
Susanna Donatelli
Stefan Haar (Eds.)

 123

LN
CS

 1
15

22

40th International Conference, PETRI NETS 2019
Aachen, Germany, June 23–28, 2019
Proceedings

Application and Theory
of Petri Nets
and Concurrency

PN 2019

Lecture Notes in Computer Science 11522

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Susanna Donatelli • Stefan Haar (Eds.)

Application and Theory
of Petri Nets
and Concurrency
40th International Conference, PETRI NETS 2019
Aachen, Germany, June 23–28, 2019
Proceedings

123

Editors
Susanna Donatelli
Università di Torino
Turin, Italy

Stefan Haar
Inria and LSV, CNRS & ENS Paris-Saclay
Cachan Cedex, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-21570-5 ISBN 978-3-030-21571-2 (eBook)
https://doi.org/10.1007/978-3-030-21571-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0911-8457
https://orcid.org/0000-0002-1892-2703
https://doi.org/10.1007/978-3-030-21571-2

Foreword

Welcome to the proceedings of the 40th International Conference on Application and
Theory of Petri Nets and Concurrency. We were very proud to be able to host the 40th
instance of the conference in the beautiful city of Aachen. The conference took place in
the Tivoli football stadium close to the city center of Aachen. This beautiful venue
provided a unique atmosphere with great views and excellent conference facilities. In
the same week, the First International Conference on Process Mining (ICPM 2019) and
the 19th International Conference on Application of Concurrency to System Design
(ACSD 2019) as well as several workshops and tutorials took place at the same
location.

I would like to thank the members of the Process and Data Science (PADS) group at
RWTH Aachen University for helping to organize this event. Thanks to all authors,
presenters, reviewers, Program Committee members, and participants. Special thanks
go to the program chairs of Petri Nets 2019: Susanna Donatelli and Stefan Haar. The
three conferences were supported by Celonis, Deloitte, ProcessGold, SAP, myInvenio,
Fluxicon, AcceleraLabs, Minit, PuzzleData, PAFnow, Software AG, StereoLOGIC,
BrightCape, Logpickr, Mehrwerk, QPR, KPMG, LanaLabs, Wintec, RWTH,
Fraunhofer FIT, Gartner, the Alexander von Humboldt Foundation, the Deutsche
Forschungsgemeinschaft, FernUniversität Hagen, and Springer.

A special feature of this year’s conference was the special Friday afternoon session
“Retrospective and Perspective of Petri Net Research” celebrating 40 years of Petri Net
conferences organized by Jörg Desel. This was a wonderful opportunity to reflect on
the history of our field and to celebrate the great scientific achievements of our
community.

June 2019 Wil van der Aalst

Preface

This volume constitutes the proceedings of the 40th International Conference on
Application and Theory of Petri Nets and Concurrency (Petri Nets 2019). This series of
conferences serves as an annual meeting place to discuss progress in the field of Petri
nets and related models of concurrency. These conferences provide a forum for
researchers to present and discuss both applications and theoretical developments in
this area. Novel tools and substantial enhancements to existing tools can also be
presented.

Petri Nets 2019 was colocated with the 19th Application of Concurrency to System
Design Conference (ACSD 2019). Both were organized by the Process and Data
Science (PADS) group at RWTH Aachen University, Aachen, Germany. The
conferences were co-organized with the First International Conference on Process
Mining (ICPM 2019). The conference took place in the Tivoli business and event area
in Aachen, during June 23–28, 2019.

This year, 41 papers were submitted to Petri Nets 2019 by authors from 19 different
countries. Each paper was reviewed by three reviewers. The discussion phase and final
selection process by the Program Committee (PC) were supported by the EasyChair
conference system. From 33 regular papers and eight tool papers, the PC selected 23
papers for presentation: 20 regular papers and three tool papers. After the conference,
some of these authors were invited to submit an extended version of their contribution
for consideration in a special issue of a journal.

We thank the PC members and other reviewers for their careful and timely
evaluation of the submissions and the fruitful constructive discussions that resulted in
the final selection of papers. The Springer LNCS team (notably Anna Kramer, Ingrid
Haas and Alfred Hofmann) provided excellent and welcome support in the preparation
of this volume.

We are also grateful to the invited speakers for their contributions:

• Luca Cardelli, University of Oxford, who delivered the Distinguished Carl Adam
Petri Lecture (CAP) on “Programmable Molecular Networks”

• Dirk Fahland, Eindhoven University of Technology, on “Describing, Discovering,
and Understanding Multi-Dimensional Processes”; and

• Philippas Tsigas, Chalmers University of Technology, on “Lock-Free Data Sharing
in Concurrent Software Systems”

Alongside ACSD 2019, the following workshops were also colocated with the
conference:

• Workshop on Petri Nets and Software Engineering (PNSE 2019)
• Workshop on Algorithms and Theories for the Analysis of Event Data (ATAED

2019)

Other colocated events included the Petri Net Course and the tutorials on Model
Checking for Petri Nets - from Algorithms to Technology (Karsten Wolf) and on
Model-Based Software Engineering for/with Petri Nets (Ekkart Kindler).

We hope you enjoy reading the contributions in this LNCS volume.

June 2019 Susanna Donatelli
Stefan Haar

viii Preface

Organization

Steering Committee

W. van der Aalst RWTH Aachen University, Germany
J. Kleijn Leiden University, The Netherlands
L. Pomello Università degli Studi di Milano-Bicocca, Italy
G. Ciardo Iowa State University, USA
F. Kordon Sorbonne University, France
W. Reisig Humboldt-Universität zu Berlin, Germany
J. Desel FernUniversität in Hagen, Germany
M. Koutny (Chair) Newcastle University, UK
G. Rozenberg Leiden University, The Netherlands
S. Donatelli Università di Torino, Italy
L. M. Kristensen Western Norway University of Applied Sciences,

Norway
M. Silva University of Zaragoza, Spain
S. Haddad Ecole Normale Supérieure Paris-Saclay, France
C. Lin Tsinghua University, China
A. Valmari University of Jyväskylä, Finland
K. Hiraishi JAIST, Japan
W. Penczek Institute of Computer Science PAS, Poland
A. Yakovlev Newcastle University, UK

Program Committee

Elvio Amparore Università di Torino, Italy
Ekkart Kindler Technical University of Denmark
Paolo Baldan Università di Padova, Italy
Jetty Kleijn Leiden University, The Netherlands
Didier Buchs University of Geneva, Switzerland
Michael Köhler-Bußsmeier University of Applied Science Hamburg, Germany
Robert Lorenz University of Augsburg, Germany
Jose Manuel Colom University of Zaragoza, Spain
Roland Meyer TU Braunschweig, Germany
Isabel Demongodin LSIS, UMR CNRS 7296, France
Lukasz Mikulski Nicolaus Copernicus University, Torun, Poland
Susanna Donatelli

(Co-chair)
Università di Torino, Italy

Andrew Miner Iowa State University, USA
Javier Esparza Technical University of Munich, Germany
G. Michele Pinna University of Cagliari, Italy

Dirk Fahland Eindhoven University, The Netherlands
Pascal Poizat Université Paris Nanterre and LIP6, France
Gilles Geeraerts Université Libre de Bruxelles, Belgium
Pierre-Alain Reynier Aix-Marseille Université France
Stefan Haar (Co-chair) Inria and LSV, CNRS and ENS Paris-Saclay, France
Olivier Roux LS2N/Ecole Centrale de Nantes, France
Henri Hansen Tampere University of Technology, Finland
Arnaud Sangnier IRIF, University of Paris Diderot, CNRS, France
Petr Jancar Palacky University of Olomouc, Czech Republic
Irina Virbitskaite A.P. Ershov Institute, Russia
Ryszard Janicki McMaster University, Canada
Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Gabriel Juhas Slovak University of Technology Bratislava, Slovakia
Karsten Wolf Universität Rostock, Germany
Anna Kalenkova RWTH Aachen, Germany

Additional Reviewers

Kamila Barylska
Benoit Delahaye
Marcin Piatkowski
Claudio Antares Mezzina
Tiziana Cimoli
Leonardo Brenner
Johannes Metzger
Jorge Julvez
Natalia Garanina
Damien Morard
Stefan Klikovits
Luca Bernardinello
Hanifa Boucheneb

Pieter Kwantes
Rabah Ammour
Alfons Laarman
Sebastian Muskalla
Prakash Saivasan
Peter Chini
Philipp J. Meyer
Nataliya Gribovskaya
Thomas Brihaye
Anna Gogolinska
Petr Osiçka
Dimitri Racordon

x Organization

Sponsers

Organization xi

xii Organization

Contents

Models

Invited Paper
Describing Behavior of Processes with Many-to-Many Interactions 3

Dirk Fahland

Modal Open Petri Nets . 25
Vitali Schneider and Walter Vogler

Stochastic Evaluation of Large Interdependent Composed Models
Through Kronecker Algebra and Exponential Sums. 47

Giulio Masetti, Leonardo Robol, Silvano Chiaradonna,
and Felicita Di Giandomenico

Tools

RENEWKUBE: Reference Net Simulation Scaling with
RENEW and Kubernetes. 69

Jan Henrik Röwekamp and Daniel Moldt

PNemu: An Extensible Modeling Library for Adaptable
Distributed Systems. 80

Matteo Camilli, Lorenzo Capra, and Carlo Bellettini

CoRA: An Online Intelligent Tutoring System to Practice Coverability
Graph Construction . 91

Jan Martijn E. M. van der Werf and Lucas Steehouwer

Tools for Curry-Coloured Petri Nets . 101
Michael Simon, Daniel Moldt, Dennis Schmitz,
and Michael Haustermann

Synthesis

Articulation of Transition Systems and Its Application
to Petri Net Synthesis . 113

Raymond Devillers

Hardness Results for the Synthesis of b-bounded Petri Nets 127
Ronny Tredup

Fixed Parameter Tractability and Polynomial Time Results
for the Synthesis of b-bounded Petri Nets . 148

Ronny Tredup

Semantics

Reversing Steps in Petri Nets . 171
David de Frutos Escrig, Maciej Koutny, and Łukasz Mikulski

On Interval Semantics of Inhibitor and Activator Nets 192
Ryszard Janicki

Reversing Unbounded Petri Nets. 213
Łukasz Mikulski and Ivan Lanese

Concurrent Processes

Generalized Alignment-Based Trace Clustering of Process Behavior 237
Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona

Finding Complex Process-Structures by Exploiting the Token-Game 258
Lisa Luise Mannel and Wil M. P. van der Aalst

Concurrent Programming from PSEUCO to Petri . 279
Felix Freiberger and Holger Hermanns

Algorithmic Aspects

Improving Saturation Efficiency with Implicit Relations. 301
Shruti Biswal and Andrew S. Miner

Taking Some Burden Off an Explicit CTL Model Checker. 321
Torsten Liebke and Karsten Wolf

Saturation Enhanced with Conditional Locality: Application to Petri Nets . . . 342
Vince Molnár and István Majzik

Parametrics and Combinatorics

Parameterized Analysis of Immediate Observation Petri Nets 365
Javier Esparza, Mikhail Raskin, and Chana Weil-Kennedy

The Combinatorics of Barrier Synchronization . 386
Olivier Bodini, Matthieu Dien, Antoine Genitrini,
and Frédéric Peschanski

xiv Contents

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 406
Didier Lime, Olivier H. Roux, and Charlotte Seidner

Models with Extensions

Coverability and Termination in Recursive Petri Nets 429
Alain Finkel, Serge Haddad, and Igor Khmelnitsky

From DB-nets to Coloured Petri Nets with Priorities 449
Marco Montali and Andrey Rivkin

Author Index . 471

Contents xv

Models

Describing Behavior of Processes with
Many-to-Many Interactions

Dirk Fahland(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
d.fahland@tue.nl

Abstract. Processes are a key application area for formal models of con-
currency. The core concepts of Petri nets have been adopted in research
and industrial practice to describe and analyze the behavior of processes
where each instance is executed in isolation. Unaddressed challenges arise
when instances of processes may interact with each other in a one-to-
many or many-to-many fashion. So far, behavioral models for describing
such behavior either also include an explicit data model of the processes
to describe many-to-many interactions, or cannot provide precise opera-
tional semantics.

In this paper, we study the problem in detail through a funda-
mental example and evolve a few existing concepts from net theory
towards many-to-many interactions. Specifically, we show that three con-
cepts are required to provide an operational, true concurrency seman-
tics to describe the behavior of processes with many-to-many interac-
tions: unbounded dynamic synchronization of transitions, cardinality
constraints limiting the size of the synchronization, and history-based
correlation of token identities. The resulting formal model is orthogonal
to all existing data modeling techniques, and thus allows to study the
behavior of such processes in isolation, and to combine the model with
existing and future data modeling techniques.

Keywords: Multi-instance processes · Many-to-many interactions ·
Modeling · True-concurrency semantics · Petri nets

1 Introduction

Processes are a key application area for formal models of concurrency, specifi-
cally Petri nets, as their precise semantics allows both describing and reasoning
about process behavior [1]. The basic semantic concepts of Petri nets, locality of
transitions which synchronize by “passing” tokens, are at the core of industrial
process modeling languages [21] designed to describe the execution of a process
in a process instance which is isolated from all other instances. At the same
time, processes behavior in practice is often not truly isolated in single process
instances, but instances are subject to interaction with other instances, data
objects, or other processes. Modeling and analyzing such processes has been the

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 3–24, 2019.
https://doi.org/10.1007/978-3-030-21571-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_1&domain=pdf
http://orcid.org/0000-0002-1993-9363
https://doi.org/10.1007/978-3-030-21571-2_1

4 D. Fahland

focus of numerous works such as proclets [3], artifact-centric modeling [6], UML-
based models [5], BPMN extensions [16], DB-nets [19], object-centric declarative
modeling [2], and relational process structures [27].

The existing body of work can be considered in two major groups. Artifact-
centric modeling that can address one-to-many and many-to-many relations first
defines a relational data model; process behavior is then defined by a control-
flow model for each entity in the data model, and logical constraints and condi-
tions that synchronize the steps in one entity based on data values in the data
model of another entity [5,6]. DB-nets adopt this principle to Petri net theory
through Coloured Petri nets [19]. Numerous decidability results and verification
techniques are available for these types of models, such as [5,7,17]. However,
the behavior described by these models cannot be derived easily by a modeler
through visual analysis as the interaction of one entity with other entities depend
on complex data conditions not shown in the visual model, inhibiting their appli-
cation in practice [22]. While object-centric declarative models [2,12] make the
dependency between behavior and data visually explicit, declarative constraints
themselves are challenging to interpret. Proclets do explicitly describe interac-
tions between instances of multiple processes [3] but do not provide sufficient
semantic concepts to describe many-to-many interactions [10]. Relational pro-
cess structures [26,27] turn the observations of [10] into a model with imple-
mented operational semantics for describing many-to-many interactions through
so-called coordination processes. However, the language requires numerous syn-
tactic concepts, and no formal semantics is available, prohibiting analysis, which
also applies to data-aware BPMN extensions [16].

In this paper, we investigate semantic concepts that are required to provide
formal semantics for a modeling language that is able to describe many-to-many
interactions. The language shall bear a minimal number of syntactic and seman-
tic concepts building on established concepts from Petri net theory. Our hope
is that such a minimal, yet maximally net-affine language allows to project or
build richer modeling languages on top of our proposed language, while allowing
to apply or evolve existing Petri net analysis techniques for analyzing behavior
with many-to-many interactions.

In Sect. 2, we study a basic example of many-to-many interactions through
the formal model of Proclets and analyze the core challenges that arise in describ-
ing the behavior of such processes. In Sect. 3, we show that these challenges can
be overcome by a paradigm shift in describing many-to-many relations. Just as
many-to-many relations in a data model have to be reified into its own entity,
we show that many-to-many interactions require reifying the message exchange
into its own entity. Based on this insight, we then propose in Sect. 4 synchronous
proclets as a formal model that extends [3] with dynamic unbounded synchro-
nization of transitions. We provide a formal true concurrency semantics for our
model. We then show in Sect. 5 how the semantics of relations between entities
can be realized on the level transition occurrences as cardinality and correla-
tion constraints over pairs of instance identifiers to fully describe many-to-many

Describing Behavior of Processes with Many-to-Many Interactions 5

interactions in an operational semantics. We discuss some implications of our
work in Sect. 6.

2 Multi-dimensional Dynamics - A Simple Example

The running example for this paper describes a very simple logistics process.
After an order has been created, it gets fulfilled by sending packages to the cus-
tomer. Typically, not all products are available in the same warehouse, resulting
the order to be split into multiple packages. Packages are transported to the
customer through a delivery process, where multiple packages are loaded for one
delivery tour; these packages may originate from multiple orders, resulting in
a many-to-many relationship between orders and deliveries. Packages are then
delivered one by one, being either successfully delivered or the package could
not be delivered, leading either to a retry in a new delivery or in considering the
package as undeliverable. The customer is billed only after all deliveries of all
packages in the order concluded.

order delivery

order delivery

split

notify

bill

create

+

*

*

deliver

finish

load* *

undeliv. retry 11

1 next

created

sent

notified

delivering

delivered

++

Fig. 1. Proclet model describing asynchronous message exchange between multiple
instances

The proclet model [3] in Fig. 1 describes this process. The behavior of order
and delivery instances are described in their respective proclet, initial and final
transitions describe the creation and termination of instances. Instances of order
and delivery interact by exchanging messages via channels (dashed lines); the
cardinality inscriptions at the ports indicate how many messages are sent or
received in the occurrence of the transition in one instance. Figure 2 shows a
partially-ordered run that satisfies the model of Fig. 1: order17 gets split into two
packages 1 and 3, while order18 requires just a single package 2. Packages 1 and 2
are loaded into delivery23 where package 2 requires a retry with delivery24 where
it is joined by package 3.

6 D. Fahland

delivery23

order18

delivery24

order17

split

notify

bill

create

finish

load

next

retry

finish

load

deliver

next

undeliv.

split

notify

bill

create

deliver

e1

e3

e4

e2
e5

e6

e7

e8
e9

e10

e11

e12

e13
e14

e15

e16

e17

e18

(created,17)

(done,2)

(ready,3)

(ready,2)

(ready,2)

(done,1)

(done,3)

(sent,17)

(notified,17)

(created,18)

(sent,18)

(notified,18)

(ready,1)

Fig. 2. A partially-ordered run of the proclet model in Fig. 1

The proclet semantics [3] however is not defined on instance identifiers and
hence also allows undesired behaviors in many-to-many interactions, such as the
run in Fig. 3: First, package 1 gets duplicated and then both delivered and gets
a retry with delivery24. Second, package 3 originates in order17 but gets billed
for order18. Third, package 2 is created and loaded but then disappears in the
run.

3 Reifying Behavior of Relations into Conversations

The core problem of the proclet model in Fig. 1 is that order and delivery are in
a many-to-many relation that is not explicitly described. We know from data
modeling that implementing a many-to-many relationship in a relational data
model requires to reify the relationship into its own entity, which then also results
in the well-known Second Normal Form (2NF). By the same reasoning, we reify

Describing Behavior of Processes with Many-to-Many Interactions 7

delivery23

order18

delivery24

order17

split

notify

bill

create

finish

load

next

retry

finish

load

deliver

split

notify

bill

create

deliver

e1

e3

e4

e2
e5

e6

e7

e8
e9

e10

e11
e14

e15

e16

e17

e18

(ready,1)

(done,3)

(ready,3)

(ready,2)

(ready,1)

(done,1)

(created,17)

(sent,17)

(notified,17)

(created,18)

(sent,18)

(notified,18)

Fig. 3. Another partially-ordered run of the proclet model in Fig. 1 describing undesired
behavior

the structural many-to-many relation in Fig. 1 into a package entity which has
one-to-many relations to order and delivery.

The first central idea of this paper is that we also reify the behavioral rela-
tion between order and delivery, i.e., the channels, into its own sub-model. The
resulting composition, shown in Fig. 4, contains a proclet for the package entity.
Where the model in Fig. 1 described interaction through asynchronous message
exchange, the model in Fig. 4 uses synchronization of transitions along the indi-
cated channels. Hence, we call this model a synchronous proclet model. Crucially,
multiple instances of a package may synchronize with an order instance in a sin-
gle transition occurrence. Figure 5 shows a distributed run of the synchronous
proclet system of Fig. 4, where the run of each instance is shown separately and
the dashed lines between events indicate synchronization. For example, events
e2, e′

2, and e′′
2 in order17, package1, and package3 occur together at once in a

single synchronized event which also causes the creation of the package1, and
package3 instances. The run in Fig. 5 is identical to the run in Fig. 2 except for
the condition loaded in the different package instances.

In line with the idea of a relational model in 2NF, the synchronization chan-
nels in the model in Fig. 4 only contain one-to-many, and one-to-one cardinalities.
We consider a model such as the one in Fig. 4 to be in behavioral second normal

8 D. Fahland

order deliverypackage

order package delivery

split

notify

bill

create
+

deliver

finish

load

undeliv.

retry

1

1

next

split load

1

1

retry 1

1

1
deliver

undeliv.
bill

1

1

+

+

init O
init D

=O

⊆D

⊆D

⊆D

t1

t2

t3

t4

t5 t6

t7

t8

t9t10

t11

t13

t12

t14

t15

t16

created

sent

notified

ready

loaded

done

delivering

delivered

+ + 11

Fig. 4. Synchronous Proclet model

form: During any interaction between two entities, one entity is always uniquely
identified, by having only one instance participate in the interaction. Specifically,
a package always relates and interacts with one delivery and one order. However,
that relation is dynamic as package2 first relates to delivery23 and later to deliv-
ery24. To ensure that “the right” instances remain synchronized, we propose
using correlation constraints: the annotation init O and =O shall ensure that
only package instances created by an order also synchronize in the bill step.

4 Dynamic Unbounded Synchronization

In the following, we develop the required formal concepts for the model pro-
posed in Sect. 3. We first define dynamic synchronization of transitions in a
true-concurrency semantics. In Sect. 5 we constrain synchronization through car-
dinality and correlation constraints.

4.1 Notation on Nets

A net N = (P, T, F) consists of a set P of places, a set T of transitions, P ∩ T = ∅,
arcs F ⊆ (P × T) ∪ (T × P). We call XN = P ∪ T the nodes of N . We write
•t and t• for the set of pre-places and post-places of t ∈ TN along the arcs F ,
respectively; pre- and post-transitions of a place are defined correspondingly. We
write N1 ∩ N2, N1 ∪N2, and N1 ⊆ N2 for intersection, union, and subset of nets,
respectively, which is defined element-wise on the sets of nodes and arcs of N1

and N2, and we write ∅ for the empty net.
A labeled net N = (P, T, F, �) additionally defines a labeling � : P ∪ T → Σ

assigning each node x ∈ XN a label �(x) ∈ Σ; w.l.o.g, we assume for any two

Describing Behavior of Processes with Many-to-Many Interactions 9

package2

deliv.24

package1

order17 order18

package3

deliv.23
split

bill

finish

load

deliv.

next

retry

finish

load

deliv.

next

undel.

split

bill

split

notify

bill

create

split

notify

bill

load

deliv.

split

bill

load

undel.

load

retry

load

deliv.

create

ready

ready

loaded

done

loaded

ready

loaded

done

ready

loaded

done

e1 e15

e2’

e3

e4

e5

e6

e7

e8
e9

e2

e2’’

e4’

e4’’

e5’

e6’

e10

e10’’

e11

e12

e13
e14

e13’’

e16

e17

e18

e5’’’ e16’’’

e8’’’

e10’’’

e11’’’ e18’’’

Fig. 5. Synchronization of multiple partially ordered runs corresponding to the syn-
chronous proclet model of Fig. 4

labeled nets N1, N2 that �1(x) = �2(x) for any node x ∈ X1 ∩ X2. We use labels
to synchronize occurrences of different transitions with the same label.

For a node x ∈ XN and a fresh node x∗ /∈ XN we write N [x/x∗] for the net
obtained by replacing in N simultaneously all occurrences of x by x∗.

An occurrence net π = (B,E,G) is a net (B,E,G) where each place b ∈ B
is called a condition, each e ∈ E is called an event, the transitive closure G+ is
acyclic, the set past(x) = {y | (y, x) ∈ G+} is finite for each x ∈ B ∪ E, and
each b ∈ B has at most one pre-event and at most one post-event, i.e., |•b| ≤ 1
and |b•| ≤ 1. We will consider labeled occurrence nets π = (B,E,G, λ), where
each condition (event) is labeled with a set of labels of the from (x, id) where x
refers to a place (transition) of another net, and id is an instance identifier. The
behavior of any net N (with an initial marking m0) can be described as a set of
occurrence nets R(N,m0) called the runs of N .

10 D. Fahland

4.2 Entities, Instances, and Synchronous Proclet System

A classical process model NE describes the processing of a single entity E,
e.g., an order, a delivery. This can be formalized as a single labeled net
NE = (PE , TE , FE , �E). The behavior of one instance of E, e.g., a concrete
order, then follows from consuming and producing “black” tokens in NE which
defines a firing sequence or a run of NE [1].

Our aim is to describe the behavior of multiple entities and multiples
instances of these entities together in one run as discussed in Sect. 2. We adopt
Petri nets with token identities [11,24,25] to distinguish different instances of an
entity E. Let I be an infinite set of instance identifiers. Each id ∈ I is a unique
identifier. By distributing I (as tokens) over the places of NE , we describe the
state of instance id . The state of NE (for several instances) is then a distribution
of multiple tokens from I over the places of NE .

To describe the interplay of multiple entities, we adopt concepts of proclets [3,
4] and open nets [14]. A system describes the behavior of each entity in its own
net; the nets of all entities are composed along channels. Where the earlier works
use asynchronous channels for composition, we use synchronous channels which
are connecting pairs of transitions, as motivated in Sect. 3. This gives rise to the
notion of a synchronous proclet system:

Definition 1 (Synchronous Proclet System). A synchronous proclet sys-
tem S = ({N1, . . . , Nn},mν , C) defines

1. a set of labeled nets Ni = (Pi, Ti, Fi, �i), i = 1, . . . , n, each called a proclet of
S,

2. an initial marking mν :
⋃n

i=1 Pi → N
I assigning each place p a multiset

m(p) of identifier tokens such that proclets have disjoint sets of identifiers,
∀1 ≤ i < j ≤ n,∀pi ∈ Pi, pj ∈ Pj : mν(pi)∩ mν(pj) = ∅, and

3. a set C of channels where each channel (ti, tj) ∈ C is a pair of identically-
labeled transitions from two different proclets: �(ti) = �(tj), ti ∈ Ti, tj ∈
Tj , 1 ≤ i
= j ≤ n.

Figure 4 shows a synchronous proclet system for entities order, package, and
delivery with several channels, for example, channel (t2, t5) connects two split-
labeled transitions in order and package. Each proclet in Fig. 4 has a transition
without pre-places and the initial marking is empty. This allows creating an
unbounded number of new instances of any of the three entities in a run.

4.3 Intuitive Semantics for Synchronous Proclet Systems

A single proclet Ni describes the behavior of a single entity Ei. We assume each
instance of Ei is identified by an identifier id . A distribution of id tokens over the
places in Ni describes the current state of this instance. The instance id advances
by an occurrence of an enabled transition of Ni in that instance id : Any transition
t ∈ NE is enabled in instance id when each pre-place of t contains an id token;
firing t in instance id then consumes and produces id tokens as usual. A new

Describing Behavior of Processes with Many-to-Many Interactions 11

instance of Ei can be created by generating a new identifier idν as proposed for
ν-nets [25]. We limit the creation of new identifiers to transitions without pre-set.
Such an “initial” transition tinit is always enabled (as it has no pre-places); tinit
may occur in instance idν ∈ I only if idν is a fresh identifier never seen before; its
occurrence then produces one idν token on each post-place of tinit . For example,
in the run in Fig. 5, we see three occurrence of t5 (split) in proclet package, each
occurrence creates a different token package1, package2, package3 ∈ I on place
ready describing the creation of three different package instances.

In the entire proclet system, a local transition that is not connected via any
channel, such as t3 (notify) in order in Fig. 4, always occurs on its own. However,
for transitions that are connected to each other via a channel, such as t2 and t5
(split), their occurrences may synchronize.

The modality “may synchronize” is important in the context of true concur-
rency semantics. Considering the partially-ordered run in Fig. 5, we can see two
occurrence of t2 (split) in instances order17 and order18, and three occurrences
of t5 in package1–package3. Bearing in mind that all instances are concurrent
to each other, we may not enforce that one occurrence of t2, say, in order17
must synchronize with all occurrences of t5 in package1–package3. If we did,
we would silently introduce a notion of global state and a global coordination
mechanism which knows all order instances in that state, i.e., at a particular
point in time. Rather, by synchronizing on non-deterministically chosen sub-
sets of possible occurrences, we can express local knowledge. The occurrence
of t2 in order17 synchronizes with occurrences of t5 in package1 and package2
in Fig. 5 because they happen to be “close to each other”—because package1
and package2 are created for order17. In other words, this non-determinism on
synchronizing transition occurrences allows to abstract from a rather complex
data-driven mechanism describing why occurrences synchronize while preserv-
ing that occurrences synchronize. While this very broad modality also leads to
undesired behaviors intermittently, the notion of channel will allow us to rule
out those undesired behaviors through a local mechanism only.

4.4 Partial Order Semantics for Synchronous Proclet Systems

In the following, we capture these principles in a true concurrency semantics
of runs by an inductive definition over labeled occurrence nets. Specifically, we
adopt the ideas proposed for plain nets [8,23] to our setting of multiple, syn-
chronizing instances:

A run describes a partial order of transition occurrences which we represent
as a special labeled, acyclic net π as shown in Fig. 2. A place b in π is called
condition; its label λ(b) = (p, id) describing the presence of a token id in a place
p. A transition e in π is called an event ; its label λ(e) = t describes the occurrence
of t. For example, the event e2 in the run in Fig. 2 describes the occurrence of
a transition which consumes token 17 from place created produces token 17 on
sent and tokens 1 and 3 on place ready; e2 is un-ordered, or concurrent, to e16.

We construct such runs inductively. The initial state of a proclet system
is a set of initial conditions representing the initial marking mν . The run in

12 D. Fahland

Fig. 2 has no initial conditions. To extend a run, we term the occurrence of a
transition t in an instance id . An occurrence o of t is again small net with a
single event e labeled with (t, id); e has in its pre-set the conditions required to
enabled t in instance id : for each pre-place p of t, there is a pre-condition of e
with label (p, id); the post-set of e is defined correspondingly. Each occurrence
of t describes the enabling condition for t and the effect of t in that particular
instance id . Figure 6 (top) shows two occurrences of t2 (split) in instance order17
and in instance order18, and three occurrences of t5 (split) in instances package1-
package3.

(created,17)

(sent,17) (ready,1) (ready,3) (ready,2)

(created,18)

(sent,18)
e2’e2 e2’’ e16e16’’’

(created,17)

(sent,17) (ready,1) (ready,3)

split
e2*

(ready,2)

(created,18)

(sent,18)

e16*

split split split split split

split

(t2,17) (t5,1) (t5,3) (t5,2) (t2,18)

(t2,17)(t 5,1)(t5,3) (t5,2)(t2,18)

Fig. 6. Occurrences of transitions t2 and t5 in different instances (top), and synchro-
nized occurrences of t2 and t5 in different instances (bottom)

Intuitively, a run is obtained by repeatedly appending occurrences (of enabled
transitions) to the run. The maximal conditions of a run π describe which places
hold which tokens, that is, the current marking of the system. For instance, the
prefix π1 shown in Fig. 7 has reached the marking where only place created holds
the tokens 17 and 18. An occurrence o of a transition t is then enabled in a run π
if the pre-conditions of o also occur in the maximal condition of π. For instance,
the occurrence of t2 (split) in order17 shown in Fig. 6 (top) is enabled in π1 in
Fig. 7. Also the occurrences of t5 in package1-package3 and of t2 in order18 are
enabled π1.

In a classical net, we could now append the occurrence of t2 in order17 to
π1. In a synchronous proclet system, occurrences of enabled transitions that are
connected via a channel may synchronize. For example, we may synchronize the
occurrences of t2 in order17 with the occurrences of t5 in package1 and package3
which we express as a synchronized occurrence. The synchronized occurrence
unifies the events in all individual occurrences into a single event e∗ and otherwise
preserves all pre- and post-conditions; we label e∗ with the multiset of transitions
occurring together as shown in Fig. 6 (bottom). The synchronized occurrence is
then appended to the run. For example, we obtain run π2 in Fig. 7 by appending
the synchronized occurrence of t2, t5, t5 in order17, package1, package3 to run
π1, where synchronization is shown in Fig. 7 through a dashed line. In run π2

Describing Behavior of Processes with Many-to-Many Interactions 13

package2package1order17 order18package3

splitsplit

create

split

create
e1

e2’e2 e16e16’’’

(created,17)

(ready,3) (ready,2)(sent,17)

(created,18)

(ready,1)

(t2,17) split
e2’’

split

(sent,18)

π1
π2

π3

(t5,1) (t5,3) (t5,2)
(t2,18)

(t1,18)(t1,17)

Fig. 7. Prefixes of the run of Fig. 5

the synchronized occurrence of t2, t5 in order17 and package2 (shown in Fig. 6
(bottom)) is enabled; appending it yields run π3.

4.5 Formal Semantics for Dynamic Synchronization

We formalize the semantics of proclet systems laid out in Sect. 4.4 by an inductive
definition. For the remainder of this section, let S = ({N1, . . . , Nn},mν , C) be a
proclet system, and let TS =

⋃n
i=1 Ti be all transitions in S.

An occurrence of a transition t in an instance id is an occurrence net o with
a single event e describing the occurrence of t; the labeling of o describes an
injective homomorphism between the pre-places of t and the pre-conditions of e,
and between the post-conditions and post-places, respectively. Technically, the
event’s label is a singleton set {(t, id)} and a condition’s label is a singleton
set {(p, id)}; using sets of labels will allow us later to establish an injective
homomorphism from synchronized occurrences of transitions to the transitions
in the system definition.

Definition 2 (Occurrence of a transition). Let t ∈ TS be a transition. Let
id ∈ I be an identifier.

An occurrence of t in id is a labeled net o = (Bpre � Bpost , {et}, G, λ) with

1. for each p ∈ •t exists a condition bp ∈ Bpre : λ(bp) = {(p, id)}(bp, et) ∈ G
2. for each p ∈ t• exists a condition bp ∈ Bpost : λ(bp) = {(p, id)}, (et, bp) ∈ G
3. λ(et) = {(t, id)}.
The labeling �i canonically lifts to o: for each node x ∈ Bpre ∪ Bpost ∪ {et}
referring to λ(x) = {(y, id)} set �(x) := �i(y).

We call preo := Bpre the precondition of o, we call cono := Bpost ∪ {et} the
contribution of o, and write eo := et for the event of o. Let O(t, id) be the set of
all occurrences of t in id.

Figure 6 shows among others occurrences of t2 in order1 and of t5 in package2.
Each transition (also in the same instance) may occur multiple times in a run, see
for instance t6 (load) in package2 in Fig. 5. To make our task of composing runs
from transition occurrences easier, and not having to reason about the identities

14 D. Fahland

of events or conditions, we therefore consider the set O(t, id) of all occurrences
of t in id . Technically, it contains an infinite supply of isomorphic copies of the
occurrence of t in id . When composing runs and when synchronizing occurrences,
we will simply take a suitable copy.

We now turn to synchronizing transition occurrences. Although we will later
only synchronize transition occurrences along channels, we propose here a sim-
pler and more general definition. Where an occurrence of a transition is param-
eterized by the transition t and the instance id , a synchronized occurrence is
parameterized by a label a and a finite set I ⊆ I of instances. For each instance
id ∈ I, one transition with label a participates in the synchronized occurrences.
We first define, given a and I, the sets of occurrences of transitions that may be
synchronized. In the spirit of high-level nets which also parameterize transition
occurrences through variables, we call this set of occurrences an occurrence bind-
ing to a and I. The synchronized occurrence is then a canonical composition of
all occurrences in the binding.

Definition 3 (Occurrence binding). Let a ∈ Σ be a label. Let I ⊆ I be a
nonempty finite set of identifiers.

A set OI of occurrences is an occurrence binding for a and I (in system S)
iff for each id ∈ I exists exactly one occurrence oid ∈ O(t, id) of some t ∈ TS

with oid ∈ OI . We write O(a, I) for the set of all occurrence bindings for a and
I.

In Fig. 6, the occurrences o1 ∈ O(t5, 1), o3 ∈ O(t5, 3), o17 ∈ O(t2, 17) form an
occurrence binding {o1, o3, o17} for split and I = {1, 3, 17}. In this example,
there is no other occurrence binding for this label and set of instances (up to
isomorphism of the occurrences themselves). Without loss of generality, we may
assume that any two occurrences o, o′ ∈ OI in an occurrence binding OI ∈
O(a, I) are pair-wise disjoint, i.e., o∩ o′ = ∅.

We obtain a synchronized occurrence of instances I at a by composing the
occurrences in the binding for a and I along the events labeled a. For example,
the synchronized occurrence of {1, 3, 17} at split is shown in Fig. 6 (bottom left).
To aid the composition, we use (1) simultaneous replacement o[e/e∗] of an event
by a new event e∗, as defined in Sect. 4.1, and (2) we lift the union of nets in
Sect. 4.1 to union of occurrences o1 ∪ o2 by defining λ1 ∪ λ2(x) := λ1(x) ∪ λ2(x)
for each x ∈ X1 ∪ X2. The formal definition of a synchronized occurrence reads
as follows.

Definition 4 (Synchronized occurrence of a label). Let a ∈ Σ, let I ⊆ I
be a nonempty finite set of identifiers, and let OI ∈ O(a, I) be an occurrence
binding for a and I in system S.

The synchronized occurrence of instances I at label a is the net

õ =
⋃

oid∈OI

(oid [eo/e∗])

obtained by replacing the event eo in each occurrence oid be a fresh event e∗
∈ Xi,
for all i = 1, . . . , n which unifies the occurrences along the event, and compos-

Describing Behavior of Processes with Many-to-Many Interactions 15

ing all occurrences by union. We write Õ(a, I) for the set of all synchronized
occurrences of I at a.

Figure 6 (bottom left) shows the synchronized occurrence of order17, package1,
and package3 at split. Note that the event of this occurrence is labeled with the set
{(t2, 17), (t5, 1), (t5, 3)} resulting from the synchronizing composition of events
labeled with (t2, 17), (t5, 1), and (t5, 3). Note that this synchronized occurrence
describes the instantiation of two new packages package1, package2 by order17.

Labeling event e∗ with a set λ(e∗) does not allow us to describe auto-
concurrency of a transition, i.e., a synchronization of two occurrences of (t, id)
when •t is marked with two or more id tokens. This case is excluded by our
definition of occurrence binding (Definition 3) allowing for each id ∈ I exactly
one occurrence; this limitation could be overcome by using multisets.

The labeling �(.) which we lifted to occurrences of a transition (Definition 2)
also lifts to synchronized occurrences, as the synchronization in Definition 4 only
merges events e1, . . . , en carrying the same �(e1) = . . . = �(en) = a. Also the
precondition, contribution, and the event of an occurrence lift to synchronized
occurrences written pre õ, con õ, and eõ, respectively.

Each synchronized occurrence structurally preserves its constituting occur-
rences through the labeling λ(.). Let o = (B,E,G, λ) be a labeled occurrence net.
Let I ⊆ I. We write o|I for the restriction of o to those nodes labeled with an id ∈
I: o|I = (B ∩Z,E ∩ Z,G|Z×Z , λ|I) with Z = {x ∈ Xo|(y, id) ∈ λ(x), id ∈ I} and
λ|I(x) := {(y, id) ∈ λ(x)|id ∈ I}. Restricting any synchronized occurrence to a
single identifier results in the occurrence of the corresponding transition in that
instance.

Lemma 1. Let a ∈ Σ, let I ⊆ I be a nonempty finite set of identifiers, and
let OI ∈ O(a, I) be an occurrence binding for a and I in system S. For each
õ ∈ Õ(a, I) holds: for each id ∈ I, o := õ|{id} ∈ O(t, id) where λ(eo) = {(t, id)}.

Note that occurrence bindings and synchronized occurrences also apply
to singleton sets of identifiers. In that case any “synchronized” occurrence
õ ∈ Õ(a, {id}) is an occurrence õ ∈ O(t, id). In case the system has only one
transition ta labeled with a, synchronized occurrences and transition occurrences
coincide: Õ(a, {id}) = O(t, id); see for instance t3 (notify) in Fig. 4. This allows
us to consider from now on only synchronized transition occurrences.

We may now give a formal inductive definition of the partially-ordered runs
of a system with dynamic unbounded synchronization. This definition still does
not consider specific semantics of channels of a proclet system which we discuss
in Sect. 5.

Definition 5 (Runs with dynamic unbounded synchronization). Let
S = ({N1, . . . , Nn},mν , C) be a proclet system. The set of runs of S with
dynamic unbounded synchronization is the smallest set R(S) such that

1. The initial run π0 = (B, ∅, ∅, λ) that provides for each id token on a place p
in mν a corresponding condition, i.e., |{b ∈ B|λ(b) = {(p, id)}| = mν(p)(id),
is in R(S).

16 D. Fahland

2. Let π ∈ R(S), let a ∈ Σ, and I ⊆ I be finite. Let õ ∈ Õ(a, I) be a synchronized
occurrence of I at a.
(a) õ is enabled in π iff exactly the preconditions of õ occur at the end of π,

i.e., pre õ ⊆ max π := {b ∈ Bπ|b• = ∅} and, w.l.o.g, con õ ∩Xπ = ∅
(b) if õ is enabled in π then appending õ to π is a run of S, formally π ∪ õ ∈

R(S)

The run of Fig. 5 is a run of the proclet system in Fig. 4 according to Definition 5.
The wrong run in Fig. 3 is not a run of that proclet system: by events e6 instance
package1 moves to state done, hence events e7 and e8 cannot be synchronized
occurrences in instance package1 that lead to state ready.

The following lemma states that the labeling λ of the runs of S defines a local
injective homomorphism to the syntax of S in the same way as the labeling in
the runs of a classical net N defines a local injective homomorphism the syntax
of N [9]. The lemma follows straight from the inductive definition and from
Lemma 1.

Lemma 2. Let S = ({N1, . . . , Nn},mν , C) be a proclet system, let π ∈ R(S).
Then π is an occurrence net where

1. for each b ∈ Bπ: λ(b) = {(p, id)} for some p ∈ Pi, 1 ≤ i ≤ n
2. for each e ∈ Eπ: λ(e) = {(t1, id1), . . . , (tk, idk) with tj ∈ Ti, 1 ≤ i ≤ n for

each 1 ≤ j ≤ k, and �(tj) = �(ty) for all j, y = 1, . . . , k
3. |{b ∈ B|λ(b) = {(p, id)}| = mν(p)(id), for each p ∈ Pi, 1 ≤ i ≤ n
4. for each instance id occurring in π and the run π|id = (B′, E′, G′, λ′) of

instance id holds: for each event e ∈ E′ with λ(e) = {(t, id)}, t ∈ Ni, 1 ≤ i ≤
n, λ′ defines an injective homomorphism from {e} ∪ •e ∪ e• to {t} ∪ •t ∪ t•

in Ni.

5 Relational Synchronization

While the runs defined in Sect. 4 provide an operational formal semantics for
proclet systems, Definition 5 is not restrictive enough to correctly model the
intended behaviors. It, for instance, allows two order instances to synchronize
with a single package in an occurrence of split, e.g., synchronizing o17, o18, o2 in
Fig. 6. Likewise, Definition 5 allows that a package instance created by order17
does not synchronize with order17 but with order18 at bill. In this section, we rule
out such behavior by constraining the occurrence bindings via the channels. We
first define cardinality constraints and correlation constraints for synchronization
at channels, and then provide the semantics of both constraints.

5.1 Cardinality and Correlation Constraints

We adopt the notion of cardinality constraints known from data modeling, and
applied in relational process structures [27], to channels (ti, tj) between two pro-
clets Ni and Nj , see Definition 1. Each channel constraint specifies how many

Describing Behavior of Processes with Many-to-Many Interactions 17

occurrences of ti may synchronize with how many occurrences of tj in one syn-
chronized occurrence. As each occurrence of ti and tj is related to a specific
instance, we thus constrain which instances of Ni and Nj may synchronize in
one step. A cardinality constraint specifies for each transition of a channel a lower
bound l and an upper bound u between 0 and ∞. We will later formalize that in
any synchronized occurrence, the number of occurrences of the transition has to
be between these two bounds. For example, according to the channel constraint
for (t2, t5) in Fig. 4, exactly one instance of order synchronizes with one or more
instances of package at any occurrence of split.

To ensure consistency of synchronization over multiple steps, we adopt
the concept of correlation identifiers. Correlation in message-based interaction
between processes [20,21] is achieved by specifying a particular attribute of a
message as a correlation attribute a. A process instance R receiving a message m
from an unknown sender instance S initializes a local correlation key k := m.a
with the value of a in m. To send a response to the unknown sender instance
S, R creates a message m2 where attribute m2.a := k holds the value of k. If R
later only wants to receive a response from S (and no other sender instance), R
will only accept a message m3 where m3.a = k. This is called matching of cor-
relation keys. This concept can be extended to multi-instance interaction, using
local data for correlation, instead of dedicated correlation keys [16].

For the synchronous interaction model proposed in this paper, we define cor-
relation over synchronous channels instead of messages. A channel cinit can be
labeled to initialize a correlation set S, meaning all instances which synchro-
nize at a step over cinit are in S. Another channel cmatch can be labeled to
match a previously initialized correlation set S, meaning the instances synchro-
nizing at a step over cmatch have to be either a subset of S or equal to S. For
example, according to the correlation constraints at channels (t2, t5) (split) and
(t4, t10) (bill), exactly the package instances which were created at split by an
order instance must synchronize at bill with the same order instance. In contrast,
the package instances synchronizing at a deliver step with a delivery instance only
have to be a subset of the package instances loaded into the delivery.

Definition 6 (Channel constraints). Let S = ({N1, . . . , Nn},mν , C) be a
synchronous proclet system.

1. A cardinality constraint for C is a function card which specifies for each
channel c = (t, t′) ∈ C a lower and an upper bound for each transition t
and t′ in the channel card(c) = ((l, u) : (l′, u′)) with 0 ≤ l ≤ u ≤ ∞,
0 ≤ l′ ≤ u′ ≤ ∞.

2. A correlation constraint K = (Cinit , C
⊆
match , C=

match) for C specifies a set of
initializing channels Cinit ⊂ C, a set of partially matching channels C⊆

match ,
and a set of fully matching channels C=

match , where all sets of channels are
pair-wise disjoint.

Given a cardinality constraint card and a set corr of correlation constraints
for C, we call S = ({N1, . . . , Nn},mν , C, card , corr) a constrained synchronous
proclet system.

18 D. Fahland

Channel constraints are visualized as shown in Fig. 4. Cardinality constraints
are indicated at the ends of the edges indicating channels, we use the standard
abbreviations of ? for (0, 1), 1 for (1, 1), ∗ for (0,∞), and + for (1,∞). The
channels in Fig. 4 are constrained by 1 : + and 1 : 1 cardinality constraints.
Correlation constraints are annotated in the middle of a channel, marking ini-
tialization with initK, partial matching with ⊆ K, and full matching with = K.
The proclet system in Fig. 4 has two correlation constraints O and D. Note that
in general, a channel may be part of different correlation constraints, initializing
in one constraint while matching in another constraint.

5.2 Semantics of Cardinality Constraints

A cardinality constraint of a channel (t, t′) restricts the number of occurrences of
t and t′ synchronizing in a step. We formalize this by restricting the occurrence
bindings of a label (Definition 3) to adhere to the channel constraints of all
transitions involved. For any set O of transition occurrences, let O[t] = {o ∈
O | �(eo) = t} be the set all occurrences of transition t in O. Further, we write
O[t1, t2] = {(o1, o2) | o1 ∈ O[t1], o2 ∈ O[t2]} for the relation of occurrences
between t1 and t2. By Lemma 1, we may also write Õ[t1, t2] = O[t1, t2] for the
synchronized occurrence Õ of binding O. Writing inst(o) = id for the instance
of an occurrence o ∈ O(t, id), we obtain inst(O[t1, t2]) = {(inst(o1), inst(o2)) |
(o1, o2) ∈ O[t1, t2]}.

If we interpret a channel (t1, t2) between two proclets N1 and N2 as a relation
between two transitions in two different proclets, then O[t1, t2] are the “records”
of this relation that we can observe in O. Assuming there is a relational data
model that underlies the proclet system and provides relational tables for the
entities E1 and E2 described by N1 and N2, then inst(O[t1, t2]) are the “records”
of the relationship between E1 and E2. In this spirit, the cardinality constraint
only allows occurrence bindings where the constraints on this relation is satisfied.

Definition 7 (Occurrence binding satisfies cardinality constraint). Let
S = ({N1, . . . , Nn},mν , C, card , corr) be a constrained proclet system. Let OI ∈
O(a, I) be an occurrence binding for instances I ⊆ I at a ∈ Σ.

The occurrence binding OI satisfies the cardinality constraint card(t1, t2) =
((l1, u1) : (l2, u2)) of channel (t1, t2) ∈ C iff if �(t1) = a, then l1 ≤ |OI [t1]| ≤ u1

and l2 ≤ |OI [t2]| ≤ u2. We then also say that the synchronized occurrence ÕI of
OI is an occurrence of channel (t1, t2).

OI satisfies the cardinality constraints of S iff OI satisfies the cardinality con-
straint of each channel of S. We then also say that the synchronized occurrence
ÕI satisfies the cardinality constraints of S.

For example, considering the occurrences o1, o2, o3, o17, o17 in Fig. 6, the occur-
rence binding {o17, o1, o3} satisfies the 1 : + cardinality constraint of (t2, t5) in
Fig. 4, whereas the occurrence binding {o17, o18, o3} does not satisfy this con-
straint. A run of S can only be extended with a synchronized occurrence Õ if
the occurrence binding O satisfies the cardinality constraints of S.

Describing Behavior of Processes with Many-to-Many Interactions 19

Following the reasoning of Sect. 3, 1 : + and 1 : 1 cardinality constraints
have the most natural interpretation from an operational perspective as in any
occurrence of the channel, the “1” side can take a local “coordinating” role for
synchronization with the “+” side.

5.3 Semantics of Correlation Constraints

Correlation between different transition occurrences is a behavioral property.
Thus, we will not extend the notion of state of a proclet system to hold val-
ues of correlation properties which can be initialized and matched. Rather, we
give a behavioral definition over the history of the run.

A correlation constraint may be initialized multiple times in a run, each
time with the relation inst(Õ[t, t′]) of instances involved in the synchro-
nized occurrence Õ. For example, consider the synchronized occurrence Õsplit,17

of (t2, 17), (t5, 1), (t5, 3) at split (synchronization of e2, e
′
2, e

′′
2) in the run of

Fig. 8. According to Fig. 4, Õsplit,17 initializes the correlation constraint O with
inst(Õsplit,17[t2, t5]) = {(17, 1), (17, 3)}. Likewise, the synchronized occurrence
Õsplit,18 of (t2, 18), (t5, 2) at split (synchronization of e16, e

′
16) initializes the con-

straint O with inst(Õsplit,18[t2, t5]) = {(18, 2)}.

package2

deliv.24

package1

order17 order18

package3

deliv.23
split

bill

finish

load

deliv.

next

retry

load

deliv.

split

bill

split

notify

bill

create

split

notify

bill

load

deliv.

split load

load

retry

load

deliv.

create

ready

ready

loaded

done

loaded

ready

loaded

done

ready

loaded

e1 e15

e2’

e3

e4

e5

e6

e7

e8
e9

e2

e2’’

e4’

e5’

e6’

e10

e10’’

e11

e16

e17

e18

e5’’’ e16’’’

e8’’’

e10’’’

e11’’’ e18’’’

Fig. 8. The synchronized occurrence of order17 and package1 at bill violates the match-
ing constraint = O of Fig. 4

20 D. Fahland

While initialization can occur arbitrarily, matching is constrained: any syn-
chronized occurrence involving channel (t4, t10) at bill has to match an initial-
ization of O that occurred before. For instance, the synchronized occurrence
Õbill,17 of (t4, 17), (t10, 1) at bill (synchronization of e4, e

′
4) in Fig. 8 satisfies

the cardinality constraint 1 : + of channel (t4, t10) and involves the relation
inst(Õbill,17[t4, t10]) = {(17, 1)}. This occurrence violates the matching constraint
= O of channel (t4, t10) because the initialization of cardinality constraint O that
precedes Õbill,17 (at e4, e

′
4) is the synchronized occurrence Õsplit,17 (at e2, e

′
2, e

′′
2),

and inst(Õbill,17[t4, t10]) = {(17, 1)}
= inst(Õsplit,17[t2, t5]) = {(17, 1), (17, 3)}. In
contrast, the synchronized occurrence Õ′

bill,17 shown in Fig. 5 satisfies the corre-
lation constraint = O.

Definition 8 (Occurrence satisfies correlation constraint in a run). Let
S = ({N1, . . . , Nn},mν , C, card , corr) be a constrained proclet system. Let π be
a labeled occurrence net. Let õm ∈ Õ(am, Im) be a synchronized occurrence of
instances Im at am such that pre õm

⊆ max π.
õm satisfies correlation constraint (Xinit ,X

⊆
match ,X=

match) in π iff

1. if õm is an occurrence of a channel (tm, t′m) ∈ X⊆
match , then there exists a

synchronized occurrence õi ∈ Õ(ai, Ii) of an initializing channel (ti, t′i) ∈ Xinit

such that
(a) the initializing occurrence õi is in π, i.e., õi ⊆ π,
(b) and precedes the matching occurrence õm, i.e., for the event eõi

of õi exists
a path in π to some b ∈ pre õm

: (eõm
, b) ∈ G+, and

(c) the relation of instances involved in õm matches the relation of instances
involved in õi, i.e., id(õm[tm, t′m]) ⊆ id(õi[ti, t′i]))

2. if õm is an occurrence of a channel (tm, t′m) ∈ X=
match , then additionally

id(õm[tm, t′m]) = id(õi[ti, t′i])) has to hold.

õm satisfies the correlation constraints of S iff õm satisfies each correlation
constraint in corr.

5.4 Runs of a Constrained Proclet System

We can now easily extend Definition 5 to limit the runs of a proclet system to
those allowed by the cardinality and correlation constraints.

Definition 9 (Runs of a constrained proclet system). Let S =
({N1, . . . , Nn},mν , C, card , corr) be a constrained proclet system. The set of runs
of S is the smallest set R(S) such that

1. The initial run π0 ∈ R(S) as in Definition 5.
2. Let π ∈ R(S), let a ∈ Σ, and I ⊆ I be finite. Let õ ∈ Õ(a, I) be a synchronized

occurrence of I at a.
(a) õ is enabled in π iff

i. exactly the preconditions of õ occur at the end of π, i.e., pre õ ⊆ max π,

Describing Behavior of Processes with Many-to-Many Interactions 21

ii. õ satisfies the cardinality constraints card of S (Definition 7), and
iii. õ satisfies the cardinality constraints corr of S in π (Definition 8).

(b) if õ is enabled in π then appending õ to π is a run of S, formally π ∪ õ ∈
R(S).

The occurrence net of Fig. 5 is a run of the constrained proclet system in Fig. 4
(assuming all events connected by dashed lines, such as e2, e

′
2, e

′′
2 are synchronized

into a single event). The occurrence net of Fig. 8 is not a run of that system.
However, the system of Fig. 4 cannot ensure termination of delivery instances:
finish should only occur when all packages have been handled. The proclet system
of Fig. 9 ensures correct termination through an extended package life-cycle and
an additional channel. The system also illustrates that a proclet may interact
with more than two other proclets, in this case a return process that must be
completed for each undelivered package prior to billing.

deliverypackage

back

order

deliver

finish

load

undeliv.

retry

1

1

next

split load
1

retry 1

1

1
deliver

undeliv.

bill

1

+
init D

⊆D

⊆D

⊆D

t5 t6

t7

t8

t9

t10

t11

t13

t12

t14

t15

t16

ready

loaded

done

delivering

delivered

finish

1

+
close

return

unchecked

1 1

split

notify

bill

createt1

t2

t3

t4

created

sent

notified

+

1

1

+

init O

=O

1
1 init R

returnbill check

=R

Fig. 9. Extension of the proclet system of Fig. 4

6 Conclusion

We have shown that by reifying a behavioral many-to-many relation into its
own entity with a behavioral model, the behavior of processes with many-to-
many interactions can be described both visually clear and formally precise.
The foundational concept is that of dynamic unbounded synchronization, which
can be seen as a generalization of the synchronization in artifact-choreographies
with 1-to-1 relationships proposed by Lohmann and Wolf [15]. We have shown
that this basic behavioral model can be extended orthogonally with cardinality
and correlation constraints that limit the allowed synchronization much in the
same way as guards in Coloured Petri Nets limit firing modes. We believe that

22 D. Fahland

this restriction to purely behavioral concepts allows adoption and integration
with other more data-aware modeling techniques such as [19,27].

The only “higher-level” concept required by our model are case identity
tokens as in ν-nets, and we only use equality of token identities, and subsets
of pairs of token identities. This suggests that verification results on ν-nets [18]
may be lifted to our model. Though, we suspect undecidability to arise in the
general case for correlation constraints testing for equality.

Further, the structure of a “reified” process model in behavioral second nor-
mal form (having only 1-to-1 and 1-to-many synchronizations) allows some fur-
ther reflection on the structure of such processes. The asynchronous message
exchange between two processes is replaced by an entity explicitly describing
the interaction. This entity such as the package in our running example, is
a “passive” (data) object, as changes to its state are due to activities in the
processes operating on it, making the processes “active” entities. This leads
for many, but possibly not all use cases to a bipartite structure of entities.
Two “active” processes never synchronize directly as each transition describes a
task that is manipulating a “passive” object; two “passive” objects never syn-
chronize directly as they require an “active” process to trigger the necessary
state change. In this understanding, an asynchronous message channel is passive
object, synchronizing with sender and receiver, and each instance of the channel
is a message. Lohmann and Wolf [13] have shown that this interpretation allow
for formulating new types of research questions: given a set of objects, synthesize
the active processes synchronizing them; given a set of processes, synthesize the
passive objects realizing their synchronization.

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-centric behav-
ioral constraints: integrating data and declarative process modelling. In: Proceed-
ings of the 30th International Workshop on Description Logics, Montpellier. CEUR
Workshop Proceedings, vol. 1879. CEUR-WS.org (2017)

3. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: a frame-
work for lightweight interacting workflow processes. Int. J. Cooperative Inf. Syst.
10(4), 443–481 (2001)

4. van der Aalst, W.M.P., Mans, R.S., Russell, N.C.: Workflow support using proclets:
divide, interact, and conquer. IEEE Data Eng. Bull. 32(3), 16–22 (2009)

5. Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable UML artifact-
centric business process models. In: CIKM 2014, pp. 1289–1298. ACM (2014)

6. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

Describing Behavior of Processes with Many-to-Many Interactions 23

7. Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic verification of data-
centric business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 3–16. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23059-2 3

8. Desel, J., Erwin, T.: Hybrid specifications: looking at workflows from a run-time
perspective. Comput. Syst. Sci. Eng. 15(5), 291–302 (2000)

9. Engelfriet, J.: Branching processes of petri nets. Acta Inf. 28(6), 575–591 (1991)
10. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.: Many-to-

many: some observations on interactions in artifact choreographies. In: Eichhorn,
D., Koschmider, A., Zhang, H. (eds.) ZEUS 2011. CEUR Workshop Proceedings,
vol. 705, pp. 9–15. CEUR-WS.org (2011)

11. van Hee, K.M., Sidorova, N., Voorhoeve, M., van der Werf, J.M.E.M.: Generation
of database transactions with petri nets. Fundam. Inform. 93(1–3), 171–184 (2009)

12. Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic discovery of object-
centric behavioral constraint models. In: Abramowicz, W. (ed.) BIS 2017. LNBIP,
vol. 288, pp. 43–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59336-4 4

13. Lohmann, N.: Compliance by design for artifact-centric business processes. Inf.
Syst. 38(4), 606–618 (2013)

14. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73094-1 20

15. Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 32–46.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5 3

16. Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data
exchange in process choreographies. Inf. Syst. 53, 296–329 (2015)

17. Montali, M., Calvanese, D.: Soundness of data-aware, case-centric processes. STTT
18(5), 535–558 (2016)

18. Montali, M., Rivkin, A.: Model checking petri nets with names using data-centric
dynamic systems. Formal Asp. Comput. 28(4), 615–641 (2016)

19. Montali, M., Rivkin, A.: DB-Nets: on the marriage of colored petri nets and rela-
tional databases. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55862-1 5

20. OASIS: Web Services Business Process Execution Language, Version 2.0, April
2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

21. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011.
http://www.omg.org/spec/BPMN/2.0/

22. Reijers, H.A., et al.: Evaluating data-centric process approaches: does the human
factor factor in? Softw. Syst. Model. 16(3), 649–662 (2017)

23. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

24. Rosa-Velardo, F., Alonso, O.M., de Frutos-Escrig, D.: Mobile synchronizing petri
nets: a choreographic approach for coordination in ubiquitous systems. Electr.
Notes Theor. Comput. Sci. 150(1), 103–126 (2006)

25. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. Fundam. Inform. 88(3), 329–356 (2008)

https://doi.org/10.1007/978-3-642-23059-2_3
https://doi.org/10.1007/978-3-642-23059-2_3
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-540-73094-1_20
https://doi.org/10.1007/978-3-642-17358-5_3
https://doi.org/10.1007/978-3-662-55862-1_5
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4

24 D. Fahland

26. Steinau, S., Andrews, K., Reichert, M.: Modeling process interactions with coordi-
nation processes. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman,
D., Meersman, R. (eds.) OTM 2018, Part I. LNCS, vol. 11229. Springer, Cham
(2018)

27. Steinau, S., Andrews, K., Reichert, M.: The relational process structure. In:
Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 53–67.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0 4

https://doi.org/10.1007/978-3-319-91563-0_4

Modal Open Petri Nets

Vitali Schneider and Walter Vogler(B)

Institut für Informatik, University of Augsburg, Augsburg, Germany
walter.vogler@informatik.uni-augsburg.de

Abstract. Open nets have an interface of input and output places for
modelling asynchronous communication; these places serve as channels
when open nets are composed. We study a variant that inherits modal-
ities from Larsen’s modal transition systems. Instantiating a framework
for open nets we have developed in the past, we present a refinement pre-
order in the spirit of modal refinement. The preorder supports modular
reasoning since it is a precongruence, and we justify it by a coarsest-
precongruence result. We compare our approach to the one of Haddad
et al., which considers a restricted class of nets and a stricter refinement.
Our studies are conducted in an extended class of nets, which addition-
ally have transition labels for synchronous communication.

1 Introduction

On an abstract level, concurrent systems can be specified and developed with the
well-known labelled transition systems (LTS). The labels of such an LTS are the
actions of the system, including the hidden action τ . To combine components to
larger systems according to synchronous communication, parallel composition ‖
merges equally-labelled transitions of two components; one might also hide such
labels. Furthermore, a relation for stepwise refinement is needed that supports
modular reasoning: if one refines a component of a parallel composition, then
this should result in a refinement of the overall system. A refinement relation
with this property is called a precongruence w.r.t. ‖.

Such a precongruence can be defined as inclusion of the LTS-languages or
some other trace-based semantics, or it can be some kind of bisimilarity, see [7]
for an overview. These refinement relations can easily be transferred to (labelled)
Petri nets, cf. e.g. [14,21], with precongruence results for an analogous parallel
composition. Advantages of Petri nets are that they are distributed by nature as
are concurrent systems, and that they can give a finite representation for infinite
state systems.

Bisimilarity allows one, in particular, to refine an LTS to a parallel compo-
sition with new hidden transitions resulting from communication. Such a com-
position can be a step forward to an implementation. But bisimilarity, being an

Research support provided by the DFG (German Research Foundation) under grant
no. VO 615/12-2.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 25–46, 2019.
https://doi.org/10.1007/978-3-030-21571-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_2

26 V. Schneider and W. Vogler

equivalence, does not offer much leeway and is, thus, in general not so appropri-
ate for refinement.

Modal transition systems (MTS) are a ground breaking improvement towards
loose specifications [11]. An MTS is an LTS with two kinds of transitions: must-
transitions are required, while may-transitions are allowed, but only optional. A
modal refinement relation can be described as an alternating simulation: each
must-transition of the specification has to be simulated by an equally labelled
must-transition of the refinement – possibly using additional hidden must-
transitions; analogously, a may-transition of the refinement has to be allowed
in the specification by a number of may-transitions. Also modalities and modal
refinement can be transferred to Petri nets, see the discussion of modal Petri
nets (MPN) below.

Petri nets are particularly well suited for modelling asynchronous commu-
nication, where the sender of a message does not have to wait for the receiver.
If the order of messages on the same channel is not relevant, one can simply
connect sending transitions via a (channel) place to receiving transitions instead
of merging transitions as in the synchronous case. For such a setting, we model
systems as so called open nets,1 which have an interface consisting of two disjoint
sets of special input and output places.

rc pwd

rc err pwd

rw m

t’

t

Fig. 1. Modal open nets ATM and password provider

1 The term open in this sense presumably stems from [1].

Modal Open Petri Nets 27

As an example, consider the lower net ATM in Fig. 1; this is actually a
modal open net (MON), where the dashed boxes denote may-transitions while
the others denote must-transitions. The places rw and pwd are input places
(no ingoing arcs from the net), the other named places are output places. If a
user of the modelled system puts a token onto rw, this requests to withdraw
some money. Initially, the system requests additional credentials by putting a
token onto rc. After receiving a password via pwd, money is handed out on
m. Now the system can decide to repeat this, but it optionally can do without
asking for a password. In the latter case, a password is needed for the request
after. The system can also be implemented with some ability to detect errors:
an error message can be sent via place err if a withdrawal request is sent while
the previous request is being handled or if a password is sent already when the
previous interaction has just been finished.

The upper net describes a piece of software providing the user’s password
whenever it is required. Asynchronous composition ⊕ merges interface places
with the same name, removing the name from the new interface. In the example,
after installing the software and saving her password, the user deals with the
composed system and does not have to enter her password again.

An early paper considering the composition of place-bordered nets as the
above (without modalities) is [16], where nets are built composing determinis-
tic nets. It is shown how to check (Petri net) liveness for such compositions.
In [20], refining a transition t means to replace t (via place merging) by a so-
called daughter-net whose border (interface) consists of the places incident to t.
Results are given for which daughter-nets the replacement preserves behaviour
like liveness and boundedness. Results on liveness for asynchronous compositions
of more general nets can be found in [18]. A compositional semantics building
Petri-net processes by place merging is presented in [10].

Extending [20], a general framework is suggested in [21] how to transfer
semantics and refinement relations from a synchronous setting to open nets in
a “sensible way”. This is worked out e.g. in [19], which is one of a number of
papers on open nets and operating guidelines like [12]. It is also applied in [2] in
a setting with labelled open Petri nets; it is shown that some variants of bisimi-
larity are congruences for one operator that combines ‖ and ⊕. By a “sensible”
refinement relation we mean a relation that accepts a refinement unless there is
a formal reason against this. One general formal requirement is that the rela-
tion supports modular reasoning by being a precongruence. Additionally, one
chooses some behavioural requirements; in [19] for example, it is required that
a refinement step does not introduce a deadlock. Two trace sets are defined,
and inclusion of these is shown to be sensible in the above sense, since it is the
coarsest precongruence with the latter requirement.

In the present paper, we demonstrate that the above framework works also
in a setting with modalities and alternating simulation. Although we are mainly
interested in MON, we conduct our study for the larger class of labelled MON
(�MON), which also have action-labelled transitions and include MON and MPN.
The main contribution is a kind of modal refinement, which we show to be
a precongruence for ‖ and the coarsest precongruence for ⊕ respecting modal
refinement on MPN.

28 V. Schneider and W. Vogler

MPN have been introduced in [6] in combination with a modal language as
in [15]. The main issue is to decide weak determinism (a variant of determi-
nacy as in [13]) and – for weakly deterministic, but possibly unbounded MPN
– modal-language inclusion. Asynchronous composition is only defined to build
large MPN, which are often unbounded due to the channel places. There are no
precongruence results.

The net class and the composition from [6] are further studied in [8], which is
very close to the present paper. There, the nets are called modal asynchronous
I/O-Petri nets (MAIOPN or, as we write here, MAP); they are a different rep-
resentation for a restricted class of MON: the nets are actually MPN and the
interface places are left implicit. The places only become explicit during the com-
position ⊕HH . The refinement relation is modal refinement and is shown to be
a precongruence. Due to the special interests in [8], a MAP may have so-called
internal actions, showing how the generated channel places are accessed. They
are not really visible but still taken into account in modal refinement. As a con-
sequence, a MAP can only be refined by another one, if the latter has the same
channel places; one cannot refine a monolithic specification by an asynchronous
composition. This is noted in [6,8], so for stepwise refinement it is suggested to
hide the internal actions at the end of composition. With this modification, one
can translate MAP into MON such that composition is preserved, i.e. MAP can
be seen as a sub-setting of our setting.

We show that our modal refinement is coarser than the one on MAP, i.e.
it is better from our perspective. One difference concerns a typical feature of
asynchronous communication: if two messages are sent on different channels one
after the other, there can be overtaking such that the environment cannot observe
the order of sending. Hence, this order should not matter for the refinement
relation. This is indeed the case in our approach, but it does matter in [8].
We also give an alternative proof for the MAP precongruence result, which we
believe to be simpler conceptually. This paper revises and generalizes [17].

Section 2 introduces MTS and transfers parallel composition and hiding to
MPN; the latter is also done in [8], but the actual net variant there is more
complicated and an MTS (!) variant with additional Petri net places is used.
Section 3 defines asynchronous composition and our refinement relation, pointing
out that it preserves some liveness notion. The coarsest-precongruence for ⊕ and
precongruence for the MTS operators are shown. Section 4 compares ours to the
MAP-approach. The paper ends with a sketch how to restrict our approach to
bounded nets in Sect. 5 and with some conclusions. We thank Alexander Knapp
and Ayleen Schinko for supporting us with the figures, and the reviewers for
their helpful comments.

2 Preliminaries

This section provides some basic notation for modal transition systems and
modal Petri nets. Refinement and basic operations such as parallel composi-
tion, relabelling and hiding are transferred from MTS to MPN. The same holds
for the precongruence results provided by Hüttel and Larsen in [9].

Modal Open Petri Nets 29

Most of the structures in this paper have an action alphabet, usually denoted
by Σ. There is one hidden or invisible action τ , which is never in an alphabet.
We denote Σ ∪{τ} by Στ ; a and α often stand for a typical action in Σ and Στ

resp. N denotes the set of natural numbers including zero.

2.1 Modal Transition Systems

In the introduction, we have already explained that MTS [11] have required
must- and optional may-transitions. The condition −→ ⊆ ��� below reflects
that every required transition should also be allowed.

Definition 1 (MTS). A modal transition system (MTS) is a tuple Q =
(S,Σ, ���,−→, s0) where S is a set of states containing the initial state s0;
Σ is an alphabet,

– ��� ⊆ S × Στ × S is the set of may-transitions, and
– −→ ⊆ S × Στ × S is the set of must-transitions satisfying −→ ⊆ ���. ♦

We add the name of the MTS as an index to the components when needed
or use e.g. Si for the state set of Qi etc., and similarly for nets later on. We
write s

α��� s′ for (s, α, s′) ∈���, and extend this to words w ∈ (Στ)∗: s
w��� s′

means that there is a sequence s
α1��� s1

α2��� s2 . . . sn−1
αn��� s′ with w = α1 . . . αn.

Let ŵ be obtained from w by removing all τs. With this, we define the weak
may-transition s

w=⇒ s′ as ∃v ∈ (Στ)∗ : v̂ = w∧s
v��� s′. We have the analogous

notations for must-transitions, writing =⇒ for =⇒. A state s is reachable in Q

when s0
w��� s for some w ∈ Στ .

The following defines the standard (weak) modal refinement for MTS as
explained in the introduction.

Definition 2 (MTS refinement). Let Q1 and Q2 be two MTS over the same
alphabet. We say that Q1 is a (modal)refinement of Q2, written Q1 �MTS Q2, if
there exists an MTS-relation R ⊆ S1 × S2 with (s01, s

0
2) ∈ R such that for every

(s1, s2) ∈ R:

– s2
α−→ s′

2 ⇒ s1
α̂=⇒ s′

1 ∧ (s′
1, s

′
2) ∈ R and

– s1
α��� s′

1 ⇒ s2
α̂=⇒ s′

2 ∧ (s′
1, s

′
2) ∈ R. ♦

Note that, for two implementations (MTS with coinciding may- and must-
transitions), MTS-relations and weak bisimulations [13] are the same. Next we
define the operations of relabelling, hiding, parallel composition and parallel
composition with hiding.

Definition 3 (MTS relabelling, hiding). A relabelling function for an alpha-
bet Σ (and for MTS and MPN below with this alphabet) is a surjective function
f : Σ → Σ′; additionally, we set f(τ) = τ . The respective relabelling of an MTS
Q is denoted by Q[f] and obtained from Q by replacing Σ with Σ′ and each
action α of a transition with f(α).

30 V. Schneider and W. Vogler

Similarly, for an alphabet H, the hiding of H in Q, denoted by Q/H, is
obtained from Q by replacing Σ with Σ\H and each action a ∈ H of a transition
with τ . ♦

The idea of parallel composition is that two systems synchronize on common
(visible) actions and perform all other actions independently.

Definition 4 (MTS parallel composition). The MTS parallel composition of
two MTS Q1 and Q2 is defined as the MTS Q1‖Q2 = (S1×S2, Σ1∪Σ2, ���,−→,
(s01, s

0
2)) with

−→ = {((s1, s2), α, (s′
1, s2)) | s1

α−→1 s′
1 ∧ α /∈ Σ2}

∪ {((s1, s2), α, (s1, s′
2)) | s2

α−→2 s′
2 ∧ α /∈ Σ1}

∪ {((s1, s2), a, (s′
1, s

′
2)) | s1

a−→1 s′
1 ∧ s2

a−→2 s′
2 ∧ a ∈ Σ1 ∩ Σ2}

and ��� is defined analogously. ♦

Note that two equally labelled must-transitions synchronize to a must-
transition, and the same for may-transitions. In effect, a must- and a may-
transition synchronize to a may-transition, because the must-transition has an
underlying may-transition. Finally, we define a variant of parallel composition
where the synchronized actions are hidden.

Definition 5 (MTS parallel composition with hiding). The parallel
composition with hiding of MTS Q1 and Q2 is the MTS Q1 ⇑ Q2 = (Q1‖Q2)/H
with H = Σ1 ∩ Σ2. ♦

In [9], there is a parametric precongruence result for modal refinement (in a
version for MTS without an initial state), which can be instantiated to obtain
the following result. The details have been worked out in [17].

Theorem 6. For relabelling, hiding, parallel composition and parallel composi-
tion with hiding, �MTS is a precongruence, i.e.: for MTS Q1, Q2 and R with
Q1 �MTS Q2, a relabelling function f for Q1 (and thus for Q2), and an alphabet
H we have:

Q1[f] �MTS Q2[f], Q1/H �MTS Q2/H,

Q1‖R �MTS Q2‖R, Q1 ⇑ R �MTS Q2 ⇑ R

Since (Petri net) liveness is an issue in the related literature, we define a
corresponding property on MTS in such a way that it is preserved under refine-
ment. An action a is action live in an MTS if it surely remains possible whatever
happens. Formally:

Definition 7 (action live). For an MTS Q, a ∈ Σ is action live in Q if, for
each reachable state s, s

wa=⇒ s′ for some word w ∈ Στ .

Modal Open Petri Nets 31

Proposition 8. For MTS Q1 and Q2 with Q1 �MTS Q2, a ∈ Σ1 is action live
in Q2 implies a is action live in Q1.

Proof. The assumptions imply that there is a suitable MTS-relation R. A reach-
able state s1 of Q1 is reached by a sequence of may-transitions. Each of these is
matched by a small path in Q2 according to R; stringed together, these paths
reach some s2 with (s1, s2) ∈ R. By assumption for a, there is some w and
s′
2 with s2

wa=⇒ s′
2. In turn, the respective must-transitions are matched in Q1,

implying s1
wa=⇒ s′

1. ��
For implementations, action liveness directly corresponds to Petri net live-

ness. In Definition 7, s is reached by may-transitions and a is performed along
a sequence of must-transitions. To see that this is the right choice of modalities,
think of a variant where only states s reachable by must-transitions are con-
sidered. If Q consists of states s0 and s with s0

a−→ s0 and s0
τ��� s, then a

would be action live in Q, but not in a refinement having the τ -transition as a
must. Vice versa, think of a variant where it suffices that a is performed along
a sequence of may-transitions. If Q consists of state s0 with s0

a��� s0, then a
would be action live in Q, but not in a refinement having no transition.

2.2 Modalities for Petri Nets

Also for Petri nets, one can distinguish between must- and may-transitions.
Additionally, one can label transitions with actions, which form an interface for
synchronous communication (MPN). Alternatively, one can distinguish specific
input and output places, and these form an interface for asynchronous commu-
nication (MON). Our focus lies on the latter, but we need also MPN for our
approach, and we even need a combination for the envisaged coarsest precon-
gruence result. For generality, we start from this combination. Note that all
transitions are may-transitions, their set is denoted by T as usual. We also treat
infinite nets, but observe the assumption in the paragraph after the following
definition.

Definition 9 (���MON). A labelled modal open net (�MON) is a tuple

N = (P, I,O,Σ, T, T�,W,m0, l)

where P and T are disjoint sets of places and (may-)transitions, and T� ⊆ T is
the set of must-transitions; W : (P × T) ∪ (T × P) → N is the set of weighted
arcs; m0 is the initial marking, where a marking is a mapping m : P → N.

Furthermore, I ⊆ P and O ⊆ P are disjoint sets of input and output places,
which are empty under the initial marking. Finally, Σ is an alphabet disjoint
from I and O, and l : T → Στ is the labelling ; τ -labels are omitted in figures.

A modal open net (MON) is an �MON where Σ is empty, cf. Fig. 1; we will
often omit Σ and l, which maps all transitions to τ . A modal Petri net (MPN)
is an �MON where I and O are empty and often omitted. ♦

32 V. Schneider and W. Vogler

We call F = {(x, y) | W (x, y) �= 0} the flow relation of N . For an x ∈ P ∪̇ T ,
we call the sets •x = {y | (y, x) ∈ F} the preset and x• = {y | (x, y) ∈ F} the
postset of x. At some stage, we will need that transitions have finite presets, so
we assume this throughout.

The behaviour of an �MON N is given by the occurrence rule. A transition
t ∈ T is enabled at a marking m, if ∀p ∈ •t : W (p, t) ≤ m(p). When t is
enabled at m, it can occur or fire, changing the marking to m′ with m′(p) =

m(p)−W (p, t)+W (t, p); we write m
t��� m′, or m

t−→ m′ if t is a must-transition.
Furthermore, the same notation is used for transition labels, i.e. we also write

m
l(t)
��� m′ or m

l(t)−→ m′.
The latter notations in fact define the may- and must-transitions of an MTS

associated to N : its alphabet is Σ, m0 the initial state, and the reachable mark-
ings are the states. With this view, the other MTS notations like

w��� and w=⇒
for words carry over to �MON. Whenever m

w��� m′ or m
w=⇒ m′, there exists

an underlying transition sequence, a firing sequence leading from m to m′.

2.3 MPN: Refinement and Operators

First, we will concentrate on MPN. With the concept of an associated MTS,
MPN refinement can be defined according to Definition 2, i.e. the MPN-relation
below is just an MTS-relation between the associated MTS:

Definition 10 (MPN refinement). For MPN N1 and N2 over the same alpha-
bet, we say that N1 is a refinement of N2, written N1 �MPN N2, if there
is an MPN-relation R between the reachable markings of N1 and N2 with
(m0

1,m
0
2) ∈ R such that for every (m1,m2) ∈ R:

– m2
α−→ m′

2 ⇒ m1
α̂=⇒ m′

1 ∧ (m′
1,m

′
2) ∈ R and

– m1
α��� m′

1 ⇒ m2
α̂=⇒ m′

2 ∧ (m′
1,m

′
2) ∈ R. ♦

In some cases, we might use MPN-relations that include unreachable mark-
ings. This can make arguments easier, e.g. we do not have to prove reachability.
Strictly, we would have to remove all pairs containing an unreachable marking.

Next, we define the operations for MTS also for MPN. The essential point
for parallel composition is that, for a common label a, each a-labelled transition
in the first and each a-labelled transition in the second MPN are merged to a
new transition, which inherits both presets and both postsets. This implies the
lemma after the definition. Note that we identify isomorphic structures; hence,
we can e.g. assume place sets to be disjoint in this definition:

Definition 11 (MPN operators). Let N1 and N2 be MPN, where w.l.o.g. the
place sets are disjoint. Then, we define their parallel composition to be

N1‖N2 = (P,Σ, T, T�,W,m0, l)

where P and Σ are the componentwise unions, i.e. P = P1 ∪ P2 etc.

Modal Open Petri Nets 33

– T = {(t1, τ) | t1 ∈ T1 ∧ l1(t1) /∈ Σ2} ∪ {(τ, t2) | t2 ∈ T2 ∧ l2(t2) /∈ Σ1}
∪ {(t1, t2) | t1 ∈ T1 ∧ t2 ∈ T2 ∧ l1(t1) = l2(t2) ∈ Σ1 ∩ Σ2},

– T� is defined analogously,

– ∀p ∈ P, (t1, t2) ∈ T : W (p, (t1, t2)) =

⎧

⎨

⎩

W1(p, t1) if p ∈ P1 ∧ t1 ∈ T1

W2(p, t2) if p ∈ P2 ∧ t2 ∈ T2

0 otherwise
W ((t1, t2), p) is defined analogously,

– ∀p ∈ P : m0(p) =
{

m0
1(p) if p ∈ P1

m0
2(p) if p ∈ P2,

– ∀(t1, t2) ∈ T : l(t1, t2) =
{

l1(t1) if t1 ∈ T1

l2(t2) if t2 ∈ T2.

With this, we define relabelling, hiding and parallel composition with hiding
word by word as in Definitions 3 and 5. ♦

Note that in the last item above, in case of a merged transition, l1(t1) and
l2(t2) coincide. For the next lemma, note that markings of N1‖N2 can be written
(m1,m2), where m1 is a marking of N1 and m2 one of N2.

Lemma 12. Let N1 and N2 be two MPN. If t1 and t2 are a-labelled transitions

of N1 and N2 resp., then (m1,m2)
(t1,t2)��� (m′

1,m
′
2) if and only if m1

t1��� m′
1

and m2
t2��� m′

2. If t1 is a transition of N1 with l1(t1) �∈ Σ2, then (m1,m2)
(t1,τ)
���

(m′
1,m2) if and only if m1

t1��� m′
1, and analogously for N2. The same statements

hold for must-transitions.

This lemma implies that the MTS associated to N1‖N2 is the parallel com-
position of the two MTS associated to N1‖N2. Similar statements hold for the
other three operators defined above. Hence, we obtain the following corollary to
Theorem 6.

Corollary 13. W.r.t. the above operators for MPN, �MPN is a precongruence.

Observe that, in the same way, the notion of action liveness and its preserva-
tion under refinement carry over to MPN and �MPN . We close with a technical
operation and lemma, which will be important in the next section. The opera-
tion contracts special τ -must-transitions by merging the only place in the preset
with the only place in the postset. This is illustrated in Fig. 2.

Definition 14 (τ-contraction). Let N be an MPN and A a set of τ -labelled
must-transitions with the following properties:

– for each ti ∈ A: •ti = {pi}, t•i = {p′
i} and W (pi, t) = W (t, p′

i) = 1;
furthermore, •p′

i = p•
i = {ti} and m0(pi) = m0(p′

i) = 0;

– all these places are different.

34 V. Schneider and W. Vogler

Then, the τ -contraction N [A] is obtained from N by removing the transitions
ti ∈ A and the associated places p′

i, and changing the values W (pi, t) for the
remaining transitions t from 0 to W (p′

i, t). ♦

pi

τ

ti p′
i

pi

Fig. 2. Transformation from MPN N to MPN N [A]

Lemma 15. Let N be an MPN and A ⊆ T�
N as in Definition 14, then N �MPN

N [A] and N [A] �MPN N .

Proof. Let m and m′ be markings of N and N [A], resp., that are identical on the
common places except that, for each of the pi, m′(pi) = m(pi) + m(p′

i); then we
denote m′ by [m]. Now consider the relation R = {(m, [m]) | m reachable in N}.
This relation proves the first claim, and its reverse proves the second claim.

First, consider some m
ti−→ m′ with ti ∈ A. This can be matched by firing no

transition: (m′, [m]) ∈ R since ti does not change m(pi) + m(p′
i), i.e. [m′] = [m].

It remains to deal with each transition t of N [A], and we restrict ourselves to
must-transitions, since the case of may-transitions is similar. So second, consider
m

t−→ m′ in N . From each p′
i ∈ •t, t removes W (p′

i, t) tokens, which are present
in and removed from pi under [m]; for the other places, t removes the same
number of tokens in both nets, and it adds the same number of tokens to each
place in both nets.

Third, consider [m] t−→ [m′] in N [A]. Here, some tokens on some p′
i ∈ •t

might be missing in N . This is remedied by first firing invisibly some ti: for each
of the (finitely many!) p′

i ∈ •t, we fire the invisible must-transitions ti until pi

is empty. Now t removes the same number of tokens from p′
i ∈ •t in N as it

removes from pi in N [A], and it removes the same number of tokens in both nets
from each other place; then, it adds the same number of tokens in both nets to
each place. ��

3 Asynchronous Communication

While the definition of composing nets according to asynchronous communica-
tion, i.e. by merging places, should be pretty clear, the question is how to define
a refinement framework that deals with the interface places in a suitable way.
The idea of [19,21] is to make visible how an environment interacts via these
places. The environment observes that it puts a token onto an input place, but
not when the token is taken, and vice versa for output places. Thus, for each
input (output) place a, we add an arc from (to) a new a-labelled transition and
compare the resulting MPNs with �MPN . In the following definition, we assume
that a− and a+ are fresh in the sense that they are not in P ∪ T .

Modal Open Petri Nets 35

Definition 16 (���MON wrapper). The �MON wrapper of an �MON N is the
MPN wrap(N) (also denoted here by Nw). Nw is obtained from N by renaming
a ∈ I (a ∈ O) to the fresh a− (a+) – defining Pw; these inherit the arcs and
initial marking from a – defining m0

w. We set Σw = Σ ∪̇I ∪̇O and add a-labelled
transitions a to T and T� for all a ∈ I ∪ O – defining also Tw, T�

w and lw. The
modified W is extended on the new pairs involving some new transition a by
Ww(a, a−) = 1 for a ∈ I, Ww(a+, a) = 1 for a ∈ O and 0 otherwise – defining
Ww. See Fig. 3 for the example N2 and wrap(N2).

p1p0

a2a1

N1

a1

a3

a2

a4N3

p1p0

a2a1N2

p1p0

a+
2a+

1

a1 a2

wrap(N2)

Fig. 3. Three MON N1, N2, N3 and wrap(N2)

Definition 17 (���MON refinement). Let N1 and N2 be two �MON with the
same alphabet as well as input and output places. We say that N1 is a refinement
of N2, written N1 ��MON N2, if wrap(N1) �MPN wrap(N2). ♦

This definition extends Definition 10: since an MPN N is identical to
wrap(N), ��MON and �MPN coincide if applied to two MPN.

As a first example, we show that N1 ��MON N2 for the MON N1 and N2

in Fig. 3 by showing a suitable MPN-relation R. We write markings as a formal
sum: e.g. if p1 and a1 have one token each, we write p1 + a1, and we write
this also for a marking of wrap(N2) although the place has changed its name
to a+

1 there; 0 is the empty marking. With this, R ={(p0, p0), (p1 + a2, p1 +
a1), (a2, p1), (p1, a1), (a1 + a2, a1 + a2), (a1, a1), (a2, a2), (0, 0)}.

An interesting pair is (p1 + a2, p1 + a1): the only enabled must-transition
on the specification side is a1; although the token on a1 is produced after the
token on a2 in N1, this can be matched using the second τ -transition, which is a
must transition. Thus, the pair (a2, p1) is reached. On the refinement side, a2 is
enabled, which can be matched with the second τ -transition in N1; it is sufficient
that this is a may-transition. Additionally, the two second τ -transitions match
each other as required.

36 V. Schneider and W. Vogler

Here, the specification produces two messages in some order while the refine-
ment produces them the other way round. We justify this intuitively after the
definition of asynchronous composition.

rc err pwd

rw m

t’

t

t”

Fig. 4. Refinement ATM ′ of ATM

As another example, Fig. 4 shows a refinement ATM ′ of the lower MON
ATM in Fig. 1. Here, the optional top right may-transition is omitted, possibly
because we assume that the password provider in Fig. 1 is used and we expect
no errors due to premature passwords. Furthermore, the optional shortcut t is
now a must-transition. But there is a difference that makes it less obvious that
ATM ′ really is a refinement of ATM : if the shortcut is used in ATM , it can only
be used again the next but one time; in ATM ′, it can only be used one time
later. Let us prove the refinement.

The two MON have the same places except for the lower two places of ATM ′;
obviously, these together will always have one token. For each reachable marking
m of wrap(ATM), we denote by m+ l (m+r) the same marking of wrap(ATM ′)
with an additional token on the left (right) additional place. The MPN-relation
R for wrap(ATM) and wrap(ATM ′) consists of all pairs (m+l,m) and (m+r,m)
for such reachable m, obviously relating the initial markings.

The new visible must-transitions of wrap(ATM) and the upper must-
transitions of ATM have the same labels and effects in wrap(ATM ′). Further-
more, m

τ−→ m′ due to t′ in wrap(ATM) if and only if m + l
τ−→ m′ + r due

Modal Open Petri Nets 37

to t′ in wrap(ATM ′) if and only if m + r
τ−→ m′ + l due to t′′ in wrap(ATM ′).

Thus, all must- and their underlying may-transitions (except t) are matched
appropriately.

The may-transition of wrap(ATM ′) is matched by itself in wrap(ATM).
Finally, t can only fire under a marking m + r in wrap(ATM ′) resulting in
m + r

τ��� m′ + l. This is matched in wrap(ATM) by m
τ��� m′ due to t.

We call some a ∈ Σ ∪ I ∪ O action live in an �MON N if it is action live
in wrap(N). This is the case for each a ∈ I, whereas for a ∈ O it means: N
can always put another token onto a provided that sufficiently many tokens are
provided on the input places. Obviously, action liveness is also preserved under
��MON .

We now come to the most important operator of this paper; it merges com-
mon interface places, modelling asynchronous communication.

Definition 18 (�MON asynchronous composition). Two �MON N1 and N2

are called (async-)composable whenever (Σ1 ∪ I1 ∪ O1) ∩ (Σ2 ∪ I2 ∪ O2) = (I1 ∩
O1) ∪ (I2 ∩ O2) =: asc(N1, N2). We can further assume that the four place and
transition sets are pairwise disjoint except for asc(N1, N2).

The (asynchronous) composition of such �MON is the �MON N1 ⊕ N2 =
(P, I,O,Σ, T, T�,W,m0, l) where P , Σ, T and T� are the componentwise
unions. The interface places are I = (I1 ∪ I2) \ asc(N1, N2) and O = (O1 ∪
O2) \ asc(N1, N2). For i = 1, 2, marking m0 coincides on p ∈ Pi with m0

i , and l
coincides on t ∈ Ti with li. Finally,

W (p, t) =

⎧
⎨

⎩

W1(p, t) if p ∈ P1 ∧ t ∈ T1

W2(p, t) if p ∈ P2 ∧ t ∈ T2 — W (t, p) is defined analogously.
0 otherwise

♦

Composability ensures that N1 ⊕ N2 is well-defined. In particular, it ensures
that synchronous and asynchronous channels do not get confused. One could also
think of a variant that combines parallel and asynchronous composition where
the components also synchronize on common actions – actions we have forbidden
here. We observe that the composition ⊕ is commutative and associative up to
isomorphism for pairwise composable components. Note that for three �MON N1,
N2 and N3 with some a ∈ I1∩O2∩I3, (N1⊕N2)⊕N3 and N1⊕(N2⊕N3) might
be well-defined, but would have different behaviour in general: N2 communicates
on a with N1 in one and with N3 in the other composition. So also N1 and N3

have to be composable.
Let us reconsider the nets N1 and N2 in Fig. 3. As a potential argument

against reordering messages, one might come up with N3, which looks like it is
sensitive to the order in which tokens arrive on a1 and a2. In N2 ⊕ N3, the first
token arrives on a1, and a token on a3 can be produced immediately; in N1⊕N3,
the first token arrives on a2. But using the second τ -transition of N1, a token
can be put onto a3 before marking a4, so N3 cannot “see” the reordering. Thus,
this reordering should be allowed in a refinement step. To prove that ��MON is
indeed a precongruence w.r.t. ⊕, we need another lemma.

38 V. Schneider and W. Vogler

Lemma 19. Let N1 and N2 be two composable �MON and A = {(a, a) | a ∈
asc(N1, N2)}, then (wrap(N1) ⇑ wrap(N2))[A] and wrap(N1 ⊕ N2) are isomor-
phic.

Proof. By composability, asc(N1, N2) is the set of the common actions of
wrap(N1) and wrap(N2). For wrap(N1) ⇑ wrap(N2), the unique a-labelled tran-
sition a in one net is merged with the unique a-labelled transition a in the other
if a ∈ asc(N1, N2), and then all these a-labels are hidden. Hence, A is a set
as required in Definition 14 and [A] merges a+ and a− into one place, which
we may call a again; cf. Fig. 2. Now the only difference is that transitions are
pairs, where always one component is τ . Removing these components results in
wrap(N1 ⊕ N2). ��
Theorem 20. The refinement relation ��MON is a precongruence for ⊕, i.e. for
three �MON N1, N2 and N3 where N2 is composable with N3 and N1 ��MON N2,
also N1 is composable with N3 and N1 ⊕ N3 ��MON N2 ⊕ N3.

Proof. Composability only depends on the interfaces, so the first claim is obvious.
Let A = {(a, a) | a ∈ asc(N1, N3)} = {(a, a) | a ∈ asc(N2, N3)}.

By definition of ��MON and the precongruence properties of �MPN , we have

– wrap(N1) ⇑ wrap(N3) �MPN wrap(N2) ⇑ wrap(N3).

Now by Lemmas 19 and 15,

– wrap(N1 ⊕ N3) �MPN (wrap(N1) ⇑ wrap(N3))[A]
�MPN wrap(N1) ⇑ wrap(N3) and

– wrap(N2) ⇑ wrap(N3) �MPN (wrap(N2) ⇑ wrap(N3))[A]
�MPN wrap(N2 ⊕ N3).

Thus, wrap(N1 ⊕ N3) �MPN wrap(N2 ⊕ N3) and N1 ⊕ N3 ��MON N2 ⊕ N3. ��
It might seem that the wrap-based definition of our refinement relation is

somewhat arbitrary; our next aim is to show its optimality by proving a coarsest-
precongruence result. The starting point is that modal refinement is accepted
for MTS, so its translation �MPN to MPN is in a sense just right. Hence, the
optimal refinement relation � on �MON should respect this: if N1 � N2 for MPN
N1 and N2, then also N1 �MPN N2. Furthermore, � should be a precongruence
w.r.t. ⊕. To be optimal, it should allow all refinements consistent with these two
requirements, so � should be the coarsest MPN-respecting precongruence w.r.t.
⊕; such a coarsest precongruence always exists.

In principle, this coarsest precongruence could be finer than �MPN for MPN
but – being ��MON – it actually coincides with �MPN for MPN, which is even
more pleasing.

One could question why a precongruence for all �MON is needed. Our proof
below also supports another argument with the same starting point to answer
this. In this argument, we call an �MON No an observer of a MON N if it has
the same interface places as N but with input and output interchanged; thus,

Modal Open Petri Nets 39

N ⊕ No is an MPN. Hence, No interacts with N on the complete asynchronous
interface of the latter, and it can make its observations visible on its synchronous
interface. Now one could alternatively aim for some � on MON that is the
coarsest precongruence w.r.t. ⊕ such that N � N ′ implies, for all observers No

of N (i.e. also of N ′), that N ⊕ No �MPN N ′ ⊕ No. Again, this � is ��MON

(restricted to MON). In fact, for all MON N and N ′, N ��MON N ′ if and only
if N ⊕ No �MPN N ′ ⊕ No for all observers No of N , as we show more generally
in the next proposition.

Definition 21. A relation � on �MON is called MPN-respecting if it implies
�MPN on MPN. An �MON No is an observer of an �MON N , if No and N are
composable, Io = O and Oo = I. ♦

Proposition 22. Let N and N ′ be �MON with the same alphabet as well as
input and output places. Then N ��MON N ′ if and only if N⊕No �MPN N ′⊕No

for all observers No of N .

Proof. For the “if”-direction, we construct a specific No: it has, for each a ∈ I∪O,
an empty place a and an a′-labelled transition, where a′ is a fresh action, i.e.
a′ �∈ Σ ∪ I ∪ O. (These fresh actions are needed, since an interface place is not
allowed to be an action as well.) The only arcs have weight one and connect each
a ∈ Io to the a′-labelled transition and, for a ∈ Oo, the a′-labelled transition to
the place a. Further, let f be the relabelling that maps each a′ to a and is the
identity on Σ.

Now, N ⊕No is isomorphic to wrap(N) except that it has labels a′ instead of
a and, so, (N ⊕ No)[f] is isomorphic to wrap(N). Thus, N ⊕ No �MPN N ′ ⊕ No

implies (N ⊕ No)[f] �MPN (N ′ ⊕ No)[f], which implies N ��MON N ′.
The “only if”-direction follows from Theorem 20 and the observation after

Definition 17.

Theorem 23. Relation ��MON is the coarsest MPN-respecting precongruence
w.r.t. ⊕ on �MON.

Proof. Let � be the coarsest MPN-respecting precongruence w.r.t. ⊕ on �MON.
Due to Theorem 20 and the observation after Definition 17, ��MON is an MPN-
respecting precongruence as well. Thus, it is contained in � by the definition of
the latter.

This definition also gives us that N � N ′ implies N ⊕ No � N ′ ⊕ No and
N⊕No �MPN N ′⊕No for all observers No of N . The latter implies N ��MON N ′

by Proposition 22, showing that � is contained in ��MON as well. ��
We close with a quick look at the operators that we have only defined for MPN

so far. The following definition extends Definition 11 to �MON; in particular,
par-composability holds automatically for MPN.

Definition 24 (further ���MON operators). Two �MON N1 and N2 are called
par-composable whenever (Σ1∪I1∪O1)∩(Σ2∪I2∪O2) = Σ1∩Σ2. We can further

40 V. Schneider and W. Vogler

assume that the place sets are disjoint. Then, we define their parallel composition
N1‖N2 as in Definition 11, letting also I and O be the componentwise unions.

For an �MON N , a relabelling function f is defined as in Definition 3 except
that, additionally, we require that Σ′ and I ∪O be disjoint. With this, relabelling
N [f] and hiding N/H are defined word by word as in Definition 3. Similarly,
the parallel composition with hiding N1 ⇑ N2 of two par-composable �MON N1

and N2 is defined as before as (N1‖N2)/H with H = Σ1 ∩ Σ2. ♦

Also the operations ‖ and ⇑ are commutative and associative up to isomor-
phism for pairwise par-composable components.

Theorem 25. The relation ��MON is a precongruence for ‖ and ⇑ on �MON,
i.e. for three �MON N1, N2 and N3 where N2 is par-composable with N3 and
N1 ��MON N2, also N1 is par-composable with N3, N1‖N3 ��MON N2‖N3 and
N1 ⇑ N3 ��MON N2 ⇑ N3. The relation is also a precongruence for relabelling
and hiding.

Proof. For parallel composition, observe that wrap(Ni)‖wrap(N3) and
wrap(Ni‖N3) are isomorphic for i = 1, 2, since wrap adds the same transitions
to the same places for both systems, and these new transitions are also not syn-
chronized in the first system. By definition of ��MON , we have wrap(N1) �MPN

wrap(N2), which implies wrap(N1)‖wrap(N3) �MPN wrap(N2)‖wrap(N3) by
Corollary 13. The above observation gives wrap(N1‖N3) �MPN wrap(N2‖N3)
and we are done.

For N1 ��MON N2 and a suitable relabelling function f , we extend f to fIO,
which additionally is the identity on I1∪O1; fIO is a relabelling function for each
wrap(Ni). Now we only have to observe that wrap(Ni)[fIO]) and wrap(Ni[f]) are
isomorphic. With this, we are done as above, using again the definition of ��MON

and Corollary 13.
The case of hiding is easier, and the case of ⇑ is implied. ��

4 Modal Asynchronous I/O-Petri Nets (MAP)

For comparison, we have a closer look at MAP, which are MPN where the visible
actions are subdivided into input, output and internal actions [8]. An input
action a indicates that an a-labelled transition takes a token from the (only
implicit) place a, and analogously for an output. For composition, a common
action a must always be an input of one and an output of the other component.
A new place a is created and connected to a-labelled transitions as explained
above; it represents an internal channel of the overall system. The label a is
changed to internal actions a� on the output and �a on the input side.

The main issue in [8] is to decide the property message consuming (and
a variation thereof): a net is message consuming w.r.t. internal channel a if,
whenever there is a token on a, it is possible to perform a must-�a, possibly
preceded by output, internal or hidden must-transitions. This is regarded as a
quality criterion for communication since no message in a channel will necessarily

Modal Open Petri Nets 41

be ignored. Message consuming is preserved under composition and refinement,
and to achieve this, internal actions must be visible.

Message consuming can be too strict: possibly, a message on a can only be
processed sensibly if another message on b is received first. Also, a message
consumption is certainly not so relevant if it has no effect for the environment.
So we will not pursue this issue here. But note that the main idea in [19] is
similar in spirit: there, the aim is to construct systems that only stop when a
final marking (from a predefined set) is reached where all channel places are
empty. Thus, the system will not stop while a message is pending. In contrast
to the MAP approach, this property is not checked for the components; the aim
is only to achieve it in the final system where it really is essential.

Since it is argued in [8] that, for stepwise refinement, the internal transitions
should be hidden in the end, we will do so immediately in our comparison. To
avoid a partitioning of Σ, we present MAP as MPN where the visible actions
have the form a� or �a and, for no a, we have a� and �a in Σ. The refinement
is simply �MPN . MAP are composable if their alphabets are disjoint. In the
composition ⊕HH , whenever some a� is in one and �a in the other alphabet,
a new place a is created together with an arc from each a�-labelled transition
and an arc to each �a-labelled transition as sketched in Fig. 5 on the left; the
respective transitions are hidden.

Essentially, we could produce the same net by adding a place a and the resp.
connections to each of the two MAP first and then apply ⊕. The first part gives
us a function that embeds MAP into MON.

a
� ⊕HH

�
a

=

a

a
�
1

�
a2N

a
�

a

�
aNa

Fig. 5. Composition ⊕HH , MAP N and the MPN Na

Definition 26. The function map2mon maps each MAP N to a MON by adding
for each a� and �a in Σ a new empty place a together with a weight-1 arc from
each a�-labelled transition or an arc to each �a-labelled transition resp. All
actions are hidden.

For a symbol a, Na denotes an MPN (not a MAP!) as shown in Fig. 5. For a
set A, we denote the disjoint union of the Na with a ∈ A by NA. ♦

For the MAP N in Fig. 5, map2mon(N) is the MON N2 in Fig. 3. Clearly, any
map2mon(N) is a MON with the restriction (violated by the MON in Fig. 1) that
each transition is only connected to at most one interface place, and then with
an arc of weight one. From each such MON, we can shear off the interface places

42 V. Schneider and W. Vogler

and reconstruct the respective transition labels for a corresponding MAP. The
following theorem states that MAP is a proper sub-setting of our MON-setting
with a stricter refinement.

Theorem 27. Function map2mon embeds MAP into MON in the sense that
it is injective but not surjective and, for all composable MAP N1 and N2,
map2mon(N1) and map2mon(N2) are composable and

map2mon(N1 ⊕HH N2) = map2mon(N1) ⊕ map2mon(N2) .

If we have N1 �MPN N2 instead, then map2mon(N1) ��MON map2mon(N2),
but not vice versa.

Proof. The first sentence should be clear. For the refinement, let A = {a | a� or
�a in Σ} and let f rename a� (!) to a if �a ∈ Σ and �a (!) to a if a� ∈ Σ. Now,
(Ni ⇑ NA)[f] is isomorphic to wrap(map2mon(Ni)). Since (N1 ⇑ NA)[f] �MPN

(N2 ⇑ NA)[f] by the MPN-precongruence results, we are done.
Finally, we prove that the implication is strict. Consider the MAP N in

Fig. 5 with map2mon(N) = N2 in Fig. 3, and the similar MAP N ′ with
map2mon(N ′) = N1 in Fig. 3. We have N1 ��MON N2, but N �MPN N ′ fails
due to the reordering. ��

In [8], it is shown that �MPN on MAP is a precongruence for ⊕HH with a
(not so difficult) proof that goes into the details of the definition of �MPN . One
can also prove this from general precongruence results on MPN. Let N1, N2 and
N3 be MAP such that N1 �MPN N2 and N1 and N3 are composable. Let A be
the set of those a where �a is in one of Σ1 and Σ3 while a� is in the other. Then,
Ni ⇑ NA ⇑ N3 is isomorphic to Ni ⊕HH N3 and, with N1 ⇑ NA ⇑ N3 �MPN

N2 ⇑ NA ⇑ N3, we are done.

5 Bounded Modal Open Nets

To argue that N1 ��MON N2 for MON N1 and N2, we have to exhibit an MPN-
relation for wrap(N1) and wrap(N2). The problem is that the latter usually have
infinitely many reachable markings, since arbitrarily many tokens can be put on
each input place. One solution to this problem is to work with finite nets and to
require that the final system (a closed MON as defined below) is b-bounded for
some fixed bound b, i.e. that all reachable markings are b-bounded, assigning at
most b tokens to each place. We sketch below how to modify MPN-relations for
a setting where more than b tokens on a place are considered to be an error.

It can also be helpful to observe that a wrap(N) is a special MPN, where each
visible action a appears just once, and on a must-transition. From the position
of such a transition, we can read off whether a is an input or an output action
and whether the incident place (still denoted by a below) was an input or output
place originally without having specific components in the MPN-tuple. We give
here a first observation only, calling an MPN a special MPN (sMPN) if it is
wrap(N) for some MON N .

Modal Open Petri Nets 43

Proposition 28. Let R be an MPN-relation for sMPN N1 and N2, and
(m1,m2) ∈ R. Writing m + i for a marking m with an additional token on
input place i, also R ∪ {(m1 + i,m2 + i)} is an MPN-relation for N1 and N2.

Proof. We check the two conditions for (m1 + i,m2 + i).
— Let m2 + i

α−→ m′′
2 . By (m1,m2) ∈ R and m2

i−→ m2 + i, there is
some (m′

1,m2 + i) ∈ R with m1
i=⇒ m′

1; we can assume that the underlying
firing sequence starts with m1

i−→ m1 + i, since the i-transition does not remove
any token; thus, m1 + i =⇒ m′

1. Furthermore, m′
1

α=⇒ m′′
1 with (m′′

1 ,m′′
2) ∈ R.

Hence, m1 + i
α=⇒ m′′

1 matches m2 + i
α−→ m′′

2 .

— Let m1 + i
α��� m′′

1 . By (m1,m2) ∈ R and m1
i��� m1 + i, there is some

(m1 + i,m′
2) ∈ R with m2

i=⇒ m′
2; we can again assume that the underly-

ing firing sequence starts with m2
i��� m2 + i, so that m2 + i =⇒ m′

2. Fur-
thermore, m′

2
α=⇒ m′′

2 with (m′′
1 ,m′′

2) ∈ R. Hence, m2 + i
α=⇒ m′′

2 matches
m1 + i

α��� m′′
1 . ��

This observation shows that m1
i−→ m1+i can always be matched by m2

i−→
m2 + i and vice versa; no other pair than (m1 + i,m2 + i) is needed for this in
R. This can help to prove or disprove N1 �MPN N2.

Often, it is desirable that systems are finite state and channels have a finite
capacity. The final systems in such a setting can be modelled by finite b-bounded
Petri nets; for the rest of this section, we fix some arbitrary positive bound b.

Definition 29. A MON is closed if it has no input or output places. A marking
m of a MON or an sMPN that is not b-bounded is called an error ; then, a
marking m′ with m′ =⇒ m is called illegal. ♦

A closed MON describes a final system, which usually arises as the compo-
sition of a system with the final user. We consider a setting where such a closed
MON is required to be b-bounded. Note that a closed MON N coincides with
wrap(N).

If such a MON is built with a system component N ′, a marking of wrap(N ′)
that is not b-bounded is an error ; it cannot occur in the final system and sub-
sequent behaviour is irrelevant. In fact, this already holds for an illegal marking
m′, since nothing can prevent wrap(N ′) to move autonomously from m′ to an
error. Note that the occurrence of a transition t can only lead from a legal to an
illegal marking if t is an input.

Interface automata (IA) [5] form a similar setting (with synchronous commu-
nication), where an “unexpected” input leads to an error. While IA are a kind
of LTS, there is quite some literature on combinations with modalities, see [4]
for an advanced approach called modal interface automata (MIA). Similarly to
transferring refinement and precongruence results from MTS to MPN, one can
transfer these with some care from MIA to sMPN. The refinement definition
looks as follows; note that any behaviour is better than an error, so an illegal
marking does not have to be matched.

44 V. Schneider and W. Vogler

Definition 30 (sMPN-b-refinement). For sMPN N1 and N2 with the same
input and output actions, we say that N1 is an sMPN -b-refinement of N2, written
N1 �b

sMPN N2, if there is an sMPN -b-relation R between the reachable markings
of N1 and N2 with (m0

1,m
0
2) ∈ R such that for every (m1,m2) ∈ R where m2 is

legal:

– m1 is legal,
– m2

α−→ m′
2 ⇒ m1

α̂=⇒ m′
1 ∧ (m′

1,m
′
2) ∈ R,

– m1
α��� m′

1 ⇒ m2
α̂=⇒ m′

2 ∧ (m′
1,m

′
2) ∈ R. ♦

For closed MON N1 and N2, wrap(N1) �b
sMPN wrap(N2) simply means that

m0
1 must be legal if m0

2 is. Intuitively, this means: if the system specification
composed with the user is b-bounded, then the refinement composed with the
user is b-bounded as well.

Some details are simpler for sMPN than for MIA. Here, m′ is illegal if
m′ =⇒ m for some error m. For MIA, also outputs must be considered for
the transition sequence; we can ignore these here, since output transitions only
remove tokens. Furthermore, for the matching of transitions as in Definition 30,
inputs and outputs are treated differently for MIA: in case of an input, the
matching transition sequence must start with the respective input. Here, this
does not matter; if the only visible transition in a firing sequence is an input, we
can just as well move it to the front since it does not remove tokens.

Additionally, MIA have so-called disjunctive must-transitions [4] for defining
conjunction on MIA. It is not at all clear to us how a conjunction for Petri
nets (“real” Petri nets with concurrency) could look like. Compared to a setting
without conjunction, disjunctive must-transitions make [4] unnecessarily difficult
to read. Therefore, we plan to work out a self-contained presentation of the b-
bounded setting. There, it will be worthwhile to explicitly accompany each sMPN
by a modified reachability graph, where – as in MIA – all illegal markings are
merged into a special error state.

As a final remark, we point out that our b-bounded setting is optimistic like
IA and MIA. An sMPN might have behaviour that leads to an error. As long as
an error cannot be reached autonomously (i.e. the initial marking is illegal), there
is an environment such that the composition is error-free; e.g. the environment
may simply not provide any inputs. In fact, if the respective MON has some
input place, reachable errors are unavoidable. A pessimistic approach as in [3]
forbids components where errors are reachable, it cannot be applied here.

6 Conclusion

In [6,8], Petri nets were augmented with may- and must-modalities and modal
refinement for stepwise design, and they were used for modelling asynchronous
communication via merging implicit interface places (MAP). We have here
applied a much older framework for nets with interface places [21], see also [19],
and developed an according refinement relation for nets with modalities and

Modal Open Petri Nets 45

explicit interface places (MON). We have justified this relation with a coarsest-
precongruence result. Our studies were carried out in a larger setting with modal
nets having interface places for asynchronous as well as action-labelled transi-
tions for synchronous communication.

Details of the MAP-approach are related to checking so-called message con-
sumption, a property that holds if, intuitively speaking, each message can even-
tually be received, i.e. removed from the channel. For stepwise refinement, it is
more appropriate to abstract from these details, as also suggested in [6,8]. With
this abstraction, it turned out that MAP is a subsetting of MON with a stricter
refinement relation. With an example, we have shown that some reordering of
messages leads to a rejection as a refinement in the MAP-approach, although
it is intuitively acceptable for asynchronous communication (and in the MON-
approach).

To show that one MON refines another, a suitable alternating simulation
has to be exhibited. These simulations have special properties (compared to the
general alternating simulations used for MAP), which could help to find one or
prove that none exists. We have given one such property here and will look into
this issue in the future.

Often, it is desirable that the components are finite-state and channels have a
finite capacity. We have given a rough sketch how this can be integrated into the
MON-approach and plan to work this out in detail. Furthermore, also motivated
by the idea of message consumption, we think about integrating final markings
as in [19] such that a system can only stop when all channels are empty.

References

1. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional modeling of reactive
systems using open nets. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 502–518. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44685-0 34

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfigurations of open Petri Nets. Log. Methods Comput.
Sci. 4(4) (2008). https://doi.org/10.2168/LMCS-4(4:3)2008

3. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 15

4. Bujtor, F., Fendrich, S., Lüttgen, G., Vogler, W.: Nondeterministic modal inter-
faces. Theoret. Comput. Sci. 642, 24–53 (2016)

5. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NSS, vol. 195, pp. 83–104. Springer, Dordrecht (2005). https://doi.org/10.1007/1-
4020-3532-2 3

6. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous com-
position of modal petri nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Trans-
actions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp.
96–120. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29072-5 4

https://doi.org/10.1007/3-540-44685-0_34
https://doi.org/10.1007/3-540-44685-0_34
https://doi.org/10.2168/LMCS-4(4:3)2008
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/978-3-642-29072-5_4

46 V. Schneider and W. Vogler

7. Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 6

8. Haddad, S., Hennicker, R., Møller, M.H.: Specification of asynchronous component
systems with modal I/O-petri nets. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC
2013. LNCS, vol. 8358, pp. 219–234. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-05119-2 13

9. Hüttel, H., Larsen, K.G.: The use of static constructs in a model process logic.
In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp.
163–180. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51237-3 14

10. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63139-9 39

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science
1988, pp. 203–210. IEEE (1988)

12. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Ann. Math. Comput. Teleinformatics 1, 35–43 (2005)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

14. Pomello, L.: Some equivalence notions for concurrent systems. An overview. In:
Rozenberg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 381–400. Springer, Heidelberg
(1986). https://doi.org/10.1007/BFb0016222

15. Raclet, J.B.: Residual for component specifications. Electr. Notes Theor. Comput.
Sci. 215, 93–110 (2008)

16. Reisig, W.: Deterministic buffer synchronization of sequential processes. Acta Inf.
18, 117–134 (1982)

17. Schneider, V.: A better semantics for asynchronously communicating Petri nets.
M.Sc. Thesis, Universität Augsburg (2017)

18. Souissi, Y.: On liveness preservation by composition of nets via a set of places.
In: Rozenberg, G. (ed.) ICATPN 1990. LNCS, vol. 524, pp. 277–295. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0019979

19. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock free-
dom. Acta Inf. 49, 69–103 (2012)

20. Vogler, W.: Behaviour preserving refinements of Petri nets. In: Tinhofer, G.,
Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 82–93. Springer, Heidelberg
(1987). https://doi.org/10.1007/3-540-17218-1 51

21. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55767-9

https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/978-3-319-05119-2_13
https://doi.org/10.1007/978-3-319-05119-2_13
https://doi.org/10.1007/3-540-51237-3_14
https://doi.org/10.1007/3-540-63139-9_39
https://doi.org/10.1007/BFb0016222
https://doi.org/10.1007/BFb0019979
https://doi.org/10.1007/3-540-17218-1_51
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1007/3-540-55767-9

Stochastic Evaluation of Large
Interdependent Composed Models

Through Kronecker Algebra
and Exponential Sums

Giulio Masetti1,3(B), Leonardo Robol2,3, Silvano Chiaradonna3,
and Felicita Di Giandomenico3

1 Department of Computer Science, Largo B. Pontecorvo 3, 56125 Pisa, Italy
2 Department of Mathematics, Largo B. Pontecorvo 1, 56125 Pisa, Italy

3 Institute of Science and Technology “A. Faedo”, 56124 Pisa, Italy
giulio.masetti@isti.cnr.it

Abstract. The KAES methodology for efficient evaluation of
dependability-related properties is proposed. KAES targets systems rep-
resentable by Stochastic Petri Nets-based models, composed by a large
number of submodels where interconnections are managed through syn-
chronization at action level. The core of KAES is a new numerical solu-
tion of the underlying CTMC process, based on powerful mathematical
techniques, including Kronecker algebra, Tensor Trains and Exponen-
tial Sums. Specifically, advancing on existing literature, KAES addresses
efficient evaluation of the Mean-Time-To-Absorption in CTMC with
absorbing states, exploiting the basic idea to further pursue the sym-
bolic representation of the elements involved in the evaluation process,
so to better cope with the problem of state explosion. As a result, compu-
tation efficiency is improved, especially when the submodels are loosely
interconnected and have small number of states. An instrumental case
study is adopted, to show the feasibility of KAES, in particular from
memory consumption point of view.

Keywords: Stochastic Petri Nets · Stochastic Automata Networks ·
Markov chains · Mean Time To Absorption · Kronecker algebra ·
Exponential sums · Tensor Train

1 Introduction

Stochastic modeling and analysis is a popular approach to assess a variety of
non-functional system properties, depending on the specific application domain
the system is employed in.

Given the increasing complexity and sophistication of modern and future
contexts where cyber systems are called to operate, their modeling and analysis
becomes on one side more and more relevant to pursue, and on the other side
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 47–66, 2019.
https://doi.org/10.1007/978-3-030-21571-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_3

48 G. Masetti et al.

more and more difficult to achieve (especially when high accuracy of analysis
outcomes is requested due to criticality concerns). Modularity and composition
are widely recognized as foundational principles to manage system complexity
and largeness when applying model-based analysis. Sub-models, tailored to rep-
resent specific system components at the desired level of abstraction, are first
defined, then composed to derive the overall model, representative of the total-
ity of the system under analysis. However, in order to be effective and scalable,
such compositional approach needs to be efficient not only at modeling level, but
also at model evaluation level. This topic has been addressed by a plethora of
studies. When dependability, performance and performability related measures
are of interest, a variety of modeling and solution approaches and automated
supporting tools have been proposed, typically adopting high level modeling for-
malisms (among which the Stochastic Petri Nets family is a major category) and
either simulation-based or analytical solution techniques [14,27].

In this paper, we focus on state-based analytical numerical evaluation and
propose a new approach to address the problem of the state explosion in the
quantitative assessment of dependability and performability related indicators
of large, interconnected systems modeled using Stochastic Petri Net (SPN). The
reference picture is an overall system model, resulting from the composition of
a set of relatively small models (e.g. expressed through the Superposed GSPN
(SGSPN) formalism [13]), each one representing individual system component(s)
at a desired level of abstraction, then composed through transition-based syn-
chronization.

Specifically, the paper addresses the solution of the Continuous Time Markov
Chain (CTMC) underlying the SPN, whose evolution represents the behavior
of systems under analysis at a reasonable level of detail. The focus here is on
those CTMCs that present absorbing states, and on the evaluation of the Mean
Time To Absorption (MTTA), i.e., the expected time needed to arrive into an
irreversible state. To the best of our knowledge, this kind of CTMCs has received
low attention in past studies in terms of efficient solutions when dealing with
large interconnected systems. However, addressing this context is relevant, since
it is meaningful in a variety of modeling scenarios of the system under analysis.
For example, depending on the performance or dependability measures under
analysis, absorbing states represent system conditions directly involved in the
computation of the measure, such as:

– in a reliability model [27], absorbing states can be those representing the
system failure,

– in a security model, absorbing states are those representing the fact that a
certain level of confidentiality has been violated or a part of the system is
under the attacker’s control,

– in a safety model, absorbing states are states where the system is considered
unsafe.

Resorting to well known symbolic representation of the CTMC to gain in effi-
ciency, the new approach, called Kronecker Algebra Exponential Sums (KAES),

Stochastic Evaluation of Large Interdependent Composed Models 49

advances on existing solutions by exploiting powerful mathematical technologies
such as Kronecker algebra [6], Tensor Trains [24] and Exponential sums [3].

The rest of the paper is organized as follows. In Sect. 2, related work is
discussed. In Sect. 3 an overview of the proposed contribution is presented.
Basic concepts and model design principles are introduced in Sect. 4. A detailed
description of the MTTA is offered in Sect. 5. Then, the proposed KAES method
is described in Sect. 6. In order to demonstrate the benefits of the new method,
KAES has been implemented in the MATLAB evaluation environment and
applied to a case study, detailed in Sect. 7. Obtained numerical results, discussed
in Sect. 8, show the feasibility of KAES when the MTTA is evaluated, at increas-
ing the size of the system under analysis, while standard numerical approaches
fail due to the state-explosion problem. Finally, in Sect. 9 conclusions are drawn
and future work is briefly discussed.

2 Related Work

It is well known that state-space analysis of discrete event systems has to cope
with the problem of state space largeness, which in many cases makes unafford-
able the analysis of realistic systems. Therefore, many studies have appeared in
the literature, all attempting to alleviate the state space explosion problem.

Among them, a well established strategy consists in promoting state space
reduction through a symbolic representation of the CTMC. Proposals in this
direction were already formulated a few decades ago (e.g., in [12,25]), and there
was active research for several years, as documented in the survey in [6]. The over-
all system model, resulting from composition of a number of system component
models, is typically expressed through a SPN-like formalism (e.g., Generalized
SPN (GSPN) [8,16]). The component models are orchestrated by the synchro-
nization of a distinguished set of transitions, called synchronization transitions,
that implement interdependencies among components. Such “high-level” model
is then automatically translated into a“lower level” representation (such as in a
Stochastic Automata Network (SAN) [4]). Moreover, the implicit representation
of the CTMC is not obtained through constructing the Infinitesimal generator
matrix (Q), but through a symbolic representation of Q, the Descriptor matrix
(Q̃) that is the sum of two parts: one is the composition of the independent behav-
iors of the component automata (all the transitions of each submodel are not
synchronized with transitions of other submodels), called here Local matrix (R),
and the other one takes into account only the interdependencies, typically called
Synchronization matrix (W) [12]. The matrix-vector product, a key mathemat-
ical operation common to all numerical methods, is then performed through the
descriptor matrix-vector product, as in the shuffle, slice and split algorithms [10].

In these studies, since an irreducible CTMC [27] is assumed, it is required
that the reachability graphs of all component models are fully connected [16].
Notice that “there is no requirement on the number of input and output arcs for
synchronization transitions” [13].

Research on how to manipulate symbolically Q̃ in order to efficiently extract
information needed to generate the relevant part of the Reachable state-space

50 G. Masetti et al.

(RS) of the system model, as well as fast implementation of the descriptor
matrix-vector product, has been the subject of many investigations in the last
twenty five years. A concise survey can be found in [6].

Although the relevant benefits obtained from the symbolic representation and
manipulation of Q̃, when the state-space becomes so large that even storing in
memory vectors of size |RS| is unfeasible, symbolic representations of the vectors,
called descriptor vectors, would be desirable. This is the research area where we
concentrate in this paper. To the best of our knowledge, only two other papers
address symbolic representation of descriptor vectors: Kressner et al. [17] and
Buchholz et al. [5]. In [17] the same symbolic vector representation as in KAES,
i.e., the Tensor Train (TT) format [24], is employed together with standard
numerical solvers, such as Alternating Minimal ENergy (AMEN) [11], for the
evaluation of the steady-state probability vector, meaningful when the Markov
chain is irreducible and finite. In [5] a different representation, the Hierarchical
Tucker Decomposition, is employed again for the evaluation of the steady-state
probability vector in the irreducible context. However, these solutions cannot be
easily generalized to address wider measures of interest, such as the evaluation of
transient properties, or adapt to analyze Markov chains with absorbing states,
which is the target of KAES.

Finally, although not relevant for the developments in this paper, but for
completeness on the literature on efficient management of the generated state
space, we recall that an alternative approach to the symbolic representation
and manipulation of the Q̃ is to exploit a symbolic state-space exploration with
multi-valued decision diagrams (MDDs) [2,7].

3 Overview of the Novel Contribution

As already introduced, the contribution offered by the KAES approach is an
efficient solution to evaluate MTTA when the CTMC is large and has absorbing
states, working on symbolic representation of the descriptor vectors. First of
all, the KAES approach builds upon the following assumptions, which are also
common to most of the research studies from the literature review:

– the state space generated from each submodel has to be bounded;
– the marking dependencies of synchronization transition rates have strict rules

(see Sect. 4);
– the Descriptor matrix Q̃ is obtained in two consecutive steps, deriving: (i)

first the matrix R, that describes the CTMC generated from each submodel
when all the transitions of the submodel are not synchronized with the tran-
sitions of the other submodels; (ii) then the matrix W, that describes only
the interactions among the CTMC generated from the submodels when the
synchronized transitions are considered.

In this paper, in order to ease the notation, no instantaneous transition is
considered, even if both instantaneous local and synchronization transitions can

Stochastic Evaluation of Large Interdependent Composed Models 51

be tackled, as shown in [6]. The logical view and reasoning behind the contribu-
tion offered in this paper is now outlined:

– The standard representation of the vectors involved in the computations
would require a storage exponential in the number of interconnected sys-
tems. To overcome this difficulty, a compressed representation is employed.
Under suitable assumptions, this only requires a storage linear in the number
of interconnected systems. A vector or matrix which can be compressed in
this format is said to have low tensor train rank.

– Unfortunately, arithmetic operations performed using this representation
degrade the low tensor train rank property, which can be restored by recom-
pression.

– The evaluation of the MTTA is recast into solving a linear system with a
modified descriptor matrix Q̃ −S, where S is a rank 1 correction – efficiently
representable in TT form. Linear system solvers are available in the TT for-
mat, but are ineffective for the problem under consideration.

– Therefore, a new splitting of Q̃ as

Q̃ = Q1 + Q2, (1)

is considered, where Q1 is represented in terms of Kronecker sums and Q2 in
TT form.

– The inverse of Q1 can be easily applied to a vector (in TT form) using expo-
nential sums [3], since the exponential of Kronecker sums is the Kronecker
product of exponentials. This property is exploited to efficiently solve the
linear system through an iterative method.

– The way the MTTA is computed guarantees a conservative assessment.

4 System Architecture and Model Design

The systems category we address comprises n components C1,. . . ,Cn. These
components are interconnected, according to a specific topology that depends on
the application domain the system operates in. Such interconnections, also called
dependencies, allow inter-operability among system components, but they also
represent formidable vehicles through which potential malfunctions or attacks
propagate, possibly leading to cascading or escalating failure effects. The analysis
of such systems needs to account for the impact of error/failure propagation due
to dependences, especially when focusing on dependability-critical systems. This
requires cautiousness in building models for such systems, to properly master the
resulting complexity, both at model representation and model solution levels.

At the current stage of development, we target loosely interconnected sys-
tems. Although this might appear a significant limitation of the proposed app-
roach, loosely interconnection is actually encountered in realistic contexts, such
as the electric infrastructure where grid topologies of hundreds of buses have
number of dependencies around 2–3 on average. On the other side, we aim at

52 G. Masetti et al.

alleviating the problem of state explosion in analytical modeling, that the KAES
approach fulfills at some extent.

Exploiting the modular modeling approach of the SGSPN formalism [13],
each system component Ci is modeled through a GSPN extended with synchro-
nization transitions, and the model that corresponds to Ci is called Mi. The
overall SGSPN model, called M sync, is a set of submodels Mi which interact
only through synchronized transitions.

To fix the notation, a GSPN [1] can be defined as an 8-tuple

M = (P, T, I,O,H, pri, w,minit),

where P is the set of places and T is the set of (timed and immediate) transitions
with P ∩T = ∅. The functions I: P×T→ N, O: T×P→ N and H: P×T→ N are
respectively the input, output and inhibition functions that map arcs (p, t) or
(t, p) onto multiplicity values. In the graphical representation, the multiplicity is
written as a number next to the arc (when grater than 1). The function pri: T→
N specifies the priority level associated to each transition, that is 0 for timed
transitions and a value greater than 0 for immediate transitions. The weight
function w: T → R+ assigns rates to timed transitions and weights to immediate
transitions. A marking m of M is a function m : P → N. A place p has n tokens
if m(p) = n. The initial marking of the GSPN is denoted by minit. GSPN
formalism considered in this paper is extended to allow marking-dependent rates
and weights, and marking-dependent multiplicities of arcs. Transition t is enabled
in a marking m, written m

t→, if t has concession (to fire), i.e., m(p) ≥ I(p, t)
and m(p) < H(p, t), and if no other transition t′ exists that has concession in
m, with pri(t′) > pri(t). The firing delay, i.e., the time that must elapse before
the enabled transition can fire, is an exponentially distributed random variable
for timed transitions and is zero for immediate transitions. Firing of a transition
t enabled in a marking m yielding a new marking m′ is denoted by m

t→ m′,
with m′(p) = m(p) − I(p, t) + O(t, p). The set of markings that are reachable
from minit (reachability set) is denoted by RS. A GSPN is called bounded if
for all p ∈ P and m ∈ RS the value of m(p) is bounded. A GSPN is called
structurally bounded if it is bounded for every initial marking [22]. Following the
reasoning briefly outlined in [6], in order to guarantee that every Mi will have a
finite state-space, in this paper all the component submodels Mi will be assumed
structurally bounded.

In this paper, the standard definition of synchronized transitions is restricted
to timed transitions.

Definition 1 (Synchronization transitions). Let be T sync and Ti the sets
of transitions defined respectively in Msync and Mi. Let ST ⊆ T sync the set of
synchronization transitions of M sync. A timed transition t is a synchronization
(or superposed) transition, i.e., t ∈ ST , if there is an occurrence of t in two or
more submodels, i.e., t ∈ Ti1 ∩ . . . ∩ Tik , with k ≥ 2. A synchronized transition
t is enabled in a marking of Msync if all the occurrences of t within submodels
are enabled in the same marking restricted to the submodels. Formally, calling

Stochastic Evaluation of Large Interdependent Composed Models 53

m a marking of Msync and mi its projection on Mi, m
t→ if mi

t→ for all i such
that t ∈ Ti. In the overall model Msync, all the occurrences of t are enabled at
the same time and a unique exponentially distributed firing delay is defined for
all them, thus all of them fire at the same instant of time. The overall SGSPN
model Msync is equivalent to the whole GSPN model Msys obtained joining all
the submodels Mi where all the occurrences of t are merged into one transition,
also named t. Firing of t in Msys corresponds to the firing of all the occurrences
of t within the submodels, i.e., formally

m
t→ m′ ⇐⇒ mi

t→ m′
i for all i such that t ∈ Ti.

All the transitions t that are not synchronization transitions, i.e., those for
which there exists a unique i such that t ∈ Ti, are called local transitions.

Allowing general marking-dependent rates and weights for the design of Mi

can lead to inconsistent components models and this issue is strictly related to
the granularity of the model and the tensor algebra of choice (see [4,6,9]). In
this paper, as in [8], rates and weights of all the local transitions that belong
to Mi and multiplicities of the corresponding arcs are allowed to depend on the
marking of Mi, whereas rates and weights of the synchronization transitions and
multiplicities of the corresponding arcs should be constant.

As described in [6], the system model SGSPN can be translated into a SAN
and then the state space of M sync called RS, is not fully explored, and the CTMC
associated to M sync is not assembled. Instead of working with Q, the SAN pro-
vides an implicit representation, called descriptor matrix Q̃, of Q. In particular,
calling RS(i) the state-space of Mi when each occurrence of the synchronization
transitions is considered local and Ni = |RS(i)|, Q̃ is defined as

Q̃ = R + W + Δ, (2)

i.e., the sum of local contributions, called R, and synchronization contributions,
called W , where

R =
n⊕

i=1

R(i), (3)

W =
∑

t∈ST

n⊗

i=1

W (t,i), (4)

R(i) and W (t,i) are Ni × Ni matrices, the diagonal matrix Δ is defined as
Δ = −diag ((R + W)e) and the operators ⊕ and ⊗ are the Kronecker sum
and Kronecker product, respectively. The matrices R(i) and W (t,i) are assem-
bled exploring RS(i). Specifically, R(t,i) = ltW̃

(t,i) where lt is the constant rate
associated to t, equal in every Mi, and W̃ (t,i) is a {0, 1}-matrix defined as follows:

W̃
(t,i)
mi,m′

i
=

{
1 if t is enabled in mi inside Mi and mi

t→ m′
i,

0 otherwise.
(5)

54 G. Masetti et al.

In particular, if the transition t has no effect on the component Mi, we have
W̃ (t,i) = I. The potential state-space of M sync, called PS, is defined as

PS = PS(1) × · · · × RS(n),

and |PS| = N1 · . . . · Nn will be indicated as N in the following. Using this
notation, R, W and Δ are N × N matrices.

Performance, dependability and performability properties can be defined in
terms of reward structures [26,27] at the level of the SGSPN model. These reward
structures are automatically translated to reward structures at the Stochastic
Activity Network (SAN) level and represented by symbolic reward structures at
the CTMC level.

5 Mean Time To Absorption

For simplicity, in the rest of the paper it is assumed that, fixed minit, there exists
a unique1 absorbing state in PS that is the last of the chain defined by Q̃. This
is not restrictive because the problem can be always reduced to this situation
by collapsing all the absorbing states of Mi into a single one and reordering the
CTMC of Mi so that the absorbing state has index Ni. This guarantees, as a
consequence of the lexicographic ordering defined by the Kronecker product, that
the last state of PS is absorbing and corresponds to the last state of RS, where
all the component models are in their absorbing state. Thus, in the following N
will indicate the absorbing state of PS.

Calling X(τ) ∈ PS the stochastic process defined by Q̃, the MTTA is defined
as the expected time for transitioning into the absorbing state, which can be
formalized as

MTTA =
∫ ∞

0

P{X(τ) �= N} dτ. (6)

Given the unique absorbing state assumption, Q̃ can be replaced by Q̂, the
submatrix of Q̃ obtained by removing the last row and column (as shown in [27]),
that is

Q̃ =

⎡

⎢⎢⎢⎣

v1

Q̂
...

vN−1

0 . . . 0 0

⎤

⎥⎥⎥⎦ (7)

Then the MTTA can be expressed as

MTTA = −π̂T
0 Q̂−11, (8)

where π̂0 contains the first N − 1 entries of π0, and therefore the problem has
been recast into the solution of a linear system.

1 Notice that this assumption does not imply that Q̃ has an unique row of zeros, as
for the case of the stochastic process defined by Q.

Stochastic Evaluation of Large Interdependent Composed Models 55

6 The KAES Approach

Targeting the efficient evaluation of the MTTA as in (8), the KAES approach
develops solutions to treat both the descriptor matrix and the descriptor vector
in a symbolic representation. Specifically, KAES is an iterative method, and
relies on the following steps:

– A compressed representation scheme for the descriptor vector Ṽ is devised by
using tensor trains. This representation will be used throughout the iterations,
and is described in Sect. 6.1.

– The linear system (8) is solved by a Neumann iteration obtained by splitting
the descriptor matrix Q̃ as in (1), and analyzed in Sect. 6.2.

– The core of the iteration is the inversion of Q1, which can be efficiently per-
formed in the compressed format using exponential sums; this technique is
described in Sect. 6.3.

– Some further remarks on the efficient computation of the Neumann iteration
are reported in Sect. 6.4.

6.1 Symbolic Representation of the Descriptor Vector

As already discussed when presenting the related work, studies on the symbolic
representation of the descriptor matrix in the Kronecker algebra are already well
consolidated.

Concerning the descriptor vector, a few approaches have recently appeared
on compact representations, as already reviewed in Sect. 2, but in the context
of irreducible CTMC. Here, we exploit the Tensor Train (TT)-representation as
in [17], since it is a convenient low-rank tensor format, but addressing CTMC
with absorbing states.

We refer the reader to [24] for an overview of the philosophy and the theory
of TT tensors, including an accurate description of the truncation procedure.

In a nutshell, a TT-representation of a tensor X can be given by a tuple
(G1, . . . , Gn) of arrays, where G1 and Gn are matrices (so they have two indices),
and Gj for j = 2, . . . , n − 1 are order 3 tensors (that is, arrays with 3 indices)
such that

X (i1, . . . , in) = G1(i1, :)G2(:, i2, :) . . . Gn−1(:, in−1, :)Gn(:, in),

where we have used the MATLAB notation : to denote “slices” of the tensors,
and the products are the usual matrix-matrix or matrix-vector products. More
precisely, given an array with two indices G(α, β), we define G(:, β) as the column
vector with entry in position α equal to G(α, β), and G(α, :) is a row vector
with entry in position β equal to G(α, β). Similarly, given an array with three
indices G(α, β, γ), we define G(:, β, :) as the matrix whose entry (α, γ) is equal
to G(α, β, γ).

The Gj , often called carriage, are tensors of dimension νj−1 ×Nj ×νj , where
we fix ν0 = νn = 1 (and thus G1 and Gn are matrices).

56 G. Masetti et al.

The vector (ν0, . . . , νn) is called the TT-rank of the tensor X . In our context,
the initial probability vector π0 and vector 1 can be easily expressed in the
Kronecker form

π0 = π
(1)
0 ⊗ . . . ⊗ π

(n)
0 , (9)

1 = 1(1) ⊗ . . . ⊗ 1(n), (10)

and in TT-format as:

π0(i1, . . . , in) = π
(1)
0 (i1) · . . . · π

(n)
0 (in),

1(i1, . . . , in) = 1(1)(i1) · . . . · 1(n)(in).

Similarly, also the auxiliary vectors necessary to perform the iterative com-
putation of KAES are expressed in TT-format.

The matrix Q and the other auxiliary matrices used in the following have
low TT-ranks (and so are expressed in TT-format) when the CTMC is obtained
from a loosely interconnected system model, as discussed in Sect. 4. We refer
the reader to [20] for further details on the justification for the presence of such
low-rank structures.

TT-format representation is convenient, since it employs O(Nmax·n·ν2
eff) flops

for each matrix-vector product, instead of the generally larger O(Nn
max) flops of

the corresponding standard representation, where Nmax = max{N1, . . . , Nn} and
νeff is the effective rank2.

When two tensors are added or other matrix operations are performed, the
result is still represented in the TT format, but usually with a suboptimal value
of the ranks νj . For this reason, it is advisable to recompress the result using a
rounding procedure, available in the TT-format, that has a complexity O(Nmax ·
n ·ν2

eff +n ·ν4
eff). When the rank r is low, this number is still very small compared

to the number of states, which is Nn
max.

Although this unavoidably leads to rounding errors, the accuracy can be
chosen by the user. Note that, differently from the floating point arithmetic,
the trade-off between the rounding error parameter and the required number of
correct digits is more complex to devise, since the computational effort is not an
increasing function of the accuracy level.

Often, in the following, TT-tensor will be treated as first-order objects,
assuming that the arithmetic on these objects has been overloaded. When this
happens, it is assumed that truncation is performed after each operation, to
restore an optimal representation of the data.

2 The effective ranks have been obtained through the erank function provided by the
TT-toolbox [24].

Stochastic Evaluation of Large Interdependent Composed Models 57

6.2 Matrix Splitting and Neumann Expansion

In order to exploit the low-rank format, it is necessary to avoid the extraction
of the submatrix Q̂, since it cannot be directly expressed in the language of
Kronecker algebra. Therefore, an auxiliary rank 1 matrix S that satisfies

π̂T
0 Q̂−11 = πT

0 (ˆ̃Q − S)−11, (11)

where 1 is the vector of all ones of appropriate dimension, is defined as

S = (Q̃u)uT − uuT , u ∈ C
N , uj =

{
0 if j < N

1 if j = N
,

where N = |PS| is the dimension of Q̃. If Q̃ has a low TT-rank, the same
holds for Q̃ − S, and therefore it can be expected that exploiting an existing
TT-enabled system solver to compute the MTTA would maintain the TT-ranks
low.

