
Re: What’s Up Johnny?

Covert Content Attacks on Email End-to-End Encryption

Jens Müller1(B), Marcus Brinkmann1, Damian Poddebniak2,
Sebastian Schinzel2, and Jörg Schwenk1

1 Ruhr University Bochum, Bochum, Germany
{jens.a.mueller,marcus.brinkmann,joerg.schwenk}@rub.de
2 Münster University of Applied Sciences, Münster, Germany

{damian.poddebniak,schinzel}@fh-muenster.de

Abstract. We show practical attacks against OpenPGP and S/MIME
encryption and digital signatures in the context of email. Instead of tar-
geting the underlying cryptographic primitives, our attacks abuse legiti-
mate features of the MIME standard and HTML, as supported by email
clients, to deceive the user regarding the actual message content. We
demonstrate how the attacker can unknowingly abuse the user as a
decryption oracle by replying to an unsuspicious looking email. Using
this technique, the plaintext of hundreds of encrypted emails can be
leaked at once. Furthermore, we show how users could be tricked into
signing arbitrary text by replying to emails containing CSS conditional
rules. An evaluation shows that 17 out of 19 OpenPGP-capable email
clients, as well as 21 out of 22 clients supporting S/MIME, are vulner-
able to at least one attack. We provide different countermeasures and
discuss their advantages and disadvantages.

Keywords: PGP · S/MIME · Decryption oracles · Signing oracles

1 Introduction

Email was designed as a plaintext protocol, which allows eavesdroppers to read or
modify the communication on the channel. While it is common today that traffic
between mailservers is TLS encrypted,1 transport encryption is not sufficient to
protect against strong attackers, such as a man-in-the-middle (MitM) within the
infrastructure (e.g., a dishonest mail server operator), or an attacker who gains
access to leaked user emails. OpenPGP [2] and S/MIME [8] are the two major
standards used in such scenarios and provide end-to-end cryptographic protec-
tion. Both standards are designed to guarantee confidentiality, integrity, and
authenticity of messages, even in hostile environments such as a compromised
or untrustworthy mail server by encrypting and digitally signing emails.
1 According to Google’s transparency report, 88% of the email traffic was TLS

encrypted in the fourth quarter of 2018: https://transparencyreport.google.com/
safer-email/.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 24–42, 2019.
https://doi.org/10.1007/978-3-030-21568-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_2&domain=pdf
https://transparencyreport.google.com/safer-email/
https://transparencyreport.google.com/safer-email/
https://doi.org/10.1007/978-3-030-21568-2_2

Re: What’s Up Johnny? 25

Research Question. Both standards are based on asymmetric encryption;
only the user has access to the private key and, therefore, can decrypt messages
encrypted with the public key or sign messages. However, email usage involves
interaction with multiple communication partners, including potentially dishon-
est parties. Example: a mail server operator, Eve, who is in possession of the
ciphertext messages sent from Alice to Bob can simply re-send the encrypted
message from her address and have Bob decrypt it.2 If Bob simply replied to
Eve while quoting the original message, he would leak the plaintext of his com-
munication with Alice. Such message takeover attacks under a new identity are
well-known issues in email end-to-end encryption (see [5,6]). However, they are
generally considered an acceptable risk because it is assumed that given the
context of the message (e.g., “Hi Bob, [...] Yours, Alice”) Bob can tell that this
message is not originally from Eve and could easily discover the deception.

Therefore, the research question arises: Is it possible to hide the original text
to trick a user into unintentionally acting as a decryption oracle? A schematic
illustration of such an attack is given in Fig. 1.

Fig. 1. Covert content attacks against email encryption.

Contributions. In this work, we show simple, yet practical, attacks against
email encryption and digital signatures, and discuss the countermeasures. We
demonstrate how an attacker can wrap ciphertext into a specially crafted email
which looks benign but leaks the plaintext of hundreds of encrypted emails at
once if replied to. Furthermore, we show how to turn the victim into a signing
oracle by having him sign quoted covert content. The attacker can put this
content into a different context based on CSS conditional rules, resulting in
arbitrary text to be displayed as correctly signed by the victim. Our evaluation
shows that 17 out of 19 OpenPGP capable email clients, as well as 21 out of 22
clients supporting S/MIME are vulnerable to at least one attack. Our attacks
raise concerns about the overall security of encryption and digital signatures in
the context of email, even though the security guarantees of the cryptography
behind them remains untouched.

