
Faster Multiplication in Z2m [x]
on Cortex-M4 to Speed up NIST PQC

Candidates

Matthias J. Kannwischer(B), Joost Rijneveld(B), and Peter Schwabe(B)

Radboud University, Nijmegen, The Netherlands
matthias@kannwischer.eu, joost@joostrijneveld.nl, peter@cryptojedi.org

Abstract. In this paper we optimize multiplication of polynomials in
Z2m [x] on the ARM Cortex-M4 microprocessor. We use these optimized
multiplication routines to speed up the NIST post-quantum candidates
RLizard, NTRU-HRSS, NTRUEncrypt, Saber, and Kindi. For most of those
schemes the only previous implementation that executes on the Cortex-
M4 is the reference implementation submitted to NIST; for some of those
schemes our optimized software is more than factor of 20 faster. One of
the schemes, namely Saber, has been optimized on the Cortex-M4 in
a CHES 2018 paper; the multiplication routine for Saber we present
here outperforms the multiplication from that paper by 42%, yielding
speedups of 22% for key generation, 20% for encapsulation and 22% for
decapsulation. Out of the five schemes optimized in this paper, the best
performance for encapsulation and decapsulation is achieved by NTRU-
HRSS. Specifically, encapsulation takes just over 400 000 cycles, which
is more than twice as fast as for any other NIST candidate that has
previously been optimized on the ARM Cortex-M4.

Keywords: ARM Cortex-M4 · Karatsuba · Toom ·
Lattice-based KEMs · NTRU

1 Introduction

In November 2017 the NIST post-quantum project [NIS16b] received 69 “com-
plete and proper” proposals for future standardization of a suite of post-quantum
cryptosystems. By December 2018, five of those 69 have been withdrawn. Out of
the remaining 64 proposals, 22 are lattice-based public-key encryption schemes
or key-encapsulation mechanisms (KEMs). Most of those lattice-based schemes
use structured lattices and, as a consequence, require fast arithmetic in a poly-
nomial ring Rq = Zq[x]/f for some n-coefficient polynomial f ∈ Zq[x]. Typically
the largest performance bottleneck of these schemes is multiplication in Rq.

This work has been supported by the European Commission through the ERC Start-
ing Grant 805031 (EPOQUE) and by COST (European Cooperation in Science and
Technology) through COST Action IC1403 (CRYPTACUS). Date: April 30, 2019.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 281–301, 2019.
https://doi.org/10.1007/978-3-030-21568-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_14


282 M. J. Kannwischer et al.

Many proposals, for example NewHope [ADPS16,AAB+17], Kyber
[ABD+17], and LIMA [SAL+17], choose q, n, and f such that multiplication
in Rq can be done via very fast number-theoretic transforms. However, six
schemes choose q = 2k which requires using a different algorithm for multi-
plication in Rq. Specifically those six schemes are Round2 [GMZB+17], Saber
[DKRV17], NTRU-HRSS [HRSS17b], NTRUEncrypt [ZCHW17], Kindi [Ban17],
and RLizard [CPL+17]. Round2 recently merged with Hila5 [Saa17] into
Round5 [BGML+18] and the Round5 team presented optimized software for the
ARM Cortex-M4 processor in [SBGM+18]; the multiplication in Round5 has
more structure, allowing for a specialized high-speed routine. In this paper we
optimize the other five schemes relying on arithmetic in Rq with a power-of-two
q on the same platform. Note that Saber has previously been optimized on the
ARM Cortex-M4 [KMRV18] as well; our polynomial multiplication implemen-
tation outperforms the results by 42% which improves the overall performance
of key generation by 22%, encapsulation by 20%, and decapsulation by 22%.
For the other four schemes the only software that was readily available for the
Cortex-M4 was the reference implementation and, unsurprisingly, our carefully
optimized code significantly outperforms these implementations. For example,
our optimized implementations of RLizard-1024 and Kindi-256-3-4-2 encapsula-
tion and decapsulation are more than a factor of 20 faster. Our implementation of
NTRU-HRSS encapsulation and decapsulation solidly outperform the optimized
Round5 software presented in [SBGM+18].

We achieve our results by systematically exploring different combinations of
Toom-3, Toom-4, and Karatsuba decomposition [Too63,Coo66,KO63] of multi-
plication in Rq, and by carefully hand-optimizing multiplication of low-degree
polynomial multiplication at the bottom of the Toom/Karatsuba decomposi-
tion. The exploration of the different approaches is automated through a set of
Python scripts that generate optimized assembly given the parameters q = 2k

for k ≤ 16 and n ≤ 1024. These Python scripts may be of independent interest
for a similar design-space exploration on different architectures.

Organization of This Paper. In Sect. 2 we briefly recall the five NIST can-
didates that we optimize in this paper and give the necessary background on
the target microarchitecture, i.e., the ARM Cortex-M4. In Sect. 3 we first detail
our approach to explore different Toom and Karatsuba decomposition strategies
for multiplication in Rq and then explain how we hand-optimized schoolbook
multiplications of low-degree polynomials. Finally, Sect. 4 presents performance
results for stand-alone multiplication in Rq for the different parameter sets, and
for the five NIST candidates.

Availability of the Software. We place all software presented in this paper,
including the Python scripts used for design-space exploration, into the pub-
lic domain. The software is available at https://github.com/mupq/polymul-
z2mx-m4 and the implementations have been integrated into the pqm4 frame-
work [KRSS].

https://github.com/mupq/polymul-z2mx-m4
https://github.com/mupq/polymul-z2mx-m4


Faster Multiplication in Z2m [x] on Cortex-M4 283

Second Round of NISTPQC. Since this paper first appeared online NIST
announced the second round candidates of the post-quantum competition. While
Kindi and RLizard are no longer under consideration by NIST, Saber, NTRU-
HRSS, and NTRUEncrypt made it to the second round. NTRU-HRSS and NTRU-
Encrypt were merged into the new scheme NTRU. The optimizations presented
in this paper carry over directly to the second round schemes.

2 Preliminaries

In this section, we briefly review the five NIST candidates that we optimize in
this paper. Readers interested in the multiplication routine outside the context
of NIST submissions are encouraged to skip ahead to Subsect. 2.2, where we
introduce the targeted Cortex-M4 platform and give context that is relevant to
interpret the benchmark results.

