrences synchronize while preserv-
ing that occurrences synchronize. While this very broad modality also leads to
undesired behaviors intermittently, the notion of channel will allow us to rule
out those undesired behaviors through a local mechanism only.

4.4 Partial Order Semantics for Synchronous Proclet Systems

In the following, we capture these principles in a true concurrency semantics
of runs by an inductive definition over labeled occurrence nets. Specifically, we
adopt the ideas proposed for plain nets [8,23] to our setting of multiple, syn-
chronizing instances:

A run describes a partial order of transition occurrences which we represent
as a special labeled, acyclic net π as shown in Fig. 2. A place b in π is called
condition; its label λ(b) = (p, id) describing the presence of a token id in a place
p. A transition e in π is called an event ; its label λ(e) = t describes the occurrence
of t. For example, the event e2 in the run in Fig. 2 describes the occurrence of
a transition which consumes token 17 from place created produces token 17 on
sent and tokens 1 and 3 on place ready; e2 is un-ordered, or concurrent, to e16.

We construct such runs inductively. The initial state of a proclet system
is a set of initial conditions representing the initial marking mν . The run in
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Fig. 2 has no initial conditions. To extend a run, we term the occurrence of a
transition t in an instance id . An occurrence o of t is again small net with a
single event e labeled with (t, id); e has in its pre-set the conditions required to
enabled t in instance id : for each pre-place p of t, there is a pre-condition of e
with label (p, id); the post-set of e is defined correspondingly. Each occurrence
of t describes the enabling condition for t and the effect of t in that particular
instance id . Figure 6 (top) shows two occurrences of t2 (split) in instance order17
and in instance order18, and three occurrences of t5 (split) in instances package1-
package3.

(created,17)

(sent,17) (ready,1) (ready,3) (ready,2)

(created,18)

(sent,18)
e2’e2 e2’’ e16e16’’’

(created,17)

(sent,17) (ready,1) (ready,3)

split
e2*

(ready,2)

(created,18)

(sent,18)

e16*

split split split split split

split

(t2,17) (t5,1) (t5,3) (t5,2) (t2,18)

(t2,17)(t 5,1)(t5,3) (t5,2)(t2,18)

Fig. 6. Occurrences of transitions t2 and t5 in different instances (top), and synchro-
nized occurrences of t2 and t5 in different instances (bottom)

Intuitively, a run is obtained by repeatedly appending occurrences (of enabled
transitions) to the run. The maximal conditions of a run π describe which places
hold which tokens, that is, the current marking of the system. For instance, the
prefix π1 shown in Fig. 7 has reached the marking where only place created holds
the tokens 17 and 18. An occurrence o of a transition t is then enabled in a run π
if the pre-conditions of o also occur in the maximal condition of π. For instance,
the occurrence of t2 (split) in order17 shown in Fig. 6 (top) is enabled in π1 in
Fig. 7. Also the occurrences of t5 in package1-package3 and of t2 in order18 are
enabled π1.

In a classical net, we could now append the occurrence of t2 in order17 to
π1. In a synchronous proclet system, occurrences of enabled transitions that are
connected via a channel may synchronize. For example, we may synchronize the
occurrences of t2 in order17 with the occurrences of t5 in package1 and package3
which we express as a synchronized occurrence. The synchronized occurrence
unifies the events in all individual occurrences into a single event e∗ and otherwise
preserves all pre- and post-conditions; we label e∗ with the multiset of transitions
occurring together as shown in Fig. 6 (bottom). The synchronized occurrence is
then appended to the run. For example, we obtain run π2 in Fig. 7 by appending
the synchronized occurrence of t2, t5, t5 in order17, package1, package3 to run
π1, where synchronization is shown in Fig. 7 through a dashed line. In run π2
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Fig. 7. Prefixes of the run of Fig. 5

the synchronized occurrence of t2, t5 in order17 and package2 (shown in Fig. 6
(bottom)) is enabled; appending it yields run π3.