2 Note that digital signatures do not prevent this attack because Eve can strip them
and re-sign the message under her identity as discussed in Sect. 8.1 of this paper.

26 J. Müller et al.

Responsible Disclosure. We reported our attacks to the affected vendors
and proposed appropriate countermeasures. Our findings regarding email end-
to-end encryption resulted in CVE-2019-10731 to CVE-2019-10741. Our attacks
on digital signatures are documented as CVE-2019-10726 to CVE-2019-10730.

2 Background

In this section, we provide the fundamentals and the historical context of the
OpenPGP and S/MIME encryption schemes, as well as MIME and HTML email.

2.1 OpenPGP

Pretty Good Privacy (PGP) was invented in 1991 by Phil Zimmermann and
played a major political role in the ‘crypto wars’ of the mid-1990s. Until today,
it has a high reputation among activists, journalists, and privacy enthusiasts.
PGP was standardized as OpenPGP in RFC4880 which comes in two flavors: For
PGP/Inline, the plaintext in the email body is simply replaced by its encrypted
counterpart. This is done separately for each body part (or attachment) in case
of multipart emails. For PGP/MIME, the whole MIME structure including all
body parts is encrypted into a single part of content type multipart/encrypted.

2.2 S/MIME

In the late 1990s, S/MIME was specified as an Internet standard for email
encryption and digital signatures based on X.509 public key certificates and
a PKI. Besides having a more centralized trust model than OpenPGP, both
standards have a lot in common. S/MIME and OpenPGP are both hybrid cryp-
tosystems, consisting of a symmetric cipher such as AES and an asymmetric
cipher like RSA. S/MIME encrypts the whole MIME structure into a single
body part of content type application/pkcs7-mime. It is supported natively by
various mail clients and used in business environments and organizations, such
as universities.

2.3 MIME Email

Historically, RFC822 email was limited to ASCII messages. This did not fit the
needs of users to send other file formats such as binary data. Therefore, in 1992
Multipurpose Internet Mail Extensions (MIME) were born, enabling emails that
consist of multiple parts of various content types. An example HTML email with
inline images, additional text parts, and a PDF attachment is given in Fig. 2.

In the context of end-to-end encryption, the flexibility of multipart mails can
be dangerous. Neither OpenPGP nor the S/MIME standard cover the edge-case
of partially encrypted messages: e.g., ciphertexts can be wrapped as a sub-part
within the MIME tree, which is the foundation of our attacks on encryption.

Re: What’s Up Johnny? 27

/

Fig. 2. Exemplary MIME tree of a multipart email.

2.4 HTML Email

HTML in emails was introduced by Netscape in 1995 to format messages, e.g.,
to provide bold or colored text. It competed with the text/enriched MIME type
as defined in RFC1563 and Microsoft’s proprietary Rich Text Format (RTF).
HTML email was eventually adopted by the general public, despite opposition
by tech enthusiasts (as expressed, e.g., in the ASCII ribbon campaign). Today
most mail clients support HTML emails by default.3 However, until today, there
is no standard that defines which HTML elements should be enabled in email.
For example, some email clients even execute script tags within emails (see [7]).

3 Related Work

In 2000 Katz, Schneier, and Jallad [5,6] presented chosen-ciphertext attacks
against OpenPGP and S/MIME, in which they make use of the malleability fea-
ture of CFB and CBC mode to modify encrypted messages resulting in ‘garbage’
plaintext. A victim replying to the garbled plaintext unwittingly acts as a decryp-
tion oracle, allowing the receiver to reconstruct the original plaintext. Recently,
Poddebniak et al. [7] demonstrated that the malleability of CFB/CBC can be
used to modify encrypted emails such that their plaintext is automatically exfil-
trated to the attacker when opened in a vulnerable email client, using HTML
and other backchannels. They, furthermore, showed that some email clients con-
catenate encrypted and unencrypted MIME parts, allowing an attacker to leak
the plaintext of OpenPGP and S/MIME encrypted messages by loading them as
the resource of a remote URL. Message takeover attacks for signed emails have
been discussed by Davis [3] in 2001. He showed that a signed message “Let’s
break up” from Bob to Eve can simply be re-send by Eve to scare Alice (Bob’s
new girlfriend). Furthermore, Davis demonstrated that signatures can simply be
removed in many scenarios and the message can be re-signed by the attacker. In
2017, Ribeiro [9] showed that the displayed content of signed HTML emails can
be changed subsequently if the mail client fetches external CSS stylesheets.
3 According to an email marketing statistics and metrics study conducted by Juniper

Research, 97% of all email clients used in 2007 supported HTML messages.