2.1 Cryptosystems Targeted in This Paper

The full specification of each of the five CCA-secure KEMs would take several
pages, so for the sake of brevity we leave out various details. In this section, we
highlight the relevant aspects; see the full version of this paper for algorithmic
descriptions. In particular, all five schemes build a CCA-secure KEM from an
encryption scheme; for all but NTRUEncrypt, this encryption scheme is only
passively secure. In our descriptions, we focus only on the encryption schemes
underlying the KEM and highlight the multiplications in Rq.

RLizard. RLizard is part of the Lizard submission to NIST [CPL+17]. It is a
cryptosystem based on the Ring-Learning-with-Errors (Ring-LWE) and Ring-
Learning-with-Rounding (Ring-LWR) problems. As the names suggest, these
problems are closely related, and efficient reductions exist [BPR12,BGM+16].
The submission motivates the choice for the Learning-with-Rounding problem
by stressing its deterministic encryption routine and reduced ciphertext size
compared to Learning-with-Errors. RLizard.KEM is a CCA-secure KEM that is
constructed by applying Dent’s variant of the FO transform [FO99,Den03] to
the RLizard CPA-secure PKE scheme.

The main structure underlying RLizard is the ring Rq = Zq[x]/(xn + 1),
but coefficients of the ciphertext are ultimately reduced to Rp, where p < q.
We consider the parameter set where n = 1024, q = 2048 and p = 512. In
the submission the derived KEM is referred to as RING CATEGORY3 N1024 – for
clarity, we denote it as RLizard-1024 from this point onwards. All multiplications
in RLizard fit the structure that we target in this work.

NTRU-HRSS-KEM. The NTRU-HRSS scheme [HRSS17a] is based on the
‘classic’ NTRU cryptosystem [HPS98]. It starts from the CPA-secure NTRU



284 M. J. Kannwischer et al.

encryption scheme, and, like RLizard, applies Dent’s variant of the FO trans-
form [FO99,Den03] to construct a CCA-secure KEM. By restricting the param-
eter space compared to traditional NTRU, the scheme is simplified and avoids
implementation pitfalls such as decryption failures and fixed-weight sampling.

We look at the concrete instance as submitted to NIST [HRSS17b], i.e., fix
the parameters to p = 3, q = 8192 and n = 701. NTRU-HRSS relies on arithmetic
in a number of different rings. Glossing over the technicalities (see Sects. 2 and
3 of [HRSS17a]), we reuse the notation to define Φd = 1 + x1 + x2 + · · · + xd−1,
and then define Rp = Z[x]p/Φn, R′

q = Z[x]q/Φn and Rq = Z[x]q/(xn − 1), but
abstract away the transitions between rings.

The scheme requires several multiplications and inversions. For this paper,
we focus on multiplications in R′

q and Rq. However, the same routine can be
used to perform the multiplication in Rp. Furthermore, as the inversion in R′

q

can be performed using multiplications [HRSS17a], this benefits from the same
optimization.

NTRUEncrypt. The NTRUEncrypt scheme [ZCHW17] is also based on the
standard NTRU construction [HPS98], but chooses parameters based on a
recent revisiting [HPS+17]. NTRUEncrypt builds a CCA-secure KEM from a
CCA-secure PKE; this public-key encryption scheme uses the NAEP trans-
form [HGSSW03].

The NIST submission of NTRUEncrypt [ZCHW17] presents several instan-
tiations, but we limit ourselves to the instances where q = 2k. We look at the
parameter set NTRU-KEM-743, where p = 3, q = 2048, and n = 743; the arith-
metic takes place in the ring Rq = Zq[x]/(xn − 1), but coefficients are also
reduced modulo p when moving to Rp. The optimizations in this work also carry
over to the smaller NTRU-KEM-443 parameter set, but not to NTRU-KEM-1024
(which uses a prime q). As before, the relevant multiplication occurs when the
noise polynomial r is multiplied with the public key h, but we also utilize our
multiplication routine for the other multiplication in Dec.

Saber. Like Lizard and RLizard, Saber [DKRV17] also relies on the Learning-
with-Rounding problem. Rather than directly targeting LWR or the ring variant,
it positions itself in the middle-ground formed by the Module-LWR problem. The
submission conforms to the common pattern of proposing a PKE scheme, and
then applying an FO variant [HHK17] to obtain a CCA-secure KEM.

Like RLizard, Saber operates in the ring Rq = Zq[x]/(xn + 1), and in the
smaller Rp. Because of the Module-LWR structure, however, n is fixed to 256
for all parameter sets. Instead of varying the dimension of the polynomial, Saber
variants use matrices of varying sizes with entries in the polynomial ring (denoted
R�×k). With the fixed q = 8192, this ensures that an optimized routine for
multiplication in Rq directly applies to the smaller LightSaber and the larger
FireSaber instances as well. Other parameters p and t are powers of 2 smaller



Faster Multiplication in Z2m [x] on Cortex-M4 285

than q; for the Saber instance1, p = 1024 and t = 8. The vector h is a fixed
constant in R�

q.
Note that some of the multiplications in Saber are in Rq and some are in

Rp; in our software both use the same routine. As we will explain in Sect. 3, the
smaller value of p would in principle allow us to explore a larger design space for
multiplications in Rp; however, for the small value of n = 256 there is nothing
to be gained in the additional multiplication approaches.

KINDI. In the same vein as Saber, Kindi [Ban17] is based on a matrix of polyno-
mials, relating it to the Module-LWE problem. Somewhat more intricate than the
standard approach, however, it relies on a trapdoor construction, and constructs
a CPA-secure PKE that is already close to a key-encapsulation mechanism.

Kindi operates in the polynomial ring Rq = Zq[x]/(xn + 1) with q = 2k, the
more general Rb = Zb[x]/(xn+1) for some integer b, and in the polynomial ring
with integer coefficients R = Z[x]/(xn + 1). The relevant arithmetic primarily
happens in the ring Rq, though, meaning that the performance of Kindi still
considerably improves as a consequence of this work. We consider the parameter
set Kindi-256-3-4-2, where n = 256 and q = 214.

To obtain a CCA-secure KEM, a slightly simplified version of the modular
FO variant [HHK17] is used: as Kindi exhibits a KEM-like structure and already
includes re-encryption in Dec, this results in merely adding hash-function calls.