4.5 Formal Semantics for Dynamic Synchronization

We formalize the semantics of proclet systems laid out in Sect. 4.4 by an inductive
definition. For the remainder of this section, let S = ({N1, . . . , Nn},mν , C) be a
proclet system, and let TS =

⋃n
i=1 Ti be all transitions in S.

An occurrence of a transition t in an instance id is an occurrence net o with
a single event e describing the occurrence of t; the labeling of o describes an
injective homomorphism between the pre-places of t and the pre-conditions of e,
and between the post-conditions and post-places, respectively. Technically, the
event’s label is a singleton set {(t, id)} and a condition’s label is a singleton
set {(p, id)}; using sets of labels will allow us later to establish an injective
homomorphism from synchronized occurrences of transitions to the transitions
in the system definition.

Definition 2 (Occurrence of a transition). Let t ∈ TS be a transition. Let
id ∈ I be an identifier.

An occurrence of t in id is a labeled net o = (Bpre � Bpost , {et}, G, λ) with

1. for each p ∈ •t exists a condition bp ∈ Bpre : λ(bp) = {(p, id)}(bp, et) ∈ G
2. for each p ∈ t• exists a condition bp ∈ Bpost : λ(bp) = {(p, id)}, (et, bp) ∈ G
3. λ(et) = {(t, id)}.
The labeling �i canonically lifts to o: for each node x ∈ Bpre ∪ Bpost ∪ {et}
referring to λ(x) = {(y, id)} set �(x) := �i(y).

We call preo := Bpre the precondition of o, we call cono := Bpost ∪ {et} the
contribution of o, and write eo := et for the event of o. Let O(t, id) be the set of
all occurrences of t in id.

Figure 6 shows among others occurrences of t2 in order1 and of t5 in package2.
Each transition (also in the same instance) may occur multiple times in a run, see
for instance t6 (load) in package2 in Fig. 5. To make our task of composing runs
from transition occurrences easier, and not having to reason about the identities
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of events or conditions, we therefore consider the set O(t, id) of all occurrences
of t in id . Technically, it contains an infinite supply of isomorphic copies of the
occurrence of t in id . When composing runs and when synchronizing occurrences,
we will simply take a suitable copy.

We now turn to synchronizing transition occurrences. Although we will later
only synchronize transition occurrences along channels, we propose here a sim-
pler and more general definition. Where an occurrence of a transition is param-
eterized by the transition t and the instance id , a synchronized occurrence is
parameterized by a label a and a finite set I ⊆ I of instances. For each instance
id ∈ I, one transition with label a participates in the synchronized occurrences.
We first define, given a and I, the sets of occurrences of transitions that may be
synchronized. In the spirit of high-level nets which also parameterize transition
occurrences through variables, we call this set of occurrences an occurrence bind-
ing to a and I. The synchronized occurrence is then a canonical composition of
all occurrences in the binding.

Definition 3 (Occurrence binding). Let a ∈ Σ be a label. Let I ⊆ I be a
nonempty finite set of identifiers.

A set OI of occurrences is an occurrence binding for a and I (in system S)
iff for each id ∈ I exists exactly one occurrence oid ∈ O(t, id) of some t ∈ TS

with oid ∈ OI . We write O(a, I) for the set of all occurrence bindings for a and
I.

In Fig. 6, the occurrences o1 ∈ O(t5, 1), o3 ∈ O(t5, 3), o17 ∈ O(t2, 17) form an
occurrence binding {o1, o3, o17} for split and I = {1, 3, 17}. In this example,
there is no other occurrence binding for this label and set of instances (up to
isomorphism of the occurrences themselves). Without loss of generality, we may
assume that any two occurrences o, o′ ∈ OI in an occurrence binding OI ∈
O(a, I) are pair-wise disjoint, i.e., o∩ o′ = ∅.

We obtain a synchronized occurrence of instances I at a by composing the
occurrences in the binding for a and I along the events labeled a. For example,
the synchronized occurrence of {1, 3, 17} at split is shown in Fig. 6 (bottom left).
To aid the composition, we use (1) simultaneous replacement o[e/e∗] of an event
by a new event e∗, as defined in Sect. 4.1, and (2) we lift the union of nets in
Sect. 4.1 to union of occurrences o1 ∪ o2 by defining λ1 ∪ λ2(x) := λ1(x) ∪ λ2(x)
for each x ∈ X1 ∪ X2. The formal definition of a synchronized occurrence reads
as follows.