28 J. Müller et al.

4 Attacker Model

Attacks based on decryption oracles require the attacker to somehow have
obtained PGP or S/MIME encrypted emails. In practice, this could be achieved
via an untrustworthy or compromised SMTP or IMAP server, via a third party
component such as cloud-based antivirus solutions scanning transiting emails,
or via a compromised mailbox (e.g., based on weak passwords or XSS on the
webmail service). While this is a strong attacker model, the only reason to use
end-to-end encryption at all is that an untrusted communication channel is pre-
sumed.

After having obtained ciphertext messages, the attacker, Eve, can re-send
them in her own name to one of the original communication parties, Alice or
Bob. Note that both can act as a decryption oracle because emails are usually
encrypted with the public key of both, the sender and the receiver, as both parties
want to be able to decrypt it later. Eve can perform additional changes to the
encrypted messages such as wrapping them within a multipart mail. In addition,
Eve may apply social engineering to lure the victim – Alice or Bob – into replying
to her (benign-looking) message. Note that this is a weak requirement as it is
a basic function of email to reply to communication partners, even previously
unknown ones. It is clear that the security of a cryptographic protocol should
not be dependent on the assumption that no communication is made. Signing
oracle-based attacks only require the victim to reply to a benign-looking email.

5 Decryption Oracles

Replying to a decrypted email and quoting the original message can leak the
plaintext to a third party in case the From: or Reply-To: header had been
replaced with the attacker’s email address. Such message takeover attacks under
a new identity are well-known (see [5,6]). However, they can often be detected
based on the message content. It is generally assumed that trained users should
get suspicious and discover the deception instead of replying to ‘out of context’
messages. In this paper we show how to hide the original plaintext and instead
show a meaningful message, asking the user to reply and, therefore, leak the
(hidden) plaintext. We do this by abusing the MIME standard in combination

multipart/mixed

text/html application/pkcs7-mime

encrypted content

attacker-controlled content

multipart/encrypted text/plain
S/MIME PGP/MIME PGP/INLINE

Fig. 3. MIME tree of a partially encrypted email.

Re: What’s Up Johnny? 29

with HTML email. Encrypted messages can themselves be a sub-part within a
MIME tree which may include further non-encrypted parts. Even though there
are hardly meaningful use cases for such ‘partially encrypted’ emails, they are a
valid feature. This allows an attacker to integrate captured ciphertext messages
into a MIME tree under her control and re-send this new email to the victim (i.e.,
the original sender or receiver). A MIME tree containing an attacker-controlled
message, as well as S/MIME and OpenPGP encrypted parts, is given in Fig. 3.

Plaintext Merged with Attacker’s Text. If a client receives a multipart
email, it decrypts the ciphertext parts and afterwards merges all ASCII and
HTML parts into a single document which is quoted upon replying.4 This imple-
mentation approach of the MIME standard can be considered dangerous: Eve can
prepend her own message, followed by a lot of newlines, to the captured cipher-
text part. If Alice replies without scrolling down she unintentionally acts as a
decryption oracle and leaks the plaintext. Other obfuscation techniques include
hiding the ciphertext somewhere between the attacker’s message parts: Emails,
especially forwarded mails, can contain a long conversation history and top-
posting without reading the whole conversation history is common user behavior.
A user replying to a ‘mixed content’ conversation can thereby leak the plaintext
of encrypted messages wrapped within the attacker-controlled text.

Plaintext Hidden Using HTML and CSS. In the context of HTML email,
mixed content attacks are more serious than in ASCII emails. An attacker who
can inject her own HTML/CSS code into the same document where the plaintext
is displayed can completely hide it, e.g., by wrapping it within an iframe. An
example email is given in Fig. 4. The result for Apple Mail is shown in Fig. 5.

Note that a closing </iframe> tag is not required. However, it could easily
be added by placing another attacker-controlled text/html part at the end of the
message. Iframes are just one way to hide the original plaintext. Other options
include wrapping it into HTML comments or other elements such as <audio> or
<canvas> which do not display the content between opening and closing tags –
while it is still kept when replying to the email. Other, more advanced, techniques
to hide the plaintext using CSS properties are shown for attacks on signatures
in Sect. 6. A comprehensive list of CSS blinding options is given in Table 1.