2.2 ARM Cortex-M4

Our target platform is the ARM Cortex-M4 which implements the ARMv7E-M
architecture. It has 16 general purpose registers of which 14 are freely usable
by the developer. In contrast to smaller architectures like the Cortex-M3, the
Cortex-M4 supports the DSP instructions smuad, smuadx, smlad, and smladx,
which we use to significantly speed up low-degree polynomial multiplication
using the schoolbook method. Those low-degree multiplication routines are used
as a core building block for higher-degree polynomial multiplication. The DSP
instructions perform two half-word multiplications, accumulate the two products
and optionally accumulate another 32-bit word in one clock cycle (as illustrated
in Table 1). There is strong synergy between these DSP instructions and the fact
that loading a 32-bit word using ldr is as expensive as loading a halfword using
ldrh. Related to this, it is important to perform load operations sequentially
(i.e., uninterrupted by other instructions) when possible, as this has a pipelin-
ing benefit. This shows in the ldm instruction, but also when simply adjoining
multiple ldr instructions. While the same behavior occurs for store instructions,
combining loads and stores only incurs pipelining benefits when stores follow
loads, but not when loads follow stores.

The ARMv7E-M instruction set contains support for 16-bit Thumb instruc-
tions, such as simple arithmetic and memory operations with register parame-
ters. Using these instructions has an obvious benefit for code size, but comes at
1 Note that both the scheme and the category 3 parameter set are called Saber.



286 M. J. Kannwischer et al.

Table 1. Relevant dual 16-bit multiplication instructions supported by the ARM
Cortex-M4

Instruction Semantics

smuad Ra, Rb, Rc Ra ← RbL · RcL + RbH · RcH
smuadx Ra, Rb, Rc Ra ← RbL · RcH + RbH · RcL
smlad Ra, Rb, Rc, Rd Ra ← RbL · RcL + RbH · RcH + Rd

smladx Ra, Rb, Rc, Rd Ra ← RbL · RcH + RbH · RcL + Rd

the cost of introducing misalignment: instruction fetching is significantly more
expensive when instruction offsets are not aligned to multiples of four bytes. To
combat this, Thumb instructions can be expanded to full-word width using the
.w suffix.

Benchmarking Platform. In our experiments we use the STM32F4-
DISCOVERY which features 1 MiB of Flash ROM, 192 KiB of RAM (128 KiB of
which are contiguous) running at a maximum frequency of 168 MHz. For bench-
marking we use the reduced clock frequency of 24 MHz to not be impacted by
wait states caused by slow memory [SS17]. We use the GNU ARM Embedded
Toolchain2 (arm-none-eabi) with arm-none-eabi-gcc-8.3.0. All source files
are compiled with the optimization flag -O3.

3 Multiplication in Z2m [x]

As discussed in the previous sections, we focus on multiplication in Rq, where q =
2m. In particular, we approach this by looking at the non-reduced multiplication
in Z2m [x], as this is identical across all schemes we investigate. The reduction is
done outside of our optimized polynomial multiplication.

Here, we describe the way we break down such a multiplication for a specific
number of coefficients n, modulo a specific q. This is done using combinations of
Toom-Cook’s and Karatsuba’s multiplication algorithms. For a given n and q,
there are multiple possible approaches; we explore the entire space and select the
optimum for each parameter set. We use Python scripts that generate optimized
assembly functions for all combinations, for arbitrary-degree polynomials (with
degree below 1024). These scripts are parameterized by the degree, the Toom
method (see the next subsection; Toom-3, Toom-4, both Toom-4 and Toom-3 or
no Toom layer at all), and the threshold at which to switch from Karatsuba to
schoolbook multiplication. See Sect. 4.1 for a detailed analysis of these results.

3.1 Toom/Karatsuba Strategies

The naive schoolbook approach to multiply two polynomials with n coefficients
results in n2 multiplications in Zq. Using well-known algorithms by Karat-
suba [KO63] and Toom-Cook [Too63,Coo66], it is possible to trade some of these
2 https://developer.arm.com/open-source/gnu-toolchain/gnu-rm.

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm


Faster Multiplication in Z2m [x] on Cortex-M4 287

multiplications for additions and subtractions. Both algorithms have originally
been introduced for the multiplication of large integers, but straight-forwardly
translate to polynomial multiplication. Karatsuba’s method breaks a multipli-
cation of n-coefficient polynomials into three (instead of four) multiplications of
polynomials with n

2 coefficients. Toom-Cook is a generalization of this approach.
For this work we concern ourselves with Toom-3, which breaks down a multipli-
cation of n-coefficient polynomials into five (rather than nine) multiplications of
polynomials with n

3 coefficients, and Toom-4, breaking down a multiplication of
n-coefficient polynomials into seven multiplications of n

4 coefficients.

Toom-Cook. It is important to note that there is a loss in precision when
using Toom’s method, as it involves division over the integers. While divisions
by three and five can be replaced by multiplications by their inverses mod-
ulo 216, i.e., 43691 and 52429, this is not possible for divisions by powers of
two. Consequently, Toom-3 loses one bit of precision, and Toom-4 loses three
bits. Since our Karatsuba and schoolbook implementations operate in Z216 [x],
this imposes constraints on the values of q for which our implementations can
be used; Toom-3 can be used for q ≤ 215, Toom-4 can be used for q ≤ 213.
These losses accumulate, and a combination of both is only possible if q ≤ 212.
This also rules out higher-order Toom methods. While switching to 32-bit arith-
metic would allow using higher order Toom, this slows down Karatsuba and the
schoolbooks significantly by increasing load-store overhead and ruling out DSP
instructions.

While asymptotically Toom-4 is more efficient than Toom-3 and Karatsuba,
in practice the additions and subtractions also impact the run-time. The
increased and more complex memory-access patterns also significantly influence
performance. Thus, for a given n it is not immediately obvious in general which
approach is the fastest. We first evaluate whether to decompose using a layer of
Toom-4, Toom-3, both Toom-4 and Toom-3, or no Toom at all. We then repeat-
edly apply Karatsuba’s method to break down the multiplications, up to the
threshold at which it becomes inefficient and the “naive” schoolbook method
becomes the fastest approach.

Karatsuba. The call to the topmost Karatsuba layer is a function call, but
from that point on, we recursively inline the separate layers. Upon reaching the
threshold at which the schoolbook approach takes precedence, we jump to the
schoolbook multiplication as an explicit subroutine. This provides a trade-off
that keeps code size reasonable and is flexible to implement and experiment
with, but does imply that the register allocation between the final Karatsuba
layer and the underlying schoolbook is disjoint; it may prove worthwhile to look
into this for specific n rather than in a general approach.