Definition 4 (Synchronized occurrence of a label). Let a ∈ Σ, let I ⊆ I
be a nonempty finite set of identifiers, and let OI ∈ O(a, I) be an occurrence
binding for a and I in system S.

The synchronized occurrence of instances I at label a is the net

õ =
⋃

oid∈OI

(oid [eo/e∗])

obtained by replacing the event eo in each occurrence oid be a fresh event e∗ 
∈ Xi,
for all i = 1, . . . , n which unifies the occurrences along the event, and compos-
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ing all occurrences by union. We write Õ(a, I) for the set of all synchronized
occurrences of I at a.

Figure 6 (bottom left) shows the synchronized occurrence of order17, package1,
and package3 at split. Note that the event of this occurrence is labeled with the set
{(t2, 17), (t5, 1), (t5, 3)} resulting from the synchronizing composition of events
labeled with (t2, 17), (t5, 1), and (t5, 3). Note that this synchronized occurrence
describes the instantiation of two new packages package1, package2 by order17.

Labeling event e∗ with a set λ(e∗) does not allow us to describe auto-
concurrency of a transition, i.e., a synchronization of two occurrences of (t, id)
when •t is marked with two or more id tokens. This case is excluded by our
definition of occurrence binding (Definition 3) allowing for each id ∈ I exactly
one occurrence; this limitation could be overcome by using multisets.

The labeling �(.) which we lifted to occurrences of a transition (Definition 2)
also lifts to synchronized occurrences, as the synchronization in Definition 4 only
merges events e1, . . . , en carrying the same �(e1) = . . . = �(en) = a. Also the
precondition, contribution, and the event of an occurrence lift to synchronized
occurrences written pre õ, con õ, and eõ, respectively.

Each synchronized occurrence structurally preserves its constituting occur-
rences through the labeling λ(.). Let o = (B,E,G, λ) be a labeled occurrence net.
Let I ⊆ I. We write o|I for the restriction of o to those nodes labeled with an id ∈
I: o|I = (B ∩Z,E ∩ Z,G|Z×Z , λ|I) with Z = {x ∈ Xo|(y, id) ∈ λ(x), id ∈ I} and
λ|I(x) := {(y, id) ∈ λ(x)|id ∈ I}. Restricting any synchronized occurrence to a
single identifier results in the occurrence of the corresponding transition in that
instance.

Lemma 1. Let a ∈ Σ, let I ⊆ I be a nonempty finite set of identifiers, and
let OI ∈ O(a, I) be an occurrence binding for a and I in system S. For each
õ ∈ Õ(a, I) holds: for each id ∈ I, o := õ|{id} ∈ O(t, id) where λ(eo) = {(t, id)}.

Note that occurrence bindings and synchronized occurrences also apply
to singleton sets of identifiers. In that case any “synchronized” occurrence
õ ∈ Õ(a, {id}) is an occurrence õ ∈ O(t, id). In case the system has only one
transition ta labeled with a, synchronized occurrences and transition occurrences
coincide: Õ(a, {id}) = O(t, id); see for instance t3 (notify) in Fig. 4. This allows
us to consider from now on only synchronized transition occurrences.

We may now give a formal inductive definition of the partially-ordered runs
of a system with dynamic unbounded synchronization. This definition still does
not consider specific semantics of channels of a proclet system which we discuss
in Sect. 5.