4 There are alternative ways to handle multipart messages. The email client “The
Bat!” shows a new tab for each body part, while Outlook only displays the very first
part. However, a majority of the evaluated clients follows the described approach.

30 J. Müller et al.

Fig. 4. Email structure to hide S/MIME ciphertext in an invisible iframe. After decryp-
tion the plaintext will be included as ‘covert content’ in the quoted reply.

Fig. 5. Covert content attack using Apple Mail as S/MIME decryption oracle.

Re: What’s Up Johnny? 31

Breaking Mixed-Content Isolation with References. In cases where mul-
tiple MIME parts are not automatically concatenated by the client, this behavior
can be enforced by creating a multipart/related email structure referencing the
ciphertext via cid: URI schemes (see RFC2392). Such Content-ID resource loca-
tors are typically used to embed and display inline images within HTML emails.
They are generally seen as more compatible than referencing remote images
which are blocked in most email clients for privacy reasons. In the example
email given in Fig. 6, the attacker’s text/html part includes the ciphertext as
an ‘image’. Because the resulting plaintext is not a valid image file, it cannot
be displayed by the client. However, the decrypted inline ‘image’ is included
in reply emails, therefore leaking the plaintext. A resulting screenshot of the
wrapped PGP/MIME message being opened in Thunderbird is given in Fig. 10
in the appendix. The attacker is not limited to images; the plaintext can also be
referenced as the content of an iframe, object, embed, and other elements.

Fig. 6. Email structure to hide PGP/MIME ciphertext in a referenced ‘image’.

Note that the attack does not require a ‘partially encrypted’ email because
Eve can also encrypt her malicious parts with the victim’s public PGP key
or S/MIME certificate. The attack is even successful if the victim replies to
Eve with an encrypted email because Eve’s public key is used for re-encryption.
These attacks apply not only for single ciphertext messages in the middle part of
a multipart email, but hundreds of encrypted emails can be hidden as sub-parts
and their plaintext can be leaked with a single reply.5 Furthermore, the attack
5 At some point, the SMTP server may enforce a resource limit, e.g., 25 MB for Gmail.

32 J. Müller et al.

does not require an active MitM, but rather, the obtained ciphertext could be
years-old. For example, a nation-state actor could have captured a target user’s
encrypted emails over years and later decides to expose them by sending a sin-
gle benign-looking email which lures the user into replying. While the attacks
use email to exfiltrate the plaintext, their scope is not limited to exfiltrating
decrypted emails. The attacks also work with non-email ciphertexts such as PGP
encrypted files. Covert content attacks are independent of the applied encryption
scheme, even though email clients and crypto plugins may handle multipart mes-
sages differently, depending on whether S/MIME and OpenPGP is used. While
the attacks require user interaction, they do not require any ‘unusual’ behavior,
but instead normal usage of email as a communication medium. They also do
not require complex cryptographic attacks like the CBC gadgets discussed in [7].

6 Signing Oracles

Digital signatures should guarantee integrity, authenticity, and non-repudiation
of messages. To give an example, Johnny could be a commander-in-chief who
takes information security seriously. All his emails are digitally signed, making
it hard to impersonate him in order to send forged statements or instructions.
The goal of our attacker Eve is to start false-flag warfare. Therefore, she needs
to obtain a digitally signed ‘declaration of war’ which she can forward to the
armed forces. Every time Johnny replies to a message he already acts – to a
certain extent – as a signing oracle when quoting the original text. For example,
consider the following message from Eve to Johnny:

1 I hereby declare war.

Johnny replies with a signed message, thereby quoting the original text:

1 Sorry Eve, You can’t do that.
2

3 On 01/05/19 09:42, Eve wrote:
4 > I hereby declare war.

In the reply, commander Johnny unintentionally signed Eve’s quoted text.
Certainly, given the message context and the quote prefix (>. . .) it is clear that
declaring war is not his intention. However, Eve can try to hide her malicious
content using CSS blinding options while a benign text message, such as “What’s
up Johnny?”, is added to be shown. Similarly, the benign text can be hidden
while showing the malicious content, based on CSS conditional rules which are
satisfied only for a third party. If Johnny replies to such a specially-crafted
HTML/CSS email, he signs arbitrary covert content along with visible content.
This signed message can then be forwarded by Eve to a third party (e.g., the
armed forces) where it displays the previously hidden malicious content “I hereby
declare war”, while hiding the benign content. A schematic illustration of such
covert content attacks on email signatures is given in Fig. 7.