288 M. J. Kannwischer et al.

Note that we only applied Karatsuba’s method to split polynomials in two
parts (i.e., not more), and did not combine operations across recursive calls.
See [WP06] for details on a more general approach.3

As we perform several nested layers of Karatsuba multiplication, it is impor-
tant to carefully manage memory usage. We do not go for a completely in-place
approach (as is done in [KMRV18]), but instead allocate stack space for the sums
of the high and low limbs, relying on the input and output buffers for all other
terms. This leads to effective memory usage without reducing performance.

Assembly-Level Optimizations. For both Toom and Karatsuba, the typical
operations require adding and subtracting polynomials of moderate size from
a given address. We stress the importance of careful pipelining, loading and
storing 16-bit coefficients pairwise into full-word registers, and using uadd16 and
usub16 arithmetic operations. We rely on offset-based instructions for memory
operations, in particular for the more intricate memory access patterns in Toom
and Karatsuba. This leads to a slight increase in code size compared to using ldm
and stm, (and some bookkeeping for polynomials exceeding the maximal offset
of 4095 bytes), but ensures that addresses are computed during code generation.

For ease of implementation, our code generator for Toom is restricted to
dimensions that divide without remainder. For Karatsuba, we do not restrict the
dimensions at all: the implementation can work on unbalanced splits, and thus
polynomials of unequal length. In order not to waste any memory or cycles here
(e.g., by applying common refinement approaches), the Python script becomes a
rather complex composition of conditionals; rather than trying to combine pairs
of 16-bit additions into uadd16 operations on the fly, we run a post-processing
step over the scheduled instructions to do so.

Rather than considering alignment to 32-bit word boundaries during code
generation, we use a post-processing step. After compilation, we disassemble the
resulting binary and expand Thumb instructions in the cases where they cause
misalignment. This allows using the smaller Thumb instructions where possible,
but avoids paying the overhead of misalignment. In particular, this is important
when an odd number of Thumb instructions is followed by a large block of 32-bit
instructions. The alignment post-processing is done using a Python script that
is included in our software package, and may be of independent interest.

3.2 Small Schoolbook Multiplications

We carefully investigate several approaches to perform the small-degree school-
book multiplications that underlie Karatsuba and Toom-Cook, varying the
approaches and implementing distinct generation routines for different n.
3 The approach by Weimerskirch and Paar provides a middle ground between

Karatsuba and Toom-Cook. While allowing for a wider range of splits than tra-
ditional Karatsuba and a more efficient way of dealing with the newly introduced
additions, it does come at the cost of more small-sized multiplications than similarly-
sized Toom-Cook instances. A key advantage, though, is the fact that this approach
does not introduce divisions that lead to a loss of precision. This could be relevant
in particular for multiplications where both n and q are large.



Faster Multiplication in Z2m [x] on Cortex-M4 289

For each approach, we keep the polynomial in packed representation, load-
ing all coefficients into the 32-bit registers in pairs. The ARMv7E-M instruction
set provides multiplication instructions that efficiently operate on data in this
format: parallel multiplications, but also instructions that operate on a specific
halfwords. For n ≤ 10, all input coefficients can be kept in registers simultane-
ously, with registers remaining to keep the pointers to the source and destination
polynomials around. We first compute all coefficients of terms with odd expo-
nents, before using pkh instructions to repack one of the input polynomials and
computing the remaining coefficients. This ensures that the vast majority of the
multiplications can be computed using the two-way parallel multiply-accumulate
dual instructions. See Fig. 1 for an illustration of this; here, b is repacked to create
the dashed pairs. This is somewhat similar to the approach used in [KMRV18],
but ends up needing less repacking and memory interaction.

a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

Fig. 1. Pairing coefficients to reduce the number of multiplications, using smladx/-
smlad instructions. Dashed boxes represent multiplications involving repacked b.

Fig. 2. Decomposing larger schoolbook multiplications

For n ∈ {11, 12}, we spill the source pointers to the stack after loading the
complete polynomials. At these dimensions, the registers are used to their full
potential, and by using the DSP instructions we end up needing only 78 mul-
tiplications; 66 combined multiplications, 12 single multiplications, and not a
single dedicated addition instruction. This offsets the extra cost of the 6 packing
instructions considerably. For n ∈ {13, 14}, not all coefficients fit in registers at
the same time, leading to spills for the middle columns (i.e., the computation of
coefficients around xn, which are affected by all input coefficients). Even when



290 M. J. Kannwischer et al.

using the Python abstraction layer, manual register allocation becomes some-
what tedious in the cases that involve many spills to the stack. To remedy this,
we use bare-bones register allocation functions akin to the scripts in [HRSS17a].

For larger n, the above strategy leads to an excessive amount of register
spills. Instead, we compose the multiplication of a grid of smaller instances. For
15 ≤ n ≤ 24, we compose the multiplication out of four smaller multiplications,
for 25 ≤ n ≤ 36, we use a grid of nine multiplications, etc. Note that we use at
most n = 12 for the building blocks, given the extra overhead of the register spills
for n ∈ {13, 14}. We further remark that it is important to carefully schedule
the (re)loading and repacking of input polynomials. We illustrate this in Fig. 2.

The approach described above works trivially when n is divisible by
⌈

n
12

⌉
,

but leads to a less symmetric pattern for other dimensions. We plug these holes
by starting from an n that divides even, and either adding a layer ‘around’ the
parallelogram or nullifying the superfluous operations in a post-processing step.

Figure 3 shows the performance of these routines; see Table 5 for more details.

Fig. 3. Runtime of generated optimized polynomial multiplication for small n. For
n < 20 our hand-optimized schoolbook multiplications are clearly superior, for n > 36
first applying at least one layer of Karatsuba is faster.

4 Results and Discussion

In this section we present benchmark results for polynomial multiplication, and
for key generation, encapsulation, and decapsulation of the five NIST post-
quantum candidates Kindi, NTRUEncrypt, NTRU-HRSS, RLizard, and Saber. For
each of the schemes we have tried to select the parameter set which targets NIST
security category 3. However, NTRU-HRSS only provides a category 1 parame-
ter set, hence we use this. Furthermore, the reference implementations for the
category 3 parameter sets of Kindi require more than 128 KiB of RAM and
consequently do not trivially fit our platform (STM32F4DISCOVERY). We use
Kindi-256-3-4-2 instead, which targets security category 1. For the definition of
NIST security categories see [NIS16a, Sect. 4.A.5].