Definition 5 (Runs with dynamic unbounded synchronization). Let
S = ({N1, . . . , Nn},mν , C) be a proclet system. The set of runs of S with
dynamic unbounded synchronization is the smallest set R(S) such that

1. The initial run π0 = (B, ∅, ∅, λ) that provides for each id token on a place p
in mν a corresponding condition, i.e., |{b ∈ B|λ(b) = {(p, id)}| = mν(p)(id),
is in R(S).
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2. Let π ∈ R(S), let a ∈ Σ, and I ⊆ I be finite. Let õ ∈ Õ(a, I) be a synchronized
occurrence of I at a.
(a) õ is enabled in π iff exactly the preconditions of õ occur at the end of π,

i.e., pre õ ⊆ max π := {b ∈ Bπ|b• = ∅} and, w.l.o.g, con õ ∩Xπ = ∅
(b) if õ is enabled in π then appending õ to π is a run of S, formally π ∪ õ ∈

R(S)

The run of Fig. 5 is a run of the proclet system in Fig. 4 according to Definition 5.
The wrong run in Fig. 3 is not a run of that proclet system: by events e6 instance
package1 moves to state done, hence events e7 and e8 cannot be synchronized
occurrences in instance package1 that lead to state ready.

The following lemma states that the labeling λ of the runs of S defines a local
injective homomorphism to the syntax of S in the same way as the labeling in
the runs of a classical net N defines a local injective homomorphism the syntax
of N [9]. The lemma follows straight from the inductive definition and from
Lemma 1.

Lemma 2. Let S = ({N1, . . . , Nn},mν , C) be a proclet system, let π ∈ R(S).
Then π is an occurrence net where

1. for each b ∈ Bπ: λ(b) = {(p, id)} for some p ∈ Pi, 1 ≤ i ≤ n
2. for each e ∈ Eπ: λ(e) = {(t1, id1), . . . , (tk, idk) with tj ∈ Ti, 1 ≤ i ≤ n for

each 1 ≤ j ≤ k, and �(tj) = �(ty) for all j, y = 1, . . . , k
3. |{b ∈ B|λ(b) = {(p, id)}| = mν(p)(id), for each p ∈ Pi, 1 ≤ i ≤ n
4. for each instance id occurring in π and the run π|id = (B′, E′, G′, λ′) of

instance id holds: for each event e ∈ E′ with λ(e) = {(t, id)}, t ∈ Ni, 1 ≤ i ≤
n, λ′ defines an injective homomorphism from {e} ∪ •e ∪ e• to {t} ∪ •t ∪ t•

in Ni.

5 Relational Synchronization

While the runs defined in Sect. 4 provide an operational formal semantics for
proclet systems, Definition 5 is not restrictive enough to correctly model the
intended behaviors. It, for instance, allows two order instances to synchronize
with a single package in an occurrence of split, e.g., synchronizing o17, o18, o2 in
Fig. 6. Likewise, Definition 5 allows that a package instance created by order17
does not synchronize with order17 but with order18 at bill. In this section, we rule
out such behavior by constraining the occurrence bindings via the channels. We
first define cardinality constraints and correlation constraints for synchronization
at channels, and then provide the semantics of both constraints.

5.1 Cardinality and Correlation Constraints

We adopt the notion of cardinality constraints known from data modeling, and
applied in relational process structures [27], to channels (ti, tj) between two pro-
clets Ni and Nj , see Definition 1. Each channel constraint specifies how many
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occurrences of ti may synchronize with how many occurrences of tj in one syn-
chronized occurrence. As each occurrence of ti and tj is related to a specific
instance, we thus constrain which instances of Ni and Nj may synchronize in
one step. A cardinality constraint specifies for each transition of a channel a lower
bound l and an upper bound u between 0 and ∞. We will later formalize that in
any synchronized occurrence, the number of occurrences of the transition has to
be between these two bounds. For example, according to the channel constraint
for (t2, t5) in Fig. 4, exactly one instance of order synchronizes with one or more
instances of package at any occurrence of split.

To ensure consistency of synchronization over multiple steps, we adopt
the concept of correlation identifiers. Correlation in message-based interaction
between processes [20,21] is achieved by specifying a particular attribute of a
message as a correlation attribute a. A process instance R receiving a message m
from an unknown sender instance S initializes a local correlation key k := m.a
with the value of a in m. To send a response to the unknown sender instance
S, R creates a message m2 where attribute m2.a := k holds the value of k. If R
later only wants to receive a response from S (and no other sender instance), R
will only accept a message m3 where m3.a = k. This is called matching of cor-
relation keys. This concept can be extended to multi-instance interaction, using
local data for correlation, instead of dedicated correlation keys [16].