The solvers AMEN [11] and DMRG [23], used in [17] where Q̃ is irreducible,
have been tested to solve Eq. (11). Unfortunately, there was not always conver-
gence, thus making the measure of interest not assessable in many cases.

For this reason, a different approach has been designed to compute the
MTTA. The idea is to make use of the so-called Neumann expansion:

(I − M)−1 =
∞∑

j=0

M j , (12)

valid for each matrix M that has spectral radius3 ρ(M) < 1.
The crucial point in KAES is the definition of the splitting of Eq. (1) such that

M = −Q−1
1 (Q2 −S) verifies the necessary condition for the Neumann expansion

applicability and promotes fast evaluation of Q−1
1 . This is done in two steps:

first a diagonal matrix Δ′ is chosen such that Δ′ ≤ Δ, and Δ′ = Δ′
1 ⊕ . . . ⊕ Δ′

n

and then Q1, Q2 are defined as Q1 = Δ′ + R, and Q2 = W + Δ − Δ′. From the
definition of Q1 and Q2 follows that

(Q̃ − S)−1 = (I + Q−1
1 (Q2 − S))−1Q−1

1 , (13)

and it is possible to prove [20] that ρ(M) < 1. Using (12) one can approximate
the row vector y = πT

0 (Q̃ − S)−1 by truncating the infinite sum to k terms:

yk =
k∑

j=0

(−1)jπT
0 (Q−1

1 (Q2 − S))jQ−1
1 . (14)

and then compute
MTTA = −yk · 1 + O(ρ(M)k+1) (15)

3 The spectral radius is defined as the maximum of the moduli of the eigenvalues.

58 G. Masetti et al.

with a straightforward dot product. The notation O(ρ(M)k+1) is used to indicate
that the error is bounded by a constant times ρ(M)k+1. The choice of Δ′ can be
tuned to choose a trade-off between the speed of convergence and the memory
consumption, determined by the rank growth in the iterations.

Notice that, defining zk+1 = Q−1
1 (Q2−S)zk and z0 = Q−1

1 (1−eT
NQ−1

1 1 ·eN),
it is possible to re-write Eq. (15) as MTTA = −πT

0 · zk + O(ρ(M)k+1), where
zk+1 ≥ zk for all k = 0, 1, . . . because eT

Nz0 = 0 and both Q−1
1 and Q2 are non-

negative matrices. This means that the MTTA can be computed in a conservative
way, being the approximation −πT

0 · zk a lower bound.
In this paper, a variation of (14) is employed; this modification yields a

method with quadratic convergence, overcoming difficulties encountered when
ρ(M) gets close to 1. It is based on refactoring (I − M)−1 as

(I − M)−1 = (I + M)(I + M2) · · · (I + M2k

) · · ·

The downside is that this variation requires to store powers of the matrix
Q−1

1 (Q2−S) in place of just results of matrix vector products and system solves.
This has higher memory requirements – but all these matrices are stored in the
TT-format, ensuring linear memory storage in the number of subsystems when
the TT-ranks (measuring the level of interaction between components) are low.

6.3 Inversion Through Exponential Sums

The main ingredient for implementing KAES is to efficiently evaluate the action
of the inverse of Q1 on a TT-vector and on a TT-matrix. To this aim, in this paper
a well-known exponential sums construction is adopted. This construction has
been used in a variety of contexts (see, for instance, [15,18,19] and the references
therein), often being rediscovered by different authors. The construction is built
upon a few important observations. The first one is that in Sect. 6.2 all the
addends are expressed as Kronecker sums, namely

Q1 = Q
(1)
1 ⊕ . . . ⊕ Q

(n)
1 . (16)

Thus, a very important property of the standard splitting in Eq. (2) is main-
tained in the new splitting: all the Kronecker products belong to only one of the
splitters, i.e., Q2, and the Kronecker sums to the other one, namely Q1.

The second consideration is that, given a TT-tensor X , it is possible to
efficiently evaluate the product Y = (M1 ⊗ . . .⊗Mn)X , as this can be performed
in O(n) flops, assuming a low TT-rank for X . Moreover, the result is still a
TT-tensor with the same rank.

All the Kronecker products are in Q2 and the assumption of dealing with
loosely interconnected components implies that there are only a few non-identity
matrices in W , and then in Q2. Thus, in this setting X is the sum of a few terms
with TT-rank 1, and consequently has low TT-rank.

The third observation is that, from Eq. (16) follows that

eQ1 = eQ
(1)
1 ⊗ . . . ⊗ eQ

(n)
1 . (17)

Stochastic Evaluation of Large Interdependent Composed Models 59

This can be easily proved using the addends defining the Kronecker sum in
Eq. (16) commute, and that eA+B = eAeB whenever AB = BA. Then, the
conclusion follows by (I ⊗ A)(B ⊗ I) = A ⊗ B.

Taking this remarks into account, let to consider the approximated expansion

1
x

≈
�∑

j=1

αje
−βjx, (18)

which can be obtained truncating the expansion of 1/x to
 terms; the error
in the approximation on [1,∞] performed when truncating to
 terms can be
controlled with a-priori estimates. Several constructions are available, we refer
the reader to [3] which provides the optimal result, and can guarantee an error
term that converges to zero exponentially in
. According to the construction
in [20], one can choose the decomposition Q1 in a way that the eigenvalues of
Q1 are the ones of R shifted to be in the left half of the complex plane. For
simplicity, here the case where the eigenvalues of R are real is considered4—the
general case can be handled with minimal modifications [20].

In particular, the spectrum of Q1 is contained in (−∞, σmin], and the action
of the inverse can be approximated, applying Eqs. (17) and (18), as

Q−1
1 ≈

�∑

j=1

αje
−βjQ

(1)
1 ⊗ . . . ⊗ e−βjQ

(n)
1 (19)

where σmin is the eigenvalue with minimum modulus of Q1 and αj , βj are com-
puted working on − 1

σmin
Q1, that has eigenvalues enclosed in [1,∞).

Since Q1 is a Kronecker sum, the computation of its eigenvalues can be
performed almost for free; in fact, if Q1 = Q

(1)
1 ⊕ . . . ⊕ Q

(n)
1 and we denote by

σ(Q1) its spectrum,

σ(Q1) =
{

σ
(1)
i1

+ . . . + σ
(n)
in

| σ
(k)
ik

∈ σ
(
Q

(k)
1

)}

In particular, computing the minimum and maximum eigenvalue just requires
to compute the extreme eigenvalues of each factor Q

(k)
1 .

Consequently, the action of the right-side expression in Eq. (19) is cheap to
evaluate, being the sum of l actions of Kronecker products.

6.4 Efficient Computation of the Neumann Iterations

In computing MTTA, one has to evaluate −πT
0 (Q − S)−11. To accomplish this,

it is possible to either evaluate πT
0 (Q − S)−1 and then compute the dot product

with 1, or to compute (Q − S)−11 instead, and take the dot product with π0.
It can be seen that the former strategy is more convenient. In fact, the graph

with MT as adjacency matrix is a subgraph of the one induced by Q̃T . In partic-
ular, states in PS\RS have no impact on the evaluation of MTTA because they
4 This assumption is verified in the cases considered in the numerical experiments.

60 G. Masetti et al.

correspond to zero entries in π0, and these entries will remain zero in πT
0 Mk for

any k > 0. This guarantees that this part of the chain has no effect on the com-
putation: there is no need to have an explicit algorithm to detect the reachable
states as in [6], because these are implicitly ignored.

Moreover, this strategy is seen to provide lower TT-ranks during the Neu-
mann iterations, compared to computing (Q − S)−11 first.

This choice has another beneficial effect: the addends in the series (14) are
non-negative, and therefore the MTTA is approximated from below—and at
every step the partial result is effectively a lower bound [20].

7 Case Study

To illustrate the effectiveness of the proposed approach, we consider a complex
computer system composed by n interconnected components C1,. . . , Cn, prop-
erly functioning at time 0. Each properly functioning component Ci fails after
an exponentially distributed time with rate λi. With probability p the failed
component Ci can be repaired and restarted as properly functioning after an
exponentially distributed time with rate μi. Instead, with probability 1 − p the
failure of Ci propagates instantaneously to all the components directly inter-
connected to it. In this case, all the failed components cannot be repaired. The
list of the d̄i indexes of the components where the failure of Ci can propagate is
D̄i = {h1, h2, . . . , hd̄i

}. The list of the di indexes of the components whose failure
can propagate to Ci is Di = {j1, j2, . . . , jdi

}. The topology of interactions among
components is given by the n × n adjacency matrix T = [Ti,j], where Ti,j = 1
if j ∈ D̄i, else Ti,j = 0. hus, T defines an oriented graph that represents how
the n components depend on each other and how they are connected to form
the overall system. Although different topologies T can be defined, for example
when different access rights to components are defined for different types of ser-
vice or customers, for the sake of simplicity only one topology T is considered
in the following.

7.1 Model of the Case Study

The SGSPN model representing the overall system of the case study is obtained
defining a submodel for each single component Ci, with i = 1, . . . , n, and com-
posing all such submodels through a transition-synchronization approach, as
described in Sect. 4. The model of the component Ci is depicted in Fig. 1. The
places Oni (initialized with one token), Downi and Fi are local to the model and
represent the states where, respectively, Ci works properly (one token in Oni),
is under repair (one token in Downi), and is failed and cannot be repaired. The
transitions TDowni and TOni are local to the model and represent respectively
the exponentially distributed time with rate piλi to the occurrence of a failure,
when the failed component can be repaired, and the exponentially distributed
time with rate μi after which the component returns to operate properly. The

Stochastic Evaluation of Large Interdependent Composed Models 61

transitions TFaili and TFailjk with k = 1, . . . , di are synchronization transi-
tions used to synchronize the models representing each component of the system,
i.e., to propagate the failure that affects Ci to its neighbors with probability
1 − pi. TFaili represents the exponentially distributed time with rate (1 − pi)λi

to the occurrence of a failure on Ci, that instantaneously propagates to Ch, with
h ∈ D̄i (without the possibility to repair the failed components). TFaili is repli-
cated in the models of Ci and Ch, for each h ∈ D̄i. In each Ch model, it exists a
transition TFailjk with jk = i, synchronized with TFaili, that propagates the
failure occurred in Ci. The transitions TFailjk for each k = 1, . . . , di in Fig. 1
represent the time to the occurrence of a failure on Cjk that instantaneously
propagates to Ci (without the possibility to repair the failed components). Each
transition TFailjk is replicated in the models of Ci and Ch with jk ∈ Dh. In each
model Ch exists a transition TFailh with jk = h, synchronized with TFailjk ,
that represents the occurrence of the failure in Ch that propagates to Ci.

In absence of immediate transitions, a synchronized transition is enabled
when it, and all the transitions synchronized with it, have concession. As shown
in Fig. 1, the transition TFaili has concession when one token is in the place Oni.
All the transitions TFailjk , for k = 1, . . . , di, have always concession, being the
multiplicity of each input arc equal to the number of tokens in the corresponding
input place Oni and Downi, as shown in Fig. 1. Thus, TFaili is enabled when
there is one token in Oni. The firing of TFaili occurs simultaneously in the
model of Ci where TFaili removes the token from Oni and adds one token to
Fi (the component is failed and cannot be repaired), and in the model of Ch, for
each h ∈ D̄i, where, as shown in Fig. 1 replacing i with h, TFailjk , with jk = i,
removes one token from Onh and Downh (if any) and adds one token to Fh (the
failure of Ci propagated to Ch that cannot be repaired).

On the model the following reward structure is considered

r =

{
1 if #Fi = 1 for all i,

0 otherwise,

Oni DowniFi

TDowni

pi · λi

TOni

μi

TFaili

(1− pi) · λi

TFailj1

(1− pj1) · λj1

#Downi

TFailjδi

(1− pjδi
) · λjδi

#Downi

...

#Oni

#Oni

Fig. 1. Model of the component Ci of the case study. The shaded transitions are
synchronization transitions.

62 G. Masetti et al.

so that the mean time to system failure τF corresponds to the cumulative mea-
sure defined by r on the interval of time [0,∞).

The model depicted in Fig. 1 can be classified as a reliability model [27] and
produces a CTMC with a unique absorbing state. The model of Fig. 1 is struc-
turally bounded, being a stochastic finite state machine and the corresponding
stochastic automaton is characterized by:

R(i) =

⎛

⎝
0 piλi 0
μi 0 0
0 0 0

⎞

⎠ , W (t,i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎝
0 0 (1 − pi)λi

0 0 0
0 0 0

⎞

⎟⎠ if j = i

⎛

⎜⎝
0 0 1
0 0 1
0 0 1

⎞

⎟⎠
if j �= i and
T (i, j) = 1

⎛

⎜⎝
1 0 0
0 1 0
0 0 1

⎞

⎟⎠ otherwise

(20)

The mean time to system failure τF is then evaluated through the MTTA,
because of the correspondence between the unique absorbing state of the CTMC
and the system failure state.

8 Evaluation Results

In this section, details on how the case study described in Sect. 7 has been
evaluated through KAES are discussed, and the obtained results in terms of time
and memory consumption are presented in Table 1. The analysis is carried out
for different numbers of components n = 10, 20, . . . , 50 and generating random
topologies of interactions following a predefined template. Results are obtained
implementing5 the case study SAN, i.e., Eq. (20), and the KAES method in
MATLAB [21].

As a form of validation of KAES, it has been verified that for n ≤ 10 the
values obtained for the mean time to system failure τF with KAES coincide
with the values obtained with the standard technique (full exploration of |RS|
followed by the linear system of Eq. (8) solution). However, since here the analysis
focuses on assessing the efficiency of the proposed method, the results obtained
for τF are out of the scope of this paper, and then are not shown.

In order to demonstrate the ability of KAES in improving on current limita-
tions suffered by standard techniques, analyzed scenarios are characterized by:
(1) both |PS| and |RS| are large; (2) the model parameters define a stiff [27]
CTMC. In particular, |PS| = 3n, being |RS(i)| = 3, and |RS| depends on T .

Note that if T represents the complete graph of interdependencies then |RS|
is trivially small. In fact, the initial state is the one with 1 token in Oni for all

5 https://github.com/numpi/kaes.

https://github.com/numpi/kaes

Stochastic Evaluation of Large Interdependent Composed Models 63

i = 1, . . . , n, and when the first TFailj fires, all the tokens are removed from
Oni for all i; thus, the system only has two reachable states.

Therefore, to have large |RS|, the topology T of interactions is obtained as
follows: first, a star topology is constructed, where, labeling the nodes from 1 to
n, there exist n−1 edges connecting 1 to j, for j = 2, . . . , n. Then, for each node
with index greater than 1, another edge connecting it to a random node is added
with probability 0.2. Although artificially generated, such topologies are good
representatives of topologies addressed by KAES (large number of components,
loosely interconnected), and are suitable for the case study illustrated in Sect. 7.

The parameters for each Mi have been randomly selected, but aiming at
obtaining a stiff CTMC. Specifically, in the performed evaluations they are:

λi ∈ [0.5, 1.5], μi ∈ [2000, 3000], pi ∈ [0.95, 1],

so that there are 4 orders of magnitude among the parameters. The tests have
been repeated 100 times for each value of n, using the randomized topology
described above. For large n, not all the cases could be solved using the avail-
able system memory. The percentage of cases exceeding the available memory is
reported in Table 1 for each n.

The average amount of CPU (user and system) time (in seconds) and the
average amount of the RAM memory (in GB) consumed by KAES have been
quantified. The averages are computed only on those cases where KAES was
successful. Computations were performed on a Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20 GHz, where each experiment had 12 CPUs and 120 GB of RAM at its
disposal. As shown in Table 1, the actual memory consumption for all the values
of n is much lower than the maximum available.

Note that, although not reported in the table, the standard approach was
not able to complete the state space exploration for n ≥ 20.

Table 1. Potential spaces dimensions, memory consumption, time and number of cases
where the KAES approach was successful, where μ reports the average over the 100
runs and σ is the standard deviation.

n |PS| Memory (Gb) Time (s) % Solved

μ σ μ σ Cases

10 59049 0.90 0.08 1.17 0.81 100%

20 3.49 · 109 3.07 9.68 65.83 346.24 100%

30 2.06 · 1014 8.31 19.40 193.29 619.63 91%

40 1.22 · 1019 4.42 9.97 140.89 477.67 91%

50 7.18 · 1023 7.79 17.27 299.44 840.78 84%

The method is able to solve the great majority of cases, although the rate
of success decreases as the number of components increases. For n equal to 10
and 20, all cases are solved, and the lowest percentage is 84 for the most pop-
ulated scenario (n = 50). An important observation is that time and memory

64 G. Masetti et al.

consumption seem to depend on the adopted topology, and in fact they can vary
significantly for the different topologies generated for a given n, as confirmed
by the values of the standard deviations reported in Table 1. However, it is not
straightforward to understand the phenomena leading to this result, namely
whether it is strictly related to the theoretical definition of the KAES method
or to its implementation (especially, how the rounding is performed since the
adopted toolbox for this procedure is a general one), or to both of them. Fur-
ther investigations are necessary to shed light on this aspect, so to promote
refinements in the KAES methodology and/or implementation.

0 5 10 15 20 25

4
6
8

10
12

KAES iterations

E
ffe

ct
iv

e
ra

nk
s

Fig. 2. Evolution of the effective ranks, representing an average of the TT-ranks of the
carriages, for each iteration of KAES, with n = 20 and a specific topology.

To confirm the low memory consumption, in Fig. 2 the evolution of the ranks
(represented using the “effective ranks”, a single number that measures an aver-
age of the TT-ranks in the various modes) is reported. The ranks are considerably
small, compared to |PS|, and for all the experiments evolve in a similar way.
This is a strong indicator that KAES has been well conceived as an efficient
solution method.

9 Conclusions and Future Work

This paper addressed analytical modeling of large, interconnected systems by
developing a new numerical evaluation approach, called KAES, to efficiently eval-
uate the Mean-Time-To-Absorption in CTMC with absorbing states. Resorting
to powerful mathematical theories, properly combined, the symbolic represen-
tation of both the descriptor matrix and the descriptor vector is pursued to
mitigate the explosion of the state space when evaluating the stochastic model.
Although symbolic representation has been already applied in existing studies,
such previous works focus on steady-state analysis while KAES targets limiting
analysis in presence of absorbing states.

KAES has been implemented in the MATLAB evaluation environment and
compared with traditional numerical solution when applied to a representative
case study for the evaluation of the MTTA. Although preliminary and restricted
to the studied scenario, obtained results clearly show the feasibility of KAES

Stochastic Evaluation of Large Interdependent Composed Models 65

at increasing the size of the system under analysis, while standard numerical
approaches fail due to the generated state space being too large. Moreover, the
way the measure is computed guarantees a conservative assessment, which is
relevant when dealing with dependability critical applications.

Of course, more experiments are needed to better understand strengths and
limitations of this new technique in a variety of system scenarios, at varying
both the system topology and the parameters setting. In particular, a deeper
understanding of the link between TT-ranks and the topology of interactions
among system components would be desirable, since the memory consumption
is strictly related to TT-ranks. This extended evaluation campaign is already
in progress. The obtained outcomes are expected to trigger improvements at
methodology and/or implementation level.

Further and most important, the powerfulness of the adopted techniques and
the conceived organization of the KAES steps make this method not restricted
to the evaluation of the MTTA measure only, but adaptable to evaluate gen-
eral performability related indicators. In fact, a straightforward generalization
of KAES is represented by the substitution of the all-ones-vector 1 in Eq. (8)
with a more general reward vector r, to promote the evaluation of other perfor-
mance and dependability properties of single absorbing state CTMC, expressed
as cumulative measures over the interval [0,∞). Whenever r can be expressed in
terms of AND and OR conditions based on r(i), defined on Mi, it is possible to
write r in terms of Kronecker products and sums, and apply KAES as presented
in this paper.

References

1. Ajmone Marsan, M., Balbo, G., Chiola, G., Conte, G., Donatelli, S., Franceschinis,
G.: An introduction to generalized stochastic Petri nets. Microelectron. Reliab.
31(4), 699–725 (1991)

2. Babar, J., Beccuti, M., Donatelli, S., Miner, A.: GreatSPN enhanced with decision
diagram data structures. In: Applications and Theory of Petri Nets, pp. 308–317
(2010)

3. Braess, D., Hackbusch, W.: Approximation of 1/x by exponential sums in [1, ∞).
IMA J. Numer. Anal. 25(4), 685–697 (2005)

4. Brenner, L., Fernandes, P., Sales, A., Webber, T.: A framework to decom-
pose GSPN models. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 128–147. Springer, Heidelberg (2005). https://doi.org/10.1007/
11494744 9

5. Buchholz, P., Dayar, T., Kriege, J., Orhan, M.C.: On compact solution vectors in
Kronecker-based Markovian analysis. Perform. Eval. 115, 132–149 (2017)

6. Buchholz, P., Kemper, P.: Kronecker based matrix representations for large Markov
models. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M.
(eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 256–295. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4 8

7. Ciardo, G.: Data representation and efficient solution: a decision diagram approach.
In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 371–394.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 9

https://doi.org/10.1007/11494744_9
https://doi.org/10.1007/11494744_9
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-72522-0_9

66 G. Masetti et al.

8. Ciardo, G., Miner, A.S.: A data structure for the efficient Kronecker solution of
GSPNs. In: Proceedings 8th International Workshop on Petri Nets and Perfor-
mance Models (Cat. No. PR00331), pp. 22–31 (1999)

9. Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of
generalized stochastic Petri nets. Nasa Technical Report Server 20040110963 (1996)

10. Czekster, R.M., Fernandes, P., Vincent, J.-M., Webber, T.: Split: a flexible and
efficient algorithm to vector-descriptor product. In: VALUETOOLS, pp. 83:1–83:8
(2007)

11. Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear
systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)

12. Donatelli, S.: Superposed stochastic automata: a class of stochastic Petri nets with
parallel solution and distributed state space. Perform. Eval. 18(1), 21–36 (1993)

13. Donatelli, S.: Superposed generalized stochastic Petri nets: definition and efficient
solution. In: Application and Theory of Petri Nets 1994, pp. 258–277 (1994)

14. Goševa-Popstojanova, K., Trivedi, K.: Stochastic modeling formalisms for depend-
ability, performance and performability. In: Haring, G., Lindemann, C., Reiser,
M. (eds.) Performance Evaluation: Origins and Directions. LNCS, vol. 1769, pp.
403–422. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46506-5 17

15. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations
for large linear systems of tensor product structure. Computing 72(3–4), 247–265
(2004)

16. Kemper, P.: Numerical analysis of superposed GSPNs. IEEE Trans. Softw. Eng.
22(9), 615–628 (1996)

17. Kressner, D., Macedo, F.: Low-rank tensor methods for communicating Markov
processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp.
25–40. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0 4

18. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor
product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)

19. Kutzelnigg, W.: Theory of the expansion of wave functions in a Gaussian basis.
Int. J. Quant. Chem. 51(6), 447–463 (1994)

20. Masetti, G., Robol, L.: Tensor methods for the computation of MTTF in large
systems of loosely interconnected components. Technical report, ISTI-CNR Open
Portal (2019). http://dcl.isti.cnr.it/tmp/tchrep-RtCv-63 CtAx Ol19 jEN5.pdf

21. MathWorks. MATLAB R2018a. The Mathworks Inc. (2018)
22. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),

541–580 (1989)
23. Oseledets, I.: DMRG approach to fast linear algebra in the TT-format. Comput.

Methods Appl. Math. 11(3), 382–393 (2011)
24. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–

2317 (2011)
25. Plateau, B., Fourneau, J.-M., Lee, K.-H.: Peps: a package for solving complex

Markov models of parallel systems. In: Puigjaner, R., Potier, D. (eds.) Model-
ing Techniques and Tools for Computer Performance Evaluation, pp. 291–305.
Springer, Boston (1989). https://doi.org/10.1007/978-1-4613-0533-0 19

26. Sanders, W.H., Meyer, J.F.: A unified approach for specifying measures of per-
formance, dependability and performability. Dependable Computing for Critical
Applications. Dependable Computing and Fault-Tolerant Systems, vol. 4, pp. 215–
237. Springer, Vienna (1991). https://doi.org/10.1007/978-3-7091-9123-1 10

27. Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering: Modeling,
Analysis, and Applications (2017)

https://doi.org/10.1007/3-540-46506-5_17
https://doi.org/10.1007/978-3-319-10696-0_4
http://dcl.isti.cnr.it/tmp/tchrep-RtCv-63_CtAx_Ol19_jEN5.pdf
https://doi.org/10.1007/978-1-4613-0533-0_19
https://doi.org/10.1007/978-3-7091-9123-1_10

Tools

RenewKube: Reference Net Simulation
Scaling with Renew and Kubernetes

Jan Henrik Röwekamp(B) and Daniel Moldt

Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, University of Hamburg, Hamburg, Germany

roewekamp@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI/

Abstract. When simulating reference nets, the size (places, transitions;
memory and CPU consumption) of the simulation is usually not known
before actual runtime. This behavior originates from the concept of
net instances, which are similar to objects in object-oriented program-
ming. The simulator Renew supports very basic distribution but the
manual infrastructural setup for simulations exceeding the capabilities
of one machine is left up to the modeler until now. In this work the
RenewKube tool, a ready to use Kubernetes and Docker based solu-
tion, is presented, that allows to control automated scaling of simulation
instances from within the net running in the Renew simulator.

Keywords: Petri net tool · High-level petri nets · Reference nets ·
Distributed computing · Scalability · Docker · Kubernetes

1 Introduction

In the context of simulating concurrent systems with Petri nets, a lot of different
net formalisms were presented in the past decades. One of them - reference nets
- allow for direct execution of a given model, as the formalism itself is expressive
enough to host Java-like inscriptions in its transitions. Being a concept close to
object-oriented programming, reference net simulations may vary in size during
their runtime.

Excessively large simulations may at some point exceed the capabilities of the
local machine they are running on. In research history there have been several
approaches to run distributed versions of reference nets. The most prominent one
is the Distribute plugin for the Renew simulator [16]. The setup of the infras-
tructure, installation and dependencies however can be tedious work. This even
holds for adding a single additional instance of Renew. Our previous publica-
tions already addressed the setup problematic by wrapping Renew into virtual
machines [15] as well as Docker containers [13,14].

To our best knowledge there is currently no available tool, that offers the
(semi-)automated scaling of reference net simulations, especially not controlled

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 69–79, 2019.
https://doi.org/10.1007/978-3-030-21571-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_4

70 J. H. Röwekamp and D. Moldt

from within the simulation itself. RenewKube1 was developed to address this
problem and allow for simulations, that are aware of their own scaling as well as
being able to influence it. RenewKube is based on Docker and Kubernetes [2].

1.1 Motivation and Scope

Due to the underlying concept of reference nets, the simulation itself is not
static in size2. Net instances may be created freely during runtime, giving the
modeler freedom to add as many transitions and places during runtime as he or
she needs for modeling. Obviously, as the simulation size is not limited by the
formalism like with most other net formalisms, the simulation size may at some
point exceed the capabilities of a single machine.

Distributing net simulations was intensively researched in the past 20 years
and results will be addressed in Sect. 3. This work, however, has a different focus
and is built on top of these results.

So far the setup of the infrastructure to host a multi-instance simulation was
left to the modeler. As it involves numerous tedious manual tasks, the overhead
to run distributed reference net simulations (if possible at all) was considerable.

This work presents an easy to use tool, that heavily assists in running a
distributed simulation. It is currently available as one-line command per node
setup for Ubuntu (based) Linux distributions but works with other distributions
and possibly Mac OS as well. It is also built with execution on cloud providers
like Amazon AWS3 and similar in mind. While the technology used should be
natively compatible, this has not been tested and or evaluated yet, and therefore
is not yet recommended to attempt.

Section 3 will briefly cover related research topics. Sections 4 to 6 present the
tool itself, with Sect. 4 presenting the simulator itself, Sects. 5 and 5 addressing
architectural details, and finally Sect. 6 discussing advantages and limitations.
The contribution is concluded in Sect. 7.

2 Basics

The technologies RenewKube is built on top of, are briefly outlined here.

Reference Nets. Reference nets are a high-level Petri net formalism introduced
by Kummer [9] back in 2002, integrating Object Petri nets [18] and Object-
oriented Petri Nets [10]. They follow the nets with in nets formalism [18] and
are structured hierarchically. The key idea is, that tokens are treated as refer-
ences to arbitrary objects or nets. Reference nets further introduce the concept
of net instances, which is inspired by objects in object-oriented programming.

1 Available at https://paose.informatik.uni-hamburg.de/paose/wiki/RenewKube.
2 size refers to utilized CPU, RAM usage and also (but not primarily) hard disk usage.
3 https://aws.amazon.com/.

https://paose.informatik.uni-hamburg.de/paose/wiki/RenewKube
https://aws.amazon.com/

RenewKube: Reference Net Simulation Scaling 71

Net instances may be created by transition inscriptions during simulation run-
time. Therefore, for a given time a net can exist in a multitude of different
variants.

Reference nets become powerful and expressive through the concept of syn-
chronous channels [5,9]. A transition may be member of one or more channels.
A net instance A holding the reference to another net instance B may fire a
transition in A in synchronization with a transition in B, as long as they share
a channel. Channels are identified by a name string.

To further illustrate the concept of reference nets consider the following exam-
ple in Fig. 1. An initial net instance of NetA may fire the upper transition first,
consuming an unmarked token and generating a new net instance of NetB, plac-
ing a reference to it in the upper right place. Afterwards either the transition may
fire again and create a second net instance of NetB, or the transition at the bot-
tom may fire. The transition is inscribed with a so called downlink ni:ch(d),
which means to synchronize with the net instance ni on the channel ch and
unify the variable d. NetB has a transition, that is inscribed with an uplink
:ch(input), which is its counterpart. Note that the data transfer direction is
not dependent on the concepts of up- or downlinks. In the example the syn-
chronization is possible and the transitions fire simultaneously. input in NetB
is then unified with the data of variable d of NetA.

Ultimately the net system blocks with a total of three net instances, with
two references to net instances of NetB in the rightmost place of the single NetA
instance and “data1” and “data2” tokens, one in each of the NetB instances.
It cannot be determined which one ends in which instance of NetB before the
actual execution and it may be different after each restart of the simulation.

Fig. 1. A simple reference net example

Renew. The Reference Net W orkshop (Renew) was developed by the TGI
research group (nowadays ART) at the Department of Informatics of the Uni-
versity of Hamburg. It features a Java based simulator implementation of the
reference net formalism. Several additions and features have been and are devel-
oped for it.

The core simulator uses a concurrent but only local simulation engine. There
have been however, different implementations of distributed Renew simulations

72 J. H. Röwekamp and D. Moldt

with the one used here being the Distribute Renew plugin [16]. For further
information see Sects. 3 and 4.

Renew comes with a WYSIWYG user interface, the modeler can use to
model concurrent systems. Upon completion the produced net system can
directly be launched as a simulation.

Docker. Docker [2] is a Linux container technology4 and is maintained by
Docker Inc5. The key concepts of Docker are images and containers. It is impor-
tant to understand these, as they are used in the remainders of the paper.

An image is a collection of binaries and is usually derived from other images.
In a typical use case the image captures the minimal required software (libraries,
runtimes, etc.) to run an enclosed application. Images are stored in a registry
and can be pushed or pulled to target machines by a Docker daemon.

The Docker daemon may launch images as isolated processes on the system,
which is then called a container. Containers also do not persist any data (locally)
at all, though exceptions from this rule can be defined using volumes.

Kubernetes. Kubernetes is a cluster management system initially developed
by Google, which donated it to the Cloud Native Computing Foundation6. Its
main functionality, that is used by RenewKube, is its ability to remotely launch
and shut down containers. Kubernetes offers a variety of services, that are too
diverse to cover here in their entirety, so only the relevant concepts for this work
will be introduced:

– A Pod may host one or more container(s) and is the atomic unit of Kuber-
netes. Pods are a volatile structure and may be shut down or launched at any
given time.

– A ReplicaSet defines a total number of pods, that the entire cluster is sup-
posed to run. When the actual number of pods differs from the desired num-
ber, the ReplicaSet starts or stops pods to match these numbers.

– A Deployment usually holds a related ReplicaSet and offers more advanced
and high level features like rolling updates and the like.

– A Service offers a kind of access layer by exposing certain parts of the cluster
to either other parts, or the outside. They can target one or more Pods or
Deployments. As Pods are volatile, mapping Services to Pods requires special
attention and is not viable by built-in Kubernetes features.

Java RMI. Java RMI is the Java implementation of the well known remote
method invocation protocol (see e.g. [11]). Currently the best available imple-
mentation of distributed reference nets (Distribute plugin [16]) is internally built
on top of Java RMI. Therefore it becomes a prerequisite for RenewKube in its

4 In recent implementations there is Windows support as well.
5 https://www.docker.com/.
6 https://kubernetes.io/.

https://www.docker.com/
https://kubernetes.io/

RenewKube: Reference Net Simulation Scaling 73

current state as well, although nowadays Java RMI is certainly not state of the
art any more. While most inner workings of Java RMI are not relevant here,
it is important to note, that it expects to talk to the exact same node for an
established connection, as well as using non-trivial (random) port management
per default, making the setup of the cluster a bit more complicated. See Sects. 5
and 6 for further information on this topic. Java RMI is transparent for the end
user of RenewKube.

3 Related Work

During the past years several related papers have been published, with the most
relevant being briefly addressed here.

Simulation of Petri nets was researched early using place [6] or transition sim-
ulation, as well as communicating sequential processes [17]. Soon after attempts
to distribute the simulation were made either as basis for distributed code frag-
ments [7,8] or directly as net simulation [4]. A few years later reference nets were
introduced by Kummer [9]. As an example for more recent publications, a net
based library for parallel computing was released in 2017 [12].

The combination of cloud computing and Renew has been addressed by
Bendoukha [1]. However, remote instances were run in isolation and did not
feature a full multi-machine reference net simulation. Simon [16] introduced the
Distribute plugin for Renew, that serves as the current base for RenewKube.
Important groundwork was done regarding the analysis of virtual machine and
Docker based solutions and was published by Röwekamp [14,15]. Being early
steps, these solutions did not solve the problem of (semi-)automatic scaling like
RenewKube does.

Architectural thoughts in the direction of REST service based distributed
simulations were presented in [13] and will - once implemented - become the
successor of the Distribute plugin to serve as base for RenewKube.

Buchs et al. considered Docker containers for distributed model checking in
2018 [3]. The primarily addressed topic is transportability of model checkers and
machine learning based tool choice but not tool-internal scaling.

4 The Simulator

The simulator interface itself is identical to Renew. A usage guide of Renew
is available at its main website7.

How to Obtain. RenewKube can be downloaded from our website alongside
with further instructions on how to install and set it up:

https://paose.informatik.uni-hamburg.de/paose/wiki/RenewKube

7 http://www.renew.de.

https://paose.informatik.uni-hamburg.de/paose/wiki/RenewKube
http://www.renew.de

74 J. H. Röwekamp and D. Moldt

4.1 Using the Simulator

As the major part of the simulator is Renew, the usage is similar to the Renew
base package. The usage of the Distribute plugin is a bit different and is therefore
briefly summarized here. Full instructions and workings of the plugin can be
found in the respective publication [16]. Note, that these syntax and formalism
changes originate from the Distribute plugin alone and are by that only indirectly
related to RenewKube.

Distribute Plugin. To prepare for distributed execution, a net instance
needs to register itself in the RMI registry. Also, to synchronize transitions
across machine borders a remote net instance needs to be known locally.
Both is achieved using the transition inscriptions DistributePlugin.
registerNetInstance(...) and DistributePlugin.getNetInstance(...)
respectively. The exact syntax can be found in examples or [16].

Synchronization is then performed using the ! symbol instead of the usual :
symbol on the downlink. Also due to limitations of the Distribute plugin it needs
to be specified in which direction data transfer will happen. In contrast to the
classic Renew the syntax differs when sending data down the link or up the
link8.

To send a data token data from the net holding the remote net instance r
over the channel ch the classic-like syntax: r!ch(data); and :ch(data) is used.
To send data up the link the following syntax is used on the uplink part: :ch()
<- data and on the downlink part: r!ch() -> data.

Another technical limitation arises at this point: Passed data needs to be Java
serializable, otherwise it cannot be sent to another remote instance by RMI.

RenewKube. RenewKube itself - once set up - is almost invisible for the
modeler in terms of syntax. The main interaction with RenewKube is done
with the getScale(); and setScale(<number>); inscriptions. These can be
used to get the currently available Renew replicas in the cluster and to set a
desired amount.

Another thing to bear in mind is, that due to the distributed nature of the
simulation any remote net instance may cease to exist (or become unreachable)
at any given time. Therefore, if tokens referring to remote workloads are used, it
is advisable to only finally consume these upon completion of remote subtasks.
This way it is possible to assign the workload to another remote instance, if the
first instance ceases to exist. It might also be desirable to use timeouts in this
context. Depending on the reliability of the underlying infrastructure a loss of
remote net instances may occur more or less often.

Another necessity is to declare a net to be launched as initial remote net
instance (the one the remote simulator fires up with). For now this net needs to
be named remoteStart.

8 For definition of up- and downlinks see Sect. 2.

RenewKube: Reference Net Simulation Scaling 75

5 Architecture

In this section a brief overview of the high-level architecture is given.

Overview. The core of RenewKube consists of three types of nodes: the
Renew with the graphical interface (following referred to as “User node”), the
cluster master and n additional worker nodes. The user node and the worker
nodes each hold an instance of the Renew simulator, the cluster master only
addresses administration overhead. Cluster master and worker nodes run inside
a protected enclosed environment in the following referred to as the “cluster”,
while the user node is positioned outside of the cluster on the users workstation.
The overview of the architecture can be found in Fig. 2.

Fig. 2. Architecture of RenewKube

User Node. The user node is a single running Java application, that directly
inherits the architecture of the Renew simulator, discussed e.g. in [9]. Besides
the plugin for basic distribution it also hosts an adapter plugin responsible
for communication to the cluster master. The adapter plugin handles scaling
requests by the net system as well as reporting back the current state of the
cluster.

The additional software for the user node was implemented as modification of
the Renew simulator, so the user is only required to launch a single executable
on their workstation, while allowing tight coupling with the running simulator
engine.

76 J. H. Röwekamp and D. Moldt

Worker Node. The worker node is the most simple component. It stays on
standby until it gets recruited by the cluster master. Upon recruitment an init
script will inject nets to simulate into its own copy of the Renew simulator,
requests exposure of the to be created Renew instance from the RenewKube
manager (see below) and finally fires it up. The Renew simulator then will
use the distribution plugin to proceed to blend into the running simulation and
extending the simulations (physical) scope.

Cluster Master. The cluster master is the most complex component. It itself
consists of four services/components: The container manager (that is provided
by Kubernetes) alongside with a network abstraction layer, a private Docker
image registry, the Java RMI registry and finally an integration service called
RenewKube manager, that handles multiple things like the integration of addi-
tional physical nodes, authorization against the Kubernetes manager and relay-
ing information and accepting tasks, providing the net templates to additional
running simulations and handling individual Renew extension containers in
regards to accessibility from the user node. The RenewKube manager is a
stateless application based on Java Spring and the REST technology.

Process

To illustrate communication and tasks of the individual components, the process
regarding installing and launching a scalable simulation is described here.

First the Kubernetes cluster manager is set up, followed by the private reg-
istry, the RenewKube manager and finally the RMI registry. The private reg-
istry will be fed an image of a headless9 Renew alongside with an init script.
After that additional worker nodes may be added to the cluster. Additional
worker nodes use the RenewKube manager to authorize against the master
once and then are managed by Kubernetes. All of this however only happens
once upon initial installation and is omitted in already set up clusters.

Now, the workstation version of Renew is launched and upon start of a sim-
ulation, the current net system is packed and sent to the RenewKube manager,
which stores it in memory. Then it fires up a new Deployment referring to the
image created earlier in the local Docker registry.

When more remote Renew instances are desired, the Kubernetes master
launches a new Pod by ReplicaSet reconciliation. The init script inside the Pod
queries the RenewKube manager for the current net system and also identifies
itself, so the RenewKube manager can set up an exposure Service directly for
the Pod. This is necessary, because Java RMI requires to communicate with the
same (not an equivalent) instance of a remote application every time. Therefore
static routes are necessary and it is not sufficient to map an exposure Service to
the Deployment. The RenewKube manager uses a Kubernetes feature called
NodePorts, that allows the Service (Pod) to be accessed on any (worker or mas-
ter) node of the cluster on the same port. When the Pod is not hosted on the
9 Headless in this context refers to running without graphical user interface.

RenewKube: Reference Net Simulation Scaling 77

queried node, the request is automatically and transparently proxied to the cor-
rect node inside the cluster.

The init script then proceeds to prepare the net system for the Renew
instance and launches it with the respective parameters. After that the both
Renew instances may communicate directly and unaware of the Kubernetes
overhead as if they were launched on different machines by hand.

6 Evaluation

The presented simulators primary contribution is the scaling ability. The ability
to scale a simulation adds great possibilities to writing simulations, like for exam-
ple simulating large organizations, computing large reachability graphs, model
complex agent systems with numerous agents and many more. The overhead
introduced by the underlying technology (Kubernetes, Docker) might be intim-
idating at first but once set up it is almost entirely covered by RenewKube.

A simulator with the provided functionality built right into the tool itself is to
our best knowledge not yet available. Therefore RenewKube lays an important
foundation for large scaled Petri net simulations.

Limitations

Like every complex tool, RenewKube comes with a number of limitations. Cur-
rently the simulator only allows one user node and each physical node may only
run up to 100 headless Renew instances. However, a single or a few instances
usually do a good job in utilizing a local multicore system.

Another limitation arises from Java RMI, that was developed long before the
cloud computing era. Because of internal limitations currently the hard limit for
an entire cluster is about 65,000 instances of Renew (after subtracting poten-
tially used system ports). A possible solution could be virtual IPs.

7 Conclusion and Outlook

A simulator for reference nets has been presented, that features fully integrated
(semi)automatic scaling capabilities. By that a base is created, that easily allows
for detailed reference net simulations of a large size, that were extremely difficult
or impossible to set up before. It is built on state of the art scaling technology
used by enterprises and with application to cloud computing provides in mind.
The evaluation of these providers however, is left to further research.

The current state of RenewKube allows scaling requests send from within
the simulation. However, hiding the scaling altogether is certainly an interesting
topic to address in future research.

78 J. H. Röwekamp and D. Moldt

References

1. Bendoukha, S.: Multi-agent approach for managing workflows in an inter-cloud
environment. Dissertation, University of Hamburg, Department of Informatics,
Vogt-Kölln Str. 30, D-22527 Hamburg (2017)

2. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

3. Buchs, D., Klikovits, S., Linard, A., Mencattini, R., Racordon, D.: A model checker
collection for the model checking contest using docker and machine learning. In:
Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 385–
395. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_21

4. Chiola, G., Ferscha, A.: Distributed simulation of Petri nets. IEEE Parallel Distrib.
Technol. 1(3), 33–50 (1993)

5. Christensen, S., Damgaard Hansen, N.: Coloured Petri Nets extended with chan-
nels for synchronous communication. In: Valette, R. (ed.) ICATPN 1994. LNCS,
vol. 815, pp. 159–178. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58152-9_10

6. Hauschildt, D.: A Petri net implementation. Fachbereichsmitteilung FBI-HH-M-
145/87, University of Hamburg, Department of Computer Science, Vogt-Kölln Str.
30, D-22527 Hamburg (1987)

7. El Kaim, W., Kordon, F.: An integrated framework for rapid system prototyping
and automatic code distribution. In: Proceedings of RSP, Grenoble, France, pp.
52–61. IEEE (1994)

8. Kordon, F.: Prototypage de systèmes parallèles à partir de réseaux de Petri colorés,
application au langage Ada dans un environment centralisé ou réparti. Dissertation,
Université P & M Curie, May 1992

9. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
10. Maier, C., Moldt, D.: Object coloured Petri nets - a formal technique for object

oriented modelling. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) Concur-
rent Object-Oriented Programming and Petri Nets. LNCS, vol. 2001, pp. 406–427.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45397-0_16

11. Pitt, E., McNiff, K.: Java.Rmi: The Remote Method Invocation Guide. Addison-
Wesley Longman Publishing Co., Inc, Boston (2001)

12. Pommereau, F., de la Houssaye, J.: Faster simulation of (coloured) Petri nets using
parallel computing. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017.
LNCS, vol. 10258, pp. 37–56. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57861-3_4

13. Röwekamp, J.H.: Investigating the Java Spring framework to simulate reference
nets with Renew. Number 2018–02 in Reports/Technische Berichte der Fakultät für
Angewandte Informatik der Universität Augsburg, pp. 41–46. Universität
Augsburg, Fachbereich Informatik (2018)

14. Röwekamp, J.H., Moldt, D., Feldmann, M.: Investigation of containerizing dis-
tributed Petri net simulations. In: Moldt, D., Kindler, E., Rölke, H. (eds.) Petri
Nets and Software Engineering. International Workshop, PNSE 2018, Bratislava,
Slovakia, 25–26 June 2018. Proceedings, volume 2138 of CEUR Workshop Pro-
ceedings, pp. 133–142. CEUR-WS.org (2018)

15. Röwekamp, J.H., Moldt, D., Simon, M.: A simple prototype of distributed execu-
tion of reference nets based on virtual machines. In: Proceedings of the Algorithms
and Tools for Petri Nets (AWPN) Workshop 2017, pp. 51–57, October 2017

https://doi.org/10.1007/978-3-319-91268-4_21
https://doi.org/10.1007/3-540-58152-9_10
https://doi.org/10.1007/3-540-58152-9_10
https://doi.org/10.1007/3-540-45397-0_16
https://doi.org/10.1007/978-3-319-57861-3_4
https://doi.org/10.1007/978-3-319-57861-3_4

RenewKube: Reference Net Simulation Scaling 79

16. Simon, M., Moldt, D.: Extending Renew’s algorithms for distributed simulation. In:
Cabac, L., Kristensen, L.M. Rölke, H. (eds.) Petri Nets and Software Engineering.
International Workshop, PNSE 2016, Toruń, Poland, 20–21 June 2016. Proceed-
ings, volume 1591 of CEUR Workshop Proceedings, pp. 173–192. CEUR-WS.org
(2016)

17. Taubner, D.: On the implementation of Petri nets. In: Rozenberg, G. (ed.) APN
1987. LNCS, vol. 340, pp. 418–439. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-50580-6_40

18. Valk, R.: Petri nets as token objects - an introduction to elementary object. In:
Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–24. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-69108-1_1

https://doi.org/10.1007/3-540-50580-6_40
https://doi.org/10.1007/3-540-50580-6_40
https://doi.org/10.1007/3-540-69108-1_1

PNemu: An Extensible Modeling Library
for Adaptable Distributed Systems

Matteo Camilli(B), Lorenzo Capra, and Carlo Bellettini

Department of Computer Science, Università degli Studi di Milano, Milan, Italy
{camilli,capra,bellettini}@di.unimi.it

Abstract. PNemu is an extensible Python library primarily tailored
for modeling adaptable distributed discrete-event systems by means of
standard (Low- and High-level) Petri nets. The core of PNemu is com-
posed of a number of modules for the editing and interactive simulation
of models. In particular, it supplies a number of off-the-shelf building
blocks to easily formalize self-adaptation having a decentralized con-
trol through multiple interacting feedback loops. PNemu can be used
in conjunction with other software tools to efficiently compute the state
space and perform formal verification activities. This paper describes the
PNemu structure, features, and usage.

Keywords: High-Level Petri nets · Self-adaptation ·
Decentralized control · Modeling · Simulation

1 Introduction and Objectives

Software tools play a crucial role in developing modern/complex distributed sys-
tems dealing with different operational conditions due to dynamically changing
environments. In particular, guaranteeing important qualities such as correct-
ness, safety, robustness, dependability, in such systems is a challenging task.

Self-adaptive systems [12] can dynamically and reactively evaluate their own
(execution) context and adjust their behavior accordingly. A popular approach
to realize adaptation is using a feedback control loop [9]. The control loop
continuously reasons about the current state of the system itself and the sur-
rounding environment to take proper actions. In a distributed (decentralized)
setting, different control components may operate concurrently, possibly lead-
ing to conflicting/undesired situations. Facing such a complexity both in design
and verification phases has been recognized as a major challenge in the field of
self-adaptation [1]. Thus, software tools (based on formal methods) supporting
both phases are highly demanded.

In this paper, we introduce an extensible Python library named PNemu1.
PNemu is a modeling/simulation library for adaptable distributed discrete-

event systems, having decentralized adaptation control, that leverages the the-
oretical foundation of High-Level Petri nets (HLPNs) [7]. Petri nets (PN)
1 Available as open source software at https://github.com/SELab-unimi/pnemu.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 80–90, 2019.
https://doi.org/10.1007/978-3-030-21571-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_5&domain=pdf
https://github.com/SELab-unimi/pnemu
https://doi.org/10.1007/978-3-030-21571-2_5

PNemu: An Extensible Modeling Library for Adaptable Distributed Systems 81

are a sound and expressive (in some cases Turing complete) formal model
for distributed systems. Classical PNs are, however, not adequately equipped
(even in their High-level flavors) for representing self-perception and self-
adaptation dynamics, typically seen in modern/complex distributed systems.
Several attempts to bridge this gap have given rise to PN extensions, most with
complex algebraic/functional annotations, where an enhanced modeling capa-
bility is very often not adequately supported by convenient analysis techniques
and software tools (see [2,4] for a more detailed state-of-art discussion), due to
an unclear/unintuitive semantics that limits the applicability of traditional PN
analysis techniques and formal verification activities (such as model checking).

Of particular interest are those approaches combining higher-order tokens
and the features of object-oriented languages. A representative of this class of
formalisms is Reference Nets [8], supported by the Renew tool. Even though
inspired by the same principles, the PNemu blueprint relies instead on con-
solidated PN formalisms. In fact, the operational semantics of models built by
using PNemu is given by a HLPN with first-order tokens (following the ISO/IEC
standard [6]).

The major objectives during the development of PNemu have been:

– Clarity : the modeling approach should provide a clear abstraction of dynamics
associated with self-adaptive distributed systems in order to supply an easy-
to-understand API, following a clear separation of concerns.

– Extensibility : the library should provide a baseline that can be easily extended
by other developers, or exploited to build other tools.

– Interoperability : working with other tools should be easy, in order to exploit
them to complement the currently implemented basic functionalities.

PNemu builds on the modeling approach introduced in [2,3]. In this paper,
we primarily focus on engineering aspects, such as design and implementation.
concerns. We also describe the main functionalities, in particular, how the frame-
work formalizes multiple distributed control loops by means of HLPNs The inter-
operability of the library with third-party software tools (in order to carry out
formal verification activities) is also briefly discussed.

In Sect. 2 we sketch a few core background concepts. In Sect. 3 we describe
the main elements of the PNemu library through a simple example. In Sect. 4
we outline a number of usage scenarios. In Sect. 5 we report our conclusion and
ongoing work.

2 Preliminaries

Distributed Self-adaptation. The term Self-adaptation [12] is usually
employed to characterize systems that can autonomously adapt their behav-
ior at runtime. Self-adaptive systems are able to perceive contextual changes
and (re)organize their own features, services, or even structure, in response to
these changes. Many models of adaptation assume a single centralized (feedback)

82 M. Camilli et al.

control loop that observes the execution context and possibly changes the run-
ning system. In essence, a control loop is able to sense the state of the managed
subsystem/environment by reading data from a monitor component. Gathered
data are analyzed to check whether some adaptation is required. In that case,
specific actions are planned, then executed by actuators.

When multiple adaptation concerns (or goals) [9] have to be considered (e.g,
efficiency, reliability, security, etc.), a single centralized loop may not be sufficient
to manage the growing complexity [1]. A way to face it is to concurrently run
multiple loops over distributed components. These loops operate and communi-
cate through a shared knowledge in a fully decentralized setting, possibly leading
to conflict situations. The two main components of a distributed self-adaptive
system are the base layer, containing the managed subsystem (implementing the
application logic) and the surrounding environment, and the managing layer, on
top of it, implementing the adaptation logic through a number of interacting
feedback loops.

Petri Net Formalisms. The PNemu framework employs two formalisms, cor-
responding to the aforementioned layers: the low (or base) layer is defined by
a P/T system [11] (enriched with inhibitor arcs) which represents the main
functionalities of a system; the high (managing) layer, in which self-adaptation
aspects are gathered, is defined by interacting High-level PN (HLPN) com-
ponents. The PNemu library relies upon HLPNs as defined in the SNAKES
library [10], a Python implementation of HLPNs (according to [6]). In SNAKES,
tokens are Python objects, transitions are guarded by Python Boolean expres-
sions, and arcs are annotated with Python expressions. SNAKES can be used to
either perform a step-by-step simulation or exhaustively explore the state space.

3 The PNemu Library

PNemu is primarily tailored to model distributed self-adaptive discrete-event
systems by means of a clear separation of concerns. The user defines in a modular
fashion an HLPN model whose architecture follows the reference two-layer model
described above. Both the base and the managing layers can be specified by
means of an easy-to-use API.

The rationale of our modeling approach is as follows. The base layer is for-
malized by a P/T system representing the common dynamics of the managed
sub-system (and the surrounding environment). The P/T system is automati-
cally encoded as the initial marking of a “special” HLPN, called emulator, exactly
reproducing its behavior. By acting on the emulator’s marking is it possible to
introspect and, if needed, change the current state/structure of the emulated
system. Any interaction with the emulator is safely performed through high-
level subnets (using read/write library primitives) connected to the emulator by
the PNemu framework. These subnets correspond to the feedback loops of the
self-adaptive system and compose the managing layer.

PNemu: An Extensible Modeling Library for Adaptable Distributed Systems 83

The library is implemented as a Python package on top of SNAKES. Figure 1
shows a static view of the PNemu architecture. The main modules are as follows:

– pnemu.base contains the Emulator component and the structures needed to
define a P/T net.

– pnemu.manager contains the components needed to model/execute the man-
aging layer. In particular, the FeedbackLoop class allows control loops to be
defined in terms of HLPNs. The class AdaptiveNetBuilder is used instead
to connect the control loops to the emulator in order to build the overall
adaptable system model.

– pnemu.primitives provides a number of elementary HLPNs abstracting the
notions of sensors and actuators used by control loops. PNemu comes along
with a number of pre-defined LibEntry instances making up a basic, yet
complete, set of sensors/actuators. The latter operate atomically, ensuring a
consistent encoding of the base-layer.

snakes.net

PetriNet

pnemu.base pnemu.primitivespnemu.manager

PT

TP

Emulator

LibEntry

Lib

FeedbackLoop

AdaptiveNetBuilder

Node

TransitionPlace

ArcAnnotation

Fig. 1. UML Class diagram of the PNemu Python package.

In the next sections, we describe the base usage of the library through a sim-
ple example of self-healing Manufacturing System (MS), whose nominal behavior
is described by the P/T system in Fig. 2a. In this model, two symmetric produc-
tion lines (transitions line1, line2) refine raw pieces that are then assembled to
get the final product (transition assemble). Raw pieces are loaded from a stor-
age into either line, two at once (transition load). Once all of them have been
worked, the system restarts (transition reset). A production line is subject to
failures, hence the model includes the specification of a faulty behavior (transi-
tion fail). A typical adaptation scenario (taking into account the fault tolerance
adaptation concern) involves the reconfiguration of the MS upon a fault (real-
istically, without shutting the MS down), so that it can continue working with
the available production line. The faulty line is detached from the MS, and the
behavior of both the loader and the assembler is adapted accordingly. Figure 2b
shows the reconfigured MS. Carrying out adaptation without blocking the sys-
tem execution is far from intuitive and can lead to unexpected and/or undesired
situations, such as raw piece loss or, even, deadlocks.

84 M. Camilli et al.

The complete specification of this example can be found along with the addi-
tional material provided inside the PNemu repository.

3.1 The pnemu.base Module

This module allows the model’s base layer (e.g., the P/T system in Fig. 2a) to be
defined. This can be done by instantiating class PT, either by loading an existing
PNML file or by editing step-by-step the base-layer net. Class PT also provides
the means to carry out the interactive simulation, state-space exploration, and
visualization of the base layer.

(a) Nominal behavior. (b) Adapted behavior.

Fig. 2. A fault-tolerant manufacturing system.

Once the base layer has been defined, we need to initialize the emulator
component, that reifies the base layer into the high layer. An instance of class
Emulator implements the HLPN shown in Fig. 3, whose marking encodes the
base layer. Each place of the emulator, in fact, matches an element of the
definition of a P/T system. As an example, place mark holds a multiset of type-P
tokens which represents the P/T system’s current marking. The guard of tran-
sition move and the annotations on incident arcs encode the enabling and firing
rule for P/T systems, respectively [2]: there is an exact correspondence between
enabled firing modes of move and base layer’s transitions enabled in the P/T
marking encoded by place mark.

Figure 4 (line 3) shows the usage of PNemu to perform these preliminary
steps, i.e., base-layer definition and subsequent emulator initialization.

Fig. 3. The emulator model. The operator “!” denotes the flush function.

PNemu: An Extensible Modeling Library for Adaptable Distributed Systems 85

3.2 The pnemu.manager Module

The components of this module are used to specify (arbitrarily complex) feedback
loops in terms of HLPNs. Each loop interacts with the base layer by means of
read/write primitives acting on the emulator’s marking. This way, the managing
layer can monitor-analyze the execution of the managed subsystem, then plan-
execute changes accordingly, in order to achieve specific adaptation goals. A
loop is incrementally built by defining the structure and the annotations of a
HLPN, with intuitive method-calls (Fig. 4, lines 6–15). For instance the net loop
(line 6) contains the places init and sample, connected by a transition whose
label “lib.getTokens(p)→n” denotes a (call to a) read library primitive having
the corresponding signature. The firing of this transition causes the assignment
of the current marking of p (the base layer place passed as an argument) to
the output variable n (line 12). This primitive is used to sample the status of
the faulty line, upon which (i.e., when place broken is marked) the managed
subsystem reconfigures itself.

Transitions having labels rmOArc and addOArc (lines 14–15) are instead two
examples of write primitives (i.e., actuators). The former is used to temporarily
detach the faulty line (by removing the arc from load to line1). The latter
makes the pair of loaded pieces enter the available line (by increasing the weight
of the input arc from load to line2). Figure 5a shows a portion of the HLPN
that formalizes the feedback loop. It is worth noting that a change on the base
layer is triggered just after verifying the presence of a token in broken. In such a
case, loading of pieces is temporarily suspended (by means of addHArc primitive),
pending pieces on faulty line are moved to the other line, and so on, until the final
reconfiguration, shown in Fig. 2b, is eventually reached. As already mentioned,
all the changes operated by means of write primitives take place concurrently
with base layer emulation.

In our example, the specification of the managing subsystem contains another
loop, taking into account the load balance concern: this loop allows the MS
nominal behavior to be restored after the faulty line has been repaired, so that
the raw pieces can be evenly distributed among the available production lines.

Once the feedback loops have been created, the overall adaptive system model
is made up using the AdaptiveNetBuilder (lines 17–20). The builder compo-
nent plugs each feedback loop to the emulator net by connecting the emulator’s
transition move to the initial places of any loop net. This way, whenever the
base layer enters a new state (i.e., transition move fires), the loops are triggered.
The framework transparently handles (at net level) the interaction between base
layer and feedback loops according to the Balking pattern (i.e., new triggers are
ignored while a loop is being executed). It is also possible to associate a loop
with observable events (i.e., specific firing transitions) of the base layer.

The build method call (line 20) returns a SNAKES HLPN (i.e., a PetriNet
object) that can be in turn inspected, visualized, executed, or analyzed, as dis-
cussed in Sect. 4.

86 M. Camilli et al.

Fig. 4. A Python code snippet showing an example of the PNemu API usage.

3.3 The pnemu.primitives Module

This module contains a basic, yet complete, set of primitives that constitute
an easy-to-use API through which to do base layer introspection/manipulation.
These primitives implement read, add, removal, operations on any structural or
state elements of the emulated P/T system. The primitives are implemented as
high-level transitions wrapped into instances of LibEntry class. As an example,
Fig. 5b shows the definition and instantiation of getTokens. The definition con-
tains the signature and the net elements of the primitive. In the example, the
getTokens reads the content of the base layer’s place mark into m, and returns
the multiplicity (i.e., the marking) m(p) of the P/T place denoted by the argu-
ment p (a free variable). An instantiation instead takes place at any primitive
call by AdaptiveNetBuilder, during the construction of the HLPN representing
the whole self-adaptive system. Each transition representing a primitive call in
a loop-net is superposed with the corresponding definition, by carrying out a
simple term matching in their signatures. For example, when superposing the
occurrence of getTokens in the loop-net with its definition, the free variable p in
the definition is matched by the constant “broken”, whereas the free variable n
of the loop’s transition is matched by expression m(p). The arguments of a prim-
itive call can be either supplied “in place”, as shown in Fig. 5a, or indirectly, by
means of variables annotating input arcs of the calling transition.

PNemu: An Extensible Modeling Library for Adaptable Distributed Systems 87

init sample

n

[n==0]

n

n

[n>0]

detach

inc

move

Emulator

t

t

(a) Portion of the loop HLPN object.

mark : P

getTokens(p)->m(p)

m

mark : P

minit

sample:

n

binding and substitutionsuperposition

instantiation

(b) The getTokens read primitive definition and instantiation.

Fig. 5. Managing subsystem example.

Table 1 lists all the pre-defined read/write primitives provided by PNemu.
This set can be easily extended by adding new user-defined LibEntry objects.
The class LibEntry allows new, primitive or even complex, library functions to
be created by defining their structure and inscribing it with arbitrary (standard
or user-defined) Python functions.

4 Usage Scenarios

We are releasing PNemu as open-source software. Here are some typical scenar-
ios where PNemu could be helpful.

Modeling and Validation. Software tools equipped to formally represent and anal-
yse self-adaptive/dynamic systems are highly demanded [1]. The PNemu library
provides a general and consolidated two-layer modeling framework based on the
use of multiple, distributed feedback loops. It directly supports inspection (of
both the state and the structure) of both layers, interactive simulation and visu-
alization of model components. In particular, at each step of the token game it is
possible to check for enabled transitions, firing modes, make transitions fire, and
perform on-the-fly changes to the model’s state/structure. A simple example of
interactive simulation is shown in Fig. 4 (lines 21–24): line 21 shows the firing
modes for the transition move, among which there is the one representing base
level’s transition fail; line 23 makes move fire with this mode; line 24 checks
that after the firing of the base layer’s transition fail, the fault tolerance control
loop is correctly triggered.

88 M. Camilli et al.

Table 1. Pre-defined read/write primitives of PNemu.

Name Arguments Outcome

Read primitives

getTokens p : P Returns the number of tokens held by
p

getMarking - returns the multiset of P-elements
representing the P/T marking

getPlaces/getTransitions - Returns the set of P-/T-elements

exists e : P or T Returns True if the given element
exists

pre/post e : P or T Returns the set of P-/T-elements
representing the pre-/post-set of e

iMult/oMult/hMult p : P, t : T Returns the multiplicity of the
input/output/inhibitor arc
between p and t

Write primitives

addPlace/addTransition p : P/t : T Add the given place/transition p/t

rmPlace/rmTransition p : P/t : T Remove the given place/transition p/t

setTokens p : P, n :N Set the number of tokens of p to n

addIArc/addOArc/addHArc p : P, t; T, n :N Add the given input/output/inhibitor
arc between p and t with multiplicity
n

rmIArc/rmOArc/rmHArc p : P, t; T, n :N Remove n occurrences of the given
input/output/inhibitor arc between p

and t

Formal Verification. The modeling approach supported by PNemu is based on
well established formalisms (i.e., P/T systems and HLPNs following the ISO/IEC
standard). This makes it possible the usage of consolidated analysis techniques
and/or existing software tools. As an example, since the module pnemu.manager
produces SNAKES HLPNs (snakes.nets.PetriNet objects) we can exploit the
Neco [5] model checker (designed to work along with SNAKES) to verify the
correctness of models with respect to requirements expressed in Linear Temporal
Logic (LTL). For instance, it is possible to check reachability, safety, and liveness
properties; local (i.e., relating the base layer only) and/or global (considering
both layers) invariants, and adaptation integrity constraints [9].

As a simple example, we verified the LTL safety property �(¬deadlock)
(deadlock-freedom) on the self-healing MS. Another property we checked is:

�(mark > [storage, storage, broken] → ♦(mark > [assembled]))

i.e., the ability to assemble raw pieces even when a production line is down.

PNemu: An Extensible Modeling Library for Adaptable Distributed Systems 89

5 Conclusion

We introduced PNemu, a Python library based on standard HLPNs and
supporting modeling/validation of adaptable distributed systems through a two-
layers approach allowing for a clear separation of concerns between the managed
and the managing subsystems. The library has been designed to be easily extensi-
ble with additional user-defined features, such as read (sensors) and write (actu-
ators) primitives, and user-defined Python functions to inscribe net elements.
Finally, PNemu can interoperate with other third-party tools. The full support
to the PNML language to define the base layer, makes it possible to leverage
existing visual editors. In addition to modeling and validation (currently sup-
ported by PNemu), formal verification can be carried out by means of existing
state space builders/model checkers.

The library has been released as open-source software and it is currently con-
sidered as “beta software”. We plan to enhance PNemu with the ability to ver-
ify structural properties by means of library primitives that compute structural
relations (e.g., conflict, causal connection, mutual exclusion) on P/T elements.
Moreover, we want to integrate the Neco model checker and enhance it with
the ability to discover conflicting control loops (i.e., loops that apply conflicting
changes to achieve different adaptation goals).

Acknowledgments. The authors would like to thank Giuliana Franceschinis for her
helpful advices and comments on early drafts of this paper.

References

1. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst.
11(4), 25:1–25:35 (2017). https://doi.org/10.1145/3019598

2. Camilli, M., Bellettini, C., Capra, L.: A high-level petri net-based formal model of
distributed self-adaptive systems. In: Proceedings of the 12th European Conference
on Software Architecture: Companion Proceedings. ECSA 2018, pp. 40:1–40:7.
ACM, New York (2018). https://doi.org/10.1145/3241403.3241445

3. Capra, L.: A pure spec-inscribed pn model for reconfigurable systems. In: 2016 13th
International Workshop on Discrete Event Systems (WODES), pp. 459–465. IEEE
Computer Society, May 2016. https://doi.org/10.1109/WODES.2016.7497888

4. Ding, Z., Zhou, Y., Zhou, M.: Modeling self-adaptive software systems with learn-
ing petri nets. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 483–498 (2016).
https://doi.org/10.1109/TSMC.2015.2433892

5. Fronc, �L., Pommereau, F.: Building Petri nets tools around Neco compiler. In:
Proceedings of PNSE 2013, pp. 1–7, 06 2013

6. Systems and software engineering - High-level Petri nets - Part 1: Concepts, defini-
tions and graphical notation. Standard, International Organization for Standard-
ization, Geneva, CH (Dec 2004), ISO/IEC 15909–1:2004

7. Jensen, K., Rozenberg, G. (eds.): High-level Petri Nets: Theory and Application.
Springer-Verlag, London (1991). https://doi.org/10.1007/978-3-319-19488-2 13

https://doi.org/10.1145/3019598
https://doi.org/10.1145/3241403.3241445
https://doi.org/10.1109/WODES.2016.7497888
https://doi.org/10.1109/TSMC.2015.2433892
https://doi.org/10.1007/978-3-319-19488-2_13

90 M. Camilli et al.

8. Kummer, O., et al.: An extensible editor and simulation engine for petri nets:
renew. In: Cortadella, J., Reisig, W. (eds.) Applications and Theory of Petri Nets
2004, pp. 484–493. Springer, Heidelberg (2004)

9. de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.): Software Engineering for
Self-Adaptive Systems III. Assurances. LNCS, vol. 9640. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-74183-3

10. Pommereau, F.: Snakes: a flexible high-level petri nets library (tool paper). In:
Devillers, R., Valmari, A. (eds.) Application and Theory of Petri Nets and Con-
currency, pp. 254–265. Springer, Cham (2015)

11. Reisig, W.: Petri Nets: An Introduction. Springer, New York (1985)
12. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-

lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009). https://doi.org/
10.1145/1516533.1516538

https://doi.org/10.1007/978-3-319-74183-3
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538

CoRA: An Online Intelligent Tutoring
System to Practice Coverability

Graph Construction

Jan Martijn E. M. van der Werf(B) and Lucas Steehouwer

Department of Information and Computing Science,
Utrecht University, Utrecht, The Netherlands

j.m.e.m.vanderwerf@uu.nl, lucas@architecturemining.org

Abstract. While teaching Petri nets, many students face difficulties in
constructing coverability graphs from Petri nets. Providing students with
individual feedback becomes infeasible in large classes.

In this paper, we present CoRA: the Coverability and Reachability
graph Assistant. It is an online intelligent tutoring system designed to
support users in constructing a coverability graph for a Petri net. Its
main goal is to provide additional tutorial support to students, so they
can practice on their own and ask questions to staff when required. CoRA
is capable of giving personalized feedback; whenever a user submits a
solution CoRA provides targeted feedback stating what is correct in what
is not. CoRA’s feedback is designed to be both guiding and informational;
a user should be able to understand what went wrong and how they can
improve their graph.

Keywords: Petri nets · Coverability graph · Education ·
Intelligent tutoring

1 Introduction

Since several years, the course Information Systems is taught as a mandatory
course to first year Bachelor students Information Sciences. The course serves as
an introduction in process modeling and analysis. For the theoretical aspects, the
book of Van der Aalst & Stahl (2011) is used [1]. Many properties of Petri nets
are explored during the course, and students are required to make statements
about the nets they produce for assignments. One of the skills the students have
to learn is to construct a coverability graph from a given Petri net [11]. Over
the years, we observed that many students struggle with this topic and require
additional guidance. As each year the course has over 180 participants, providing
sufficient individual guidance and feedback becomes unfeasible. Therefore, we
searched for a more creative solution, allowing students to practice converting
Petri nets to coverability graphs in their own time, at their own pace, while still
giving adequate feedback to support the learning process of the student.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 91–100, 2019.
https://doi.org/10.1007/978-3-030-21571-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_6

92 J. M. E. M. van der Werf and L. Steehouwer

Software-based solutions for these kinds of problems come in the form of Intel-
ligent Tutoring Systems (ITS) [12]. These are systems which provide feedback,
guidance, and other supporting factors one would find in a typical educational
environment focusing on a specific topic [12]. Over the years many ITSs have
been built. For example, [5] reports on the tool LISPITS, an ITS which was used
to teach students the contents of a LISP course at Carnegie Melon University.
In their experiment, students using LISPITS and the students receiving human
tutoring worked through the material much faster than the students learning on
their own. LISPITS students were slower than the students tutored by lectur-
ers, but not by much: 11.4 hours versus 15 hours, whereas the third group took
26.5 h on average to go through the material [2]. Hence, an implemented ITS
can provide sufficient tutorial support to students.

In this paper, we present CoRA: the Coverability and Reachability graph
Assistant. CoRA is an ITS that focuses on providing tutorial support on how to
convert a Petri net to a coverability graph. Software to automatically infer cover-
ability graphs for a given Petri net already exist for many years. For example, the
Low Level Analyzer (LoLA) [15] supports coverability analysis, including vari-
ous reduction techniques. Similarly, the open-source framework ProM [16] has
plugins that create a coverability graph inference. However, these tools focus
on automatic model checking, rather than on providing feedback for learning
coverability graph construction.

The remainder of this paper is structured as follows. In the next section, we
introduce the tool by presenting a typical use case showing most of the steps
a student would go through when practicing coverability graphs. In Sect. 3, we
present the principles behind CoRA: coverability-graph validation and feedback
generation. The tool has been tested and evaluated by a selected group of stu-
dents, on which we report in Sect. 4. Last, Sect. 5 concludes the paper discussing
future work.

2 CoRA to Assist Students

Over the years that the course Information Systems has been taught, we observed
that many students had problems with constructing coverability graphs. For
example, students often find it difficult to traverse over the state space of the
Petri net in a structured manner. As a consequence, students overlook many
states. Another example is that many students simply do not know when to intro-
duce the symbol ω. CoRA supports students by providing them feedback during
the construction process. It is a web-based tool and runs in most browsers1.

Upon entering the website, the user registers with a new user name. Next,
the user needs to upload a Petri net in LoLA format [15]. We deliberately chose
to not include a Petri net editor, but instead rely on existing tools, such as
Yasper [9], and WoPeD [8]. After a short introduction to the main interactions
with the tool, the coverability construction phase starts.

1 We tested the tool in Google Chrome and Mozilla Firefox.

CoRA: An Online ITS to Practice Coverability Graph Construction 93

Fig. 1. Screenshot of CoRA, showing a partial coverability graph with feedback.

After uploading the file, a workspace as presented in Fig. 1 is shown. The
uploaded Petri net is shown on the left. The grid canvas on the right is where the
student has to construct the coverability graph. Initially, the canvas is empty, and
the student can start adding states. By double clicking on a state, the student can
update the state, by setting the token values for the different places. Similarly,
arcs can be labeled with an action by double clicking on it, and selecting a
transition from a drop-down list.

Constructing the coverability graph can be done in any order, contrary to
feedback generation, which requires an initial state. Therefore, as long as no
state has been marked as the initial, the only feedback the tool gives is that it
does not know the initial state. Once the student sets the initial state, the tool
starts providing feedback.

Colors are used to indicate whether a state or arc is correct (green), par-
tially correct (orange), or incorrect (red). Upon hovering on an element, the tool
displays the generated feedback as a list. For example, in Fig. 1, the first two
states are green, indicating that these are correct, i.e., that they are reachable,
have the correct token values, and the correct outgoing transitions. The last
two states are orange, showing that the state is only partially correct. In this
example, The student has highlighted state [p1 : 1, p2 : 0, p3 : 1]. As this state
covers the initial marking, the tool hints that one of the places can be marked
as unbounded. Additionally, outgoing transitions are missing. Although missing
edges gives an incorrect result, we color the state as partially correct, to provide
better feedback. Transition t1 from this state is colored red, hinting that the
transition is not enabled in this state.

94 J. M. E. M. van der Werf and L. Steehouwer

After each action by the student, the tool validates the model and generates
new feedback. This process continues until the student has a correct coverability
graph, i.e., that all states and transitions are colored green. By default, the tool
provides immediate feedback. This is typically preferred for the target audience:
novice learners [12]. Students can also choose to set feedback to manual. They
then can decide themselves when to submit the graph, and when to receive
feedback.

3 Design of CoRA

CoRA is a web-based tool, consisting of a client for modeling, and a server for
validation and feedback generation. CoRA-client provides a coverability-graph
modeling environment which uses the API exposed by CoRA-server. CoRA-
client runs in the browser as a combination of HTML, JavaScript and CSS. Its
JavaScript library is written in Typescript, a programming language with static-
typing, which can be compiled to JavaScript. If immediate feedback is switched
on, CoRA-client sends the complete coverability graph to CoRA-server after each
user action. The server then validates it, and returns the generated feedback.

CoRA-Server is built on the Slim-framework2, a bare-bones PHP framework
for creating web applications, and implements a REST-service [7]. CoRA-Server
runs on any server with support for PHP7. It uses a MySQL database for storage.

The tool is publicly available at http://CoRA.architecturemining.org/, its
source code can be found at GitHub3.

3.1 Analyzing Coverability Graphs

In theory, composing a coverability graph for a given Petri net is nothing more
than following Algorithm 1. To find all paths from the initial marking to the
newly added marking we use a graph traversal algorithm like Breadth First
Search [6]. From a tutorial perspective, we have an initial state (an empty graph)
and a goal state (a correct coverability graph). The student “only” needs to learn
the correct strategy to arrive at a goal state from the initial state [12]. However,
a coverability graph is not unique for a Petri net. Consequently, the traversal
and discovery of nodes in the graph may happen in any order. This needs to be
taken into account when generating automatic feedback.

To show that the order of traversal determines the resulting coverability
graph, consider the example depicted in Fig. 2, taken from [1]. Starting in initial
marking [p1], two transitions are enabled, t1 and t2. Firing t1 results in [p2],
transition t1 in [p3]. From [p3], firing transition t4 brings us back to [p2]. Now,
we fire transition t3, resulting in marking [p2, p3]. This marking clearly covers the
earlier visited marking [p2], showing that place p3 is unbounded. Similarly, this
marking covers the already visited marking [p3] as well. This results in the left

2 https://www.slimframework.com.
3 https://github.com/ArchitectureMining/CoRA.

http://CoRA.architecturemining.org/
https://www.slimframework.com
https://github.com/ArchitectureMining/CoRA

CoRA: An Online ITS to Practice Coverability Graph Construction 95

Algorithm 1. Generating a coverability graph
1: procedure GenerateCoverabilityGraph((P, T, F), m0)
2: s0 ← m0 ; V ← ∅ ; E ← ∅
3: O ← ∅ � Frontier: Set of markings which still have to be expanded
4: Q ← Queue of markings � Frontier provides O(1) lookup of markings
5: Q.Enqueue(s0)
6: while Q not empty do
7: s ← Q.Dequeue() ; O ← O \ { s } ; V ← V ∪ { s }
8: R ← All paths from s0 to s
9: for all r ∈ R do

10: for all m ∈ r do
11: if s ≥ m then
12: for all p ∈ P do
13: if s(p) > m(p) then s(p) = ω

14: for all t ∈ T do
15: if t is enabled for s then
16: s′ ← ∀p ∈ P : s(p) − F (p, t) + F (t, p)
17: if s′ /∈ V ∧ s′ /∈ O then � Add the state to the Queue and Frontier
18: O ← O ∪ { s′ } ; Q.Enqueue(s′)

19: E ← E ∪ { (s, s′, t) } � Add the discovered edge

20: return G = (V, E, s0)

coverability graph depicted in Fig. 3 would we have followed a different strategy
in generating a coverability graph, e.g. by first continuing with transition t1, we
would not yet have discovered the unboundedness of place p2, resulting in the
middle coverability graph of Fig. 3.

Another challenge for feedback generation is that marking a place as
unbounded does not have to happen immediately. Students may discover only
later in the process that a place could already be marked unbounded, and unfold
the graph unnecessarily deep, as shown in the third example of Fig. 3. Note that
the third example in Fig. 3 cannot be produced by Algorithm 1. Still, the deliv-
ered coverability graph is correct. When a student omits to mark a place as
unbounded while it is possible to do so, then the feedback generation algorithm
needs to adapt to this. It needs some way of “remembering” that this place can
be marked as unbounded and that all markings in the postset of the current
marking can also mark this place as such.

3.2 Providing Feedback

The main goal of CoRA is providing useful feedback on coverability graphs.
Designing good feedback however, is not an easy task. Feedback can inform the
user about his or her progress and can also guide the user to the correct solution,
for example by giving pointers [10]. These two types of feedback, informational
and guiding feedback, can overlap. The goal of CoRA is providing both these
forms of feedback; it should provide information to the users about which ele-
ments of the coverability graph are correct and incorrect, but CoRA should also

96 J. M. E. M. van der Werf and L. Steehouwer

p1

t1
p2

t2
p3

t3t4

Fig. 2. Petri net example taken from [1]

[p1]

[p2] [p3]

[ω · p2, ω · p3]

t1 t2

t4

t3

t3, t4

[p1]

[p2] [p3]

[p2, ω · p3]

[ω · p2, ω · p3]

t1 t2

t4

t3

t4

t3

t3, t4

[p1]

[p2] [p3]

[p2, p3] [ω · p2]

[p2, ω · p3] [ω · p2, ω · p3]

t1 t2

t4

t3
t4

t3
t4

t3

t3 t3, t4

Fig. 3. Three correct coverability graphs of the Petri net of Fig. 2, the first and second
followed a different strategy in traversing the states. In the third, unbounded places
were discovered at a later stage.

provide messages which suggest a corrective measure if required. For example, if
a state misses an outgoing edge, a message should be given stating that an edge
is missing. This message shows that something is not right (an edge is missing),
but also provides a hint on how this problem should be solved (adding an edge).

There are three kinds of feedback messages that we can give with CoRA. For
each element of the graph we can decide whether it is a correct, partially correct,
or incorrect element. For example, the user can model two reachable states, but
the label of the edge between those states is not correct. CoRA gives feedback
that this edge represents the wrong transition.

CoRA can also provide warnings. Warnings are intended for elements that
are not incorrect, but do provide a risk to make mistakes later on. For example,
students can make coverability graphs with duplicate states. Having duplicate
states in a coverability graph does not make the graph incorrect, but it does
make it unnecessarily difficult for the student to not make mistakes.

Another example is the introduction on unboundedness of places. Instead of
following Algorithm 1, CoRA checks for each state created by the user if this
state covers some state on the path from the initial state to the state under

CoRA: An Online ITS to Practice Coverability Graph Construction 97

analysis. If it is indeed a cover, but no ω has been introduced, the user receives
feedback that it is possible to introduce an ω in this state.

Next to the kinds of feedback, there is a difference on when feedback should be
provided: for beginners it is preferred that feedback is given instantly, whereas
for people with some experience it is better to provide delayed feedback [12].
CoRA supports both forms. At first, most of the students will not be familiar
with composing coverability graphs and will therefore need immediate guidance,
whereas at later stages it can be more beneficial for students to only get feedback
when they feel like they need it or when they are finished.

With this knowledge in mind, we designed a set of messages to be shown to
the user. Messages can be assigned to particular elements of the graph, as well as
to the graph as a whole. Table 1 shows the feedback messages that we designed for
CoRA. All feedback messages have been constructed to be both informational as
well as guiding. However, further research is required to validate these messages.

4 Initial Evaluation

CoRA was presented and pitched during the Information Systems course. This
provided an opportunity to test CoRA immediately with its target audience:
students. CoRA was introduced during one of the lectures and a small demo
was given on how to use it. After this demo a set of Petri nets was given to the
students to practice with. Students were also asked to fill in a questionnaire after
practicing a few times. The questionnaire was presented in an on-line form, and
was available at all times. This questionnaire contained the System Usability
Scale (SUS) [4]. The SUS provides a simple way to measure the usability of a
system. The Net Promoter Score (NPS) [13] was included as it is correlated to the
SUS (r = 0.61, [14]), and thus provides an extra validation. The recommendations
section of the questionnaire had questions on how to improve CoRA, as well as
a question whether they would recommend CoRA to fellow students.

Only ten responses to the survey were recorded, probably since the tool was
presented only in one of the last lectures before the exam, Eight participants were
following the Information Systems course while taking the survey. These eight
participants did state that they found CoRA to be at least somewhat supportive
in their efforts to understand the subject of coverability graphs. With a score of
3.25 out of 5 for this question the response was quite neutral, with a slight favor
towards being helpful. For the System Usability Scale scores ranged between 62.5
and 95, with an average score of 70.25, and a median of 76.25. According to [3]
this is often an acceptable score, but there certainly is room for improvement.
The scores for the NPS seem to indicate this as well. NPS scores range between
−100% and 100%. With a score of 20% we have more promoters than detractors,
but clearly the score could be much better.

Eight of the participants provided suggestions on improving CoRA. The main
complaint was that it was not possible to upload a second Petri net, to keep
practicing. Instead, they needed to restart CoRA-client each time they wanted
to start a new session, which also means going through the hoops of registering

98 J. M. E. M. van der Werf and L. Steehouwer

Table 1. Types of feedback and hints the tool provides

Type of feedback Hint provided to user

Initial state

No initial state No state has been declared as the initial state

Incorrect initial state The initial state of the graph is not equal to
the initial marking of the Petri net

Correct initial state The initial state of the graph and the initial
marking of the Petri net are identical

Unbounded place At least one of the places in the initial state is
marked as unbounded. This is impossible!

States

Reachable from preset This state is reachable from its preset

Duplicate state This state occurs multiple times in the graph

Omitted ω It is possible to introduce an ω in this state,
but this has not been done

Not reachable from preset This state is not reachable from at least one of
the states in its preset

Edge missing This state is missing an outgoing edge

Not reachable from initial
state

This state is not reachable from the initial state

Omitted ω from preset At least one of the states in the preset has at
least one place marked as unbounded, while
this state does not mark this place as such

Edges

Enabled and correct post The edge’s label corresponds to an enabled
transition and points to a reachable state

Duplicate edge There are multiple edges with the same label
originating from the same state

Enabled, correct post state,
wrong label

The transition corresponding to the label is
enabled and the target of the label is
reachable, but firing this transition does not
lead to this state

Enabled, incorrect post state The transition corresponding to the label is
enabled, but the target state is not reachable
from the source state

Disabled The transition corresponding to the label is
disabled

Disabled, correct post state The transition corresponding to the label is
disabled, but the target state is reachable by
firing a different transition

CoRA: An Online ITS to Practice Coverability Graph Construction 99

a new account again. Participants also indicated that there were a few bugs
with the modeler, especially regarding opening menu’s for editing elements of
the graph.

5 Conclusions

In this paper, we presented CoRA: the Coverability and Reachability graph
Assistant. It is an online intelligent tutoring system to practice constructing
coverability graphs, and provides feedback based on the users’ input.

Initial evaluation shows that the tool has the desired potential, but requires
some improvements. In the near future, we plan to extend the tool with a frame-
work to support multiple exercises per session, and to add PNML support.

Future work lies in assessing the quality of the feedback messages the tool
provides. The tool stores all intermediate stages of the coverability graph, allow-
ing to study which feedback is given, and how this feedback is perceived by
students. Another direction of research lies in studying the possibilities in the
realm of gamification and applied games. Games provide a continuous loop of
feedback messages [10]. CoRA only provides feedback when the client requests
it. With a game, feedback could be provided constantly, possibly providing bet-
ter support to the user. Currently, CoRA just assumes the user is a novice. A
possible avenue of further research, perhaps in combination with the idea of
gamification, would be to automatically infer the experience level of a user and
adapt the provided feedback based on this level.

CoRA gives feedback on the conversion of Petri nets to coverability graphs.
There are many other analysis techniques students need to learn. Future work
therefore also includes the development of tutoring systems for other techniques,
such as invariants. These solutions could then be integrated into a electronic
learning environment, providing the students an environment where they can
practice all sorts of techniques regarding Petri nets, including coverability anal-
ysis with CoRA.

References

1. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes–A Petri Net-
Oriented Approach. Cooperative Information Systems Series. MIT Press (2011)

2. Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science
228(4698), 456–462 (1985)

3. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system
usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008)

4. Brooke, J., et al.: SUS-a quick and dirty usability scale. In: Usability Evaluation
in Industry, vol. 189, no. 194, pp. 4–7 (1996)

5. Corbett, A.T., Anderson, J.R.: Lisp intelligent tutoring system: research in skill
acquisition. In: Computer-Assisted Instruction and Intelligent Tutoring Systems:
Shared Goals and Complementary Approaches, pp. 73–109 (1992)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

100 J. M. E. M. van der Werf and L. Steehouwer

7. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based
software architectures, vol. 7. University of California, Irvine Doctoral dissertation
(2000)

8. Freytag, T., Sänger, M.: WoPeD - an educational tool for workflow nets. In: Pro-
ceedings of the BPM Demo Sessions, CEUR Workshop Proceedings, vol. 1295, pp.
31–35 (2014). CEUR-WS.org

9. van Hee, K.M., Oanea, O., Post, R.D.J., Somers, L.J., van der Werf, J.M.E.M.:
Yasper: a tool for workflow modeling and analysis. In: ACSD, pp. 279–282 (2006)

10. Kapp, K.M.: The Gamification of Learning and Instruction: Game-based Methods
and Strategies for Training and Education. Wiley (2012)

11. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

12. Passier, H.J.M.: Aspects of Feedback in Intelligent Tutoring Systems for Modeling
Education. PhD thesis, Open University, The Netherlands (2013)

13. Reichheld, F.F.: The one number you need to grow. Harvard Bus. Rev. 81(12),
46–55 (2003)

14. Sauro, J.: Does better usability increase customer loyalty? (2010). https://
measuringu.com/usability-loyalty/. Accessed 05 July 2018

15. Schmidt, K.: LoLA a low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44988-4 27

16. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-17722-4 5

http://CEUR-WS.org
https://measuringu.com/usability-loyalty/
https://measuringu.com/usability-loyalty/
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1007/978-3-642-17722-4_5

Tools for Curry-Coloured Petri Nets

Michael Simon(B), Daniel Moldt, Dennis Schmitz, and Michael Haustermann

Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, University of Hamburg, Hamburg, Germany

michael.simon@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI/

Abstract. The Curry-coloured Petri net (CCPN) simulation combines
Petri nets with the purely functional logic programming language Curry.
The most notable aspects of the CCPN simulator are the absence of side
effects, the use of logic program evaluation for the transition binding
search and a concurrent simulation. Furthermore, the inscribed programs
can be non-deterministic.

In this contribution we present the tools that were developed so far:
simulator, editor, reachability graph and library.

Keywords: High-level Petri nets · Coloured Petri nets ·
Curry-coloured Petri nets · Tools · Simulator · Editor · Library

1 Introduction

Contemporary Coloured Petri net1 (CPN) [7] tools and simulators have problems
regarding side effects and outdated implementations.

This contribution presents a concurrent CPN simulator written in Haskell
and an editor to visually model CPNs as well as to observe and control their
simulation.2 The simulator is also provided as a library to facilitate the integra-
tion into other Haskell programs. Additionally, a tool for generating and visually
inspecting reachability graphs is presented.

CPNs generalize the Petri net formalism to tokens of multiple colors. In the
context of programming languages a token’s color can be interpreted as a value
the token carries. A place marking is a multiset of token colors. Transitions can
also be fired in different bindings (also called modes). A binding defines the
colors of the tokens that are taken in and put out. The binding itself is defined
by inscriptions to the transition and its environment.

The inscriptions might only define bindings for a subset of all possible combi-
nations of ingoing tokens. Thus, multiple combinations of ingoing tokens might
have to be tried in a binding search. Optimizations of this binding search are

1 We spell Coloured Petri net in its original form but otherwise use American English.
2 A guide and the resources for the installation of the CCPN tool set can be found at

https://git.informatik.uni-hamburg.de/tgipublic/ccpn/ccpn/wikis/pn19.
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 101–110, 2019.
https://doi.org/10.1007/978-3-030-21571-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_7&domain=pdf
https://git.informatik.uni-hamburg.de/tgipublic/ccpn/ccpn/wikis/pn19
https://doi.org/10.1007/978-3-030-21571-2_7

102 M. Simon et al.

fundamental to reduce the simulation’s runtime complexity. They are a major
focus of CPN simulator implementations.

An important aspect of CPN simulation is the control of side effects in the
binding search. The evaluation of the inscriptions in the search may not include
side effects as these cannot be reverted in general. Despite this challenge, most
popular CPN simulators employ inscription languages that fail to prevent side
effects in the search. The modeler is left with the obligation to ensure side effect
freedom of the inscriptions.

In order to address the challenges of side effects and an efficient binding search
concerning the transition inscriptions in CPNs, this contribution introduces the
Curry-coloured Petri nets (CCPN) formalism. For a short introduction to the
formalism and its simulation see [13] and for an in-depth description see [15].
The formalism allows transition inscriptions in Curry [5]. Curry is a general
purpose purely functional logic programming language that combines tightly
controlled side effects and non-deterministic evaluation. It is the product of active
research and one of the best developed functional logic programming languages.
One primary focus of this research is the efficient and robust evaluation of non-
deterministic programs. This is utilized for the CCPN transition binding search
and is therefore an important feature missing from other implementations with
purely functional programming languages like Haskell.

The presented tools that support the modeling, simulation, control and obser-
vation of CCPNs are – through the integration into the Renew GUI – easy to
use. The binding search is quite efficient and the side effect freedom is natu-
rally inherent in the CCPN formalism. After an explanation of the objectives
in Sect. 2 other CPN simulators are discussed in Sect. 3 and the required func-
tionality is described in Sect. 4. Section 5 gives an overview of the architecture
and Sect. 6 illustrates a simple example of a simulation. Finally, we conclude in
Sect. 7.

2 Objectives

One objective is to provide a formalism that is expressive enough for general
purpose programming. Furthermore, a concurrent simulation algorithm should
realize the potential of the CCPN formalism to be used to implement concurrent
programs. The operational semantics of the inscription language should be for-
mally defined. This allows the existing extensive research on CPNs to be used for
further research on verification and analysis of the CCPN formalism. Another
important objective is to solve the problems that other CPN simulators have
(see Sect. 3), in particular the prevention of side effects.

One of the most distinguishing features of existing CPN simulators are the
inscription languages they employ. In this paper we present a CPN simulator
that employs Curry as an inscription language. As a purely functional language
Curry isolates the occurrence of side effects to the execution of special data
types. Functions are pure, their evaluation does not include side effects.

As a logic programming language the Curry evaluation system can be used
to implement an efficient binding search with unification. This only requires the

Tools for Curry-Coloured Petri Nets 103

binding search to be formulated as a non-deterministic Curry program. It also
allows the inscribed program itself to introduce non-determinism by established
Curry concepts.

The choice of a general purpose language is a good basis for the develop-
ment of a CPN formalism and corresponding tool set that can themselves be
used for general purpose programming. The inclusion of a concurrent simulator
into the tool set is important to realize the potential of the CCPN formalism
to be used as a general purpose concurrent programming language. To take full
advantage of the intuitive graphical Petri net representation a GUI for editing
and simulation is important. A highly modular simulation library with multiple
interfaces to the simulation allows it to be flexibly used and extended by client
Haskell programs as well as other programs via XML. There is a formal defi-
nition of Curry’s operational semantics [1] and preexisting research on formal
verification [2] (see [15, p. 23]). Also, Curry’s expressive static type system with
type inference catches many potential errors in the compilation. Furthermore, it
provides powerful concepts for abstract and generic programming that help to
create smaller nets.

3 Comparison

This section presents other CPN simulators. In particular, it compares them to
the CCPN simulator regarding the objectives defined in Sect. 2.

The Java reference net formalism in Renew, the Scheme reference net for-
malism in Renew as well as the CPN Tools provide a full-fledged simulation
environment but fail to prevent side effects. This inability is forced upon them
by their inscription language selection. All three tools base their inscription lan-
guage on a preexisting language that does not offer a type system that tracks and
controls side effects. This is a clear disadvantage compared to pure functional
languages such as Haskell or Curry.

The HCPN simulator successfully prevents side effects by the selection of
Haskell as an inscription language but does not provide a full-fetched simulation
environment.

Renew
Renew [10] offers multiple formalisms, most prominently the Java reference
net formalism [11]. It is a CPN formalism with a Java-like inscription language,
Java objects as tokens and the possibility to contain marked nets as tokens.
It offers a synchronous channel concept to combine multiple transitions into a
single binding search and fire them synchronously in one atomic action. Chan-
nel parameters allow the bidirectional exchange of information via unification.
Channels are the only concept in the inscription language that can be used
to express non-determinism. Otherwise, the inscribed programs are completely
deterministic.

Because arbitrary Java methods can be called by the inscription language,
there is no way to prevent side effects in general. The modeler must ensure that
normal inscriptions only call methods without side effects. Methods with side

104 M. Simon et al.

effects should only be called from within action inscriptions. These are executed
after the binding search is finished and under the assumption that the binding
is guaranteed to be fired.3 Because the return values of methods called from
action inscriptions are only known after the binding search, the non-deterministic
part of the inscribed program cannot depend on them. This part includes the
selection of ingoing tokens and the binding of synchronous channels. It limits
the expressiveness of the inscription language.

The semantics of the inscription language is based on the Java semantics but
implemented by a depth-first search with unification much like logic program-
ming language evaluation [11,14]. Thus, there are subtle differences between the
inscription language and Java’s semantics. This can lead to unintended behavior
that is confusing and unintuitive for programmers familiar with Java (see [14]).

In the binding search, objects get unified that are equal according to their
equals method. Furthermore, the hashcode method’s return value is used to
store objects as tokens in the place marking. To be handled correctly by Renew,
the tokens’ methods must be pure: they must always return the same value when
called with the same parameters throughout the object’s lifetime. This is not the
case for Java objects in general. In Java programming it is common to implement
mutable objects that change their state and with it the equality relation and the
hashcode. Thus, modeling in Renew requires a pure programming style that is
unusual in the context of Java development and the wrapping of code that does
not adhere to this style.

Scheme Reference Nets in Renew
In [4] Delgado Friedrichs describes the Scheme reference net formalism. It is
built upon the Java reference net formalism by the integration of a Scheme inter-
preter and logic library into Renew’s simulation algorithms. Because Scheme
is a functional language, a pure programming style is not as foreign as in Java
development. However, Scheme does not enforce purity: it allows side effects to
occur anywhere in the execution. The Scheme reference net formalism plugin
prevents some side effects by excluding a list of known Scheme procedures with
side effects but cannot prevent side effects in general.

Since 2007 no changes to the integrated Scheme interpreter and logic library
have been released. Therefore, future research and practical use of the formalism
would require considerable effort to port it to new underlying libraries.

CPN Tools
The CPN Tools [8,9] offer a CPN formalism with an inscription language based
on Standard ML, which is a functional language that shares a common ancestry
with Haskell but its functions are impure. Thus, similar to Renew, the CPN
Tools leave it to the modeler to refrain from using functions with side effects.

Standard ML is not under active development anymore. Although, similar
to Curry, its operational semantics are formally specified, the last specification
was released in 1997.

3 The occurrence of Java exceptions breaks this assumption which is a problem.

Tools for Curry-Coloured Petri Nets 105

Haskell-Coloured Petri Nets
In [12] Reinke presents a simulator for CPNs with Haskell inscriptions. It is
implemented as a Renew plugin that generates a Haskell program for a given
CPN. When executed, the program prints out a simulation log containing the
names of fired transitions and text representations of reached markings. The
implementation is minimalistic and the binding search is based on the standard
functionality of the Haskell list type. It generates and tests all possible input
token combinations for all transitions without any optimization.

Because Haskell is a pure language side effects are prevented.

4 Functionality

The CurryCPN Renew plugin offers two main interfaces to the CCPN sim-
ulator: the Curry Net formalism and the Curry Reachability Graph command.
The Curry Net formalism integrates the CCPN simulator to be used similar to
other simulators that are directly built into Renew’s Java implementation. In
the background, it starts a separate CCPN simulator process. Proxy Java classes
pass on standard simulation commands such as start, step, stop or terminate via
an XML interface. The load command is sent first and includes a full PNML [6]
representation of the CCPN to simulate.

The Curry Reachability Graph command instructs the CCPN simulator pro-
cess to generate a complete reachability graph and send it back via XML. The
graph layout is then automatically generated and the graph is displayed. In the
graph representation each marking represented by the whole net instance with
its marking can be inspected by double-clicking.

The CCPN simulator can also be used as a library by client Haskell pro-
grams. It exposes the same functionality as offered by the XML interface to
the CurryCPN Renew plugin. Additionally, it offers monadic4 interfaces for
finer grained control of the simulation. The CCPN simulator is implemented
as a highly modular library with the aim to be easily extendable. Most of the
development efforts were spent on the simulator as the basis of all tools. The
modular architecture is described in more detail in Sect. 5.

4 A monad is a versatile Haskell type class that can be implemented by specific data
types. It is used by the CCPN simulator to offer simulation actions that operate
on a simulation state and are easy to combine and mix with user-provided pure
code. The properties of monads guarantee that this can be achieved without directly
exposing the simulation state and its implementation to the library user. The CCPN
simulator provides multiple monad data types that encapsulate different aspects of
the simulation state. The high-level monad type in the SimulationMonad module
additionally encapsulates the IO side effects in the compilation of CCPN inscriptions.
See [16] for a detailed introduction to monads.

106 M. Simon et al.

5 Architecture

Figure 1 is an overview of the CCPN simulator’s software components. Com-
ponents depend on those below them. The names of the components that were
developed specifically for the CCPN simulator are highlighted in bold font in the
figure: the ccpn and ccpn-runtime Haskell packages as well as the CurryCPN
Renew plugin. The architecture is split into three parts with thick outlines that
are run as separate processes. The CurryCPN Renew plugin is executed inside
a Renew process. It and all Renew plugins it depends on, are colored green.
The main CCPN simulator, highlighted red, is started by the CurryCPN plu-
gin as another process. An XML interface is used for the interaction between the
processes. The main CCPN simulator is composed of the ccpn and ccpn-runtime
Haskell packages as well as some packages provided by the KiCS2 Curry com-
piler [3] that are colored blue. It also uses the KiCS2 compiler directly as a
kics2c process.

Figure 2 is a dependency diagram of the modules of the CCPN simulator
highlighted red in Fig. 1. For the sake of clarity only the transitive reduction of
the dependencies is represented. The modules in the ccpn Haskell package are
white, the ccpn-runtime package modules light red and modules from the KiCS2
compiler blue. Encircled in orange is the simulation core; in blue (because of the
KiCS2 dependency) are the modules concerned with the compilation of CCPN
inscriptions. The remaining modules are high-level and concerned with both.
Four modules are in both circles because they are shared dependencies of both,
the simulation core and the CCPN compilation. Only the CCPN compilation
depends on packages of the KiCS2 compiler. This dependency is contained in
the transition binding searches. The simulation core is agnostic about the imple-
mentation of the transition binding searches and thus has no KiCS2 dependency.

The inscriptions are compiled by the Compiler and UncompiledNet modules.
First, the functionality of the UncompiledNet module parses the inscriptions to
internal representation types of the curry-base Curry frontend package. Then,
it generates a Curry module file with a function for each transition and one for
each initial place marking.

Fig. 1. Overview of the architecture. (Color figure online)

Tools for Curry-Coloured Petri Nets 107

runtime

libraries

curry-base

Basics

Curry_Prelude

Parser

Type

Pretty

Main

CommandXML

SimulationMonad

ConcurrentReachGraph

ConcurrentSimulator

MarkingMonad

PNML

ReachGraph

ConcurrentMarking

Simulator Compiler

PackageEnvironmentUncompiledNet

RuntimePetriNet

Shuffle TokenSet CurryToken

Token

Marking

Fig. 2. The CCPN simulator architecture.

In the Compiler module, the module file is then compiled to Haskell code
executing the KiCS2 Curry compiler as a separate process. In the next step,
using the library of the GHC Haskell compiler, the Haskell code is dynamically
compiled and loaded into the running Haskell process. The functions generated
for the transitions are wrapped to represent the full binding search as a Curry
program. Finally, the KiCS2 evaluation system is used to evaluate this program
to a list of all possible deterministic transition bindings. The Runtime module
defines the wrapping and evaluation and needs to be in the compilation context
when these are dynamically compiled and loaded. The modules in red in Fig. 2
are in the separate ccpn-runtime package to allow the Runtime module to be
dynamically imported at runtime.

The result of the whole compilation is a CCPN defined by the data struc-
tures in the PetriNet module. All KiCS2 -dependencies are contained in the
compilation. The simulation core is completely independent from KiCS2 and
the implementation of the binding search.

The SimulationMonad module offers a high-level monad interface to the sim-
ulation. It implements everything also accessible by the XML interface. This
includes the initialization of a simulation by compiling and loading in the CCPN.
The low-level interfaces and simulation implementations only work on simula-
tions that are already set up.

108 M. Simon et al.

The MarkingMonad module offers a low-level monad interface to the sequen-
tial simulation.5 It can be used to fire specific transitions, as well as take and
insert tokens from/to the marking. The ConcurrentSimulator module offers
similar functionality for concurrent simulations. For examples using the CCPN
simulator as a library, see [15, Section 8.2].

6 Example

The net in Fig. 3a is a very simple example CCPN. The following transition
function is generated for the arc inscriptions:

CCPN__trans__word :: [[Char]] -> ([[Char]], ())
CCPN__trans__word [a ++ " " ++ b] = ([a, b] , ())

The first line declares the function’s type and the second line declares the
function itself. The function takes a list containing a single string as a parameter
and returns a tuple structure containing a list of two strings. The output tokens
are these two string values a and b. They are determined by matching the a ++
" " ++ b pattern to the value of a single input token. The pattern matches any
string that contains a space character. Because the pattern is non-deterministic,
the whole function is non-deterministic. This can be seen in the first transition
firing: a can either be "these", or "these are" and b can be correspondingly "are
words", or "words". You can find the two resulting markings in the reachability
graph depicted in Fig. 3b.

A feature of Curry that distinguishes it from Haskell is the ability to match
against patterns that include function applications. In this case, the pattern
includes two applications of the list concatenation operator ++ that is built
into the Curry’s standard library (the Prelude):

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs++ys

Fig. 3. The word example.

5 It offers a monad transformer that forms a monad based on any MonadPlus instance
type given by the library user. This can be used to explore multiple markings for
the same simulation steps instead of just a single simulation trace at a time.

Tools for Curry-Coloured Petri Nets 109

The first line is the type: the ++ operator takes two lists and returns a
third. All lists contain elements of the same generic type. In the a ++ " " ++ b
pattern the lists are strings and the element type is Char. The last two lines are
the rules that define the function. To match the pattern, the Curry evaluation
environment applies them backwards in a search: the return value is known and
the parameters are sought. This is an important feature of Curry as a logic
programming language. It allows the CCPN’s inscription to be very concise.

As you can see in Fig. 3b, the word CCPN has a deterministic final marking,
but the intermediate markings are non-deterministic. The red circle does not
represent a marking but points to all initial markings. There might be multiple,
because place inscriptions may be non-deterministic. In this case there is only
one. The reachability graph was generated by the CurryCPN Renew plugin.
In the Renew GUI a marking can be explored by double-clicking. This displays
the marked CCPN. In Fig. 3b, additional text representations were added to the
markings for demonstrative purposes.

For more usage examples including the usage of the Haskell library, see [15].

7 Conclusion

This contribution presents a tool set for the newly developed Curry-coloured
Petri nets (CCPN) formalism. It introduces the functional logic programming
language Curry with its powerful paradigm as the inscription language for CPNs
for the first time. On the one hand, the CCPN formalism and tool set extend the
Curry programming language by CPN concepts to realize a graphical concurrent
modeling language. On the other hand, they extend the CPN formalism by Curry
as an inscription language to realize side effect freedom, as well as a clean and
versatile implementation of the binding search. The main components are the
editor, the simulator, the reachability graph tool and the library.

By embedding the CCPN simulator in the Renew environment a full-fledged
graphical editor can be used to model CCPNs and to visualize their reachability
graph. Due to the highly modular implementation in Haskell, the simulator can
also be integrated into Haskell programs as a library and be extended by them.

The side effect freedom of the inscriptions is guaranteed by Curry’s strong
type system. The strict purely functional programming style allows inscriptions
to be very abstract and concise. While e.g. for Renew’s Java reference nets
the binding search implementation is highly complex, the CCPN simulator inte-
grates the flexible KiCS2 evaluation environment. Further development on the
evaluation environment will directly benefit the CCPN binding search. Coupling
of non-determinism of Curry and Petri nets as well as the concurrency concepts
and their implementations raises relevant research questions.

Currently, hierarchical and nets-within-nets concepts are missing from the
formalism. However, the architecture and design of the system are well prepared
to incorporate these concepts. While the formal analysis of Java reference nets
is restricted by Java’s lack of control over side effects, the CCPN formalism’s
potential for formal analysis is very promising. Furthermore, case studies on

110 M. Simon et al.

the development of practical applications and empirical comparisons with other
CPN simulators would be very helpful in identifying requirements for further
research and development.

The CCPN tool set extends the multi-formalism capabilities of Renew.
It integrates a formalism that greatly complements the preexisting ecosystem.
Further work on this integration will enable a case-by-case decision on the most
suitable formalism for each part of a bigger system model.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. Symb. Comput. 40(1), 795–829 (2005)

2. Antoy, S., Hanus, M., Libby, S.: Proving non-deterministic computations in agda.
In: Proceedings of WFLP 2016. Electronic Proceedings in Theoretical Computer
Science, vol. 234, pp. 180–195. Open Publishing Association (2017)

3. Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: a new compiler from curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22531-4_1

4. Delgado Friedrichs, F.: Referenznetze mit Anschriften in Scheme. Diploma thesis,
University of Hamburg, Department of Informatics, September 2007

5. Hanus, M. (ed.): Curry: an integrated functional logic language (vers. 0.9.0) (2016).
http://www.curry-language.org

6. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri
Net Markup Language and ISO/IEC 15909–2. Petri Net Newsl. 76, 9–28 (2009)

7. Jensen, K.: Coloured Petri Nets: a high level language for system design and analy-
sis. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 342–416. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1_31

8. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. IJSTTT 9(3), 213–254 (2007)

9. Kristensen, L.M., Christensen, S.: Implementing Coloured Petri Nets using a func-
tional programming language. High. Order Symb. Comput. 17(3), 207–243 (2004)

10. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew - The Reference Net Workshop, June 2016. http://www.
renew.de/, release 2.5

11. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
12. Reinke, C.: Haskell-Coloured Petri Nets. In: Koopman, P., Clack, C. (eds.) IFL

1999. LNCS, vol. 1868, pp. 165–180. Springer, Heidelberg (2000). https://doi.org/
10.1007/10722298_10

13. Simon, M., Moldt, D.: About the development of a Curry-Coloured Petri net simu-
lator. In: Lorenz, R., Bergenthum, R. (eds.) AWPN 2018, pp. 53–54 (2018). https://
opus.bibliothek.uni-augsburg.de/opus4/41861

14. Simon, M.: Concept and implementation of distributed simulations in Renew.
Bachelor thesis, University of Hamburg, Department of Informatics, March 2014

15. Simon, M.: Curry-Coloured Petri Nets: a concurrent simulator for Petri Nets with
purely functional logic program inscriptions. Master thesis, University of Hamburg,
Department of Informatics, April 2018

16. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493
(1992)

https://doi.org/10.1007/978-3-642-22531-4_1
http://www.curry-language.org
https://doi.org/10.1007/3-540-53863-1_31
http://www.renew.de/
http://www.renew.de/
https://doi.org/10.1007/10722298_10
https://doi.org/10.1007/10722298_10
https://opus.bibliothek.uni-augsburg.de/opus4/41861
https://opus.bibliothek.uni-augsburg.de/opus4/41861

Synthesis

Articulation of Transition Systems
and Its Application to Petri Net Synthesis

Raymond Devillers(B)

Université Libre de Bruxelles, Boulevard du Triomphe C.P. 212,
1050 Bruxelles, Belgium

rdevil@ulb.ac.be

Abstract. In order to speed up the synthesis of Petri nets from labelled
transition systems, a divide and conquer strategy consists in defining LTS
decomposition techniques and corresponding PN composition operators
to recombine the solutions of the various components. The paper explores
how an articulation decomposition, possibly combined with a product
and addition technique developed in previous papers, may be used in
this respect and generalises sequence operators, as well as looping ones.

Keywords: Labelled transition systems · Composition ·
Decomposition · Petri net synthesis

1 Introduction

Instead of analysing a given system to check if it satisfies a set of desired prop-
erties, the synthesis approach tries to build a system “correct by construction”
directly from those properties. In particular, more or less efficient algorithms
have been developed to build a bounded Petri net (possibly of some subclass)
the reachability graph of which is isomorphic to (or close to) a given finite labelled
transition system [2,7,10,11,15].

The synthesis problem is usually polynomial in terms of the size of the LTS,
with a degree between 2 and 5 depending on the subclass of Petri nets one
searches for [2,3,7,10], but can also be NP-complete [4]. Hence the interest to
apply a “divide and conquer” synthesis strategy when possible. The general idea
is to decompose the given LTS into components, to synthesise each component
separately and then to recombine the results in such a way to obtain a solution
to the global problem. This has been applied successfully to disjoint products of
LTS, which correspond to disjoint sums of Petri nets [12,13]. But it has also been
observed that such products may be hidden inside other kinds of components,
for instance in sequences of LTS, as illustrated in Fig. 1 (borrowed from [12];
the initial states are slightly fatter than the other ones), and developed in the
algebra of Petri nets1 [8,9].
1 Note that this theory uses labelled Petri nets, where several transitions may have

the same label, or multiset of labels, while here we shall only consider unlabelled
Petri nets.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 113–126, 2019.
https://doi.org/10.1007/978-3-030-21571-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_8

114 R. Devillers

TS(x)

ι fx

TS = TS(start); (TS(a) TS(b));TS(end)

ι
s1start

s2

s3

s4
a

b

b

a
f

end

Fig. 1. Combination of sequence operators with a product.

We shall here develop this last point, but we shall also generalise the idea
of sequences into an articulation operator. The difference is that it will some-
times be possible to come back to the first component after having executed
the second one, and repeat the alternation between these two components. A
side consequence will be that the articulation operator will not always be anti-
commutative, like the sequence is, and that it includes a choice as well as a
looping feature.

The structure of the paper is as follows. After recalling the bases of labelled
transition systems, a new articulation operator is introduced, and its basic prop-
erties are analysed. Then, the bases of the Petri net synthesis problem are
recalled, and Sect. 4 shows how synthesis applies to the components of an artic-
ulation. Next, it is shown how articulations may be used to simplify a synthesis
problem, by composing a solution of the given system from the solutions of the
articulated components. A procedure is then detailed to show how to decom-
pose a given LTS into articulated components, when possible. As usual, the last
section concludes.

2 Labelled Transition Systems and Articulations

A classic way for representing the possible (sequential) evolutions of a dynamic
system is through its labelled transition system [1].

Definition 1. Labelled Transition Systems
A labelled transition system (LTS for short) with initial state is a tuple TS =
(S,→, T, ι) with node (or state) set S, edge label set T , edges → ⊆ (S × T × S),
and an initial state ι ∈ S. We shall denote s[t〉 for t ∈ T if there is an arc labelled
t from s, [t〉s if there is an arc lalbelled t going into s, and s[α〉s′ if there is a
path labelled α ∈ T ∗ from s to s′. Such a path will also be called an evolution
of the LTS (from s to s′).

Two LTSs TS 1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with the same
label set T are (state-)isomorphic, denoted TS1 ≡T TS 2 (or simply TS 1 ≡ TS 2

if T is clear from the context), if there is a bijection ζ : S1 → S2 with ζ(ι1) = ι2
and (s, t, s′) ∈ →1 ⇔ (ζ(s), t, ζ(s′)) ∈ →2, for all s, s′ ∈ S1 and t ∈ T . We shall
usually consider LTSs up to isomorphism.

Articulation of Transition Systems and its Application to PN Synthesis 115

We shall also assume each LTS is totally reachable (i.e., ∀s ∈ S∃α ∈ T ∗ :
ι[α〉s), that it is weakly live (i.e., each label t ∈ T occurs at least once in →),
and T
= ∅.

Let T1 ⊆ T . We shall denote by adj (T1) = {s ∈ S|∃t ∈ T1 : s[t〉 or [t〉s}
the adjacency set of T1, i.e., the set of states connected to T1. Let ∅ ⊂ T1 ⊂ T ,
T2 = T \ T1 and s ∈ S. We shall say that TS is articulated 2 by T1 and T2

around s if adj (T1) ∩ adj (T2) = {s}, ∀s1 ∈ adj (T1)∃α1 ∈ T ∗
1 : ι[α1〉s1 and

∀s2 ∈ adj (T2)∃α2 ∈ T ∗
2 : s[α2〉s2.

Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) two (totally reachable)
LTSs with T1 ∩ T2 = ∅ and s ∈ S1. Thanks to isomorphisms we may assume
that S1 ∩ S2 = {s} and ι2 = s. We shall then denote by TS 1 � s � TS 2 =
(S1 ∪ S2, T1 ∪ T2,→1 ∪ →2, ι1) the articulation of TS1 and TS 2 around s. ��

Several easy but interesting properties may be derived for this articulation
operator.

Note first that this operator is only defined up to isomorphism since we may
need to rename the state sets (usually the right one, but we may also rename
the left one, or both). The only constraint is that, after the relabellings, s is the
unique common state of TS1 and TS 2, and is the state where the two systems
are to be articulated. Figure 2 illustrates this operator. It also shows that the
articulation highly relates on the state around which the articulation takes part.
It may also be observed that, if TS 0 = ({ι}, ∅, ∅, ι) is the trivial empty LTS, we
have that, for any state s of TS , TS � s �TS 0 ≡ TS , i.e., we have a kind of right
neutral trivial articulation. Similarly, TS0 � ι � TS ≡ TS , i.e., we have a kind of
left neutral trivial articulation. However, these neutrals will play no role in the
following of this paper, so that we shall exclude them from our considerations
(that is why we assumed the edge label sets to be non-empty).

Corollary 1. Both forms of articulation are equivalent
If TS = (S,→, T, ι) is articulated by T1 and T2 around s, then the structures
TS1 = (adj (T1),→1, T1, ι) and TS 2 = (adj (T2),→2, T2, s), where →1 is the
restriction of → to T1 (i.e., →1=→ ∩adj (T1) × T1 × adj (T1)), and similarly for
→2, are (totally reachable) LTSs, TS ≡T1�T2 TS 1 � s � TS 2 (in that case we do
not need to apply a relabelling to TS1 and TS 2).

Conversely, TS1 � s � TS 2 is articulated by the label sets of TS1 and TS 2

around s, if these LTSs are totally reachable. ��

Corollary 2. Evolutions of an articulation
If TS ≡ TS 1 � s � TS 2, ι[α〉s′ is an evolution of TS iff it is an alternation of
evolutions of TS1 and TS 2 separated by occurrences of s, i.e., either α ∈ T ∗

1 or
α = α1α2 . . . αn such that αi ∈ T ∗

1 if i is odd, αi ∈ T ∗
2 if i is even, ι[α1〉s and

∀i ∈ {1, 2, . . . , n − 1} : [αi〉s[αi+1〉. ��
2 This notion has some similarity with the cut vertices (or articulation points) intro-

duced for connected unlabelled undirected graphs, whose removal disconnects the
graph. They have been used for instance to decompose such graphs into biconnected
components [14,16].

116 R. Devillers

TS1

ι sc

a

b

TS2

ι sf

d

e

TS3 TS1 � s � TS2

ι s s′c

a

b

f

d

e

TS4 TS1 � ι � TS2

ι ss′ c

a

b

f

d

e

Fig. 2. Some articulations.

For instance, in TS 3 from Fig. 2, a possible evolution is ι[abc〉s[fede〉s[b〉ι, but
also equivalently ι[a〉s[ε〉s[bc〉s[fe〉s[ε〉[de〉s[b〉ι (where ε is the empty sequence).

Corollary 3. Associativity of articulations
Let us assume that TS 1, TS2 and TS 3 are three LTSs with label sets T1, T2 and
T3 respectively, pairwise disjoint. Let s1 be a state of TS 1 and s2 be a state of
TS2. Then, TS1�s1�(TS 2�s2�TS 3) ≡T1∪T2∪T3 (TS 1�s1�TS 2)�s′

2�TS 3, where
s′
2 corresponds in TS1 � s1 � TS 2 to s2 in TS 2 (let us recall that the articulation

operator may rename the states of the second operand). ��
This is illustrated by Fig. 3.

TS5

ι s
g

h

(TS1 � s � TS2) � s′ � TS5 TS1 � s � (TS2 � s � TS5)

ι s s′ s′′c

a

b

f

d

e

g

h

Fig. 3. Associativity of articulations.

Corollary 4. Commutative articulations
If TS1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with disjoint label sets (i.e.,
T1 ∩ T2 = ∅), then TS1 � ι1 � TS 2 ≡T1∪T2 TS2 � ι2 � TS 1. ��

For instance, in Fig. 2, TS 4 ≡ TS 1 � ι � TS 2 ≡ TS2 � ι � TS 1.

Corollary 5. Commutative associativity of articulations
Let us assume that TS 1, TS2 and TS 3 are three LTSs with label sets T1, T2 and
T3 respectively, pairwise disjoint. Let s2 and s3 be two states of TS 1 (s2 = s3 is
allowed). Then, (TS1 �s2 �TS 2)�s3 �TS 3 ≡T1∪T2∪T3 (TS 1 �s3 �TS 3)�s2 �TS 2

(Fig. 4). ��

Articulation of Transition Systems and its Application to PN Synthesis 117

(TS1 � s � TS2) � ι � TS5 (TS1 � ι � TS5) � s � TS2

ι s s′c

a

b

f

d

e

s′′

g

h

Fig. 4. Commutative associativity of articulations.

Corollary 6. Sequence articulations
If TS1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with disjoint label sets (i.e.,
T1 ∩ T2 = ∅), if ∀s1 ∈ S1∃α1 ∈ T ∗

1 : s1[α1〉s (s is a home state in TS 1) and
�t1 ∈ T1 : s[t1〉 (s is a dead end in TS 1), then TS 1 � s � TS 2 behaves like a
sequence, i.e., once TS2 has started, it is no longer possible to execute T1.

The same occurs when ι2 does not occur in a non-trivial cycle, i.e., ι2[α2〉ι2∧
α2 ∈ T ∗

2 ⇒ α2 = ε: once TS 2 has started, it is no longer possible to execute T1.
��

This is illustrated in Fig. 5. It may be observed that sequences in [9] corre-
spond to the intersection of both cases.

TS6

ι sc

TS7

ι sf

TS6 � s � TS2

ι s s′c f

d

e

TS1 � ι � TS7

ι ss′ c

a

b

f

Fig. 5. Sequential articulations.

3 Petri Nets and Synthesis

Definition 2. Petri Nets
An initially marked Petri net (PN for short) is denoted as N = (P, T, F,M0)
where P is a set of places, T is a disjoint set of transitions (P ∩ T = ∅), F is the
flow function F : ((P × T) ∪ (T × P)) → N specifying the arc weights, and M0 is
the initial marking (where a marking is a mapping M : P → N, indicating the
number of tokens in each place).

Two Petri nets N1 = (P1, T, F1,M
1
0) and N2 = (P2, T, F2,M

2
0) with the same

transition set T are isomorphic, denoted N1 ≡T N2 (or simply N1 ≡ N2 if T is
clear from the context), if there is a bijection ζ : P1 → P2 such that, ∀p1 ∈ P1, t ∈
T : M1

0 (p1) = M2
0 (ζ(p1)), F1(p1, t) = F2(ζ(p1), t) and F1(t, p1) = F2(t, ζ(p1)). We

shall usually consider Petri nets up to isomorphism.

118 R. Devillers

A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if ∀p ∈
P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′, if
M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p). This can be extended, as usual, to
M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings reachable
from M . The net is bounded if there is k ∈ N such that ∀M ∈ [M0〉, p ∈ P :
M(p) ≤ k.

The reachability graph RG(N) of N is the labelled transition system with the
set of vertices [M0〉, initial state M0, label set T , and set of edges {(M, t,M ′) |
M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If an LTS TS is isomorphic to the reachability graph
of a Petri net N , we say3 that TS is solvable and that N solves TS . A synthesis
problem consists in finding a PN solution for a given LTS, when possible.

Let M1 and M2 be two reachable markings of some Petri net N . We shall
say that M1 is dominated by M2 if M1 � M2, i.e., M1 is distinct from M2 and
componentwise not greater. ��
Corollary 7. Independence from isomorphisms
Let N1 and N2 be two Petri nets. If N1 ≡T N2, then RG(N1) ≡T RG(N2), so
that if N1 solves some LTS TS, N2 also solves TS.
Let TS 1 and TS 2 be two LTS. If TS1 ≡T TS 2 and some Petri net N solves
TS1, then N also solves TS2. ��

4 Petri Net Synthesis and Articulation

We shall first see that if an articulation is solvable, then each component is
individually solvable too.

Proposition 1. Synthesis of components of an articulation
If TS = (S,→, T1 � T2, ι) is articulated by T1 and T2 around s, so that T ≡
TS 1 � s � TS 2 with TS 1 = (adj (T1),→1, T1, ι) and TS 2 = (adj (T2),→2, s) (see
Corollary 1), and is PN-solvable, so is each component TS1 and TS 2. Moreover,
in the corresponding solution for TS1, the marking corresponding to s is not
dominated by any other reachable marking. The same happens for the marking
corresponding to ι2 in TS 2 if the latter is finite.

Proof: Let N = (P, T, F,M0) be a solution for TS . It is immediate that N1 =
(P, T1, F1,M0), where F1 is the restriction of F to T1, is a solution for TS 1 (but
there may be many other ones).

Similarly, if M is the marking of N (and N1) corresponding to s, it may be
seen that N2 = (P, T2, F2,M), where F2 is the restriction of F to T2, is a solution
for TS 2 (but there may be many other ones).

Moreover, if s[t2〉 for some label t2 ∈ T2 and M ′ is a marking of N1 corre-
sponding to some state s′ in TS 1 with M ′ � M , then s
= s′, s′[t2〉 and s is not
the unique articulation between T1 and T2.

If M ′ is a reachable marking of N2 with M ′ � M , then, it is well known that
PN2 is unbounded, hence TS 2 may not be finite. ��
3 Note that an LTS may be unsolvable, but if it is solvable there are many solutions,

sometimes with very different structures.

Articulation of Transition Systems and its Application to PN Synthesis 119

Note that there may also be solutions to TS1 (other than N1) such that the
marking M corresponding to s is dominated, but not if the LTS is reversible,
i.e., if ∀s1 ∈ S1∃α1 ∈ T ∗

1 : s1[α1〉ι1, due to the same infiniteness argument as
above. This is illustrated in Fig. 6.

5 Recomposition

The other way round, let us now assume that TS = TS1�s�TS 2 is an articulated
LTS and that it is possible to solve TS1 and TS 2. Is it possible from that to
build a solution of TS?

To do that, we shall add the constraint already observed in Proposition 1 that,
in the solution of TS 1 as well as in the one of TS 2, the marking corresponding
to s is not dominated by another reachable marking. If this is satisfied we shall
say that the solution is adequate (with respect to s). Hence, in the treatment of
the system in Fig. 6, we want to avoid considering the solution N ′

1 of TS 1; on
the contrary, N1 or N ′′

1 will be acceptable.
If TS 2 is finite, as already mentioned, it is immediate that the initial marking

M2
0 (corresponding to s) in the solution of TS2 is not dominated by any reachable

marking, otherwise there is a path M2
0 [α〉M in that solution such that M2

0 �
M and an infinite path M2

0 [α∞〉, hence also an infinite path ι2[α∞〉 in TS 2,
contradicting the finiteness assumption.

If TS1 is finite and reversible, from a similar argument, no marking reachable
in the solution of TS 1 is dominated by another one, so that the constraint on s
is satisfied. Otherwise, it is possible to force such a solution (if there is one) in
the following way:

Proposition 2. Forcing an adequate solution for TS1

Let us add to TS 1 an arc s[u〉s where u is a new fresh label. Let TS ′
1 be the LTS

so obtained. If TS ′
1 is not solvable, there is no adequate solution. Otherwise,

solve TS ′
1 and erase u from the solution. Let N1 be the net obtained with the

procedure just described: it is a solution of TS1 with the adequate property that
the marking corresponding to s is not dominated by another one.

Proof: If there is an adequate solution N1 of TS 1, with a marking M corre-
sponding to s, let us add a new transition u to it with, for each place p of N1,
W (p, u) = M(p) = W (u, p): the reachability graph of this new net is (isomorphic
to) TS ′

1 since u is enabled by marking M (or any larger one, but there is none)
and does not modify the marking. Hence, if there is no adequate solution of TS1,
there is no solution of TS ′

1.
Let us now assume there is a solution N ′

1 of TS ′
1. The marking M correspond-

ing to s is not dominated otherwise there would be a loop M ′[s〉M ′ elsewhere in
the reachability graph of N ′

1, hence also in TS ′
1. Hence, dropping u in N ′

1 will
lead to an adequate solution of TS1. ��

For instance, when applied to TS1 in Fig. 6, this will lead to N ′′
1 , and not N ′

1

(N1 could also be produced, but it is likely that a ‘normal’ synthesis procedure
will not construct the additional isolated place).

120 R. Devillers

ι

s1

s2

s3

s4

a

a
b

b

TS = TS1 � s2 � TS2

ι1

s1

s2

a

a

TS1

ι2

s3

s4

b

b

TS2

a b

22

N

a

N1

b

22

N2

a

N ′
1

a

N ′′
1

b

N ′
2

Fig. 6. The lts TS is articulated around s2, with T1 = {a} and T2 = {b}, hence
leading to TS1 and TS2. It is solved by N , and the corresponding solutions for TS1

and TS2 are N1 and N2, respectively. TS1 also has the solution N ′
1 but the marking

corresponding to s2 is then empty, hence it is dominated by the initial marking (as well
as by the intermediate one). This is not the case for the other solution N ′′

1 (obtained
from N1 by erasing the useless isolated place: we never claimed that N1 is a minimal
solution). TS2 also has the solution N ′

2.

Articulation of Transition Systems and its Application to PN Synthesis 121

Now, to understand how one may generate a solution for TS from the ones
obtained for TS 1 and TS 2, let us first consider the example illustrated in Fig. 7.
This leads to the following construction.

ι

s

s2

ab

cd

TS = TS1 � s � TS2

ι1

s

ab

TS1

ι2

s2

cd

TS2

a b

N1

c d

N2

a

b

c

d

N

Fig. 7. The lts TS is articulated around s, with T1 = {a, b} and T2 = {c, d}, hence
leading to TS1 and TS2. It is solved by N , and the corresponding solutions for TS1

and TS2 are N1 and N2, respectively. In N , we may recognise N1 and N2, connected
by two kinds of side conditions: the first one connects the label b out of s in TS1 to
the initial marking of N2, the other one connects the label c out of ι2 in TS2 to the
marking of N1 corresponding to s.

Construction
Let TS = TS 1 � s � TS 2 be an articulation of the LTS TS around s for the
partition T = T1 � T2.
Let N1 be a Petri net solution of TS 1, with a non-dominated marking M1 cor-
responding to s, and N2 be a Petri net solution of TS 2, with an initial marking
M2 that we know to be non-dominated.
Let us assume that the places of N1 and N2 are disjoint, which is possible since
we consider nets up to isomorphism, and let us put them side by side.

122 R. Devillers

For each transition t1 out of s in TS 1, and each place p2 such that M2(p2) > 0,
let us create a side condition F (t1, p2) = F (p2, t1) = M2(p2).
For each transition t2 out of ι2 in TS 2, and each place p1 such that M1(p1) > 0,
let us create a side condition F (t2, p1) = F (p1, t2) = M1(p1).
The result is a Petri net N .
End of Construction

Proposition 3. Synthesis of articulation
If TS1 or TS2 are not solvable, so is TS.

Otherwise, the net N constructed as above is a solution of TS.

Proof: The property arises from the observation that N1 with the additional
side conditions behaves like the original N1 provided that, when we reach M1,
N2 does not leave M2. Similarly, N2 with the added side conditions behaves like
the original N2 provided N1 reached M1 and stays there, until N2 returns to
M2. ��

Note that we do not claim this is the only solution, but the goal is to find a
solution when there is one.

6 Decomposition

It remains to show when and how an LTS may be decomposed by an articulation
(or several ones). Let us thus consider some LTS TS = (S,→, T, ι). We may
assume it is totally reachable (the states which may not be reached from ι play no
role in the evolutions of the system) and that the label set T is finite (otherwise,
it may happen that the finest decomposition is infinite. Usually we shall also
assume that the state set S is also finite, otherwise there may be a problem to
implement the procedure we are about to describe in a true algorithm. We may
also assume it is deterministic, i.e., (s[t〉∧s[t′〉) ⇒ t = t′ and ([t〉s∧[t′〉s) ⇒ t = t′

for any state s ∈ S and labels t, t′ ∈ T , otherwise there may be no unlabelled
Petri net solution.

First, we may observe that, for any two distinct labels t, t′ ∈ T , if |adj ({t})∩
adj ({t′})| > 1, t and t′ must belong to a same subset for defining an articulation
(if any). Let us extend the function adj to non-empty subsets of labels by stating
adj (T ′) = ∪t∈T ′adj (t) when ∅ ⊂ T ′ ⊂ T . We then have that, if ∅ ⊂ T1, T2 ⊂ T
and we know that all the labels in T1 must belong to a same subset for defining
an articulation, and similarly for T2, |adj (T1)∩adj (T2)| > 1 implies that T1 ∪T2

must belong to a same subset of labels defining an articulation (if any). If we
get the full set T , that means that there is no possible articulation (but trivial
ones, that we excluded from this study).

Hence, starting from any partition T of T (initially, if T = {t1, t2, . . . , tn},
we shall start from the finest partition T = {{t1}, {t2}, . . . , {tn}}), we shall
construct the finest partition compatible with the previous rule:

while there is T1, T2 ∈ T such that T1
= T2 and |adj (T1) ∩ adj (T2)| > 1,
replace T1 and T2 in T by T1 ∪ T2.

Articulation of Transition Systems and its Application to PN Synthesis 123

At the end, if T = {T}, we may stop with the result: there is no non-trivial
articulation.

Otherwise, we may define a finite bipartite undirected graph whose nodes
are the members of the partition T and some states of S, such that if Ti, Tj ∈
T , Ti
= Tj and adj (Ti)∩adj (Tj) = {s}, there is a node s in the graph, connected
to Ti and Tj (and this is the only reason to have a state as a node of the graph).
Since TS is weakly live and totally reachable, this graph is connected, and each
state occurring in it has at least two neighbours (on the contrary, a subset of
labels may be connected to a single state). Indeed, since TS is weakly live,
∪T ′∈T adj (T ′) = S. Each state s occurring as a node in the graph is connected
to at least two members of the T , by the definition of the introduction of s in
the graph. Let T1 be the member of T such that ι ∈ adj (T1), let Ti be any other
member of T , and let us consider a path ι[α〉 ending with some t ∈ Ti (we may
restrict our attention to a short such path, but this is not necessary): each time
there is a sequence t′t′′ in α such that t′ and t′′ belong to two different members
T ′ and T ′′ of T , we have [t′〉s[t′′〉, where s is the only state-node connected to
T ′ and T ′′, hence in the graph we have T ′ → s → T ′′. This will yield a path in
the constructed graph going from T1 to Ti, hence the connectivity.

If there is a cycle in this graph, that means that there is no way to group the
members of T in this cycle in two subsets such that the corresponding adjacency
sets only have a single common state. Hence we need to fuse all these members,
for each such cycle, leading to a new partition, and we also need to go back to
the refinement of the partition in order to be compatible with the intersection
rule, and to the construction of the graph.

Finally, we shall get an acyclic graph G, with at least three nodes (otherwise
we stopped the articulation algorithm).

We shall now define a procedure articul(SG) that builds an LTS expression
based on articulations from a subgraph SG of G with a chosen state-node root.
We shall then apply it recursively to G, leading finally to an articulation-based
(possibly complex) expression equivalent to the original LTS TS .

The basic case will be that, if SG is a graph composed of a state s connected
to a subset node Ti, articul(SG) will be the LTS TS i = (adj (Ti), Ti,→i, s) (as
usual →i is the projection of → on Ti; by construction, it will always be the case
that s ∈ adj (Ti)).

First, if ι is a state-node of the graph, G then has the form of a star with
root ι and a set of satellite subgraphs G1, G2, . . . , Gn (n is at least 2). Let us
denote by SGi the subgraph with root ι connected to Gi: the result will then
be the (commutative, see Corollary 4) articulation around ι of all the LTSs
articul(SGi).

Otherwise, let T1 be the (unique) label subset in the graph such that ι ∈
adj (T1). G may then be considered as a star with T1 at the center, surrounded
by subgraphs SG1, SG2, . . . , SGn (here n may be 1), each one with a root si
connected to T1 (we have here that si ∈ adj (T1), and we allow si = sj): the result
is then ((. . . ((adj (T1), T1,→1, ι)�s1 �articul(SG1))�s2 �articul(SG2)) . . .)�sn �
articul(SGn)). Note that, if n > 1, the order in which we consider the subgraphs
is irrelevant from Corollary 5.

124 R. Devillers

ι
s1

s2

s3

a

b c

d

e

f f

g

h
s7

i

j

k
k

TS

{a, b} s1 {c, d, e}

s3 {f}

s2 {h, g}

{i, j} s7 {k}

G

ι

s1

ab

TS1

ι2

s2

s3

c

d

e

TS2

ι3

f

f

TS3

ι4

hg

TS4

ι5

s7

ij

TS5

ι6

k

k

TS6

TS TS1 � s1 � (((TS2 � s3 � TS3) � s2 � TS4) � s2 � (TS5 � s7 � TS6))

Fig. 8. The lts TS leads to the graph G. The corresponding components are TS1 to
TS6, which may easily be synthesised; note that, from the total reachability of TS , they
are all totally reachable themselves. This leads to the articulated expression below.

Articulation of Transition Systems and its Application to PN Synthesis 125

Finally, if a subgraph starts from a state s′, followed by a subset T ′,
itself followed by subgraphs SG1, SG2, . . . , SGn (n ≥ 1; if it is 0 we have
the base case), each one with a root si connected to T ′ (we have here that
s′ ∈ adj (T ′), and we allow si = sj): the result is then ((. . . ((adj (T ′), T ′,→′

, s′) � s1 � articul(SG1)) � s2 � articul(SG2)) . . .) � sn � articul(SGn)). Again, if
n > 1, the order in which we consider the subgraphs is irrelevant from Corol-
lary 5.

This procedure is illustrated in Fig. 8.

7 Concluding Remarks

We have developed a theory around a new operator acting on labelled transition
systems, that we called articulation. Its main algebraic properties have been
exhibited, and it was shown how this may be used to construct syntheses from
the solutions of the various components. Since the latter are simpler than the
original LTS (when articulation is possible), it is also much simpler to synthesise
them (when possible), hence speeding up the global synthesis, or the detection
that this is not possible (while pointing at the culprit components). A procedure
has also been devised to decompose a given LTS into articulated components,
when possible.

It remains to build effectively the corresponding procedures, and to incorpo-
rate them in some existing tool, like APT [11].

Other possible issues are to examine how this may be specialised for some
subclasses of Petri nets, like Choice-Free ones, where each place has at most
one outgoing transition: this is exactly the class of Petri nets allowing fully dis-
tributed implementations [6], and they present interesting behavioural properties
[5,10] which could be exploited.

Another possible extension would be to look how these articulations behave
in the context of approximate solutions devised when an exact synthesis is not
possible, in the spirit of the notions and procedures developed in [15].

Finally, other kinds of LTS operators could be searched for, having interest-
ing decomposition procedures, and corresponding to compositions of component
solutions allowing to speed up synthesis problems.

Acknowledgements. The author thanks Eike Best as well as the anonymous referees
for their useful remarks and suggestions.

References

1. Arnold, A.: Finite Transition Systems - Semantics of Communicating Systems.
Prentice Hall International Series in Computer Science. Prentice Hall, Hertford-
shire (1994)

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

https://doi.org/10.1007/978-3-662-47967-4

126 R. Devillers

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

4. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

5. Best, E., Devillers, R., Schlachter, U., Wimmel, H.: Simultaneous Petri net syn-
thesis. Sci. Ann. Comput. Sci. 28(2), 199–236 (2018)

6. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

7. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04921-2 13

8. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science. An EATCS Series. (2001). https://doi.org/10.1007/978-3-662-
04457-5

9. Best, E., Devillers, R., Koutny, M.: The box algebra = Petri nets + process expres-
sions. Inf. Comput. 178(1), 44–100 (2002). https://doi.org/10.1006/inco.2002.3117

10. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis:
algorithmic issues. Acta Informatica 55(7), 575–611 (2018)

11. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceed-
ings 8th Interaction and Concurrency Experience, ICE 2015, Grenoble, France,
4–5th June 2015, pp. 53–67 (2015). https://doi.org/10.4204/EPTCS.189.6

12. Devillers, R.: Factorisation of transition systems. Acta Informatica 55(4), 339–362
(2018)

13. Devillers, R., Schlachter, U.: Factorisation of Petri net solvable transition systems.
In: Application and Theory of Petri Nets and Concurrency - 39th International
Conference, PETRI NETS 2018, Bratislava, Slovakia, pp. 82–98 (2018)

14. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [H] (algo-
rithm 447). Commun. ACM 16(6), 372–378 (1973)

15. Schlachter, U.: Over-approximative Petri net synthesis for restricted subclasses of
nets. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol.
10792, pp. 296–307. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77313-1 23

16. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected com-
ponents on-line. Algorithmica 7(5&6), 433–464 (1992). https://doi.org/10.1007/
BF01758773

https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1006/inco.2002.3117
https://doi.org/10.4204/EPTCS.189.6
https://doi.org/10.1007/978-3-319-77313-1_23
https://doi.org/10.1007/978-3-319-77313-1_23
https://doi.org/10.1007/BF01758773
https://doi.org/10.1007/BF01758773

Hardness Results for the Synthesis
of b-bounded Petri Nets

Ronny Tredup(B)

Universität Rostock, Institut für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Synthesis for a type τ of Petri nets is the following search
problem: For a transition system A, find a Petri net N of type τ whose
state graph is isomorphic to A, if there is one. To determine the computa-
tional complexity of synthesis for types of bounded Petri nets we investi-
gate their corresponding decision version, called feasibility. We show that
feasibility is NP-complete for (pure) b-bounded P/T-nets if b ∈ N

+. We
extend (pure) b-bounded P/T-nets by the additive group Zb+1 of integers
modulo (b + 1) and show feasibility to be NP-complete for the resulting
type. To decide if A has the event state separation property is shown
to be NP-complete for (pure) b-bounded and group extended (pure) b-
bounded P/T-nets. Deciding if A has the state separation property is
proven to be NP-complete for (pure) b-bounded P/T-nets.