All cycle counts presented in this section were obtained by using an adapted
version of the pqm4 benchmarking framework [KRSS], which uses the built-in



Faster Multiplication in Z2m [x] on Cortex-M4 291

24-bit hardware timer. Stack measurements were also also obtained using the
method implemented in pqm4, i.e., by writing a canary to the entire memory
available for the stack, running the scheme under test and subsequently checking
how much of the canary was overwritten.

4.1 Multiplication Results

We first present results for polynomial multiplication as a building block. We
report benchmarks for the multiplication for all possible n < 1024, using different
approaches to evaluate which strategy is optimal.

Figure 3 shows the run-time of our hand-optimized schoolbook implementa-
tions and the generated optimized Karatsuba code for small n. For the Karatsuba
benchmarks, we have selected the optimal schoolbook threshold, e.g., for n = 32
one could either apply one layer of Karatsuba and then use the schoolbook
method for n = 16 or, alternatively, use two layers of Karatsuba and use school-
book multiplications for n = 8. The former variant is faster in this scenario,
which leads to a schoolbook threshold of 16. For each n, we simply iterated over
all schoolbook thresholds and selected the fastest variant. The graph shows that
directly applying the schoolbook method is superior for n < 20, and for n > 36
Karatsuba outperforms schoolbook. However, for values in between, the plot is
inconclusive. A large cause of this is the amount of hand-optimization that went
into some of our schoolbook implementations, but it is also strongly determined
by register pressure: there is a large performance hit in the step from n = 14 to
n = 15, which then propagates to dimensions that break down to these school-
book multiplications using Karatsuba. For cryptographically relevant values we
found that the cross-over point is at n = 22, i.e., for values n > 22 one should
use an additional layer of Karatsuba.

Figure 4 shows the performance of the different multiplication approaches for
larger n. While that general trend is visible, one still observes a jagged line. We
speculate that the main cause for this is similar to the irregularities in Fig. 3:
the variance in the increasing cost of the schoolbooks is magnified as n grows
larger and specific schoolbook sizes are repeated in the decomposition of large
multiplications. Because of the difference in decomposition between Toom-3 and
Toom-4, this favors each method for different ranges for n, resulting in alternat-
ing optimality. Another factor that is impacted by specific decomposition is the
resulting memory access pattern, and, by extension, data alignment, resulting in
a large performance penalty. In practice, comparing benchmarks for specific n
seems to be the only way to come to conclusive results. In particular, we observe
that the lines are not even monotonically increasing; note that it is trivially pos-
sible to pad a smaller-degree polynomial and use a larger multiplication routine
to benefit of a more efficient decomposition.

As Fig. 4 does not allow us to identity which method performs best for clear
bounds on n, we instead focus on individual n as relevant for the five crypto-
graphic schemes we intend to cover. This restricts n to {256, 701, 743, 1024}. In
Table 2, we report the cycle counts alongside the required additional stack space



292 M. J. Kannwischer et al.

Fig. 4. Runtime of different decomposition variants for large-degree multiplications.

for each of the multiplication methods. All cycle counts are for polynomial mul-
tiplication excluding subsequent reduction required to obtain an n-coefficient
polynomial; additional cost for reduction differs depending on the specific choice
of ring. While there is some performance benefit to performing the reduction
inline, the main gain is in stack usage. For the Toom variants, this allows for
in-place recomposition, reducing stack usage by roughly 2n coefficients. This is
not trivial for Karatsuba, though, introducing some additional complexity. We
leave this for future work.

For the rather small n = 256 (Saber, Kindi), we already see that Toom-4
(followed by two layers of Karatsuba) is slightly faster than directly applying
Karatsuba. As the difference is small, however, one might decide to not use a
Toom layer at all, at the benefit of a much simpler implementation and consider-
ably reduced stack usage. Toom-4 is not suitable for Kindi (n = 256, q = 214), as
q is too large. Again the impact is marginal, though, as Karatsuba is only a few
percent slower at this dimension, also performing just above Toom-3. For larger
n ∈ {701, 743, 1024} (NTRU-HRSS, NTRUEncrypt, RLizard) applying Toom-4 is
most efficient. The second layer ends up in the same range of small n, where it is
a close competition between applying Toom-3 or directly switching to recursive
Karatsuba.

4.2 Encapsulation and Decapsulation Results

In this section we present our performance results for RLizard, Saber, Kindi,
NTRUEncrypt, and NTRU-HRSS. All the software presented in this section
started from the reference implementations submitted to NIST but went consid-



Faster Multiplication in Z2m [x] on Cortex-M4 293

Table 2. Benchmarks for polynomial multiplication excluding reduction. Fastest app-
roach is highlighted in bold. The ‘Toom-4 + Toom-3’ and ‘Toom-4’ approaches are
not applicable to all parameter sets, as q may be too large.

Approach Schoolbook Clock cycles Stack
usage
[bytes]

Saber (n = 256,
q = 213)

Karatsuba only 16 38 000 2 020

Toom-3 11 39 043 3 480

Toom-4 16 36 274 3 800

Toom-4 + Toom-3 - - -

Kindi-256-3-4-2
(n = 256, q = 214)

Karatsuba only 16 38 000 2 020

Toom-3 11 39 043 3 480

Toom-4 - - -

Toom-4 + Toom-3 - - -

NTRU-HRSS
(n = 701, q = 213)

Karatsuba only 11 202 889 5 676

Toom-3 15 205 947 9 384

Toom-4 11 172 882 10 596

Toom-4 + Toom-3 - - -

NTRU-KEM-743
(n = 743, q = 211)

Karatsuba only 12 217 130 6 012

Toom-3 16 211 588 9 920

Toom-4 12 186 639 11 208

Toom-4 + Toom-3 16 192 503 12 152

RLizard-1024
(n = 1024, q = 211)

Karatsuba only 16 356 046 8 188

Toom-3 11 352 770 13 756

Toom-4 16 302 504 15 344

Toom-4 + Toom-3 11 310 712 16 816

erably further than just replacing the multiplication routines with the optimized
routines described in Sect. 3. For Saber, we considered starting from the already
optimized implementation by Karmakar, Bermudo Mera, Sinha Roy, and Ver-
bauwhede [KMRV18], but achieved marginally better performance starting from
the reference code. We start by describing the changes that apply to the refer-
ence implementations; some of these changes might be more generally advisable
as updates to reference software.