For the synchronous interaction model proposed in this paper, we define cor-
relation over synchronous channels instead of messages. A channel cinit can be
labeled to initialize a correlation set S, meaning all instances which synchro-
nize at a step over cinit are in S. Another channel cmatch can be labeled to
match a previously initialized correlation set S, meaning the instances synchro-
nizing at a step over cmatch have to be either a subset of S or equal to S. For
example, according to the correlation constraints at channels (t2, t5) (split) and
(t4, t10) (bill), exactly the package instances which were created at split by an
order instance must synchronize at bill with the same order instance. In contrast,
the package instances synchronizing at a deliver step with a delivery instance only
have to be a subset of the package instances loaded into the delivery.

Definition 6 (Channel constraints). Let S = ({N1, . . . , Nn},mν , C) be a
synchronous proclet system.

1. A cardinality constraint for C is a function card which specifies for each
channel c = (t, t′) ∈ C a lower and an upper bound for each transition t
and t′ in the channel card(c) = ((l, u) : (l′, u′)) with 0 ≤ l ≤ u ≤ ∞,
0 ≤ l′ ≤ u′ ≤ ∞.

2. A correlation constraint K = (Cinit , C
⊆
match , C=

match) for C specifies a set of
initializing channels Cinit ⊂ C, a set of partially matching channels C⊆

match ,
and a set of fully matching channels C=

match , where all sets of channels are
pair-wise disjoint.

Given a cardinality constraint card and a set corr of correlation constraints
for C, we call S = ({N1, . . . , Nn},mν , C, card , corr) a constrained synchronous
proclet system.
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Channel constraints are visualized as shown in Fig. 4. Cardinality constraints
are indicated at the ends of the edges indicating channels, we use the standard
abbreviations of ? for (0, 1), 1 for (1, 1), ∗ for (0,∞), and + for (1,∞). The
channels in Fig. 4 are constrained by 1 : + and 1 : 1 cardinality constraints.
Correlation constraints are annotated in the middle of a channel, marking ini-
tialization with initK, partial matching with ⊆ K, and full matching with = K.
The proclet system in Fig. 4 has two correlation constraints O and D. Note that
in general, a channel may be part of different correlation constraints, initializing
in one constraint while matching in another constraint.

5.2 Semantics of Cardinality Constraints

A cardinality constraint of a channel (t, t′) restricts the number of occurrences of
t and t′ synchronizing in a step. We formalize this by restricting the occurrence
bindings of a label (Definition 3) to adhere to the channel constraints of all
transitions involved. For any set O of transition occurrences, let O[t] = {o ∈
O | �(eo) = t} be the set all occurrences of transition t in O. Further, we write
O[t1, t2] = {(o1, o2) | o1 ∈ O[t1], o2 ∈ O[t2]} for the relation of occurrences
between t1 and t2. By Lemma 1, we may also write Õ[t1, t2] = O[t1, t2] for the
synchronized occurrence Õ of binding O. Writing inst(o) = id for the instance
of an occurrence o ∈ O(t, id), we obtain inst(O[t1, t2]) = {(inst(o1), inst(o2)) |
(o1, o2) ∈ O[t1, t2]}.

If we interpret a channel (t1, t2) between two proclets N1 and N2 as a relation
between two transitions in two different proclets, then O[t1, t2] are the “records”
of this relation that we can observe in O. Assuming there is a relational data
model that underlies the proclet system and provides relational tables for the
entities E1 and E2 described by N1 and N2, then inst(O[t1, t2]) are the “records”
of the relationship between E1 and E2. In this spirit, the cardinality constraint
only allows occurrence bindings where the constraints on this relation is satisfied.

Definition 7 (Occurrence binding satisfies cardinality constraint). Let
S = ({N1, . . . , Nn},mν , C, card , corr) be a constrained proclet system. Let OI ∈
O(a, I) be an occurrence binding for instances I ⊆ I at a ∈ Σ.