1 Introduction

Synthesis for a Petri net type τ is the task to find, for a given transition system
(TS, for short) A, a Petri net N of this type such that its state graph is isomorphic
to A if such a net exists. The decision version of synthesis is called τ -feasibility.
It asks whether for a given TS A a Petri net N of type τ exists whose state
graph is isomorphic to A.

Synthesis for Petri nets has been investigated and applied for many years and
in numerous fields: It is used to extract concurrency and distributability data
from sequential specifications like transition systems or languages [5]. Synthesis
has applications in the field of process discovery to reconstruct a model from its
execution traces [1]. In [9], it is employed in supervisory control for discrete event
systems and in [6] it is used for the synthesis of speed-independent circuits. This
paper deals with the computational complexity of synthesis for types of bounded
Petri nets, that is, Petri nets for which there is a positive integer b restricting
the number of tokens on every place in any reachable marking.

In [2,4], synthesis has been shown to be solvable in polynomial time for
bounded and pure bounded P/T-nets. The approach provided in [2,4] guarantees
a (pure) bounded P/T-net to be output if such a net exists. Unfortunately, it does
not work for preselected bounds. In fact, in [3] it has been shown that feasibility
is NP-complete for 1-bounded P/T-nets, that is, if the bound b = 1 is chosen a

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 127–147, 2019.
https://doi.org/10.1007/978-3-030-21571-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_9

128 R. Tredup

priori. In [15,17], it was proven that this remains true even for strongly restricted
input TSs. In contrast, [12] shows that it suffices to extend pure 1-bounded P/T-
nets by the additive group Z2 of integers modulo 2 to bring the complexity of
synthesis down to polynomial time. The work of [16] confirms also for other types
of 1-bounded Petri nets that the presence or absence of interactions between
places and transitions tip the scales of synthesis complexity. However, some
questions in the area of synthesis for Petri nets are still open. Recently, in [11]
the complexity status of synthesis for (pure) b-bounded P/T-nets, 2 ≤ b, has
been reported as unknown. Furthermore, it has not yet been analyzed whether
extending (pure) b-bounded P/T-nets by the group Zb+1 provides also a tractable
superclass if b ≥ 2.

In this paper, we show that feasibility for (pure) b-bounded P/T-nets, b ∈ N
+,

is NP-complete. This makes their synthesis NP-hard. Moreover, we introduce
(pure) Zb+1-extended b-bounded P/T-nets, b ≥ 2. This type origins from (pure)
b-bounded P/T-nets by adding interactions between places and transitions simu-
lating addition of integers modulo b+1. This extension is a natural generalization
of Schmitt’s approach [12], which does this for b = 1. In contrast to the result
of [12], this paper shows that feasibility for (pure) Zb+1-extended b-bounded
P/T-nets remains NP-complete if b ≥ 2.

To prove the NP-completeness of feasibility we use its well known close con-
nection to the so-called event state separation property (ESSP) and state sep-
aration property (SSP). In fact, a TS A is feasible with respect to a Petri net
type if and only if it has the type related ESSP and SSP [4]. The question of
whether a TS A has the ESSP or the SSP also defines decision problems. The
possibility to decide efficiently if A has at least one of both properties serves
as quick-fail pre-processing mechanisms for feasibility. Moreover, if A has the
ESSP then synthesizing Petri nets up to language equivalence is possible [4].
This makes the decision problems ESSP and SSP worth to study. In [8], both
problems have been shown to be NP-complete for pure 1-bounded P/T-nets.
This has been confirmed for almost trivial inputs in [15,17].

This paper shows feasibility, ESSP and SSP to be NP-complete for b-bounded
P/T-nets, b ∈ N

+. Moreover, feasibility and ESSP are shown to remain NP-
complete for (pure) Zb+1-extended b-bounded P/T-nets if b ≥ 2. Interestingly,
[13] shows that SSP is decidable in polynomial time for (pure) Zb+1-extended b-
bounded P/T-nets, b ∈ N

+. So far, this is the first net family where the provable
computational complexity of SSP is different to feasibility and ESSP.

All presented NP-completeness proofs base on a reduction from the mono-
tone one-in-three 3-SAT problem which is known to be NP-complete [10]. Every
reduction starts from a given boolean input expression ϕ and results in a TS
Aϕ. The expression ϕ belongs to monotone one-in-three 3-SAT if and only if Aϕ

has the (target) property ESSP, SSP or feasibility, respectively.
This paper is organized as follows: Sect. 2 introduces the formal definitions

and notions. Section 3 introduces the concept of unions applied in by our proofs.
Section 4 provides the reductions and proves their functionality. A short conclu-
sion completes the paper. This paper is an extended abstract of the technical

Hardness Results for the Synthesis of b-bounded Petri Nets 129

report [14]. The proofs that had to be removed due to space limitation are given
in [14].

2 Preliminaries

See Figs. 1 and 2 for an example of the notions defined in this section. A transition
system (TS for short) A = (S,E, δ) consists of finite disjoint sets S of states
and E of events and a partial transition function δ : S × E → S. Usually, we
think of A as an edge-labeled directed graph with node set S where every triple
δ(s, e) = s′ is interpreted as an e-labeled edge s e s′, called transition. We say
that an event e occurs at state s if δ(s, e) = s′ for some state s′ and abbreviate
this with s e . This notation is extended to words w′ = wa, w ∈ E∗, a ∈ E by

inductively defining s ε s for all s ∈ S and s w′
s′′ if and only if s w s′ and

s′ a s′′. If w ∈ E∗ then s w denotes that there is a state s′ ∈ S such that
s w s′. An initialized TS A = (S,E, δ, s0) is a TS with an initial state s0 ∈ S

where every state is reachable: ∀s ∈ S,∃w ∈ E∗ : s0
w s. The language of A

is the set L(A) = {w ∈ E∗ | s0
w }. In the remainder of this paper, if not

explicitly stated otherwise, we assume all TSs to be initialized and we refer to
the components of an (initialized) TS A consistently by A = (SA, EA, δA, s0,A).

The following notion of types of nets has been developed in [4]. It allows
us to uniformly capture several Petri net types in one general scheme. Every
introduced Petri net type can be seen as an instantiation of this general scheme.
A type of nets τ is a TS τ = (Sτ , Eτ , δτ) and a Petri net N = (P, T, f,M0) of
type τ , τ -net for short, is given by finite and disjoint sets P of places and T of
transitions, an initial marking M0 : P −→ Sτ , and a flow function f : P × T →
Eτ . The meaning of a τ -net is to realize a certain behavior by cascades of firing
transitions. In particular, a transition t ∈ T can fire in a marking M : P −→ Sτ

and thereby produces the marking M ′ : P −→ Sτ if for all p ∈ P the transition

M(p) f(p, t) M ′(p) exists in τ . This is denoted by M t M ′. Again, this notation
extends to sequences σ ∈ T ∗. Accordingly, RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M}
is the set of all reachable markings of N . Given a τ -net N = (P, T, f,M0), its
behavior is captured by the TS AN = (RS(N), T, δ,M0), called the state graph
of N , where for every reachable marking M of N and transition t ∈ T with
M t M ′ the transition function δ of AN is defined by δ(M, t) = M ′.

The following notion of τ -regions allows us to define the type related ESSP
and SSP. If τ is a type of nets then a τ -region of a TS A is a pair of mappings
(sup, sig), where sup : SA −→ Sτ and sig : EA −→ Eτ , such that, for each

transition s e s′ of A, we have that sup(s) sig(e) sup(s′) is a transition of τ .
Two distinct states s, s′ ∈ SA define an SSP atom (s, s′), which is said to be
τ -solvable if there is a τ -region (sup, sig) of A such that sup(s) �= sup(s′). An
event e ∈ EA and a state s ∈ SA at which e does not occur, that is ¬s e ,
define an ESSP atom (e, s). The atom is said to be τ -solvable if there is a τ -

region (sup, sig) of A such that ¬sup(s) sig(e) . A τ -region solving an ESSP or

130 R. Tredup

a SSP atom (x, y) is a witness for the τ -solvability of (x, y). A TS A has the
τ -ESSP (τ -SSP) if all its ESSP (SSP) atoms are τ -solvable. Naturally, A is said
to be τ -feasible if it has the τ -ESSP and the τ -SSP. The following fact is well
known from [4, p.161]: A set R of τ -regions of A contains a witness for all ESSP
and SSP atoms if and only if the synthesized τ -net NR

A = (R, EA, f,M0) has
a state graph that is isomorphic to A. The flow function of NR

A is defined by
f((sup, sig), e) = sig(e) and its initial marking is M0((sup, sig)) = sup(s0,A) for
all (sup, sig) ∈ R, e ∈ EA. The regions of R become places and the events of EA

become transitions of NR
A . Hence, for a τ -feasible TS A where R is known, we

can synthesize a net N with state graph isomorphic to A by constructing NR
A .

0 1 2(0, 0) | 0

(1, 1)

(0, 0) | 0
(0, 0) | 0
(1, 1)

(2, 2)

(1, 2)

(0, 1) | 1

(1, 0) | 2
(2, 1)

(0, 1) | 1

(0, 2) | 2

(1, 0) | 2

(2, 0) | 1

Fig. 1. The types τ2
0 , τ2

1 , τ2
2 and τ2

3 . τ2
0 is sketched by the (m, n)-labeled transitions

where edges with different labels represent different transitions. Discard from τ2
0 the

(1, 1), (1, 2), (2, 1) and (2, 2) labeled transitions to get τ2
1 and add for i ∈ {0, 1, 2} the

i-labeled transitions and remove (0, 0) to have τ2
2 . Discarding (1, 1), (1, 2), (2, 1), (2, 2)

leads from τ2
2 to τ2

3 .

In this paper, we deal with the following b-bounded types of Petri nets:

1. The type of b-bounded P/T-nets is defined by τ b
0 = ({0, . . . , b},

{0, . . . , b}2, δτb
0
) where for s ∈ Sτb

0
and (m,n) ∈ Eτb

0
the transition func-

tion is defined by δτb
0
(s, (m,n)) = s − m + n if s ≥ m and s − m + n ≤ b,

and undefined otherwise.
2. The type τ b

1 of pure b-bounded P/T-nets is a restriction of τ b
0 -nets that

discards all events (m,n) from Eτb
0

where both, m and n, are positive. To be
exact, τ b

1 = ({0, . . . , b}, Eτb
0

\ {(m,n) | 1 ≤ m,n ≤ b}, δτb
1
), and for s ∈ Sτb

1

and e ∈ Eτb
1

we have δτb
1
(s, e) = δτb

0
(s, e).

3. The type τ b
2 of Zb+1-extended b-bounded P/T-nets origins from τ b

0 by extend-
ing the event set Eτb

0
with the elements 0, . . . , b. The transition function

additionally simulates the addition modulo (b+1). More exactly, this type
is defined by τ b

2 = ({0, . . . , b}, (Eτb
0

\ {(0, 0)}) ∪ {0, . . . , b}, δτb
2
) where for

s ∈ Sτb
2

and e ∈ Eτb
2

we have that δτb
2
(s, e) = δτb

0
(s, e) if e ∈ Eτb

0
and,

otherwise, δτb
2
(s, e) = (s + e) mod (b + 1).

Hardness Results for the Synthesis of b-bounded Petri Nets 131

4. The type τ b
3 of Zb+1-extended pure b-bounded P/T-nets is a restriction of τ b

2

being defined by τ b
3 = ({0, . . . , b}, Eτb

2
\ {(m,n) | 1 ≤ m,n ≤ b}, δτb

3
) where

for s ∈ Sτb
3

and e ∈ Eτb
3

we have that δτb
3
(s, e) = δτb

2
(s, e).

Notice that the type τ1
3 coincides with Schmitt’s type for which the considered

decision problems and synthesis become tractable [12]. Moreover, in [16] it has
been shown that τ1

2 , a generalization of τ1
3 , allows polynomial time synthesis,

too. Hence, in the following, if not explicitly stated otherwise, for τ ∈ {τ b
0 , τ b

1}
we let b ∈ N

+ and for τ ∈ {τ b
2 , τ b

3} we let 2 ≤ b ∈ N. If τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3} and
if (sup, sig) is a τ -region of a TS A then for e ∈ EA we define sig−(e) = m and
sig+(e) = n and |sig(e)| = 0 if sig(e) = (m,n) ∈ Eτ , respectively sig−(e) =
sig+(e) = 0 and |sig(e)| = sig(e) if sig(e) ∈ {0, . . . , b}. The observations of the
next Lemma are used to simplify our proofs:

Lemma 1. Let τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3} and A be a TS.

1. Two mappings sup : SA −→ Sτ and sig : EA −→ Eτ define a τ -region of
A if and only if for every word w = e1 . . . e� ∈ E∗

τ and state s0 ∈ SA the
following statement is true: If s0

e1 . . . e� s�, then sup(si) = sup(si−1) −
sig−(ei) + sig+(ei) + |sig(e)| for i ∈ {1, . . . , �}, where for τ ∈ {τ b

2 , τ b
3}

this equation is considered modulo (b + 1). That is, every region (sup, sig)
is implicitly completely defined by the signature sig and the support of the
initial state: sup(s0,A).

2. If s0, s1, . . . , sb ∈ SA, e ∈ EA and s0
e . . . e sb then a τ -region (sup, sig)

of A satisfies sig(e) = (m,n) with m �= n if and only if (m,n) ∈
{(1, 0), (0, 1)}. If sig(e) = (0, 1) then sup(s0) = 0 and sup(sb) = b. If
sig(e) = (1, 0) then sup(s0) = b and sup(sb) = 0.

3 The Concept of Unions

For our reductions, we use the technique of component design [7]. Every imple-
mented constituent is a TS locally ensuring the satisfaction of some constraints.
Commonly, all constituents are finally joined together in a target instance (TS)
such that all required constraints are properly globally translated. However, the
concept of unions saves us the need to actually create the target instance:

If A0, . . . , An are TSs with pairwise disjoint states (but not necessar-
ily disjoint events) then U(A0, . . . , An) is their union with set of states
SU =

⋃n
i=0 SAi

and set of events EU =
⋃n

i=0 EAi
. For a flexible formal-

ism, we allow to build unions recursively: Firstly, we identify every TS A
with the union containing only A, that is, A = U(A). Next, if U1 =
U(A1

0, . . . , A
1
n1

), . . . , Um = (Am
0 , . . . , An

nm
) are unions then U(U1, . . . , Um) is the

evolved union U(A1
0, . . . , A

1
n1

, . . . , Am
0 , . . . , An

nm
).

The concepts of regions, SSP, and ESSP are transferred to unions U =
U(A0, . . . , An) as follows: A τ -region (sup, sig) of U consists of sup : SU → Sτ

and sig : EU → Eτ such that, for all i ∈ {0, . . . , n}, the projection supi(s) =
sup(s), s ∈ SAi

and sigi(e) = sig(e), e ∈ EAi
defines a region (supi, sigi) of Ai.

132 R. Tredup

0 1 2 3

4 5 6 7

8 9 10 11

a a b

a a b

a a b

c

c

c

c

q0

y0

2002 1011 0020 2022

2102 1111 0120 2122

2202 1211 0220 2222

a a b

a a b

a a b

c

c

c

c

q1

y1

002 011 020 022

102 111 120 122

202 211 220 222

a a b

c c

c c

a a b

a a b

c

c

c

c

q2

y2

w1 w2

00200 01112 02021 02200

10211 11120 12002 12211

20222 21101 22010 22222

a a b

a a b

a a b

c

c

c

c

0 1 2 3 4 5 6 7 8 9 10 11 a b c

sup1 2 1 0 2 2 1 0 2 2 1 0 2
sig1 (1, 0) (0, 2) (2, 2)
sup2 0 0 0 0 1 1 1 1 2 2 2 2
sig2 (0, 0) (0, 0) (0, 1)
sup3 0 1 2 2 0 1 2 2 0 1 2 2
sig3 (0, 1) (0, 0) (0, 0)
sup4 2 1 0 2 2 1 0 2 2 1 0 2
sig4 (1, 0) (0, 2) (0, 0)
sup5 0 1 2 0 1 2 0 1 2 0 1 2
sig5 1 1 (0, 1)
sup6 0 2 1 0 1 0 2 1 1 2 1 0
sig6 2 2 (0, 1)

Fig. 2. Upper left, bold lines: Input TS A. Bottom right: τ2
0 regions R1 =

{R1, R2, R3, R4} of A, where Ri = (supi, sigi) for i ∈ {1, . . . , 4}. At the same
time τ2

1 -regions R2 = {R2, R3, R4} and τ2
3 -regions R3 = {R2, R3, R4, R5, R6} where

for τ2
3 we simply replace every signature (0, 0) by 0. R1 τ2

0 -solves all ESSP and
SSP atoms. While R2 does solve all SSP atoms it fails to solve the ESSP atoms
{(c, 1), (c, 2), (c, 5), (c, 6)}. By τ2

1 ’s lack of event (2, 2), these atoms are not τ2
1 -solvable

at all. Obviously, τ2
3 compensates this deficiency by using the Z3-events 1, 2: R3

solves all atoms of A. Upper middle, bold lines: The state graph A
N

R1
A

of the syn-

thesized τ2
0 -net NR1

A = (R1, {a, b, c}, f1, 2002) with flow function f1(Ri, e) = sigi(e)
for i ∈ {1, . . . , 4} and initial marking M1

0 (R1) = 2, M1
0 (R2) = 0, M1

0 (R3) = 0 and
M1

0 (R4) = 2. Every marking of NR1
A ’s places R1, R2, R3, R4 is denoted as a 4-tuple. As

R1 proves A’s τ2
0 -feasibility, NR1

A ’s state graph is isomorphic to A. Upper right, bold
lines: The state graph A

N
R2
A

of the synthesized τ2
1 -net NR2

A = (R2, {a, b, c}, f2, 002)

with flow function f1(Ri, e) = sigi(e) for i ∈ {1, . . . , 4} and initial marking 002. A
has no τ2

1 -ESSP and, hence, A
N

R2
A

is not isomorphic to A. Bottom left: The state

graph A
N

R3
A

of the synthesized τ2
3 -net NR3

A = (R3, {a, b, c}, f3, 00200) with flow func-

tion f3(Ri, e) = sigi(e) for i ∈ {2, . . . , 6} and initial marking 00200. Again, NR3
A ’s

state graph is isomorphic to A. Top, bold and dashed lines: The joining TS A(U) =
(SU∪{q0, q1, q2}, EU∪{y0, y1, y2, w1, w2}, δA(U), q0) of the union U = (A, A

N
R1
A

, A
N

R2
A

).

Then, U has the τ -SSP if for all distinct states s, s′ ∈ SU of the same TS Ai

there is a τ -region (sup, sig) of U with sup(s) �= sup(s′). Moreover, U has the
τ -ESSP if for all events e ∈ EU and all states s ∈ SU with ¬s e there is a

Hardness Results for the Synthesis of b-bounded Petri Nets 133

τ -region (sup, sig) of U where sup(s) sig(e) does not hold. We say U is τ -feasible
if it has the τ -SSP and the τ -ESSP. In the same way, τ -SSP and τ -ESSP are
translated to the state and event sets SU and EU .

To merge a union U = U(A0, . . . , An) into a single TS, we define the joining
A(U) as the TS A(U) = (SU ∪ Q,EU ∪ W ∪ Y, δ, q0) with additional connector
states Q = {q0, . . . , qn} and fresh events W = {w1, . . . , wn}, Y = {y0, . . . , yn}
connecting the individual TSs of U by

δ(s, e) =

⎧
⎪⎨

⎪⎩

s0,Ai
, if s = qi and e = yi and 0 ≤ i ≤ n,

qi+1, if s = qi and e = wi+1 and 0 ≤ i ≤ n − 1,

δi(s, e), if s ∈ SAi
and e ∈ EAi

and 0 ≤ i ≤ n

Hence, A(U) puts the connector states into a chain with the events from W and
links the initial states of TSs from U to this chain using events from Y . For
example, the upper part of Fig. 2 shows A(U) where U = (A,A

N
R1
A

, A
N

R2
A

).
In [15,17], we have shown that a union U is a useful vehicle to investigate if

A(U) has the τ -feasibility, τ -ESSP and τ -SSP if τ = τ1
1 . The following lemma

generalizes this observation for τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3}:

Lemma 2. Let τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3}. If U = U(A0, . . . , An) of TSs A0, . . . , An is
a union such that for every event e ∈ EU there is a state s ∈ SU with ¬s e then
U has the τ -ESSP, respectively the τ -SSP, if and only if A(U) has the τ -ESSP,
respectively the τ -SSP.

4 Main Result

Theorem 1. 1. If τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3} then to decide if a TS A is τ -feasible or
has the τ -ESSP is NP-complete.

2. If τ ∈ {τ b
0 , τ b

1} then deciding whether a TS A has the τ -SSP is NP complete.

The proof of Theorem 1 bases on polynomial time reductions of the
cubic monotone one-in-three 3-SAT problem to τ -ESSP, τ -feasibility and τ -
SSP, respectively. The input for this decision problem is a boolean expres-
sion ϕ = {C0, . . . , Cm−1} with 3-clauses Ci = {Xi,0,Xi,1,Xi,2} containing
unnegated boolean variables Xi,0,Xi,1,Xi,2. V (ϕ) denotes the set of all vari-
ables of ϕ. Every element X ∈ V (ϕ) occurs in exactly three clauses implying
that V (ϕ) = {X0, . . . , Xm−1}. Given ϕ, cubic monotone one-in-three 3-SAT
asks if there is a one-in-three model M of ϕ. M is a subset of V (ϕ) such that
|M ∩ Ci| = 1 for all i ∈ {0, . . . , m − 1}.

For Theorem 1.1, we let τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3} and reduce ϕ to a union Uτ =
(Kτ , Tτ) which consists of the key Kτ and the translator Tτ , both unions of TSs.
The index τ emphasizes that the components actual peculiarity depends on τ .

For Theorem 1.2 the reduction starts from ϕ and results in a union W =
(K,T) consisting of key K and translator T , both unions. W needs no index as
it has the same shape for τ b

0 and τ b
1 .

134 R. Tredup

The key Kτ provides a key ESSP atom ατ = (k, sτ) with event k and state sτ .
The key K supplies a key SSP atom α = (s, s′) with states s, s′. The translators
Tτ and T represent ϕ by using the variables of ϕ as events. The unions Kτ and Tτ

as well as W and T share events which define their interface Iτ = EKτ
∩ETτ

and
I = EK ∩ET . The construction ensures via the interface that Kτ and Tτ just as
K and T interact in way that satisfies the following objectives of completeness,
existence and sufficiency :

Objective 1 (Completeness). Let (sup, sig) be a region of Kτ (K) solving the
key atom. If (sup′, sig′) is a region of Tτ (T) satisfying sup′(e) = sup(e) for
e ∈ Iτ (e ∈ I) then the signature of the variable events reveal a one-in-three
model of ϕ.

Objective 2 (Existence). There is a region (supK , sigK) of Kτ (K) which
solves the key atom. If ϕ is one-in-three satisfiable then there is a region
(supT , sigT) of Tτ (T) such that sigT (e) = sigK(e) for e ∈ Iτ (e ∈ I)

Objective 3 (Suffiency). If the key atom is τ -solvable in Uτ , respectively W ,
then Uτ has the τ -ESSP and the τ -SSP and W has the τ -SSP.

Objective 1 ensures that the τ -ESSP just as the τ -feasibility of Uτ implies
the one-in-three satisfiability of ϕ, respectively. More exactly, if Uτ has the τ -
ESSP or the τ -feasibility then there is a τ -region (sup, sig) of Uτ that solves
ατ . By definition, this yields corresponding regions (supK , sigK) of Kτ and
(supT , sigT) of Tτ : supKτ

(s) = sig(s) and sigKτ
(e) = sig(e) if s ∈ SKτ

, e ∈ EKτ

and supTτ
(s) = sig(s) and sigTτ

(e) = sig(e) if s ∈ STτ
, e ∈ ETτ

. Similarly, the
τ -SSP of W implies proper regions of K and T by a region (sup, sig) of W which
solves α. As (sup, sig) solves ατ in Uτ (α in W) the region (supK , sigK) solves
ατ in Kτ (α in K). Hence, by Objective 1, the region (supT , sigT) of Tτ (T)
reveals a one-in-three model of ϕ.

Reversely, Objective 2 ensures that a one-in-three model of ϕ defines a region
(sup, sig) of Uτ = (Kτ , Tτ) solving the key atom ατ : sup(s) = supK(s) if s ∈ SKτ

and sup(s) = supT (s) if s ∈ STτ
as well as sig(e) = sigK(e) if e ∈ EKτ

and
sig(e) = sigT (e) if e ∈ ETτ

\ EKτ
. Similarly, we get a region of W that solves α.

Objective 3 guarantees that the solvability of the key atom ατ in Uτ (α in
K) implies the solvability of all ESSP atoms and SSP atoms of Uτ (SSP atoms
of W). Hence, by objective 2, if ϕ has a one-in-three model then Uτ has the
τ -ESSP and is τ -feasible just as W has the τ -SSP.

The unions Uτ and W satisfy the conditions of Lemma 2. Therefore, the
joining TS A(Uτ) has the τ -ESSP and is τ -feasible if and only if ϕ is one-in-three
satisfiable. Likewise, the TS A(W) has the τ -SSP if and only if there is a one-in-
three model for ϕ. By definition, every TS A has at most |SA|2 SSP, respectively
|SA| · |EA| ESSP atoms. Consequently, a non-deterministic Turing machine can
verify a guessed proof of τ -SSP, τ -ESSP and τ -feasibility in polynomial time in
the size of A. Hence, all decision problems are in NP. All reductions are doable in
polynomial time and deciding the one-in-three satisfiability of ϕ is NP-complete.
Thus, our approach proves Theorem 1.

Hardness Results for the Synthesis of b-bounded Petri Nets 135

In order to prove the functionality of the constituents and to convey the
corresponding intuition without becoming too technical, we proceed as follows.
On the one hand, we precisely define the constituents of the unions for arbitrary
bound b and input instance ϕ = {C0, . . . , Cm−1}, Ci = {Xi,0,Xi,1,Xi,2}, i ∈
{0, . . . , m − 1}, V (ϕ) = {X0, . . . , Xm−1}, and prove their functionality. On the
other hand, we provide for comprehensibility full examples for the types τ ∈
{τ b

0 , τ b
1} and the unions Uτ and W . The illustrations also provide a τ -region

solving the corresponding key atom. For a running example, the input instance
is ϕ0 = {C0, . . . , C5} with clauses C0 = {X0,X1,X2}, C1 = {X2,X0,X3}, C2 =
{X1,X3,X0}, C3 = {X2,X4,X5}, C4 = {X1,X5,X4}, C5 = {X4,X3,X5}
that allows the one-in-three model {X0,X4}. A full example for τ ∈ {τ b

2 , τ b
3}

is given in [13]. For further simplification, we reuse gadgets for several unions
as far as possible. This is not always possible as small differences between two
types of nets imply huge differences in the possibilities to build corresponding
regions: The more complex (the transition function of) the considered types,
the more difficult the task to connect the solvability of the key atom with the
signature of the interface events, respectively to connect the signature of the
interface events with an implied model. Moreover, the more difficult these tasks,
the more complex the corresponding gadgets. Hence, less complex gadgets are
useless for more complex types. Reversely, the more complex the gadgets the
more possibilities to solve all ESSP atoms and all SSP atoms are needed. Hence,
more complex gadgets are not useful for less complex types. At the end, some
constituents may differ only slightly at first glance but their differences have a
crucial and necessary impact.

Note, that some techniques of the proof of Theorem 1 are very general
advancements of our previous work [15,17]. For example, like in [15,17] the proof
of Theorem 1 bases on reducing cubic monotone one-in-three 3-SAT. Moreover,
we apply unions as part of component design [7]. However, the reductions in
[15,17] fit only for the basic type τ1

1 and they are already useless for τ1
0 . They

fit even less for τ b
0 and τ b

1 if b ≥ 2 and certainly not for their group extensions.
We proceed as follows. Sections 4.1 and 4.2 introduce the keys Kτb

0
,Kτb

1
,K

and translators Tτb
0
, Tτb

1
, T and prove their functionality. Sections 4.3 and 4.4

present Kτb
2
,Kτb

3
and Tτb

2
, Tτb

3
and carry out how they work. Section 4.5 proves

that the keys and translators collaborate properly.

4.1 The Unions Kτ b
0

and Kτ b
1

and K

Let τ ∈ {τ b
0 , τ b

1}. The aim of Kτ and K is summarized by the next lemma:

Lemma 3. The keys Kτ and K implement the interface events k0, . . . , k6m−1

and provide a key atom aτ and α, respectively, such that the following is true:

1. (Completeness) If (supK , sigK) is τ -region of Kτ , respectively of K, that
solves ατ , respectively α, then sigK(k0) = · · · = sigK(k6m−1) = (0, b) or
sigK(k0) = · · · = sigK(k6m−1) = (b, 0).

136 R. Tredup

2. (Existence) There is a τ -region (supK , sigK) of Kτ , respectively of K, that
solves aτ , respectively α, such that sigK(k0) = · · · = sigK(k6m−1) = (0, b).

Firstly, we introduce the keys Kτb
0
,Kτb

1
and K and show that they sat-

isfy Lemma 3.1. Secondly, we present corresponding τ -regions which prove
Lemma 3.2.

The union Kτb
0

contains the following TS H0 which provides the ESSP
atom (k, h0,4b+1):

H0 = h0,0 . . . h0,b . . . h0,2b h0,2b+1 . . . h0,3b+1

. . .h0,4b+1. . .h0,5b+1. . .h0,6b+1

k k z z o0 k k

z
zo1o1kk

Kτb
0

also installs for j ∈ {0, . . . , 6m−1} the TS Dj,0 providing interface event
kj :

D0,j = dj,0,0 dj,0,1 dj,0,2 dj,0,3 . . . dj,0,b+3

o0 kj o1 o1

Overall, Kτb
0

= (H0,D0,0, . . . , D6m−1,0).
Proof of Lemma 3.1 for τ b

0 . For j ∈ {0, . . . , 6m − 1} the TSs H0 and
Dj,0 interact as follows: If (supK , sigK) is a region of Kτb

0
solving (k, h0,4b+1)

then either sigK(o0) = (0, b) and sigK(o1) = (0, 1) or sigK(o0) = (b, 0)
and sigK(o1) = (1, 0). By o0 dj,0,1, dj,0,2

o1 and Lemma 1, if sigK(o0) =
(0, b), sigK(o1) = (0, 1) then supK(dj,0,1) = b and supK(dj,0,2) = 0. This
implies sigK(kj) = (b, 0). Similarly, sigK(o0) = (b, 0), sigK(o1) = (1, 0) implies
supK(dj,0,1) = 0 and supK(dj,0,2) = b yielding sigK(kj) = (0, b). Hence, it is
sigK(k0) = · · · = sigK(k6m−1) = (b, 0) or sigK(k0) = · · · = sigK(k6m−1) =
(0, b).

To prove Lemma 3.1 for Kτb
0

it remains to argue that a τ b
0 -region (sig, sup)

of Kτb
0

solving (k, h0,4b+1) satisfies sigK(o0) = (0, b), sigK(o1) = (0, 1) or
sigK(o0) = (b, 0), sigK(o1) = (1, 0). Let E0 = {(m,m) | 0 ≤ m ≤ b}.

By definition, if sig(k) = (m,m) ∈ E0 then sup(h0,3b+1), sup(h0,5b+1) ≥
m. Event (m,m) occurs at every state s of τ b

0 satisfying s ≥ m. Hence, by

¬h0,4b+1
(m,m) , we get sup(h0,4b+1) < m. Observe, that z occurs always b times

in a row. Therefore, by sup(h0,3b+1) ≥ m, sup(h0,4b+1) < m and Lemma 1, we
have sup(z) = (1, 0), sig(o1) = (0, 1) and immediately obtain sup(h0,2b) = 0 and
sup(h0,3b+1) = b. Moreover, by sig(k) = (m,m) and sup(h0,3b+1) = b we get
sup(h0,2b+1) = b implying with sup(h0,2b) = 0 that sig(o0) = (0, b). Thus, we
have sig(o0) = (0, b) and sig(o1) = (0, 1).

Otherwise, if sig(k) �∈ E0, then Lemma 1 ensures sig(k) ∈ {(1, 0), (0, 1)}.

If sig(k) = (0, 1) then, by s (0, 1) for every state s ∈ {0, . . . , b − 1} of τ b
0 , we

have sup(h0,4b+1) = b. Moreover, again by sig(k) = (0, 1) we have sup(h0,b) =
sup(h0,3b+1) = b and sup(h0,2b+1) = sup(h0,5b+1) = 0. By sup(h0,3b+1) =
sup(h0,4b+1) = b we have sig(z) ∈ E0 which together with sup(h0,b) = b
implies sup(h0,2b) = b. Thus, by sup(h0,2b) = b and sup(h0,2b+1) = 0, it
is sig(o0) = (b, 0). Moreover, by sup(h0,4b+1) = b and sup(h0,5b+1) = 0, we

Hardness Results for the Synthesis of b-bounded Petri Nets 137

conclude sig(o1) = (1, 0). Hence, we have sig(o0) = (b, 0) and sig(o1) = (1, 0).
Similar arguments show that sigK(k) = (1, 0) implies sig(o0) = (0, b) and
sig(o1) = (0, 1). Overall, this proves the announced signatures of o0 and o1.
Hence, Kτb

0
satisfies Lemma 3.1. ��

The union Kτb
1

uses the next TS H1 to provide the key atom (k, h1,2b+4):

H1 = h1,0 . . . h1,b h1,b+1 h1,b+2 . . . h1,2b+2 h1,2b+3 h1,2b+4

h1,2b+5. . .h1,3b+5

k k z0 o0 k k z1 z0

o2
kk

Furthermore, Kτb
1

contains for j ∈ {0, . . . , 6m−1} the TS Dj,1 which provides
the interface event kj :

Dj,1 = dj,1,0 dj,1,1 dj,1,2 dj,1,3

o0 kj o2

Altogether, Kτb
1

= U(H1,D0,1, . . . , D6m−1,1).
Proof of Lemma 3.1 for τ b

1 . For j ∈ {0, . . . , 6m − 1} the TSs H1 and Dj,1

interact as follows: If (supK , sigK) is a τ b
1 -region of Kτb

1
solving (k, h1,2b+4)

then either sigK(o0) = sigK(o2) = (b, 0) or sigK(o0) = sigK(o2) = (0, b).
Clearly, sigK(o0) = sigK(o2) = (b, 0), respectively sigK(o0) = sigK(o2) = (0, b),
implies sigK(k0) = · · · = sigK(k6m−1) = (0, b), respectively sigK(k0) = · · · =
sigK(k6m−1) = (b, 0).

We argue that the τ b
1 -solvability of (k, h1,2b+4) implies the announced sig-

natures of o0, o2. If (supK , sigK) is a τ b
1 -region that solves (k, h1,2b+4) then,

by definition of τ b
1 and Lemma 1, we get sigK(k) ∈ {(1, 0), (0, 1)}. Let

sigK(k) = (0, 1). The event (0, 1) occurs at every s ∈ {0, . . . , b−1} of τ b
1 . Hence,

¬supK(h1,2b+4) (0, 1) implies supK(h1,2b+4) = b. Moreover, k occurs b times in
a row. Thus, by sigK(k) = (0, 1) and Lemma 1, we obtain supK(h1,b) = b

and supK(h1,b+2) = supK(h1,2b+5) = 0. This implies, by h1,2b+4
o2 h1,2b+5,

sup(h1,2b+4) = b and sup(h1,2b+5) = 0, that sig(o2) = (b, 0). Hence, by
supK(h1,b) = supK(h1,2b+4) = b, h1,b

z0 and z0 h1,2b+4, we get sig(z0) =
(0, 0). Finally, by sup(h1,b) = b, h1,b

z0 and sig(z0) = (0, 0) we deduce
sup(h1,b+1) = b. Hence, h1,b+1

o0 h1,b+2, sup(h1,b+1) = b and sup(h1,b+1) = 0
yield sig(o0) = (b, 0). Altogether, we have that sig(o0) = sig(o2) = (b, 0). Simi-
larly, one verifies that sigK(k) = (1, 0) results in sig(o0) = sig(o2) = (0, b). This
proves Lemma 3.1 for Kτb

1
. ��

The union K uses the following TS H2 to provide the key atom (h2,0, h2,b):

H2 = h2,0 . . . h2,b h2,b+1 . . . h2,2b+1 h2,2b+2 . . . h2,3b+2

k k o0 k k o2 k k

K also contains the TSs D0,1, . . . , D6m−1,1, thus K = (H2,D0,1, . . . ,
D6m−1,1).

Proof of Lemma 3.1 for τ b
2 . K works as follows: The event k occurs b times in a

row at h2,0. Thus, by Lemma 1, a region (supK , sigK) solving (h2,0, h2,b) satisfies

138 R. Tredup

sigK(k) ∈ {(1, 0), (0, 1)}. If sigK(k) = (1, 0) then supK(h2,b) = supK(h2,2b+1) =
b and supK(h2,b+1) = supK(h2,2b+2) = 0 implying sigk(o0) = sigk(o2) = (b, 0).
Otherwise, if sigK(k) = (0, 1) then supK(h2,b) = supK(h2,2b+1) = 0 and
supK(h2,b+1) = supK(h2,2b+2) = b which implies sigk(o0) = sigk(o2) = (0, b).
As already discussed for Kτb

1
, we have that sigk(o0) = sigk(o2) = (b, 0)

(sigk(o0) = sigk(o2) = (0, b)) implies sigK(kj) = (0, b) (sigK(kj) = (b, 0)) for
j ∈ {0, . . . , 6m − 1}. Hence, Lemma 3.1 is true for K. ��

It remains to show that Kτb
0
,Kτb

1
and K satisfy the objective of existence:

Proof of Lemma 3.2. We present corresponding regions. Let S and E be the
set of all states and of all events of K,Kτb

0
and Kτb

1
, respectively. We define

mappings sig : E −→ Eτb
1

and sup : S −→ Sτb
1

by:

sig(e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, b), if e ∈ {k0, . . . , k6m−1}
(0, 1), if e = k

(0, 0), if e ∈ {z, z0, z1}
(1, 0), if e = o1

(b, 0), if e ∈ {o0, o2}

sup(s) =

⎧
⎪⎨

⎪⎩

0, if s ∈ {h0,0, h1,0, h2,0}
b, if s ∈ {dj,0,0, dj,1,0}

and 0 ≤ j ≤ 6m − 1

By sigK , sigK
τb
0

and sigK
τb
1

(supK , supK
τb
0

and supK
τb
1
) we denote the restriction

of sig (sup) to the events (states) of K, Kτb
0

and Kτb
1
, respectively. As sup

defines the support of every corresponding initial state, by Lemma 1, we obtain
fitting regions (supK , sigK), (supK

τb
0
, sigK

τb
0
) and (supK

τb
1
, sigK

τb
1
) that solve

the corresponding key atom. Figure 3 sketches this region for Kτ2
1

and K. ��

4.2 The Translators Tτ b
0

and Tτ b
1

and T

In this subsection, we present translator T , which we also use as Tτb
0

and Tτb
1
,

that is, Tτb
0

= Tτb
1

= T .
For every i ∈ {0, . . . , m − 1} the clause Ci = {Xi,0,Xi,1,Xi,2} is translated

into the following three TSs which use the variables of Ci as events:

Ti,0 = ti,0,0 ti,0,1 . . . ti,0,b+1 ti,0,b+2 . . . ti,0,2b+2 ti,0,2b+3

k6i Xi,0 Xi,0 xi Xi,2 Xi,2 k6i+1

Ti,1 = ti,1,0 ti,1,1 . . . ti,1,b+1 ti,1,b+2 ti,1,b+3

k6i+2 Xi,1 Xi,1 pi k6i+3

Ti,2 = ti,2,0 ti,2,1 ti,2,2 ti,2,3 ti,2,4

k6i+4 xi pi k6i+5

Altogether, T = U(T0,0, T0,1, T0,2, . . . , Tm−1,0, Tm−1,1, Tm−1,2). Figure 3 pro-
vides an example for T where b = 2 and ϕ = ϕ0. In accordance to our general
approach and Lemma 3 the following lemma states the aim of T :

Lemma 4. Let τ ∈ {τ b
0 , τ b

1}.
1. (Completeness) If (supT , sigT) is a τ -region of T such that sigT (k0) = · · · =

sigT (k6m−1) = (0, b) or sigT (k0) = · · · = sigT (k6m−1) = (b, 0) then ϕ has a
one-in-three model.

Hardness Results for the Synthesis of b-bounded Petri Nets 139

t0,0,0 t0,0,1 t0,0,2 t0,0,3 t0,0,4 t0,0,5 t0,0,6 t0,0,7

[0] [0] [0] [0] [0][1][2] [2](0, 2) (0, 2)(1, 0) (1, 0) (0, 0) (0, 0) (0, 0)

k0 X0 X0 x0 X2 X2 k1

t0,1,0 t0,1,1 t0,1,2 t0,1,3 t0,1,4 t0,1,5

[0] [0][2] [2] [2] [2](0, 2) (0, 2)(0, 0) (0, 0) (2, 0)

k2 X1 X1 p0 k3
t0,2,0 t0,2,1 t0,2,2 t0,2,3 t0,2,4

[0] [0][2] [2] [2](0, 2) (0, 2)(0, 0) (2, 0)

k4 x0 p0 k5

t1,0,0 t1,0,1 t1,0,2 t1,0,3 t1,0,4 t1,0,5 t1,0,6 t1,0,7

[0] [0] [0] [0][2] [2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0) (0, 0) (0, 0) (0, 0)

k6 X2 X2 x1 X3 X3 k7

t1,1,0 t1,1,1 t1,1,2 t1,1,3 t1,1,4 t1,1,5

[0] [0] [0][1][2] [2](0, 2) (0, 2)(1, 0) (1, 0) (0, 0)

k8 X0 X0 p1 k9
t1,2,0 t1,2,1 t1,2,2 t1,2,3 t1,2,4

[0] [0] [0][2] [2](0, 2) (0, 2)(2, 0) (0, 0)

k10 x1 p1 k11

t2,0,0 t2,0,1 t2,0,2 t2,0,3 t2,0,4 t2,0,5 t2,0,6 t2,0,7

[0] [0][1][2] [2] [2] [2] [2](0, 2) (0, 2)(1, 0) (1, 0)(0, 0) (0, 0) (0, 0)

k12 X1 X1 x2 X0 X0 k13

t2,1,0 t2,1,1 t2,1,2 t2,1,3 t2,1,4 t2,1,5

[0] [0][2] [2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0) (0, 0)

k14 X3 X3 p2 k15
t2,2,0 t2,2,1 t2,2,2 t2,2,3 t2,2,4

[0] [0][2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0)

k16 x2 p2 k17

t3,0,0 t3,0,1 t3,0,2 t3,0,3 t3,0,4 t3,0,5 t3,0,6 t3,0,7

[0] [0] [0] [0][2] [2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0) (0, 0) (0, 0) (0, 0)

k18 X2 X2 x3 X5 X5 k19

t3,1,0 t3,1,1 t3,1,2 t3,1,3 t3,1,4 t3,1,5

[0] [0] [0][1][2] [2](0, 2) (0, 2)(1, 0) (1, 0) (0, 0)

k20 X4 X4 p3 k21
t3,2,0 t3,2,1 t3,2,2 t3,2,3 t3,2,4

[0] [0] [0][2] [2](0, 2) (0, 2)(2, 0) (0, 0)

k22 x3 p3 k23

t4,0,0 t4,0,1 t4,0,2 t4,0,3 t4,0,4 t4,0,5 t4,0,6 t4,0,7

[0] [0][1][2] [2] [2] [2] [2](0, 2) (0, 2)(1, 0) (1, 0)(0, 0) (0, 0) (0, 0)

k24 X1 X1 x4 X4 X4 k25

t4,1,0 t4,1,1 t4,1,2 t4,1,3 t4,1,4 t4,1,5

[0] [0]

[0][0]

[2] [2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0) (0, 0)

k26 X5 X5 p4 k27
t4,2,0 t4,2,1 t4,2,2 t4,2,3 t4,2,4

[0] [0][2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0)

k28 x4 p4 k29

t5,0,0 t5,0,1 t5,0,2 t5,0,3 t5,0,4 t5,0,5 t5,0,6 t5,0,7

[0] [0] [0] [0] [0][1][2] [2](0, 2) (0, 2)(1, 0) (1, 0) (0, 0) (0, 0) (0, 0)

k30 X4 X4 x5 X5 X5 k31

t5,1,0 t5,1,1 t5,1,2 t5,1,3 t5,1,4 t5,1,5

[0] [0][2] [2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0) (0, 0)

k32 X3 X3 p5 k33
t5,2,0 t5,2,1 t5,2,2 t5,2,3 t5,2,4

[0] [0][2] [2] [2](0, 2) (0, 2)(2, 0)(0, 0)

k34 x5 p5 k35

T

h2,0 h2,1 h2,2 h2,3 h2,4 h2,5 h2,6 h2,7 h2,8 h2,9 h2,10 h2,11

h2,12h2,13

[0] [0]

[0]

[1] [1] [1]

[1]

[2] [2] [2] [2] [2] [2]

[2] (0, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (1, 0) (1, 0)(0, 1) (0, 1) (0, 1) (0, 1)(2, 0)

k k z z o0 k k z z o1 o1

k
k

d0,0,0 d0,0,1 d0,0,2 d0,0,3 d0,0,4

[2] [2] [1][0] [0](1, 0) (1, 0)(2, 0) (0, 2)

o0 k0 o2 o2 . . . d35,0,0 d35,0,1 d35,0,2 d35,0,3 d35,0,4

[2] [2] [1][0](2, 0) (1, 0) (1, 0)(0, 2)

o0 k35 o2 o2

Kτ2
0

h1,0 h1,1 h1,2 h1,3 h1,4 h1,5 h1,6 h1,7 h1,8 h1,9 h1,10 h1,11

[0] [0] [0][1] [1] [1][2] [2] [2] [2] [2] [2](0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 0) (0, 0) (0, 0)(2, 0) (2, 0)

k k z0 o0 k k z1 z0 o1 k k

d0,1,0 d0,1,1 d0,1,2 d0,1,3

[2] [2][0] [0](2, 0) (2, 0)(0, 2)

o0 k0 o2 . . . d35,1,0 d35,1,1 d35,1,2 d35,1,3

[2] [2][0] [0](2, 0) (2, 0)(0, 2)

o0 k35 o2

h2,0 h2,1 h2,2 h2,3 h2,4 h2,5 h2,6 h2,7 h2,8

[0] [0] [0][1] [1] [1][2] [2] [2](0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(2, 0) (2, 0)

k k o0 k k o2 k k

Kτ2
1

K

Fig. 3. Constituents Kτ , K, T for τ ∈ {τ2
0 , τ2

1 } and ϕ0. TSs are defined by bold drawn
states, edges and events. Labels with reduced opacity correspond to region (sup, sig)
defined in Sects. 4.1, 4.2: sup(s) is presented in square brackets below state s and sig(e)
is depicted below every e-labeled transition. The model of ϕ0 is {X0, X4}.

2. (Existence) If ϕ has a one-in-three model then there is a τ -region
(supT , sigT) of T such that sigT (k0) = · · · = sigT (k6m−1) = (0, b).

140 R. Tredup

Proof. To fulfill its destiny, T works as follows. By definition, if (supT , sigT) is
a region of T then πi,0, πi,1, πi,2, defined by

πi,0 =supT (ti,0,1) . . . supT (ti,0,b+1) supT (ti,0,b+2) . . . supT (ti,0,2b+2)
sigT (Xi,0) sigT (Xi,0) sigT (xi) sigT (Xi,2) sigT (Xi,2)

πi,1 =supT (ti,1,1) . . . supT (ti,1,b+1) supT (ti,1,b+2)
sigT (Xi,1) sigT (Xi,1) sigT (pi)

πi,2 =supT (ti,2,1) supT (ti,2,2) supT (ti,2,3)
sigT (xi) sigT (pi)

are directed labeled paths of τ . For every i ∈ {0, . . . ,m − 1}, the events
k6i, . . . , k6i+5 belong to the interface. By Lemma 3.1, Kτ and K ensure the
following: If (supK , sigK) is a region of Kτ , respectively K, that solves the key
atom aτ , respectively α, then either sigK(k0) = · · · = sigK(k6m−1) = (0, b) or

sigK(k0) = · · · = sigK(k6m−1) = (b, 0). For every transition s kj s′, the first
case implies sup(s) = 0 and sup(s′) = b while the second case implies sup(s) = b
and sup(s′) = 0, where j ∈ {0, . . . , 6m − 1}. Hence, a τ -region (supT , sigT) of T
being compatible with (supK , sigK) satisfies exactly one of the next conditions:

(1) sigT (k0) = · · · = sigT (k6m−1) = (0, b) and for every i ∈ {0, . . . , m − 1} the
paths πi,0, πi,1, πi,2 start at b and terminate at 0.

(2) sigT (k0) = · · · = sigT (k6m−1) = (b, 0) and for every i ∈ {0, . . . , m − 1} the
paths πi,0, πi,1, πi,2 start at 0 and terminate at b.

The construction of T ensures that if (1), respectively if (2), is satisfied then there
is for every i ∈ {0, . . . ,m − 1} exactly one variable event X ∈ {Xi,0,Xi,1,Xi,2}
such that sig(X) = (1, 0), respectively sig(X) = (0, 1). Each triple Ti,0, Ti,1, Ti,2

corresponds exactly to the clause Ci. Hence, M = {X ∈ V (ϕ)|sigT (X) = (1, 0)}
or M = {X ∈ V (ϕ)|sigT (X) = (0, 1)}, is a one-in-three model of ϕ, respectively.
Having sketched the plan to satisfy Lemma 4.1, it remains to argue that the
deduced conditions (1), (2) have the announced impact on the variable events.

For a start, let (2) be satisfied and i ∈ {0, . . . , m − 1}. By sigT (k6i) = · · · =
sigT (k6i+5) = (0, b) we have that supT (ti,0,1) = supT (ti,1,1) = supT (ti,1,1) = b
and supT (ti,0,2b+2) = supT (ti,1,b+2) = supT (ti,1,3) = 0. Notice, for every event
e ∈ {Xi,0,Xi,1,Xi,2, xi, pi} there is a state s such that s e and supT (s) = b or
such that e s and supT (s) = 0. Consequently, if (m,n) ∈ Eτ and m < n then
sig(e) �= (m,n). This implies the following condition:

(3) If e ∈ {Xi,0,Xi,1,Xi,2, xi, pi} and s e s′ then supT (s) ≥ supT (s′).

Moreover, every variable event Xi,0,Xi,1,Xi,2 occurs b times consecutively in a
row. Hence, by Lemma 1, we have:

(4) If X ∈ {Xi,0,Xi,1,Xi,2}, sigT (X) = (m,n) and m �= n then (m,n) = (1, 0).

The paths πi,0, πi,1, πi,2 of τ start at b and terminate at 0. Hence, by definition
of τ , for every π ∈ {πi,0, πi,1, πi,2} there has to be an event eπ, which occurs at
π, such that sigT (eπ) = (m,n) with m > n.

If for π ∈ {πi,0, πi,1} it is true that eπ �∈ {Xi,0,Xi,1,Xi,2} then for
X ∈ {Xi,0,Xi,1,Xi,2} we have sigT (X) = (m,m) for some m ∈ {0, . . . , b}.

Hardness Results for the Synthesis of b-bounded Petri Nets 141

This yields sup(ti,0,b+1) = sup(ti,1,b+1) = b and sup(ti,0,b+2) = 0 which with
sup(ti,1,b+2) = 0 implies sigT (xi) = sigT (pi) = (b, 0). By sigT (xi) = (b, 0),
we obtain sup(ti,2,2) = 0 and, by sigT (pi) = (b, 0), we obtain sup(ti,2,2) = b,
a contradiction. Consequently, by Condition 4, there has to be an event X ∈
{Xi,0,Xi,1,Xi,2} such that sigT (X) = (1, 0). We discuss all possible cases to
show that X is unambiguous.

If sigT (Xi,0) = (1, 0) then, by Lemma 1, we have that supT (ti,0,b+1) = 0.
By (3), this implies that supT (ti,0,b+2) = · · · = supT (ti,0,2b+1) = 0 and
sigT (xi) = sigT (Xi,2) = (0, 0). Moreover, sigT (xi) = (0, 0) and sup(ti,2,1) = b
imply sup(ti,2,2) = b which with sup(ti,2,3) = 0 implies sigT (pi) = (b, 0). By
sigT (pi) = (b, 0) we obtain sup(ti,1,b+1) = b which, by Lemma 1 and contrapo-
sition shows that sigT (Xi,1) �= (1, 0). Hence, we have sigT (Xi,1) �= (1, 0).

If sigT (Xi,2) = (1, 0) then, by Lemma 1, we have that supT (ti,0,b+2) = b.
Again by (3), this implies that supT (ti,0,1) = · · · = supT (ti,0,b+2) = b and
sigT (xi) = (m,m), sigT (Xi,0) = (m′,m′) for some m,m′ ∈ {0, . . . , b}. Espe-
cially, we have that sigT (Xi,0) �= (1, 0). Moreover, by sigT (xi) = (m,m), we
obtain supT (ti,2,2) = b implying with supT (ti,2,3) = 0 that sigT (pi) = (b, 0). As
in the previous case this yields sigT (Xi,1) �= (1, 0).

Finally, if sigT (Xi,1) = (1, 0) then, by Lemma 1, we get supT (ti,1,b+1) = 0.
By supT (ti,1,b+1) = supT (ti,1,b+2) = 0 we conclude sigT (pi) = (0, 0) which
with supT (ti,2,3) = 0 implies supT (ti,2,2) = 0. Using supT (ti,2,1) = b and
supT (ti,2,2) = 0 we obtain sigT (xi) = (b, 0) implying that supT (ti,0,b+1) = b
and supT (ti,0,b+2) = 0. By (3), this yields supT (ti,0,1) = · · · = supT (ti,0,b+1) = b
and supT (ti,0,b+2) = · · · = supT (ti,0,2b+2) = b which, by Lemma 1, implies
sigT (Xi,0) �= (1, 0) and sigT (Xi,2) �= (1, 0).

So far, we have proven that if (1) is satisfied then for every i ∈ {0, . . . , m−1}
there is exactly one variable event X ∈ {Xi,0,Xi,1,Xi,2} such that sigT (X) =
(1, 0). Consequently, the set M = {X ∈ V (ϕ)|sigT (X) = (1, 0)} is a one-in-three
model of ϕ. One verifies, by analogous arguments, that (2) implies for every
i ∈ {0, . . . , m − 1} that there is exactly one variable event X ∈ {Xi,0,Xi,1,Xi,2}
with sigT (X) = (0, 1), which makes M = {X ∈ V (ϕ)|sigT (X) = (0, 1)} a one-
in-three model of ϕ. Hence, a τ -region of Tτ that satisfies (1) or (2) implies a
one-in-three model of ϕ.

Reversely, if M is a one-in-three model of ϕ then there is a τ -region
(supT , sigT) satisfying (1) which, by Lemma 1, is completely defined by
supT (ti,0,0) = supT (ti,1,0) = supT (ti,1,0) = 0 for i ∈ {0, . . . , m − 1} and

sigT (e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, b), if e ∈ {k0, . . . , k6m−1}
(0, 0), if e ∈ V (ϕ) \ M

(0, 0), if (e = pi,Xi,1 ∈ M) or (e = xi,Xi,1 �∈ M), 0 ≤ i ≤ m − 1
(1, 0), if e ∈ M

(b, 0), if (e = xi,Xi,1 ∈ M) or (e = pi,Xi,1 �∈ M), 0 ≤ i ≤ m − 1

See Fig. 3, for a sketch of this region for τ ∈ {τ2
0 , τ2

1 }, ϕ0 and M = {X0,X4}.
This proves Lemma 4. ��

142 R. Tredup

4.3 The Key Unions Kτ b
2

and Kτ b
3

The unions Uτb
2
, Uτb

3
install the same key. More exactly, if τ ∈ {τ b

2 , τ b
3} then Kτ

uses only the TS H3 to provide key atom (k, h3,1,b−1) and the interface k and z:

H3 = h3,0,0 . . . h3,0,b−1 h3,0,b

h3,1,0 . . . h3,1,b−1

k

u

k

k k

k
z

The next lemma summarizes the intention behind Kτ :

Lemma 5. Let τ ∈ {τ b
2 , τ b

3} and E0 = {(m,m)|1 ≤ m ≤ b} ∪ {0}.
1. (Completeness) If (supK , sigK) is a τ -region that solves (k, h3,1,b−1) in Kτ

then sig(k) ∈ {(1, 0), (0, 1)} and sigK(z) ∈ E0.
2. (Existence) There is a τ -region (supK , sigK) of Kτ solving (k, h3,1,b−1) such

that sig(k) = (0, 1) and sigK(z) = 0.

Proof. For the first statement, we let (supK , sigK) be a region solving ατ . By
k h3,1,b−1 and ¬supK(h3,1,b−1) sigK(k) we immediately have sig(K) �∈ E0.

Moreover, for every group event e ∈ {0, . . . , b} and every state s of τ we have

that s e . Hence, by ¬supK(h3,1,b−1) sigK(k) we have sigK(k) �∈ {0, . . . , b}.
The event k occurs b times in a row. Therefore, by Lemma 1, we have that
sigK(k) ∈ {(1, 0), (0, 1)} and if sigK(k) = (1, 0) then supK(h3,0,b) = 0 and

if sigK(k) = (0, 1) then supK(h3,0,b) = b. If s ∈ {0, . . . , b − 1} then s (0, 1)

is true. Furthermore, every state s ∈ {1, . . . , b} satisfies s (1, 0) . Consequently,

by ¬supK(h3,1,b−1) sigK(k) , if sigK(k) = (0, 1) then supK(h3,1,b−1) = b and
if sigK(k) = (1, 0) then supK(h3,1,b−1) = 0. This implies for (supK , sigK)
that sigK(z) ∈ E0 and proves Lemma 5.1. For Lemma 5.2 we easily ver-
ify that (supK , sigK) with sigK(k) = (0, 1), sigK(u) = 1, sigK(z) = 0 and
supK(h3,0,0) = 0 properly defines a solving τ -region. ��

4.4 The Translators Tτ b
2

and Tτ b
3

In this section we introduce Tτb
2

which is used for Uτb
2

and Uτb
3
, that is, Tτb

3
= Tτb

2
.

Let τ ∈ {τ b
2 , τ b

3}. Firstly, the translator Tτ contains for every variable Xj of ϕ,
j ∈ {0, . . . , m − 1}, the TSs Fj , Gj below, that apply Xj as event:

Fj = fj,0,0 . . . fj,0,b

fj,1,0 . . . fj,1,b−1

k

vj

k

k

k

Xj

Gj = gj,0 . . . gj,b gj,b+1
k k Xj

Secondly, translator Tτ implements for every clause Ci = {Xi,0,Xi,1,Xi,2}
of ϕ, i ∈ {0, . . . ,m − 1}, the following TS Ti that applies the variables of Ci as
events :

Hardness Results for the Synthesis of b-bounded Petri Nets 143

Ti = ti,0 . . . ti,b ti,b+1 ti,b+2 ti,b+3 ti,b+4 . . . ti,2b+4

k k Xi,0 Xi,1 Xi,2 z k k

Altogether, we have Tτ = (F0, G0, . . . , Fm−1, Gm−1, T0, . . . , Tm−1).
The next lemma summarizes the functionality of Tτ :

Lemma 6. If τ ∈ {τ b
2 , τ b

3} then the following conditions are true:

1. (Completeness) If (supT , sigT) is a τ -region of Tτ such that sigT (z) ∈ E0

and sigT (k) = (0, 1), respectively sigT (k) = (1, 0), then ϕ is one-in-three
satisfiable.

2. (Existence) If ϕ is one-in-three satisfiable then there is a τ -region
(supT , sigT) of Tτ such that sigT (z) = 0 and sigT (k) = (0, 1).

Proof. Firstly, we argue for Lemma 6.1. Let (supT , sigT) be a region of Tτ which
satisfies sigT (z) ∈ E0, sigT (k) ∈ {(1, 0), (0, 1)}. By definition, πi defined by

πi = supT (ti,b) supT (ti,b+1) supT (ti,b+2) supT (ti,b+3)
sigT (Xi,0) sigT (Xi,1) sigT (Xi,2)

is a directed labeled path in τ . By sigT (z) ∈ E0 and ti,b+3
z ti,b+4 we obtain

that supT (ti,b+3) = supT (ti,b+4). Moreover, k occurs b times in a row at ti,0
and ti,b+4. By Lemma 1, this implies if sigT (k) = (1, 0) then supT (ti,b) = b and
supT (ti,b+4) = 0 and if sigT (k) = (0, 1) then supT (ti,b) = 0 and supT (ti,b+4) =
b. Altogether, we obtain that the following conditions are true: If sigT (z) ∈
E0, sigT (k) = (1, 0) then path pi starts a 0 and terminates at b and if sigT (z) ∈
E0, sigT (k) = (0, 1) then the path pi starts a b and terminates at 0.

By definition of τ , both conditions imply that there has to be at least one
event X ∈ {Xi,0,Xi,1,Xi,2} whose signature satisfies sigT (X) �∈ E0. Again, our
intention is to ensure that for exactly one such variable event the condition
sigT (X) �∈ E0 is true. Here, the TSs F0, G0, . . . , Fm−1, Gm−1 come into play.
The aim of F0, G0, . . . , Fm−1, Gm−1 is to restrict the possible signatures for the
variable events as follows: If sigT (k) = (1, 0) then X ∈ V (ϕ) implies sigT (X) ∈
E0 ∪ {b} and if sigT (k) = (0, 1) then X ∈ V (ϕ) implies sigT (X) ∈ E0 ∪ {1}.

We now argue, that the introduced conditions ensure that there is exactly
one variable event X ∈ {Xi,0,Xi,1,Xi,2} with sigT (X) �∈ E0. Remember that,
by definition, if sigT (X) ∈ E0 then sig−

T (X) + sig+T (X) = |sigT (X)| = 0.
For a start, let sigT (z) ∈ E0, sigT (k) = (1, 0), implying that pi starts at b

and terminates at 0, and assume sigT (X) ∈ E0 ∪ {b}. By Lemma 1, we obtain:

(|sigT (Xi,0)| + |sigT (Xi,1)| + |sigT (Xi,2)|) ≡ b mod (b + 1) (1)

Clearly, if sigT (Xi,0), sigT (Xi,1), sigT (Xi,2) ∈ E0, then we obtain a contra-
diction to (1) by |sigT (Xi,0)| = |sigT (Xi,1)| = |sigT (Xi,2)| = 0. Hence, there has
to be at least one variable event X ∈ {Xi,0,Xi,1,Xi,2} with sigT (X) = b.

144 R. Tredup

If there are two different variable events X,Y ∈ {Xi,0,Xi,1,Xi,2} such that
sigT (X) = sigT (Y) = b and sigT (Z) ∈ E0 for Z ∈ {Xi,0,Xi,1,Xi,2} \ {X,Y }
then, by symmetry and transitivity, we obtain:

b ≡ (|sigT (Xi,0)| + |sigT (Xi,1)| + |sigT (Xi,2)|) mod (b + 1) |(1) (2)
(|sigT (Xi,0)| + |sigT (Xi,1)| + |sigT (Xi,2)|) ≡ 2b mod (b + 1) |assumpt. (3)
b ≡ 2b mod (b + 1) |(2), (3) (4)
2b ≡ (b − 1) mod (b + 1) |def. ≡ (5)
b ≡ (b − 1) mod (b + 1) |(4), (5) (6)
∃m ∈ Z : m(b + 1) = 1 |(6) (7)

By (7) we obtain b = 0, a contradiction. Similarly, if we assume that
|sigT (Xi,0)| = |sigT (Xi,1)| = |sigT (Xi,2)| = b then we obtain

(|sigT (Xi,0)| + |sigT (Xi,1)| + |sigT (Xi,2)|) ≡ 3b mod (b + 1) |assumpt. (8)
b ≡ 3b mod (b + 1) |(2), (8) (9)
3b ≡ (b − 2) mod (b + 1) |def. ≡ (10)
b ≡ (b − 2) mod (b + 1) |(9), (10) (11)
∃m ∈ Z : m(b + 1) = 2 |(11) (12)

By (12), we have b ∈ {0, 1} which contradicts b ≥ 2. Consequently, if sigT (z) ∈
E0 and sigT (k) = (1, 0) and sigT (X) ∈ E0∪{b} then there is exactly one variable
event X ∈ {Xi,0,Xi,1,Xi,2} with sigT (X) �∈ E0.

If we continue with sigT (z) ∈ E0, sigT (k) = (0, 1) and sigT (X) ∈ E0 ∪ {1}
then we find the following equation to be true:

(|sigT (Xi,0)| + |sigT (Xi,1)| + |sigT (Xi,2)|) ≡ 0 mod (b + 1) (13)

Analogously to the former case one argues that the assumption that not exactly
one variable event X ∈ {Xi,0,Xi,1,Xi,2} is equipped with the signature 1, that
is, sigT (X) �∈ E0, leads to the contradiction b ∈ {0, 1}. Altogether, we have
shown that if (supT , sigT) is a region such that sigT (k) ∈ {(0, 1), (1, 0)} and
sigT (z) ∈ E0 and if the TSs F0, G0, . . . , Fm−1, Gm−1 do as announced then there
is exactly one variable event X ∈ {Xi,0,Xi,1,Xi,2} for every i ∈ {0, . . . , m − 1}
such that sigT (X) �∈ E0. By other words, in that case we have that the set
M = {X ∈ V (ϕ)|sigT (X) �∈ E0} defines a one-in-three model of ϕ.

Hence, to complete the arguments for Lemma 6.1, it remains to argue for
the announced functionality of F0, G0, . . . , Fm−1, Gm−1. Let j ∈ {0, . . . , m − 1}.
We argue for Xj that if supT (k) = (1, 0) then supT (Xj) ∈ E0 ∪ {b} and if
supT (k) = (0, 1) then supT (Xj) ∈ E0 ∪ {1}, respectively.

To begin with, let sigT (k) = (1, 0). The event k occurs b times in a
row at fj,0,0 and gj,0 and b − 1 times in a row at fj,1,0. By Lemma 1
this implies supT (fj,0,b) = supT (gj,b) = 0 and supT (fj,1,b−1) ∈ {0, 1}.
Clearly, if supT (fj,0,b) = supT (fj,1,b−1) = 0 then sigT (Xj) ∈ E0. We argue,
supT (fj,1,b−1) = 1 implies sigT (Xj) = b.

Hardness Results for the Synthesis of b-bounded Petri Nets 145

Assume, for a contradiction, that sigT (Xj) �= b. If sigT (Xj) = (m,m) for
some m ∈ {1, . . . , b} then −sig−

T (Xj)+sig+T (Xj) = |sigT (Xj)| = 0. By Lemma 1
this contradicts supT (fj,0,b) �= supT (fj,1,b−1). If sigT (Xj) = (m,n) with m �= n
then the |sigT (Xj)| = 0. By Lemma 1, we have supT (fj,0,b) = supT (fj,1,b−1) −
sig−

T (Xj) + sig+T (Xj) implying sigT (Xj) = (1, 0). But, by supT (gj,b) = 0 and

¬0 (1, 0) in τ , this contradicts supT (gj,b) sigT (Xj) . Finally, if sigT (Xj) = e ∈
{0, . . . , b − 1} then we have 1 + e �≡ 0 mod (b + 1). Again, this is a contradiction

to supT (fj,1,b−1) sigT (Xj) supT (fj,0,b). Hence, we have sigT (Xj) = b. Overall, it
is proven that if supT (k) = (1, 0) then supT (Xj) ∈ E0 ∪ {b}.

To continue, let sigT (k) = (0, 1). Similar to the former case, by Lemma 1,
we obtain that supT (fj,0,b) = supT (gj,b) = b and supT (fj,1,b−1) ∈ {b − 1, b}. If
supT (fj,1,b−1) = b then sigT (Xj) ∈ E0. We show that supT (fj,1,b−1) = b − 1
implies sigT (Xj) = 1: Assume sigT (Xj) = (m,n) ∈ Eτ . If m = n or if
m > n then, by supT (fj,0,b) = supT (fj,1,b−1) − sig−

T (Xj) + sig+T (Xj), we
have supT (fj,0,b) < b, a contradiction. If m < n then, by supT (gj,b+1) =
supT (gj,b) − sig−

T (Xj) + sig+T (Xj), we get the contradiction supT (gj,b+1) > b.
Hence, sigT (Xj) ∈ {0, . . . , b}. Again, sigT (Xj) = e ∈ {0, 2 . . . , b} implies (b−1+
e) �≡ b mod (b + 1) which contradicts supT (fj,0,b) = supT (fj,1,b−1) + |sigT (Xj)|.
Consequently, we obtain sigT (Xj) = 1 which shows that supT (k) = (0, 1) implies
supT (Xj) ∈ E0 ∪ {1}. Altogether, this proves Lemma 6.1.

To complete the proof Lemma 6, we show its second condition to be true.
To do so, we start from a one-in-three model M ⊆ V (ϕ) of ϕ and define the
following τ -region (supT , sigT) of Tτ that satisfies Lemma 6.2: For e ∈ ETτ

we
define sigT (e) =

⎧
⎪⎨

⎪⎩

(0, 1), if e = k

0, if e ∈ {z} ∪ (V (ϕ) \ M) or e = vj and Xj ∈ M, 0 ≤ j ≤ m − 1
1, if e ∈ M ∪ {u} or e = vj and Xj �∈ M, 0 ≤ j ≤ m − 1

By Lemma 1, having sigT , it is sufficient to define the values of the initial states
of the constituent of Tτ . To do so, we define supT (fj,0,0) = supT (gj,0) = tj,0 = 0
for j ∈ {0, . . . , m − 1}. One easily verifies that (supT , sigT) is a well defined
region of Tτ . Finally, that proves Lemma 6. ��

4.5 The Liaison of Key and Translator

The following lemma completes our reduction and finally proves Theorem 1:

Lemma 7 (Suffiency)

1. Let τ ∈ {τ b
0 , τ b

1 , τ b
2 , τ b

3}. Uτ is τ -feasible, respectively has the τ -ESSP, if and
only if there is a τ -region of Uτ solving its key atom ατ if and only if ϕ has
a one-in-three model.

2. Let τ ′ ∈ {τ b
0 , τ b

1}. W has the τ ′-SSP if and only if there is a τ ′-region of W
solving its key atom α if and only if ϕ has a one-in-three model.

146 R. Tredup

Proof. By Lemma 3, Lemma 4, respectively Lemma 5, Lemma 6, the respective
key atoms are solvable if and only if ϕ is one-in-three satisfiable. Clearly, if all
corresponding atoms are solvable the key atom is, too. Hence, it remains to prove
that the τ -solvability (τ ′-solvability) of the key atom ατ (α) implies the τ -ESSP
and τ -SSP for Uτ (τ ′-SSP for W). The corresponding proofs are in [14]. ��

5 Conclusions

In this paper, we show that τ -feasibility and τ -ESSP, τ ∈ {τ b
0 , . . . , τ b

3}, are NP-
complete. This makes τ -synthesis NP-hard. Moreover, we argue that the τ -SSP,
τ ′ ∈ {τ b

0 , τ b
1}, is also NP-complete. It is future work to investigate if there are

superclasses of (group extended) (pure) b-bounded P/T-nets where synthesis is
tractable. Moreover, one may search for parameters of the net-types or the input
TSs for which the decision problems are fixed parameter tractable.

Acknowledgements. I would like to thank Christian Rosenke and Uli Schlachter for
their precious remarks. Also, I’m thankful to the anonymous reviewers for their helpful
comments.

References

1. Aalst, W.M.P.: Process Mining Discovery - Conformance and Enhancement of
Business Processes. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
19345-3

2. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

3. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

4. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

5. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

6. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A
region-based theory for state assignment in speed-independent circuits. IEEE
Trans. CAD Integr. Circ. Syst. 16(8), 793–812 (1997). https://doi.org/10.1109/
43.644602

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

8. Hiraishi, K.: Some complexity results on transition systems and elementary net
systems. Theor. Comput. Sci. 135(2), 361–376 (1994). https://doi.org/10.1016/
0304-3975(94)90112-0

9. Holloway, L.E., Krogh, B.H., Giua, A.: A survey of petri net methods for controlled
discrete event systems. Discrete Event Dyn. Syst. 7(2), 151–190 (1997). https://
doi.org/10.1023/A:1008271916548

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/s001650200022
https://doi.org/10.1109/43.644602
https://doi.org/10.1109/43.644602
https://doi.org/10.1016/0304-3975(94)90112-0
https://doi.org/10.1016/0304-3975(94)90112-0
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.1023/A:1008271916548

Hardness Results for the Synthesis of b-bounded Petri Nets 147

10. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.
Geom. 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6

11. Schlachter, U., Wimmel, H.: k-bounded petri net synthesis from modal transition
systems. In: CONCUR. LIPIcs, vol. 85, pp. 6:1–6:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.
6

12. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60922-9 42

13. Tredup, R.: Fixed parameter tractability and polynomial time results for the syn-
thesis of b-bounded petri nets. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019.
LNCS, vol. 11522, pp. 148–168. Springer, Cham (2019)

14. Tredup, R.: Hardness results for the synthesis of b-bounded petri nets (technical
report). CoRR abs/1904.01094 (2019)

15. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesiz-
ing elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp. 16:1–16:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.
4230/LIPIcs.CONCUR.2018.16

16. Tredup, R., Rosenke, C.: The Complexity of synthesis for 43 boolean petri net
types. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 615–
634. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 38

17. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete
even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 3

https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://doi.org/10.1007/978-3-030-14812-6_38
https://doi.org/10.1007/978-3-319-91268-4_3
https://doi.org/10.1007/978-3-319-91268-4_3

Fixed Parameter Tractability
and Polynomial Time Results

for the Synthesis of b-bounded Petri Nets

Ronny Tredup(B)

Institut für Informatik, Theoretische Informatik, Universität Rostock,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Synthesis for a type τ of Petri nets is the problem of finding,
for a given transition system (TS, for short) A, a Petri net N of this type
whose state graph is isomorphic to A if such a net exists. The decision
version of this search problem, called τ -feasibility, asks if, for a given TS
A, there exists a Petri net N of type τ with a state graph isomorphic to A.
In this case, A is called τ -feasible. A’s feasibility is equivalent to fulfilling
two so-called separation properties. In fact, a transition system A is τ -
feasible if and only if it satisfies the type related state separation property
(SSP) and event state separation property (ESSP). Both properties, SSP
and ESSP, define decision problems. In this paper, we introduce for b ∈
N the type of restricted Zb+1-extended b-bounded P/T-nets and show
that synthesis and deciding ESSP and SSP for this type is doable in
polynomial time. Moreover, we demonstrate that, given a TS A, deciding
if A has the SSP can be done in polynomial time for the types of (pure)
Zb+1-extended b-bounded P/T-nets. Finally, we exhibit that deciding
if a TS A is feasible or has the ESSP for the types of (pure) Zb+1-
extended b-bounded P/T-nets is fixed parameter tractable if the number
of occurrences of events is considered as parameter.

1 Introduction

Synthesis for a Petri net type τ (τ -synthesis, for short) is the task to find for
a transition system A a Petri net N of type τ (τ -net, for short) with a state
graph isomorphic to A. The associated decision version, which we call feasibility
for τ (τ -feasibility, for short), asks whether there is a corresponding τ -net for
the input A. If such a net exists then we call A τ -feasible. A’s feasibility is
equivalent to fulfilling two so-called separation properties. More exactly, A is
τ -feasible if and only if it has the state separation property and the event state
separation property for τ (τ -SSP and τ -ESSP, for short) [5]. Both, τ -SSP and
τ -ESSP, define decision problems asking whether the input A has the τ -SSP or
the τ -ESSP, respectively.

Petri net synthesis has been investigated for many years and is applied in
numerous fields. It yields implementations which are correct by design and allows
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 148–168, 2019.
https://doi.org/10.1007/978-3-030-21571-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_10

Fixed Parameter Tractability and Polynomial Time Results 149

extracting concurrency and distributability information from sequential specifi-
cations as transition systems and languages [6,7]. Further application areas of
Petri net synthesis currently cover, among others, the reconstruction of a model
from its execution traces (process discovery), supervisory control for discrete
event systems and the synthesis of speed-independent circuits [1,9,13].

A type of Petri nets is called bounded if there is a positive integer b which is
not exceeded by the number of tokens on any place in every reachable marking.
This paper deals with the computational complexity of synthesis, feasibility, SSP
and ESSP for b-bounded Petri net types, that is, bounded Petri nets where b is
predetermined.

In [3,5], Badouel et al. showed that Synthesis, feasibility, SSP and ESSP
for the type of bounded and pure bounded place/transition nets (P/T-nets, for
short) are solvable in polynomial time if no bound b is preselected. On the con-
trary, SSP, ESSP and feasibility are NP-complete for pure 1-bounded P/T-nets
[4,12]. This remains true even for strongly restricted input transition systems
[19,21]. In [18], we showed that feasibility, SSP and ESSP are NP-complete for
(pure) b-bounded P/T-nets for arbitrary b ∈ N

+.
In [16], Schmitt advanced the pure 1-bounded P/T-net type by an interaction

between places and transitions simulating addition of integers modulo 2. This
brings the complexity of synthesis, feasibility, ESSP and SSP for the resulting
pure Z2-extended 1-bounded P/T-nets down to polynomial time. On the con-
trary, we proved in [18] that extending (pure) b-bounded P/T-nets by Zb+1 yields
no tractable type if b ≥ 2. In particular, feasibility and ESSP for (pure) Zb+1-
extended b-bounded P/T-nets, b ≥ 2, are NP-complete. We continued research
on the impact of interactions on the computational complexity of synthesizing
1-bounded Petri nets in [20]. Here, we investigated 43 1-bounded types purely
defined by interactions which they have or not. While for 37 of them synthesis
is tractable, feasibility and ESSP for the remaining 7 are NP-complete.

Results of [2,8] show that putting restrictions on the sought nets’s (syntac-
tical) structure can have a positive impact on the complexity of synthesis. In
particular, in [2], Agostini et al. proposed a polynomial time synthesis algorithm
for Free-Choice Acyclic pure 1-bounded P/T-nets having applications in work-
flow models. Moreover, in [8], Best et al. showed that it suffices to check certain
structural properties of the input A if the sought net is a pure b-bounded live
marked graph. Whether A has these properties or not is decidable in polynomial
time [14].

In this paper, we examine whether there are also types of b-bounded P/T-nets
for which synthesis is tractable if b ≥ 2. We affirm this question and propose
the restricted Zb+1-extended b-bounded P/T-nets, b ∈ N. This paper shows,
that synthesis, feasibility, ESSP and SSP are solvable in polynomial time for
this type. Moreover, our results prove that deciding whether a transition system
(TS, for short) A has the SSP for the types of (pure) Zb+1-extended b-bounded
P/T-nets, b ∈ N, is also doable in polynomial time. Notice, that this discovers
the first Petri net type where the provable computational complexity of SSP is
different to ESSP and feasibility.

150 R. Tredup

To decide whether a TS A is τ -feasible or has the τ -ESSP, where τ corre-
sponds to (pure) Zb+1-extended b-bounded P/T-nets, b ≥ 2, is NP-complete
[18]. Hence, this problem is considered inherently hard to solve algorithmically.
Consequently, one expects that every corresponding decision algorithm has an
exponential running time if complexity is measured in terms of the input size
of A only. In this paper, we analyze the computational complexity of feasibility
and ESSP for these types in finer detail. To do so, we apply parameterization,
a typical approach of modern complexity theory to tackle hard problems. The
running time of parameterized algorithms is not only expressed in the input’s
size, but it also takes the parameters into account. The number k of occurrences
of events, the maximum number of different transitions at which an event occur,
is one of the most obvious parts of a TS which can be considered as a parameter.
We show that feasibility and ESSP related to the types of (pure) Zb+1-extended
b-bounded P/T-nets are only exponential in the size of k while polynomial in
the size of the input. Hence, both problems are fixed parameter tractable if k is
considered as parameter. This result could not be foreseen with certainty. In fact,
in [19], we showed that feasibility, ESSP and SSP remain NP-complete for pure
1-bounded P/T-nets even if every event occurs at most twice. Hence, related
to pure 1-bounded P/T-nets, these problems parameterized by k are not fixed
parameter tractable as long as P �= NP.

2 Preliminaries

A transition system (TS for short) A = (S,E, δ) consists of finite disjoint sets S of
states and E of events and a partial transition function δ : S×E → S. Usually, we
think of A as an edge-labeled directed graph with node set S where every triple
δ(s, e) = s′ is interpreted as an e-labeled edge s e s′, called transition. We say
that an event e occurs at state s if δ(s, e) = s′ for some state s′ and abbreviate
this with s e . This notation is extended to words w′ = wa, w ∈ E∗, a ∈ E by

inductively defining s ε s for all s ∈ S and s w′
s′′ if and only if s w s′ and

s′ a s′′. If w ∈ E∗ then s w denotes that there is a state s′ ∈ S such that
s w s′. An initialized TS A = (S,E, δ, s0) is a TS with an initial state s0 ∈ S

where every state is reachable: ∀s ∈ S,∃w ∈ E∗ : s0
w s. The language of A

is the set L(A) = {w ∈ E∗ | s0
w }. In the remainder of this paper, if not

explicitly stated otherwise, we assume all TSs to be initialized and we refer to
the components of an (initialized) TS A consistently by A = (SA, EA, δA, s0,A).

The following notion of types of nets has been developed in [5]. It allows
us to uniformly capture several Petri-net types in one general scheme. Every
introduced Petri-net type can be seen as an instantiation of this general scheme.
A type of nets τ is a TS τ = (Sτ , Eτ , δτ) and a Petri net N = (P, T, f,M0) of
type τ , τ -net for short, is given by finite and disjoint sets P of places and T of
transitions, an initial marking M0 : P −→ Sτ , and a flow function f : P × T →
Eτ . The meaning of a τ -net is to realize a certain behavior by cascades of firing
transitions. In particular, a transition t ∈ T can fire in a marking M : P −→ Sτ

Fixed Parameter Tractability and Polynomial Time Results 151

Fig. 1. Top: The type τ2
2 . Edges with several labels represent different transitions.

Discarding the (1, 1), (1, 2), (2, 1) and (2, 2) labeled transitions yields τ2
3 . Bottom: The

type τ2
4 .

and thereby produces the marking M ′ : P −→ Sτ if for all p ∈ P the transition

M(p) f(p, t) M ′(p) exists in τ . This is denoted by M t M ′. Again, this notation
extends to sequences σ ∈ T ∗. Accordingly, RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M}
is the set of all reachable markings of N . Given a τ -net N = (P, T, f,M0),
its behavior is captured by the TS AN = (RS(N), T, δ,M0), called the state
graph of N , where for every reachable marking M of N and transition t ∈ T

with M t M ′ the transition function δ of AN is defined by δ(M, t) = M ′. The
following types of b-bounded P/T-nets and pure b-bounded P/T-nets build the
basis of the announced Zb+1-extensions:

0. The type of b-bounded P/T-nets is defined by
τ b
0 = ({0, . . . , b}, {0, . . . , b}2, δτb

0
) where for s ∈ Sτb

0
and (m,n) ∈ Eτb

0
the

transition function is defined by δτb
0
(s, (m,n)) = s − m + n if s ≥ m and

s − m + n ≤ b, and undefined otherwise.
1. The type of pure b-bounded P/T-nets is a restriction of τ b

0 -nets that discards
all events (m,n) from Eτb

0
where both, m and n, are positive. To be exact,

τ b
1 = ({0, . . . , b}, Eτb

0
\ {(m,n) | 1 ≤ m,n ≤ b}, δτb

1
), and for s ∈ Sτb

1
and

e ∈ Eτb
1

we have δτb
1
(s, e) = δτb

0
(s, e).

Having τ b
0 and τ b

1 , their following Zb+1-extension allows them to simulate the
addition of integers modulo b + 1.

152 R. Tredup

2. The type of Zb+1-extended b-bounded P/T-nets τ b
2 arises from τ b

0 such that,
firstly, Eτb

2
extends the event set Eτb

0
by the elements 0, . . . , b and, secondly,

the transition function δτb
2

extends δτb
0

by the addition of integers modulo
b + 1. More exactly, τ b

2 = ({0, . . . , b}, (Eτb
0

\ {(0, 0)}) ∪ {0, . . . , b}, δτb
2
) where

for s ∈ Sτb
2

and e ∈ Eτb
2

we have that δτb
2
(s, e) = δτb

0
(s, e) if e ∈ Eτb

0
and

δτb
2
(s, e) = (s + e) mod (b + 1) if e ∈ {0, . . . , b}.

3. The type of Zb+1-extended pure b-bounded P/T-nets is defined by τ b
3 =

({0, . . . , b}, (Eτb
1

\ {(0, 0)}) ∪ {0, . . . , b}, δτb
3
) where for s ∈ Sτb

3
and e ∈ Eτb

3

the transition function is given by δτb
3
(s, e) = δτb

1
(s, e) if e ∈ Eτb

1
and

δτb
3
(s, e) = (s + e) mod (b + 1) if e ∈ {0, . . . , b}.

The new Petri net τ b
4 type arises as a restriction of τ b

2 :

4. The type of restricted Zb+1-extended b-bounded P/T-nets τ b
4 = (Sτb

2
, Eτb

2
, δτb

4
),

b ∈ N
+, origins from τ b

2 and has the same state set, Sτb
4

= Sτb
2
, and the same

event set, Eτb
4

= Eτb
2
, but a restricted transition function δτb

4
. In particular,

the transition function δτb
4

restricts δτb
2

in way that for s ∈ Sτb
4

and (m,n) ∈
Eτb

4
we have that δτb

4
(s, (m,n)) = δτb

2
(s, (m,n)) if s = m and, otherwise,

if s �= m then δτb
4
(s, (m,n)) remains undefined. Hence, every (m,n) ∈ Eτb

4

occurs exactly once in τ b
4 . Furthermore, if (s, e) ∈ {0, . . . , b}2 then δτb

4
(s, e) =

δτb
2
(s, e).

In the remainder of this paper we assume τ ∈ {τ b
2 , τ b

3 , τ b
4} and b ∈ N

+, unless
stated otherwise. Notice, that τ1

4 coincides with Schmitt’s type [16]. Figure 1
gives a graphical representation of τ2

2 , τ2
3 and τ2

4 . The following notion of τ -
regions allows us, on the one hand, to define the type related ESSP and SSP
and, on the other hand, to reveal in which way we are able to obtain a τ -net
N for a given TS A if it exists. Figure 2 shows examples of all subsequently
introduced terms.

If τ is a type of nets then a τ -region of a TS A is a pair of mappings (sup, sig),
where sup : SA −→ Sτ and sig : EA −→ Eτ , such that, for each transition

s e s′ of A, we have that sup(s) sig(e) sup(s′) is a transition of τ . If (sup, sig)
is a τ -region of A then for e ∈ EA we define sig−(e) = m, sig+(e) = n and
|sig(e)| = 0 if sig(e) = (m,n) ∈ Eτ and, otherwise, sig−(e) = sig+(e) = 0 and
|sig(e)| = sig(e) if sig(e) ∈ {0, . . . , b}. Hence, by definition of τ , (sup, sig) is a
τ -region if and only if s e s′ entails sup(s′) = (sup(s) − sig−(e) + sig+(e) +
|sig(e)|) mod (b + 1).

Two distinct states s, s′ ∈ SA define an SSP atom (s, s′), which is said to
be τ -solvable if there is a τ -region (sup, sig) of A such that sup(s) �= sup(s′).
An event e ∈ EA and a state s ∈ SA at which e does not occur, that is ¬s e ,
define an ESSP atom (e, s). The atom is said to be τ -solvable if there is a τ -

region (sup, sig) of A such that ¬sup(s) sig(e) . A τ -region solving an ESSP or
a SSP atom (x, y) is a witness for the τ -solvability of (x, y). A TS A has the

Fixed Parameter Tractability and Polynomial Time Results 153

Fig. 2. Upper left, top: Input TS A. Bottom: The table depicts the set of τ2
4 -regions

R = {R1, R2, R3, R4, R5} where Ri = (supi, sigi) for i ∈ {1, . . . , 5}. All regions of
R are also τ2

2 -regions and all of R \ {R1} are also τ2
3 -regions. One verifies that R

contains a witness for every ESSP atom and every SSP atom of A. Hence, if τ ∈
{τ2

2 , τ2
4 } then A and the synthesized τ -net NR

A has a state graph that is isomorphic
to A. However, the set {R2, . . . , R5} contains no witness for the solvability of (c, 1)
and R1 is no τ2

3 -region. The ESSP atom (c, 1) is not τ2
3 -solvable at all, hence, A is

not τ2
3 -feasible. Upper right: The graphical representation of the synthesized τ -net

NR
A = (R, {a, b, c}, f, 21210), where f(Ri, x) = sigi(x) for every x ∈ {a, b, c} and

M0(R1) · · · M0(R5) = sup1(0) . . . sup5(0). For readability, 0-labeled flow arcs for the
representation of f(R5, x) = 0 for x ∈ {b, c, d} are neglected and flow arcs to the same
place are drawn in the same color. Upper left, bottom: The state graph ANR

A
of NR

A

where the reachable markings (states) are represented by 5-tupels M(R1) · · · M(R5).
Obviously, ANR

A
is isomorphic to A.

154 R. Tredup

τ -ESSP (τ -SSP) if all its ESSP (SSP) atoms are τ -solvable. Naturally, A is said
to be τ -feasible if it has the τ -ESSP and the τ -SSP.

The following fact is well known from [5, p. 161]: A set R of τ -regions of A
contains a witness for all ESSP and SSP atoms if and only if the synthesized
τ -net NR

A = (R, EA, f,M0) has a state graph that is isomorphic to A. The flow
function of NR

A is defined by f((sup, sig), e) = sig(e) and its initial marking
is M0((sup, sig)) = sup(s0,A) for all (sup, sig) ∈ R, e ∈ EA. The regions of R
become places and the events of EA become transitions of NR

A . Hence, for a
τ -feasible TS A where R is known, we can synthesize a net N with state graph
isomorphic to A by constructing NR

A .

3 Polynomial Time Results

Theorem 1. Solving τ b
4 -synthesis for a TS A or deciding if A has the τ b

4 -ESSP
is doable in polynomial time. Moreover, for τ ∈ {τ b

2 , τ b
3 , τ b

4} one can decide in
polynomial time whether a given TS A has the τ -SSP.

The contribution of Theorem 1 is threefold. Firstly, in [18] it has been shown
that deciding the τ -ESSP and τ -feasibility is a NP-complete problem for τ ∈
{τ b

2 , τ b
3}. Hence, by showing that deciding the τ -SSP for τ ∈ {τ b

2 , τ b
3} is doable

in polynomial time, Theorem 1 discovers the first Petri net types where the
provable computational complexity of SSP is different to ESSP and feasibility.

In [16], Schmitt advanced pure 1-bounded P/T-nets by the additive group of
integers modulo 2 and discovered a tractable superclass. In [18], we showed that
lifting this approach to (pure) b-bounded P/T-nets where b ≥ 2 do not lead to
superclasses with a tractable synthesis problem. Thus, Theorem 1 proposes the
first tractable type of b-bounded Petri nets, b ≥ 2, so far. Finally, Theorem 1
gives us insight into which of the τ -net properties, τ ∈ {τ b

0 , τ b
1}, cause the syn-

thesis’ hardness. In particular, flow arc relations (events in τ) between places
and transitions in a τ -net define conditions when a transition is able to fire. For
example, if N is a τ -net with transition t and place p such that f(p, t) = (1, 0)
then the firing of t in a marking M requires M(p) ≥ 1. By Theorem 1, the hard-
ness of finding a τ -net N for A origins from the potential possibility of τ -nets
to satisfy such conditions by multiple markings M(p) ∈ {1, . . . , b}. In fact, the
definition of τ b

4 implies that f(p, t) = (m,n) requires M(p) = m for the firing
of t and prohibits the possibility of multiple choices. By Theorem 1, this makes
τ b
4 -synthesis tractable. It should be noted that the results of [4,12] show that

the restriction to “unambiguous markings” of p satisfying conditions defined by
f(p, t) does not guarantee tractability.

While the question of whether there are superclasses of τ b
0 , τ b

1 , b ≥ 2, for
which synthesis is doable in polynomial time remains unanswered, the following
lemma shows that the type τ b

4 yields at least a tractable superclasses of Schmitt’s
type τ1

4 [16]. In particular, if b < b′ then the class of τ b
4 -nets is strictly more

comprehensive than the class of τ b′
4 -nets.

Lemma 1. If b < b′ ∈ N
+ and if T is the set of τ b

4 -feasible TSs and T ′ the set
of τ b′

4 -feasible TSs then T ⊂ T ′.

Fixed Parameter Tractability and Polynomial Time Results 155

Proof. To proof the lemma, we consider a TS A which is τ b′
4 -feasible but not τ b

4 -
feasible. Let A defined by A = ({s0, . . . , sb′}, {a}, δ, s0) the TS with transition
function δ(si, a) = si+1 for i ∈ {0, . . . , b′ −1} and δ(sb′ , a) = s0. By other words,
A is a directed labeled cycle s0

a . . . a sb′ s s0 where every transition is
labeled by a. Notice, that A has no ESSP atom and, hence, the τ -ESSP for
every type of nets. Consequently, A is τ -feasible if and only if it has the τ -SSP.

Assume, for a contradiction, that A is τ b
4 -feasible. By b < b′, A provides

the SSP atom (s0, sb+1) and A’s τ b
4 -feasibility implies that there is a τ b

4 -region
(sup, sig) solving it. If sig(a) = (m,n) then sup(s1) = sup(s0)−m+n �= sup(s0)

and, by definition of τ b
4 , ¬sup(s1) (m,n) . This is a contradiction to s1

a . Hence,
sig(a) ∈ {1, . . . , b}. By induction, sup(sb+1) = sup(s0) + (b + 1) · sig(a) =
sup(s0) mod (b + 1) implying sup(sb+1) = sup(s0). Thus, (sup, sig) does not
solve (s0, sb+1), which proves that A not to be τ b

4 -feasible.
On the contrary, it is easy to see that the τ b′

4 -region (sup, sig), which is defined
by sup(s0) = 0, sig(e) = 1 and sup(si+1) = sup(si)+sig(a) for i ∈ {0, . . . , b′−1},
solves every SSP atom of A. Hence, A is τ b′

4 -feasible. ��

3.1 Abstract Regions and Fundamental Cycles

Unless otherwise stated, in the remainder of this paper we assume that A is
a (non-trivial) TS with at least two states, |SA| ≥ 2 and event set EA =
{e1, . . . , en}. Recall that τ ∈ {τ b

2 , τ b
3 , τ b

4} and b ∈ N
+.

The proof of Theorem 1 bases on a generalization of the approach used in
[16] that reduces ESSP and SSP to systems of linear equations modulo b + 1.
It exploits that the solvability of such systems is decidable in polynomial time
which is the statement of the following lemma borrowed from [11]:

Lemma 2 ([11]). If A ∈ Z
k×n
b+1 and c ∈ Z

k
b+1 then deciding if there is an element

x ∈ Z
n
b+1 such that Ax = c is doable in time O(nk · max{n, k}).

Essentially, our generalization composes for every ESSP atom and every SSP
atom α = (x, y) of A, respectively, a system of equations modulo b + 1 which is
solvable if and only if α is τ -solvable. Moreover, a solution of the corresponding
system shall provide a τ -region of A that solves α. On the one hand, this approach
ensures that having a solution for every system defined by single ESSP atoms
and SSP atoms implies the τ -ESSP and τ -SSP for A, respectively. On the other
hand, it provides a τ -solving region for every atom in question and, hence, a set
R of τ -regions that witnesses the τ -ESSP and τ -SSP of A. Thus, R allows us
to construct the synthesized net NR

A with a state graph isomorphic to A. In the
following, we establish the notions of abstract regions and fundamental cycles
which make such a translation possible.

We proceed by deducing the notion of abstract regions. Our starting point is
the goal to obtain regions (sup, sig) of A as solutions of linear equation systems
modulo b + 1. By definition, (sup, sig) is a τ -region of A if and only if for every
transition s e s′ it is true that

sup(s′) = (sup(s) − sig−(e) + sig+(e) + |sig(e)|) mod (b + 1) (1)

156 R. Tredup

Hence, installing for every transition s e s′ the corresponding Eq. 1 yields a
linear system of equations whose solutions are regions of A. If (sup, sig) is a
solution of this system such that sig(e) = (m,n) ∈ Eτ \ {0, . . . , b} for e ∈ EA

then, by definition, for every transition s e s′ it has to be true that m ≤
sup(s) and sup(s′) − m + n ≤ b. Unfortunately, the conditions m ≤ sup(s)
and sup(s′) − m + n ≤ b can not be tested in the group Zb+1. To cope with
this obstacle, we abstract from elements (m,n) ∈ Eτ by restricting to regions
(solutions) that identify (m,n) with the unique element x ∈ {0, . . . , b} such that
x = (n − m) mod (b + 1). This leads to the notion of abstract τ -regions. A τ -
region (sup, sig) of A is called abstract if sig’s codomain restricts to {0, . . . , b},
that is, sig : EA −→ {0, . . . , b}. If (sup, sig) is an abstract region, then we call
sig an abstract signature. For the sake of clarity, we denote abstract signatures
by abs instead of sig and abstract regions by (sup, abs) instead of (sup, sig).

By definition, two mappings sup, abs : {0, . . . , b} −→ {0, . . . , b} define an
abstract τ -region if and only if for every transition s e s′ of A it is true that

sup(s′) = (sup(s) + abs(e)) mod (b + 1) (2)

Obviously, for abstract regions Eq. 1 reduces to Eq. 2. Installing for every tran-
sition s e s′ of A its corresponding Eq. 2 yields a system modulo b + 1 whose
solutions are abstract regions. Uncomfortably, such systems require to deal with
sup and abs simultaneously. It is better to first obtain abs independently of sup
and then define sup with the help of abs. The following observations show how
to realize this idea.

By induction and Eq. 2, one immediately obtains that (sup, abs) is
an abstract region if and only if for every directed labeled path p =

s0,A
e′
1 . . . e′

m sm of A from the initial state s0,A to the state sm the path equa-
tion holds:

sup(sm) = (sup(s0,A) + abs(e′
1) + · · · + abs(e′

m)) mod (b + 1) (3)

To exploit Eq. 3 we, firstly, identify every abstract signature abs with the unique
element abs = (abs(e1), . . . , abs(en)) ∈ Z

n
b+1. Secondly, we say that ψp

b+1 =
(#p

e1
, . . . ,#p

en
) ∈ Z

n
b+1 is the Parikh-vector of p that counts the number #p

ei
of

occurrences of every event ei ∈ EA on the path p modulo (b + 1). Thirdly, for
two elements v, w ∈ Z

n
b+1 we define v · w = v1w1 + · · · + vnwn. As a result,

considering p and abs as elements of Z
n
b+1 allows us to reformulate the path

equation by sup(sm) = (sup(s0,A) + ψp
b+1 · abs) mod (b + 1). Especially, if p, p′

are two different paths from s0,A to sm then ψp
b+1 · abs = ψp′

b+1 · abs. Thus, the
support sup is fully determined by sup(s0,A) and abs. By the validity of the
path equation, every abstract signature abs implies b + 1 different abstract τ -
regions of A, one for every sup(s0,A) ∈ {0, . . . , b}. Altogether, we have argued
that the challenge of finding abstract regions of A reduces to the task of finding
A’s abstract signatures. In the following, we deduce the notion of fundamental
cycles defined by chords of a spanning tree of A which enables us to find abstract

Fixed Parameter Tractability and Polynomial Time Results 157

Fig. 3. A spanning tree A′ of running example TS A introduced in Fig. 2. The unique
Parikh vectors ψ0, . . . ψ7 of A′ (written as rows) are given by ψ0 = (0, 0, 0, 0), ψ1 =
(1, 0, 0, 0), ψ2 = (1, 1, 0, 0), ψ3 = (1, 1, 1, 0), ψ4 = (1, 1, 2, 0), ψ5 = (0, 0, 1, 0), ψ6 =
(0, 0, 2, 0) and ψ7 = (1, 0, 2, 0). The transitions δA(7, d) = 4, δA(4, c) = 2 and
δA(6, c) = 0 of A define the chords of A′. The corresponding fundamental cycles are
given by ψt = ψ7+(0, 0, 0, 1)−ψ4 = (0, 2, 0, 1) and ψt′ = ψ4+(0, 0, 1, 0)−ψ2 = (0, 0, 0, 0)
and ψt′′ = ψ6 + (0, 0, 1, 0) − ψ0 = (0, 0, 0, 0). Hence, if abs = (xa, xb, xc, xd) then
ψt · abs = 0 · xa + 2 · xb + 0 · xc + xd = 2 · xb + xd. By ψt′ · abs = ψt′′ · abs = 0 for
every map abs, only the equation 2 · xb + xd = 0 contributes to the basic part of every
upcoming system.

signatures. For readability, we often write x = y1 + · · · + y� mod (b + 1) instead
of x = (y1 + · · · + y�) mod (b + 1)

A spanning tree A′ of A is a sub-transition system A′ = (SA, EA, δA′ , s0,A)
of A with a restricted transition function δA′ such that, firstly, δA′(s, e) = s′

entails δA(s, e) = s′ and, secondly, for every s ∈ SA′ there is exactly one path
p = s0,A

e1 . . . em s in A′. By other words, the underlying undirected graph of
A′ is a tree in the common graph-theoretical sense. Every transition s e s′ of
A which is not in A′ is called a chord (of A′). The chords of A′ are exactly the
edges that induce a cycle in A′’s underlying undirected graph. This gives rise
to the following notion of fundamental cycles. For ei ∈ {e1, . . . , en} we define
1i = (x1, . . . , xn)t ∈ Z

n
b+1, where xj = 1 if j = i and, else xj = 0. If t = s ei s′ is

a chord of A′ then there are unique paths p from s0,A to s and p′ from s0,A to s′

in A′ such that t corresponds to the unique element ψt = ψp
b+1+1i−ψp′

b+1 ∈ Z
n
b+1,

called the fundamental cycle of t.
The following lemma teaches us how to use fundamental cycles to generate

abstract signatures of A:

Lemma 3. If A′ is a spanning tree of a TS A with chords t1, . . . , tk then abs ∈
Z

n
b+1 is an abstract signature of A if and only if ψti ·abs = 0 for all i ∈ {1, . . . , k}.

Two different spanning trees A′ and A′′ provide equivalent systems of equations.

Proof. We start with proving the first statement. If : Let abs ∈ Z
n
b+1 such that

ψti ·abs = 0 for all i ∈ {1, . . . , k} and sup(s0,A) ∈ {0, . . . , b}. If s ∈ SA′ then there

is a unique path p = s0,A
e′
1 . . . e′

m sm = s in A′ from s0,A to s. By defining
sup(s) = sup(s0,A)+ψp

b+1·abs we obtain inductively that every transition s e s′

of A′ satisfies sup(s′) = sup(s)+abs(e). It remains to prove that this definition is
consistent with the remaining transitions of A, the chords of A′. Let t = s e s′

158 R. Tredup

be a chord of A′ and let p = s0,A
e′
1 . . . e′

m = s and p′ = s0,A
e′′
1 . . . e′′

� = s′

be the unique paths from s0,A to s and s′ in A′, respectively. By sup(s) =
sup(s0,A) + ψp

b+1 · abs and sup(s′) = sup(s0,A) + ψp′
b+1 · abs we have that

0 = ψt · abs ⇐⇒
0 = (−ψp′

b+1 + 1i + ψp
b+1) · abs ⇐⇒

0 = −ψp′
b+1 · abs + abs(e) + ψp

b+1 · abs ⇐⇒

ψp′
b+1 · abs = abs(e) + ψp

b+1 · abs ⇐⇒

sup(s0,A) + ψp′
b+1 · abs = sup(s0,A) + ψp

b+1 · abs + abs(e) ⇐⇒
sup(s′) = sup(s) + abs(e)

where 0 = ψt · abs is true by assumption. Hence, abs is an abstract signature
of A and the proof shows how to get a corresponding abstract region (sup, abs)
of A.

Only-if : If abs is an abstract region of A then we have sup(s′) = sup(s) +
abs(e) for every transition in A. Hence, if t = s e s′ a chord of a spanning
tree A′ of A then working backwards the equivalent equalities above proves
ψt · abs = 0.

The second statement is implied by the first: If A′, A′′ are two spanning trees
of A with fundamental cycles ψA′

t1 , . . . , ψA′
tk

and ψA′′
t′
1

, . . . , ψA′′
t′
k

, respectively, then

we have for abs ∈ Z
n
b+1 that ψA′

ti · abs = 0, i ∈ {1, . . . , k} if and only if abs is an
abstract signature of A if and only if ψA′′

t′
i

· abs = 0, i ∈ {1, . . . , k}. ��
In the following, justified by Lemma 3, we assume A′ to be a fixed spanning

tree of A with chords t1, . . . , tk. By MA′ we denote the system of equations
ψti · abs = 0, i ∈ {1, . . . , k}. Moreover, by ψs we abridge for s ∈ SA the Parikh-

vector ψp
b+1 of the unique path s0,A

e′
1 . . . e′

m s in A′. A spanning tree of A
is computable in polynomial time: As δA is a function, A has at most |E||SA|2
transitions and A′ contains |SA| − 1 transitions. Thus, by 2 ≤ |SA|, A′ has at
most |E||SA|2 − 1 chords. Consequently, a spanning tree A′ of A is computable
in time O(|E||SA|3) [17].

To get polynomial time solvable systems of equations, we have restricted our-
selves to equations like Eq. 2. This restriction results in the challenge to compute
abstract signatures of A. By Lemma 3, abstract signatures of A are solutions of
MA′ . An (abstract) τ -region (sup, abs) of A arises from abs by defining sup(s0,A)
and sup(s) = sup(s0,A) + ψs · abs, s ∈ S(A). However, if (s, s′) is a SSP atom of
A then sup(s) �= sup(s′) is not implied. Moreover, by definition, to τ -solve ESSP
atoms (e, s) we need (concrete) τ -regions (sup, sig) such that sig : EA −→ Eτ .
The next section shows how to extend MA′ to get τ -solving regions.

3.2 The Proof of Theorem 1

This section shows how to extend MA′ for a given (E)SSP atom α to get a system
Mα, whose solution yields a region solving α if there is one.

Fixed Parameter Tractability and Polynomial Time Results 159

If α is an SSP atom (s, s′) then we only need to assure that the (abstract)
region (sup, abs) built on a solution of MA′ satisfies sup(s) �= sup(s′). By
sup(s) = sup(sA,0) + ψs · abs and sup(s′) = sup(sA,0) + ψs′ · abs, it is suffi-
cient to extend MA′ in a way that ensures ψs · abs �= ψs′ · abs. The next lemma
proves this claim.

Lemma 4. If τ ∈ {τ b
2 , τ b

3 , τ b
4} then a τ -SSP atom (s, s′) of A is τ -solvable if and

only if there is an abstract signature abs of A with ψs · abs �= ψs′ · abs.

Proof. If : If abs is an abstract signature with ψs ·abs �= ψs′ ·abs then the τ -region
(sup, abs) with sup(s0,A) = 0 and sup(s) = ψs · abs satisfies sup(s) �= sup(s′).
Only-if : If (sup, sig) is a τ -region then we obtain a corresponding abstract τ -
region (sup, abs) as defined in Lemma 6. Clearly, abs is an abstract signature
and satisfies the path equations. Consequently, by sup(s0) + ψs · abs = sup(s) �=
sup(s′) = sup(s0) + ψs′ · abs, we have that ψs · abs �= ψs′ · abs. ��

The next lemma applies Lemma 4 to get a polynomial time algorithm which
decides the τ -SSP if τ ∈ {τ b

2 , τ b
3 , τ b

4}.

Lemma 5. If τ ∈ {τ b
2 , τ b

3 , τ b
4} then to decide whether a TS A has the τ -SSP is

doable in time O(|EA|3 · |SA|6·).

Proof. If α = (s, s′) is a SSP atom of A then the (basic) part MA′ of Mα

consists of at most |E| · |SA|2−1 equations for the fundamental cycles. To satisfy
ψs · abs �= ψs′ · abs, we add the equation (ψs − ψs′) · abs = q, where initially
q = 1, and get (the first possible) Mα. A solution of Mα provides an abstract
region satisfying ψs �= ψs′ . By Lemma 4, this proves the solvability of α. If Mα

is not solvable then we modify Mα to M ′
α simply by incrementing q and try to

solve M ′
α. Either we get a solution or we modify M ′

α to M ′′
α by incrementing

q again. By Lemma 4, if (s, s′) is solvable then there is a q ∈ {1, . . . , b} such
that the corresponding (modified) system has a solution. Hence, after at most
b iterations we can decide whether (s, s′) is solvable or not. Consequently, we
have to solve at most b linear systems with at most |EA| · |SA|2 equations for
(s, s′). The value b is not part of the input. Thus, by Lemma 2, this is doable
in O(|EA|3 · |SA|4) time. We have at most |SA|2 different SSP atoms to solve.
Hence, we can decide the τ -SSP in time O(|EA|3 · |SA|6). ��

As a next step, we let τ = τ b
4 and prove the polynomial time decidability

of τ -ESSP. But before that we need the following lemma that tells us how to
obtain abstract regions from (concrete) regions:

Lemma 6. If (sup, sig) is a τ -region of a TS A then we obtain a corresponding
abstract τ -region (sup, abs) by defining abs for e ∈ EA as follows: If sig(e) =
(m,n) then abs(e) = −m + n mod (b + 1) and, otherwise, if sig(e) ∈ {0, . . . , b}
then abs(e) = sig(e).

Proof. We have to show that s e s′ in A entails sup(s) abs(e) sup(s′) in τ . If
abs(e) = sig(e) ∈ {0, . . . , b} this is true as (sup, sig) is a τ -region.

160 R. Tredup

If sig(e) = (m,n) then, by definition, we have sup(s′) = sup(s) − m +
n mod (b + 1) implying sup(s′) − sup(s) = −m + n mod (b + 1). By abs(e) =
−m + n mod (b + 1) and symmetry, we get −m + n = abs(e) mod (b + 1) and,
by transitivity, we obtain sup(s′) − sup(s) = abs(e) mod (b + 1) which implies

sup(s′) = sup(s) + abs(e) mod (b + 1). Thus sup(s) abs(e) sup(s′). ��

Let α be an ESSP atom (e, s) and let s1, . . . , sk be the sources of e in A.
By definition, a τ -region (sup, sig) solves α if and only if sig(e) = (m,n) and

¬sup(s) sig(e) for a (m,n) ∈ Eτ . By definition of τ , every element (m,n) ∈ Eτ

occurs at exactly one state in τ and this state is m. Hence, sup(s1) = · · · =
sup(sk) = m and sup(s) �= m. We base the following lemma on this simple obser-
vation. It provides necessary and sufficient conditions that an abstract region
must fulfill to imply a solving (concrete) region.

Lemma 7. Let τ = τ b
4 and A be a TS and let s1

e s′
1, . . . , sk

e s′
k be the e-

labeled transitions in A, that is, if s′ ∈ SA \ {s1, . . . , sk} then ¬s′ e . The atom
(e, s) is τ -solvable if and only if there is an event (m,n) ∈ Eτ and an abstract
region (sup, abs) of A such that the following conditions are satisfied:

1. abs(e) = −m + n mod (b + 1),
2. ψs1 · abs = m − sup(sA,0) mod (b + 1),
3. (ψs1 − ψsi

) · abs = 0 mod (b + 1) for i ∈ {2, . . . , k},
4. (ψs1 − ψs) · abs �= 0 mod (b + 1).

Proof. If: Let (sup, abs) be an abstract region that satisfies the conditions 1–
4. We obtain a τ -solving region (sup, sig) with (the same support and) the
signature sig defined by sig(e′) = abs(e′) if e′ �= e and sig(e′) = (m,n) if e′ = e.

To argue that (sup, sig) is a τ -region we have to argue that q e′
q′ in A implies

sup(q) sig(e′) sup(q′). As (sup, abs) is an abstract region this is already clear for

transitions q e′
q′ where e′ �= e. Moreover, (sup, abs) satisfies ψs1 · abs = m −

sup(sA,0) mod (b+1) and the path equation holds, that is, sup(s1) = sup(sA,0)+
ψs1 · abs mod (b + 1) which implies sup(s1) = m. Consequently, by definition of

τ , we have sup(s1) (m,n) n in τ . Furthermore, by abs(e) = −m+n mod (b+1) we

have m + abs(e) = n mod (b + 1). Hence, by sup(s1) abs(e) sup(s′
1), we conclude

sup(s′
1) = n and, thus, sup(s1) (m,n) sup(s′

1). By (ψs1 −ψsi
)·abs = 0 mod (b+1)

for i ∈ {2, . . . , k}, we obtain that sup(s1) = · · · = sup(sk) = m. Therefore,

similar to the discussion for s1
e s′

1, we obtain by sup(si) abs(e) sup(s′
i) that the

transitions sup(si) (m,n) sup(s′
i) are present in τ for i ∈ {2, . . . , k}. Consequently,

(sup, sig) is a τ -region.
Finally, by (ψs1 − ψs) · abs �= 0 mod (b + 1), have that sup(s1) �= sup(s) and,

thus, ¬sup(s) sig(e) . This proves (e, s) to be τ -solvable by (sup, sig).
Only-if: Let (sup, sig) be a τ -region that solves (e, s) implying, by definition,

¬sup(s) sig(e) . We use (sup, sig) to define a corresponding abstract τ -region

Fixed Parameter Tractability and Polynomial Time Results 161

(sup, abs) in accordance to Lemma 6. If sig(e) ∈ {0, . . . , b} then sup(s) sig(e) ,

a contradiction. Hence, it is sig(e) = (m,n) ∈ Eτ such that sup(si) (m,n) for

i ∈ {1, . . . , k} and ¬sup(s) (m,n) . This immediately implies sup(s) �= sup(s1)

and, hence, (ψs1 − ψs) · abs �= 0 mod (b + 1). By sup(si) (m,n) sup(s′
i) and def-

inition of τ , we have that sup(si) = m and sup(s′
i) = n for i ∈ {1, . . . , k}

implying (ψs1 − ψsi
) · abs = 0 mod (b + 1) for i ∈ {2, . . . , k}. Moreover, by

sup(s1) abs(e) sup(s′
1) we have abs(e) = sup(s′

1) − sup(s1) mod (b + 1). Hence,
it is abs(e) = −m + n mod (b + 1). Finally, by the path equation, we have
sup(s1) = sup(sA,0) + ψs1 · abs mod (b + 1) which with sup(s1) = m implies
ψs1 · abs = m − sup(sA,0) mod (b + 1). This proves the lemma. ��

The next lemma’s proof exhibits a polynomial time decision algorithm for
the τ b

4 -ESSP: Given a TS A and a corresponding ESSP atom α, the system MA′

is extended to a system Mα. If Mα has a solution abs then it implies a region
(sup, abs) satisfying the conditions of Lemma 9. By Lemma 9, this implies α’s
solvability. Reversely, by Lemma 9, if α is solvable then there is an abstract
region (sup, abs) which satisfies the conditions (1–4). The abstract signature abs
is the solution of a corresponding equation system Mα. Hence, we get a solvable
Mα if and only if α is solvable. We argue that the number of possible systems
is bounded polynomially in the size of A. The solvability of every system is also
decidable in polynomial time. Consequently, by the at most |EA| · |SA| ESSP
atoms to solve, this yields the announced decision procedure.

Lemma 8. If a TS A has the τ b
4 -ESSP is decidable in time O(|EA|4 · |SA|5).

Proof. To estimate the computational complexity of deciding the τ b
4 -ESSP for A

observe that A has at most |SA|·|EA| ESSP atoms to solve. Hence, the maximum
costs of deciding the τ b

4 -ESSP for A equals |SA| · |EA|-times the maximum effort
for a single atom.

To decide the τ -solvability of a single ESSP atom (e, s), we compose systems
in accordance to Lemma 7. The maximum costs can be estimated as follows:
The (basic) part MA′ of Mα has at most |EA| · |SA|2 equations. Moreover, e
occurs at most at |SA| − 1 states. This makes at most |SA| equations to ensure
that e’s sources will have the same support, the third condition of Lemma 7.
According to the first and the second condition, we choose an event (m,n) ∈ Eτ ,
a value sup(sA,0) ∈ {0, . . . , b}, define abs(e) = −m + n mod (b + 1) and add the
corresponding equation ψs1 · abs = m − sup(sA,0). For the fourth condition we
choose a fixed value q ∈ {1, . . . , b} and add the equation (ψs1 − ψs) · abs = q.
Hence, the system has at most 2 · |EA| · |SA|2 equations.

By Lemma 2, one checks in time O(|EA|3 · |SA|4) if such a system has a
solution. Notice, we use that 2 · |EA| · |SA|2 = max{|EA|, 2 · |EA| · |SA|2}. There
are at most (b + 1)2 possibilities to choose a corresponding (m,n) ∈ Eτ and
only b + 1 possible values for x and for q, respectively. Hence, for a fixed atom
(e, s), we have to solve at most (b + 1)4 such systems and b is not part of the
input. Consequently, we can decide in time O(|EA|3 · |SA|4) if (e, s) is solvable.

162 R. Tredup

A provides at most |SA|·|EA| ESSP atoms. Hence, the τ b
4 -ESSP for A is decidable

in time O(|EA|4 · |SA|5). ��

The following lemma completes the proof of Theorem 1 and shows that τ b
4 -

synthesis is doable in polynomial time.

Corollary 1. To construct for a TS A a τ b
4 -net N with a state graph AN iso-

morphic to A if it exists is doable in time O(|EA|3 · |SA|5 · max{|EA|, |SA|}).

Proof. By [5], if R is a set of regions of A containing for each ESSP and SSP
atom of A a solving region, respectively, then the τ -net NR

A = (R, EA, f,M0),
where f((sup, sig), e) = sig(e) and M0((sup, sig)) = sup(s0,A) for (sup, sig) ∈
R, e ∈ EA, has a state graph isomorphic to A. Hence, the corollary follows from
Lemmas 5 and 8. ��

3.3 Examples

We pick up our running example TS A introduced in Fig. 2 and its spanning tree
A′ presented in Fig. 3. We present two steps of the method given by Lemma 8
for the type τ2

4 and check τ2
4 -solvability of the ESSP atom (c, 1).

For a start, we choose (m,n) = (0, 1) and sup(0) = 0 and determine abs(c) =
−0 + 1 = 1 which yields abs = (xa, xb, 1, xd). We have to add ψ0 · abs = m −
sup(0) = 0 which, by ψ0 = (0, 0, 0, 0), is always true and do not contribute to the
system. Moreover, for i ∈ {0, 2, 3, 4, 5, 6}, we add the equation (ψ0−ψi) ·abs = 0.
We have ψ0 − ψ6 = (0, 0,−2, 0) and (0, 0,−2, 0) · abs = 0 · xa − 0 · xb − 2 − 0 ·
xd = 0 yields a contradiction. Hence, (c, 1) is not solvable by a region (sup, sig)
where sup(0) = 0 and sig(c) = (0, 1). Similarly, we obtain that the system
corresponding to sup(0) ∈ {1, 2} and sig(c) = (0, 1) is also not solvable.

For another try, we choose (m,n) = (2, 2) and sup(0) = 2. In accor-
dance to the first and the second condition of Lemma 7 this determines
abs = (xa, xb, 0, xd) and yields the equation ψ0 · abs = m − sup(0) = 2 − 2 = 0
which is always true. For the fourth condition, we pick q = 2 and add the equa-
tion (ψ0 − ψ1) · abs = 2 · xa = 2. Finally, for the third condition, we add for
i ∈ {0, 2, 3, 4, 5, 6} the equation (ψ0 − ψi) · abs = 0 and obtain the following
system of equations modulo (b + 1):

ψt · abs = 2 · xb + xd = 0
(ψ0 − ψ1) · abs = 2 · xa = 2
(ψ0 − ψ2) · abs = 2 · xa + 2 · xb = 0
(ψ0 − ψ3) · abs = 2 · xa + 2 · xb +2 · 0 = 0
(ψ0 − ψ4) · abs = 2 · xa + 2 · xb +1 · 0 = 0
(ψ0 − ψ5) · abs = 2 · 0 = 0
(ψ0 − ψ6) · abs = 1 · 0 = 0

Fixed Parameter Tractability and Polynomial Time Results 163

This system is solvable by abs = (1, 2, 0, 2). We construct a region in accordance
to the proof of Lemma 7: By sup(0) = 2 we obtain sup(1) = 2 + ψ1 · abs =
2+(1, 0, 0, 0) · (1, 2, 0, 2) = 0. Similarly, by sup(i) = 2+ψi ·abs for i ∈ {2, . . . , 7}
we obtain sup(2) = sup(3) = sup(4) = sup(5) = sup(6) = 2 and sup(7) = 0.
Hence, by defining sig(c) = (2, 2), sig(a) = 1, sig(b) = 2 and sig(d) = 2 we
obtain a fitting τ b

4 -region (sup, sig) that solves (c, 1).
A closer look shows, that this support equals sup1 which is presented in Fig. 2

and allows the signature sig1, hence, (sup, sig1) = (sup1, sig1). The τ b
4 -region

(sup, sig1) solves a lot of further ESSP and SSP atoms. This observation reveals
a first possible improvement of the method introduced by Lemma 8 and suggest,
given a solution abs, to map as many events of A to a signature different from
0, . . . , b as possible.

4 Fixed Parameter Tractability Results

Classical complexity theory measures the computational complexity of decision
problems only in the size of the input. In [18], we showed that deciding if a TS
A is τ -feasible or has the τ -ESSP, respectively, is NP-complete for τ ∈ {τ b

2 , τ b
3}.

Thus, both problems are intractable from the perspective of classical complexity.
Unfortunately, measuring the complexity purely in the size of A tells us noth-
ing about the “source” of this negative result. On the contrary, parameterized
complexity, developed by Downey and Fellows [10], allows us to study in which
way different parameters of a TS A influence the complexity. This makes a finer
analysis possible. Moreover, if we find a parameter, typically small on input
instances of real-world applications, then algorithms, exponential in the size of
the parameter but polynomial in the size of A, may work well in practice.

Formally, we say that a (decision) problem P is fixed paramter tractable
with respect to parameter k if there exists an algorithm that solves P in time
O(f(k)nc), where f is some computable function, n is the size of the input and
c is a constant independent from parameter k.

Let A be a TS and let for e ∈ EA the set Se = {s ∈ SA | s e } containing the
states of A at which e occur. The (maximum) number of occurrences of events is
defined by k = max{|Se| | e ∈ EA}. In [19] it has been shown that deciding τ1

1 -
feasibility and τ1

1 -ESSP is NP-complete even if k = 2. If there is a O(f(k)|A|c)-
time algorithm for these problems then, for k = 2, it runs in polynomial time
in A’s size. This is because f(2) is a constant. Thus, τ1

1 -feasibility and τ1
1 -ESSP,

parameterized by k, are not fixed parameter tractable as long as P�=NP.
On the contrary, the main result of this paper discovers that τ -ESSP and

τ -feasibility parameterized by k are fixed parameter tractable. This reveals, that
the number of occurrences of events is a structural property of the input A that
makes τ -ESSP and τ -feasibility problems inherently hard to solve.

Theorem 2. Let τ ∈ {τ b
2 , τ b

3} and let A be a TS system with number of occur-
rences of events k. The τ -ESSP and the τ -feasibility are fixed parameter tractable
with respect to parameter k.

164 R. Tredup

Given an ESSP atom α of a TS A, the following lemma provides conditions
which an abstract τ -region of A satisfies if and only if α is τ -solvable. Moreover,
it teaches us how to gain a corresponding τ -solving region from an abstract
region satisfying the conditions.

Lemma 9. Let τ ∈ {τ b
2 , τ b

3}, let (e, s) be an ESSP atom of A and let s1, . . . , sk be
the sources of e in A, that is, si

e for i ∈ {1, . . . , k} and if s′ ∈ SA\{s1, . . . , sk}
then ¬s′ e .

The ESSP atom (e, s) is τ -solvable if and only if there is an event (m,n) ∈ Eτ

and an abstract region (sup, abs) of A that satisfies the following conditions:

1. abs(e) = −m + n mod (b + 1),
2. ψsi

· abs = sup(si) − sup(sA,0) mod (b + 1) and m ≤ sup(si) ≤ b + m − n for
i ∈ {1, . . . , k},

3. ψs · abs = sup(s) − sup(sA,0) mod (b + 1) and 0 ≤ sup(s) ≤ m − 1 or b +m −
n + 1 ≤ sup(s) ≤ b

Proof. If: Let (sup, abs) be an abstract τ -region of A satisfying (1)–(3). We get
a τ -solving region (sup, sig) as follows: For e′ ∈ EA we define sig(e′) = abs(e′)
if e′ �= e and, otherwise, we set sig(e′) = (m,n) if e′ = e. Firstly, we show that
(sup, sig) is a region and, secondly, we argue that it τ -solves (e, s).

We have to show, that q e′
q′ in A implies sup(q) sig(e′) sup(q′) in τ . If e′ �= e,

then this is true by (sup, abs) being a τ -region. It remains to show that si
e s′

i

implies sup(si) (m,n) sup(s′
i) for i ∈ {0, . . . , k}. By m ≤ sup(si) ≤ b+m−n and

the definition of τ , there is an sτ ∈ {0, . . . , b} with sup(si) (m,n) sτ . This implies
sτ = sup(si)−m+n mod (b+1). The assumption abs(e) = −m+n mod (b+1)
yields sτ = sup(si)+abs(e) mod (b+1). Hence, we have that sup(si)+abs(e) =

sup(si)−m+n mod (b+1). By sup(si) abs(e) sup(s′
i) we get sup(s′

i) = sup(si)+
abs(e) mod (b+1) such that sup(s′

i) = sup(si)−m+n mod (b+1). Consequently,

sτ = sup(s′
i) implying sup(si) (m,n) sup(s′

i) making (sup, sig) a τ -region.
Moreover, by 0 ≤ sup(s) ≤ m − 1 or b + m − n + 1 ≤ sup(s) ≤ b we have

that ¬sup(s) (m,n) such that (sup, sig) τ -solves (e, s).
Only-If: Let (sup, sig) be a τ -region that solves (e, s). In accordance to

Lemma 6, we define the τ -abstract region (sup, abs) originating from (sup, sig).
We argue that (sup, abs) satisfies the conditions (1)–(3).

As (sup, sig) τ -solves (e, s) there is an event (m,n) ∈ Eτ such that

sup(si) (m,n) , i ∈ {1, . . . , k}, and ¬sup(s) (m,n) . By abs’s definition, abs =
−m + n mod (b + 1) implying the first condition. Moreover, (sup, abs) satisfies
the path equation. Hence, we have sup(si) = sup(sA,0) + ψsi

· abs mod (b + 1)
implying ψsi

· abs = sup(si) − sup(sA,0) mod (b + 1) for i ∈ {1, . . . , k}. Further-

more, by sup(si) (m,n) and τ ’s definition, we have m ≤ sup(si) ≤ b + m − n.
Thus, the second condition is satisfied. Similarly, the path equation implies

ψs · abs = sup(s) − sup(sA,0) mod (b + 1) and, by ¬sup(s) (m,n) , we obtain

Fixed Parameter Tractability and Polynomial Time Results 165

0 ≤ sup(s) ≤ m − 1 or b + m − n + 1 ≤ sup(s) ≤ b. Hence, the third condition
is also true. ��

The following lemma shows that deciding the τ -ESSP for A is only exponen-
tial in parameter k but polynomial in the size of the input.

Lemma 10. If τ ∈ {τ b
2 , τ b

3}, then to decide for a k-fold TS A whether it has the
τ -ESSP is possible in time O((b + 1)k+4 · |EA|4 · |SA|5).

Proof. An ESSP atom (e, s) of A is a τ -solvable if and only if there is an abstract
region (sup, abs) of A that satisfying the conditions of Lemma 9. Using Lemma 9,
to decide the solvability of (e, s) we iteratively construct systems of linear equa-
tions Mα. There is an abstract region (sup, abs), fulfilling the conditions, if and
only if at least one Mα is solvable by abs. A single system to be computed modulo
b + 1 is obtained as follows:

Firstly, it implements the basic part MA′ requiring at most |E||SA|2 − 1
equations.

Secondly, we choose an event (m,n) ∈ EA and a value sup(sA,0) ∈ {0, . . . , b}
and, in accordance to Lemma 9.1, set abs(e) = −m + n mod (b + 1). Thus, the
number of unknown becomes |EA| − 1.

Thirdly, in accordance to Lemma 9.2, we choose for every source s′ of e in A

(s′ e) a value sup(s′) satisfying m ≤ sup(s′) ≤ b + m − n. After that we add
the equation ψs′ ·abs = sup(s′)−sup(sA,0). By definition of k, there are at most
k sources of e. This yields at most k additional equations.

Finally, we choose sup(s) such that 0 ≤ sup(s) ≤ m − 1 or b + m − n + 1 ≤
sup(s) ≤ b, respectively. Then we add the equation ψs ·abs = sup(s)−sup(sA,0).
Now, a solution satisfies the condition of Lemma 9.3.

Altogether, by Lemma 9, this defines a fitting system whose solvability proves
the τ -solvability of (e, s). Moreover, the system has at most |EA| · |SA|2 + k ≤
2 · |EA| · |SA|2 equations.

We estimate how many such systems must be maximally resolved for a sin-
gle atom: By definition of τ , we have at most (b + 1)2 possible choices for
(m,n) ∈ {0, . . . , b}2, and at most b+1 different values for sup(sA, 0) ∈ {0, . . . , b},
respectively. Furthermore, having (m,n) and sup(sA,0) already chosen, there
are at most b + 1 possible choices for sup(s) with 0 ≤ sup(s) ≤ m − 1 or
b + m − n + 1 ≤ sup(s) ≤ b. Similarly, for every source s′ of e we have at most
b + 1 choices for sup(s′) with m ≤ sup(s′) ≤ b + m − n. By definition of k this
makes at most (b+1)k different possible choices for the sources of k. Altogether,
we have at most (b + 1)k+4 possibilities to define a system of linear equations
whose solvability implies the τ -solvability of (e, s). Moreover, each system has
at most size 2 · |EA| · |SA|2.

Hence, by Lemmas 2 and 9 and |EA| ≤ |EA| · |SA|2, we can decide in time
O((b + 1)k+4 · |EA|3 · |SA|4) if the atom (e, s) is τ -solvable. Consequently, by the
at most |EA| · |SA| different ESSP atoms of A, we can decide whether A has the
τ -ESSP in O((b + 1)k+4 · |EA|4 · |SA|5) time. ��

166 R. Tredup

If τ ∈ {τ b
2 , τ b

3} then, by Lemmas 5 and 9, deciding if a TS A has the τ -SSP
and the τ -ESSP is doable in time O(|EA|3 ·|SA|6) and O((b+1)k+4 ·|EA|4 ·|SA|5),
respectively. Thus, the following corollary is justified and completes the proof of
Theorem 2.

Corollary 2. If τ ∈ {τ b
2 , τ b

3} then to decide if a TS A has the τ -feasibility is
doable in time O((b + 1)k+4 · |EA|3 · |SA|5 · max{|EA|, |SA|}).

5 Conclusion

In this paper, we investigate the computational complexity of synthesis, feasi-
bility, ESSP and SSP for several types of b-bounded P/T-nets, b ∈ Zb+1. We
introduce the new Petri net type of restricted Zb+1-extended b-bounded P/T-
nets and show that for this type synthesis and all corresponding decision prob-
lems are solvable in polynomial time. Moreover, we show that SSP is decidable
in polynomial time for the types of (pure) Zb+1-extended b-bounded P/T-nets.
Finally, we prove that feasibility and ESSP for (pure) Zb+1-extended b-bounded
P/T-nets are fixed parameter tractable if the (maximum) number of occurrences
of events is considered as parameter.

It remains for future work to search for other parameters that makes fea-
sibility for Petri net types fixed parameter tractable. Moreover, the question
whether there are tractable superclasses of (pure) b-bounded P/T-nets is still
open. One might also investigate the computational complexity for other Petri
nets related synthesis problems: The exact complexity status of synthesis up to
language equiavalence is unknown. In [3], Badouel et al. proposed an algorithm
that requires exponential space. Another open question has been stated in [15]:
Schlachter et al. suggested to characterize the complexity of synthesis for b-
bounded P/T-nets from modal transitions systems. Here, the task is to find, for
a given modal TS M , a Petri net N that implements M . So far, we are at least
aware of some (new) lower and upper bounds:

Conjecture 1. Let b ≥ 2. Deciding, for a given TS A, if there is a (pure) b-
bounded P/T-net N such that its state graph has the same language as A is
NP-hard. Moreover, the problem is in PSPACE. To decide for a given modal TS
M if there exists a (pure) b-bounded P/T-net N that implements M is NP-hard.

Acknowledgements. I would like to thank Uli Schlachter for his helpful remarks and
for simplifying the proof of Lemma 1. Also, I’m thankful to the anonymous reviewers
for their valuable comments.

Fixed Parameter Tractability and Polynomial Time Results 167

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19345-3

2. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Man-
agement. LNCS, vol. 1806, pp. 218–234. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-45594-9 14

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

4. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

5. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, Heidelberg (2015).https://
doi.org/10.1007/978-3-662-47967-4

6. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

7. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

8. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04921-2 13

9. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A
region-based theory for state assignment in speed-independent circuits. IEEE
Trans. CAD Integr. Circ. Syst. 16(8), 793–812 (1997). https://doi.org/10.1109/
43.644602

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

11. Goldmann, M., Russell, A.: The complexity of solving equations over finite groups.
Inf. Comput. 178(1), 253–262 (2002). https://doi.org/10.1006/inco.2002.3173

12. Hiraishi, K.: Some complexity results on transition systems and elementary net
systems. Theor. Comput. Sci. 135(2), 361–376 (1994). https://doi.org/10.1016/
0304-3975(94)90112-0

13. Holloway, L.E., Krogh, B.H., Giua, A.: A survey of Petri net methods for controlled
discrete event systems. Discret. Event Dyn. Syst. 7(2), 151–190 (1997). https://
doi.org/10.1023/A:1008271916548

14. Schlachter, U.: (2019, private correspondance)
15. Schlachter, U., Wimmel, H.: k-bounded Petri net synthesis from modal transition

systems. In: CONCUR. LIPIcs, vol. 85, pp. 6:1–6:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.
6

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/3-540-45594-9_14
https://doi.org/10.1007/3-540-45594-9_14
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.1109/43.644602
https://doi.org/10.1109/43.644602
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1006/inco.2002.3173
https://doi.org/10.1016/0304-3975(94)90112-0
https://doi.org/10.1016/0304-3975(94)90112-0
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6

168 R. Tredup

16. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60922-9 42

17. Tarjan, R.E.: Finding optimum branchings. Networks 7(1), 25–35 (1977). https://
doi.org/10.1002/net.3230070103

18. Tredup, R.: Hardness results for the synthesis of b-bounded Petri nets. In: Donatelli,
S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147. Springer,
Cham (2019)

19. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of synthesiz-
ing elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp. 16:1–16:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.
4230/LIPIcs.CONCUR.2018.16

20. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 Boolean Petri net
types. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 615–
634. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 38

21. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete
even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 3

https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1002/net.3230070103
https://doi.org/10.1002/net.3230070103
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16
https://doi.org/10.1007/978-3-030-14812-6_38
https://doi.org/10.1007/978-3-319-91268-4_3
https://doi.org/10.1007/978-3-319-91268-4_3

Semantics

Reversing Steps in Petri Nets

David de Frutos Escrig1, Maciej Koutny2, and Łukasz Mikulski3(B)

1 Dpto. Sistemas Informáticos y Computación, Facultad de Ciencias Matemáticas,
Universidad Complutense de Madrid, Madrid, Spain

defrutos@sip.ucm.es
2 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK

maciej.koutny@ncl.ac.uk
3 Faculty of Mathematics and Computer Science,

Nicolaus Copernicus University, Chopina 12/18, Toruń, Poland
lukasz.mikulski@mat.umk.pl

Abstract. In reversible computations one is interested in the develop-
ment of mechanisms allowing to undo the effects of executed actions. The
past research has been concerned mainly with reversing single actions.
In this paper, we consider the problem of reversing the effect of the exe-
cution of groups of actions (steps).

Using Petri nets as a system model, we introduce concepts related to
this new scenario, generalising notions used in the single action case. We
then present a number of properties which arise in the context of revers-
ing of steps of executed transitions in place/transition nets. We obtain
both positive and negative results, showing that dealing with steps makes
reversibility more involved than in the sequential case. In particular, we
demonstrate that there is a crucial difference between reversing steps
which are sets and those which are true multisets.

Keywords: Petri net · Reversible computation · Step semantics

1 Introduction

Reversibility of (partial) computations has been extensively studied during the
past years, looking for mechanisms that allow to (partially) undo some actions
executed during a process, that for some reason we need to cancel. As a result,
the execution can then continue from a consistent state as if that suppressed
action had not been executed at all. In particular, these mechanisms allow for
the correct implementation of transactions [7,8], that are partial computations
which either are totally executed or they are not executed at all. This includes
the modification of information in data bases, so that we never include an ‘incom-
plete’ set of related updates that would produce an inconsistent state. In such
a state one could infer some pieces of information that do not match, due to
the fact that the modification procedure has not been satisfactorily completed.
Another typical example would be the transactions between financial institu-
tions, for instance, when transferring money, or nowadays any e-commerce plat-
form, where the payments received should match the distributed goods [6].
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 171–191, 2019.
https://doi.org/10.1007/978-3-030-21571-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_11

172 D. F. Escrig et al.

Within the domain of Formal Methods, reversibility has been studied, for
instance, in the framework of process calculi [15,17], event structures [18], DNA-
computing [5], category theory [9], as well as within the field of quantum com-
puting [20]. In the latter case, reversibility plays a central role due to the inherent
reversibility of the mechanisms on which quantum computing is based. On the
other hand, in Petri nets reversibility is usually understood as a global prop-
erty. Historically it was considered in a sense closer to its meaning in process
calculi [13], but such a local reversibility within the framework of Petri Nets has
not been yet extensively studied. This is quite surprising as the formalization of
transitions by means of pairs of precondition and postcondition places gives one
an immediate way of defining the reversal of a transition simply by interchang-
ing those two sets. There are, however, some more recent approaches that either
focus on the structural study of Petri Nets [14], or on their algebraic study by
means of invariants [16].

The approach presented in this paper is more operational, and extends the
study of reversing (sequential) transitions initiated in [4], where it was shown
that the apparent simplicity of this approach is far from trivial, mainly due to
the difficulty of avoiding a situation that the added reversing transitions are
fired in an inconsistent way; for instance, before the transition to be reversed
was fired at all. [3] continued the study considering the particular case of bounded
Petri nets, and distinguishing between strict reverses and effect reverses. The
latter produce the effect of reversing the original transitions, but possibly with
increasing or reducing the conditions checked for the reversed firing. It was shown
that some transition systems which can be solved by a bounded net allow the
reversal of their transitions by means of single reversing transitions, while in
some other cases the reversal is only possible if we allow the splitting of reverses.
This means that one can have a collection of reverses for the same transition,
and each of them will be only fired at some of the markings, where the reversal
of the original transition must be possible.