Re: What’s Up Johnny? 33

Fig. 7. Covert content attacks against email signatures.

A simple HTML email containing conditional CSS code to display different
content based on the device’s screen resolution is given in Fig. 8. It can be used
to obtain a signed email from a mobile device, where a benign message is shown.
The reply message instead displays a (signed) declaration of war when shown
on a desktop mail client. A screenshot of the attack using iOS Mail as a signing
oracle and the resulting signed email shown in Thunderbird is given in Fig. 9.

Fig. 8. Malicious HTML/CSS email to obtain a signed ‘declaration of war’.

34 J. Müller et al.

Fig. 9. Covert content attack abusing iOS Mail as S/MIME signing oracle.

In the given example, email clients with a screen width of less than 835px
(e.g., a mobile phone or tablet) show a different text than desktop mail clients
based on the @media conditional rule. If the email client includes this conditional
CSS in the reply message it can be misused as a signing oracle, therefore allowing
the attacker to obtain signed messaged for arbitrary (displayed) content.

Conditional Rules. The W3C specifies CSS conditional rules [11] like @media,
which allow different formatting based on conditions such as screen width or
orientation. For example, a different text can be shown whether a mobile phone
is held in portrait or landscape mode, or whether the document is displayed
on a screen or printed out. Besides media queries, we can show different text
in different email clients using the @support conditional rule, which applies
formatting based on CSS feature support in the client. For example, an email
can be shown in red if two property-value pairs are supported:

1 @supports (property1: value1) and (property2: value2) {* {color:red}}

We assembled a list of over 1,000 CSS property-value pairs to fingerprint the
features supported by clients. This allows us to selectively enable certain CSS
code for every client that interprets the @support rule. A further conditional rule
introduced by Mozilla is @document. It allows CSS code to be executed based
on the document location. In the context of email clients, this even allows us to
show different text for each user because the location contains an imap:// URI
scheme with the email address. For example, to apply a red color solely for the
emails of general@good.com the following CSS code can be used:

1 @-moz-document url-prefix("imap://general@good.com") {* {color:red}}

In case CSS conditional rules are not supported, email clients may sup-
port their own proprietary conditional statements. For example, Outlook inter-
prets HTML and CSS code within <!--[if mso]>...<![endif]-->, while other
clients will ignore it. A listing of other conditional features is given in Fig. 11 in
the appendix.

Re: What’s Up Johnny? 35

Blinding Options. We identified seven CSS properties which can be used for
covert content attacks, as shown in Table 1. However, this list is unlikely to be
complete because CSS is very complex and offers more possibilities to hide text.

Table 1. CSS properties to hide text.

Property Show Hide

display: initial; none;

visibility: visible; hidden;

opacity: 1; 0;

clip-path: initial; polygon(0px 0px, 0px 0px, 0px 0px, 0px 0px);

position: static; absolute; top: -9999px; left: -9999px;

color: initial; transparent;

font-size: initial; 0;

The proposed attacks allow an attacker to obtain valid signatures for arbi-
trary content to be displayed. This can be used to trick a third party, which
relies on the authenticity and integrity of signed messages, to perform certain
actions (such as starting a war). A forensic analysis can reveal the deception,
but then it may already be too late (i.e., war is already declared). Note that the
covert content attacks to obtain signatures do not require any MIME wrapping,
but rather depend on HTML emails, and on support for (internal) CSS styles.

7 Evaluation

To evaluate the proposed attacks, we selected 19 widely-used email clients with
OpenPGP support and 22 clients supporting S/MIME from a comprehensive list
of over 50 email clients assembled from public software directories for all major
platforms (Windows, Linux, macOS, Android, iOS, and Web). Email clients were
excluded if they were not updated for several years, or if the cost to obtain them
would be prohibitive (e.g., appliances). All clients were tested in the default
settings with an additional PGP or S/MIME plugin installed where required.
The results from the tested clients regarding covert content attacks, (i.e., tricking
a user into acting as an oracle for decryption or signing) are shown in Table 2.