The occurrence binding OI satisfies the cardinality constraint card(t1, t2) =
((l1, u1) : (l2, u2)) of channel (t1, t2) ∈ C iff if �(t1) = a, then l1 ≤ |OI [t1]| ≤ u1

and l2 ≤ |OI [t2]| ≤ u2. We then also say that the synchronized occurrence ÕI of
OI is an occurrence of channel (t1, t2).

OI satisfies the cardinality constraints of S iff OI satisfies the cardinality con-
straint of each channel of S. We then also say that the synchronized occurrence
ÕI satisfies the cardinality constraints of S.

For example, considering the occurrences o1, o2, o3, o17, o17 in Fig. 6, the occur-
rence binding {o17, o1, o3} satisfies the 1 : + cardinality constraint of (t2, t5) in
Fig. 4, whereas the occurrence binding {o17, o18, o3} does not satisfy this con-
straint. A run of S can only be extended with a synchronized occurrence Õ if
the occurrence binding O satisfies the cardinality constraints of S.
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Following the reasoning of Sect. 3, 1 : + and 1 : 1 cardinality constraints
have the most natural interpretation from an operational perspective as in any
occurrence of the channel, the “1” side can take a local “coordinating” role for
synchronization with the “+” side.

5.3 Semantics of Correlation Constraints

Correlation between different transition occurrences is a behavioral property.
Thus, we will not extend the notion of state of a proclet system to hold val-
ues of correlation properties which can be initialized and matched. Rather, we
give a behavioral definition over the history of the run.

A correlation constraint may be initialized multiple times in a run, each
time with the relation inst(Õ[t, t′]) of instances involved in the synchro-
nized occurrence Õ. For example, consider the synchronized occurrence Õsplit,17

of (t2, 17), (t5, 1), (t5, 3) at split (synchronization of e2, e
′
2, e

′′
2) in the run of

Fig. 8. According to Fig. 4, Õsplit,17 initializes the correlation constraint O with
inst(Õsplit,17[t2, t5]) = {(17, 1), (17, 3)}. Likewise, the synchronized occurrence
Õsplit,18 of (t2, 18), (t5, 2) at split (synchronization of e16, e

′
16) initializes the con-

straint O with inst(Õsplit,18[t2, t5]) = {(18, 2)}.
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ing constraint = O of Fig. 4
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While initialization can occur arbitrarily, matching is constrained: any syn-
chronized occurrence involving channel (t4, t10) at bill has to match an initial-
ization of O that occurred before. For instance, the synchronized occurrence
Õbill,17 of (t4, 17), (t10, 1) at bill (synchronization of e4, e

′
4) in Fig. 8 satisfies

the cardinality constraint 1 : + of channel (t4, t10) and involves the relation
inst(Õbill,17[t4, t10]) = {(17, 1)}. This occurrence violates the matching constraint
= O of channel (t4, t10) because the initialization of cardinality constraint O that
precedes Õbill,17 (at e4, e

′
4) is the synchronized occurrence Õsplit,17 (at e2, e

′
2, e

′′
2),

and inst(Õbill,17[t4, t10]) = {(17, 1)} 
= inst(Õsplit,17[t2, t5]) = {(17, 1), (17, 3)}. In
contrast, the synchronized occurrence Õ′

bill,17 shown in Fig. 5 satisfies the corre-
lation constraint = O.

Definition 8 (Occurrence satisfies correlation constraint in a run). Let
S = ({N1, . . . , Nn},mν , C, card , corr) be a constrained proclet system. Let π be
a labeled occurrence net. Let õm ∈ Õ(am, Im) be a synchronized occurrence of
instances Im at am such that pre õm

⊆ max π.
õm satisfies correlation constraint (Xinit ,X

⊆
match ,X=

match) in π iff

1. if õm is an occurrence of a channel (tm, t′m) ∈ X⊆
match , then there exists a

synchronized occurrence õi ∈ Õ(ai, Ii) of an initializing channel (ti, t′i) ∈ Xinit

such that
(a) the initializing occurrence õi is in π, i.e., õi ⊆ π,
(b) and precedes the matching occurrence õm, i.e., for the event eõi

of õi exists
a path in π to some b ∈ pre õm

: (eõm
, b) ∈ G+, and

(c) the relation of instances involved in õm matches the relation of instances
involved in õi, i.e., id(õm[tm, t′m]) ⊆ id(õi[ti, t′i]))

2. if õm is an occurrence of a channel (tm, t′m) ∈ X=
match , then additionally

id(õm[tm, t′m]) = id(õi[ti, t′i])) has to hold.