In [3] only the sequential (interleaving) semantics of nets was considered and,
in fact, several of the presented examples were just (finite) trace systems, taking
advantage of the results presented in [2,12], where binary words representable
by Petri net were characterised. The latter problem and its consequences for
reversibility has been recently further investigated in [11].

In this paper, we initiate the study of step reversing assuming the step seman-
tics of Petri nets. We assume that the transition systems to be synthesized
include the information about the multisets of enabled transitions that should
be fireable in parallel. The reversal of the transitions should preserve this step
information so that the simultaneous firing of several reverse transitions should
exactly correspond to the original steps at the system represented by a Petri net.

Using Petri nets as a system model, we introduce concepts related to this new
scenario, generalising notions used in the single action case. Since our aim now
is to reverse steps, the simple definition which worked in the sequential case is
no longer sufficient. When looking for the adequate generalization defining step
reversing, we have found that two (non equivalent) definitions look ‘natural’.

Reversing Steps in Petri Nets 173

The former only allows steps which comprise either the original actions, or the
reverse actions (direct reversibility). The latter allows also mixing of these two
kinds of actions (mixed reversibility). It turns out that these two ways of inter-
preting reversibility of steps cause very big differences. Crucially, it appears that
the direct reversibility cannot be implemented for steps which are true multi-
sets, and so in such a case one has to aim at mixed reversibility. In this way we
have found a striking difference between reversing steps which are sets and those
which are true multisets (when autoconcurrency of actions in system executions
is allowed). However, we still have a general positive result which shows that
whenever sequential reversing is possible, once the steps of the system have been
satisfactorily represented, we obtain also a sound reversal of those steps.

The paper is organised as follows. In the next section we recall a number of
notions and notations used throughout the paper. We also introduce the direct
and mixed step reversibility. In Sect. 4, we show that the direct reversibility
cannot be achieved in the presence of autoconcurrency. The following section
presents our positive results about lifting of sequential reversibility to step
reversibility, by taking into account autoconcurrency. In Sect. 6, we develop
results which show that in many cases the reversibility problem can be reduced
to the net synthesis problem. The paper ends with some concluding remarks.

2 Preliminaries

Multisets. A multiset over a finite set X is a mapping α : X → N, where N

is the set of non-negative integers. The set of all multisets over X is denoted
by mult(X). α + β and α − β denote the multiset sum and difference, i.e.,
(α + β)(x) = α(x) + β(x) and (α − β)(x) = α(x) − β(x), for every x ∈ X. Note
that α − β is defined provided that β ≤ α which means that β(x) ≤ α(x), for
every x ∈ X. The size of α is defined as |α| = ∑

x∈X α(x), and the support as
the set supp(α) = {x ∈ X | α(x) ≥ 1}. We also denote x ∈ α if α(x) ≥ 1. For
Y ⊆ X, α∩Y denotes multiset β (still over X) such that β(y) = α(y), for y ∈ Y ,
and β(x) = 0, for x ∈ X \Y . Subsets of X can be identified with multisets which
return values in {0, 1}, and its elements with singleton sets (i.e., multisets of size
one). The empty (multi)set is denoted by ∅; a multiset α such that α(a) = 2,
α(b) = 1, and α(X \ {a, b}) = {0}, can be denoted by (aab); and ak denotes
multiset α such that α(a) = k and α(X \ {a}) = {0}.

Step Transition Systems. A step transition system is defined as a tuple
STS = (S, T,→, s0) such that S is a nonempty set of states, T is a finite set
of actions, → ⊆ S × mult(T) × S is the set of arcs (also called transitions),
and s0 ∈ S is the initial state. The labels in mult(T) represent simultaneous
executions of groups of actions, called steps. Rather than (s, α, r) ∈→, we can
denote s

α−−→STS r or s
α−−→ r or r

α←−− s. Moreover, s
α−−→STS or s

α−−→ means
that there is some r such that s

α−−→STS r.
A state r is reachable from state s if there are steps α1, . . . , αk (k ≥ 0) and

states s1, . . . , sk+1 such that s = s1
α1−−−→ s2 . . . sk

αk−−−→ sk+1 = r. We denote

174 D. F. Escrig et al.

this by s
α1...αk−−−−−−→STS r or s

α1...αk−−−−−−→ r or r
αk...α1←−−−−−− s. The set of all states

from which a state s is reachable is denoted by pred(s), and s is a home state
if pred(s) = S. Moreover, a set of states S′ ⊆ S is a home cover of STS if
S =

⋃
s∈S′ pred(s).

STS is state-finite if S is finite, step-finite if {α | s
α−−→ s′} is finite, and

finite if it is both state- and step-finite (and so → is also finite).
Step transition systems are intended here to capture (step) reachability

graphs of Petri nets. Of course, not every step transition system can be such
a graph. To reflect this, we formulate first the following properties of STS :

FD forward deterministism
s′ α←−− s

α−−→ s′′ implies s′ = s′′. Then we can define s ⊕ α = s′.
BD backward deterministism

s′ α−−→ s
α←−− s′′ implies s′ = s′′. Then we can define s
 α = s′.

REA reachability
s0 ∈ pred(s), for every s ∈ S.

SEQ sequentialisability
s

α−−→ implies s
α1...αk−−−−−−→, whenever α =

∑k
i=1 αi.

EL empty loops
s

∅−−→ s, for every s ∈ S.1
FC forward confluence

s′ αk...α1←−−−− s
β1...βm−−−−−−→ s′′ implies s′ = s′′, whenever

∑k
i=1αi =

∑m
j=1βj .

BC backward confluence
s′ α1...αk−−−−−−→ s

βm...β1←−−−−− s′′ implies s′ = s′′, whenever
∑k

i=1αi =
∑m

j=1βj .

Any STS satisfying the above properties will be called, in this paper, a well-
formed step transition system (or wfst-system). Note that FC and BC respec-
tively generalise FD and BD, and EL&FD means that s

∅−−→ s′ ⇐⇒ s = s′.

Proposition 1. Let STS = (S, T,→, s0) be a wfst-system and s ∈ S. If s ⊕ α
is defined and β+γ ≤ α, then s⊕β, s⊕ (β+γ) and (s⊕β)⊕γ are also defined,
and (s ⊕ β) ⊕ γ = s ⊕ (β + γ).

Proof. By s
α−−→ and SEQ&FD, we have s

β−−→ s ⊕ β
γ−−→ (s ⊕ β)⊕ γ as well as

s
β+γ−−−−→ s ⊕ (β + γ). Hence, by FC, (s ⊕ β) ⊕ γ = s ⊕ (β + γ). �
Being well-formed does not still characterise step transition systems defined

by pt-nets. A complete characterisation can be obtained using, e.g., theory of
regions [1,10]. However, we will not need here such a characterisation, since we
are only interested in obtaining sufficient conditions for the representability of
step transition systems by pt-nets, starting from the existing results about the
representability of ordinary (sequential) transition systems.

Let STS = (S, T,→, s0) and STS ′ = (S′, T ′,→′, s′
0) be step transition sys-

tems. Then STS is:
1 Arcs labelled with the empty multiset will not be usually depicted.

Reversing Steps in Petri Nets 175

• a sub-system of STS ′ if S ⊆ S′, T ⊆ T ′, → ⊆ →′, and s0 = s′
0. We denote

this by STS � STS ′.
• included in STS ′, if T ⊆ T ′, and there is a bijection ψ with the domain

containing S such that {(ψ(s), α, ψ(s′)) | s
α−−→ s′} ⊆ →′, ψ(S) = S′, and

ψ(s0) = s′
0. We denote this by STS �ψ STS ′ or STS � STS ′.

• isomorphic with STS ′ if STS �ψ STS ′ and STS ′ �ψ−1 STS , for some ψ.2 We
denote this by STS �ψ STS ′ or STS � STS ′.

We also define three ways of removing transitions from a step transition system:

STS seq = (S, T, {(s, α, r) | s
α−−→ r ∧ |α| ≤ 1}, s0)

STS set = (S, T, {(s, α, r) | s
α−−→ r ∧ supp(α) = α}, s0)

STS spike = (S, T, {(s, α, r) | s
α−−→ r ∧ |supp(α)| ≤ 1}, s0) .

That is, STS seq is obtained by only retaining singleton steps and ∅, STS set by
only retaining steps which are sets, and STS spike by removing all steps which use
more than one action. Then STS is a sequential / set / spiking step transition
system if respectively STS = STS seq / STS = STS set / STS = STS spike .3

For a step transition system S = (S, T,→, s0) and T ′ ⊆ T , the subsystem of
S induced by T ′ is STS |T ′ = (S, T ′, {(s, α, s′) | s

α−−→ s′ ∧ α ∈ mult(T ′)}, s0).4

Place/Transion-Nets. A Place/Transition net (or pt-net) [19] is a tuple
N = (P, T, F,M0), where P is a finite set of places, T is a disjoint finite set
of transitions (or actions), F is the flow function F : ((P × T) ∪ (T × P)) → N

specifying the arc weights, and M0 is the initial marking (where a marking — a
global state — is a multiset over P). Moreover, (P, T, F) is an unmarked pt-net.

Multisets over T—called again steps—represent executions of groups of tran-
sitions. The effect of a step α is a multiset of places eff N (α) = postN (α) −
preN (α), where, for every p ∈ P :

preN (α)(p) =
∑

t∈T

α(t) · F (p, t) and postN (α)(p) =
∑

t∈T

α(t) · F (t, p) .

A step α is enabled at a marking M if M ≥ preN (α). We denote this by M [α〉N .
The firing of such a step M leads to marking M ′ = M + eff N (α). We denote
this by M [α〉NM ′. Note that M [α〉N implies M [β〉N , for every β ≤ α. Moreover,
M [α+β〉N implies: M [α〉N M +eff N (α) [β〉N M +eff N (α+β). The set reachN

of reachable markings is the smallest set of markings such that M0 ∈ reachN

and if M ∈ reachN and M [α〉NM ′, for some α, then M ′ ∈ reachN . The overall
behaviour of N can be captured by its concurrent reachability graph defined as
CRGN = (reachN , T, {(M,α,M ′) | M ∈ reachN ∧ M [α〉NM ′},M0). CRGN is a
wfst-system, and M

α−−→N M ′ will denote that M
α−−→CRGN

M ′.

2 If STS and STS ′ are well-formed, then ψ is unique due to FD&REA.
3 If STS is well-formed, then STS seq , STS set , and STS spike satisfy REA due to
REA&SEQ.

4 Note that STS |T ′ may be not REA even for STS that is REA.

176 D. F. Escrig et al.

A step transition system STS is solvable if there is a pt-net N such that
STS � CRGN . Moreover, step transition systems STS r = (Sr, T,→r, sr) (for
r ∈ R) are simultaneously solvable if there are pt-nets Nr = (P, T, F,Mr) (for r ∈
R) and a bijection ψ :

⋃
r∈R Sr → ⋃

r∈R reachNr
such that STS r �ψ CRGNr

,
for every r ∈ R. (Note that the Sr’s need not be disjoint.)

For a pt-net N = (P, T, F,M0) and T ′ ⊆ T , the pt-(sub)net of N induced
by T ′ is N |T ′ = (P, T ′, F(P×T ′)∪(T ′×P),M0).

3 Reversing Steps

A reverse of an action or net transition x will be denoted by x, and for a multiset
X = (x1 . . . xk) with k ≥ 0, we denote X = (x1 . . . xk).

Reversing in Transition Systems. We introduce three ways in which one
can modify a step transition system in order to capture the effect of reversing
actions.

The direct / set /mixed reverse of a step transition system STS = (S, T,→
, s0) satisfying SEQ&FD is respectively given by:

STS rev = (S, T ∪ T ,→ ∪ →rev , s0)
STS srev = (S, T ∪ T ,→ ∪ →srev , s0)
STSmrev = (S, T ∪ T ,→mrev , s0) , where:

→rev = {(s ⊕ α, α, s) | s
α−−→}

→srev = {(s ⊕ α, α, s) | s
α−−→ ∧ supp(α) = α}

→mrev = {(s ⊕ α, α + β, s ⊕ β) | s
α+β−−−−→} .

Therefore, →rev reverses all the (original) steps: →srev only reverses the steps
that are sets; and finally →mrev introduces partial reverses, which means mixed
steps, including both original and reversed actions.

Figure 1 illustrates the idea of mixed reversing. Note that s ⊕ α and s ⊕ β
above are well-defined states in STS due to SEQ&FD.

•s

•
s ⊕ α

• s ⊕ (α + β)

•
s ⊕ β

α + β

α + β

β α

βα

Fig. 1. A mixed reverse transition s ⊕ α
α+β−−−−→mrev s ⊕ β derived from s

α+β−−−−→.

Reversing Steps in Petri Nets 177

Proposition 2. Let STS be a wfst-system, and α, β be steps of its actions.

1. STS � STS srev � STS rev � STSmrev .
2. s

β−−→STSmrev s′ iff s
β−−→STS s′.

3. s
α−−→STSmrev s′ iff s

α−−→STSrev s′.

4. s
α+β−−−−→STS implies s ⊕ α

δ+γ−−−−→STSmrev s ⊕ (γ + α − δ),
for all δ ≤ α and γ ≤ β.

Proof. (1) Clearly, STS � STS srev � STS rev . Finally, STS rev � STSmrev ,
because we can take α = ∅ and then s⊕α = s using that STS satisfies FD&EL;
and also →rev ⊆ →mrev can be obtained in a similar way, taking β = ∅.

(2) By part (1), we only need to show that s
β−−→STSmrev s′ implies s

β−−→STS s′.
Indeed, given that β = ∅ + β and STS satisfies FD, the former implies that
there is r ∈ S such that r

∅+β−−−−→STS r ⊕ β, s = r ⊕ ∅, and s′ = r ⊕ β. Hence,
by EL&BD for STS , s = r. Thus s

β−−→STS s′.
(3) By part (1), we only need to show that s

α−−→STSmrev s′ implies s
α−−→STSrev s′.

Indeed, given that α = α+∅ and STS satisfies FD, the former implies that there
is r ∈ S such that r

α+∅−−−−→STS r ⊕ α, s = r ⊕ α, and s′ = r ⊕ ∅. Hence, by
EL&BD for STS , s′ = r. Thus s

α−−→STS s′ so s′ α−−→STSrev s.

(4) By s
α+β−−−−→STS and SEQ&FD for STS , s

α−δ−−−−→STS s⊕ (α−δ)
δ+γ−−−−→STS .

Hence, by the definition of STSmrev ,

(s ⊕ (α − δ)) ⊕ δ
δ+γ−−−−→STSmrev (s ⊕ (α − δ)) ⊕ γ .

Moreover, by s
α+β−−−−→STS and Proposition 1,

(s ⊕ (α − δ)) ⊕ δ = s ⊕ ((α − δ) + δ) = s ⊕ α
(s ⊕ (α − δ)) ⊕ γ = s ⊕ ((α − δ) + γ) = s ⊕ (γ + α − δ) . �

In general, STS rev , STS srev , and STSmrev need not be well-formed even
though STS was. However, the only properties which may fail to carry over
from STS are the two versions of confluence.

Example 1. The step transition system in Fig. 2(a) is well-formed. However,
adding reversals destroys forward confluence, as demonstrated in Fig. 2(b).
Reversing the arcs results in a symmetric counterexample for the preservation
of backward confluence. ♦

Proposition 3. If STS satisfies FD&BD&REA&SEQ&EL, then the step
transition systems STSmrev , STS srev , and STS rev also satisfy them.

178 D. F. Escrig et al.

Fig. 2. Reversing does not preserve confluence.

Proof. By Proposition 2(1), the result follows immediately for EL and REA. For
the remaining three properties, by Proposition 2(2,3), it suffices to show it for
STSmrev . To this end, suppose that:

s
α+β−−−−→STS s ⊕ α

α+β−−−−→STSmrev s ⊕ β

s′ α+β−−−−→STS s′ ⊕ α
α+β−−−−→STSmrev s′ ⊕ β .

Then, by SEQ&FD for STS , we have:

s
α−−→STS s ⊕ α s

β−−→STS s ⊕ β

s′ α−−→STS s′ ⊕ α s′ β−−→STS s′ ⊕ β .

Suppose now that s ⊕ α = s′ ⊕ α. Then, by BD for STS , s = s′. Hence, by FD
for STS , s ⊕ β = s′ ⊕ β. As a result, FD holds for STSmrev . The proof of BD is
symmetric.

To prove SEQ for STSmrev , it suffices to consider k = 2. Suppose that:

s
α1+α2+β1+β2−−−−−−−−−−−→STS and s ⊕ (α1 + α2)

α1+α2+β1+β2−−−−−−−−−−−→STSmrev s ⊕ (β1 + β2) .

Then, by SEQ for STS , we have s⊕α2
α1+β1−−−−→STS and s⊕β1

α2+β2−−−−→STS . Hence,
by the definition of STSmrev ,

(s ⊕ α2) ⊕ α1
α1+β1−−−−−→STSmrev (s ⊕ α2) ⊕ β1

(s ⊕ β1) ⊕ α2
α2+β2−−−−−→STSmrev (s ⊕ β1) ⊕ β2 .

Moreover, by Proposition 1, we have:

s ⊕ (α2 + α1) = (s ⊕ α2) ⊕ α1 (s ⊕ β1) ⊕ β2 = s ⊕ (β1 + β2)
(s ⊕ α2) ⊕ β1 = s ⊕ (α2 + β1) = (s ⊕ β1) ⊕ α2 .

Hence, we obtain:

s ⊕ (α1 + α2)
α1+β1−−−−−→STSmrev s ⊕ (α2 + β1)

α2+β2−−−−−→STSmrev s ⊕ (β1 + β2) ,

which means that SEQ holds for STSmrev . �

Proposition 4. s
α+β−−−→STSmrev s′ iff s′ α+β−−−→STSmrev s, for every wfst-system

STS .

Reversing Steps in Petri Nets 179

Proof. Since both implications really state the same, it suffices to show any of
them. Suppose that s

α+β−−−−→STSmrev s′. Then there is r such that r
α+β−−−−→STS ,

s = r ⊕ α, and s′ = r ⊕ β and then we only need to swap the roles of α and β

to conclude r ⊕ β
α+β−−−−→STSmrev r ⊕ α �

Reversing in Nets. Due to the natural decomposability character of steps
made up of net transitions, adding reverses to pt-nets is done at the level of
transitions rather than steps:

– A pt-net N with reverses is such that, for each original transition t, there is
a reverse transition t with the opposite effect, i.e., eff N (t) = −eff N (t).

– A pt-net N with strict reverses is such that, for each original transition t,
there is a reverse transition t with the opposite connectivity, i.e., preN (t) =
postN (t) and postN (t) = preN (t).

Proposition 5. If STS is a solvable step transition system, then STS rev and
STSmrev are wfst-systems.

Proof. Since STS = (S, T,→, s0) is solvable, there is a pt-net N = (P, T, F,M0)
and a bijection ψ : S → reachN such that STS �ψ CRGN . Hence, since CRGN

is well-formed, STS is also well-formed. Below Ms = ψ(s), for every s ∈ S.
It suffices to show that STSmrev is well-formed, and, by Proposition 3, we only

need to check that FC and BC hold for STSmrev . Suppose that: s
α+β−−−−→STS

and s ⊕ α
α+β−−−−→STSmrev s ⊕ β. Then, by FD&BD for CRGN , we have:

Ms⊕β = Ms + eff N (β) = Ms⊕α − eff N (α) + eff N (β) .

Therefore, if s
(α1+β1)...(αk+βk)−−−−−−−−−−−−−→STSmrev s′, then:

Ms′ = Ms −
k∑

i=1

eff N (αi) +
k∑

i=1

eff N (βi) .

Hence both FC and BC hold for STSmrev . �
As an immediate consequence, we obtain the following a characterisation.

Corollary 1. If STS is a wfst-system, but STSmrev is not, then STS is not
solvable.

4 Multisets and Mixed Reversibility

Our investigation of step reversibility starts with a straightforward but pivotal
result stating that, in the domain of pt-nets, direct reversibility cannot handle
steps which are true multisets.

180 D. F. Escrig et al.

Proposition 6. Let STS be a wfst-system which is not a set transition system.
Then STS rev is not solvable.

Proof (See Fig. 3(a)). Let STS = (S, T,→, s0) and N = (P, T ∪ T , F,M0) be a
pt-net such that STS rev �ψ CRGN .

Suppose that v
α−−→ and (aa) ≤ α. Then, since STS satisfies SEQ, there are

w, q ∈ S such that v
(aa)−−−→ w and v

a−−→ q.
Let Mx = ψ(x), for x ∈ {v, w, q}. By STS rev �ψ CRGN , the step (aa) is not

enabled at Mq. Hence, there must be p ∈ P such that

Mq(p) < F (p, a) + F (p, a) . (1)

On the other hand, (aa) is enabled at Mv, and (aa) is enabled at Mw. Hence
Mv(p) ≥ 2 · F (p, a) and Mw(p) ≥ 2 · F (p, a). We also have:

Mw(p) = Mv(p) + 2 · F (a, p) − 2 · F (p, a)
Mq(p) = Mv(p) + F (a, p) − F (p, a) .

Thus we obtain:

2 · F (p, a) + 2 · F (p, a) ≤ Mv(p) + Mw(p)
= 2 · Mv(p) + 2 · F (a, p) − 2 · F (p, a) ,

and so F (p, a) + F (p, a) ≤ Mv(p) + F (a, p) − F (p, a) = Mq(p), yielding a con-
tradiction with (1). �

Fig. 3. An illustration of the proof of Proposition 6 (a), and pt-net generating con-
current reachability graph which is not step-finite (b).

A result similar to Proposition 6 does not hold for STSmrev since, in this case
it may contain, in particular, the mixed step (aa) that was needed in the proof
of the last result (a suitable counterexample can be provided by a wfst-system
which ‘executes’ the diamond of (aa)). Hence, in the case of step (but not set)
transition systems, it makes sense to investigate mixed reversibility, rather than
direct reversibility, which we have proved to be impossible.

Proposition 7. Let STS be a step-finite wfst-system. If STSmrev is solvable,
then STS srev is also solvable.

Reversing Steps in Petri Nets 181

Proof. Since STS is step-finite, there is k ≥ 1 such that |α| ≤ k, whenever
s

α−−→STS . Moreover, since STSmrev is solvable, there exists a pt-net N = (P, T ∪
T , F,M0) such that STSmrev �ψ CRGN . We then modify N , getting a new net
N ′, by adding to P a set of fresh places P ′ = {ptu | t ∈ T ∧ u ∈ T}. Each ptu is
such that M0(ptu) = k and has four non-zero connections:

F (t, ptu) = F (ptu, t) = 1 and F (u, ptu) = F (ptu, u) = k .

For the obtained pt-net N ′, STS srev �ψ′ CRGN ′ where, for every state s of
STS , ψ′(s) = ψ(s) +

∑
p∈P ′ pk. �

Example 2. The last result no longer holds if we drop the assumption that STS
is step-finite. Consider, for example, STS = ({s0, s1, . . . }, {a, b},→, s0), where:

→ = {(si, a
j , si) | i ≥ 0 ∧ j ≤ i} ∪ {(si, b + aj , si+1) | i ≥ 0 ∧ j ≤ i} .

Then STSmrev is solvable by the pt-net in Fig. 3(b), but STS srev is not solvable
by any pt-net N = (P, {a, b, a, b}, F,M0). Indeed, if N existed, then it would
have distinct reachable markings M0,M1, . . . such that, for all i ≥ 0:

(i) Mi
b−−→N Mi+1, (ii) Mi

ai

−−→N Mi, (iii) Mi
a−−→N Mi (for i > 0),

but we would not have (iv) Mi
(aa)−−−→N Mi.

We now observe that (i) means that M0 ≤ M1 ≤ Hence, (iv) together
with the finiteness of P , implies that there is p ∈ P such that F (p, a)+F (p, a) >
M0(p) = M1(p) = But (iii) implies F (p, a) ≤ M0(p) = M1(p) = . . . ,
and from (ii) we obtain F (p, a) = 0, getting F (p, a) + F (p, a) ≤ M0(p), which
contradicts our first inequation.

Corollary 2. Let STS be a well-formed set transition system. If STSmrev is
solvable, then STS rev is also solvable.

Proof. As a set transition system, STS is step-finite and STS rev = STS srev .
Hence the result follows from Proposition 7. �

5 Reversibility and Plain Solvability

The feasibility of reversing steps in wfst-systems can in some cases be replaced
by checking the solvability of the original transition system, and the solvability
of its pure reversed version(s). The latter are formalised in the following way.

Let STS = (S, T,→, s0) be a wfst-system and r ∈ S.
Then we define the step transition system STS r = (pred(r), T ,→r, r), where:

→r = {(s′, α, s) | s′ ∈ pred(r) ∧ s
α−−→ s′} .

It is easy to check that STS r is also well-formed. Moreover, since STS satisfies
REA, s0 ∈ pred(r) and it is reachable in STS r from every state of the latter.

Theorem 1. Let R be a home cover of a wfst-system STS . Then STSmrev is
solvable iff STS is solvable and STS r (for all r ∈ R) are simultaneously solvable.

182 D. F. Escrig et al.

Proof. Note that S =
⋃

r∈R Sr, as R is a home cover. In the proof below, we will
use the following notation, where r ∈ R:

STS = (S, T,→, s0) STS rev = (S, T ∪ T ,→rev , s0)
STSmrev = (S, T ∪ T ,→mrev , s0) STS r = (Sr, T ,→r, r) .

(=⇒) Suppose that N = (P, T, F,M0) is such that STSmrev �ψ CRGN .
To show that STS is solvable, let N ′ = N |T . Then STS �ψ CRGN ′ . Indeed,

we first note that ψ(s0) = M0. Suppose now that s ∈ S and ψ(s) ∈ reachN ′ . Let
us see that the execution of transitions is preserved in both directions by ψ:

(i) s
α−−→ s′. Then, by Proposition 2(2), we have s

α−−→mrev s′. Hence, by
STSmrev �ψ CRGN , we have ψ(s) α−−→N ψ(s′). Moreover, the enabling and
firing of steps over T are exactly the same in N and N ′. Hence ψ(s) α−−→N ′ ψ(s′).

(ii) ψ(s) α−−→N ′ M . Then, as the enabling and firing of steps over T are
exactly the same in N and N ′, ψ(s) α−−→N M . Hence, by STSmrev �ψ CRGN ,
M ∈ ψ(S) and s

α−−→mrev ψ−1(M). Thus, by Proposition 2(2), s
α−−→ ψ−1(M).

To show that the STS r’s are simultaneously solvable, let us take Nr as the
net N |T with the initial marking set to ψ(r), for every r ∈ R. Then STS r �ψ

CRGNr
. Indeed, we first note that the initial states of STS r and CRGNr

are
related by ψ. Suppose now that s is a state in STS r such that ψ(s) ∈ reachNr

.
Again we have:

(i) s
α−−→r s′. Then s

α−−→rev s′ and so, by Proposition 2(3), we have
s

α−−→mrev s′. Hence we have, by STSmrev �ψ CRGN , ψ(s) α−−→N ψ(s′). More-
over, the enabling and firing of steps over T are exactly the same in N and Nr.
Hence ψ(s) α−−→Nr

ψ(s′).
(ii) ψ(s) α−−→N ′ M . Then, as the enabling and firing of steps over T are

exactly the same in N and Nr, we have ψ(s) α−−→N M . Hence, by STSmrev �ψ

CRGN , we have M ∈ ψ(S) and s
α−−→STSmrev ψ−1(M). Thus, by Proposi-

tion 2(3), s
α−−→r ψ−1(M).

Fig. 4. An illustration of the proof of Theorem 1.

Reversing Steps in Petri Nets 183

(⇐=) Since STS is solvable, there is a pt-net N ′ = (P ′, T, F ′,M ′
0) such that

STS �ψ′ CRGN ′ . And, since the STS r’s are simultaneously solvable, there are
pt-nets Nr = (P ′′, T , F ′′,Mr) (for all r ∈ R) and ψ′′ : S → ⋃

r∈R reachNr

such that STS r �ψ′′ CRGNr
, for every r ∈ R. Note that ψ′(s0) = M ′

0 and
ψ′′(r) = Mr, for every r ∈ R. Clearly, we may assume that P ′ ∩ P ′′ = ∅.

Let N = (P ′ ∪ P ′′, T ∪ T , F,M0) the pt-net, where M0 = M ′
0 + ψ′′(s0) =

ψ′(s0) + ψ′′(s0). Now taking N ′′ = (P ′′, T , F ′′, ∅), for every t ∈ T we have:

preN (t) = preN ′(t) + postN ′′(t) postN (t) = postN ′(t) + preN ′′(t)
preN (t) = preN ′′(t) + postN ′(t) postN (t) = postN ′′(t) + preN ′(t) .

(2)

Note that N is a pt-net with strict reverses (see Fig. 4). Moreover, for all t ∈ T
and r ∈ R:

preN ′′(t) = preNr
(t) postN ′′(t) = postNr

(t) . (3)

Let ψ be a mapping with the domain S which, for every s ∈ S, returns
ψ′(s) + ψ′′(s). Note that ψ is well-defined since R is a home cover of STS , and
that ψ(s0) = M0.

We first show that STS rev �ψ STS ′, where STS ′ is just CRGN but removing
from it all the arcs labelled by the mixed steps (i.e., steps of the form α + β,
for α, β �= ∅) deleted. (Note that this does not produce unreachable states since
CRGN satisfies SEQ.) Indeed, we first note that the initial states of STS rev and
STS ′ are related by ψ. Suppose now that s ∈ S and ψ(s) ∈ reachN . Once again
we see that the execution of transitions is preserved in both directions by ψ:

(i) s
α−−→rev s′. Then, by STS �ψ′ CRGN ′ , we have ψ′(s) α−−→N ′ ψ′(s′).

Moreover, s′ α−−→rev s. Hence, since R is a home cover, there is r ∈ R such that
s′ α−−→r s. Thus, by STS r �ψ′′ CRGNr

, we have ψ′′(s′) α−−→Nr
ψ′′(s), and so

ψ′′(s) ≥ postNr
(α). Hence, by (2) and (3), we have:

ψ(s) = ψ′(s) + ψ′′(s) ≥ preN ′(α) + postNr
(α) = preN (α) .

As a result, ψ(s) α−−→ ψ(s) + eff N (α). Moreover, by (2) and (3), we have:

ψ(s) + eff N (α)
= ψ′(s) + ψ′′(s) + postN (α) − preN (α)
= ψ′(s) + ψ′′(s) + (postN ′(α) + preN ′′(α)) − (preN ′(α) + postN ′′(α))
= (ψ′(s) + postN ′(α) − preN ′(α)) + (ψ′′(s) − postN ′′(α) + preN ′′(α))
= ψ′(s′) + ψ′′(s′) .

Hence ψ(s) α−−→ ψ(s′).
(ii) s

α−−→rev s′. Then s′ α−−→rev s and so, by Case 1, ψ(s′) α−−→N ψ(s).
Hence, since N is pt-net with strict reverses, ψ(s) α−−→N ψ(s′).

(iii) ψ(s) α−−→N M . Then

ψ′(s) + ψ′′(s) = ψ(s) ≥ preN (α) = preN ′(α) + postN ′′(α) .

184 D. F. Escrig et al.

M = ψ′(s) + ψ′′(s) + postN ′(α) + preN ′′(α) − (preN ′(α) + postN ′′(α)) .

Hence, since P ′ ∩ P ′′ = ∅, ψ′(s) ≥ preN ′(α) and ψ′′(s) ≥ postN ′′(α). Moreover,
we have:

M ∩ P ′ = ψ′(s) + postN ′(α) − preN ′(α)
M ∩ P ′′ = ψ′′(s) + preN ′′(α) − postN ′′(α) .

Thus ψ′(s) α−−→N ′ M∩P ′. Hence, by STS �ψ′ CRGN ′ , we obtain M∩P ′ ∈ ψ′(S)
and s

α−−→rev s′, where ψ′(s′) = M∩P ′. We need to show that ψ(s) = M , and this
would follow from ψ′′(s′) = M ∩ P ′′. Indeed, we have s′ α−−→rev s, and so there
is r ∈ R such that s′ ∈ Sr. Now, by STS r �ψ′′ CRGNr

, ψ′′(s′) α−−→Nr
ψ′′(s).

But this means that ψ′′(s) = ψ′′(s′) + postN ′′(α) − preN ′′(α). Thus

ψ′′(s′) = ψ′′(s) − postN ′′(α) + preN ′′(α) = M ∩ P ′′ .

(iv) ψ(s) α−−→N M . Then we have:

ψ′(s) + ψ′′(s) = ψ(s) ≥ preN (α) = preN ′′(α) + postN ′(α)
M = ψ′(s) + ψ′′(s) + postN ′′(α) + preN ′(α) − (preN ′′(α) + postN ′(α)) .

Hence, since P ′ ∩ P ′′ = ∅, ψ′(s) ≥ postN ′(α) and ψ′′(s) ≥ preN ′′(α). Moreover,
we have:

M ∩ P ′ = ψ′(s) + preN ′(α) − postN ′(α)
M ∩ P ′′ = ψ′′(s) + postN ′′(α) − preN ′′(α) .

Thus ψ′′(s) α−−→N ′′ M ∩ P ′′. Hence, since R is a home cover, there is r ∈ R such
that s ∈ Sr. Thus, by STS r �ψ′′ CRGNr

, M ∩ P ′′ ∈ ψ′′(S) and s
α−−→rev s′,

where ψ′′(s′) = M ∩P ′′. We need to show that ψ(s) = M , and this would follow
from ψ′(s′) = M ∩P ′. Indeed, we have s′ α−−→rev s. Hence, by STS �ψ′ CRGN ′ ,
we obtain ψ′(s′) α−−→N ′ ψ′(s). But this means that

ψ′(s) = ψ′(s′) + postN ′(α) − preN ′(α) ,

and so we obtain: ψ′(s′) = ψ′(s) − postN ′(α) + preN ′(α) = M ∩ P ′ .

Now in order to conclude STSmrev �ψ CRGN we only need to consider the
case of mixed transitions:

(i) s
α+β−−−−→rev and s ⊕ α

α+β−−−−→mrev s ⊕ β. Then s
α−−→rev s ⊕ α and

s
β−−→rev s ⊕ β. Thus, by STS rev �ψ STS ′,

ψ(s)
α+β−−−−→N ψ(s) α−−→rev ψ(s ⊕ α) ψ(s)

β−−→rev ψ(s ⊕ β) .

Hence, we have ψ(s) ≥ preN (α + β) = preN (α) + preN (β). Thus

ψ(s) α−−→N ψ(s) + eff N (α) = ψ(s) + postN (α) − preN (α)
= ψ(s) + preN (α) − preN (α) ≥ preN (α + β) .

Reversing Steps in Petri Nets 185

Moreover, by FD, ψ(s ⊕ α) = ψ(s) + eff N (α) ≥ preN (α + β) . And, finally,
ψ(s) + eff N (α) + eff N (α + β) = ψ(s) + eff N (β) .

(ii) ψ(s)
α+β−−−−→N M . Then we have ψ(s) α−−→N ψ(s) ⊕ α and, using that

post(α) = preN (α), ψ(s) ⊕ α
α+β−−−−→N . Thus, from STS rev �ψ STS ′ it follows

that ψ−1(ψ(s) ⊕ α)
α+β−−−−→rev . Hence

ψ−1(ψ(s) ⊕ α) ⊕ α
α+β−−−−→mrev ψ−1(ψ(s) ⊕ α) ⊕ β .

All we need to show now is that:
ψ−1(ψ(s) ⊕ α) ⊕ α = s

ψ(ψ−1(ψ(s) ⊕ α) ⊕ β)) = ψ(s) ⊕ (α + β) ,

which clearly is the case. �
Corollary 3. Let r be a home state of a wfst-system STS . Then STSmrev is
solvable iff STS and STS r are solvable.

The above corollary and the proof of the last theorem provide a method
for constructing a pt-net implementing mixed step reversibility provided that
one can synthesise pt-nets for two step transition systems using, e.g., theory of
regions [1,10].

We have obtained a method for checking the feasibility of mixed reversabil-
ity. This is indeed useful, in view of Proposition 6. Moreover, for set transition
systems the result extends to direct reversibility.

Theorem 2. Let r be a home state of a well-formed set transition system STS .
Then STS rev is solvable iff STS and STS r are solvable.

Proof. (=⇒) Let STS rev �ψ CRGN and T be the set of transitions of N . Then
STS �ψ CRGN |T and STS r �ψ CRGN ′ , where N ′ is N |T with the initial
marking set to ψ(r).

(⇐=) Follows from Theorem 1 and Corollary 2. �

6 From Sequential Reversibility to Step Reversibility

Checking the feasibility of step reversibility and then constructing a suitable
pt-net can be difficult. Our next result shows that in certain cases one can carry
out this task more easily, if we are given a net that simultaneously solves the
original transition system, overapproximates its reversed version that contains
only spikes, and underapproximates its mixed reversed version.

Theorem 3. Let N = (P, T ∪ T , F,M0) be a pt-net, and STS = (S, T,→, s0)
be a wfst-system such that:

(STS spike)rev � CRGN � STSmrev (4)

STS � CRGN |T . (5)

Then STSmrev is solvable. Moreover, if STS is a set transition system, then
STS rev is solvable.

186 D. F. Escrig et al.

Proof. The states as well as the initial states of (STS spike)rev , STSmrev , and STS
are all the same; moreover, ((STS spike)rev |T)seq = (STSmrev |T)seq = STS seq .
Similarly, the initial states of CRGN and CRGN |T are the same and we have
(CRGN)|T = CRGN |T .

Moreover, all transition systems in (4) and (5) satisfy FD&REA&SEQ, and
there is a bijection ψ such that:

(STS spike)rev �ψ CRGN �ψ−1 STSmrev and STS �ψ CRGN |T . (6)

By (4) and SEQ of step transition systems and reachability graphs and the
fact that we may assume that each t ∈ T appears in the labels of the arcs of
STS , we have for any t ∈ T :

reachN = reachN |T and eff N (t) = −eff N (t) . (7)

We first show that it can be assumed that, for all t ∈ T :

preN (t) ≥ postN (t) and postN (t) ≥ preN (t) . (8)

Indeed, suppose that F (p, t) < F (t, p). We then modify F to become F ′ which
is the same as F except that F ′(p, t) = F (t, p) and F ′(t, p) = F (p, t). Let N ′ be
the resulting pt-net. Clearly, eff N (x) = eff N ′(x), for every x ∈ T ∪ T .

After this modification—which does not affect transitions in T—(5) is still
satisfied after taking N ′ to play the role of N . However, the satisfaction of (4) is
not so immediate. But the modification can only restrict the enabling of steps,
and the enabling of transitions other than t is unchanged. Thus

CRGN ′ � CRGN � STSmrev .

Hence, if (4) does not hold with N ′ playing the role of N , then there is M ∈
reachN ′ ⊆ reachN and k ≥ 1 such that:

M
t
k

−−→CRGN
M ′ and ¬M

t
k

−−→CRGN′ . (9)

By (4) and the first part of (9), we have:

M ′ tk−−→CRGN
M and so M(p) ≥ F (tk, p) . (10)

By construction, the only reason for the second part of (9) to hold is that
F ′(p, t

k) > M(p). Thus, by F ′(p, t
k) = F (tk, p), we obtain F (tk, p) > M(p),

yielding a contradiction with (10).
We can apply the above modification as many times as needed, finally con-

cluding that (8) can be assumed to hold for N as any modification does not
invalidate the conditions captured by (8) that were got by the previous modifi-
cations.

We next show that STSmrev is solvable, after constructing a pt-net Ñ =
(P̃ , T ∪ T , F̃ , M̃0), in the following way (Fig. 5):

Reversing Steps in Petri Nets 187

Fig. 5. Constructing place pt in the proof of Theorem 3, where x = eff N (u)(p) > 0
and y = eff N (w)(p) ≤ 0. Note that u, w ∈ T ∪ T \ {t}.

• P̃ =
⋃

p∈P Pp, where, for every p ∈ P ,5

Pp = {p} ∪ {pt | t ∈ T ∧ F (p, t) > F (t, p)} and M̃0(Pp) = {M0(p)} .

• The connections in Ñ are set as follows, where p ∈ P and u ∈ T ∪ T \ {t}:
– F̃ (p, t) = F (t, p) and F̃ (t, p) = F (p, t).
– F̃ (pt, t) = F (p, t) and F̃ (t, pt) = F (t, p).
– eff N (u)(p) > 0 implies F̃ (pt, u) = 0 and F̃ (u, pt) = eff N (u)(p).
– eff N (u)(p) ≤ 0 implies F̃ (u, pt) = 0 and F̃ (pt, u) = −eff N (u)(p).
– F̃ on (P × T) ∪ (T × P) is as F unless it has been set explicitly above.

In what follows, for every marking M of N , we use φ(M) to denote the marking
of Ñ such that φ(M)(Pp) = {M(p)}, for every p ∈ P . Hence φ(M0) = M̃0.

We now present a number of straightforward properties of Ñ . We first observe
that, by (8), for all t ∈ T , u ∈ T ∪ T , and p ∈ P ,

pre
˜N (t) ≥ post

˜N (t) eff
˜N (t) = −eff

˜N (t)
post

˜N (t) ≥ pre
˜N (t) eff

˜N (u)(Pp) = {eff N (u)(p)} .
(11)

Therefore, for every marking M of N and every κ ∈ mult(T ∪ T) such that
M + eff N (κ) ≥ ∅,

φ(M) + eff
˜N (κ) = φ(M + eff N (κ)) . (12)

The construction does not affect the enabling of steps involving just one tran-
sition as well as steps α over T since pt ∈ Pp cannot disable α if it is not
also disabled by p. Hence, for all markings M of N , u ∈ T ∪ T , k ≥ 1, and
α ∈ mult(T),

M [uk〉N ⇐⇒ φ(M)[uk〉
˜N and M [α〉N ⇐⇒ φ(M)[α〉

˜N . (13)

5 Intuitively, each pt ∈ Pp is a (suitably adjusted) copy of p.

188 D. F. Escrig et al.

Hence, by (6, 12, 13) and M̃0 = φ(M0),

(STS spike)rev �φ◦ψ CRG
˜N and STS �φ◦ψ CRG

˜N |T �φ−1 CRGN |T . (14)

We then show that, for every marking M of Ñ and all α, β ∈ mult(T):

(A) φ(M)
α+β−−−−→

˜N implies φ(M)− eff
˜N (α)

α+β−−−−→
˜N φ(M)+ eff

˜N (β) . Indeed,
we first observe that φ(M) − eff

˜N (α) ∈ reach
˜N . We then observe that, by

φ(M) ≥ pre
˜N (α + β), we have:

φ(M) − eff
˜N (α) ≥ pre

˜N (α + β) − eff
˜N (α)

= pre
˜N (α) + pre

˜N (β) − post
˜N (α) + pre

˜N (α)
≥by(11) pre

˜N (α + β) .

Hence α + β is enabled at φ(M) − eff
˜N (α), and (A) holds as we have:

φ(M) − eff
˜N (α) + eff

˜N (α + β) = φ(M) + eff
˜N (β) .

(B) φ(M)
α+β−−−−→

˜N implies φ(M)+ eff
˜N (α)

α+β−−−−→
˜N φ(M)+ eff

˜N (β) . Indeed,
by SEQ of reachability graphs, φ(M) α−−→

˜N φ(M)+eff
˜N (α) = M ′. Suppose

that M ′ α+β−−−−→
˜N does not hold. Then there is q ∈ P̃ such that

F̃ (q, α + β) > M ′(q). (15)

Moreover, φ(M)(q) ≥ F̃ (q, α+β) and M ′(q) = φ(M)(q)−F̃ (q, α)+F̃ (α, q).
Hence:

F̃ (q, α + β) > φ(M)(q) − F̃ (q, α) + F̃ (α, q)
≥ F̃ (q, α + β) − F̃ (q, α) + F̃ (α, q) ,

and so, by erasing F̃ (q, β) from both sides of inequality (as F̃ (q, α + β) =
F̃ (q, α) + F̃ (q, β) and F̃ (q, α + β) = F̃ (q, α) + F̃ (q, β)), F̃ (q, α) > F̃ (α, q).
Thus there is t ∈ α and such that F̃ (q, t) > F̃ (t, q) and so, by the definition
of Ñ , q = pt, for some p ∈ P . Now, it follows from the construction of Ñ ,
there are α0, α1, β0, β1 and k ≥ 1 such that α = tk+α0+α1 and β = β0+β1

and t �∈ α0 + α1 and, for x = α, β, we have:

F̃ (x1, pt) = F̃ (pt, x0) = 0 = F̃ (pt, x1) = F̃ (x0, pt)
F̃ (pt, x0) = F̃ (x0, pt) F̃ (pt, x1) = F̃ (x1, pt) .

By SEQ of reachability graphs,

φ(M)
α1+β1−−−−−→

˜N φ(M) + eff
˜N (α1 + β1)

tk−−→
˜N φ(M) + eff

˜N (α1 + β1 + tk) .

Thus, by (14), φ(M) + eff
˜N (α1 + β1 + tk) t

k

−−→
˜N φ(M) + eff

˜N (α1 + β1) ,
and so
φ(M)(pt) + eff

˜N (α1 + β1 + tk)(pt)
= φ(M)(pt) + eff

˜N (tk)(pt) + eff
˜N (α1 + β1)(pt)

= φ(M)(pt) + eff
˜N (tk)(pt) − F (pt, α1 + β1) + F (α1 + β1, pt)

= φ(M)(pt) + eff
˜N (tk, pt) − F (pt, α1 + β1) ≥ F̃ (pt, t

k) .

(16)

Reversing Steps in Petri Nets 189

We therefore have: M ′(pt) = M(pt) + eff
˜N (tk)(pt) − F̃ (pt, α1) +

F̃ (α0, pt) ≥by(16) F̃ (pt, t
k) + F̃ (pt, β1) + F̃ (α0, pt) = F̃ (pt, t

k) + F̃ (pt, β1) +
F̃ (pt, α0) = F̃ (pt, α) + F̃ (pt, β) = F̃ (pt, α + β) ,

yielding a contradiction with (15). Thus M ′ α+β−−−−→
˜N holds. By M ′ α+β−−−−→

˜N
and (B) we have:

M ′ + eff
˜N (α + β) = φ(M) + eff

˜N (α) + eff
˜N (α + β) = φ(M) + eff

˜N (β) .

We now conclude, by (14), (A), and (B), that STSmrev �φ◦ψ CRG
˜N .

Finally, if all the steps labelling the arcs of STS are sets, then we can con-
struct a new net Ñ ′, adding to Ñ a fresh set of places P ′ = {ptu | t ∈ T ∧u ∈ T},
where each ptu is such that M̃0(ptu) = 1 and has exactly the following connec-
tions F̃ (t, ptu) = F̃ (ptu, t) = F̃ (u, ptu) = F̃ (ptu, u) = 1 .

Such places ensure that each step enabled at a reachable marking of Ñ is a
subset of T or a subset of T . Moreover, the enabling of such steps is not affected
by adding P ′, so that in this case we get indeed STS rev � CRG

˜N ′ . �

Fig. 6. Net Nn,m with k = max(m, n) and m, n ≥ 1 (left), and the same net after
applying the construction from Theorem 3 (right).

Example 3. Figure 6 depicts a family Nn,m of pt-nets which satisfy the assump-
tions of the last theorem. We clearly have CRGNn,m

�� STSmrev , where STS is
the reachability graph of the net obtained from Nn,m by deleting a and b. How-
ever, the construction from the proof of Theorem 3 yields the pt-net CRG

˜Nn,m

satisfying CRG
˜Nn,m

� STSmrev .

7 Concluding Remarks

In this paper we conducted what is to the best of our knowledge the first study of
reversibility in the P/T-net model, when the step semantics, based on executing
steps (multisets) of actions rather than single actions is considered, thus cap-
turing real parallelism. In a quite more abstract setting, the (partial) reversal of
steps, thus generating mixed steps possibly containing both original and reversed
events, has been previously studied in [18], but now we are seeing here when and
how the reversal can be really done in a concrete operational framework, as Petri
Nets are.

190 D. F. Escrig et al.

Among the topics for future research we would single out an investigation
of the impact of allowing multiple reverses of a given action (splitting reverses).
Such an idea has already been applied in the case of sequential transition systems,
making some non-reversible transition system reversible.

Acknowledgement. This research was supported by Cost Action IC1405. The first
author was partially supported by the Spanish project TRACES (TIN2015-67522-C3-
3), and by Comunidad de Madrid as part of the program S2018/TCS-4339 (BLOQUES-
CM) co-funded by EIE Funds of the European Union.

References

1. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6_22

2. Barylska, K., Best, E., Erofeev, E., Mikulski, Ł., Piątkowski, M.: Conditions for
Petri net solvable binary words. ToPNoC 11, 137–159 (2016)

3. Barylska, K., Erofeev, E., Koutny, M., Mikulski, Ł., Piątkowski, M.: Reversing
transitions in bounded Petri nets. Fundamenta Informaticae 157, 341–357 (2018)

4. Barylska, K., Koutny, M., Mikulski, Ł., Piątkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

5. Cardelli, L., Laneve, C.: Reversible structures. In: Proceedings of CMSB 2011, pp.
131–140 (2011)

6. Cohen, M.E.: Systems for financial and electronic commerce, 3 September 2013.
US Patent 8,527,406

7. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

8. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452_31

9. Danos, V., Krivine, J., Sobocinski, P.: General reversibility. Electr. Notes Theor.
Comp. Sci. 175(3), 75–86 (2007)

10. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of
nets with step firing policies. Fundam. Inform. 94(3–4), 275–303 (2009)

11. de Frutos Escrig, D., Koutny, M., Mikulski, Ł.: An efficient characterization of
petri net solvable binary words. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 207–226. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4_11

12. Erofeev, E., Barylska, K., Mikulski, Ł., Piątkowski, M.: Generating all minimal
Petri net unsolvable binary words. In: Proceedings of PSC 2016, pp. 33–46 (2016)

13. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Report Series
1(8), 1–25 (1994)

14. Hujsa, T., Delosme, J.-M., Munier-Kordon, A.: On the reversibility of live equal-
conflict Petri nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS,
vol. 9115, pp. 234–253. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19488-2_12

15. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_33

https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-319-91268-4_11
https://doi.org/10.1007/978-3-319-91268-4_11
https://doi.org/10.1007/978-3-319-19488-2_12
https://doi.org/10.1007/978-3-319-19488-2_12
https://doi.org/10.1007/978-3-642-15375-4_33

Reversing Steps in Petri Nets 191

16. Özkan, H.A., Aybar, A.: A reversibility enforcement approach for Petri nets using
invariants. WSEAS Trans. Syst. 7, 672–681 (2008)

17. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Logical Algebraic
Program. 73(1–2), 70–96 (2007)

18. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Logical Algebraic Meth. Program. 84(6), 781–805 (2015)

19. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

20. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and
Applications. Wiley (2011)

https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4

On Interval Semantics of Inhibitor
and Activator Nets

Ryszard Janicki(B)

Department of Computing and Software, McMaster University,
Hamilton, Ontario L8S 4K1, Canada

janicki@mcmaster.ca

Abstract. An interval operational semantics - in a form of interval
sequences and step sequences - is introduced for elementary activator
nets, and a relationship between inhibitor and activator nets is discussed.
It is known that inhibitor and activator nets can simulate themselves for
both standard firing sequence semantics and firing step sequence seman-
tics. This paper shows that inhibitor and activator nets are not equivalent
with respect to interval sequence and interval step sequence semantics,
however, in some sense, they might be interpreted as equivalent with
respect to pure interval order operational semantics.

Keywords: Interval order · Inhibitor net · Activator net ·
Interval sequence · Operational semantics

1 Introduction

Inhibitor nets are Petri nets enriched with inhibitor arcs and activator nets
are Petri nets enriched with activator arcs. This paper deals with elementary
inhibitor nets and elementary activator nets.

Inhibitor arcs allow a transition to check for an absence of a token. They have
been introduced in [2] to solve a synchronization problem not expressible in clas-
sical Petri nets. In principle they allow ‘test for zero’, an operator the standard
Petri nets do not have (cf. [25]). Activator arcs (also called ‘read’, or ‘contextual’
arcs [3,24]), formally introduced in [16,24], are conceptually orthogonal to the
inhibitor arcs, they allow a transition to check for a presence of a token.

Elementary inhibitor nets [16], or just inhibitor nets in this paper, are very
simple. They are just classical elementary nets of [26,29], i.e. one-safe place-
transition nets without self-loops (cf. [7]), extended with inhibitor arcs. Nev-
ertheless they can easily express complex behaviours involving ‘not later than’
cases [3,16,20,21], priorities, various versions of simultaneities, etc. [14,18,31].

Similarly elementary nets with activator arcs [16] are just classical elementary
nets extended with activator arcs.

Partially supported by Discovery NSERC Grant of Canada.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 192–212, 2019.
https://doi.org/10.1007/978-3-030-21571-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_12

On Interval Semantics of Inhibitor and Activator Nets 193

However the expressiveness of elementary nets with inhibitor arcs is often
misunderstood and misinterpreted. While for most known models each elemen-
tary net with inhibitor arcs can always equivalently be represented by an appro-
priate elementary net with activator arcs [16,21], the activator arcs can not
always be simulated by self-loops. If only firing sequences, i.e. languages, gener-
ated by nets are concerned, then both inhibitor and activator elementary nets
can be represented by equivalent one-safe nets with self-loops. However this is
absolutely not true if simultaneous executions, for instance steps, are allowed
(cf. [3,16,31]).

It is widely believed that each elementary net with inhibitor arcs can always
equivalently be represented by an appropriate elementary net with activator
arcs. The idea is that an inhibitor arc which tests whether a place is empty,
can be simulated by an activator arc which tests whether its complement place
(cf. [29]) is not empty. While this is true for plain firing sequence semantics and
firing step sequence semantics (cf. [16,21]), it is absolutely false for interval order
operational semantics expressed for example in terms of interval sequences [18]
or ST-traces [30,31].

Usually an operational or observational semantics of concurrent systems
is defined pretty straightforward, either in terms of sequences (often also
called ‘traces’, cf. [11,23]), i.e., total orders, or step sequences, i.e., stratified
orders [3,16,21,31]. It has been known for long time that any execution that
can be observed by a single observer must be an interval order [15,31,32], so
the most precise operational semantics ought to be defined in terms of inter-
val orders. The interval orders do not have a natural sequential representation
(such a representation for total and stratified orders is respectively provided by
plain sequences and step sequences). To represent interval orders with sequences
one might use sequences of the beginnings and endings of events involved, or
sequences of appropriate maximal antichains [8,9,15]. The former approach
leads to the concept of ST-traces [30], that were used in [31] to define partial
semantics of activator nets, and interval sequences [19], that were used in [18]
to define interval order observational semantics for inhibitor nets. The latter
approach was used in the model of operational semantics proposed in [13,17].
When comparing operational semantics based on ST-traces with the one based
on interval sequences, it was pointed out in [18] that when interval operational
semantics is concerned, activator nets and inhibitor nets might not be equivalent,
however this issue was not elaborated.

In this paper we define interval operational semantics of activator nets by
using interval sequences to represent interval orders, in the same way as it was
done in [18] and in [17]. It is assumed that transitions have a beginning and an
end and a system state consists of a marking together with some transitions that
have started, but have not finished yet [13,18,30,31]. The sequences of begin-
nings and ends are represented by interval sequences, which generate appropriate
interval orders.

We will show that with respect to this semantic the activator nets are different
from inhibitor nets. For activator nets such semantics can be regarded as not

194 R. Janicki

sound (in a sense of [17]) and it is inconsistent with the step sequence semantics of
[15,20]. Moreover there are some sets of interval sequences that can be generated
by inhibitor nets but cannot by any activator net.

We will argue that operational semantics defined in terms of interval step
sequences might make sense and such semantics is introduced for activator nets.
Such semantics is still not sound but it is consistent with the step sequence
semantics of [15,20].

However, if we are only interested in interval orders generated by nets, not
their particular representations, inhibitor and activator nets can be considered
as equivalent.

Fig. 1. Examples of partial orders represented as Hasse diagrams (cf. [9]). Note that
order ≺1, being total, is uniquely represented by a sequence abcd, the stratified
order ≺2 is uniquely represented by a step sequence {a}{b, c}{d}, and the inter-
val order ≺3 is (not uniquely) represented by a sequence that represents �3, i.e.
b(a)e(a)b(b)b(c)e(b)b(d)e(c)e(d). The interval order ≺5 is built from enumerated events.

2 Partial Orders and Sequences

We first recall some concepts and results that will be used throughout the paper.

2.1 Partial Orders

A (strict) partial order is a pair po = (X,≺) such that X is a set and is ≺ an
irreflexive and transitive binary relation on X. Moreover,

– � is a binary incomparability relation comprising all pairs (a, b) of distinct
elements of X such that a �≺ b and b �≺ a.

– po is total if � is empty.
– po is stratified if � is transitive, i.e. � ∪ idX is an equivalence relation.
– po is interval if a ≺ c and b ≺ d implies a ≺ d or b ≺ c, for all a, b, c, d ∈ X.
– po is discrete if for all a, b ∈ X, both {c | a � c} and {c | a ≺ c ≺ b} are

finite.

On Interval Semantics of Inhibitor and Activator Nets 195

Clearly all finite partial orders are discrete. Figure 1 illustrates the above
definitions. We will often write ≺po and �po instead of ≺ and �, and also, if
X is known, we will just write ≺ instead of (X,≺).

For interval orders, the name and intuition follow from Fishburn’s Theo-
rem [8], which has two versions, the original one and that for discrete partial
orders. The original version is usually formulated as follows.

Theorem 1 ([8,9]). A countable partial order (X,≺) is interval if and only if
there is a total order (Y,�) and two mappings, b, e : X → Y , such that, for all
a, b ∈ X:

1. b(a) � e(a),
2. a ≺ b ⇐⇒ e(a) � b(b). 	
Usually, b(a) is interpreted as the ‘beginning’, and e(a) as the ‘end’, of interval a.

Note that the above formulation does not assume that either of the mappings
b and e is injective. The constructions from the (different) proofs provided in
[8,9] do not result in injective mappings. The original formulation of [8] assumes
that Y is the set of real numbers and � is just the total ordering of real numbers.

For discrete orders, a stronger version of Theorem 1 has been provided in [15].

Theorem 2 ([15]). A discrete partial order (X,≺) is interval if and only if
there is a discrete total order (Y,�) and two injective mappings, b, e : X → Y ,
such that, for all a, b ∈ X, we have b(X) ∩ e(Y) = ∅ and

1. b(a) � e(a),
2. a ≺ b ⇐⇒ e(a) � b(b). 	

Both versions will explicitly be used in this paper.

2.2 Sequences and Step Sequences

To build sequences we will use four kinds of basic elements: Σ = {a, b, . . . } are
events; ̂Σ = {ai | a ∈ Σ, i ≥ 1} are enumerated events; B = {Bα | α ∈ Σ ∪ ̂Σ}
are the beginnings of events; and E = {Eα | α ∈ Σ∪ ̂Σ} are the endings of events.
Moreover, ev(Bα) = ev(Eα) = α, BX = {Bα | α ∈ X}, EX = {Eα | α ∈ X},
and BE X = BX ∪ EX , for all α ∈ Σ ∪ ̂Σ and X ⊆ Σ ∪ ̂Σ. We will use various
finite sequences over these four sets of basic elements as well as finite sequences
of sets of the basic elements. Sequences of sets will be called ‘step sequences’.

For a sequence (step sequence) x = κ1 . . . κk, we assume the following:

– alph(x) is the set of all basic elements occurring in x, and we denote α ∈ x, for
every α ∈ alph(x). For example, alph(aba) = {a, b} and alph({a1, b1}{a2}) =
{a1, a2, b1}.

– ev(x) = ev(alph(x)), provided that x is over B ∪ E . For example,
ev(BaBbEa) = {a, b}.

196 R. Janicki

– x is singular if no basic element occurs in it more than once.
– if x is singular, then ord(x) is the partial order with the domain alph(x) and

such that α ≺ord(x) β if α precedes β in x. The order ord(x) is total if x
is a sequence, and the order ord(x) is stratified if x is a step sequence. For
example, a ≺ord(abc) c and a �ord({a,b}{c,d}) b.

– For a set A of basic elements, x ∩ A denotes the projection of x onto A,
which is obtained from x by erasing all the elements not belonging to A. For
example, eadbca ∩ {a, b} = aba and ab ∩ {c} = ε.

– If x is a sequence or step sequence over Σ, then its enumerated representa-
tion enum(x) is obtained from x by replacing each i-th occurrence of a by
ai. For example, enum(abbaba) = a1b1b2a1b3a2, enum({a, b}{a, b, c}{a, c}) =
{a1, b1}{a2, b2, c1}{a3, c2}.

– If x is a sequence or step sequence over BE Σ , then its enumerated represen-
tation enum(x) is obtained from x by replacing each i-th occurrence of Ba by
Bai , and each i-th occurrence of Ea by Eai . For example, enum(EaBbEa) =
Ea1Bb1Ea2 .

– For every sequence or step sequence x over Σ or BE Σ , enumord(x) is a
partial order defined as enumord(x) = ord(enum(x)). If x is a sequence then
enumord(x) is total and if x is a step sequence then enumord(x) is stratified.

2.3 Interval Sequences

Interval sequences, proposed and discussed in [18,19], are close to much older
ST-traces [30]. The substantial difference is that ST-traces were defined for Petri
nets, whereas interval sequences do not assume any system model.

Definition 3. A sequence x over BE Σ is interval if x ∩ BE {a} ∈ (BaEa)∗,
for every a ∈ Σ. A sequence x over BE

̂Σ is interval if x ∩ BE
̂{a} =

Ba1Ea1 . . . BakEak (k ≥ 0), for every a ∈ Σ. All interval sequences are denoted
by IntSeq (or IntSeq(BE Σ)). 	
For example, BaBbEbEaBaEa and Ba1Bb1Eb1Ea1Ba2Ea2 are interval sequence,
but BaBbEbEaEaBa and Ba1Bb1Eb1Ea2Ba2Ea1 are not.

If x is a singular interval sequence over BE Σ , then we have x ∩ {Ba, Ea} =
BaEa, for every a ∈ ev(x). All interval sequences over BE

̂Σ are singular, and
if x is an interval sequence over Σ, then enum(x) is an interval sequence over
BE

̂Σ .
A singular interval sequence x generates an interval order given by

intord(x) = (ev(x), {(α, β) | α, β ∈ ev(x) ∧ Eα ≺ord(x) Bβ}).

Also,
enumintord(x) = intord(enum(x))

is the enumerated interval order generated by an interval sequence x over BE Σ .

On Interval Semantics of Inhibitor and Activator Nets 197

For example, Fig. 1 depicts two interval orders generated in this way, po3 =
({a, b, c, d},≺3) = intord(BaEaBbBcEbBdEcEd) and po5 = ({a1, a2, a3, b1},
≺5) = enumintord(BaEaBaBbEaBaEbEa). In the latter case Σ = {a, b}.

We would like to point out that the interval sequence representation of inter-
val orders requires Theorem 2.

The interval sequences generating the same interval orders can be character-
ized similarly as Mazurkiewicz Traces are defined [22].

Let ∼ be a symmetric binary relation on sequences over BE such that z ∼ z′

if z and z′ can be decomposed as z = xττ ′w and z′ = xτ ′τw, for some τ, τ ′ ∈ B
or τ, τ ′ ∈ E . Moreover, let ≈ be an equivalence relation defined as the transitive
and reflexive closure of ∼. The equivalence class of ≈ containing z will be denoted
by [x]≈.

Proposition 4. [17] Let z be an interval sequence, w be an interval sequence
over BE Σ, and x be a singular interval sequence.

1. If z ∼ z′, then z′ is an interval sequence.
2. w ∼ w′ if and only if enum(w) ∼ enum(w′).
3. [x]≈ = {z ∈ IntSeq | intord(z) = intord(x)}.
4. [w]≈ = {z ∈ IntSeq | enumintord(z) = enumintord(w)}. 	

To simplify our notation, from now on we assume that
– for each sequence or step sequence z over Σ: enumord(z) = (alph(z),�z).
– for each interval sequence x over BE Σ : enumintord(x) = (ev(x),�x).

2.4 Sound Interval Sequence Operational Semantics

Let M be a model of concurrent system (i.e. Petri net, process algebra expres-
sions, some automaton, etc.) that allows to define its operational semantics in
terms of interval sequences, and issem(M) be the set of interval sequences that
describes the operational semantics of M . If M is for example an inhibitor net
of [18] or [13], or a safe net with arc-based conditions of [17] then issem(M) is
just a set of all interval firing sequences generated by such nets.

Since each interval sequence x uniquely defines an interval order
enumintord(x), we may define the interval order operational semantics

IOSEM(M) = {enumintord(x) | x ∈ issem(M)}.

The above definition looks as uncontroversial, however it is uncontroversial
only when it could be ensured that any interval sequence generating an interval
partial order in IOSEM(M) is a firing interval sequence from issem(M); in other
words, that the following holds:

{z ∈ IntSeq | enumintord(z) ∈ IOSEM(M)} = issem(M),

198 R. Janicki

or, equivalently:
⋃

x∈issem(M)

[x]≈ = issem(M).

The models satisfying the above equations will be said to have a sound interval
sequence operational semantics.

If an interval sequence operational semantics of M is not sound, issem(M)
may still be valid concept, but we have to use IOSEM(M) very carefully, as it
may not be a valid construction.

3 Inhibitor and Activator Petri Nets

An inhibitor net is a tuple IN = (P, T, F, I,m0), where P is a set of places, T
is a set of transitions, P and T are disjoint, F ⊆ (P × T) ∪ (T × P) is a flow
relation, I ⊆ P × T is a set of inhibitor arcs, and m0 ⊆ P is the initial marking.
An inhibitor arc (p, e) ∈ I means that e can be enabled only if p is not marked.
In diagrams (p, e) is indicated by an edge with a small circle at the end. Any set
of places m ⊆ P is called a marking.

Similarly, and activator net is a tuple AN = (P, T, F,A,m0), where
P, T, F,m0 are as for IA, and A ⊆ P × T is a set of activator arcs. An acti-
vator arc (p, e) ∈ I means that e can be enabled only if p is marked. In diagrams
(p, e) is indicated by an edge with a small bullet at the end.

In both cases, the quadruple (P, T, F,m0) is just a plain elementary net
[26,29].

For every x ∈ P ∪ T , the set •x = {y | (y, x) ∈ F} denotes the input nodes
of x and the set x• = {y | (x, y) ∈ F} denotes the output nodes of x. The
set x◦ = {y | (x, y) ∈ I ∪ I−1} is the set of nodes connected by an inhibitor
arc to x, while x� = {y | (x, y) ∈ A ∪ A−1} is the set of nodes connected
by an activator arc to x. The dot-notation extends to sets in the natural way,
e.g. the set X• comprises all outputs of the nodes in X, and similarly for ‘◦’
and ‘�’. We assume that for every t ∈ T , both •t and t• are non-empty and
disjoint. These requirements do not always appear in the literature, but following
[26,29] we use them for two reasons. Firstly because they are quite natural, and
secondly because they allow us to avoid many unnecessary technicalities (cf.
[29]). Additionally, both of •t and t• must have an empty intersection with t◦

(or t�). Figure 3 shows two examples of elementary inhibitor nets, N and N1.
The classical firing sequence semantics for an inhibitor net IN = (P, T,

F, I,m0) is defined as follows:

– A transition t is enabled at marking m if •t ⊆ m and (t• ∪ t◦) ∩ m = ∅.
– An enabled t can occur leading to a new marking m′ = (m \ •t) ∪ t•, which is

denoted by m[t〉m′, or m[t〉INm′.

On Interval Semantics of Inhibitor and Activator Nets 199

– A firing sequence from marking m to marking m′ is a sequence of transitions
t1 . . . tk (k ≥ 0) for which there are markings m = m0, . . . ,mk = m′ such
that mi−1[ti〉mi, for every 1 ≤ i ≤ k. This is denoted by m[t1 . . . tk〉m′ and
t1 . . . tk ∈ FSIN (m � m′).

Similarly we can define firing step sequence semantics as follows:

– A set A ⊆ T is a step if for all distinct t, r ∈ A, we have (t•∪•t)∩(r•∪•r) = ∅.
– A step A is enabled at marking m if •A ⊆ m and (A• ∪ A◦) ∩ m = ∅.
– An enabled A can occur leading to a new marking m′ = (m \ •A)∪A•, which

is denoted by m[A〉m′, or m[A〉INm′.
– A firing step sequence from marking m to marking m′ is a sequence of tran-

sitions A1 . . . Ak (k ≥ 0) for which there are markings m = m0, . . . ,mk = m′

such that mi−1[Ai〉mi, for every 1 ≤ i ≤ k.
This is denoted by m[A1 . . . Ak〉m′ and A1 . . . Ak ∈ FSSIN (m � m′).

– The set of stratified orders leading from marking m to marking m′ is defined
as SOIN (m � m′) = {enumord(x) | x ∈ FSSIN (m � m′)}.

The firing sequence semantics and firing step sequence semantics for an acti-
vator net AN = (P, T, F,A,m0) are defined in almost identical way, the only
differences are:

– a transition t is enabled at marking m if •t ∪ t� ⊆ m and t• ∩ m = ∅; and
– a step A is enabled at marking m if •A ∪ A� ⊆ m and A• ∩ m = ∅.

Relationships between inhibitor nets and activator nets are often presented in
terms of complementary places [16,20].

We say that places p, q ∈ P are complementary [4,10] (p is a complement
of q and vice versa) if p �= q, •p = q• and p• = •q, and |m0 ∩ {p, q}| = 1. If p

and q are complementary, we will write p = q̃, q = p̃, and clearly p = ˜p̃, q = ˜q̃.
We may assume that every inhibitor (activator) place has its complement, i.e.
(p, t) ∈ I =⇒ p̃ ∈ P ((p, t) ∈ A =⇒ p̃ ∈ P). If it does not, we can always add
it, as it does not change the net behaviour (cf. [10,16,20,26]). The elementary
inhibitor (activator) nets with this property are called complement closed.

We may always assume that an inhibitor (activator) net IN is complement
closed, if not we can replace it by INC, constructed as shown in Fig. 2, which
has the same behavioural properties as IN . Similarly for activator nets, so the
words ‘complement closed’ will be omitted.

An inhibitor net IN = (P, T, F, I,m0) and an activator net AN =

(P, T, F,A,m0) are complement equivalent, written IN
cpl≡ AN , if A = {(p, t) |

(p̃, t) ∈ I}.

For example the nets INC and AIN from Fig. 2 are complement equivalent,

i.e. INC
cpl≡ AIN .

The following result states that, as far as firing sequences and firing step
sequences are concerned, each elementary net with an inhibitor arc can be sim-
ulated by an appropriate elementary net with activator arcs and vice versa.

200 R. Janicki

Proposition 5 ([16,21]). Let IN = (P, T, F, I,m0) be an inhibitor net, and

let AN = (P, T, F,A,m0) be an activator net such that IN
cpl≡ AN . For each

m,m′ ⊆ P , t ∈ T and A ⊆ T , we have:

1. m[t〉INm′ ⇐⇒ m[t〉ANm′,
2. m[A〉INm′ ⇐⇒ m[A〉ANm′. 	

In principle, Proposition 5 states that if IN
cpl≡ AN then IN and AN can be

considered as bisimilar [23] with respect to both firing sequence and step firing
sequence. Moreover, directly from Proposition 5 we can get the following result.

Proposition 6. When an inhibitor net IN and an activator net AN satisfy

IN
cpl≡ AN , then for each m,m′ ⊆ P :

1. FSIN (m � m′) = FSAN (m � m′), and
2. FSSIN (m � m′) = FSSAN (m � m′). 	

We would like to point out that despite Propositions 5 and 6, not all related
properties of inhibitor and activator nets are always the same. For example the
absence of a token, unlike the presence of a token, may not be tested in some
circumstances [16,20].

Fig. 2. The net IN is an inhibitor net but it is not complement closed. Adding the
place s̃3 makes it complement closed and transforms it into the net INC. The net
AIN was derived from INC by replacing the inhibitor arc (s3, c) with the activator
arc (s̃3, c) (see Proposition 5). All three nets generate exactly the same set of firing
sequences and firing step sequences (but not interval firing sequences!).

4 Interval Sequence Semantics of Inhibitor Nets

If transitions have a beginning and an end, one cannot adequately describe a
system state by a marking alone. We need marking plus some transitions that
have started, but have not finished yet. One way of describing such system state

On Interval Semantics of Inhibitor and Activator Nets 201

is the concept of ST-marking, proposed in [30] and explored among others in [31].
Another, slightly simpler for elementary inhibitor nets, way is to use the model
recently proposed in [18]. The idea of this approach is briefly illustrated in Fig. 3.
If inhibitor arcs are not involved, to represent transitions by their beginnings and
ends we might just replace each transition t by the net Bt Et

�� �t , as
proposed for example in [5] for nets with priorities or in [33] for timed Petri nets.
Each inhibitor arc must be replaced by two when transformation is made and
this construction is explained in detail in [18]1. Within this model, the interval
order semantics of the inhibitor net IN in Fig. 3 is fully represented by the
firing sequence semantics of the inhibitor net IN1. Assuming that we can ‘hold
a token’ in transitions and holding a token in c overlap with holding tokens in
a and b, the net IN can generate the interval order ≺int

IN , which is represented
for example by an interval sequence BaBcEaBbEbEc which is a firing sequence
of the net IN1.

Fig. 3. Interval orders semantics of an inhibitor net. All runs are assumed to start from
{s1, s2} and end at {s4, s5}. The stratified order ≺strat

¬IN is not generated by neither IN
nor IN1.

The interval firing semantics of an inhibitor net IN = (P, T, F, I,m0) is
defined as follows:

– BE T are BE -transitions. Intuitively, Ba and Ea are the ‘beginning’ and ‘end’
of execution of a.

1 When the inhibitor arc (b, Bc) is removed from the net IN1 of Fig. 3, the inter-
val sequence BaEaBbBcEbEc is a proper firing sequence of this new N1 and
�BaEaBbBcEbEc=≺strat

¬IN , but the stratified order ≺strat
¬IN is not expected to be a

behaviour generated by the net IN . See [18] for details.

202 R. Janicki

– We say that a set m ⊆ P ∪T is an extended marking if: m∩ (•m∪m•) = ∅.
Intuitively, a ∈ m means that transition a ∈ T is being executed in the system
state represented by m.

– For each a ∈ T we define:
•Ba = •a, B•

a = {a},
•Ea = {a}, E•

a = a•,
B◦

a = a◦ ∪ (a◦)•, E◦
a = ∅.

– A BE -transition τ ∈ BE T is enabled at extended marking m ⊆ P ∪ T if
•τ ⊆ m and (τ• ∪ τ◦) ∩ m = ∅.

– A BE -transition τ enabled at m can occur leading to a new extended marking

m′ = (m \ •τ) ∪ τ•,

which is denoted by: m[[τ〉〉m′.
– A firing interval sequence from extended marking m to extended marking m′

is a sequence of BE -transitions τ1 . . . τk (k ≥ 0) for which there are extended
markings m = m0, . . . ,mk = m′ such that mi−1[[τi〉〉mi, for every 1 ≤ i ≤ k.
This is denoted by m[[τ1 . . . τk〉〉m′ and τ1 . . . τk ∈ FISIN (m � m′).

– An extended marking m is reachable if FISIN (m0 � m) �= ∅.
– A set of interval orders leading from extended marking m to extended marking

m′ is given by

IOIN (m � m′) = {enumintord(x) | x ∈ FISIN (m � m′)}.

It is not immediately obvious that the definition of FISIN (m � m′) is even
valid, as this requires to show that each element of FISIN (m � m′) is an inter-
val sequence. Moreover all total order representations of a given interval order
are considered equivalent and none is preferred, hence, to have interval firing
sequences consistent with interval orders they represent, if x ∈ FISIN (m � m′),
then intord(x) = intord(y) should imply y ∈ FISIN (m � m′). In Sect. 2.4, the
latter property is called ‘soundness’.

The following two results from [18] show that both two above properties are
satisfied.

Proposition 7. ([18]). For all markings m,m′ ⊆ P , we have:

1. FISIN (m � m′) ⊆ IntSeq(BE ∗),
2. {x ∈ IntSeq | enumintord(x) ∈ IOIN (m � m′)} ⊆ FISIN (m � m′). 	

Moreover the interval sequence semantics and the step sequence semantics
are consistent for inhibitor nets.

Proposition 8. ([18]). For all markings m,m′ ⊆ P :

SOIN (m � m′) = IOIN (m � m′) ∩ STRAT,

where STRAT is the set of all finite stratified orders. 	
Unfortunately, for activator nets the situation is entirely different.

On Interval Semantics of Inhibitor and Activator Nets 203

5 Interval Sequence Semantics of Activator Nets

One of the simplest possible activator nets is the net AN0 presented below. Its
standard transformation into inhibitor net, after some natural simplifications,
results in the net IN0, and interval sequence semantics of IN0 is represented by
firing sequence semantics of ̂IN0.

s1

s3

s2

s4

a b

(AN0)

s1

s3

s2

s4

a b

(IN0)

s1

a

s2

b

s3 s4

Ba Bb

Ea Eb

(̂IN0)

Assume m = {s3, s4}. Clearly FSAN0(m0 � m) = FSIN0(m0 � m) =
{ba}, FSSAN0(m0 � m) = FSSIN0(m0 � m) = {{b}{a}, {a, b}}, and
FISIN0(m0 � m) = FS

̂IN0
(m0 � m) = {BbEbBaEa, BaBbEaEb, BaBbEbEa,

BbBaEaEb, BbBaEbEa}. We also have �BaBbEaEb
=�BaBbEbEa

=�BbBaEaEb
=

�BbBaEbEa
, and IOIN1(m0 � m) = {�BbEbBaEa

,�BaBbEaEb
}, where

b

a
�BbEbBaEa=

ba
�BaBbEaEb=

The standard transformation of inhibitor nets into activator ones applied to
̂IN0 results in the net ̂AIN0 below (which is clearly different from ̂AN0):

s1

a

s2

b

s3 s4

s̃3

Ba Bb

Ea Eb

̂AIN0 =

s1

a

s2

b

s3 s4

Ba Bb

Ea Eb

̂AN0 =

Of course we have FISIN0(m0 � m) = FS
̂IN0

(m0 � m) = FS
̂AIN0

(m0 � m),
but can we really claim FISAN0(m0 � m) = FS

̂AIN0
(m0 � m), no matter how

FISAN0(m
′ � m′′) is defined? The problematic interval sequences are BaBbEaEb

and BaBbEbEa, or, more precisely, their common prefix BaBb.

204 R. Janicki

Consider ‘holding a token’ process for the net IN0. One may start execution
of a, hold a token in a and start b when still holding a token in a. It is possible
since b can start its execution until the token is placed in s3. In the net ̂IN0

holding a token in a, or executing a, is modeled by having a token in the place
a and Bb can be fired unless there is a token in s3, so firing interval sequences
may start from the sequence BaBb.

Now consider ‘holding a token’ process for the net AN0. Intuitively starting
an execution of a should remove the token from s1, so b cannot start when the
token is held in a! Hence any interval sequence that start with BaBb is not a
proper model of any execution of the net AN0. The opposite case, starting with b,
and beginning execution of a when holding a token in b is unproblematic, so some
executions may start with BbBa. Such a behaviour is rightly modeled by the net
̂AN0 where we have FS

̂AN0
(m0 � m) = {BbEbBaEa, BbBaEaEb, BbBaEbEa} �

FS
̂AIN0

(m0 � m).
This means that the adequate interval sequence semantics of the activator

net AN0 is rather given by the plain firing sequence semantics of ̂AN0. There-
fore we have to define the interval sequence semantics for activator nets in such
a way that FISAN0(m0 � m) = FS

̂AN0
(m0 � m). However, in such a case we

have FISAN0(m0 � m) � FISIN0(m0 � m). We can define IOAN (m � m′)
for activator nets in the same fashion as for inhibitor nets, and then we have
IOAN0(m0 � m) = {enumintord(x) | x ∈ FISAN0(m � m′)} = {�BbEbBaEa

,
�BbBaEaEb

}. But this means that IOAN0(m0 � m) = IOIN0(m0 � m), despite
the fact that FISAN0(m0 � m) �= FISIN0(m0 � m), so such semantics is def-
initely not sound in the sense of Sect. 2.4. We will discuss this issue in detail
later.

The case orthogonal to the net AN0 is the net AN1 presented below. Its
standard transformation into inhibitor net, after some natural simplifications,
results in the net IN1, and interval sequence semantics of IN1 is represented by
firing sequence semantics of ̂IN1.

s1

s3

s2

s4

a b

(AN1)

s1

s3

s2

s4

a b

(IN1)

s1

a

s2

b

s3 s4

Ba Bb

Ea Eb

(̂IN1)

Again assume m = {s3, s4}. Clearly FSAN1(m0 � m) = FSIN1(m0 � m) =
{ab}, FSSAN1(m0 � m) = FSSIN1(m0 � m) = {{a}{b}}, and FISIN1(m0 �
m) = FS

̂IN1
(m0 � m) = {BaEaBbEb}.

On Interval Semantics of Inhibitor and Activator Nets 205

The standard transformation of inhibitor nets into activator ones applied to
̂IN1 results in the net ̂AIN1 below, which could easily be simplified to the more
natural net ̂AN1 on the right.

s1

a

s2

b

s3 s4

s̃1

ã

Ba Bb

Ea Eb

̂AIN1 =

s1

a

s2

b

s3 s4

Ba Bb

Ea Eb

̂AN1 =

This case is not problematic as we have FISIN1(m0 � m) = FS
̂IN1

(m0 �
m) = FS

̂AIN1
(m0 � m) = FS

̂AN1
(m0 � m) = {BaEaBbEb}. We can then

consider the firing sequence semantics of ̂AN1 as the interval order semantics of
AN1, i.e. to assume FISAN1(m0 � m) = FS

̂AN1
(m0 � m).

We can now define formally an interval sequence semantics of activator nets.
Let AN = (P, T, F,A,m0) be an activator net. We define its interval sequence
semantics by repeating the definition of interval sequence semantics for inhibitor
nets with replacing the rules involving inhibitor arcs by:

– For each a ∈ T we define: B�
a = a� and E�

a = ∅.
– A BE -transition τ ∈ BE T is enabled at extended marking m ⊆ P ∪ T if

•τ ∪ τ� ⊆ m and τ• ∩ m = ∅.

We will show that an equivalent of Proposition 7(1) also holds for activator
nets, so interval firing sequence semantics is valid.

Proposition 9. For all markings m,m′ ⊆ P , we have: FISAN (m � m′) ⊆
IntSeq(BE ∗).

Proof. It suffice to show that if m[[x〉〉m′, then x ∈ IntSeq(BE ∗), i.e. for each
a ∈ T , x∩BE {a} ∈ (BaEa)∗. Let x = x1Bax2 and m[[x1Ba〉〉m′′. Since B•

a = {a},
a ∈ m′′. We also have: for any ma ⊆ P ∪ T , if a ∈ ma, then Ba is not enabled in
ma, so the only way to remove a from ma is to fire Ea (as •Ea = {a}). Hence
we must have x = x1BayEaz where y ∩ BE {a} = ε. ��

However an equivalent of Proposition 7(2) may not hold. Consider the net
AN0 discussed above. We have IOAN0(m0 � m) = {�BbEbBaEa

,�BbBaEaEb
}, so

{x ∈ IntSeq | enumintord(x) ∈ IOAN0(m0 � m)} = {BbEbBaEa, BaBbEaEb,
BaBbEbEa, BbBaEaEb, BbBaEbEa}, and FISAN0(m0 � m) = {BbEbBaEa,
BbBaEaEb, BbBaEbEa}, so an equivalent of Proposition 7(2) does not hold for
the activator net AN0.

206 R. Janicki

Moreover we have:

Corollary 10. An activator net AN = (P, T,A,m0) such that

FISAN (m0 � m) = {BbEbBaEa, BaBbEaEb, BaBbEbEa, BbBaEaEb, BbBaEbEa},
for some m ⊆ P , does not exist.

Proof. By inspection as we may restrict our search to the nets with
T = {a, b}. ��

An interval sequence semantics of activator nets, as defined above, is not
consistent with their step sequence semantics. Consider the nets presented below.

s1

s3

s2

s4

a b

s1

s3

s2

s4

a b

s1

a

s2

b

s3 s4

Ba

Ea

Bb

Eb

s1

a

s2

b

s3 s4

Ba

Ea

Bb

Eb

(AN2) (IN2) (̂AN2) (̂IN2)

Assume m = {s3, s4}. We have FSSAN2(m0 � m) = FSSIN2(m0 � m) =
{{a, b}}, FISIN2(m0 � m) = {BaBbEaEb, BbBaEaEb, BaBbEbEa, BbBaEbEa},
but FISAN2(m0 � m) = ∅. Hence SOAN2(m0 � m) = SOIN2(m0 � m) =
{�{a,b}}, IOIN2(m0 � m) = {�BaBbEaEb

}, where �{a,b} =�BaBbEaEb
= a � b,

but IOAN2(m0 � m) = ∅, so SOAN2(m0 � m) �= IOAN2(m0 � m) ∩ STRAT.
This means an equivalent of Proposition 8 does not hold, i.e. the step sequence

semantics of activator nets and the interval sequence semantics of activator nets
described above are not consistent.

However, standard firing sequence semantics and and interval sequence
semantics are consistent.

Lemma 11. For every two m,m′ ⊆ P , then for each t ∈ T ,

m[t〉m′ ⇐⇒ m[[BtEt〉〉m′.

Proof. Since •Bt = •t, B�
t = t�, and •t ∪ t� ⊆ m, t is enabled at m if and only

if Bt is enabled at m.
(⇒) If m[t〉m′ then m′ = (m \ •t) ∪ t•. Let m[[Bt〉〉mB , i.e. mB = (m \ •Bt) ∪
B•

t = (m \ •t) ∪ {t}. Hence Et is enabled at mB . Let mB [[Et〉〉mE , i.e. mE =
(mB \ •Et) ∪ E•

t = (((m \ •t) ∪ {t}) \ {t}) ∪ t• = (m \ •t) ∪ t• = m′. Hence
m[[Bt〉〉mB [[Et〉〉m′, i.e. m[[BtEt〉〉m′.
(⇐) If m[[BtEt〉〉m′ then by the same reasoning as in the proof of (⇒) we can
show that m′ = (m \ •t) ∪ t•. Hence m[t〉m′. ��

In case of activator nets, to get an interval semantics consistent with step
sequence semantics one needs to introduce and use interval step sequences.

On Interval Semantics of Inhibitor and Activator Nets 207

6 Interval Step Sequence Semantics of Activator Nets

When considering instantaneous (or zero time) events we often have to decide if
simultaneous execution of them has to be taken into account. It is often assumed
that the simultaneous execution of instantaneous events is not allowed or it is
irrelevant. Validity of such assumption depends in part on the model of time
that is used.

If we assume standard continues real time, then from the time-energy uncer-
tainty relations (cf. [6,12,27])

ΔtΔE ≥ �

2π
,

where t denotes time, E denotes energy and � is Planck’s constant, we must
conclude that simultaneous execution of instantaneous events is unobservable
as it would require infinite energy (Δt = 0). For discrete time, often assumed
in computation theory, we have Δt > 0 so the assumption that we can observe
simultaneity of instantaneous events might be valid. However, if interval sequence
operational semantics (or its equivalent) is sound, i.e.

{z ∈ IntSeq | enumintord(z) ∈ IOSEM(M)} = issem(M),

then simultaneous execution of instantaneous events is irrelevant as each step
{Ba, Bb} is equivalently represented by sequences BaBb and BbBa, each step
{Ea, Eb} is equivalently represented by sequences EaEb and EbEa, and each step
{Ba, Eb} is equivalently represented by the sequence BaEb; and all these rules
can easily be extended to bigger steps. Hence, in terms of interval orders, interval
sequence semantics and interval step sequence semantics would be equivalent,
so why use the more complex one?

The situation is much different when interval sequence operational semantics
is not sound, as for instance the one defined in this paper for activator nets. In
such cases some kind of interval step sequence semantics might be very useful.

Definition 12. A step sequence x overBE Σ is interval if x∩BE {a} ∈ (BaEa)∗,
for every a ∈ Σ. A step sequence x over BE

̂Σ is interval if x ∩ BE
̂{a} =

Ba1Ea1 . . . BakEak (k ≥ 0), for every a ∈ Σ. All interval step sequences are
denoted by IntStSeq (or IntStSeq(BE Σ)). 	

Similarly as for interval sequences, a singular interval step sequence x gener-
ates an interval order given by

intord(x) = (ev(x), {(α, β) | α, β ∈ ev(x) ∧ Eα ≺ord(x) Bβ}).

Also,
enumintord(x) = intord(enum(x))

is the enumerated interval order generated by an interval step sequence x over
BE Σ .

208 R. Janicki

In this case we use Theorem 1 to justify the interval step sequence represen-
tation of interval orders.

Let AN = (P, T, F,A,m0) be an activator net. We define its interval step
sequence semantics almost exactly in the same way as we defined its interval
sequence semantics. The only (natural) differences are the following:

– A set A ⊆ BE T is a step if for all distinct τ1, τ2 ∈ A, we have
(τ•

1 ∪ •τ1) ∩ (τ•
2 ∪ •τ2) = ∅.

– a step A ⊆ BE T is enabled at extended marking m ⊆ P ∪ T if •A ∪ A� ⊆ m
and A• ∩ m = ∅.

– An enabled A can occur leading to a new marking m′ = (m \ •A)∪A•, which
is denoted by m[[A〉〉m′, or m[[A〉〉ANm′.

– The set of interval step sequences leading from marking m to m′ is denoted by
FISSAN (m0 � m), and the set of interval orders leading from marking m to
m′ is defined as IOSAN (m � m′) = {enumintord(x) | x ∈ FISSAN (m � m′)}.

Interval step sequence semantics can be defined for the inhibitor nets as well
in an almost identical manner. However Proposition 7(2) makes its redundant
as it can be simulated in full by plain interval sequence semantics2.

For our net AN2, with m = {s3, s4}, we have FISSAN2(m0 � m) =
FSS

̂AN2
(m0 � m), i.e. FISSAN2(m0 � m) = {{Ba, Bb}{Ea, Eb}, {Ba, Bb}{Ea}

{Eb}, {Ba, Bb}{Eb}{Ea}}. Hence, SOAN2(m0 � m) = {�{a,b}}, IOSAN2(m0 �
m) = {�{Ba,Bb}{Ea,Eb}}, where �{a,b} =�{Ba,Bb}{Ea,Eb

} = a � b, so
SOAN2(m0 � m) = IOSAN2(m0 � m).

We will show that this relationship is also true in general, but first we prove
an equivalent of Proposition 9.

Proposition 13.
For all markings m,m′ ⊆ P , we have: FISSAN (m � m′) ⊆ IntStSeq(BE ∗).

Proof. It suffice to show that if m[[x〉〉m′, then x ∈ IntStSeq(BE ∗), i.e. for each
a ∈ T , x ∩ BE {a} ∈ (BaEa)∗. Let x = x1Ax2, Ba ∈ A and m[[x1A〉〉m′′. Since
B•

a = {a}, a ∈ m′′. We also have: for any ma ⊆ P ∪ T , if a ∈ ma and Ba ∈ A′,
then A′ is not enabled in ma, so the only way to remove a from ma is to fire
A′′ containing Ea (as •Ea = {a}). Hence we must have x = x1A

′yA′′z where
Ba ∈ A′, Ea ∈ A′′ and y ∩ BE {a} = ε. ��

Hence interval step sequence semantics, we have proposed, is valid.
However an equivalent of Proposition 7(2) still may not hold for interval
step sequence semantics of activator nets. Consider the net AN2 discussed
above. We have IOAN2(m0 � m) = {�{Ba,Bb}{Ea,Eb}}, so for example
the interval step sequence {Bb}{Eb}{Ba}{Ea} belongs to {x ∈ IntStSeq |
enumintord(x) ∈ IOAN2(m0 � m)}. However FISSAN2(m0 � m) = {{Ba, Bb}
2 It can easily be shown that m[[{Ba1 , . . . , Bak}〉〉INm′ ⇐⇒ m[[Bai1

〉〉IN . . .
[[Baik

〉〉INm′ for any permutation l1, . . . , lk of 1, . . . , k, which is not true for [[...〉〉AN .

On Interval Semantics of Inhibitor and Activator Nets 209

{Ea, Eb}, {Ba, Bb}{Ea}{Eb}, {Ba, Bb}{Eb}{Ea}}, i.e. {Bb}{Eb}{Ba}{Ea} /∈
FISSAN2(m0 � m). Hence an equivalent of Proposition 7(2) does not hold for
the activator net AN2 and interval step sequence semantics, so this semantics is
also not sound in the sense of Sect. 2.4.

For every step A ⊆ T , let BA = {Ba | a ∈ A} and EA = {Ea | a ∈ A}. We
may now formulate and prove the result corresponding to Lemma 11 for interval
firing sequences.

Lemma 14. For every two markings m,m′ ⊆ P and every step A ⊆ T ,

m[A〉m′ ⇐⇒ m[[BAEA〉〉m′).

Proof. Since A is a step then for all t, r ∈ A we have (t• ∪ •t) ∩ (r• ∪ •r) = ∅,
which also means (E•

t ∪ •Bt) ∩ (E•
r ∪ •Br) = ∅. Since •BA = •A, B�

A = A�, and
•A ∪ A� ⊆ m, A is enabled at m if and only if BA is enabled at m.
(⇒) If m[A〉m′ then m′ = (m\•A)∪A•. Let m[[BA〉〉mB , i.e. mB = (m\•BA)∪
B•

A = (m \ •A) ∪ A. Hence EA is enabled at mB . Let mB [[EA〉〉mE , i.e.
mE = (mB \ •EA) ∪ E•

A = (((m \ •A) ∪ A) \ A) ∪ A• = (m \ •A) ∪ A• = m′.
Hence m[[BA〉〉mB [[EA〉〉m′, i.e. m[[BAEA〉〉m′.
(⇐) If m[[BAEA〉〉m′ then by the same reasoning as in the proof of (⇒) we can
show that m′ = (m \ •A) ∪ A•. Hence m[A〉m′. ��

We can now show that the interval step sequence semantics and the step
sequence semantics are consistent for activator nets.

Proposition 15. For all markings m,m′ ⊆ P :

SOAN (m � m′) = IOSAN (m � m′) ∩ STRAT,

where STRAT is the set of all finite stratified orders.

Proof. Directly from Lemma 14. ��
However, if we are interested in interval orders only, not a way they are

generated, then inhibitor nets and activator nets can be regarded as equivalent.

Proposition 16. When an inhibitor net IN and an activator net AN satisfy

IN
cpl≡ AN , then for each m,m′ ⊆ P :

IOIN (m � m′) = IOSAN (m � m′).

Proof. (sketch) Assume IN = (PIN , TIN , F, I,m0) and AN = (PAN , TAN , F, I,
m0). Of course PIN = PAN and TIN = TAN but such distiction will make our
proof easier to formulate. Additionally, suppose that m[[{Ea1 , . . . , Eak

}〉〉ANm′,
for m,m′ ⊆ PAN ∪ TAN . Then for any permutation i1, . . . , ik of 1, . . . , k we
clearly have m[[{Eai1

}〉〉AN . . . [[{Eaik
}〉〉ANm′, and vice versa.

210 R. Janicki

(⇒) Suppose that we have m[[Ba1〉〉IN . . . [[Bak
〉〉INm′[[Ea〉〉INm′′ for some

m,m′,m′′ ⊆ PIN ∪ TIN . Define A = {a1, . . . , ak}. Hence we have A ∪ {a} ⊆ m′,
•BA ⊆ m, (B•

A ∪ B◦
A) ∩ m = ∅, m′ = (m \ •BA) ∪ B•

A and m′′ = (m′ \ {a}) ∪ a•.

Since IN
cpl≡ AN then we also have •BA∪B�

A ⊆ m. Hence m[[BA〉〉ANm′[[Ea〉〉m′′.
From this it follows IOIN (m � m′) ⊆ IOSAN (m � m′).
(⇐) Suppose we have m[[BA〉〉ANm′[[Ea〉〉ANm′′ for some m,m′,m′′ ⊆ PAN ∪
TAN and A = {a1, . . . , ak} ⊆ TAN . Hence we have A∪{a} ⊆ m′, •BA ∪B�

Z ⊆ m,
B•

A ∩ m = ∅, m′ = (m \ •BA) ∪ B•
A and m′′ = (m′ \ {a}) ∪ a•. Let ai1 , . . . , aik

be any permutation of the elements of A. From Proposition 7(2) we conclude
that m[[Bai1

〉〉IN . . . [[Baik
〉〉INm′[[Ea〉〉INm′′, which implies IOSAN (m � m′) ⊆

IOIN (m � m′). ��
As the nets IN2 and AN2 indicate we cannot replace IOSAN (m � m′) with

IOAN (m � m′) in Proposition 16. We might say (up to a few behaviour preserv-

ing simplifications) that IN2
cpl≡ AN2, but IOIN2(m0 � {s3, s4}) = IOSAN2(m0 �

{s3, s4}) = {�{a,b}} while IOAN2(m0 � {s3, s4}) = ∅.

7 Final Comments

Two interval order type semantics have been proposed for elementary activator
nets, one uses interval sequences and Theorem 2 and another uses interval step
sequences and original Fishburn result, i.e. Theorem 1. Both semantics were
analyzed compared with interval sequence semantics of inhibitor nets as proposed
in [18] and with classical step sequence semantics of [16,20]. We have shown
that for both the interval sequence and the interval step sequence semantics are
not sound in the sense of [17,18], and that the interval sequence semantics of
activator nets is inconsistent with its traditional step sequence semantics. On
the other hand, the interval sequence semantics of inhibitor nets is sound and
consistent with their step semantics as shown in [18].

To show that there is a kind of interval semantics for activator nets that is
consistent with its step sequence semantics we have introduced the concept of
interval step sequences. Because the intervals sequence semantics of inhibitor
nets is sound, interval step sequences are redundant and irrelevant for inhibitor
nets, however for activator nets the interval step sequence semantics is richer
than interval sequence semantics and it is consistent with the step sequence
semantics.

We have also shown that inhibitor nets can produce sets of firing sequences
that cannot be produced by any activator net. Despite all of this, when we con-
centrate on interval orders only and abstract away intervals that generate them,
inhibitor and activator nets might be treated as equivalent (cf. Proposition 16).

The results of this paper emphasize the difference between interval semantics,
as in [1,28], and interval order semantics, as in [13,18,30,31]. Interval orders are
partial orders so for different a and b we have either a ≺ b or a � b, i.e. only
two possible relationships; while for two intervals a and b, we might have up to
seven relationships: a before b, a equal b, a meets b, a overlaps b, a during b,

On Interval Semantics of Inhibitor and Activator Nets 211

a starts b and a finishes b (cf. [1]). Interval order semantics is usually simpler,
but not necessarily equivalent to interval semantics.

When a model of concurrent system M is sound as defined in Sect. 2.4, then
interval orders are a good abstractions of appropriate intervals; and interval
order semantics and interval semantics might be considered as equivalent. When
M is not sound, we have to be very careful when using interval orders as some
of their interval representations may be invalid. Interval semantics in terms of
interval sequences or interval step sequences may still be well defined and valid,
but interval orders may not.

Acknowledgment. The author gratefully acknowledges three anonymous referees for
their helpful comments.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

2. Agerwala, T., Flynn, M.: Comments on capabilities, limitations and “correctness”
of Petri nets. Comput. Archit. News 4(2), 81–86 (1973)

3. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theor. Comp. Science 323,
129–189 (2004)

4. Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory.
Theor. Comput. Sci. 55, 97–136 (1987)

5. Best, E., Koutny, M.: Petri net semantics of priority systems. Theor. Comput. Sci.
94, 141–158 (1992)

6. Busch, P.: The time-energy uncertainty relation. In: Muga, G., Mayato, S.,
Egusquiza, I. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol.
734. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73473-4 3

7. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

8. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J.
Math. Psychol. 7, 144–149 (1970)

9. Fishburn, P.C.: Interval Orders and Interval Graphs. John Wiley, New York (1985)
10. Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inf. Control

57(2), 125–147 (1983)
11. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 26(1), 100–

106 (1983)
12. Jammer, M.: The Philosophy of Quantum Mechanics. John Wiley, New York (1974)
13. Janicki, R.: Modeling operational semantics with interval orders represented by

sequences of antichains. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018.
LNCS, vol. 10877, pp. 251–271. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91268-4 13

14. Janicki, R., Kleijn, J., Koutny, M., Mikulski, �L.: Step traces. Acta Inform. 53,
35–65 (2016)

15. Janicki, R., Koutny, M.: Structure of concurrency. Theor. Comput. Sci. 112, 5–52
(1993)

https://doi.org/10.1007/978-3-540-73473-4_3
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-319-91268-4_13
https://doi.org/10.1007/978-3-319-91268-4_13

212 R. Janicki

16. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16
(1995)

17. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of
antichains. Fundamenta Informaticae (2019, to appear)

18. Janicki, R., Yin, X.: Modeling concurrency with interval orders. Inf. Comput. 253,
78–108 (2017)

19. Janicki, R., Yin, X., Zubkova, N.: Modeling interval order structures with partially
commutative monoids. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 425–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32940-1 30

20. Kleijn, J., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput.
190, 18–69 (2004)

21. Kleijn, J., Koutny, M.: Formal languages and concurrent behaviour. Stud. Comput.
Intell. 113, 125–182 (2008)

22. Mazurkiewicz, A.: Introduction to Trace Theory. In: Diekert V., Rozenberg, G.
(eds.) The Book of Traces, pp. 3–42. World Scientific, Singapore (1995)

23. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

24. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995)
25. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),

541–579 (1989)
26. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Behavioural notions for elementary

net systems. Distrib. Comput. 4, 45–57 (1990)
27. Petri, C.A.: Nets, time and space. Theor. Comput. Sci. 153, 3–48 (1996)
28. Popova-Zeugmann, L., Pelz, E.: Algebraical characterisation of interval-timed Petri

nets with discrete delays. Fundamenta Informaticae 120(3–4), 341–357 (2012)
29. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg,

G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 14

30. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of con-
currency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987.
LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-17945-3 13

31. Vogler, W.: Partial order semantics and read arcs. Theor. Comput. Sci. 286(1),
33–63 (2002)

32. Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos.
Soc. 17, 441–449 (1914)

33. Zuberek, W.M.: Timed Petri nets and preliminary performance evaluation. In:
Proceedings of the 7-th Annual Symposium on Computer Architecture, La Baule,
France, pp. 89–96 (1980)

https://doi.org/10.1007/978-3-642-32940-1_30
https://doi.org/10.1007/978-3-642-32940-1_30
https://doi.org/10.1007/3-540-65306-6_14
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-17945-3_13

Reversing Unbounded Petri Nets

�Lukasz Mikulski1 and Ivan Lanese2(B)

1 Folco Team, Nicolaus Copernicus University, Torun, Poland
lukasz.mikulski@mat.umk.pl

2 Focus Team, University of Bologna/INRIA, Bologna, Italy
ivan.lanese@gmail.com

Abstract. In Petri nets, computation is performed by executing transi-
tions. An effect-reverse of a given transition b is a transition that, when
executed, undoes the effect of b. A transition b is reversible if it is possi-
ble to add enough effect-reverses of b so to always being able to undo its
effect, without changing the set of reachable markings.

This paper studies the transition reversibility problem: in a given Petri
net, is a given transition b reversible? We show that, contrarily to what
happens for the subclass of bounded Petri nets, the transition reversibil-
ity problem is in general undecidable. We show, however, that the same
problem is decidable in relevant subclasses beyond bounded Petri nets,
notably including all Petri nets which are cyclic, that is where the ini-
tial marking is reachable from any reachable marking. We finally show
that some non-reversible Petri nets can be restructured, in particular by
adding new places, so to make them reversible, while preserving their
behaviour.

Keywords: Petri nets · Reverse transition · Reversibility

1 Introduction

Reversible computation, a computational paradigm where any action can be
undone, is attracting interest due to its applications in fields as different as
low-power computing [24], simulation [9], robotics [27] and debugging [29].
Reversible computation has been explored in different settings, including digi-
tal circuits [32], programming languages [26,33], process calculi [12], and Turing
machines [5]. In this paper, we focus on reversible computation in the setting of
Petri nets.

In the early years of investigation of Petri nets (the seventies), a notion of
local reversibility [8,19], requiring each transition to have a reverse transition,
was used. The reverse b− of a transition b undoes the effect of b in any marking
(i.e., in any state) reachable by executing b. That is, after having executed b

This work has been partially supported by COST Action IC1405 on Reversible Com-
putation - extending horizons of computing. The second author has been also partially
supported by French ANR project DCore ANR-18-CE25-0007.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 213–233, 2019.
https://doi.org/10.1007/978-3-030-21571-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_13

214 �L. Mikulski and I. Lanese

from some marking M it is always possible to execute b−, and this leads back to
marking M . Local reversibility is close to the definition currently used in, e.g.,
process calculi [12], programming languages [26,33] and Turing machines [5]. As
time passed, a notion of global reversibility [15], requiring the initial state to be
reachable by any reachable state of the net, attracted more interest because of its
applications in controllability enforcing [23,31] and reachability testing [28]. The
notion of local reversibility occurred for some time under the name of symmetric
Petri nets [15], however, this name later changed the meaning to denote other
forms of state space symmetry [10,21]. In this paper, with reversibility we mean
a form of local reversibility (detailed below), and following [7] we write cyclicity
to refer to the other notion. In order to relate reversibility and cyclicity, one
would like to understand whether a Petri net can be made cyclic by adding
reverse transitions or, more generally, whether reverse transitions can be added.

This problem was first tackled in [2] for the restricted class of bounded Petri
nets. They provided the main insight below: the main issue is that adding reverse
transitions must not change the behaviour of the net, which was defined as the
set of reachable markings. However, this happens if the reverse of a transition
b can trigger also in a marking not reachable by executing b as last transition,
hence reverse transitions cannot always be added. However, in bounded Petri
nets one can always add a complete set of effect-reverses. An effect-reverse of
a transition b is a transition that, when executed, has the same effect as the
reverse of b. However, an effect-reverse may not be enabled in all the markings
the reverse is, hence adding one effect-reverse is in general not enough. A set of
effect-reverses able to reverse a given transition b in all the markings where the
reverse b− can do it is called complete.

Hence, following [2], we define the transition reversibility problem as follows:
in a given Petri net, can we add a complete set of effect-reverses for a given transi-
tion b without changing the set of reachable markings? We say a net is reversible
if the answer to the transition reversibility problem is positive for each transi-
tion. The approach in [2] cannot be easily generalised to cope with unbounded
Petri nets. The problem is hard in the unbounded case (indeed, we will show it to
be undecidable) since adding even a single reverse (or effect-reverse) transition
can have a great, and not easily characterisable, impact on the net. Indeed, the
problem MESTR (Marking Equality with Single Transition Reverse) of estab-
lishing whether adding a single reverse (or effect-reverse) transition to a given
net changes the set of reachable markings is, in general, undecidable [3]. One
can, however, try to add effect-reverses, hoping to get a complete set of them
without needing the ones for which the MESTR problem is undecidable.

In this paper, we tackle the transition reversibility problem in nets which are
not necessarily bounded. We propose an approach based on identifying pairs of
markings which forbid to add the effect-reverses of a specific transition b (Sect. 3).
We call such pairs b-problematic. We show that a transition b is reversible iff
there is no b-problematic pair (Corollary 1). We then study relevant properties
of b-problematic pairs, including decidability and complexity issues (Sect. 4).
In particular, we show that the existence of b-problematic pairs is undecidable

Reversing Unbounded Petri Nets 215

(Theorem 3), which is surprising since for a given transition b the set of minimal
b-problematic pairs is finite (Proposition 2), and checking whether a given pair
of markings is b-problematic is decidable (Corollary 2).

Given that the problem is undecidable, we identify relevant subclasses of Petri
nets where the problem becomes decidable (Sect. 5). We show, in particular, that
cyclicity implies reversibility (Corollary 3), which in our opinion provides a novel
link between the two notions.

In order to have more reversible nets, we study whether a net can be restruc-
tured so to make it reversible while preserving its behaviour, in the sense
described below (Sect. 6). First, we show that some nets, but not all, can be
made reversible by extending them with new places, while preserving the require-
ments and effect of transitions on existing ones. Second, we consider whether
the reversed behaviour of a net (obtained by considering the net as a labelled
transition system and then adding reverse transitions) could be obtained as a
behaviour of any Petri net, possibly completely different from the starting one.
Surprisingly, this is possible only for Petri nets that can be made reversible by
just extending them with new places (Theorem 5).

2 Background

In this section we introduce the notions needed for our developments. While
these are largely standard, we mainly follow the presentation from [2,4].

The Group Z
X and the Monoid N

X

The set of all integers is denoted by Z, while the set of non-negative integers
by N. Given a set X, the cardinality (number of elements) of X is denoted by
|X|, the powerset (set of all subsets) by 2X . Multisets over X are members of
N

X , i.e., functions from X into N. We extend the notion for all integers in an
intuitive way obtaining mappings from X into Z. If the set X is finite, mappings
from X into Z (as well as N) will be represented by vectors of Z|X|, written as
[x1, . . . , x|X|] (assuming a fixed ordering of the set X). Given a function f we
represent its domain restriction to a set X (subset of its domain) as f ↓X .

The group Z
X , for a set X, is the set of mappings from X into Z with

componentwise addition + (note that N
X with + is a monoid). If Y,Z ∈ Z

X

then (Y + Z)(x) = Y (x) + Z(x) for every x ∈ X, while for A,B ⊆ Z
X we have

A + B = {Y + Z | Y ∈ A ∧ Z ∈ B}. We define subtraction, denoted by −,
analogously. The star operation is defined as Y ∗ =

⋃{Yi | i ∈ N}, where Y0 is
a constant function equal 0 for every argument, denoted by 0, and Yi+1 = Yi+Y .
Rational subsets of NX are subsets built from atoms (single elements of NX) with
the use of finitely many operations of union ∪, addition + and star ∗. The partial
order ≤ (both on mappings and tuples) is understood componentwise, while <
means ≤ and �=. Given A ⊆ Z

X , min(A) is the set of minimal elements in A.
For tuples over X we define first : Xn → X by first((x1, x2, . . . , xn)) = x1.

Transition Systems
A labelled transition system (or, simply, lts) is a tuple TS = (S, T,→, s0) with a
set of states S, a finite set of labels T , a set of arcs → ⊆ (S×T ×S), and an initial

216 �L. Mikulski and I. Lanese

state s0 ∈ S. We draw an lts as a graph with states as nodes, and labelled edges
defined by arcs. A label a is fireable at s ∈ S, denoted by s[a〉, if (s, a, s′) ∈ →, for
some s′ ∈ S. A state s′ is reachable from s through the execution of a sequence of
transitions σ ∈ T ∗, written s[σ〉s′, if there is a directed path from s to s′ whose
arcs are labelled consecutively by σ. A state s′ is reachable if it is reachable from
the initial state s0. The set of states reachable from s is denoted by [s〉. A state
s′ is reachable by a (also said a-reachable) if it is reachable via a sequence of
transitions having a as last element. A sequence σ ∈ T ∗ is fireable, from a state
s, denoted by s[σ〉, if there is some state s′ such that s[σ〉s′. A labelled transition
system TS = (S, T,→, s0) is called finite if the set S is finite.

We assume that for each a ∈ T , the set of arcs labelled by a is nonempty.
Let TS1 = (S1, T,→1, s01) and TS2 = (S2, T,→2, s02) be ltss. A total func-

tion ζ : S1 → S2 is a homomorphism from TS1 to TS2 if ζ(s01) = s02 and
(s, a, s′) ∈ →1 ⇔ (ζ(s), a, ζ(s′)) ∈ →2, for all s, s′ ∈ S1, a ∈ T . TS1 and TS2 are
isomorphic if ζ is a bijection.

Petri Nets
A Place/Transition Petri net (or, simply, net) is a tuple N = (P, T, F,M0),
where P is a finite set of places, T is a finite set of transitions, F is the flow
function F : ((P × T) ∪ (T × P)) → N specifying the arc weights, and M0 is the
initial marking. Markings are mappings M : P → N.

Petri nets admit a natural graphical representation (see, e.g., net N1 in Fig. 1
of Sect. 3). Nodes represent places and transitions, arcs represent the weight
function (we drop the weight if it is 1). Places are indicated by circles, and
transitions by boxes. Markings are depicted by tokens inside places.

The effect of a transition a on a place p is eff p(a) = F (a, p) − F (p, a). The
(total) effect of transition a ∈ T is a mapping eff (a) : P → Z, where eff (a)(p) =
eff p(a) for every p ∈ P . For a transition a ∈ T we define two mappings: ena,
called entries, and exa, called exits, as follows: ena, exa : P → N and ena(p) =
F (p, a) as well as exa(p) = F (a, p) for every p ∈ P . A transition a ∈ T is enabled
at a marking M , denoted by M [a〉, if M ≥ ena. The firing of a at marking M
leads to M ′, denoted by M [a〉M ′, if M [a〉 and M ′ = M +eff (a) (note that there
is no upper limit to the number of tokens that a place can hold). The notions
of enabledness and firing, M [σ〉 and M [σ〉M ′, are extended in the usual way to
sequences σ ∈ T ∗, and [M〉 denotes the set of all markings reachable from M .
We assume that each transition is enabled in at least one reachable marking. It
is easy to observe that transition enabledness is monotonic: if a transition a is
enabled at marking M and M ≤ M ′, then a is also enabled at M ′.

Note that markings as well as entries and exits of a transition are multisets
over P (mappings from P to N), while total effect is a mapping from P to Z,
hence we represent all of them as vectors (after fixing an order on P).

The reachability graph of a Petri net N = (P, T, F,M0) is defined as the lts

RG(N) = ([M0〉, T, {(M,a,M ′) | M,M ′ ∈ [M0〉 ∧ M [a〉M ′},M0).

Intuitively, the reachability graph has reachable markings as states and firings as
arcs. If a labelled transition system TS is isomorphic to the reachability graph

Reversing Unbounded Petri Nets 217

of a Petri net N , then we say that N solves TS, and TS is synthesisable to N .
A Petri net N = (P, T, F,M0) is bounded if [M0〉 is finite (hence its reachability
graph is a finite lts), otherwise the net is unbounded. A place p ∈ P is bounded
if there exists np ∈ N such that M(p) < np for every M ∈ [M0〉, otherwise the
place is unbounded. The set of all bounded places of the net N is denoted by
bound(N). Note that every place of a bounded net is bounded, while in each
unbounded net there exists at least one unbounded place.

We now define reverses of transitions, and effect-reverses of transitions.

Definition 1 (transition reverse and effect-reverse). The reverse of a
transition a ∈ T in a net N = (P, T, F,M0) is the transition a− such that for
each p ∈ P we have F (p, a−) = F (a, p) and F (a−, p) = F (p, a). An effect-reverse
of a transition a ∈ T is any transition a−e such that eff (a−e) = −eff (a).

A minimum effect-reverse (that is, an effect-reverse without self-loops) of a
transition a ∈ T is a transition a−e such that for each p ∈ P we have ena−e(p) =
−eff p(a−e) and exa−e(p) = 0 if eff p(a−e) ≤ 0, and ena−e(p) = 0 and exa−e(p) =
eff p(a−e) otherwise.

Notably, the reverse of a transition is also an effect-reverse, but not every
effect-reverse is a reverse. Furthermore, a reverse of a transition a is able to
reverse the transition a in any marking reachable by a, while an effect-reverse
may do it only in some of these markings. A set of effect-reverses for transition
a is complete if it includes enough effect-reverses to reverse a at any marking
reachable by a.

We now define the notions of reversibility and cyclicity we are interested in.

Definition 2 (reversibility). A transition b is reversible in a net N if it is
possible to add to N a complete set of effect-reverses of b without changing the
set of reachable markings. A net N is reversible if all its transitions are reversible.

Definition 3 (cyclicity). Let N = (P, T, F,M0) be a Petri net. A marking M
reachable in N is called a home state if it is reachable from any other marking
reachable in N . A net N is cyclic if M0 is a home state.

3 Problematic Pairs

In this paper, we tackle the transition reversibility problem, that is we want
to decide whether, in a given Petri net N (possibly unbounded), we can add a
complete set of effect-reverses of a given transition b without changing the set
of reachable markings. In other words, if N is the original net and N ′ the one
obtained by adding the complete set of effect-reverses, then their reachability
graphs RG(N) and RG(N ′) differ only for the presence of reverse transitions in
RG(N ′). In particular, no new markings are reachable in N ′, hence RG(N) and
RG(N ′) have the same set of states.

We remark that the net obtained by adding complete sets of effect-reverses
for each transition (without changing the set of reachable markings) is by con-
struction reversible and also trivially cyclic, hence understanding the transition
reversibility problem is the key for understanding also reversibility and cyclicity.

218 �L. Mikulski and I. Lanese

In this section we show that the transition reversibility problem for transition
b is equivalent to deciding the absence of particular pairs of markings, that we
call b-problematic, introduced below. This characterisation will help us in solving
the transition reversibility problem for relevant classes of Petri nets.

Fig. 1. A Petri net N1 and part of its reachability graph (transition system).

Let us start by considering the sample net N1 in Fig. 1. Net N1 has two
unbounded places, hence the theory from [2], valid for bounded nets, does not
apply. Furthermore, adding a complete set of effect-reverses for transition b in
net N1 changes the set of reachable markings. Intuitively, the reason is that the
net contains two markings M1 and M2 such that in M1 at least one effect-reverse
should trigger, in M2 it must not (since M2 is not reachable by b), but M2 is
greater than M1. Hence, by monotonicity, we have a contradiction.

We now introduce the notion of b-problematic pair to formalise the intuition.

Definition 4 (b-problematic pair). Let N = (P, T, F,M0) be a net, and b ∈ T
a transition. A pair (M1,M2) of markings reachable in N is b-problematic if
M1 < M2, ∃σ∈T ∗M0[σb〉M1 and ∀ρ∈T ∗¬M0[ρb〉M2.1

The set of all b-problematic pairs in N is denoted by Pb(N).
We say a pair is problematic if it is b-problematic for some transition b.

Pair ([1, 1], [2, 1]) is b-problematic in net N1 in Fig. 1. Intuitively, an effect-
reverse of b should trigger in marking [1, 1] (reachable by b) but not in marking
[2, 1] (not reachable by b), but monotonicity forbids this.

The notion of problematic pair has been also implicitly used by [7], to define
the notion of complete Petri net and study the inverse of a Petri net. Complete-
ness allows one to block reverse transitions in all markings that do not occur as
second component of a problematic pair.

We can now prove that b-problematic pairs forbid to reverse transition b.

1 Note that there can be two reasons for ¬M0[ρb〉M2. Either ρb is not enabled at M0

or M0[ρb〉M but M �= M2.

Reversing Unbounded Petri Nets 219

Proposition 1. Let N = (P, T, F,M0) be a Petri net and b ∈ T a transition. If
there exists in N a b-problematic pair, then b is not reversible in N .

Proof. Let (M1,M2) be the b-problematic pair. A complete set of effect-reverses
should include at least one effect-reverse b−e triggering in M1. By monotonicity
b−e triggers also in M2, but, since M2 is not reachable by b, adding b−e changes
the set of reachable markings. This proves the thesis. ��

The result above is independent of the number of effect-reverses in the com-
plete set, hence even considering an infinite set of effect-reverses would not help.

We have shown that the existence of b-problematic pairs implies that b is
not reversible. We now prove the opposite implication, namely that absence of
b-problematic pairs implies reversibility of b.

Theorem 1. Let N = (P, T, F,M0) be a Petri net and b ∈ T a transition. If no
b-problematic pair exists in N , then b is reversible in N .

Proof. Take a reachable marking M . If it is greater than a b-reachable marking
then it is b-reachable (otherwise we would obtain a b-problematic pair). Take the
set bR of b-reachable markings. Let min(bR) be the set of all minimal elements in
bR. They are all incomparable, hence by Dickson’s Lemma [14] the set min(bR) is
finite. Let us consider the set of effect-reverses of b composed of the effect-reverses
b−e of b such that enb−e ∈ min(bR). Note that we have one such effect-reverse for
each marking in min(bR). By monotonicity, we have at least one effect-reverse
triggering at each marking in bR, and no effect-reverse triggering outside bR,
hence this is a complete set of effect-reverses (that do not change the set of
reachable markings) as desired. ��
The result above is an unbounded version of the procedure presented in the proof
of [2, Theorem 4.3] for bounded nets. By combining the two results above we get
the following corollary, showing that b-problematic pairs provide an equivalent
formulation of the transition reversibility problem.

Corollary 1. Let N = (P, T, F,M0) be a Petri net and b ∈ T a transition. The
transition b is reversible in N iff no b-problematic pair exists in N .

The formulation in terms of b-problematic pairs raises the following question:

– Is it decidable whether a b-problematic pair exists in a given net?

In Sect. 4 we answer negatively the question above, hence the transition
reversibility problem is in general undecidable. This raises additional questions:

1. Can we decide whether a given pair of markings is b-problematic for a net?
2. Can we find relevant classes of nets where the transition reversibility problem

is decidable?
3. Can we transform a net into a reversible one while preserving its behaviour?

We will answer the questions above in Sects. 4, 5 and 6, respectively.

220 �L. Mikulski and I. Lanese

4 Undecidability of the Existence of b-problematic Pairs

The main result of this section is the undecidability of the existence of b-
problematic pairs and, as a consequence, of the transition reversibility problem.

Before proving our main result we show, however, that a given net has
finitely many minimal b-problematic pairs, and that one can decide (indeed it
is equivalent to the Reachability Problem) whether a given pair of markings is
b-problematic. These results combined seem to hint at the decidability of the
transition reversibility problem. However, this is not the case.

We start by proving that there are finitely many minimal b-problematic pairs.

Proposition 2. Let N = (P, T, F,M0) be a net, and b ∈ T a transition. There
exist finitely many minimal b-problematic pairs in N .

Proof. A b-problematic pair ([x1, . . . , xn], [y1, . . . , ym]) can be seen as a tuple
(x1, . . . , xn, y1, . . . , ym), hence the result follows from Dickson’s Lemma [14]. ��

We now show by reduction to the Reachability Problem that one can decide
whether a given pair of markings is b-problematic.

Lemma 1. One can reduce the problem of checking whether a given pair of
markings is b-problematic to the Reachability Problem.

Proof. Let (M1,M2) be the given pair of markings. One has to check that they
are reachable and that the marking M1 − eff (b) is reachable, and M2 − eff (b) is
not, which are four instances of reachability. ��

On the other hand, we can reduce the Reachability Problem to checking
whether a given pair of markings is b-problematic.

Theorem 2. One can reduce the Reachability Problem to the problem of check-
ing whether a given pair of markings is b-problematic.

Proof. The proof is by construction. The construction is depicted in Fig. 2. Let
N = (P, T,W,M0) be a net and M a marking of this net. We will build a new net
N ′ and a pair of markings (M1,M2) in it such that (M1,M2) is b-problematic
in N ′ if and only if M is reachable in N .

We define net N ′ as (P ∪ {q1, q2, q3}, T ∪ {b, c},W ′,M ′
0). We assume that

q1, q2, q3, b, c are fresh objects. For the vector representation of markings in N ′

we fix the order of places as follows: first the places from N (in the order they
have in N), then places q1, q2, q3 in order. We set M ′

0 = [x1, . . . , xn, 1, 0, 0] with
[x1, . . . , xn] = M0. W ′ extends W as follows. Place q1 is connected by a self-
loop with every transition a ∈ T , and a preplace of the two new transitions b, c.
Place q2 is a postplace for both new transitions, while q3 is a postplace for c
only. Moreover, c and b take from any place p ∈ P a number of tokens equal to,
respectively, M0(p) and M(p).

In the constructed net we can always reach marking M2 = [0, . . . , 0, 1, 1] (by
executing c in M ′

0) but never reach it by executing b (since only c adds a token

Reversing Unbounded Petri Nets 221

to place q3, but b and c are in conflict because of place q1). We can also reach
marking M1 = [0, . . . , 0, 1, 0] by executing b iff M is reachable in N . Indeed, if b
triggers in some marking M3 > M then some tokens are left in the places from N ,
and they are never consumed since b consumes the token in q1, which is needed
to perform any further transition. Thus, the pair (M1,M2) is b-problematic in
N ′ if and only if M is reachable in N .

This proves that we can use a decision procedure checking whether a pair of
markings is b-problematic in order to solve the Reachability Problem. ��

Fig. 2. Reducing reachability to checking whether a pair of markings is b-problematic.

We can combine the two results above to give a precise characterisation of
the complexity of checking whether a given pair of markings is b-problematic.

Corollary 2. The problem of deciding whether a given pair of markings is b-
problematic and the Reachability Problem are equivalent.

As a consequence, known bounds for the complexity of the Reachability Prob-
lem apply to the problem of deciding whether a given pair of reachable markings
is b-problematic as well. For instance, we know that it is not elementary [11].

At this stage it looks like there should be a procedure to construct the
finite set min(Pb(N)). Indeed, we can perform an additional step in this direc-
tion: we can compute a (finite) over-approximation min(Eb(N) + {eff (b)}) (we
remind that Eb(N) is the set of markings of N where b is enabled) of the
(finite) set min(first(Pb(N))) of the minimals of the markings that may occur as
first component in a b-problematic pair. Both the set min(first(Pb(N))) and its
over-approximation are finite, but deciding membership and browsing the over-
approximation is easy, while even the emptiness problem is actually undecidable
for the set min(first(Pb(N))).

We first need a lemma on monotonicity properties of b-problematic pairs.

222 �L. Mikulski and I. Lanese

Lemma 2. Let N = (P, T, F,M0) be a net, b ∈ T a transition, and (M1,M2) a
b-problematic pair.

– If M3 < M1 and ∃σ∈T ∗M0[σb〉M3 then (M3,M2) is a b-problematic pair.
– If M2 < M4, M4 is reachable and ∀ρ∈T ∗¬M0[ρb〉M4 then (M1,M4) is a b-

problematic pair.

Proof. Directly from Definition 4, using the transitivity of <. ��
We now prove the correctness of our over-approximation.

Lemma 3. Let N = (P, T, F,M0) be a net, b ∈ T a transition. Then:

min(first(Pb(N))) ⊆ min(Eb(N) + {eff (b)})

Proof. Take a b-problematic pair (M1,M2). By definition M1 is an element
of Eb(N) + {eff (b)}. Assume it is not minimal. Then there exists M3 ∈
min(Eb(N) + {eff (b)}) such that M3 < M1 and so, by Lemma 2, (M3,M2)
is also a b-problematic pair, hence M1 /∈ min(first(Pb(N))). ��

Contrarily to what one could expect from these encouraging preliminary
results, the existence of a b-problematic pair is undecidable.

Theorem 3. The problem of the existence of a b-problematic pair is undecidable.

Proof. Assume towards a contradiction that we can decide the existence of a
b-problematic pair in a net N . Consider the decision problem MESTR from [3]
– Are the reachability sets of two given nets N and N ′, where N ′ is obtained
from N by adding the single reverse b− of a given transition b, equal? We show
below that we can reduce MESTR to checking the existence of a b-problematic
pair.

Consider the following procedure. If N cannot be reversed by a set of effect-
reverses then it cannot be reversed by a single reverse b−. Hence, if there exists
a b-problematic pair in N , then the answer for MESTR is negative.

Otherwise we construct the set of markings

X = (NP \ (min(Eb(N) + eff (b)) + N
P)) ∩ (ex b + N

P).

X consists of markings M̂ (reachable or not) such that:

1. b− triggers in M̂ ;
2. M̂ is not b-reachable;

Condition 1 holds thanks to (ex b +N
P). Condition 2 holds since M̂ is not in the

set (min(Eb(N) + eff (b)) + N
P).

We show now that, if there exists no b-problematic pair in N , then X
contains all reachable markings which are not b-reachable. Assume towards a
contradiction that M /∈ X is reachable in N but not reachable by b. Then
M /∈ min(Eb(N) + eff (b)) (because it is not reachable by b) and there exists

Reversing Unbounded Petri Nets 223

M ′ ∈ min(Eb(N)+ eff (b)) which is smaller than M (because otherwise M ∈ X).
Hence (M ′,M) is a problematic pair which we excluded.

As a result, if there exists no b-problematic pair in N , it is enough to ask,
whether there is any reachable marking in X. If one such marking exists then the
answer for MESTR is positive, otherwise it is negative. It remains to show that
(i) one can construct the set X and (ii) check whether it contains any marking
reachable in N .

To prove part (i) we utilise the fact that (min(Eb(N) + eff (b)) is finite and
can be easily computed using Dickson’s lemma and the coverability set (see [16])
of N . Moreover, {ex b} is a singleton while N

P is the set of all multisets over P .
Summing up, NP , (min(Eb(N) + eff (b)), and ex b + N

P are rational subsets of
N

P and one can provide rational expressions for them. Since, by [18], rational
subsets of NP form an effective Boolean algebra (see also [1] for more details),
we can construct (giving a rational expression) the set X.

To prove part (ii) we use the results from [20], showing that the emptiness
problem for intersection of the set of reachable markings and any rational set of
markings given by a rational expression is decidable for Petri nets.

Summing up, if the existence of a b-problematic pair is decidable, then also
MESTR is decidable, which is not true. Hence, the existence of a b-problematic
pair is undecidable. ��

5 Decidable Subclasses

We have shown that in general the transition reversibility problem is undecidable,
as well as the existence of a b-problematic pair. We already know from [2] that
the problem becomes decidable in the class of bounded nets. We show below
a few other classes of Petri nets (not necessarily bounded) where the problem
is decidable. In particular, we show that the transition reversibility problem is
decidable, and indeed complete sets of effect-reverses always exist, for cyclic nets.

Note that cyclicity does not ensure that a net actually has effect-reverses
for all transitions. However, we show that complete sets of effect-reverses can
always be added without changing the set of reachable markings in such nets.
This result links cyclicity to reversibility. We prove a more general result, and
then show the one above to be an instance.

Proposition 3. Let N = (P, T, F,M0) be a net and b ∈ T one of its transitions.
If all the reachable markings enabling b are home states then there exists no b-
problematic pair in N .

Proof. The proof follows the schema in Fig. 3. Assume towards a contradiction
that M1 < M2 is a b-problematic pair. Let M be the marking such that M [b〉M1

(reachable since M1 is reachable by b). By the assumption, M is a home state,
hence there exists a path σ from M1 to M . Applying σb in M2 (possible by
monotonicity) leads to M2 back, with b as the last transition, hence (M1,M2) is
not b-problematic against the hypothesis. ��

224 �L. Mikulski and I. Lanese

Fig. 3. Idea of the proof of Proposition 3.

Proposition 4. Let N be a cyclic net and b ∈ T one of its transitions. There
exists no b-problematic pair in N .

Proof. Directly from Proposition 3, since in a cyclic net every reachable marking
is a home state. ��
Corollary 3. Each cyclic net is reversible.

The inverse implication does not hold, since one has to actually add effect-
reverses to obtain a cyclic net. Moreover, an alternative proof of the result above
can be based on the semi-linearity of reachability set for cyclic nets [7].

We present below another class of nets where reversibility is decidable.

Proposition 5. Take a net N . If the set of reachable markings which are not
home states is finite then one can decide whether N is reversible or not.

Proof. First, we can construct the set of all markings which are not home states
(finite by assumption) as follows. We do not discuss whether finiteness is decid-
able or not. By [13] one can verify whether a given marking is a home state.
Moreover, every marking reachable from a home state is a home state. Hence,
we can find all non home states as follows: explore all states starting from the
initial one and stop exploring a branch every time you find a home state.

Consider now the construction in Theorem 1. We will decide whether an
arbitrary effect-reverse (triggering in a marking M1) of some transition b changes
the set of reachable markings. This happens only if there exists a marking M2 >
M1 which is not b-reachable. We will consider a few cases, distinguished by
whether M2 and M1 are home states or not.

If both of them are home states then consider the net N ′ obtained by changing
the initial marking to any home state. N ′ has precisely all home states of N
(called a home space [6]), including M1 and M2, as reachability set and is cyclic.
By Proposition 4 (M1,M2) is not b-problematic in N ′, hence M2 must be b-
reachable. Thus it is b-reachable also in N against the hypothesis, hence this
case can never happen.

If M2 is not a home state (M1 may be home state or not), then thanks to
Corollary 2 we can check all the combinations of a marking in min(Eb(N) +
{eff (b)}) (which is a finite over-approximation of the possible first elements
thanks to Lemma 3) with a marking which is not a home state (the corresponding
set is finite and can be constructed as discussed at the beginning of the proof).

Assume M2 is a home state, but M1 is not. Consider the set of all minimal
home states larger than M1. This is finite from Dickson’s Lemma [14]. We can

Reversing Unbounded Petri Nets 225

construct it using the computed set of reachable markings which are not home
states and the coverability set [16] which helps to decide whether there will be
any reachable marking larger than the one considered. This way, we can browse
a tree of all markings larger than M1, and cut the branch whenever we find a
home state or the considered marking is not coverable.

Suppose that M2 is not in this set, then there is a home state M3, which
is smaller than M2 but larger than M1. If M3 is b-reachable then (M3,M2) is
a problematic pair, which is impossible, since both of them are home states.
Otherwise, (M1,M3) is a problematic pair and the net is not reversible. ��

6 Removing Problematic Pairs

We know from Proposition 1 that we cannot reverse a net N with problematic
pairs. In this section we investigate whether a net N that is not reversible can be
made reversible by modifying it but preserving its behaviour. First, we consider
adding new places to the net, but preserving its behaviour. Second, we allow to
completely change the structure of the net, again preserving its behaviour. The
second case is a generalisation of the first one, but, surprisingly, they turn out
to work well for the same set of nets.

We need to define what exactly “preserving its behaviour” means. We cannot
require the reachability graphs to be the same, as done in previous sections,
since the set of places changes. We could require them to be isomorphic, but it is
enough to have a homomorphism from the restructured net to the original one.
Indeed, this weaker condition is enough to prove our results.

If only new places are added, one may try to simply require transitions to
have their usual behaviour on pre-existing places. This approach is safe, i.e. by
restricting the attention to old places, no new marking appears, and no new
transition between markings becomes enabled. Yet, there is the risk to disable
transitions, and, as a consequence, to make unreachable some markings which
were previously reachable.

We define below the notion of extension of a net N , which requires (1) that
no new behaviours will appear, and (2) that previous behaviours are preserved.

Definition 5 (extension of a net). Let N = (P, T, F,M0) be a net. A net
N ′ = (P ∪ P ′, T, F ′,M ′

0) is an extension of N if M ′
0 ↓P = M0 and:

1. F ′(p, a) = F (p, a) and F ′(a, p) = F (a, p) for each p ∈ P and a ∈ T ;
2. for each reachable marking M in N and each reachable marking M ′ in N ′

such that M ′ ↓P = M and each transition b, b is enabled in M ′ iff it is enabled
in M .

Notably, from each extension N ′ of a net N there is a homomorphism from
RG(N ′) to RG(N), as shown by the following lemma.

Lemma 4. Let N = (P, T, F,M0) be a net and N ′ = (P ∪ P ′, T, F ′,M ′
0) an

extension of N . Then there is a homomorphism from RG(N ′) to RG(N).

226 �L. Mikulski and I. Lanese

Proof. The homomorphism is defined by function ↓P : RG(N ′) → RG(N). The
condition on the initial state is satisfied by construction. Let us consider the
other condition.

Let us take two markings M ′
1,M

′
2 in RG(N ′) and a transition t such that

M ′
1[t〉M ′

2. Transition t is enabled in M ′
1 ↓P too, thanks to condition 2 in Def-

inition 5, and M ′
1 ↓P [t〉M ′

2 ↓P thanks to condition 1 as desired. By induction
on the length of the shortest path from M ′

0 to M ′
1 we can show that M ′

1 ↓P is
reachable in N , thus M ′

1 ↓P and M ′
2 ↓P are in RG(N).

Let us now take two markings M1,M2 in RG(N) and a transition t such
that M1[t〉M2. Let M ′

1 be such that M ′
1 ↓P = M1. Transition t is enabled in M1

too, thanks to condition 2 in Definition 5, and M ′
1[t〉M ′

2 for some M ′
2 such that

M ′
2 ↓P = M2 thanks to condition 1 as desired. By induction on the length of the

shortest path from M0 to M1 we can show that M ′
1 is reachable in N ′, thus M ′

1

and M ′
2 are in RG(N ′). This completes the proof. ��

Checking condition 2 of the definition of extension above is equivalent to
solving the problem of state space equality, which is in general undecidable [20].
However, it is decidable in many relevant cases. In particular, complementary
nets, based on the idea presented in [30], are a special case of extension of a net.
Intuitively, a complementary net has one more place p′ for each bounded place
p in the original net, with a number of tokens such that at each time the sum of
tokens in p and p′ is equal to the bound of tokens for p.

Definition 6 (complementary net). Let N = (P, T, F,M0) be a net. The
complementary net for N is a net N ′ = (P ∪P ′, T, F ′,M ′

0) constructed by adding
a complement place p′ for every bounded place p ∈ P obtaining P ′ = {p′ | p ∈
bound(N)}. For all M ∈ [M0〉 and p ∈ bound(N), we define M̂ ∈ N

P∪P ′
, such

that M̂(p) = M(p) and M̂(p′) = (maxM ′′∈[M0〉 M ′′(p))−M(p), setting M ′
0 = M̂0.

We also set F ′(p′, a) = max(F (a, p) − F (p, a), 0) and F ′(a, p′) = max(F (p, a) −
F (a, p), 0), for all p′ ∈ P ′ and a ∈ T . Furthermore, F ′(p, a) = F (p, a) and
F ′(a, p) = F (a, p) for all p ∈ P and a ∈ T .

Complementary nets are a special case of extension of nets.

Lemma 5. Let N be a net and N ′ the complementary net for N . Then N ′ is
an extension of N .

Proof. Structural conditions hold by construction, while the complementary
places do not change the sets of transitions enabled in reachable markings. ��

Another example of extension just adds trap places which only collect tokens.
Such a place can be used to compute the number of times a given transition fires.

Extending a net N to make it reversible is a very powerful technique. Indeed,
we will show below that if there is any reversible net N ′ with a homomorphism
from RG(N ′) to RG(N), then there is also a reversible extension of N .

Theorem 4. Let N = (P, T, F,M0) be a net. If there is a reversible net N ′ =
(P ′, T ′, F ′,M ′

0) and a homomorphism ζ ′ from RG(N ′) to RG(N) then there is
a reversible extension N ′′ of N .

Reversing Unbounded Petri Nets 227

Proof. Note that T = T ′. Let N ′′ = (P ∪ P ′, T, F ∪ F ′,M ′
0 ∪ M0) be the simple

union of N and N ′ synchronised on the set of transitions. All the markings
in RG(N ′′) are of the form M ′ ∪ M with ζ ′(M ′) = M . The proof is a simple
induction on the length of the shorter derivation from M ′

0 ∪ M0 to M ′ ∪ M .
We show below that N ′′ is an extension of N . The condition 1 holds by

the construction. Let us check condition 2. A transition t enabled in a marking
M ′∪M of N ′′ is also trivially enabled in marking M of N . Viceversa, a transition
t enabled in marking M of N is also enabled in any marking M ′ ∪ M of N ′′.
Indeed, since there is a homomorphism from RG(N ′) to RG(N), t is enabled in
M ′. Being enabled in both M ′ and M it is enabled also in M ′ ∪ M .

We now show that RG(N ′′) and RG(N ′) are isomorphic. We define the iso-
morphism as ζ ′′(M ′ ∪ M) = M ′. Existence of corresponding transitions follows
as above. We also note that ζ ′′ is bijective since M = ζ ′(M ′), hence RG(N ′′)
and RG(N ′) are isomorphic.

We now have to show that N ′′ is reversible. Assume towards a contradiction
that it is not, hence from Corollary 1 it has a problematic pair (M ′

1 ∪ M1,M
′
2 ∪

M2). M ′
1 ∪ M1 < M ′

2 ∪ M2 implies M ′
1 < M ′

2, and from the isomorphism M ′
1 is

reachable by b while M ′
2 is not, hence (M ′

1,M
′
2) is problematic in N ′, against

the hypothesis that M ′ is reversible. This concludes the proof. ��
The previous result shows that if there is a reversible net with the same

behaviour as a given net, then the given net also has a reversible extension.
We can also instantiate the result above in terms of the solvability of the

reversed transition system of a given net.