All tested email clients quote the original message when replying, which is the
precondition for our attacks. Of the overall tested 24 clients, 20 display HTML
emails in the default settings without any additional user interaction, but only
16 clients reply with HTML formatted content. While only five clients download
external CSS style sheets by default, all HTML capable clients support internal
and/or inline CSS, and at least one blinding option to hide text. All but two
HTML capable clients support conditional rules or other features to conditionally
show or hide text. Full details on HTML and CSS support for the various tested
email clients are given in Table 3 in the appendix.

36 J. Müller et al.

Table 2. Evaluation of covert content attacks on email encryption and signatures

7.1 Decryption Oracles

All email clients, excluding Microsoft products and “The Bat!”, merge multiple
ASCII text or HTML parts into a single document when replying, making them
potentially vulnerable to covert content attacks. However, not all clients decrypt
ciphertext sub-parts within the MIME tree, thereby disabling the attack. From
discussions with application developers, we learned that this was initially not
meant as a security precaution. Instead, the case of partially encrypted mes-
sages was simply not considered in the implementation of S/MIME or the PGP
plugin. As a consequence, clients that are more feature complete, have higher
compatibility, and require a larger implementation effort are more likely to be
misused as decryption oracles. We consider clients as vulnerable if the plaintext
of encrypted messages can either be completely hidden, or if it is concatenated
with attacker-controlled text.

For seven clients, including popular applications such as Apple Mail or
Thunderbird, we could completely hide the ciphertext within a multipart mail
using HTML/CSS and show arbitrary content instead. A user replying to such
a benign-looking email unknowingly leaks the plaintext of up to hundreds of
encrypted emails at once. For another six vulnerable clients, HTML formatted

Re: What’s Up Johnny? 37

replies are deactivated in the default settings or not supported at all. In such
cases, our attacks are limited because the decrypted message cannot be com-
pletely hidden. However, it can be appended to the attacker’s text, separated
by a lot of newlines, or wrapped somewhere within the conversation history.
All affected clients, except R2Mail2, show consistent behavior, independently of
whether S/MIME or OpenPGP is used as encryption scheme.

7.2 Signing Oracles

We classify clients as vulnerable not only if they can act as a signing oracle, but
also if they show different text for signed messages based on conditional CSS.
Both vulnerabilities are required for the attack, but they do not need to exist in
the same client. In fact, because the targeted users (e.g., Johnny and General)
in each of these cases are different, they are likely to use different clients.

Ten clients, including popular applications such as Thunderbird, K-9 Mail,
the iOS Mail App, and Outlook Web Application (OWA), the GUI for Microsoft
Exchange, keep the original <style> element in replies, allowing an attacker to
misuse them as signing oracles.6 Of the remaining clients, six convert internal
CSS style information into inline styles when replying and eight clients reply to
HTML emails with ASCII text in the default settings. Once a signed email with
conditional CSS has been obtained, it can be used to trick 18 of the 20 clients
displaying HTML in the default settings (all but Mailpile and “The Bat!”) as
well as the HTML-to-text converter used by Horde/IMP into selectively show-
ing/hiding certain text. We could observe the same behavior for all email clients,
independent of the applied encryption scheme.

8 Countermeasures

Building a secure encryption protocol on top of email is very challenging. There
are many pitfalls and edge-cases to be considered. In this section, we provide best
practices to counter the attacks previously described. These practices should be
of help to guide implementations of OpenPGP or S/MIME capable clients.

8.1 Decryption Oracles

All-or-Nothing Encryption. Partially encrypted messages can be considered
harmful. Therefore, email clients must not decrypt emails unless they contain a
single encrypted part (i.e., the root node in the MIME tree). This can be stan-
dardized and enforced for S/MIME and PGP/MIME. For PGP/Inline however,
the only way to send a multipart message is to separately encrypt each part.
Unfortunately, every PGP/MIME message can be interpreted in the context of
a PGP/Inline message (i.e., a downgrade attack). Hence, email clients support-
ing PGP/Inline must enforce a strict separation between multiple body parts,
6 It must be noted that for two clients, MailMate and Airmail, some additional effort

was required to bypass filters which would otherwise strip internal CSS styles.

38 J. Müller et al.

for example, by opening each part in a separate window or tab. When replying to
multipart messages, only the very first body part may be quoted and, therefore,
included in the reply to prevent unintended leakage of covert plaintext content.