Memory Allocations. The reference implementations of Kindi, RLizard, and
NTRUEncrypt make use of dynamic memory allocation on the heap. The RLizard



294 M. J. Kannwischer et al.

implementation does not free all the allocated memory, which results in mem-
ory leaks; also it misinterprets the NIST API and assumes that the public key is
always stored right behind the secret key. This may result in reads from uninitial-
ized (or even unallocated) memory. Luckily none of the implementations require
dynamically allocated memory; the size of all allocated memory is reasonably
small and known at compile time. We eliminated all dynamic memory alloca-
tions and our software thus only relies on the stack to store temporary data. Our
benchmarks show that this significantly improves performance.

Hashing. The five NIST candidates we optimize in this paper make use of vari-
ants of SHA-3 and SHAKE [NIS15b] and of SHA-512 [NIS15a]. For SHA-3 and
SHAKE we use the optimized assembly implementation from pqm4 [KRSS], which
makes use of the optimized Keccak-permutation from the Keccak Code Pack-
age [DHP+]. For SHA-512, we use a C implementation from SUPERCOP [BL].

Comparison to Reference Code. Table 3 contains the performance bench-
marks for the optimized implementations as well as the reference implementa-
tions with the modifications described above. For all schemes targeted in this
paper we dramatically increase the performance; the improvements go up to a
factor of 49 for the key generation of RLizard-1024. Since both Karatsuba and
Toom-Cook require storing additional intermediate polynomials on the stack, we
increase stack usage for all schemes except Kindi-256-3-4-2. The reference imple-
mentations of Kindi-256-3-4-2 already contained optimized polynomial multipli-
cation methods, which were implemented in a stack-inefficient manner.

Side-Channel Resistance. While side-channel resistance was not a focus of
this work, we ensured that our polynomial multiplication is protected against
timing attacks. More specifically, in the multiplication routines we avoid all data
flow from secrets into branch conditions and into memory addresses. The special
multiplication routine in [SBGM+18] is less conservative and does use secret-
dependent lookup indices with a reference to [ARM12] saying that the Cortex-M4
does not have internal data caches. However, it is not clear to us that really all
Cortex-M4 cores do not have any data cache; [ARM12] states that the “Cortex-
M0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4 processors do not have
any internal cache memory. However, it is possible for a SoC design to integrate
a system level cache.” Also, it is clear that some ARMv7E-M processors (for
example, the ARM Cortex-M7) have data caches and our multiplication code is
timing-attack protected also on those devices.

Key-Generation Performance. The focus of this paper is to improve perfor-
mance of encapsulation and decapsulation. All KEMs considered in this paper
are CCA-secure, so the impact of a poor key-generation performance can in prin-
ciple be minimized by caching ephemeral keys for some time. Such caching of
ephemeral keys makes software more complex and in some cases also requires
changes to higher level protocols; we therefore believe that key-generation per-
formance, also for CCA-secure KEMs, remains an important target of optimiza-
tion. The key generation of RLizard, Saber, and Kindi is rather straight-forwardly



Faster Multiplication in Z2m [x] on Cortex-M4 295

Table 3. Benchmarks for reference implementations and optimized implementations
using fastest multiplication approach. Reporting run time (cycle count) and stack usage
(bytes) for key generation (K), encapsulation (E), and decapsulation (D).

KEMs optimized in this paper

Implementation Clock cycles Stack usage [bytes]

Saber Reference K: 6 530k K: 12 616

E: 8 684k E: 14 896

D: 10 581k D: 15 992

[KMRV18] K: 1 147k K: 13 883

E: 1 444k E: 16 667

D: 1 543k D: 17 763

This work K: 895k K: 13 248

E: 1 161k E: 15 528

D: 1 204k D: 16 624

Kindi-256-3-4-2 Reference K: 21 794k K: 59 864

E: 28 176k E: 71 000

D: 37 129k D: 84 096

This work K: 969k K: 44 264

E: 1 320k E: 55 392

D: 1 517k D: 64 376

NTRU-HRSS Reference K: 205 156k K: 10 020

E: 5 166k E: 8 956

D: 15 067k D: 10 204

This work K: 145 963k K: 23 396

E: 404k E: 14 492

D: 819k D: 22 140

NTRU-KEM-743 Reference K: 59 815k K: 14 148

E: 7 540k E: 13 372

D: 14 229k D: 18 036

This work K: 5 198k K: 25 320

E: 1 601k E: 23 808

D: 1 881k D: 28 472

RLizard-1024 Reference K: 26 423k K: 4 272

E: 32 156k E: 10 532

D: 53 181k D: 12 636

This work K: 525k K: 27 720

E: 1 345k E: 33 328

D: 1 716k D: 35 448

Other KEMs submitted to the NIST PQC project

Implementation Clock cycles Stack usage

R5ND 1PKEb [SBGM+18] K: 658k K: ?

E: 984k E: ?

D: 1 265k D: ?

R5ND 3PKEb [SBGM+18] K: 1 032k K: ?

E: 1 510k E: ?

D: 1 913k D: ?

NewHopeCCA1024 [KRSS,AJS16] K: 1 244k K: 11 152

E: 1 963k E: 17 448

D: 1 979k D: 19 648

Kyber768 [KRSS] K: 1 200k K: 10 544

E: 1 446k E: 13 720

D: 1 477k D: 14 880



296 M. J. Kannwischer et al.

optimized by integrating our fast multiplication. The key generation of NTRU-
Encrypt and NTRU-HRSS also requires inversions, which we did not optimize in
this paper; we believe that further research into efficient inversions for those two
schemes will significantly improve their key-generation performance.

Comparison to Previous Results. To the best of our knowledge, Saber is
the only scheme of those considered in this paper that has been optimized for
the ARM Cortex-M family in previous work [KMRV18]. Table 3 contains the
performance result on the same platform as ours. Our optimized implementa-
tion outperforms the CHES 2018 implementation by 22% for key generation,
20% for encapsulation, and 22% for decapsulation. Karmakar, Bermudo Mera,
Sinha Roy, and Verbauwhede report 65 459 clock cycles for their optimized 256-
coefficient polynomial multiplication, but we note that their polynomial mul-
tiplication includes the reduction. Including the reduction, our multiplication
requires 38 215 clock cycles, which is 42% faster. On a more granular level, they
claim 587 cycles for 16-coefficient schoolbook multiplication, while we require
only 343 cycles (see Table 5; this includes approximately 50 cycles of bench-
marking overhead).