Definition 7 (Reversed transition system). The reversed transition system
of net N is obtained by taking the reachability graph RG(N) of net N and by
adding for each arc (M1, a,M2) in RG(N) a new arc (M2, a

−,M1).

If the reversed transition system is synthesisable, then it can also be solved
by an extension of the original net.

Theorem 5. Let N = (P, T, F,M0) be a net and TS its reversed transition
system. If TS is synthesisable, then N has a reversible extension.

Proof. Let N ′ = (P ′, T ′, F ′,M ′
0) be a solution of TS. By definition RG(N ′)

without reverse transitions and RG(N) are isomorphic. Using the technique in
the proof of Theorem 4 we can show that the simple union of N ′ without reverse
transitions and N synchronised on transitions is an extension of N . Further-
more, one can add reverse transitions by synchronising the reverse in N with
the reverse in N ′, and this does not change the set of reachable markings. Indeed,
an additional marking would be reachable in N ′ too, against the hypothesis. ��
Hence the questions “Is the reversed transition system of a net N synthesisable?”
and “Can we find a reversible extension of a net N?” are equivalent. From now
on we will concentrate on the second formulation.

Thanks to Corollary 1, this second formulation is also equivalent to “Can
we find an extension N ′ of a net N such that, for each transition b, net N ′ has

228 �L. Mikulski and I. Lanese

no b-problematic pair?”. Naturally, the answer to this question depends on the
structure of the set of b-problematic pairs in N .

We discuss below the answer to this question in various classes of nets. For
instance, we can give a positive answer to the question if for each problematic
pair (M1,M2) in N there is at least a bounded place p such that the number
of tokens in p in M1 and in M2 is different. Indeed, such pairs are no more
b-problematic in the complementary net, which is thus reversible.

However, this is not the case for all nets. In particular, there is no reversible
extension of the Petri Net in N1 in Fig. 1, as shown by the result below.

Example 1. In order to show that there is no reversible extension N ′ of the net
N1 in Fig. 1 we show that any extension of N1 has at least one b-problematic
pair. We show, in particular, that the pair of markings ([1, 1], [2, 1]) remains b-
problematic in any extension. Assume this is not the case. Then one of the new
places, let us call it p, should have less tokens in M2 than in M1. In particular,
this should happen if we go to M1 via b and to M2 via bba. Hence, the effect of
ba on p should be negative. This is not possible, since we have an infinite path
(ba)∗, which would be disabled against the hypothesis.

As a consequence of Theorem 5, the reversed transition system of N1 is not
synthesisable. We can generalise the example above as follows:

Lemma 6. If a net N has a b-problematic pair (M1,M2) such that M2 is reach-
able from M1 by σ, and there is a marking M ∈ [M0〉 where σω is enabled then
there is no reversible extension N ′ of N .

Unfortunately, the above result together with the construction of comple-
mentary nets do not cover the whole spectrum of possible behaviours. We give
below two examples of nets that do not satisfy the premises of Lemma 6 and
where b-problematic pairs cannot be removed using complementary nets. How-
ever, in Example 2 there is an extension where b can be reversed, while this is
not the case in Example 3.

Example 2. Consider the net N2 in Fig. 4. There is only one minimal b-
problematic pair, composed of two markings M1 = [0, 1, 0] and M2 = [1, 2, 0]
(emphasised in grey). This pair does not satisfy the premises of Lemma 6. More-
over, all places in this net are unbounded and we cannot use the complementary
net construction. However, one can consider adding a forth place pb which is
a postplace of transition b (with weight 1). After that, since M1(pb) = 1 and
M2(pb) = 0, the two considered markings no longer form a b-problematic pair.
Note that, however, markings [1, 2, 0] and [2, 3, 0] form an a-problematic pair that
satisfies the premises of Lemma 6 and hence the whole net cannot be reversed.

Example 3. Consider net N3 in Fig. 5. All places in N3 are unbounded, and the
computation c(caba)ω is enabled in N3, hence additional places that count the
number of executions of each transition are unbounded as well. Therefore we
cannot use the idea described in Example 2, nor the complementary net.

Reversing Unbounded Petri Nets 229

Fig. 4. Net N2 and part of its reachability graph.

We show now that Lemma 6 cannot be used either. Suppose that there is a
b-problematic pair (M1,M2) with M2 reachable from M1. This means that the
computation M0[σ〉Mx[b〉M1[ρ〉M2 is enabled in N3. Note that for every reach-
able marking M : (i) if M [bc〉 then M [cb〉 and (ii) if M(p3) > 1 then M [ba〉 implies
M [ab〉, (iii) if M(p1) > 3 then M [bac〉 implies M [cab〉. Moreover if M(p3) ≤ 1
then a is not enabled at M while if M(p1) ≤ 2 then ac is not enabled at M .
Let ρ′bσ′ be such that Mx[ρ′〉Mz[b〉My[σ′〉M2 and σ′ is the shortest possible. By
rearrangement (i) described above, σ′ starts with a (otherwise we can move b
forward and σ′ is not the shortest possible). In order for a to be enabled we need
My(p3) ≥ 2, but if My(p3) > 2 we could swap a and b against the hypothesis
that σ′ is minimal. Hence, the only possibility is My(p3) = 2. Thus aa is not
enabled. Hence, σ′ is a or it starts with ac. Let us consider the second case. Since
ac is enabled we have My(p1) > 2. By rearrangement (iii) we have Mz(p1) ≤ 3
which implies My(p1) ≤ 1, otherwise σ′ would not be minimal, hence this case
can never happen. Thus, σ′ = a, My(p3) = 2, M2(p3) = 1. As a consequence,
Mx(p3) < M1(p3) ≤ M2(p3) = 1 (as M1 and M2 form a problematic pair) and
the only possibility is Mx(p3) = 0. The only reachable marking with no tokens
in p3 is the initial marking [4, 0, 0]. Thus, M1 = [2, 0, 1] which is a contradiction,
since the only marking reachable from [2, 0, 1] is b-reachable. Hence, Lemma 6
cannot be used.

Fortunately, we can reuse the reasoning from Example 1. We have to show
that the pair of states marked in grey remains b-problematic for every extension
of N3. Assume that there exists an extension of N3 for which markings M ′

1

and M ′
2 corresponding to M1 and M2 do not form a b-problematic pair. This

means that there is a new place p such that M ′
1(p) > M ′

2(p). In particular,
eff p(b) > eff p(c) + eff p(b) + eff p(a). Hence the effect of ca is negative. This
is not possible since we have an infinite path c(ca)∗, which would be disabled,
against Definition 5. Hence no reversible extension exists.

230 �L. Mikulski and I. Lanese

Fig. 5. Unsolvable net N3 and part of its reachability graph.

7 Conclusions

In the paper we presented an approach to equip a possibly unbounded Petri
net with a set of effect-reverses for each transition without changing the set of
reachable markings. We have shown that, contrarily to the bounded case, this is
not always possible. We introduced the notion of b-problematic pair of markings,
which makes the analysis of the net easier.

We have shown, in particular, that a net can be reversed iff it has no b-
problematic pairs. Furthermore, we have shown that sometimes b-problematic
pairs can be removed by extending the net, and that, if the labelled transition
system of the reverse net is synthesisable, then this can always be done.

However, our techniques cannot cover the whole class of Petri nets, since the
undecidability of the existence of at least one b-problematic pair remains. This
result might surprise, since there exist only finitely many minimal b-problematic
pairs, and one can easily compute a finite over-approximation of the set contain-
ing all the first components of such minimal b-problematic pairs.

The particular case above shows that Dickson’s Lemma guarantees finiteness
of a set of minimals, but not the decidability of its emptiness. In order to use
Dickson’s Lemma constructively to compute all the elements in this finite set,
we need a procedure deciding whether there exists any element larger than a
given one. But this is just another formulation of the emptiness problem we
want to solve using Dickson’s Lemma constructively. In our opinion, this is the
main reason of the counter-intuitiveness of some facts presented in this paper.

As future work one can try to reduce the gap between the sets of nets for
which we can and we cannot add effect-reverses. Also, exploiting results of [22]
on the undecidability of reachability sets for nets with 5 unbounded places, one
may try bound the number of unbounded places needed to prove undecidability
of the transition reversibility problem.

Furthermore, the relation between the results above and reversibility in other
models should be explored. As already mentioned, reversibility is the notion nor-
mally used in process calculi [12], programming languages [26,33] and Turing

Reversing Unbounded Petri Nets 231

machines [5]. The Janus approach [33] obtains reversibility without using his-
tory information, as we do in Sect. 5. This approach requires a carefully crafted
language, e.g., assignments, conditional and loops in Janus are nonstandard.
Ensuring reversibility in existing models (from Turing machines [5] and CCS [12]
to Erlang [26]) normally requires history information, and indeed in Sect. 6 addi-
tional places are used to keep such history information. However, while most of
the approaches use dedicated constructs to store history information, here we
add history information within the model, and this explains why this is not
always possible. This is always possible in Turing machines [5], which are how-
ever sequential, while Petri nets are concurrent, and more expressive than Petri
nets. The only result in the concurrency literature we are aware of showing that
history information can be coded inside the model is the mapping of reversible
higher-order pi-calculus into higher-order pi-calculus in [25], which however com-
pletely changes the structure of the system, while here we only add new places
preserving the original backbone of the system. Indeed, our result is close to [17]
where reversibility for distributed Erlang programs is obtained via monitoring,
since both approaches feature a distributed state and a minimal interference with
the original system. Yet the approach in [17] requires a known and well-behaved
communication structure ensured by choreographies. Summarising, the results
in this paper can help in answering general questions about reversibility, such
as “Which kinds of systems can be reversed without history information?” and
“Which kinds of systems can be reversed using only history information modelled
inside the original language and preserving the structure of the system?”

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

2. Barylska, K., Erofeev, E., Koutny, M., Mikulski, �L., Pi ↪atkowski, M.: Reversing tran-
sitions in bounded Petri nets. Fundamenta Informaticae 157(4), 341–357 (2018)

3. Barylska, K., Koutny, M., Mikulski, �L., Pi ↪atkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

4. Barylska, K., Mikulski, �L.: On decidability of persistence notions. In: 24th Work-
shop on Concurrency, Specification and Programming, pp. 44–56 (2015)

5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

6. Best, E., Esparza, J.: Existence of home states in Petri nets is decidable. Inf.
Process. Lett. 116(6), 423–427 (2016)

7. Bouziane, Z., Finkel, A.: Cyclic Petri net reachability sets are semi-linear effectively
constructible. In: Infinity, ENTCS, pp. 15–24. Elsevier (1997)

8. Cardoza, E., Lipton, R., Meyer, A.: Exponential space complete problems for Petri
nets and commutative semigroups (preliminary report). In: Proceedings of STOC
1976, pp. 50–54. ACM (1976)

https://doi.org/10.1007/978-3-662-47967-4

232 �L. Mikulski and I. Lanese

9. Carothers, C.D., Perumalla, K.S., Fujimoto, R.: Efficient optimistic parallel simu-
lations using reverse computation. ACM TOMACS 9(3), 224–253 (1999)

10. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Crocodile: a sym-
bolic/symbolic tool for the analysis of symmetric nets with bag. In: Kristensen,
L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 338–347.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-7 20

11. Czerwiński, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachability
problem for Petri nets is not elementary. arXiv preprint arXiv:1809.07115 (2018)

12. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

13. de Frutos Escrig, D., Johnen, C.: Decidability of home space property. Université
de Paris-Sud. Centre d’Orsay. LRI (1989)

14. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

15. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Report Series
1(8) (1994)

16. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 45

17. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

18. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages. Trans. Am. Math. Soc.
113(2), 333–368 (1964)

19. Hack, M.: Petri nets and commutative semigroups. Technical Report CSN 18, MIT
Laboratory for Computer Science, Project MAC (1974)

20. Hack, M.: Decidability questions for Petri nets. Ph.D. thesis, MIT (1976)
21. Haddad, S., Kordon, F., Petrucci, L., Pradat-Peyre, J.-F., Treves, L.: Efficient

state-based analysis by introducing bags in Petri nets color domains. In: ACC, pp.
5018–5025. IEEE (2009)

22. Jancar, P.: Undecidability of bisimilarity for Petri nets and some related problems.
Theor. Comput. Sci. 148(2), 281–301 (1995)

23. Kezić, D., Perić, N., Petrović, I.: An algorithm for deadlock prevention based on
iterative siphon control of Petri net. Automatika: časopis za automatiku, mjerenje,
elektroniku, računarstvo i komunikacije 47(1–2), 19–30 (2006)

24. Landauer, R.: Irreversibility and heat generated in the computing process. IBM J.
Res. Dev. 5, 183–191 (1961)

25. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

26. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebr. Methods Program. 100, 71–97 (2018)

27. Laursen, J.S., Schultz, U.P., Ellekilde, L.: Automatic error recovery in robot assem-
bly operations using reverse execution. In: IROS, pp. 1785–1792. IEEE (2015)

28. Leroux, J.: Vector addition system reversible reachability problem. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 327–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6 22

https://doi.org/10.1007/978-3-642-21834-7_20
http://arxiv.org/abs/1809.07115
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_22

Reversing Unbounded Petri Nets 233

29. McNellis, J., Mola, J., Sykes, K.: Time travel debugging: root causing bugs in
commercial scale software. CppCon talk (2017). https://www.youtube.com/watch?
v=l1YJTg A914

30. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

31. Reveliotis, S.A., Choi, J.Y.: Designing reversibility-enforcing supervisors of polyno-
mial complexity for bounded Petri nets through the theory of regions. In: Donatelli,
S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 322–341. Springer,
Heidelberg (2006)

32. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. CAD Integr. Circ. Syst. 22(6), 710–722 (2003)

33. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM, pp. 144–153. ACM Press (2007)

https://www.youtube.com/watch?v=l1YJTg_A914
https://www.youtube.com/watch?v=l1YJTg_A914

Concurrent Processes

Generalized Alignment-Based Trace
Clustering of Process Behavior

Mathilde Boltenhagen1(B), Thomas Chatain1(B), and Josep Carmona2(B)

1 LSV, CNRS, ENS Paris-Saclay, Inria, Université Paris-Saclay, Cachan, France
{boltenhagen,chatain}@lsv.fr

2 Universitat Politècnica de Catalunya, Barcelona, Spain
jcarmona@cs.upc.edu

Abstract. Process mining techniques use event logs containing real pro-
cess executions in order to mine, align and extend process models. The
partition of an event log into trace variants facilitates the understanding
and analysis of traces, so it is a common pre-processing in process mining
environments. Trace clustering automates this partition; traditionally it
has been applied without taking into consideration the availability of a
process model. In this paper we extend our previous work on process
model based trace clustering, by allowing cluster centroids to have a
complex structure, that can range from a partial order, down to a sub-
net of the initial process model. This way, the new clustering framework
presented in this paper is able to cluster together traces that are distant
only due to concurrency or loop constructs in process models. We show
the complexity analysis of the different instantiations of the trace clus-
tering framework, and have implemented it in a prototype tool that has
been tested on different datasets.

1 Introduction

Process Mining is becoming an essential discipline to cope with the tons of
process data arising in organizations [1]. Now an organization can use some of
the available commercial tools to elicit and streamline its processes, so that
its decisions are based on the evidences found in the data. In any of these
existing software tools, the notion of trace variant is fundamental: it denotes
a singular sequential execution of the process from start to end. All observed
traces that correspond to the same permutation of activities (although the other
data attributes, e.g., the customer name, are different), are included into the
same trace variant. When trace variants are found, stakeholders then analyze
them in order to find out possible incoherences between observed and modeled
behavior [2].

In reality, however, the previous flow for analyzing process data is not as
ideal as one may think. First, event logs that contain the process data stored
by an organization, can contain noise, a phenomenon that affects the capability
of identifying the right trace variant. Second, processes are not static entities
in organizations, but instead evolve over time, which implies also a drift on
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 237–257, 2019.
https://doi.org/10.1007/978-3-030-21571-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_14

238 M. Boltenhagen et al.

the number and type of trace variants. Third, processes describing concurrent
behavior will tend to separate in different trace variants different interleavings of
the same Mazurkiewicz trace, although perhaps the analysis for all these traces
should be the same. The same applies in case of loops, where often it is not
necessary to separate traces that only differ in the number of loop iterations.

In this paper we present a novel clustering technique that is able to tackle the
aforementioned situations. Intuitively, the idea is to cluster the event log in a way
that traces in the same cluster can be very distant when considered as words,
but actually they correspond to the same trace variant when concurrency and
loop behavior is disregarded. We build upon a technique presented in a recent
paper [3], which assumes that a process model exists. This assumption is realistic
in many contexts, e.g., in Process-Aware Information Systems (PAIS), process
models are often available [4].

We extend the technique in [3] by allowing clustering centroids to now
be partial-orders or even subnets of the process model. We present proper-
ties that relate them, and show how the subnet case can still be encoding in
a SAT instance. Correspondingly, we adapt the notion of inter- and intra-cluster
distance and spot quality criteria, so that a characterization of optimal clustering
can be defined by users.

We see a great potential on the techniques presented in this paper: first,
the techniques proposed can help into simplifying the analysis of event logs,
by enabling a better (more abstract) characterization of trace variants. Second,
the novel concurrency-and-loop-aware trace clustering proposed is significantly
more robust than the ones found in the literature, and tends to avoid redundancy
between different clusters.

Related Work. Several techniques have been proposed in the last decade for
trace clustering [5–11]. They can be partitioned into vector space approaches [5,
7], context aware approaches [8,9] and model-based approaches [6,10,11]. All the
aforementioned clustering algorithms consider only the event log as input, and
use different internal representations for producing the clusters. In contrast, in
a recent paper [3], we presented a different view on clustering event log traces,
by assuming that a process model exists. All the aforementioned techniques do
not allow concurrency or loop behavior.

The use of an explicit characterization of concurrency has been considered
recently in process discovery: the works in [12,13] show how to improve the
discovery of a process model by folding the initial unfolding that satisfies the
independence relations given as inputs. In the area of conformance checking,
the same phenomena has been observed: the work in [14] assumes traces are
represented as partial order, thus allowing again an explicit characterization of
concurrency in the problem formalization.

Perhaps the works more similar to the one of this paper are [15,16], where a
transition system representing the event log is clustered, so that a set of simpler
process models is generated. Tailored state-based properties that guarantee cer-
tain Petri net classes are used to guide the clustering, whereas in this work the
computation of subnets is unrestricted.

Generalized Alignment-Based Trace Clustering of Process Behavior 239

Our work is also related to [17] which clusters events and detects deviation.
However, our work focuses on an existing model and the results may consider
different directions like repairs while [17] gives a pre-processing of data.

Complexity of our works is related to [18] which demonstrates several meth-
ods for distance between automata. Even for dynamic functions, the complexity
have been proved PSPACE-complete and is even more complex for Petri nets
which is formalism used in this paper.

Organization of the Paper. In the next section we provide an example of the
main contributions of the paper. Then, preliminaries are given in Sect. 3, and
Sect. 4 defines the quality criteria for trace clustering. In Sects. 5 and 6 we present
the two main clustering perspectives proposed in this paper, and the complexity
analysis of the problem of computing an optimal clustering is reported in Sect. 7.
Finally, in Sect. 8 we provide an evaluation of the prototype implementation of
the techniques of this paper over several event logs. Section 9 summarizes this
paper and provides futures research lines.

2 A Motivating Example

In [3], we introduced the idea of a trace clustering technique based on a known
process model. Each group of traces is related to a trace variant, corresponding
to a full run of the model (Definition 2), which serves as centroid. The traces in
the cluster must all be sufficiently close to the centroid. This allows to identify
executions of the model which reproduce typical observed traces, and also to
isolate deviant log traces which are too far from what the model describes. In
Fig. 1, we present an example of alignment-based clustering.

Our definitions deal with the distance between log traces and the centroid
of their cluster. Since these are usually presented as words over an alphabet
of actions, a notion of distance on words is used, typically Levenshtein’s edit
distance. Sometimes, concurrency and loop behavior is not important to differ-
entiate two traces of a business process, as illustrated by the following example.

Example 1. Model of Fig. 1 describes the behaviors of users rating an app. First,
users start the form (s). They give either a good (g) or a bad (b) mark attached
to a comment (c) or a file (f). Bad ratings get apologies (a), a silent transition
(τ) enables to avoid them. Finally, users can donate to the developers of the app
(d). The company may be interested in grouping users by behavior, to visualize
the differences; for instance which profiles provide bad marks. Trace clusterings
of Figs. 1, 2 and 3 has been created, for a maximal distance of alignment to 1.

The order of concurrent actions, like writing a comment before or after giving
the rating, does not need to matter to distinguish behaviors in this process.
In the alignment-based trace clustering from [3], 〈s, f, b, a〉 and 〈s, b, f, a〉, of
unhappy customers who uploaded a file, differ only on concurrent actions, and
are separated in different clusters. In contrast, Fig. 2 shows a new trace clustering
approach where concurrency is disregarded, with the consequence that the two

240 M. Boltenhagen et al.

s

f

c

g

b

a

τ

d

(a) Petri Net.

〈s, c, g〉
〈s, c, g, d〉
〈s, f, b, a〉
〈s, f, f, a〉
〈s, b, f, a〉
〈s, g, f, d, d〉
〈s, g, f, d, d, d, d〉
〈g, c, f, s, d, d〉
〈s, d, d, d〉

(b) Log L1

Centroids Traces Distance

〈s, c, τ, g〉 〈s, c, g〉 0
〈s, c, g, d〉 1

〈s, b, f, a〉 〈s, b, f, a〉 0
〈s, f, f, a〉 1

〈s, f, b, a〉 〈s, f, b, a〉 0
〈s, g, f, τ, d, d〉 〈s, g, f, d, d〉 0

〈s, g, f, τ, d, d, d, d〉 〈s, g, f, d, d, d, d〉 0

non-clustered
〈g, c, f, s, d, d〉 NA

〈s, d, d, d〉 NA

(c) Clusters

Fig. 1. Alignment-based Trace Clustering (ATC).

Centroids Traces Distance

s

c

g

τ 〈s, c, g〉 0

〈s, c, g, d〉 1

s

f

b

a 〈s, b, f, a〉 0

〈s, f, b, a〉 0

〈s, f, f, a〉 1

s

f

g

τ

d d
〈s, g, f, d, d〉 0

s

f

g

τ

d d d d
〈s, g, f, d, d, d, d〉 0

non-clustered
〈g, c, f, s, d, d〉 NA

〈s, d, d, d〉 NA

Fig. 2. Alignment and Partial Order based Trace Clustering (APOTC).

Generalized Alignment-Based Trace Clustering of Process Behavior 241

previous traces now belong to the same cluster. Underneath, the method uses
partial-order runs (called processes) of the model instead of sequential runs,
shown on the first column of Fig. 2.

Furthermore, donating twice or four times to the developers of the app
represent very close behaviors and accordingly, similar profiles. Hence traces
〈s, g, f, d, d〉 and 〈s, g, f, d, d, d, d〉 should then be clustered in the same group.
This is why we propose yet another trace clustering technique that allows for
repetitive behavior in the same cluster, that uses subnets of the process model.
Then the two traces below belong to a unique cluster, shown in Fig. 3.

Furthermore, aligning traces to the model is fundamental to avoid clustering
(highly) deviant traces. For instance, the log trace 〈g, c, f, s, d, d〉 is left non-
clustered in our work, but would be clustered with 〈s, g, f, d, d〉 for a trace clus-
tering based only on the log. We compared the results of clusterings to [11] which
grouped data by attributes frequency and occurrences, e.g. the activity names.
Those traces are then groups with fitting traces.

3 Preliminaries

3.1 Process Models and Trace Clustering

We assume process models are described as Petri nets [19]. Formally:

Definition 1 (Process Model (Labeled Petri Net)). A Process Model
defined by a labeled Petri net system (or simply Petri net) is a tuple N =
〈P, T, F,m0,mf , Σ, λ〉, where P is the set of places, T is the set of transitions
(with P∩T = ∅), F ⊆ (P×T)∪(T×P) is the flow relation, m0 is the initial mark-
ing, mf is the final marking, Σ is an alphabet of actions and λ : T → Σ ∪ {τ}
labels every transition by an action or as silent.

Semantics. The semantics of Petri nets is given in term of firing sequences.
Given a node x ∈ P ∪ T , we define its pre-set •x def= {y ∈ P ∪ T | (y, x) ∈ F}
and its post-set x• def= {y ∈ P ∪ T | (x, y) ∈ F}. A marking is an assignment of
a non-negative integer to each place. A transition t is enabled in a marking m
when all places in •t are marked. When a transition t is enabled, it can fire by
removing a token from each place in •t and putting a token to each place in t•.
A marking m′ is reachable from m if there is a sequence of firings 〈t1 . . . tn〉 that
transforms m into m′, denoted by m[t1 . . . tn〉m′.

The set of reachable markings from m0 is denoted by [m0〉. A Petri net is
k-bounded if no marking in [m0〉 assigns more than k tokens to any place. A Petri
net is safe if it is 1-bounded. In this paper we assume safe Petri nets.

Definition 2 (Full Run). A firing sequence u = 〈t1 . . . tn〉 such that m0[u〉mf

is called a full run of N . We denote by Runs(N) the set of full runs of N .

242 M. Boltenhagen et al.

Centroids Traces Distance

s

f

c

g

b

a

τ

d

〈s, c, g〉 0

〈s, c, g, d〉 1

s

f

c

g

b

a

τ

d

〈s, b, f, a〉 0

〈s, f, b, a〉 0

〈s, f, f, a〉 1

s

f

c

g

b

a

τ

d

〈s, g, f, d, d〉 0

〈s, g, f, d, d, d, d〉 0

non-clustered
〈g, c, f, s, d, d〉 NA

〈s, d, d, d〉 NA

Fig. 3. Alignment and Model Subnet based Trace Clustering (AMSTC).

Given a full run u = 〈t1 . . . tn〉 ∈ Runs(N), the sequence of actions λ(u) def=
〈λ(t1) . . . λ(tn)〉 is called a (model) trace of N . When the labeling function λ
is injective, like in the model of Fig. 1, we sometimes identify the transition t
with its label λ(t). Then, full runs coincide with model traces. Examples for the
model of Fig. 1 are 〈s, c, g〉, 〈s, f, b, a〉, 〈s, f, g, d, d, d〉.
Definition 3 (Log). A log over an alphabet Σ is a finite set of words σ ∈ Σ∗,
called log traces.

Figure 1c shows log traces of recorded behaviors.

Definition 4 (Trace Clustering). Given a log L, a trace clustering over L is
a partition over a (possibly proper) subset of the traces in L.

Figures 1 and 2 show two different examples of trace clustering, with 5 and
4 clusters respectively.

Alignment-based trace clustering is a particular form of trace clustering:
it relies on a model N of the observed system. The idea of alignment-based
trace clustering is to explicit the relation between log traces and full runs of
N . Concretely, each cluster of log traces will be assigned a full run u of N ,
presented as the centroid of the cluster. Hence, traces in the same cluster are
not only similar among them, but they are related to a run of the model, which
together validates a part of the model and explains the observed log traces.

Generalized Alignment-Based Trace Clustering of Process Behavior 243

s

e1

f

e2
b

e3

a

e4
d

e5

d

e6

d

e7

Fig. 4. Example of process of the Petri net in Fig. 1

Definition 5 (Alignment-based Trace Clustering (ATC) [3]). For a log L
and a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, an alignment-based trace clustering
of L w.r.t. N is a tuple C = 〈{u1 . . . un}, χ〉 where u1 . . . un (n ∈ N) are full runs
of N which serve as centroids for the clusters and χ : L → {nc, u1 . . . un} maps
log traces either to the centroid of its cluster χ(σ), or to none of the clusters,
denoted by nc.

Each set χ−1(ui), for i ∈ {1 . . . n}, defines the cluster whose centroid is ui. The
set χ−1(nc) contains the traces which are left non-clustered.

Figure 1 shows a clustering of the traces of a log L1 based on a model N . For
this cluster, χ−1(〈s, g, c, τ〉) is also the set of sequences: {〈s, c, g〉, 〈s, g, c, d〉}. We
remark that the traces 〈g, c, f, s, d, d〉 and 〈s, d, d, d〉 have not been classified for
this clustering.

3.2 Partial-Order Semantics

In full runs of a process model, transition occurrences are totally ordered. How-
ever transitions can be handled in different orders for the same process in case
of concurrency. In the model of Fig. 1 traces 〈s, b, f, a〉 and 〈s, f, b, a〉 follow the
same process but differ by the order of the transitions.

They can however be seen as two linearizations of a common representation
based on partial-order runs which represents a process.

Definition 6 (Partial-Order Representation of Runs: Process). A (non-
branching) process P of a Petri Net N = 〈P, T, F,m0,mf , Σ, λ〉 is a tuple P =
〈B,E,G,B0, Bf , h〉 where:

– (B,E,G,B0, Bf) is a non-branching, finite, acyclic Petri Net, i.e.
• its causality relation G+ is acyclic, and
• it has no forward and no backward branchings:

∀b ∈ B ∃!e ∈ E ∪ {⊥} b ∈ e•

∀b ∈ B ∃!e ∈ E ∪ {} b ∈ •e

where ⊥ and are virtual events satisfying ⊥• def= B0 and • def= Bf .

244 M. Boltenhagen et al.

– h : (B ∪ E) → (P ∪ T) is a function that maps the non-branching process P
in the Petri Net N with the following relations:

• h(B) ⊆ P and h(E) ⊆ T
• ∀e ∈ E, h|•e is a bijection between •e and •h(e), same reasoning for h|e•

• h|B0 is a bijection between B0 and m0, likewise for h|Bf

Figure 4 shows a process of the Petri Net in Fig. 1. Each event ei corresponds
to a transition of N (for instance h(e2) = f).

Definition 7 (Process representation of a full run). Every full run u of a
(safe) model N induces a process of N . This process is unique up to isomorphism
[20] and is denoted by Π(u).

In general, a process represents several full runs, which differ only by the order-
ing of concurrent actions. For instance, both sequences 〈s, f, b, a, d, d, d〉 and
〈s, b, d, d, d, f, a〉 induce the process of the Fig. 4.

We write Runs(P) for the set of full runs of the process P. For every full run
〈e1 . . . en〉 of a process P of a Petri net N , the sequence u

def= 〈h(e1) . . . h(en)〉 ∈ T ∗

is called a linearization of P. Every linearization of P is a full run of N .

3.3 Distances Between Log and Model Traces

A key element in this work, and in Process Mining in general, is to align log traces
to full runs of the model. In this work, in particular, we target good alignment
between every log trace σ ∈ L and the centroid of its cluster u = χ(σ). By the
labeling λ of transitions of the model, full runs are mapped to words over the
alphabet Σ of actions, called model traces, and the quality of the alignment
between σ and u can be quantified as the distance dist(σ, λ(u)), where dist is a
distance between finite words over Σ. In this paper, we use Levenshtein’s edit
distance, which is usually considered appropriate in Process Mining.

Definition 8 (Levenshtein’s edit distance). Levenshtein’s edit distance
dist(w1, w2) between two words w1 and w2 ∈ Σ∗ is the minimal number of
edits needed to transform w1 to w2. Editions can be substitutions to a letter by
another one, deletions or additions of a letter in words.

We will abuse notations, and write dist(σ, u) for dist(σ, λ(u)), and dist(u1, u2)
for dist(λ(u1), λ(u2)). For example, the full run 〈s, g, c〉 and the log trace
〈s, g, d, c〉 have only one difference: the addition of d. They are at distance 1.

4 Quality Criteria for Trace Clustering

Figure 5 shows two alignment-based trace clusterings of a new log L2, based on
the model N of Fig. 1. The two clusterings have been created for the same model
and log, and contain different centroids.

Generalized Alignment-Based Trace Clustering of Process Behavior 245

Clustering Centroids u Traces σ dist(σ, u) Quality criteria

C1

〈s, c, g, τ〉
〈s, f, g〉 1

d(C1) = 2

Δ(C1) = 12

n(C1) = 3

č(C1) = 0.83

Φ(C1) = 3

〈s, c, g〉 0
〈s, g, c〉 2

〈s, c, g, d〉 1

〈s, b, f, a〉
〈s, f, b, a〉 2
〈s, c, b, a〉 2
〈s, b, f, a〉 0
〈s, b, c, a〉 1

〈s, f, τ, g, d, d〉 〈s, f, g, d〉 1
〈s, f, g, d, d, d, d〉 2

non-clustered
〈s, f, a, a, a〉 NA
〈s, f, b, d, d〉 NA

C2

〈s, f, g, τ〉
〈s, f, g〉 0

d(C1) = 2

Δ(C2) = 14

n(C2) = 4

č(C2) = 1.0

Φ(C2) = 2

〈s, c, g, d〉 2
〈s, f, g, d〉 1

〈s, f, b, a〉

〈s, f, b, a〉 0
〈s, f, a, a, a〉 2
〈s, c, b, a〉 1
〈s, b, f, a〉 2
〈s, b, c, a〉 2

〈s, f, b, d, d〉 2
〈s, f, g, τ, d, d, d, d〉 〈s, f, g, d, d, d, d〉 0

〈s, g, c, τ〉 〈s, c, g〉 2
〈s, g, c〉 0

Fig. 5. Two possible clusterings for the same set of trace logs.

In this section, we provide criteria which contribute in the qualification of a
good clustering. We have identified the following criteria:

– d(C), maximum distance between a trace and the centroid of its cluster :
this criterion, defined by maxσ∈L\χ−1(nc) dist(σ, χ(σ)), will be minimized to
increase the fit of the centroids to their traces. In case of a log containing
noise, a small distance may induce many non-clustered traces.

– Δ(C), sum of distances : the sum Δ(C) def=
∑

σ∈L\χ−1(nc) dist(σ, χ(σ)) can be
seen as a variant or a refinement of the previous criterion d(C). It will also be
minimized in order to get the most representative centroids.

– n(C), number of clusters : The number of clusters provides an interesting
perspective, which is analogous to the number of trace variants of a process
model, but in this case from the log perspective.

– č(C), ratio of clustered traces: this ratio, defined as č(C) def= |L|−|χ−1(nc)|
|L| , is

close to 1 for a process model that covers most of the behavior of the log.
č(C) also highlights the ratio of distant traces, i.e. traces that deviate from
the model, for a given maximum distance d(C).

– Φ(C), inter-cluster distance : the distance between the centroids is also an
important parameter. For an ATC C = 〈{u1 . . . un}, χ〉, the inter-cluster

246 M. Boltenhagen et al.

distance is defined as Φ(C) def= mini�=j dist(ui, uj). A larger distance involves
distant clusters, this is why this parameter should be maximized in order to
prevent overlay between the clusters.

Most of the detailed criteria come from the Data Mining domain [21,22].
Other measures like the Dunn [23], which compares distances between items
that share or not a cluster, and the Silhouette [24], that computes if items is
close enough to their clusters instead of the others, help the user to analyze
its clustering. As usual when multiple parameters are taken into account, there
will not exist in general a unique clustering optimizing all the criteria together.
Instead, every clustering problem should consider a good balance between the
parameters to optimize. Our tool, which is described in Sect. 8, returns the opti-
mal clustering for a given pre-defined setting.

Example 2. Figure 5 shows two ATCs of the model N of Fig. 1 and a new set
of log traces L2. The results differ on the parameters to optimize. The first one
minimize the inter-cluster distance Φ(C1) for a given distance between the trace
and the centroid d(C1) to 2. However, some traces are left non-clustered which
do not appear in the second clustering. In contrast, the centroids are closer
(Φ(C2) < Φ(C1)) and the number of clusters is larger (n(C1) < n(C2)).

5 Fitting Centroids to Concurrency

The aim of ATC is to group traces which are similar to a full run of the model.
In this section, we want to go further and allow one to cluster together traces
which differ only by the order of execution of transitions which are presented as
concurrent in the model. In the ATC of Fig. 1, traces 〈s, b, f, a〉 and 〈s, f, b, a〉
are clustered separately, and since no model trace is at distance ≤ 1 to both
of them, every ATC C which would cluster them together would have an inter-
cluster d(C) > 1. Yet, 〈s, b, f, a〉 and 〈s, f, b, a〉 are perfectly aligned with two
different interleavings of the same execution of the model, if one understands
“execution” as process like in Definition 6. The following definition of trace
clustering, precisely uses processes as cluster centroids.

Definition 9 (Alignment and Partial Order based Trace Clustering
(APOTC)). As full run clustering, an alignment and partial order based trace
clustering, of a log L and a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, is a tuple
C = 〈{P1 . . . Pn}, χ〉 where P1 . . . Pn (n ∈ N) are processes of N which serve as
centroids for the clusters and χ : L → {nc,P1 . . . Pn} maps log traces either to
the centroid of its cluster χ(σ), or to none of the clusters, denoted by nc.

5.1 Quality Criteria for APOTC

All the quality criteria of ATC are considered in APOTC, but they need to be
redefined now that centroids are processes. Indeed we need to compare log traces
to processes, which represent (finite) sets of full runs. Naturally, the distance
between a model trace σ and a process P will be defined as the distance to its
closest linearization of P.

Generalized Alignment-Based Trace Clustering of Process Behavior 247

Definition 10. We define the distance dist(σ,P) (abusing notation dist again)
between a trace σ and a process P as dist(σ,P) def= minu∈Runs(P) dist(σ, u).

This allows us to define d(C) and Δ(C) for APOTC like for ATC, respectively
as maxσ∈L\χ−1(nc) dist(σ, χ(σ)) and

∑
σ∈L\χ−1(nc) dist(σ, χ(σ)) with χ(σ) are

processes.
The inter-cluster distance of an APOTC C = 〈{P1 . . . Pn}, χ〉 is also

defined as for ATC, as the minimum distance between two centroids: Φ(C) =
mini�=j dist(Pi,Pj), using the appropriate notion of distance between processes:

Definition 11. The distance between two processes is the minimal distance
between their linearizations: dist(P,P ′) def= min u∈Runs(P)

u′∈Runs(P′)
dist(u, u′).

Example 3. Figure 2 shows an APOTC of the model and log of Fig. 1. Traces
〈s, b, f, a〉 and 〈s, f, b, a〉 can now be clustered together, yielding a smaller n(C)
for equivalent Δ(C) and d(C).

5.2 Relating APOTC to ATC

Any ATC can be casted as an APOTC. All the full runs centroids of an
ATC, which are sequential executions, can be represented as processes using
Definition 7. The following theorem explains how this transformation affects the
quality criteria of the clusterings.

Theorem 1. For any ATC Cu = 〈{u1 . . . un}, χu〉, we define ∀i ∈ {1 . . . n}
Pi

def= Π(ui) and χP
def= Π ◦ χu (by convention Π(nc) = nc) inducing CP =

〈{P1 . . . Pn}, χP〉 its corresponding APOTC of the same process model N and
the same log L. The distances below follow the properties:

1. d(Cu) ≥ d(CP) and Δ(Cu) ≥ Δ(CP) with equality if the model is sequential
2. Φ(Cu) ≥ Φ(CP) with equality if the model is sequential
3. n(Cu) = n(CP) and č(Cu) = č(CP)

Proof. We first observe that the obtained set {P1 . . . Pn} is by Definition 7 a set
of subnets of N and χP maps every clustered log traces to a subnet and non-
clustered log traces to nc. Then CP = 〈{P1 . . . Pn}, χP〉 is indeed an APOTC.

1. Every trace σ of L is either clustered (χu(σ) = ui, i ∈ {1 . . . n}) or non-
clustered (χu(σ) = nc). The maximum distance between traces and centroids
d(Cu) depends only on clustered traces: ∀σ ∈ L\χu

−1(nc) dist(σ, χu(σ)) ≤
d(Cu). By Definition 7 χu(σ) ∈ Runs(χP(σ)). Then for any clustered trace σ,
we have d(CP) ≤ dist(σ, χP(σ)) ≤ dist(σ, χu(σ)) ≤ d(Cu) with equality if the
model is sequential (no other run in Runs(χP(σ))). Furthermore, Δ(C) is the
sum of the distances: Δ(CP) ≤ Δ(Cu).

248 M. Boltenhagen et al.

2. Let ui and uj , i, j ∈ {1 . . . n}, be two centroids of the ATC. The corresponding
processes of those centroids are defined by Pi = Π(ui) and Pj = Π(uj) and
ui ∈ Runs(Pi) and uj ∈ Runs(Pj). This implies dist(Pi,Pj) ≤ dist(ui, uj)
with equality if the model is sequential (no other run in the processes). Con-
sequently Φ(CP) ≤ mini�=j dist(ui, uj) = Φ(Cu) with equality if the model is
sequential.

3. This is immediate by definition of χP . ��

s

f

c

g

b

a

τ

d

Fig. 6. A subnet of the Petri Net in Fig. 1. Only transitions s, g, f , τ , d are kept.
Transitions in light gray do not belong to the subnet.

As a summary, casting an ATC to an APOTC improves the distances between
traces and centroids; in contrast, the resulting APOTC may get a lower (i.e.
poorer) inter-cluster distance than the ATC. The number of clusters and ratio
of clustered traces are preserved.

This means that clusters that were distant in the ATC may become closer
in the APOTC, which appears negative when seen from the perspective of good
clusterings presenting distant clusters. But, in the other hand, clusters that
become closer will typically be those that one precisely wanted to merge because
they represent different interleavings of processes. This is exactly what happens
in Example 3. Merging clusters then results in a lower number of clusters n(C),
which also helps to get a human understandable clustering and facilitates the
analysis of the results by decision makers.

Example 4. When casting the ATC of Fig. 1 to an APOTC, the clusters with
centroid 〈s, b, f, a〉 and 〈s, f, d, a〉 become two clusters with the same process as
centroid. This leads to an inter-cluster distance Φ(CP) = 0 for the APOTC. But,
after merging these two clusters, one gets the better APOTC presented in Fig. 2.

6 Fitting Centroids to Concurrency and Repetitive
Behavior

In Fig. 2, we show that APOTC separates process arising from traces corre-
sponding to different number of loop iterations, e.g., the traces 〈s, g, f, d, d〉
and 〈s, g, f, d, d, d, d〉. The issue is due of the finite size of runs of processes.
Indeed process centroids are partial order runs which do not allow loops and

Generalized Alignment-Based Trace Clustering of Process Behavior 249

infinite sequences of events. To overcome this limitation, we introduce subnets of
models.

Definition 12 (Subnet of Petri net). A subnet of a Petri net N =
〈P, T, F,m0,mf , Σ, λ〉 is a Petri net 〈P, T ′, F|T ′ ,m0,mf , Σ|T ′ , λ〉 with T ′ ⊆ T ,
and FT ′

def= F ∩ (P × T ′ ∪ T ′ × P).

Figure 6 presents a subnet of the model of Fig. 1. Observe that our definition
of subnets, based on selecting transitions, restricts the semantics of the net and
cannot produce new behaviors. Formally:

Lemma 1. Every full run (resp. process) of a subnet of a Petri net N , is a full
run (resp. process) of N .

We now formalize AMSTC, which consider subnets as centroids:

Definition 13 (Alignment and Model Subnet-based Trace Clustering
(AMSTC)). For a log L and a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, an
alignment and model subnet trace clustering, of L w.r.t. N is a tuple C =
〈{N1 . . . Nn}, χ〉 where N1 . . . Nn are subnets of N which serve as centroids for
the clusters and χ : L → {nc,N1 . . . Nn} maps log traces either to the centroid
of its cluster χ(σ), or to none of the clusters, denoted by nc.

Figure 3 shows an AMSTC of log traces based on the model of Fig. 1.

6.1 Quality Criteria for AMSTC

All the previous criteria for ATC and APOTC also apply to AMSTC, but the
notion of distance needs to be adapted again. The quality criteria d(C) and
Δ(C) rely on the distance between log traces and the centroids of their clus-
ters. Here, centroids are subnets, and the distance is defined as dist(σ,N) def=
minu∈Runs(N) dist(σ, u). Computing this distance corresponds to aligning the
trace to the model.

The inter-cluster distance, Φ(C) is the minimal distance between two subnet
centroids, now defined as: dist(N ,N ′) def= min u∈Runs(N)

u′∈Runs(N′)
dist(u, u′).

Example 5. Figure 3 shows an AMSTC of the Petri Net and the log traces of
Fig. 1 for d(C) = 1. Then the traces 〈s, g, f, d, d〉 and 〈s, g, f, d, d, d, d〉 are grouped
in the same cluster.

Intra-cluster Distance. If applied unrestricted, AMSTC can use as centroids,
subnets with branchings and loops, and then cluster together very different log
traces. The intra-cluster distance aims at controlling this aspect. For instance,
taking as centroid the complete net of Fig. 1 would not yield a satisfactory
AMSTC. Instead, traces in the same cluster should be similar and represent
a generalized notion of trace variant. This criterion is quantified by the intra-
cluster distance Θ(C). Clusterings with low Θ(C) will be preferred.

250 M. Boltenhagen et al.

– Θ(C), the intra-cluster distance: Before defining the intra-cluster distance of
a clustering C, we focus on each of its centroids separately: for every centroid
Nk, define

Θ′(Nk) def= sup
P,P′∈Proc(Nk)

dist(P,P ′)
(1 + ε)max(|P|,|P′|)

where |P| denotes the number of events in P, and ε > 0 is a parameter set by
the user in order to limit (more or less) the influence of long processes. Indeed,
when the subnet Nk has loops, it has infinitely many processes, arbitrary
large, which yields arbitrary large distance to the smaller processes. Yet,
such subnets may be relevant, as illustrated by Example 6. This is why our
definition penalizes more for distances between small processes.
Finally, the intra-cluster distance of a clustering C = 〈{N1 . . . Nn}, χ〉 is:

Θ(C) def= max
k

Θ′(Nk)

Example 6. The AMSTC of Fig. 3 has only one centroid with a loop. Because of
the loop d, this centroid has infinitely many processes. With ε = 0.1, the intra-
cluster distance of this AMSTC is bounded by 2.39, increasing ε to 0.5 returns
Θ(C) = 0.12 which penalizes significantly less the loop in the subnet centroid.

6.2 Relating AMSTC to APOTC

Every APOTC CP induces an AMSTC whose subnet centroids are subnets are
defined according to the process centroids of CP .

Definition 14 (Subnet induced by a process). Every process P =
(B,E,G,B0, Bf , h) of a model N = 〈P, T, F,m0,mf , Σ, λ〉, induces a subnet
of N defined by Ψ(P) def= (P, h(E), G|h(E), h(B0), h(Bf)).

Figure 6 shows the subnet corresponding to the last process of Fig. 2. All the
transitions in the process belong to the subnet, and the loop fits traces with
arbitrary repetition of activity d (for instance 〈s, f, g, d, d〉 and 〈s, f, g, d, d, d, d〉).

The following theorem relates APOTC and the induced AMSTC, analogously
to Theorem 1 for ATC and APOTC.

Theorem 2. For any APOTC CP = 〈{P1 . . . Pn}, χPi
〉, we define ∀i ∈ {1 . . . n}

Ni
def= Ψ(Pi) and χNP

def= Ψ ◦ χP (by convention Ψ(nc) = nc) inducing CNP =
〈{N1 . . . Nn}, χNP 〉 its corresponding AMSTC of the same process model N and
the same log L. The distances below follow the properties:

1. d(CP) ≥ d(CNP) and Δ(CP) ≥ Δ(CNP) with equality if the model is acyclic
2. Φ(CP) ≥ Φ(CNP) with equality if the model is acyclic.
3. n(CP) = n(CNP) and č(CP) = č(CNP)

Generalized Alignment-Based Trace Clustering of Process Behavior 251

Proof. The correspondence APOTC-AMSTC is similar to the correspondance
ATC-APOTC demonstrated in Theorem 1. When properties exactly coincide
between ATC and APOTC for sequential models, same results are found between
APOTC and AMSTC for acyclic models: without loops, every subnet has a single
process and the distances are preserved. ��

As subnets may allow infinite runs, the sum of differences Δ(C) between log
traces and centroids may decrease in an expansion from APOTC to AMSTC.
Unfortunately, the inter-cluster distance Φ(C) can also be lower.

When AMSTCs Meet APOTCs. Observe that, in our definition of AMSTC,
only the behavior of the subnets is considered. Hence, nothing penalizes a clus-
tering for having dead transitions in a cluster, i.e., transitions which do not
participate in any full run of the subnet. Intuitively, this situation is not satis-
factory since we expect the subnets to give information about the part of the
net which really participates in the observed traces. By the way, notice that
the subnets induced by processes following Definition 14 never have any dead
transition. These subnets also have another property: they all have at least one
full run. Let us call fair an AMSTC in which every centroid has these two prop-
erties. The following theorem establishes a relation between APOTCs and fair
AMSTCs.

Theorem 3. For a log L and an acyclic and trace-deterministic1 model N ,
the transformation defined in Theorem 2 establishes a bijection from the set of
APOTC to the set of fair AMSTCs C with intra-cluster distance Θ(C) = 0.

Proof. Since N is acyclic, for every process P of N , the subnet induced by P has
no other process than P itself. This proves that any AMSTC C obtained from an
APOTC has intra-cluster distance Θ(C) = 0. It is also fair as we noticed earlier.

Now, every centroid Ni of a fair AMSTC C with Θ(C) = 0 has a single process
(call it Pi): indeed, since the model is trace-deterministic, every subnet centroid
in C having two different processes would lead to Θ(C) > 0. This establishes a
bijection between the centroids of fair AMSCs with intra-cluster distance 0, and
the processes of N , which serve as centroids in APOTCs. This bijection between
centroids induces naturally our bijection between APOTCs and AMSTCs. ��

In summary, AMSTC handles both concurrency and repetitive behavior, and
under some situations behaves similarly to APOTC.

7 Complexity of Alignment-Based Trace Clusterings

For a log L and a model N , one is typically interested in computing a trace
clustering (ATC, APOTC or AMSTC) C of L w.r.t. N of sufficient quality, i.e.
satisfying some constraints on the quality criteria d(C), Δ(C), n(C), č(C). . . We

1 N is trace-deterministic if the mapping u ∈ Runs(N) �→ λ(u) ∈ Σ∗ is injective.

252 M. Boltenhagen et al.

will see that, at least from a theoretical point of view, the complexity lies already
in the existence of a clustering, and the specification of many quality constraints
does not change the complexity.

For a non-empty log L and a model N , there exists an ATC C of L w.r.t. N
having č(C) > 0 (i.e. such that at least one trace is clustered), iff N has a full
run. Indeed, when no constraint is given about the quality criteria d(C), Δ(C),
n(C), Φ(C). . . , any full run of N can serve as centroid, and any log trace can
be assigned to any cluster. The same holds for APOTC, where centroids are
processes of N , since N has a process iff N has a full run; it holds again for
AMSTC, taking into account the constraint that any subnet used as centroid
should have a full run, or the stronger constraint that the subnet should not
have any dead transition, as discussed in Sect. 6.2.

Now, deciding if a model has a full run u, corresponds to checking reachability
of the final marking. The problem of reachability in Petri nets is known to be
decidable, but non-elementary [25], and still PSPACE-complete for safe Petri
nets. But the complexity trivially drops to NP-complete2 if a bound l is given
(with l an integer coded in unary) on the length of u.

In practice, relevant clusterings will not use very long full runs (or processes
for APOTC) as centroids. Also for AMSTC, no very long full run will be consid-
ered in the computation of d(C), Δ(C) or Φ(C). Typically, a bound l on the length
of the full runs can be assumed, for instance 2 times the length of the longer log
trace. Let us call l-bounded a trace clustering satisfying this constraint.

Theorem 4. The problem of deciding, for a log L, a model N , an integer bound
l, integers dmax, Δmax, nmax and a rational number čmin, the existence of a
l-bounded ATC (respectively APOTC, AMSTC) C of L w.r.t. N , having d(C) ≤
dmax, Δ(C) ≤ Δmax, n(C) ≤ nmax and č(C) ≥ čmin, is NP-complete.

Proof. As observed earlier, the problem is NP-hard even with the only constraint
that at least one trace is clustered (i.e. č(C) > 0, or equivalently č(C) ≥ 1

|L|). It
remains to show that it is in NP: indeed, if there exists a (l-bounded) clustering,
there exists one with no more that |L| clusters (forgetting empty clusters cannot
weaken the quality criteria); and, by assumption, the size of centroids (defined as
|σ| for ATC, |P| for APOTC, number of transitions in the subnet for AMSTC)
is bounded by l. So, it is possible to guess a clustering C in polynomial time. For
APOTC and AMSTC, one can also guess in P time the full run u ∈ Runs(χ(σ)),
for every clustered trace σ, which will achieve the dist(σ, χ(σ)). Now, check-
ing that C satisfies the constraints, only requires to compute Levenshtein’s edit
distances and minima over sets of polynomial size. This can be done in P
time. ��

For ATC, the problem remains in NP with an additional constraint on the
inter-cluster distance (Φ(C) ≥ Φmin) because the inter-cluster-distance can be
computed in P time.
2 NP-hardness can be obtained by reduction from the problem of reachability in a

safe acyclic Petri net, known to be NP-complete [26,27].

Generalized Alignment-Based Trace Clustering of Process Behavior 253

On the other hand, incorporating new constraints like bounds on Φ(C) for
APOTC or AMSTC, or on the intra-cluster distance Θ(C), may increase the
complexity. The principle of the algorithm remains: guess non-deterministically
a clustering, then check if it satisfies the constraints. Hence, the complexity
depends on the complexity of the algorithm used as an oracle to check, given
a log, a model and a clustering C, if C satisfies the constraints. Precisely, if
there exists such an oracle algorithm in some complexity class A, then the
l-bounded trace clustering problem is in NPA. For instance, for APOTC, check-
ing if Φ(C) ≥ Φmin is in NP; in consequence, the trace clustering problem with
such constraint is in NPNP. We get the same result for constraints on the intra-
cluster distance (Θ(C) ≥ Θmin) for AMSTC.

8 SAT Encoding and Experimentation

The NP-completeness established in Theorem 4 for our trace clustering problems
suggests to encode them as SAT problems. For each clustering problem, our tool
DarkSider constructs a pseudo-Boolean3 formula and calls a solver (currently
minisat+ [28]). Every solution to the formula is interpreted as a trace clustering.
This is already what we did for a version of ATC presented in our previous
paper [3], to which we refer the reader for a more detailed description of the
SAT encoding. Here, we present the main ideas for the encoding of AMSTC,
which is done in the same spirit4.

The assignment of log traces to clusters in an AMSTC C = 〈{N1 . . . Nn}, χ〉
is encoded using variables (χσk)σ∈L, k=1...n meaning that χ(σ) = Nk. Variables
(ckt)k=1...n, t∈T code the fact that transition t appears in subnet Nk.

In order to encode that a sequence u = 〈t1 . . . tn〉 is a full run of N (or of a
subnet Nk), we use a set of Boolean variables:

– τi,t for i = 1 . . . n, t ∈ T : means that transition ti = t; and
– mi,p for i = 0 . . . n, p ∈ P : means that place p is marked in marking mi reached

after firing 〈t1 . . . ti〉 (remind that we consider only safe nets, therefore the
mi,p are Boolean variables).

They are involved in constraints like, for instance:

– Initial marking:
(∧

p∈m0
m0,p

) ∧ (∧
p∈P\m0

¬m0,p

)

– Transitions are enabled when they fire:
∧n

i=1

∧
t∈T (τi,t =⇒ ∧

p∈•t mi−1,p).

Finally, variables δσi are used to detect and count the mismatches between
a (clustered) log trace σ ∈ L and the (closest) execution of the subnet χ(σ)
which serves as centroid for its cluster. These variables are needed to encode

3 Pseudo-Boolean constraints are generalizations of Boolean constraints. They allow
one to specify constant bounds on the number of variables which can/must be
assigned to true among a set V of variables.

4 Due to AMSTC being the most general trace clustering, our experiments focus on
this method.

254 M. Boltenhagen et al.

the constraints d(C) ≤ dmax and Δ(C) ≤ Δmax, or to construct a minimization
objective for the solver when one wants to find AMSTC which minimize these
quantities.

As explained in Sect. 7, dealing with constraints about the inter-cluster and
intra-cluster distance pushes our AMSTC problem out of the NP complexity
class. Concretely, this means that such constraints are not adapted for a SAT
encoding. Instead, we use an approximation of the inter-cluster distance, by
bounding the number of common transitions between centroids, and the intra-
cluster distance, by bounding the number of transition per centroids.

Table 1. Experimental results for the computation of ATC and AMSTC with our tool
DarkSider, obtained on a virtual machine with CPU Intel�Core i5-530U-1.8 GHz*2
and 5.2 GB RAM. ao (almost optimal) indicates experiments where we stopped the
SAT solver before it finds an optimal solution; this way, we got much better execution
times and still very satisfactory solutions.

Model |L| Clustering Formulas size Execution

Time (sec)

d(C) n(C) Φ(C) č(C)

Reference |T | |P | Variables Constraints

Fig. 1 8 7 12 ATC 13854 26457 0.66 2 3 3 1.0

Fig. 1 8 7 12 ATC 13854 26457 0.50 0 3 2 0.25

Fig. 1 8 7 12 AMSTC 27306 51897 1.52 2 2 2 1.0

Fig. 1 8 7 12 AMSTC 27306 51897 1.14 0 3 1 0.83

Fig. 1 8 7 300 ATC 348800 641530 1252.53 2 3 2 0.91

Fig. 1 8 7 300 AMSTC 868592 1641844 1449.14 2 2 4 0.99

subnet of M1 [29] 17 14 12 ATC 98924 218568 9.18 2 3 1 0.38

subnet of M1 [29] 17 14 12 AMSTC 191876 418462 15.76 2 2 5 0.54

subnet of M1 [29] 17 14 100 ATC 433491 925574 124.57 2 3 3 0.80

subnet of M1 [29] 17 14 100 AMSTC 1185839 2573419 5659.75 2 2 5 0.95

subnet of M1 [29] 17 14 100 AMSTC 1185839 2573419 ao:100.16 2 2 5 0.95

M1 [29] 40 40 12 ATC 297176 678664 108.30 3 2 5 0.41

M1 [29] 40 40 12 AMSTC 713769 1656046 88.27 3 2 5 0.5

M1 [29] 40 40 100 ATC 692247 1385046 ao: 309.50 3 3 3 0.80

M1 [29] 40 40 100 AMSTC 4978835 11559283 ao: 230.12 3 3 3 0.83

8.1 Experimental Results

Our tool DarkSider5 implements the computation of ATCs and AMSTCs and
optimizes the inter-cluster distance and the proportion of clustered traces.

We firstly experimented the clusterings of the model in Fig. 1 and the logs of
Fig. 5. We increased the log size and the model size to observe the limits of finding
optimal solutions of our alignment-based trace clustering problems. Log traces
are slightly noisy, to show different kinds of solutions. As the computation of
Δ(C) takes time due to the numerous combinations for the pseudo-SAT encoding,
this criterion has been removed for testing various sizes entries. Likewise, for
the complexity reasons explained in Sect. 7, our tool does not implement the
optimization of the inter-cluster distance Φ(C); it simply computes it a posteriori.
5 https://github.com/BoltMaud/darksider.

https://github.com/BoltMaud/darksider

Generalized Alignment-Based Trace Clustering of Process Behavior 255

Table 1 shows experimental results. Our encoding automatically gets the min-
imal number of required clusters which is usually a parameter to set [22]. Notice
that our tool computes optimal clusterings for a given setting w.r.t. the inter-
cluster distance. Of course, this quest of optimality is very expensive in compu-
tation time. This is why, for the larger problems, we stopped the solver after it
found solutions that we considered close to the optimal. These experiments are
labeled ao in Table 1. For the model with 17 transitions and 14 places and 100
traces, this dramatically decreased the execution time from 5659.75 to 100.16 s.
Furthermore, for larger logs and larger models, like 100 traces and the model
M1 of [29], we stopped the computation of the optimum, however we got almost
optimal results with a ratio of clustered traces to 0.83, where the optimum would
be 0.95.

9 Conclusion and Future Work

In this work, we have investigated novel alignment-based trace clustering tech-
niques, that generalize the notion of centroid in different directions: concurrency
and repetitive behavior. The paper proposes quality criteria for characterizing
trace clustering, and adapts them for each one of the new instantiations pro-
posed. Also, the situations where the two different instantiations collapse are
described formally. Furthermore, a complexity analysis on the different instan-
tiations of the methods is reported. The approach has been implemented and
tested over some datasets, showing that it can be applied in practice.

As future work we have many avenues to follow: first, we plan to investigate
the SAT encoding and interaction with the SAT solver, so that a better perfor-
mance can be attained. Second, we plan to explore applications of the theory of
this paper; we see several possibilities in different process mining sub-domains,
ranging from concept drift, down to predictive monitoring.

Acknowledgments. This work has been supported by Farman institute at ENS Paris-
Saclay and by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

3. Chatain, T., Carmona, J., van Dongen, B.: Alignment-based trace clustering. In:
Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650,
pp. 295–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-
2 24

4. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley,
New York (2005)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-69904-2_24
https://doi.org/10.1007/978-3-319-69904-2_24

256 M. Boltenhagen et al.

5. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

6. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process min-
ing with sequence clustering: experiments and findings. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-75183-0 26

7. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp.
109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-
8 11

8. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: Proceedings of the SIAM International Con-
ference on Data Mining, SDM 2009, pp. 401–412 (2009)

9. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12186-9 16

10. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

11. Hompes, B., Buijs, J., van der Aalst, W., Dixit, P., Buurman, H.: Discovering
deviating cases and process variants using trace clustering. In: Proceedings of the
27th Benelux Conference on Artificial Intelligence (BNAIC 2015) (2015)

12. Ponce-de-León, H., Rodŕıguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-
based process discovery. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 31–47. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-24953-7 4

13. Ponce de León, H., Rodŕıguez, C., Carmona, J.: POD - a tool for process discovery
using partial orders and independence information. In: Proceedings of the BPM
Demo Session 2015 Co-located with the 13th International Conference on Business
Process Management (BPM 2015), pp. 100–104 (2015)

14. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-
tially ordered event data. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP,
vol. 202, pp. 75–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15895-2 7

15. de San Pedro, J., Cortadella, J.: Mining structured Petri nets for the visualization of
process behavior. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pp. 839–846 (2016)

16. Mokhov, A., Cortadella, J., de Gennaro, A.: Process windows. In: 17th Interna-
tional Conference on Application of Concurrency to System Design, ACSD 2017,
pp. 86–95 (2017)

17. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detecting
deviating behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM
2015. LNBIP, vol. 256, pp. 126–139. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-42887-1 11

18. Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: Proceed-
ings of the 26th Annual IEEE Symposium on Logic in Computer Science. LICS
2011, pp. 335–344 (2011)

19. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–574 (1989)

https://doi.org/10.1007/978-3-540-75183-0_26
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-12186-9_16
https://doi.org/10.1007/978-3-319-24953-7_4
https://doi.org/10.1007/978-3-319-24953-7_4
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-319-42887-1_11
https://doi.org/10.1007/978-3-319-42887-1_11

Generalized Alignment-Based Trace Clustering of Process Behavior 257

20. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591
(1991)

21. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

22. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-28349-8 2

23. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/
10.1080/01969727308546046

24. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

25. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary (extended abstract). CoRR
abs/1809.07115 (2018)

26. Stewart, I.A.: Reachability in some classes of acyclic Petri nets. Fundam. Inform.
23(1), 91–100 (1995)

27. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor.
Comput. Sci. 147(1&2), 117–136 (1995)

28. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

29. Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA
2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74161-1 1

https://doi.org/10.1007/3-540-28349-8_2
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-74161-1_1

Finding Complex Process-Structures
by Exploiting the Token-Game

Lisa Luise Mannel(B) and Wil M. P. van der Aalst

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{mannel,wvdaalst}@pads.rwth-aachen.de

Abstract. In process discovery, the goal is to find, for a given event
log, the model describing the underlying process. While process models
can be represented in a variety of ways, in this paper we focus on the
representation by Petri nets. Using an approach inspired by language-
based regions, we start with a Petri net without any places, and then
insert the maximal set of places considered fitting with respect to the
behavior described by the log. Traversing and evaluating the whole set
of all possible places is not feasible since their number is exponential
in the number of activities. Therefore, we propose a strategy to drasti-
cally prune this search space to a small number of candidates, while still
ensuring that all fitting places are found. This allows us to derive com-
plex model structures that other discovery algorithms fail to discover.
In contrast to traditional region-based approaches this new technique
can handle infrequent behavior and therefore also noisy real-life event
data. The drastic decrease of computation time achieved by our pruning
strategy, as well as our noise handling capability, is demonstrated and
evaluated by performing various experiments.

Keywords: Process discovery · Petri nets · Language-based regions

1 Introduction

More and more processes executed in companies are supported by information
systems which store each event executed in the context of a so-called event log.
For each event, such an event log typically describes a name identifying the
executed activity, the respective case specifying the execution instance of the
process, the time when the event was observed, and often other data related to
the activity and/or process instance. An example event log is shown in Fig. 1.

In the context of process mining, many algorithms and software tools have
been developed to utilize the data contained in event logs: in conformance check-
ing, the goal is to determine whether the behaviors given by a process model and
event log comply. In process enhancement, existing process models are improved.
Finally, in process discovery, a process model is constructed aiming to reflect the

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 258–278, 2019.
https://doi.org/10.1007/978-3-030-21571-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_15

Finding Complex Process-Structures 259

behavior defined by the given event log: the observed events are put into rela-
tion to each other, preconditions, choices, concurrency, etc. are discovered, and
brought together in a model, e.g. a Petri net.

Fig. 1. Excerpt of an example event log. The two visible cases correspond to the activity
sequences 〈�, A, C, C, D, �〉 and 〈�, B, C, C, C, E, �〉.

Process discovery is non-trivial for a variety of reasons. The behavior recorded
in an event log cannot be assumed to be complete, since behavior allowed by the
process specification might simply not have happened yet. Additionally, real-life
event logs often contain rare patterns, either due to infrequent behavior or due to
logging errors. Especially the latter type should not be taken into account when
discovering the process model, but finding a balance between filtering out noise
and at the same time keeping all desired information is often a non-trivial task.
Ideally, a discovered model should be able to produce the behavior contained
within the event log, not allow for behavior that was not observed, represent
all dependencies between the events and at the same time be uncomplicated
enough to be understood by a human interpreter. It is rarely possible to fulfill
all these requirements simultaneously. Based on the capabilities and focus of the
used algorithm, the discovered models can vary greatly. Often, there is no one
and only true model, but instead, a trade-off between the aspects noted above
has to be found. In Sect. 2 we give an overview of work related to our paper. For
a detailed introduction to process mining we refer the interested reader to [1].

In this paper we suggest an algorithm inspired by language-based regions,
that guarantees to find a model defining the minimal language containing the
input language [2]. Due to our assumptions, the usually infinite set of all possible
places is finite. In contrast to prominent discovery approaches based on language-
based regions (see Sect. 2), we do not use integer linear programming to find the
subset of fitting places. Instead, we replay the event log on candidate places to
evaluate whether they are fitting. We achieve that by playing the token game for
each trace in the log, and then utilizing the results to skip uninteresting sections

260 L. L. Mannel and W. M. P. van der Aalst

of the search space as suggested in [3]. In contrast to the brute-force approach
evaluating every single candidate place, our technique drastically increases the
efficiency of candidate evaluation by combining this skipping of candidates with
a smart candidate traversal strategy, while still providing the same guarantees.
Additionally, our algorithm lends itself to apply efficient noise-filtering, as well
as other user-definable constraints on the set of fitting places. As a final step, we
suggest to post-process the discovered set of fitting places, thereby reducing the
complexity of the resulting model and making it interpretable by humans. Alto-
gether, our approach has the potential to combine the capability of discovering
complex model structures, typical for region-based approaches, with the ability
to handle noise and simplify the model according to user-definable constraints.
We illustrate the capabilities of our algorithm by providing results of measuring
its decrease in computation time compared to the brute-force approach, testing
its noise-handling abilities, and illustrating the rediscovery of complex models.

An overview of related work is given in the next section. In the remainder
of this paper we provide a detailed description, formalization and discussion of
our discovery approach. In Sect. 3 basic notations and definitions are given. We
present a detailed motivation and overview of our approach in Sect. 4. Section 5
provides an extensive explanation and formalization. In Sect. 6, we briefly discuss
our implementation, including some tweaks and optimizations that can be used
to further improve our approach. A comparison to existing discovery algorithms
is given in Sect. 7 together with results and evaluation of testing. Finally, we
conclude the paper with a summary and suggestion of future work in Sect. 8.

2 Related Work

Process discovery algorithms make use of a variety of formal and informal repre-
sentations to model the behavior they extract from a given event log. However,
the basic idea is similar: based on the event data given by an event log, the
different event types are coordinated and ordered using some kind of connection
between them. In this paper, we focus on the formal representation by Petri nets,
where the event types correspond to transitions and the coordinating connections
correspond to places. However, our ideas can be adapted to other representations
as well. Discovery algorithms that produce a formal process model can provide
desirable formal guarantees for their discovered models, for example, the ability
to replay each sequence of events contained in the log, or the ability to re-discover
a model based on a sufficient description of its behavior.

As noted above in process discovery there are several, often conflicting quality
criteria for a discovered model. To decrease computation time and the complexity
of the found Petri net, many existing discovery algorithms further abstract from
a given log to another representation, containing only a fraction of the original
information, based on which a formal model is created. These algorithms can
rediscover only subclasses of Petri nets, and often the resulting model does not
allow for the log to be fully replayed, or allows for much more than the log
suggests. Examples are the Alpha Miner variants [4] and the Inductive Mining
family [5]. Other miners based on heuristics, like genetic algorithms or Heuristic
Miner [6] cannot provide guarantees at all.

Finding Complex Process-Structures 261

D

The original model, rediscovered
by our algorithm:

Discovered by Alpha Miner:

D

Discovered by Inductive Miner:

D

Discovered by ILP Miner:

D

Fig. 2. There exists a variety of discovery algorithms that are able to mine a process
model based on the log [〈�, A, C, C, D�〉, 〈�, B, C, C, C, E�〉] from Fig. 1. As illustrated,
the resulting Petri nets differ significantly between the algorithms. In particular, the
places connecting A to D and B to E, which ensure that the first choice implies the
second choice, are rarely discovered by existing algorithms.

Due to omitting part of the information contained in the log, the miners
described above are not able to discover complex model structures, most promi-
nently non-free choice constructs. The task of creating a Petri net that precisely
corresponds to a given description of its behavior is known as the synthesis
problem and closely related to region theory [7]. Traditionally, this description
was given in form of a transition system, which was then transformed into a
Petri net using state-based region theory [8]. The approach has been adapted
for process discovery by developing algorithms, e.g. FSM Miner, that generate
a transition system based on the log, which is then transformed into a Petri
net [9,10]. Other approaches use language-based region theory, where the given
description is a language, rather than a transition system [11–13]. An event log
can be directly interpreted as a language. Therefore, language-based regions can
be applied directly to synthesize a Petri net from a given event log [2]. Here
the basic strategy is to start with a Petri net that has one transition for each
activity type contained in the log. Then all places that allow replaying the log
are added. The result is a Petri net, that defines a language which is a minimal
superset of the input language. Currently such algorithms, most prominently
ILP Miner, are based on integer linear programming [14–16]. However, available
implementations make use of an abstraction of the log to increase performance,
thus losing their ability to find all possible places.

In contrast to most other discovery algorithms, region-based approaches guar-
antee that the model can replay the complete event log, and at the same time
does not allow for much different behavior. In particular, complex model struc-
tures like non-free choice constructs are reliably discovered. On the downside,

262 L. L. Mannel and W. M. P. van der Aalst

region-based discovery algorithms often lead to complex process models that
are impossible to understand for the typically human interpreter. They are also
known to expose severe issues with respect to low-frequent behavior often con-
tained in real-life event logs. Finally, finding all the fitting places out of all
possible places tends to be extremely time-consuming.

To illustrate the differences between existing discovery algorithms, in Fig. 2
we show the results of selected discovery algorithms applied to the log shown
in Fig. 1. The original model, that produced the log, can be rediscovered by the
approach suggested in this paper. Alpha Miner, Inductive Miner and ILP Miner
cannot discover this model because they are restricted to mine only for certain
structures and/or a subset of possible places. In particular, the implication of
the second choice (C orD) by the first choice (A or B) is not discovered by any
of these algorithms.

3 Basic Notation, Event Logs and Process Models

Throughout our paper we will use the following notations and definitions: A set,
e.g. {a, b, c}, does not contain any element more than once, while a multiset, e.g.
[a, a, b, a] = [a3, b], may contain multiples of the same element. By P(X) we refer
to the power set of the set X, and M(X) is the set of all multisets over this set.
In contrast to sets and multisets, where the order of elements is irrelevant, in
sequences the elements are given in a certain order, e.g. 〈a, b, a, b〉 �= 〈a, a, b, b〉.
We refer to the i’th element of a sequence σ by σ(i). The size of a set, multiset
or sequence X, that is |X|, is defined to be the number of elements in X.

We define activities, traces, and logs as usual, except that we require each
trace to begin with a designated start activity and end with a designated end
activity. Since process models, in general, have a start and end, this is a reason-
able assumption. It implies, that in any discovered model all places are interme-
diate places that are not part of an initial or final marking. Thus, every candidate
place we consider during execution of our algorithm, does not contain any initial
tokens. This greatly simplifies the presentation of our work. Note, that any log
can easily be transformed accordingly.

Definition 1 (Activity, Trace, Log). Let A be the universe of all possible
activities (actions, events, operations, ...), let � ∈ A be a designated start activ-
ity and let � ∈ A be a designated end activity. A trace is a sequence containing �
as the first element, � as the last element and in-between elements of A\{�, �}.
Let T be the set of all such traces. A log L ⊆ M(T) is a multiset of traces.

In the following definition of Petri nets, note that we require the set of tran-
sitions to correspond to a subset of the universe of activities. Therefore our Petri
nets are free of silent or duplicate transitions. In combination with not having to
deal with markings, this results in a finite set of candidate places. Also note, that
we do not use weighted arcs, and can therefore assume the arcs to be implicitly
defined by the sets of ingoing and outgoing transitions of the places. This defi-
nition of a subset of Petri nets, natural with respect to our discovery algorithm,
removes a lot of notational overhead (Fig. 3).

Finding Complex Process-Structures 263

B

A

Fig. 3. Example of a Petri net N = (A, P) with transitions A = {a, b, �, �} and
places P = {({�}|{a}), ({�}|{b}), ({a}|{�}), ({b}|{�})}. The behavior of N is the set
of fitting traces {〈�, a, b, �〉, 〈�, b, a, �〉}. A possible place ({b}|{a}) is underfed with
respect to the trace 〈�, a, b, �〉.

Definition 2 (Petri nets). A Petri net is a pair N = (A,P), where A ⊆ A is
the set of transitions, and P ⊆ {(I|O) | I ⊆ A ∧ I �= ∅ ∧ O ⊆ A ∧ O �= ∅} is the
set of places. We call I the set of ingoing activities of a place and O the set of
outgoing activities.

Places, that are not able to perfectly replay the given log, can be unfitting in
two ways: If at some point during replay there is no token at the place, but the
log requires the consumption of a token anyway, we call the place underfed. If at
the end of a replayed trace there is at least one token left at the place, we call
the place overfed. This categorization has been extensively discussed in [3] and is
the key to our efficient candidate traversal: as detailed in Sect. 4, by evaluating
one place to be underfed (overfed) we can determine a whole set of places to be
underfed (overfed), without even looking at them.

Definition 3 (Overfed/Underfed/Fitting Places, see [3]). Let N = (A,P)
be a Petri net, let p = (I|O) ∈ P be a place, and let σ be a trace. With respect
to the given trace σ, p is called

– underfed, denoted by 	σ(p), if and only if ∃k ∈ {1, 2, ..., |σ|} such that
|{i | i ∈ {1, 2, ...k − 1} ∧ σ(i) ∈ I}| < |{i | i ∈ {1, 2, ...k} ∧ σ(i) ∈ O}|,

– overfed, denoted by �σ(p), if and only if |{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ I}| >
|{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ O}|,

– fitting, denoted by �σ(p), if and only if not 	σ(p) and not �σ(p).

Note, that a place can be underfed and overfed at the same time.

Definition 4 (Behavior of a Petri net). We define the behavior of the Petri
net (A,P) to be the set of all fitting traces, that is {σ ∈ T | ∀p ∈ P : �σ(p)}.

4 Algorithmic Framework

As input our algorithm takes a log L, that can be directly interpreted as a
language, and a parameter τ ∈ [0, 1]. This parameter τ in principle determines
the fraction of the log that needs to be replayable by a fitting place, and is
essential for our noise handling strategy. We provide details on this threshold at
the end of this section.

264 L. L. Mannel and W. M. P. van der Aalst

Inspired by language-based regions, the basic strategy of our approach is to
begin with a Petri net, whose transitions correspond to the activity types used
in the given log. From the finite set of unmarked, intermediate places Pall we
want to select a subset Pfinal, such that the language defined by the resulting net
defines the minimal language containing the input language, while, for human
readability, using only a minimal number of places to do so. Note, that by filtering
the log for noise the definition of the desired language becomes less rigorous,
since the allegedly noisy parts of the input language are ignored, and thus the
aforementioned property can no longer be guaranteed.

We achieve this aim by applying several steps detailed in Sect. 5. First of all,
we observe that the set Pall contains several places that can never be part of
a solution, independently of the given log. By ignoring these places we reduce
our set of candidates to Pcand ⊆ Pall. Next, we apply the main step of our
approach: while utilizing the token-game to skip large parts of the candidate
space, we actually evaluate only a subset of candidates, Pvisited ⊆ Pcand. We
can guarantee that the set of fitting places is a subset of these evaluated places,
that is Pfit ⊆ Pvisited. Finally, aiming to achieve a model that is interpretable
by human beings, we reduce this set of fitting places to a set of final places
Pfinal ⊆ Pfit by removing superfluous places.

The main challenge of our approach lies in the size of the candidate space:
there are |Pall| = |P(A)\∅ × P(A)\∅| ≈ (2|A|)2 possible places to be consid-
ered. Keeping all of them in memory and even more replaying the log for this
exponentially large number of candidates will quickly become infeasible, even
for comparably small numbers of activities. Reducing the set Pall to Pcand is by
far not a sufficient improvement.

Towards a solution to this performance issue, we propose an idea allowing
us to drastically reduce the amount of traversed candidate places, while still
providing the complete set Pfit as outcome. The monotonicity results on Petri
net places introduced in [3] form the basis of our approach. Intuitively, if a
candidate place p1 = (I1|O1) is underfed with respect to some trace σ, then at
some point during the replay of σ there are not enough tokens in p1. By adding
another outgoing arc to p connecting it to some transition a /∈ O1 we certainly
do not increase the number of tokens in the place and therefore the resulting
place p2 = (I1|O1 ∪ {a}) must be underfed as well. Thus, by evaluating p1 to
be underfed we can infer that all candidates (I1|O2) with O1 ⊆ O2 are underfed
as well, without having to evaluate them. A similar reasoning can be applied to
overfed places. This is formalized in Lemma 1. For more details, we refer the
reader to the original paper [3].

Lemma 1 (Monotonicity Results (see [3])). Let p1 =(I1|O1) be a place
and let σ be a trace. If 	σ(p1), then 	σ(p2) for all p2 = (I2|O2) with I1 ⊇ I2
and O1 ⊆ O2. If �σ(p1), then �σ(p2) for all p2 = (I2|O2) with I1 ⊆ I2 and
O1 ⊇ O2.

Finding Complex Process-Structures 265

As detailed in [3], these monotonicity results allow us to determine a whole
set of places to be unfitting by evaluating a single unfitting candidate. Combining
this idea with the candidate traversal strategy presented in Sect. 5 allows us to
skip most unfitting places when traversing the candidate space, without missing
any other, possibly interesting place. It is important to note that we do not
simply skip the replay of the log, but actually do not traverse these places at all.
This greatly increases the performance of our algorithm.

Setting our algorithm apart from other region-based approaches is its ability
to directly integrate noise filtering. When evaluating a visited place, we refer to
a user-definable parameter τ as detailed in the following definition:

Definition 5 (Fitness with Respect to a Threshold). With respect to a
given log L and threshold τ , we consider a place p =(I|O) to be

– fitting, that is �τ
L(p), if and only if

|{σ∈L | �σ (p)∧σ∩(I∪O) �=∅}|
|{σ∈L | ∃a∈σ : a∈(I∪O)}| ≥ τ ,

– underfed, that is 	τ
L(p), if and only if

|{σ∈L |
σ (p)}|
|{σ∈L | ∃a∈σ : a∈(I∪O)}| > (1 − τ),

– overfed, that is �τ
L(p), if and only if

|{σ∈L | �σ (p)}|
|{σ∈L | ∃a∈σ : a∈(I∪O)}| > (1 − τ).

Intuitively, a place p is fitting/underfed/overfed/ with respect to L and τ ,
if it is underfed/overfed/fitting with respect to a certain fraction of traces in L
that involve the activities of p. This fraction is determined by the threshold τ .
By defining the value of τ , the user of our algorithm can choose to ignore a
fraction of traces when evaluating the places, making the result much more
robust with respect to infrequent behavior. If τ = 1, then all places are required
to be perfectly fitting. In [3] it is shown that Lemma 1 can be extended to the use
of such a threshold. Despite our slightly modified definition, their proof remains
valid. The impact of different values of τ will be investigated in Sect. 7.

5 Computing a Desirable Subset of Places

As input, our algorithm expects a log L, and a user-definable parameter τ ∈
[0, 1]. The activities contained in L, A ⊆ A, define the set of transitions of the
Petri net we want to discover. These define a finite set of unmarked, intermediate
places Pall, that we could insert, as the starting point of our algorithm.

5.1 Pre-pruning of Useless Places

Within the set Pall, there are many candidates that are guaranteed to be unfit-
ting, independently of the given log. These are all places (I|O), with � ∈ O or
with � ∈ I for designated start and end activities �, �. By completely excluding
such places from our search space, we remain with a much smaller set of candi-
dates Pcand ⊆ Pall: For a set of activities A the number of candidates is bounded
by 2|A|×2|A|. By removing all places with � ∈ O or � ∈ I, we effectively decrease
the size of the activity set A by one for each, incoming and outgoing activities.
The new bound on the number of candidates is 2|A| ×2|A|, thus reducing its size
by 25%.

266 L. L. Mannel and W. M. P. van der Aalst

(▶|a) (▶|b) (▶|■) (a|a) (a|b) (a|■) (b|a) (b|b) (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■) (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■) (▶,a|a,b) (▶,a|a,■) (▶,a|b,■) (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■) (▶,a,b|a) (▶,a,b|b) (▶,a,b|■)

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

 (▶,a,b|a,b,■)

Fig. 4. Example of the candidate space based on four activities �, a, b and �. The
horizontal levels and colored edges indicate the relations between the activity sets:
each candidate place (I1|O1) is connected to a place (I2|O2) from the level above by a
blue line if I1 = I2 and O1 ⊇ O2, and by a red line if I1 ⊇ I2 and O1 = O2.

5.2 Developing an Efficient Candidate Traversal Strategy

We illustrate our idea with the help of a running example, where A = {�, a, b, �}
is the given set of activities. The corresponding pre-pruned candidate space
is visualized in Fig. 4. The organization and coloring are chosen to clarify the
relations between the candidates, which we are going to utilize to further prune
the candidate space.

Our strategy for traversing the set of candidates is the key to the effective
utilization of the described monotonicity results. Since we cannot efficiently store
and retrieve an exponential amount of candidate places, we need a scheme to
deterministically compute the next place we want to evaluate based on a limited
set of information we keep in storage. This scheme should at the same time
guarantee that all fitting places are visited, each place is visited only a limited
number of times (preferably at most once), and we are able to prune the search
space by employing the results obtained by previous place evaluations. In the
following, we are going to develop such a candidate traversal scheme.

5.3 Organization of the Candidate Space as Trees

We organize the candidate space in a set of trees, as described in Definition 6.
An example is shown in Fig. 5. Note, that there are many ways to organize
the candidates in such a structure and this example shows merely one of these
possibilities.

Let A ⊆ A be the given set of activities and let >i and >o be two total
orderings on A. In the remainder, we assume all sets of ingoing activities of
a place to be ordered lexicographically according to >i, and sets of outgoing
activities according to >o. Possible strategies of computing such orderings are
noted in Sect. 6.

Finding Complex Process-Structures 267

Definition 6 (Complete Candidate Tree). A complete candidate tree is
a pair CT = (N,F) with N = {(I|O) | I ⊆ A\{�}, O ⊆ A\{�}, I �= ∅, O �= ∅}.
We have that F = Fred ∪ Fblue, with

If ((I1|O1), (I2|O2)) ∈ F , we call the candidate (I1|O1) the child of its parent
(I2|O2). A candidate (I|O) with |I| = |O| = 1 is called a base root.

Note, that there is a certain asymmetry in the definition of Fred and Fblue:
red edges connect only places which have exactly one outgoing transition, while
for blue edges the number of outgoing transitions is unlimited. This is neces-
sary to obtain the collection of trees we are aiming for, and which is further
investigated below: if we did not restrict one of the edge types in this way, the
resulting structure would contain cycles. If we restricted both types of edges,
many candidates would not be connected to a base root at all. However, the
choice of restricted edge type, red or blue, is arbitrary.

In the following we show that each candidate is organized into exactly one
tree, that can be identified by its unique base root. Therefore, the number of
connected trees contained in one structure CT as described in Definition 6 is
exactly the number of base roots. In our running example (Fig. 5) there are 9
such trees.

Lemma 2. The structure CT described by Definition 6 organizes the candidate
space into a set of trees rooted in the base roots, where every candidate is con-
nected to exactly one base root.

Proof (Lemma 2). Let CT = (N,F) be the structure defined in Definition 6. We
show that every candidate (I|O) ∈ N has a unique parent, and, by induction on
the number of activities of a candidate, that each candidate is the descendant
of exactly one of the base roots. This implies that there are no cycles and the
structure is indeed a set of connected trees rooted in the base roots.

If |I ∪ O| = 2 then p is a base root that cannot have any parents and the
claim holds. Now assume that the claim holds for all candidates with |I ∪ O| = n.

Consider a candidate p1 = (I1|O1) with |I1 ∪ O1| = n + 1. Let p2 = (I2|O2)
be any potential parent of of p1. We distinguish two cases:

Case |O1| = 1: This implies I1 = {a1, a2, ..., an−1, an}. We have that
(p1, p2) /∈ Fblue, because, otherwise, we would have O2 = ∅. If (p1, p2) ∈ Fred,
then by definition O1 = O2 and I1 = I1\{an}.

Case |O1| ≥ 2: This implies O1 = {a1, a2, ..., ak−1, ak}, for some k ∈ [2, n−1].
We have that (p1, p2) /∈ Fred, because red edges require |O1| = 1.If (p1, p2) ∈
Fblue, then by definition we have that I1 = I2 and O2 = O1\{ak}.

In both cases, p2 is fully defined based on p1 and therefore the unique parent.
Since |I2 ∪ O2| = n, the claim holds for p2 and thus for p1 as well. By induction,
the claim holds for all candidates in N . ��

268 L. L. Mannel and W. M. P. van der Aalst

(▶|a) (▶|b) (▶|■) (a|a) (a|b) (a|■) (b|a) (b|b) (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■) (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■) (▶,a|a,b) (▶,a|a,■) (▶,a|b,■) (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■) (▶,a,b|a) (▶,a,b|b) (▶,a,b|■)

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

 (▶,a,b|a,b,■)

Fig. 5. Example of a complete candidate tree based on A = {�, a, b, �}. In reference
to Lemma 3, an example subtree of red edges is marked by a red background, while all
subtrees of blue edges attached to it are marked by a blue background. Together they
form the whole tree rooted in the base root ({�}|{a}).

T2

T3

T1

(▶|a)

(▶|a,b) (▶|a,■) (▶,a|a) (▶,b|a)

(▶|a,b,■) (▶,a|a,b) (▶,a|a,■) (▶,b|a,b) (▶,b|a,■) (▶,a,b|a)

(▶,a|a,b,■) (▶,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■)

 (▶,a,b|a,b,■)

Fig. 6. We illustrate our tree cutting strategy using the tree rooted in the base root
({�}|{a}) from our running example (Fig. 5). For the example place ({�, a}|{a})
we highlight the blue-edged subtree (T2) and red-edged subtree (T1) referred to in
Lemma 3. In reference to Lemma 4 we indicate the subtrees attached by blue edges,
which coincides with the blue-edged subtree (T2), and the subtrees attached by red
edges (T3). We emphasize that T1 �= T3.

5.4 Tree Traversal and Pruning of Candidate Space

Definition 7 (Tree Traversal Strategy). Let L be a log, τ threshold, and A
the set of activities contained in L. Let CT = (N,F) be the complete candidate
tree based on A, with N = Pcand. We traverse one connected tree after the other,
by using a depth-first strategy starting on each base root of CT .

Let p =(I|O) be a visited place. If p is fitting, i.e. �τ
L(p), we add it to Pfit.

If p is underfed (τ
L(p)), we skip all subtrees attached to p by a blue edge. If

p is overfed (�τ
L(p)) and O = {a} with �a′ ∈ A : a′ >o a, we skip all subtrees

attached to p by a red edge. After skipping a subtree this way, we proceed with
our traversal as if we had already visited those places.

Formalized in Theorem 1, we show that this strategy allows us to skip sets of
unfitting places and at the same time guarantee, that no place in Pfit is missed.

Finding Complex Process-Structures 269

Lemma 3. Let L, τ be a given log and threshold, CT = (N,F) a complete
candidate tree and p1 ∈ N any candidate. If 	τ

L(p1) (�τ
L(p1)), then for all

candidates p2 ∈ N within the blue-edged (red-edged) subtree rooted in p1, we
have that 	τ

L(p2) (�τ
L(p2)).

Proof (Lemma 3). Let p1 = (I1|O1) ∈ N be a candidate with 	τ
L(p1) (�τ

L(p1)).
Consider any descendant p2 = (I2|O2) attached to p1 via a path of blue (red)
edges. From the definition of blue (red) edges (see Definition 6) we infer that
I1 = I2 and O1 ⊆ O2 (O1 = O2 and I1 ⊆ I2). Then from the monotonicity
results presented Lemma 1 it follows that 	τ

L(p2) (�τ
L(p2)). ��

According to Lemma 3, if a place p is underfed, then blue-edged subtree
rooted in p contains only underfed places, and if p is overfed, then the red-edged
subtree rooted in p contains only overfed places. In the following, we try to
extend these results to subtrees rooted in p in general. We will show that for
subtrees attached to p by blue edges this is possible in a straight-forward way.
Unfortunately, due to the asymmetry of the definition of the edges, the same
argument does not always apply to subtrees attached by red edges: here it is
entirely possible that there are blue edges within the corresponding subtree, and
“overfedness” of p cannot be necessarily extended to the contained places. This
is illustrated in Fig. 6.

Lemma 4. Let L, τ be a given log and threshold, CT = (N,F) a complete
candidate tree and p1 = (I1|O1) ∈ N any candidate. If 	τ

L(p1), then for all
candidates p2 within the subtrees attached to p1 with a blue edge we have 	τ

L(p2).
If �τ

L(p1) and O1 = {a} with �a′ ∈ A : a′ >o a, then for all candidates p2 within
the subtrees attached to p1 we have �τ

L(p2).

Proof (Lemma 4). Assume 	τ
L(p1). Due to the definition of blue edges, it holds

for each child p′ = (I ′|O′) in a subtree attached to p1 by such an edge, that
|O′| > |O1|, and thus in particular |O′| ≥ 2. By definition, all descendants of p′

have at least two outgoing activities. This implies that there is no red edge in
the whole subtree, since they require by definition at most one outgoing activity.
Thus, by Lemma 3, for every place p2 in a subtree rooted in such a p′ we have
	τ

L(p2), and the first claim holds.
Now assume �τ

L(p1) and O1 = {a} with �a′ ∈ A : a′ >o a. Due to the
definition of red edges, it holds for p1 and each descendant p′ = (I ′|O′) of p1
reachable by red edges, that O′ = {a}. This implies that there is no blue edge
in the whole subtree rooted in p1, since they require the existence of an activity
a′ with a <o a′. Thus, by Lemma 3, for every place p2 in the subtree rooted in
p1, we have �τ

L(p2). ��

Theorem 1. Given a log L, a threshold τ and the complete candidate tree CT =
(N,F) with N = Pcand, let Pfit be the set of fitting places with respect to L and
τ , that is {p ∈ N | �τ

L(p)}. Let Pvisited be the set of places visited by our tree
traversal strategy described in Definition 7. It holds that Pfit ⊆ Pvisited ⊆ Pcand.

270 L. L. Mannel and W. M. P. van der Aalst

Proof (Theorem 1). As proven in Lemma 2 every candidate is contained in
exactly one tree rooted in a base root and is thus visited exactly once by standard
depth-first search. Thus Pvisited ⊆ Pcand.

Using depth-first search for tree traversal guarantees that for any visited
candidate p, we visit the complete subtree rooted in p, before proceeding to
another subtree. Thus skipping a subtree does not influence the traversal of
other subtrees. If p is underfed/overfed, we can apply Lemma 4 to guarantee
that all places contained in the skipped subtrees are underfed/overfed as well.
Thus no fitting places are skipped, and we have that Pfit ⊆ Pvisited ⊆ Pcand. ��

As mentioned earlier, we cannot store the complete candidate tree due to its
exponential size, and thus the challenge of the tree traversal lies in the determin-
istic computation of the next candidate based on limited information only. In
our algorithm, this information is only the last candidate and its fitness status.
We define a total ordering on the set of places easily computable based on the
given orderings >i, >o. We can use this ordering to deterministically select the
next subtree to traverse based on the current candidate. The fitness status is
used to decide whether to actually traverse the selected subtree, or skip it and
select the next one.

While the theoretical worst-case scenario still requires traversing the full
candidate space, we have achieved a drastic increase in performance in practical
applications. This is presented in detail in Sect. 7.

5.5 Evaluation of Potentially Fitting Candidates

For each place visited during candidate traversal, we need to determine its fitness
status. Fitting places are added to the set of fitting places Pfit, which will be the
input for the post-processing step (see Sect. 5.6). Overfed and underfed places
are not added, instead this fitness status can be used in the context of candidate
traversal to skip sets of unfitting places.

To determine the fitness status of a place p = (I|O), we use token-based
replay. We replay every trace σ ∈ L on the place p: for each activity a ∈ σ,
from first to last, if a ∈ O we decrement the number of tokens at the place by
one. Then, if a ∈ I we increment the number of tokens by one. If the number of
tokens becomes negative we consider the place to be underfed with respect to
this trace, that is 	σ(p). Otherwise, if the trace has been fully replayed and the
number of tokens is larger than zero, we consider the place to be overfed, that
is �σ(p). Note that the place can be underfed and overfed at the same time.
Based on the replay results of the single traces and the user-definable threshold
τ (see Definition 5), we evaluate the fitness status of the place with respect to
the whole log.

5.6 Post-processing

In the previous step, a subset of places Pfit was computed. These are exactly the
places considered to be fitting with respect to the given log L and threshold τ .

Finding Complex Process-Structures 271

However, many of them can be removed without changing the behavior of the
Petri net implicitly defined by Pfit. Since the process model we return is likely to
be interpreted by a human being, such places are undesirable. These places are
called implicit or sometimes redundant and have been studied extensively in the
context of Petri nets [17–21]. In the post-processing step, we find and remove
those undesirable places by solving an Integer Linear Programming Problem as
suggested for example in [21]. The resulting set of places Pfinal ⊆ Pfit is finally
inserted into the Petri net that forms the output of our algorithm.

6 Implementation

We implemented our algorithm as a plug-in for ProM [22] named eST-Miner
using Java. There are many ways in which our idea of organizing the candidate
space into a tree structure can be optimized for example with respect to certain
types of models, logs or towards a certain goal. Other ideas on how to improve
performance can be found in [3].

In our implementation, we investigated the impact of the orderings of the
ingoing and outgoing activity sets (>i, >o in Sect. 5) on the fraction of cut off
places. They determine the position of candidates within our tree structure. If
these orderings are such that underfed/overfed places are positioned close to
the root, this leads to large subtrees and thus many places being cut off due
to monotonicity results. In Sect. 7, we present first results of testing different
activity orderings and evaluate their impact.

7 Testing Results and Evaluation

In this section, we present the results of testing our algorithm on various data
sets. We use a selection of artificial log-model pairs to demonstrate our ability to
rediscover complex structures and deal with noise. The efficiency of our search
space pruning technique and the resulting increase in speed are evaluated using
artificial logs as well as real-life logs. An overview of these logs is given in Table 1.

Rediscoverability of Models: In Fig. 7, a simple model is shown, which includes
non-free choice constructs: the places ({a}|{e}) and ({b}|{f}) are not part of
any directly follows relation, and are therefore not discovered by most existing
algorithms that provide formal guarantees. Well-known discovery techniques like
Alpha-Miner variants [4] or the Inductive Mining family [5] fail at such tasks.
Attempts to extend the capabilities of Alpha Miner to discover such places [4]
have been only partially successful. These approaches may result in process mod-
els that cannot replay the event log. In some cases, the model may have no fitting
traces due to livelocks or deadlocks. More complex structures involving non-free
choice constructs, like the model depicted in Fig. 8, are difficult to mine and not
rediscovered by most algorithms [4].

In contrast to existing non-region-based algorithms, our approach guarantees
that all fitting places are found, and thus we are able to rediscover every model

272 L. L. Mannel and W. M. P. van der Aalst

Table 1. List of logs used for evaluation. The upper part lists real-life logs while the
lower part shows artificial logs. Logs are referred to by their abbreviations. The Sepsis

log has been reduced by removing all traces that occur at most twice. The log HP2018

has not yet been published. The much smaller 2017 version can be found at [23]. We use
a reduced version with all single trace variants removed. The log Teleclaims* results
from removing the natural start and end activity activities in the log Teleclaims

and removing the 15% less common traces. The Artificial1 log contains a single
trace 〈a, b, c, d, e, f〉. The log Artificial2 is a log generated based on a random model
containing a loop, XOR-Split and silent transition.

Log name Abbreviation Activities Trace variants Reference

Sepsis-mod Sepsis 11 27 [24]

HelpDesk2018SiavAnon-mod HD2018 11 595 (see caption)

Road Traffic Fine Management RTFM 11 231 [25]

Teleclaims Teleclaims 11 12 [26]

Teleclaims-mod Teleclaims* 9 12 [26]

repairexample Repair 12 77 [26]

running-example RunEx 8 6 [26]

MyLog1 Artificial1 6 1 (see caption)

MyLog2 Artificial2 7 78 (see caption)

N7 a++CE 7 3 [4]

Fig. 7. The shown model can be rediscovered by our algorithm. Since (a, e) and (b, f)
are not part of any directly follows relation, most other discovery algorithms fail to
discover the corresponding places [4].

that is free of duplicate and silent transitions, assuming that the log is com-
plete (i.e., non-fitting places can be identified). In particular, we can rediscover
both models shown in Figs. 7 and 8.

Dealing with Noise: By setting the threshold τ to 1 we require every fitting
place, and thus the whole discovered Petri net, to be able to perfectly replay
every trace of the log. However, event logs often contain some noise, be it due
to exceptional behavior or due to logging errors. Often, we want to ignore such
irregularities within the log when searching for the underlying model. Therefore,
we suggest using the parameter τ as a noise filtering technique utilizing the
internal working of our algorithm. In contrast to approaches modifying the whole
event log, this allows us to filter for each place individually: based on the portion

Finding Complex Process-Structures 273

Fig. 8. The Petri net shown in this Figure is an example of a model rediscoverable by
our algorithm, that existing non-region-based algorithms fail to find [4]. The only free
choice is whether to do B, C or D after doing A. The rest of the trace is implicitly
determined by this choice.

0

0,2

0,4

0,6

0,8

1

0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

Pr
ec

is
io

n
(E

TC
 A

lig
n)

Threshold

Artifical2

0 %

2 %

4 %

10 %

20 %
0

0,2

0,4

0,6

0,8

1

0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

Pr
ec

is
io

n
(E

TC
 A

lig
n)

Threshold

Artifical1

Fig. 9. For various levels of noise (0, 2, 4, 10, 20%) introduced randomly on logs with
1000 traces each, we present the precision results (ETC Align) resulting from applying
our algorithm with different values for the threshold τ . Lower values of τ have a positive
impact on precision, and all tested models could be rediscovered for certain values of τ .

of the log relevant for the current place, we can ignore a certain fraction of
irregular behavior specified by τ without losing other valuable information.

We test our implementation using different values for τ on logs modified to
contain several levels of noise. We run our algorithm with different values for τ on
logs with 1000 traces and added random noise of 2, 4, 10 and 20%. The resulting
model is tested for precision with respect to the original log using the ETC
Align Precision Metric implemented in ProM [22]. As shown in Fig. 9, a lower
threshold τ , in general, leads to increasing precision of the discovered model. In
fact, for adequate values of τ the original models could be rediscovered. Thus,
by choosing adequate values for the threshold τ , our algorithm is able to handle
reasonable levels of noise within the given event log.

Measuring Performance: The main contribution of our approach lies in our strat-
egy of computing the set of fitting places Pfit. The post-processing step, where
implicit/redundant places are removed, has not been optimized and constitutes
an application of existing results. Therefore our performance evaluation focuses
on the first step. Based on several real-life logs as well as artificial logs we inves-
tigate two measures of performance: first, the absolute computation time needed

274 L. L. Mannel and W. M. P. van der Aalst

Fig. 10. Depending on the given log and activity orderings, the fraction of places
skipped by our algorithm can vary greatly. In this figure, we present box plots showing
the fraction of cut-off places Pskipped for 10 sample runs of our algorithm on differ-
ent logs, given as the fraction of the complete candidate space (Pskipped/Pcand). The
threshold τ has been set to 1 for all runs.

to discover Pfit, compared to the time needed by a brute force approach travers-
ing the whole set of candidates (Pcand), and second, the fraction of places that
were cut off, that is Pskipped/Pcand. For each log, we performed 10 runs of our
algorithm using two mutually independent random activity orderings for in- and
outgoing activity sets to survey the influence on these performance measures.

Fraction of Skipped Places: The fraction of cut-off places can vary greatly
between different event logs, but also within several runs of our algorithm on the
same event log, depending on the chosen activity orderings for in- and outgoing
activities. In Fig. 10, we present the results for several logs, based on 10 runs of
our algorithm for each. Interestingly, the fraction of cut-off places is highest for
the real-life event logs RTFM, HD2018, Sepsis and Teleclaims. For HD2018 it
goes as high as 96% of the candidate places, that were never visited. The reason
for this could be the more restrictive nature of these large and complex logs,
resulting in a smaller set of fitting places Pfit, and thus more possibilities to cut
off branches. The lowest results are obtained for the artificial Artificial1 log.
Here we could confirm the expectation stated in Sect. 6, that an ordering of high
average index first for ingoing activities and lo average index first for outgoing
activities, leads to significantly more places being cut off than using the same
ordering for both activity sets.

Comparison to the Brute Force Approach: We evaluate the increase in perfor-
mance of computing Pfit using our algorithm pruning the candidate space, in
comparison to the brute force approach traversing the candidate space without
any pruning. We choose three real-life event logs, RTFM, HD2018 and Sepsis
and perform 10 runs of our algorithm on each. In Fig. 11 the results of these
tests are presented: we compare the time needed by the brute force approach

Finding Complex Process-Structures 275

to the minimum, maximum and average time needed for each of the three logs.
As is to be expected, the impact of applying our technique is most significant
for large logs, where replaying the log on a place takes a long time, and thus
cutting off places has a big effect. This is the case for the RTFM and HP2018 logs.
The Sepsis log, on the other hand, has shorter and fewer traces, reflected in a
smaller difference in the time needed by our algorithm compared to the brute
force approach.

0 200000 400000 600000 800000 1000000

Sepsis

HD2018

RTFM

Time needed to find P fit [ms]

Brute Force

Tree Cu ng
Max

Tree Cu ng
Average

Tree Cu ng
Min

Fig. 11. Minimal, maximal and average time in milliseconds needed by 10 sample runs
of our tree cutting algorithm on three real-life logs, with τ = 1, compared to the time
needed by the brute force approach traversing the complete candidate space.

8 Conclusion

We have introduced a process discovery algorithm inspired by language-based
regions to find a model fitting with respect to a given event log and threshold τ .
In contrast to non-region-based approaches our algorithm is able to discover
complex structures, most prominently implicit dependencies expressed by non-
free choice constructs. In particular, for τ = 1, we can guarantee that the set of
fitting places we discover defines a Petri net, such that the language of this net
is the minimal language containing the input language (given by the event log).
Our candidate traversal strategy allows us to skip large parts of the search space,
giving our algorithm a huge performance boost over the brute force approach.

A well-known disadvantage of applying region theory is, that in the context
of infrequent behavior within the log, the resulting models tend to be overfitting,
not reflecting the core of the underlying process. We can avoid this issue, since
our approach lends itself to using the threshold τ as an intuitive noise control
mechanics, utilizing the internal workings of our algorithm.

We can see several possibilities for future research based on the presented
ideas. The most important contribution of our work is the reduction of the
search space to merely a fraction of its original size: we organize all candidate
places into trees and are able to cut off subtrees, that are known to contain only
unfitting places. Our approach would strongly benefit from any strategy allowing

276 L. L. Mannel and W. M. P. van der Aalst

for more subtrees to be cut off or pre-pruning of the candidate space. Note, that
within our work we focus on formal strategies that provide the guarantee that all
fitting places are discovered. For practical applications it is important to develop
heuristic techniques to increase the number of skipped places. Compared to many
other approaches this is relatively easy.

New insights can be gained from further testing and evaluating different
activity orderings or tree traversal schemes. By developing heuristics on how to
choose orderings, based on certain characteristics of the given log, one can opti-
mize the number of skipped candidate places without losing formal guarantees.
These guarantees are no longer given, when applying heuristic approaches that
allow for fast identification and skipping of subtrees that are likely to be uninter-
esting. However, for practical applications, the increase in performance is likely
to justify the loss of a few fitting places. Alternatively, by evaluating the more
interesting subtrees first, the user can be shown a preliminary result, while the
remaining candidates are evaluated in the background. User-definable or heuris-
tically derived combinations of ingoing and outgoing activity sets can either be
cut off during traversal, or excluded from the search space from the very begin-
ning. Finally, note that our approach allows for each subtree to be evaluated
independently, and thus lends itself to increase performance by implementing it
in a parallelized manner.

A major issue of our algorithm is the inability to deal with silent and duplicate
activities. There exist approaches to identify such activities, either as a general
preprocessing step [27] or tailored towards a particular algorithm [28,29]. The
applicability of such strategies to our approach remains for future investigation.

We emphasize that our idea is applicable to all process mining related to Petri
net definable models, and therefore we see potential not only in our discovery
algorithm itself, but also in the combination with, and enhancement of, existing
and future approaches.

Acknowledgments. We thank the Alexander von Humboldt (AvH) Stiftung for sup-
porting our research. We thank Alessandro Berti for his support with implementing
the eST-Miner, and Sebastiaan J. van Zelst for reviewing this paper.

References

1. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75183-0 27

3. van der Aalst, W.: Discovering the “glue” connecting activities - exploiting mono-
tonicity to learn places faster. In: It’s All About Coordination - Essays to Celebrate
the Lifelong Scientific Achievements of Farhad Arbab, pp. 1–20 (2018)

4. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-
free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-75183-0_27

Finding Complex Process-Structures 277

5. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

6. Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based
data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)

7. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

8. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Acta Informatica 27(4),
343–368 (1990)

9. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85758-7 26

10. van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and
overfitting. Softw. Syst. Model. 9(1), 87 (2008)

11. Lorenz, R., Mauser, S., Juhás, G.: How to synthesize nets from languages: A survey.
In: Proceedings of the 39th Conference on Winter Simulation: 40 Years! The Best
is Yet to Come, WSC 2007, pp. 637–647. IEEE Press, Piscataway (2007)

12. Darondeau, P.: Deriving unbounded Petri nets from formal languages. In:
Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–
548. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055646

13. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri nets from
finite partial languages. Fundam. Inf. 88(4), 437–468 (2008)

14. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68746-7 24

15. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting in
ILP-based process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM 2015. LNCS, vol. 9253, pp. 163–171. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23063-4 10

16. van Zelst, S., van Dongen, B., van der Aalst, W.: ILP-based process discovery using
hybrid regions. In: ATAED@Petri Nets/ACSD (2015)

17. Berthelot, G.: Checking properties of nets using transformation. In: Rozenberg, G.
(ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Berlin (1986). https://doi.
org/10.1007/BFb0016204

18. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 13

19. Colom, J.M., Silva, M.: Improving the linearly based characterization of P/T nets.
In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 113–145. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1 23

20. Garcia-Valles, F., Colom, J.: Implicit places in net systems. In: Proceedings 8th
International Workshop on Petri Nets and Performance Models, pp. 104–113 (1999)

21. Berthomieu, B., Botlan, D.L., Dal-Zilio, S.: Petri net reductions for counting mark-
ings. CoRR abs/1807.02973 (2018)

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/BFb0055646
https://doi.org/10.1007/978-3-540-68746-7_24
https://doi.org/10.1007/978-3-319-23063-4_10
https://doi.org/10.1007/978-3-319-23063-4_10
https://doi.org/10.1007/BFb0016204
https://doi.org/10.1007/BFb0016204
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/3-540-53863-1_23

278 L. L. Mannel and W. M. P. van der Aalst

22. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 25

23. Polato, M.: Dataset belonging to the help desk log of an Italian company (2017)
24. Mannhardt, F.: Sepsis cases - event log (2016)
25. De Leoni, M., Mannhardt, F.: Road traffic fine management process (2015)
26. van der Aalst, W.M.P.: Event Logs and Models Used in Process Mining: Data

Science in Action (2016). http://www.processmining.org/event logs and models
used in book

27. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling
duplicated tasks in process discovery by refining event labels. In: La Rosa, M.,
Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 90–107. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 6

28. Li, J., Liu, D., Yang, B.: Process mining: extending α-algorithm to mine duplicate
tasks in process logs. In: Chang, K.C.-C., et al. (eds.) APWeb/WAIM -2007. LNCS,
vol. 4537, pp. 396–407. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72909-9 43

29. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong, G.,
Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM -2007. LNCS, vol.
4505, pp. 358–365. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72524-4 38

https://doi.org/10.1007/11494744_25
http://www.processmining.org/event_logs_and_models_used_in_book
http://www.processmining.org/event_logs_and_models_used_in_book
https://doi.org/10.1007/978-3-319-45348-4_6
https://doi.org/10.1007/978-3-540-72909-9_43
https://doi.org/10.1007/978-3-540-72909-9_43
https://doi.org/10.1007/978-3-540-72524-4_38
https://doi.org/10.1007/978-3-540-72524-4_38

Concurrent Programming
from pseuCo to Petri

Felix Freiberger1,2(B) and Holger Hermanns1

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
freiberger@depend.uni-saarland.de

2 Saarbrücken Graduate School of Computer Science,
Saarland Informatics Campus, Saarbrücken, Germany

Abstract. The growing importance of concurrent programming has
made practical concurrent software development become a cornerstone
of many computer science curricula. Since a few years, a sound bridge
from concurrency theory to concurrence practice is available in the form
of pseuCo, a light-weight programming language featuring both message
passing and shared memory concurrency. That language is at the core of
an award-winning lecture at Saarland Informatics Campus. This paper
presents a novel two-step semantic mapping from pseuCo programs to
colored Petri nets, developed for the sake of further strengthening the
educational concept behind pseuCo. The approach is fully integrated in
pseuCo.com, our open-source teaching tool for pseuCo, empowering stu-
dents to interact with the Petri-net-based semantics of pseuCo. In addi-
tion, we present a source-level exploration tool for pseuCo, also based on
this semantics, that gives users an IDE-like debugging experience while
enabling full control over the nondeterminism inherent in their programs.
The debugger is also part of pseuCo.com, allowing students to access it
without any set-up.

Keywords: Concurrency · Education · Colored Petri nets ·
Programming · Semantics

1 Introduction

Over the past decades, concurrent computation has grown tremendously in
importance within computer science. This concerns both the theoretical model-
ing of concurrent systems with formalisms like Petri nets as well as the practical
development of concurrent programs in real-world programming languages. The
latter has made modern concurrent programming an integral part of computer
science education. The ACM curricula recommendations [1] advocate a strong
educational component on “Parallel and Distributed Computing” and stipulate
that “Communication and coordination among processes is rooted in the message
passing and shared memory models of computing and such algorithmic concepts
as atomicity, consensus, and conditional waiting”.
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 279–297, 2019.
https://doi.org/10.1007/978-3-030-21571-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_16

280 F. Freiberger and H. Hermanns

Listing 1. A message passing pseuCo program. Expressions having the form c <! x
(lines 11, 18 and 21) send the value of x on channel c. Expressions having the form
<? c (lines 4, 19 and 22) receive a value from channel c.

1 void factorial(intchan c) {
2 int z, j, n;
3 while (true) {
4 z = <? c; // receive input
5

6 n = 1;
7 for (j = z; j > 0 ; j--) {
8 n= n*j;
9 }

10

11 c <! n; // send result
12 };
13 }
14

15 mainAgent {
16 intchan cc;
17 agent a = start(factorial(cc));
18 cc <! 3;
19 int mid = <? cc;
20 println("3! evaluates to " + mid + ".");
21 cc <! mid;
22 println("(3!)! evaluates to " + (<? cc) + ".");
23 }

At Saarland University in Saarbrücken, Germany, this is addressed since 2005
in the mandatory Bachelor-level Concurrent Programming lecture [7], which in
2013 was awarded with the German “Preis des Fakultätentages Informatik” for its
“innovative concept combining classical process calculi with practical program-
ming challenges”. At its core, the lecture revolves around pseuCo, a light-weight
programming language featuring both message passing and shared memory con-
currency concepts, with its message passing syntax being inspired by Go [10].
It includes support for data structures with condition synchronization. Listing 1
shows a small message passing pseuCo program that computes the factorial of
the factorial of 3.

PseuCo is overarching the lecture topics and bridges from a theoretical part –
introducing process calculi in the form of Milner’s CCS [16] – to a practical part
dealing with Go and Java. The latter is effectively accomplished by providing
a transpiler from pseuCo to Java source code which can either be output for
inspection or immediately be compiled to Java byte code and executed.

To facilitate foundational reasoning about and analysis of concurrent pro-
grams, pseuCo also has a formal semantics mapping to value-passing CCS. A
corresponding pseuCo-to-CCS-compiler, plus tools to facilitate analysis of the
resulting transition system, are provided to students as part of an IDE called

https://pseuco.com/#/sku/default/tool/edit/remote/o95e9upltn981b51uw75
https://pseuco.com/#/sku/default/tool/edit/remote/o95e9upltn981b51uw75

Concurrent Programming from pseuCo to Petri 281

Fig. 1. PseuCo.com showing Listing 1 and the CCS-based semantics.

pseuCo.com [4]. It is based on web technologies to ensure it can be accessed
easily by students. It requires no setup, updates automatically and works in all
modern browsers including on tablets. All computations are performed on the
client side (except for some advanced analysis tasks such as checks related to
memory models) so the tool works offline after initial use. The Concurrent Pro-
gramming lecture also uses pseuCo.com for the theoretical part as an IDE for
CCS terms. Figure 1 shows a screenshot of pseuCo.com showing the program
from Listing 1 1 , a fraction of its corresponding CCS term 2 and the resulting
LTS 3 , minimized up to observational congruence.

Over the years, both pseuCo and pseuCo.com have been subject to con-
tinuous improvement and have become an integral part of the annual lecture
editions. While being an overall success, room for disruptive improvement has
become apparent. Pragmatically speaking, this concerns readability of the com-
piler output and debugging. Conceptually speaking, it concerns a structured and
concurrency-preserving and hence more faithful formal semantics.

– Students typically have a very hard time understanding the CCS terms pro-
duced by the compiler because the latter uses several low-level hacks. Among
them:

• Control flow is resolved into goto-style [5] spaghetti-code in CCS syntax.
• The CCS terms generated contain many static helper constructs, such as

an AgentManager, responsible for assigning unique ids to agents.
• Synchronous (handshaking) and asynchronous (buffered) communica-

tion channels are internally distinguished by mapping them to negative,
respectively positive integer identifiers. Every time a channel is used, the
CCS term branches depending on the sign of the channel identifier.

– PseuCo.com lacks debugging support. It can show the LTS induced by the
CCS term (induced by the pseuCo program), but this does not provide an
adequate debugging experience. The LTS is notoriously large, very often too
large to grasp – Listing 1 already induces an LTS with 48 states.

282 F. Freiberger and H. Hermanns

– The students lack a feeling of the true concurrency inherent to a pseuCo
program since the CCS translation comes with an interleaving semantics.

All in all, the lesson the students learn is thus typically restricted to “OK, there
is a formal – but messy – semantics”, instead of “There is a natural way of giving
a formal concurrency semantics to a concurrent programming language”.

A deeper analysis of the problems led to the insight that all these prob-
lems can be overcome by instead providing a Petri-net-based semantics for
pseuCo. This is indeed what the paper develops. It describes a novel extension
to pseuCo.com that aims at (i) providing easy-to-understand compiler output,
(ii) providing a debugging experience that matches the usability and feature set
of classic IDEs while being based on a complete semantics preserving nonde-
terminism, allowing full exploration of all nondeterministic possibilities during
debugging, (iii) exposing students to Petri nets as a natural true concurrency for-
malism, and (iv) laying the basis for analysis of pseuCo programs using Petri net
techniques. At the core of this work is a two-level formalization of the semantics
in terms of colored Petri nets.

Related Work. Higher-level Petri nets are an attractive base for the formal
semantics of programming languages or process calculi. Among the pioneering
works, B(PN)2 [3] has been proposed as a concurrent programming notation
geared towards Petri nets. A compositional semantics maps B(PN)2 to M-Nets,
a Petri net dialect specifically designed as a vehicle for giving semantics to con-
current programming languages [2]. Just like our approach, M-Nets are based on
colored Petri nets. They support CCS-style composition which is coherent with
their unfolding operation. This is orthogonal to the approach presented here,
which does not provide composition operations, but focuses on providing a Petri-
net-based semantics for a programming language closely resembling traditional
imperative programming, together with tool support for use in teaching. Petru-
chio [15] is a tool-supported approach that focuses on dynamically changing
communication structures in Petri nets, especially rooted in the π-calculus [17].
It comes with a translation of the latter into Petri nets, so as to enable anal-
ysis with net verification tools. More recently, Nested-Unit Petri Nets [9] have
been proposed as an extension of (uncolored) Petri nets, to be used when map-
ping compositional, process calculi-inspired programs to Petri nets. The addition
of units allows more efficient storage of markings, speeding up analysis in the
presence of appropriately-defined units.

Organization of the Paper. Section 2 reviews the main features of the pseuCo
programming language. Section 3 introduces colored Petri nets and a JavaScript
library for handling them. Section 4 introduces CPPN , a higher-level Petri net
notation that is used as an intermediate step, its implementation and a transla-
tion from pseuCo to CPPN . Section 5 details how this translation and a debugger
based on it are included in the pseuCo.com web application. Finally, Section 6
concludes this paper.

Concurrent Programming from pseuCo to Petri 283

2 PseuCo in a Nutshell

To set the stage for what follows, this section reviews the most important aspects
of the pseuCo language design, closely following its presentation in [4].

Mainstream programming is nowadays dominated by imperative program-
ming languages. PseuCo is an imperative language featuring a heavily simpli-
fied Java-like look and feel paired with language concepts inspired by the Go
programming language [10]. It also has similarities with Holzmann’s Promela
language [11].

A very simplistic pseuCo example is depicted in Listing 2. This program
implements concurrent counting. A shared integer, n, is initialized to 10. The
procedure countdown() decrements this counter five times. The mainAgent, which
is run when the program is started, starts a second agent that runs countdown()
before calling countdown() itself. After both agents have executed this procedure,
the mainAgent prints the final value of n. To ensure mutually exclusive access to
the shared variable, a globally defined lock named guard_n is used within the
countdown() procedure.

PseuCo also provides native support for message passing concurrency. An
example is presented in Listing 1. An agent running the procedure factorial
interacts via a channel with the mainAgent. In a nutshell, factorial computes
the factorial of a number received from channel c and reports the result on
the same channel c. This channel is declared locally in line 16 and passed as a
parameter of factorial. Its type intchan indicates that it accepts integers and is
unbuffered, meaning that it induces a handshake between the agents sending to
(via <!) and receiving from (via <?) it. PseuCo also has channels that can hold

Listing 2. Shared memory concurrent counting in pseuCo.

1 int n = 10;
2 lock guard_n;
3

4 void countdown () {
5 for (int i = 5; i >= 1; i--) {
6 lock(guard_n);
7 n--;
8 unlock(guard_n);
9 }

10 }
11

12 mainAgent {
13 agent a = start(countdown ());
14 countdown ();
15 join(a);
16 println("The␣value␣is␣" + n);
17 }

https://pseuco.com/#/sku/default/tool/edit/remote/48m0sy341xhucb34j2vo
https://pseuco.com/#/sku/default/tool/edit/remote/48m0sy341xhucb34j2vo

284 F. Freiberger and H. Hermanns

Listing 3. Replacement for lines 4 to 11 in Listing 1.

1 select {
2 case <? t: {
3 return;
4 }
5 case z = <? c: { // lines 6 to 11 identical to Listing 1
6 n = 1;
7 for (j = z; j > 0 ; j--) {
8 n= n*j;
9 }

10

11 c <! n; // send result
12 }
13 };

strings or Booleans. After starting the agent, the mainAgent feeds the number 3
into the channel cc and then waits for results to be sent back to him. The result
is returned back to the factorial agent. After the second round, the main agent
prints the result.

This program does not terminate the factorial agent. Explicit termination
can be achieved by applying three changes. First, the expansion uses a new chan-
nel declared by inserting boolchan2 t; before line 1. This channel is a FIFO buffer
which can hold up to 2 Booleans. Second, the main agent is instructed to send
a message on that channel at the end of its execution by inserting t <! true;
after line 22. Finally, the factorial agent may now receive a message on two
different channels (t and c) and therefore a select-case statement is used to
specify dedicated reactions by replacing lines 4 to 11 with Listing 3. In case any
message on t is received, the agent immediately terminates. Otherwise, it pro-
ceeds as previously. PseuCo has borrowed the select-case concept from Go [10].
A select statement consist of several cases. Except for default cases, each case
has a guard and a statement. The guard contains exactly one send (<!) or receive
operation (<?). At runtime, a case can be selected only if the message passing
operation of the guard is possible, i.e. if the channel can be read or be written
to, respectively. One of those cases is selected nondeterministically and its guard
and statement are processed. A default case can always be selected. If there are
multiple cases that can be selected, one of them is selected nondeterministically.

These examples give an impression of the features provided by pseuCo, all of
which are given semantics by translation to CCS. In addition, pseuCo supports
arrays, structs and monitors with condition synchronization, however, these can
be viewed as syntactic sugar and are not considered in this paper.

https://pseuco.com/#/sku/default/tool/edit/remote/x1qnfzmhvq93letxn6ts
https://pseuco.com/#/sku/default/tool/edit/remote/x1qnfzmhvq93letxn6ts

Concurrent Programming from pseuCo to Petri 285

3 A Library for Colored Petri Nets

PseuCo is an imperative programming language, and as such any pseuCo pro-
gram operates on variables. In this context, colored Petri nets [12] offer a clear
advantage over basic Petri nets as a semantic model for the language.

Colored Petri Nets. We generally follow the definitions from [13] and assume
any syntax for expressions where Exp is the set of expressions, Types is a set
of types and Vars is a set of variables. Let B ∈ Types be the set of Booleans.
Let Values :=

⋃
t∈Types t be the set of all values. We use Type : Vars → Types

to express the type of a variable and Type : Exp → Types for the type of an
expression. For a set of variables Vars, let Type(Vars) denote the set of types
{Type(v) | v ∈ Vars}. We assume a function Var : Exp → Vars that returns
the variables in an expression. A binding b is a function b : Vars → Values
such that ∀v ∈ Vars : b(v) ∈ Type(v). Let Bindings be the set of bindings.
Lastly, we assume an evaluation function eval : Exp × Bindings → Values such
that ∀e ∈ Exp : ∀b ∈ Bindings : eval(e, b) ∈ Type(e). When evaluating closed
expressions, we omit the second argument to eval . Let XMS be the set of all
multisets over X.

Definition 1 (Colored Petri net). A colored Petri net is a tuple CPN =
(Σ,P, T,A,N,C,G,E, I) satisfying the requirements below:

(i) Σ is a finite set of non-empty types, called color sets.
(ii) P , T and A are pairwise disjoint sets of places, transitions and arcs.
(iii) N : A → P × T ∪ T × P is a node function.
(iv) C : P → Σ is a color function.
(v) G : T → Exp is a guard function such that

∀t ∈ T : Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ.
(vi) E : A → Exp is an arc expression function such that

∀a ∈ A : Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ
where p(a) is the place of N(a).

(vii) I : P → Exp is an initialization function such that
∀p ∈ P : Type(I(p)) = C(p)MS and ∀p ∈ P : Var(I(p)) = ∅,
i.e. all expressions returned by I are closed.

CPN in JavaScript. Colored Petri nets will serve as a semantic model for pseuCo,
and tool support for experiencing and exploring this semantics is at the core of
our educational approach. For this purpose, we provide a JavaScript library to
express and evaluate colored Petri nets, which we will call colored-petri-nets.
The library implements support for the concepts needed to materialize Defini-
tion 1 and its semantic underpinning by introducing a syntax for arc expressions,
implementing a data structure for Petri nets and providing an algorithm for find-
ing enabled steps. In addition, for nets where only a finite number of values are
reachable, it allows converting the colored Petri net into a basic Petri net. For
simplicity, the library enforces some restrictions and simplifications:

286 F. Freiberger and H. Hermanns

1. In Definition 1, arc expressions evaluate to a multiset of colors. Our expres-
sion syntax only allows expressing single colors, which are always treated as
singleton multisets. Multiple tokens can be consumed or produced by the use
of multiple arcs.

2. Usually, colored Petri nets are defined over an arbitrary set Σ of color sets (or
types). Our implementation, however, only supports a single type, Σ = {V},
with V containing numbers, booleans, arrays and objects (where keys are
strings and values are valid colors).

3. In full generality, both arcs from places to transitions (“incoming” arcs) and
arcs from transitions to places (“outgoing” arcs) are inscribed with the same
kind of expression. However, allowing arbitrary expressions on incoming arcs
complicates computing the set of enabled markings because the binding are
to be guessed or deduced. CPN tools [13] solve this problem by using a sophis-
ticated algorithm [14] to compute the values of variables that can be deduced
and by restricting unbounded variables to small color sets. For reasons of sim-
plicity, we instead use a restricted pattern syntax on incoming arcs. When
given token colors to read, these patterns evaluate to partial bindings. If they
are compatible, they combine to the single binding under which the guard
and the outgoing arcs’ expressions are evaluated, assuming no unbound vari-
ables remain. While this restricts a single token read to return only one spe-
cific binding, nondeterminism can be retrieved by allowing expressions with
inherent nondeterminism or by duplicating transitions.

The restricted pattern syntax for incoming arcs is inspired by JavaScript [6],
especially by valid left-hand sides of JavaScript assignments. Various extensions
and modifications aim to provide a more complete set of matching capabilities.
The constructs in Table 1 can be used in patterns.

For outgoing arcs, the syntax and semantics of expressions are also based
on a fragment of JavaScript, but feature some additions. These mostly serve
the purpose of increasing the expressiveness without needing to allow pro-
cedural code. Just as in traditional JavaScript, we support (i) conditionals
(x ? 42 : 1337); (ii) logical or (||) and and (&&); (iii) equality (==) and
inequality (!=) checks; (iv) numerical comparison (>, <, >= and <=); (v) division-
free basic arithmetic (+, - and *); (vi) boolean negation (!); (vii) property access
(point.coordinates.x), including the length property of arrays; (viii) group-
ing with (and); (ix) integer and boolean literals; (x) variables; (xi) array
literals ([4, 5, 6]); and (xii) object literals ({ a: 1, b: 2 }), including ES6-
style shorthand notation ({ a, b }). In addition, support is provided for (xiii)
array concatenation via the new @ operator; (xiv) spreads in object literals
({ a: 1, ...x, b: 2, ...y, a: 2 }) which copy in all keys and values from
another object, using the rightmost value if a key is duplicated; and (xv) an
evaluation function (eval(a + b, vars)) that evaluates a subexpression in a
separate environment that is passed in object form as the second argument.

The JavaScript library colored-petri-nets is freely available at https://
dgit.cs.uni-saarland.de/pseuco/colored-petri-nets.

https://dgit.cs.uni-saarland.de/pseuco/colored-petri-nets
https://dgit.cs.uni-saarland.de/pseuco/colored-petri-nets

Concurrent Programming from pseuCo to Petri 287

Table 1. Constructs allowed in colored-petri-nets patterns.

Name Example Description

Variable x Matches anything and binds the value
Wildcard _ Matches anything and drops the value
Array patterns [a, b, c] Matches any array of matching length

and recursively matches the components
Empty slots in
array patterns

[a, , c] Act as a wildcard

Spread in
array pattern

[hd, ...tl] Matches the remainder of the array, only
allowed in the last slot

Object
pattern

{ a, b: c } Matches objects having all required keys
and matches the values to the pattern, if
one is specified, or binds it to a variable
named like the key

Spread in
object pattern

{ one, two, ...rest } Matches all unmentioned keys into a new
object, only allowed in the last slot

4 Augmenting CPN for Concurrent Programming

As discussed in Section 1, there are three problems impeding readability of the
CCS terms produced by the current pseuCo to CCS compiler: (i) hard-to-follow
program flow, (ii) an abundance of static helper constructs and (iii) the insertion
of runtime logic into user code (e.g. for message passing). While the switch to
Petri nets (and using a graphical representation for them) inherently improves
on problem (i), without additional care, issues (ii) and (iii) would resurface.

For example, when considering message passing in pseuCo, Petri nets are
obviously capable of expressing both synchronous and asynchronous message
passing channels. However, since channel variables can be dynamically reas-
signed, static analysis cannot always determine whether a channel variable refers
to a synchronous or an asynchronous channel, or whether two channel variables
in different agents could refer to the same channel. Therefore, a naïve implemen-
tation would be bound to introducing a central storage place for the contents
of all asynchronous channels. Each use of a channel would then have to per-
form a run-time check to determine the type of channel, and in the case of an
asynchronous channel proceed by synchronizing with the central storage place.
Such constructs blow up the resulting Petri net and impede readability. They
also hinder graph layout by their introduction of highly interconnected places. In
addition, these constructs are not specific to pseuCo, so we would like to make
them reusable for compiling other programming languages to Petri nets.

To this end, we introduce an abstraction layer between pseuCo and colored
Petri nets, called colored program Petri nets (CPPN). This is a high-level notation

288 F. Freiberger and H. Hermanns

Fig. 2. Calling and agent management.

based on colored Petri nets tailored to concurrent programs using shared memory
and/or message passing concurrency. As CPPN are meant as an easily visualizable
and reusable intermediate form between an imperative concurrent programming
language and Petri nets, we do not define an executable semantics for them, but
instead provide a translational semantics to ordinary colored Petri nets.

4.1 Overview

At a glance, a CPPN is very similar to a colored Petri net. However, in CPPNs,
tokens are strictly associated with agents (or threads) on the program level,
and token colors can be viewed as object valuations together representing the
states of local variables of the agent. Agents have an identity that becomes
relevant when waiting for an agent’s termination or when handling reentrant
locks. On the CPPN level, this is echoed by regular (i.e. CPN-typical) transitions
being restricted to always consume and produce exactly one token, and the
initial marking being constrained to contain a single token. In return, CPPN
includes command transitions to handle (i) procedure calls, (ii) agent creation
and management, (iii) message passing, (iv) global variables and (v) mutexes.

Calling and Agent Management (see Figure 2). For both call and start-agent,
the xi are local variables representing the arguments of the called procedure and
the ei are expressions representing their values. For call, x is the variable that
captures the return value. Similarly, for start-agent, a captures the identity
of the newly started agent. This allows waiting for the termination of the agent
with a join(a) transition. For return, e is an expression representing the return
value.

Note that call and start-agent have two outgoing arcs, one of which is
dashed. The dashed arc represents the called procedure or the newly started
agent, while the solid arc represents the caller.

Message Passing Support (see Figure 3). init-chan creates a new channel of
capacity c, assigned to variable x. Sending and receiving messages is handled
by send, receive and default transitions. Any place that has an outgoing arc
to such a transition may not have an outgoing arc to other transitions. The
default transition is always allowed and allows bailing out of a place that has
message passing transitions.

Concurrent Programming from pseuCo to Petri 289

Fig. 3. Message passing support: Channel creation and sending/receiving messages.

Fig. 4. Shared memory support: Global variables and mutexes.

Shared Memory Support (see Figure 4). CPPNs support the use of global vari-
ables that all agents can access. These variables cannot be used directly but
can be accessed using two dedicated commands: read-global(x, v) copies the
value of the global variable x to the local variable v, and write-global(x, e)
writes the result of evaluating the expression e to x. Coordination is possible
through the use of mutexes (or locks). They are initialized with init-mutex,
which saves their identity in variable v. Then, they can be used with lock-mutex
and unlock-mutex.

Example. Figure 5 depicts a CPPN for the pseuCo program listed in Listing 1. In
the visual representation, the three lines labeling the transition bodies indicate
the name of the transition, which kind of command transition it is and the guard
(which defaults to true).

Syntax of CPPN . The ensemble of structures enabled by CPPN is as follows.
Let GlobVars be a set of identifiers for global variables. We define a set Cmds
of commands that can be associated with transitions to make them command
transitions. For example, the transition factorial-send in Figure 5 has the
command send(c, n) associated with it, indicating that the result of evaluating
the expression n is sent over the channel returned by evaluating the expression
c. Similarly, we define commands for all types of command transitions appear-
ing in Figures 2, 3, and 4. Let MPCommCmds ⊂ Cmds be the set of possible
message passing commands, i.e. sending, receiving or default transitions. Sim-
ilarly, StartAgentCmds, CallCmds and ReturnCmds refer to the corresponding
respective subsets of Cmds.

290 F. Freiberger and H. Hermanns

Fig. 5. A CPPN for Listing 1. The notation adheres to certain simplifications that are
introduced in Section 4.2.

Concurrent Programming from pseuCo to Petri 291

Definition 2 (CPPN). A CPPN is a tuple CPN = (Σ,P, T,A,Cmd , S,N,C,
G,E, I) satisfying the requirements below:

(i) (Σ,P, T,A,N,C,G,E, I) is a colored Petri net.
(ii) Cmd : T → Cmds ∪ {⊥} is a command function.
(iii) S : A → B indicates for each arc whether it is starting a new procedure or

agent.
(iv) The arc expression function E only returns expressions that always eval-

uate to singleton multisets:

∀a ∈ A : ∀b ∈ Bindings : |eval(E(a), b)| = 1.

(v) The initialization function specifies a single token:

∃p ∈ P : |eval(I(p))| = 1 ∧ ∀p′ ∈ P \ {p} : |eval(I(p))| = 0.

(vi) Let post(x) := {y | ∃a ∈ A : N(a) = (x, y)} denote the set of successors
and pre(x) := {y | ∃a ∈ A : N(a) = (y, x)} denote the set of predecessors
of a place or transition. For each transition, the number of incoming and
outgoing arcs must be correct, in the following sense:
1. ∀t ∈ T : |pre(t)| = 1

2. ∀t ∈ T : |post(t)| =

⎧
⎪⎨

⎪⎩

2 if Cmd(t) ∈ StartAgentCmds ∪ CallCmds
0 if Cmd(t) ∈ ReturnCmds
1 otherwise

For call and start transitions, exactly one arc must be marked as starting:
3. ∀t ∈ T : |{a | a ∈ post(t) ∧ S(a) = true}| = 1

(vii) Let TMPComm := {t ∈ T |Cmd(t) ∈ MPCommCmds} be the set of message
passing communication transitions. If a transition has an outgoing arc to
any transition in TMPComm , all outgoing arcs must lead to such transitions,
i.e. ∀p ∈ P : post(p) ∩ TMPComm = ∅ =⇒ post(p) ⊆ TMPComm .

Relative to Definition 1, we can note the following differences:

– There is a command function (see (ii)) assigning commands to transitions.
If Cmd(T) = ⊥, we call T a Petri transition, otherwise, it is a command
transition.

– The arc expression function must yield expressions that always return a single
token. This, together with condition (vi), ensures that Petri transitions must
consume and produce exactly one token at all times.

– The initial marking is now restricted to contain a single token.
– Condition (vi) and the new function S (see (iii)) ensure command transi-

tions have the correct number of incoming and outgoing arcs, and call and
start-agent transitions have one outgoing arc designated as the starting arc,
represented by a dashed line in the graphical representation.

– An additional restriction, item (vii), ensures that any place that has an out-
going arc to a message passing command transition can only have arcs to
such transitions.

292 F. Freiberger and H. Hermanns

Fig. 6. Unfolding of shared memory command transitions. Each read-global and
write-global command transition is replaced by the construct above, creating a new
place global-x (initialized with a token of color 0) whenever a global variable named x
is seen for the first time.

4.2 Translation From to CPN

As mentioned previously, CPPNs do not posses an executable semantics, but
instead are translated to regular colored Petri nets. At its core, the construc-
tion unfolds the command transitions into the structures corresponding to their
intended functionality.

1. All arc expressions and the initial marking are updated by adding an agent
property that contains an agent id and the current recursion depth, initially
both 0. This enables e.g. join transitions to recognize agents and allows
matching the token of a returning procedure to its caller. The color sets of
all places are adjusted accordingly.

2. A fixed set of management places is added to handle id generation for locks,
channels and agents, manage agent termination and store channel contents
and lock states.

3. For each global variable, a management place is added to store its value.
4. Each command transition is replaced with a specific construct implementing

the command functionality, typically by synchronizing with one or more man-
agement places. For example, Figure 6 shows the unfolding for shared mem-
ory command transitions. For message passing command transitions, these
replacement constructs in addition can synchronize with each other to imple-
ment handshaking over synchronous channels. Similarly, each pair of call and
return command transitions causes a linking transition to be inserted that
handles returns from that specific return transition to that call transition.

The various details of the needed constructions are too verbose to include them
in all detail here due to lack of space. A majority of these constructions result
in a linear increase in the size of the net, similar to Figure 6. However, over-
all, the size of the resulting CPN is quadratic in the number of call, return,

Concurrent Programming from pseuCo to Petri 293

send and receive transitions due to the additional transitions needed to handle
handshaking and returns.

Implementation. The JavaScript library colored-petri-nets introduced in
Section 3 has full support for CPPN and for the translation to colored Petri
nets. On top of the restrictions and simplifications that apply to plain colored
Petri nets (see Section 3), two additional simplifications are added: First, com-
mand transitions are not allowed to have a guard different from true. Second,
arcs belonging to command transitions do not have arc inscriptions. Therefore,
command transitions are not allowed to change the token color except in the
way dictated by their command. For command transitions where arc inscrip-
tions seem necessary, e.g. when passing arguments to a called procedure or newly
started agent, the behavior is instead controlled by additional parameters within
the command. The notation used in Figures 2, 3, 4, 5, and 6 matches these sim-
plifications.

4.3 From pseuCo to

As per the design goals of CPPN , compiling pseuCo programs to CPPN is rather
straightforward. This task is taken care of by pseuco-cpn-compiler, a Java-
Script-based implementation of such a compiler. The compiler starts with a
net consisting of a single place, then simply traverses the abstract syntax tree
of the input program, processing children in reverse order while building up
the net from bottom to top. This direction is advantageous because it sim-
plifies building a source map, indicating which program statement each place
belongs to, as the compiler creates the place representing the program state
before a certain statement while processing that statement. The JavaScript
library pseuco-cpn-compiler is freely available at https://dgit.cs.uni-saarland.
de/pseuco/pseuco-cpn-compiler. It currently supports the array- and structure-
free subset of pseuCo. In conjunction with the colored-petri-nets library, it
allows compiling pseuCo programs into regular colored Petri nets or, for pseuCo
programs with a bounded state space, basic Petri nets.