Accepting ASCII Text Only. Active content such as HTML within emails is
dangerous. Disabling HTML prevents most attacks described in this work. Unfor-
tunately, this does not meet today’s usage of email. HTML email has become
the norm and in ten of the tested email clients – for example, in Apple Mail and
iOS Mail – there is not even an option to disable HTML for incoming emails.
For Thunderbird with HTML disabled, we furthermore discovered a technique
to escalate into HTML context using specially crafted mailto: links. It must
be additionally noted that modern email clients also display text/plain emails
within an HTML widget component. One major problem is that no definition
for ‘HTML email’ exists. A standard describing a ‘safe’ subset of HTML which
can be used in emails to allow basic formatting, but forbid potentially harmful
features, would be a step in the right direction and is considered as future work.

Enforcing Digital Signatures. In theory, signed emails offer protection
against covert content attacks. If Bob received an email originating from Eve,
but one message part was signed by Alice, he may get suspicious and not reply
to Eve. In practice, email clients miserably fail when it comes to verifying signa-
tures for multipart messages. Our tests show that most email clients either do
not show a signature at all for partially signed messages, or show the first avail-
able signature in the MIME tree – which can originate from Eve because she can
simply re-sign the message. Even in cases where the client explicitly shows inline
information regarding which part is signed, we managed to hide the signature
information itself using CSS. Moreover, S/MIME signatures can be stripped by
targeted modifications of the CBC-ciphertext as shown by Strenzke [10]. Never-
theless, digital signatures – if done right – can enhance message authenticity and
integrity. For example, a company could set up a policy to discard all incom-
ing messages if they do not contain exactly one single sign-then-encrypt message
part, including signed email headers which can be enforced using extensions such
as Memory Hole for OpenPGP [4] or Secure Header Fields for S/MIME [1].

It is important to note that the described countermeasures must be imple-
mented by all involved parties. Usually, a user has no control over the security
precautions taken by his communication partners. In the context of email end-
to-end encryption, this is problematic because both the sender and the receiver
can act as a decryption oracle for captured ciphertext. Even if Bob discarded
partially encrypted messages and disabled HTML, Alice may still be vulnerable.

8.2 Signing Oracles

Dropping CSS Support. Conditional CSS makes it easy for an attacker to
hide certain text within a signed message while showing different text. Ideally,

Re: What’s Up Johnny? 39

clients would ignore CSS in received emails. However, this is an unrealistic sce-
nario given today’s usage of email, especially in a business context, where it is
expected that emails can have any sort of formatting – technically implemented
with CSS. Sanitizing conditional CSS rules and properties which can be used to
hide content is feasible, but it may be insufficient as web technologies are con-
stantly evolving. Nevertheless, it is important to display digitally signed content
equally to all viewers. The S/MIME and OpenPGP standards, which are from
a time-period where messages were ASCII text, fail to address this and should
be extended.

Only ASCII Text in Replies. It should not harm the user experience if mail
clients converted quoted messages into ASCII text when replying to an email.
Eight of the tested clients (e.g., Roundcube) are actually doing this. Thus, we
recommend that security-focused mail clients should adopt this behavior. They
must not sign any quoted HTML/CSS input from the original message, so that
they cannot be misused as signing oracles.

9 Conclusion

Email is complex. The MIME standard and HTML, as supported by modern
email clients, provide a high level of flexibility and allow arbitrary wrapping,
nesting, and hiding of encrypted or to-be-signed content. This complexity and
the conjoined attack surface are not dealt with in the security considerations of
the OpenPGP and S/MIME standards, which primarily focus on cryptographic
algorithms and their parameters such as key sizes. However, relying on the secu-
rity of cryptographic primitives, such as AES or ECDH, is not enough for secure
email end-to-end encryption and signatures. The developers of email clients have
to handle a plethora of critical edge-cases – without being able to consult any
published best practices. Our work aims to close this research gap. We reveal
implementation pitfalls in the “no man’s land” between cryptography and email,
as used today, and give guidance and best practices in order to improve the secu-
rity of S/MIME and OpenPGP capable email clients.

Acknowledgements. The authors thank Juraj Somorovsky for his valuable feedback
and insightful discussions. Jens Müller was supported by the research training group
‘Human Centered System Security’ sponsored by the state of North-Rhine Westfalia. In
addition, this work was supported by the German Research Foundation (DFG) within
the framework of the Excellence Strategy of the Federal Government and the States –
EXC 2092 CASA.