Several other NIST candidates have been evaluated on the Cortex-M4 family.
We also list the performance results in Table 3 for comparison. Most recently,
record-setting results were published for Round54 on Cortex-M4 [SBGM+18].
The fastest scheme described in our work, targeting NIST security category 1,
NTRU-HRSS, is 59% faster for encapsulation and 35% faster for decapsulation
compared to the corresponding CCA variant of Round5 at the same security level.
The key generation of NTRU-HRSS is considerably slower, but its inversion is not
optimized yet. The fastest scheme implementation described here that targets
NIST security category 3, Saber, is 13% faster for key generation, 23% faster
for encapsulation, and 37% faster for decapsulation There are also optimized
implementations for NewHopeCCA1024 [KRSS,AJS16] and Kyber768 [KRSS].
Both implementations are outperformed by NTRU-HRSS and Saber.

4.3 Profiling of Optimized Implementations

The speed up achieved by optimizing polynomial multiplication clearly shows
that it vastly dominates the runtime of reference implementations. Having
replaced this core arithmetic operation with highly optimized assembly, we ana-
lyze how much time the optimized implementations still spend in non-optimized
code to capture how much performance could still be gained by hand-optimizing
scheme-specific procedures. We achieve this by measuring the clock cycles spent
in polynomial multiplication, hashing, and random number generation. Table 4
shows that still a considerable proportion of encapsulation and decapsulation is
spent in polynomial multiplication. However, cycles consumed by hashing and
randomness generation become more prominent. In the following we briefly dis-
cuss these results and emphasize how one could further speed-up those schemes.
4 R5ND {1,3,5}PKEb are the CCA-variants of Round5, whereas R5ND {1,3,5}KEMb

are CPA-secure.



Faster Multiplication in Z2m [x] on Cortex-M4 297

Table 4. Time spent in polynomial multiplication, hashing, and sampling randomness
for optimized implementations. Still considerable time is spent in polynomial multipli-
cation, but hashing is more apparent.

Scheme Total [cycles] Polymul [cycles] Hashing [cycles] Randombytes

[cycles]

Saber K: 895k 327k (37%) 475k (53%) 2.0k (<1%)

E: 1 161k 435k (38%) 615k (53%) 0.6k (<1%)

D: 1 204k 544k (45%) 500k (42%) 0

Kindi-256-3-4-2 K: 969k 342k (35%) 409k (42%) 1.2k (<1%)

E: 1 320k 456k (35%) 604k (46%) 0.6k (<1%)

D: 1 517k 570k (38%) 603k (40%) 0

NTRU-HRSS K: 145 963k 1 556k (1%) 80k (<1%) 0.6k (<1%)

E: 404k 173k (43%) 107k (26%) 0.6k (<1%)

D: 819k 519k (63%) 67k (8%) 0

NTRU-KEM-743 K: 5 198k 1 680k (32%) 0 85k (2%)

E: 1 601k 187k (12%) 1 171k (73%) 46k (3%)

D: 1 881k 373k (20%) 1 172k (63%) 0

RLizard-1024 K: 525k 303k (58%) 0 123k (23%)

E: 1 345k 605k (45%) 628k (47%) 2.2k (<1%)

D: 1 716k 908k (53%) 628k (36%) 0

Hashing. For encapsulation, hashing (SHA-3 and SHA-2) dominates the run-
time of Kindi-256-3-4-2, NTRU-KEM-743, and Saber. We have replaced these
primitives with the fastest implementations available. Still, all schemes spend a
substantial number of clock cycles computing hashes. This is partly due to the
Fujisaki-Okamoto transformation required to achieve CCA security. Further hash
function calls are required to sample pseudo-random numbers from a seed, which
most schemes implement using the SHAKE XOF. Having a hardware accelerator
for these hash function would highly benefit all of the examined schemes. While
ARM Cortex-M4 platforms with SHA-2 hardware support exist, there are (at
the time of writing) none available which have SHA-3 hardware support.

Randomness Generation. Kindi-256-3-4-2, NTRU-HRSS, and Saber do not
make use of randombytes extensively, but sample a small seed and then expand
this using SHAKE. RLizard-1024 and NTRU-KEM-743 directly sample their ran-
domness randombytes. As we implement randombytes using the hardware RNG
on the STM32F4Discovery, it is more efficient than using SHAKE to expand a
seed. There are, however, important caveats to consider when only using the
hardware number generator. It is unclear what the cryptographic properties of
such an RNG are, and how this affects the security of the various schemes, in
particular since most reveal randomness as part of the CCA transform.



298 M. J. Kannwischer et al.

A Schoolbook Multiplication Benchmarks

Table 5. Benchmarks for small schoolbook multiplication routines. The cycle counts
include an overhead of approximately 50 cycles for benchmarking.

n Cycles n Cycles n Cycles n Cycles

1 56 13 232 25 926 37 1 965

2 59 14 252 26 1 057 38 1 966

3 69 15 341 27 1 057 39 1 963

4 74 16 343 28 1 168 40 1 965

5 85 17 467 29 1 167 41 2 294

6 92 18 466 30 1 170 42 2 588

7 107 19 508 31 1 264 43 2 595

8 114 20 510 32 1 266 44 2 594

9 131 21 626 33 1 431 45 2 824

10 140 22 626 34 1 547 46 2 825

11 168 23 670 35 1 546 47 2 822

12 177 24 672 36 1 549 48 2 824

References

[AAB+17] Alkim, E., et al.: Newhope: algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project (2017). https://cryptojedi.org/papers/#
newhopenist

[ABD+17] Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specification and sup-
porting documentation. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project (2017). https://pq-crystals.org/kyber

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: Holz, T., Savage, S. (eds.) Proceedings of
the 25th USENIX Security Symposium. USENIX Association (2016).
https://eprint.iacr.org/2015/1092

[AJS16] Alkim, E., Jakubeit, P., Schwabe, P.: NewHope on ARM Cortex-M. In:
Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol.
10076, pp. 332–349. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49445-6 19

[ARM12] ARM Cortex-M programming guide to memory barrier instruc-
tions (2012). https://static.docs.arm.com/dai0321/a/DAI0321A
programming guide memory barriers for m profile.pdf