5 pseuCo.com: An Educational Tool Backed by Petri Nets

As previously discussed, the main motivation of this work has been to enhance
pseuCo.com by providing a more easily digestible semantics of pseuCo programs
and by providing IDE-like debugging capabilities. This section details the result
of these efforts.

Colored Petri Nets in pseuCo.com. To integrate the colored-petri-nets
library and pseuco-cpn-compiler into the educational tool pseuCo.com, an
appealing way is needed to visualize Petri nets. For the purpose of working with
labeled transition systems, pseuCo.com does already employ a force-directed

https://dgit.cs.uni-saarland.de/pseuco/pseuco-cpn-compiler
https://dgit.cs.uni-saarland.de/pseuco/pseuco-cpn-compiler

294 F. Freiberger and H. Hermanns

Fig. 7. PseuCo.com showing a sample pseuCo program and its Petri net semantics.

graph layout system allowing the user to interactively explore a transition sys-
tem by expanding or collapsing states (i.e. showing and hiding their successors).
Petri nets incur less need for interactive exploration as they tend to stay small
even for pseuCo programs resulting in thousands of LTS states using the existing
CCS-based compiler. Still, the integration of Petri nets into pseuCo.com uses a
force-based graph layout, so as to allow users to influence the layout of the net
by dragging and dropping, similarly to what is supported for LTS. In addition to
standard forces like electrical charges and spring forces along arcs, pseuCo.com
employs custom forces to orient graphs. They ensure that regular arcs typically
point downwards, while called agents and procedures are positioned horizontally.
This is demonstrated in Figure 7, showing a sample pseuCo program 1 and
two graphs describing the corresponding CPPN 2 and a fragment of its unfold-
ing 3 . To speed up convergence, the force layout is initialized by node positions
precomputed with dagre which employs an algorithm similar to Graphviz [8].
The force layout can be disabled to fall back to the static layout provided by
dagre.

Debugging pseuCo Programs in pseuCo.com. The CCS-based semantics
employed by pseuCo.com so far has been of little help for students seeking to
understand the behavior of their programs. At its core, this problem is rooted in
the difficulty of mapping a state of the resulting LTS to the state of the underly-
ing pseuCo program, a process that requires parsing convoluted CCS terms and
an understanding of the internal low-level hacks used by the pseuCo to CCS
compiler. While switching to the Petri-net-based semantics alleviates this by
replacing CCS terms with markings in a fixed net, significantly improving read-

Concurrent Programming from pseuCo to Petri 295

ability, a partial understanding of the compiler’s internals is still required. To
resolve this, we present the pseuCo.com debugging feature. While designed to be
usable even without an understanding of Petri nets, it is based upon the seman-
tics described above and backed by the CPPN -based pseuCo compiler included
in pseuCo.com.

In its core, the debugger is a tool to explore the marking graph of the under-
lying Petri net. However, instead of showing the current marking directly, the
debugger translates the marking into pseuCo terminology. Figure 8 shows the
debugger in action, demonstrating its main features: It allows the user to

– inspect the console output 1 ,
– see running agents and their local variables and call stack 2 ,
– identify the statement an agent is currently executing 3 ,
– see global variables and the state of asynchronous channels and locks (not

present in the example),
– see which agents are currently waiting for message passing synchronization

to happen 4 ,
– single-step agents 5 , manually resolving nondeterminism if present,
– automatically execute single agents 6 as long as their behavior is determin-

istic,
– automatically execute the whole program 7 , resolving nondeterminism

randomly,
– set breakpoints 8 to interrupt automatic execution and to
– return to any previous state of the program 9 .

All of this functionality is rooted in the linkage between the pseuCo program
and the Petri net levels, mentioned above. The compiler, pseuco-cpn-compiler,
annotates its output CPPN with a source map allowing the debugger to link
elements of the net to the original program. When converting the CPPN to a
colored Petri net, the colored-petri-nets module preserves these annotations
and generates additional metadata identifying the newly introduced places.

When inspecting a marking, the debugger uses the agent id and recursion
depth embedded in the token colors (see Section 4.2) to identify running agents,
their local variables and stack frames. The source map information of an agent
tokens’ place identifies that agent’s position in the source code. Global variables
and their values are identified by looking for places added by the replacement
rule introduced in Figure 6 and tokens stored in them. Asynchronous channel
contents and in-progress handshaking events are handled similarly.

In summary, this approach allows pseuCo.com to present a debugger that
supports a similar feature set and user experience than a traditional IDE. Being
built upon on the complete Petri-net-based semantics, however, allows preserving
the full nondeterministic behavior of the program, ensuring that every execution
of the program that can occur in practice can not only be reproduced but also
specifically chosen in the debugger.

296 F. Freiberger and H. Hermanns

Fig. 8. PseuCo.com in a debugging session for the program from Listing 1.

6 Conclusion and Future Work

This paper has presented a translational semantics for pseuCo to Petri nets tai-
lored to the use in education. Its intermediate step, the higher-level Petri net
formalism CPPN , is geared towards easy visualization of program semantics and
reusability for other programming languages. The transpiler is highly integrated
into pseuCo.com, providing easy access to it to students and teachers and extend-
ing pseuCo.com with a structured and concurrency-preserving semantics and a
nondeterminism-preserving debugging facility. The transpiler and its underly-
ing colored Petri nets implementation are available as open-source JavaScript
libraries.

There is obvious room for improvement in these tools, most importantly
expanding the transpiler to support the full feature set of pseuCo, which includes
arrays, data structures and monitors with condition synchronization. Doing so
cleanly requires the introduction of additional command transitions in CPPN .

The Petri net extension is brand-new and has as such not been used in a
lecture edition so far. This is planned for summer 2019, together with a shift
in the theoretical course focus, now embracing the Petri net perspective on
concurrency.

Acknowledgments. We would like to thank Bernd Finkbeiner for supervising an
earlier phase of this project. Michaela Klauck provided helpful feedback during
development of the debugging feature of pseuCo.com. This work was partially sup-

Concurrent Programming from pseuCo to Petri 297

ported by the ERC Advanced Investigators Grant 695614 (POWVER) and by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 389792660 – TRR 248 (see https://perspicuous-computing.science).

References

1. Computer Science Curricula 2013. ACM Press and IEEE Computer Society Press
(2013). https://doi.org/10.1145/2534860

2. Best, E., Fraczak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: an algebra
of high-level Petri nets, with an application to the semantics of concurrent pro-
gramming languages. Acta Inf. 35(10), 813–857 (1998). https://doi.org/10.1007/
s002360050144

3. Best, E., Hopkins, R.P.: B(PN)2 — a basic Petri net programming notation. In:
Bode, A., Reeve, M., Wolf, G. (eds.) PARLE 1993. LNCS, vol. 694, pp. 379–390.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56891-3_30

4. Biewer, S., Freiberger, F., Held, P.L., Hermanns, H.: Teaching academic concur-
rency to amazing students. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A.,
Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol.
10460, pp. 170–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63121-9_9

5. Dijkstra, E.W.: Letters to the editor: go to statement considered harmful. Commun.
ACM 11(3), 147–148 (1968). https://doi.org/10.1145/362929.362947

6. ECMA International: ECMAScript c© 2015 Language Specification, 6th edn., June
2015. Standard ECMA-262

7. Eisentraut, C., Hermanns, H.: Teaching concurrency concepts to freshmen. Trans.
Petri Nets Other Models Concurr. 1, 35–53 (2008). https://doi.org/10.1007/978-
3-540-89287-8_3

8. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.: A technique for drawing directed
graphs. IEEE Trans. Softw. Eng. 19(3), 214–230 (1993). https://doi.org/10.1109/
32.221135

9. Garavel, H.: Nested-unit Petri nets. J. Log. Algebr. Methods Program. 104, 60–
85 (2019). https://doi.org/10.1016/j.jlamp.2018.11.005, http://www.sciencedirect.
com/science/article/pii/S2352220817302018

10. The Go Programming Language Specification. http://golang.org/ref/spec
11. Holzmann, G.: The Spin Model Checker – Primer and Reference Manual, 1st edn.

Addison-Wesley Professional, Boston (2003)
12. Jensen, K.: Coloured Petri nets and the invariant-method. Theor. Comput. Sci.

14, 317–336 (1981). https://doi.org/10.1016/0304-3975(81)90049-9
13. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical

Use - Volume 1. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (1992). https://doi.org/10.1007/978-3-662-06289-0

14. Kristensen, L.M., Christensen, S.: Implementing coloured Petri nets using a func-
tional programming language. High. Order Symb. Comput. 17(3), 207–243 (2004).
https://doi.org/10.1023/B:LISP.0000029445.29210.ca

15. Meyer, R., Strazny, T.: Petruchio: from dynamic networks to nets. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 175–179. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_19

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

17. Milner, R.: Communicating and Mobile Systems - The Pi-calculus. Cambridge
University Press, New York (1999)

https://perspicuous-computing.science
https://doi.org/10.1145/2534860
https://doi.org/10.1007/s002360050144
https://doi.org/10.1007/s002360050144
https://doi.org/10.1007/3-540-56891-3_30
https://doi.org/10.1007/978-3-319-63121-9_9
https://doi.org/10.1007/978-3-319-63121-9_9
https://doi.org/10.1145/362929.362947
https://doi.org/10.1007/978-3-540-89287-8_3
https://doi.org/10.1007/978-3-540-89287-8_3
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1016/j.jlamp.2018.11.005
http://www.sciencedirect.com/science/article/pii/S2352220817302018
http://www.sciencedirect.com/science/article/pii/S2352220817302018
http://golang.org/ref/spec
https://doi.org/10.1016/0304-3975(81)90049-9
https://doi.org/10.1007/978-3-662-06289-0
https://doi.org/10.1023/B:LISP.0000029445.29210.ca
https://doi.org/10.1007/978-3-642-14295-6_19
https://doi.org/10.1007/3-540-10235-3

Algorithmic Aspects

Improving Saturation Efficiency
with Implicit Relations

Shruti Biswal(B) and Andrew S. Miner

Department of Computer Science, Iowa State University, Ames, IA 50010, USA
{sbiswal,asminer}@iastate.edu

Abstract. Decision diagrams are a well-established data structure for
reachability set generation and model checking of high-level models such
as Petri nets, due to their versatility and the availability of efficient algo-
rithms for their construction. Using a decision diagram to represent the
transition relation of each event of the high-level model, the saturation
algorithm can be used to construct a decision diagram representing all
states reachable from an initial set of states, via the occurrence of zero or
more events. A difficulty arises in practice for models whose state variable
bounds are unknown, as the transition relations cannot be constructed
before the bounds are known. Previously, on-the-fly approaches have con-
structed the transition relations along with the reachability set during
the saturation procedure. This can affect performance, as the transition
relation decision diagrams must be rebuilt, and compute-table entries
may need to be discarded, as the size of each state variable increases. In
this paper, we introduce a different approach based on an implicit and
unchanging representation for the transition relations, thereby avoiding
the need to reconstruct the transition relations and discard compute-
table entries. We modify the saturation algorithm to use this new repre-
sentation, and demonstrate its effectiveness with experiments on several
benchmark models.

Keywords: Petri nets · Decision diagram · Saturation ·
Reachability set generation

1 Introduction

High-level formalisms can be used to model complex discrete-state systems. The
generation of the reachable state space, or reachability set, for such systems is an
essential step for different kinds of studies. Formal verification techniques, such as
model checking, may require the entire state space of a system to verify that some
or all states satisfy certain properties, such as the presence of a safety property
at all states. However, the reachability set of a system can be extremely large
due to the state explosion problem, making the generation of the reachability
set difficult.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 301–320, 2019.
https://doi.org/10.1007/978-3-030-21571-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_17

302 S. Biswal and A. S. Miner

Present-day symbolic techniques usually outperform the traditional explicit
techniques used for reachability set generation. The saturation [7] algorithm is
one such symbolic strategy for reachability set generation. An efficient imple-
mentation [14] of the saturation algorithm uses multi-valued decision diagram
(MDD) representations [13] for encoding sets of reachable states and matrix
diagram representations (MxD) for transition relations of the models.

However, a significant complication arises when the variables of the system
have unknown bounds. For such systems, on-the-fly techniques [7,19] for transi-
tion relation construction are used, that require expansion of transition relations
every time new bounds for variables are discovered which amounts to additional
changes to compute-table entries. While the information in the transition rela-
tion is crucial to the application of symbolic techniques, its repeated construction
in the form of MxD affects the overall efficiency of symbolic methods involved in
reachability set analysis. When the events of a system are such that the enabling
of each event is co-dependent on multiple variables, and the firing of the event
affecting each variable is independent of other variables, the re-building of tran-
sition relations becomes an overhead because the growth of variable bound is a
function of the variable itself. For the aforementioned systems, a more efficient
technique would be to use a static representation of transition relations in order
to restrict the modification of compute-table entries to the development of the
reachability set alone. The focus and contribution of this paper is to devise a
data structure, called an implicit relation forest, that encodes the events of such
systems and uses the saturation algorithm for reachability set generation with
reduced time and memory expense. To provide strong evidence of improvement
in reachability set generation process, the paper proposes a modified satura-
tion algorithm that uses implicit relations to conduct experiments and compares
performance results with that of the on-the-fly saturation algorithm.

The rest of the paper is organized as follows. Section 2 defines the class of
models we consider, and briefly recalls decision diagrams and on-the-fly satu-
ration. Section 3 introduces implicit relation forests, details their construction
from a model, and presents the saturation algorithm modified to use the alter-
nate representation for model events. Section 4 discusses the related work and
compares them with implicit relations. Section 5 describes the experimental eval-
uation of the devised method on an extensive set of Petri net models collected
from the annual Model Checking Competition (MCC) [1]. Finally, Sect. 6 draws
conclusions and discusses future research directions.

2 Background

This section describes the class of models that we consider in the paper, recalls
the basics of decision diagrams, MDDs, and MxDs, and the saturation algorithm.

Improving Saturation Efficiency with Implicit Relations 303

2.1 Model Definition

Rather than restricting our discussion to a particular formalism, we consider
a class of generic high-level discrete-state models that includes many existing
formalisms. A discrete-state model M is defined by a tuple (V, E , i0,Δ) where:

– V = {v1, v2, . . . , vL} is a finite set of state variables of the model. Each state
variable vk can assume a value from the set of natural numbers. A (global)
state i of M is then an L-tuple (i1, i2, . . . , iL) ∈ N

L.
– E = {e1, e2, . . . , e|E|} is a finite set of events of the model.
– i0 ∈ N

L is the initial state of the model.
– Δ : NL × E �→ N

L is the next state (partial) function. If Δ(i, e) is defined, we
say event e is enabled in state i, and if event e occurs then the model changes
from state i into state Δ(i, e). Otherwise, if Δ(i, e) is undefined, we say event
e is disabled in state i.

We require that each event e can be expressed using L local next state (partial)
functions, Δe,1, . . . ,Δe,L, such that

Δ((i1, . . . , iL), e) = (Δe,1(i1), . . . , Δe,L(iL)).

In other words, the value of a single local variable vk is enough to disable an
event, and the change in state variable vk when an event occurs may depend
only on state variable vk. Furthermore, each event is deterministic: for a
given input state, an event can produce at most one output state. However,
the model may be nondeterministic, as several events may be enabled in a
given state.

For example, an ordinary Petri net [16] can be expressed using our model: the
set V can correspond to the set of Petri net places, the set E can correspond to the
set of Petri net transitions that are unit-weighted by definition, the initial state i0
will correspond to the initial marking of the Petri net, and Δ will correspond to
the Petri net firing rules. Specifically, for a place pk and a transition t, Δt,k(ik)
is defined if ik is greater or equal to the number of edges from pk to t, and
Δt,k(ik) = jk if jk − ik equals the number of edges from t to pk minus the
number of edges from pk to t. Petri nets with inhibitor arcs can also be expressed.
An example “fork-join” Petri net model is shown in Fig. 1, where the circles
correspond to places and the squares correspond to transitions. Transition t1
performs a fork operation and transition t6 performs a join operation.

Petri nets with marking-dependent arc cardinalities can sometimes be
expressed using our model. Effectively, if the cardinality on an edge from pi
to t or from t to pi depends on the number of tokens in a place pj , then places pi
and pj could be grouped together in a single model variable vl ∈ V. Alternatively,
transition t can be split into several model events, each representing a portion
of t. For example, we might use events e1, e2, e3, . . . where event en simulates
transition t but only when there are exactly n tokens present in place pi. These
modifications are necessary to express Δ(i, t) in terms of local functions Δe,l(il)

304 S. Biswal and A. S. Miner

that depend only on the local model state variable. Transition guards can be
handled in a similar manner. This is the Kronecker consistency requirement dis-
cussed in [6], and in practice it limits the applicability of our approach to models
that can be obtained by merging only a few places together and whose number
of events (including those obtained from splitting transitions) is small.

p5

t1 t6

p4 t3

t2

p3

p2

t4

t5 p1

S = { (0, 0, 0, 0, 3), (0, 1, 0, 1, 2), (0, 1, 1, 0, 2), (0, 2, 0, 2, 1),

(0, 2, 1, 1, 1), (0, 2, 2, 0, 1), (0, 3, 0, 3, 0), (0, 3, 1, 2, 0),

(0, 3, 2, 1, 0), (0, 3, 3, 0, 0), (1, 0, 0, 1, 2), (1, 0, 1, 0, 2),

(1, 1, 0, 2, 1), (1, 1, 1, 1, 1), (1, 1, 2, 0, 1), (1, 2, 0, 3, 0),

(1, 2, 1, 2, 0), (1, 2, 2, 1, 0), (1, 2, 3, 0, 0), (2, 0, 0, 2, 1),

(2, 0, 1, 1, 1), (2, 0, 2, 0, 1), (2, 1, 0, 3, 0), (2, 1, 1, 2, 0),

(2, 1, 2, 1, 0), (2, 1, 3, 0, 0), (3, 0, 0, 3, 0), (3, 0, 1, 2, 0),

(3, 0, 2, 1, 0), (3, 0, 3, 0, 0)}

Fig. 1. A fork-join Petri net model (left) and its reachability set (right).

For a given model M = (V, E , i0,Δ), we can define the following.

– The next state function for event e, Ne : NL → 2N
L

, is defined as Ne(i) =
{j : Δ(i, e) = j}. We then define the overall next state function as N (i) =⋃

e∈E Ne(i), which gives the set of states reachable via the occurrence of one
event from a single starting state, and further extend this to sets of starting
states: N (I) =

⋃
i∈I N (i).

– The reachability set S ⊆ N
L is the set of states reachable via the occurrence

of zero or more events from the initial state i0, and is the least fixed point
satisfying S = {i0} ∪ S ∪ N (S).

As an example, the reachability set S is shown in Fig. 1 for the fork-join Petri
net model, where a state is shown as (p1, p2, p3, p4, p5).

The focus of this paper is on algorithms to generate the set S, using decision
diagrams. This is a necessary first step for many types of analysis, including
verification of safety properties or model checking of more complex properties
specified in a temporal logic. For this work, we assume that S is finite (in general
there is no guarantee of this). Note that the set S is finite if and only if every
state variable is bounded. We do not require knowledge of these bounds a priori ;
instead, our reachability set generation algorithm will discover these bounds.

2.2 Multi-valued Decision Diagrams and Matrix Diagrams

An ordered multi-valued decision diagram (MDD) [13] defined over the sequence
of L domain variables (uL, . . . , u1), with a given variable order such that ul � uk

Improving Saturation Efficiency with Implicit Relations 305

iff l > k and a specified domain for each variable D(uk) = {0, 1, 2, . . . , nk − 1},
is a directed acyclic edge-labelled graph where:

– Each node m is associated with some variable, denoted as m.var.
– There are two terminal nodes, 0 and 1. These are associated with a special

variable u0, satisfying uk � u0 for any domain variable uk.
– Each non-terminal node m is associated with a domain variable uk and ∀ik ∈

D(uk), there is an edge labelled with ik pointing to a child m[ik].
– The variable associated with any child m[ik] of a non-terminal node m is

guided by the variable order such that m.var � m[ik].var.

A node m in an MDD encodes a function fm : D(uL)×· · ·×D(u1) → {0, 1},
defined recursively by

fm(iL, . . . , i1) =
{

m, if m.var = u0

fm[ik](iL, . . . , i1), if m.var = uk � u0

Non-terminal node n is a duplicate of node m if n.var = m.var, and if n[i] =
m[i],∀i ∈ D(n.var). Note that duplicate nodes n and m encode the same func-
tion: fm = fn. Non-terminal node m is redundant if m[i] = m[0],∀i ∈ D(m.var);
note that fm is independent of variable m.var in this case and fm = fm[0]. An
MDD is fully reduced if it contains no duplicate nodes and no redundant nodes.
It can be shown that fully reduced MDDs are a canonical form: any function
can be represented uniquely (fm = fn if and only if m = n). For our work, we
instead use zero reduced MDDs, which contain no duplicate nodes, and require
redundant nodes except for terminal node 0. More formally, for any non-terminal
node m with m.var = uk, we require, for all i, that either m[i].var = uk−1 or
m[i] = 0. This is done because we allow the MDD domain variables to grow,
or equivalently, we assume the MDD domain variables are unbounded but each
MDD node contains only finitely many non-zero children.

Given a model M = (V, E , i0,Δ), a finite set of states X ⊂ N
L can be encoded

as an MDD as follows.

– The MDD domain variables (uL, . . . , u1) correspond to the model state vari-
ables V. For simplicity of presentation, we assume that ∀i, ui = vi; in practice,
the variables can be ordered differently and there can be non-trivial mappings
from state variables to domain variables (for example, several state variables
could be collected into a single domain variable).

– The set X can be encoded by an MDD node m such that fm is the charac-
teristic function for the set X : fm(iL, . . . , ii) = 1 iff (i1, . . . , iL) ∈ X .

The MDD encoding of S, for the fork-join Petri net, is shown in Fig. 2. To
increase readability, only paths that lead to terminal node 1 are shown.

An ordered matrix diagram (MxD) [14] is defined similarly to an MDD,
except that each non-terminal edge is labelled with a pair :

– Each non-terminal node m is associated with a domain variable uk and
∀(ik, jk) ∈ D(uk) × D(uk), there is an edge labelled with (ik, jk) pointing
to a child m[ik, jk] such that m.var � m[ik, jk].var.

306 S. Biswal and A. S. Miner

A node m in an MxD encodes a function fm : D2(uL) × · · · × D2(u1) → {0, 1},
given by fm = fm,L, where fm,L is defined recursively as

fm,L(iL, jL, . . . , i1, j1) =

⎧
⎪⎪⎨

⎪⎪⎩

m, if L = 0
fm[iL,jL],L−1(iL, jL, . . . , i1, j1), if m.var = uL

fm,L−1(iL, jL, . . . , i1, j1), if uL � m.var ∧ iL = jL
0, otherwise.

The definition of duplicates is similar to MDDs. A non-terminal node m is an
identity node if (1) m[i, i] = m[0, 0],∀i ∈ D(m.var), and (2) m[i, j] = 0,∀i
= j.
An MxD is reduced if it contains no duplicate nodes and no identity nodes.
In practice, MxDs can be implemented as MDDs on twice as many domain
variables. If the MxD domain variables are (uL, . . . , u1), then the MDD domain
variables are (uL, u′

L, . . . , u1, u
′
1), with the variable ordering defined such that u′

i

immediately follows ui. However, the MDDs are not fully reduced, but instead
use a special identity reduction for primed variables [10].

Given a model M = (V, E , i0,Δ) and bounds for each state variable, func-
tion Ne can be encoded as an MxD as follows. Again, the domain variables
correspond to the state variables V. Then we use an MxD node m such that
fm(iL, jL, . . . , i1, j1) = 1 iff (jL, . . . , j1) ∈ Ne((iL, . . . , i1)). The MxD encoding
for Nt1 , for the fork-join Petri net example, is shown in Fig. 2. Note that levels
p3, p

′
3, p1, p

′
1 are skipped because places p3 and p1 are completely unaffected by

transition t1, and thus its occurrence does not change state variables p3 and p1.
Also note that, because our model requires that an event occurrence changes
a state variable in isolation (without considering the values of the other state

0 1 2 3

0 1 2 3

0123 012

0 1 2

01

0 1

0

0

0 1 2 3 0 1 2 0 1 0

0123

1 1 1 1

p5

p4

p3

p2

p1

1

p5

p4

p3

p2

p1

p’5

p’4

p’3

p’2

p’1

210

321

210

321

321

210

Fig. 2. MDD for S of fork-join Petri net (left) and MxD/MDD for t1 (right)

Improving Saturation Efficiency with Implicit Relations 307

variables), all MxD encodings of events will have a similar linear shape, where
there can be a fanout only from uk to u′

k and all non-zero pointers from u′
k must

point to a single node.

2.3 On-the-fly Saturation Using Extensible Decision Diagrams

Given two MDD nodes m and n, encoding functions fm and fn, the MDD node
p encoding function fp = fm ⊕ fn for a binary operation ⊕ is constructed in a
recursive “Apply” operation [4]. An example of this is algorithm Union, shown
in Fig. 5, which constructs a new MDD encoding the union of two sets, passed as
arguments and encoded as MDDs. Like most “apply” operations, Union simulta-
neously traverses the graphs rooted at nodes m and n, constructing a new graph
rooted at p containing the result. Procedure UniqueInsert, called in line 13, elim-
inates duplicate nodes during construction: if the newly created node p is a
duplicate of some other node q, then node p is discarded and node q is returned;
otherwise, node p is added to the unique table and is returned. Duplicate compu-
tation arising from repeated recursive calls with the same arguments is avoided
using a compute-table C (c.f. lines 4 and 14). This bounds the computational
cost and the size of the resulting graph to be at worst the product of the sizes
of the input graphs.

For efficiency, specialized relational product operations can be implemented
(e.g., [20]) to construct the MDD for N (X) or Ne(X), when set X is encoded as
an MDD and N is encoded as an MxD or MDD. A straightforward breadth-first
iteration based on the fixed point equation S = {i0} ∪ S ∪ N (S) can then be
used to generate S. However, the iteration strategy of node saturation [7] can
be orders of magnitude more efficient in practice and is known to terminate
whenever S is finite.

Difficulty arises in practice for models whose state variable bounds are diffi-
cult or impossible to obtain, or are conservative. This can be alleviated using an
“on-the-fly” variant of saturation [8,10,15,19], which allows variable bounds to be
discovered while generating S. This is done by distinguishing between confirmed
local states that are known to appear in at least one reachable global state, and
unconfirmed local states. The encoding of N contains all transitions out of con-
firmed local states, leading to confirmed or unconfirmed local states. During the
saturation procedure, when an unconfirmed local state is discovered to be part of
a reachable global state, it is confirmed and the encoding of N must be expanded
to include any transitions out of the newly confirmed local state. For a Kronecker-
based encoding of N [8], this expansion is straightforward; for more general encod-
ings of N [10,15], this expansion requires rebuilding the MxD/MDD encoding of
N , and even worse, often discards compute-table information that could eliminate
duplicate computations during the saturation procedure. This happens because,
as the sizes of the state variable domains grow, the nodes in the encoding of N must
also grow, and it is possible for the MxD/MDD for a next state function to change
shape when the state variable domains increase.Extensible MDD nodes were intro-
duced [19] to address exactly this issue, but unfortunately only certain repeating
patterns can be exploited by extensible nodes.

308 S. Biswal and A. S. Miner

3 Implicit Relations

Motivated by the requirement of current on-the-fly saturation methods to update
(with varying degrees of computational overhead) their encodings of N as state
variable domains increase in size, in this section we introduce implicit relations
to encode N independently of the variable domain size. This new representation
retains useful properties of MxDs, namely the ability to exploit identity struc-
tures and allowing nodes to be shared (i.e., have several incoming pointers). We
also modify the on-the-fly saturation algorithm to work with implicit relations.

3.1 Definition

An ordered implicit relation forest defined over the sequence of L domain vari-
ables (uL, . . . , u1) is a directed acyclic graph where:

– Each node r is associated with some variable, denoted as r.var.
– There is a single terminal node, 1, associated with a special variable u0 sat-

isfying uk � u0 for any domain variable uk.
– Each non-terminal relation node r is associated with a domain variable uk,

and contains a partial function r.δ : D(uk) �→ D(uk).
– Relation node r contains a single outgoing edge, r.ptr, consistent with the

variable order such that r.var � r.ptr.var.

An implicit relation forest contains |E| implicit relations, where each relation
corresponds to an event e ∈ E and is uniquely identified by the top-most relation
node. A node r in an implicit relation forest encodes a function fr : D2(uL) ×
· · · × D2(u1) → {0, 1}, given by fr = fr,L, where fr,L is defined recursively as

fr,L(iL, jL, . . . , i1, j1) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if L = 0
fr.ptr,L−1(iL, jL, . . . , i1, j1), if r.var = uL ∧ jL = r.δ(iL)
fr,L−1(iL, jL, . . . , i1, j1), if uL � r.var ∧ iL = jL
0, otherwise.

Let Uk represent the sequence of variables uk, . . . , u1. Then fr,k encodes the effect
of an event on Uk. Either uk, a variable associated with node r, participates in
the event and the post-event value of uk is jk = r.δ(ik) with values of Uk−1 given
by fr.ptr,k−1, or uk does not participate in the event and the value of uk remains
unchanged, jk = ik. For the latter case, the variable uk is not associated with r
and hence, fr,k defines the effect of the event on the variables Uk−1, recursively
by fr,k−1.

A relation node p is a duplicate of relation node r if p.var = r.var, p.ptr =
r.ptr, and p.δ = r.δ. From now on, we assume that the implicit relation forest
contains no duplicate nodes.

Algorithm BuildImplicit, shown in Fig. 5, constructs a set of relation nodes,
R, for a given model M. It builds a relation for each event e ∈ E , from the
bottom up. In the algorithm, we loop over variables ui where Δi,e is not the
identity function (c.f. line 4); this corresponds to variables that either affect the

Improving Saturation Efficiency with Implicit Relations 309

enabling of e or are changed when e occurs. For each such variable ui, we create
a new relation node with function Δi,e, pointing to the node below it. After
eliminating duplicates (c.f. line 11), the top-level node encoding Ne is added to
the set R.

1

t1

(i)=i ,
i

(i)=i ,
i

(i)=i ,
i 0

1

p5

p4

p3

p2

p1

p’5

p’4

p’3

p’2

p’1

210

321

210

321

321

210

t1

p5

p4

p3

p2

p1

t1

p2

p4

p5

3

3

3

4

4

4

Fig. 3. Representation of transition t1, from the fork-join Petri net model, in MxD and
implicit relation. Dashed entities in the MxD represent the modification in the decision
diagram due to additional token in place p5, represented by dotted-circle.

Figure 3 compares the structure of implicit relation and MxD for transition
t1 of the fork-join Petri net model from Fig. 1. Note that for every additional
token in place p5, the MxD for this transition undergoes modification in terms of
expansion of variable bound for each place. On the contrary, the implicit relation
remains unchanged. The figure showcases the benefit of representing transitions
of a model using implicit relation over MxD.

Figure 4 shows the implicit relation forest for all events of the fork-join Petri
net model. The set R contains the top-most node for each event. Each node r is
annotated with r.δ along with the values for which r.δ is defined. Note that the
terminal node 1 is repeated for clarity purpose only. The figure also demonstrates
merging of implicit relations for transitions t6 and t5 which is possible due to
equal effects of each transition, t6 and t5, on the low lying variables, namely p1.
This merging of implicit relations allow fr to encode the effect of more than one
event, where r is a relation node common to multiple transitions.

310 S. Biswal and A. S. Miner

Fig. 4. The implicit relation forest for the fork-join Petri net model.

3.2 Saturation Using Relation Nodes

To use saturation, we must partition the set of relation nodes R into RL, . . . ,R1

with Rk = {r ∈ R : r.var = uk}. Note that any event whose relation belongs
to Rk will not be disabled by, and will not modify if it occurs, any variable
ul � uk. The idea of saturation [7] is that, every time a node for variable uk

is created, it is saturated by applying the relations in set Rk repeatedly until a
fixed point is reached. The saturation algorithm, modified to use relation nodes,
is shown in Fig. 5 as procedure Saturate. It operates “in place” on a node n that
has been created, but not yet added to the unique table, by repeatedly firing
(c.f. line 10) the events in A[j] (c.f. the loop in line 8), a subset of events from Rk

that produce same local index j on firing (c.f. the loop in line 5), over all possible
values of j and adding those states to the current node (c.f. line 11). Procedure
MultiRecFire, in line 10 is used to invoke RecFire for such subset of events and
union the result (c.f. the lines 2, 3 of MultiRecFire) before saturating the node. It
has been observed [5] that the order in which local states are explored (c.f. line 3
of Saturate) can significantly affect the efficiency of the iteration. The differences
with respect to saturation using MxDs for relations are in lines 6 and 7, which
obtain the local index j produced when an event fires on i using the relation
node r, and the use of the common downward pointer r.ptr in line 10.

Procedure RecFire, also shown in Fig. 5, is used to “fire” a relation r on node
n (this determines the relational product of the set encoded by MDD node n
and the relation encoded by relation node r), except that any created nodes are
saturated immediately (c.f. line 15). Note that lines 8–9 handle the case where

Improving Saturation Efficiency with Implicit Relations 311

the relation graph skips a level (corresponding to an identity function), while
lines 11–14 handle the case where the relation node and MDD node are at the
same level. We do not give the case where the MDD graph skips a level, as this
can only happen with edges that point directly to terminal node 0. Again, the
differences with respect to saturation using MxDs for relations are in lines 11,
12, and 13 which use the relation node r.

For fixed variable bounds, our modified saturation algorithm has the same
complexity as the on-the fly saturation using extended decision diagrams. How-
ever, as bounds expand during saturation, relations stored using Kronecker rep-
resentations, MxDs, or extended decision diagrams must all be updated to some
extent for the increased bounds, with various costs for this reconstruction based
on the type of storage. Even worse, some methods require discarding entries of
the compute table, which can require significant duplication of computation. In
contrast, no adjustments are needed to the implicit relation forest when bounds
expand, and no compute table entries ever need to be discarded.

3.3 Implementation Notes

We briefly discuss some ideas for efficient implementation of implicit relation
forest nodes. For a node r, its partial function r.δ can be implemented using a
function pointer, an abstract class with a virtual function, or with a parse tree
or similar representation for expressions.

The elimination of duplicate nodes can be done similarly to MDDs, which
utilize a unique table. A hash signature for r.δ, with the property that equal
functions should produce equal signatures, can be used to reduce the number of
(potentially expensive) comparisons between functions. We stress that a stray
duplicate node will not affect correctness, but only the efficiency, by potentially
requiring duplication in computation.

To reduce the number of calls to r.δ (another potentially expensive opera-
tion), each node can maintain an array that memorizes r.δ, so that r.δ(i) must
be computed at most once for each i. Clearly this is a time/memory tradeoff, and
note that the memory cost for this array is similar to and does not exceed other
relation representations such as MxDs. However, simple functions, like update
by a constant, can be handled directly without using a function pointer or a
memorization array.

Finally, we note that the flexibility of defining r.δ as a (partial) function
allows us to easily handle the case where MDD variable ui is not necessarily
equal to the number of tokens in place pi. This is required if ui corresponds to
more than one Petri net place. In our implementation, the value of ui is the index
of a submarking, stored in a collection of submarkings, where the submarking is
over the places corresponding to MDD variable ui.

312 S. Biswal and A. S. Miner

mdd Union(mdd m,mdd n)

1 if n = 1 ∨ m = 1 then return 1;
2 if n = 0 then return m;
3 if m = 0 then return n;
4 if ∃p s.t. (∪, m, n, p) ∈ C or
5 (∪, n, m, p) ∈ C then
6 return p;
7 k ← max(m.var, n.var);
8 p ← new MDD node for variable uk;
9 for each i ∈ D(uk) do

10 md ← (uk � m.var) ? m : m[i];
11 nd ← (uk � n.var) ? n : n[i];
12 p[i] ← Union(md, nd);
13 p ← UniqueInsert(p);
14 C ← C ∪ {(∪, m, n, p)};
15 return p;

nodeset BuildImplicit(model M)
• Build set of relation nodes for model M
1 R ← ∅;
2 for each e ∈ E do
3 Split Δ into Δe,1, . . . , Δe,L;
4 Ve ← {i : Δe,i 	= identity func.};
5 r ← 1;
6 for i ∈ Ve do
7 p ← new relation node;
8 p.var ← ui;
9 p.ptr ← r;

10 p.δ ← Δi,e;
11 r ← UniqueInsert(p);
12 R ← R ∪ {r};
13 return R
MultiRecFire(mdd n,nodeset rSet)
• RecFire all events in rSet on node n

1 for each r ∈ rSet do
2 fr ← RecFire(n, r);
3 f ← Union(f, fr);
4 return f ;

Saturate(level k,mdd n)
• Saturate node n in place using Rk.

1 Q ← {i : n[i] 	= 0};
2 while Q 	= ∅ do
3 i ← SelectElement(Q);
4 Q ← Q \ {i};
5 for each r ∈ Rk do
6 if r.δ(i) is defined then
7 A[r.δ(i)] ← A[r.δ(i)] ∪ r.ptr
8 for each a ∈ A do
9 j ← a.index;

10 f ← MultiRecFire(n[i], a.rSet);
11 u ← Union(f, n[j])
12 if u 	= n[j] then
13 n[j] ← u;
14 Q ← Q ∪ {j};
mdd RecFire(mdd n, relation r)
• Fire r on node n and then saturate it.

1 if n = 0 then return 0;
2 if r = 1 then return n;
3 if ∃m s.t. (RecFire, n, r, m) ∈ C then
4 return m;
5 k ← max(n.var, r.var);
6 m ← new MDD node for variable uk;
7 if n.var � r.var then
8 for each i ∈ D(uk) do
9 m[i] ← RecFire(n[i], r);

10 else
11 for each i s.t. r.δ(i) is defined do
12 j ← r.δ(i);
13 f ← RecFire(n[i], r.ptr);
14 m[j] ← Union(m[j], f);
15 Saturate(k, m);
16 m ← UniqueInsert(m);
17 C ← C ∪ {(RecFire, n, r, m)};
18 return m;

Fig. 5. MDD and relation node algorithms.

4 Related Work

This section discusses our approach of saturation with implicit relations in light
of related work. We examine the alternative approaches of encoding transitions
and compare them against the idea of this paper.

Improving Saturation Efficiency with Implicit Relations 313

4.1 Kronecker Representations

The saturation algorithm originally used a Kronecker representation to encode
transitions [7]. Conceptually, such a scheme requires, for each model event e
and each state variable vk, a boolean matrix Ne,k used to encode function Δe,k,
where Ne,k[ik, jk] is one if and only if Δe,k(ik) = jk. Note that Ne,k will be the
identity matrix if event e does not change or depend on state variable vk. In
practice, identity matrices need not be stored explicitly, and other sophisticated
schemes [6] could be used to store each Ne,k. The dimension of Ne,k is the bound
for state variable vk, and it was originally assumed that this bound was known.
On-the-fly saturation [8] eliminated this requirement, allowing the bounds of
state variables to expand during saturation. As bounds expand, the matrices
Ne,k also expand in size.

Implicit relation forests have two main advantages as compared to on-the-
fly saturation using Kronecker representations. First, implicit relation forests
allow for “sharing”, i.e., a node can have more than one parent node, which
occurs whenever two transitions have the same effect on the bottom-most k
state variables. In some models, especially if transitions are split to maintain
Kronecker consistency [6], this sharing can be significant, and the primary benefit
is reduction of computation time, as this duplication in computation is avoided
via the compute table. Second, the saturation algorithm is simpler with implicit
nodes, as there is no longer a need to distinguish between “confirmed” and
“unconfirmed” local states, nor is it necessary to expand matrices as local states
are confirmed.

4.2 MDDs and Extensible MDDs

A 2L-variable MDD, also called MxD, suffers from deletion of relevant yet incom-
plete compute-table entries when the operand MxDs remain unchanged but the
resultant MxD undergoes modification in case of discovery of new bounds for a
variable. Such deletions lead to reduced efficiency, to address which extensible
MxDs were introduced in [19]. However, implicit relations provide a more effi-
cient format, as demonstrated in Sect. 5, for encoding transitions to tackle the
overhead cost of rebuilding extensible MxDs for the subclass of Petri nets.

4.3 Interval Mapping Diagrams

Strehl’s work [17] on interval mapping diagrams (IMD) provides a general-
ized encoding of transitions wherein the state distance between pre- and post-
transition state variable values are stored. The state distance is defined by an
action operator and action interval, which together formulate the net-effect of
the transition, on a predicate interval of the state variable, which refers to the
enabling condition of the transition.

Implicit relation forests have the advantage of encoding any (partial) function
as an effect of a transition on a variable, in contrast to IMDs, where the action
operator is restricted to use increment, decrement, and equality operators only.

314 S. Biswal and A. S. Miner

4.4 Homomorphisms

Couvreur et. al’s work [11] offers an efficient way of encoding transitions using
the concept of inductive homomorphisms. The encoding is defined to work with
Data Decision Diagrams (DDD) [11] and Hierarchical Set Decision Diagrams
(SDD) [12]. The approach offers freedom to the user in defining transitions and
is more efficient compared to prior works [8,10,15,19].

Implicit relations are an adaptation of inductive homomorphisms that work
with MDD and are restrictive in terms of the nature of transitions that can be
encoded. Only transitions with “firing” conditions defined as partial functions of
the participant variables are compatible with implicit relations. A comparative
study between tools implementing homomorphism on DDD and implicit relations
on MDD is discussed in Sect. 5 to get a general overview of their performance
on a set of benchmark models.

5 Experimental Evaluation

Intra-Tool Comparative Performance Analysis

We implemented the modified saturation algorithm based on implicit relations
(SatImp) in SMART [9] using Meddly [2,3] as the underlying decision diagram
library. We conducted experiments to compare the performance of SatImp with
the existing “on-the-fly saturation with matrix diagrams” approach (OtfSat)
for reachability set generation on a suite of 70 Petri net models that is available
as known-models in MCC 2018 [1]. An experimental run involves execution of
SatImp and OtfSat on a model instance with a timeout of one hour for each
approach. All experiments are run on a server of Intel Xeon CPU 2.13 GHz with
48G RAM under Linux Kernel 4.9.9. For a given experimental run, the decision
diagrams used in SatImp and OtfSat approach have identical variable ordering
to ensure fair comparison.

Every Petri net model in the suite has multiple instances characterized by
scaling parameters that affect the size of model (|V| + |E|) or the initial state
of the model (i0). In order to demonstrate the effect of size and complexity of
the models on the performance of SatImp and OtfSat, the set of benchmark
models are classified into two categories namely, Type-1 models with scaling
parameters affecting model size, and Type-2 models with scaling parameters
affecting the initial state. Safe petri nets form a subset of Type-1 models. Table 1
summarizes the experiments run on a subset (due to space constraint) of Type-
1 and Type-2 models with key metrics of comparison as runtime, measured in
seconds, and total number of pings and hits to the compute-table for saturation
operation. Since, OtfSat uses MxD, the additional computation is summarized
in the column for the total number of pings and hits to the compute-table for
MxD operations. The pings and hits to the compute-table provide a respective
estimate of the number of decision diagram computations needed and reused for
each saturation approach.

Improving Saturation Efficiency with Implicit Relations 315

It is also important to note that the computation time spent in calculating
the next-state of a variable is additional to the time spent for executing the
saturation algorithm. SatImp generates the next-state of a variable using the
information stored in the implicit relations and OtfSat spends time modifying
MxD when new bounds of the variable are discovered.

Observations from Table 1, for Type-1 models, confirm that the computation
time for reachability set remains fairly equal in both implementations. For these
models, since the scaling parameter does not affect the bound of the variables
in the model, there is comparatively less time spent on modification of MxDs.
Hence, the computation time spent by SatImp to calculate the next-state of
every variable is close to the time spent by OtfSat in construction of matrix
diagrams.

On the contrary, for Type-2 models, a significant improvement in perfor-
mance of SatImp is observed. For these models, the maximum local bound of
any state variable discovered during the reachability set generation is a number
greater than or equal to 1 (except that maximum local bound of every state vari-
able is not 1) as determined by the scaling parameter(s) in the model definition.
This requires frequent expansion of MxD nodes to encode the effect of transi-
tions on the local state space of each state variable. Supported by this fact and
experimental results in Table 1, a few observations can be noted. First, while
SatImp is able to complete models with high scaling parameters quite early,
OtfSat either takes long time, generally increased many-fold as compared to
implicit relation, or does not finish the task before timeout. In such models, a
significant amount of computational time is spent in modification of the matrix
diagrams as shown by the number of pings and hits to compute-table for MxDs,
which is otherwise absent in implicit relations.

Second, since MxDs expand and contract during manipulation, it may require
compute-table entries to be discarded. Hence, the number of pings to the sat-
uration compute-table would be relatively higher in OtfSat as compared to
SatImp. The dashes in the table correspond to cases in which the runtime to
construct S exceeded one hour. However, no claims can be made about the
models that did not complete within the timeout.

For comparing the maximum memory usage of SatImp with that of OtfSat,
we have chosen the largest completed instances of each model from the results in
Table 1. When matrix diagrams consume memory on megabytes scale, implicit
relations manage to store the exact information in much lesser space. The figures
in Table 2 provide substantial proof of improvement in memory usage.

Our results include metrics that are typical for efficiency comparisons
between two approaches, and illustrate the efficiency of using SatImp in terms
of both computational and storage requirements. In practice, the use of implicit
relations allow for reachability analysis of much larger systems as compared to
that with MxDs.

316 S. Biswal and A. S. Miner
T
a
b
le

1
.
C

o
m

p
u
ta

ti
o
n
a
l
re

q
u
ir

em
en

ts
o
f
sa

tu
ra

ti
o
n

fo
r

re
a
ch

a
b
il
it
y

se
t

g
en

er
a
ti

o
n

in
T

y
p
e-

1
m

o
d
el

s
a
n
d

T
y
p
e-

2
m

o
d
el

s.

M
o
d
e
l

|S
|

O
t
f
S
a
t

S
a
t
Im

p
A
d
d
it
io
n
a
l
M

x
D

C
T

in
O
t
f
S
a
t

T
im

e
(s
e
c
)

P
in
g
s

×
1
0
5

H
it
s

×
1
0
5

T
im

e
(s
e
c
)

P
in
g
s

×
1
0
5

H
it
s

×
1
0
5

P
in
g
s

×
1
0
3

H
it
s

×
1
0
3

T
y
p
e
-1

:

D
E
S

3
0
a

1
.9
2

×
1
0
1
3

2
2
.6
0

1
7
5

3
4

2
3
.9
1

1
7
6

3
4

2
4

1
6

D
E
S

3
0
b

1
.9
7

×
1
0
2
2

1
0
3
.9
7

7
1
9

2
0
1

1
0
2
.7
4

7
4
5

2
0
3

1
8

1
1

D
E
S

4
0
a

3
.5
2

×
1
0
1
3

4
9
.2
7

3
4
1

6
2

4
9
.5
4

3
4
4

6
3

2
8

1
8

D
E
S

4
0
b

3
.6
0

×
1
0
2
2

1
4
9
.6
4

9
9
5

2
5
6

1
5
2
.6
9

1
0
4
1

2
5
8

2
0

1
2

F
le
x
ib
le
B
a
rr
ie
r
1
0
a

6
.9
1

×
1
0
1
0

3
.0
1

4
3

2
6

2
.9
6

2
9

4
3

2
7

1
2

F
le
x
ib
le
B
a
rr
ie
r
1
2
a

8
.9
2

×
1
0
1
2

1
5
.7
5

2
1
9

1
4
4

1
5
.7
4

2
1
9

1
4
3

1
5

1
0

R
a
ft

5
5
.9
4

×
1
0
1
8

2
3
.5
8

1
3
6

7
7

2
3
.9
1

1
3
7

7
7

1
1

7

R
a
ft

6
2
.9
1

×
1
0
2
6

1
8
9
.4
6
4

1
0
6
5

6
2
1

1
9
3
.9
2

1
0
7
0

6
3
0

1
8

1
2

R
W

m
u
te
x
r1

0
w
1
0
0

1
.1
2

×
1
0
3

2
.2
9

2
6

0
2
.4
8

2
5

0
1
0
2

6
9

R
W

m
u
te
x
r1

0
w
5
0
0

1
.5
2

×
1
0
3

5
1
.1
8

4
3
2

3
0

4
0
.1
5

4
3
1

3
0

5
8
6

4
2
2

T
y
p
e
2

:

A
n
g
io
g
e
n
e
si
s
1
5

1
.1
2

×
1
0
1
5

3
2
4
.7
9

4
8
7
3

4
3
4
0

1
4
0
.3
3

2
9
7
3

2
6
7
1

3
2
0

3
1
0

C
ir
c
a
d
ia
n
C
lo
ck

1
0
0
0

4
.0
2

×
1
0
1
5

3
3
3
4
.5
3

6
8
3
4

6
7
5
3

7
8
.0
2

1
8
6

1
3
6

8
8
0
1
6

8
8
0
1
4

F
M

S
1
0
0

2
.7
0

×
1
0
2
1

8
.9
0

3
4
0

3
3
2

4
.1
2

2
2
0

2
1
4

3
4
1

5
0

F
M

S
2
0
0

1
.9
5

×
1
0
2
5

7
8
.2
8

3
3
3
1

3
2
9
4

3
3
.5
0

1
7
3
7

1
7
1
4

5
0

5
0

G
P
P
P

C
1
0
0
0
N
1
0

1
.4
2

×
1
0
1
0

1
.1
9

5
3

0
.2
1

3
2

4
3

4
3

G
P
P
P

C
1
0
0
0
N
1
0
0

1
.1
4

×
1
0
1
5

4
4
0
.3
5

1
5
6
0

1
4
1
3

1
1
4
.8
8

6
5
4

5
4
3

1
8
0
7
2

1
8
0
7
1

K
a
n
b
a
n

5
0
0

7
.0
9

×
1
0
2
6

4
5
8
.6
6

2
5
5
8

2
5
4
2

1
2
.1
4

7
5
6

7
5
2

1
2
7
0
4

1
2
7
0
3

K
a
n
b
a
n

1
0
0
0

1
.4
2

×
1
0
3
0

2
3
4
7
.1
8

2
0
2
3
1

2
0
1
7
0

7
2
.5
0

5
9
0
9

5
8
9
1

5
0
6
7
7

5
0
4
3
6

R
o
b
o
t
M

a
n
ip
u
la
ti
o
n

2
0

4
.1
1

×
1
0
9

6
.9
1

1
7
2

1
5
3

1
.2
2

3
4

3
1

1
8

1
7

R
o
b
o
t
M

a
n
ip
u
la
ti
o
n

5
0

8
.5
3

×
1
0
1
2

1
7
6
.0
5

3
9
4
1

3
6
5
9

3
3
.1
5

8
7
1

8
3
3

2
5
3

2
5
3

S
m
a
ll
O
S

M
T
1
0
2
4
D
C
2
5
6

3
.2
7

×
1
0
1
2

9
7
1
.7
7

7
5
0
6

7
4
7
5

6
6
.1
3

3
1
9
8

3
1
8
4

2
4
5
2
2

2
4
5
2
1

S
m
a
ll
O
S

M
T
2
0
4
8
D
C
0
5
1
2

1
.0
4

×
1
0
1
4

−
−

−
6
2
0
.6
1

2
5
1
8
4

2
5
1
1
8

−
−

S
m
a
ll
O
S

M
T
2
0
4
8
D
C
1
0
2
4

2
.4
6

×
1
0
1
4

−
−

−
1
1
0
5
.1
8

3
8
0
8
2

3
7
9
4
5

−
−

S
w
im

m
in
g
P
o
o
l
9

1
.8
1

×
1
0
1
0

1
1
.7
3

1
1
6

9
7

7
.2
8

1
1
6

9
7

7
0

7
0

S
w
im

m
in
g
P
o
o
l
1
0

3
.3
6

×
1
0
1
0

1
5
.8
1

1
6
3

1
3
7

1
0
.9
8

1
6
1

1
3
5

9
5

9
5

Improving Saturation Efficiency with Implicit Relations 317

Table 2. Storage requirements by saturation algorithm for transition encodings.

Model Memory for OtfSat (KB) Memory for SatImp (KB)

DES 40b 524.00 7.55

FlexibleBarrier12a 380.81 41.33

Raft 6 452.27 41.94

RWmutex r10w500 11864.42 403.26

Angiogenesis 15 1133.90 9.28

CircadianClock 1000 959318.00 12.00

FMS 200 10175.00 26.59

GPPP 100 100 1470591.00 48.56

Kanban 1000 464342.00 16.00

Robot Manipulation 50 18020.00 14.12

Small OS 1024 256 242091.00 106.50

Swimming Pool 10 1823.60 10.88

Inter-Tool Comparative Performance Analysis

This section presents the performance comparison between the state-space gen-
eration algorithms of SMART and ITSTools [18], where the former tool uses
implicit relations and MDD and the latter is based on homomorphisms, DDD
and SDD. The goal of this comparative analysis is to only gauge the efficiency
of SatImp by using the well-established technique of homomorphism-based
saturation as a benchmark.

A suite of 70 Petri net models from known models section of MCC 2018 is
used in the experiments to compare the tools based on the runtime of state-space
generation process. The largest instance of each model that could complete state-
space generation with both SMART and ITSTools in MCC 2018, is chosen for
this experiment. Table 3 shows only a subset of these experiments due to space
constraint. Since the tools are based on decision diagrams and variable order is
critical for efficiency of the state-space generation, identical static variable orders
are used in both tools for each experimental run. SMART is tuned to run on
implementation settings similar to that of MCC 2018 settings of ITS-Tools. For
example, with reference to Sect. 3.3, the MDD variable ui is adapted to be equal
to the number of tokens in place pi. However, the use of SDD in ITS-tools is
omitted from the experiments to ensure fair comparison, because the construc-
tion of an SDD in ITS-tools requires auxiliary information about hierarchy of
model variables and is not inferred directly from the model. All experiments are
run in the same environment as described in the previous section.

In Table 3, it is observed that SMART is faster than ITSTools for 41 out of
67 models by an average of 3.125 times. These models include Kanban, Flexible
Manufacturing System, House Construction and Philosophers where SMART
is 235, 30, 10 and 16 times faster respectively. For 10 of the models, where

318 S. Biswal and A. S. Miner

Angiogenesis, SharedMemory etc are few of them, SMART is about 0.56 times
faster than ITSTools. For the remaining 16 models, ITSTools is 4.69 times faster
than SMART on an average. The experimental results allow us to surmise that
the performance of SMART when using implicit relations on MDD-based storage
complements the performance of ITSTools that use inductive homorphisms with
DDD-based storage for saturation.

Table 3. Performance comparison between SMART and ITS-tools.

Model Instance Reachable States (#) Runtime (sec)

ITS Tools SMART

Kanban 100 1.7263E+19 3.37E+03 1.42E+01

FMS 200 1.9536E+25 4.64E+02 1.42E+01

SwimmingPool 6 1.6974E+09 5.26E+01 2.89E+00

Philosophers 500 3.6300E+238 4.03E+00 2.24E−01

HouseConstruction 10 1.6636E+09 6.11E+00 5.99E−01

ClientsAndServers 5 1.2551E+11 7.11E+01 8.55E+00

CircadianClock 100 4.2040E+10 1.74E+00 4.60E−01

IBMB2S565S3960 none 1.5511E+16 1.60E+01 8.65E+00

Ring none 9.0265E+11 1.72E−01 9.34E−02

TokenRing 15 3.5358E+07 1.57E+01 1.26E+01

Referendum 100 5.1537E+47 1.07E+00 8.96E−01

SharedMemory 20 4.4515E+11 5.04E+00 7.76E+00

EnergyBus none 2.1318E+12 5.34E+01 9.00E+01

Angiogenesis 5 4.2735E+07 5.20E−01 9.58E−01

FlexibleBarrier 4a 2.0737E+04 6.11E−02 1.51E−01

Railroad 10 2.0382E+06 2.34E+00 5.94E+00

Peterson 3 3.4079E+06 2.70E+01 7.45E+01

CSRepetitions 3 1.3407E+08 6.01E−01 2.47E+00

UtahNoC none 4.7599E+09 5.29E+00 3.44E+01

PaceMaker none 3.6803E+17 2.47E−01 3.07E+00

6 Conclusions and Future Work

Reachability set generation using on-the-fly saturation with MxDs is quite an
improvement over explicit techniques, as it is often able to handle extremely large
sets with less time. However, the computational cost for building such transi-
tion relations repeatedly during reachability set generation, creates additional
focus towards handling the relations along with the state space. The transition
relations undergo manipulations for the construction of next-state functions nec-
essary for state space generation, while the underlying functions to generate the

Improving Saturation Efficiency with Implicit Relations 319

next state is available in the model itself. Implicit relations manage to encap-
sulate and exploit these properties. Hence, we adapted the saturation algorithm
to work with implicit relations and showed how additional computations can be
saved during the reachability set generation.

Saturation algorithm using implicit relations for the reachability set gener-
ation provides promising results for the defined class of models. Experimental
results indicate that the costs are improved for a large set of models across dif-
ferent sizes, though the approach is not adapted to handle marking dependent
events as discussed in Sect. 2.1. The improvement is mainly due to the essence
of implicit relations to encase the properties of the system in a simple straight-
forward approach.

Future work should investigate modification of the implicit relations to repre-
sent Petri nets with marking-dependent arcs by disclosing value of each variable
to the underlying variables in the implicit relation. We intend to create a merger
between implicit relations and MxDs that will exploit their respective static and
dynamic ingredients in the fusion. Allowing implicit nodes inside an MxD forest
would allow us to handle models that are not “Kronecker consistent”, but still
get benefits for events that affect the participant variables independent of each
other.

Acknowledgment. This work was supported in part by the National Science
Foundation under grant ACI-1642397.

References

1. MCC: Model Checking Competition @ Petri Nets. https://mcc.lip6.fr
2. MEDDLY webpage. https://sourceforge.net/projects/meddly/
3. Babar, J., Miner, A.S.: Meddly: multi-terminal and Edge-valued Decision Diagram

LibrarY. In: Proceedings of QEST, pp. 195–196. IEEE Computer Society (2010)
4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)
5. Chung, M.-Y., Ciardo, G., Yu, A.J.: A fine-grained fullness-guided chaining heuris-

tic for symbolic reachability analysis. In: Graf, S., Zhang, W. (eds.) ATVA 2006.
LNCS, vol. 4218, pp. 51–66. Springer, Heidelberg (2006). https://doi.org/10.1007/
11901914 7

6. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic
state-space generation. Form. Methods Syst. Des. 31, 63–100 (2007)

7. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45319-9 23

8. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 27

9. Ciardo, G., Miner, A.S.: SMART: simulation and Markovian analyzer for relia-
bility and timing. In: Proceedings of IEEE International Computer Performance
and Dependability Symposium (IPDS 1996), p. 60. IEEE Computer Society Press
(1996)

https://mcc.lip6.fr
https://sourceforge.net/projects/meddly/
https://doi.org/10.1007/11901914_7
https://doi.org/10.1007/11901914_7
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/3-540-36577-X_27

320 S. Biswal and A. S. Miner

10. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005). https://doi.org/
10.1007/11560548 13

11. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.:
Data decision diagrams for Petri net analysis. In: Esparza, J., Lakos, C. (eds.)
ICATPN 2002. LNCS, vol. 2360, pp. 101–120. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-48068-4 8

12. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model
structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436 32

13. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.: Multi-valued deci-
sion diagrams: theory and applications. Mult.-Valued Log. 4(1–2), 9–62 (1998)

14. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams.
Perform. Eval. 56(1), 145–165 (2004). Dependable Systems and Networks - Per-
formance and Dependability Symposium (DSN-PDS) 2002: Selected Papers

15. Miner, A.S.: Saturation for a general class of models. In: Proceedings of QEST,
pp. 282–291, September 2004

16. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–579 (1989)

17. Strehl, K., Thiele, L.: Interval diagram techniques for symbolic model checking
of Petri nets. In: Proceedings of Design, Automation and Test in Europe (DATE
1999), pp. 756–757, March 1999

18. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

19. Wan, M., Ciardo, G.: Symbolic state-space generation of asynchronous systems
using extensible decision diagrams. In: Nielsen, M., Kučera, A., Miltersen, P.B.,
Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp.
582–594. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95891-
8 52

20. Yoneda, T., Hatori, H., Takahara, A., Minato, S.: BDDs vs. Zero-suppressed BDDs:
for CTL symbolic model checking of Petri nets. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 435–449. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031826

https://doi.org/10.1007/11560548_13
https://doi.org/10.1007/11560548_13
https://doi.org/10.1007/3-540-48068-4_8
https://doi.org/10.1007/3-540-48068-4_8
https://doi.org/10.1007/11562436_32
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-540-95891-8_52
https://doi.org/10.1007/978-3-540-95891-8_52
https://doi.org/10.1007/BFb0031826
https://doi.org/10.1007/BFb0031826

Taking Some Burden Off an Explicit CTL
Model Checker

Torsten Liebke and Karsten Wolf(B)

Universität Rostock, Institut für Informatik, Rostock, Germany
{torsten.liebke,karsten.wolf}@uni-rostock.de

Abstract. In the CTL category of recent model checking contests, less
problems have been solved than in the Reachability and LTL categories.
Hence, improving CTL model checking technology deserves particular
attention. We propose to relieve a generic explicit CTL model checker.
This is done by designing specialised routines that cover a large set of
simple (and frequently occurring) formula types. The CTL model checker
is then only applied to formulas that do not fall into any special case.
For the simple queries, we may apply simple depth-first search instead of
recursive search, we may use much more powerful dialects of the stubborn
set reduction, and we may add additional tools for verification, such as
the state equation. Our approach covers about half of the CTL category
of a recent model checking contest and significantly increases the power
of CTL model checking.

Keywords: CTL model checking · Partial order reduction

1 Introduction

In recent years, Computational Tree Logic (CTL, [2]) has been the category
where most queries were left unsolved in the yearly Petri net model checking con-
test (MCC, [9]). Consequently, CTL model checking deserves particular attention
with the aim of keeping pace with LTL and reachability checking. At present,
leading Petri net CTL model checkers such as TAPAAL [7] and LoLA [29] use
explicit model checking algorithms. Their main tool for alleviating state explo-
sion is the stubborn set method [22] or, more general, the class of partial order
reduction methods [12,18]. In essence, partial order reduction explores, in any
given marking, only a subset of the enabled transitions. CTL preserving partial
order reduction [11] has severe restrictions: we either find, in a given marking,
a singleton set consisting of an invisible transition that satisfies all other condi-
tions for a stubborn set, or we have to fire all transitions enabled in this marking.
This condition is necessary for CTL preservation since otherwise the position of
visible transitions with respect to branching points may not be preserved which
in turn would jeopardise preservation of the branching time logic CTL.

Many CTL queries have a rather simple structure in the sense that they con-
tain only few temporal operators. In the MCC, this might be an artifact of the
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 321–341, 2019.
https://doi.org/10.1007/978-3-030-21571-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_18

322 T. Liebke and K. Wolf

formula generation mechanism. However, we share the same experience with the
users of our tool LoLA. Even if complicated CTL formulas occasionally occur,
they are subject to several simplification approaches. Firstly, there exist many
tautologies in temporal logic. Not all of them are commonly known. This way, an
originally complicated formula may automatically be rewritten to a much simpler
query [1]. The formula rewriting system of LoLA currently contains more than
100 rewrite rules that are based on CTL* tautologies. For Petri nets, secondly,
linear programming techniques employing the Petri net state equation can be
applied to the atomic propositions in the formula [1], sometimes proving them to
be invariantly true or false. This way, whole subformulas of a query may collapse,
enabling further rewriting based on tautology. Boolean combinations of queries
can be simplified by checking the subformulas separately (thus having queries
with less visible transitions in each run which propels partial order reduction).
Thirdly, complicated queries may be replaced by simpler queries through modi-
fications in the system under investigation. A simple example is the verification
of relaxed soundness [8] for workflow nets. For every transition t, we have to
show that there is a path to a given final place f that includes the occurrence of
t. In CTL, this reads as EF(t occurs ∧ EF(f ≥ 0)). Inserting a fresh post-place
p to t, the query can be simplified to EF (p ≥ 0 ∧ f ≥ 0). The most systematic
approach of this kind is LTL model checking as a whole. The explicit verification
of an LTL formula φ is done by modifying the system under investigation (we
refer to the construction of the product system with the Büchi automaton for
¬φ, [26]). In the modified system, we only need to verify ¬ GF accepting-state
instead of the arbitrarily complicated φ.

We conclude that explicit CTL model checking can be substantially improved
through a special treatment of as many as possible of the most simple queries.
Special treatment means that we apply a specific verification procedure to such
queries thus avoiding the application of the generic CTL model checking rou-
tines. This approach has two obvious advantages. Firstly, some of the queries
may permit the use of completely different verification technology. For example,
for properties like EF φ or AG φ (with φ assumed not to contain additional
temporal operators), we may employ the Petri net state equation for verification
[28]. Secondly, a verification technique dedicated to just one class C of simple
CTL queries may use a better partial order reduction: we only need to preserve
C rather than whole CTL.

In this paper, we focus on the second item. We identify several classes of
simple CTL queries for which specific search routines enable the use of partial
order reduction methods better than CTL preserving ones. These partial order
reduction methods are already known in most cases. So the actual contribution
of this paper is to show that the systematic separation of simple queries from
general CTL routines can indeed improve CTL model checking. In 2018, almost
70% of the CTL queries in the MCC were transferred to specific routines for
simple queries in our tool LoLA. Employing these methods, LoLA could solve
more than 50% of the queries that could not be solved with the generic CTL
model checking algorithm.

Taking Some Burden Off an Explicit CTL Model Checker 323

We start with a brief introduction of the terminology of Petri nets and the
temporal logic CTL. We then provide the necessary facts on the stubborn set
method. In the main part of the paper, we discuss our list of simple CTL queries.
We conclude with experimental results.

2 Terminology

Definition 1 (Place/transition net). A place/transition net consists of a
finite set P of places, a finite and disjoint set T of transitions, a set F ⊆
(P × T) ∪ (T × P) of arcs, a weight function W : (P × T) ∪ (T × P) → N

where [x, y] /∈ F if and only if W (x, y) = 0, and a marking m0, the initial
marking. A marking is a mapping m : P → N.

Definition 2 (Behaviour of a place/transition net). Transition t is enabled
in marking m if, for all p ∈ P , W (p, t) ≤ m(p). If t is enabled in m, t can fire,
producing a new marking m′ where, for all p ∈ P , m′(p) = m(p) − W (p, t) +
W (t, p). This firing relation is denoted as m

t−→ m′. It can be extended to firing
sequences by the following inductive scheme: m

ε−→ m (for the empty sequence
ε), and m

w−→ m′ ∧ m′ t−→ m′′ =⇒ m
wt−→ m′′ (for a sequence w and a transition

t). The reachability graph of a place/transition net N has a set of vertices that
comprises of all markings that are reachable by any sequence from the initial
marking of m. Every element m

t−→ m′ of the firing relation (t ∈ T) defines an
edge from m to m′ annotated with t.

With a matrix C where, for all p ∈ P and t ∈ T , C(p, t) = W (t, p)−W (p, t),
and marking m, equation m0 + Cx = m is called the Petri net state equation.
It has a nonnegative integer solution for every m reachable from m0: fix a firing
sequence w from m0 to m and let, for every t, x[t] be the number of occurrences
of t in w. For unreachable m, the state equation may or not have nonnegative
integer solutions.

In the sequel, we consider only Petri nets with finite reachability graph
(i.e. bounded Petri nets).

Definition 3 (Syntax of CTL). TRUE, FALSE, FIREABLE (t) (for t ∈ T),
DEADLOCK, and k1p1 + · · ·+knpn ≤ k (ki, k ∈ Z, pi ∈ P) are atomic propositions.
PQ = {A,E} is called the set of path quantifiers, UT = {X,F,G} the set of
unary temporal operators, and BT = {U,R} the set of binary temporal operators.

Every atomic proposition is a CTL formula. If φ and ψ are CTL formulas,
so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), QY φ (with Q ∈ QP and Y ∈ UT), and Q(φBψ)
(with Q ∈ QP and B ∈ BT).

The logic LTL is defined similarly. The only difference is that the path quan-
tifiers are not used in LTL.

324 T. Liebke and K. Wolf

Definition 4 (Semantics of CTL). Marking m satisfies CTL formula φ
(m |= φ) according to the following inductive scheme:

– m |= TRUE, m �|= FALSE;
– m |= FIREABLE (t) if t is enabled in m;
– m |= DEADLOCK if there is no enabled transition in m;
– m |= k1p1 + · · · + knpn ≤ k if k1m(p1) + · · · + knm(pn) ≤ k;
– m |= ¬φ if m �|= φ;
– m |= (φ ∧ ψ) if m |= φ and m |= ψ;
– m |= EXφ if there is a t and an m′ with m

t−→ m′ and m′ |= φ;
– m |= E(φUψ) if there is a path m1m2 . . . mk (m1 = m, k ≥ 1) in the reacha-

bility graph where mk |= ψ and, for all i with 1 ≤ i < k, mi |= φ;
– m |= A(φUψ) if, for all maximal paths (i.e. infinite or ending in a deadlock)

m1m2 . . . in the reachability graph with m1 = m, there is a k (k ≥ 1) where
mk |= ψ and, for all i with 1 ≤ i < k, mi |= φ.

The semantics of the remaining CTL operators is defined using the tautolo-
gies (φ ∨ ψ) ⇐⇒ ¬(¬φ ∧ ¬ψ), AXφ ⇐⇒ ¬EX¬φ, EFφ ⇐⇒ E(TRUE
Uφ), AFφ ⇐⇒ A(TRUE Uφ), AGφ ⇐⇒ ¬EF¬φ, EGφ ⇐⇒ ¬AF¬φ,
E(φRψ) ⇐⇒ ¬A(¬φU¬ψ), and A(φRψ) ⇐⇒ ¬E(¬φU¬ψ).

A place/transition net N satisfies a CTL formula if its initial marking m0

does.

For LTL, all temporal modalities concern the same single path. Moreover,
only infinite paths are considered. A maximal finite path is transformed into
an infinite path by infinitely repeating the last (deadlock) marking. Otherwise,
evaluation accords with CTL. A place/transition net N satisfies an LTL formula
if all paths starting from m0 do.

3 CTL Model Checking

We consider local model checking, that is, we want to evaluate a given CTL
formula just for the initial marking m0. Other markings are only considered as
far as necessary for determining the value at m0. In global model checking, one
would be interested in the value of the given formula in all reachable markings.
As a reference for our work, we use the algorithm of [27]. In the sequel, we briefly
sketch this algorithm.

We assume that, attached to every marking, there is a vector that has an
entry for every subformula of the given CTL query. The value of a single entry can
be true, false, or unknown. Whenever we want to access the value of a subformula
φ in a marking m, we inspect the corresponding value. If it is unknown, we
recursively launch a procedure to evaluate φ in m.

If φ is an atomic proposition or a Boolean combination of subformulas, eval-
uation is trivial. For evaluating a formula of shape EX φ′ or AX φ′, we proceed
to the immediate successor states and evaluate φ′ in those states. If the successor

Taking Some Burden Off an Explicit CTL Model Checker 325

marking has not been visited yet, we add it to the set of visited markings and
initialise its vector of values.

If φ has the shape A(ψUχ), we launch a depth-first search from m, aiming at
the detection of a counterexample. The search proceeds through markings that
satisfy ψ, violate χ, and for which A(ψUχ) is recorded as unknown. Whenever
we leave the space of state satisfying these assumption, there is a reaction that
does not require continuation of the search beyond that marking, as follows.

If χ is satisfied, or A(ψUχ) is recorded as true in any marking m′, we back-
track since there cannot be a counterexample path containing m′. If χ and ψ
are violated, or A(ψUχ) is recorded as false, we exit the search since the search
stack forms a counterexample for A(ψUχ) in m. If we hit a marking m′ on the
search stack, we have found a counterexample, too (a path where ψ and not χ
hold forever). The depth-first search assigns a value different from unknown to
all states visited during the search: For markings on the search stack (i.e. partic-
ipating in the counterexample), A(ψUχ) is false, while for states that have been
visited but already removed from the search stack, A(ψUχ) is actually true.

If φ has the shape E(ψUχ), we launch a similar depth-first search, aiming
at the detection of a witness path. This time, we integrate Tarjan’s algorithm
[21] for detecting the strongly connected components (SCC) during the search.
It proceeds through markings that satisfy ψ, violate χ, and for which E(ψUχ)
is recorded as unknown. If we hit a marking m′ where χ is satisfied, or E(ψUχ)
is true, we have found our witness. In states where ψ and χ are violated, or
E(ψUχ) is known to be false, we backtrack since there cannot be witness path
containing such a marking. Again, we assign a value different from unknown
to every marking visited during the search. Markings that are on the search
stack as well as markings that are not on the search stack but appear in SCC
that have not yet been completely explored, get value true. An SCC is not yet
fully explored if it contains elements that are still on the search stack. Then,
however, a path to the search stack extended by the remaining portion of the
search stack forms a witness. For markings in SCC that have been completely
explored, E(ψUχ) is false.

We can see that existential and universal until operators are not fully sym-
metric. This is due to the fact that a cycle of markings that satisfy ψ and violate
χ, form a counterexample for universal until but no witness for existential until.
Any SCC with more than one member would contain such a cycle. Consequently,
universal until will never remove markings from the search stack without closing
a whole (singleton) SCC.

The remaining CTL operators can be traced back to the two until operators
using tautologies. Since every search assigns values to all visited markings, the
overall run time of the algorithm is O(|φ||R|) where |φ| is the length of φ (the
number of subformulas), and |R| is the number of markings reachable from m0.

4 Partial Order Reduction—the Stubborn Set Method

Given a Petri net N and a property φ, the stubborn set method aims at producing
a subgraph G′ of the reachability graph G of N such that the evaluation of

326 T. Liebke and K. Wolf

φ using G′ yields the same value as the evaluation on G. To this end, a set
stubborn(m) of transitions is assigned to every marking m, and only enabled
transitions in stubborn(m) are explored for the construction of G′.

Over the years, a consistent systematic has emerged for presenting stubborn
set methods. There is a list of principles that should govern the selection of
stubborn sets. Each principle comes with an algorithmic approach for computing
a stubborn set that obeys that principle. Finally, there is a list of results stating
that, if G′ is computed using stubborn sets that meet some selection of principles,
all properties of a certain class of properties are preserved. In the sequel, we
shall list principles and results that we need for our considerations below. For
some principles, there exist several variations that push results further to the
limit. However, our focus here is not stubborn set theory as such but CTL
model checking technology. For this reason, we selected principles such that
presentation is as understandable as possible. For stronger results on stubborn
sets, the reader is referred to [11,15,23,25]. We will further completely skip
the algorithmic approaches as they are not necessary for understanding our
argument.

In the sequel, let N = [P, T, F,W,m0] be an arbitrary fixed place/transition
net.

Definition 5 (COM: The commutativity principle). stubborn(m) ⊆ T
satisfies the commutativity principle (COM for short) if, for all w ∈ (T\
stubborn(m))∗ and all t ∈ stubborn(m), m

wt−→ m′ implies m
tw−→ m′.

Definition 6 (KEY: The key transition principle). stubborn(m) ⊆ T sat-
isfies the key transition principle (KEY for short) if m does not enable any
transition or it contains a transition t∗ (a key transition) such that, for all
w ∈ (T \ stubborn(m))∗, m

w−→ m′ implies that t∗ is enabled in m′.

Definition 7 (VIS: The visibility principle). Transition t is invisible
w.r.t. an LTL or CTL formula φ if, for all atomic propositions ψ occurring
in φ and all markings m,m′, m

t−→ m′ implies that ψ(m) holds if and only if
ψ(m′) holds. stubborn(m) ⊆ T satisfies the visibility principle for a property φ
(VIS(φ) for short) if stubborn(m) contains only invisible transitions w.r.t. φ, or
all transitions.

Definition 8 (IGN: The non-ignoring principle). stubborn satisfies the
non-ignoring principle (IGN for short) if every cycle in the reduced reachability
graph contains a marking where all enabled transitions are explored.

Definition 9 (UPS: The up-set principle). For a marking m and a CTL
property φ such that m �|= φ, U is an up-set if every path from m to a marking that
satisfies φ contains an element of U . stubborn(m) satisfies the up-set principle
w.r.t. φ if m |= φ or U ⊆ stubborn(m), for some up-set U .

Definition 10 (BRA: The branching principle). stubborn(m) satisfies the
branching principle (BRA for short) if stubborn(m) contains a single enabled
transition, or all enabled transitions.

Taking Some Burden Off an Explicit CTL Model Checker 327

In the following propositions, let G′ be a reduced reachability graph using stub-
born sets that meet the principles mentioned in the assumption.

Each principle has a specific purpose for proving property preservation. In
most cases, we assume that there is a path π in the full reachability graph (e.g. a
witness or counterexample for the property under investigation) and show that
the reduced system contains a path π that is equally fit w.r.t. the studied prop-
erty. With COM, π′ may execute transitions in another order than π. With KEY
(in connection with COM), π′ may contain transitions that are not occurring in
π. With UPS, the stubborn set at m will always contain a transition of π. With
VIS, visible transitions in π′ appear in the same order as in π, if they appear in
π′. IGN is used for making sure that all transitions of π are eventually occurring
in π′, and BRA is used for making sure that visible transitions are not swapped
with branches in the state space other than branches that are introduced by
concurrency. Again, [11,15,23,25] provide more details concerning these issues.

Proposition 1 (Preservation of deadlocks, [22]). If the principles COM and
KEY are satisfied then G′ contains all deadlocks and at least one infinite path
of the original reachability graph.

Proposition 2 (Preservation of terminal SCC, [24]). If the principles
COM, KEY, and IGN are satisfied then G′ contains at least one marking of
every terminal SCC of the original reachability graph.

Proposition 3 (Preservation of reachability, [15,19]). Let φ be a CTL for-
mula without temporal operators. If the principles COM and UPS(φ) are satisfied
then EFφ is preserved.

Proposition 4 (Preservation of LTL-X, [18,23]). Let φ be an LTL property
not using the X operator. If the principles COM, KEY, VIS(φ), and IGN are
satisfied than φ is preserved.

Proposition 5 (Preservation of CTL-X, [11]). Let φ be a CTL formula not
using the X operator. If the principles COM, KEY, VIS(φ), IGN, and BRA are
satisfied then φ is preserved.

5 Simple CTL Queries

We are now ready to discuss the advantages of separating simple CTL queries. In
most cases, one of the advantages shall be the ability of using a more powerful
stubborn set method. In all reported cases, we will be able to drop the very
limiting BRA principle that enables reduction only in markings where just one
(invisible) enabled transition is sufficient to meet all the other principles. In
addition, less restrictive conditions (i.e. a smaller set of principles to be met),
leads to potentially smaller stubborn sets and thus to better reduction.

The simple problems discussed below appear as pairs of an existentially and
a universally quantified formula. These two formulas can be reduced to each

328 T. Liebke and K. Wolf

other by negation. Hence, they permit the application of the same verification
techniques.

In the sequel, let φ and ψ be CTL formulas without temporal operators.
Experimental data refers to the tool LoLA 2 [29], applied to the benchmark of
the model checking contest (MCC) 2018. We give 300 seconds for every individual
query. More details on experiments can be found in Sect. 7.

5.1 AG φ, EF φ

For the reachability problem EFφ, we may use stubborn set as suggested by
Proposition 3 [19], or a relaxed version [15]. Both techniques have specific advan-
tages. The first method works much better if EFφ is true while the second
method has advantages if EFφ is false. Any of the methods, however, is much
more powerful than the CTL-X preserving method.

For reachability, Petri net structure theory can be applied. If the Commoner’s
theorem [4,13] applies, EF DEADLOCK evaluates to false. The conditions of
the theorem can be checked as a satisfiability problem in propositional logic
(SAT) [17]. The Petri net state equation, enhanced with the refinement method
proposed in [28] provides a powerful tool for verifying other reachability queries.
Since the structural methods can be traced back to NP-complete problems (SAT
resp. Integer Linear Programming) and therefore use only polynomial space, they
can be applied in parallel to state space exploration.

The ability of LoLA to solve far beyond 90% of the queries in the reachability
category of the MCC, compared to less than 70% if only a CTL model checker is
applied to the CTL category, clearly confirms the conclusion to separate reach-
ability queries from CTL model checking.

5.2 AF φ, EG φ

The CTL formula AFφ is equivalent to the LTL formula Fφ. The universal
path quantifier is implicitly present in LTL, too, since a system satisfies an LTL
formula if all its paths do. That is, we may apply LTL-X preserving stubborn
sets instead of CTL-X preserving ones. Without the BRA principle, LTL-X pre-
serving stubborn sets are more powerful (more than 90% success in the LTL
category, compared to less than 70% success if CTL-X preserving stubborn sets
are applied to all of the CTL category).

Additionally, we may completely drop the IGN principle for visible transi-
tions. We sketch a proof for EGφ. If there is no witness path (an infinite path
where φ permanently holds) in the original reachability graph, there cannot be
one in the reduced reachability graph which is a subgraph. If there is an (infinite)
witness path π, then by COM, KEY, and VIS, there is an infinite path π′ in the
reduced system such that visible transitions of π′ occur in the same order as in
π. Invisible transitions in π′ do not alter the value of φ. That is, π′ witnesses
EGφ as well since otherwise there would be a prefix of π where φ is violated,
contradicting the assumption that π is a witness path.

Taking Some Burden Off an Explicit CTL Model Checker 329

When only COM, KEY, and VIS need to be established in stubborn set
computation, we can often find much smaller stubborn sets and achieve much
better state space reduction.

5.3 E (φ U ψ), A(φ R ψ)

To satisfy E (φ U ψ), we need to use stubborn sets that preserve two properties:
first, the reachability of ψ, and second, the non-violation of φ. Combining the
discussion for reachability (EF) and non-violation (EG), we propose the follow-
ing combination of principles for the stubborn sets to be used: COM, UPS(ψ),
and VIS(φ). We sketch the arguments for correctness of this setting. Assume
the original reachability graph contains a witness path π. By UPS(ψ), this path
contains a transition that is in the stubborn set used in the initial marking. By
COM, we can shift the first such transition to the front of the path. By VIS(φ),
this modification does not change the order of transitions visible for φ. At least
the first transition of the modified path can be replayed in the reduced reacha-
bility graph. By induction, a witness path in the reduced system is established.

We obtain a combination of principles where the harmful BRA principle is
absent and VIS can disregard ψ. In addition, the UPS principle preserves a
shortest witness path. This accelerates the positive effect of on-the-fly model
checking in all situations where E(φ U ψ) turns out to be true.

We can employ linear programming for checking a necessary and a sufficient
condition for E(φ U ψ). A necessary criterion is obviously EF ψ, and the approach
in [28] can be used for checking this condition. A sufficient condition is the
reachability of ψ using only transitions that are invisible to φ, in addition to
checking φ in the initial marking. This can be checked by removing all transitions
visible for φ from N and applying the approach of [28] to the resulting net.
With the moderate memory footprint of linear programming, the necessary and
sufficient conditions can be checked in parallel to the actual depth-first search
(“portfolio approach”).

5.4 EGEF φ, AFAG φ

For this pair of formulas, we do not have a dedicated version of stubborn sets, so
we apply CTL preserving stubborn sets for state space reduction. However, the
check for the pair of temporal operators can be folded into a single depth-first
search. We present the approach for EGEF φ. The witness path π for the EG
operator is a maximal path (i.e. infinite or ending in a deadlock).

If the path ends in a deadlock, the deadlock marking has to satisfy φ since
this is the only way for φ to be reachable from that marking. If the deadlock
satisfies φ, all markings on the path satisfy EF φ automatically, so this case can
be easily implemented. An infinite path appears in a model checker as a cycle
that is reachable from m0. For satisfying EGEF φ, it is necessary and sufficient
that, from one of the markings m on the cycle, a marking m′ is reachable that

330 T. Liebke and K. Wolf

satisfies φ. Necessity follows immediately from the definition of the semantics of
CTL. Sufficiency follows from the fact that m is reachable from all markings in
π, so m′ is reachable as well from all markings in π.

We record, for every marking visited in depth-first search, whether a marking
satisfying φ can be reached. To this end, every marking that satisfies φ itself is
marked as “can reach φ”. In addition, whenever depth-first search backtracks
from a marking that can reach φ, the predecessor marking is marked as well as
“can reach φ”. For detecting cycles, we use the well-known fact [14] that every
cycle in a state space contains an edge from some marking m to a marking m′

such that, at some stage of depth-first search, m is the top element of the search
stack and m′ is on the search stack as well (such an edge is called backward
edge). During the search, we maintain information whether or not the search
stack contains such m′. If this is the case while the marking on top of the stack
can reach φ, we return true. If we reach a deadlock satisfying φ, we return true
as well. If the search is completed without having returned true, we return false.

Lemma 1. The procedure sketched above correctly evaluates EGEF φ.

Proof. If we reach a deadlock satisfying φ, EGEF φ is trivially true. If we return
true in any other situation, we have a marking m on the search stack that is
member of some cycle reachable from m0. From m, the top element m′ of the
stack is reachable and, from m′, a marking satisfying φ can be reached. Hence,
EGEF φ is true. For the other direction, assume that EGEF φ is true and consider
a witness path π for the EG operator. If this is a finite path, the final marking
must be a deadlock satisfying φ. Otherwise, π is infinite. The set of markings
that are visited infinitely often in π is strongly connected, hence contained in
an SCC C of the reachability graph. The root m∗ of C (i.e. the marking of C
entered first by the search) is member of some cycle (by strong connectivity).
As m∗ is the first marking of C entered by the search, it is target of a backward
edge. This is recognised before m∗ is finally left by depth-first search. Depth-first
search explores all markings reachable from m∗ before finally leaving m∗. That
is, in the moment we are about to finally leave m∗, we know that m∗ is target of
a backward edge and can reach φ. Hence, we return true (if we have not returned
true much earlier). �

In addition to the combined depth-first search, we can add a check for EF
φ as a necessary condition and AG φ as a sufficient criterion to a portfolio for
EGEF φ. Again, the state equation approach can be used in order not to take
too much memory away from the main search procedure.

5.5 EFEG φ, AGAF φ

We present the approach for EFEG φ. We check the property by nested depth-
first search. The approach uses ideas from [5,6,10,14] that are concerned with
the similar problem of finding accepting cycles in Büchi automata. Outer search

Taking Some Burden Off an Explicit CTL Model Checker 331

proceeds through markings that have already proven not to be part of a φ-cycle
(or a φ-deadlock). This includes markings that do not satisfy φ and markings
where inner search has already been run. Inner search proceeds only through
φ-markings and tries to find a cycle or a deadlock. By definition, EFEG φ holds
if and only if a φ-cycle or a φ-deadlock is reachable from m0. We start with outer
search. Whenever we encounter a fresh φ-marking m, we switch to inner search.
If inner search terminates without having found a cycle or deadlock, we resume
outer search in m.

This procedure is very similar to the general CTL model checking algorithm.
However, we may apply dedicated stubborn sets. In outer search, we distinguish
markings that satisfy φ from markings that do not satisfy φ. If m does not satisfy
φ, we use stubborn sets that satisfy COM and UPS(φ). If m satisfies φ, we have
two correct combinations of principles. We can use stubborn sets that satisfy
COM and UPS(¬φ), or stubborn sets that satisfy COM, KEY, and VIS(φ). In
inner search, we use stubborn sets satisfying COM, KEY, and VIS(φ).

Lemma 2. A reduced reachability graph obeying the principles stated above
preserves EFEG φ.

Proof. Let m∗
1 . . . m∗

n be a φ-cycle or a φ-deadlock (then: n = 1). Let m1m2 . . . mk

be a path such that m1 has been visited in outer search in the reduced reacha-
bility graph, and mk = m∗

i , for some i (1 ≤ i ≤ n). Consider first the case where
all mj (1 ≤ j ≤ k) satisfy φ. Then inner search from m1 will find a φ-cycle or
φ-deadlock since the path

π = m1 . . .
(
mk = m∗

i m
∗
i+1 . . . m∗

nm∗
1 . . . m∗

i−1

)∗

witnesses EG φ and EG φ is preserved by stubborn sets with COM, KEY, and
VIS (see Subsect. 5.2).

Second, consider the case where m1 does not satisfy φ. Since mk = m∗
i

satisfies φ, the path from m1 to mk contains a transition of the up-set used
in m1, and, by the UPS principle, elements of the stubborn set used in m1.
Applying COM, we obtain an alternative path where the first transition is in
the stubborn set used in m1. Its successor meets the same properties in m1 but
with a smaller value for k.

It remains to consider the case where m1 satisfies φ and the first case is
not applicable. Then, for at least one q (2 ≤ q ≤ k), mq violates φ. If we apply
stubborn sets satisfying COM and UPS(¬φ), we argue as in the second case. This
yields a continuation for the witness path in the reduced reachability graph. If
we obey COM, KEY, and VIS instead, we argue as follows. If a transition of
the stubborn set used in m1 occurs in π, COM yields a continuation of the path
in the reduced reachability graph. Otherwise, the stubborn set in m1 contains
only invisible transitions (by VIS). Choose a key transition t∗ in the stubborn
set for m1 (available via KEY). By KEY, t∗ is never disabled in π. By COM, all
transitions in π can still be executed after having fired t∗. The t∗-successor m′

of m1 occurs in the reduced reachability graph. The third case is applicable only
a finite number of times since m′ satisfies φ but there is no φ-cycle reachable in
inner search from m1. �

332 T. Liebke and K. Wolf

As in previous cases, AG φ is a sufficient condition for EFEG φ while EFφ is
necessary. The state equation approaches to these properties may be added to
the portfolio for EFEG φ.

5.6 AGEF φ, EFAG φ, EFAGEF φ, AGEFAG φ

These properties are tightly related to terminal SCC of the reachability graph.
For AGEF φ, every terminal SCC must contain a marking satisfying φ. For
EFAG φ, there must exist a terminal SCC where all markings satisfy φ. For
EFAGEF φ, a terminal SCC must exist where at least one marking satisfies φ,
and for AGEFAG φ, all markings in all terminal SCC must satisfy φ.

By Proposition 2, stubborn sets obeying COM, KEY, and IGN preserve
access to all terminal SCC of the reachability graph. Adding UPS(φ) for AGEF
φ and EFAGEF φ (or UPS(¬φ) for the other two cases) at least inside the
terminal SCC preserves the properties under investigation. There are several
strategies for implementing UPS in the terminal SCC. We can either require it
for all markings (then KEY may be dropped) [20], or enforce a relaxed version of
UPS in all markings (see [15] for details), or we may launch a depth first search
using stubborn sets with COM and UPS whenever we encounter a terminal SCC
in the reduced graph w.r.t. COM, KEY, and IGN.

The proposed procedure has two advantages. First, we proceed in a single
depth-first search compared to the recursive approach of a CTL model checker.
Second, we can drop the very problematic BRA principle. Being able to drop the
VIS principle as well, the stubborn set method can achieve substantial reduction
even in cases where φ is a property that refers to a large number of places, and
causes many transitions to be visible.

For all properties considered in this subsection, AG φ is a sufficient condition
and EF φ is necessary. Using the state equation approach mentioned above, we
can add these checks to our portfolio. This way, we have an additional opportu-
nity to answer the query early while using only a moderate amount of additional
memory.

5.7 Formulas Starting with EX and AX

This section is concerned with formulas of the shape EXEF φ, EXEG φ,
EXE(φ R ψ), EXE(φ U ψ), EXEGEF φ, EXEFEG φ, AXAG φ, AXAF φ,
AXA(φ R ψ), AXA(φ U ψ), AXAGAF φ and AXAFAG φ. We explicitly discuss
the existentially quantified ones. Verification of these properties can be traced
back to the respective formula without the leading EX operator. All we need
to do is to explore all enabled transitions of m0, and not to store m0. That is,
whenever m0 is visited during the search, it is treated as fresh marking and a
stubborn set can be used. Other than this, the same stubborn set approaches as
discussed earlier are applicable.

Taking Some Burden Off an Explicit CTL Model Checker 333

5.8 Single-Path Formulas

In this section, we discuss a larger class of CTL formulas. We aim at applying
LTL model checking instead of CTL model checking. This way, the BRA principle
may be skipped. Switching to an LTL model checker is actually a good idea,
given the better success rate of tools like LoLA in the LTL category of the
MCC. According to [3], removing the path quantifiers of a CTL formula yields
the only candidate to be an equivalent LTL formula. But this candidate may or
may not turn out to be indeed equivalent. The ACTL formulas where equivalence
can be achieved can be characterised [16]. We chose to apply the approach to a
collection of CTL formulas that can be more easily be recognised by a rewriting
system.

LTL is a linear time temporal logic. That is, a counterexample for an LTL
formula is always a single maximal path of the system. In contrast, CTL is a
branching time temporal logic. This means that the counterexample is a subtree
of the computation tree (the unrolling of the reachability graph). For instance,
a witness for EGEF φ consists of a maximal path where, for each marking
a finite path to a state satisfying φ branches off. Even with the observations
made in Subsect. 5.4, the structure remains more complicated than a single path.
However, in several cases, the branching structure collapses into a single path.
Consider EFEG φ. Here, we only need a finite path to the first state of a φ-cycle
(or deadlock), extended with the cycle itself. It is precisely a counterexample
for the LTL formula GF ¬φ that is obtained by negating EFEG φ to AGAF
¬φ and then dropping the universal path quantifiers. In the sequel, we shall
exhibit a class of CTL formulas where this approach is applicable. We call them
single-path formulas. They may contain only existential path quantifiers or only
universal path quantifiers. In the next definition, let a state predicate be a CTL
formula without any temporal operator.

Definition 11 (Existential single-path formula). If φ and ψ are existential
single-path formulas and ω is a state predicate, then the following formulas are
existential single-path formulas:

– ω (the base of the inductive definition);
– EG ω;
– EF φ;
– E(ω U φ);
– E(φ R ω);
– φ ∨ ψ;
– φ ∧ ω;

Universal single-path formulas are defined accordingly:

Definition 12 (Universal single-path formula). If φ and ψ are universal
single-path formulas and ω is a state predicate, then the following formulas are
universal single-path formulas:

– ω (the base of the inductive definition);
– AF ω;
– AG φ;

334 T. Liebke and K. Wolf

– A(ω R φ);
– A(φ U ω);
– φ ∧ ψ;
– φ ∨ ω;

The class of single-path formulas covers several cases discussed earlier in this
paper. However, the results above are stronger then the results we shall obtain
now, so the separate treatment is indeed justified. It is easy to see that the
negation of an existential single-path formula is indeed a universal single-path
formula and vice versa. That is, we may restrict subsequent considerations to
universal single-path formulas.

For a universal single-path formula φ, let LTL(φ) be the formula obtained
from φ by removing all path quantifiers. We claim:

Lemma 3. Let φ be a universal single-path formula and N a Petri net. Then
N satisfies φ if and only if N satisfies LTL(φ).

Proof. We show that violation of φ implies violation of LTL(φ) and viola-
tion of LTL(φ) implies violation of φ. We proceed by induction, according to
Definition 12.

Case ω (state predicate): In both CTL and LTL, a state predicate is violated
if it does not hold in the initial marking.

Case AF ω: In both CTL and LTL, a counterexample is a maximal path
where all markings violate ω. Since ω is a state predicate, it directly refers to
the markings on the path.

Case A(ω R φ): A counterexample for A(ω R φ) is a finite path to a marking
where all but the last marking violate ω and the last marking violates φ. As ω is
a state predicate, the intermediate markings as such violate ω. Hence, the path,
extended by a counterexample path for φ at the final marking (which exists
by induction hypothesis) yields a path that is a counterexample for LTL(A(ω
R φ)). For the other direction, consider a counterexample for LTL(A(ω R φ)).
It must have a suffix serving as a counterexample for LTL(φ). Hence the first
marking of that path violates φ (using once more the induction hypothesis). The
markings that are not part of the considered suffix violate ω, so the full path is
a counterexample for A(ω R φ).

Case A(φ U ω): A counterexample can either be a maximal path where ω is
violated in every marking (then apply the argument of Case AF ω) or a path
where ω is violated until both ω and φ are violated (then apply the argument of
case A(ω R φ)).

Case AG φ: This case can be traced back to Case A(ω R φ) using the tau-
tology AG φ ⇐⇒ A(false R φ).

Case φ ∧ ψ: If φ is violated, there is a counterexample for φ for which the
induction hypothesis may be applied. Otherwise, there is a counterexample for
ψ for which again the induction hypothesis applies.

Case φ ∨ ω: In this case, φ and ω are violated. Since ω is a state predicate,
only the initial marking of the path is concerned. Hence, the induction hypothesis
applied to φ yields the desired result. �

Taking Some Burden Off an Explicit CTL Model Checker 335

Using Lemma 3 the considered fragment of CTL can be verified using an LTL
model checker. As another option, we may use a CTL model checker but apply
LTL preserving stubborn sets. Existential single-path formulas can be verified
by checking their negation.

5.9 Boolean Combinations

If a CTL formula is a Boolean combination of subformulas, we may check the
subformulas individually. Doing that, the subformulas often have a smaller set
of visible transitions, so some of the stubborn set principles are stronger for a
subformula than for the whole formula. Some subformulas may contain the X
operator, so the stubborn set method can be applied at least to the subformulas
not containing the X operator. Some subformulas may fall into any of the classes
considered above, so their verification may be accelerated.

In a setting with distributed memory, the subformulas can be verified in par-
allel. With shared memory, a parallel execution is not necessarily recommendable
since the individual verification procedures compete for memory which may lead
to memory exhaustion in all procedures while verification could have been suc-
cessful if the whole memory were available for either of the procedures.

To get the most out of our accelerated procedures in a shared memory setting,
we rate subformulas according to their simplicity. Then, the simplest formulas
are checked first. This way, we get an increased probability that the result of
the Boolean combination can already be determined (by a true subformula of a
disjunction or a false subformula of a conjunction) before the procedures for the
most complicated formulas have been launched.

Our rating works as follows. The simplest category consists of subformulas
that do not contain temporal operators. They are true, false, or can be evaluated
by just inspecting the initial marking. Second category consists of formulas that
contain only X operators. They can be verified by exploring the state space
to a very limited depth. Then follow categories for the simple cases studied
above. The simplicity of these categories is mainly influenced by our experience
concerning their performance in the MCC. Then follow the categories LTL-X,
CTL-X, LTL, and CTL (in this order). For the last categories, applicability of
stubborn sets is the distinguishing feature.

6 Preprocessing

It has already been recognised [1] that formulas should be carefully preprocessed
before running a model checking procedure. Atomic propositions may turn out
to be always true or always false, proven by the infeasibility of a linear program
that can be derived from the proposition and the Petri net state equation. Once
some of the propositions have been identified as true or false, whole subformulas
may turn out to be true or false as well. This way, a significant number of
formulas can be evaluated without running a model checker at all. For other
formulas, the remaining model checking problem is simpler than the original one.

336 T. Liebke and K. Wolf

In the remainder of this section, we add a few observations to the findings of
[1]. We have two objectives. First, we want to increase the number of situations
where one of the special routines discussed in the previous section can be applied.
Second, we want to increase the power of the stubborn set method.

Boolean Operators. Some tautologies, such as AG (φ ∧ ψ) ⇐⇒ (AG φ ∧
AG ψ) can be applied in both directions. Applying it from right to left decreases
the number of temporal operators. However, the operator in general applies to a
more complicated subformula, with more transitions being visible. Applying the
formula from left to right leads to a formula with more temporal operators that,
however, work on a smaller subformula. Stubborn sets potentially work better.
Moreover, we increase the likelihood that the Boolean operator then becomes
the root of the formula tree and the results of Sect. 5.9 are applicable. Hence,
our tool LoLA uses an orientation of tautologies that prefers pushing Boolean
operators towards the root of the formula tree.

X Operators. We also try to push X operators towards the root to the formula
tree. To this end, we apply tautologies such as EFEX φ ⇐⇒ EXEF φ from
left to right. This way, we increase the likelihood that we finally obtain one of
the formulas considered in Sect. 5.7. Moreover, we get larger subformulas that
do not contain an X operator. Since CTL preserving stubborn sets work only on
X-free formulas, stubborn reduction is not applicable to a formula containing an
X operator as a whole. However, when an X-free subformula of a CTL formula is
evaluated on some level of recursion in the procedure sketched in Sect. 3, there
is no reason not to apply stubborn sets. Hence, the rewriting strategy improves
the applicability of stubborn set reduction.

Traps. When investigating atomic propositions, [1] mainly employs the Petri
net state equation. In quite some situations where the state equation is not
able to prove a proposition to be invariantly true or false, a trap can actually
help. A trap is a set Q of places that, once containing a token, always keeps at
least one token. This is formally established by requiring that every transition
that consumes tokens from any place in Q, also produces a token on some place
in Q. Consider an atomic proposition k1p1 + · · · + knpn ≥ 1 with all ki being
positive. If {p1, . . . , pn} includes a trap that has at least one token in the initial
marking, the proposition is invariantly true. Existence of a trap is easily checked.
We start with {p1, . . . , pn} and remove places where some transition consumes
tokens while not producing tokens on any of the places. This way, we obtain the
maximal trap included in {p1, . . . , pn}.

Embedded Place Invariants. A place invariant i assigns a weight i(p) to every
place p such that the weighted sum of tokens remains constant for all reachable
markings. Place invariants can be found by solving the system of equations
CT i = 0, where C is the incidence matrix of N . With a place invariant i, the
equation i(p1)m(p1) + · · · + i(pn)m(pn) = im0 holds for all reachable markings
in a net with set of places {p1, . . . , pn}. Sometimes, such invariants can be used
for simplifying an atomic proposition. Consider as an example the proposition
p1 + 2p2 + p3 ≥ 2 and assume that there is a place invariant that yields the
equation p1+p2 = 1. Then the atomic proposition can be simplified to p2+p3 ≥ 1.

Taking Some Burden Off an Explicit CTL Model Checker 337

It is not constant but does no longer mention p1. Consequently, the set of visible
transitions may become smaller since the environment of p1 does no longer need
to be considered as visible (unless transitions still appear in the environment of
p2 or p3). With a smaller set of visible transitions, better stubborn set reduction
may be expected (in particular regarding the VIS principle). In general, a helpful
invariant can be systematically computed as the solution of a linear program.
Consider an atomic proposition of the shape k1p1 + · · · + kmpm + l1q1 · · · +
lnqn op k, where all pj and qj are places, all kj are positive integers, all lj
are negative integers, op ∈ {=, �=, <,>,≤,≥}, and k is an integer. The linear
program looks for the largest possible invariant where the coefficients are between
0 and ki (resp. li): Maximise i(p1)+· · ·+i(pm)−i(q1)−· · ·−i(qn) where CT i = 0,
and 0 ≤ i(pj) ≤ kj (for 1 ≤ j ≤ m), and lj ≤ i(qj) ≤ 0 (for 1 ≤ j ≤ n). If
the linear program is feasible, subtracting the resulting solution from the atomic
proposition may or may not lead to less mentioned places but is guaranteed not
to add places to the formal sum of the proposition.

7 Experimental Validation

We implemented the methods discussed in the paper in our tool LoLA (imple-
mentation does not yet cover EXEFEG, EXEGEF, and the universal counter-
parts AXAGAF and AXAFAG). For evaluating the methods, we use the bench-
mark provided by the MCC 2018 [9]. We used the formulas provided in the
CTL category. While the nets of the MCC are contributed by the community,
the formulas are actually generated automatically, and are to a certain degree
random.

In 2018, a total of 767 place/transition Petri nets were used in the MCC. For
every net, 32 CTL formulas are provided. This makes 24544 individual verifica-
tion problems. For 3704 problems (15.1%), the initial rewriting process yielded
a formula that does not contain any temporal operator. Here, sufficiently many
atomic propositions have been found to be invariantly true or false. Resulting
formulas can be evaluated by just inspecting the initial marking, so no actual
run of a model checker is necessary. 13366 problems (54.5%), after rewriting, fall
into some of the categories mentioned in Sect. 5. That is, we need to run the
generic CTL model checker only for 30.4% of the CTL problems in the MCC!

For the 13366 problems where application of a special routine is possible, we
compared the proposed routine with a run of the generic CTL model checking
procedure. To this end, we used 300 seconds of execution time and unlimited
memory for every problem instance. Experiments were executed on our machine
Ebro. This machine has been used for executing parts of the actual MCC in
recent years. It has 32 physical cores running at 2.7 GHz and 1 TB of RAM.
Memory overflow was no issue within the 300 seconds given to each instance.

Table 1 lists the results of our experiments. It shows that specialised routines
in total are more successful than the CTL model checking procedure. For the for-
mulas where specialised routines have been found, we increased the success rate
from 69.2% to 85.7%. In other words, specialised routines are able to solve more

338 T. Liebke and K. Wolf

Table 1. Comparison between CTL model checking procedure (CTL) and special
routine (as proposed in this paper).

Formula type Number CTL Special Improvement

(#) # % # % # %

EF φ, AG φ 2471 1438 58.2 2300 93.1 862 34.9

EG φ, AF φ 1767 1625 92.0 1670 94.5 45 2.5

E(φ R ψ), A(φ U ψ) 168 157 93.5 160 95.2 3 1.8

E(φ U ψ), A(φ R ψ) 318 187 58.8 198 62.3 11 3.5

EFEG φ, AGAF φ 515 340 66.0 431 83.7 91 17.7

EGEF φ, AFAG φ 385 276 71.7 277 71.9 1 0.3

EXEF φ, AXAG φ 353 193 54.7 319 90.4 126 35.7

EXEG φ, AXAF φ 197 177 89.8 178 90.4 1 0.5

EXE(φ R ψ), AXA(φ U ψ) 19 17 89.5 18 94.7 1 5.3

EXE(φ U ψ), AXA(φ R ψ) 33 20 60.6 24 72.7 4 12.1

EFAG φ, AGEF φ 884 286 32.4 343 38.8 57 6.4

EFAGEF φ, AGEFAG φ 13 3 23.1 6 46.2 3 23.1

Single-Path 421 275 65.3 295 70.1 20 4.8

Boolean 5822 4250 73.0 5239 90.0 989 17.0

All 13366 9244 69.2 11458 85.7 2214 16.5

than half of the cases where a generic CTL model checker was not successful.
This means that the proposed approach proved to be effective.

The table also shows that success is very unevenly distributed over the var-
ious formula types. The big success of reachability (EF φ) is of course to be
expected and can be quoted to the large portfolio that included search with
very powerful stubborn sets, the state equation approach, and the use of the
siphon/trap property.

On the other edge of the spectrum, the little success for EGEF φ is well
explained by the fact that we still need to apply the CTL-X preserving stub-
born set method, so we have a more efficient exploration of the state space but
the state space as such remains the same. In case of EXEG φ, the CTL model
checker left only 20 problems open. That is, there is not much room for improve-
ment. Problems in the MCC can be separated into the categories “easy enough
for everybody”,“too hard for everybody”, and “battleground”. The first cate-
gory refers to nets with rather small state space. Here, every approach is able
to get a result in time. In the second category, we have nets with very large
state spaces and dense dependencies between transitions. At least explicit model
checkers that depend on the reduction power of the stubborn set method, have
no chance to verify such systems. This means that progress in model checking
mainly refers to the battleground category. We should aim at covering the prob-
lems in this category as much as possible. Returning to the EXEG φ category,

Taking Some Burden Off an Explicit CTL Model Checker 339

the little success may very well be due to the fact that only one of the 20 for-
mulas left open by the CTL model checker actually fell into the battleground
category. Consequently, we do not conclude that the special routine for EXEG φ
is ineffective as such. Given the fact that we may apply more powerful stubborn
sets, we have reason to believe that the procedure would be more effective on a
different benchmark, with more EXEG formulas in the battleground category.
In consequence, the large bandwidth of success rates in the different formula
types does not jeopardise the general conclusion in favour of using specialised
routines.

The checks for EF φ as a necessary condition and AG φ as a sufficient con-
dition, which we run in parallel to the depth-first search, provided solutions to
305 problems (1.2% of the whole CTL category).

8 Conclusion

We proposed to relieve the CTL model checker by providing specialised support
for a large set of simple CTL queries. Special treatment permits the use of much
more powerful stubborn set dialects. In addition, the Petri net state equation
may be employed for solving the problem, or for checking necessary or sufficient
conditions in a portfolio approach. In the MCC, specialised routines are appli-
cable to more than half of the problems. In the introduction, we argued that a
significant percentage of simple queries has to be expected in practice, too.

With our approach we increased the success rate for simple formulas by
16.5% in the MCC benchmark. This is a remarkable achievement since none
of the additionally solved problems falls into the “easy enough for everybody”
category. Over half of the simple problems left unsolved by the CTL model
checker can now be solved. The performance demonstrated here with the MCC
benchmark (that uses randomly generated formulas) can be repeated in other
situations with meaningful formulas. Unfortunately, there is not enough space
to report details.

Offering the new methods, LoLA unfortunately does not yet reach the
performance of TAPAAL [7], the 2018 winner of the MCC CTL category.
TAPAAL offers some techniques that have not (yet) been implemented in LoLA.
For instance, TAPAAL uses sophisticated net reduction as another form of
preprocessing [7].

Future work could include finding more formula types that permit any
improvement in verification. In addition, some of the ideas of this paper could
be integrated into a CTL model checker itself. For instance, treating AGEF, or
even AGEFAG, in a single depth-first search should be possible even if that pair
of operators occurs in the middle of a more complex CTL formula. In addition,
the proposed stubborn set dialects may not necessarily be the optimal ones for
the respective formula type. Finding alternative stubborn set methods for larger
classes of formulas, we may ultimately be able to have a dedicated dialect of
stubborn sets for every subformula of a CTL query. Finally, the initially pro-
posed idea of modifying the net for the sake of simplifying a CTL query has not
been systematically explored yet.

340 T. Liebke and K. Wolf

References

1. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of
CTL formulae for efficient model checking of petri nets. In: Khomenko, V., Roux,
O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 143–163. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91268-4 8

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

3. Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear-time and
branching-time logics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
REX 1988. LNCS, vol. 354, pp. 428–437. Springer, Heidelberg (1989). https://doi.
org/10.1007/BFb0013029

4. Commoner, F.: Deadlocks in Petri Nets. Applied Data Research Inc., Wakefield,
Massachusetts, Report CA-7206-2311 (1972)

5. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des.
1(2/3), 275–288 (1992)

6. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for
generalized Büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 169–184. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 15

7. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

8. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–
170. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45341-5 11

9. Kordon, F., et al.: Homepage of the Model Checking Contest, June 2018. http://
mcc.lip6.fr/

10. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with tarjan’s
algorithm. Theor. Comput. Sci. 345(1), 60–82 (2005)

11. Gerth, R., Kuiper, R., Peled, D.A., Penczek, W.: A partial order approach to
branching time logic model checking. Inf. Comput. 150(2), 132–152 (1999)

12. Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput.
110(2), 305–326 (1994)

13. Hack, M.H.T.: Analysis of Production Schemata by Petri Nets. Master’s thesis,
MIT, Dept. Electrical Engineering, Cambridge (1972)

14. Holzmann, G.J., Peled, D.A., Yannakakis, M.: On nested depth first search. In:
Proceedings 2nd SPIN Workshop, pp. 23–32 (1996)

15. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods
for state properties. Formal Methods Syst. Des. 29(3), 215–251 (2006)

16. Maidl, M.: The common fragment of CTL and LTL. In: Proceedings of FOCS, pp.
643–652. IEEE Computer Society (2000)

17. Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the siphon-trap
property. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp.
267–286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-
7 16

https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0013029
https://doi.org/10.1007/BFb0013029
https://doi.org/10.1007/11537328_15
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/3-540-45341-5_11
http://mcc.lip6.fr/
http://mcc.lip6.fr/
https://doi.org/10.1007/978-3-642-13675-7_16
https://doi.org/10.1007/978-3-642-13675-7_16

Taking Some Burden Off an Explicit CTL Model Checker 341

18. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 34

19. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X 4

20. Schmidt, K.: Stubborn sets for model checking the EF/AG fragment of CTL.
Fundam. Inform. 43(1–4), 331–341 (2000)

21. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

22. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

23. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

24. Valmari, A.: Stubborn set methods for process algebras. In: Proceedings of
DIMACS Workshop on Partial Order Methods in Verification, vol. 29, pp. 213–231
(1997)

25. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Koutny, M., Kleijn,
J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XII. LNCS, vol. 10470, pp. 140–165. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55862-1 7

26. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

27. Vergauwen, B., Lewi, J.: A linear local model checking algorithm for CTL. In:
Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 447–461. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57208-2 31

28. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Logical
Methods Comput. Sci. 8(3) (2012)

29. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4 18

https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/3-540-57208-2_31
https://doi.org/10.1007/978-3-319-91268-4_18

Saturation Enhanced with Conditional
Locality: Application to Petri Nets

Vince Molnár1,2(B) and István Majzik1

1 Fault Tolerant Systems Research Group,
Department of Measurement and Information Systems,

Budapest University of Technology and Economics, Budapest, Hungary
2 MTA-BME Lendület Cyber-Physical Systems Research Group,

Budapest, Hungary
molnarv@mit.bme.hu

Abstract. The saturation algorithm for symbolic state space genera-
tion has proved to be an efficient way to tackle the state space explo-
sion problem in the verification of concurrent, asynchronous systems.
Since its original publication in 2001, several variants and extensions
have been introduced. The reason for altering the algorithm in these
variants is often specific to how it handles transitions. Saturation heav-
ily relies on the notion of locality: transitions tend to affect only some of
the state variables. The saturation effect, however, can be achieved and
even enhanced with a weaker notion of locality, which we call conditional
locality. In this paper, we define a generalized version of the saturation
algorithm (GSA) for multi-valued decision diagrams that works with
conditional locality and show that it enables the direct usage of tran-
sition relations that previously required a specialized algorithm such as
variants of constrained saturation. Focusing on Petri nets, we also empir-
ically demonstrate on models of the Model Checking Contest that the
GSA often outperforms the original saturation algorithm whenever con-
ditional locality can be exploited and has virtually no overhead for other
models.

Keywords: Generalized saturation · Symbolic model checking ·
Formal verification · Conditional locality

1 Introduction

Model checking is a formal verification technique that looks for specified behavioral
patterns in a discrete-state system by exploring its state space. Even though we can
sometimes avoid the full exploration of the state space, the huge number of reach-
able states in non-trivial systems tend to limit the applicability of model check-
ing. Concurrent, asynchronous systems are especially problematic for approaches
based on a total ordering of events, because the interleaving of the behavior of
independent components can easily cause a combinatoric explosion.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 342–361, 2019.
https://doi.org/10.1007/978-3-030-21571-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_19

Saturation Enhanced with Conditional Locality: Application to Petri Nets 343

This problem has been tackled in many ways, one of which is symbolic model
checking with decision diagrams. Decision diagrams can efficiently encode large
state spaces by exploiting the regularities between states. Furthermore, the sym-
bolic encoding of states and transitions enables the efficient computation of next
states by working with sets of states and relations. Even though this technique
was a great step forward [2], simpler exploration strategies like breadth-first
search suffered from the large size of intermediate decision diagrams.

Decision diagrams have an interesting property: their size is not proportional
to the number of encoded states. In fact, after some point, adding more states
will reduce the size of the diagram because more and more regularities will be
introduced. This is what the saturation algorithm, first introduced in [3], exploits.

To saturate means to fill completely. The main idea of the algorithm is to sat-
urate smaller parts of a decision diagram before moving on to larger parts. Specif-
ically, saturation processes decision diagrams in a bottom-up fashion, exploring
the state space starting with transitions that do not require any component
whose state variable is higher in a variable ordering than the processed level
– transitions that are local on the currently processed variables. This is often
possible because in concurrent systems, transitions usually affect only a small
number of the components. With this strategy, saturation can keep all subdia-
grams empirically small.

The saturation algorithm initially required the Kronecker condition of the
transition relation, but this restriction was removed when [10] introduced matrix-
diagrams and [5] did the same with decision diagrams with 2 levels per variable.

Efficient saturation-based model checking for computational-tree logic (CTL)
has been introduced in [12]. The main novelty was the introduction of con-
strained saturation, which provides an efficient way to handle constraints on
the state space. Constrained saturation takes a set of states – the constraint –
and performs state space exploration without leaving the constraint. With the
modified algorithm, it is possible to avoid intersecting the transition relations
with the constraint, which preserves the locality of transitions and the beneficial
properties of saturation.

Building on constrained saturation, [11] introduced further extensions to sup-
port the verification of linear temporal logic (LTL) and [8] proposed a new app-
roach for the model checking of prioritized Petri nets. Both of them proposed
ways to preserve locality for a transition relation that is composed of simple tran-
sitions and additional constraints (such as synchronization between the system
and the property automaton or enabledness based on priorities).

In this paper, we propose a new algorithm for saturation that generalizes
the attempts of preserving locality in the approaches above. We introduce con-
ditional locality to relax the original notion of locality and automatically handle
transition relations that previously required a form of constrained saturation
to process efficiently (such as [8,11]). In addition to generalizing a family of
algorithms, using conditional locality can increase the saturation effect, which is
intuitively associated with better performance. We investigate this effect in the
context of Petri nets, where we empirically show that the generalized saturation
algorithm (GSA) can be orders of magnitude faster than the original saturation
algorithm (presented in detail in [4]) and is virtually never slower.

344 V. Molnár and I. Majzik

The main motivation of conditional locality is to compute fixed points even
more locally. Saturation ignores variables that are independent of the processed
events to avoid computing the fixed point for each of their valuations. With
conditional locality, we can ignore even those variables that are not written but
read by an event (because they will not change), but compute the fixed point as
many times as the value of those variables would cause a different result. The
intuition is that the resulting nodes will be part of the final decision diagram
more often than those created by the original saturation algorithm, leading to
less intermediate nodes and therefore improved performance.

The most important related work is [10], where the authors propose a method
to split a transition relation such that the resulting relations are as local as
possible. The key idea is to extract relations which do not depend on the variables
higher in the variable ordering and therefore the method works well when the
transition relation is a “sum” of such a relation and another one (i.e. R =
R1 ∪R2). Our approach also handles the cases when the relation is the result of
“removing” certain cases from a transition that normally does not depend on a
variable (i.e. R = R1 \ R2). Another work that is similar in spirit is [9], where
the dependencies of high-level transitions on state variables are more fine-grained
than dependent and independent, which enables a more compact encoding and
more efficient update of the transition relation. Our approach also refines this
dependency relation to relax the notion of locality.

The key novelties introduced in this paper are the following: (1) the intro-
duction of conditional locality to relax the original notion of locality; (2) the gen-
eralization of a family of saturation-based algorithms using conditional locality;
and (3) an empirical demonstration of the efficiency of the proposed approach on
Petri nets. The paper is structured as follows. Section 2 presents the formalisms
and notations used in the rest of the paper. Section 3 introduces conditional
locality and the generalized saturation algorithm. The empirical evaluation on
Petri nets is in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background

In this section we summarize the theoretical background of our work and intro-
duce the necessary notations. First, we briefly present Petri nets in Sect. 2.1, then
we introduce partitioned transition systems in Sect. 2.2. Building on the latter,
we define locality in Sect. 2.3, then formalize multi-valued decision diagrams for
encoding states (Sect. 2.4) and abstract next-state diagrams for encoding tran-
sition relations (Sect. 2.5). Finally, we present the saturation and constrained
saturation algorithms in Sect. 2.6.

2.1 Petri Nets

Petri nets are a widely used formalism to model concurrent, asynchronous sys-
tems. The formal definition of a Petri net (including inhibitor arcs) is as follows
(see Fig. 1 for an illustration of the notations).

Saturation Enhanced with Conditional Locality: Application to Petri Nets 345

Fig. 1. Petri net model of 3 concurrent processes locking (tli) and unlocking (tui) a
mutually exclusive resource. Examples for the interpretations of the various notations
introduced in Sects. 2.1–2.3 and 3.1 are given on the right.

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T,W,M0) where:

– P is the set of places (defining state variables);
– T is the set of transitions (defining behavior) such that P ∩ T = ∅;
– W = W−�W+�W ◦ is a multiset of three types of arcs (the weight function),

where W−,W ◦ : P × T → N and W+ : T × P → N are the set of input arcs,
inhibitor arcs and output arcs, respectively;

– M0 : P → N is the initial marking, i.e. the number of tokens on each place.

The three types of weight functions describe the structure of the Petri net:
there is an input or output arc between a place p and a transition t iff W−(p, t) >
0 or W+(t, p) > 0, respectively, and there is an inhibitor arc iff W ◦(p, t) < ∞.

The state of a Petri net is defined by the current marking M : P → N.
The dynamic behavior of a Petri net is described as follows. A transition t is
enabled iff ∀p ∈ P : M(p) ∈ [

W−(p, t),W ◦(p, t)
)
. Any enabled transition t

may fire non-deterministically, creating the new marking M ′ of the Petri as
follows: ∀p ∈ P : M ′(p) = M(p) − W−(p, t) + W+(t, p). We denote the firing
of transition t in marking M resulting in M ′ with M

t−→ M ′. A marking Mi is
reachable from the initial marking if there exists a sequence of markings such
that M0

t1−→ M1
t2−→ · · · ti−→ Mi. The set of reachable markings (i.e. the state

space of the Petri net) is denoted by Sr. This work assumes Sr to be finite.

2.2 Partitioned Transition Systems

A generic model for saturation is usually called a partitioned transition system
(PTS), where high-level events (causing transitions) and their dependencies on
state variables are preserved to partition the low-level next-state relations and
localize the effect of transitions [4]. In decision diagram-based model checking,
such models usually come with a user-specified variable ordering.

346 V. Molnár and I. Majzik

Definition 2 (Variable ordering). A variable ordering over variables V
(|V | = K) is a total ordering of elements of V that defines a sequence. The
variable in position k of the sequence is denoted by xk. We will say that x1 is
the lowest and xK is the highest in the ordering. We will use the notations
V≤k = {x1, . . . , xk} and V>k = {xk+1, . . . , xK} for sets of variables constituting
a prefix or suffix (respectively) of the sequence.

With a specified variable ordering, the formal definition of a PTS is as follows
(again see Fig. 1 for an illustration on the example model).

Definition 3 (Partitioned Transition System). A partitioned transition
system is a tuple M = (V,D, S0, E ,N) where:

– V = {x1, . . . , xK} is the finite set of variables with an arbitrary but well-
defined variable ordering;

– D is the domain function such that D(xk) ⊆ N for all xk ∈ V ;
– S0 ⊆ Ŝ is the set of initial states, where Ŝ =

∏
x∈V D(x) is the potential state

space (the shape of which is unaffected by the chosen variable ordering);
– E is the set of high-level events, specifying groups of individual transitions;
– N ⊆ Ŝ×Ŝ is the transition relation partitioned by E such that N =

⋃
α∈E Nα.

We often use N as a function returning the “next states”: N (s) = {s′|(s, s′) ∈
N} and N (S) =

⋃
s∈S N (s).

A (concrete) state of the system is a vector s ∈ Ŝ, where each variable xk has a
value from the corresponding domain: s[k] ∈ D(xk). A partial state over variables
X is a vector assigning a specific value to variables in X and � (undefined) to
those in V \ X. Sets of partial states are denoted by S(X) and when significant,
a single partial state is denoted by s(X). A partial state s(X) matches a concrete
state s if s[k] = s(X)[k] for every xk ∈ X, denoted by s ∈ M(s(X)).

2.3 Locality

Exploiting the information preserved in a PTS, we can define different relation-
ships between an event and a variable (illustrated in Fig. 1).

Definition 4 (Locally read-only). An event α is locally read-only on vari-
able xk if for any (s, s′) ∈ Nα we have that s[k] = s′[k]. Informally, the value of
x is never modified by the transitions of event α.

While the locally read-only property guarantees that the value of the variable
will not change, the event can still depend on the information stored in the
variable. The following property forbids this as well.

Definition 5 (Locally invariant). An event α is locally invariant on variable
xk if it is locally read-only and for any (s, s′) ∈ Nα and v ∈ D(xk) we also have
(s[xk←v], s′

[xk←v]) ∈ Nα, where s[xk←v] is a state where the value of variable xk

is v, but all other variables have the same value as in s. Informally, the value of
x does not affect the outcome of event α.

Saturation Enhanced with Conditional Locality: Application to Petri Nets 347

With the help of local invariance, we can now define locality, the central
notion of the saturation algorithm.

Definition 6 (Locality). An event α ∈ E is said to be local over variables
X ⊆ V if it is locally invariant on variables in V \ X. If X is minimal (i.e. the
event is dependent on variables in X) then we say that X is the set of supporting
variables of α: Supp(α) = X. The variable with the highest index among the
supporting variables (according to a variable order) is the top variable (Top(α))
of α. We use Ek = {α | Top(α) = xk} and Nk =

⋃
α∈Ek

Nα to denote events and
their next-state relations whose top variable is the xk.

The next-state relation of an event α local on variables Supp(α) = X can
be defined over partial states S(X), because no other information is required to
compute its image. This enables a compact representation and clever iteration
strategies like saturation.

2.4 State Space Encoded in Multi-valued Decision Diagrams

Saturation works with different types of decision diagrams. This paper addresses
the version that uses multi-valued decision diagrams to encode the state space.1

Definition 7 (Multi-valued decision diagram). An ordered quasi-reduced
multi-valued decision diagram (MDD) over a set of variables V (|V | = K), a
variable ordering and domains D is a tuple (V, lvl, children) where:

– V =
⋃K

k=0 Vk is the set of nodes, where items of V0 are the terminal nodes 1
and 0, the rest (V>0 = V \ V0) are internal nodes (Vi ∩ Vj = ∅ if i �= j);

– lvl : V → {0, 1, . . . ,K} assigns non-negative level numbers to each node,
associating them with variables according to the variable ordering (nodes in
Vk = {n ∈ V | lvl(n) = k} belong to variable xk for 1 ≤ k ≤ K and are
terminal nodes for k = 0);

– children : V>0 × N → V defines edges between nodes labeled with elements of
N (denoted by n[i] = children(n, i), n[i] is left-associative), such that for each
node n ∈ Vk (k > 0) and value i ∈ D(xk) : lvl(n[i]) = lvl(n) − 1 or n[i] = 0;
as well as n[i] = 0 if i /∈ D(xk);

– for every pair of nodes n,m ∈ V>0, if for all i ∈ N : n[i] = m[i], then n = m.

An MDD node n ∈ Vk encodes a set of partial states S(n) = S(V≤k) over vari-
ables V≤k such that for each s ∈ S(V≤k) the value of n[s[k]] · · · [s[k]] (recursively
indexing n with components of s) is 1 and for all s /∈ S(V≤k) it is 0.

There are efficient recursive algorithms that compute the result of set oper-
ations directly on MDDs (e.g. union is described in [4]).

An interesting property of MDDs is that the number of nodes does not grow
proportionally with the size of the encoded set. In fact, the size of an MDD
can decrease when adding new states because of the exploited regularities. This
phenomenon can be observed on Fig. 4, where each MDD from left to right
encodes one more state, but has either 3 internal nodes or 5. Also note that the
right-most MDD encodes the state space of the Petri net from Fig. 1.
1 See [6] for saturation with hierarchical set decision diagrams.

348 V. Molnár and I. Majzik

2.5 Next-State Representations

We have introduced a generalization of next-state representations compatible
with saturation in [8] – we will build on this notion heavily in the generalization
of saturation variants.

Definition 8 (Abstract next-state diagram). An abstract next-state dia-
gram over a set of variables V (|V | = K) and corresponding domains D is a
tuple (D, lvl,next)

– D = �K
i=0Di is the set of next-state descriptors (NS descriptor or descriptor

for short), where items of D0 are the terminal identity 1 and the terminal
empty 0 descriptors, the rest (D>0 = D \ D0) are non-terminal descriptors;

– lvl : D → {0, 1, . . . ,K} assigns non-negative level numbers to each descriptor,
associating them with variables (descriptors in Dk = {d ∈ D | lvl(d) = k}
belong to variable xk for 1 ≤ k ≤ K and are terminal nodes for k = 0);

– next : D × N × N → D is the indexing function that given a descriptor d
and a pair of “before” and “after” variable values returns another descriptor
d′ such that lvl(d′) = lvl(d) − 1 or d′ = 0. Also denoted by d[v, v′] = d′ ⇔
(d, v, v′, d′) ∈ next (with d, d′ ∈ D, v, v′ ∈ N, d[v, v′] is left-associative) and
d[s, s′] = d[vK , v′

K] · · · [v1, v′
1]. We require for any v, v′, v′′ ∈ N and v �= v′

that 1[v, v] = 1, 1[v, v′] = 0, and 0[v, v′′] = 0.

The abstract NS descriptor d ∈ Dk encodes the relation N (d) ⊆ N
K ×N

K iff for
all s, s′ ∈ N

K the following holds:
(
(s, s′) ∈ N (d) ⇔ d[s, s′] = 1

) ∧ (
(s, s′) /∈ N (d) ⇔ d[s, s′] = 0

)

Decision diagram-based representations such as MDDs with 2K levels or
matrix decision diagrams naturally implement abstract next-state diagrams –
descriptors are nodes of the diagram, the identity descriptor is the terminal one
node (1), the empty descriptor is the terminal zero node (0) and the indexing is
the same (in case of MDDs with 2K levels d[x, x′] is implemented by d[x][x′]).
The main difference between these representations and abstract next-state dia-
grams is that the latter are abstract – they can have any representation as long
as it can be mapped to the definition and they can be compared for equality.

In case of Petri nets, the simplest representation is the weight function of the
net. Given a Petri net with K = |P | places each constituting a separate state
variable (pk denoting the kth variable in the ordering encoding the number of
tokens on place p ∈ P), a mapping to an abstract next-state diagram for every
transition t ∈ T is as follows.

– The set of descriptors is Di = N×N×N×Di−1 for 1 ≤ i ≤ K, i.e. tuples of the
input weight, inhibitor weight and output weight for pi and the descriptor of
for the next place if the transition is enabled with respect to pi (D0 = {1,0}).

– For the next function, if d = (v−, v◦, v+, d′), the result of indexing d[i, j] is d′

if v− ≤ i < v◦ and j = i − v− + v+ and 0 otherwise.

Saturation Enhanced with Conditional Locality: Application to Petri Nets 349

Fig. 2. Pseudocode of constrained saturation and NS descriptors.

– For each transition t the corresponding descriptor is defined recursively: d0 =
1 and di =

(
W−(pi, t),W ◦(pi, t),W+(pi, t), di−1

)
.

Figure 2d illustrates the NS descriptors of transitions tli of the example Petri
net. A descriptor d = (v−, v◦, v+, d′) is denoted by a node with (v−, v◦, v+) and
d′ is denoted by an arrow from d. Descriptors can be shared between transitions.

2.6 Saturation

Saturation is a symbolic state space generation algorithm working on decision
diagrams [4]. Formally, given a PTS M , its goal is to compute the set of states

350 V. Molnár and I. Majzik

S that are reachable from the initial states S0 through transitions in N : S =
S0 ∪ N (S0) ∪ N (N (S0)

) · · · = N ∗(S0), where N ∗ is the reflexive and transitive
closure of N . This is equivalent to computing the least fixed point S = S ∪N (S)
that contains S0. The main strength of saturation is a recursive computation of
this fixed point, which is based on the following definitions.

Definition 9 (Saturated state space). Given a partitioned transition system
M , a set of (partial) states S(X) over variables X is saturated iff S(X) = S(X) ∪
NX(S(X)), where NX =

⋃
α|Supp(α)⊆X Nα.

A saturated state space is a fixed point of NX . In model checking, the goal of
state-space exploration is to find a least fixed point S = S ∪ N (S) that contains
the initial states S0. Saturation computes this fixed point recursively based on
the structure of a decision diagram.

Definition 10 (Saturated node). Given a partitioned transition system
M , an MDD node n on level lvl(n) = k is saturated iff it encodes a set
of (partial) states S(n) that is saturated. Equivalently, the node is saturated
iff all of its children n[i] are saturated and S(n) = S(n) ∪ Nk(S(n)), where
Nk =

⋃
α|Top(α)=xk

Nα for 1 ≤ k ≤ K and N0 = ∅.
As suggested by the definition, locality is mainly used to compute a Top

value for each event, which is the lowest level on which fixed point computation
involving the event can happen. By definition, the terminal nodes 1 and 0 are
saturated because they do not have child nodes and N0 is empty. The saturation
algorithm is then easily defined as a recursive algorithm that given a node n
computes the least fixed point S(ns) = S(ns) ∪ Nk(S(ns)) that contains S(n),
making sure that child nodes are always saturated by recursion. When applied
on a node encoding the set of initial states, the result will be a node encoding
the states reachable through transitions in N .

The motivation of this decision diagram-driven strategy comes from the
observation that larger sets may often be encoded in smaller MDDs. By explor-
ing as many variations in the lower variables as possible, intermediate diagrams
may be much smaller than in traditional BFS and chaining BFS strategies (also
described in [4]). Another intuition is that in an MDD encoding the set of reach-
able states, all nodes are by definition saturated – therefore it is impractical to
create nodes which have unsaturated child nodes. In other words, a saturated
node has a chance of being in the final MDD, while an unsaturated one has not.

The Constrained Saturation Algorithm. The constrained saturation algo-
rithm has been introduced in [12] to limit the exploration inside the boundaries
of a predefined set of states (the constraint). Even though this is possible with
the original algorithm by removing transitions in N that end in states not inside
the constraint, it would damage the locality of events by making them depen-
dent on additional variables (the event has to decide whether it is leaving the
constraint or not). Constrained saturation avoids this by traversing an MDD

Saturation Enhanced with Conditional Locality: Application to Petri Nets 351

representation of the constraint along with the MDD of the state space, and
deciding the enabledness of events when firing them.

Formally, given a constraint set C, the goal of constrained saturation is to
compute the least fixed point S = S ∪(N (S)∩C

)
that contains the initial states

inside the constraint S0 ∩ C. Definitions 9 and 10 are modified as follows.

Definition 11 (Saturated state space with constraint). Given a par-
titioned transition system M and a constraint C, a set of (partial) states
S(X) over variables X is saturated iff S(X) = S(X) ∪ (NX(S(X)) ∩ C

)
, where

NX =
⋃

α|Supp(α)⊆X Nα.

Definition 12 (Saturated node with constraint). Given a partitioned
transition system M and a constraint node nc (S(nc) = C), an MDD node
n on level lvl(n) = k is saturated iff it encodes a set of (partial) states S(n)
that is saturated with respect to constraint C. Equivalently, the node is saturated
iff all of its children n[i] are saturated with respect to constraint node nc[i], and
S(n) = S(n) ∪ (Nk(S(n)) ∩ C

)
, where Nk =

⋃
α|Top(α)=xk

Nα for 1 ≤ k ≤ K

and N0 = ∅.
The recursive computation of Nk(S(n))∩C is done by simultaneously travers-

ing n with the source states, the descriptor d of Nk with source and target
states, and nc with target states. Note that nc does not encode the partial state
determined by the path through which recursion reached the current node, but
“remembers” just enough to decide if the transition is allowed based only on the
rest of the state.

Figures 2a–c present the pseudocode of the constrained saturation algorithm.
To retrieve the pseudocode of the original saturation algorithm, one should
assume that at any point c �= 0 and c[i] �= 0 for any i. The pseudocode also
contains a stub for the Confirm procedure that serves for the on-thy-fly update
of the transition relations whenever new states are found (as described in [4] and
enhanced in [9]).

The ConsSaturate procedure starts by checking the terminal cases. Line 2
checks if the same problem has already been solved. Caching – as in all operations
on decision diagrams – is crucial to have optimal performance. If there is no match-
ing entry in the cache, the algorithm recursively saturates the children of the input
node n, calling Confirm for every encountered local state. The resulting node is
checked for uniqueness in line 7 and is replaced by an already existing node if nec-
essary (to preserve MDD canonicity). In line 8, we get the NS descriptors for each
event belonging to the current level, then iteratively apply them again and again
in lines 9–14 until no more states are discovered – a fixed point is reached. This
version of the iteration is called chaining and is discussed in [4].

The result of firing an event on a set of states is computed by ConsFire and
ConsRecFire. The only differences between them are that ConsRecFire also
saturates the resulting node before returning it and also caches it – ConsFire
is called as part of a saturation process so this is not necessary. The common
parts (3–7 in ConsFire and 4–8 in ConsRecFire) compute the resulting node

352 V. Molnár and I. Majzik

by recursively processing their child nodes. It is important to note that the
arguments of the recursive call are n[i], c[j] and d[i, j], that is, n is traversed
along the source state and c is traversed along the target state. The recursive
saturation of the result node in ConsRecFire in line 10 ensures that child
nodes of the currently saturated node always stay saturated during the fixed
point computation in accordance with Definitions 10 and 12.

3 The Generalized Saturation Algorithm

As we could see, the motivation of the constrained saturation algorithm (and
all of its variants like those in [8,11]) is to handle a modified transition relation
without losing locality. This paper generalizes these attempts by introducing
the notion of conditional locality, a concept that expresses the most important
consideration of all kinds of saturation: computing fixed points as locally (i.e.
low in the decision diagram) as possible. This intuition has been discussed in
Sect. 2.6, and the conclusion – that saturated nodes have a chance of being in
the final MDD – can be used to improve the definitions to enhance this effect
even further, which we do in the generalized saturation algorithm (GSA).

3.1 Conditional Locality

The concept of locality enables the saturation algorithm to ignore the value of
variables outside the support of the currently processed event because it does not
depend on them in any way. The result is that a fixed point can be calculated over
partial states, which has to be computed only once regardless of the number of
matching concrete states. The main motivation of conditional locality is to ignore
even those variables that are not written but read by an event and compute the
fixed point over even shorter partial states, but as many times as the value of
those variables would cause a different result. The intuition is that the resulting
nodes will be part of the final MDD more often than those created by the original
saturation algorithm, leading to less intermediate nodes and therefore improved
performance. Concepts are again illustrated in Fig. 1.

Definition 13 (Conditional locality). An event α ∈ E is said to be con-
ditionally local over variables X and with respect to condition variables Y
(X ∩ Y = ∅) iff it is local over X ∪ Y and locally read-only on variables in
Y . If Y is maximal and X ∪Y = Supp(α), then we call Y = Guard(α) the guard
variables and X = Suppc(α) the conditional support of α. The variable with
the highest index among the conditionally supporting variables (according to a
variable order) is the conditional top variable (Topc(α)) of α.

The (full) next-state relation of a PTS can be automatically repartitioned
based on conditional locality. The resulting partitions (events) will either be
locally read-only on a variable or will always change its value (behaviors like
“test-and-set” may combine these and be read-only sometimes but change the

Saturation Enhanced with Conditional Locality: Application to Petri Nets 353

value other times – in this case, we can split the next-state relation). A special
case of this repartitioning is built into the GSA as described in Sect. 3.2.

The following definition of conditionally saturated state spaces and MDD
nodes can be considered as relaxations of Definitions 9 and 10 based on condi-
tional locality.

Definition 14 (Conditionally saturated state space). Given a partitioned
transition system M , a set of (partial) states S(X) over variables X is condition-
ally saturated with respect to the partial state s(Y) (Y ⊆ V \ X) iff S′ = S′ ∪
NX(S′), where S′ = {s(Y)} × S(X) and NX =

⋃
α|Suppc(α)⊆X,Guard(α)⊆X∪Y Nα.

Note that a set of (partial) states S(X) over variables X that is conditionally
saturated with respect to a zero-length state s(∅) is also saturated over X, there-
fore the goal is the same as before: generate a minimal, conditionally saturated
set of states S with respect to s(∅) that contains the initial states S0.

Definition 15 (Conditionally saturated node). Given a partitioned tran-
sition system M , an MDD node n on level lvl(n) = k is conditionally saturated
with respect to the partial state s(V>k) iff it encodes a set of (partial) states S(n)
that is conditionally saturated with respect to s(V>k).

The equivalent definition in terms of child nodes is now phrased as a theorem.