õm satisfies the correlation constraints of S iff õm satisfies each correlation
constraint in corr.

5.4 Runs of a Constrained Proclet System

We can now easily extend Definition 5 to limit the runs of a proclet system to
those allowed by the cardinality and correlation constraints.

Definition 9 (Runs of a constrained proclet system). Let S =
({N1, . . . , Nn},mν , C, card , corr) be a constrained proclet system. The set of runs
of S is the smallest set R(S) such that

1. The initial run π0 ∈ R(S) as in Definition 5.
2. Let π ∈ R(S), let a ∈ Σ, and I ⊆ I be finite. Let õ ∈ Õ(a, I) be a synchronized

occurrence of I at a.
(a) õ is enabled in π iff

i. exactly the preconditions of õ occur at the end of π, i.e., pre õ ⊆ max π,
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ii. õ satisfies the cardinality constraints card of S (Definition 7), and
iii. õ satisfies the cardinality constraints corr of S in π (Definition 8).

(b) if õ is enabled in π then appending õ to π is a run of S, formally π ∪ õ ∈
R(S).

The occurrence net of Fig. 5 is a run of the constrained proclet system in Fig. 4
(assuming all events connected by dashed lines, such as e2, e

′
2, e

′′
2 are synchronized

into a single event). The occurrence net of Fig. 8 is not a run of that system.
However, the system of Fig. 4 cannot ensure termination of delivery instances:
finish should only occur when all packages have been handled. The proclet system
of Fig. 9 ensures correct termination through an extended package life-cycle and
an additional channel. The system also illustrates that a proclet may interact
with more than two other proclets, in this case a return process that must be
completed for each undelivered package prior to billing.
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Fig. 9. Extension of the proclet system of Fig. 4

6 Conclusion

We have shown that by reifying a behavioral many-to-many relation into its
own entity with a behavioral model, the behavior of processes with many-to-
many interactions can be described both visually clear and formally precise.
The foundational concept is that of dynamic unbounded synchronization, which
can be seen as a generalization of the synchronization in artifact-choreographies
with 1-to-1 relationships proposed by Lohmann and Wolf [15]. We have shown
that this basic behavioral model can be extended orthogonally with cardinality
and correlation constraints that limit the allowed synchronization much in the
same way as guards in Coloured Petri Nets limit firing modes. We believe that
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this restriction to purely behavioral concepts allows adoption and integration
with other more data-aware modeling techniques such as [19,27].

The only “higher-level” concept required by our model are case identity
tokens as in ν-nets, and we only use equality of token identities, and subsets
of pairs of token identities. This suggests that verification results on ν-nets [18]
may be lifted to our model. Though, we suspect undecidability to arise in the
general case for correlation constraints testing for equality.

Further, the structure of a “reified” process model in behavioral second nor-
mal form (having only 1-to-1 and 1-to-many synchronizations) allows some fur-
ther reflection on the structure of such processes. The asynchronous message
exchange between two processes is replaced by an entity explicitly describing
the interaction. This entity such as the package in our running example, is
a “passive” (data) object, as changes to its state are due to activities in the
processes operating on it, making the processes “active” entities. This leads
for many, but possibly not all use cases to a bipartite structure of entities.
Two “active” processes never synchronize directly as each transition describes a
task that is manipulating a “passive” object; two “passive” objects never syn-
chronize directly as they require an “active” process to trigger the necessary
state change. In this understanding, an asynchronous message channel is passive
object, synchronizing with sender and receiver, and each instance of the channel
is a message. Lohmann and Wolf [13] have shown that this interpretation allow
for formulating new types of research questions: given a set of objects, synthesize
the active processes synchronizing them; given a set of processes, synthesize the
passive objects realizing their synchronization.
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