40 J. Müller et al.

A Screenshots of Decryption Oracles

A.1 Plaintext Hidden in a Referenced Inline ‘Image’

Figure 10 depicts a covert content attack against Thunderbird/Enigmail based
on the example email given in Fig. 6. The ciphertext is hidden in an embedded
‘image’ file, referenced from the attacker’s part via a cid: URI scheme. The
OpenPGP plugin – Enigmail – detects the ‘image’ as PGP/MIME content and
decrypts it. The decrypted ‘image’ is then Base64 encoded by Thunderbird and
included in the reply message, therefore leaking the plaintext.

Fig. 10. Convert content attack using Thunderbird as PGP decryption oracle.

Re: What’s Up Johnny? 41

B HTML/CSS Email Support

Table 3. HTML and CSS support in various email clients.

C Other Conditional Features

Fig. 11. Proprietary features and CSS to target only certain clients.

References

1. Cailleux, L., Bonatti, C.: Securing Header Fields with S/MIME, April 2015. http://
tools.ietf.org/rfc/rfc7508.txt, RFC7508

http://tools.ietf.org/rfc/rfc7508.txt
http://tools.ietf.org/rfc/rfc7508.txt

42 J. Müller et al.

2. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message Format,
November 1998. http://tools.ietf.org/rfc/rfc2440.txt, RFC2440

3. Davis, D.: Defective sign & encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP,
and XML. In: Proceedings of the General Track: 2001 USENIX Annual Technical
Conference, pp. 65–78. USENIX Association, Berkeley (2001). http://dl.acm.org/
citation.cfm?id=647055.715781

4. Gillmor, D.K.: Memory Hole spec and documentation (2014). https://github.com/
autocrypt/memoryhole

5. Jallad, K., Katz, J., Schneier, B.: Implementation of chosen-ciphertext attacks
against PGP and GnuPG. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 90–101. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45811-5 7

6. Katz, J., Schneier, B.: A chosen ciphertext attack against several e-mail encryption
protocols. In: Proceedings of the 9th Conference on USENIX Security Symposium,
SSYM 2000, vol. 9, p. 18. USENIX Association, Berkeley (2000). http://dl.acm.
org/citation.cfm?id=1251306.1251324

7. Poddebniak, D., et al.: Efail: breaking S/MIME and OpenPGP email encryption
using exfiltration channels. In: 27th USENIX Security Symposium (USENIX Secu-
rity 18), pp. 549–566. USENIX Association, Baltimore (2018). https://www.usenix.
org/conference/usenixsecurity18/presentation/poddebniak

8. Ramsdell, B.: S/MIME Version 3 Message Specification, June 1999. http://tools.
ietf.org/rfc/rfc2633.txt, RFC2633

9. Ribeiro, F.: The Ropemaker Email Exploit (2017)
10. Strenzke, F.: Improved Message Takeover Attacks against S/MIME, February 2016.

https://cryptosource.de/posts/smime mta improved en.html
11. W3C: CSS Conditional Rules Module Level 3 (2013). https://www.w3.org/TR/

css3-conditional/

http://tools.ietf.org/rfc/rfc2440.txt
http://dl.acm.org/citation.cfm?id=647055.715781
http://dl.acm.org/citation.cfm?id=647055.715781
https://github.com/autocrypt/memoryhole
https://github.com/autocrypt/memoryhole
https://doi.org/10.1007/3-540-45811-5_7
https://doi.org/10.1007/3-540-45811-5_7
http://dl.acm.org/citation.cfm?id=1251306.1251324
http://dl.acm.org/citation.cfm?id=1251306.1251324
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
http://tools.ietf.org/rfc/rfc2633.txt
http://tools.ietf.org/rfc/rfc2633.txt
https://cryptosource.de/posts/smime_mta_improved_en.html
https://www.w3.org/TR/css3-conditional/
https://www.w3.org/TR/css3-conditional/

	Re: What's Up Johnny?
	1 Introduction
	2 Background
	2.1 OpenPGP
	2.2 S/MIME
	2.3 MIME Email
	2.4 HTML Email

	3 Related Work
	4 Attacker Model
	5 Decryption Oracles
	6 Signing Oracles
	7 Evaluation
	7.1 Decryption Oracles
	7.2 Signing Oracles

	8 Countermeasures
	8.1 Decryption Oracles
	8.2 Signing Oracles

	9 Conclusion
	A Screenshots of Decryption Oracles
	A.1 Plaintext Hidden in a Referenced Inline `Image'

	B HTML/CSS Email Support
	C Other Conditional Features
	References