Theorem 1 (Conditionally saturated node – recursive definition).
Given a partitioned transition system M , an MDD node n on level lvl(n) =
k is conditionally saturated with respect to the partial state s(V>k) iff (1)
all of its children n[i] are conditionally saturated with respect to s(V>k−1),
s(V>k−1) ∈ M(s(V>k)) and s(V>k−1)[k] = i; and (2) S′ = S′ ∪ Nk(S′), where
S′ = {s(V>k)} × S(n) and Nk =

⋃
α|Topc(α)=xk

Nα for 1 ≤ k ≤ K and N0 = ∅.
Proof. We prove only that a node described in the theorem encodes a con-
ditionally saturated set of states. To prove the fixed point, we have to show
that for any state s ∈ {s(V>k)} × S(n) we have NV≤k

(s) ⊆ {s(V>k)} × S(n).
Note that NV≤k

=
⋃k

i=0 Nk because if Suppc(α) ⊆ V≤k then Topc(α) ≤ k and
Guard(α) ⊆ V≤k ∪ V>k = V always holds. Assume there is a state s′ ∈ NV≤k

(s)
that is not in {s(V>k)}×S(n). We know that (s, s′) ∈ Nl for some l ≤ k. If l = k
then we have a direct contradiction with the second requirement of the theorem.
If l < k, then s′[k] = s[k] = i, because the transition cannot change the value of
xk. Because the first requirement of the theorem says that n[i] is conditionally
saturated with respect to s(V>k−1) as defined above, and Nl ⊆ NV≤k−1 , it follows
that s′ must be in {s(V>k−1)} × S(n[i]) ⊆ {s(V>k)} × S(n).

Based on Theorem 1 and the observation after Definition 14, the set of reach-
able states is encoded as a conditionally saturated MDD node on level K.

The key difference compared to Definitions 9 and 10 is the inclusion of a
partial state with respect to which we can define a fixed point. Because we
consider the repartitioned events that are now conditionally local, the partial

354 V. Molnár and I. Majzik

state can be used to bind their guard variables, which will specify their effect
on the variables in their conditional support. Since the guard variables are not
changed when executing the transitions, we can compute a fixed point on only
those variables that are in the conditional support of the event.

Even though the definition uses a partial state to define the fixed point, it
is generally enough to traverse the NS descriptors just like the constraint in
constrained saturation: whenever we navigate to n[i], we should also navigate
through d[i, i]. The resulting descriptor will characterize all the partial states
that cause the same behavior in the rest of the transitions.

3.2 Detailed Description of the GSA

The pseudocode for the GSA is presented in Fig. 3. The inputs are an MDD node
n encoding the initial states S0 of a PTS, and a NS descriptor d representing
the whole next-state relation N . Since the algorithm will automatically partition
the next-state relation based on conditional locality, d can be an union of all dα

(descriptors for events).
Sometimes, computing the full next-state relation is not practical, either

because of its cost (e.g. we have to change representation) or because we want to
use chaining in the fixed point computation. An advantage of abstract next-state
diagrams is the ability to represent operations in a lazy manner. For example, the
union of two descriptors may be represented by extending the set of descriptors
D with elements of D×D×{union} (lvl((d1, d2, union)) = lvl(d1) = lvl(d2)) and
extending next such that (d1, d2, union)[i, j] is: 1 if d1 or d2 is 1; d1 if d2 is 0; d2 if
d1 is 0; and (d1[i, j], d2[i, j], union) otherwise. The lazy descriptor (d1, d2, union)
will not be equivalent to any non-lazy descriptor (even if they encode the same
relation), but will be equivalent to (d1, d2, union) or (d2, d1, union), which is
not optimal cache-wise but is often better than pre-computing the union. This
approach can be generalized to more than two operands.

Compared to (constrained) saturation in Figs. 2a–c, the main differences and
points of interest are listed below. In Saturate:

– Next-state descriptors are not retrieved for each level, but are a parameter.
– Recursive saturation of child nodes in line 7 passes d[i, i] as the NS descriptor

to use on the lower level k − 1, which encodes a set of transitions that do not
modify the variable associated to this level (and any above), therefore they
are conditionally local over V≤k−1 with respect to the partial state specified
by the Saturate procedures currently on the call stack.

– Cache lookup in line 3 considers d instead of the partial state specified by the
call stack because every partial state leading to d would produce the same
result.

– In the fixed-point iteration in line 10 the Split procedure is used to retrieve
the operands of a lazy union descriptor to support chaining. It may be imple-
mented in any other way as long as the returned set of descriptors cover the
relation encoded by the descriptor passed as argument.

– In lines 6 and 9, the Update procedure supports on-the-fly next-state relation
building by providing a hook for replacing parts of d.

Saturation Enhanced with Conditional Locality: Application to Petri Nets 355

In SatFire:

– There are two descriptors: ds for recursive saturation and df to fire.
– In the loop computing local successors in line 4 we omit locally read-only

transitions (i �= j), because they will be processed by recursive saturation.
– In the recursive firing in line 5, ds is indexed by [y, y] because (like in con-

strained saturation) the resulting node will be n′[y] (and therefore ds[y, y]
describes the conditionally local transitions), while df is indexed as usual.

In SatRecFire:

– Cache lookup in line 3 considers both next-state descriptors.
– In the loop computing local successors in line 5 we now consider every transi-

tion even if they are read-only, (on some level above they changed a variable).
– Recursive saturation in line 9 will use ds (which is still conditionally local).

3.3 Constrained Saturation as an Instance of the GSA

With the automatic partitioning offered by the GSA, next-state relations that
motivated the introduction of constrained saturation and its variants can now be
directly encoded into the transition relation without any cost. This is because
a constraint is a guard, therefore it can cause an event only to become read-
only on a variable instead of independent, but will still never write it. Adding
a constraint will never raise the conditional top variable of events, but it can
raise their unconditional top variable in many cases, which is associated with
degraded performance.

Indeed, the handling of ds in the GSA is very similar to the handling of
the constraint node – we could say that our algorithm uses the next-state rela-
tion itself as a constraint. Combining this with the flexibility of abstract NS
descriptors (lazy descriptors in particular), we get the properties of constrained
saturation enhanced with every difference between the original saturation algo-
rithm and the GSA (see Sect. 3.4).

We illustrate the usage of abstract NS descriptors for variants of constrained
saturation with the kind of constraint used in the original constrained saturation
algorithm [12].

Definition 16. (Constrained next-state descriptor). Given a NS descrip-
tor d and a constraint node c, the constrained next-state descriptor dc describing
N (dc) = N (d) \ (

N
K × S(c)

)
is a tuple dc = (d, c) with lvl(dc) = lvl(d) = lvl(c),

and dc[i, j] is: 0 if d[i, j] = 0 or c[j] = 0; and (d[i, j], c[j]) otherwise.

3.4 Discussion

To estimate the efficiency of the algorithm, we will consider the advantages and
disadvantages of the different modifications. First and foremost it is important
to note that if Topc(α) = Top(α) for every event α, then the GSA degrades to

356 V. Molnár and I. Majzik

Fig. 3. Pseudocode of the GSA.

the original saturation algorithm from [4] or the corresponding constrained sat-
uration algorithm from [8,11,12] with no difference in the iteration strategy and
the virtually zero overhead of handling the next-state relation as a parameter.
In every other case, there may be a complex interplay between the advantages
and disadvantages discussed below.

An advantage of using conditional locality is that Topc(α) ≤ Top(α), i.e. we
can potentially use event α when saturating a node on a lower level, which is
intuitively better because it raises the chance that the resulting node will be

Saturation Enhanced with Conditional Locality: Application to Petri Nets 357

Fig. 4. A (degraded) run of saturation on
the example model: n3 encodes S0, n4 =
n3 ∪ Ntl3

(n3), n7 = n4 ∪ Ntl1
(n4), the state

space is n9 = n7 ∪ Ntl2
(n7). Note that tui

does not reach new states.

Fig. 5. A run of the GSA on the
example model: n3 encodes S0, n4

is the saturated n1 (after firing tl1),
n5 is the saturated n2 (after firing
tl2) and n6 is the state space.

part of the final diagram. Figures 4 and 5 illustrate the MDDs that are created
while exploring the state space of the example Petri net model from Fig. 1 with
saturation and the GSA. Saturation is degraded to a chaining version of BFS
because every transition that can yield a new state is dependent on all variables.
In the unfortunate case of firing tl3, tl1 and tl2 in this order, the number of created
nodes will be 9 compared to the 6 nodes created by the GSA, which can still
exploit the read-only dependencies.

A direct price of this is the diversification of cache entries. By repartitioning
the events, we may introduce a lot more next-state relations to process, and
it is not evident if their smaller size and the enhanced saturation effect can
compensate this. Furthermore, by keeping track of ds (the descriptor to saturate
with), we spoil the cache of saturation due to the following.

Whenever we navigate through d[i, i], we remember something from i in the
context of the next-state relation, yielding a potentially large number of different
descriptors to saturate with. The original saturation algorithm saturates each
MDD node only once, because it uses the same next-state relation every time.
In the GSA, we saturate every pair of different MDD node and NS descriptor,
so the diversity of descriptors can be a crucial factor. In the extreme case, when
at least one event remembers every value along the path (for example because it
copies them to other variables below), caching can degrade to the point where
everything will need to be computed from scratch.

The other extreme is when each event remembers only one thing from the
values bound above: whether it is enabled or not (e.g. when variables are com-
pared to constants in guard expressions). Fortunately, this is the case with Petri
nets: each transition will check variables locally and decide whether it is still
enabled or not. This means that given a descriptor d representing transitions in
T , the number of possible successors for d[i, i] will be O(|T |) (n values can par-
tition N into n + 1 partitions, each transition may contribute 2 values – one for
an input arc and one for an inhibitor arc), but this number will also be limited
by the number of non-zero child nodes of the saturated MDD node.

358 V. Molnár and I. Majzik

Given the facts that transitions of Petri nets are inherently conditionally local
without repartitioning, and many nets are bounded (often safe), model checking
of Petri net models with the GSA can be expected to yield favorable results. In
fact, the experiment presented in Sect. 4 shows that the GSA is superior to the
original saturation algorithm on every model that we analyzed.

For other types of models, we have yet to investigate the efficiency of the
algorithm and the balance of benefits and overhead. It might be the case that
we have to refine the read-only dependency into “local” and “global” evaluation
(depending on whether we have to remember the value of the variable or can
evaluate it immediately) and use conditional locality only with the “local” case.
We also have to note that the efficient update of the next-state descriptors is
not trivial and subject to future work.

4 Evaluation

In this section, we present the results of our experiments performed on a large
set of Petri net models.

4.1 Research Questions

We have two main research questions about the GSA, both comparing it to the
original saturation algorithm (SA) from [4] (results should apply to constrained
saturation as well). Both questions will be answered by measuring the relevant
metrics for each algorithm and comparing the results for each benchmark model.

We expect that (1) the GSA will be identical to the SA when conditional local-
ity cannot be exploited; as well as in other cases (2) the GSA will create less MDD
nodes than the SA and (3) in these cases it will be faster than the SA.

4.2 The Benchmark

We have implemented both the original saturation algorithm and the GSA in
Java. Both variants used the same libraries for MDDs and next-state descriptors,
and their source code differs only in the points discussed in Sect. 3.2.

We used the latest set of 743 available models from the Model Checking
Contest 2018 [7], excluding only the Glycolytic and Pentose Phosphate Path-
ways (G-PPP) model with a parameter of 10–1000000000 (because the initial
marking cannot be represented on 32-bit signed integers). We generated a vari-
able ordering for each model using the sloan algorithm recommended by [1],
and a modified sloan algorithm where we omitted read-only dependencies when
building the dependency graph (motivated by the notion of conditional local-
ity). We ran state space exploration 3 times on each model with each ordering,
measuring several metrics of the algorithms. We will report the median of the
running time of the algorithms (excluding the time of loading the model) and
the total number of MDD nodes created during each run, as well as the size of
the state space and the final MDD for each model and each ordering.

Saturation Enhanced with Conditional Locality: Application to Petri Nets 359

Fig. 6. Main results of the experiment: running times and total number of created
nodes with sloan ordering (top row) and modified sloan ordering (bottom row).

Measurements were conducted on a bare-metal server machine rented from
the Oracle Cloud (BM.Standard.E2.64), with 64 cores and 512 GB of RAM,
running Ubuntu 18.04 and Java 11. Three processes were run simultaneously,
each with a maximum Java heap size of 100 GB and stack size of 512 MB. No
process has run out of memory and the combined CPU utilization never exceeded
70%. Timeout was 20 min (including loading the model and writing results).

4.3 Results

The main results of the experiments can be seen in Fig. 6. Every point represents
a model (dashes on the side means a timeout), classified into two groups: “sim-
ply local” if none of the events had a read-only top variable and “conditionally
local” otherwise. In the “simply local” group we expected no difference because
the GSA should degrade into the original saturation algorithm, which was sup-
ported by the results. In the other group we were optimistic about the balance

360 V. Molnár and I. Majzik

of advantages and disadvantages as discussed in Sect. 3.4, but the results were
even better than what we expected. As the plots show, a significant part of the
“conditionally local” models are below the reference diagonal, meaning that the
GSA were often orders of magnitudes faster.

With the sloan ordering, 274 models were in the “conditionally local” group
and the GSA was at least twice as fast as the SA in 53 cases. With the modified
ordering, these numbers are 69 out of 298. In one case (SmallOperatingSystem-
MT0256DC0128), the SA managed to finish just in time while the GSA exceeded
the timeout (scaling was similar for smaller instances). Models where the GSA
finished successfully but the SA exceeded the timeout with the sloan ordering
include instances of CloudDeployment, DiscoveryGPU, DLCround, DLCshifumi,
EGFr, Eratosthenes, MAPKbis, Peterson and Raft ; and with the modified order-
ing also AirplaneLD, BART, Dekker, FlexibleBarrier, NeoElection, ParamPro-
ductionCell, Philosopher, Ring and SharedMemory. Analyzing these models in
detail may provide insights about when the GSA is especially efficient.

Looking at the plots about the number of created MDD nodes (i.e. the size of
the unique table) reveals that our expectations about less intermediate diagrams
were correct and this probably has direct influence on the execution time. Even
though not visible in Fig. 6, interactive data analysis revealed that the model
instances are more-or-less located at the same point on the execution time and
node count plots. The collected data also suggests a linear relationship between
the number of created nodes and the execution time, but this is rather a lower
bound than a general prediction.

As an auxiliary result and without any illustration, we also report that out of
the 117 cases when the sloan ordering and the modified ordering were different
and we have data about the final MDD size, the modified sloan ordering produced
smaller final MDDs 69 times and larger MDDs 39 times. This motivates further
work on variable orderings like in [1]. We have also compared the SA with sloan
ordering and the GSA with the modified sloan ordering to find that the GSA
with the modified sloan ordering was better in 78 cases and worse in 16 cases
(considering only at least a factor of 2 in both cases).

5 Conclusions

In this paper, we have formally introduced the generalized saturation algorithm
(GSA), a new saturation algorithm enhanced with the notion of conditional local-
ity. We have shown that the GSA generalizes a family of constrained saturation
variants and discussed the effects of using conditional locality. We have empiri-
cally evaluated our approach on Petri nets from the Model Checking Contest to
find that the GSA has virtually no overhead compared to the original satura-
tion algorithm, but can outperform it by orders of magnitude when conditional
locality can be exploited.

Saturation Enhanced with Conditional Locality: Application to Petri Nets 361

We have made theoretical considerations and prepared the algorithm to be
compatible with a wide range of next-state representations as well as the on-
the-fly update approach described in [4]. The GSA seems to be superior to the
original saturation algorithm on Petri net models, but its efficiency over more
general classes of models is yet to be explored.

Acknowledgments. This work has been partially supported by Nemzeti Tehetség
Program, Nemzet Fiatal Tehetségeiért Ösztönd́ıj 2018 (NTP-NFTÖ-18).

References

1. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.S.: Decision dia-
grams for Petri nets: a comparison of variable ordering algorithms. Trans. Petri
Nets Other Models Concurr. 13, 73–92 (2018)

2. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

3. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state-space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45319-9 23

4. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for sym-
bolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4–25 (2006)

5. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005). https://doi.org/
10.1007/11560548 13

6. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical set decision diagrams and
automatic saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008.
LNCS, vol. 5062, pp. 211–230. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68746-7 16

7. Kordon, F., et al.: Complete Results for the 2018 Edition of the Model Checking
Contest, June 2018. http://mcc.lip6.fr/2018/results.php

8. Marussy, K., Molnár, V., Vörös, A., Majzik, I.: Getting the priorities right: satura-
tion for prioritised Petri nets. In: van der Aalst, W., Best, E. (eds.) PETRI NETS
2017. LNCS, vol. 10258, pp. 223–242. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57861-3 14

9. Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy dependencies
for symbolic model checking. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp.
204–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13338-6 16

10. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams.
Perform. Eval. 56(1–4), 145–165 (2004)

11. Molnár, V., Vörös, A., Darvas, D., Bartha, T., Majzik, I.: Component-wise incre-
mental LTL model checking. Form. Asp. Comput. 28(3), 345–379 (2016)

12. Zhao, Y., Ciardo, G.: Symbolic CTL model checking of asynchronous systems
using constrained saturation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS,
vol. 5799, pp. 368–381. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04761-9 27

https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/11560548_13
https://doi.org/10.1007/11560548_13
https://doi.org/10.1007/978-3-540-68746-7_16
https://doi.org/10.1007/978-3-540-68746-7_16
http://mcc.lip6.fr/2018/results.php
https://doi.org/10.1007/978-3-319-57861-3_14
https://doi.org/10.1007/978-3-319-57861-3_14
https://doi.org/10.1007/978-3-319-13338-6_16
https://doi.org/10.1007/978-3-642-04761-9_27
https://doi.org/10.1007/978-3-642-04761-9_27

Parametrics and Combinatorics

Parameterized Analysis of Immediate
Observation Petri Nets

Javier Esparza , Mikhail Raskin , and Chana Weil-Kennedy(B)

Technical University of Munich, Munich, Germany
{esparza,raskin,chana.weilkennedy}@in.tum.de

Abstract. We introduce immediate observation Petri nets, a class of
interest in the study of population protocols (a model of distributed
computation), and enzymatic chemical networks. In these areas, rele-
vant analysis questions translate into parameterized Petri net problems:
whether an infinite set of Petri nets with the same underlying net, but
different initial markings, satisfy a given property. We study the param-
eterized reachability, coverability, and liveness problems for immediate
observation Petri nets. We show that all three problems are in PSPACE
for infinite sets of initial markings defined by counting constraints, a
class sufficiently rich for the intended application. This is remarkable,
since the problems are already PSPACE-hard when the set of markings
is a singleton, i.e., in the non-parameterized case. We use these results
to prove that the correctness problem for immediate observation popu-
lation protocols is PSPACE-complete, answering a question left open in
a previous paper.

Keywords: Petri nets · Reachability analysis ·
Parameterized verification · Population protocols

1 Introduction

We study the theory of immediate observation Petri nets, a class of Petri nets
with applications to the study of population protocols and chemical reaction
networks, two models of distributed computation.

Population protocols are a formalism for the study of ad hoc networks of tiny
computing devices without any infrastructure. They were introduced by Angluin
et al. [5], and have been very intensely studied, in particular in recent years (see
e.g. [1–3,10]). The model postulates a “soup” of finite-state, indistinguishable
agents interacting in pairs. Formally, a population protocol has a finite set of
states Q and a set of transitions of the form (q1, q2) �→ (q3, q4), which allow
two agents in states q1 and q2 to interact and simultaneously move to q3 and
q4. A global state of the protocol, called a configuration, is a mapping C that

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 787367 (PaVeS).

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 365–385, 2019.
https://doi.org/10.1007/978-3-030-21571-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_20&domain=pdf
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0002-6660-5673
http://orcid.org/0000-0002-1351-8824
https://doi.org/10.1007/978-3-030-21571-2_20

366 J. Esparza et al.

assigns to each state q the current number C(q) of agents in q. A protocol has
a set of initial configurations. Intuitively, each initial configuration corresponds
to an input, and the purpose of a protocol is to compute a boolean output, 0
or 1, for each input. A protocol outputs b for a given initial configuration C if
in all fair runs starting at C (with respect to a certain fairness condition), all
agents eventually agree to output b. So, loosely speaking, population protocols
compute by reaching a stable consensus. The predicate computed by a protocol
is the function that assigns to each initial configuration C the boolean output
computed by the protocol when started at C.

Even this very abstract description shows that a population protocol is
“nothing but” a (place/transition) Petri net: a state corresponds to a place,
a transition of the protocol to a net transition with two input and two out-
put places, an agent to a token, and a configuration to a marking. In the last
years, this connection was exploited to address the problem of proving popu-
lation protocols correct. The fundamental correctness problem for population
protocols asks, given a protocol and a predicate, whether the protocol computes
the predicate. This question was proved decidable in [12,13], but, unfortunately,
the same papers also showed that the correctness problem is at least as hard as
Petri net reachability, and so of non-elementary complexity [9].

In their seminal paper on the expressive power of population protocols [6],
Angluin et al. defined subclasses corresponding to different communication prim-
itives between agents. In the standard model, agents communicate through
rendez-vous: transitions (q1, q2) �→ (q3, q4) formalize that both partners exchange
full information about their current states, and update them based on it. Angluin
et al. introduced immediate observation protocols, called IO protocols for short,
whose transitions have the form (q1, q2) �→ (q1, q3). Intuitively, in an IO protocol
an agent can change its state from q2 to q3 by observing that another agent is
in state q1; the agent in state q1 may not even know that it is being observed.
A characterization of the predicates computable by IO protocols was given in
[6], and in [14] Esparza et al. studied the complexity of the correctness problem.
They showed that it was PSPACE-hard and solvable in EXPSPACE, and left the
problem of closing this gap for future research.

In this paper we study the theory of immediate observation Petri nets
(IO nets), the Petri nets underlying immediate observation protocols. Our initial
motivation is their application to population protocol problems, especially the
gap just mentioned. However, IO nets also model networks of enzymatic chemi-
cal reactions, in which an enzyme E catalyzes the formation of product P from
substrate S [7,16]. An example of application of Petri net techniques to such a
network is presented in [4].1

Analysis problems for population protocols or chemical networks are para-
metric in the number of agents or the number of molecules. In other words,
they ask whether the system satisfies a property for any number of agents or for

1 The Petri nets of [4] are in fact slightly more general than IO nets, but equivalent
to them for properties that depend only on the reachability graph, as are the net
properties studied in [4].

Parameterized Analysis of Immediate Observation Petri Nets 367

any number of molecules. When formalized as Petri nets problems, they become
questions of the form “does an infinite set of Petri nets differing only in their
initial markings satisfy a given property?” We investigate parameterized ver-
sions of the standard reachability, coverability, and liveness problems for IO nets
in which the set of initial markings is a cube, i.e., a set of markings obtained
by attaching to each place a lower bound and an upper bound (possibly infi-
nite) for the number of tokens. We prove that, remarkably, while the standard
problems are PSPACE-hard even in the non-parameterized case, they remain in
PSPACE in the parameterized case. This is in strong contrast with the situation
for more general classes of nets. For example, while the non-parametric problems
are in PSPACE for conservative nets or 1-safe nets, their “cube-versions” become
EXPSPACE-hard or even non-elementary. As an application of our results, we
close the gap left open in [14], and prove that the correctness problem for IO
protocols is PSPACE-complete.

For space reasons, all missing proofs and some technical details are relegated
to the full version of this article [15].

2 Preliminaries

Multisets. A multiset on a finite set E is a mapping C : E → N, i.e. for any e ∈ E,
C(e) denotes the number of occurrences of element e in C. Let �e1, . . . , en�
denote the multiset C such that C(e) = |{j | ej = e}|. Operations on N like
addition or comparison are extended to multisets by defining them component
wise on each element of E. Subtraction is allowed as long as each component
stays non-negative. We define |C| def=

∑
e∈E C(e) the sum of the occurrences of

each element in C. Given a total order e1 ≺ e2 ≺ · · · ≺ en on E, a multiset C
can be equivalently represented by the vector (C(e1), . . . , C(en)) ∈ N

n.

Place/Transition Petri Nets with Weighted Arcs. A Petri net N is a triple
(P, T, F) consisting of a finite set of places P , a finite set of transitions T and a
flow function F : (P × T) ∪ (T × P) → N.

A marking M is a multiset on P , and we say that a marking M puts M(p)
tokens in place p of P . The size of M , denoted by |M |, is the total number of
tokens in M . The preset •t and postset t• of a transition t are the multisets on
P given by •t(p) = F (p, t) and t•(p) = F (t, p). A transition t is enabled at a
marking M if •t ≤ M , i.e. •t is component-wise smaller or equal to M . If t is
enabled then it can be fired, leading to a new marking M ′ = M − •t + t•. We
note this M

t−→ M ′.

Reachability and Coverability. Given σ = t1 . . . tn we write M
σ−→ Mn when

M
t1−→ M1

t2−→ M2 . . .
tn−→ Mn, and call σ a firing sequence. We write M ′ ∗−→ M ′′

if M ′ σ−→ M ′′ for some σ ∈ T ∗, and say that M ′′ is reachable from M ′. A marking
M covers another marking M ′, written M ≥ M ′ if M(p) ≥ M ′(p) for all places
p. A marking M is coverable from M ′ if there exists a marking M ′′ such that
M ′ ∗−→ M ′′ ≥ M .

368 J. Esparza et al.

Conservative Petri Nets. A Petri net N = (P, T, F) is conservative if there is
a mapping I : P → Q>0 such that

∑
p∈P I(p) · •t(p) =

∑
p∈P I(p) · t•(p) for all

t. Further, N is 1-conservative if it is conservative with I equal to 1 over all P
(see [17]). It follows immediately from the definitions that if N is conservative
and M

∗−→ M ′, then
∑

p∈P I(p) · M(p) =
∑

p∈P I(p) · M ′(p).

3 A Primer on Population Protocols

As mentioned in the introduction, a population protocol consists of a set of states
Q and a set of transitions T ⊆ Q2 × Q2. A transition

(
(q1, q2), (q3, q4)

)
∈ T is

denoted (q1, q2) �→ (q3, q4). A configuration is a multiset of states. A configura-
tion, say C, such that C(q1) = 2 and C(q2) = 1, indicates that currently there
are two agents in state q1 and one agent in state q2. The connection to Petri nets
is immediate: The Petri net modeling a protocol has one place for each state,
and one transition for every transition of the protocol. If transition t of the Petri
net models (q1, q2) �→ (q3, q4), then •t = �q1, q2�, and t• = �q3, q4�. An agent in
state q is modeled by a token in place q. A configuration C with C(q) agents
in state q is modeled by the marking putting C(q) tokens in place q for every
q ∈ Q. Observe that the transitions of the net do not change the total number
of tokens, and so we have:

Fact 1. Petri nets obtained from population protocols are 1-conservative.

Population protocols are designed to compute predicates ϕ : Nk → {0, 1}.
We first give an informal explanation of how a protocol computes a predicate,
and then a formal definition using Petri net terminology. A protocol for ϕ has a
distinguished set of input states {q1, q2, . . . , qk} ⊆ Q. Further, each state of Q,
initial or not, is labeled with an output, either 0 or 1. Assume for example k = 2.
In order to compute ϕ(n1, n2), we first place ni agents in qi for i = 1, 2, and
0 agents in all other states. This is the initial configuration of the protocol for
the input (n1, n2). Then we let the protocol run. The protocol satisfies that in
every fair run starting at the initial configuration (fair runs are defined formally
below), eventually all agents reach states labeled with 1, and stay in such states
forever, or they reach states of labeled with 0, and stay in such states forever. So,
intuitively, in all fair runs all agents eventually “agree” on a boolean value. By
definition, this value is the result of the computation, i.e, the value of ϕ(n1, n2).

Formally, and in Petri net terms, fix a Petri net N = (P, T, F) with |•t| =
2 = |t•| for every transition t. Further, fix a set I = {p1, . . . , pk} of input places,
and a function O : P → {0, 1}. A marking M of N is a b-consensus if M(p) > 0
implies O(p) = b. A b-consensus M is stable if every marking reachable from M

is also a b-consensus. A firing sequence M0
t1−→ M1

t2−→ M2 · · · of N is fair if
it is finite and ends at a deadlock marking, or if it is infinite and the following
condition holds for all markings M,M ′ and t ∈ T : if M

t−→ M ′ and M = Mi

for infinitely many i ≥ 0, then Mj
tj+1−−−→ Mj+1 = M

t−→ M ′ for infinitely many
j ≥ 0. In other words, if a fair sequence reaches a marking infinitely often, then

Parameterized Analysis of Immediate Observation Petri Nets 369

all the transitions enabled at that marking will be fired infinitely often from
that marking. A fair firing sequence converges to b if there is i ≥ 0 such that
Mj is a b-consensus for every marking j ≥ i of the sequence. For every v ∈ N

k

with |v| ≥ 2 let Mv be the marking given by Mv (pi) = vi for every pi ∈ I, and
Mv (p) = 0 for every p ∈ P \ I. We call Mv the initial marking for input v. The
net N computes the predicate ϕ : Nk → {0, 1} if for every v ∈ N

k, every fair
firing sequence starting at Mv converges to b.

q1

t1t3

q2

t2 t4

q3

2

2

2

2

(a) Net for P1

q0

q1 q2

t5

q3

t4 t6

t2

t1 t3

2 2 2

2

2

(b) Net for P2

Fig. 1. Petri nets underlying population protocols.

Example 1. We exhibit two population protocols that compute the predicate
ϕ(x) def= [x ≥ 3], and their corresponding Petri nets.

The first protocol P1 has states Q1 = {q1, q2, q3} and transitions (qa, qa) �→
(qa+1, qa) and (qa, q3) �→ (q3, q3) for a = 1, 2. The only input state is q1. States
q1 and q2 are labeled with 0, and state q3 with 1. The Petri net for P1 is shown
in Fig. 1a. The initial marking for input x puts x tokens on q1, and no token
elsewhere. If x ≥ 3, then every fair firing sequence eventually reaches the dead-
lock marking with x tokens in q3 and no tokens elsewhere (indeed, transitions t3
and t4 ensure that after a token reaches q3, eventually all other tokens move to
q3 as well). So the agents eventually reach consensus 1. If x < 3, then no firing
sequence ever puts a token in q3 and so, since both q1 and q2 have output 0, the
agents reach consensus 0.

The second protocol P2 has place set Q2 = {q0, q1, q2, q3}, and transitions
(qa, qb) �→ (q0, qmin(a+b,3)) for 0 < a, b < 3, and (qa, q3) �→ (q3, q3) for 0 ≤ a < 3.
The Petri net for P2 is shown in Fig. 1b. Again, the only input state is q1. States
q0, q1, q2 are labeled with 0, and state q3 is labeled with 1. The reader can check
that, as in the first protocol, the agents eventually reach consensus 1 from an
input x iff x ≥ 3.

Both these protocols could be generalized to calculate [x ≥ n] for any natural
n ≥ 1.

370 J. Esparza et al.

Immediate Observation Protocols. When two agents of a population pro-
tocol communicate, they can both simultaneously change their states. This cor-
responds to communication by rendez-vous. In [6], Angluin et al. introduced
immediate observation protocols, corresponding to a more restricted communi-
cation mechanisms. One of the agents observes the state of the other agent, and
updates its own state accordingly; the observed agent does not change its state,
since it may not even know that it is being observed. Transitions are of the form
(qs, qo) �→ (qd, qo), where qo is the state of the observed agent. In the paper,
they showed that the predicates computable by immediate observation proto-
cols are exactly those described by counting constraints, a formalism introduced
in Sect. 7.

Example 2. Protocol P1 of Example 1 is immediate observation, but P2 is not.

Verifying Population Protocols. Not every population protocol is well
designed. For some inputs (n1, . . . , nk) the protocol can have fair runs that never
converge, or fair runs converging to the wrong value 1−ϕ(n1, . . . , nk). This raises
the question of how to automatically verify that a protocol correctly computes a
predicate. The main difficulty is to prove convergence to the right value for each
of the infinitely many possible inputs. In Petri net terms, we have to show that
the net derived from the protocol satisfies a property for infinitely many initial
markings. So, strictly speaking, we have to show that an infinite collection of
Petri nets satisfies a given property. We call problems of this kind parameterized.

4 Parameterized Analysis Problems

Standard analysis problems for Petri nets concern one initial marking. For exam-
ple, the reachability problem (coverability problem) consists of, given a net N
and two markings M,M ′ of N , deciding if M is reachable (coverable) from M ′.
Parameterized problems, like the correctness problem for population protocols,
involve an infinite set of initial markings. In order to study their complexity, it
is necessary to specify the shape of the set. For the applications to population
protocols and chemical networks the following definition is adequate:

Definition 1. A set M of markings of a net N is a cube if there are mappings
L : P → N and U : P → N ∪ {∞} such that M ∈ M iff L ≤ M ≤ U . We call
L and U the lower and upper bound of M, respectively, and use the notation
(L,U) def= M. The cube-reachability (cube-coverability) problem consists of, given
a net N and cubes M,M′ of N , deciding if there are markings M ∈ M,M ′ ∈
M′, such that M is reachable (coverable) from M ′.

Observe that, if the set of places of the Petri net corresponding to a popu-
lation protocol is {p1, . . . , pn, pn+1, . . . , pn+m}, where p1, . . . , pn are the initial
places, then the set of input configurations corresponds to the cube (L,U) where
L(pi) = 0 for every 1 ≤ i ≤ n + m, and U(pi) = ∞ for 1 ≤ i ≤ n and U(pi) = 0
for n + 1 ≤ i ≤ n + m.

Parameterized Analysis of Immediate Observation Petri Nets 371

In general, parameterized problems are much harder than non-parameterized
ones. Consider for example the class of conservative Petri nets which, by Fact 1
contains all nets derived from population protocols. We have:

Theorem 2. For 1-conservative Petri nets:

– Reachability, coverability, and liveness are in PSPACE.
– Cube-reachability and cube-coverability are as hard as for general Petri nets,

and so non-elementary and EXPSPACE-hard, respectively.

In the rest of the paper we introduce immediate observation Petri nets,
the class of Petri nets corresponding to immediate observation protocols and
enzymatic reaction networks, and study the cube-reachability, coverability, and
liveness problems. We prove that, while the problems are PSPACE-hard even for
single markings, their cube versions remain PSPACE. This pinpoints the essential
property of the class: loosely speaking, deciding standard problems for infinitely
many markings is not harder than deciding them for one marking.

5 Immediate Observation Petri Nets

We introduce the class of immediate observation Petri nets (IO nets) and then
show that the reachability, coverability, and liveness problems are PSPACE-hard
for this class.

Definition 2. A transition t of a Petri net is an immediate observation tran-
sition if there are three places ps, pd, po, not necessarily distinct, such that
•t = �ps, po� and t• = �pd, po�. We call ps, pd, po the source, destination, and
observed places of t, respectively. A Petri net is an immediate observation net
if and only if all its transitions are immediate observation transitions.

Following the useful convention of population protocols, we write t =
(ps, po) �→ (pd, po).

Example 3. The Petri net illustrated in Fig. 1a is an immediate observation Petri
net.

We show that the standard simulation of bounded-tape Turing machines by
1-safe Petri nets, as described for example in [8,11], can be modified to produce
an IO net (actually, a 1-safe IO net). Using this result, we can then easily prove
that the reachability, coverability, and liveness problems are PSPACE-hard. Since
a set consisting of a single marking is a special case of a cube, the result carries
over to the cube-versions of the problems.

We fix a deterministic Turing machine M with set of control states Q,
alphabet Σ containing the empty symbol , and partial transition function
δ : Q × Σ → Q × Σ × D (D = {−1,+1}). We let K denote an upper bound
on the number of tape cells visited by the computation of M on empty tape.
The implementation of M is the IO Petri net NM described below.

372 J. Esparza et al.

Places of NM . The net NM contains two sets of cell places and head places
modelling the state of the tape cells and the head, respectively. The cell places
are:

– off[σ, n] for each σ ∈ Σ and 1 ≤ n ≤ K. A token on off[σ, n] denotes that cell
n contains symbol σ, and the cell is “off”, i.e., the head is not on it.

– on[σ, n] for each σ ∈ Σ and 1 ≤ n ≤ K, with analogous intended meaning.

The head places are:

– at[q, n] for each q ∈ Q and 1 ≤ n ≤ K. A token on at[q, n] denotes that the
head is in control state q and at cell n.

– move[q, σ, n, d] for each q ∈ Q, σ ∈ Σ, 1 ≤ n ≤ K and every d ∈ D such that
1 ≤ n + d ≤ K. A token on move[q, σ, n, d] denotes that head is in control
state q, has left cell n after writing symbol σ on it, and is currently moving
in the direction given by d.

Transitions of NM . Intuitively, the implementation of M contains a set of cell
transitions in which a cell observes the head and changes its state, and a set of
head transitions in which the head observes a cell. Further, each of these sets
contains transitions of two types. The set of cell transitions contains:

– Type 1a: (off[σ, n] , at[q, n]) �→ (on[σ, n] , at[q, n]) for every state q ∈ Q,
symbol σ ∈ Σ, and cell 1 ≤ n ≤ K.
The n-th cell, currently off, observes that the head is on it, and switches itself
on.

– Type 1b: (on[σ, n] , move[q, σ′, n, d]) �→ (off[σ′, n] , move[q, σ′, n, d]) for every
q ∈ Q, σ ∈ Σ, and 1 ≤ n ≤ K such that 1 ≤ n + d ≤ K.
The n-th cell, currently on, observes that the head has left after writing σ′,
and switches itself off (accepting the character the head intended to write).

The set of head transitions contains:

– Type 2a: (at[q, n], on[σ, n]) �→ (move[δQ(q, σ), δΣ(q, σ), n, δD(q, σ)], on[σ, n])
for every q ∈ Q, σ ∈ Σ, and 1 ≤ n ≤ K such that 1 ≤ n + δD(q, σ) ≤ K.
The head, currently on cell n, observes that the cell is on, writes the new
symbol on it, and leaves.

– Type 2b: (move[q, σ, n, d] , off[σ, n]) �→ (at[q, n+d] , off[σ, n]) for every q ∈ Q,
σ ∈ Σ, and 1 ≤ n ≤ K such that 1 ≤ n + d ≤ K.
The head, currently moving, observes that the old cell has turned off, and
places itself on the new cell.

This concludes the definition of NM . In Theorem 3 below we formalize the
relation between the Turing machine M and its implementation NM , using the
following definition.

Definition 3. Given a configuration c of M with control state q, tape content
σ1σ2 · · · σK , and head on cell n ≤ K, we denote Mc the marking that puts a token
in off[σi, i] for each 1 ≤ i ≤ K, a token in at[q, n], and no tokens elsewhere.

Parameterized Analysis of Immediate Observation Petri Nets 373

Now we state our simulation theorem and hardness result.

Theorem 3. For every two configurations c, c′ of M that write at most K cells:
c −→ c′ iff Mc

t1t2t3t4−−−−−→ Mc′ in NM for some transitions t1, t2, t3, t4 of types 1a,
2a, 1b, 2b, respectively.

Theorem 4. The reachability, coverability and liveness problems for IO nets
are PSPACE-hard.

6 The Pruning Theorem

In this section, we present the fundamental property of immediate observation
nets that entails most of the results in this paper: the Pruning Theorem.

The Pruning Theorem intuitively states that if M is coverable from a marking
M ′′, then it is also coverable from a “small” marking S′′ ≤ M ′′, where“small”
means |S′′| ≤ |M | + |P |3. We state the theorem below, and then build up to its
proof which is presented in Sect. 6.3.

Theorem 5 (Pruning Theorem). Let N = (P, T, F) be an IO net, let M be
a marking of N , and let M ′′ ∗−→ M ′ be a firing sequence of N such that M ′ ≥ M .
There exist markings S′′ and S′ such that

M ′′ ∗−−−−→M ′ ≥M

≥ ≥
S′′ ∗−−−−→ S′ ≥ M

and |S′′| ≤ |M | + |P |3.

It is easy to see that for M ′ = M the Pruning Theorem holds, because since
N is conservative, |M ′′| = |M | and we can choose S′′ = M ′′. It is also not
difficult to find a non-IO net for which the theorem does not hold.

Example 4. Consider our IO net represented in Fig. 1a. There is a firing sequence
(30, 0, 1) ∗−→ (0, 0, 31) where (0, 0, 31) covers (0, 0, 2). By application of the
Pruning Theorem, we obtain a firing sequence (3, 0, 1) ∗−→ (0, 0, 4) ≥ (0, 0, 2)
where |(3, 0, 1)| = 4 is smaller than |(0, 0, 2)| + 33 = 29.

Example 5 (A non-IO net for which the theorem does not hold.). To see that the
IO condition cannot be replaced with conservativeness of the network, consider
the net with 4 places q1, q2, q3, q4 and a single transition (q1, q2) �→ (q3, q4).
There is a firing sequence (1000, 1000, 0, 0) ∗−→ (0, 0, 1000, 1000) ≥ (0, 0, 100, 0).
But to cover (0, 0, 100, 0) from a marking below (1000, 1000, 0, 0) we need to fire
the transition at least 100 times. This requires a marking with 200 > 100 + 43

tokens.

374 J. Esparza et al.

6.1 Trajectories, Histories, Realizability

Since the transitions of IO nets do not create or destroy tokens, we can give
tokens identities. Given a firing sequence, each token of the initial marking fol-
lows a trajectory, or sequence of steps, through the places of the net until it
reaches the final marking of the sequence.

Definition 4. A trajectory is a sequence τ = p1 . . . pn of places. We denote τ(i)
the i-th place of τ . The i-th step of τ is the pair τ(i)τ(i + 1) of adjacent places.

A history is a multiset of trajectories of the same length. The length of a
history is the common length of its trajectories. Given a history H of length n
and index 1 ≤ i ≤ n, the i-th marking of H, denoted M i

H , is defined as follows:
for every place p, M i

H(p) is the number of trajectories τ ∈ H such that τ(i) = p.
The markings M1

H and Mn
H are called the initial and final markings of H.

A history H of length n ≥ 1 is realizable in an IO net N if there exist

transitions of N t1, . . . , tn−1 and numbers k1, . . . , kn−1 ≥ 0 such that M1
H

t
k1
1−−→

M2
H · · · Mn−1

H

t
kn−1
n−1−−−−→ Mn

H . Notice that a history of length 1 is always realizable.

Remark 1. Notice that there may be more than one realizable history corre-
sponding to a firing sequence in an IO net, because the firing sequence does not
keep track of which token goes where, while the history does.

q1 q1

q2 q2

q3 q3

Fig. 2. Realizable history in our IO net with three states.

Example 6. Histories can be graphically represented. Consider Fig. 2 which illus-
trates a history H of length 7. It consists of five trajectories: one trajectory
from q3 to q3 passing only through q3, and four trajectories from q1 to q3
which follow different place sequences. H’s first marking is M1

H = (4, 0, 1)
and H’s seventh and last marking is M7

H = (0, 0, 5). History H is realizable
in the IO net N of Fig. 1a which has place set {q1, q2, q3} and transitions
t1 = (q1, q1) �→ (q2, q1), t2 = (q2, q2) �→ (q3, q2), t3 = (q1, q3) �→ (q3, q3) and

t4 = (q2, q3) �→ (q3, q3). Indeed M1
H

t3t21t3t2t4−−−−−−→ M7
H .

We define a class of histories sufficient for describing all the firing sequences
for IO nets.

Parameterized Analysis of Immediate Observation Petri Nets 375

Definition 5. A step τ(i)τ(i+1) of a trajectory τ is horizontal if τ(i) = τ(i+1),
and non-horizontal otherwise.

A history H of length n is well-structured if for every 1 ≤ i ≤ n − 1 one of
the two following conditions hold:

– For every trajectory τ ∈ H, the i-th step of τ is horizontal.
– For every two trajectories τ1, τ2 ∈ H, if the i-th steps of τ1 and τ2 are non-

horizontal, then they are equal.

We then have the following result, whose proof can be found in the full version
of this paper.

Lemma 1. Let N be an IO net. Then M
∗−→ M ′ iff there exists a well-structured

history realizable in N with M and M ′ as initial and final markings.

We now proceed to give a syntactic characterization of the well-structured
realizable histories.

Definition 6. H is compatible with N if for every trajectory τ of H and for
every non-horizontal step τ(i)τ(i + 1) of τ , the net N contains a transition
(τ(i), po) �→ (τ(i+1), po) for some place po and H contains a trajectory τ ′ with
τ ′(i) = τ ′(i + 1) = po.

Lemma 2. Let N be an IO net. A well-structured history is realizable in N iff
it is compatible with N .

Example 7. In the realizable history H of Fig. 2, all the trajectories are such
that the third step is horizontal. For every step except the third, all the non-
horizontal steps are equal, so H is well-structured. For N the IO net of Fig. 1a,
H is indeed compatible with N .

6.2 Pruning Histories

We start by introducing bunches of trajectories.

Definition 7. A bunch is a multiset of trajectories with the same length and
the same initial and final place.

Example 8. Figure 2’s realizable history is constituted of a trajectory from q3
to q3 and a bunch B with initial place q1 and final place q3 made up of four
different trajectories.

We show that every well-structured realizable history containing a bunch of
size larger than |P | can be “pruned”, meaning that the bunch can be replaced
by a smaller one, while keeping the history well-structured and realizable.

Lemma 3. Let N be an IO net. Let H be a well-structured history realizable in
N containing a bunch B ⊆ H of size larger than |P |. There exists a nonempty
bunch B′ of size at most |P | with the same initial and final places as B, such
that the history H ′ def= H − B + B′ (where +,− denote multiset addition and
subtraction) is also well-structured and realizable in N .

376 J. Esparza et al.

Proof. Let PB be a set of all places visited by at least one trajectory in the bunch
B. For every p ∈ PB let f(p) and l(p) be the earliest and the latest moment in
time when this place has been used by any of the trajectories (the first and the
last occurrence can be in different trajectories).

Let τp, p ∈ PB be a trajectory that first goes to p by the moment f(p), then
waits there until l(p), then goes from p to the final place. To go to and from p
it uses fragments of trajectories of B.

We will take B′ = {τp | p ∈ PB} and prove that replacing B with B′ in H
does not violate the requirements for being a well-structured history realizable
in N . Note that we can copy the same fragment of a trajectory multiple times.

First let us check the well-structuring condition. Note that we build τp by
taking fragments of existing trajectories and using them at the exact same
moments in time, and by adding some horizontal fragments. Therefore, the set
of non-horizontal steps in B′ is a subset (if we ignore multiplicity) of the set of
non-horizontal steps in B, and the replacement operation cannot increase the
set of non-horizontal steps occurring in H.

Now let us check compatibility with N . Consider any non-horizontal step in
H ′ in any trajectory at position (i, i + 1). By construction, the same step at
the same position is also present in H. History H is realizable in N and thus
by Lemma 2 it is compatible with N , so H contains an enabling horizontal step
popo in some trajectory at that position (i, i + 1). There are two cases: either
that step popo was provided by a bunch being pruned, or by a bunch not affected
by pruning. In the first case, note that the place po of this horizontal step must
be first observed no later than i, and last observed not earlier than i + 1. This
implies f(po) ≤ i < i + 1 ≤ l(po). As H ′ contains a horizontal step popo for all
positions between f(po) and l(po), in particular it contains it at position (i, i+1).
In the second case the same horizontal step is present in H ′ as a part of the same
trajectory.

So H ′ is well-structured and compatible with N , and thus by Lemma 2
realizable in N . ��

q1 q1

q2 q2

q3 q3

f l

f l

f l

Fig. 3. History H of Fig. 2 after pruning.

Parameterized Analysis of Immediate Observation Petri Nets 377

Example 9. Consider the well-structured realizable history of Fig. 2, leading from
(4, 0, 1) to (0, 0, 5), which covers marking (0, 0, 2). Bunch B from q1 to q3 is of
size four which is bigger than |P | = 3. The set PB of places visited by trajectories
of B is equal to P . Figure 3 is annotated with the first and last moments f(p)
and l(p) for p ∈ PB. Lemma 3 applied to H and B “prunes” bunch B into B′

made up of trajectories τq1 , τq2 , τq3 , drawn in dashed lines in Fig. 3. Notice that
in this example, the non-horizontal 5-th step in H does not appear in the new
well-structured and realizable history H ′ = H −B +B′. History H ′ is such that
M1

H′ = (3, 0, 1) t3t1t3t4−−−−−→ (0, 0, 4) = M7
H′ and M7

H′ ≥ (0, 0, 2).

6.3 Proof of the Pruning Theorem

Using Lemma 3 we can now finally prove the Pruning Theorem:

Proof. (of Theorem 5). Let M ′′ ∗−→ M ′ ≥ M . By Lemma 1, there is a well-
structured realizable history H with M ′′ and M ′ as initial and final markings,
respectively. Let HM ⊂ H be an arbitrary sub(multi)set of H with final marking
M , and define H ′ = H −HM . Further, for every p, p′ ∈ P , let H ′

p,p′ be the bunch
of all trajectories of H ′ with p and p′ as initial and final places, respectively. We
have

H ′ =
∑

p,p′∈P

H ′
p,p′

So H ′ is the union of |P |2 (possibly empty) bunches. Apply Lemma3 to each
bunch of H ′ with more than |P | trajectories yields a new history

H ′′ =
∑

p,p′∈p

H ′′
p,p′

such that |H ′′
p,p′ | ≤ |P | for every p, p′ ∈ P , and such that the history H ′′ + HM

is well-structured and realizable.
Let S′′ and S′ be the initial and final markings of H ′′ + HM . We show that

S′′ and S′ satisfy the required properties:

– S′′ ∗−→ S′, because H ′′ + HM is well-structured and realizable.
– S′ ≥ M , because HM ⊆ H ′′ + HM .
– |S′′| ≤ |M | + |P |3 because |H ′′ + HM | =

∑
p′,p |H ′′

p,p′ | + |HM | ≤ |P |2 · |P | +
|M | = |M | + |P |3.

This concludes the proof. ��

Remark 2. A slight modification of our construction allows one to prove Theo-
rem 5 (but not Lemma 3) with 2|P |2 overhead instead of |P |3. We provide more
details in the full version [15]. However, since some results of Sect. 7 explicitly rely
on Lemma 3, we prove Theorem 5 as a consequence of Lemma 3 for simplicity.

378 J. Esparza et al.

7 Counting Constraints and Counting Sets

In this section we first briefly recall counting constraints [14]2, a class of con-
straints that allow us to finitely represent (possibly infinite) sets of markings,
called counting sets. We prove Theorem6, a powerful result stating that count-
ing sets of IO nets are closed under reachability, and giving a very tight relation
between the sizes of the constraints representing a counting set, and the set of
markings reachable from it. Theorem 6 strongly improves on Theorem 18 of [14].

Counting Constraints and Counting Sets. Recall Definition 1 which defines a
cube of a net N as a set of markings given by a lower bound L : P → N and an
upper bound U : P → N ∪ {∞}, written (L,U), and such that M ∈ (L,U) iff
L ≤ M ≤ U . In the rest of the paper, the term cube will refer both to the set of
markings and to the description by upper and lower bound (L,U). A counting
constraint is a formal finite union of cubes, i.e. a formal finite union of upper
and lower bound pairs of the form (L,U). The semantics of a counting constraint
is called a counting set and it is the union of the cubes defining the counting
constraint. The counting set for a counting constraint Γ is denoted �Γ �. Notice
that one counting set can be the semantics of different counting constraints. For
example, consider a net with just one place p1. Let (L,U) = (1, 3), (L′, U ′) =
(2, 4), (L′′, U ′′) = (1, 4). The counting constraints (L,U) ∪ (L′, U ′) and (L′′, U ′′)
define the same counting set. It is easy to show (see also [14]) that counting sets
are closed under Boolean operations.

Measures of Counting Constraints. Let C = (L,U) be a cube, and let Γ =⋃m
i=1 Ci be a counting constraint. We use the following notations:

‖C‖l
def=

∑

p∈P

L(p) ‖C‖u
def=

∑

p∈P
U(p)<∞

U(p) (and 0 if U(p) = ∞ for all p).

‖Γ‖l
def= max

i∈[1,m]
{‖Ci‖l} ‖Γ‖u

def= max
i∈[1,m]

{‖Ci‖u}

We call ‖C‖l the L-norm and ‖C‖u the U -norm of C. Similarly for Γ . We recall
Proposition 5 of [14] for the norms of the union, intersection and complement.

Proposition 1. Let Γ1, Γ2 be counting constraints.

– There exists a counting constraint Γ with �Γ � = �Γ1�∪�Γ2� such that ‖Γ‖u ≤
max{‖Γ1‖u, ‖Γ2‖u} and ‖Γ‖l ≤ max{‖Γ1‖l, ‖Γ2‖l}.

– There exists a counting constraint Γ with �Γ � = �Γ1�∩�Γ2� such that ‖Γ‖u ≤
‖Γ1‖u + ‖Γ2‖u and ‖Γ‖l ≤ ‖Γ1‖l + ‖Γ2‖l.

– There exists a counting constraint Γ with �Γ � = N
n \ �Γ1� such that ‖Γ‖u ≤

n‖Γ1‖l and ‖Γ‖l ≤ n‖Γ1‖u + n.

2 Actually, our counting constraints correspond to the “counting constraints in normal
form” of [14]. We shorten the name, because we never need counting constraints not
in normal form.

Parameterized Analysis of Immediate Observation Petri Nets 379

Predecessors and Successors of Counting Sets. Fix an IO net N = (P, T, F).
The sets of predecessors and successors of a set M of markings of N are defined
as follows: pre∗(M) def= {M ′|∃M ∈ M .M ′ ∗−→ M}, and post∗(M) def= {M |∃M ′ ∈
M .M ′ ∗−→ M}.

Lemma 4. Let (L,U) be a cube of an IO net N of place set P . For all M ′ ∈
pre∗(L,U), there exists a cube (L′, U ′) such that

1. M ′ ∈ (L′, U ′) ⊆ pre∗(L,U), and
2. ‖(L′, U ′)‖l ≤ ‖(L,U)‖l + |P |3 and ‖(L′, U ′)‖u ≤ ‖(L,U)‖u.

Proof. Let M ′ be a marking of pre∗(L,U). There exists a marking M ∈ (L,U)
such that M ′ −→ M , and M ≥ L. The construction from the Pruning Theorem
applied to this firing sequence yields markings S′, S such that

M ′ ∗−−−−→M ≥L

≥ ≥
S′ ∗−−−−→ S ≥L

and |S′| ≤ |L| + |P |3. Since M is in (L,U), we have U ≥ M ≥ S ≥ L and so
marking S is in (L,U) and S′ is in pre∗(L,U).

We want to find L′, U ′ satisfying the conditions of the Lemma, i.e. such that
M ′ ∈ (L′, U ′) and (L′, U ′) ⊆ pre∗(L,U). We define L′ as equal to marking S′

over each place of P . The following part of the proof plays out in the setting of
the Pruning Theorem section, in which the tokens are de-anonymized. Let HM

be a well-structured realizable history from M ′ to M . Let p be a place of P . We
want to define U ′(p). Consider BM

p the set of bunches in history HM that have
p as an initial place. For every bunch B, let fB be the final place of the bunch.
We define U ′(p) depending on the final places of bunches in BM

p .

Case 1. There exists a bunch B in BM
p whose final place fB is such that U(fB) =

∞. In this case we define U ′(p) to be ∞.

Case 2. For all bunches B in BM
p , the final place fB of B is such that U(fB) < ∞.

In this case we define U ′(p) to be
∑

B∈BM
p

size(B), where size(B) is the number

of trajectories with multiplicity in B, and 0 if BM
p is empty.

Let us show that (L′, U ′) has the properties we want. The number of tokens in
marking M ′ at place p ∈ P is the sum of the sizes of the bunches that start from
p in history HM . That is, M ′(p) =

∑
B∈BM

p
size(B) which is exactly U ′(p) when

U ′(p) is finite. Thus for all p ∈ P , M ′(p) ≤ U ′(p) and M ′(p) ≥ S′(p) = L′(p), so
M ′ is in (L′, U ′).

The construction from the Pruning Theorem “prunes” history HM from M ′

to M into a well-structured realizable history HS from S′ to S with the same
set of non-empty bunches. We are going to show that (L′, U ′) ⊆ pre∗(L,U) by
“boosting” the bunches of history HS to create histories HR which will start
in any marking R′ of (L′, U ′) and end at some marking R in (L,U). For any
constant k ∈ N, a bunch B of history HS is boosted by k into a bunch B′ by

380 J. Esparza et al.

M ′ M

R′ R

S′ S

≥

≥

≥

≥

≤ U

≥ L

U ′ ≥

L′ ≤

HM

HR

HS

Fig. 4. Boosting HS into HR.

selecting any trajectory τ in B and augmenting its multiplicity by k to create a
new bunch B′ of size size(B) + k.

Let R′ be a marking in (L′, U ′). We construct a new history HR starting
in R′, and we prove that its final place is in (L,U). What we aim to build is
illustrated in Fig. 4. We initialize HR as the bunches of history HS . We call BS

p

the set of the bunches of HS starting in p.
For p such that there is a bunch BS ∈ BS

p with infinite U(fBS
), i.e. such that

BS
p is in Case 1 defined above, we take this bunch BS and boost it by R′(p)−S′(p)

into a new bunch BR. Informally, we need not worry about exceeding the bound
U on the final place of the trajectories of BR, because this place is fBS

and its
upper bound is infinite. The number of trajectories starting in p in history HR

is now R′(p).
Otherwise, p is such that BS

p is in Case 2, so we know that R′(p) ≤ M ′(p)
because U ′(p) was defined to be M ′(p). Each bunch in BS

p in history HS has a
corresponding bunch in history HM because the pruning operation never erases
a bunch completely, it only diminishes its size. We can boost all bunches in BS

p

to the size of the corresponding bunches in HM and not exceed the finite bounds
of U on the final places of these bunches. We arbitrarily select bunches in BS

p

which we boost so that the sum of the size of bunches in BS
p is equal to R′(p).

Now by construction, history HR starts in marking R′, and it ends in a
marking R such that S ≤ R ≤ U , as every bunch is either boosted to a size no
greater than it had in HM , or leads to a place p with U(p) = ∞. Since S ≥ L,
this implies that R ≥ L and so R ∈ (L,U) and R′ ∈ pre∗(L,U).

Finally, we show that the norms of (L′, U ′) are bounded. For the L-norm, we
simply add up the tokens in S = L′. Thus by the Pruning theorem

‖(L′, U ′)‖l ≤ |L| + |P |3 ≤ ‖(L,U)‖l + |P |3.

By definition of the U -norm, ‖(L′, U ′)‖u =
∑

p∈P |U ′(p)<∞ U ′(p). If U ′(p) < ∞
then BM

p of history HM is in Case 2 and there is no bunch B ∈ BM
p going from

p to a final place fB such that U(fB) = ∞. So the set of bunches B starting in
a place p such that U ′(p) < ∞ is included in the set of bunches B′ such that
U(fB′) < ∞, and thus

∑

p∈P |U ′(p)<∞
U ′(p) =

∑

p∈P |U ′(p)<∞

⎛

⎝
∑

B∈BM
p

size(B)

⎞

⎠ ≤
∑

B|U(fB)<∞
size(B).

Parameterized Analysis of Immediate Observation Petri Nets 381

Now
∑

B|U(fB)<∞ size(B) in history HM is exactly
∑

p∈P |U(p)<∞ M(p). Since
M ∈ (L,U), for all places we have M(p) ≤ U(p) and so

∑

p∈P |U ′(p)<∞
U ′(p) ≤

∑

p∈P |U(p)<∞
M(p) ≤

∑

p∈P |U(p)<∞
U(p).

So by definition of the norm, ‖(L′, U ′)‖u ≤ ‖(L,U)‖u. ��

This result entails the main theorem of the section.

Theorem 6. Let N be an IO net with a set P of places, and let S be a counting
set. Then pre∗(S) is a counting set and there exist counting constraints Γ and
Γ ′ satisfying �Γ � = S, �Γ ′� = pre∗(S) and we can bound the norm of Γ ′ by

‖Γ ′‖u ≤ ‖Γ‖u and ‖Γ ′‖l ≤ ‖Γ‖l + |P |3

The same holds for post∗ by using the net with reversed transitions.

Proof (Sketch). Lemma 4 gives “small” cubes such that pre∗(S) is the union
of these cubes. Since there are only a finite number of such “small” cubes, this
union is finite and pre∗(S) is a counting set. The bounds on the norms of pre∗(S)
are derived from the bounds on the norms of these cubes.

Remark 3. Theorem 6 is a dramatic improvement on Theorem 18 of [14], which
could only give a much higher bound for ‖Γ ′‖l:

‖Γ ′‖l ≤ (‖Γ‖l + ‖Γ‖u)2
O(|P |2 log |P |)

instead of ‖Γ ′‖l ≤ ‖Γ‖l + |P |3.

8 Cube Problems for IO Nets Are in PSPACE

We prove that the cube-reachability, cube-coverability, and cube-liveness prob-
lems for IO nets are in PSPACE.

Theorem 7. The cube-reachability and cube-coverability problems for IO nets
are in PSPACE.

Proof. Let us first consider cube-reachability. Let N be an IO net with set of
places P , and let S0 and S be cubes. Some marking of S is reachable from some
marking of S0 iff post∗(S0)∩S �= ∅. Let Γ0 and Γ be two counting constraints for
S0 and S respectively. By Theorem 6 and Proposition 1, there exists a counting
constraint Γ ′ such that �Γ ′� = post∗(S0) ∩ S, and such that ‖Γ ′‖u ≤ ‖Γ0‖u +
‖Γ‖u and ‖Γ ′‖l ≤ ‖Γ0‖l + |P |3 + ‖Γ‖l. Therefore, post∗(S0) ∩ S �= ∅ holds iff
post∗(S0)∩S contains a “small” marking M satisfying |M | ≤ ‖Γ0‖l+|P |3+‖Γ‖l.
The PSPACE decision procedure takes the following steps: (1) Guess a “small”
marking M ∈ S. (2) Check that M belongs to post∗(S0).

382 J. Esparza et al.

The algorithm for (2) is to guess a marking M0 ∈ S0 such that |M0| = |M |,
and then guess a firing sequence (step by step), leading from M0 to M . This
can be performed in polynomial space because each marking along the path is
of size |M |, and we only need to store the current marking to check if it is equal
to M .

Now for cube-coverability. Again let N be an IO net with set of places P ,
and let S0 and S be cubes. In particular let S = (L,U) for some upper and
lower bounds L,U . Some marking of S is coverable from some marking of S0 iff
post∗(S0) ∩ S∞ �= ∅, where S∞ is the cube defined by lower bound L and upper
bound ∞ on all places. From here we proceed with the same PSPACE decision
procedure as above. ��

Notice that cube-reachability and coverability can be extended to counting
set-reachability and coverability simply by virtue of a counting set being a finite
union of cubes.

Recall that a marking M0 of an IO net N is live if for every marking M
reachable from M0 and for every transition t of N , some marking reachable
from M enables t. The cube-liveness problem consists of deciding if, given a net
N and a cube M of markings of N , every marking of M is live.

Theorem 8. The cube-liveness problem for IO nets is in PSPACE.

Proof. Let N be an IO net with set of places P , and M a cube. Let t = (ps, po) �→
(pd, po) be a transition of N . The set En(t) of markings that enable t contains
the markings that put at least one token in ps and at least one token in po

(unless ps = po in which case there should be at least two tokens in that place).
Clearly, En(t) is a cube. Then pre∗(En(t)) is the set of markings M from which
one cannot execute transition t anymore by any firing sequence starting in M .
So the set L of live markings of N is given by

L = pre∗
(

⋃

t∈T

pre∗(En(t))

)

Deciding whether M ⊆ L is equivalent to deciding whether M ∩ L = ∅ holds,
or, equivalently, whether

⋃
t∈T pre∗(En(t)) is reachable from M. By definition,

the cube describing En(t) has an L-norm equal to 2 and U-norm equal to 0.
By Theorem 6 and Proposition 1, there exists a counting constraint Γ ′ such
that �Γ ′� =

⋃
t∈T pre∗(En(t)) and its norms are of size polynomial in |P |. So by

Theorem 7 this reachability problem can be solved in PSPACE in the size of the
input, i.e. net N and set M. ��

Parameterized Analysis of Immediate Observation Petri Nets 383

9 Application: Correctness of IO Protocols Is
PSPACE-complete

In [14], Esparza et al. studied the correctness problem for immediate observation
protocols. The problem asks, given a protocol and a predicate, whether the
protocol computes the predicate. In order to study the complexity of the problem
we need to restrict ourselves to a class of predicates representable by finite means.
Fortunately, Angluin et al. have shown in [6] that IO protocols compute exactly
the predicates representable by counting constraints, i.e., the predicates ϕ : Nk →
{0, 1} for which there is a counting constraint Γ such that ϕ(v) = 1 iff v satisfies
Γ . So we can formulate the problem as follows: given a counting constraint Γ
and an IO protocols with a suitable set of input states, does it compute the
predicate described by Γ? It is shown in [14] that the problem is PSPACE-hard
and in EXPSPACE, and closing this gap was left for future research.

In Petri net terms, the correctness problem for IO nets asks, given an IO
net N and a counting constraint Γ , whether N computes Γ (formally defined
in Sect. 3). We use the Pruning Theorem and the results of this paper to show
that the correctness problem for IO nets, and so for IO protocols, is PSPACE-
complete.

We present a proposition that characterizes the nets N that compute a given
predicate ϕ : Nk → {0, 1}. On top of the definitions of Sect. 3, we need some
notations. For b ∈ {0, 1}:

– Ib = {Mv | ϕ(v) = b}, i.e., I1 (I0) denotes the initial markings of N for the
input vectors satisfying (not satisfying) ϕ.

– Cb denotes the set of b-consensuses of N .
– ST b

def= pre∗ (
Cb

)
denotes the set of stable consensuses of N (the complement

of the markings from which one can reach a non-b-consensus).

Proposition 2. Let N be an IO net, let I be a set of input places, and let
ϕ : Nk → {0, 1} be a predicate where k = |I|. Net N computes ϕ iff post∗(Ib) ⊆
pre∗(ST b) holds for b ∈ {0, 1}.

We can now show:

Theorem 9. The correctness problem for IO nets is PSPACE-complete.

Proof. Let N be an IO net with P its set of places, I a set of input places of size
k, and ϕ : Nk → {0, 1} a predicate described by some counting constraint Γϕ.
Recall that ST b is given by pre∗(Cb) where Cb, for b ∈ {0, 1}, can be represented
by the cube defined by the upper bound equal to 0 on all places pi ∈ O−1(1− b)
and ∞ otherwise, and the lower bound equal to 0 everywhere. The condition for
correctness of Proposition 2 can be rewritten as

post∗(Ib) ∩ pre∗(ST b) = ∅. (1)

Deciding (1) is equivalent to deciding whether pre∗(ST b) is reachable from Ib.
The cube describing Cb has upper and lower norm equal to 0. By Theorem 6 and

384 J. Esparza et al.

Proposition 1, there exists a counting constraint Γb such that �Γb� = pre∗(ST b)
and its norms are of size polynomial in |P |. Set Ib is a counting set described by
either Γϕ or its complement. So by Theorem 7 this reachability problem can be
solved in PSPACE.

The proof forPSPACE-hardness reduces from the acceptance problem for deter-
ministic Turing machines running in linear space, and is in the full version [15]. ��

10 Conclusion

Many modern distributed systems are parameterized, and they have to be mod-
eled as an infinite set of Petri nets differing only in their initial markings. This
leads to a new class of parameterized analysis problems, which typically are much
harder to solve that standard ones. We have shown that, remarkably, this is not
the case for immediate observation Petri nets, a subclass of 1-conservative nets
able to model immediate observation protocols and enzymatic chemical reaction
networks. We have proved that the parameterized reachability, coverability, and
liveness problems are PSPACE-complete, which is also the complexity of their
non-parameterized versions. Current research on population protocols or net-
works considers quantitative properties like, in the case of population protocols,
the computation of the expected time to stabilization. In future research we plan
to study algorithms for these questions.

Acknowledgments. We thank three anonymous reviewers for numerous suggestions
to improve readability, and Pierre Ganty for many helpful discussions.

References

1. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space
trade-offs in population protocols. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2560–2579 (2017)

2. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal majority in population pro-
tocols. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2221–2239 (2018)

3. Alistarh, D., Gelashvili, R.: Recent algorithmic advances in population protocols.
SIGACT News 49(3), 63–73 (2018)

4. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of
persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Proceedings of the 23rd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 290–299
(2004)

6. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

7. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling metabolic
pathways: a survey. Nat. Comput. 9(4), 955–989 (2010)

8. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor.
Comput. Sci. 147(1&2), 117–136 (1995)

Parameterized Analysis of Immediate Observation Petri Nets 385

9. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary (extended abstract). CoRR,
abs/1809.07115 (2018)

10. Elsässer, R., Radzik, T.: Recent results in population protocols for exact majority
and leader election. Bull. EATCS 126 (2018)

11. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

12. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. In: CONCUR. LIPIcs, vol. 42, pp. 470–482. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2015)

13. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Informatica 54(2), 191–215 (2017)

14. Esparza, J., Ganty, P., Majumdar, R., Weil-Kennedy, C.: Verification of immediate
observation population protocols. In: CONCUR. LIPIcs, vol. 118, pp. 31:1–31:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

15. Esparza, J., Raskin, M., Weil-Kennedy, C.: Parameterized analysis of immediate
observation petri nets. CoRR, abs/1902.03025 (2019)

16. Marwan, W., Wagler, A., Weismantel, R.: Petri nets as a framework for the recon-
struction and analysis of signal transduction pathways and regulatory networks.
Nat. Comput. 10(2), 639–654 (2011)

17. Mayr, E.W., Weihmann, J.: A framework for classical Petri net problems: conser-
vative petri nets as an application. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS
2014. LNCS, vol. 8489, pp. 314–333. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07734-5 17

https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-319-07734-5_17
https://doi.org/10.1007/978-3-319-07734-5_17

The Combinatorics of Barrier
Synchronization

Olivier Bodini1, Matthieu Dien2, Antoine Genitrini3,
and Frédéric Peschanski3(B)

1 Université Paris-Nord – LIPN – CNRS UMR 7030, Villetaneuse, France
Olivier.Bodini@lipn.univ-paris13.fr

2 Université de Caen – GREYC – CNRS UMR 6072, Caen, France
Matthieu.Dien@unicaen.fr

3 Sorbonne University – LIP6 – CNRS UMR 7607, Paris, France
{Antoine.Genitrini,Frederic.Peschanski}@lip6.fr

Abstract. In this paper we study the notion of synchronization from the
point of view of combinatorics. As a first step, we address the quantitative
problem of counting the number of executions of simple processes inter-
acting with synchronization barriers. We elaborate a systematic decom-
position of processes that produces a symbolic integral formula to solve
the problem. Based on this procedure, we develop a generic algorithm to
generate process executions uniformly at random. For some interesting
sub-classes of processes we propose very efficient counting and random
sampling algorithms. All these algorithms have one important character-
istic in common: they work on the control graph of processes and thus
do not require the explicit construction of the state-space.

Keywords: Barrier synchronization · Combinatorics ·
Uniform random generation

1 Introduction

The objective of our (rather long-term) research project is to study the combi-
natorics of concurrent processes. Because the mathematical toolbox of combi-
natorics imposes strong constraints on what can be modeled, we study process
calculi with a very restricted focus. For example in [5] the processes we study can
only perform atomic actions and fork child processes, and in [4] we enrich this
primitive language with non-determinism. In the present paper, our objective
is to isolate another fundamental “feature” of concurrent processes: synchro-
nization. For this, we introduce a simple process calculus whose only non-trivial
concurrency feature is a principle of barrier synchronization. This is here under-
stood intuitively as the single point of control where multiple processes have
to “meet” before continuing. This is one of the important building blocks for
concurrent and parallel systems [13].

This research was partially supported by the ANR MetACOnc project ANR-15-CE40-
0014.

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 386–405, 2019.
https://doi.org/10.1007/978-3-030-21571-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_21

The Combinatorics of Barrier Synchronization 387

Combinatorics is about “counting things”, and what we propose to count in
our study is the number of executions of processes wrt. their “syntactic size”.
This is a symptom of the so-called “combinatorial explosion”, a defining char-
acteristic of concurrency. As a first step, we show that counting executions of
concurrent processes is a difficult problem, even in the case of our calculus with
limited expressivity. Thus, one important goal of our study is to investigate inter-
esting sub-classes for which the problem becomes “less difficult”. To that end,
we elaborate in this paper a systematic decomposition of arbitrary processes,
based on only four rules: (B)ottom, (I)ntermediate, (T)op and (S)plit. Each rule
explains how to “remove” one node from the control graph of a process while
taking into account its contribution in the number of possible executions. Indeed,
one main feature of this BITS-decomposition is that it produces a symbolic inte-
gral formula to solve the counting problem. Based on this procedure, we develop
a generic algorithm to generate process executions uniformly at random. Since
the algorithm is working on the control graph of processes, it provides a way to
statistically analyze processes without constructing their state-space explicitly.
In the worst case, the algorithm cannot of course overcome the hardness of the
problem it solves. However, depending on the rules allowed during the decompo-
sition, and also on the strategy adopted, one can isolate interesting sub-classes
wrt. the counting and random sampling problem. We identify well-known “struc-
tural” sub-classes such as fork-join parallelism [11] and asynchronous processes
with promises [15]. For some of these sub-classes we develop dedicated and effi-
cient counting and random sampling algorithms. A large sub-class that we find
particularly interesting is what we call the “BIT-decomposable” processes, i.e.
only allowing the three rules (B), (I) and (T) in the decomposition. The counting
formula we obtain for such processes is of a linear size (in the number of atomic
actions in the processes, or equivalently in the number of vertices in their control
graph). We also discuss informally the typical shape of “BIT-free” processes.

The outline of the paper is as follows. In Sect. 2 we introduce a minimalist
calculus of barrier synchronization. We show that the control graphs of pro-
cesses expressed in this language are isomorphic to arbitrary partially ordered
sets (Posets) of atomic actions. From this we deduce our rather “negative” start-
ing point: counting executions in this simple language is intractable in the gen-
eral case. In Sect. 3 we define the BITS-decomposition, and we use it in Sect. 4
to design a generic uniform random sampler. In Sect. 5 we discuss various sub-
classes of processes related to the proposed decomposition, and for some of them
we explain how the counting and random sampling problem can be solved effi-
ciently. In Sect. 6 we propose an experimental study of the algorithm toolbox
discussed in the paper.

Note that some technical complement and proof details are deferred to an
external “companion” document. Moreover we provide the full source code devel-
oped in the realm of this work, as well as the benchmark scripts. All these
complement informations are available online1.

1 cf. https://gitlab.com/ParComb/combinatorics-barrier-synchro.git.

https://gitlab.com/ParComb/combinatorics-barrier-synchro.git

388 O. Bodini et al.

Related Work
Our study intermixes viewpoints from concurrency theory, order-theory as well
as combinatorics (especially enumerative combinatorics and random sampling).
The heaps combinatorics (studied in e.g. [1]) provides a complementary inter-
pretation of concurrent systems. One major difference is that this concerns “true
concurrent” processes based on the trace monoid, while we rely on the alterna-
tive interleaving semantics. A related uniform random sampler for networks of
automata is presented in [3]. Synchronization is interpreted on words using a
notion of“shared letters”. This is very different from the “structural” interpreta-
tion as joins in the control graph of processes. For the generation procedure [1]
requires the construction of a“product automaton”, whose size grows exponen-
tially in the number of “parallel” automata. By comparison, all the algorithms
we develop are based on the control graph, i.e. the space requirement remains
polynomial (unlike, of course, the time complexity in some cases). Thus, we can
interpret this as a space-time trade-of between the two approaches. A related
approach is that of investigating the combinatorics of lassos, which is connected
to the observation of state spaces through linear temporal properties. A uniform
random sampler for lassos is proposed in [16]. The generation procedure takes
place within the constructed state-space, whereas the techniques we develop
do not require this explicit construction. However lassos represent infinite runs
whereas for now we only handle finite (or finite prefixes) of executions.

A coupling from the past (CFTP) procedure for the uniform random gen-
eration of linear extensions is described, with relatively sparse details, in [14].
The approach we propose, based on the continuous embedding of Posets into
the hypercube, is quite complementary. A similar idea is used in [2] for the
enumeration of Young tableaux using what is there called the density method.
The paper [12] advocates the uniform random generation of executions as an
important building block for statistical model-checking. A similar discussion is
proposed in [18] for random testing. The leitmotiv in both cases is that generating
execution paths without any bias is difficult. Hence a uniform random sampler
is very likely to produce interesting and complementary tests, if comparing to
other test generation strategies.

Our work can also be seen as a continuation of the algorithm and order
studies [17] orchestrated by Ivan Rival in late 1980’s only with powerful new
tools available in the modern combinatorics toolbox.

2 Barrier Synchronization Processes

The starting point of our study is the small process calculus described below.

The Combinatorics of Barrier Synchronization 389

Definition 1 (Syntax of barrier synchronization processes). We consider
countably infinite sets A of (abstract) atomic actions, and B of barrier names.
The set P of processes is defined by the following grammar:

P,Q ::= 0 (termination)
| α.P (atomic action and prefixing)
| 〈B〉P (synchronization)
| ν(B)P (barrier and scope)
| P ‖ Q (parallel)

The language has very few constructors and is purposely of limited expres-
sivity. Processes in this language can only perform atomic actions, fork child
processes and interact using a basic principle of synchronization barrier. A very
basic process is the following one:

ν(B) [a1.〈B〉 a2.0 ‖ 〈B〉b1.0 ‖ c1.〈B〉 0]

This process can initially perform the actions a1 and c1 in an arbitrary order.
We then reach the state in which all the processes agrees to synchronize on B:

ν(B) [〈B〉 a2.0 ‖ 〈B〉b1.0 ‖ 〈B〉 0]

The possible next transitions are: a2−→ b1.0
b1−→ 0, alternatively b1−→ a2.0

a2−→ 0
In the resulting states, the barrier B has been “consumed”.
The operational semantics below characterize processes transitions of the form

P
α−→ P ′ in which P can perform action α to reach its (direct) derivative P ′.

Definition 2 (Operational semantics).

α.P
α−→ P

(act)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(lpar)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′ (rpar)

syncB(P)=Q waitB(Q) P
α−→ P ′

ν(B)P α−→ ν(B)P ′ (lift)
syncB(P)=Q ¬waitB(Q) Q

α−→ Q′

ν(B)P α−→ Q′ (sync)

with:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

syncB(0)=0

syncB(α.P)=α.P

syncB(P‖Q)=syncB(P)‖syncB(Q)

syncB(ν(B)P)=ν(B)P

∀C �=B, syncB(ν(C)P)=ν(C) syncB(P)

syncB(〈B〉P)=P

∀C �=B, syncB(〈C〉P)=〈C〉P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

waitB(0)=false

waitB(α.P)=waitB(P)

waitB(P‖Q)=waitB(P)∨waitB(Q)

waitB(ν(B)P)=false

∀C �=B, waitB(ν(C)P)=waitB(P)

waitB(〈B〉P)=true

∀C �=B, waitB(〈C〉P)=waitB(P)

The rule (sync) above explains the synchronization semantics for a given barrier
B. The rule is non-trivial given the broadcast semantics of barrier synchro-
nization. The definition is based on two auxiliary functions. First, the function
syncB(P) produces a derivative process Q in which all the possible synchroniza-
tions on barrier B in P have been effected. If Q has a sub-process that cannot yet
synchronize on B, then the predicate waitB(Q) is true and the synchronization
on B is said incomplete. In this case the rule (sync) does not apply, however the
transitions within P can still happen through (lift).

390 O. Bodini et al.

2.1 The Control Graph of a Process

We now define the notion of a (finite) execution of a process.

Definition 3 (execution). An execution σ of P is a finite sequence 〈α1, . . . , αn〉
such that there exist a set of processes P ′

α1
, . . . , P ′

αn
and a path P

α1−→ P ′
α1

. . .
αn−−→

P ′
αn

with P ′
αn

� (no transition is possible from P ′
αn

).

We assume that the occurrences of the atomic actions in a process expression
have all distinct labels, α1, . . . , αn. This is allowed since the actions are uninter-
preted in the semantics (cf. Definition 2). Thus, each action α in an execution σ
can be associated to a unique position, which we denote by σ(α). For example
if σ = 〈α1, . . . , αk, . . . , αn〉, then σ(αk) = k.

The behavior of a process can be abstracted by considering the causal order-
ing relation wrt. its atomic actions.

Definition 4 (cause, direct cause). Let P be a process. An action α of P is
said a cause of another action β, denoted by α < β, iff for any execution σ of
P we have σ(α) < σ(β). Moreover, α is a direct cause of β, denoted by α ≺ β
iff α < β and there is no γ such that α < γ < β. The relation < obtained from
P is denoted by PO(P).

ν(B)
[

α1.〈B〉 ‖ α2.〈B〉 ‖ . . . ‖ αn.〈B〉
〈B〉.β1 ‖ 〈B〉.β2 ‖ . . . ‖ 〈B〉.βn

]

α1 α2 · · · αn

β1 β2 · · · βn

Fig. 1. A process of size 2n and its control
graph with 2n nodes and n2 edges.

Obviously PO(P) is a partially
ordered set (poset) with covering ≺,
capturing the causal ordering of the
actions of P . The covering of a par-
tial order is by construction an intran-
sitive directed acyclic graph (DAG),
hence the description of PO(P) itself
is simply the transitive closure of the
covering, yielding O(n2) edges over n
elements. The worst case (maximizing
the number of edges) is a complete
bipartite graph with two sets of 2n ver-
tices connected by n2 edges (cf. Fig. 1).

For most practical concerns we will only consider the covering, i.e. the intran-
sitive DAG obtained by the transitive reduction of the order. It is possible to
direclty construct this control graph, according to the following definition.

Definition 5 (Construction of control graphs). Let P be a process term.
Its control graph is ctg(P) = 〈V,E〉, constructed inductively as follows:

⎡
⎣
ctg(0) = 〈∅, ∅〉 ctg(ν(B)P) =

⊗
〈B〉 ctg(P)

ctg(α.P) = α � ctg(P)
ctg(〈B〉P) = 〈B〉 � ctg(P)

ctg(P ‖ Q) = ctg(P) ∪ ctg(Q)
with 〈V1, E1〉 ∪ 〈V2, E2〉 = 〈V1 ∪ V2, E1 ∪ E2〉

with

⎧
⎪⎪⎨
⎪⎪⎩

x � 〈V, E〉 = 〈V ∪ {x}, {(x, y) | y ∈ srcs(E) ∨ (E = ∅ ∧ y ∈ V)}〉
srcs(E) = {y | (y, z) ∈ E ∧ �x, (x, y) ∈ E}
⊗

〈B〉〈V, E〉 = 〈V \ {〈B〉}, E \ {(x, y) | x
= y ∧ (x = 〈B〉 ∨ y = 〈B)〉}
∪ {(α, β) | {(α, 〈B〉), (〈B〉, β)} ⊆ E}〉

The Combinatorics of Barrier Synchronization 391

Given a control graph Γ , the notation x � Γ corresponds to prefixing the graph
by a single atomic action. The set srcs(E) corresponds to the sources of the edges
in E, i.e. the vertices without an incoming edge. And

⊗
〈B〉 Γ removes an explicit

barrier node and connect all the processes ending in B to the processes starting
from it. In effect, this realizes the synchronization described by the barrier B.
We illustrate the construction on a simple process below:

ctg(ν(B)ν(C)[〈B〉〈C〉a.0||〈B〉〈C〉b.0])
=

⊗
〈B〉

⊗
〈C〉 (ctg(〈B〉〈C〉a.0) ∪ ctg(〈B〉〈C〉b.0))

=
⊗

〈B〉
⊗

〈C〉 〈{〈B〉, 〈C〉, a}, {(〈B〉, 〈C〉), (〈C〉, a)}〉}
∪〈{〈B〉, 〈C〉, b}, {(〈B〉, 〈C〉), (〈C〉, b)}〉

=
⊗

〈B〉
⊗

〈C〉〈{〈B〉, 〈C〉, a, b}, {(〈B〉, 〈C〉), (〈C〉, a), (〈C〉, b)}〉
=

⊗
〈B〉〈{〈B〉, a, b}, {(〈B〉, a), (〈B〉, b)}〉

= 〈{a, b}, ∅〉
The graph with only two unrelated vertices and no edge is the correct con-

struction. Now, slightly changing the process we see how the construction fails
for deadlocked processes.

ctg(P) =
⊗

〈B〉
⊗

〈C〉 (ctg(〈B〉〈C〉a.0) ∪ ctg(〈C〉〈B〉b.0))

=
⊗

〈B〉
⊗

〈C〉 〈{〈B〉, 〈C〉, a}, {(〈B〉, 〈C〉), (〈C〉, a)}〉}
∪〈{〈C〉, 〈B〉, b}, {(〈C〉, 〈B〉), (〈B〉, b)}〉

=
⊗

〈B〉
⊗

〈C〉〈{〈B〉, 〈C〉, a, b}, {(〈B〉, 〈C〉), (〈C〉, a), (〈C〉, 〈B〉), (〈B〉, b)}〉
=

⊗
〈B〉〈{〈B〉, a, b}, {(〈B〉, 〈B〉), (〈B〉, a), (〈B〉, b)}〉

= 〈{a, b}, {(〈B〉, 〈B〉), (〈B〉, a), (〈B〉, b)}〉
In the final step, the barrier 〈B〉 cannot be removed because of the self-loop.

So there are two witnesses of the fact that the construction failed: there is still
a barrier name in the process, and there is a cycle in the resulting graph.

Theorem 1. Let P be a process, then P has a deadlock iff ctg(P) has a cycle.
Moreover, if P is deadlock-free (hence it is a DAG) then (α, β) ∈ ctg(P) iff
α ≺ β (hence the DAG is intransitive).

Proof (idea). The proof is not difficult but slightly technical. The idea is to
extend the notion of execution to go “past” deadlocks, thus detecting cycles in
the causal relation. The details are given in companion document. �	

In Fig. 2 (left) we describe a system Sys written in the proposed language,
together with the covering of PO(Sys), i.e. its control graph (right). We also
indicate the number of its possible executions, a question we address next.

2.2 The Counting Problem

One may think that in such a simple setting, any behavioral property, such as
the counting problem that interests us, could be analyzed efficiently e.g. by a
simple induction on the syntax. However, the devil is well hidden inside the box
because of the following fact.

Theorem 2. Let U be a partially ordered set. Then there exists a barrier syn-
chronization process P such that PO(P) is isomorphic to U .

392 O. Bodini et al.

Sys = init.ν(G1, G2, J1).
step1.

ν(IO)
step2.〈G1〉step3.

〈IO〉step4.〈G2〉〈J1〉end
‖ load.xform.〈IO〉0

‖ gen.yield1.(〈G1〉0 ‖ yield2.〈G2〉0)

‖ fork.ν(J2)
comp1.〈J2〉0
‖ comp2.1.comp2.2.〈J2〉0
‖ 〈J2〉join〈J1〉0)

init step1

gen

step2 step3 step4 end

yield1 yield2

load xform

fork comp1

comp2.1 comp2.2

join

Fig. 2. An example process with barrier synchronizations (left) and its control graph
(right). The process is of size 16 and it has exactly 1975974 possible executions.

Proof. (sketch). Consider G the (intransitive) covering DAG of a poset U . We
suppose each vertex of G to be uniquely identified by a label ranging over
α1, α2, . . . , αn. The objective is to associate to each such vertex labeled α a
process expression Pα. The construction is done backwards, starting from the
sinks (vertices without outgoing edges) of G and bubbling-up until its sources
(vertices without incoming edges).

There is a single rule to apply, considering a vertex labeled α whose children
have already been processed, i.e. in a situation depicted as follows:

α

. . .Pβ1 Pβk

Pα = 〈Bα〉α. [〈Bβ1〉0 ‖ . . . ‖ 〈Bβk
〉0] .

In the special case α is a sink we simply define Pα = 〈Bα〉α.0. In this con-
struction it is quite obvious that α ≺ βi for each of the βi’s, provided the barriers
Bα, Bβ1 , . . . , Bβk

are defined somewhere in the outer scope.
At the end we have a set of processes Pα1 , . . . , Pαn

associated to the vertices
of G and we finally define P = ν(Bα1) . . . ν(Bαn

) [Pα1 ‖ . . . ‖ Pαn
].

That PO(P) has the same covering as U is a simple consequence of the
construction. �	
Corollary 1. Let P be a non-deadlocked process. Then 〈α1, . . . , αn〉 is an exe-
cution of P if it is a linear extension of PO(P). Consequently, the number of
executions of P is equal to the number of linear extensions of PO(P).

We now reach our “negative” result that is the starting point of the rest of
the paper: there is no efficient algorithm to count the number of executions, even
for such simplistic barrier processes.

Corollary 2. Counting the number of executions of a (non-deadlocked) barrier
synchronization process is �P -complete2.
2 A function f is in �P if there is a polynomial-time non-deterministic Turing machine

M such that for any instance x, f(x) is the number of executions of M that accept
x as input. See https://en.wikipedia.org/wiki/%E2%99%AFP-complete.

https://en.wikipedia.org/wiki/%E2%99%AFP-complete

The Combinatorics of Barrier Synchronization 393

This is a direct consequence of [8] since counting executions of processes boils
down to counting linear extensions in (arbitrary) posets.

3 A Generic Decomposition Scheme and Its (Symbolic)
Counting Algorithm

We describe in this section a generic (and symbolic) solution to the counting prob-
lem, based on a systematic decomposition of finite Posets (thus, by Theorem 1, of
process expressions) through their covering DAG (i.e. control graphs).

3.1 Decomposition Scheme

In Fig. 3 we introduce the four decomposition rules that define the BITS-
decomposition. The first three rules are somehow straightforward. The (B)-rule
(resp. (T)-rule) allows to consume a node with no outgoing (resp. incoming)
edge and one incoming (resp. outgoing) edge. In a way, these two rules consume
the “pending” parts of the DAG. The (I)-rule allows to consume a node with
exactly one incoming and outgoing edge. The final (S)-rule takes two incompa-
rable nodes x, y and decomposes the DAG in two variants: the one for x ≺ y
and the one for the converse y ≺ x.

x

y

x

x

y

z

x

z

y

z

z x y

x y

x y

Ψ ′ =
∫ 1

x
Ψ.dy Ψ ′ =

∫ z

x
Ψ.dy Ψ ′ =

∫ z

0
Ψ.dy Ψ ′ = Ψx≺y + Ψy≺x

Fig. 3. The BITS-decomposition and the construction of the counting formula.

We now discuss the main interest of the decomposition: the incremental con-
struction of an integral formula that solves the counting problem. The calcula-
tion is governed by the equations specified below the rules in Fig. 3, in which the
current formula Ψ is updated according to the definition of Ψ ′ in the equations.

Theorem 3. The numerical evaluation of the integral formula built by the
BITS-decomposition yields the number of linear extensions of the correspond-
ing Poset. Moreover, the applications of the BITS-rules are confluent, in the
sense that all the sequences of (valid) rules reduce the DAG to an empty graph3.
3 At the end of the decomposition, the DAG is in fact reduced to a single node, which

is removed by an integration between 0 and 1.

394 O. Bodini et al.

The precise justification of the integral computation and the proof for the
theorem above are postponed to Sect. 3.2 below. We first consider an example.

Example 1. Illustrating the BITS-decomposition scheme.
x1

x2

x3 x4

x5 x6

x7

x8

Tx1

x2

x3 x4

x5 x6

x7

x8

S{x3,x4}

x2

x4

x3

x6x5

x7

x8

for x3 ← x4

Ix7

x2

x4

x3

x6x5

x8

Ix5 . . .

Ψ = 1 Ψ ′ =
∫ x2

0

Ψdx1 Ψ ′′ =
Ψ ′

x3≺x4

+ Ψ ′
x4≺x3

Ψ ′′′ =
∫ x8

x4

Ψ ′′
x4≺x3

dx7

The DAG to decompose (on the left) is of size 8 with nodes x1, . . . , x8. The
decomposition is non-deterministic, multiple rules apply, e.g. we could “con-
sume” the node x7 with the (I) rule. Also, the (S)plit rule is always enabled. In
the example, we decide to first remove the node x1 by an application of the (T)
rule. We then show an application of the (S)plit rule for the incomparable nodes
x3 and x4. The decomposition should then be performed on two distinct DAGs:
one for x3 ≺ x4 and the other one for x4 ≺ x3. We illustrate the second choice,
and we further eliminate the nodes x7 then x5 using the (I) rule, etc. Ultimately
all the DAGs are decomposed and we obtain the following integral computation:

Ψ =

∫ 1

x2=0

∫ 1

x4=x2

∫ 1

x3=x4

∫ 1

x6=x3

∫ 1

x8=x6

∫ x8

x5=x3

∫ x8

x7=x4(
1|x4≺x3 ·

∫ x2

x1=0
1 · dx1 + 1|x3≺x4 ·

∫ x2

x1=0
1 · dx1

)
dx7dx5dx8dx6dx3dx4dx2 =

8 + 6

8!
.

The result means that there are exactly 14 distinct linear extensions in the
example Poset.

3.2 Embedding in the Hypercube: The Order Polytope

The justification of our decomposition scheme is based on the continuous embed-
ding of posets into the hypercube, as investigated in [19].

Definition 6 (order polytope). Let P = (E,≺) be a poset of size n. Let
C be the unit hypercube defined by C = {(x1, . . . , xn) ∈ R

n | ∀i, 0 ≤ xi ≤ 1}.
For each constraint xi ≺ xj ∈ P we define the convex subset Si,j =
{(x1, . . . , xn) ∈ R

n | xi ≤ xj}, i.e. one of the half spaces obtained by cutting R
n

with the hyperplane {(x1, . . . , xn) ∈ R
n | xi − xj = 0}. Thus, the order polytope

CP of P is:
Cp =

⋂
xi≺xj∈P

Si,j ∩ C

Each linear extension, seen as total orders, can similarly be embedded in the
unit hypercube. Then, the order polytopes of the linear extensions of a poset P
form a partition of the Poset embedding Cp as illustrated in Fig. 4.

The Combinatorics of Barrier Synchronization 395

C(0,1,0)

B(1,1,0)

A(1,0,0)
O(0,0,0)

E(0,0,1)

D(0,1,1)

G(1,1,1)

F(1,0,1)

C
B

A
O

E

D
G

F

C
B

A
O

E

D
G

F

Fig. 4. From left to right: the unit hypercube, the embedding of the total order 1 ≺
2 ≺ 3 and the embedding of the poset P = ({1, 2, 3}, {1 ≺ 2}) divided in its three
linear extensions.

The number of linear extensions of a poset P , written |LE (P)|, is then
characterized as a volume in the embedding.

Theorem 4. ([19, Corollary 4.2]) Let P be a Poset of size n then its number of
linear extensions |LE (P)| = n! · V ol(CP) where V ol(CP) is the volume, defined
by the Lebesgue measure, of the order polytope CP .

The integral formula introduced in the BITS-decomposition corresponds to
the computation of V ol(Cp), hence we may now give the key-ideas of Theorem 3.

Proof (Theorem 3, sketch). We begin with the (S)-rule. Applied on two incom-
parable elements x and y, the rule partitions the polytope in two regions: one
for x ≺ y and the other for y ≺ x. Obviously, the respective volume of the two
disjoint regions must be added.

We focus now on the (I)-rule. In the context of Lebesgue integration, the
classic Fubini’s theorem allows to compute the volume V of a polytope P as an
iteration on integrals along each dimension, and this in all possible orders, which
gives the confluence property. Thus,

V =

∫

[0,1]n
1P (x)dx =

∫

[0,1]

. . .

∫

[0,1]

1P ((x, y, z, . . .))dxdydz . . . ,

1P being the indicator function of P such that 1P ((x, y, z, . . .)) =∏
α actions

1Pα
(α), with Pα the projection of P on the dimension associated to α. By

convexity of P , the function 1Py
is the indicator function of a segment [x, z]. So the

following identity holds:
∫

P
1Py

(y)dy =
∫ z

x
dy. Finally, the two other rules (T) and

(B) are just special cases (taking x = 0, alternatively z = 1). �	
Corollary 3. (Stanley [19]) The order polytope of a linear extension is a simplex
and the simplices of the linear extensions are isometric, thus of the same volume.

4 Uniform Random Generation of Process Executions

In this section we describe a generic algorithm for the uniform random generation
of executions of barrier synchronization processes. The algorithm is based on the

396 O. Bodini et al.

BITS-decomposition and its embedding in the unit hypercube. It has two essen-
tial properties. First, it is directly working on the control graphs (equivalently
on the corresponding poset), and thus does not require the explicit construction
of the state-space of processes. Second, it generates possible executions of pro-
cesses at random according to the uniform distribution. This is a guarantee that
the sampling is not biased and reflects the actual behavior of the processes4.

Algorithm 1. Uniform sampling of a simplex of the order polytope

function SamplePoint(I =
∫ b

a
f(yi) dyi)

C ← eval(I) ; U ← Uniform(a, b)
Yi ← the solution t of

∫ t

a
1
C

f(yi) dyi = U
if f is not a symbolic constant then

SamplePoint(f{yi ← Yi})
else return the Yi’s

The starting point of Algorithm 1 (cf. previous page) is a Poset over a
set of points {x1, . . . , xn} (or equivalently its covering DAG). The decom-
position scheme of Sect. 3 produces an integral formula I of the form∫ 1

0
F (yn, . . . , y1) dyn · · · dy1. with F a symbolic integral formula over the points

x1, . . . , xn. The y variables represent a permutation of the poset points giving
the order followed along the decomposition. Thus, the variable yi corresponds to
the i-th removed point during the decomposition. We remind the reader that the
evaluation of the formula I gives the number of linear extensions of the partial
order. Now, starting with the complete formula, the variables y1, y2, . . . will be
eliminated, in turn, in an “outside-in” way. Algorithm 1 takes place at the i-th
step of the process. At this step, the considered formula is of the following form:

∫ b

a

(∫
· · ·

∫
1 dyn · · · dyi+1

)

︸ ︷︷ ︸
f(yi)

dyi.

Note that in the subformula f(yi) the variable yi may only occur (possibly
multiple times) as an integral bound.

In the algorithm, the variable C gets the result of the numerical computation
of the integral I at the given step. Next we draw (with Uniform) a real number
U uniformly at random between the integration bounds a and b. Based on these
two intermediate values, we perform a numerical solving of variable t in the
integral formula corresponding to the slice of the polytope along the hyperplan
yi = U . The result, a real number between a and b, is stored in variable Yi. The
justification of this step is further discussed in the proof sketch of Theorem 5
below.
4 The Python/Sage implementation of the random sampler is available at the fol-

lowing location: https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/
master/code/RandLinExtSage.py.

https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py
https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py

The Combinatorics of Barrier Synchronization 397

If there remains integrals in I, the algorithm is applied recursively by sub-
stituting the variable yi in the integral bounds of I by the numerical value Yi.
If no integral remains, all the computed values Yi’s are returned. As illustrated
in Example 2 below, this allows to select a specific linear extension in the ini-
tial partial ordering. The justification of the algorithm is given by the following
theorem.

Theorem 5. Algorithm 1 uniformly samples a point of the order polytope with
a O(n) complexity in the number of integrations.

Proof (sketch). The problem is reduced to the uniform random sampling of a
point p in the order polytope. This is a classical problem about marginal densities
that can be solved by slicing the polytope and evaluating incrementally the n
continuous random variables associated to the coordinates of p. More precisely,
during the calculation of the volume of the polytope P , the last integration (of
a monovariate polynomial p(y)) done from 0 to 1 corresponds to integrate the
slices of P according the last variable y. So, the polynomial p(y)/

∫ 1

0
p(y)dy is

nothing but the density function of the random variable Y corresponding to the
value of y. Thus, we can generate Y according to this density and fix it. When
this is done, we can inductively continue with the previous integrations to draw
all the random variables associated to the coordinates of p. The linear complexity
of Algorithm 1 follows from the fact that each partial integration deletes exactly
one variable (which corresponds to one node). Of course at each step a possibly
costly computation of the counting formula is required. �	

We now illustrate the sampling process based on Example 1 (page 9).

Example 2. First we assume that the whole integral formula has already been
computed. To simplify the presentation we only consider (S)plit-free DAGs i.e.
decomposable without the (S) rule. Note that it would be easy to deal with the
(S)plit rule: it is sufficient to uniformly choose one of the DAG processed by the
(S)-rule w.r.t. their number of linear extensions.

Thus we will run the example on the DAG of Example 1 where the DAG
corresponding to “x4 ≺ x3” as been randomly chosen (with probability 8

14) i.e.
the following formula holds:

∫ 1

0

(∫ 1

x2

∫ 1

x4

∫ 1

x3

∫ 1

x6

∫ x8

x4

∫ x8

x3

∫ x2

0

dx1dx5dx7dx8dx6dx3dx4

)
dx2 =

8
8!

.

In the equation above, the sub-formula between parentheses would be
denoted by f(x2) in the explanation of the algorithm. Now, let us apply the
Algorithm 1 to that formula in order to sample a point of the order polytope.
In the first step the normalizing constant C is equal to 8!

8 , we draw U uniformly
in [0, 1] and so we compute a solution of 8!

8

∫ t

0
. . . dx2 = U . That solution corre-

sponds to the second coordinate of a the point we are sampling. And so on, we
obtain values for each of the coordinates:

{
X1 = 0.064 . . . , X2 = 0.081 . . . , X3 = 0.541 . . . , X4 = 0.323 . . . ,
X5 = 0.770 . . . , X6 = 0.625 . . . , X7 = 0.582 . . . , X8 = 0.892 . . .

398 O. Bodini et al.

These points belong to a simplex of the order polytope. To find the corresponding
linear extension we compute the rank of that vector i.e. the order induced by the
values of the coordinates correspond to a linear extension of the original DAG:

(x1, x2, x4, x3, x7, x6, x5, x8).

This is ultimately the linear extension returned by the algorithm.

5 Classes of Processes that are BIT-Decomposable
(or Not)

Thanks to the BITS decomposition scheme, we can generate a counting formula
for any (deadlock-free) process expressed in the barrier synchronization calculus,
and derive from it a dedicated uniform random sampler. However the (S)plit rule
generates two summands, thus if we cannot find common calculations between
the summands the resulting formula can grow exponentially in the size of the
concerned process. If we avoid splits in the decomposition, then the counting
formula remains of linear size. This is, we think, a good indicator that the sub-
class of so-called “BIT-decomposable” processes is worth investigating for its
own sake. In this Section, we first give some illustrations of the expressivity
of this subclass, and we then study the question of what it is to be not BIT-
decomposable. By lack of space, the discussion in this Section remains rather
informal with very rough proof sketches, and more formal developments are left
for a future work. Also, the first two subsections are extended results based on
previously published papers (respectively [6] and [7]).

5.1 From Tree Posets to Fork-Join Parallelism

If the control-graph of a process is decomposed with only the B(ottom) rule (or
equivalently the T(op) rule), then it is rather easy to show that its shape is that
of a tree. These are processes that cannot do much beyond forking sub-processes.
For example, based on our language of barrier synchronization it is very easy to
encode e.g. the (rooted) binary trees:

T :: = 0 | α.(T ‖ T) or e.g. T :: = 0 | νB (α.〈B〉0 ‖ 〈B〉T ‖ 〈B〉T)

The good news is that the combinatorics on trees is well-studied. In the paper [4]
we provide a thorough study of such processes, and in particular we describe very
efficient counting and uniform random generation algorithms. Of course, this is
not a very interesting sub-class in terms of concurrency.

Thankfully, many results on trees generalize rather straightforwardly to fork-
join parallelism, a sub-class we characterize inductively in Table 1. Informally,
this proof system imposes that processes use their synchronization barriers
according to a stack discipline. When synchronizing, only the last created bar-
rier is available, which exactly corresponds to the traditional notion of a join in
concurrency. Combinatorially, there is a correspondence between these processes

The Combinatorics of Barrier Synchronization 399

Table 1. A proof system for fork-join processes.

σ �F J 0

σ �F J P

σ �F J α.P

σ �F J P σ �F J Q

σ �F J P ‖ Q

B::σ �F J P

σ �F J ν(B) P

σ �F J P

B::σ �F J 〈B〉.P

and the class of series-parallel Posets. In the decomposition both the (B) and
the (I) rule are needed, but following a tree-structured strategy. Most (if not
all) the interesting questions about such partial orders can be answered in (low)
polynomial time.

Theorem 6 (cf. [6]). For a fork join process of size n the counting problem is
of time complexity O(n) and we developed a bit-optimal uniform random sampler
with time complexity O(n

√
n) on average.

5.2 Asynchronism with Promises

We now discuss another interesting sub-class of processes that can also be char-
acterized inductively on the syntax of our process calculus, but this time using
the three BIT-decomposition rules (in a controlled manner). The strict stack
discipline of fork-join processes imposes a form of synchronous behavior: all the
forked processes must terminate before a join may be performed. To support a
limited form of asynchronism, a basic principle is to introduce promise processes.

Table 2. A proof system for promises.

∅ �ctrl 0

π �ctrl P

π �ctrl α.P

π �ctrl P

π ∪ {B} �ctrl 〈B〉.P
B /∈ π π ∪ {B} �ctrl P Q ↑B

π �ctrl ν(B) (P ‖ Q)

with Q ↑B iff Q ≡ α.R and R ↑B or Q ≡ 〈B〉.0

In Table 2 we define a simple inductive process structure composed as follows.
A main control thread can perform atomic actions (at any time), and also fork
a sub-process of the form ν(B) (P ‖ Q) but with a strong restriction:

– a single barrier B is created for the sub-processes to interact.
– the left sub-process P must be the continuation of the main control thread,
– the right sub-process Q must be a promise, which can only perform a sequence

of atomic actions and ultimately synchronize with the control thread.

We are currently investigating this class as a whole, but we already obtained
interesting results for the arch-processes in [7]. An arch-process follows the con-
straint of Table 2 but adds further restrictions. The main control thread can
still spawn an arbitrary number of promises, however there must be two sep-
arate phases for the synchronization. After the first promise synchronizes, the
main control thread cannot spawn any new promise. In [7] a supplementary

400 O. Bodini et al.

constraint is added (for the sake of algorithmic efficiency): each promise must
perform exactly one atomic action, and the control thread can only perform
actions when all the promises are running. In this paper, we remove this rather
artificial constraint considering a larger, and more useful process sub-class.

•a1a1,1•a1,r1 •a2 •
ak•

ak,1•
ak,rk •

c1 •
c1,1•

c1,t1 •
c2 • •ck

•b1,s1

•b1,1

•b2,s2

•b2,1

•bk,sk

•bk,1

•a1a1,1•a1,r1 •a2 •
ak•

ak,1•
ak,rk •

c1 •
c1,1•

c1,t1 •
c2 • •ck

•b1,1

P

•a1a1,1•a1,r1 •a2 •
ak•

ak,1•
ak,rk •

c1 •
c1,1•

c1,t1 •
c2 • •ck

b1,1

b1,1

b1,1

A

BC

Fig. 5. The structure of an arch-process (left) and the inclusion-exclusion counting
principle (right).

In Fig. 5 (left) is represented the general structure of a generalized arch-
process. The ai’s actions are the promise forks, and the synchronization points
are the cj ’s. The constraint is thus that all the ai’s occur before the cj ’s.

Theorem 7. The number of executions of an arch-process can be calculated in
O(n2) arithmetic operations, using a dynamic programming algorithm based on
memoization.

Proof (idea). A complete proof is provided in [7] for “simple” arch-processes, and
the generalization is detailed in the companion document. We only describe the
inclusion-exclusion principle on which our counting algorithm is based. Figure 5
(right) describes this principles (we omit the representation of the other promises
to obtain a clear picture of our approach). Our objective is to count the number
of execution contributed by a single promise with atomic action b1,1. If we denote
by
P this contribution, we reformulate it as a combination
P =
A −
B +
C
as depicted on the rightmost part of Fig. 5. First, we take the “virtual” promise
A going from the starting point a1 of
P until the end point ck of the main
thread. Of course there are two many possibilities if we only keep A. An over-
approximation of what it is to remove is the promise B going from the start
of the last promise (at point ak) until the end. But this time we removed too
many possibilities, which corresponds to promise C. The latter is thus reinserted
in the count. Each of these three “virtual” promises have a simpler counting
procedure. To guarantee the quadratic worst-time complexity (in the number of
arithmetic operations), we have to memoize the intermediate results. We refer
to the companion document for further details. �	

The Combinatorics of Barrier Synchronization 401

From this counting procedure we developed a uniform random sampler fol-
lowing the principles of the recursive method, as described in [10].

Theorem 8. Let P be a promise-process of size n with k ≥ n promises. A ran-
dom sampler of O(n4) time-complexity (in the number of arithmetic operations)
builds uniform executions.

The algorithm and the complete proof are detailed in the companion doc-
ument. One notable aspect is that in order to get rid of the forbidden case of
executions associated to the “virtual” promise B we cannot only do rejection
(because the induced complexity would be exponential). In the generalization of
arch-processes, we proceed by case analysis: for each possibility for the insertion
of b1,1 in the main control thread we compute the relative probability for the
associated process P. This explains the increase of complexity (from O(n2) to
O(n4)) if compared to [7].

5.3 BIT-Free Processes

The class of BIT-decomposable processes is rather large, and we in fact only
uncovered two interesting sub-classes that can be easily captured inductively on
the process syntax. The relatively non-trivial process Sys of Fig. 2 is also inter-
estingly BIT-decomposable. We now adopt the complementary view of trying to
understand the combinatorial structure of a so called “BIT-free” process, which
is not decomposable using only the (B), (I) and (T) rules.

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

a1 a2 a3

b1 b2 b3

Fig. 6. Typical BIT-free substructures, and their BIT “equivalent” (when possible).

The BIT-free condition implies the occurrence of structures similar to the
ones depicted on Fig. 6. These structures are composed of a set of “bottom”
processes (the bi’s) waiting for “top” processes (the aj ’) according to some
synchronization pattern. We represent the whole possibilities of size 3 (up-to
order-isomorphism) in the upper-part of the figure. The upper-left process is
a complete (directed) bipartite graph, which can in fact be “translated” to a
BIT-decomposable process as seen on the lower-part of the figure. This requires
the introduction of a single “synchronization point” between the two process

402 O. Bodini et al.

groups. This transformation preserves the number of executions and is Poset-
wise equivalent. At each step “to the right” of Fig. 6, we remove a directed
edge. In the second and third processes (in the middle), we also have an equiva-
lent with respectively two and three synchronization points. In these cases, the
number of linear extensions is not preserved but the “nature” of the order is
respected: the interleavings of the initial atomic actions are the same. The only
non-transformable structure, let’s say the one “truly” BIT-free is the rightmost
process. Even if we introduce synchronization points (we need at least three of
them), the structure would not become BIT-decomposable. In terms of order
theory such a structure is called a Crown poset. In [9] it is shown that the
counting problem is already �-P complete for partial orders of height 2, hence
directed bipartite digraphs similar to the structures of Fig. 6. One might won-
der if this is still the case when these structures cannot occur, especially in the
case of BIT-decomposable processes. This is for us a very interesting (and open)
problem.

6 Experimental Study

In this section, we put into use the various algorithms for counting and generating
process executions uniformly at random. Table 3 summarizes these algorithms
and the associated worst-case time complexity bounds (when known). We imple-
mented all the algorithms in Python 3, and we did not optimize for efficiency,
hence the numbers we obtain only give a rough idea of their performances. For
the sake of reproducibility, the whole experimental setting is available in the
companion repository, with explanations about the required dependencies and
usage. The computer we used to perform the benchmark is a standard laptop
PC with an I7-8550U CPU, 8Gb RAM running Manjaro Linux. As an initial
experiment, the example of Fig. 2 is BIT-decomposable, so we can apply the bit
and cftp algorithms. The counting (of its 1975974 possible executions) takes
about 0.3 s and it takes about 9 ms to uniformly generate an execution with the
bit sampler, and about 0.2 s with cftp. For “small” state spaces, we observe
that bit is always faster than cftp (Table 4).

Table 3. Summary of counting and uniform random sampling algorithms (time com-
plexity figures with n: number of atomic actions).

Algorithm Class Count. Unif. Rand. Gen. Reference

FJ Fork-join O(n) O(n · √
n) on average [6]

Arch Arch-processes O(n2) O(n4) worst case [7]/Theorem 8

bit BIT-decomposable ? ? Theorem 3

cftpa All processes – O(n3 · log n) expected [14]
aThe cftp algorithm is the only one we did not design, but only implement. Its
complexity is O(n3 · log n) (randomized) expected time.

The Combinatorics of Barrier Synchronization 403

Table 4. Benchmark results for BIT-decomposable classes: FJ and Arch.

For arch-processes of size 100 with 2 arches or 32, the cftp algorithm timeouts
(30s) for almost all of the input graphs.

For a more thorough comparison of the various algorithms, we generated ran-
dom processes (uniformly at random among all processes of the same size) in the
classes of fork-join (FJ) and arch-processes as discussed in Sect. 5, using our own
Arbogen tool5 or an ad hoc algorithm for arch-processes (presented in the com-
panion repository). For the fork-join structures, the size is simply the number of
atomic actions in the process. It is not a surprise that the dedicated algorithms we
developed in [6] outperforms the other algorithms by a large margin. In a few sec-
ond it can handle extremely large state spaces, which is due to the large “branching
factor” of the process“forks”. The arch-processes represent a more complex struc-
ture, thus the numbers are less “impressive” than in the FJ case. To generate the
arch-processes (uniformly at random), we used the number of atomic actions as
well as the number of spawned promises as main parameters. Hence an arch of size
‘n:k’ has n atomic actions and k spawned promises. Our dedicated algorithm for
arch-process is also rather effective, considering the state-space sizes it can han-
dle. In less than a minute it can generate an execution path uniformly at random
for a process of size 200 with 66 spawned promises, the state-space is in the order
of 10130. Also, we observe that in all our tests the observable “complexity” is well
below O(n4). The reason is that we perform the pre-computations (corresponding
to the worst case) in a just-in-time (JIT) manner, and in practice we only actu-
ally need a small fractions of the computed values. However the random sampler is
much more efficient with the separate precomputation. As an illustration, for arch-
processes of size 100 with 32 arches, the sampler becomes about 500 times faster.
However the memory requirement for the precomputation grows very quickly, so
that the JIT variant is clearly preferable.

5 Arbogen is uniform random generation for context-free grammar structures:
cf. https://github.com/fredokun/arbogen.

https://github.com/fredokun/arbogen

404 O. Bodini et al.

In both the FJ and arch-process cases the current implementation of the
bit algorithms is not entirely satisfying. One reason is that the strategy we
employ for the BIT-decomposition is quite “oblivious” to the actual structure of
the DAG. As an example, this strategy handles fork-joins far better than arch-
processes. In comparison, the cftp algorithm is less sensitive to the structure,
it performs quite uniformly on the whole benchmark. We are still confident that
by handling the integral computation natively, the bit algorithms could handle
much larger state-spaces. For now, they are only usable up-to a size of about 40
nodes (already corresponding to a rather large state space).

7 Conclusion and Future Work

The process calculus presented in this paper is quite limited in terms of expres-
sivity. In fact, as the paper makes clear it can only be used to describe (intran-
sitive) directed acyclic graphs! However we still believe it is an interesting “core
synchronization calculus”, providing the minimum set of features so that pro-
cesses are isomorphic to the whole combinatorial class of partially ordered sets.
Of course, to become of any practical use, the barrier synchronization calculus
should be complemented with e.g. non-deterministic choice (as we investigate
in [4]). Moreover, the extension of our approach to iterative processes remains
full of largely open questions.

Another interest of the proposed language is that it can be used to define
process (hence poset) sub-classes in an inductive way. We give two illustrations
in the paper with the fork-join processes and promises. This is complementary to
definitions wrt. some combinatorial properties, such as the “BIT-decomposable”
vs.“BIT-free” sub-classes. The class of arch-processes (that we study in [7] and
generalize in the present paper) is also interesting: it is a combinatorially-defined
sub-class of the inductively-defined asynchronous processes with promises. We
see as quite enlightening the meeting of these two distinct points of view.

Even for the “simple” barrier synchronizations, our study is far from being
finished because we are, in a way, also looking for “negative” results. The count-
ing problem is hard, which is of course tightly related to the infamous “com-
binatorial explosion” phenomenon in concurrency. We in fact believe that the
problem remains intractable for the class of BIT-decomposable processes, but
this is still an open question that we intend to investigate furthermore. By delim-
iting more precisely the “hardness” frontier, we hope to find more interesting
sub-classes for which we can develop efficient counting and random sampling
algorithms.

Acknowledgment. We thank the anonymous reviewers as well as our “shepard” for
helping us making the paper better and hopefully with less errors.

The Combinatorics of Barrier Synchronization 405

References

1. Abbes, S., Mairesse, J.: Uniform generation in trace monoids. In: Italiano, G.F.,
Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 63–75.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1 5

2. Banderier, C., Marchal, P., Wallner, M.: Rectangular young tableaux with local
decreases and the density method for uniform random generation (short version).
In: GASCom 2018, Athens, Greece, June 2018

3. Basset, N., Mairesse, J., Soria, M.: Uniform sampling for networks of automata.
In: Concur 2017, LIPIcs, vol. 85, pp. 36:1–36:16. Schloss Dagstuhl (2017)

4. Bodini, O., Genitrini, A., Peschanski, F.: The combinatorics of non-determinism.
In: FSTTCS 2013, LIPIcs, vol. 24, pp. 425–436. Schloss Dagstuhl (2013)

5. Bodini, O., Genitrini, A., Peschanski, F.: A quantitative study of pure parallel
processes. Electron. J. Comb. 23(1), pp. P1.11, 39 (2016)

6. Bodini, O., Dien, M., Genitrini, A., Peschanski, F.: Entropic uniform sampling
of linear extensions in series-parallel posets. In: Weil, P. (ed.) CSR 2017. LNCS,
vol. 10304, pp. 71–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58747-9 9

7. Bodini, O., Dien, M., Genitrini, A., Viola, A.: Beyond series-parallel concurrent
systems: the case of arch processes. In: Analysis of Algorithms, AofA 2018, LIPIcs,
vol. 110, pp. 14:1–14:14 (2018)

8. Brightwell, G., Winkler, P.: Counting linear extensions is #P-complete. In: STOC,
pp. 175–181 (1991)

9. Dittmer, S., Pak, I.: Counting linear extensions of restricted posets. arXiv e-prints
arXiv:1802.06312, February 2018

10. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation
of labelled combinatorial structures. Theor. Comput. Sci. 132(2), 1–35 (1994)

11. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel algorithms. J.
Parallel Distrib. Comput. 22(2), 251–267 (1994)

12. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1 18

13. Hensgen, D., Finkel, R.A., Manber, U.: Two algorithms for barrier synchronization.
Int. J. Parallel Prog. 17(1), 1–17 (1988)

14. Huber, M.: Fast perfect sampling from linear extensions. Discrete Math. 306(4),
420–428 (2006)

15. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In: PLDI 1988, pp. 260–267. ACM (1988)

16. Oudinet, J., Denise, A., Gaudel, M.-C., Lassaigne, R., Peyronnet, S.: Uniform
Monte-Carlo model checking. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011.
LNCS, vol. 6603, pp. 127–140. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19811-3 10

17. Rival, I. (ed.): Algorithms and Order. NATO Science Series, vol. 255. Springer,
Dordrecht (1989). https://doi.org/10.1007/978-94-009-2639-4

18. Sen, K.: Effective random testing of concurrent programs. In: Automated Software
Engineering ASE 2007, pp. 323–332. ACM (2007)

19. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986)

https://doi.org/10.1007/978-3-662-48057-1_5
https://doi.org/10.1007/978-3-319-58747-9_9
https://doi.org/10.1007/978-3-319-58747-9_9
http://arxiv.org/abs/arXiv:1802.06312
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-3-642-19811-3_10
https://doi.org/10.1007/978-3-642-19811-3_10
https://doi.org/10.1007/978-94-009-2639-4

Parameter Synthesis for Bounded Cost
Reachability in Time Petri Nets

Didier Lime1(B), Olivier H. Roux1, and Charlotte Seidner2

1 École Centrale de Nantes, LS2N UMR CNRS 6004, Nantes, France
Didier.Lime@ec-nantes.fr

2 Université de Nantes, LS2N UMR CNRS 6004, Nantes, France

Abstract. We investigate the problem of parameter synthesis for time
Petri nets with a cost variable that evolves both continuously with time,
and discretely when firing transitions. More precisely, parameters are
rational symbolic constants used for time constraints on the firing of
transitions and we want to synthesise all their values such that the cost
variable stays within a given budget.

We first prove that the mere existence of such values for the param-
eters is undecidable. We nonetheless provide a symbolic semi-algorithm
that is proved both sound and complete when it terminates. We also
show how to modify it for the case when parameters values are integers.
Finally, we prove that this modified version terminates if parameters are
bounded. While this is to be expected since there are now only a finite
number of possible parameter values, this is interesting because the com-
putation is symbolic and thus avoids an explicit enumeration of all those
values. Furthermore, the result is a symbolic constraint representing a
finite union of convex polyhedra that is easily amenable to further anal-
ysis through linear programming.

We finally report on the implementation of the approach in Romeo, a
software tool for the analysis of hybrid extensions of time Petri nets.

1 Introduction

So-called priced or cost timed models are suitable for representing real-time sys-
tems whose behaviour is constrained by some resource consuming (be it energy
or CPU time, for instance) and for which we need to assess the total cost accu-
mulated during their execution. Such models can even describe whether the
evolution of the cost during the run is caused by staying in a given state (con-
tinuous cost) or by performing a given action (discrete cost). Thus, the task
of finding if the model can reach some “good” states while keeping the overall
cost under a given bound (or, further, finding the minimum cost) can prove of
interest in many real-life applications, such as optimal scheduling or production
line planning.

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 406–425, 2019.
https://doi.org/10.1007/978-3-030-21571-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_22

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 407

Timed models, however, require a thorough knowledge of the system for
their analysis and are thus difficult to build in the early design stages, when the
system is not fully identified. Even when all timing constraints are known, the
whole design process must often be caried out afresh, whenever the environment
changes. To obtain such valuable characteristics as flexibility and robustness,
the designer may want to relax constraints on some specifications by allowing
them a wider range of values. To this end, parametric reasoning is particularly
relevant for timed models, since it allows designers to use parameters instead of
definite timing values.

We therefore propose to tackle the definition and analysis of models that
support both (linear) cost functions and timed parameters.

Related Work. Parametric timed automata (PTA) [3] extend timed automata
[2] to overcome the limits of checking the correctness of the systems with respect
to definite timing constraints. The reachability-emptiness problem, which tests
whether there exists a parameter valuation such that the automaton has an
accepting run, is fundamental to any verification process but is undecidable [3].
L/U automata [13] use each parameter either as a lower bound or as an upper
bound on clocks. The reachability-emptiness problem is decidable for this model,
but the state-space exploration, which would allow for explicit synthesis of all the
suitable parameter valuations, still might not terminate [15]. To obtain decid-
ability results, the approach described in [15] does not rely on syntactical restric-
tions on guards and invariants, but rather on restricting the parameter values
to bounded integers. From a practical point of view, this subclass of PTA is
not that restrictive, since the time constraints of timed automata are usually
expressed as natural (or perhaps rational) numbers.

In [4], the authors have proved the decidability of the optimal-cost problem
for Priced Timed Automata with non-negative costs. In [7,8,16], the computa-
tion of the optimal-cost to reach a goal location is based on a forward exploration
of zones extended with linear cost functions. In [12], the authors have improved
this approach, so as to ensure termination of the forward exploration algorithm,
even when clocks are not bounded and costs are negative, provided that the
automaton has no negative cost cycles. In [1], the considered model is a timed
arc Petri net, under weak firing semantics, extended with rate costs associated
with places and firing costs associated with transitions. The computation of the
optimal-cost for reaching a goal marking is based on similar techniques to [4].
In [11], the authors have investigated the optimal-cost reachability problem for
time Petri nets where each transition has a firing cost and each marking has a
rate cost (represented as a linear rate cost function over markings). To compute
the optimal-cost to reach a goal marking, the authors have revisited the state
class graph method to include costs.

Our Contribution. We propose in Sect. 2 an extension of time Petri nets with
costs (both discrete and continuous with time) and timing parameters, i.e., ratio-
nal symbolic constants used in the constraints on the firing times of transitions.

408 D. Lime et al.

Within this formalism, we define two problems dealing with parametric reach-
ability within a bounded cost. We prove in Sect. 3 that the existence of a parame-
ter valuation to reach a given marking under a given bounded cost is undecidable.
This proof adapts a 2-counter machine encoding first proposed in [14] for PTA.
To our knowledge it is the first time a direct Petri net encoding is provided and
the adaptation is not trivial. We give in Sect. 4 a symbolic semi-algorithm that
computes all such parameter valuations when it terminates, and we prove its
correctness. We propose in Sect. 5 a variant of this semi-algorithm that com-
putes integer parameter valuations and prove in Sect. 6 its termination provided
those parameter valuations are bounded and the cost of each run is uniformly
lower-bounded for integer parameter valuations. This technique is symbolic and
avoids the explicit enumeration of all possible parameter valuations. The basic
underlying idea of using the integer hull operator was first investigated in [15] for
PTA, but this is the first time that it is adapted and proved to work with state
classes for time Petri nets, and the fact that it naturally also preserves costs for
integer parameter valuations is new and very interesting. We finally describe in
Sect. 7 the implementation of the approach in the tool Romeo by analysing a
small scheduling case-study.

2 Parametric Cost Time Petri Nets

2.1 Preliminaries

We denote the set of natural numbers (including 0) by N, the set of integers
by Z, the set of rational numbers by Q and the set of real numbers by R. We
note Q≥0 (resp. R≥0) the set of non-negative rational (resp. real) numbers. For
n ∈ N, we let �0, n� denote the set {i ∈ N | i ≤ n}. For a finite set X, we denote
its size by |X|.

Given a set X, we denote by I(X), the set of non empty real intervals that
have their finite end-points in X. For I ∈ I(X), I denotes its left end-point if
I is left-bounded and −∞ otherwise. Similarly, I denotes the right end-point if
I is right-bounded and ∞ otherwise. We say that an interval I is non-negative
if I ⊆ R≥0. Moreover, for any d ∈ R≥0 and any non-negative interval I, we let
I � d be the interval defined by {θ − d | θ ∈ I ∧ θ − d ≥ 0}. Note that this is
again a non-negative interval.

Given sets V and X, a V -valuation (or simply valuation when V is clear
from the context) of X is a mapping from X to V . We denote by V X the set
of V -valuations of X. When X is finite, given an arbitrary fixed order on X, we
often equivalently consider V -valuations as vectors of V |X|. Given a V -valuation
v of X and Y ⊆ X, we denote by v|Y the projection of v on Y , i.e., the valuation
on Y such that ∀x ∈ Y, v|Y (x) = v(x).

2.2 Time Petri Nets with Costs and Parameters

Definition 1 (Parametric Cost Time Petri Net (pcTPN)). A Parametric
Cost Time Petri Net (pcTPN) is a tuple N = (P, T,P, •., .•,m0, Is, costt, costm)
where

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 409

– P is a finite non-empty set of places,
– T is a finite set of transitions such that T ∩ P = ∅,
– P is a finite set of parameters,
– •. : T → N

P is the backward incidence mapping,
– .• : T → N

P is the forward incidence mapping,
– m0 ∈ N

P is the initial marking,
– Is : T → I(N ∪ P) is the (parametric) static firing interval function,
– costt : T → Z is the discrete cost function, and
– costm : NP → Z is the cost rate function.

Given a parameterized object x (be it a pcTPN, a function, an expression,
etc.), and a Q-valuation v of parameters, we denote by v(x) the corresponding
non-parameterized object, in which each parameter a has been replaced by the
value v(a).

A marking is an N-valuation of P . For a marking m ∈ N
P , m(p) represents

a number of tokens in place p. A transition t ∈ T is said to be enabled by a
given marking m ∈ N

P if for all places p, m(p) ≥ •t(p). We also write m ≥ •t.
We denote by en(m) the set of transitions that are enabled by the marking m:
en(m) = {t ∈ T | m ≥ •t}.

Firing an enabled transition t from marking m leads to a new marking m′ =
m − •t + t•. A transition t′ ∈ T is said to be newly enabled by the firing of a
transition t from a given marking m ∈ N

P if it is enabled by the new marking but
not by m−•t (or it is itself fired). We denote by newen(m, t) the set of transitions
that are newly enabled by the firing of t from the marking m: newen(m, t) ={
t′ ∈ en(m − •t + t•) | t′ �∈ en(m − •t) or t = t′

}
.

A state of the net N is a tuple (m, I, c, v) in N
P ×I(R≥0)T ×R×Q

P

≥0, where:
m is a marking of N , I is called the interval function and associates a temporal
interval to each transition enabled by m. Value c is the cost associated with that
state and valuation v assigns a rational value to each parameter for the state.

Definition 2 (Semantics of a pcTPN). The semantics of a pcTPN is a timed
transition system (Q,Q0,→) where:

– Q ⊆ N
P × I(R≥0)T × R × Q

P

≥0

– Q0 = {(m0, I0, 0, v)|v ∈ Q
P

≥0,∀t ∈ T, v(Is(t)) �= ∅} where ∀t ∈ en(m0), I0(t) =
Is(t)

– → consists of two types of transitions:
• discrete transitions: (m, I, c, v) t∈T−−→ (m′, I ′, c′, v) iff

∗ m ≥ •t, m′ = m − •t + t• and v(I(t)) = 0,
∗ ∀t′ ∈ en(m′)

· I ′(t′) = Is(t′) if t′ ∈ newen(m, t),
· I ′(t′) = I(t′) otherwise

∗ c′ = c + costt(t)

• time transitions: (m, I, c, v)
d∈R≥0−−−−→ (m, I � d, c′, v), iff ∀t ∈ en(m),

(I � d)(t) ≥ 0 and c′ = c + costm(m) ∗ d.

410 D. Lime et al.

A run of a pcTPN N is a (finite or infinite) sequence q0a0q1a1q2a2 · · · such
that q0 ∈ Q0, for all i > 0, qi ∈ Q, ai ∈ T ∪ R≥0 and qi

ai−→ qi+1. The set of

runs of N is denoted by Runs(N). We note (m, I, c, v) t@d−−→ (m′, I ′, c′, v) for the
sequence of elapsing d ≥ 0 followed by the firing of the transition t. We denote by
sequence(ρ) the projection of the run ρ over T : for a run ρ = q0

t0@d0−−−−→ q1
t1@d1−−−−→

q2
t2@d2−−−−→ q3

t3@d3−−−−→ · · · , we have sequence(ρ) = t0t1t2t3 · · · . We write q
t

↪−→ q′ if
there exists d ≥ 0 such that q

t@d−−→ q′.
For a finite run ρ we denote by last(ρ) the last state of ρ and by lastm(ρ) its

marking. A state (m, I, c, v) is said to be reachable if there exists a finite run ρ
of the net, with last(ρ) = (m, I, c, v). A marking m is reachable for parameter
valuation v, if there exists some I and c such that (m, I, c, v) is reachable.

For k ∈ N and parameter valuation v, the (Cost) Time Petri net v(N) is said
to be k-bounded if for all reachable markings m, and all places p, m(p) ≤ k. We
say that v(N) is bounded if there exists k such that it is k-bounded.

The cost cost(ρ) of a finite run ρ, with last state (m, I, c, v) is c. Since we
are interested in minimising the cost, the cost of a sequence of transitions σ is
defined as cost(σ) = infρ∈Runs(N),sequence(ρ)=σ cost(ρ). For the sake of the clarity
of the presentation, we consider only closed intervals (or right-open to infinity)
so this infimum is actually a minimum.

2.3 Parametric Cost Problems

Given a set of target markings Goal, the problems we are interested in are:

1. the existential problem: Given a finite maximum cost value cmax, is there a
parameter valuation v such that some marking in Goal is reachable with a
cost less than cmax in v(N)?

2. the synthesis problem: Given a finite maximum cost value cmax, compute all
the parameter valuations v such that some marking in Goal is reachable with
a cost less than cmax in v(N).

We prove in Sect. 3 that the existential problem is undecidable.

3 Undecidability Results

The existential parametric time bounded reachability problem for bounded para-
metric time Petri nets asks whether a given target marking is reachable for some
valuation of the parameter(s) within cmax time units. This is a special case of
the existential cost bounded reachability problem defined in Sect. 2, with no
discrete cost and a uniform cost rate of 1. Proposition 1 therefore implies the
undecidability of that more general problem.

Proposition 1. Existential parametric time bounded reachability is undecidable
for bounded parametric time Petri nets.

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 411

Px≤b

Px=b

Px≥b

Px=a+b

Py≤b

Py=b

Py≥b

Py=a+b

Pz=0 Pz≤b Pz=b Pz≥b Pz=a+b

si

Px Py

okx oky

sj

εz0

[0, 0]
tz=b

[b, b]

εzb

[0, 0]

tz=a+b

[a, a]

εza+b

[0, 0]

tx=a+b[a, a]

tx=b[b, b]

ty=a+b [a, a]

ty=b [b, b]

εxa+b[0, 0]

εxb[0, 0]

εya+b [0, 0]

εyb [0, 0]

start [0, 0]

R(y) [0, 0]R(x)[0, 0]

done [0, 0]

P0 Ploopa

P1 Pa

Px=b

Py=b Pz=0

s0

loopa [a, a]

Ploopb

Pb

loopb [b, b]

ta [a, a] tb [b, b]t1[1, 1]

εa [0, 0] εb [0, 0]ε1[0, 0]

start [0, 0]

1.b) Initialise the parameters a and b

such that: 0 < a ≤ 1 and 0 < b ≤ 1

1.a) Encoding of: when in state si,
increment Cy and go to sj

Fig. 1. Increment Gadget (left) and Initial gadget (right)

Proof. Given a bounded parametric time Petri net N , we want to decide whether
there exists some parameter valuation v such that some given marking can be
reached within cmax time units in v(N). The idea of this proof was first sketched
in [14] for parametric timed automata. We encode the halting problem for two-
counter machines, which is undecidable [18], into the existential problem for
parametric timed Petri nets. Recall that a 2-counter machine M has two non-
negative counters (here Cx and Cy), a finite number of states and a finite number
of transitions, which can be of the form: (1) when in state si, increment a counter
and go to sj ; (2) when in state si, decrement a counter and go to sj ; (3) when in
state si, if a counter is null then go to sj , otherwise block. The machine starts
in state s0 and halts when it reaches a particular state shalt.

Given such a machine M, we now provide an encoding as a parametric time
Petri net NM: each state si of the machine is encoded as place, which we also call
si. The encoding of the 2-counter machine M is as follows: it uses two rational-
valued parameter a and b, and three gadgets shown in Fig. 1a modelling three
clocks x, y, z. Recall that, for a state (m, I, c, v), the enabling time of an enabled
transition t is v(Is(t) − I(t)). For the gadget modelling the clock x, the value of
the clock x is equal to: (i) the enabling time of the transition tx=b when Px≤b is
marked; (ii) b when Px≤b is marked; (iii) the sum of b and the enabling time of
the transition tx=a+b when Px≥b is marked (note that this value is lower than
a + b); (iv) a + b when Px=a+b is marked; (v) an unknown (an irrelevant) value
in all other cases.

The gadget encoding the increment instruction of Cy is given in Fig. 1a. The
clocks x and y store the value of each counter Cx and Cy as follows x = b−a.Cx

and y = b − a.Cy when z = 0. The zero-test gadget is given in Fig. 2. We use
the initial gadget in Figure 1b to initialise a and b such that 0 < a ≤ 1 and
0 < b ≤ 1. The system is studied over 1 time unit.

412 D. Lime et al.

Increment: We start from some encoding configuration: x = b − a.Cx, y =
b − a.Cy and z = 0 in a marking such that the places Pz=0 and si are marked.
After the firing of the transition start, there is an interleaving of the transitions
R(x) and R(y) that go through the gadget. Finally, we can fire the transition
done when z = b (i.e. b − a.Cx later) and we have z = 0, x = b − a.Cx and
y = b−a(Cy +1) as expected. Moreover, v(NM) will block for all the parameter
valuations v which not correctly encode the machine.

Decrement: By replacing the arc from Pz=b to done by an arc from Pz=a+b to
done, the only difference in the previous reasoning is that the elapsing time to fire
done is increased of a. Then we obtain z = 0, x = b + a−a.Cx = b − a.(Cx − 1)
and y = b − a.Cy corresponding to the decrement of Cx.

We can obtain symmetrically (by swapping x and y) the increment of Cx and
the decrement of Cy.

Both the increment gadget and the zero-test gadget require b time units, and
the decrement gadget requires (a+ b) time units. Since the system executes over
1 time unit, for any value of a > 0 and b > 0, the number of operations that the
machine can perform is finite. We consider two cases:

1. Either the machine halts, both counters Cx and Cy are bounded (let c their
maximum value) and the halting and finite execution of the machine is within
m steps. If c = 0 then the machine is a sequence of m zero-test taking m.b
time units and the parametric Petri net NM can go within 1 time unit to a
marking mhalt if 0 < a ≤ 1 and 0 < b ≤ 1

m . If c > 0, since an instruction
requires at most a + b time units, if a + b ≤ 1

m and if 0 < a ≤ b
c then there

exists a run that correctly simulates the machine, and eventually reaches
mhalt within 1 time unit.
This set of valuations is non-empty: for example if c = 0, then we can choose
a = b = 1

m and if c > 0, then, since m ≥ c, we can choose a = b
m and b = 1

1+m

hence a = 1
m(1+m) .

2. Or the machine does not halt. A step requires at least b time units then for
any value v of the parameters, after a maximum number of steps (at most
1
b), one whole time unit will elapse without v(NM) reaching mhalt. ��

4 A Symbolic Semi-algorithm for Parameter Synthesis

4.1 State Classes

We now introduce the notion of state classes for pcTPNs. It was originally
introduced for time Petri nets in [9,10], and extended for timing parameters
in [21], and for costs in [11]. We show that those two extensions seamlessly
blend together.

For an arbitrary sequence of transitions σ = t1 . . . tn ∈ T ∗, let Cσ be the set
of all states that can be reached by the sequence σ from any initial state q0:
Cσ = {q ∈ Q|q0 t1

↪−→ q1 · · · tn
↪−→ q}. All the states of Cσ share the same marking

and can therefore be written as a pair (m,D) where m is the common marking

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 413

Px≤b

Px=b

Px≥b

Px=a+b

Py≤b

Py=b

Py≥b

Py=a+b

Pz=0 Pz≤b Pz=b Pz≥b Pz=a+b

si

Px Py

okx oky

sj

εz0

[0, 0]
tz=b

[b, b]

εzb

[0, 0]

tz=a+b

[a, a]

εza+b

[0, 0]

tx=a+b[a, a]

tx=b[b, b]

ty=a+b [a, a]

ty=b [b, b]

εxa+b[0, 0]

εxb[0, 0]

εya+b [0, 0]

εyb [0, 0]

start [0, 0]

R(y) [0, 0]R(x)[0, 0]

0-test [0, 0]

Fig. 2. Encoding 0-test over bounded-time: when in state si, if Cx = 0 then go to sj

and, if we note en(m) = {t1, . . . , tn}, then D is the set of points (θ1, . . . , θn, c, v)
such that (m, I, c, v) ∈ Cσ and for all ti ∈ en(m), θi ∈ I(ti). For short, we will
often write (θ, c, v) for such a point, with θ = (θ1, . . . , θn) and a small abuse
of notation. We denote by Θ the set of θi variables, of which we have one per
transition of the net: for the sake of simplicity, we will usually use the same
index to denote for instance that θi corresponds to transition ti.

Cσ is called a state class and D is its firing domain.
Lemma 1 equivalently characterises state classes, as a straigthforward refor-

mulation of the definition:

Lemma 1. For all classes Cσ = (m,D), (θ, c, v) ∈ D if and only if there exists a
run ρ in v(N), and I : en(m) → I(Q≥0), such that sequence(ρ) = σ, (m, I, c) =
last(ρ), and θ ∈ I.

From Lemma 1, we can then deduce a characterisation of the “next” class,
obtained by firing a firable transition from some other class. This is expressed
by Lemma 2.

Lemma 2. Let Cσ = (m,D) and Cσ.tf = (m′,D′), we have:

(θ′, c′, v) ∈ D′ iff ∃(θ, c, v) ∈ D s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∀ti ∈ en(m), θi − θf ≥ 0
∀ti ∈ en(m − •tf), θ′

i = θi − θf

∀ti ∈ newen(m, tf), θ′
i ∈ v(Is)(ti)

c′ = c + costm(m) ∗ θf + costt(tf)

Proof. Consider (θ′, c′, v) ∈ D′. Then by Lemma 1, there exists a run ρ′ in v(N),
and I ′ : en(m) → I(Q≥0), such that sequence(ρ′) = σ.tf , (m′, I ′, c′) = last(ρ′),
and θ′ ∈ I ′. Consider the prefix ρ of ρ′ such that sequence(ρ) = σ. The last state
of ρ can be written (m, I, c, v) for some I and c. We know that tf is fired from

414 D. Lime et al.

(m, I, c, v) so there exists some delay d such that I(tf) ≤ d and for all other

transitions ti enabled by m, I(ti) ≥ d. Furthermore, c = c′ − costm(m) ∗ d −
costt(tf). It follows that there exists a point θ ∈ I with the desired properties.