[Ban17] El Bansarkhani, R.: KINDI: algorithm specification and supporting doc-
umentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project (2017). http://kindi-kem.de

https://cryptojedi.org/papers/#newhopenist
https://cryptojedi.org/papers/#newhopenist
https://pq-crystals.org/kyber
https://eprint.iacr.org/2015/1092
https://doi.org/10.1007/978-3-319-49445-6_19
https://doi.org/10.1007/978-3-319-49445-6_19
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
http://kindi-kem.de


Faster Multiplication in Z2m [x] on Cortex-M4 299

[BGM+16] Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hard-
ness of learning with rounding over small modulus. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 9

[BGML+18] Bhattacharya, S., et al.: Round5: compact and fast post-quantum public-
key encryption. Cryptology ePrint Archive, Report 2018/725 (2018).
https://eprint.iacr.org/2018/725

[BL] Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of crypto-
graphic systems. http://bench.cr.yp.to. Accessed 14 Oct 2018

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 42

[Coo66] Cook, S.: On the minimum computation time of functions. Ph.D. thesis,
Harvard University (1966)

[CPL+17] Cheon, J.H., et al.: Lizard: algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

[Den03] Dent, A.W.: A Designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryp-
tography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-40974-8 12

[DHP+] Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer,
R.: eXtended Keccak Code Package. https://github.com/XKCP/XKCP.
Accessed 14 Oct 2018

[DKRV17] D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber:
algorithm specification and supporting documentation. Submission to
the NIST Post-Quantum Cryptography Standardization Project (2017).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-
submissions

[FO99] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmet-
ric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48405-1 34

[GMZB+17] Garcia-Morchon, O., Zhang, Z., Bhattacharya, S., Rietman, R., Tol-
huizen, L., Torre-Arce, J.-L.: Round2: algorithm specification and sup-
porting documentation. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project (2017). https://www.onboardsecurity.
com/nist-post-quantum-crypto-submission

[HGSSW03] Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP:
provable security in the presence of decryption failures. Cryptology ePrint
Archive, Report 2003/172 (2003). https://eprint.iacr.org/2003/172

[HHK17] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the
fujisaki-okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 12

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based pub-
lic key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol.
1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

https://doi.org/10.1007/978-3-662-49096-9_9
https://eprint.iacr.org/2018/725
http://bench.cr.yp.to
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-540-40974-8_12
https://github.com/XKCP/XKCP
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://eprint.iacr.org/2003/172
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868


300 M. J. Kannwischer et al.

[HPS+17] Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.,
Zhang, Z.: Choosing parameters for NTRUEncrypt. In: Handschuh, H.
(ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52153-4 1

[HRSS17a] Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key
encapsulation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES
2017. LNCS, vol. 10529, pp. 232–252. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 12

[HRSS17b] Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-KEM-
HRSS: algorithm specification and supporting documentation. Submis-
sion to the NIST Post-Quantum Cryptography Standardization Project
(2017). https://ntru-hrss.org

[KMRV18] Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM.
IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(3), 243–266 (2018).
https://eprint.iacr.org/2018/682

[KO63] Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on
automata. Sov. Phys. Doklady 7, 595–596 (1963). Translated from Dok-
lady Akademii Nauk SSSR, vol. 145, no. 2, pp. 293–294, July 1962.
http://cr.yp.to/bib/1963/karatsuba.html

[KRSS] Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-
quantum crypto library for the ARM Cortex-M4. https://github.com/
mupq/pqm4. Accessed 14 Oct 2018

[NIS15a] FIPS PUB 180–4: Secure hash standard (2015). http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.180-4.pdf

[NIS15b] FIPS PUB 202 – SHA-3 standard: Permutation-based hash and
extendable-output functions (2015). http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf

[NIS16a] Submission requirements and evaluation criteria for the post -quantum
cryptography standardization process (2016). https://csrc.nist.gov/
csrc/media/projects/post-quantum-cryptography/documents/call-for-
proposals-final-dec-2016.pdf

[NIS16b] NIST Computer Security Division. Post-Quantum Cryptography
Standardization (2016). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

[Saa17] Saarinen, M.-J.O.: Hila5: algorithm specification and supporting docu-
mentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project (2017). https://mjos.fi/hila5

[SAL+17] Smart, N.P., et al.: Lima: algorithm specification and supporting docu-
mentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project (2017). https://lima-pq.github.io

[SBGM+18] Saarinen, M.-J.O., Bhattacharya, S., Garcia-Morchon, O., Rietman, R.,
Tolhuizen, L., Zhang, Z.: Shorter messages and faster post-quantum
encryption with Round5 on Cortex M. Cryptology ePrint Archive, Report
2018/723 (2018). https://eprint.iacr.org/2018/723. Version: 13 Oct 2018
08:50:18 UTC

[SS17] Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4.
In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 10

[Too63] Toom, A.L.: The complexity of a scheme of functional elements realizing
the multiplication of integers. Sov. Math. Doklady 3, 714–716 (1963).
www.de.ufpe.br/∼toom/my-articles/engmat/MULT-E.PDF

https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://ntru-hrss.org
https://eprint.iacr.org/2018/682
http://cr.yp.to/bib/1963/karatsuba.html
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://mjos.fi/hila5
https://lima-pq.github.io
https://eprint.iacr.org/2018/723
https://doi.org/10.1007/978-3-319-69453-5_10
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF


Faster Multiplication in Z2m [x] on Cortex-M4 301

[WP06] Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm
for efficient implementations (2006). https://eprint.iacr.org/2003/172

[ZCHW17] Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt: algo-
rithm specification and supporting documentation. Submission to the
NIST Post-Quantum Cryptography Standardization Project (2017).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-
submissions

https://eprint.iacr.org/2003/172
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Faster Multiplication in Z2m[x] on Cortex-M4 to Speed up NIST PQC Candidates
	1 Introduction
	2 Preliminaries
	2.1 Cryptosystems Targeted in This Paper
	2.2 ARM Cortex-M4

	3 Multiplication in Z2m[x]
	3.1 Toom/Karatsuba Strategies
	3.2 Small Schoolbook Multiplications

	4 Results and Discussion
	4.1 Multiplication Results
	4.2 Encapsulation and Decapsulation Results
	4.3 Profiling of Optimized Implementations

	A Schoolbook Multiplication Benchmarks
	References