The other direction is similar. ��
Note that according to Lemma 2, D′ is not empty if and only if there exists

(θ, c, v) in D such that for all ti ∈ en(m), θi ≥ θf . In that case we say that tf is
firable from (m,D) and note tf ∈ firable((m,D)).

From Lemma 2, it follows that Cσ.tf can be computed from Cσ using
Algorithm 1. Note that it is formally the same algorithm as in [11].

Given a class C and a transition t firable from C, we note Next(C, t) the
result of applying Algorithm 1 to C and t.

Algorithm 1. Successor (m′,D′) of (m,D) by firing tf

1: m′ ← m − •tf + t•
f

2: D′ ← D ∧ ∧
i�=f,ti∈en(m) θf ≤ θi

3: for all ti ∈ en(m − •tf), i �= f , add variable θ′
i to D′, constrained by θi = θ′

i + θf

4: add variable c′ to D′, constrained by c′ = c + θf ∗ costm(m) + costt(tf)
5: eliminate (by projection) variables c, θi for all i from D′

6: for all tj ∈ newen(m, tf), add variable θ′
j to D′, constrained by θ′

j ∈ Is(tj)

Let C0 = (m0,D0) be the initial class. Domain D0 is defined by the con-
straints ∀ti ∈ en(m0), θi ∈ Is(ti), ∀t ∈ T, Is(t) �= ∅, and c = 0. This gives
a convex polyhedron of R

|en(m0)|+|P|+1
≥0 ; since all the operations on domains in

Algorithm 1 are polyhedral, all the domains of state classes are also convex
polyhedra. Note that only enabled transitions are constrained in the domain of
a state class.

Naturally, we define the cost of state class Cσ as cost(Cσ) = cost(σ).

4.2 The Synthesis Semi-algorithm

In Algorithm 2, we explore the symbolic state-space in a classic manner.
Whenever a goal marking is encountered we collect the parameter valuations
that allowed that marking to be reached with a cost less or equal to cmax.

The Passed list records the visited symbolic states. Instead of checking new
symbolic states for membership, we test a weaker relation denoted by �: does
there exist a visited state allowing more behaviors with a cheaper cost?

For any state class C = (m,D) and any point (θ, v) ∈ D|Θ∪P, the optimal
cost of (θ, v) in D is defined by costD(θ, v) = inf(θ,c,v)∈D c.

Definition 3. Let C = (m,D) and C ′ = (m′,D′) be two parametric cost state
classes. We say that C is subsumed by C ′, which we denote by C � C ′ iff
m = m′, D|Θ∪P ⊆ D′|Θ∪P, and for all (θ, v) ∈ D|Θ∪P, costD′(θ, v) ≤ costD(θ, v).

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 415

Algorithm 2. Symbolic semi-algorithm computing all parameter valuations
such that some markings are reachable with a bounded cost.
1: PolyRes ← ∅
2: Passed ← ∅
3: Waiting ← {(m0, D0)}
4: while Waiting �= ∅ do
5: select Cσ = (m, D) from Waiting
6: if m ∈ Goal then
7: PolyRes ← PolyRes ∪ (

D ∩ (c ≤ cmax)
)

|P
8: end if
9: if for all C′ ∈ Passed, Cσ �� C′ then

10: add Cσ to Passed
11: for all t ∈ firable(Cσ), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes

The following result is a fairly direct consequence of Definition 3:

Lemma 3. Let Cσ1 and Cσ2 be two state classes such that Cσ1 � Cσ2 .
If a transition sequence σ is firable from Cσ1 , it is also firable from Cσ2 and

cost(Cσ1.σ) ≥ cost(Cσ2.σ).

Proof. Let Cσ1 = (m1,D1) and Cσ2 = (m2,D2). From Definition 3, for any
point (θ, c1, v) ∈ D1, there exists a point (θ, c2, v) ∈ D2) such that c2 ≤ c1.
This implies that: (i) cost(Cσ1) ≥ cost(Cσ2); (ii) if transition t is firable from
Cσ1 , then it is firable from Cσ2 and Next(Cσ1 , t) � Next(Cσ2 , t). And the result
follows by a straightforward induction. ��

While � can be checked using standard linear algebra techniques, we can
also reduce it to standard inclusion on polyhedra by removing the upper bounds
on cost (an operation called cost relaxation) [11].

Lemma 4. The following invariant holds after each iteration of the while loop
in Algorithm 2: for all Cσ = (m,D) ∈ Passed,

1. for all prefixes σ′ of σ, Cσ′ ∈ Passed;
2. if m ∈ Goal then

(
D ∩ (c ≤ cmax)

)
|P ⊆ PolyRes;

3. if t is firable from Cσ

– either Cσ.t ∈ Waiting,
– or there exists C ′ ∈ Passed such that Cσ.t � C ′.

Proof. We prove this lemma by induction. Before the while loop starts, Passed
is empty so the invariant is true. Let us now assume that the invariant holds
for all iterations up to the n-th one, with n ≥ 0, and that Waiting �= ∅. Let
Cσ ∈ Waiting be the selected class at line 5; to check whether the invariant
still holds at the end of the (n + 1)-th iteration, we only have to test the case
where Cσ is added to Passed (which means that the condition at line 9 is true).
We can then check each part of the invariant:

416 D. Lime et al.

1. Cσ was picked from Waiting (line 5); except for the initial class (for which σ
is empty, and therefore has no prefix), it means that, in a previous iteration,
there was a sequence σ′ and a transition t ∈ firable(Cσ′) such that σ = σ′.t
(line 11) and Cσ′ ∈ Passed (line 10). Since we add at most one state class to
Passed at each iteration, Cσ′ was added in a previous iteration and we can
apply to it the induction hypothesis, which allows us to prove the first part
of the invariant;

2. lines 6 and 7 obviously imply the second part of the invariant;
3. if Cσ ∈ Passed, then the condition of the if on line 9 is true and then for

any transition t that is firable from Cσ, Cσ.t is added to Waiting (line 11)
so the third part of the invariant holds for Cσ. Nevertheless, Cσ itself is no
longer in Waiting, and it is (except for the initial state class) the successor
of some state class in Passed. But then we have only two possibilities: either
Cσ has been added to Passed in line 10 if the condition on line 9 was true,
and certainly Cσ � Cσ, or there exists C ′ ∈ Passed such that Cσ � C ′ if
that condition was false. Therefore the third part of the invariant holds.

Both the basis case and the induction step are true: the result follows by
induction. ��
Proposition 2. After any iteration of the while loop in Algorithm 2:

1. if v ∈ PolyRes, then there exists a run ρ in v(N) such that cost(ρ) ≤ cmax

and lastm(ρ) ∈ Goal.
2. if Waiting = ∅ then, for all parameter valuations v such that there exists

a run ρ in v(N) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal, we have
v ∈ PolyRes.

Proof. 1. By induction on the while loop: initially, PolyRes is empty so the result
holds trivially. Suppose it holds after some iteration n, and consider iteration
n + 1. Let v ∈ PolyRes after iteration n + 1. If v was already in PolyRes
after iteration n then we can apply the induction hypothesis. Otherwise it
means that if Cσ = (m,D) is the class examined at iteration n + 1, then
m ∈ Goal and v ∈ (

D ∩ (c ≤ cmax)
)
|P. This means that there exists some

point (θ, c, v) ∈ D with c ≤ cmax. By Lemma 1, this means that there exists
a run ρ such that (m, I, c, v) = last(ρ), for some I such that θ ∈ I, and
therefore lastm(ρ) ∈ Goal and cost(ρ) ≤ cmax.

2. Let v be a parameter valuation such that there exists a run ρ in v(N) such
that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal. Let σ = sequence(ρ). We proceed
by induction on the length n of the biggest suffix σ2 of σ such that, either σ2

is empty or, if we note σ = σ1σ2, with the first element of σ2 being transition
t, then Cσ1t �∈ Passed.
If n = 0, then Cσ = (m,D) ∈ Passed. By Lemma 1, v ∈ D|P and m ∈
Goal. From the latter, we have

(
D ∩ (c ≤ cmax)

)
|P ⊆ PolyRes and therefore

v ∈ PolyRes because v ∈ (
D ∩ (c ≤ cmax)

)
|P.

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 417

Consider now n > 0 and assume the property holds for n−1. Since n > 0, then
there exists a transition t and a sequence σ3 such that σ2 = t.σ3. By definition
of σ2, we have Cσ1 ∈ Passed but Cσ1.t �∈ Passed. By Lemma 4, since
Waiting = ∅, there must exists some class Cσ′ such that Cσ1.t � Cσ′ . From
Lemma 3, sequence σ3 is also firable from Cσ′ and Cσ′.σ3 = (m,D′), with
cost(Cσ′.σ3) ≤ cost(Cσ) ≤ cmax. By Lemma 1, there exists thus a run ρ′ in
v(N), with sequence(ρ′) = σ′.σ3, lastm(ρ′) ∈ Goal and cost(ρ′) ≤ cmax. Also,
from Lemma 4 (item 1), we know that for all prefixes of σ′, the corresponding
state class is in Passed, so the biggest suffix of σ′.σ3 as defined above in the
induction hypothesis has length less or equal to n − 1, and the induction
hypothesis applies to ρ′, which allows to conclude. ��
In particular, if the algorithm terminates, then the waiting list is empty and

PolyRes is exactly the solution to the synthesis problem.

5 Restricting to Integer Parameters

Obviously, in general, (semi-)Algorithm 2 will not terminate, since the emptiness
problem for the set it computes is undecidable.

To ensure termination, we can however follow the methodology of [15]: we
require that parameters are bounded integers and, instead of just enumerating
the possible parameter values, we propose a modification of the symbolic state
computation to compute these integer parameters symbolically. For this we rely
on the notion of integer hull.

We call integer valuation a Z-valuation. Note that a Z-valuation is also an
R-valuation, and given a set D of R-valuations, we denote by Ints(D) the set of
integer valuations in D.

The convex hull of a set D of valuations, denoted by Conv(D), is the inter-
section of all the convex sets of valuations that contain D.

The integer hull of a set D of valuations, denoted by IH(D), is defined as the
convex hull of the integer valuations in D: IH(D) = Conv(Ints(D)).

For a state class C = (m,D), we write IH(C) for (m, IH(D)).
Before we see how our result can be adapted for the restriction to integer

parameter valuations, and from there how we can enforce termination of the
symbolic computations when parameters are assumed to be bounded, we need
some results on the structure of the polyhedra representing firing domains of
cost TPNs.

By the Minkowski-Weyl Theorem (see e.g. [20]), every convex polyhedron can
be either described as a set of linear inequalities, as seen above, or by a set of
generators. More precisely, for the latter: if d is the dimension of polyhedron P ,
there exists v1, . . . , vp, r1, . . . , rs ∈ R

d, such that for all points x ∈ P , there exists
λ1, . . . , λp ∈ R, μ1, . . . , μs ∈ R≥0 such that

∑
i λi = 1 and x =

∑
i λivi+

∑
i μiri.

The vi’s are called the vertices of P and the ri’s are the extremal rays of P . The
latter correspond to the directions in which the polyhedron is infinite. In our
case, they correspond to transitions with a (right-)infinite static interval, and
possibly the cost.

418 D. Lime et al.

A classic property of vertices, which can also be used as a definition, is as
follows: v is a vertex of P iff for all non-null vectors x ∈ R

d, either v + x �∈ P
or v − x �∈ P (or both), + and − being understood component-wise.

Proposition 3. Let N be a (non-parametric) cost TPN and let C = (m,D) be
one of its state classes, then D has integer vertices.

Proof. We have proved in [11] that the domain D of a state class of a cost
TPNs, with removed upper bounds on cost (so-called relaxed classes), can be
partitioned into a union of simpler polyhedra

⋃n
i=1 Di that have the following

key properties: (1) by projecting the cost out we obtain a convex polyhedron
Di|Θ with integer vertices (actually a zone, as in [9,17]), and (2) these simpler
polyhedra all have exactly one constraint on the cost variable, i.e., of the form
c ≥ �(θ), with integer coefficients. Note that the same result can be obtained,
with the same technique, if we consider non-relaxed state classes, except that,
we also have an upper bound on cost that is always greater or equal to the lower
bound. We prove in Lemma 5 that each of these simpler polyhedra also has
integer vertices. Since D and each of the Di’s are convex and since D =

⋃
i Di,

D is equal to the convex hull of the vertices of the Di’s and therefore D also has
integer vertices.

Lemma 5. Let D be a convex polyhedron on variables θ1, . . . , θn, c such that
the projection of P on the θ variables has integer vertices, and there are two
constraints on c of the form c ≥ �(θ1, . . . , θn) and c ≤ �′(θ1, . . . , θn), with � and
�′ linear terms with integer coefficients, such that �(θ1, . . . , θn) ≤ �′(θ1, . . . , θn),
for all values of the θi’s.

Then, the vertices of D are the points (θ1, . . . , θn, �(θ1, . . . , θn)) and
(θ1, . . . , θn, �′(θ1, . . . , θn)) such that (θ1, . . . , θn) is a vertex of D|Θ, and they
are integer points.

Proof. Recall here that we consider all constraints in D to be non-strict so
all polyhedra are topologically closed. The reasoning extends with no difficulty
to non-necessarily-closed polyhedra by considering so-called closure points in
addition to vertices [6].

Consider a non-vertex point θ in D|Θ and let (θ, c) be a point of D. Then
using the form of the unique cost constraint, we have c ≥ �(θ). Now since θ is
not a vertex, there exists a vector x such that both θ + x and θ − x belong
to D|Θ. Then, for sure, (θ + x, �(θ + x)) ∈ D and (θ − x, �(θ − x)) ∈ D. And
since � is linear, (θ + x, �(θ) + �(x)) ∈ D, i.e., (θ, �(θ)) + (x, �(x)) ∈ D. And
similarly, (θ, �(θ)) − (x, �(x)) ∈ D. Using again the form of the unique cost
constraint, and the fact that c ≥ �(θ), we finally have (θ, c) + (x, �(x)) ∈ D and
(θ, c) − (x, �(x)) ∈ D, that is, (θ, c) is not a vertex of D.

By contraposition, any vertex of D extends a vertex of D|Θ, and using a last
time the form of the cost constraint, any vertex of D, is of the form (θ, �(θ)),
with θ a vertex of D|Θ: suppose (θ, c) is a vertex of D, with c > �(θ), then for
x defined with c − �(θ) on the cost variable, and 0 on all other dimensions, we
clearly have both (θ, c) + x and (θ, c) − x in D, which is a contradiction.

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 419

We conclude by remarking that, since D|Θ has integer vertices, all the coor-
dinates of θ are integers, and since � has integer coefficients then �(θ) is an
integer.

We can deal with the upper bound defined by �′ in exactly the same way. ��
From Proposition 3, we can prove the following lemma that will be very

useful in the subsequent proofs.

Lemma 6. Let (m,D) be a state class of a pcTPN and let (θ, c, v) be a point
in D.

If v is an integer valuation, then (θ, c, v) ∈ IH(D).

Proof. Since (θ, c, v) ∈ D then (θ, c) ∈ v(D). By Proposition 3, v(D) being the
firing domain of a state class in a (non-parametric) cost TPN, it has integer
vertices, and therefore v(D) = IH(v(D)). Point (θ, c) is therefore a convex com-
bination of integer points in v(D). Clearly, for all integer points (θ′, c′) in v(D),
we have that (θ′, c′, v) is an integer point of D. Since D is convex, this implies
that (θ, c, v) ∈ IH(D). ��

When we restrict ourselves to integer parameter but continue to work sym-
bolically, we need to adjust the definitions of the firability of a transition from
a class and of the cost of a class.

First, a transition tf is firable for integer parameter valuations from a class
(m,D), call this N

P-firable, if there exists an integer parameter valuation v and
a point (θ, c, v) in D such that for all transitions ti ∈ en(m), θi ≥ θf .

Lemma 7. Let C = (m,D) be a state class. Transition tf ∈ en(m) is N
P-firable

from C if and only if it is firable (not necessarily N
P-firable) from (m, IH(D)).

Proof. ⇐: trivial because IH(D) ⊆ D.
⇒: since tf is NP-firable from C, there exists an integer parameter valuation

v, and (θ, c, v) ∈ D such that for all transitions ti ∈ en(m), θi ≥ θf . And the
result follows from Lemma 6 because v is an integer valuation. ��

Second, the cost of a class C = (m,D), for integer parameters, is costN(C) =
inf(θ,c,v)∈D,v∈NP c.

Lemma 8 is a direct consequence of Lemma 6:

Lemma 8. Let (m,D) be a state class. We have: costN((m,D)) = cost((m,
IH(D)).

Lemma 9. If v is an integer parameter valuation, then for all classes Cσ =
(m,D), (θ, c, v) ∈ IH(D) if and only if there exists a run ρ in v(N), and I :
en(m) → I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ), and θ ∈ I.

Proof. ⇒: if (θ, c, v) ∈ IH(D) then it is also in D and the result follows from
Lemma 1.

⇐: by Lemma 1, we know that there exists some (θ, c, v) ∈ D, and since v is
an integer valuation, by Lemma 6, (θ, c, v) ∈ IH(D). ��

420 D. Lime et al.

Lemma 10. Let Cσ1 and Cσ2 be two state classes such that IH(Cσ1) � IH(Cσ2).
If a transition sequence σ is N

P-firable from Cσ1 it is also N
P-firable from

Cσ2 and costN(Cσ1.σ) ≥ costN(Cσ2.σ).

Proof. Let Cσ1 = (m1,D1) and Cσ2 = (m2,D2). From Definition 3, for any
point (θ, c1, v) ∈ IH(D1), there exists a point (θ, c2, v) ∈ IH(D2) such that
c2 ≤ c1. With Lemmas 7 and 8, this implies that: (i) costN(Cσ1) ≥ costN(Cσ2);
(ii) if transition t is N

P-firable from Cσ1 , then it is N
P-firable from Cσ2 and

Next(Cσ1 , t) � Next(Cσ2 , t). And, as before, the result follows by a straightfor-
ward induction. ��

Algorithm 3. Restriction of (semi-)Algorithm 2 to integer parameter
valuations.
1: PolyRes ← ∅
2: Passed ← ∅
3: Waiting ← {(m0, D0)}
4: while Waiting �= ∅ do
5: select Cσ = (m, D) from Waiting
6: if m ∈ Goal then
7: PolyRes ← PolyRes ∪ (

IH(D) ∩ (c ≤ cmax)
)

|P
8: end if
9: if for all C′ ∈ Passed, IH(Cσ) �� IH(C′) then

10: add Cσ to Passed
11: for all t ∈ firable(IH(Cσ)), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes

Using Lemma 9 instead of Lemma 1, and Lemma 10 instead of Lemma 3 in the
proof of Proposition 2, we get the following proposition, stating the completeness
and soundness of Algorithm 3.

Proposition 4. After any iteration of the while loop in Algorithm 3:

1. if v ∈ PolyRes and v is an integer parameter valuation then there exists a run
ρ in v(N) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal.

2. if Waiting = ∅ then for all integer parameter valuations v such that there
exists a run ρ in v(N) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal, we have
v ∈ PolyRes.

In Algorithm 3, we compute state classes as usual then handle them via
their integer hulls. We can actually simply integrate integer hulls at the end of
Algorithm 1 and use Algorithm 2 with this updated successor computation as
proved by Lemma 11.

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 421

Lemma 11. Let (m,D) be a state class of a pcTPN N , and t a transition firable
from C. Let (m′,D′) = Next((m,D), t) and (m′′,D′′) = Next((m, IH(D)), t).
Then m′′ = m′ and IH(D′′) = IH(D′).

Proof. The equality of markings is trivial so we focus on firing domains.
By definition of the integer hull, we have IH(D) ⊆ D. Since the computation

of the next class domain is non-decreasing with respect to inclusion, we then
have D′′ ⊆ D′. Taking the integer hull is also non-decreasing wrt. inclusion, so
IH(D′′) ⊆ IH(D′).

Consider now an integer point (θ′, c′, v) in D′. Then (θ′, c′) ∈ v(D′). Consider
state class computations in the (non-parametric) cost TPN v(N): there exists
some point (θ, c) in v(D) such that (m′,θ′, c′) ∈ Next((m, {(θ, c)}), t). Since
(θ, c, v) thus belongs to D and since v is an integer parameter valuation, by
Lemma 6, we have that (θ, c, v) ∈ IH(D). Thus (θ′, c′, v) ∈ D′′ and since it is an
integer point, it is in IH(D′′). ��

6 Termination of Algorithm 3

We now consider that parameter valuations are bounded by some value M1 ∈ N

(and that they still have integer values). We also assume that, for all integer
parameter valuations, there exists M2 ∈ Z such that for all runs ρ in v(N),
cost(ρ) ≥ M2: this allows us, as in [11,12], to keep Algorithm 3 simple by
doing away with negative cost loop-checking. Finally, we assume the net itself
is bounded: there exists M3 ∈ N such that for all reachable markings m, for all
places p, m(p) ≤ M3.

To prove the termination of Algorithm 3 under these assumptions, we con-
sider � the symmetric relation to �, such that x � y iff y � x. We prove that it
is a well quasi-order (wqo), i.e., that for every infinite sequence of state classes,
there exist C and C ′ in the sequence, with C strictly preceding C ′ such that
C � C ′. This implies that the exploration of children in Algorithm 3 will always
eventually stop.

Proposition 5. Let N be a bounded pcTPN, with bounded integer parameters
and such that the cost of all runs is uniformly lower-bounded for all integer
parameter valuations.

Relation � is well-quasiorder on the set of state classes of N .

Proof. Consider an infinite sequence C0, C1, C2, . . . of state classes. Let Ci =
(mi,Di).

From [11], we know that � is a wqo for the state classes of bounded (non
parametric) cost TPNs. So for each integer parameter valuation v, and using a
classic property of wqo we can extract a subsequence of v(C0), v(C1), . . . that is
completely ordered by �. And since, we have a finite number of such parameter
valuations, we can extract an infinite subsequence Ci0 , Ci1 , . . . such that for all
integer parameter valuations v, v(Ci0) � v(Ci1) � · · · .

Let us consider two of those: Cir and Cis , with r < s.

422 D. Lime et al.

Since IH(Dis) has integer vertices, and for any integer parameter valuation,
v(Cir) � v(Cis), which implies that v(Dis) ⊆ v(Dir), then all the vertices of
Dis are also in Dir . Now assume that some extremal ray r of Dis is not in Dir .
Then starting from some vertex x of Dir , there must be some λ ≤ 0 such that
x + λr �∈ Dis and the same holds for any λ′ ≥ λ (by convexity). But since
r has rational coordinates for some value of λ′, λ′r is an integer vector and
so is x + λ′r, which contradicts the fact that v(Dis) ⊆ v(Dir), for all integer
parameter valuations v, and in particular (x + λ′r)|P. We can therefore conclude
that Dir ⊆ Dis and we now proceed to proving that Dis is also “cheaper” than
Dir .

We use another property of the vertices of convex polyhedra: vertices of a
convex polyhedron of dimension n defined by m inequalities

∑n
k=1 aklxk ≤ bl,

for j ∈ [1..m] are solutions of a system of n linearly independent equations∑n
k=1 aklxk = bl, with l in a subset of size n of [1..m].
Now consider the polyhedron D obtained from IH(Dir), with its cost variable

c, by adding one variable c′ constrained by the cost inequalities of IH(Dis).
Clearly, since c and c′ are not constrained together, the vertices of D are those
of IH(Dir), extended with the corresponding minimal and maximal values of c′,
and symmetrically those of IH(Dis), extended with the corresponding minimal
and maximal values of c′. Since the inequalities constraining c and c′ have integer
coefficients, and IH(Dis) and IH(Dir) have integer vertices, D also has integer
vertices.

For the i-th lower-bound inequality on c, and the j-th lower-bound inequal-
ity on c′, we define Eij as D in which we transform both constraints into
equalities. Clearly, from the property above, this does not add any new ver-
tex, but it may remove some. Second, by construction, we have

⋃
ij Eij =

{(θ,min(θ ,c,v)∈IH(Dir)
c,min(θ ,c,v)∈IH(Dis)

c)|θ ∈ IH(Dr)|Θ}. If we minimize c − c′

over Ei, we know from the theory of linear programming that the minimum is
obtained at a vertex of Eij , and therefore, in particular, for an integer valuation v
of the parameters, and an integer vector θ of Dir . Since we have v(Cir) � v(Cis),
we then know that for these values of the theta variables and parameters, c ≤ c′.
This means that this holds for the whole of Eij , and finally that Cir � Cis . ��

7 Case Study

We now consider a scheduling problem where some tasks include runnables, a
key concept of the AUTomotive Open System ARchitecture (AUTOSAR), the
open standard for designing the architecture of vehicle software [5]. Runnables
represent the functional view of the system and are executed by the runtime of
the software component [19]. For their execution they are mapped to tasks and
a given runnable can be split across different tasks to introduce parallelism, for
instance. In industrial practice, runnables that interact a lot are mapped to the
same task, in particular when they perform functions with the same period.

In this example, we consider 3 non-preemptive, periodic tasks T1, T2 and T3,
on which have already been mapped some runnables that interact together; we

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 423

add another independent runnable whose code must be split between tasks T1
and T2:

– the period of task T1 is 100 time units; T1 includes a “fixed part”, indepen-
dent from the new runnable and whose execution lasts 22 t.u.;

– the period of T2 is 200 t.u.; T2 also has a fixed part lasting 28 t.u.;
– the period of T3 is 400 t.u.; its execution lasts 11 t.u.;
– the period of the runnable is 200 t.u.; its execution lasts 76 t.u.; parameter a

denotes the duration of the section that is executed in T11.

The processing unit consists of 2 cores C0 and C1; T3 can only execute on C0
whereas both T1 and T2 can execute on either core. When both cores are idle,
the cost is null; when only one core is busy, the cost is equal to 2/t.u.; when both
cores are busy, the cost is equal to 3/t.u. Any optimised strategy to divide the
runnable over T1 and T2 and to allocate these tasks to C0 or C1 must therefore
favour the cases where both cores are in the same state.

Figure 3 presents the model for this problem2. The associated cost function
is: 2∗ (C0 �= C1)+3∗C0∗C1+1000∗(

W1∗ (R1C0+R1C1)+W2∗ (R2C0+R2C1)+

W3 ∗ R3C0
)
, where the name of a place (e.g. R1C0) represents its marking3.

We limit the study of the system to the first 400 t.u., at the end of which T1
has been executed 4 times, T2 twice and T3 once. A preliminary analysis (not

1

idle1

1

idle2

1 W1 1 W2 1 W3

R1C0 R2C0 R3C0

4 Task1 2 Task2 1 Task3

R1C1 R2C1

four two one

T1
 [100; 100]

T2
 [200; 200]

T3
 [400; 400]

T1C0

C0==0

C0 = 1;

T2C0

C0==0

C0 = 1;
T3C0

C0==0

C0 = 1;

end1_C0
 [22+a; 22+a]

C0 = 0;

end2_C0
 [104-2*a; 104-2*a]

C0 = 0;

end3_C0
 [11; 11]

C0 = 0;

T1C1

C1==0

C1 = 1;

T2C1

C1==0

C1 = 1;

end1_C1
 [22+a; 22+a]

C1 = 0;

end2_C1
 [104-2*a; 104-2*a]

C1 = 0;

Fig. 3. Offline non preemptive scheduling problem

1 Every 200 t.u., since T1 is executed twice as often as T2, T1 is running during
(22+a)∗2 = 44+2a t.u. whereas T2 is running during 28+(76−2a) = 104−2a t.u.

2 To ensure a correct access to the cores, we could have added one place for each
core and some arcs on each task to capture and release them but the resulting net
would have been quite unreadable. Instead, we chose to add 2 integer variables C0
and C1 (both initialised to 0); a variable equal to 0 (resp. 1) obviously means the
corresponding core is idle (resp. busy).

3 The last term ensures that such cases where an instance of a task is activated while
a previous one is running are heavily penalised.

424 D. Lime et al.

Task1 C0
C1

Task2 C0
C1

Task3 C0

t
0 40 80 120 160 200 240 280 320 360 400

Task1 C0
C1

Task2 C0
C1

Task3 C0

t
0 40 80 120 160 200 240 280 320 360 400

Fig. 4. Gantt charts for a = 17 (above) and a = 13 (below)

detailed here for the sake of concision) showed that the lowest cost is 466. By
setting our maximal cost to this value, we then check the following property
with our Romeo tool: EF four==4 and two==2 and one==1 and cost≤466.
The answer provided by Romeo is that the property is true iff a ∈ [13, 17].
We then set a to 17; Romeo yields the following timed trace, in which the nota-
tion T1@t1 means that transition T1 is fired at date t1: T1C0@61, T2C1@69, T1@100,

end1 C0@100, T1C0@100, end1 C0@139, end2 C1@139, T1@200, T2@200, T2C0@261, T1C1@261,

T1@300, end1 C1@300, T1C1@303, end2 C0@331, T3C0@331, end3 C0@342, end1 C1@342.
From this trace, we obtain the Gantt chart in Fig. 4 (above). Setting a to 13

yields another timed trace, resulting in the Gantt chart in Fig. 4 (below). In both
cases, we can see that both cores are busy during 148 t.u. (and for 11 t.u., only
one is idle), which confirms our analysis on the optimised strategy above.

8 Conclusion

We have proposed a new Petri net-based formalism with parametric timing and
cost features, thus merging two classic lines of work. For this formalism, we define
an existential problem and a synthesis problem for parametric reachability within
a bounded cost. We prove that the former is undecidable but we nonetheless give
and prove a symbolic semi-algorithm for the latter. We finally propose a variant
of the synthesis algorithm suitable for integer parameter valuations and prove
its termination when those parameter valuations are bounded, and some other
classic assumptions. This symbolic algorithm avoids the explicit enumeration of
all possible parameter valuations. It is implemented in our tool Romeo and we
have reported on a case-study addressing a scheduling problem, and inspired by
the AUTOSAR standard.

Further work includes computing the optimal cost as a function of parameters
and investigating the case of costs (discrete and rates) as parameters.

Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets 425

References

1. Abdulla, P.A., Mayr, R.: Priced timed Petri nets. Log. Meth. Comput. Sci. 9(4)
(2013)

2. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–
235 (1994)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM
Symposium on Theory of Computing, pp. 592–601 (1993)

4. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
Theor. Comput. Sci. 318(3), 297–322 (2004)

5. AUTOSAR: specification of RTE software. Technical report 4.4.0, October 2018
6. Bagnara, R., Hill, P., Zaffanella, E.: Not necessarily closed polyhedra and the

double description method. Form. Asp. Comput. 17, 222–257 (2005)
7. Behrmann, G., et al.: Minimum-cost reachability for priced time automata. In:

Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol.
2034, pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45351-2 15

8. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (2005)

9. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Soft. Eng. 17(3), 259–273 (1991)

10. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: IFIP, pp. 41–46. Elsevier Science Publishers (1983)

11. Boucheneb, H., Lime, D., Parquier, B., Roux, O.H., Seidner, C.: Optimal reacha-
bility in cost time Petri nets. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 58–73. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-65765-3 4

12. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4 28

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. J. Log. Algebr. Program. 52–53, 183–220 (2002)

14. Jovanović, A.: Parametric verification of timed systems. Ph.D. thesis, École Cen-
trale Nantes, Nantes, France (2013)

15. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. (TSE) 41(5), 445–461 (2015)

16. Larsen, K., et al.: As cheap as possible: effcient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 47

17. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60249-6 41

18. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs (1967)

19. Naumann, N.: AUTOSAR runtime environment and virtual function bus. Technical
report, Hasso-Plattner-Institut (2009)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
21. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch

Petri nets. J. Univers. Comput. Sci. 15(17), 3273–3304 (2009)

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/978-3-319-65765-3_4
https://doi.org/10.1007/978-3-319-65765-3_4
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-60249-6_41

Models with Extensions

Coverability and Termination
in Recursive Petri Nets

Alain Finkel1, Serge Haddad1,2, and Igor Khmelnitsky1,2(B)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
{alain.finkel,serge.haddad,igor.khmelnitsky}@ens-paris-saclay.fr

2 Inria, Paris, France

Abstract. In the early two-thousands, Recursive Petri nets have been
introduced in order to model distributed planning of multi-agent systems
for which counters and recursivity were necessary. Although Recursive
Petri nets strictly extend Petri nets and stack automata, most of the
usual property problems are solvable but using non primitive recursive
algorithms, even for coverability and termination. For almost all other
extended Petri nets models containing a stack the complexity of cover-
ability and termination are unknown or strictly larger than EXPSPACE.
In contrast, we establish here that for Recursive Petri nets, the cover-
ability and termination problems are EXPSPACE-complete as for Petri
nets. From an expressiveness point of view, we show that coverability
languages of Recursive Petri nets strictly include the union of coverabil-
ity languages of Petri nets and context-free languages. Thus we get for
free a more powerful model than Petri net.

Keywords: Recursive Petri nets · Expressiveness · Complexity ·
Coverability · Termination

1 Introduction

Verification Problems for Petri Nets. Petri net is a useful formalism for
analysis of concurrent programs for several reasons. From a modelling point of
view (1) due to the locality of the firing rule, one easily models concurrent activ-
ities and (2) the (a priori) unbounded marking of places allows to represent a
dynamic number of activities. From a verification point of view, all usual prop-
erties are decidable. However Petri nets suffer two main limitations: they cannot
model recursive features and the computational cost of verification may be very
high. More precisely, all the known algorithms solving reachability are non prim-
itive recursive (see for instance [21]) and it has been proved recently that the

A. Finkel—The work of this author was carried out in the framework of ReLaX,
UMI2000 and also supported by ANR-17-CE40-0028 project BRAVAS.
S. Haddad—The work of this author was partly supported by ERC project EQualIS
(FP7-308087).

c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 429–448, 2019.
https://doi.org/10.1007/978-3-030-21571-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_23

430 A. Finkel et al.

reachability problem is non elementary [4]. Fortunately some interesting proper-
ties like coverability, termination and boundedness are EXPSPACE-complete [22]
and thus still manageable by a tool. So an important research direction consists
of extending Petri nets to support new modelling features while still preserving
decidability of properties checking and if possible with a reasonable complexity.

Extended Petri Nets. Such extensions may partitionned between those whose
states are still markings and the other ones. The simplest extension consists in
adding inhibitor arcs which yields undecidability of all verification problems.
However adding a single inhibitor arc preserves the decidability of the reacha-
bility, coverability, and boundedness problems [2,3,23]. When adding reset arcs,
the coverability problem becomes Ackermann-complete and boundedness unde-
cidable [24].

In ν-Petri nets the tokens are coloured where colours are picked in an infinite
domain: their coverability problem is double Ackermann time complete [18]. In
Petri nets equipped with a stack, the reachability and coverability problems
are not only TOWER-hard [4,16] but their decidability status is still unknown.
In branching vector addition systems with states (BVASS) a state is a set of
threads with associated markings. A thread either fires a transition as in Petri
nets or forks, transferring a part of its marking to the new thread. For BVASS,
the reachability problem is also TOWER-hard [17] and its decidability is still
an open problem while the coverability and the boundedness problems are 2-
EXPTIME-complete [6]. In Petri nets with a stack, the reachability problem may
be reduced to the coverability problem and both are at least not elementary
while their decidability status is still unknown [16]. The analysis of subclasses
of Petri nets with a stack is an active field of research [1,5,20,25]. However for
none of the above extensions, the coverability and termination problems belong
to EXPSPACE.

Recursive Petri Nets (RPN). This formalism has been introduced in order
to model distributed planning of multi-agent systems for which counters and
recursivity were necessary for specifying resources and delegation of subtasks [7].
Roughly speaking, a state of an RPN consists of a tree of threads where the local
state of each thread is a marking. Any thread fires an elementary or abstract
transition. When the transition is elementary, the firing updates its marking
as in Petri nets; when it is abstract, this only consumes the tokens specified
by the input arcs of the transition and creates a child thread initialised with
the starting marking of the transition. When a marking of a thread covers one
of the final markings, it may perform a cut transition pruning its subtree and
producing in its parent the tokens specified by the output arcs of the abstract
transition that created it. In RPN, reachability, boundedness and termination
are decidable [11,12] by reducing these properties to reachability problems of
Petri nets. So the corresponding algorithms are non elementary. Model checking
is undecidable for RPN but becomes decidable for the subclass of sequential
RPN [13]. In [14], several modelling features are proposed while preserving the
decidability of the verification problems.

Coverability and Termination in Recursive Petri Nets 431

Our Contribution. We first study the expressive power of RPN from the point
of view of coverability languages (reachability languages were studied in [11]). We
first introduce a quasi-order on states of RPN compatible with the firing rule and
establish that it is a not a well quasi-order. We show that the languages of RPN
are quite close to recursively enumerable languages since the closure under homo-
morphism and intersection with a regular language is the family of recursively
enumerable languages. More precisely, we show that coverability (as reachabil-
ity) languages of RPN strictly include the union of context-free languages and
Petri net coverability languages. On an other side, we prove that coverability
languages of RPN and reachability languages of Petri nets are incomparable. In
addition, we establish that the family of languages of RPN is closed by union,
homomorphism but not by intersection with a regular language.

From an algorithmic point of view, we show that coverability and termination
are EXPSPACE-complete, as for Petri nets. Thus the increasing of expressive
power does not entail a corresponding increasing in complexity. In order to solve
the coverability problem, we show that if there exists a covering sequence there
exists a ‘short’ one (i.e. with a length at most doubly exponential w.r.t. the size
of the input). The core of the proof consists in turning an arbitrary covering
sequence into a structured one where all threads perform their firings in one
shot. In order to solve the termination problem, we consider two cases for an
infinite sequence depending (informally speaking) whether the depth of the trees
corresponding to states is bounded or not along the sequence.

Outline. In Sect. 2, we introduce RPNs and state ordering and establish basic
results related to these notions. In Sect. 3, we study the expressiveness of cov-
erability languages. Then in Sects. 4 and 5, we show that the coverability and
termination problems are EXPSPACE-complete. In Sect. 6, we conclude and give
some perspectives to this work. All missing proofs can be found in [8].

2 Recursive Petri Nets

2.1 Presentation

An RPN has a structure akin to a ‘directed rooted tree’ of Petri nets. Each
vertex of the tree, hereafter thread, is an instance of the RPN and possessing
some marking on it. Each of these threads can fire three types of transitions.
An elementary transition updates its own marking according to the usual Petri
net firing rule. An abstract transition consumes tokens from the thread firing
it and creates a new child (thread) for it. The marking of the new thread is
determined according to the fired abstract transition. A cut transition can be
fired by a thread if its marking is greater or equal than some marking in a finite
set of final markings. Firing a cut transition, the thread erases itself and all of
its descendants. Moreover, it creates tokens in its parent, which are specified by
the abstract transition that created it.

Definition 1 (Recursive Petri Net). A Recursive Petri Net is a 6-tuple N =
〈P, T,W+,W−, Ω,F〉 where:

432 A. Finkel et al.

– P is a finite set of places;
– T = Tel �Tab is a finite set of transitions with P ∩T = ∅, and Tel (respectively

Tab) is the subset of elementary (respectively abstract) transitions;
– W− and W+ are the N

P×T backward and forward incidence matrices;
– Ω : Tab → N

P is a function that labels every abstract transition with a starting
marking;

– F is a finite set of final markings.

Figure 1 graphically describes an example of an RPN with:

P = {pini, pfin, pbeg, pend} ∪ {pbi
, pai

: i ≤ 2};
Tel = {tb1 , tb3 , ta1 , ta3 , tsa, tsb} ; Tab = {tbeg, tb2 , ta2};
F = {pend, pbeg}.

and for instance W−(pini, tbeg) = 1 and Ω(tb2) = pbeg (where pbeg denotes the
marking with one token in place pbeg and zero elsewhere).

For brevity reasons, we denote by W+(t) a vector in N
P , where for all p ∈ P

W+(t)(p) = W+(p, t), and do the same for W−(t).

pbeg

pa1

pa2

pend

pb1

pb2

pini

pfin

ta1

ta2
pbeg

ta3

tb1

tb2 pbeg

tb3

tsb

tsa

tbeg pbeg

0 (the root rs)

0

pend

tbeg

tb2

s - A state of N

F = {pend, pbeg}

RPN N

Fig. 1. An example of an RPN with the palindrome language on Σ = {a, b} (see the
proof of Proposition 2 in [8]).

A state s of an RPN is a labeled tree representing relations between threads
and their associated markings. Every vertex of s is a thread and edges are labeled
by abstract transitions.

Definition 2 (State of an RPN). A state s = 〈V,M,E,Λ〉 of an RPN N =
〈P, T,W+,W−, Ω,F〉 is a 4-tuple where:

– V is a finite set of vertices;
– M : V → N

P is a function that labels vertices with markings;

Coverability and Termination in Recursive Petri Nets 433

– E ⊆ V × V is a set of edges such that (V,E) is a Λ-labeled directed tree;
– Λ : E → Tab is a function that labels edges with abstract transitions.

In the following, we denote by: Vs := V , Ms := M , Es := E and Λs := Λ.
For example, on the right side of Fig. 1 there is a state of the RPN N . The

state consists of three threads with markings 0,0, and pend (where 0 is the
null marking) and two edges with the labels tbeg, tb2 . Since a state consists of a
directed tree, it has a root thread denoted by rs.

Let s be a state of some RPN. Since a state has the structure of a directed
tree every thread u has a predecessor, denoted by prd(u), except the root. We
call the vertices v for which there exists (u, v) ∈ E a child of u. The descendants
of a thread u consists of threads in the sub-tree rooted in u including u itself.
We denote this set by Dess(u). Similarly the ancestors of u are the threads for
which u is a descendant of, i.e. Ascs(u) = {v | u ∈ Dess(v)}. Denote by ⊥
the empty tree. As usual two markings m,m′ ∈ N

P over a set of places P are
partially order as follows: m ≤ m′ if for all places p ∈ P , m(p) ≤ m′(p).

The RPN moves from one state to another by one of the threads firing an
elementary, abstract or cut transition. Let us present the first two kinds:

Definition 3 (operational semantics). Let N = 〈P, T,W+,W−, Ω,F〉 be
an RPN, s be a state with some thread v and t be a transition (elementary or
abstract). We say that t ∈ T is fireable by v from s = 〈V,M,E,Λ〉 if M(v) ≥
W−(t) . In this case, its firing leads to the state s′ = 〈V ′,M ′, E′, Λ′〉, denoted
s

(v,t)−−−→ s′, where s′ is defined below:

– If t ∈ Tel then s′ = 〈V,M ′, E, Λ〉 where M ′(u) = M(u) for all u ∈ V \ {v}
and M ′(v) = M(v) − W−(t) + W+(t);

– If t ∈ Tab then:
• V ′ = V ∪ {w} where w is a fresh identifier (w �∈ V);
• M ′(u) = M(u) for all u ∈ V \{v}, M ′(v) = M(v)−W−(t) and M ′(w) =

Ω(t);
• E′ = E ∪ {(v, w)};
• Λ′(e) = Λ(e) for all e ∈ E and Λ((v, w)) = t.

Figure 2 illustrates the cases of an abstract and elementary transition firing.
The first transition tbeg ∈ Tab, is fired by the root. Its firing results in a state
for which the root has a new child (denoted by v) and a new outgoing edge
with label tbeg. The marking of the root is decreased to 0 and v gets the initial
marking Ω(tbeg) = pbeg. The second firing is due to an elementary transition
tb1 ∈ Tel which is fired by v. Its firing results in a state for which the marking
of v is changed to M ′

s(v) = Ms(v) + W+(tb1) − W−(tb1) = pb1 .
We now introduce the last type of transition: cut transition. Given a state
s = 〈V,M,E,Λ〉 and a thread v ∈ V , we denote by s\v the state s′ =
〈V ′,M ′, E′, Λ′〉 , with:

– V ′ = V \ Dess(v);

434 A. Finkel et al.

– M ′ is the restriction of M on V ′, and if v �= r, M ′(prd(v)) = M(prd(v)) +
W+(Λ(prd(v), v));

– E′ = E ∩ (V ′ × V ′);
– Λ′ is the restriction of Λ on E′.

Note that if v is the root of the tree then s\v = ⊥.

Definition 4 (τ cut transition). Let N = 〈P, T,W+,W−, Ω,F〉 be an RPN,
s = 〈V,M,E,Λ〉 be a state of N and v ∈ V . We say that τ is fireable by v from

sand reaches s′, denoted by s
(v,τ)−−−→ s′, if and only if there exists m ∈ F such

that M(v) ≥ m and s′ = s\v.

For example, in Fig. 2 the fifth transition to be fired is the cut transition τ ,
fired by the thread with the marking pend (denoted by w). Its firing results in a
state where the thread w is erased and its parent has its marking increased by
W+(tb2) = pb2 .

A firing sequence is a sequence of transition firings, written in detailed way:

s0
(v1,t1)−−−−→ s1

(v2,t2)−−−−→ · · · (vn,tn)−−−−→ sn, or when the context allows it, in a more con-
cise way like s0

σ−→ sn for σ = (v1, t1)(v2, t2) . . . (vn, tn). Infinite firing sequences
are similarly defined. A thread is final (respectively initial) w.r.t. σ if it occurs in
the final (respectively initial) state of σ. We say that v ∈ Desσ(u) if there exists
i ≤ n such that v ∈ Dessi

(u). We call σ′ a subsequence of σ, denoted by σ′ � σ,
if there exists i1 < i2 < . . . ik ≤ n such that: σ′ = (vi1 , ti1)(vi2 , ti2) . . . (vik

, tik
).

pini 0

pbeg v

tbeg

0

pb1

tbeg

0

0

pbeg

tbeg

tb2 0

0

pend w

tbeg

tb2

0

pb2

tbeg

0

pend

tbeg

pfin

tbeg tb1 tb2
tsa

τtb3τ

Fig. 2. Firing sequence for the RPN in Fig. 1

Remark 1. In the rest of the paper, anywhere we write “RPN N” we will mean
N = 〈P, T,W+,W−, Ω,F〉, unless we explicitly write differently.

Coverability and Termination in Recursive Petri Nets 435

2.2 An Order for Recursive Petri Nets

We now define a quasi-order on the states of an RPN. Given two states s, s′ of
an RPN N we say that s is smaller or equal than s′ if there is a subtree in s′

which is isomorphic to s, where markings are greater or equal on each vertex,
and such that the labels on the edges fulfill W+(t) ≥ W+(t′).

Definition 5. Given two states s = 〈V,M,E,Λ〉 and s′ = 〈V ′,M ′, E′, Λ′〉 of an
RPN N , we say that s � s′ if and only if there exists an injective total function
f : V → V ′ such that:

1. For any edge (u, v) ∈ E, we have (f(u), f(v)) ∈ E′;
2. For any edge (u, v) ∈ E, we have W+(Λ(u, v)) ≤ W+(Λ′(f(u), f(v)));
3. For any thread v ∈ V , we have M(v) ≤ M ′(f(v)).

Figure 3 illustrates this quasi-order. The state on the right is greater than
the one on the left, if W+(t) ≥ W+(t′).

2 · p1

p2

t

p1

p2

t′
�

Fig. 3. Example of order between two states.

Lemma 1. The relation � is a quasi-order.

This quasi-order is not a partial order since there could be abstract transitions
t �= t′ with W+(t) = W+(t′).

A quasi-order ≤ on the states of an RPN is strongly compatible (as in [9]) if

for all states s ≤ s′ and firing s
(v,t)−−−→ s1 there exist s′

1 and a firing s′ (v′,t)−−−→ s′
1

with s1 ≤ s′
1.

Lemma 2. The quasi-order � is strongly compatible.

Note that, even though this quasi-order is compatible it may contain an
infinite set of incomparable states (i.e. an infinite antichain). For example, see
Fig. 4 where any two states si and sj are incomparable. Indeed for any i < j: (1)
si �� sj since |Vsj

| > |Vsi
| there cannot be any injective function from Vsj

to Vsi
,

and (2) sj �� si since for any injective function from Vsi
to Vsj

at least one of
the threads with the marking p would be mapped to a thread with marking 0.

Since RPNs are not well ordered they are not well-structured transition sys-
tems [9] for which coverability is often solved in EXPSPACE. Therefore to solve
coverability, one needs to find another way.

436 A. Finkel et al.

s1

s2

sn

..
.

p 0 p

t t

p 0 0 p

t t t

p 0 0 0 p

t t t t

Fig. 4. An example for an antichain of states

3 Expressiveness

Expressiveness of a formalism may be defined by the family of languages that
it can generate. In [11], expressiveness of RPNs was studied using reachability
languages. In the next section, we are going to establish that the coverability
problem for RPNs has a lower complexity than the one of the reachability prob-
lem for RPNs. Thus we want to study the coverability languages in order to
determine whether this lower complexity has an impact on the expressiveness of
the RPN formalism. So we equip any transition t with a label λ(t) ∈ Σ ∪ {ε}
where Σ is a finite alphabet and ε is the empty word. The labelling is extended
to transition sequences in the usual way with the cut transitions labelled by the
empty word. Thus given a labelled marked RPN N and a finite subset of states
Sf , the (coverability) language L(N , Sf) is defined by:

L(N , Sf) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

i.e. the set of labellings for sequences covering some state of Sf in N .
As already announced, languages of RPNs are closed by union.

Proposition 1. Coverability languages of RPNs are closed by union.

The next theorem has two interesting consequences: the languages of RPNs
are not closed by intersection with a regular language and this family is quite
close to recursively enumerable languages.

Theorem 1. Let L be a recursively enumerable language. Then there exists an
RPN language L1, a regular language R2 and a homomorphism h such that
L = h(L1 ∩ R2).

Proof. The result was stated in Proposition 9 of [10] for reachability languages
but it also works for coverability languages since the reachability condition of
the proof could easily be transformed into a coverability condition. ��

Obviously the coverability languages of RPNs include the one of PNs. In
order to show its expressive power, let us introduce context-free grammars and
languages. Let G = (V,Σ,R, S) be a context-free grammar defined by V the non
terminal symbols including S, the start symbol and Σ the terminal symbols.

Coverability and Termination in Recursive Petri Nets 437

The set of rules R is defined by R = {r1, . . . , rn} such that ri = (vi, ui), with
vi

ri−→ ui, vi ∈ V and ui ∈ (V ∪ Σ)∗ a word of length ni. W.l.o.g. one assumes
that the start symbol S does not occur in the right-hand side of any production
rule of G and that ni > 0 except possibly for a rule S → ε. Given a word αviβ ∈
(V ∪Σ)∗, an application of rule ri yields the word αuiβ, denoted αviβ

ri−→ αviβ.
A derivation from α to β is a consecutive application of a sequence of rules, and
is denoted α

σ−→ β. The associated language L(G) is defined by:

L(G) = {w ∈ Σ∗ | ∃σ S
σ−→ w}

Proposition 2. Context-free languages are included in coverability languages of
RPNs.

The next lemma witnesses a Petri net language interesting from an expres-
siveness point of view.

Proposition 3. Let Σ = {a, b, c} and L1 = {ambncp | m ≥ n ≥ p}. Then L1 is
the coverability language of some Petri net and is not a context-free language.

Using the previous results, the next theorem emphasises the expressive power
of coverability languages of RPNs.

Theorem 2. Coverability languages of RPNs strictly include the union of cov-
erability languages of PNs and context-free languages.

Proof. The inclusion is an immediate consequence of Proposition 2. Consider
the language L2 = L1 ∪ {ww̃ | w ∈ {d, e}∗} where w̃ is the mirror of w.
Since (1) by Proposition 1, coverability languages of RPNs are closed by union,
(2) L1 is a PN language, and (3) the language of palindromes is a context-free
language, we deduce that L2 is an RPN language.
PN and context-free languages are closed by homomorphism. Since the projec-
tion of L2 on {a, b, c} is the language of Proposition 3, L2 is not a context-free
language. Since the projection of L2 on {d, e} is the language of palindroms, L2

is not a PN language (see [15]). ��
The next proposition establishes that, as for Petri nets, coverability does not

ensure the power of “exact counting”.

Proposition 4. Let Σ = {a, b, c} and L3 = {anbncn | n ∈ N}. Then L3 is the
reachability language of some Petri net and is not the coverability language of
any RPN.

Proof. Consider the net below and pf be the single marking to be reached. Then
its language is L3.

•
ε ε pf

a b c

438 A. Finkel et al.

Assume that there exists a pair (N , Sf) such that L3 = L(N , Sf). Define the
subset of abstract transitions Tε such that for t ∈ Tε there exists a firing sequence
labelled by ε starting from a single thread marked by Ω(t) that reaches the empty
tree. Adding a set of elementary transitions {tε | t ∈ Tε} where t and tε have
same incidence does not modify the language of the net. For all n, let σn be
a coverability sequence such that λ(σn) = anbncn and σ′

n be the prefix of σn

whose last transition corresponds the last occurrence of a. Denote sn the state
reached by σ′

n and the decomposition by σn = σ′
nσ′′

n. Among the possible σn, we
select one such that sn has a minimal number of threads.

Case 1. There exists a bound B of the depths of the trees corresponding to
{sn}n∈N. Let SB be the set of states of depth at most B. Observe that S0 =
N

P and SB can be identified to N
P × Multiset(Tab × SB−1). Furthermore the

(component) order on N
P and the equality on Tab are well quasi-orders. Since well

quasi-ordering is preserved by the multiset operation and the cartesian product,
SB is well quasi-ordered by an quasi-order denoted <. By construction, s ≤ s′

implies s � s′. Thus there exist n < n′ such that sn � sn′ which entails that
σ′

n′σ′′
n is a covering sequence with trace an′

bncn yielding a contradiction.

Case 2. The depths of the trees corresponding to sn are unbounded. Let C be
a strict upper bound of the depths of the initial state and the final states. There
exists n such that the depth of sn is greater than (4|Tab| + 1)C. Thus in sn,
there are threads v1, v2 and v3 and v4 in the same branch at levels respectively
i1C, i2C, i3C and i4C with 0 < i1 < i2 < i3 < i4 created along σn by the firing
of the same abstract transition t. Denote Tr the subtree of the final state of σn

that matches the state to be covered and Br the branch leading to Tr in the
final state. Due to the choice of C, there exists 1 ≤ i ≤ 4 such that:

– Bri, the branch from vi to vi+1, does not intersect Tr;
– either Bri does not intersect Br or Bri is included in Br.

For k ∈ {i, i+1}, consider the trace wk of the sequence performed in the subtree
rooted in vk by the firings of σn.
Case wi = wi+1. Then one can build another covering sequence with trace
anbncn by mimicking in vi the behaviour of vi+1 leading to another state sn with
less threads yielding a contradiction, since sn was supposed to have a minimal
number of threads.
Case wi �= wi+1. Let w �= ε the trace of the sequence performed in the subtree
rooted in vi without the trace of the sequence performed in the subtree rooted in
vi+1. Then one can build another covering sequence σ by mimicking in vi+1 the
behaviour of vi. The trace of σ is an interleaving of anbncn and w which implies
that w = aqbqcq for some q > 0. Furthermore σ can be chosen in such a way
that the firing subsequences in the subtrees rooted at vi and vi+1 are performed
in one shot which implies that its trace is . . . aqaqwi+1b

qcqbqcq . . . yielding a
contradiction. ��

The following corollary shows that extending coverability languages of Petri
nets substituting (1) coverability by reachability or (2) Petri nets by RPNs are
somewhat “orthogonal”.

Coverability and Termination in Recursive Petri Nets 439

Corollary 1. The families of reachability languages of Petri nets and the cov-
erability languages of RPNs are incomparable.

Proof. One direction is a consequence of Proposition 4 while the other direction
is a consequence of Proposition 2 observing that the language of palindromes is
not the reachability language of any Petri net. ��

The next corollary exhibits a particular feature of RPNs languages (e.g. not
fulfilled by Petri nets or context-free languages)

Corollary 2. Coverability languages of RPNs are not closed by intersection with
a regular language.

Proof. Due to Proposition 4, coverability languages of RPNs are strictly
included in recursively enumerable languages. Since it is closed by homomor-
phism, Theorem 1 implies that it is not closed by intersection with a regular
language. ��

4 Coverability Is EXPSPACE-Complete

Let N be an RPN and sini, star be two states of N . The coverability problem asks
whether there exists a firing sequence sini

σ−→ s � star. Such a sequence σ with
initial and target states, is called a covering sequence. The section is devoted to
establishing that this problem is EXPSPACE-complete. The EXPSPACE-hardness
follows immediately from the EXPSPACE-hardness of the coverability problem
for Petri nets [19].

In [22], Rackoff showed that the coverability problem for Petri nets belongs
to EXPSPACE. More precisely, he proved that if there exists a covering sequence,
then there exists a ‘short’ one:

Theorem 3. (Rackoff [22]). Let N be a Petri net, mini, mtar be markings and
σ be a firing sequence such that mini

σ−→ m ≥ mtar. Then there exists a sequence

σ′ such that mini
σ′
−→ m′ ≥ mtar with |σ′| ≤ 22

cn log n

for some constant c and n
being the size of (N ,mtar).

So to solve the coverability problem on Petri nets, one guesses a sequence
of length at most 22

cn log n

, checking at the same time whether it is a cover-
ing sequence in exponential space. Which shows that the coverability problem
belongs to NEXPSPACE = EXPSPACE by Savitch’s theorem.

We follow a similar line and more specifically, we show that if there exists
a covering sequence sini

σ−→ s � star in an RPN N , then there exists a ‘short’
covering sequence σ′.

First, we establish that the final state of a covering sequence can be chosen
with a limited number of threads (Proposition 5). Then we enlarge the RPN
N with new elementary transitions getting ̂N , leaving the coverability problem
unchanged. The interest of ̂N is that a covering sequence (when it exists) can
be chosen with a particular form that we call well-sequenced without increasing

440 A. Finkel et al.

its length (Proposition 6). In order to come back to N , we establish that the
firing of an additional transition of ̂N can be simulated by a short sequence in
N (Proposition 7). Proposition 8 combines these intermediate results to get an
upper bound for a short covering sequence.

Let σ be a firing sequence. A thread is extremal w.r.t. σ if it is an initial
or final thread. We show that we can bound the number of extremal threads
in a covering sequence. In the sequel, the size of the input of the coverability
problem is denoted by η, i.e. the accumulated size of the RPN, the initial and
target states. Recall that Ascs(v) is the set of ancestors of v in s.

Proposition 5. Let N be an RPN and sini
σ−→ s � star be a covering sequence.

Then there is a sequence sini
σ′
−→ s′ � star such that |Vs′ | ≤ 3η.

Proof. If star = ⊥ then σ′ = ε is the appropriate sequence. Otherwise denote
f : Vstar

→ Vs the injective mapping associated with star � s. Let U =
Ascs(f(rstar

))\{f(rstar
)} be the branch in s leading to the vertex corresponding

to the root of star. Consider the set V = Vs \ (U ∪f(Vstar
)). Then one can delete

in σ all transitions fired from threads in Desσ(V) and those that created the
threads of V and still get a covering sequence.

u

σ1 σ2 σ3 σ4

�

σ1 σ′
3

�

Choosing not to fire σ2 and σ4 and the abstract transition
that creates u in σ3, still provides a covering sequence.

The thread that fires σi

f(Vstar) U

Now assume that on the branch U , two edges (u1, v1) and (u2, v2) are labelled
by the same transition where u2 is a descendent of u1 and v1 /∈ Vsini

. Then
one can delete all transitions fired in the subbranch from v1 to u2 and subtitute
transitions (v2, t) by transitions (v1, t) and still get a covering sequence. So
|U \ Vsini

| ≤ |Tab|.

Coverability and Termination in Recursive Petri Nets 441

u1

v1

t

u1

v1

v2

t

t

u1

v1

v2

t

t

σ1 σ2 σ3

�
u1

v1

t

u1

v1

t
σ′
1 σ3

�

Changing v2 to v1 we can fire σ3

without firing σ2.

Thus: |Vs| ≤ |Vsini
| + |U \ Vsini

| + |Vstar
| ≤ |Vsini

| + |Tab| + |Vs| ≤ 3η ��
Let Tret ⊆ Tab, the set of returning transitions be defined by: t ∈ Tret if there

exists a firing sequence (called a return sequence): st
σt−→ ⊥, where Vst

= {vt},
Mst

(vt) := Ω (t), and Est
= Λst

= ∅. For any t ∈ Tret, we define σt to be some
arbitrary shortest return sequence.

As mentioned before, we get ̂N from N by adding elementary transitions as
follows.

Definition 6. (̂N). Let N = 〈P, T,W+,W−, Ω,F〉 be an RPN. Then ̂N is an
RPN where ̂N =

〈

P, ̂T , ̂W+, ̂W−, Ω,F
〉

, where ̂T is T with additional elemen-

tary transitions, and ̂W+, ̂W− are updated accordingly: ̂Tel = Tel�{tr : t ∈ Tret},
and for any new transition tr, ̂W−(tr) = W−(t) and ̂W+(tr) = W+(t).

The key ingredient of the existence of a short sequence is that in ̂N every
sequence can be turned into a well-sequenced sequence reaching the same state.
Along such a sequence, (1) there are only extremal threads, (2) firings are per-
formed in one shot by threads, and (3) only initial threads disappear and final
threads perform firings of abstract transitions.

Definition 7. Let N be an RPN and σ be a firing sequence. Then σ is well-
sequenced if σ = σ1(v1, τ)σ2(v2, τ) . . . σ�(v�, τ)σ�+1σ

ab
�+1 . . . σkσab

k where:

– The threads vi are initial for 1 ≤ i ≤ ;
– The threads vi are final for + 1 ≤ i ≤ k;
– The firing sequence σi ∈ ({vi} × Tel)∗ for 1 ≤ i ≤ k;
– The firing sequence σab

i ∈ ({vi} × Tab)∗ for + 1 ≤ i ≤ k.

Proposition 6. Let N be an RPN and s
σ−→ s′ be a firing sequence. There exists

a well-sequenced firing sequence s
σ̂−→ s′ in ̂N , with |σ̂| ≤ |σ|.

Proof. (sketch, full proof in [8]). By construction, σ is fireable from s to s′ in ̂N .
Therefore all we are left with turning σ into a well-sequenced sequence.

442 A. Finkel et al.

Assume that an extremal thread u fires t ∈ Tab which creates a non-extremal
thread v disappearing by the cut transition (v, τ) occurring in σ. For all such
v’s let us (1) delete from σ the step (u, t), and all the firings from Desσ(v) and
(2) replacing the step (v, τ) by (u, tr). After this operation, no cut transition
matches the firing of an abstract transition. Assume that an initial and not final
thread u fires abstract transitions. Then one deletes these firings and all firings
in the descendants of u. So along σ, there are only extremal threads.

Let us establish the other requirements on σ by induction on the number of
extremal threads. There are three cases when adding a new thread with maximal
depth:

1. This thread is an initial thread and a leaf in the final state. Then we can push
the sequence of firings it performs to the end of the sequence.

2. The thread is final and not initial. Hence the subsequence of firings it performs
in σ consists of elementary transition firings that can be fired at the end of σ.
Furthermore, the abstract transition that created it can be fired at the end
of the firing sequence of its parent.

3. This thread is initial and not final (i.e. in {v1, . . . , v�}). Hence the subsequence
of firings it performs in σ consists of elementary transition firings possibly
ended by a cut transition. If the cut transition occurs, the subsequence can
be fired immediately. Otherwise, it can be omitted.

This concludes the proof. ��
In order to recover from a sequence in ̂N a sequence in N , for every t ∈

Tret one has to simulate the firings of a transition tr by sequence σt. Therefore
bounding the length of σt is critical.

Proposition 7. Let N be an RPN and t ∈ Tret. Then the returning sequence
σt fulfills |σt| ≤ 2·2dn log n

for some constant d and n = size(N).

Proof. Let us enumerate Tret = {t1, . . . , tK} in such a way that i < j implies
|σti

| ≤ |σtj
|. Observe first that the shortest returning sequences do not include

firings of abstract transitions not followed by a matching cut transition since it
could be omitted as it only deletes tokens in the thread. We argue by induction
on k ≤ K that:

|σtk
| < 2k·2cn log n

where c is the Rackoff constant

For k = 1, we know that σt1 has a minimal length over all returning sequences.
Hence there are no cuts in σt1 except the last one. Due to the above observation,
σt1 only includes firing of elementary transitions. Thus the Rackoff bound of
Theorem 3 applies for a covering of some final marking.

Assume that the result holds for k − 1. Due to the requirement on lengths,
σtk

only includes cuts from threads created by ti ∈ Tret with i < k. Thus by
Proposition 6 we get a sequence σ̂tk

· (vtk
, τ) in ̂N . The sequence σ̂tk

consists of
only elementary steps and does not contain any transition tri with i ≥ k. The
marking reached by σ̂tk

covers some final marking, hence by Theorem 3 there

Coverability and Termination in Recursive Petri Nets 443

exists a covering sequence σ̂′
tk

such that |σ̂′
tk

| ≤ 22
cn log n

. Since σ̂tk
does not

contain firing of tri with i ≥ k this also holds for σ̂′
tk

. Substituting any firing of
tri by the sequence σti

, one gets a corresponding sequence σ′
tk

in N . Using the
induction hypothesis, one gets that the length of this sequence:

|σ′
tk

| ≤ |σ̂t′
k
|2(k−1)·2cn log n ≤ 22

cn log n · 2(k−1)·2cn log n ≤ 2k·2cn log n

From minimality of σtk
, one gets |σtk

| ≤ |σ′
tk

| ≤ 2k·2cn log n

which concludes the
proof since

max
t∈Tret

{|σt|} ≤ 2|Tret|·2cn log n ≤ 2n2cn log n ≤ 22
(2c)n log n

.

��
Combining all previous results, we can now bound the length of a shortest

covering sequence:

Proposition 8. Let N be an RPN, and sini
σ−→ s � star. Then there exists a

covering sequence of length shorter than 22
eη log η

, where e is some constant and
η = size(N , sini, star).

Proof. Using Proposition 5 we can assume that |Vsini
∪ Vs| ≤ 3η. Using Propo-

sition 6 one gets a well-sequenced sequence sini
σ̂−→ s in ̂N , such that:

σ̂ = σ1(v1, τ)σ2(v2, τ) . . . σ�(v�, τ)σ�+1σ
ab
�+1 . . . σkσab

k ,

where σab
i = (vi, ti,1) . . . (vi, ti,ni

). Observe that k ≤ |Vsini
∪ Vs|.

We now show that there is a short covering sequence in ̂N . Let f : Vstar
→ Vs

the function associated with s � star. Each of the σi is a sequence whose final
marking of vi covers some marking:

1. For i ≤ , a final marking of the net;
2. For i > and vi /∈ f(Vstar

),
∑

j W−(ti,j);
3. For i > and vi ∈ f(Vstar

),
∑

j W−(ti,j) + Mstar
(f−1(vi)).

Since all σi contain only elementary steps, using Theorem 3, one gets as sequence
σ′

i with |σ′
i| ≤ 22

cη log η

covering the marking specified by the three cases above.

Define the sequence s
σ̂′
−→ s′ where each σi is replaced by σ′

i. Using case 3, for
all v ∈ Vstar

Ms′(f(v)) ≥ Mstar
(v). Therefore s′ � star, and the length of σ̂′ is

at most:

|σ̂′| =
k

∑

i=1

|σ′
i| +

�
∑

i=1

|(vi, τ)| +
k

∑

i=�+1

|σab
i | ≤ 3η22

cη log η

+ 3η + 3η ≤ 22
2cη log η

.

Substituting any firing of tri by σti
in σ̂′ we get a covering sequence σ′ in N .

Using Proposition 7, its length fulfills:

|σ′| ≤ |σ̂′| · 2·2dn log n ≤ 2·2en log n

for some constant e. ��

444 A. Finkel et al.

Using Proposition 8 we establish the complexity of the coverability problem.

Theorem 4. The coverability problem for RPNs is EXPSPACE-complete.

Proof. According to Proposition 8, if there is a covering sequence then there
is one with length at most 22

eη log η

and no more than 4η threads. Hence one
guesses a sequence of at most this length and checks simultaneously whether
it is a covering sequence in exponential space. This shows that the coverability
problem belongs to NEXPSPACE = EXPSPACE by Savitch theorem. ��

5 Termination Is EXPSPACE-Complete

Let N be an RPN and sini be an initial state of N . The termination problem asks
whether there exists an infinite firing sequence starting from sini. In [22] Rackoff
showed that the termination problem on Petri net is solvable in exponential
space:

Theorem 5 (Rackoff). The termination problem for Petri nets is EXPSPACE-
complete.

We aim to show that the termination problem for RPN is EXPSPACE-complete.
EXPSPACE-hardness follows immediately from EXPSPACE-hardness of the ter-
mination problem for Petri nets [19].

We first introduce and solve the constrained termination problem which asks
whether there exists an infinite firing sequence starting from sini which does not
delete any threads of sini. Accordingly, a constrained firing sequence is a firing
sequence that does not delete any initial thread. The size of the input of the
termination problem is denoted by η.

A main ingredient of the proof is a construction of an abstract graph related
to the firing of abstract transitions. To this aim, let m be a marking then s[m]
is the state with a single thread whose marking is m.

Definition 8 (abstract graph). Let N be an RPN and sini be an initial state.
Let GN ,sini

= (Va, Ea,Ma) be a labelled directed graph defined by:

1. Va = {vt | t ∈ Tab} � Vsini
;

2. Ma : Va → N
P where for all v in Vsini

, Ma(v) = Msini
(v)

and for all t in Tab, Ma(vt) := Ω(t);
3. Ea ⊂ Va × Va such that for all t ∈ Tab and v ∈ Va, (v, vt) ∈ Ea if there exists

a firing sequence σ from the state s[Ma(v)] ending by a firing (v, t).

Equivalently assertation 3 means that the edge (v, vt) belongs to Ea if there
exists a covering sequence s[Ma(v)] σ−→ s � s[W−(t)]. Thus building the abstract
graph amounts to solving a quadratic number of coverability problems. Using
Theorem 4, one can build it in EXPSPACE.

Let us illustrate the abstract graph in Fig. 5 corresponding to the RPN of
Fig. 1. Here the initial state is s[pini]. For clarity, we have renamed the abstract

Coverability and Termination in Recursive Petri Nets 445

v vt
vta

vtb

Fig. 5. An abstract graph for the RPN in Fig. 1

transitions as follows: t := tbeg, ta := ta2 , tb := tb2 . For instance, the existence
of the edge from vt to vta is justified by the firing sequence (vt, ta1)(vt, ta).

Let σ be an infinite firing sequence. We say that σ is deep if it reaches a state
s whose depth is greater than |Tab|+ |Vsini

|. Otherwise, we say that σ is shallow.
To solve the constrained termination problem it suffices to show whether the
RPN has such an infinite sequence, either shallow or deep.

The next lemma establishes that lassos of the abstract graph are witnesses
of deep constrained infinite sequences in an RPN:

Lemma 3. Let N be an RPN and sini be an initial state. Then there is a deep
constrained infinite sequence starting from sini if and only if there is a path from
u ∈ Vsini

to a cycle in GN ,sini
.

We now show that for any shallow sequence σ there is a thread v which fires
infinitely many times in σ.

Lemma 4. Given N an RPN with an initial state s, and σ a shallow sequence.
Then there is a thread v that fires infinitely many times in σ.

Next, show that given a state consisting of one thread, one can check in
EXPSPACE the existence of a shallow sequence which fires infinitely many times
from this (root) thread.

Lemma 5. Let N be an RPN and m be a marking. Then one can check whether
there exists an infinite sequence starting from s[m] with the root firing infinitely
many times.

Proof. There is a sequence firing infinitely many times from the root in N start-
ing from s[m] if and only if there is one in ̂N starting from s[m]. Define ̂N e

to be the Petri net with the same places as ̂N , and whose set of transitions is
the union of the elementary transitions of ̂N and the set {t− | t ∈ Tab} where
W−(t−) = W−(t) and W+(t−) = 0. We claim that there is a sequence firing
infinitely many times from the root in ̂N starting from s[m] if and only if there
is an infinite sequence in ̂N e starting from m.

For one direction, assume there exists such σ in ̂N . One eliminates in σ the
cut steps by increasing occurrence order as follows. Let (vi, τ) be a cut step and
(vj , tj) be the step that creates vi. Then one deletes all the steps performed by
the descendants of vi and replaces (vj , tj) by (vj , t

r
j). Let σ′ be the sequence

obtained after this transformation. In σ′, the root still fires infinitely often since

446 A. Finkel et al.

no firing performed by the root has been deleted (but sometimes substituted by
an elementary firing). Moreover, σ′ has no more cut steps. One eliminates in σ′

the abstract firings by increasing occurrence order as follows. Let (r, ti) be an
abstract firing that creates thread v. Then one deletes all the steps performed
by the descendants of v and replaces (r, ti) by (r, t−i). Let σ′′ be the sequence
obtained after this transformation. In σ′′, the root still fires infinitely often since
no firing performed by the root has been deleted (but sometimes substituted by
an elementary firing). Moreover σ′′ has only elementary steps. So it is an infinite
sequence of ̂N e.

The other direction is immediate. By Theorem 5, one can check in EXPSPACE
whether there exists an infinite sequence on ̂N e with initial marking m. ��

Summing the results for shallow and deep sequences we get:

Proposition 9. The constrained termination problem of RPN belongs to
EXPSPACE.

Proof. The algorithm proceeds as follows. It builds in EXPSPACE the abstract
graph and it checks whether there is a constrained deep infinite sequence using
the characterisation of Lemma 3. In the negative case, it looks for a constrained
shallow infinite sequence. To this aim, it checks in EXPSPACE for any reachable
vertex v from Vsini

in GN ,sini
, whether there exists an infinite sequence starting

from s[Ma(v)] with the root firing infinitely many times. The complexity follows
from Lemma 5 while its correctness follows from Lemma 4. ��

We now prove that the termination problem is EXPSPACE by reducing it in
EXPSPACE to an exponential number of instances of the constrained termination
problem with similar size:

Theorem 6. The termination problem of RPN is EXPSPACE-complete.

Proof. W.l.o.g. we assume that N has been enlarged to ̂N since the termina-
tion problem remains unchanged by this transformation. Let σ be an infinite
firing sequence and U be the subset of initial threads that disappear along σ.
Let σ′ be the shortest finite prefix of σ such that all threads of U have disap-
peared. Using Proposition 6, σ′ can be assumed to be well-sequenced. Con-
sider σU , the prefix of σ′ which deletes the threads of U and sU the state
reached by σU . State sU is defined as follows: VsU

= Vs \ U , EsU
(respec-

tively ΛsU
) is the restriction of Es (respectively Λs) to VsU

and MsU
(v) =

Msini
(v) +

∑

(v,u)∈Esini
∧u∈U W+(Λ(v, u)). Using the same proof as in Propo-

sition 8 the length of some σU (when it exists) is at most doubly exponential.
An infinite firing sequence starting from s exists if and only if there exists

an infinite constrained sequence from one of its reachable sU
′s′. For any U ⊆ V

one checks whether sU is reachable from s, and, in the positive case, solves the
constrained termination problem for sU . This can be done in EXPSPACE. Finally,
there are only 2η possible subsets U ⊆ Vs, repeating the process described above
for every subset U solves the termination problem of RPN in EXPSPACE. ��

Coverability and Termination in Recursive Petri Nets 447

6 Conclusion

We have proven that RPN is a strict generalisation of both Petri nets and
stack automata without increasing the complexity of coverability and termi-
nation problems. It remains several open problems about languages of RPN
and decidability/complexity of checking properties. Here is a partial list of open
problems: Is the family of covering languages of RPN included in the family
of reachability languages of RPN? How to decide whether a word belongs to
a coverability or reachability language of a RPN? What is the complexity of
the boundedness and finiteness problems? Since the ordering posses an infinite
antichain, but there exist short witnesses for coverability, does there exist an
effective finite representation of the downward closure of the reachability set?

References

1. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: FSTTCS 2011, Mumbai, India, LIPIcs, vol. 13, pp. 152–163 (2011)

2. Bonnet, R.: The reachability problem for vector addition system with one zero-test.
In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 145–157.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0 16

3. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model checking vector addition
systems with one zero-test. Logical Methods Comput. Sci. 8(11), 1–25 (2012)

4. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary (extended abstract). CoRR,
abs/1809.07115 (2018)

5. Dassow, J., Turaev, S.: Petri net controlled grammars: the case of special Petri
nets. J. UCS 15(14), 2808–2835 (2009)

6. Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38
(2012)

7. Fallah Seghrouchni, A.E., Haddad, S.: A recursive model for distributed planning.
In: ICMAS 1996, Kyoto, Japan, pp. 307–314 (1996)

8. Finkel, A., Haddad, S., Khmelnitsky, I.: Coverability and termination in recursive
Petri nets, April 2019. https://hal.inria.fr/hal-02081019

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

10. Haddad, S., Poitrenaud, D.: Decidability and undecidability results for recursive
Petri nets. Technical Report 019, LIP6, Paris VI University (1999)

11. Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive Petri nets. In:
Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 228–247.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48745-X 14

12. Haddad, S., Poitrenaud, D.: Modelling and analyzing systems with recursive Petri
nets. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. The Interna-
tional Series in Engineering and Computer Science, vol. 569, pp. 449–458. Springer,
Boston (2000). https://doi.org/10.1007/978-1-4615-4493-7 48

13. Haddad, S., Poitrenaud, D.: Checking linear temporal formulas on sequential recur-
sive Petri nets. In: TIME 2001, Civdale del Friuli, Italy, pp. 198–205. IEEE Com-
puter Society (2001)

https://doi.org/10.1007/978-3-642-22993-0_16
https://hal.inria.fr/hal-02081019
https://doi.org/10.1007/3-540-48745-X_14
https://doi.org/10.1007/978-1-4615-4493-7_48

448 A. Finkel et al.

14. Haddad, S., Poitrenaud, D.: Recursive Petri nets. Acta Inf. 44(7–8), 463–508 (2007)
15. Lambert, J.-L.: A structure to decide reachability in Petri nets. Theor. Comput.

Sci. 99(1), 79–104 (1992)
16. Lazic, R.: The reachability problem for vector addition systems with a stack is not

elementary. CoRR, abs/1310.1767 (2013)
17. Lazic,R., Schmitz, S.: Non-elementary complexities for branching vass, mell, and

extensions. In: CSL-LICS 2014, Vienna, Austria, pp. 61:1–61:10. ACM (2014)
18. Lazić, R., Schmitz,S.: The complexity of coverability in ν-Petri nets. In: LICS 2016,

pp. 467–476. ACM Press, New York (2016)
19. Lipton, R.J.: The reachability problem requires exponential space. Technical

Report 062, Yale University, Department of Computer Science, January 1976
20. Mavlankulov, G., Othman, M., Turaev, S., Selamat, M.H., Zhumabayeva, L.,

Zhukabayeva, T.: Concurrently controlled grammars. Kybernetika 54(4), 748–764
(2018)

21. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984)

22. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

23. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. Electr. Notes Theor.
Comput. Sci. 223, 239–264 (2008)

24. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
616–628. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-
2 54

25. Zetzsche, G.: The emptiness problem for valence automata or: another decidable
extension of Petri nets. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015.
LNCS, vol. 9328, pp. 166–178. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24537-9 15

https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1007/978-3-319-24537-9_15
https://doi.org/10.1007/978-3-319-24537-9_15

From DB-nets to Coloured Petri Nets
with Priorities

Marco Montali and Andrey Rivkin(B)

Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{montali,rivkin}@inf.unibz.it

Abstract. The recently introduced formalism of DB-nets has brought
in a new conceptual way of modelling complex dynamic systems that
equally account for the process and data dimensions, considering local
data as well as persistent, transactional data. DB-nets combine a
coloured variant of Petri nets with name creation and management
(which we call ν-CPN), with a relational database. The integration of
these two components is realized by equipping the net with special “view”
places that query the database and expose the resulting answers to the
net, with actions that allow transitions to update the content of the
database, and with special arcs capturing compensation in case of trans-
action failure. In this work, we study whether this sophisticated model
can be encoded back into ν-CPNs. In particular, we show that the mean-
ingful fragment of DB-nets where database queries are expressed using
unions of conjunctive queries with inequalities can be faithfully encoded
into ν-CPNs with transition priorities. This allows us to directly exploit
state-of-the-art technologies such as CPN Tools to simulate and analyse
this relevant class of DB-nets.

1 Introduction

During the last decade, the Business Process Management (BPM) community
has gradually lifted its attention from process models mainly focusing on the
flow of activities to multi-perspective models that also account for the interplay
between the process and the data perspective [3,6,15]. Interestingly, the prob-
lem of modelling workflows dealing with database or document management
systems has a long tradition in the Petri net field [5,14,19]. However, the result-
ing frameworks do not come with a clear separation of concerns between control
flow and data-related aspects, nor with corresponding results on formal analysis.
Recent variants of high-level Petri nets have been proposed to tackle these two
challenges (see, e.g., [8,11,12,18]).

In this spectrum, the recently introduced formalism of DB-nets [12] has
brought in a new conceptual way of modelling complex dynamic systems that
equally account for the process and data dimensions, considering local data as
well as persistent, transactional data. On the one hand, a DB-net adopts a stan-
dard relational database with constraints to store persistent data. The database
can be queried through SQL/first-order queries, and updated via actions in a
c© Springer Nature Switzerland AG 2019
S. Donatelli and S. Haar (Eds.): PETRI NETS 2019, LNCS 11522, pp. 449–469, 2019.
https://doi.org/10.1007/978-3-030-21571-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21571-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-21571-2_24

450 M. Montali and A. Rivkin

Fig. 1. The conceptual components of DB-nets

transactional way (that is, committing the update only if the resulting database
satisfies all intended constraints). On the other hand, a DB-net employs a
coloured variant of a Petri net with name creation and management [17] to
capture the process control-flow, the injection of (possibly fresh) data such as
the creation of new case identifiers [11], and tuples of typed data locally carried
out by tokens. This model, which we call ν-CPN, can be seen as a fragment of
standard Coloured Petri nets [7] with pattern matching on inscriptions, infinite
colour domains, boolean guards, and a very limited use of SML to account for
fresh data injection. This also means that ν-CPNs can be seamlessly modelled,
simulated, and analysed using state-of-the-art tools such as CPN Tools.

The integration of these two components is realized in a DB-net by extending
the ν-CPN with three novel constructs: (i) view places, special places that query
the database and expose the resulting answers as coloured tokens that can be
inspected but not directly consumed; (ii) action bindings, linking transitions to
database updates by mapping inscription variables to action parameters; (iii)
rollback transition-place arcs, capturing the emission of tokens in case a fired
transition induces a failing database update, and in turn supporting the enable-
ment of compensation transitions. All conceptual components used in the DB-net
model are depicted in Fig. 1. Notably, DB-nets have been employed to formalize
application integration patterns [16].

In this work, we study whether this sophisticated model can be encoded back
into ν-CPNs, with a twofold intention. On the foundational side, we aim at
understanding whether the process-data integration realized in DB-nets adds
expressiveness to ν-CPNs, or it is instead conceptual, syntactic sugar. On the
practical side, the existence of an encoding would allow us to directly exploit
state-of-the-art tools such as CPN Tools towards simulation and analysis of DB-
nets. In the case of CPN Tools, this is the only way possible when it comes
to state space construction, given the fact that this feature cannot be refined
through the third-party extension mechanism offered by the framework.

Specifically, we constructively show through a behavior-preserving transla-
tion mechanism that this encoding is indeed possible for a large and meaningful
class of DB-nets, provided that the obtained ν-CPN is equipped with transition
priorities [20] (a feature that is supported by virtually all CPN frameworks,

From DB-nets to Coloured Petri Nets with Priorities 451

including CPN Tools). Such class corresponds to DB-nets where the database is
equipped with key, foreign key, and domain constraints, and where the view
places query the database using unions of conjunctive queries (UCQs) with
inequalities. Such query language corresponds to the widely adopted fragment
of SQL consisting of select-project-join queries with filters [1].

2 The DB-net Formal Model

In this section, we briefly present the key concepts and notions used for defining
DB-nets. Conceptually, a DB-net is composed of three layers (cf. Fig. 1) (1)
persistence layer, capturing a full-fledged relational database with constraints,
and used to store background data, and data that are persistent across cases; (2)
control layer, employing a variant of CPNs to capture the process control-flow,
case data, and possibly the resources involved in the process execution; (3) data
logic layer, interconnecting in the persistence and the control layer.

Definition 1. A db-net is a tuple 〈D,P,L,N〉, where: (i) D is a type domain;
(ii) P is a D-typed persistence layer; (iii) L is a D-typed data logic layer over
P; (iv) N is a D-typed control layer over L.
We next formalize the framework layer by layer.

Persistence Layer. A type domain D is a finite set of pairwise disjoint data
types D = 〈ΔD, ΓD〉, where a set ΔD is a value domain, and ΓD is a finite
set of predicate symbols. Examples of data types are: (i) string = 〈S, {=s}〉,
strings with the equality predicate; (ii) real = 〈R, {=r, <r}〉, reals with the
usual comparison operators; (iii) int = 〈Z, {=int, <int, succ}〉, integers with the
usual comparison operators, as well as the successor predicate.

We call R(D1, . . . ,Dn) a D-typed relation schema, where R is a relation name
and Di indicates the data type associated to an i-th component of R. A D-
typed database schema R is a finite set of D-typed relation schemas. A D-typed
database instance I over R is a finite set of facts of the form R(o1, . . . , on), such
that R(D1, . . . ,Dn) ∈ R and oi ∈ ΔDi

, for i ∈ {1, . . . , n}. Given a type D ∈ D,
the D-active domain of I, is the set of AdomD(I) = {o ∈ ΔD | o occurs in I}.

Given D, we fix a countably infinite set VD of typed variables with a variable
typing function type : VD → D. As query language, we adopt first-order (FO)
logic extended with data types under the active-domain semantics [9], that is,
the evaluation of quantifiers only depends on the values explicitly appearing
in the database instance over which they are applied. This can be seen as the
FO representation of SQL queries. A(well-typed) FO(D) query Q over a D-typed
database schema R has the form {�x | ϕ(�x)}, where �x is the tuple of answer
variables of Q, and ϕ is a FO formula, with �x as free variables, over predicates in
∪D∈DΓD and relation schemas in R, whose variables and constants are correctly
typed. We use Q(�x) to make the answer variables �x of Q explicit, and denote the
set of such variables as Free(Q). When Free(Q) = ∅, we call Q a boolean query.

A substitution for a set X = {x1, . . . , xn} of typed variables, is a function
θ : X → ΔD, such that θ(x) ∈ Δtype(x), for every x ∈ X. A substitution θ for

452 M. Montali and A. Rivkin

Fig. 2. The persistence layer for the online shopping scenario. UID and PID respectively
represent unique user and product identifiers.

a FO(D) query Q is a substitution for the free variables of Q. We denote by
Qθ the boolean query obtained from Q by replacing each occurrence of a free
variable x ∈ Free(Q) with the value θ(x). Given a D-typed database schema R,
a D-typed instance I over R, and a FO(D) query Q over R, the set of answers to
Q in I is defined as the set ans(Q, I) = {θ : Free(Q) → AdomD(I) | I, θ |= Q}
of substitutions for Q, where |= denotes standard FO entailment (i.e., we use
active-domain semantics). We denote by liveD(x) the unary query returning
all the objects of type D that occur in the active domain (writing such a query
is straightforward). When Q is boolean, we write ans(Q, I) ≡ true if ans(Q, I)
consists only of the empty substitution (denoted 〈〉), and ans(Q, I) ≡ false if
ans(Q, I) = ∅. Boolean queries are also used to express constraints over R. We
introduce explicitly two common types of constraints: given relations R/n and
S/m, and two index-sets N and M such that 1 ≤ i ≤ n for every i ∈ N , and
1 ≤ j ≤ m for every j ∈ M , we fix the following notation: (i) pk(R) = N
expresses that the projection R[N] of R on N is a primary key for R; (ii)
R[N] ⊆ S [M] expresses that the projection R[N] of R on N refers the projection
S [M] of S on M , which has to be a key for S. Both kinds of constraints are
obviously expressible as suitable queries [1].

Definition 2. A D-typed persistence layer P is a pair 〈R, E〉 where: (i) R is
a D-typed database schema; (ii) E is a finite set {Φ1, ..., Φk} of boolean FO(D)
queries over R, modelling constraints over R.

We say that a D-typed database instance I complies with P, if I is defined over
R and satisfies all constraints in E .

Example 1. Let us consider a simplified shopping process used by an e-commerce
website. Specifically, we are interested in a simplified scenario in which an already
registered user logs in the website and immediately proceeds with selecting prod-
ucts. While products can be selected and added to the shopping cart, the user
can occasionally choose a monthly bonus that may be applied when concluding
a purchase. We restrict this scenario only by considering cases in which each
user ends up buying at least one product.

The persistence layer P = 〈R, E〉 of this scenario comprises four rela-
tion schemas (cf. Fig. 2): User(int, string) lists registered users together
with their credit card data, WithBonus(int, string) indicates users that have
bonuses, Product(string) indexes product types offered by the website and
InWarehouse(int, string, real) indicates which products are stored in the

From DB-nets to Coloured Petri Nets with Priorities 453

warehouse and with which cost. Note the constraints between these schemas.
For example, in order to show that users cannot have more than one bonus
at a time, we introduce a foreign key constraint between WithBonus and
User that is denoted as WithBonus[{1}] ⊆ User [{1}] and formalized in FO
logic as: ∀uid, bt.WithBonus(uid, bt) → ∃card.User(uid, card). Another con-
straint limits the bonus type values in WithBonus and can be expressed as
∀uid, bt.WithBonus(uid, bt) → bt = 50% ∨ bt = 15eur ∨ bt = extra item. ��
Data Logic Layer. The data logic layer allows one to extract data from the
database instance using queries as well as to update the database instance by
adding and deleting possibly multiple facts at once. The updates follow the
transactional semantics: if a new database instance obtained after some update
is still compliant with the persistence layer, the update is committed ; otherwise it
is rolled back. Such updates are realized in parametric atomic actions, resembling
ADL actions in planning [4], and consist of fact templates – expressions that, once
instantiated, assert which facts will be added to and deleted from the database.
Specifically, given a typed relation R(D1, . . . ,Dn) ∈ R, an R-fact template over
�p has the form R(y1, . . . , yn), such that for every i ∈ {1, . . . , n}, yi is either a
value o ∈ ΔDi

, or a variable x ∈ �p with type(x) = Di.
A (parameterized) action over a D-typed persistence layer 〈R, E〉 is a tuple

〈n, �p, F+, F−〉, where: (i) n is the action name; (ii) �p is a tuple of pairwise dis-
tinct variables from VD, denoting the action (formal) parameters; (iii) F+ and
F− respectively represent a finite set of R-fact templates (i.e., some R-fact tem-
plates for some R ∈ R) over �p, to be added to and deleted from the current
database instance. To access the different components of an action α, we use
a dot notation: α·name = n, α·params = �p, α·add = F+, and α·del = F−.
Given an action α and a (parameter) substitution θ for α·params, we call action
instance αθ the (ground) action resulting by substituting parameters of α with
corresponding values from θ. Then, given a D-typed database instance I com-
pliant with D, the application of αθ on I, written apply(αθ, I), is a database
instance over R obtained as (I \F−

αθ)∪F+
αθ, where: (i) F−

αθ =
⋃

R(�y)∈α·del R(�y)θ;
(ii) F+

αθ =
⋃

R(�y)∈α·add R(�y)θ. If apply(αθ, I) complies with P, αθ can be suc-
cessfully applied to I. Note that, in order to avoid situations in which the same
fact is asserted to be added and deleted, we prioritize additions over deletions.

Definition 3. Given a D-typed persistence layer P, a D-typed data logic layer
over P is a pair 〈Q,A〉, where: (i) Q is a finite set of FO(D) queries over P;
(ii) A is a finite set of actions over P.

Example 2. We make the scenario of Example 1 operational, introducing a data
logic layer L over P. To inspect the persistence layer, we use the following queries:

• Qproducts(pid, n, c):-Product(n)∧InWarehouse(pid, n, c)∧c �= null, to extract
products available in the warehouse and whose price is not null (those with-
out prices can be undergoing the stock-taking process);

• Qusers(uid):- ∃card.User(id, card), to get registered users;
• Qwbonus(uid, bt′):-WithBonus(uid, bt′), to inspect all users with bonuses.

454 M. Montali and A. Rivkin

In addition, L provides key functionalities for organizing the shopping pro-
cess. Such functionalities are realized through four actions (where, for simplicity,
we blur the distinction between an action and its name). To manage bonuses
we use two actions addb and change. The former is used to assign a bonus
of type bt to a user with id uid (addb·params = 〈uid, bt〉) and record it into
the persistent storage: addb·add = {WithBonus(uid, bt)}, addb·del = ∅. Note
that, before logging in, the user may have already a bonus assigned during one of
the previous sessions. At will, such a bonus can be changed using action change
with change·params = 〈uid, bt, bt′〉, change·add = {WithBonus(uid, bt)} and
change·del = {WithBonus(uid, bt′)}. In fact, change realizes an update by
first deleting a tuple that is characterized by uid and bt′ (the old bonus), and then
adding its modified version. We use reserve (reserve·params = 〈pid, n, c〉) to
reserve product pid of price c and stored in cart cid for further processing (e.g.,
the preparation for shipment) by deleting it from the list of available products:
reserve·add = ∅, reserve·del = {InWarehouse(pid, n, c)}. At last, the user
may utilize her monthly bonus bt (if it has not yet been used) to consider it when
paying the order. For that, we use an action called apply (with apply·params =
〈uid, bt〉) such that: apply·add = ∅, apply·del = {WithBonus(uid, bt)}. ��
Control Layer. The control layer employs a fragment of Coloured Petri net to
capture the process control flow and a data logic to interact with an underlying
persistence layer. We fix some preliminary notions. We consider the standard
notion of a multiset. Given a set A, the set of multisets over A, written A⊕, is the
set of mappings of the form m : A → N. Given a multiset S ∈ A⊕ and an element
a ∈ A, S(a) ∈ N denotes the number of times a appears in S. Given a ∈ A and
n ∈ N, we write an ∈ S if S(a) = n. We also consider the usual operations on
multisets. Given S1, S2 ∈ A⊕: (i) S1 ⊆ S2 (resp., S1 ⊂ S2) if S1(a) ≤ S2(a)
(resp., S1(a) < S2(a)) for each a ∈ A; (ii) S1 + S2 = {an | a ∈ A and n =
S1(a) + S2(a)}; (iii) if S1 ⊆ S2, S2 − S1 = {an | a ∈ A and n = S2(a) − S1(a)};
(iv) given a number k ∈ N, k · S1 = {akn | an ∈ S1}.

We shall call inscription a tuple of typed variables (and, possibly, values) and
denote the set of all possible inscriptions over set Y as ΩY , and the set of variables
appearing inside an inscription ω ∈ ΩY as Vars(ω) (such notation naturally
extends to sets and multisets of inscriptions). In the spirit of CPNs, the control
layer assigns to each place a color type, which in turn combines one or more data
types from D. Formally, a D-color is D1×. . .×Dm, where for each i ∈ {1, . . . , m},
we have Di ∈ D. We denote by Σ the set of all possible D-colors. To account for
fresh external inputs, we employ the well-known mechanism adopted in ν-Petri
nets [11,17] and introduce a countably infinite set ΥD of D-typed fresh variables.
To guarantee an unlimited provisioning of fresh values, we impose that for every
variable ν ∈ ΥD, we have that Δtype(ν) is countably infinite. Hereinafter, we shall
fix a countably infinite set of D-typed variable XD = VD ∪ ΥD as the disjoint
union of “normal” variables VD and fresh variables ΥD.

As we have mentioned before, the control layer can be split into two parts.
Let us first define the ν-CPN part that can be seen as an extension of ν-Petri
nets with concrete data types, boolean (type-aware) guards and read arcs.

From DB-nets to Coloured Petri Nets with Priorities 455

Definition 4. A D-typed ν-CPN N is a tuple 〈P, T, Fin, Fout, color〉, where:
1. P is a finite set of places.
2. color : P → Σ is a color type assignment over P mapping each place p ∈ P

to a corresponding D-type color.
3. T is a finite set of transitions, such that T ∩ P = ∅.
4. Fin : P × T → Ω⊕

VD
is an input flow from P to T assigning multisets of

inscriptions (over variables VD) to input arcs, s.t. that each of such inscrip-
tions 〈x1, . . . , xm〉 is compatible with each of its input places p, i.e., for every
i ∈ {1, . . . , m}, we have type(xi) = Di, where color(p) = D1 × . . . × Dm.

5. guard : T → FD is a transition guard assignment over T assigning to each
transition t ∈ T a D-typed guard ϕ, s.t.:

• InVars(t) = {x ∈ VD | there exists p ∈ P such that x ∈
Vars(Fin(〈p, t〉))} is the set of all variables occurring on input arc inscrip-
tions of t;

• a D-typed guard from is a formula (or a quantifier- and relation-free
FO(D) query) of the form ϕ ::= true | S(�y) | ¬ϕ | ϕ1 ∧ ϕ2, where
S/n ∈ ΓD and, for �y = 〈y1, . . . , yn〉 ⊆ VD, we have that yi is either a
value o ∈ ΔD, or a variable xi ∈ VD with type(xi) = D (i ∈ {1, . . . , n});

• FD is the set of all possible D-typed guards and, with a slight abuse of
notation, Vars(ϕ) is the set of variables occurring in ϕ.

6. Fout : T × P → Ω⊕
XD∪ΔD

is an output flow from transitions T to places P
assigning multisets of inscriptions to output arcs, such that all such inscrip-
tions are compatible with their output places.

According to the diagram in Fig. 1, the DB-net control layer can be obtained
on top of ν-CPNs by essentially adding three mechanisms that allow the net to
interact with the underlying persistent storage: (i) view places, allowing the net
to inspect parts of the database using queries; (ii) action binding, linking atomic
actions and their parameters to transitions and their inscription variables; (iii)
rollback transition-place arcs, enacted when the action application induced by
a transition firing violates some database constraint, so as to explicitly account
for “error-handling”.

Definition 5. A D-typed control layer over a data logic layer L = 〈Q,A〉 is a
tuple 〈P, T, Fin, Fout, Frb, color, query, guard, act〉, where:
1. 〈Pc, T, Fin, Fout, color〉 is a D-typed ν-CPN, where Pc is a finite set of control

places.
2. P = Pc ∪ Pv is a finite set of places, where Pv are view places (decorated as

and connected to transitions with special read arcs).
3. query : Pv → Q is a query assignment mapping each view place p ∈ Pv with

color(p) = D1 × . . . × Dn to a query Q(x1, . . . , xn) from Q, s.t. the color of
p component-wise matches with the types of the free variables in Q: for each
i ∈ {1, . . . , n}, we have Di = type(xi).

456 M. Montali and A. Rivkin

4. act : T → A × ΩXD∪ΔD
is a partial function assigning transitions in T

to actions in A, where act(t) maps t to an action α ∈ A together with a
(binding) inscription 〈y1, . . . , ym〉, s.t. if α·params = 〈z1, . . . , zm〉 and, for
each i ∈ {1, . . . , m}, we have type(yi) = type(zi) if yi is a variable from XD,
or yi ∈ Δtype(zi) if yi is a value from ΔD.

5. Frb is an output flow from T to Pc called rollback flow (we shall refer to Fout

as normal output flow).

Fig. 3. The control of a DB-net for online shopping. Here, νc is a fresh input variable
corresponding to a newly created cart, whereas dest is an arbitrary input variable
representing a destination address. The rollback output arc (corresponds to the rollback
flow) is in red and decorated with an “x”.

Figure 3 shows the control layer of the shopping cart example.
The queries specified in Example 2 are assigned to the corresponding
view places: query(Products) := Qproducts, query(Users) := Qusers and
query(Bonus Holders) := Qwbonus. The actions (with their formal parameters)
assigned to transitions via act graphically appear in grey transition boxes.

The execution semantics of a DB-net simultaneously accounts for the pro-
gression of a database instance compliant with the persistence layer of the net,
and for the evolution of a marking over the control layer of the net. Due to space
limitations, we refer to the definition of the formal semantics studied in [12].
We thus assume that the execution semantics of both ν-CPNs and DB-nets can
be captured with a possibly infinite-state labeled transition system (LTS) that
accounts for all possible executions starting from their initial markings. While
transitions in such LTSs model the effect of firing nets under given bindings,
their state representations slightly differ. Namely, in the case of ν-CPNs we have
markings (like, for example, in coloured Petri nets [7]), while in the case of DB-
nets one also has to take into account database states. W.l.o.g., we shall use
ΓM0

N = 〈M,M0,→, L〉 to specify an LTS for a ν-CPN N with initial marking

From DB-nets to Coloured Petri Nets with Priorities 457

M0 and Γ s0
B = 〈S, s0,→, L〉 to specify an LTS for a DB-net B with initial snap-

shot s0 = 〈I0,m0〉, where I0 is the initial database instance and m0 is the initial
marking of the control layer.

3 Translation

We are now ready to describe the translation from DB-nets to ν-CPNs with
priorities (we assume the reader is familiar with transition priorities). Recall
that this is not just of theoretical interest, but has also practical implications.
In [16], we have presented a prototypical implementation of DB-nets in CPN
Tools that, using Access/CPN and Comms/CPN, allow to model and simulate
DB-nets. However, we realized that CPN Tools would not correctly generate
the state space of the DB-net at hand. This is due to the fact that the CPN
Tools state space construction module does not consider third-party extensions
which, in our setting, implies that the content of the view places is not properly
recomputed after each transition firing.

The first challenge to overcome is how the database schema is represented
in the target net. To this aim, we introduce special relation places that copy
corresponding database relations by mirroring their signature to the type defini-
tions of places.1 In this light, database instances will correspond to relation place
markings, where tokens are nothing but tuples. All other DB-net elements (for
example, bindings for fresh variables, action execution) require actual computa-
tion that happens when a transition fires. Intuitively, every DB-net transition T
is represented using the following four phases:

1. Collect bindings and compute the content of view places adjacent to T .
2. If there is an action assigned to T , execute it. We employ auxiliary boolean

places that control whether an update has actually happened (that is, a token
representing a tuple has been removed from or added to a relation place).

3. Check the satisfaction of integrity constraints.
4. Finish the computation and generate a new marking.

(a) If all constraints are satisfied, empty the auxiliary boolean places used in
(2), release the lock, and populate the postset of T .

(b) If some constraint is violated, roll-back the effects. This is done in reverse
order w.r.t. phase (2), applying or skipping a reverse update depending
on how the values in the special places. After this, the relation places have
the content they had before the action was applied. Then, one releases
the lock and pushses the special postset corresponding to the roll-back
arc (if any) attached to T .

To realize the execution of an original DB-net transition, all the four phases
are executed uninterruptedly (under lock). In the reminder of the section we
formalize the phases discussed above.

1 Relation places do not differ from the normal ν-CPN places. We use the different
name in order to conceptually distinguish their origin.

458 M. Montali and A. Rivkin

A generic DB-net Bτ that we use to demonstrate the translation is repre-
sented in Fig. 4(a). Here, we assume that T contains enough of tokens assigned
by its input flow and its eventual firing is subject to the G(�y) guard evaluation.
�y, in turn, is bound to values from �z and from m ∈ N ordered view places, where
each view place Vi has a query QVi assigned to it. The ν-CPN Nτ representing

Fig. 4. A generic DB-net transition accessing multiple view places (left) and its overall
ν-CPN encoding (right). Blue clouds stand for subnets that are expanded next, and
�x is a shortcut for �x1, . . . , �xm. Elements within the gray rectangle are local to the
transition, whereas external elements are shared at the level of the whole net. (Color
figure online)

From DB-nets to Coloured Petri Nets with Priorities 459

Bτ is depicted in Fig. 4(b). To facilitate the translation, we make three working
hypothesis. First, we assume that the relational schema is equipped only with
three types of constraints: primary keys, foreign keys and domain constraints.
Second, for ease of presentation, we consider that the resulting ν-CPN model
can deal with DB-net external inputs. For each t ∈ T , such inputs are in general
modeled using variables that do not appear in InVars(t) (including those from
ΥD). The preliminary implementation of DB-nets in CPN Tools [16] has pro-
vided functionality demonstrating the feasibility of the binding computation for
such variables. Third, we naturally extend the notion of ν-CPN with read arcs.

3.1 Computing Views Using CPN Places

We start by describing how the view computation should work using only ν-CPN
places. Let us consider as an example a subnet Btr of the DB-net present in Fig. 3
that models only the selection of available products. To access products that are
available in the warehouse and that have prices assigned to them, we need to
run a query Qproducts(pid, n, c) = Product(n)∧InWarehouse(pid, n, c)∧c �= null.
Interestingly, such a query can be formulated directly using standard elements
of ν-CPNs. Indeed, we may transfer the DB-net in Fig. 5(a) into a ν-CPN Ntr

in Fig. 5(b) representing the project selection step. As one can see, the relations
of Btr have been copied to the same-named relation places, when Qproducts is
treated as follows: Ntr accesses relation places with read-arcs (that have relation
attributes as their inscriptions) so as to realize the projection, while the filter
(i.e., c �= null) is basically plugged into the guard of Add Product. The result
of the query is then propagated into the post-set of Add Product using the free
variables of Qproducts (i.e., pid, n and c) in the arc inscriptions.

Fig. 5. Example of a view computation in ν-CPNs

However, one may see that not every query can be handled when only using
standard ν-CPN elements. Assume a query Q¬available(n) = Product(n)∧ �=
∃pid, c.InWarehouse(pid, n, c) that lists products not available in the warehouse.
In order to represent Q¬available in a ν-CPN, one would need to extend the
net with constructs allowing to fire a transition only if a certain element does

460 M. Montali and A. Rivkin

not exists in a place incident to it. Thus, we restrict ourselves to the union of
conjunctive queries with negative filters (or atomic negations) (UCQFs�=), that is
FO(D)D queries of the form

∨n
i=1 ∃�yi.conji(�x), where conji(�x) is also a FO(D)D

query that is a conjunction of relations R(�z), predicates P (�y) and their negations
¬P (�y). Henceforth, we use QUCQF �=

to define a UCQF�= subset of Q. In SQL,
a conjunctive query is a query representable with a SELECT-FROM-WHERE
expression. As it has been already shown, the filter conditions (of the UCQFs�=

attached to view places) can be modeled using transition guards.
In case of multiple view places attached to one transition, we construct a

net that computes them in a sequential manner. One may see the computation
process as a pipeline. Whenever a transition that corresponds to a certain view
place is enabled, it fires and generated tokens that represent one of the tuples
of the view. Then, acquired tokens are transferred to the next transition using
variables in the arc inscriptions. The computation continues until the last view.
After that, the results of all the computations are transferred to the correspond-
ing places, following the topology (i.e., the organization of arcs defined by the
flow relations) of the original DB-net. Note that the order in which views are
computed has to be the same as the one defined for Bτ .

Fig. 6. Expansion of the binding net from Fig. 4(b)

A ν-CPN in Fig. 6 shows how bindings and view places are computed in the
case of the generic DB-net Bτ . The computation process per view Vi is realized
by a transition called ComputeVi and analogous to the one explained before:
we read necessary data from relation places, representing relations used in QVi ,
and filter these data by means of FVi

(�y). Note that variables on every read-arc
adjacent to ComputeVi represent attributes of some relation R. The intermediate
result of the view computation is then stored in a place called ViComputed .
As one can see from Fig. 6, all the intermediate results are accumulated along
the computation cycle. Moreover, we carry data provided with input variables
of T so as to check the validity of the guard G (see Fig. 4(b)). This is done
using prioritized transition Tcond. If the guard is not satisfied, one has to reset
the computation process by returning tokens that have been consumed at the
beginning of the view computation (that is, tokens that have been assigned to
z). We resolve this issue by introducing an auxiliary transition called Tcancel that
may fire only when the guard has been evaluated to false. Scheduling between
Tcond and Tcancel is managed by means of two priority labels P High and P Low
(where P High > P Low) respectively assigned to them.

From DB-nets to Coloured Petri Nets with Priorities 461

3.2 Modelling RDBMS Updates in CPNs

We now show how database updates exploited by DB-nets could be represented
using regular coloured Petri nets. We recall, that actions assigned to DB-net
transitions support addition and deletion of R-fact, which should preserve the
set semantics adopted by the persistence layer.

Fig. 7. A subnet of the DB-net in
Fig. 3 describing the bonus change
step

In Fig. 7 we consider a DB-net describ-
ing the bonus change step of he online shop-
ping process. Here, for ease of presenta-
tion, instead of considering a view place for
bonus holders, we use a regular (control)
place that stores the same kind of data.

The translation of DB-net-like database
updates into ν-CPNs is conceptually simi-
lar to the representation of the view com-
putation process: DB-net actions must be

performed sequentially within a critical section that can be entered whenever a
special write lock is available (cf. place Lock in Fig. 4(b)). For preserving the
set semantics over every relation place, we use prioritized transitions so as to
check whether a tuple to be added or deleted already exists in the relation
place. Specifically, for each tuple we would introduce two transitions, one with
a higher priority and another with a lower priority, and an auxiliary (no-op)
boolean place. The first transition can fire if the tuple is in the corresponding
relation place, while the second one would fire otherwise. Both transitions are
adopted to deal with additions and deletions. In case of additions, the highly
prioritized transition would not add the tuple, while the one with the lower pri-
ority would do otherwise. To deal with deletions, we mirror the previous case: if
the tuple exists, then one can safely remove it; otherwise, one proceeds without
changes. Upon firing of any of these transitions, the auxiliary place receives a
boolean token. If the value of the token is true, then it means that the tuple has
been successfully added or deleted. In case the database update has not taken

Fig. 8. The CPN representation of the DB-net in Fig. 7, where ξ, for ease of reading,
denotes the tuple 〈uid, cid, bt, bt′〉

462 M. Montali and A. Rivkin

place, the token value is going to be false. It is important to note that the update
execution order of DB-net actions must be also preserved in their ν-CPN repre-
sentation. That is, since additions are prioritized over deletions, for every action
α we first delete all the tuples from α·del, and only then add those from α·add.

We incorporate aforementioned modelling guidelines in the ν-CPN depicted
in Fig. 8. Since change in Bα

tr contains multiple database updates, the model
starts with deleting WithBonus(uid, bt) from WithBonus. To do so, at first one
checks whether the relation place WithBonus contains the tuple we would like
to remove. This is done using Exists D1 that performs conditional removal of
WithBonus(uid, bt), that is, if there is a token in WithBonus such that bindings
of inscriptions on (D1, ExistsD1) and (WithBonus, ExistsD1) coincide, then
ExistsD1 is enabled, and upon firing consumes the selected token from With-
Bonus and populates one token with value 〈true〉 (the value true means that the
update has been successfully accomplished) in DoneD1 . Note that Exists D1 is
always checked first given the higher priority label assigned to it. If the tuple
does not exist, then one proceeds with firing NotExistsD1 and populating one
token with value false in DoneD1 . Now, when we reach the first control place
allowing to perform the add operation over WithBonus, we start by checking
whether WithBonus already contains the WithBonus(uid, bt′) tuple. Specifically,
we use the read arc (ExistsA1,WithBonus) that has the only purpose of check-
ing whether the token is present in the place. In case there is no token that
matches values assigned to ξ, we proceed with adding WithBonus(pid, bt′) with
NotExistsA1 that has the lower priority label assigned to it and consequently
populate a 〈true〉-valued token in DoneA1 . Note that the whole computation
process is “guarded” with the global lock variable (needed for the consequent
execution of all the steps defined in Fig. 4(b)): whenever started, the token is
removed from it and can be returned only after the last operation of the action
has been carried out.

Next we show how an action is encoded considering the general DB-net B in
Fig. 4(a). Note that T is equipped with action Act, where some of the action
parameters �x coincide with external inputs. Act is defined on top of P with
Act·params = 〈x1, . . . , xn〉, Act·del = F− and Act·add = F+, where F− and
F+ are two sets of R-facts that should be respectively deleted and added. The
CPN representing that expansion of the update net from Fig. 4(b) is depicted in
Fig. 9. The computation starts by checking the guard of T with transition Tcond

(cf. Fig. 4(b)). If the guard evaluates to true, Tcond puts a token in a place called
GuardOk that, in turn, allows to initiate the action execution process that is
sequentially realized for all R-facts from F− or F+ in Act.

Fig. 9. Expansion of the update net from Fig. 4(b)

From DB-nets to Coloured Petri Nets with Priorities 463

We first proceed with deleting all the Rd,i-facts from F− (i.e., facts of the
form Rd,i(�yd,i)). This process is sequntialized and at each of its step the net
models the deletion of only one Rd,i-fact. Specifically, the deletion of each Rd,i-
fact (see Fig. 10(a)) is realized by a pair of prioritized transitions ExistsDi and
NotExistsDi and one auxiliary place DoneDi, and is analogous to the example
in Fig. 8. After all the R-facts from F− have been deleted, the net switches
to performing the insertion of R-facts from F+. We omit the details of the
addition process as it can be defined analogously to the one from the bonus
change example and refer to Fig. 10(b). As soon as all R-facts are added, the
update net completes its work by putting a token into a place called Updated.

Fig. 10. Expansion of deletion and addition nets from Fig. 9

3.3 Checking Integrity Constraints and Generating a New Marking

Let us now remind that the relational schema of Bτ is equipped with three types
of integrity constraints: primary keys, foreign keys and domain constraints. When
the first and the last one could be relatively easy to check during the update
phase, assuming that the computation results are accumulated in arc inscriptions
analogously to the binding net in Fig. 62, the process of managing updates in the
presence of arbitrary many foreign key dependencies is quite involved. To man-
age it correctly we first perform the updates and only then check whether the

2 Both primary keys and domain constraints can be violated when a tuple is about
to be inserted into a table. Specifically, to guarantee that former are respected, it is
enough to check with ExistsAi whether there is a token in Ra,i that has the same
primary key value, and, if so, cancel the computation process. In the case of domain
constraints, one may insert a third transition t′ that has a normal priority and that
will be fired whenever one of the values we want to insert is not in the allowed range.
Firing of t′ will have the same consequences as in the case of primary keys.

464 M. Montali and A. Rivkin

Fig. 11. Expansion of the check constraint net from Fig. 4(b)

generated marking represents a database instance that satisfies all the integrity
constraints contained in the persistence layer of Bτ . A ν-CPN representing the
check constraint phase is depicted in Fig. 11. The net works as follows: it conse-
quently runs small nets for verifying the integrity of constraints and, in case of
violation, puts a token in a special place called ConstrV iol. As soon as there is
at least one token in ConstrV iol place, the big net in Fig. 4(b) terminates the
constraint checking process and switches to the phase 4.(b) (that is, runs the
undo net) explained in the beginning of this section. For ease of presentation we
assume that every relation R/nr from R of Bτ will have the following look: the
first k attributes form a primary key, while the rest of nr −k+1 attributes can be
unconstrained or bounded by domain constraints. Moreover, if R is referencing
some other relation S, then among these nr − k + 1 attributes we reserve the
last m such that S [{1, . . . , m}] ⊆ R[{nr − m, . . . , nr}].

The constraint checking process starts with verifying that all the updates
performed using the net in Fig. 9 are satisfying primary key constraints Ci.
This is done by sequentially running small check nets in Fig. 12(a), where the
constraint integrity is verified for some relation R by a pair of prioritized tran-
sitions RepeatedKey (high priority) and NoRepeatedKey (low priority). Note
that RepeatedKey accesses the content of R with two read arcs and using the
guard assigned to it verifies whether there exist two tokens, such that their first

Fig. 12. Expansion of the check net from Fig. 11 in the case of key constraints

From DB-nets to Coloured Petri Nets with Priorities 465

k values coincide and in the rest of nr −k+1 values there is at least one distinct
pair of values. The satisfaction of such guard would mean that, essentially, we
have inserted a token in R whose primary key values were not unique. Firing of
RepeatedKey will produce one token in ConstV iol and terminate the run of the
check constraint net.

Fig. 13. Expansion of the check net
from Fig. 11 in the case of a domain
constraint Ci indicating that the j-th
component of relation R with arity
nr ≥ j must contain a value that
belongs to {c1, . . . , cl}; In the figure,
�y is a tuple containing nr variables.

The next type of constraints to verify
is the foreign key dependency. Analogously
to the previous case, we successively run
small check nets like the one in Fig. 12(b)
and in each of them control that R cor-
rectly references S (that is, there are no
tuples in R that do not depend on any tuple
in S). This is realized with two prioritized
transitions FKExists (high priority) and
FKNotExists (low priority). The first one,
as the name suggests, checks whether the
dependency between R and S is preserved
for all the tokens in the corresponding rela-
tion places. FKExists makes use of the
guard attached to it that performs pairwise
comparison of m last values of a token from

R to m first values of a token from S. If the guard is not satisfied, then the depen-
dency relation between R and S has been violated and one fires FKNotExists
so as to terminate the constraint checking process.

The last series of constraints to be checked is the one of domain con-
straints. The net in Fig. 13 employs two prioritized transitions, WrongV alue
and NoWrongV alue, to verify whether all the tuples inserted into R had cor-
rect values. First, using the guard of WrongV alue, we check whether there is
at least one value that breaks the integrity of the domain constraint Ci of R. If
WrongV alue fires, the process is terminated by putting a token into ConstrV iol.
Otherwise, NoWrongV alue is executed and the constraint checking process con-
tinues.

Now let us show how the computation of all the effects of T is finished and a
new marking is generated. If one of the constraints has been violated, we have to
roll back all the effects pushed using the net in Fig. 9. To do so, we employ the net
in Fig. 14 that reverts the update process by first canceling all the additions, and

Fig. 14. Expansion of the undo net from Fig. 4(b)

466 M. Montali and A. Rivkin

Fig. 15. Expansion of revert deletion and addition nets from Fig. 14

then canceling all the deletions. Let us briefly explain how the rollback process
is performed for each component net.

We start by removing all the tuples that have been successfully added to
relation places following the definition of Act. The net in Fig. 15(a) shows how to
revert the result of inserting Ra,i-fact from F+ (i.e., a fact of the form Ra,i(�ya,i)).
If a fact has been added, that is, there is a token with value 〈true〉 in DoneAi,
then the net removes it by firing DoRevertAi. Otherwise, if the fact has not
been added, that is, there is a token with value 〈false〉 in DoneAi, then the net
proceeds without reverting by firing SkipRevertAi. Then, for each Rd,i-fact, we
go on with adding all the tuples that have been deleted by using the net depicted
in Fig. 15(b). The update reverting processis analogous to the one dealing with
reverted additions, but with only one exception: whenever DoneDi has a 〈true〉
token, then we put the deleted tuple (specified in F−) back into Rd,i. Note
that every revert deletion or addition net removes a token from a corresponding
auxiliary no-op place.

As soon as all the operations of Act have been undone and all the corre-
sponding tokens have been withdrawn from relation places, the net places a token
in DoRollBack (cf. Figure 4(b)) and allows us to fire a transition called Trollback

that implements the generation of the tokens in the postset corresponding to the
rollback flow of T .

If the check constraint net’s work has not been interrupted an the token was
placed in ConstrOk (cf. Fig. 4(b)), then we proceed with the consume net (cf.
Fig. 16) that removes all tokens from the auxiliary no-op places and places a
token into DoCommit. This, in turn, allows Nτ to execute Tcommit that popu-
lates tokens in the postset corresponding to the normal flow of T .

From DB-nets to Coloured Petri Nets with Priorities 467

Fig. 16. Expansion of the consume net from Fig. 4(b)

3.4 The General Translation

In this section we bring together the modelling approaches described in the
previous three sections and quickly summarize the translation from DB-nets to
ν-CPNs with priorities. Specifically, we show that, given a DB-net, it is possible
to build a ν-CPN that is weakly bisimilar to it.

Intuitively, Nτ from Fig. 4(b) behaves just like the Bτ in Fig. 4(a) and hence
LTSs of these two nets are weakly bisimilar [10]. Notice that, in order to correctly
represent the behavior of Bτ , Nτ includes many intermediate steps that are,
however, not relevant for comparing content of the states and behavior of the
nets. For this we are going to resort to a form of bisimulation that allows to “skip”
transitions irrelevant for the behavioral comparison [10]. Specifically, given two
transition systems Γ1 = 〈S1, s01,→1, L〉 and Γ2 = 〈S2, s02,→2, L〉 defined over
a set of labels L, relation wb ⊆ S1 × S2 is called a weak bisimulation between
Γ1 and Γ2 iff for every pair 〈p, q〉 ∈ wb and a ∈ L ∪ {ε} the following holds: (1)
if p

a=⇒1 p′, then there exists q′ ∈ S2 such that q a
2q

′ and 〈p′, q′〉 ∈ wb; (2) if
q

a=⇒2 q′, then there exists p′ ∈ S1 such that p a
1p

′ and 〈p′, q′〉 ∈ wb. Here,
ε �= a is a special silent label and p a q is a weak transition that is defined as
follows: (i) p a q iff p(ε=⇒)∗q1

a=⇒ q2(
ε=⇒)∗q; (ii) p ε q iff p(ε=⇒)∗q. We use (ε=⇒)∗

to define the reflexive and transitive closure of ε=⇒. We say that a state p ∈ S1 is
weakly bisimilar to q ∈ S2, written p ≈wb q, if there exists a weak bisimulation
wb between Γ1 and Γ2 such that 〈p, q〉 ∈ wb. Finally, Γ1 is said to be weakly
bisimilar to Γ2, written Γ1 ≈wb Γ2, if s01 ≈wb s02. Let us now define a theorem
that sets up the behavioral correspondence between DB-nets and ν-CPNs.

Theorem 1. Let B = 〈D,P,L,N〉 be a DB-net with P = 〈R, ∅〉, L =
〈QUCQF �=

,A〉 and N = 〈P, T, Fin, Fout, Frb, color, query, guard, act〉, and s0
is the initial snapshot. Then, there exists a ν-CPN N = 〈P ∪ Prel ∪ Paux, T ∪
Taux, Fin, Fout, color,M0〉 with (1) a set of relation places Prel acquired from
R, (2) two sets Paux and Taux of auxiliary places and transitions (required by
the encoding algorithm), and such that Γ s0

B ≈wb
flat ΓM0

N .

The proof of the theorem (see [13] for the full version) can be obtained by induc-
tion on the construction of Γ s0

B and ΓM0
N , where the latter is induced by N that

has been modularly generated using the encoding defined in Sects. 3.1, 3.2 and

468 M. Montali and A. Rivkin

3.3. Intuitively, such encoding lifts the persistence and data logic layers to the
control layer, resulting in a “pristine” ν-CPN. To show behavioral correspon-
dence, one should make sure that states of Γ s0

B and ΓM0
N are comparable. This

can be achieved by slightly modifying the notion of weak bisimulation in such a
way that, for each 〈〈I,m〉,M〉 ∈ wb, we compare elements stored in I only with
their “control counterparts” in Prel of M , whereas m ⊆ M . Moreover, we assume
that states of ΓM0

N are restricted only to places in P ∪Prel, that is, each marking
M shall reveal tokens stored only in P and Prel, and that when constructing
ΓM0

N all the auxiliary transitions of N (i.e., all the transitions within the grey
lane in Fig. 4(b)) are going to be labeled with ε. Note that such an extended
definition allows to establish equivalence not only in terms of behaviors of two
systems, but also in terms of their (data) content.

4 Conclusions

We have shown that the large and relevant fragment of DB-nets employing unions
of conjunctive queries with negative filters as a database query language, can be
faithfully encoded into a special class of Coloured Petri nets with transition pri-
orities. This result is of particular interest as it demonstrates how to represent
full-fledged databases with corresponding data manipulation operations in a con-
ventional Petri net class. Since the encoding is based on a constructive technique
that can be readily implemented, the next step is to incorporate the encoding
into the DB-net extension of CPN Tools [16], in turn making it possible to make
the state-space construction mechanisms available in CPN Tools also applicable
to DB-nets. It must be noted that, due to the presence of data ranging over infi-
nite colour domains, the resulting state-space is infinite in general. However, in
the case of state-bounded DB-nets [12], that is, DB-nets for which each marking
contains boundedly many tokens and boundedly many database tuples, a faithful
abstract state space can be actually constructed using the same approach pre-
sented in [2]. Interestingly, this can be readily implemented by replacing the ML
code snippet dealing with fresh value injection with a slight variant that recycles,
when possible, old data values that were mentioned in a previous marking but
are currently not present anymore.

Acknowledgments. This work has been partially supported by the UNIBZ projects
PWORM and REKAP.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Boston (1995)

2. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order mu-calculus
over generic transition systems and applications to the situation calculus. Inf. Com-
put. 259(3), 328–347 (2018)

3. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process
analysis: a database theory perspective. In: Proceedings of PODS (2013)

From DB-nets to Coloured Petri Nets with Priorities 469

4. Drescher, C., Thielscher, M.: A fluent calculus semantics for ADL with plan
constraints. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 140–152. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87803-2 13

5. Emmerich, W., Gruhn, V.: Funsoft nets: a petri-net based software process mod-
eling language. In: Proceedings of IWSSD, pp. 175–184 (1991)

6. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88873-4 17

7. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

8. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification
of decision-aware process models. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS,
vol. 11157, pp. 219–235. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00847-5 17

9. Libkin, L.: Fixed point logics and complexity classes. Elements of Finite Model
Theory. LNCS, vol. 7360. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07003-1

10. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

11. Montali, M., Rivkin, A.: Model checking Petri nets with names using data-centric
dynamic systems. Formal Asp. Comput. 28(4), 615–641 (2016)

12. Montali, M., Rivkin, A.: DB-nets: on the marriage of colored petri nets and rela-
tional databases. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55862-1 5

13. Montali, M., Rivkin, A.: From DB-nets to coloured petri nets with priorities
(extended version). Technical Report arXiv:1904.00058, arXiv.org (2019)

14. Oberweis, A., Sander, P.: Information system behavior specification by high level
petri nets. ACM Trans. Inf. Syst. 14(4), 380–420 (1996)

15. Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5 2

16. Ritter, D., Rinderle-Ma, S., Montali, M., Rivkin, A., Sinha, A.: Formalizing appli-
cation integration patterns. pp. 11–20 (2018)

17. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

18. Triebel, M., Sürmeli, J.: Homogeneous equations of algebraic petri nets. In: Pro-
ceedings of CONCUR, LNCS, pp. 1–14. Springer (2016)

19. Weitz, W.: SGML nets: integrating document and workflow modeling. In: Proceed-
ings of HICSS, vol. 2, pp. 185–194 (1998)

20. Westergaard, M., Verbeek, H.M.W.E.: Efficient implementation of prioritized tran-
sitions for high-level Petri nets. In: Proceedings of PNSE, pp. 27–41 (2011)

https://doi.org/10.1007/978-3-540-87803-2_13
https://doi.org/10.1007/978-3-540-87803-2_13
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-030-00847-5_17
https://doi.org/10.1007/978-3-030-00847-5_17
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-55862-1_5
http://arxiv.org/abs/1904.00058
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-642-33606-5_2

Author Index

Bellettini, Carlo 80
Biswal, Shruti 301
Bodini, Olivier 386
Boltenhagen, Mathilde 237

Camilli, Matteo 80
Capra, Lorenzo 80
Carmona, Josep 237
Chatain, Thomas 237
Chiaradonna, Silvano 47

de Frutos Escrig, David 171
Devillers, Raymond 113
Di Giandomenico, Felicita 47
Dien, Matthieu 386

Esparza, Javier 365

Fahland, Dirk 3
Finkel, Alain 429
Freiberger, Felix 279

Genitrini, Antoine 386

Haddad, Serge 429
Haustermann, Michael 101
Hermanns, Holger 279

Janicki, Ryszard 192

Khmelnitsky, Igor 429
Koutny, Maciej 171

Lanese, Ivan 213
Liebke, Torsten 321
Lime, Didier 406

Majzik, István 342
Mannel, Lisa Luise 258
Masetti, Giulio 47
Mikulski, Łukasz 171, 213
Miner, Andrew S. 301
Moldt, Daniel 69, 101
Molnár, Vince 342
Montali, Marco 449

Peschanski, Frédéric 386

Raskin, Mikhail 365
Rivkin, Andrey 449
Robol, Leonardo 47
Roux, Olivier H. 406
Röwekamp, Jan Henrik 69

Schmitz, Dennis 101
Schneider, Vitali 25
Seidner, Charlotte 406
Simon, Michael 101
Steehouwer, Lucas 91

Tredup, Ronny 127, 148

van der Aalst, Wil M. P. 258
van der Werf, Jan Martijn E. M. 91
Vogler, Walter 25

Weil-Kennedy, Chana 365
Wolf, Karsten 321

	Foreword
	Preface
	Organization
	Contents
	Models
	Describing Behavior of Processes with Many-to-Many Interactions
	1 Introduction
	2 Multi-dimensional Dynamics - A Simple Example
	3 Reifying Behavior of Relations into Conversations
	4 Dynamic Unbounded Synchronization
	4.1 Notation on Nets
	4.2 Entities, Instances, and Synchronous Proclet System
	4.3 Intuitive Semantics for Synchronous Proclet Systems
	4.4 Partial Order Semantics for Synchronous Proclet Systems
	4.5 Formal Semantics for Dynamic Synchronization

	5 Relational Synchronization
	5.1 Cardinality and Correlation Constraints
	5.2 Semantics of Cardinality Constraints
	5.3 Semantics of Correlation Constraints
	5.4 Runs of a Constrained Proclet System

	6 Conclusion
	References

	Modal Open Petri Nets
	1 Introduction
	2 Preliminaries
	2.1 Modal Transition Systems
	2.2 Modalities for Petri Nets
	2.3 MPN: Refinement and Operators

	3 Asynchronous Communication
	4 Modal Asynchronous I/O-Petri Nets (MAP)
	5 Bounded Modal Open Nets
	6 Conclusion
	References

	Stochastic Evaluation of Large Interdependent Composed Models Through Kronecker Algebra and Exponential Sums
	1 Introduction
	2 Related Work
	3 Overview of the Novel Contribution
	4 System Architecture and Model Design
	5 Mean Time To Absorption
	6 The KAES Approach
	6.1 Symbolic Representation of the Descriptor Vector
	6.2 Matrix Splitting and Neumann Expansion
	6.3 Inversion Through Exponential Sums
	6.4 Efficient Computation of the Neumann Iterations

	7 Case Study
	7.1 Model of the Case Study

	8 Evaluation Results
	9 Conclusions and Future Work
	References

	Tools
	RenewKube: Reference Net Simulation Scaling with Renew and Kubernetes
	1 Introduction
	1.1 Motivation and Scope

	2 Basics
	3 Related Work
	4 The Simulator
	4.1 Using the Simulator

	5 Architecture
	6 Evaluation
	7 Conclusion and Outlook
	References

	PNemu: An Extensible Modeling Library for Adaptable Distributed Systems
	1 Introduction and Objectives
	2 Preliminaries
	3 The PNemu Library
	3.1 The pnemu.base Module
	3.2 The pnemu.manager Module
	3.3 The pnemu.primitives Module

	4 Usage Scenarios
	5 Conclusion
	References

	CoRA: An Online Intelligent Tutoring System to Practice Coverability Graph Construction
	1 Introduction
	2 CoRA to Assist Students
	3 Design of CoRA
	3.1 Analyzing Coverability Graphs
	3.2 Providing Feedback

	4 Initial Evaluation
	5 Conclusions
	References

	Tools for Curry-Coloured Petri Nets
	1 Introduction
	2 Objectives
	3 Comparison
	4 Functionality
	5 Architecture
	6 Example
	7 Conclusion
	References

	Synthesis
	Articulation of Transition Systems and Its Application to Petri Net Synthesis
	1 Introduction
	2 Labelled Transition Systems and Articulations
	3 Petri Nets and Synthesis
	4 Petri Net Synthesis and Articulation
	5 Recomposition
	6 Decomposition
	7 Concluding Remarks
	References

	Hardness Results for the Synthesis of b-bounded Petri Nets
	1 Introduction
	2 Preliminaries
	3 The Concept of Unions
	4 Main Result
	4.1 The Unions Kb0 and Kb1 and K
	4.2 The Translators Tb0 and Tb1 and T
	4.3 The Key Unions Kb2 and Kb3
	4.4 The Translators Tb2 and Tb3
	4.5 The Liaison of Key and Translator

	5 Conclusions
	References

	Fixed Parameter Tractability and Polynomial Time Results for the Synthesis of b-bounded Petri Nets
	1 Introduction
	2 Preliminaries
	3 Polynomial Time Results
	3.1 Abstract Regions and Fundamental Cycles
	3.2 The Proof of Theorem 1
	3.3 Examples

	4 Fixed Parameter Tractability Results
	5 Conclusion
	References

	Semantics
	Reversing Steps in Petri Nets
	1 Introduction
	2 Preliminaries
	3 Reversing Steps
	4 Multisets and Mixed Reversibility
	5 Reversibility and Plain Solvability
	6 From Sequential Reversibility to Step Reversibility
	7 Concluding Remarks
	References

	On Interval Semantics of Inhibitor and Activator Nets
	1 Introduction
	2 Partial Orders and Sequences
	2.1 Partial Orders
	2.2 Sequences and Step Sequences
	2.3 Interval Sequences
	2.4 Sound Interval Sequence Operational Semantics

	3 Inhibitor and Activator Petri Nets
	4 Interval Sequence Semantics of Inhibitor Nets
	5 Interval Sequence Semantics of Activator Nets
	6 Interval Step Sequence Semantics of Activator Nets
	7 Final Comments
	References

	Reversing Unbounded Petri Nets
	1 Introduction
	2 Background
	3 Problematic Pairs
	4 Undecidability of the Existence of b-problematic Pairs
	5 Decidable Subclasses
	6 Removing Problematic Pairs
	7 Conclusions
	References

	Concurrent Processes
	Generalized Alignment-Based Trace Clustering of Process Behavior
	1 Introduction
	2 A Motivating Example
	3 Preliminaries
	3.1 Process Models and Trace Clustering
	3.2 Partial-Order Semantics
	3.3 Distances Between Log and Model Traces

	4 Quality Criteria for Trace Clustering
	5 Fitting Centroids to Concurrency
	5.1 Quality Criteria for APOTC
	5.2 Relating APOTC to ATC

	6 Fitting Centroids to Concurrency and Repetitive Behavior
	6.1 Quality Criteria for AMSTC
	6.2 Relating AMSTC to APOTC

	7 Complexity of Alignment-Based Trace Clusterings
	8 SAT Encoding and Experimentation
	8.1 Experimental Results

	9 Conclusion and Future Work
	References

	Finding Complex Process-Structures by Exploiting the Token-Game
	1 Introduction
	2 Related Work
	3 Basic Notation, Event Logs and Process Models
	4 Algorithmic Framework
	5 Computing a Desirable Subset of Places
	5.1 Pre-pruning of Useless Places
	5.2 Developing an Efficient Candidate Traversal Strategy
	5.3 Organization of the Candidate Space as Trees
	5.4 Tree Traversal and Pruning of Candidate Space
	5.5 Evaluation of Potentially Fitting Candidates
	5.6 Post-processing

	6 Implementation
	7 Testing Results and Evaluation
	8 Conclusion
	References

	Concurrent Programming from pseuCo to Petri
	1 Introduction
	2 PseuCo in a Nutshell
	3 A Library for Colored Petri Nets
	4 Augmenting CPN for Concurrent Programming
	4.1 4783971En16FigdPrint.eps Overview
	4.2 Translation From 4783971En16FigePrint.eps to CPN
	4.3 From pseuCo to 4783971En16FigfPrint.eps

	5 pseuCo.com: An Educational Tool Backed by Petri Nets
	6 Conclusion and Future Work
	References

	Algorithmic Aspects
	Improving Saturation Efficiency with Implicit Relations
	1 Introduction
	2 Background
	2.1 Model Definition
	2.2 Multi-valued Decision Diagrams and Matrix Diagrams
	2.3 On-the-fly Saturation Using Extensible Decision Diagrams

	3 Implicit Relations
	3.1 Definition
	3.2 Saturation Using Relation Nodes
	3.3 Implementation Notes

	4 Related Work
	4.1 Kronecker Representations
	4.2 MDDs and Extensible MDDs
	4.3 Interval Mapping Diagrams
	4.4 Homomorphisms

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	Taking Some Burden Off an Explicit CTL Model Checker
	1 Introduction
	2 Terminology
	3 CTL Model Checking
	4 Partial Order Reduction—the Stubborn Set Method
	5 Simple CTL Queries
	5.1 AG , EF
	5.2 AF , EG
	5.3 E (U), A(R)
	5.4 EGEF , AFAG
	5.5 EFEG , AGAF
	5.6 AGEF , EFAG , EFAGEF , AGEFAG
	5.7 Formulas Starting with EX and AX
	5.8 Single-Path Formulas
	5.9 Boolean Combinations

	6 Preprocessing
	7 Experimental Validation
	8 Conclusion
	References

	Saturation Enhanced with Conditional Locality: Application to Petri Nets
	1 Introduction
	2 Background
	2.1 Petri Nets
	2.2 Partitioned Transition Systems
	2.3 Locality
	2.4 State Space Encoded in Multi-valued Decision Diagrams
	2.5 Next-State Representations
	2.6 Saturation

	3 The Generalized Saturation Algorithm
	3.1 Conditional Locality
	3.2 Detailed Description of the GSA
	3.3 Constrained Saturation as an Instance of the GSA
	3.4 Discussion

	4 Evaluation
	4.1 Research Questions
	4.2 The Benchmark
	4.3 Results

	5 Conclusions
	References

	Parametrics and Combinatorics
	Parameterized Analysis of Immediate Observation Petri Nets
	1 Introduction
	2 Preliminaries
	3 A Primer on Population Protocols
	4 Parameterized Analysis Problems
	5 Immediate Observation Petri Nets
	6 The Pruning Theorem
	6.1 Trajectories, Histories, Realizability
	6.2 Pruning Histories
	6.3 Proof of the Pruning Theorem

	7 Counting Constraints and Counting Sets
	8 Cube Problems for IO Nets Are in PSPACE
	9 Application: Correctness of IO Protocols Is PSPACE-complete
	10 Conclusion
	References

	The Combinatorics of Barrier Synchronization
	1 Introduction
	2 Barrier Synchronization Processes
	2.1 The Control Graph of a Process
	2.2 The Counting Problem

	3 A Generic Decomposition Scheme and Its (Symbolic) Counting Algorithm
	3.1 Decomposition Scheme
	3.2 Embedding in the Hypercube: The Order Polytope

	4 Uniform Random Generation of Process Executions
	5 Classes of Processes that are BIT-Decomposable (or Not)
	5.1 From Tree Posets to Fork-Join Parallelism
	5.2 Asynchronism with Promises
	5.3 BIT-Free Processes

	6 Experimental Study
	7 Conclusion and Future Work
	References

	Parameter Synthesis for Bounded Cost Reachability in Time Petri Nets
	1 Introduction
	2 Parametric Cost Time Petri Nets
	2.1 Preliminaries
	2.2 Time Petri Nets with Costs and Parameters
	2.3 Parametric Cost Problems

	3 Undecidability Results
	4 A Symbolic Semi-algorithm for Parameter Synthesis
	4.1 State Classes
	4.2 The Synthesis Semi-algorithm

	5 Restricting to Integer Parameters
	6 Termination of Algorithm 3
	7 Case Study
	8 Conclusion
	References

	Models with Extensions
	Coverability and Termination in Recursive Petri Nets
	1 Introduction
	2 Recursive Petri Nets
	2.1 Presentation
	2.2 An Order for Recursive Petri Nets

	3 Expressiveness
	4 Coverability Is EXPSPACE-Complete
	5 Termination Is EXPSPACE-Complete
	6 Conclusion
	References

	From DB-nets to Coloured Petri Nets with Priorities
	1 Introduction
	2 The DB-net Formal Model
	3 Translation
	3.1 Computing Views Using CPN Places
	3.2 Modelling RDBMS Updates in CPNs
	3.3 Checking Integrity Constraints and Generating a New Marking
	3.4 The General Translation

	4 Conclusions
	References

	Author Index

